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ABSTRACT

COMPUTATIONAL MODELS OF ATTENTION

COMPETITION

In the new digital age, information has grown increasingly abundant and im-

mediately available. Thus it is easy to see that the scarcest resource of today is not

information but rather attention. We design several complex adaptive social systems

in which agents with limited attention capacity confront a wealth of information. We

take rather an exploratory approach and use primarily agent-based models to study

the dynamics of competitive endeavours, such as artificial markets and games. Our

purpose is to study the dynamics of cooperation and competition among boundedly

rational artificial agents. (i) First we built a simple model in which cultural items com-

pete for the limited attention of agents and we investigate the impact of advertisement

pressure. We observe that the market share of the advertised item improves as a result

of an increase in the standard items. (ii) Secondly, we work on attention games in

a specific context of Iterated Prisoners Dilemma. We find out it is best for agents to

pay attention to defectors in order to achieve a higher social welfare. Hence, cooper-

ators becomes more prudent to the defective moves. (iii) Thirdly, we investigate the

evolution of cooperation. This time agents are “hard-wired” to pay attention to defec-

tors. Agents have limited memory size and refuse to play with defectors. As opposed

to what we expect, we observe that subsequent generations loose their memory and

are ultimately invaded by defectors, when playing with a defector brings non-negative

payo↵s. We reformulate the payo↵ matrix structure to incorporate negative payo↵s

and show how threat (of receiving negative payo↵s) fosters greater memory size and

cooperation. We also observe how memory acts like an immune response of the subse-

quent generations against aggressive defection. This functionality of self-immunization

has emerged as a result of the co-evolutionary process.



v

ÖZET

BİLGİSAYIMSAL DİKKAT REKABETİ MODELLERİ

İçinde buluduğumuz yeni çağda, bilgi miktarı çok hızlı artmakta ve bilgiye ulaşım

gittikçe kolaylaşmaktadır. Bugün artık, bilgi kaynakları kısıtlı olmaktan çıkmış ve

en kısıltı kaynak bilgiye harcanacak olan zaman ve dikkat haline gelmiştir. Biz de

bu kapsamda, kısıtlı dikkate sahip etmenlerin yoğun bilgiye maruz kaldığı bir takım

karmaşık sosyal simülasyonlar tasarladık. Yapay market, ekonomi ve oyunlardaki

sosyal ve evrimsel rekabeti incelemek için ana yöntem olarak, etmen-temelli benze-

tim kullandık. Amacımız sınırlı mantıksal çıkarım yeteneklerine sahip yapay etmen-

ler arasındaki işbirliği ve rekabet dinamiklerini incelemektir. (i) İlk olarak basit bir

kültürel market modeliyle, bireylerin hafızasından yer kapmak için birbiriyle yarış

halinde olan kültürel ürünlerin dinamiklerini inceledik. Reklam ve tavsiye dinamik-

lerini karşılaştırdık. Reklam edilen ürünün bilinirliliğinin (şöhretinin) markete daha

fazla sayıda standart ürün koyulurak da arttırılabileceğini gözlemledik. (ii) İkinci

çalışmamızda, tutsak ikilemi oyunu özelinde dikkat kıtlığının oyunların çıktısını nasıl

etkileyebileceğini inceledik. Dikkatin kısıtlı olduğu durumlarda, en iyi stratejinin,

dikkatin işbirliğinden kaçan ve tehlike arz eden, bencil bireylere yöneltilmesi gerektiği

ortaya çıktı. (iii) Üçüncü çalışmamızda, bencil bireyler arasında işbirliğinin nasıl

ortaya çıkabileceğini, evrimsel açıdan inceledik. Bencil bireylerle etkileşim negatif

skor getirmediği sürece, bir sonraki nesillerin hafızalarından sıyrıldığını, ve koruyucu

bir hafıza kalmadığında toplumun bencil bireylerce işgal edildiğini gözlemledik. Tut-

sak İkilemi oyunundaki skor matrisini, bencil bireylerle etkileşimin negatif skor ge-

tireceği şekilde yeniden düzenledik. Belli bir dozdaki tehtidinin işbirliğini arttırdığını

gözlemledik. Evrimsel açıdan bakıldığında, hafızanın bencilliğe karşı bir bağışıklık

kalkanı gibi çalıştığını gördük. Bu durum, evrim neticesinde, zuhur eden bir özellik

olarak ortaya çıkmıştır.
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1. INTRODUCTION

“Suam habet fortuna rationem (Chance has its reasons).”
- Gaius Petronius [1].

“All men can see these tactics whereby I conquer, but what none can see is
the strategy out of which victory is evolved.”

- Sun Tzu [2].

Structure generates behavior. I am a computer scientist. So it has taken me sev-

eral years to encounter with the famous system dynamics motto, structure generates

behavior [3]. That is a very agreeable summary of the causal relationships surrounding

our social life and the nature. Usually, what we observe as an outcome is a product

of a vast amount of interactions among the internal sub-components of a system. A

perfect example would be Adam Smith’s “invisible hand” which describes the unin-

tended order of economic systems as a result of interdependent actions of self-interested

individuals. Another well known example is the ability of an ant colony to behave like

an intelligent organism even if it is composed of relatively unintelligent parts. Immune

systems, ecological systems even internet are other distributed systems composed of

many sub-components without a central controller. A system is defined to be a mean-

ingful collection of interacting parts. The term “meaningful” hints a pattern, some

level of order which is above random [4]. In a complex system, parts awash in an ocean

of feedbacks. Parts shape and are shaped by other parts and as a result “more comes

out than was put in” in the words of John Holland, father of the genetic algorithms [5].

Because of the non-linearity within the actions of interconnected parts, aggregate prop-

erties can not be attained by a simple summation. In other words, “the whole becomes

not only more than but very di↵erent from the sum of its parts” [6]. This distinc-

tive property is called emergence. It is the essential requirement for calling a system

“complex” [7]. And it is also the main source of motivation for the research of complex

systems. In order to be able to investigate the intricate complexities we face in the

real world, hitherto we had data-driven experimentations and equation-based mathe-

matical models. Now we have a new and very powerful tool, that we call computer.
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This thesis will be about building computer-based simulations of complex systems in

which simple sub-components, with their limited abilities, interact with each other in

the from of either cooperation or competition.

How to harness complexity? Robert Axelrod is a well known political scientist

for his interdisciplinary work on the evolution of cooperation and for his research on

complexity theory. He explains the process of harnessing complexity, as deliberately

changing the structure of a system in order to increase some measure of performance [8].

The structure, who interacts with whom in either physical or conceptual space, is the

key to understand and improve the “aggregate” or “macro” behavior of the systems.

Better outcomes can be achieved by deliberately introducing barriers and boundaries

into systems with the aim of altering rates of interaction among sub-components [8].

This is also exactly the same scientific methodology to investigate the possible scenar-

ios that could have generated the observed phenomena which needs to be explained.

We ask again and again what is the very structure that have generated the macro be-

havior, that we are interested in. Computer-based simulation gives us the fascinating

opportunity to create alternative structures and to search for the correct one which

is capable of generating the behavior being observed. Axelrod claims simulation as a

new way of doing science [9]. Computer scientist Uri Wilensky, the author of free and

widely used agent-based programming language NetLogo, put it as follows: “We can

now simulate to understand” [10].

How to connect computer science and complexity? Being aware of object oriented

programming and the necessary tools and algorithms for analysing data, computer

scientists usually have a natural tendency to view the world as a computational system.

But they often lack the generative perspective of how macro arises from micro. From

the generativist’s point of view, each sub-component has di↵erent internal states and

follows di↵erent rules-of-thumb to interact with each other. The repeated interactions

between the sub-components, we call them agents from now on, give rise to the observed

macroscopic outcome of interest. Indeed, this approach is very close to so called object

oriented programming. An object is a software entity that encapsulates both data and

methods acting on these data. Data and methods can be public (i.e. accessible to all
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agents) or private (i.e. specific to the agent). Although objects have state (data) and

behavior (method), they fail to encapsulate the autonomy over their choice of action.

Hence, the key distinction between an agent and an object, lies on the autonomy of

the corresponding software entity [11]. The encapsulation of state (data), behaviour

(method) and autonomy (choice of action) give rise to more realistic representation of

systems composed of interacting distributed entities having limited information and

computational capabilities [12].

Social dilemmas occur where macro-behavior and micro-motives fail to align.

Agent-based modeling, with its bottom-up generativist approach, fits naturally to the

study of social dilemmas. We will revisit agent-based modeling in Section 1.1. Game

theory is the main theoretical reference for the investigation of social dilemmas. It

allows also to make contributions to model and analyze problems within various dis-

ciplines. Evolutionary game theory imported biological ideas into game theory and

results from game theory help us to understand better evolutionary biology [13]. It

was invented by John Von Neumann and Oskar Morgenstern to formulate the decisions

and behaviors of people playing games with each other [14]. It was developed during

the Cold War to bring balance to the two competing mega powers dominating the

world at that time [15]. In order to make it possible to have an analytical treatment,

traditional game theory assumes that the players are rational. In traditional game

theory, a “rational man” is an agent who can evaluate all the alternatives for a given

problem and choose the best option [16].

The problems of inferring proper lessons based on limited experience occur in

almost every sphere of human activity [8]. From managerial systems to ecology we

face with our limitations. The “perfect rational man” paradigm is not adequate for

the real world. Critical events occur or important dynamics emerge as a result of a

huge number of interactions reaching threshold levels over time [17]. From the time of

Heraclitus, we know that everything changes and nothing stands still. Mountains were

not lifted up in one day, species are not static, nations and their language vary little

by little, social norms even taboos which appear to be unchanging, become extinct

or prosper slowly over long time horizons. On the other hand sometimes very quick
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life-and-death decisions must be made under extreme time pressures. That is not the

case for only soldiers or doctors, but also for ordinary people [18]. The overwhelming

complexity of the real world, is almost always beyond our cognitive capacities.

Bounded rationality refers to the limited knowledge and limited information-

processing capabilities of our minds. We owe the notion of bounded rationality to

Herbert Simon. He said [19]

“The capacity of the human mind for formulating and solving complex prob-
lems is very small compared with the size of the problem whose solution is required
for objectively rational behavior in the real world or even for a reasonable approx-
imation to such objective rationality.”

Thus in order to deal with the inherit complexity of the real world, we need simpli-

fied representations of it. Simplifications should be done in a such way that we keep

the essential properties of reality but ignore the the rest. (By the way, this is not

so di↵erent from building scientific models, explained in Section 1.2.) Overhelming

complexity of reality forces us to construct fast and frugal representations and behave

accordingly [18]. Interestingly, our limitations make us smart. Just to give an example,

with an unlimited memory that can track every details there won’t be any need for

thinking with abstractions [20]. Heuristics are simple but useful rules-of-thumb that

are acquired through natural selections and take advantage of evolution. Gigerenzer

points out that there is a clear distinction between known risks and unknown risks [21].

In the world of known risks, all alternatives and their probabilities can be calculated.

Thus analytical thinking turns out to be the only requirement for good decision mak-

ing. In the world of uncertainty (or unknown risks), that is not the case. This is

where simple heuristics (intuitions, rules-of-thumb) often can do better. For sure, we

live in an uncertain world. The real research question is to understand why and when

an heuristic does better. This is referred as the study of ecological rationality which

brings environmental structure back into the bounded rationality [18].

In this thesis we will attack the very heart of the bounded rationality using three

di↵erent games that we have developed during my PhD. (Please see Figure 1.5.) We
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think that complex adaptive social systems in which agents with limited cognitive

capacities (i.e., memory size, attention capacity, reasoning etc.) confront a wealth

of information will provide a fertile background for scientific investigation. And for

a computer scientist, one of the best ways is to use agent based programming to

investigate this kind of social dynamics.

1.1. Agent Based Modeling

“Modeling for insights, not numbers.”
- Hillard G. Huntington [22].

“What I can not create, I do not understand.”
- Richard Feynman [23].

Agent-based modeling (ABM) is considered as a natural and a very intuitive

way of representing real world systems in silico. It is essentially a new mindset to

explore systems dynamics from bottom-up. From this perspective, the dynamics of a

system emerges from the characteristics and interactions of its individuals. It fits very

well to the study of many areas of science. Ecology has a long tradition of bottom-up

modeling [4]. ABM even has a special name, individual-based modeling, in Ecology [24].

ABM is also being accepted as a well-suited mindset especially for social science [25].

Today, the main modeling tool used in computational social science is agent-based

modeling [26]. ABM allows us to take into account the multilayered reality of our

social world. The most fascinating things related to the ABM lies within the micro-

macro linkage.

Agents are the building blocks of complex adaptive system [27]. An agent is

an autonomous computational unit with particular properties (state) and simple rules

(action) to follow. As it is shown in Figure 1.1, a simple agent can be characterized

by its state and actions. The state of an agent is given by “what agent is” and “what

agent knows”. Usually agents are simple entities and their actions are determined by a

simple set of if-then rules. These rules correspond to heuristics of satisfying behavior.

Agents are so simple yet their interactions can give rise to complex dynamics, since
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Environment

• Other agents and items
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• What agent is?
• What agent knows?

Action
• What agent does?
(if-then rules)

influenced by

influence
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ABM Scope

up
da

te

determ
ine

Figure 1.1. A simple agent and its environment.

they are awash in an ocean of feedbacks. To concretize the feedbacks in ABM, consider

the following.

• Internal feedbacks - The state of an agent determines its action and, at the same

time, its action determines its state.

• External feedbacks - Agents have an e↵ect on their environment and environ-

ment also has an e↵ect on the agents. They influence other agents and are also

influenced by them.

The properties of agents can di↵er from one ABM to another. But, the most dis-

tinctive property of an agent is its autonomy and it is a must have in ABM. Agents

are autonomous, in the sense that they take actions independent of an external con-

troller. Agents are reactive in the sense that they follow simple condition-action rules.

When a stimulus arrives, they react. An agent is unique. That is, they di↵er in their

properties. Agents are social. A society of agents, usually consists of heterogeneous

agents, communicate information with each other. They are boundedly rational. Their

rationality is bounded because they lack complete information and their cognitive ca-
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pacities are limited. Nonetheless they are rational in the sense that their choices are

consistent with their internal preferences and their goals. Moreover, they are able to

use pre-defined short-cuts or heuristics for decision making. They adapt to their so-

cial and physical environment. They shape their environment and also shaped by it.

This circular causality can give rise to emergent properties, such as new heuristics for

decision making that are not pre-defined.

What clearly distinguishes ABM from other modeling approaches, is the ability

to show how the hard-to-predict macro-level regularities arise from a large amount

of interactions among the boundedly rational and heterogeneous individuals. They

are situated in conceptual or physical spaces and are following a set of simple if-then

conditional rules. In Uri Wilensky’s words, agent-based models provide us a “glass

box” as opposed to a block box through which we can observe and test whether or

not the hypothesized micro-specifications of agents and their interactions are su�cient

to generate the macro-structure of interest [10]. This is also known as Generativist’s

approach [28]. Epstein explains The Generativist’s Experiment as follows:

“Given some macroscopic explanandum - a regularity to be explained - situate
an initial population of autonomous heterogeneous agents in a relevant spatial
environment; allow them to interact according to simple local rules, and thereby
generate—or “grow”—the macroscopic regularity from the bottom up.”

Epstein’s generativist motto is the following,

“if you don’t grow it, you didn’t explain it”.

The micro-to-macro linkage constitutes the most interesting part of this Generativist’s

approach. We can get macro-surprises despite the complete micro-knowledge. Fol-

lowing Epstein’s Generativist approach, depicted in Figure 1.2, we ask Are the given

micro-specifications su�cient to generate a macrostructure of interest? What is the

e↵ect of the independent variable on the macrostructure of interest under the given

scenario (control variables)?
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Figure 1.2. Generativist’s approach emphasizing the linkage from micro to macro.

This figure and Figure 1.1 is partly inspired from Gönenç Yücel’s IE-48F course.

Agents, as it is shown in Figure 1.1, follows a set of simple if-then rules. These

conditional rules are simple (e.g. neuron fires if received signal reaches a threshold or

one can start to smoke if his rate of interaction with people who smoke increases and so

on). But their e↵ects are hard to grasp. Conditional rules are very typical of complex

systems. Each conditional rule corresponds to a sharp change in behavior which makes

it impossible to approximate with traditional mathematical tools (di↵erential equa-

tions and so on). Real social phenomena are in general too complicated to be solved

by analytical treatment. Equation based models (EBMs) employ di↵erence/di↵erential

equations to study the dynamics of a model where sub-components can be interde-

pendent and create causal feedback loops. This is di↵erent than standard di↵erential

equations, hence called Systems Dynamics (SD). ABM and SD approaches share the

same simple cause-e↵ect relationships in modeling but from di↵erent levels. That is

bottom-up vs top-down. ABMs are especially useful where interactions take place in

a non-random way due to environmental constraints or social preferences. We do not

have an explicit mathematical procedure even for third order non-linear di↵erential

equations. That is why SDs also requires simulations to solve problems. ABM can not

replace EBM. Because ABM takes so much time and computational e↵ort while EBM

can provide direct analytical solutions. Thus they complement each other. ABM is

not a discipline-specific method, so it can cross the disciplinary boundaries. The view

of Robert Axelrod on ABM is as follows [29].

