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ivABSTRACT
GREEN NETWORKING: FROM CONVENTIONAL TONEXT GENERATION HETEROGENEOUS CELLULARNETWORKSIn
reasing energy 
osts drive the tele
ommuni
ation servi
e providers to be
omehighly interested in energy e�
ient operations. The exponential growth in mobile dataex
hange whi
h is further augmented by the rapid proliferation of smart phones in-
reases the operational expenses of the 
ellular network operators signi�
antly. Also,e
ologists state that the primary triggering fa
tor of the global warming is adding ex-
essive amounts of greenhouse gases to the atmosphere and 72% of the totally emittedgreenhouse gases is 
arbon dioxide (CO2). In
reasing environmental awareness 
om-bined with the high energy pri
es has driven the network operators to redu
e their CO2footprint by adopting energy e�
ient green methods. In this thesis, our main fo
usis to save energy in three types of wireless 
ellular networks (i) Conventional CellularNetworks (ii) Pa
ket-swit
hed Cellular Networks and (iii) Next Generation Multi-tierCellular Networks. We formulate novel mathemati
al optimization problems for ea
hof the listed 
ellular networks to �nd the best possible topology whi
h minimizes theoverall power 
onsumption of the network while satisfying a 
ertain quality of servi
elevel. Our de
ision variables in the optimization models are swit
hing base stationson/o� and adaptively adjusting their transmission power levels as well as deployingadditional pi
o base stations as a remedy a

ording to the present tra�
 
onditions.Although the optimization tools provide the optimum solutions for smaller instan
esof the problem, we propose novel heuristi
s to solve large-s
ale realisti
 instan
es dueto their prohibitive 
omplexity. Results of extensive simulations, whi
h are designed as
lose to real life 
onditions as possible, show that the proposed green methods help tomaintain an energy-aware network and save signi�
ant amount of energy by adjustingthe network topology to the 
urrent tra�
 
onditions adaptively.



vÖZET
GELENEKSEL A�LARDAN YEN� NES�L ÇOKTÜRELHÜCRESEL A�LARA YE��L �LET���M
Artan enerji maliyetleri nedeniyle, telekomünikasyon servis sa§lay�
�lar�n�n enerjietkin yöntemlere olan ilgisi her geçen gün artmaktad�r. Telsiz veri ileti³imi ve ak�ll�telefon kullan�m oranlar�n�n h�zla artmas�, 
ep telefonu operatörlerinin i³letme maliyet-lerini de bir hayli artt�rm�³t�r. Bunlar�n yan� s�ra, çevrebilim
iler taraf�ndan küresel�s�nman�n ba³l�
a nedeninin atmosfere fazla miktarda sal�nan sera gaz� oldu§u ve sal�-nan sera gaz�n�n %72'sinin karbondioksit (CO2) oldu§u belirtilmektedir. Yüksek enerjimaliyetleri ve artan çevresel fark�ndal�k, 
ep telefonu operatörlerini enerji etkin ye³ilyöntemler kullanarak CO2 ayak izlerini ve enerji har
amalar�n� azaltmaya itmi³tir.Bu tezde, (i) klasik hü
resel a§lar (ii) paket anahtarlamal� çoktürel hü
resel a§lar ve(iii) yeni nesil çok katmanl� hü
resel a§lar olmak üzere üç farkl� telsiz a§ tipi içinenerji tasarruf yöntemleri önerilmektedir. S�ralanan her bir a§ tipi için toplam enerjitüketimini en aza indirmeyi amaçlayan, bunu yaparken de belirli bir servis kalitesinisa§layan matematiksel eniyileme modelleri geli³tirilmi³tir. Eniyileme modellerindekikarar de§i³kenleri ise, mev
ut veri tra�§i yo§unlu§una göre yeni baz istasyonlar� yer-le³tirmek, baz istasyonlar�n� aç�p kapatmak ve yay�m güçlerini de§i³tirmektir. Mev
uteniyileme araçlar� küçük ölçekli problemler için kesin sonuçlar üretse de, daha kar-ma³�k büyük ölçekli problemlerin çözümü için yeni sezgisel algoritmalar tasarlanm�³t�r.Gerçek hayat ko³ullar�na mümkün oldu§u kadar yak�n örneklerle yap�lan ba³ar�m de§er-lendirmesi sonuçlar�na göre, önerilen ye³il yöntemlerin a§ topolojisini mev
ut veri tra�§iko³ullar�na göre uyarlayarak enerji fark�ndal�kl� a§lar yaratt�§� ve önemli miktarda güçtasarrufu sa§lad�§� gösterilmi³tir.



viTABLE OF CONTENTS
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ivÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vLIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixLIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiLIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xivLIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xix1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1. Resear
h Overview and Key Contributions . . . . . . . . . . . . . . . . 31.2. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52. STATE OF THE ART ON GREEN NETWORKING . . . . . . . . . . . . . 72.1. Energy E�
ient BS Deployment Strategies . . . . . . . . . . . . . . . . 72.2. Energy E�
ient Dynami
 Resour
e Management . . . . . . . . . . . . 92.3. Energy E�
ien
y Through BS Cooperation . . . . . . . . . . . . . . . 132.4. Renewable Energy Resour
es . . . . . . . . . . . . . . . . . . . . . . . . 142.5. Energy E�
ien
y in Mobile Terminals . . . . . . . . . . . . . . . . . . 162.6. Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173. GREEN CONVENTIONAL CELLULAR NETWORKS . . . . . . . . . . . 203.1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2. System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2.1. Where should GDBP be applied? . . . . . . . . . . . . . . . . . 213.2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3.1. Plain GDBP . . . . . . . . . . . . . . . . . . . . . . . 243.2.3.2. GDBP with BS transition overhead . . . . . . . . . . . 263.3. Green dynami
 BS planning algorithm . . . . . . . . . . . . . . . . . . 273.4. Appli
ation s
enario and performan
e evaluation . . . . . . . . . . . . . 293.4.1. Appli
ation s
enario and parameters . . . . . . . . . . . . . . . 293.4.2. Experiment Methodology . . . . . . . . . . . . . . . . . . . . . 33



vii3.4.3. Performan
e Evaluation . . . . . . . . . . . . . . . . . . . . . . 333.5. Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394. GREEN PACKET-SWITCHED CELLULAR NETWORKS . . . . . . . . . 404.1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2. TAM Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 424.2.1. General Problem Formulation . . . . . . . . . . . . . . . . . . . 424.2.2. Details of the Problem Formulation . . . . . . . . . . . . . . . . 444.2.2.1. BS Power Consumption . . . . . . . . . . . . . . . . . 444.2.2.2. Interferen
e . . . . . . . . . . . . . . . . . . . . . . . . 454.3. Green Tra�
-Aware Topology Management Algorithm . . . . . . . . . 474.4. Greedy TAM Heuristi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.5. Appli
ation S
enario and Performan
e Evaluation . . . . . . . . . . . . 514.5.1. Appli
ation S
enario and Parameters . . . . . . . . . . . . . . . 514.5.1.1. Tra�
 Pattern . . . . . . . . . . . . . . . . . . . . . . 524.5.2. Performan
e Evaluation . . . . . . . . . . . . . . . . . . . . . . 554.6. Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595. GREEN NEXT GENERATION MULTI-TIER CELLULAR NETWORKS . 605.1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.2. Spatio-temporal User Density Estimation of the Pilot Appli
ation Area 615.3. Green Pi
o BS Deployment . . . . . . . . . . . . . . . . . . . . . . . . 725.3.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 725.3.2. Interferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.3.3. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.3.4. User Asso
iation . . . . . . . . . . . . . . . . . . . . . . . . . . 755.3.5. Green Pi
o BS Deployment Algorithm . . . . . . . . . . . . . . 765.3.5.1. Area Spe
tral E�
ien
y . . . . . . . . . . . . . . . . . 775.3.6. Greedy Pi
o BS Deployment Algorithm . . . . . . . . . . . . . . 815.4. Green Dynami
 BS Operation . . . . . . . . . . . . . . . . . . . . . . . 825.4.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 825.4.2. BS Power Consumption . . . . . . . . . . . . . . . . . . . . . . 845.4.3. Interferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii5.4.4. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.4.5. User Asso
iation . . . . . . . . . . . . . . . . . . . . . . . . . . 875.4.6. Green Dynami
 BS Operation Algorithms . . . . . . . . . . . . 875.4.6.1. Area Spe
tral E�
ien
y . . . . . . . . . . . . . . . . . 875.4.6.2. O�ine-
entralized Dynami
 BS Operation Algorithm . 895.4.6.3. Online-distributed Dynami
 BS Operation Algorithm . 915.4.6.4. Greedy Dynami
 BS Operation Algorithms . . . . . . 945.5. Appli
ation S
enario and Performan
e Evaluation . . . . . . . . . . . . 955.5.1. Appli
ation S
enario and Parameters . . . . . . . . . . . . . . . 955.5.2. Performan
e Evaluation . . . . . . . . . . . . . . . . . . . . . . 965.6. Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



ixLIST OF FIGURES
Figure 1.1. Base station lo
ation and 
overage redundan
y of a single operatorbased on the RSSI value from Sydney Central Business Distri
t,Australia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Figure 1.2. Normalized tra�
 pro�le of a 
entral (top) and four neighboring(bottom) BSs during one week [1℄. . . . . . . . . . . . . . . . . . . 3Figure 2.1. Classi�
ation of green dynami
 BS operation strategies. . . . . . . 18Figure 3.1. FastWISE algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 3.2. An example sinusoidal tra�
 load for 24h with fmin = 0.1, fmax =

0.9, and tp = 14h. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 3.3. A Sample deployment 
on�guration with 10000 UCs (1 mil. users)and 200 BSs in a 5 x 5 km2 area. . . . . . . . . . . . . . . . . . . 31Figure 3.4. Comparative power 
onsumption throughout a day. . . . . . . . . 35Figure 3.5. Distribution of feasible MC experiments and its 
omparison withFastWISE and NLP. . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 3.6. E�e
t of αsw on the obje
tive fun
tion given in Equation 3.6. . . . 37Figure 3.7. E�e
t of αsw on the 
umulative number of BS on/o� transitions. . 37Figure 3.8. Resulting 
overage of FastWISE under light tra�
 load. . . . . . . 38



xFigure 3.9. Resulting 
overage of FastWISE under heavy tra�
 load. . . . . . 38Figure 4.1. Green TAM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 50Figure 4.2. Greedy TAM Heuristi
. . . . . . . . . . . . . . . . . . . . . . . . . 51Figure 4.3. Three di�erent regions of Maslak, Istanbul. . . . . . . . . . . . . . 54Figure 4.4. Three example normalized tra�
 pro�les 
reated by using Equa-tion 4.16 for NT = 24. . . . . . . . . . . . . . . . . . . . . . . . . 54Figure 4.5. Comparative power 
onsumption throughout a day for the smalltest s
enario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Figure 4.6. Comparative power 
onsumption throughout a day for the largetest s
enario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Figure 5.1. Blueprint of Taksim area shapes and labels. . . . . . . . . . . . . . 62Figure 5.2. 3D model of the pilot 
overage area. . . . . . . . . . . . . . . . . . 65Figure 5.3. Average number of users in the 
overage area. . . . . . . . . . . . 68Figure 5.4. OpenCellID BS information repository loaded on OpenStreetMap. 70Figure 5.5. Current lo
ations of mi
ro BSs. . . . . . . . . . . . . . . . . . . . 71Figure 5.6. Possible pi
o BS lo
ations with K-Means 
lustering. . . . . . . . . 78Figure 5.7. Green Pi
o BS Deployment Algorithm. . . . . . . . . . . . . . . . 80



xiFigure 5.8. Greedy Pi
o BS Deployment Algorithm. . . . . . . . . . . . . . . . 82Figure 5.9. Change of mi
ro and pi
o BS power 
onsumption with utilizationand tx power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Figure 5.10. O�ine-
entralized Dynami
 BS Operation Algorithm. . . . . . . . 91Figure 5.11. Simpli�ed state transition diagram of the online-distributed dy-nami
 BS operation algorithm. . . . . . . . . . . . . . . . . . . . . 92Figure 5.12. Greedy Dynami
 BS Operation Algorithm v1. . . . . . . . . . . . 95Figure 5.13. Greedy Dynami
 BS Operation Algorithm v2. . . . . . . . . . . . 95Figure 5.14. Comparative pi
o BS power 
onsumption during peak tra�
 . . . 100Figure 5.15. Comparative power 
onsumption throughout a day. . . . . . . . . 101Figure 5.16. Comparative power saving ratio on weekday and weekend. . . . . 102Figure 5.17. Average BS-user distan
e. . . . . . . . . . . . . . . . . . . . . . . . 104Figure 5.18. Average BS utilization. . . . . . . . . . . . . . . . . . . . . . . . . 105Figure 5.19. User density heat map and 
orresponding a
tive BS status for timeslot 10:00-20:00-02:00 on a weekday. . . . . . . . . . . . . . . . . . 107Figure 5.20. User density heat map and 
orresponding a
tive BS status for timeslot 10:00-20:00-02:00 at weekend. . . . . . . . . . . . . . . . . . . 108