“From my perspective, agent-based modeling is not only a valuable technique
for exploring models that are not mathematically tractable; it is also a wonderful
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way to study problems that bridge disciplinary boundaries.”

ABM o↵ers a new way of doing science: by conducting computer-based experiments [10].

It gives the opportunity for understanding natural and social phenomena by recreating

them in computer simulations. Any object-oriented programming language will be use-

ful to code ABMs. Modeling environments such as Netlogo (or swarm, repast, Mason

etc.) are also helpful especially for an easy start in ABM. In this thesis, we have used

Java for implementing our models.

As a final note, we think that literacy in agent-based modeling will become ex-

tremely important in our increasingly complex world. Literacy - the ability to read and

write - is critical to understand our world and make it a better place. For example,

Turkish alphabet has a high degree of accuracy and specificity in pronunciation, unlike

French. Each letter in Turkish corresponds accurately to the phonetic requirement.

This is also true for ABM. It is possible to build agent based models where actual

individuals and their interactions are directly represented [30]. Agent-based modeling

is a powerful tool because its basic ontology corresponds accurately to the ontology of

the real world [10].

1.2. Model Design and Validation

“All models are wrong, but some are useful.”
- George Box [31]

“Art is a lie that helps us see the truth.”
- Picasso [32]

“The first consequence of the principle of bounded rationality is that the in-
tended rationality of an actor requires him to construct a simplified model of the
real situation in order to deal with it.”

- Herbert Simon [19]

A real system is something that can not be fully identified or known because of

its infinitely many aspects. Since a real system is unknown, we come up with abstrac-
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tions. A model is defined to be a simplified representation of some selected aspects of

a real system with respect to a clearly stated problem. The purpose of modeling is to

ease thinking by filtering out irrelevant parts of the real world phenomena under inves-

tigation. Modeling is more art than science. Like stone carving, we remove what we

regard as unnecessary [33] and like cartooning, we exaggerate some distinctive features

that we believe they are important to the problem of concern [34]. The scope (what

to include) and necessary level of details (how to include) are determined relatively

according to the purpose at hand. For example, in an evolutionary game we can use

asexual reproduction, if we think the details of the reproduction are irrelevant [10]. For

an individual to reproduce, a certain age is required. For the sake of scope reduction,

we can ignore this requirement, too. There are two major categories of modeling in

ABM [10].

• Phenomena-based modeling - It is the most common design approach across dis-

ciplines. Modeling starts with an observation of a target macro phenomena in

the real world. Then, a research question is formalised in order to explain its

hidden cause. Modeler takes into account only some selected aspects of the real-

ity, that he believes to be important. Modeler determines the properties of the

agents and the physical or conceptual structure that they are embedded in (who

interacts with whom) at the bottom level. If the model turns out to be capable of

capturing the essential properties of the target phenomena, then the model can

be accepted as one way of an explanation for the target phenomena.

• Exploratory modeling - This bottom-up approach is more or less unique to ABM.

Instead of starting with a target macro phenomena, one starts with determining

the properties of the agents and the physical or conceptual structure that they are

embedded in (who interacts with whom). Then he or she explores the patterns

that emerge. Of course not all the emerging outputs are interesting. To count

this approach as modelling, there must be some degree of correspondence between

the model output and some real-world phenomena.

The design of an ABM is usually a mixture of the two major approaches shown

in Figure 1.3. The approach of phenomena-based modeling is like reverse-engineering
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Figure 1.3. The two major model design approaches for ABM.

the micro-rules that generate a macro-level phenomena. Thus it can be a very di�cult

process [35]. So starting with exploratory approach and gaining experience with mod-

eling is more common in ABM. To emphasize the importance of exploratory modeling,

we can make a glimpse to the words of Arthur S. Eddington [36].

“The contemplation in natural science of a wider domain than the actual leads
to a far better understanding of the actual.”

1.2.0.1. Verification and Validation. A model needs verification (correctness) and val-

idation (usefulness) in order to improve its credibility. Verification deals with correctly

implementing the conceptual model. By verification, we make sure that the conceptual

model is transformed into computer model (code) without error. Validation is a much

more di�cult process, because of its relative nature. Is the model an acceptable, good-

enough, adequate description of a real phenomena based on the purpose, or objectives,

at hand? Note the fact that when the purpose at hand changes, the degree of validity

also changes. There is no such thing as general validity [37]. Since all models are sim-

plifications of the reality, all models are incorrect. A model can not be either invalid or

valid but its validity lies in-between. As the mapping between the model and the real

process gets closer, we obtain a more valid model. ABM deals with micro-validation

and macro-validation at both levels whereas EBM deals with only macro-validation.

Validation is the process of testing whether a model is su�ciently accurate for

the purpose at hand [37]. There can be two types of validation.
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• Face validation - is the process of showing that the model appears to be a rea-

sonable imitation of a real phenomena, looking from the surface.

• Empirical validation - uses statistics to demonstrate the resemblance between the

data generated by the model and empirical data gathered from the real world.

Face validation is a form of qualitative agreement between the model output and

the real-world phenomena, whereas empirical validation is the quantitative one, thus it

is a relatively stronger criterion. But empirical validation is not always possible, since

real-world data can be missing or poorly defined. Thus, in general, face validation

turns out to be only option. A model has face validity if it appears to be a reasonable

imitation of a real phenomena to people who have knowledge about the real phenomena.

1.2.0.2. Modeling Example. The purpose of a model is often to explain specific pat-

terns which has any display of order above random variation [4]. Modeling is a process

of decoding the underlying mechanisms that generates the observed pattern. Suppose

we observed a population of fireflies which synchronise their flashing and we want to

understand how they manage this synchronisation. What causes this pattern to exist?

We form our hypothesis according to the ABM perspective (bottom-up). We think

that they synchronise without any central coordinator, just by using local interactions.

Agents are fireflies in Figure 1.4. Each agent has its own clock which is reset to

zero when clock reaches to its maximum value. An agent flashes during its flashing-

time (while clock has a value from 0 to flashing-time) and awaits for a while (while

clock has a value from flashing-time to maximum value). Then flashes again. We

also think that each agent occupies a location in a lattice-like environment. They can

perceive other agents if they are close enough. By close enough, we mean that only

local information is available to agents. Agents can adapt their clock according to their

neighbors. When they perceive a su�cient number of flashing agents, they reset their

own clocks. As a result, the state of an agent (flashing or not-flashing) is determined

directly by its own clock and indirectly by the existence of su�cient number of local

neighbors that are flashing. To understand, if this micro-specification are su�cient to
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Figure 1.4. NetLogo Fireflies model.

generate the macro-structure of interest (synchronisation), we can run a simulation.

That can easily be done by NetLogo Fireflies model [38].

To assess the credibility of this model, we can make a face-validation. If synchro-

nisation can be achieved by the given micro-specifications then it is a valid model. As

an analogy, we can think a model as a map. As long as it takes you where you want

to go, it is a valid model.

1.3. Models of Attention Competition

1.3.0.1. Cooperation and Competition. How life has begun? We do not know it.

Maybe, in the early days of the universe, resources were plenty and there was no

need for neither cooperation nor competition. Once resources become limiting, things

changed. We think the very cause of both type of interaction is the limited resources

that threaten one’s survival. Some single-celled organisms cooperated with each other
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when food is scarce (like slime-molds do even today) whereas some competed with one

another for the limited resources to survive.

1.3.0.2. Limited Attention. Today, with the help of our high technology, resources

have become plenty. An ocean of information is in front of us. It is like an open bu↵et,

where we can eat anything but not everything. The challenge lies in what to choose.

Thus, we encounter with a new form of scarcity. Let Nobel laureate Herbert Simon

explain it to us [39],

“In an information-rich world, the wealth of information means a dearth of
something else: a scarcity of whatever it is that information consumes. What in-
formation consumes is rather obvious: it consumes the attention of its recipients.
Hence a wealth of information creates a poverty of attention and a need to allo-
cate that attention e�ciently among the over-abundance of information sources
that might consume it.”

An important research topic of this century is the attention scarcity of the de-

cision maker. We perceive the world through our filters. We can deal with only a

limited fraction of the information we receive. And they are often imperfect. Thus our

cognitive capacities are overwhelmed by the bombardment of information. We discuss

bounded rationality in terms of limited attention, memory and information processing

capabilities. In this thesis, we combined hot topic of this century “scarcity of attention”

with the twin hot topic of all centuries “competition” and “cooperation”.

1.3.1. Computational Models of Attention Competition

Cooperation and competiton are the two main phenomena we continually face in

the real world. One of the fascinating research questions is how is it possible for self-

interested agents to cooperate? We construct agent-based models in order to study first

competition then cooperation among agents with limited memory and attention. Our

models will be a combination of phenomena-based and exploratory modeling. They are

exploratory in the sense that we start with determining the properties of agents from a

bottom-up approach. They have limited memory and attention. Our models are also
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Attention Competition

Scarcity of Attention

Fame Game Attention Game

Items compete to capture

the limited attention of

agents in a cultural market.

Agents with limited attention ca-

pacity compete with each other.

Threat Game

Strategies compete and co-evolve

in a world with limited attention.

Figure 1.5. Computational Models of Attention Competition.

phenomena-based because we look first for the dynamics of competition in an artifical

market then secondly we look for the dynamics of cooperation among self-interested

agents. Our assumption is the following, the spotlight of our attention determines the

content of our memory, which in turn determines with whom and how we interact,

and this structure ultimately determines our behavior. The study of human attention

and human memory is a big topic in Cognitive Psychology. We are not claiming that

we are using them in their deep true meaning. We are only conceptualizing them, in

a very simplified way. We rely on the fact that a model with more details does not

necessarily mean a better model. And we consider our models as starting points for

the investigation of the impact of limited attention on social dynamics.

Our Research Questions, as opposed to the traditional mathematical investiga-

tions which assume perfect rationality and unlimited cognitive capacity, is the following.

What is the e↵ect of limited memory and limited attention capabilities on the dynamics

of competition and cooperation? We have investigated attention competition from

di↵erent view points, as seen in Figure 1.5. Starting from the problem of attention

scarcity, first, we worked on cultural markets where items compete for the limited at-
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tention of agents [40]. As items capture the attention of more agents, they become

popular and get a higher market penetration. We used the term Fame Game for this

setting. Second, we worked on games where agents with limited attention capacity

compete with each other [41]. Each encounter with an opponent corresponds to a new

information that has to be stored in memory. We assume that the memory is not

unbounded. This raises the question of deciding what to know and what to ignore. In

other words, how attention should be spared? We used the term Attention Game for

this setting. And lastly, we investigated the evolutionary dynamics of attention compe-

tition. In this case, strategies compete and co-evolve in a world with limited attention.

We changed the payo↵ structure of the game, such that it includes negative payo↵s.

We interpreted negative payo↵s as threat and explored its e↵ect on the dynamics of

cooperation. Thus, we used the term Threat Game for this setting. We only made face

validation of our models. The contributions of this thesis as follows:

• Mathematical traceability of an ABM - In the fame game, we show how an

ABM, which has a low complexity level, can be traced by analytical tools. We

reformulated the problem of finding the market share of an advertised item as a

social contagion and represented it as a Markov Process. Our analytical solution

and simulation results have confirmed each other. ABMs are known for not

accepting an analytical treatment. In this setting, homogeneous agents, that

are subjected to an unchanging advertisement pressure, interact without any

preference. Hence, the complexity level of fame game is somewhat low. That is

why, it can accept analytical treatment. Nevertheless, even for this model we are

required to use approximations.

• The root of heuristics - Gigerenzer claims that our minds learned an “Adaptive

toolbox” of rules to deal with the complexity of the real world [18]. That notion of

“Adaptive toolbox”, which is composed of rules-of-thumbs, resembles the simple

if-then conditional rules, shown in Figure 1.1. We think one of the greatest

questions is “how do these rules-of-thumb come to form”. Our models provide

some insights for the following heuristics.
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(i) The Attraction-E↵ect heuristics - This refers to an inferior option’s ability

to increase the attractiveness of another alternative [42, 43]. In the fame

game, we find out a surprising result. Initially an increase in the number

of standard items, fosters the market share of an advertised item. This is a

reminiscent of the attraction-e↵ect heuristics, known in the Economy litera-

ture. But this needs further investigation. (Actually this study provides us

a new research question on what causes one inferior option to increase the

attractiveness of another.)

(ii) The negativity bias - The attention-grabbing power of negative information

is much more greater than the positive one [44, 45]. In our second work,

we find out that the attention must be directed towards the defectors and

towards their defective moves for the success of cooperators. This is known

as “negativity bias” in the psychology literature. Attention defines what to

know and what to ignore. The negative information about defectors should

be kept in memory and the positive information about cooperators should

be ignored in order to make room for more negative information.

• Study of cooperation with memory (mindscape barriers) - Cooperation involves

a cost to benefit others. The cost makes cooperation vulnerable to defection.

As a result, natural selection favors defection in well-mixed populations. The

common scientific approach is to use spatially structured populations instead of

well-mixed populations [46]. Spatial structure provides landscape barriers that

prevent interactions among cooperators and defectors. Isolated defectors are

selected away and cooperation succeeds. In this thesis, we have introduced the

concept of memory to tailor the interaction structure. Memory gives agents the

ability to determine with whom to interact. It is a sort of mindscape barriers to

avoid defectors.

• Reformulation of the Prisoner’s Dilemma game - In the threat game, we change

the payo↵ matrix structure of the Prisoner’s Dilemma game, and show the im-

pact of threat (for receiving negative payo↵s as a result of being defected) on

the emergence of cooperation. Interestingly an appropriate level of threat has a

positive e↵ect on memory and therefore cooperation.
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(i) Threat, of receiving negative payo↵s, fosters cooperation. But traditional

Prisoner’s Dilemma game payo↵ structure does not let us to incorporate

negative values in a systematic way. Researchers, in general, use arbitrary

payo↵ values for the study of cooperation. We provide a systematic way

to reformulate the payo↵ matrix structure by two main factors of threat

and greed. We think that as an important contribution to the study of

cooperation.
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2. COMPETITION FOR THE LIMITED ATTENTION

“I am I and my circumstances.”
-José Ortega y Gasset [47].

“Most people are other people. Their thoughts are someone else’s opinions,
their lives a mimicry, their passions a quotation.”

- Oscar Wilde [48].

In this chapter, we will extend Bingol’s Fame game [49] and formalize it as an

attention competition of cultural items in an artificial market. Let’s first think about a

simple model of economy in which agents exchange money at random with each other.

Say initially each agent has a wealth of 500 dollars. Simulation runs over discrete

time steps. At each tick, agents with non-zero wealth give one dollar to a random

agent. What would be the resulting wealth distribution? There is a NetLogo model for

this setting [50]. If we run it, we interestingly obtain a power-law distribution which

corresponds to a great inequality in wealth. Actually, one can modify the model such

that agents with negative wealth can also give money to others. By doing so, you

remove one type of barrier for interaction and then power-law distribution disappears.

Again we witness how interaction structure generates the behavior.

We considered economy as a simple process of spreading money within a society.

For sure, when an agent gives money to another, the giver loses its money. This

is the case for material things. What if agents exchange non-material things such

as information, beliefs or cultural features? How we can model the dynamics of a

culture? Another model by Robert Axelrod who has known for his influential work

on cooperation can help us. In his work on the dissemination of culture [51], each

agent is represented by a vector of features and is located on a 2D grid. Agents follow

the homophily principle for interaction. The interaction probability is a function of

similarity. As an example, consider two agents (1, 2, 3, 4, 5) and (8, 7, 6, 4, 5). They

are similar only in the last two positions out of five positions in their representations.

Their interaction probability is then 2/5 = 0.4. If the interaction probability is not
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zero between two local neighbors, one of the agent adopts a non-matching feature

of the other. As a result, more similar agents interact more and then become even

more similar. As a side e↵ect, less similar agents become even more dissimilar and as

simulation iterates impassable group boundaries come to form. Regions with di↵erent

cultures emerge. Interestingly interaction structure depending on similarity, creates

global polarization on the macro level. Once again we witness how micro-motives and

macro-behavior fail to align, in an agent-based model.

2.1. Fame Game

Bingol’s fame game consists of a simple recommendation model (SRM). SRM

investigates how individuals become popular among agents with limited memory size.

Each agent knows a subset of other agents. They hold information about others, in their

memory. Memory size is equal for each agent. And it is held constant. In Figure 2.1,

state of the system is shown as a matrix. The number of rows equals to population

size, and the number of columns equals to memory size. The row entries correspond

to memory content of corresponding agents.

Figure 2.1. Simple Recommendation Model.

Any pair of agent can interact without any condition. Interaction is described

as a recommendation process. A giver and a taker agent is selected uniformly at

random. Giver agent recommends an agent from his memory at random to the taker.
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Taker learns a new agent at the expense of previously known agent. That is, taker

forgets, uniformly at random, an old agent from his memory. As simulation iterates,

some agents become completely forgotten and some agents become extremely popular.

Simulation stops when memory content of each agent becomes identical. In other

words, only a very limited subset of agents known by everyone while a great majority

of agents is forgotten. We will revisit SRM more formally in Section 2.2.2.

For a useful remark, consider Axelrod’s culture model as a setting where imi-

tation of similars yields to polarization. In Bingol’s fame model, imitation of others

without any preference yields to unanimity. To see how Axelrod’s culture model can

be transformed to the study of engineering problems, see [52]. In the last case, imi-

tation of betters yields to optimization. Modeling the exchange of social information

can provide very fertile scientific opportunities.

2.2. Attention Competition with Advertisement

In the new digital age, information is available in large quantities. Since infor-

mation consumes primarily the attention of its recipients, the scarcity of attention is

becoming the main limiting factor. In this study, we investigate the impact of advertise-

ment pressure on a cultural market where consumers have a limited attention capacity.

A model of competition for attention is developed and investigated analytically and by

simulation. Advertisement is found to be much more e↵ective when attention capacity

of agents is extremely scarce. We have observed that the market share of the advertised

item improves if dummy items are introduced to the market while the strength of the

advertisement is kept constant.

2.2.1. Markets

Traditionally every product or service has a price tag. In order to get it, one has

to pay the price. Nowadays, the price of items in some markets becomes so low, even

to the point of free-of-charge, that this concept of “pay-to-get” is challenged, especially

in the era of Internet. It is quite a common fact that one can get many products and



22

services paying absolutely nothing. Among these are internet search (Google, Yahoo),

email (Gmail, Hotmail), storage (DropBox, Google, Yahoo), social networks (Facebook,

Twitter, LinkedIn), movie storage (Youtube), communication (Skype, WhatsApp),

document formats (PDF, RTF, HTML), various software platforms (Linux, LaTeX,

eclipse, Java) and recent trend in education (open course materials and massive open

online courses (MOOC)).

Companies providing services, where their users pay no money at all, is di�cult

to explain in Economics. Even if these products are free to its user, there is still a

sound business plan behind them. To obtain a large market share is the key in their

business plan as in the cases of Google, Facebook, LinkedIn, or Skype. Once they

become widely used, the company starts to use its customer base to create money.

2.2.1.1. New Market Concepts. In order to understand such markets new concepts

such as two-sided markets and attention economy are developed. In a two-sided market,

a company acts as a bridge between two di↵erent type of consumers [53]. It provides

two products: one is free and the other with a price. Free products are used to capture

the attention. Products with price are used to monetize this attention. A set of very

interesting examples of two-sided markets including credit cards, operating systems,

computer games, stock exchanges, can be found in [53].

Davenport defines attention as a focused mental engagement on a particular item

of information [54]. When we give our attention to something, we are always taking

it away from something else. Suppose there are many competing products at the free

side of a two-sided market. In theory, a customer can get all the products available. In

practice, this is hardly the case. Abundance of immediately available products can eas-

ily exceed customers capacity to consume them. One way to look at this phenomenon

is that products compete for the attention of the users, which is referred as attention

economy in the literature [55–57]. There is another new discipline, whose approach is

very similar: Memetics. The word meme, analogous to a gene, was first popularly used

by Richard Dawkins in his book, The Selfish Gene [58] . A meme is a unit of informa-
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tion, hosted in the minds of individuals which can reproduce itself and can be passed

onto others. According to Richard Brodie, the world is full of memes all competing for

a share of our minds [59], our perception, our attention. Cultural products, like memes

or any other units of information, compete for a share of our minds to gain a broader

popularity.

2.2.1.2. Compulsive Markets. Attention scarcity due to the vast amount of immedi-

ately available products is also the case for cultural markets. In a cultural market, it is

assumed to have an infinite supply for cultural products and it is assumed that individ-

ual consumption behaviour is not independent of other’s consumption decisions [60,61].

We focus on markets, that are slightly di↵erent, where customer compulsively purchases

the item once he is aware of it. Clearly, this kind of compulsive buying behavior cannot

happen for high priced items such as cars or houses. On the other hand, it could be the

case for relatively low priced items such as movie DVDs or music CDs. This pattern of

“compulsive purchasing” behavior becomes clearly acceptable, if the items become free

as in the case of web sites, video clips, music files, and free softwares, especially free

mobile applications. There are a number of services that provide such items including

Youtube, Sourceforge, AppStore.

We will call such markets as compulsive markets and we consider the dynamics

of the consumers rather then the economics of it. These new kind of markets call

for new models. In this work, the Simple Recommendation Model, which is studied

in [49, 62] is extended to such a model. We use the extended model to answer the

following questions: Under which conditions advertisement mechanism outperforms the

recommendation process? How much advertisement is enough to obtain certain market

share? We first present our analytic approach and then compare it with simulation

results.
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2.2.2. Background

A compulsive buyer becomes aware of a product in two ways: (i) By local in-

teractions within his social network, i.e. by means of word-of-mouth. (ii) By global

interactions, i.e. by means of advertisement.

Word-of-mouth recommendations by friends make products socially contagious.

Research on social contagion can provide answers to the question of how things become

popular. Gladwell states, “Ideas, products, messages and behaviours spread like viruses

do” [63]. He claims that the best way to understand the emergence of fashion trends

is to think of them as epidemics. Infectious disease modeling is also useful for under-

standing opinion formation dynamics. Specifically, the transmission of ideas within a

population is treated as if it were the transmission of an infectious disease. Various

models have been proposed to examine this relationship [49, 61, 64–68]. There exist

recent works whose essential assumption is the fact that an old idea is never repeated

once abandoned [69, 70]. In other words, agents become immune to older ideas like in

the susceptible-infected-recovered (SIR) model. However, behaviors, trends, etc, can

occur many times over and over again. In this case it can be modeled as susceptible-

infected-susceptible (SIS) model. In completely di↵erent context, limited attention and

its relation to income distribution is investigated [71].

2.2.2.1. Epidemic Spreading. The study of how ideas spread is often referred to as

social contagion [72]. Opinions can spread from one person to another like diseases.

An agent is called infected i↵ it has the virus. It is called susceptible i↵ it does not

have the virus.

Using the SIS model of epidemics, the system can be modeled as a Markov chain.

Consider a population of N agents. Let Si be the state in which the number of infected

agents is i. The state space is composed of N + 1 states, {S0, S1, . . . , SN} with S0 and

SN being the reflecting boundaries. The system starts with the state S0 where nobody

is infected. The corresponding Markov Chain can be seen in Figure 2.2.
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S0start Si�1 Si Si+1 SN

l0

. . .

li�1

pi�1

. . .

li

qi

pi

li+1

qi+1

. . .

lN

. . .

Figure 2.2. Markov Chain where states are characterized by the number of infected

agents.

Let T = [tij] be the (N + 1) ⇥ (N + 1) transition matrix of the Markov chain

where tij is the transition probability from state Si to state Sj. As a result of a single

recommendation, there are three possible state transitions: The number of infected

agents can increase or decrease by one or stay unchanged. Such a system is called

birth death process [73]. Hence, T is a tridiagonal matrix with entries given as

tij =

8
>>>>>>>><

>>>>>>>>:

pi, j = i+ 1,

li, j = i,

qi, j = i� 1,

0, otherwise

where pi, li and qi are the transition probabilities. Then the stationary distribution

⇡ = [⇡0 · · · ⇡N ]> of the Markov chain can be obtained from its transition matrix [73]

which satisfies

⇡i =
iY

k=1

pk�1

qk
⇡0 and

NX

i=0

⇡i = 1. (2.1)

2.2.2.2. Simple Recommendation Model. The Simple Recommendation Model (SRM )

reveals the relation between the fame and the memory size of the agents [49, 62].

The SRM investigates how individuals become popular among agents with limited

memory size and analyzes the word-of-mouth e↵ect in its simplest form. The SRM
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di↵ers from many previous models by its emphasis on the scarcity of memory. In the

SRM, agents, that have a strictly constant memory size M , learn each other solely via

recommendations.

A giver agent selects an agent, that he knows, and recommends to a taker agent.

Since memory space is restricted to M , the taker forgets an agent to make space for

the recommended one. This dynamics is called a recommendation which is given more

formally in Section 2.2.3.3. Note that (i) The selections have no sophisticated mecha-

nisms. All selections are made uniformly at random. (ii) Any agent can recommend

to any other agent. Therefore underlining network of interactions is a complete graph.

(iii) Taker has to accept the recommended, that is, he has no options to reject.

In the SRM, no agent initially is di↵erent than the other. So the initial fames

of agents are set to be the same where fame of an agent is defined as the ratio of

the population that knows the agent. Recommendations break the symmetry of equal

fames. As recommendations proceed, a few agents get very high fames while the

majority of the agents get extremely low fames, even to the level of no fame at all.

Once an agent’s fame becomes 0, that is, completely forgotten, there is no way for it to

come back. In the limit, the system reaches an absorbing state where exactly M agents

are known by every one, i.e. fame of 1, and the rest becomes completely forgotten, i.e.

fame of 0. The SRM o↵ers many possibilities for extension. It is applied to minority

communities living in a majority [74]. A recent work extends forgetting mechanism by

introducing familiarity [75].

2.2.3. Proposed Model

In SRM, (i) the spread of information through out the system is managed by

recommendation only and (ii) the results are obtained by simulations [49, 62]. In this

work, we propose Simple Recommendation Model with Advertisement (SRMwA) that

extends SRM in the following ways: (i) In addition to recommendation, advertisement

pressure as new dynamic is introduced. (ii) Moreover, an analytical approach is devel-

oped as well as simulations. Distinctively, by SRMwA, we investigate the conditions
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under which social manipulation by advertisement overcomes pure recommendation.

2.2.3.1. New Interpretation for SRM. In the original model of SRM, agents recom-

mend other agents and the term of memory size is used for the number of agents one

can remember [49, 62]. As one agent is known more and more by other agents, his

fame increases. In the extended model of SRMwA, agents recommend items rather

than agents. Since items consume the limited attention of agents, there is a compe-

tition among items for attention. The focus of the work is no longer the fame of the

agents but the attention competition among items. For these reasons, we prefer to use

the term of “attention capacity” in spite of the term memory size for the number of

information an agent can handle.

Note that the proposed model allows us to consider items in a wider sense. Rather

than a unique object such as Mona Lisa of Leonardo, we consider items that are easily

reproduced so that there are enough of them for everybody to have, if they wanted to.

Therefore items are not only products and services but also as political ideas, fashion

trends, or cultural products as in [61].

2.2.3.2. Advertisement. We extend the SRM to answer the following question: What

happens if some items are deliberately promoted? Suppose a new item, denoted by

a, is advertised to the over-all population. At each recommendation, the taker has to

select between the recommended item r and the advertised one a. The item that is

selected by the taker is called the purchased item, denoted by !.

2.2.3.3. Model. Adapting the terminology of SRM [49] to SRMwA, a giver agent

g recommends an item, that she already owns, to an individual. The item and the

individual are called the recommended r and the taker t, respectively. The taker pays

attention to, that is, purchases, either the recommended or the advertised item. When

the attention capacity becomes exhausted, in order to get space for the purchased item,

an item f that is already owned by the taker is discarded. The market share of an item

is defined to be the ratio of population that owns the item.
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The SRMwA is formally defined as follows. Let N = {1, 2, . . . , N} and I =

{1, 2, . . . , I} be the sets of agents and items, respectively. Let g, t 2 N and r, f,! 2

I [ {a} represent the giver and the taker agents, the recommended, the discarded and

the purchased items, respectively.

The attention “stock” of an agent i, denoted by m(i), is the set of distinct items

that i owns. We say agent i 2 N owns item j 2 I i↵ j 2 m(i). For the sake of

simplicity, we assume that all agents have the same attention capacity M , that is,

|m(i)| = M for all i 2 N . The attention capacity of an agent is limited in the sense

that no one can pay attention to the entire set of items but to a small fraction of it,

that is, M ⌧ I. Instead of directly using M , we relate M to I by means of attention

capacity ratio, defined as µ = M/I. Since 0 M  I, we have 0  µ  1.

The recommendation and advertisement dynamics compete. The taker agent

select either the recommended or the advertised item as the purchased one. Let the

advertisement pressure, p, be the probability of selecting the advertised item as the

purchased item.

The modified recommendation is composed of the following steps:

(i) g is selected.

(ii) t is selected.

(iii) r 2 m(g) is selected by g for recommendation.

(iv) t selects ! where ! is set to a with probability p, and to r with probability 1� p.

(v) The recommendation stops if ! is already owned by t.

(vi) Otherwise, f 2 m(t) is selected by t for discarding and ! is put to the space

emptied by f .

Note that all selections are uniformly at random. With these changes, the

SRMwA becomes a model for compulsive markets with advertisement.
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2.2.3.4. Some Special Cases. In general, one expects that the market share of the

advertised item increases as advertisement get stronger. Depending the strength of

advertisement, there are a number of special cases, the dynamics of which can be

explained without any further investigation.

(i) No advertisement. Note that in the case of no advertisement, the original SRM

is obtained since the purchased item is always the recommended item, i.e. ! = r.

In this case, the advertised item has no chance and its the market share is 0.

(ii) Pure advertisement. When the taker has no choice but get the advertised one,

i.e. ! = a, recommendation has no e↵ect. In this cases after every agent becomes

a taker once, the market share of the advertised is 1. Note that in this case

the system will stop evolving any further. The remaining M � 1 entries are left

unchanged, thus empty. Interestingly, this is a di↵erent state than the absorbing

states of the SRM.

(iii) Strong advertisement. In the case of very strong advertisement, the taker almost

always select the advertised item. Once all agents have the advertised item, the

market share of the advertised item is 1 and the system becomes the SRM but

with attention capacity of M � 1.

2.2.4. Analytical Approach

Note that SRMwA resembles epidemic spreading. We explore epidemic spreading

to explain SRMwA as far as we can. Consider the advertised item as a virus. Agent j

is called infected i↵ it has the advertised item in its attention stock, that is, a 2 m(j)

otherwise it is called susceptible that is a /2 m(j). Then the stationary distribution

⇡ provides the probability of the number of agents owning the advertised item when

the system operates infinitely long durations. Hence, the mean value of the stationary

distribution ⇡ reveals our prediction for the number of infected agents. In other words,

the expected number of agents that adopted the advertised item is the mean value of
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this distribution. That is, using Equation 2.1, one obtains

< ⇡ >=
NX

i=0

i⇡i = ⇡0

NX

i=0

i

iY

k=1

pk�1

qk
.

Hence, the expected market share of the advertised item becomes

< Fa >=
< ⇡ >

N

where Fa is the market share of the advertised item.

2.2.4.1. Calculation of Transition Probabilities. In order to obtain the expected mar-

ket share of the advertised item, we need to figure out the stationary distribution ⇡,

which, in turn, calls for transition probabilities pi, li and qi.

Suppose the system is in Si and follow the steps of recommendation process

given in Section 2.2.3.3. The possible selections can be represented by a tree given

in Figure 2.3. A path starting from the root Si to a leaf in the tree corresponds to a

recommendation. The paths that increase the number of infected agents are marked by

a � sign at the leaf. Similarly, recommendations resulting a transition of Si ! Si�1 are

marked by a  . The remaining paths that correspond to no state change are marked

by a �.

Note that there three � and two  paths. Note also that the correspondence

between the levels in the tree and the steps of recommendation given in Section 2.2.3.3.

At each level one particular selection is made and the corresponding probability is

assigned.

(i) a 2 m(g) level. The first level branching in Figure 2.3 corresponds to the selection

of infected or susceptible giver. There are N possible agents to be selected as g.

If system is in state Si, then the probability of selecting an infected giver is i/N .
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(ii) a 2 m(t) level. The second level branching is due to the selection of infected or

susceptible taker. Once g is selected, there are N � 1 candidates left for t. The

probability of selecting an infected taker depends on whether the selected giver

is infected or not. For example, in the right most path, g is infected. So, the

probability of selecting an infected taker for this case is as (i� 1)/(N � 1).