xiiLIST OF TABLES
Table 3.3. S
enario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 32Table 3.5. Comparison of average run times. . . . . . . . . . . . . . . . . . . 34Table 3.6. Comparative energy 
ost saving. . . . . . . . . . . . . . . . . . . . 35Table 4.3. S
enario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 4.5. Comparison of average run times. . . . . . . . . . . . . . . . . . . 55Table 4.6. Comparative energy 
ost saving. . . . . . . . . . . . . . . . . . . . 58Table 4.7. Total energy savings throughout a day 
ompared to all BSs operatewith PL 1, PL 2 and PL 3. . . . . . . . . . . . . . . . . . . . . . . 58Table 5.1. Shape types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 5.2. Shape numeri
 values example. . . . . . . . . . . . . . . . . . . . . 64Table 5.3. User density estimations of ea
h type for 10m2 area. . . . . . . . . 67Table 5.4. Area ratio and tra�
 
ontribution of ea
h pla
e type. . . . . . . . 69Table 5.7. Typi
al BS power 
onsumption �gures. . . . . . . . . . . . . . . . 85Table 5.8. S
enario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 97Table 5.10. Comparison of 
omputational 
omplexity and average run times. . 98



xiiiTable 5.11. Comparative energy 
ost saving. . . . . . . . . . . . . . . . . . . . 103



xivLIST OF SYMBOLS
Ax Area spe
tral e�
ien
y after deployment of a pi
o base stationto 
andidate lo
ation x
At Area spe
tral e�
ien
y over the total 
overage area at time t
A Area spe
tral e�
ien
y
Abpt Transmission state variable for base station b power level p attime t
B Set of all base stations where B = {1, . . . , NB}

B
off Set of 
urrently swit
hed o� base stations

B
on Set of 
urrently swit
hed on base stations (Bon = B−B

off)
B

high Set of overloaded swit
hed on base stations
B

neig
b Set of neighboring base stations of the base station b

B
M Set of mi
ro base stations where B

M = {1, . . . , NBM

}

B
P Set of pi
o base stations where B

P = {1, . . . , NBP

}

Ccur
b Current tra�
 load of base station b

Cbpu Coverage variable for base station b for user u with power level
p
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11. INTRODUCTION
In
reasing energy 
osts for
e the tele
ommuni
ation servi
e providers to deliverenergy e�
ient operations. The exponential growth in mobile data ex
hange rates [2℄whi
h is further augmented by the rapid proliferation of smart phones signi�
antlyin
reases the Operational Expenses (OPEX) of the 
ellular network operators. Also,e
ologists state that the primary triggering fa
tor of the global warming is adding ex-
essive amounts of greenhouse gases to the atmosphere and 72% of the totally emittedgreenhouse gases is 
arbon dioxide (CO2) [3℄. Information and 
ommuni
ation te
h-nology (ICT) industry produ
es 2% of the overall CO2 emission throughout the worldby 
onsuming 3% of the worldwide energy [4,5℄. When the exponential growth in dataex
hange [2℄ is 
onsidered, it is 
lear that the ICT se
tor will be
ome one of the majorCO2 emission sour
es within the next few de
ades. Therefore, developing and applyingenergy-e�
ient green methods in the ICT industry and redu
ing its CO2 footprint arenow more essential than ever.Sin
e wireless 
ellular a

ess networks 
onstitute a signi�
ant portion of the ICTindustry [6℄, it would not be wrong to think that measures to be taken in this �eld 
ansigni�
antly 
ontribute to make the overall 
ommuni
ation industry greener. Althoughwireless 
ellular a

ess networks 
onsist of two parts, whi
h are radio and the 
ore,vast majority of the energy is 
onsumed by the radio segment [7, 8℄. Therefore, it is
onsidered that Base Stations (BSs) whi
h are the integral part of the radio segmentare the right pla
e to start saving energy [9℄.Parallel to the ubiquitous 
overage demand and growing needs of the subs
ribers,
ellular network operators in
rease their Capital Expenses (CAPEX) and invest moremoney to deploy large number of BSs to provide better servi
e quality in terms of datarate, 
overage, 
all blo
king and dropping probabilities. Consequently, the BS densityin
reases and yields to a signi�
ant amount of BS redundan
y and ele
tromagneti
pollution, espe
ially in 
rowded urban areas. Figure 1.1 shows the BS lo
ation and
overage redundan
y of a single operator from Sydney Central Business Distri
t, Aus-
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Figure 1.1. Base station lo
ation and 
overage redundan
y of a single operator basedon the RSSI value from Sydney Central Business Distri
t, Australia.tralia. This BS information on the map is extra
ted from a website [10℄ whi
h makesuse of the Australian Communi
ations and Media Authority's RadCom registry. Thearea 
overed in the map is 1.5 × 1.5 km2 and has a total of 139 BSs. As suggested inIEEE 802.16m Evaluation Methodology Do
ument [11℄, the 
overage map is 
reatedby using the COST-Hata [12℄ metropolitan area propagation model with 2000 Mhzfrequen
y, 1.5 and 15 meters mobile station and BS antenna heights respe
tively. Ea
hBS is transmitting with a power of 46 dBm, 17 dBi antenna gain and minimum a
-
eptable Re
eived Signal Strength Indi
ator (RSSI) at the re
eiver is assumed to be-90 dBm.In order to ful�ll the requirements of the users regardless of time and spa
e,network operators usually pla
e BSs to support the peak tra�
 
onditions. Therefore,BSs are under-utilized during o�-peak times su
h as late night hours or holidays. Areal tra�
 pro�le 
olle
ted from a 
entral BS and four neighboring BSs during oneweek is given in Figure 1.2 [1℄. As expe
ted, the tra�
 load de
reases dramati
allyduring the late night hours. Yet, low tra�
 may also be observed all day long duringweekends or holidays in parti
ular pla
es su
h as business or trade 
enters. Hen
e,adoption of green tra�
-aware topology management s
hemes 
an save large amountsof energy by redu
ing the redundan
y and de
rease the OPEX of the servi
e providerssigni�
antly. Moreover, redu
tion of the energy 
onsumption also helps to slow down
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Figure 1.2. Normalized tra�
 pro�le of a 
entral (top) and four neighboring (bottom)BSs during one week [1℄.the global warming pro
ess by mitigating the CO2 emission to the atmosphere.This thesis addresses the above mentioned issues by proposing e�
ient green 
el-lular network deployment and operation methods for three di�erent 
ellular networktypes: (i) Conventional Cellular Networks (CCNs) (ii) Pa
ket-Swit
hed Cellular Net-works (PSCNs) (iii) Next-Generation Multi-Tier Cellular Networks (NGMCNs). Inthe deployment phase, we analyze the tra�
 load pattern of the 
overage area andfo
us on deploying minimum amount of pi
o BSs as a remedy. On top of that, we tryto minimize the total power 
onsumption of the network during operation phase byswit
hing BSs on/o� and adaptively adjusting their transmission powers a

ording tothe present tra�
 
onditions. Through extensive real-life-s
ale simulation runs, it isshown that the proposed green networking methods help to maintain an energy-awarenetwork and a
hieve signi�
ant amount of power savings.1.1. Resear
h Overview and Key ContributionsIn this thesis, we 
on
entrate on saving energy by (i) green BS design and de-ployment (ii) adaptive BS swit
hing on/o� (iii) adaptive BS transmission power ad-justment a

ording to the present tra�
 
onditions in the 
overage area. Parti
ulary,we fo
us on 
onventional Time Division Multiple A

ess (TDMA) / Frequen
y Division



4Multiple A

ess (FDMA) 
ellular networks, Wideband Code Division Multiple A

ess(W-CDMA) pa
ket-swit
hed 
ellular networks and Evolved Universal Terrestrial Ra-dio A

ess (E-UTRA) based next generation 
ellular networks in order. However, the
hallenge is to de
rease the energy expenditure while always guaranteeing an a

ept-able Quality of Servi
e (QoS) level. To address this, we formulate novel linear andnonlinear programming models to �nd the best possible BS topology whi
h minimizesthe energy 
onsumption while satisfying the 
ertain servi
e quality requirements of thesubs
ribers. Although small instan
es of the derived problems 
an be solved by theoptimization tools, large realisti
 size problems are quite di�
ult to be handled dueto their prohibitive spa
e and 
omputational 
omplexity. Therefore, we also proposenovel heuristi
s to solve the large-s
ale instan
es of the formulated problem withinreasonable time durations. In order to make a

urate performan
e evaluation of ourte
hniques, we use real-life network topologies and tra�
 data in our simulations, and
ompare our results with the previously proposed methods in the literature [13�15℄.Main 
ontributions of this thesis 
an be summarized as follows:
• Integration of Dynami
 Transmission Power Adjustment: Unlike majority of theprevious studies [15�18℄, where only BS on/o� swit
hing is utilized, we also takethe dynami
 power adjustment 
apability of the 
urrent BSs te
hnology intoa

ount in order to 
reate more energy-aware network topologies by de�ning aset of transmission power levels. Using di�erent transmission power levels, wehave the opportunity to dynami
ally 
hange the 
overage of the BSs a

ordingto the present tra�
 
onditions.
• Novel Optimization Models: Detailed mathemati
al optimization models are for-mulated to minimize the total power 
onsumption while satisfying a 
ertain levelof QoS. By using the derived models, we are able to obtain optimum results byusing the optimization tools for the small instan
es of the problem.
• Real-life S
enarios: We justify our proposed methods by applying them to s
enar-ios as 
lose to real life 
onditions as possible. For this purpose Maslak and Taksimregions of Istanbul are used as a test 
ase. Furthermore, we 
reated a detailed



5map of the Taksim area for better estimation of spatio-temporal user density. Tothe best of our knowledge, this kind of detailed user density estimation study ofa parti
ular area is one of its kind in the literature.
• Novel Heuristi
s: To over
ome the prohibitive 
omplexity of the formulated op-timization problems, espe
ially for the real-life s
ale large instan
es, fast ande�e
tive heuristi
s are proposed. They 
an be also 
onsidered as operating algo-rithms of the proposed methods to a
hieve the mentioned power savings in theirrespe
tive performan
e evaluation se
tions.
• Deployment of Pi
o BSs as a Remedy: For the NGMCNs, we propose deployingadditional pi
o BSs on top of the existing network infrastru
ture to meet thein
reasing data ex
hange demands of the subs
ribers. Therefore, our green net-working strategy is not limited to dynami
 adjustment only, but also en
ompassesthe network design and BS deployment phases.1.2. Thesis OutlineChapter 2 presents a review of the state-of-the-art green networking te
hniquesin
luding a taxonomy of the previously proposed methods in the literature.Chapter 3 des
ribes the proposed green te
hniques for power saving in HybridTDMA/FDMA based 
onventional 
ellular networks. This 
hapter also elaborates theproper appli
ation areas of the derived green networking methods.In Chapter 4, we dis
uss green W-CDMA based pa
ket-swit
hed 
ellular networksby taking the e�e
t of interferen
e into a

ount. After we present the system model,assumptions and the problem formulation, we explain the proposed te
hnique to min-imize the power 
onsumption. We also give a 
omparative performan
e evaluation ofour method on a test 
ase s
enario based on Maslak distri
t of Istanbul.In Chapter 5, we present green BS deployment and operation strategies for E-UTRA based next-generation multi-tier 
ellular networks su
h as LTE-Advan
ed. Sin
eNGMCNs are not fully deployed and operational for the time being, we also take



6the network design phase into a

ount and try to keep the network green during theoperation phase. In this 
hapter, we also 
reate a detailed map of Taksim as thepilot appli
ation area and make a spatio-temporal user density estimation. We thenpropose an energy-aware pi
o BS deployment method as well as three di�erent dynami
topology management te
hniques.Chapter 6 draws the 
on
lusions of the thesis with a summary of our 
ontributionstogether with the possible resear
h dire
tions to explore.