(iii) r = a level. Now consider what the giver recommends. Depending on the path,

the giver could be infected and could recommend the advertised item. Then the

probability of an infected giver recommending a is 1/M , since there are M items

in its stock.

(iv) ! = a level. The fourth level illustrates the taker’s purchase decision. The

taker agent either follows the advertisement with probability p or he accepts the

recommended item with probability 1� p.

(v) r 2 m(t) level. Let � be the probability of r being already owned by the taker

agent. In this case, the taker agent does not do any changes in her stock.

(vi) f = a level. It is possible that a can be chosen to be the forgotten.

The transition probabilities can be obtained from Figure 2.3 as

pi =
N � i

N(N � 1)

✓
N � 1� i

M

◆
p+

i

M

�
, (2.2)

qi =
i(1� p)(1� �)

N(N � 1)M


N � i+

(i� 1)(M � 1)

M

�
, (2.3)

li = 1� (pi + qi). (2.4)

Note that (i) These equations satisfy the boundary conditions q0 = 0, and pN = 0.

(ii) pi > 0 for all i = 0, · · · , N � 1. (iii) qi = 0 for all i when p = 1 or � = 1. Therefore,

for p = 1 or � = 1, the system drifts to SN and stays there forever.

2.2.4.2. Discussion on �. The stationary distribution can be obtained by means of

Equation 2.1, Equation 2.2 and Equation 2.3. The only unknown in these equations

is �, which is introduced in the fifth step of recommendation given in Section 2.2.3.3.

� is defined as the probability of recommended item to be already owned by the taker

agent. Unfortunately, � cannot be obtained analytically except for the extreme case of
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M = 1. Therefore, we should find ways to approximate its value.

A first order estimate for � could be µ = M/I, since taker owns M item out of I

in total. � is close to 1, when M is in the range of I, since every agent owns almost all

the items. The situation is quite di↵erent for M ⌧ I. Since every item initially has the

same market share, � starts with a small value at the beginning. As recommendations

proceeds, we know that some items becomes completely forgotten [49]. Therefore �

increases as the number of recommendations increase and becomes 1 when the systems

reaches one of its absorbing state. In this respect, � can be interpreted as the degree of

closeness to an absorbing state. In order to investigate near absorbing state behavior,

we set � = max{0.5,M/I} in our analytic results given in Figure 2.4 (b) where 0.5 is

arbitrarily selected.

2.2.4.3. Extremely Scarce Attention Capacity. For the extremely scarce attention ca-

pacity of M = 1, � can be evaluated. Consider the paths in Figure 2.3. For M = 1,

the paths which contain a (M � 1)/M edge become paths with zero probabilities. The

only non-zero probability path, involving �, is the one terminating at the left  leaf.

In this path the giver does not know the advertised item, a 62 m(g), while the taker

does, a 2 m(t). Since attention capacity is limited to 1, the giver and the taker do

own di↵erent items. Therefore, the recommended item by the giver cannot be owned

by the taker. Hence, � = 0.

For M = 1 and � = 0, Equation 2.2 and Equation 2.3 lead to

pi

qi
= 1 +

N � 1

i

p

1� p

for 0  i < N. For p 6= 0, pi/qi > 1. That means for even very small positive

advertisement, the system inevitably drifts to the state SN and once SN is reached,

the system stays there forever since qN = 0. Note that SN , which corresponds to the

state where all agents own the advertised item, is the unique absorbing state for this

particular case.
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2.2.5. Simulation Approach

In order to simulate the model, a number of decision have to be made. The

simulations start in such configurations that all I items have the same market share

and no agent knows the advertised item. So that system is initially symmetric with

respect to non-advertised items. When to terminate the simulation is a critical issue.

We set the average number of interactions ⌫ = 103. Since there are N

2 pairwise

interactions among agents in both directions, the total number of recommendations is

set to be ⌫N

2.

(i) We run our simulation for a population size of N = 100 and an item size of

I = 100.

(ii) The behavior of the system strongly depends on the attention capacity ratio µ.

We take µ as a model parameter and run simulation for various values of µ.

(iii) The advertisement pressure p is another model parameter. We use 10�1
, 10�2

,

10�3 and 10�4 for p.

2.2.6. Observations and Discussion

We investigate the e↵ect of the advertisement pressure p and the capacity ratio µ

to market share Fa of the advertised item. In order to make a quantitative comparison

of the simulation results, being in the top 5 percent is arbitrarily set as our criteria. Let

F5% denote the lowest market share for an item to be in the top 5 percent. Then, the

advertised item is in the top 5 percent whenever Fa > F5%. Let Fmin be the minimum

market share among all the items.

In Figure 2.4, the simulation results of Fa, averaged over 20 realisations and versus

the analytical results of< Fa > can be seen for each value of p 2 {10�1
, 10�2

, 10�3
, 10�4}

as functions of µ. A number of observations can be made:

(i) The analytic results given in Figure 2.4 (b) are in agreement with the sim-

ulation results in Figure 2.4 (a). Model predictions on < Fa > can quantitatively
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Figure 2.4. The market share of advertised item as a function of attention capacity

ratio by (a) simulation and (b) analytic approaches. F5%, Fmin and the asymptote

line of reference [49] are given for comparison.
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reproduce the simulation results of Fa although we use an approximated value for �.

We observe that for larger ⌫, the similarity between analytical and simulation results

gets even better.

(ii) The curves of F5% in Figure 2.4 (a) resemble that of in [49], although adver-

tisement is not the case for the latter. Line y = 0.95x + 0.071, which is given as an

asymptote for F5% for large values of N in [49], is also plotted in Figure 2.4 (a) for

comparison purposes.

(iii) Note that for µ < 0.05, all Fa curves approaches to 1 and F5% becomes 0.

This is due to finite size e↵ect. At an absorbing state, there would be exactly the

same M items purchased by all the agents and the remaining items are completely

forgotten. For I = 100, µ < 0.05 means that M < 5. That is, there is no space left for

the fifth item. Hence, in near absorbing state, the market share of the fifth item, F5%,

approaches to 0. On the other hand, any promotion, i.e. p > 0, is enough to push the

advertised item into the top M items.

(iv) The minimum market share Fmin becomes 0, when at least one item is com-

pletely forgotten. This occurs for µ < 0.35 in Figure 2.4 (a) which is consistent with

reference [49]. We also observe that for larger ⌫, the advertised item leaves smaller

share of attention to others, that forces the zero crossing of Fmin to occur at an higher

level of µ.

(v) As expected, a strong advertisement, i.e. p = 10�1, easily gets the advertised

item into the top 5 percent since Fa curve for p = 10�1 is always higher than that of

F5% in Figure 2.4 (a) while a weak promotion such as p = 10�3 or 10�4 cannot. The

case of p = 10�2 ⇡ 1/(I + 1) for I = 100 is interesting. For small and moderate values

of µ, i.e. µ < 0.6, the advertised item is in the top 5 percent except for one point. For

the large values of µ, this is not the case.

(vi) How agents allocate their attention, when the attention capacity becomes a

limiting factor? This is the critical question for markets of attention economy. Consider
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Figure 2.5. E↵ect of item size to the market share of the advertised item for p = 10�1

is invesitgated as a function of attention capacity ratio.

the extreme case of attention capacity M = 1, which corresponds to µ = 0.01 in

Figure 2.4 . In this case, surprisingly, even a very small positive value of p is enough

for the entire population to get the advertised item, i.e. Fa = 1, when M = 1. This

observation is analytically investigated in Section 2.2.4.3.

Item size e↵ect. We run new simulations with di↵erent item sizes of I when N

is fixed to 100. Let Fa(I = k) denote the market share of the advertised item when

I = k. Then we accept Fa(I = 100) as the reference market share and define relative

market share RI=k with respect to I = 100 as follows

RI=k =
Fa(I = k)

Fa(I = 100)
.

In Figure 2.5, we observe that for all k 2 {100, 200, 300, 500}, RI=k � 1 when p is fixed

to 10�1 except for µ = 0.01. The case of µ = 0.01 corresponds to M = 1 for I = 100.

As explained in Section 2.2.4.3, Fa gets its maximum value of 1, for M = 1. That is

why, RI=k  1 for µ = 0.01.
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We have observed that the market share of the advertised item improves while

the number of items are increased even if the advertisement pressure is kept constant.

In order to push market share up, increasing the advertisement pressure, is not usually

an option in practical life. This can be an interesting interpretation. If one cannot

increase the intensity of advertisement, i.e p, it is better to have higher number of

items, i.e. I. When that happens, the advertised item have better chances to get

into the top 5 percent. In order to obtain this operating point, one may purposefully

introduce some dummy items. This unexpected prediction of the model needs to be

further investigated.

2.2.6.1. Closeness to the Absorbing State. The system gets closer to one of its absorb-

ing states as the number of recommendations increases which is controlled by simulation

parameter ⌫. Let Fa(⌫ = k) be the market share of the advertised item after ⌫N2 rec-

ommendations. We define relative market share R⌫=k at ⌫ = k with respect to ⌫ = 102

as

R⌫=k =
Fa(⌫ = k)

Fa(⌫ = 102)
.

The relative market share at ⌫ = 103 is given in Figure 2.6 for di↵erent values of

p 2 {10�1
, 10�2

, 10�3
, 10�4} when N = I = 100.

We consider the system stationary if R⌫=k becomes 1, that is, the system stops

changing with ⌫. We observe in Figure 2.6 that as the attention capacity or the

advertisement pressure gets higher, model becomes closer to the stationarity. More

advertisement pressure is not so di↵erent than increasing the number of iterations.

Both are favorable for the market share of the advertised item.

2.2.7. Conclusions

The SRM as a model for pure word-of-mouth marketing is studied in ref [49,62].

We extend the SRM to attention markets with advertisement. This model constructs
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Figure 2.6. The relative market share of R⌫=k at ⌫ = 103 is investigated as a function

of attention capacity ratio.

a theoretical framework for not only items but studying the propagation of any phe-

nomena such as ideas or trends under limited attention.

The model is investigated analytically and by simulation. The analytical results

agree with the simulations. As expected, strong advertisement forces every one to get

the advertised item in all conditions.

Interestingly, when the attention capacity is small compared to the number of

items, even a very weak advertisement can do the job. This behavior is analytically

shown for the case of M = 1 and observed in the results of both simulations and

analytic calculations as µ approaches to 0. This can be interpreted as when individuals

have limited attention capacity, they tend to adopt what is promoted globally rather

than recommended locally. We have also found that introducing more standard items

to the market, is good for the market share of the advertised item. This observation

may lead to interesting political consequences in terms of public attention and political

administration. For example, public opinion can be kept under control by means

of increasing the number of issues, possibly by means of artificial ones, so that the
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promoted idea is easily accepted by large audiences. This prediction calls for further

investigation.

In this current work, there is a unique advertised item. The model can be ex-

tended to cover more than one promoted items. All selections are uniformly at random.

One may investigate the e↵ects of some other selection mechanism as in [75]. We have

a complete graph as the graph of interactions. One can investigate other graphs of

interactions such as Scale-Free, Small-World, regular or random graphs. The structure

of interactions can also be improved by introducing a radius of influence. One may ex-

tend the model by introducing the concept of quality for items or letting agents prefer

some items intrinsically as in [61].
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3. COOPERATION UNDER LIMITED ATTENTION

“Evolutionary progress, the construction of new features, often requires the
cooperation of simpler parts that are already available. For example, replicating
molecules had to cooperate to form the first cells. Single cells had to cooperate
to form the first multicellular organisms. Animals cooperate to form social struc-
tures, groups, and societies. Humans cooperate on a large scale, giving rise to
cities, states, and countries. Cooperation allows specialization. Nobody needs to
know everything. But cooperation is always vulnerable to exploitation by defec-
tors.”

- Martin A. Nowak [76].

These words are borrowed from Nowak’s remarkable book on evolutionary dy-

namics [76]. They do not only emphasize the importance of cooperation in the emer-

gence of higher-level features but also how emergent higher-level features “grow” from

bottom-up. I don’t think this is what Nowak has intented since he is best known for

successfully using mathematics, the top-down approach, for modeling.

We think cooperation and competition as two sides of a very old coin. In this

chapter and in the forthcoming chapter, we ask how cooperation can be maintained in a

competitive environment. Unlike Nowak, we will use ABMs to investigate cooperation.

Nevertheless, we appreciate the main motto of systems thinking, structure generates

the behavior [3]. If the structure - that defines who interacts with whom - changes, we

believe cooperation can arise in lieu of competition. When doing agent-based modeling,

the spatial environment is the first thing that comes to mind to adjust the rate of

interactions among individuals [77]. For example, cooperation can flourish if some

landscape barriers are placed into the environment to avoid interaction with defectors.

We think of a more sophisticated version of landscape barriers. In our setting, the

information stored in the memory of agents will play the role of mindscape barriers.

We assume that agents have the ability to choice and refusal of their partners. That is,

they have a preference for not playing with defectors. In this chapter, we investigate

how agents should manage their attention in order to foster cooperation. We find

out that attention to defectors fosters more cooperation. That finding supports the

evidence on the negativity bias [44].
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3.1. Iterated Prisoners Dilemma with Limited Attention

“Keep your friends close and your enemies closer”
- Michael Corleone, Godfather II

“Know your enemy and know yourself and you will always be victorious.”
- Sun Tzu [2].

How attention scarcity e↵ects the outcomes of a game? We present our findings

on a version of the Iterated Prisoners Dilemma (IPD) game in which players can accept

or refuse to play with their partner. We study the memory size e↵ect on determining

the right partner to interact with. We investigate the conditions under which the coop-

erators are more likely to be advantageous than the defectors. This work demonstrates

that, in order to beat defection, players do not need a full memorization of each action

of all opponents. There exists a critical attention capacity threshold to beat defectors.

This threshold depends not only on the ratio of the defectors in the population but

also the attention allocation strategy of the players.

3.1.1. Introduction

Games and economic models are more related than one can imagine [78]. This

is also the case for social interactions. A simplistic virtual setting for simulating trust

in an e-commerce setting, would be the Iterated Prisoners Dilemma game which is,

by its nature, very related to the evolution of trust [79, 80]. Each transaction in an

e-commerce setting can be viewed as a round in a iterated prisoner’s dilemma game.

Adherence to electronic contracts or providing services with good quality can be con-

sidered as cooperation while the temptation to act deceptively for immediate gain can

be considered as deception.

Economy is the study of how to allocate scarce resources. According to Daven-

port, the scarcest resource of today is nothing but attention [55]. Attention scarcity

is first stated by Herbert Simon. He says that, “What information consumes is rather

obvious: it consumes the attention of its recipients” [39]. The new digital age has
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come with its vast amount of immediately available information that exceeds our in-

formation processing power. Thus, attention scarcity is a natural consequence of huge

amount of information. Attention is very critical to any kind of interaction, especially

in the era of digital age. Conventional Economy has been transforming itself to the

Attention Economy [55,81–83]. Games should do the same. Little work has been done

on games with limited attention. How attention scarcity e↵ects the game? We will

discuss attention games on the specific context of Iterated Prisoners Dilemma.

3.1.1.1. Iterated Prisoners Dilemma Game. Prisoners Dilemma game is one of the

commonly studied social experiment [80, 84–87]. Two players should simultaneously

select one of the two actions: cooperation or defection, and play accordingly with each

other. Dependent on their choices, they receive di↵erent payo↵s as seen in Figure 3.1.

Table 3.1. Standard IPD payo↵ matrix.

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

Payo↵ matrix can be described by the following simple rules. In the case of mutual

cooperation, both players receive the reward payo↵, R. If one cooperates, while the

other defects, cooperator gets the sucker’s payo↵, S while the defector gets temptation

payo↵, T . In the case of mutual defection, both get the punishment payo↵ P . Payo↵

matrix should satisfy the inequality S < P < R < T and the additional constraint

T + S < 2R for repeated interactions. Rationality leads to defection, because R < T

and S < P makes defection better than cooperation. But, at the same time, P < R

implies that mutual cooperation is superior to mutual defection. So, rationality fails

and this situation is referred as a dilemma.

It is well known that the defection is the individually reasonable behavior that

leads to a situation in which everyone is worse o↵ [84]. On the other hand, cooperation

results in the maximization of the joint outcomes [87].
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If two players play prisoners dilemma more than once and they remember previous

actions of their opponent and change their strategy accordingly, the game is called

Iterated Prisoners Dilemma (IPD) [86]. Despite its level of abstraction, a large variety

of situation from daily life (i.e. stop or go on when the red light is on?) to socio-

economic relations (i.e. fulfill or renege on trade obligations?) may be represented

as an IPD game. It is shown that repeated encounters between the same individuals

foster cooperation. This is often referred as the shadow of the future. If individuals are

likely to interact again in the future, this allows for the return of an altruistic act [84].

3.1.1.2. Attention in Games. Generally, a player is not capable of knowing all the

players in an interacting environment and usually act based on limited information.

One reason could be the huge number of players, or another could be that the players

may have a very limited memory size to be informed of all the others [49, 62]. For

example, in real life, a market has a few market leaders and many small brands whose

number, in general, simply too big for an consumer to remember all. Therefore, a

consumer can only have access to a limited number of service providers. The essence

of any game is to interact with other players and get a chance to improve the payo↵

one gets. To interact with others, one should first capture their attention in a positive

manner. When we give our attention to something, we are always taking it away from

something else. We can think of having attention as owning a kind of property. This

property is located in the memory of player.

3.1.1.3. IPD Game Under Limited Attention. In many studies related to IPD game, it

is assumed that there exists enough memory to remember all the previously encountered

players and their actions. Memory is an important aspect, because knowing the identity

and history of an opponent allows one to respond in an appropriate manner. We use the

term limited attention to indicate the existence of an upper bound on how many distinct

encounters are remembered by a player. We ask the following reasonable question, as

in [49], what if the memory size is limited? Same question can be reformulated as

follows: what if attention capacity is limited? In this study, we introduce attention

capacity as an important parameter to investigate the dynamics of the mentioned game.
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3.1.2. Model

Tesfatsion introduced choice and refusal to IPD games [80]. In order to choose or

to refuse an opponent, players should be able to remember the identity of each player

and their past behaviors. It is known that choice helps players to find cooperation

and refusal lets them escape from defection [80]. In our very simplistic model, we

consider that there exist two type of players: cooperators, which always cooperate, and

defectors, which always defect. We combine these pure strategies with a simple choice-

and-refusal rule: If player knows that the opponent is a defector, then she refuses to

play. Otherwise she plays.

Each round of the IPD game consumes the limited attention of its players. We

assume that every player has the same attention capacity M . When a player encounters

with an opponent, it stores the necessary information related to the opponent’s action

in its memory. After playing with M di↵erent opponent, the attention capacity fills up.

As the player encounters with more opponents, he will have the problem of attention

scarcity. He has to forget previously encountered ones. For the e�cient usage of

memory, one needs to decide whom to forget? In this respect, we will discuss 5 di↵erent

attention allocation strategies in Section 3.1.5. Like the rest of the literature, we

focus on the conditions under which “cooperative move” becomes more favorable. But

our research distinctively considers that the game takes place in a world with limited

attention.

The personality of a player (cooperator or defector) is randomly set. Remember

that once it is set, it never changes. In each iteration, two individuals are randomly

chosen to play the game. In this respect, there is no spatial pattern. One considers

the underlying interaction graph is a complete graph.

Let C and D denote the sets of cooperator and defector players, respectively. Let

N denote the set of all players, that is, N = C[D. The number of defectors is denoted

by |D|. Thus the remaining |C| = N � |D| players are the cooperators where N = |N |.

We define our model parameters attention capacity ratio and defector ratio as µ = M
N
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and � = |D|
N , respectively. Hence, we have 0  µ  1 and 0  �  1.

We use the de facto payo↵ values of (S, P,R, T ) = (0, 1, 3, 5) throughout in this

study.

3.1.3. Evaluation Metrics

Social welfare can be measured by the average payo↵ of players. The payo↵s of

all the encounters are added up to have the final outcome of each player. To make a

comparison between the defectors and the cooperators, we take the average outcome

of each. Let ci and di be the numbers of games, player i plays with cooperators and

defectors, respectively. We use the payo↵ matrix given in Figure 3.1 to calculate the

total payo↵ of player i as follows:

payo↵(i) =

8
><

>:

Rci + Sdi, i 2 C,

T ci + Pdi, otherwise.

We evaluated our results by a comparison between the average performances of the

cooperators and the average performances of the defectors. Our performance metrics

are as follows:

PC =
1

|C|
X

i2C

payo↵(i) and PD =
1

|D|
X

i2D

payo↵(i).

Although further investigations calls for simulations, some analytical investigation of

average performances is possible as follows.

3.1.3.1. Cooperator’s Average Performance. Cooperator’s average performance of PC

can be analytically found. For a cooperator, playing with a defector means no gain,

since sucker’s payo↵ is equal to zero, that is, S = 0. PC can only increase if two

cooperators play a round with each other. When two cooperators are selected to play

with each other, each cooperator gets R = 3 points. The probability of matching two
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cooperators is equal to (1� �)2 for large N . Among T = ⌫

N2

2 rounds, only (1� �)2T

of them are expected to occur between two cooperators, and each gain R. As a result,

|C| = (1� �)N cooperators share (2R)(1� �)2⌫N2

2 payo↵s. In other words,

PC =
2R(1� �)2⌫N2

2

(1� �)N
= R(1� �)⌫N.

Without any further investigation, we can conclude that increasing ⌫, N and R is

favorable for PC while increasing � is not. Note that, neither attention capacity M

nor any attention allocation strategy has no e↵ect in this setting. If the population is

composed of only cooperators, that is |C| = N and � = 0, PC would be R⌫N .

3.1.3.2. Defector’s Average Performance. Because of the choice and refusal rule, if an

opponent is known to be a defector, no player plays with him. Therefore in order to

obtain the defector’s average performance of PD, we need the probability of defector

j 2 D to be unknown by player i 2 N . This probability can not be analytically found

except for the special cases of players without memory and players with unlimited

memory.

• Players without memory. When players have no memory, i.e. attention capacity

is zero, they are totally forgetful and remember nothing. Note that this case

actually corresponds to player playing prisoners dilemma without realising that

they are playing repeatedly. As a result, players continue to play with defectors

in spite of the choice and refusal rule. The probability of matching a defector

with a cooperator is equal to 2�(1� �) and matching two defectors is equal to �

2.

Therefore for the special case of µ = 0, we have

PD =

�
T 2�(1� �) + 2P �

2
�
⌫

N2

2

�N

=
�
T (1� �) + P �

�
⌫N

Then for T = 5 and P = 1, we have PD = (5�4�)⌫N . We observe that increasing

the number of defectors is not favorable even for defectors. Nevertheless, it is easy

to verify that for µ = 0, PD is always greater than PC which can be stated as
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defection is the favorable action against the players with no memory.

• Players with unlimited memory. For the special case of M � N , the players are

no longer forgetful and they are able to remember each opponent’s last action.

Because of the choice and refusal system, any defector can play at most |C| rounds

with cooperators and |D|�1 rounds with defectors. Therefore for su�ciently large

⌫, we have

PD = T |C|+ P (|D|� 1) = (P � T )|D|+ TN � P.

We can conclude that as we increase the number of defectors in this setting, the

average payo↵ of the defectors again decreases.

3.1.4. Simulations

The dynamics of the system is further investigated by simulation as the attention

capacity ratio µ and the defectors ratio � vary. The model is simulated for every

possible attention capacity values of M (from 0 to N) and for every possible number

of defectors (from 0 to N). We study a population of N = 100.

The number of iterations, T , is another critical issue. It is set to T = ⌫

N2

2 since

there are
�
N
2

�
pairs, where ⌫ being the third model parameter, is the number of plays

for a pair of players. Note that, when ⌫ = 1, no two players are expected to meet again

during the simulation. This situation corresponds to non-iterated version of the game.

In order to see the e↵ect of time ⌫ is set to 2 and 5. The results were averaged over 20

independent realisations for every combination of parameter values.

3.1.4.1. Attention Allocation Strategies. Some people are positive and remember only

the good memories. On the opposite, some remember the bad events and live to get

his revenge. Motivated by these, we make comparison of 5 simple attention allocation

strategies based on forget mechanisms:
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(i) Players that prefer to forget only cooperators, denoted by FOC.

(ii) Players that prefer to forget only defectors, denoted by FOD.

(iii) When players have no preference, they can select someone, uniformly at random,

to forget. We call this strategy as FAR.

(iv) Players may also prefer to use coin flips to decide which type, namely, cooperators

or defectors, of player to forget. Once the type is decided, someone among that

type is randomly selected and forgotten. Let FEQ denote this “equal probability”

to types approach.

(v) If the knowledge of which type has the majority is available, this extra infor-

mation can be used in devising a strategy. One possibly e↵ective strategy could

be to assume the opponent be of the type of majority, hence, pay attention to

the minorities only. That is, one prefers to forget majority which we call FMJ

strategy.

We investigate the average performances of cooperators and defectors when they use

the same strategy.

3.1.5. Observations

In this section, for a more general view, we present our observations based on

our simulation data. With our essential parameters of µ, �, and ⌫ along with the

di↵erent attention allocation strategies, we can determine the conditions under which

cooperation is more favorable than defection.

Simulation results for various attention capacity ratio µ and defector ratio �

values are given in Figure 3.1. Columns of Figure 3.1 correspond to five strategies.

Within a column, the top plot provides the average performance of cooperators, PC , as

a function of µ and �. Similarly, the middle gives the average performance of defectors.

The bottom plot is the di↵erence of the averages. Note that being a cooperator is

better when PC � PD > 0. For comparison purposes, PC � PD = 0 curves for di↵erent

attention allocation strategies are superposed in Figure 3.2(b).
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3.1.5.1. Average Performance of Cooperators. Findings from the first row of Figure 3.1

are as follows: (i) Interestingly, cooperator’s average payo↵ does not change signifi-

cantly neither by attention capacity ratio nor by attention allocation strategy. (ii) But

the defector ratio has a negative e↵ect on the average performances of cooperators.

Our analytical explanation given in Section 3.1.3.1 is in agreement with these findings.

For any � values, PC = R(1� �)⌫N gives exactly the same results seen the first row of

Figure 3.1.

3.1.5.2. Average Performance of Defectors. The second row of Figure 3.1 can be in-

terpreted as follows: (i) Greater attention capacity, i.e. increase in µ, helps players to

remember the defectors. As a result, defectors experience social isolation and their av-

erage payo↵ severely diminishes. (ii) Increase in the number of defectors, i.e. increase

in �, leads competition among them. Thus, defectors average payo↵ again diminishes.

(iii) Note that all five plots are in agreement with our discussion in Section 3.1.3.2 and

Section 3.1.3.2 for the special cases of µ = 0 and µ = 1.

3.1.5.3. Attention Boundaries. We call the PC�PD = 0 contour lines, seen in the third

row of Figure 3.1, as the attention boundaries. An attention boundary determines the

favorable action. If a pair of (µ, �) remains inside the attention boundary, it means

PC�PD > 0 and cooperation is the favorable action, otherwise defection is the favorable

action. Attention boundaries for five di↵erent attention allocation strategies seen in

Figure 3.1, are visually superposed in Figure 3.2(b) for comparison purposes.

For a given defector ratio, we observe that there is a critical threshold for attention

capacity, below which defection is advantageous, and above which cooperation becomes

the favorable action. With lesser attention capacity, defectors can be easily overlooked.

Greater attention capacity along with the choice-and-refusal rule do not let defectors

to improve their payo↵s. Due to the degrading of defector’s performance, the average

payo↵ of cooperators manages to exceed that of defectors when players have a greater

attention capacity.
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Figure 3.2. Attention boundaries of di↵erent allocation strategies are visualized in the

same figure for comparison purposes.
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We consider a strategy better if it has a larger area, where cooperators are doing

better than defectors, in the µ, � plain. That is, a better strategy has more (µ, �) pairs

below its attention boundary. From this perspective, the best strategy is FOC, and

the worst one is FOD. All the remaining strategies are situated in between these two

strategies.

The forget majority, FMJ, is a mixed strategy. When 0.5 < �, defectors are the

majority and FMJ acts as if forget only defectors, i.e. FOD. When � < 0.5, cooperators

are the majority. Thus FMJ switches to forget only cooperator, i.e. FOC. Therefore

its plot is similar to that of FOD for 0 < � < 0.5 and that of FOC for 0.5 < � < 1.

FMJ strategy can be put di↵erently as allocation of the minority. One can think this

strategy is better than the rest, since scarcity, in general, triggers the perception of

greater importance. Nevertheless, Figure 3.2(b) is against this intuition. The optimal

strategy is to forget only cooperators, i.e. FOC. By doing so, players achieve to allocate

their memories for only defectors. In other words, they keep their enemies closer. Thus,

they become more prudent to the defectors. On the other hand, forgetting defectors

seems to be the most wasteful and carefree attention consuming habit. We observe

that the necessary information for refusing the defectors is dismissed while applying

the FOD strategy.

The critical value of � = 0.5 determines which strategy is superior, except for the

two extreme strategies of FOD and FOC. FEQ does better than FAR when 0.5 < �

and FAR does better than FEQ when � < 0.5. Even if FAR strategy seems identical to

FEQ strategy, there exists a slight di↵erence between them. Notice that, forgetting at

random depends on the content of the memory, while forgetting with equal probability

does not. Higher defector’s ratio, that is 0.5 < �, causes one to encounter with more

defectors. In that case, memories of the players would be plentiful with defective expe-

riences. Thus, forgetting at random would be more biased towards to FOD. Similarly,

forgetting at random would be more biased towards to FOC when � < 0.5.
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3.1.5.4. E↵ect of Time. Literature on IPD game suggests that as number of iterations

increases cooperative behavior also increases among players [84]. This is also verified

by our simulations. The shadow of the future can be quantified by the parameter

of ⌫. A short shadow of the future (lesser ⌫), hinders the detection of the defectors.

When future of the shadow is longer, lesser attention capacity would be su�cient for

cooperators to beat defectors. As ⌫ increases, defector’s performance gets worse in

comparison to cooperators. Attention boundaries obtained by setting ⌫ = 2 and ⌫ = 5

are given in Figure 3.2(a) and Figure 3.2(b), respectively. The area inside the attention

boundaries is much larger in Figure 3.2(b) than Figure 3.2(a). This finding suggests

that the shadow of the future fosters cooperation.

3.1.6. Conclusions

We observe that as the proportion of the defectors increases, the average payo↵ for

any player decreases. On the other hand, increase in the attention capacity has di↵erent

outcomes for cooperators and defectors. As attention capacity increases, the change

in the cooperators overall performance is almost negligible, but defectors performance

significantly diminishes. The rule of choice-and-refusal plays an important role in

this situation. Nevertheless, it is worth to point out that, even the choice-and-refusal

alone, can not fulfill the desired goal without passing some threshold value of attention

capacity. As attention capacity increases, or the shadow of the future gets longer, the

detection of the defectors gets feasible, consequently defectors face with social isolation

due to the rule of choice-and-refusal. As a result, cooperators performance, exceeds

the defectors performance. Thus, cooperation becomes the favorable action. This work

demonstrates that, in order to beat defection players do not need a full memorization

of each action of all opponents. This finding is really important especially in the world

of limited attention. We also investigate five di↵erent attention allocation strategies

and we find out that the best strategy is “forgetting only cooperators”. By applying

this strategy, one becomes more prudent to the deceptive actions. To our conclusion,

attention must be selective, and it should be directed towards the defectors and their

defective moves.
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In this present work, player are pure cooperators or pure defectors. They never

change their character. Various forgetting strategies are investigated but both the

cooperators and the defectors use the very same strategy in the game. Cooperators

using one strategy while defectors using another is left as future work. It would be

also interesting to study the e↵ect of the biased payo↵ matrix. As a future work, we

plan to investigate other means for fostering cooperation, even in the conditions of

attention scarcity. To achieve this goal, we can make use of other’s experiences by

taking recommendations to determine with whom to play. But from whom to take

advice is very critical and must be well studied to clarify which collaboration strategy

is better. We will also extend our work to the mixed strategies for interaction, such as

mostly defect and mostly cooperate.
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4. CO-EVOLUTION OF MEMORY AND COOPERATION

In this chapter, we highly increase the complexity of our previous model, pre-

sented in Chapter 3, and investigate the co-evolutionary dynamics of memory and

cooperation among agents that are “hard-wired” to direct their attention to defectors.

That is, as long as agents have enough memory size they will preferentially remember

defectors and will be able to refuse to play with defectors. What happened then, is

at first sight was shocking. In lieu of having a high memory size and refusing defec-

tors, subsequent generations get rid of their memories in order to be able to play with

defectors. Refusing a defector that does not cause any harm turns out to be an evo-

lutionarily wrong attitude. From the perspective of systems science, to clear o↵ selfish

behavior from a population of individuals, it is useless to put the blame on some selfish

guy. Instead, we should be able to create an ecology in which selfish behavior turns

out to be unnecessary [88]. So time has come to revise our hypothesis. Solely, paying

attention to defectors doesn’t help cooperation for the standard non-negative payo↵s

of the game. We reformulate the payo↵ matrix structure in order to incorporate nega-

tive payo↵s for receiving a defection. We have shown that cooperation is a by-product

of ecological rationality. Where there is an appropriate level of threat for receiving a

defection (in terms of negative payo↵s) agents are nudged to cooperate and when there

is none/extreme threat, agents tend to defect.