72. STATE OF THE ART ON GREEN NETWORKING
In re
ent years, the advent of smart phones, tablets and laptops has enabled thewidespread use of bandwidth-hungry appli
ations, whi
h in turn led an immense growthin mobile data usage. To a

ommodate in
reasing mobile data ex
hange requirementsof the subs
ribers, network operators have started to deploy denser a

ess networks perunit area, thus vastly in
reasing the energy 
onsumption. Growing energy 
onsumptionwith in
reasing energy 
osts 
oupled with its adverse impa
t on the environment haveled to numerous resear
h works on the topi
 
alled green networking. In this 
hapter,we provide an overview of the re
ent approa
hes for green networking along with anextensive taxonomy of the strategies proposed in the literature.Energy e�
ient hardware and 
ooling system design te
hniques are proven meth-ods to de
rease the network power 
onsumption 
onsiderably [19�24℄. However, thesemethods are applied in the early hardware design and manufa
turing phase at the phys-i
al layer. Sin
e our resear
h is fo
used on energy e�
ien
y through network planningand management, energy e�
ient hardware design is outside the s
ope this thesis. Thereaders may refer to [19�24℄ for energy e�
ient hardware and 
ooling system designte
hniques. 2.1. Energy E�
ient BS Deployment StrategiesThere are numerous works in the literature addressing the problem of energye�
ient BS deployment in wireless 
ellular networks. Among them, Zheng et al. [25℄propose a 
ellular network planning framework 
onsidering the use of renewable en-ergy sour
es and energy balan
ing. They formulate an optimization problem with anobje
tive fun
tion of minimizing three 
omponents: (i) total installation 
ost (ii) total
onne
tion 
ost and (iii) total 
ost of 
onsumed power from the ele
tri
 grid. A

ordingto the results of their novel heuristi
s proposed to solve the formulated optimizationproblem, they a
hieve 
onsiderable CAPEX and OPEX savings in 
omparison with thetraditional deployment strategies.



8In [26℄, authors fo
us on the problem of energy e�
ient base station positioningand frequen
y assignment based on a realisti
 tra�
 estimation for the 
ity of Zuri
hgiven in [27℄. They follow a heuristi
 approa
h and propose multi-obje
tive geneti
algorithms with very low 
omputational 
omplexity to solve the problem. Given theCAPEX for BS installation, they show that their approa
h satis�es the tra�
 demandin the 
overage area with minimum amount of BSs and de
reases the inter-
ell interfer-en
e signi�
antly. Similarly, dis
rete optimization models and algorithms are proposedto determine where to lo
ate the new BSs in [28℄. Authors propose di�erent versions oftwo greedy pro
edures and a tabu sear
h algorithm, whi
h take the installation 
osts,signal quality and tra�
 
overage into a

ount.Boiardi et al. [29℄ propose an optimization framework that sele
ts the BSs to be in-stalled and jointly swit
hes them on/o� with respe
t to 
hanging tra�
 load 
onditions.A

ording to their �ndings, for the power management to be truly e�e
tive, networkshave to be designed by taking the operational management into a

ount. Hen
e, theyfo
us on �nding the best trade-o� between keeping low initial investments and redu
-ing energy 
onsumption. They introdu
e a trade-o� parameter between CAPEX andOPEX, and their optimization framework allows network operators to obtain networktopologies with di�erent 
hara
teristi
s by varying that parameter.On the other hand, �nding the optimal BS density in the 
overage area ratherthan the spe
i�
 BS lo
ations to a

ommodate the user requirements is attra
tingsigni�
ant amount of attention in the literature. Re
ently, Peng et al. [30℄ formulate anetwork energy 
onsumption minimization framework whi
h jointly optimizes the BSdensity and BS transmission power. Their numeri
al simulation results show that theheterogeneous network deployment has an advantage in energy e�
ien
y performan
e
ompared to the homogeneous network deployment. In Se
tion 5.5.2, we provide a
omparative performan
e evaluation of the BS deployment strategy proposed in thisstudy with our green pi
o BS deployment method.Another study related to optimal BS density is given in [31℄. Authors adoptsto
hasti
 geometry theory to analyze the optimal BS density for both homogeneous



9and heterogeneous 
ellular networks to minimize network energy 
ost. Based on realis-ti
 parameters of the EARTH [32,33℄ proje
t, 
ompared to the traditional ma
ro-onlyhomogeneous 
ellular network, deploying mi
ro BSs 
an redu
e about 40% of the to-tal energy 
ost, and further redu
e up to 35% with BS sleeping 
apability. A similarsto
hasti
 geometry based model is also proposed in [34℄ for energy e�
ien
y in single-tier homogenous and K-tier heterogeneous 
ellular networks.2.2. Energy E�
ient Dynami
 Resour
e ManagementDue to �u
tuating tra�
 
onditions during the day, stati
 resour
e managementis not 
onsidered as optimal in terms of energy e�
ient network operation. However,dynami
 resour
e management methods are e�e
tive only when 
ellular networks areexperien
ing low tra�
 load. If the tra�
 demand is intense all the time, there willnot be any available margin for power saving.One of the most utilized resour
e for dynami
 management in 
ellular networks isthe BS transmission power. In the literature, there are example studies whi
h 
onsiderthe dynami
 
ell size adjustment in order to redu
e the energy 
onsumption. Amongthem, Niu et al. [14℄ introdu
e the 
ell zooming 
on
ept for energy saving to adap-tively adjust the size of the 
ells a

ording to the 
urrent tra�
 load. In their work,a 
ell zooming server whi
h is a virtual entity in the network 
ontrols the pro
edureof 
ell zooming. The 
ell zooming server 
olle
ts the information su
h as the tra�
load, 
hannel 
onditions and user requirements; then analyzes whether there are op-portunities for 
ell zooming or not. Based on the 
ell zooming 
on
ept, they propose
entralized and distributed versions of user asso
iation algorithms to save energy byputting redundant BSs into sleep mode. In Se
tion 4.5.2, we also provide a 
omparativeperforman
e evaluation of the 
entralized algorithm proposed in this study with ourmethods.Oh et al. [15℄ proposed an algorithm 
alled SWES along with three other versionsof it for BS on/o� swit
hing. They introdu
e the notion of network-impa
t whi
h
onsiders the e�e
t of BS transitions on the neighboring BSs in terms of tra�
 load and



10try to �nd solutions whi
h have the minimum e�e
t on the network. It is shown that,a

ording to the test 
ase results 
ondu
ted with a real-life topology and tra�
 loaddata, their algorithms 
an a
hieve energy savings up to 50-80%. In Se
tion 5.5.2, weuse SWES algorithm as a 
ompetitor and provide 
omparative performan
e evaluationwith our green networking methods.Another work 
onsidering variable 
ell sizes for energy saving is presented in [16℄.In this work, Bhaumik et al. 
onsider two types of BSs whi
h are subsidiary BSs withlow transmit power and umbrella BSs with high transmit power. They propose a selfoperating network by adaptively swit
hing subsidiary and umbrella BSs on and o�a

ording to the 
urrent tra�
 demands. Similarly, Kokkinogenis et al. [17℄ assume a
ellular network 
onsisting of mi
ro and ma
ro BSs where mi
ro BSs have the abilityof being swit
hed on/o� while ma
ro BSs 
an iteratively adjust their transmissionpower until the required QoS is a
hieved. They propose stati
 
entralized, dynami
distributed and hybrid topology management s
hemes to redu
e the overall energy
onsumption of the network while satisfying 
ertain QoS requirements.Chiaraviglio et al. [18℄ propose a novel approa
h to save energy in UMTS networksby redu
ing the number of a
tive a

ess devi
es when they are under-utilized. Authorsderive two models for both 
ir
uit swit
hed and pa
ket swit
hed servi
es separately forquanti�
ation of possible energy savings.Re
ently, a green 
ell breathing and o�oading me
hanism for heterogeneous net-works is proposed in [35℄. Authors 
ontrol the BS swit
hing-o� aggressiveness by usinga tra�
 threshold approa
h in the 
ontext of heterogeneous ma
ro and femto 
ell de-ployments. They explore the impa
t of 
ombining 
ell breathing with a se
ond layer ofsmall 
ells, i.e. femto
ells, on BS o�oading and swit
h-o�. The e�e
t of a

ess poli
iesfrom 3GPP Closed Subs
riber Groups on the network performan
e is also analyzed.In another re
ent study, Son et al. [36℄ investigate the energy-e�
ient design ofheterogeneous 
ellular networks, espe
ially with a fo
us on deployment and operationstrategies. They formulate a general optimization problem with an obje
tive of min-



11imizing the total energy 
onsumption 
ost while satisfying the requirement of areaspe
tral e�
ien
y. This problem is then de
omposed into two problems: (i) deploy-ment problem at peak time and (ii) operation problem at o�-peak time. They proposea greedy algorithm as an o�ine 
entralized solution and two online distributed algo-rithms using the Lagrangian relaxation te
hnique.In [37℄, tra�
-aware sleeping 
ontrol and power mat
hing te
hnique of a single BSin 
ellular networks are studied. The aim of this study is to �nd the sleeping 
ontrol andpower mat
hing 
on�gurations that a
hieve the Pareto optimal tradeo� between totalpower 
onsumption and average delay. A

ording to proposed sleeping 
ontrol s
hemes;the BS goes to sleep whenever there is no a
tive user, and wakes up when N users areassembled or after a period of multiple or single va
ation time. Authors also analyze therelationship between total power 
onsumption and average delay with varying servi
erate theoreti
ally and argue that sa
ri�
ing delay 
annot always be traded for energysaving. Similarly, Niu et al. [38℄ 
hara
terize the fundamental tradeo�s between totalenergy 
onsumption and overall delay in a BS with sleep mode operations by queueingmodels. Authors derive 
losed-form formulas to demonstrate the tradeo�s between theenergy 
onsumption and the mean delay for di�erent wake-up poli
ies.In the literature, there are example studies whi
h 
onsider distributed dynami
resour
e management su
h as [39℄ and [40℄. Authors propose a distributed 
ooperativeframework to improve the energy e�
ien
y of green 
ellular networks in [39℄. Basedon the tra�
 load, neighboring BSs 
ooperate to optimize the BS sleeping strategieswhile guaranteeing QoS requirements of the subs
ribers. An energy saving problemis formulated as a 
onstrained graphi
 game and the existen
e of a generalized Nashequilibrium is proved. A

ordingly, a de
entralized iterative algorithm to �nd thebest equilibrium point is designed where only lo
al information ex
hange among theneighboring BSs is needed. Similarly, a distributed BS swit
h on/o� algorithm isproposed for LTE-Advan
ed networks whi
h exploits the knowledge of the distan
ebetween the MTs and their asso
iated BS in [40℄.



12In [41℄, authors fo
us on energy e�
ien
y in densely deployed femto
ell networkswhere a large number of open-a

ess femto BSs are deployed in a publi
 hotspot areasu
h as airport or shopping mall. The e�e
t of the femto BS-sleeping ratio on theenergy e�
ien
y is quantitatively studied by using a sto
hasti
 geometry-based model.Then the optimal femto BS-sleeping ratio is obtained by 
onsidering both the networktra�
 load and the lo
ation of the designated femto
ell deployment area in order tomaximize the total energy saving.Rengarajan et al. [42℄ present a novel approa
h for estimating both the energysavings that 
an be a
hieved in 
ellular a

ess networks by using sleep modes, as wellas the energy-optimal BS densities as a fun
tion of user density. Their approa
h allowsthe derivation of realisti
 estimates of the energy-optimal density of BSs 
orrespondingto a given user density, under �xed performan
e 
onstraints.Another network sleep mode s
heme for redu
ing energy 
onsumption of radioa

ess networks is proposed in [43℄. An optimal Markov De
ision Pro
esses based
ontroller that asso
iates to ea
h tra�
 an a
tivation/dea
tivation poli
y is derived.This 
ontroller redu
es the ping-pong e�e
t resulting in unne
essary BS on/o� os
illa-tions and fo
uses on �nding the optimal poli
y dynami
ally based on the present usera
tivity in the 
ell.In [44℄, the problem of �nding the fra
tion of BSs that 
an be swit
hed o� whilemaintaining QoS for given load 
onditions is explored. As a QoS metri
, authorsmeasure the average waiting time of subs
ribers. Their approa
h 
onsists of two steps.In the �rst step, they determine the optimal on/o� pattern of base stations and MT-BSasso
iation poli
y for a �xed fra
tion of base stations to be swit
hed o�. In the se
ondstep, they fo
us on �nding the maximum fra
tion of base stations that 
an be swit
hedo� for given tra�
 load 
onditions.