When it comes to evolution, surprises are plenty. We observe that subsequent

generations develop an emergent ability for adjusting their average memory size ac-

cording to the abundance of defectors in the previous population. An increase in the

number of defectors, causes an increase in memory size. And a decrease in the number

of defectors, causes the average memory size to shrink. Some kind of immunity against

harmful defection has emerged. As a scientist in complex systems modeling, when we

see something di↵erent from the micro-level emerging at the macro level, we feel that

all our e↵orts have paid o↵. Maybe it is a weakness but we can’t stop constructing

analogies. Think about how an increase in the abundance of harmful pathogens causes

an increase in the abundance of immune cells recognizing that pathogens. Literally,
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to deal with the astronomical number of possible pathogens, our actual immune sys-

tem takes advantage of randomness and diversity in the recognition of threatening

pathogens. Recognition occurs if an immune cell binds well to the pathogen. The

immune cells that are able to recognize threats, reproduce more and others are elimi-

nated. An evolutionary race between our immune cells and pathogens, keeps going on

within our body [89].

4.1. The Dose of the Threat Makes the Resistance for Cooperation

“All things are poison and nothing is without poison; only the dose makes a
thing not a poison.”

- Paracelsus, Father of Toxicology

“When the water rises, the fish eat the ants; when the water falls, the ants
eat the fish.”

- Lao Proverb

We propose to reformulate the payo↵ matrix structure of Prisoner’s Dilemma

Game, by introducing threat and greed factors, and show their e↵ect on the co-evolution

of memory and cooperation. Our findings are as follows. (i) Memory protects cooper-

ation. (ii) To our surprise, greater memory size is unfavorable to evolutionary success

when there is no threat. In the absence of threat, subsequent generations lose their

memory and are consequently invaded by defectors. (iii) In contrast, the presence of

an appropriate level of threat triggers the emergence of a self-protection mechanism

for cooperation, which manifests itself as an increase in memory size within subsequent

generations. On the evolutionary level, memory size acts like an immune response of

the generations against aggressive defection. (iv) Even more extreme threat results

again in defection. Our findings boil down to the following: The dose of the threat

makes the resistance for cooperation.

4.1.1. Introduction

Taking cooperative actions against a common threat, is frequently seen in nature

and in history as well. Herbert Spencer puts it as follows, “Only by imperative need
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for combination in war were primitive men led into cooperation” [90]. Individuals,

as a response to what they perceive as threat, bind together and tend to move as a

unit. Similar collective spirit, can also be seen in fish swimming in schools or birds

flying in flocks. The waves of agitation in schools or flocks are nothing but an escape

maneuver from an attack of a predator [91]. Kin selection, direct reciprocity, indirect

reciprocity, group selection and limited local interactions are shown to be five powerful

determinants of cooperation [92, 93]. Yet, explaining cooperation still remains one of

the greatest challenges across disciplines [94]. Here, we discuss the dose of the threat

imposed by environment as another way to obtain cooperation.

In [95], Robert Wright says, “interaction among individual genes, or cells, or

animals, among interest groups, or nations, or corporations, can be viewed through

the lenses of game theory”. Nevertheless, the amount of information stemming from

the huge number of interactions, can easily exceed the processing capabilities of the

interacting parties. This is also referred as attention scarcity problem in the liter-

ature [40, 83]. In our previous work, we coined the term Attention Game to define

an interacting environment where players can only pay attention to a portion of the

information they receive [41]. We worked on attention games in a specific context of

Iterated Prisoner’s Dilemma (IPD).

Evolutionary game theory applies mathematical and computational techniques

to study the evolution of cooperation. For an important review on co-evolutionary

processes, see [46]. It is shown that choice and refusal of partners accelerates the

emergence of cooperation [96]. Memory is a prerequisite for engaging in reciprocity and

also for partner selection on the basis of past encounters. In memory-based Prisoner’s

Dilemma Games, each player can keep track of only a limited number of the previous

rounds for all of its partners [97]. This limited number is defined as the memory

length [98, 99]. Tit-for-Tat, the winner of the Axelrod’s tournament, is a memory-

one strategy. It starts with cooperation and afterwards imitates the last action of its

partners [79]. Thus the memory length of agents using Tit-for-Tat is one, even though

they keep track of all of their partners. Dunbar’s number indicates a cognitive limit

to the number of individuals with whom one can maintain stable relationships [100].
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We think that the ability to keep track of all potential game partners is not always

possible. This may be thought as a natural consequence of huge amount of game

partners or a very limited memory size to be informed of all. The concept of memory

in Prisoner’s Dilemma, is generally explored in terms of historical time-dependency of

previous rounds [101–103]. Di↵erently, from our perspective, the term memory size

indicates the number of potential game partners one can keep track of. In our model,

agents store a very brief information about the general behavior of a limited number of

their partners. This information will be used to distinguish defectors from cooperators.

Evolutionary psychologists demonstrated that social exchange in a group requires

the existence of some mechanisms for detecting cheaters, but do not require any mech-

anisms for detecting altruists [104]. Similarly, in our previous work we found that it

is crucial for attention to be focused on defectors in order to foster cooperation when

agents have insu�cient memory size [41]. That is, attention should be allocated in

such a way that agents should keep remembering defectors, and forget preferentially

cooperators whenever memory is exhausted. In [41], memory size does not di↵er from

one player to another and there exists only two type of players such as pure cooperators

and pure defectors. We will use a similar attention mechanism focusing on defectors.

In this study, we will introduce heterogeneity to our work by allowing agents to have

di↵erent memory sizes and strategies. We will investigate how the characteristics of

agents evolve from generation to generation.

The essence of how selfish beings manage to cooperate is captured by the payo↵

matrix of the IPD game. Axelrod used the fixed payo↵ matrix given in Figure 4.1(c)

for his tournament [79]. A natural extension would be to investigate the impact of

di↵erent payo↵ entries. Many studies use payo↵ matrices with positive payo↵s. Some

works on negative payo↵s are also done. To this end, some researchers prefer to fix

the two selected entries of the payo↵ matrix and explore the e↵ect of the change in the

other two entries [77, 92, 105]. In the so-called Donation game, given in Figure 4.1(d),

cooperation corresponds to o↵ering the other player a benefit b at a personal cost c

and defection corresponds to o↵ering nothing. Nowak has investigated the e↵ect of

these two essential parameters for various situations [92]. This is a very agreeable
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representation, but it requires P = 0. So it does not allow to study the dynamics of

cooperation where the punishment payo↵ P is positive or negative. In [77], Epstein

investigated the case of negative sucker and punishment payo↵s for a special case of

S = �T and P = �R, given in Figure 4.1(e). We also want to study the case where

receiving a defection leads to negative payo↵s. Di↵erently, we interpret the case of

S < P < 0 as the presence of threat. For S < P < 0, the decrease in the negative

values of S and P corresponds to the increasing level of threat. From our perspective,

non-negative values of S and P corresponds to the absence of threat. To investigate

the e↵ect of threat, we propose to use a more general parametric payo↵ matrices of

the form Figure 4.1(b) which covers the family of payo↵ matrices of the form given in

Figure 4.1(d) and Figure 4.1(e).
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Figure 4.1. Payo↵ matrices including threat game.

This work is structured as follows: In the next section we explain our motivation

and in Section 4.1.3 we present our agent-based model and give the technical details

of the simulations for a generic payo↵ matrix. In Section 4.1.4, we provide the results

for two specific payo↵ matrices: (i) one with all non-negative entries, and (ii) the other

with negative entries for sucker and punishment payo↵s. In Section 4.2, we generalized

the payo↵ matrices with two parameters. Finally, in Section 4.3 we summarize our

findings and construct some analogies with various disciplines.
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4.1.2. Motivation

Consider selfish agents playing evolutionary IPD game. Assume that the fitness of

agent is correlated with its accumulated payo↵s. Then, in order to increase its fitness,

a selfish agent tries to maximize its gain at every single round of the game. Suppose

agents have the right to choose or refuse to play. If all the entries of the payo↵ matrix

are non-negative, should an agent choose to play with every opponent whether it is a

defector or not?

Agents with myopic view may prefer immediate positive outcomes in the short-

term at the expense of longer-term outcomes. When interacting with an opponent

brings relatively low payo↵, the agent will accumulate less payo↵s compared to that

opponent and at the end, the agent will have a lower chance to reproduce. This is the

case of cooperator playing against defector. If only cooperators could have find a way

to distinguish defectors from cooperators and refuse to play with the defectors, then

the cooperators can outcompete the isolated defectors. So the macro-level dynamics

of the population depends on the mixture of agents: how cooperative and with whom

willing to play they are.

It is not possible for cooperation to flourish in a well-mixed population with-

out any mechanism that give cooperators the ability to quarantine defectors. Spatial

structure can promote cooperation by introducing physical barriers against interaction

with defectors. Static networks lack the ability for modeling the dynamical interac-

tions [106]. So, recent advances make emphasis on the co-evolution of strategy and

environment [46]. In this study, we follow a di↵erent path in order to promote coop-

eration. In lieu of considering spatially structured population in physical space, we

will consider conceptually structured populations. Agents will have mental represen-

tations of other agents and they will have the ability to choose with whom to interact.

Our proposition fits nicely to the research line of conditional strategies [107–109]. In

our model, agents interact with all except the ones that they perceive and remember

as defectors. Thus, memory plays the role of conceptual barriers for interaction with

defectors. If we consider payo↵ matrices with negative values, for S and P , then the
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dynamics may become more complicated but the need for the refusal of defectors be-

comes more clear. For a cooperator, there was a risk of not gaining (S = 0) but now

losing points becomes also a possibility (S < 0). Whenever P also becomes negative,

defectors also face the risk of losing points. To identify the characteristic of the oppo-

nent and if it is defector not to play with it becomes an essential asset especially when

receiving a defection leads to negative payo↵s. We will consider risk of losing points as

threat. Hence payo↵ matrices with negative entries, for sucker and punishment payo↵s,

are considered to be games with threat.

Our main research question, in this study, will be the following. What is the

e↵ect of increasing level of threat on the co-evolutionary dynamics of memory and

cooperation?

4.1.3. Model

We propose an evolutionary game, where generations do not overlap. In our

model, there are N agents playing IPD game within the generation. At the end of

certain number of rounds the generation is terminated, and all the agents of the old

generation are removed. Before the old agents are removed, they reproduce according

to their fitnesses. Roulette wheel selection is applied N times to pick agents that will

reproduce. Hence, the population size is kept constant at N . We set N = 100.

4.1.3.1. Rounds. Agents interact and try to increase their accumulated payo↵s by

means of playing a modified IPD [79]. In each round, two agents are selected uni-

formly at random and given the chance to play. Each selected agent has to decide

whether to choose or to refuse to play with the given opponent. If at least one of

them refuses to play, no playing takes place and the round is completed, hence their

scores do not change. If both agents choose to play, then they play the usual Prisoner’s

Dilemma game. Each agent selects its action of either cooperate or defect. According

to their joint actions, each collects its payo↵ based on the generic payo↵ matrix given

in Figure 4.1(a). The payo↵ collected is added to the cumulative payo↵, called score,
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and the round is completed.

We want every pair of agents to be selected on average ⌫ times. Therefore each

generation lasts ⌫
�
N
2

�
rounds. We use ⌫ = 30.

4.1.3.2. Choice and Refusal of Partners.. Agents have probabilistic behavior. An agent

i simply chooses to defect with probability ⇢i, called defection rate, or to cooperate with

1� ⇢i. The defection rate of an agent is a property that never changes.

Choice and refusal to play is based on the agent’s subjective perception of the

opponent as a defector or a cooperator. The agent refuses to play with an opponent

if the opponent is perceived as a defector. In order to decide whether the opponent is

defector, agent uses its memory. The agent keeps track of the previous rounds with

the opponents. That is, for every opponent, it keeps two numbers, namely, the total

number of rounds played with the opponent and in how many of them the opponent

has defected. The ratio of the number of received defections to the number of total

rounds is called perceived defection rate. The opponent is perceived as defector if its

perceived defection rate is fifty percent or more. Otherwise, the opponent is perceived

as cooperator. As a third case, if there is no history about the opponent, it is considered

as if it is cooperator. Namely, the default decision is to play.

We should give some intuition about agent’s possible misperceptions due to the

small number of interactions, at this point. Di↵erent agents can perceive the same

agent di↵erently, at the same time. Suppose agent i has a low defection rate which

is greater than zero. Then, in most of the games it plays, it will cooperate and in

a very few of them it will defect. Therefore it is expected that most of the agents

consider it as “cooperator”. But it is still possible that some agents can perceive it

as a “defector” and refuse to play with it again. This may happen due to the small

number of interactions with i, in which i happened to defect more than cooperate. In

statistics, it is known that the small sample size may not be a good representative of a

probability distribution. But our agents do not know it, like most of the people [110].
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4.1.3.3. Memory. Remembering the history of the opponents calls for memory for

each agent. Every agent has di↵erent size of memory. Let Mi denotes the number of

opponents agent i can keep track of. The ratio µi = Mi/N is called the memory ratio

of agent i. If Mi � N , then agents have enough space to recall every agent. Since

this case is not interesting, we investigate the case where Mi  N for all i. That is,

agents do not have enough memory space to store the history of all opponents. Hence

µi 2 [0, 1].

If the number of rounds in a generation is big enough, an agent encounters with

almost all agents and in order to keep the history of each opponent, it requires memory

size of N . Suppose agents have limited memory size, i.e., M < N . Then after M

di↵erent opponents, there is no room left for the M + 1th opponent. This requires a

selective attention mechanism. Agents should decide which agents to keep in memory

and which agent to forget. Our previous study indicates that it is a better strategy to

focus on defectors rather then cooperators [41]. So if there are memory spaces reserved

for cooperators, select a cooperator. If there is no cooperator left, then select a defector.

Then forget the selected opponent and use this reclaimed space for the new opponent.

Both cooperator or defector selections are done by uniformly at random.

4.1.3.4. Fitness. In evolutionary games, agents reproduce proportional to their fitness.

We define fitness as a function of scores. Agents of a new generation start with zero

scores. As they play, the payo↵s obtained are added to the score. In the traditional Pris-

oner’s Dilemma game, the payo↵s are all non-negative such as (S, P,R, T ) = (0, 1, 3, 5).

Hence playing will not decreases the score. In this study we also consider payo↵ matri-

ces with negative entries, too. In the case of negative payo↵s, the scores of agents may

decrease and negative scores are possible. Therefore, using scores directly as fitnesses

will not work. The mapping the scores to fitness values requires attention. We adjust

the scores by subtracting the minimum score from all. After this, adjusted scores be-

come all non-negative. Then obtain the normalize score by dividing the adjusted scores

to the sum of all adjusted scores. Then, use the normalized scores as the fitness for

reproduction. Note that the agent with the minimum score has the normalized score
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of zero. Hence it does not reproduce.

4.1.3.5. Reproduction. The reproduction is asexual. Each child has exactly one par-

ent. The genotype of an agent i, is the pair (µi, ⇢i). A child gets the exact copy of the

genotype of its parent if there is no mutation. With probability of , called mutation

rate, there is a mutation. When there is a mutation, only one of the entries, selected

at random, in the genotype is replaced with a new number drawed from a uniform

distribution of [0, 1]. We use  = 0.05.

4.1.3.6. Visualization. Note that there is a useful visualization for genotype (µi, ⇢i).

Agents can be represented by points on the unit square of the µ-⇢ plane where x-axis

is the memory ratio µ and y-axis is the defection rate ⇢. The point (µi, ⇢i) displays

the genotype of the i’th agent. The average defection rate of the current population is

given by

µ =
1

N

NX

i=1

µi

and the average memory ratio of the current population is given by

⇢ =
1

N

NX

i=1

⇢i

We can picture the average genotype (µ,⇢), as a point on that phase plane as in Fig-

ure 4.2.

4.1.3.7. Initialization and Termination. Once an initial generation is formed, system

runs from one generation to the next with the given dynamics. The parameters of the

agents of the initial generation are set randomly using uniform distributions. That is,

for each agent i the values for the genes µi and ⇢i are set using a uniform distribution

over [0, 1]. The number of generations, before the simulations are terminated, is another

model parameter. We terminate our simulations after 500 generations.
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4.1.4. Results

We run simulations using various payo↵ matrices. Initial population starts with

an average genotype close to (0.5, 0.5). Tracking the values of (µ, ⇢) pairs from genera-

tion to generation will make us see the co-evolution of cooperation and memory, as in

Figure 4.2.
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Figure 4.2. Co-evolution of average memory ratio µ̄ and average defection rate ⇢̄

through generations. (S, P,R, T ) = (0, 1, 3, 5).

4.1.4.1. Absence of Threat. We have discussed that payo↵ matrices with negative

entries cause threat to the agents. We refer the case of non-negative payo↵s, i.e.,

0  S < P < R < T , as absence of threat. In the first set of simulations, we used

the standard payo↵ values of (S, P,R, T ) = (0, 1, 3, 5). An averaged trajectory over

50 di↵erent realisations of the same initial population can be seen in Figure 4.2. Two

dynamics are observed. (i) Average memory size tends to decrease independent of

the average defection rate of the population. Neither cooperation nor defection favor

greater memory size when there is no threat. (ii) Average defection rate decreases if

memory size is high and increases if it is low. Average defection rate ⇢ decreases at

the beginning since initial value of µ = 0.5 is relatively high. Interestingly, there is an

unconditional decrease for µ. Once average memory ratio µ, becomes small enough, av-
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erage defection rate ⇢ starts to increase. Memory size has a negative e↵ect on defection

rate, in other words, memory protects cooperation. Without memory, i.e., (µ ! 0),

cooperation becomes vulnerable and defection succeeds, i.e., (⇢ ! 1). The average

genotype of the population gradually reaches to a point very close to (0, 1). That is,

agents become memoryless and defective when there is no threat.

It is known that evolution may lead to unexpected paths. The observation of the

unconditional decrease of the memory size is totally unexpected. To understand it, first

consider a population that is composed of defectors only. Is it better for defectors to

have greater memory size? The answer is no, as long as punishment payo↵ P is greater

than zero. The reason is as follows: defectors with high memory size lose punishment

payo↵ P > 0, just because they remember and refuse other defectors. Thus they end

up with lower fitness and they are eliminated throughout the evolution. Consider the

second extreme case where the population is composed of cooperators only. This case

is a bit trickier. Previously we determined how agents perceive the world. Perception

is open to mistakes as it is the case for real life. A cooperator with a low defection

rate can be perceived as a defector, just because it is happened to defect more than

cooperate within a small number of interactions. As a result of this misperception,

high memory size can cause to avoid engaging rounds with agents whose intention is

mostly cooperate. Cooperators with high memory size end up with lower fitnesses. The

relative abundance of the cooperators with high memory in the subsequent generations

decreases, and the relative abundance of the cooperators with low memory increases.

This manifests itself as a reduction in the average memory size, µ.

The surprising downside of having a greater memory size is isolation, which leads

to a deficient fitness. Thus, by means of mutations, subsequent generations get rid

of their memory in the absence of threat. Without memory, defectors invade the

subsequent generations.

4.1.4.2. Presence of Threat. We investigate the outcomes of an alternative formulation

of negative payo↵s, as in [77]. For S = 0, refusing or playing with a defector is
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apparently indi↵erent for a cooperator. Once S becomes negative, picture changes.

From the perspective of defectors, it is still better to play whatever the opponent type is,

as long as S < 0  P . When P becomes negative, defectors have to be careful, too. It is

known that evolution is about the survival of the most suited organisms for the current

environmental conditions. When we use a di↵erent payo↵ matrix, environment di↵ers

and dynamics dramatically change. Let’s define aggressive defection as an harmful

act that reduces the score of the agents that are subjected to it. In the PD context,

aggressive defection can be given with an additional constraint of S < P < 0. Now,

receiving a defection results in negative values and it hurts. Thus having a greater

memory size may become advantageous, in contrast to the case of non-negative payo↵

matrix.
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Figure 4.3. Co-evolution under aggressive defection for a single realisation. x-axis

represents the generation steps and y-axis represents the average genotype of the

population. (S, P,R, T ) = (�7,�6, 4, 5).

In the presence of threat, two dynamics begin to compete at the evolutionary

level. (i) Tendency to increase memory size, in order to maintain self-protection when

average defection rate gets higher. (ii) Tendency to decrease memory size, to avoid

self-isolation when average defection rate gets lower. These two dynamics can give rise

to oscillatory behaviours.

In Figure 4.3, we display the dynamics of a single realisation for a biased pay-

o↵ matrix of (S, P,R, T ) = (�7,�6, 4, 5). At generation 0, simulation starts with a
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randomly generated initial population whose average memory ratio is relatively high,

µ = 0.5. Agents with high memory size can protect themselves from defection. Thus

defectors incur isolation and their fitness diminishes, ⇢ ! 0. Eventually, cooperators

with high memory size fill the population. When almost all agents turn out to be

cooperator, around generation 20, misperception becomes an issue. High memory size

may block interactions among cooperators and this is the reason why evolution prefers

cooperators with smaller memory size, µ! 0. Population without a valuable memory

provides an excellent opportunity not to be missed by mutant defectors. Thus popu-

lation starts to be filled by defectors and the average defection rate of the population

increases around generation 50. Only cooperators with high memory size can resist to

defectors, let’s call them skeptic cooperators. If there exists still some critical number of

skeptic cooperators, resistance can take place and defectors can be outcompeted. That

is, cooperators with high memory size again fill the population, as it is seen around

generation 60. This cyclic behavior repeats itself until relative abundance of the skeptic

cooperators becomes inadequate to resist defectors. In that case, defectors can invade

the population as it is seen around generation 150.
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Figure 4.4. Co-evolution under aggressive defection for a single realisation. The same

data, displayed in Figure 4.3, graphed on a phase plane. (S, P,R, T ) = (�7,�6, 4, 5).

We displayed the same data on the phase plane in Figure 4.4. Under aggressive

defection, defectors with lower memory size, have no chance to survive. Thus, the
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average genotype of the population moves towards a point close to (µ,⇢)! (1, 1) on

the phase plane. That point corresponds to a defective population with high memory

size. Population genotype can stuck around this point or it can escape to continue

its trending cyclic behavior. That depends not only the payo↵ matrix but also the

dynamic composition of the heterogeneous population at any given time. In the next

section, we will try to explore the e↵ect of payo↵ matrix structure on the co-evolution

of memory size and cooperation.

4.1.5. Phase Line Simulations

To gain a clearer guidance about the behavior of our model, we made further

simulations in which one gene of the population genotype is fixed while the other

varies throughout the generations. We can call this as phase line simulations. Varying

gene of the population is again generated uniformly at random in the range [0, 1] while

the other is fixed one by one to the 21 distinct values from 0 to 1 by increments of 0.05.

This will help us to better understand the following questions. (i) What is the impact

of limited memory size on the evolutionary dynamics of cooperation? and (ii) What is

the impact of low or high defection rate on the evolutionary dynamics of memory size?

In Figure 4.5(a), we investigate the relation of memory size to cooperation for

(S, P,R, T ) = (0, 1, 3, 5). We refer this as vertical phase line simulations. Here, mem-

ory size is kept constant for all agents from generation to generation and the evolution

of average defection rate is investigated. Each vertical line represents a di↵erent initial

population with a di↵erent fixed memory size. Those 21 distinct populations evolve

separately. We see that average defection rate decreases if memory size is high (µ > 0.3)

and increases if it is low (µ  0.2). In Figure 4.5(b), we investigate the relation of de-

fection rate to memory size for (S, P,R, T ) = (0, 1, 3, 5). We refer this as horizontal

phase line simulations. Here, defection rate is kept constant for all agents from gen-

eration to generation and the evolution of average memory size is investigated. Each

horizontal line represents a di↵erent initial population with a di↵erent fixed defection

rate. Those 21 distinct populations evolve separately. We see that average memory

size tends to decrease independent of the average defection rate of the population.
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(a) The impact of memory on the evolution of cooperation.

(b) The impact of defection rate to the evolution of memory.

Figure 4.5. Phase line simulations for (S, P,R, T ) = (0, 1, 3, 5). x-axis represents the

memory ratio µ and y-axis represents the defection rate ⇢. Results are obtained by

taking the average of 10 runs.
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(a) The impact of memory on the evolution of cooperation.

(b) The impact of defection rate to the evolution of memory.

Figure 4.6. Phase line simulations for (S, P,R, T ) = (�5,�3, 3, 5). x-axis represents

the memory ratio µ and y-axis represents the defection rate ⇢. Results are obtained

by taking the average of 10 runs.
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(a) The impact of memory on the evolution of cooperation.

(b) The impact of defection rate to the evolution of memory.

Figure 4.7. Phase line simulations for (S, P,R, T ) = (�12,�11, 3, 5). x-axis

represents the memory ratio µ and y-axis represents the defection rate ⇢. Results are

obtained by taking the average of 10 runs.
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(a) The impact of memory on the evolution of cooperation.

(b) The impact of defection rate to the evolution of memory.

Figure 4.8. Phase line simulations for (S, P,R, T ) = (�4,�3,�2,�1). x-axis

represents the memory ratio µ and y-axis represents the defection rate ⇢. Results are

obtained by taking the average of 10 runs.
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Thus, memory size has a negative e↵ect on defection rate but defection rate has

no influence on memory for the given scenario of (S, P,R, T ) = (0, 1, 3, 5). These results

are obtained by an average of 10 realisations and they verify the outcome shown in

Figure 4.2. Here, if one imagines any arbitrary point for the average genotype of the

initial population on the phase planes given in Figure 4.5, it is easy to see that the

point, representing the average genotype of the subsequent generations, tends to evolve

towards the attracting point (0, 1). This result is in agreement with Figure 4.2.

We will discuss the phase line simulation for di↵erent payo↵ matrix. The average

outcome over 10 realizations can be seen in Figure 4.6, Figure 4.7 and Figure 4.8 for

di↵erent (S, P,R, T ) values. We picture the average genotype as a point moving along

a vertical line for 21 di↵erent fixed memory ratio in Figure 4.6(a), Figure 4.7(a) and

Figure 4.8(a) for respective payo↵ values (�5,�3, 3, 5), (�12,�11, 3, 5) and (1, 2, 3, 4).

We picture the average genotype as a point moving along a horizontal line for 21

di↵erent fixed defection rate in Figure 4.6(b), Figure 4.7(b) and Figure 4.8(b) for the

same payo↵ values respectively. We observe, by comparing Figure 4.6(a), Figure 4.7(a)

and Figure 4.8(a), that there exists a critical µ band below which defectors outcompete

the cooperators and above which cooperators outcompete the defectors and within the

band, they are bistable. We also observe that this band approaches to µ = 1, as the

damage caused by the aggressive defection gets worse (lower S and P ). In other words,

memory protects cooperation but much more greater memory size is needed under

aggressive defection. Even full memory size might be insu�cient for an extremely

threatening defection. We observe, by comparing Figure 4.6(b), Figure 4.7(b) and

Figure 4.8(b), that there exists a critical ⇢ value below which agents get rid of their

memory and above which agents are contented with a slightly bigger memory ratio

than the average defection rate of the population. We also observe that this critical

value approaches to ⇢ = 0, as the aggressive defection gets worse. Each payo↵ matrix

has its own dynamics and it is really hard to make generalizations. We have observed

that the average genotype of the population has a tendency to move towards (0, 1) for

Figure 4.5 and (1, 1) for Figure 4.8 and Figure 4.7. We also observe that the average

genotype is capable of forming a cyclic behavior for Figure 4.6.
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4.2. The E↵ect of Payo↵ Matrix Structure

Each payo↵ matrix has its own dynamics and it is hard to make generalizations.

We need to identify correctly the principal driving forces in our model, and how they

will a↵ect the co-evolution of memory and cooperation. To this end, we will refor-

mulate the payo↵ matrix. Note that the payo↵ matrices given in Figure 4.1(d) and

Figure 4.1(e) have some common properties. Within both matrices the column di↵er-

ences are equal, i.e., R � S = T � P . The row di↵erences are also kept equal, i.e.,

T �R = P �S. If we generalize these di↵erences we obtain two factors that are critical

in the dynamics: (i) how much it is dangerous to receive a defection, i.e. the column

di↵erences, and (ii) how much it is tempting to defect, i.e., the row di↵erences. Thus

we introduce the following two principal factors of threat and greed.

0 TRPS

�T

↵T

�T

Figure 4.9. The visual representation of payo↵s on a number line. Note the fact that

↵ > 1 makes S < P < 0 and � > 1 makes R < 0.

• Threat factor, ↵. How to measure the di↵erence between receiving a cooperation

and receiving a defection? The answer can be found in the payo↵ matrix seen

in Figure 4.1(a). For an agent that chooses to cooperate, the di↵erence between

receiving a cooperation and receiving a defection is given by R�S. For an agent

that chooses to defect, it is given by T � P . For simplification, consider the case

of R�S = T �P = ↵T where T > 0 and ↵ > 0, as it is shown in Figure 4.9. Now

irrespective of the chosen action, receiving a defection causes an extra cost of ↵T

in terms of payo↵s when it is compared to receiving a cooperation. It is worth

to emphasize that ↵ = 1 is a critical value. For ↵ < 1, P is positive. At ↵ = 1,

P becomes equal to 0 and for ↵ > 1, we have P < 0. Thus ↵ > 1 corresponds

to the case of aggressive defection (S < P < 0). Hence we call ↵ as the threat

factor. For ↵ > 1, increasing ↵ means increasing level of threat. On the other

hand, ↵  1 means absence of threat.
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• Greed factor, �. How to measure the di↵erence between taking the two actions

of defection and cooperation? When the opponent is cooperating, the di↵erence

between defecting and cooperating is given by T � R. When the opponent is

defecting, the same di↵erence is given by P �S. Again for simplification consider

the case of T � R = P � S = �T where T > 0 and � > 0, as it is also shown in

Figure 4.9. Now irrespective of the opponent’s action, choosing to defect makes

an extra benefit of �T in terms of payo↵s when it is compared to choosing to

cooperate. Thus, we call � as the greed factor. When � = 0, playing cooperation

or defection makes no di↵erence. But whenever � gets larger, defection becomes

more tempting. Since the case of � > 1 makes R < 0, it turns out to be

uninteresting. It is clear that when mutual cooperation payo↵ R is also negative,

there will be no motivation for choosing to cooperate.

As an interpretation, choosing to defect brings an extra benefit of �T (the row

di↵erences in the payo↵ matrix) and receiving a defection causes an extra cost of ↵T

(the column di↵erences).

4.2.1. Threat Game

Starting with a fixed positive value for T , we can rewrite S, P , and R in terms

↵, � and T . That makes S = (1 � ↵ � �)T , P = (1 � ↵)T , and R = (1 � �)T . IPD

condition of S < P < R < T implies that 0 < � < ↵. Since all payo↵ values are

multiples of T , the score of any agent will be also a factor of T . When the normalized

score is calculated, T factor cancels out and we have expression in terms of ↵ and � only.

Therefore, without loss of generality, we can take T = 1. Our extensive simulations for

di↵erent values of T 2 {5, 50, 100} have confirmed that the dynamics are not dependent

on T . Finally, we have the normalized payo↵ matrix given in Figure 4.1(b), which has

only two parameters, namely, the threat factor ↵ and the greed factor �. We call this

special form of the IPD game as Threat game.

This family of payo↵ matrices is a special case of all possible payo↵ matrices, yet

its is an important generalization which covers the donation game and also matrices
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that Epstein used. (i) The payo↵ matrix structure of the Donation game, given in

Figure 4.1(d), can be thought as a subset of Threat game for b and c as column and

row di↵erences, respectively. The Donation game lies on the line segment of ↵ = 1

and 0 < � = c
b < 1 in the ↵-� plain in Figure 4.10. (ii) Likewise, the payo↵ matrix

structures, given in Figure 4.1(e), used by Epstein in [77], can be represented by T +R

and T � R as column and row di↵erences, respectively. Hence they correspond to the

points on the line segment of ↵ + � = 2 again for 0 < � < 1.

4.2.2. Observations

We investigate the e↵ect of increasing level of threat and greed factors on the co-

evolutionary dynamics of memory size and cooperation for T = 1. Figure 4.10 visualizes

how µ and ⇢ change as a function of (↵, �) pairs. In both figures of Figure 4.10(a)

and Figure 4.10(b), x-axis is the threat factor ↵ 2 [0, 5] and y-axis is the greed factor

� 2 [0, 1.1]. Both ↵ and � have incremental steps of 0.1 in their given ranges. We

omitted the case of ↵ < � in Figure 4.10 since IPD condition of S < P < R < T implies

that 0 < � < ↵. But we showed the results for ↵ = � and � = 0 to see the limiting

conditions. The values of µ and ⇢ are the averages over 20 realizations. We have only

considered the average genotypes of the last 100 subsequent generations. That is from

generation number 400 to 500.