132.3. Energy E�
ien
y Through BS CooperationMobile servi
e providers re
ently introdu
ed the 
on
ept of network sharing withthe obje
tive of redu
ing both their CAPEX and OPEX. The main idea is 
ooperatingand sharing infrastru
tures of the servi
e providers with ea
h other in order to adaptthe a
tive 
apa
ity to the 
urrent tra�
 
onditions, and thus save energy. This sharingmay further in
lude their approa
hes for implementing sleep modes [45℄.In [46℄, a tra�
-intensity-aware multi
ell 
ooperation s
heme is introdu
ed whi
hadapts the 
ellular network topology a

ording to user tra�
 demands in order toredu
e the number of a
tive BSs. Then a novel energy-aware multi
ell 
ooperationmethod is proposed to redu
e on-grid power 
onsumption by o�oading tra�
 fromon-grid base stations to o�-grid base stations powered by renewable energy. Moreover,
oordinated multipoint transmission is investigated to improve the energy e�
ien
y of
ellular networks.A resour
e on/o� swit
hing framework that adapts to the 
hanging network tra�
load and maximizes the amount of energy saving under servi
e quality 
onstraints ina 
ooperative networking environment is presented in [47℄. The proposed frameworkrelies on 
ooperation among di�erent networks to save energy on two s
ales: (i) On alarge s
ale, networks with overlapped 
overage alternately swit
h their BSs on and o�a

ording to the long-term �u
tuations in tra�
 load (ii) On a small s
ale, ea
h a
tiveBS swit
hes its 
hannels on and o� a

ording to the short-term �u
tuations in tra�
load. Ghazzai et al. [48℄ investigate the 
ollaboration between multiple mobile operatorsto optimize the energy e�
ien
y of 
ellular networks. They use LTE-A 
ase for theirframework study and try to redu
e CO2 emission of the network via 
ollaborativete
hniques and using BS sleeping strategy. A low 
omplexity algorithm is proposed thatestablishes the 
ooperation de
ision 
riteria based on roaming pri
es and pro�t gainsof 
ompetitive mobile operators. Similarly, Bousia et al. [49℄ study energy e�
ien
yissues in multi-operator mobile networks. Their aim is to save energy by swit
hing o�



14the redundant BSs without 
ompromising the o�ered QoS. They propose a novel gametheoreti
 strategy using 
ost-based fun
tions to de
ide the most suitable BSs to remaina
tive.Inspired by the e
ologi
al proto
ooperation prin
iple, Hossain et al. [13℄ pro-pose a BS 
ooperation s
heme to a
hieve higher energy e�
ien
y in 
ellular a

essnetworks. BSs 
ooperatively and dynami
ally swit
h between on/o� states and adjusttheir transmission power levels depending on the 
urrent tra�
 
onditions. They intro-du
e a distributed sleep-wake up algorithm 
alled SLAKE whi
h 
onsists of a sleepingand a tra�
 distribution pro
edure. Sin
e their algorithm also utilizes BS transmissionpower adjustment besides BS on/o� swit
hing similar to our fo
us, we 
ompare theperforman
e of our methods with SLAKE in Se
tion 4.5.2.In [50℄, authors propose an energy-e�
ient BS swit
hing strategy, and use 
ooper-ative 
ommuni
ation te
hniques among the BSs to e�e
tively extend network 
overage.They take both the path-loss and fading e�e
ts into 
onsideration, and derive 
losed-form expressions for the 
all blo
king and the 
hannel outage probability. They alsotry to guarantee the QoS of the subs
ribers by identifying the MTs situated at theworst-
ase lo
ations.Unlike other studies related to 
ooperative green networking, Zou et al. [51℄ in-vestigate MT 
ooperation with ea
h other in transmitting their data pa
kets to BSby exploiting the multiple network a

ess interfa
es to improve the energy e�
ien
y in
ellular uplink transmission. They develop a 
losed-form expression of energy e�
ien
y(Bits/Joule) given target outage probability and data rate requirements. Their numer-i
al results show that their proposed inter-network 
ooperation signi�
antly improvesthe energy e�
ien
y when the 
ooperating users move towards to ea
h other.2.4. Renewable Energy Resour
esGreen energy resour
es su
h as sustainable biofuels, solar and wind energy arepromising options to redu
e the CO2 footprint of the 
ellular networks. Eri
sson [52℄



15has developed a wind-powered BS for 
ellular networks and Nokia Siemens Networks [53℄has also introdu
ed a green BS whi
h totally relies on a 
ombination of solar and windpower without any grid ele
tri
ity.In [54℄, authors study 
ellular a

ess networks whi
h solely rely on renewableenergy resour
es. They fo
us on BS power generator (photovoltai
 panels) and energystorage dimensioning a

ording to daily power 
onsumption of the BSs and daily / sea-sonal radiative power of the sun in three di�erent lo
ations: (i) Torino (ii) Palermo(iii) Aswan. They also investigate the e�e
tiveness of solar power system with windturbines, along with BS sleep modes.However, due to unreliable dynami
s of green energy harvesting and the limited
apa
ity of the 
urrent energy storage te
hnology, green energy may not guarantee suf-�
ient power supplies for BSs. Thus, resear
hers have been investing signi�
ant amountof e�ort to over
ome these 
hallenges by introdu
ing hybrid powered BSs where BSsuse the green energy if they have enough energy stored in their batteries; otherwise,the BSs swit
h to on-grid power to operate. Among them, Han et al. [55℄ proposean optimization problem to maximize the utilization of the green energy harvestedby renewable resour
es, and hen
e redu
e the on-grid energy 
onsumption of the BSs.They de
ompose the problem into two sub-problems (i) the multi-stage energy allo
a-tion problem (ii) the multi-BSs energy balan
ing problem. Then, they propose threealgorithms to solve these sub-problems.Re
ently, Wang et al. [56℄ proposed a new model to 
apture the dynami
 energy�ow behavior of solar powered BS by using sto
hasti
 queue model. They also 
onsider�u
tuation of energy generation, nonlinearity of energy storage and indetermina
yof tra�
 load. Subsequently, they de�ne three performan
e metri
s whi
h are (i)servi
e outage probability (ii) solar energy utilization e�
ien
y and (iii) mean depthof dis
harge. Under 
onstraints on the de�ned metri
s, they formulate a CAPEXminimization problem and propose an adaptive geneti
 algorithm to solve it.



16New design methodologies for hybrid energy supply green 
ellular networks withthe help of Lyapunov optimization te
hniques are proposed in [57℄. Authors adoptgrid energy 
onsumption and a
hievable QoS as their performan
e metri
 and try tooptimize these metri
s via BS assignment and power 
ontrol. Their main 
ontributionis a low-
omplexity online algorithm to minimize the long-term average network servi
e
ost. 2.5. Energy E�
ien
y in Mobile TerminalsMajority of the existing studies in the literature investigate energy e�
ien
y ofdynami
 planning approa
hes only from the network operator perspe
tive. Dynami
planning, if not 
arefully designed, 
an lead to higher energy 
onsumption for themobile users in the uplink due to larger transmission distan
es, whi
h in turn degradesthe uplink servi
e quality 
aused by the fast depletion of mobile terminal's battery.In order to balan
e the trade-o� in energy e�
ien
y among network operatorsand mobile users, Ismail et al. [58℄ investigate dynami
 planning not only from thenetwork operator perspe
tive, but also from the mobile user perspe
tive. They proposea dynami
 planning s
heme whi
h takes both network operators (downlink) and mobileusers (uplink) energy 
onsumption into a

ount based on a two times
ale (slow andfast) de
ision strategy. In the slow s
ale, BS on/o� swit
hing and antenna tiltingde
isions are taken while BS and MT transmission power 
ontrol de
ision are taken inthe fast s
ale.De Tur
k et al. [59℄ investigate the power saving me
hanisms in mobile devi
esby taking both downlink and uplink tra�
 into a

ount. They analyze the e�e
t of ageneri
 sleep mode me
hanism in terms of mean pa
ket delay and power 
onsumptiontradeo� for both LTE and WiMAX networks under Markovian tra�
 model. A

ordingto their �ndings from a real life appli
ation s
enario, even a modest amount of uplinktra�
 has a tremendous in�uen
e on the system performan
e.



17In [60℄, authors propose a novel tra�
 
oales
ing s
heme to redu
e the platformwake events motivated by bursty and random behavior of real-world tra�
 workloads.Their adaptive tra�
 
oales
ing method monitors the in
oming tra�
 at the NetworkInterfa
e Card (NIC), and adaptively 
oales
es the pa
kets for a limited duration inthe NIC bu�er. They try to redu
e mobile terminal wake events and enable them toenter and stay in the low-power state longer for energy e�
ien
y. A

ording to real lifeimplementations on various mobile platforms, the proposed adaptive tra�
 
oales
ings
heme a
hieves around 20% power saving without impa
ting performan
e and userexperien
e.For further information, reader may refer to extensive survey studies in the lit-erature. Among them, Ismail et al. [61℄ fo
us energy e�
ient te
hniques in BSs andMTs from the operator and user perspe
tives. A survey on energy e�
ien
y of wirelessmultimedia streaming in mobile hand-held devi
es presented in [62℄ where a survey onoptimal 
ontrol of sleep periods for MTs 
an be found in [63℄.2.6. TaxonomyIn this se
tion, we provide a 
lassi�
ation of green dynami
 BS operation s
hemespreviously proposed in the literature. Our �rst 
lassi�
ation 
riteria is the s
ope of thenetwork in whi
h green dynami
 BS operation te
hniques are designed to be applied.We basi
ally divide the network s
ope into three parts: (i) Flat (ii) Multi-tier (iii)Heterogeneous. Flat networks 
onsist of single type of BS where multi-tier networks
onsist of more than one type of BS (e.g. ma
ro, mi
ro, pi
o). On the other hand,heterogeneous networks 
onsist of di�erent type of BSs with di�erent type of 
ommuni-
ation te
hnologies (e.g. GPRS, IMT-2000, LTE, WiMAX). Our se
ond 
lassi�
ation
riteria is the metri
s in whi
h performan
e of the green BS operation s
hemes areevaluated. Sin
e main obje
tive of all green networking methods is to save energy, weex
luded energy e�
ien
y in this taxonomy. Majority of the works previously proposedin the literature utilize aggregate throughput and average delay as their primary met-ri
s. Coverage is another important metri
 sin
e it is enfor
ed by the governmentallaws to 
over a 
ertain per
entage of the population or geographi
al area. Hybrid met-



18Green Dynami
 BS OperationS
opeFlatNetworks 
onsisting ofsingle type of BS.[64℄, [42℄, [49℄Multi-tierNetworks 
onsisting ofmore than one type ofBS (e.g. ma
ro, mi
ro,pi
o).[15℄, [16℄, [17℄, [18℄, [35℄,[41℄HeterogeneousNetworks 
onsisting ofdi�erent te
hnologies(e.g. GPRS, IMT-2000,LTE, WiMAX).[51℄

Metri
sAggregate tra�
 loadTotal a

ommodatedtra�
 load both in up-link and downlink.[35℄CoverageCoverage in terms ofboth geographi
al areaand per
entage of sub-s
ribers.[65℄, [66℄DelayAverage delay in the net-work.[38℄, [37℄, [44℄UtilizationAverage utilization ofthe network resour
es.[41℄, [67℄HybridIn
ludes various per-forman
e metri
s su
has transmitted dataper energy (bits/joule),area spe
tral e�
ien
y(bits/se
/Hz/m2), solarenergy utilization (%).[67℄, [36℄, [42℄

Algorithm TypeOnlineTopology adjustment de-
isions are made duringoperation. Well respondsto unexpe
ted tra�
variations.[35℄, [15℄, [36℄, [37℄, [43℄O�ineTopology adjustmentde
isions are made be-fore hand. Has time for
omplex 
al
ulations.[64℄, [14℄

Control S
hemeCentralizedA 
entral entity de
idesstatus of ea
h BS withglobal observations.[14℄, [41℄, [43℄DistributedBSs determine their ownstatus autonomouslywith their lo
al obser-vations.[35℄, [36℄, [37℄, [40℄CooperativeBSs 
ooperate with ea
hother for status 
hangede
isions.[39℄, [13℄, [51℄, [48℄, [46℄

Figure 2.1. Classi�
ation of green dynami
 BS operation strategies.ri
s in
lude a variety of performan
e indi
ators su
h as transmitted data per energy(bits/Joule), area spe
tral e�
ien
y (bits/se
/Hz/m2) and solar energy utilization. Ourthird 
lassi�
ation 
riteria is algorithm type. We observe two main trends in green dy-nami
 BS operation algorithms: Online and O�ine. Online algorithms make topologyadjustment de
isions during operation and well respond to unexpe
ted tra�
 varia-tions. In O�ine algorithms, topology adjustment de
isions are made beforehand andthey have more time for 
omplex 
al
ulations. Fourth and the last 
lassi�
ation 
rite-



19ria is the type of 
ontrol s
heme and we divide it into three parts: (i) Centralized (ii)Distributed (iii) Cooperative. In 
entralized s
heme, a 
entral entity de
ides the statusof ea
h BS with global observations throughout the network. On the other hand, BSsdetermine their own status autonomously with their lo
al observations in distributeds
heme. Lastly, neighboring BSs 
ooperate with ea
h other for status 
hange de
isionsin the 
ooperative s
heme.



203. GREEN CONVENTIONAL CELLULAR NETWORKS
3.1. Introdu
tionIn this 
hapter, we fo
us on saving energy by adaptively swit
hing the BSs ofwireless 
ellular a

ess networks on and o� a

ording to the 
urrent tra�
 
onditions.Moreover, we also adopt dynami
 transmission power adjustment with the help ofhigh-e�
ien
y power ampli�ers. However, the 
hallenge is to de
rease the energy ex-penditure while always guaranteeing a 
ertain Grade of Servi
e (GoS) over the wholearea. Therefore, we formulate a novel nonlinear programming (NLP) model for theGreen Dynami
 BS Planning (GDBP) problem to �nd the best possible BS topologywhi
h minimizes the energy 
onsumption while satisfying the 
ommuni
ation demandsof the users. We then propose a heuristi
 to solve that problem and 
ompare our re-sults with the results of a non-
ommer
ial optimization software and numerous MonteCarlo (MC) experiments. It is shown that our green dynami
 BS planning s
hemesaves signi�
ant amount of energy. Although there are some studies in the literaturerelated to the dynami
 BS swit
hing, our method di�ers in the following aspe
ts:

• Unlike most of the previous studies, we utilize the dynami
 power adjustment
apability of the 
urrent BSs te
hnology by adjusting the output of the powerampli�er. Using di�erent transmission PLs, we have the opportunity to dynami-
ally 
hange the 
overage of the BSs a

ording to the present tra�
 
onditions.
• Majority of the studies in the literature assume that BSs make swit
h on oro� de
isions lo
ally by 
omparing their 
urrent tra�
 loads with a prede�nedthreshold. In our work, we try to satisfy 
ertain GoS requirements 
olle
tivelyby making system-wide de
isions throughout the whole network.
• The BS on/o� transitions are taken into a

ount in order to minimize the addi-tional overhead introdu
ed by frequent topology 
hanges su
h as BS initialization,user asso
iation, and handover.
• We justify our proposed methods by applying them to real-life-s
ale s
enariosrather than small-s
ale test 
ases.
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• A detailed integer NLP model is formulated for the GDBP problem and solved bya non-
ommer
ial optimization tool. By using the derived programming model,optimum results 
an be obtained from the optimization tools for the small ins-tan
es of the problem. In order to show the signi�
an
e of the results, a verylarge number of MC experiments are also 
ondu
ted.
• A fast and e�e
tive heuristi
 
alled FastWISE is proposed for solving large ins-tan
es of the GDBP problem.The rest of this 
hapter is organized as follows: In Se
tion 3.2, we elaboratethe proper appli
ation areas of the GDBP, assumptions, and problem formulation.The proposed GDBP algorithm is explained in Se
tion 3.3. An example appli
ations
enario, details of the system parameters, and 
omparative performan
e analysis ofthe proposed methods are presented in Se
tion 3.4. Finally, Se
tion 3.5 draws the
on
lusions. 3.2. System modelBefore going into detail, possible appli
ation areas of the GDBP along with theiradvantages and disadvantages are investigated from the green networking perspe
tive.3.2.1. Where should GDBP be applied?As we mentioned before, the primary obje
tive of GDBP is to save energy whilesatisfying a 
ertain level of servi
e quality. Hen
e, there must be ex
ess energy 
on-sumption in order to bene�t from GDBP properly. If the energy is already being usede�e
tively, applying an energy-saving method will be nothing more than unne
essaryin
rease of 
omplexity.Crowded urban areas with high BS densities are the most suitable pla
es forGDBP rather than suburban or rural areas. However, ea
h urban area has its owntra�
 pattern whi
h dire
tly determines the e�
ien
y of the GDBP. Therefore, we
ategorize urban areas into four distin
t regions and 
omment on those regions whether



22GDBP should be applied or not.
• Town 
enters (business). Business, trade, or industrial areas as well as 
ommer
ial
enters 
an be 
onsidered in this 
lass. The user density, hen
e the o�ered tra�
load, is quite high in these pla
es during the daytime. However, the user densityand the tra�
 load drop sharply during the night-time sin
e most of the businessand 
ommer
ial areas are 
losed. Moreover, low tra�
 pro�les 
ontinue all daylong during weekends and holidays. Therefore, a signi�
ant 
hange in the tra�
pro�le o

urs throughout the day and week, whi
h makes business town 
entersthe most suitable pla
e for GDBP to be applied.
• Town 
enters (entertainment). This kind of pla
es in
lude shopping and exhibi-tion 
enters, tourist attra
tion points, museums, and 
on
ert halls. Although thetra�
 pro�le of entertainment and business town 
enters follow a similar pattern,they di�er during weekends and holidays. Entertainment town 
enters are alsohighly preferred during weekends and holidays, even more than weekdays. How-ever, the temporal 
hange throughout the day does not happen to be as mu
has in the business town 
enters. Therefore, entertainment town 
enters are ourse
ondary target for energy savings.
• Residential areas. These regions are mostly o

upied by houses, s
hools, hospitals,and small 
ommer
ial shops su
h as gro
ery stores. User density in
reases herein the evening for sure. However, it would not be true to say that there is notra�
 at all during the day time. Individuals su
h as pensioners, housekeepers, or
hildren spend most of their time within the territory of their houses. Althoughthe tra�
 load 
hanges in residential areas within the day, it is not as expli
it asin town 
enters.
• Seasonal tourism 
enters. In seasonal tourism 
enters, there happens to be two
olossal 
hanges in user density throughout the year. Sunny seasides are �lled upwith tourists during summer, whereas snowy ski 
enters are very 
rowded duringwinter. However, most of the wireless network operators simply deploy mobileBSs to those areas in order to meet the high season requirements. Sin
e usingmobile BSs is a kind of dynami
 planning itself, it 
an be 
onsidered as a broader



23and more systemati
 approa
h to GDBP in
luding additional 
apabilities of BSinstallment and repla
ement.In summary, the appli
ation site should have at least two important features inorder to fully bene�t from GDBP: (i) unbalan
ed temporal distribution of the tra�
load and (ii) high BS density.3.2.2. AssumptionsA BS 
an be on or o� depending on the 
urrent tra�
 
onditions in our work.When it is swit
hed on, the total power 
onsumption of the BS is the 
ombinationof two 
omponents [68℄: (i) 
ore power and (ii) transmission power. The BS 
orepower 
onsumption (su
h as air 
onditioning, signal pro
essing) is assumed to be �xedregardless of the tra�
 load. However, the transmission power is adaptively adjustedto the 
urrent tra�
 
onditions. A set of transmission PLs need to be de�ned a

ordingto the appli
ation requirements and the 
apabilities of the BS equipment in use. Ea
hBS 
an sele
t a 
ertain PL for transmission and 
annot 
hange it during that parti
ulartime slot. Sin
e it is not pra
ti
al to model a huge number of subs
ribers individually,we assume users are pla
ed as 
hunks, like group of workers in a �oor of a building or
ustomers waiting in a bank o�
e.3.2.3. Problem formulationIn order to solve the problem by 
lassi
al optimization tools, we need to �rstput the GDBP problem into a mathemati
al form. In this se
tion, we formulate ourproblem by using two di�erent obje
tive fun
tions. The �rst one minimizes the totalenergy 
onsumption, while the se
ond one additionally minimizes the BS on/o� tran-sitions in order to redu
e the amount of topology 
hanges. Hen
e, the overhead 
ausedby frequent topology 
hanges, su
h as BS initialization, user asso
iation, and handover,
an be minimized.



243.2.3.1. Plain GDBP. Our formulation 
onsists of three parts. The �rst part 
ontainsthe 
onstant parameters given by our sample appli
ation s
enario. The se
ond part isthe model variables whi
h will be determined by the solver, and the last part is theproblem itself.Parameters:
NB : Number of BSs
NP : Number of PLs
NU : Number of user 
hunks (UCs)
NT : Number of time intervals
B : Set of BSs where B = {1, 2, 3 . . . , NB}

P : Set of PLs where P = {1, 2, 3 . . . , NP}

U : Set of UCs where U = {1, 2, 3 . . . , NU}

T : Set of dis
rete time intervals within the day where T =

{1, 2, 3 . . . , NT}

PWcore : Core power 
onsumed by the BS
PWtx(p): Fun
tion of transmission power 
onsumed by the BS with respe
tto PL
αsw : Penalty of making a BS swit
h (on/o�)
W

cap
b : Data �ow 
apa
ity of BS b

fflow(t) : Fun
tion of tra�
 load per UC with respe
t to time
βmin : Minimum a

eptable user 
overage ratio
Cbpu : 





1, BS b 
an 
over user u with power p
0, otherwise

Model variables:
Obt =











1, BS b is up at time t
0, otherwise
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Abpt =











1, BS b transmits with power p at time t
0, otherwise

Mubt =











1, UC u sele
ts BS b at time t
0, otherwiseDummy variables:

Subt =











1, UC u is served by BS b at time t
0, otherwise

=
∑

p∈P

ObtCbpuMubtAbpt ∀u ∈ U, ∀b ∈ B, ∀t ∈ T

N c
t = Number of 
overed UCs at time t

=
∑

u∈U

∑

b∈B

Subt ∀t ∈ T

N sw = Number of BS swit
hes (on/o�) during 24h
=

∑

b∈B

∑

t∈T

(

Obt ⊕Ob((t+1) mod NT )

)

The obje
tive fun
tion is given asmin∑
b∈B

∑

p∈P

∑

t∈T

Obt

(

PWcore + AbptPW
tx(p)

) (3.1)
subje
t to

∑

p∈P

Abpt = 1 ∀b ∈ B, ∀t ∈ T (3.2)
∑

b∈B

Mubt = 1 ∀u ∈ U, ∀t ∈ T (3.3)
∑

u∈U

Subtf
flow(t) ≤W

cap
b ∀b ∈ B, ∀t ∈ T (3.4)
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N c

t

NU
≥ βmin ∀t ∈ T (3.5)

As mentioned earlier, the ultimate goal of our �rst obje
tive fun
tion in Equa-tion 3.1 is to minimize the energy power 
onsumption of the network. The 
onstraintin Equation 3.2 makes sure that a BS operates at a single transmission power level atany time, and Equation 3.3 is responsible for a user being served by a single BS ata parti
ular instant. Equations 3.4 and 3.5 ensure that the resulting energy-e�
ienttopology does not violate the 
apa
ity 
onstraint of the BSs and provides the required
overage ratio over the area, respe
tively. By not violating the 
apa
ity 
onstraints ofthe BS, it is also assured that subs
ribers re
eive an a

eptable servi
e quality.3.2.3.2. GDBP with BS transition overhead. In this se
tion, we are taking the BStransitions into a

ount in order to minimize the additional overhead introdu
ed byfrequent topology 
hanges su
h as BS initialization, user asso
iation, and handover [69℄.Among them, handling the handovers is the most 
ru
ial one sin
e it dire
tly a�e
tsthe servi
e quality of the subs
ribers. Besides well-known problems inherited from
onventional handover pro
edures, another 
hallenging issue is to handover a groupof subs
ribers at the same time when a serving BS is swit
hed o�. There has beensome resear
h e�ort on group handover te
hniques [70, 71℄, and most of them targetthe passengers traveling on publi
 transportation vehi
les su
h as buses and trains.Majority of the group handover s
hemes require predi
ting the handover and makene
essary preparations before starting the handover pro
edure itself. In our 
ase, the
entral 
ontrol entity, whi
h de
ides and implements the network topology 
hanges,may do the ne
essary 
ontrol signaling and inform the neighboring BSs about thepossible group handover before shutting a BSs down. Also, a possible BS transitionand handover pro
edure is dis
ussed in [15℄.In order to minimize the side e�e
ts of topology 
hanges, we use a se
ond obje
tivefun
tion given in Equation 3.6 whi
h minimizes the BS on/o� swit
hes in additionto the overall power 
onsumption. The BS swit
h penalty, αsw, 
ontrols the power
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onsumption vs. BS transition overhead trade-o�. Thus, network operators have the
han
e to �ne tune the obje
tive fun
tion a

ording to their priorities. The e�e
t ofthis parameter is further investigated in Se
tion 3.4.3.
min∑

b∈B

∑

p∈P

∑

t∈T

Obt

(

PWcore + AbptPW
tx(p)