4.2.2.1. Evolution of Memory. In Figure 4.10(a), we show the e↵ect of threat and

greed factors on the evolution of memory size. For the evolution of memory, ↵ = 1 is

critical. P becomes negative for ↵ > 1, as it is shown in Figure 4.9. So the change of

↵ value from smaller than 1 to greater than 1 corresponds to the change from absence

of threat to presence of threat. In Figure 4.10(a), we observe that the average memory

size exhibits a major transformation from its lowest values to its highest values when

↵ becomes greater than 1. This shows clearly how threat fosters greater memory size.

We observe no direct impact of greed factor on the memory size.
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(a) Average memory ratio µ as a function of ↵ and �
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(b) Average defection rate ⇢ as a function of ↵ and �

Figure 4.10. The e↵ect of increasing level of threat and greed factors on the

co-evolutionary dynamics of memory size and cooperation. The cases for ↵ < � are

omitted since they do not fulfill the conditions of the IPD game.

4.2.2.2. Evolution of Cooperation. Memory has a positive e↵ect on cooperation, but

cooperation has a negative e↵ect on memory.

• The role of memory is to block interactions with agents that are perceived as

defectors. The increase in memory size can be thought as an introduction of (con-

ceptual) barriers against interaction with defectors. When memory size grows,

defectors incur isolation. Defectors can not gather enough fitness values for re-

production and they are eliminated.

• High memory size surprisingly raises the risk of self-isolation, especially in a

population mostly composed of cooperators. Cooperators can be perceived as

defectors due to the small number of interactions in which they happened to

defect more than cooperate. As a result of misperceptions, cooperators with high

memory size can refuse to interact with other cooperators, hence they end up

with lower fitness values. In the subsequent generations, cooperators get rid of

their memory.
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Threat calls for high memory size.

• In the absence of threat, ↵  1, receiving a defection brings non-negative payo↵s,

0  S < P . In this case, refusing a defector, due to the high memory size, turns

out to be disadvantageous. So agents with high memory size are again eliminated

throughout the evolution.

• In the presence of threat, ↵ > 1, receiving a defection brings negative payo↵s,

S < P < 0. This time, refusing a defector and having a high memory size become

advantageous. So average memory size has a tendency to increase in the presence

of threat.

Increasing level of threat, primarily increases the memory size, which, in turn, fosters

cooperation. But further increase in the level of threat, can not help cooperation. In

the next section we discuss the limits to cooperation.

4.2.2.3. Boundaries of Cooperation. We have made further simulations for greater

number of generations. We have observed that an increase in the number of generations,

up to a certain point, has a positive e↵ect on cooperation. This raises the question

whether there is a limit to cooperation. So we decided to make an analytical e↵ort

to draw the boundaries of cooperation, by simplifying our model as much as possible

for the benefit of cooperators. Let’s think that there exists only pure cooperators,

that always cooperate, and pure defectors, that always defect, in the population. In

order to favor cooperators, suppose memory ratio µi = 1 for all agents. So agents will

remember the past actions of all their opponents. Suppose also mutation is prohibited.

Hence, both cooperators and defectors will always be cautious against other defectors,

throughout the evolutionary process. Since agents have enough memory they will play

utmost one round with one particular defector and refuse to play with it afterwards.

Suppose there are Nd 2 [0, N ] defectors in the population. In our model, each

pair of agents are matched ⌫ times on the average. So a cooperator will play ⌫ times

with (N �Nd � 1) other cooperators (and receive the reward payo↵ 1� �) but it will
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play only once with Nd defectors (and receive the sucker payo↵ 1�↵� �). Hence, the

average performance of a particular cooperator equals to the following.

PC = ⌫(N �Nd � 1)(1� �) +Nd(1� ↵� �)

The average performance of a particular defector can be obtained in a similar fashion.

A defector will play only once with (N �Nd) cooperators (and receive the temptation

payo↵ 1) and will again play only once with (Nd � 1) other defectors (and receive the

punishment payo↵ 1� ↵).

PD = (N �Nd) + (Nd � 1)(1� ↵).

In order to have PC > PD, ↵ should satisfy

↵ < (N �Nd � 1)(⌫(1� �)� 1)�Nd�. (4.1)

Extremely beneficial conditions for cooperation can be achieved by setting � = 0. Even

in this condition, population can resist to a single (Nd = 1) defector, up to a certain

point. By setting Nd = 1 and � = 0 in Equation 4.1, we obtain ↵1 and ↵2 given as

↵ < ↵1 = (N � 2)(⌫ � 1) < N⌫ = ↵2.

For greater values of ↵ > ↵2, irrespective of the generation number and the greed

factor �, it becomes impossible to resist defectors. Absence of greed (� = 0) makes

cooperation and defection indi↵erent in terms of payo↵s, see Figure 4.1(b). Then why

pure cooperators (⇢ = 0) fail and pure defectors (⇢ = 1) rise for ↵ > ↵2? This is simply

because a defector can not receive a defection from itself. So cooperators receive 1

more defection than defectors does. This di↵erence becomes impossible to compensate

when the level of threat ↵ is greater than the average number of rounds ⌫ with each

opponent, multiplied by number of agents N , multiplied by the maximum payo↵ per

round T = 1. This was an excessive simplification to show that there exists a limit to
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cooperation.

Our bounds for ↵ are not tight. The ↵2 value is 3000 for ⌫ = 30 and N = 100.

We test the bounds by simulations, in which populations are not composed of only pure

cooperators and pure defectors with memory ratio of 1 but of heterogenous agents with

various defection rates and memory ratios. We obtained much more modest values of

↵2. We have obtained ↵2 = 10 for generation number 500, and ↵2 = 20 for generation

number 2500. Above these ↵2 values we do not observe any cooperation.

4.2.2.4. Co-evolution of Memory and Cooperation. Necessity is the mother of inven-

tion. We see a positive function of threat in having a greater memory size. On the

other hand, greater memory size raises the risk of self-isolation. Threat and mispercep-

tions among cooperators surprisingly cause a second source of dilemma on the memory

size. Thus not only cooperation but also memory size constitutes a dilemma in our

model. We can summarize the resulting dynamics of our model in three predominant

categories.

(i) In the absence of threat (↵  1), greater memory size is unfavorable to evolu-

tionary success. And cooperation collapses without memory. Thus, the average

genotype of the population moves to a point close to (µ, ⇢) = (0, 1). Figure 4.2

shows the triumph of memoryless defection over time, when there is no threat.

(ii) In the presence of an appropriate level of threat (1 < ↵ < ↵2) and under low greed

factor (� < 0.5), the trajectory of the evolving population can exhibit emergent

oscillatory dynamics. Memory size acts like an immune response of the subse-

quent generations. Figure 4.3 and Figure 4.4 help us to visualize the emerging

oscillatory dynamics for a single realisation, in the presence of an appropriate

level of threat. Memory crashes when defection rate is low, but spikes up as a re-

sponse to growing defection rate in the generation, then crashes again and recover

again depending on the average defection rate of the subsequent generations. Not

individual agents, but populations from generations to generations evolved to de-

velop some kind of protection mechanism against aggressive defection. This is an
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un-programmed functionality that emerged via evolutionary dynamics.

(iii) In the presence of threat (↵ > 1) and for high greed factor (� > 0.5) the average

genotype of the population moves towards a point close to (µ, ⇢) = (1, 1) which

corresponds to a defective population with high memory size. This is also true

in the presence of an extreme threat (↵ > ↵2). As ↵ gets larger, defection starts

to cause an extreme damage and it gets harder for cooperators to resist.

To our conclusion, the dose of the threat makes the resistance for cooperation,

especially when the greed factor is low. Lastly, to understand the impact of attention,

we compared the dynamics under selective attention (forget preferentially cooperators)

and the dynamics without attention (forget at random without preference). It seems

like attention favors cooperation and disfavors defection, especially for moderate values

of threat and greed factors. Attention can only make a di↵erence when memory size

is limited. For higher threat and greed factors memory size gets very close to its

maximum value and memory becomes su�cient to remember all opponents that, in

turn, makes attention less critical. Nevertheless, we think that the e↵ect of attention

on the co-evolutionary dynamics of memory and cooperation requires a research of its

own. We leave it as a future work.

4.3. Conclusion

In the research of cooperation, the e↵ect of negative mutual punishment payo↵,

P < 0, is usually omitted, as in the case of the Donation Game. Yet there are some

studies with negative payo↵s for receiving a defection. Our model shares with Epstein,

the e↵ect of negative payo↵s in the emergence of cooperation [77]. But it di↵ers in

many other respects. First, our model allows agents to have varying memory size

and defection rate, whereas Epstein’s model allows only pure cooperators and pure

defectors with zero-memory. The structure of a system, determines who interacts with

whom and causes its dynamic behavior. In our model, agents can select their partners

and memory has a critical role, as it is used to hinder interactions with defectors. In

Ref [77], it is only the spatial aspects of the environment which hinders cooperators
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from interacting with defectors. In other words, Epstein used physical barriers to avoid

interactions with defectors, while we have used conceptual barriers for it. Instead of

studying cooperation under fixed payo↵ matrix structure, we proposed to reformulate

the payo↵ matrix structure of IPD game by introducing threat and greed factors, and

showed their e↵ect on the co-evolution of memory and cooperation.

We observe that the greater memory size is unfavorable to evolutionary success

when there is no threat. One can find this, initially, deeply counterintuitive and not

realistic. But there are cases where species lost their brains as a result of evolution.

According to Frank Hirth, in their ancient evolutionary past, sea sponges did have

neurons [111]. Some extremely simple animals, such as sea squirts, simplify their

brains during their lifetimes. Sea squirt has a nervous system in order to navigate in

the sea. Its only goal is to find a suitable rock to live on for the rest of its life. When

it implants on a rock, the first thing it does is to digest its nervous system. Without a

problem to solve, there is no need to waste energy on a brain. In order for evolution to

promote increased brain size, its benefits, e.g. against predation threat, must outweigh

the high energetic costs [112]. One of the most striking example related to the evolution

of brain size belongs to humans. In the past 20.000 years, the human brain has shrunk

by about the size of a tennis ball [113]. Nobody knows exactly why. According to a

leading theory, the incredible decline in human brain size is a by-product of domesticity.

The shift from the threatening lifestyle of hunter-gatherers to the highly cooperative

and more secure lifestyle of agricultural society has led to the reduction in brain size.

Our results support this theory.

We have shown the positive e↵ect of an appropriate level of threat in having a

greater memory size which, in turn, favors cooperation. This finding is in parallel with

other forms of delicate balance (for the level of environmental harshness [114] and for

the level of punishment fines [115]) within which cooperation thrives best in spatial

evolutionary games. It is possible to make analogies with two di↵erent scientific results

from immunology and experimental psychology. It is thought that the immune system

functions by making distinction between self and non-self. This viewpoint is renewed

with the idea that the immune system is more concerned with entities that do damage
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than with those that are foreign [116]. Actually, threat calls for taking countermeasures

against the would-be-exploiter. Experimental evidence from psychology has shown that

the cooperation typically collapses in the absence of sanctioning possibilities [117]. The

threat of punishment is the key to maintain and promote cooperation [118, 119]. To

conclude, in order for cooperation to emerge, selfish beings need to be exposed to an

appropriate level of threat. When defection is harmless agents tend to defect and

when defection cause an extreme damage, cooperators have no chance to survive. We

observe that the conditions for the emergence of cooperation are very subtle. To

increase the immunity of cooperation, di↵erentiation of cooperators or some kind of

collective memory can be incorporated to our model as a future work.
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5. CONCLUSION

“To develop a complete mind: Study the science of art; Study the art of
science. Learn how to see. Realize that everything connects to everything else.”

- Leonardo da Vinci [120]

“Great artists study the masters; so too must great modelers.”
- John H. Miller, Scott E. Page [33]

“I think the next century will be the century of complexity.”
- Stephen Hawking [121]

The eye of the scientist should promenade on the previous great scientist’s works,

to be a part of the forthcoming revolution in science. There are striking parallels

among virtually every scientific field. Ludwig von Bertalan↵y’s General Systems The-

ory, is one of the first attempts to formulate common laws and principles that apply

to widely diverse disciplines [122]. That was a preeminently mathematical attempt

to unify systems science based on the abstractions from various disciplines. Agent-

based modeling shares the very same hunch that the boundaries between disciplines

are somewhat arbitrary. Distinctively, ABM is preeminently a computational attempt

to achieve unity across disciplines [29]. The aim of gathering the unifying principles of

various disciplines and creating a new way of doing science, is a very old and a very

sweet dream. We think every great scientists have seen it. ABM will gain more power

as we learn how to integrate data and equations into this new tool. That would require

inter-disciplinary teams of researchers to focus on the emergence of macro-level prop-

erties from micro-specifications. Uri Wilensky says that the emergence is so endemic

to the social and natural world that using an emergent lens to make sense of complex

patterns is a vital need in the 21 century [10].

Let’s turn back from big dreams to our modest attempts. In this thesis, we worked

on social dynamics of competition and cooperation using computational models. We

primarily used agent-based modeling and then we tried to validate our findings via

equation-based models, such as Markov Chains and phase plane analysis. We have not
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taken any data-driven approach, but we made comparisons between our findings and

other experimental findings from various scientific disciplines.

Primary contribution of this thesis, is the systematic reformulation of the Pris-

oner’s Dilemma payo↵ matrix with two principal driving factors of threat and greed,

see Figure 4.1(b). We have shown their e↵ects on the co-evolution of cooperation and

memory in Chapter 4. Another important contribution of this thesis, is the use of

“memory” as the conceptual structure, see Chapter 3 and Chapter 4. It is known that

the spatial structure can promote cooperation by introducing physical barriers against

interaction with defectors. In lieu of considering spatially structured population in

physical space, we made used of conceptually structured populations. Memory plays

the role of conceptual barriers for interaction with defectors. Agents have mental rep-

resentations of other agents in their memory and they have the ability to choose with

whom to interact. Hence, in our model memory defines the structure, who interacts

with whom, and generates the behaviour. Another contribution of this thesis, is the

emergence of immune response against defection. Co-evolution of memory and coop-

eration gives rise to the emergent behaviour. We observed that average memory ratio

increases when average defection rate increases and decreases when average defection

rate decreases. See Figure 4.3. Subsequent generations act like they have the ability

to self-regulate their average memory ratio depending on the average defection rate.

This functionality is not explicitly encoded in the program code of our model, but has

emerged as a result of the evolutionary dynamics.

Our secondary contributions, that we have started but not finished, can be

thought as the root of heuristics and the calculus of simulations. The study of the

root of heuristics can bring together agent-based modeling and real data from social

sciences such as social psychology and economy. We have shown some findings that

support attraction-e↵ect heuristics from economy, in Chapter 2 and negativity bias

from psychology in Chapter 3. We need further investigation and more importantly

we think, we need to collaborate with researchers from other disciplines to do a better

research. By the calculus of simulations, we mean developing mathematical tools to

track the outcomes of a simulation. This is not an easy task, especially for models
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with high complexity. But nevertheless, we think that it is necessary and doable at

least for testing the extreme conditions. We have used Markov Chains and phase plane

analysis as mathematical treatments for simplified agent-based models in Chapter 2

and Chapter 4, respectively. We think equation-based models and agent-based mod-

els complement each other. As an example, we have observed that the change in the

number of generations has an e↵ect on the outcomes of our evolutionary simulation.

We could make much more simulations with greater number of generation numbers.

(Actually, we did from 500 up to 2500 generations.) But a more e↵ortless solution can

be found with a little help from mathematics. Hence, at the end of Section 4.2, we

introduced an analytical treatment to investigate the boundaries of cooperation. We

have shown that, irrespective of the generation number, there exists an upper limit

for threat factor above which cooperation can not flourish and can not be maintained.

This shows how equation-based and agent-based models complement each other.

Our models more-or-less have an exploratory nature and they are somehow ab-

stract. Nevertheless one can think them as a starting point for modeling boundedly

rational agents in a competitive world. We think the question of how selfish beings

manage to cooperate is as old as the universe and moreover, it seems to be ever-lasting.

(When robots with extremely high artificial intelligence emerge, will humans and robots

cooperate or compete?) In Chapter 4, we have shown that an appropriate level threat

can help to foster cooperation. How individuals should spare their limited attention?

In Chapter 3, we have found that it is better for their survival to direct their attention

to defectors. How competing items can capture the limited attention of agents? Beside

the trivial way of increasing advertisement pressure, in Chapter 2, we have found that

one can achieve a higher market penetration by introducing dummy items to the mar-

ket. No model is perfect. When a model is proven to be no longer useful, we should

immediately seek for a better one. Here is why, science is a never ending story.
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