)

+ αswN sw (3.6)
Although we put the GDBP problem into a mathemati
al form, it is still a 
hal-lenging task to solve it with the optimization tools sin
e we use large real-life-s
ale tests
enarios for performan
e evaluation. Furthermore, nonlinearity of the problem alsoin
reases its 
omplexity and yields to longer run times. Therefore, we propose a fastheuristi
 to solve large-s
ale instan
es of the problem within a

eptable time durations.3.3. Green dynami
 BS planning algorithmIn this se
tion, we derive a heuristi
 
alled FastWISE whi
h 
onsists of threephases for the GDBP problem. Additional variables used in FastWISE:
OCAcur : Overlapping 
overage area of the 
urrent BS
OCAmax: Maximum allowed overlapping 
overage area in order toswit
h a BS on during initialization phase
B

off : Set of 
urrently swit
hed o� BSs
W cur : Tra�
 load of the 
urrent BS
B

high : Set of swit
hed on BSs havingW cur ≥W cap (users served bythose BSs most likely to su�er high blo
king probabilities)
CUE : Covered1 user per energy ratio of the 
urrent BS when it isswit
hed on
βcur : Current user 
overage ratio of the network1In
remental users 
overed by that parti
ular BS when it is swit
hed on



28������Initialization phase������1: for all B do2: 
al
ulate proper2 PL3: 
al
ulate OCAcur4: if OCAcur ≤ OCAmax then5: swit
h 
urrent BS on6: end if7: end for�������Iteration phase�������8: repeat9: for all Boff do10: 
al
ulate CUE for ea
h power level11: end for12: swit
h on BS having maximum CUE13: until βcur ≥ βmin������-Validation phase������-14: for all Bhigh do15: repeat16: swit
h on the 
losest BS17: until W cur ≤ W cap18: end forFigure 3.1. FastWISE algorithm.The 
omplete pro
edure of FastWISE is given in Figure 3.1. It starts with theinitialization phase. In this phase, FastWISE visits all BSs and a
tivates the oneswhi
h have smaller overlapping 
overage than a prede�ned threshold with the maximumpossible transmission power level. By doing this, FastWISE tries to use BSs with highertransmission power levels without violating the 
apa
ity 
onstraints in order to giveenergy-saving opportunities to neighboring BSs. Therefore, a preliminary 
overage isprovided at the end of this phase. FastWISE 
ontinues with the iteration phase. Theaim of this phase is to make in
remental improvements at ea
h step on top of thepreliminary 
overage produ
ed by the initialization phase until a target 
overage ratiothroughout the network is a
hieved. Initially, a Covered User per Energy (CUE) ratio2Proper PL is the highest possible PL that a BS 
an operate without violating the 
apa
ity
onstraint.



29is 
al
ulated for ea
h ina
tive BS for ea
h power level. This ratio implies the numberof additional 
overed users per unit energy if that parti
ular BS is swit
hed on. Aslong as the desired 
overage ratio is not a
hieved, the BS having the highest CUE ratiois simply swit
hed on. Unlike the initialization, the iteration phase tries to maximizethe energy utilization without making any 
apa
ity 
onstraint 
he
ks. However, thismay yield to overloaded BSs whi
h in turn 
ause higher 
all blo
king probabilities.Therefore, the third step is required to validate that the tra�
 
apa
ity 
onstraints aremet for all serving BSs, whi
h is the validation phase. In this last part of the heuristi
,all serving BSs are visited and a list of neighboring BSs is 
reated for all overloadedones. In order to share the load of the overloaded BSs, starting from the 
losest one,neighboring BSs in the list are simply a
tivated until the o�ered tra�
 load dropsbelow its 
apa
ity. At the end of this phase, FastWISE ensures that all serving BSsare operating well below their 
apa
ities.3.4. Appli
ation s
enario and performan
e evaluation3.4.1. Appli
ation s
enario and parametersIn order to model the unbalan
ed temporal distribution of the load 
reated bymobile users, we assume a sinusoidal pattern throughout the day resembling the real-life tra�
 load given in Figure 1.2 and many other measurement studies presentedin [1,72,73℄. However, the tra�
 pro�le does not stri
tly have to follow the shape of asine wave. For the GDBP, reasonable amount of temporal tra�
 �u
tuations throughout the day will 
reate a margin for energy saving. Although we have a 
ertain tra�
pro�le assumption, it is still possible to engineer the shape of that pro�le up to someextent. For example, the night-time tra�
 load may not be as low as we expe
t orthe peak-time tra�
 may not even get 
lose to 100% utilization in some parti
ularpla
es. Therefore, we introdu
e a lower and a higher bound for the tra�
 load ratherthan assuming a regular sinusoidal wave ranging between 0% and 100% utilization. Infa
t, when we introdu
e those lower/higher bounds, we pra
ti
ally de�ne the heightand o�set of the sinusoidal wave itself. Hen
e, they together de�ne how the tra�
load 
hanges throughout the day. The �nal and vital parameter to 
onstru
t the tra�
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Figure 3.2. An example sinusoidal tra�
 load for 24h with fmin = 0.1, fmax = 0.9,and tp = 14h.pro�le is the time sli
e in whi
h the tra�
 load rea
hes its peak. With this parameter,we 
an shift the sinusoidal wave in time domain until it �ts the tra�
 pro�le of a regionof interest. The tra�
 fun
tion is de�ned as
wh =

fmax − fmin

2
(3.7)

wo =
fmax + fmin

2
(3.8)

f(t) = wh cos(2π
t− tp

NT

) + wo (3.9)where fmin and fmax are the minimum and the maximum tra�
 loads throughout theday, wh and wo are the height and o�set of the sinusoidal tra�
 wave, and tp is thetime sli
e in whi
h the tra�
 load has its peak. An example tra�
 pro�le 
reated byEquation 3.7 
an be seen in Figure 3.2.We adopt three distin
t transmission PLs for BSs, whi
h we believe is not irra-tional when the 
urrent state of the BS manufa
turing te
hnology is 
onsidered. If aBS is up, then it is transmitting with one of PLn where n ∈ {1, 2, 3}. When we 
hangethe transmit power of a BS, we subsequently 
hange its 
overage range. Sin
e all of ourtest area exhibits the same terrain feature (urban), a single propagation model is usedthroughout the whole area. However, in 
ase of need, test area may be partitioned
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Figure 3.3. A Sample deployment 
on�guration with 10000 UCs (1 mil. users) and200 BSs in a 5 x 5 km2 area.into di�erent terrain features and other propagation models 
an be in
orporated forthose spe
i�
 portions of the 
overage area. We assume perfe
t free-spa
e path loss for
al
ulating the omnidire
tional 
overage ranges. When we �xed the signal frequen
y,free-spa
e path loss be
omes proportional to the square of the distan
e between thetransmitter and re
eiver. However, all propagation models 
an be used with our prob-lem formulation a

ording to the wireless 
hannel 
onditions in the 
overage area.Although our model 
an a

ommodate BSs with di�erent tra�
 �ow 
apa
ities,we assume all BSs are identi
al and have the same 
apa
ity. Both user 
hunks andBS lo
ations follow Gaussian distributions where BSs are 
entered in the middle of thearea and user 
hunks are 
entered around the BSs. However, two BSs 
annot be 
loserthan the Minimum Inter-BS Distan
e (MIBD) to ea
h other.In order to make proper assessment of the proposed methods, it is required to
reate a test environment as 
lose to real life 
onditions as possible. Therefore, weenvision a densely populated (1 million subs
ribers) business 
enter as advised in Se
-



32tion 3.2.1 whi
h is 
overing an area of 5×5 km2. We assume the tra�
 load follows thesame pattern given in Figure 1.2 and there are 200 BSs deployed to a

ommodate thepeak-time tra�
. A sample deployment 
on�guration used for performan
e evaluationis given in Figure 3.3. As GoS metri
s, the network should provide the maximum of
10−2 blo
king probability [74℄ and 
over at least 99% of the area at all times. Importantparameters used in the sample appli
ation s
enario are summarized in Table 3.3. Forthe sake of varian
e 
ontrol, 10 di�erent test 
ases are generated and average of theresults are presented. Table 3.3. S
enario parameters.Parameter ValueCoverage Area 5× 5km2# BSs (NB) 200# UCs (NU ) 10000Chunk size 100 usersBS Lo
ation Std.Dev. 1000mUser Lo
ation Std.Dev. 100mMIBD 150mBS Core Power 150 Watt# PLs (NP ) 3BS Transmission PLs 30 - 90 - 270 WattBS Coverage Distan
es 300 - 520 - 900 mBS Capa
ity (W cap) 66 ErlangMax. Prob. of Blo
king 10−2Average Call Duration 30 se
Average Call Arrival Rate 10 
alls/day/user# Time Slots Within a Day (NT ) 24Min. A

eptable Coverage Ratio (βmin) 99%Penalty of a BS Swit
h (αsw) 0 - 75 - 300 - 1500



333.4.2. Experiment MethodologyPerforman
e of FastWISE is evaluated by using real-life-s
ale test 
ases and 
om-pared with the results of a NLP tool [75℄. Also, MC experiments are used by generatinga large set of random solutions to investigate the statisti
al quality of the FastWISEresults. However, the initial results of fully random MC experiments were mostly un-feasible and too poor to be 
ompared with other results. In order to obtain more
hallenging results, we 
hange the random solution generation method by assigningdi�erent probability of drawing to ea
h 
ase and 
all it MC∗. By this way, we 
reatea hundred thousand biased samples whi
h 
ontain mu
h more feasible results than thefully random MC method. The idea behind MC∗ is to generate more suitable topologyinstan
es by taking the 
urrent tra�
 load into a

ount. For example, MC∗ swit
hesmore BS on if the tra�
 load is high and less BS if the tra�
 load is low. Similarly,MC∗ favors higher power levels for the a
tivated BSs during low tra�
 
onditions to
reate a margin for neighboring BSs to save energy. Thus, MC∗ 
reates more feasiblesolutions than the plain MC and gives us the 
han
e to make better assessment of theproposed te
hniques.We model the problem with A Modeling Language for Mathemati
al Program-ming (AMPL) [76℄ and used a non-
ommer
ial nonlinear optimization tool 
alled Basi
Open-sour
e Nonlinear Mixed INteger programming (BONMIN) [75℄. However, al-though we use a very powerful 
omputer, it was not possible to solve the problem as awhole due to high spa
e and 
omputational 
omplexity. Therefore, we de
ompose theproblem into smaller parts. For Plain GDBP, we solve ea
h time slot separately andadd them up to �nd the obje
tive fun
tion given in Equation 3.1. We approa
h these
ond problem similarly but this time we feed the results of the previous slot as aninput to the next one in order to 
ompute the obje
tive fun
tion given in Equation 3.6.3.4.3. Performan
e EvaluationBefore pro
eeding to the 
omparative performan
e evaluation, we �nd it useful tostart with examining the run times. Average run times of FastWISE and NLP whi
h are
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olle
ted from a powerful 
omputer with 4 hexa-
ore Xeon x5650 2.67 GHz pro
essorsand 24 GB of memory are given in Table 3.5. For FastWISE, the iteration is observedto be the most time 
onsuming phase as expe
ted sin
e small improvements are doneuntil a target 
overage ratio is a
hieved. However, the overall exe
ution time of theFastWISE 
an be 
onsidered as a

eptable. On the other hand, NLP takes longer timeto �nd feasible solutions than FastWISE, and it in
reases parallel to the o�ered tra�
load. In Table 3.5, 24 time slots are redu
ed to 12 sin
e some of them have the sameamount of tra�
 load due to the sinusoidal tra�
 pro�le. It takes 
lose to an averageof four days for the NLP tool to �nd a solution for one instan
e.Table 3.5. Comparison of average run times.FastWISE NLPPhase Run Time Time Slot Run TimeInitialization 4m 3s 1, 6, 24 296m2, 5 268m3, 4 253m7, 23 312mIteration 65m 46s 8, 22 423m9, 21 456m10, 20 501m11, 19 517mValidation 12s 12, 18 538m13, 17 542m14, 16 535m15 548mTotal 70m 01s Total 5189mThe 
omparative power 
onsumptions throughout a day are given in Figure 3.4.If none of the green te
hniques applied to the network, the power 
onsumption doesnot 
hange throughout the day regardless of the varying tra�
 load. Although someamount of power 
an be preserved with MC∗, it is 
lear that both FastWISE and NLPperform better in terms of the power 
onsumption. NLP outperforms FastWISE in
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Figure 3.4. Comparative power 
onsumption throughout a day.light tra�
 
onditions while the opposite is valid under heavily loaded 
onditions. Dueto large s
ale of the test s
enario and high 
omputational 
omplexity of the proposedNLP, we set a maximum iteration limit on the optimization software in order to boundthe run times. It returns the best possible solution found within the given number ofbran
h-and-bound iterations.In Table 3.6; daily, monthly, and annual energy 
ost savings are given. Theele
tri
ity pri
es for peak (2pm-8pm), shoulder (7am-2pm and 8pm-10pm) and o�-peak(all other times) times are 44.11, 18.7 and 10.34 
ents/kWh respe
tively in 
omplian
ewith the EnergyAustralia [77℄, one of Australia's largest ele
tri
ity retailers. When thegiven �gures in Table 3.6 are s
aled for the whole 
ountry, it is 
lear that GDBP 
anTable 3.6. Comparative energy 
ost saving.Daily($) Monthly($) Annual($)FastWISE 168 5,043 60,521NLP 143 4,317 51,809MC∗ 55 1,654 19,857
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Figure 3.5. Distribution of feasible MC experiments and its 
omparison withFastWISE and NLP.dramati
ally de
rease the energy expenditures of the servi
e providers, possibly a fewmillions of dollars per year, whi
h 
onstitutes the largest portion of the OPEX.In Figure 3.5, the probability distribution of feasible MC experiments is givenwith a �tted Gaussian Distribution. When averaged results of FastWISE and NLPare given in the same �gure 
ompared with the results of the MC experiments, it isquite 
ertain that they are statisti
ally signi�
antly better. In other words, it is nearlyimpossible to generate results with MC experiments as power e�
ient as the ones withFastWISE and NLP.Figures 3.6 and 3.7 evaluate the GDBP with BS transition overhead introdu
edin Se
tion 3.2.3.2. Figure 3.6 depi
ts the e�e
t of αsw on the obje
tive fun
tion givenin Equation 3.6. When we set αsw = 0, the obje
tive fun
tion redu
es to Plain GDBPgiven in Equation 3.1. For its maximum value, we set αsw = 1500. In this 
ase, BStransition penalty in the obje
tive fun
tion dominates the transmission power 
on-sumption and the network tends to keep its 
urrent topology rather than adaptingto the 
hanging tra�
 
onditions. As the BS swit
h penalty in
reases, the obje
tivefun
tion value also in
reases. When we set the swit
h penalty to higher values, the
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Figure 3.6. E�e
t of αsw on the obje
tive fun
tion given in Equation 3.6.
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Figure 3.7. E�e
t of αsw on the 
umulative number of BS on/o� transitions.optimization tool does not swit
h o� the redundant BSs as long as the resulting energysaving is smaller than the introdu
ed transition overhead. Therefore, the topology isadjusted by swit
hing large number of BSs on or o� for higher transition penalties.As a result, the obje
tion fun
tion graph takes a more zigzag like shape for higherpenalties while it is smoother for lower values of αsw.When a swit
hing penalty is introdu
ed in the obje
tive fun
tion, the numberof BS transitions dramati
ally de
reases as seen in Figure 3.7. This �gure depi
ts the
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(a) After initialization phase
(βcur = 83.06%, pblck = 1.7x10−3)

(b) After iteration phase
(βcur = 99.02%, pblck ≈ 0)

(
) After validation phase
(βcur = 99.02%, pblck ≈ 0)Figure 3.8. Resulting 
overage of FastWISE under light tra�
 load.

(a) After initialization phase
(βcur = 49.12%, pblck = 16x10−3)

(b) After iteration phase
(βcur = 99.1%, pblck = 892x10−3)

(
) After validation phase
(βcur = 99.12%, pblck = 9x10−3)Figure 3.9. Resulting 
overage of FastWISE under heavy tra�
 load.
umulative sum of BS transitions for di�erent αsw values. The total number of BStransitions throughout the day is redu
ed by 52%, 89% and 93% for αsw = 75, 300and 1500 respe
tively. Hen
e, the additional overhead introdu
ed by frequent topology
hanges are signi�
antly redu
ed. However, as the BS swit
h penalty gets higher,the �exibility of the GDBP de
reases whi
h yields to less energy e�
ient solutions.Therefore, the network operators should deli
ately 
hoose this parameter a

ording totheir requirements.Figures 3.8 and 3.9 depi
t the 
overage of FastWISE after ea
h phase during lightand heavy tra�
 
onditions. In the initialization phase, FastWISE tries to �ll the gapswithout violating the 
apa
ity 
onstraints as seen in Figures 3.8(a) and 3.9(a). Thenin the iteration phase, it swit
hes on the BSs with appropriate power levels in orderto satisfy the 
overage 
onstraints as seen in Figures 3.8(b) and 3.9(b). Finally in



39the validation phase, FastWISE 
he
ks the o�ered loads for ea
h BS and validates thatthey are not overloaded. If a BS is overloaded, FastWISE swit
hes the neighboring 
ellson to alleviate its load until that parti
ular BS 
an a

ommodate the o�ered tra�
without violating the GoS 
onstraints. The resulting 
overage after the validationphase given in Figures 3.8(
) and 3.9(
).3.5. Con
lusionIn this 
hapter, we fo
us on saving energy by both swit
hing BSs on/o� and adap-tively adjusting their transmission power a

ording to the 
urrent tra�
 
onditions. Toa
hieve that goal, we formulated a novel nonlinear programming model for the GDBPproblem to �nd the best possible BS topology whi
h minimizes the energy 
onsumptionof the network while satisfying a 
ertain level of GoS. Although optimization tools 
anprodu
e optimum results for the small instan
es of the problem, they 
annot 
ope withlarge instan
es as their 
omplexity be
omes prohibitive. Therefore, we derived a greedyheuristi
 
alled FastWISE to solve the large realisti
 size instan
es of the formulatedproblem and 
ompared our results with the results of a non-
ommer
ial optimizationtool and numerous MC experiments. It is shown that our green dynami
 BS plannings
heme adaptively adjusts to the 
urrent tra�
 load and saves signi�
ant amount ofenergy without violating the GoS 
onstraints su
h as the probability of blo
king andthe 
overage ratio.



404. GREEN PACKET-SWITCHED CELLULAR NETWORKS
4.1. Introdu
tionIn this 
hapter, we fo
us on saving energy by adaptively swit
hing the BSs ofpa
ket-swit
hed 
ellular networks on and o� and by adjusting the BS transmissionpower levels a

ording to the present tra�
 
onditions. Parti
ulary, we fo
us on W-CDMA based pa
ket-swit
hed 
ellular networks and adopt dynami
 transmission poweradjustment with the help of high e�
ien
y power ampli�ers. However, the 
hallengeis to de
rease the energy expenditure while always guaranteeing a 
ertain QoS levelover the whole 
overage area. We de�ne this problem as Tra�
-Aware Topology Man-agement (TAM) problem. To address this, we formulate a novel Linear Programming(LP) model for the des
ribed TAM problem to �nd the best possible BS topology whi
hminimizes the energy 
onsumption while satisfying the 
ertain servi
e quality require-ments of the subs
ribers. Although small instan
es of the TAM problem 
an be solvedby the optimization tools, large realisti
 size problems are quite di�
ult to be han-dled due to high spa
e and 
omputational 
omplexity. Therefore, we propose a novelheuristi
 to solve the large-s
ale instan
es of the formulated problem and 
ompare ourresults with the results of two previously proposed methods [13℄ [14℄, a greedy heuris-ti
 and a 
ommer
ial optimization tool. It is shown that the proposed TAM s
hemehelps to maintain an energy-aware network and saves signi�
ant amount of energy byadaptively adjusting the network topology a

ording to the present tra�
 
onditions.Although there are some studies in the literature related to the tra�
-aware topologymanagement, our method di�ers in the following aspe
ts:

• Unlike most of the previous studies, where only BS on/o� swit
hing is uti-lized [15℄ [16℄ [17℄ [18℄, we also take into a

ount the dynami
 power adjustment
apability of the 
urrent BSs te
hnology in order to 
reate energy-aware networktopologies by de�ning a set of transmission PLs.
• Compared to solutions that show how mu
h energy e�
ien
y 
an be a
hievedor that propose heuristi
 algorithms [18℄ [65℄ [78℄, we �rst formulate a detailed



41integer LP model for the TAM problem to minimize energy 
onsumption whilesatisfying a 
ertain level of QoS. Using this model, the problem is solved by a
ommer
ial optimization tool whi
h provides the optimum solutions to the smallerinstan
es of the problem.
• While some of the existing studies show how mu
h energy e�
ien
y 
an bea
hieved, they do not propose operating algorithms to a
hieve su
h savings [15℄.Additionally, although the LP tool provides the optimum solutions, it requireslong 
omputational times and it is not possible to handle large instan
es dueto the 
omputational 
omplexity. Therefore, a fast and e�e
tive heuristi
 
alledGreen TAM Algorithm (GTA) is proposed and its performan
e is 
ompared withthe results obtained with the optimization tool and two 
ompetitor methods fromthe literature (i) SLAKE [13℄ (ii) Niu et al.'s Algorithm [14℄ in terms of runningtimes, energy savings and energy-
ost savings.
• Majority of the studies in the literature assume that the BSs make on/o� de
i-sions lo
ally by 
omparing their 
urrent tra�
 loads with a prede�ned thresh-old [13℄ [15℄ [16℄. In our work, we try to satisfy 
ertain QoS requirements 
olle
-tively by making system-wide de
isions throughout the whole network. Althoughsu
h a solution requires a 
entralized 
ontroller, it provides better energy savingsby 
onsidering the system-wide details. The distributed solution for the TAMproblem is studied in Chapter 5.The rest of this 
hapter is organized as follows: Se
tion 4.2 elaborates the systemmodel, assumptions and problem formulation while the proposed solution te
hnique isexplained in Se
tion 4.3. The proposed greedy heuristi
 is explained in Se
tion 4.4.Appli
ation s
enarios, details of the system parameters and 
omparative performan
eevaluation of the proposed methods are presented in Se
tion 4.5. Finally, Se
tion 4.6
on
ludes this 
hapter.



424.2. TAM Problem FormulationWe assume that a BS 
an be remotely swit
hed on and o� from a 
entral entitya

ording to the present tra�
 
onditions. When a BS is up, it has the ability to 
hangeits transmission power [79℄ by using power ampli�ers. Therefore, a set of transmissionpower levels is required to be de�ned a

ording to the appli
ation requirements andthe 
apabilities of the BS equipment in use. When a BS is up, it transmits with a
ertain power level and the status of a BS 
annot be 
hanged until the next time slot.Sin
e it is not pra
ti
al to model a huge number of subs
ribers and their mobilitypatterns individually, the 
overage region is divided into small grids. Ea
h grid has itsown 
hara
teristi
s in terms of user density, user mobility and tra�
 pro�le. In oursystem model, we take the aggregate tra�
 load 
reated by the users lo
ated in thesegrids into a

ount.4.2.1. General Problem FormulationParameters:
NB : Number of BSs
NP : Number of PLs
NG : Number of grids
NT : Number of time slots within the day
B : Set of BSs where B = {1, . . . , NB}

P : Set of PLs where P = {1, . . . , NP}

PA : Set of a
tive1 PLs where PA = {2, . . . , NP}

G : Set of grids where G = {1, 2, 3 . . . , NG}

T : Set of dis
rete time slots within the day where T = {1, 2, 3 . . . , NT}

W (b, p) : Total 
onsumed power by BS b transmitting with PL p

Db : Data �ow 
apa
ity of BS b
f(g, t) : Average aggregate tra�
 load generated by grid g at time t1The �rst PL simply means that the BS is swit
hed o� and PA ⊆ P
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βmin : Minimum a

eptable user satisfa
tion ratio where 0 ≤ βmin ≤ 1

Ψmin : Minimum a

eptable SINR at the re
eiver
Ψgbt : Re
eived SINR by grid g from BS b at time t
L(b, p, g): Path loss from BS b transmitting with PL p to grid g
Model variables:

Abpt =











1, BS b transmits with power p at time t
0, otherwise

Sgbt =











1, Grid g is asso
iated with BS b at time t
0, otherwiseThe obje
tive fun
tion is given asmin∑

b∈B

∑

p∈P

∑

t∈T

AbptW (b, p) (4.1)
subje
t to

∑

g∈G

Sgbtf(g, t) ≤
∑

p∈PA

AbptDb ∀(b ∈ B, t ∈ T) (4.2)
Ψgbt ≥ SgbtΨ

min ∀(g ∈ G, b ∈ B, t ∈ T) (4.3)
∑

g∈G

∑

b∈B

Sgbt ≥ βminNG ∀t ∈ T (4.4)
∑

p∈P

Abpt = 1 ∀(b ∈ B, t ∈ T) (4.5)
∑

b∈B

Sgbt ≤ 1 ∀(g ∈ G, t ∈ T) (4.6)Goal of our obje
tive fun
tion in Equation 4.1 is to minimize the total energy 
onsump-tion throughout the network. Equation 4.2 ensures that all a
tive BSs do not ex
eed



44their data �ow 
apa
ity. Equation 4.3 provides that ea
h grid asso
iated with a BS isbeing served by at least a 
ertain Signal to Interferen
e and Noise Ratio (SINR) value.By not violating the BS 
apa
ity and SINR 
onstraints given in Equations 4.2 and 4.3;TAM s
heme ensures the subs
riber satisfa
tion at all times by maintaining a

eptablelevel of quality in terms of both delay and data rate. Equation 4.4 is responsible forobtaining the required user satisfa
tion ratio over all users, i.e., it is guaranteed thata 
ertain per
entage of the users are 
overed and served properly. The 
onstraint inEquation 4.5 makes sure that a BS operates at a single transmission PL in a parti
ulartime slot and Equation 4.6 is responsible for that a grid is being served by a single BSat a parti
ular instant.By integrating the 
apability of di�erent 
apa
ity and power 
onsumption modelsfor ea
h BS type, our TAM problem formulation gains the ability to support hetero-geneous networks. Although frequent topology 
hanges introdu
e additional overheadsu
h as BS initialization, user asso
iation and handover, we believe that the overheadintrodu
ed by the BS transitions may be tolerated with proper handling me
hanismssu
h as proa
tive hando� signaling and smart user asso
iation sin
e we are workingwith one hour-time resolution. However, the overhead stemming from BS transitionsneeds to be taken into a

ount and addressed 
arefully in 
ase of shorter time slots.4.2.2. Details of the Problem Formulation4.2.2.1. BS Power Consumption. The total power 
onsumption of the BS is the 
om-bination of two 
omponents: (i) Core power (ii) Transmission power. The BS 
orepower 
onsumption (su
h as air 
onditioning, signal pro
essing) is assumed to be �xedregardless of the tra�
 load. On the other hand, the transmission power 
an be dy-nami
ally adjusted with the help of high e�
ien
y power ampli�ers. The total power
onsumption of the BS is given by [37℄ [80℄
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W (b, p) =











0, p = 1

W c
b +W tx

bp , otherwise (4.7)where W c
b is the 
ore power 
onsumed by the BS b and the W tx

bp is the transmissionpower 
onsumed by the BS b while transmitting with PL p.4.2.2.2. Interferen
e. There are two sour
es of interferen
e in W-CDMA 
ellular net-works: intra-
ell and inter-
ell. The intra-
ell interferen
e is the total interferen
e
aused by the signals emitted from the serving BS and the inter-
ell interferen
e is
aused by the signals transmitted from all other BSs. In perfe
t transmission 
ondi-tions, there should be no intra-
ell interferen
e sin
e all of the signals are orthogonal.However, the intra-
ell interferen
e 
annot be totally avoided due to multipath propa-gation and SINR is given by
Ψ = SF

P r

αoI in + Iout + η
(4.8)

where SF is the spreading fa
tor, P r is the re
eived signal power, I in is the intra-
ellinterferen
e, Iout is the inter-
ell interferen
e, αo is the orthogonality loss fa
tor and ηis the noise power.In the TAM problem, P r
gbt, I ingbt, and Ioutgbt are the re
eived signal power, intra-
ellinterferen
e and inter-
ell interferen
e experien
ed in grid g from BS b at time t inorder and they are given by
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P r
gbt =

∑

p∈PA

AbptL(b, p, g)W (b, p) (4.9)
I inubt = αo

∑

p∈PA

AbptL(b, p, g)W (b, p) (4.10)
Ioutubt =

∑

i∈B|i 6=b

∑

p∈PA

AiptL(i, p, g)W (i, p) (4.11)
When Equations 4.9, 4.10 and 4.11 are plugged in to Equation 4.8, we get Equa-tion 4.12 and it is possible to 
al
ulate the SINR of a parti
ular grid g served by BS b attime t. A

ordingly, the a
hievable data rate of ea
h user lo
ated at their 
orrespond-ing grids 
an be inferred from their SINR value by using Shannon's formula. Sin
e theinterferen
e dominates the SINR value, we will negle
t the e�e
t of the noise fa
torin the performan
e evaluation se
tion for the sake of simpli
ity. Also, the path lossmatrix L(b, p, g), for ea
h BS b, PL p and grid g triple is generated beforehand by usingthe COST-Hata metropolitan area propagation model [12℄ and fed to the optimizationsoftware as an input to speed up the 
al
ulation of the SINR.

Ψgbt = SF

∑

p∈PA

AbptL(b, p, g)W (b, p)

(αo − 1)
∑

p∈PA

AbptL(b, p, g)W (b, p) +
∑

i∈B

∑

p∈PA

AiptL(i, p, g)W (i, p) + η(4.12)Although some assumptions are made about the BS 
apa
ity, BS power 
on-sumption, propagation and interferen
e; our problem formulation 
an easily in
orpo-rate other models a

ording to the spe
i�
 requirements of the appli
ation area andBS equipments.



474.3. Green Tra�
-Aware Topology Management AlgorithmIn this se
tion, we derive a deterministi
 heuristi
 
alled GTA to solve the largerealisti
 instan
es of the formulated TAM problem. Before going into details of theGTA, some additional variables are explained.Additional variables used in GTA:
B

off : Set of 
urrently swit
hed o� BSs
B

on : Set of 
urrently swit
hed on BSs (Bon = B−B
off)

B
high: Set of BSs having Ccur

b > Db; b ∈ B
on (Users served by those BSsmost likely to su�er worse servi
e quality than expe
ted)

B
neig
b : Set of neighboring BSs of the BS b; b ∈ B (At most two maxi-mum2 
overage distan
e away)

ψmax
b : Maximum UM of the BS b; b ∈ B

ξb : Current SPM of BS b; b ∈ B
on

ξ̂bp : Estimated SPM of the BS b if it is a
tivated with PL p; b ∈

B
off , p ∈ PA

ξmax
bp : max(ξi), i ∈ B

on when BS b is a
tivated with PL p; b ∈ B
off , p ∈

PA

∆ξb : Allowed SPM redundan
y of BS b; b ∈ B
off

Ccur
b : Current tra�
 load of BS b; b ∈ B

on

W cur
b : Current power 
onsumption of BS b; b ∈ B

on

Ĉbp : Estimated tra�
 load of BS b if it is a
tivated with PL p; b ∈

B
off , p ∈ PA

βcur : Current user 
overage ratio of the network
We de�ne a new BS Utilization Metri
 (UM) where the optimum value is ob-tained when a BS is 
onsuming minimum amount of power while operating with itsmaximum permitted tra�
 load without violating the QoS 
onstrains. In this way, we2The longest possible 
overage distan
e between any grid-BS pair in an interferen
e-free environ-ment



48are trying to maximize the utilization of the BS while minimizing the 
onsumed powerper bit. However, 100% BS 
apa
ity utilization may 
ause some problems in terms ofproviding the required servi
e quality to the subs
ribers sin
e there will not be anyresidual resour
es available in 
ase of an unexpe
ted tra�
 demand. Therefore, settingthe maximum tra�
 load 
apa
ity of a BS as the 90% or 95% of its total 
apa
ityand sparing some sla
k resour
es would be useful. The maximum possible UM of aparti
ular BS b is denoted by ψmax
b and given by Equation 4.13. Additionally, we intro-du
ed a new term 
alled Saturation Proximity Metri
 (SPM) whi
h is used to measure�how 
lose a BS is to its maximum UM" and given by Equation 4.14. As this metri
gets 
loser to zero, it means that the BS is operating 
loser to its maximum UM andvi
e versa. High SPM values mean that the BSs are operating whether overloaded orunder-utilized. ξ̂bp is the estimated SPM of BS b if it is a
tivated with PL p and givenby Equation 4.15. This metri
 is 
al
ulated to de
ide whether a BS is eligible to beswit
hed on or not.

ψmax
b =

1

W (b, p = 2)
(4.13)

ξcurb =

∣

∣

∣

∣

ψmax
b −

Ccur
b

DbW
cur
b

∣

∣

∣

∣

(4.14)
ξ̂bp =

∣

∣

∣

∣

∣

ψmax
b −

Ĉbp

DbW (b, p)

∣

∣

∣

∣

∣

(4.15)
Before explaining the algorithm itself, we will elaborate on the trade-o�s anddesign 
riteria. The design 
riteria behind the GTA algorithm is to maximize theutilization of the a
tive BSs in order to 
reate a margin for the other BSs to swit
ho�, hen
e save energy. To a
hieve that goal, we de�ned the previously explainedparameters of UM and SPM. These parameters are merely indi
ators of BS utilizationto observe the 
urrent status of the network and take 
orre
tive a
tions for savingenergy. However, there is a trade-o� between saving energy and subs
riber satisfa
tion.To over
ome this 
hallenge, GTA provides required 
overage while trying to keep theenergy expenditure as low as possible and ensures that all BSs are operating below theirmaximum tra�
 load 
apa
ities, thus being 
ertain that all served users are satis�ed



49in terms of their QoS requirements.The GTA algorithm 
onsists of two phases whi
h are the 
overage assuran
e andthe quality assuran
e phases. In the 
overage assuran
e phase, the ultimate goal is toprovide the required 
overage while trying to keep the energy expenditure as low aspossible. At the beginning of the 
overage assuran
e phase, estimated SPM values are
al
ulated for every swit
hed o� BS and PL 
ouple and sorted as
ending. Beginningfrom the BSs having the lowest estimated SPM value, ea
h swit
hed o� BS is assumedto be a
tivated. Then, the impa
t of that a
tivation on the network is observed by
al
ulating and storing the a
tual SPM values of all a
tive BSs. After a
tivating ea
hswit
hed o� BSs and observing their impa
t on the network, the one having minimumestimated SPM value satisfying that the di�eren
e between the maximum SPM ofswit
hed on BSs and the estimated SPM of the 
urrent BS is smaller than a prede�nedthreshold is swit
hed on. Hen
e, we prevent the 
urrently a
tivated BS from redu
ingthe SPM values of the other swit
hed on BSs and keep the overall network energye�
ient.In summary, ea
h swit
hed o� BS is assumed to be a
tivated one by one, andthe state of the network after this step is observed. By this way, we look one stepahead of the 
urrent state of the network for making the right de
ision. We a
tivatethe BS having the smallest SPM value whi
h means that parti
ular BS is operating
lose to its minimum possible power 
onsumption rate and maximum possible tra�
load. However, SPM value of a 
urrently a
tive BS may be redu
ed while swit
hing onan additional BS sin
e users are asso
iated with the BS providing the best SINR value.To avoid that situation, we introdu
ed a threshold 
alled allowed SPM redundan
y.When a BS is assumed to be a
tivated, SPM of the other a
tive BSs are re
al
ulated.If swit
hing on a BS redu
es the SPM of 
urrently a
tive BSs less than the de�nedSPM redundan
y threshold, that BS is allowed to be a
tivated. However, if a
tivatingthat parti
ular BS 
reates more than an anti
ipated level of 
overage redundan
y, i.e.,de
reases the SPM of an already a
tivated BS more than the threshold value, that BSis not a
tivated and the next BS having the minimum estimated SPM is taken into
onsideration.



50������
overage assuran
e phase������1: Swit
h o� all BSs2: repeat3: for all i ∈ B
off and j ∈ PA do4: 
al
ulate ξ̂ij5: end for6: sort_as
ending(ξ̂ij)7: for all i ∈ B
off and j ∈ PA do8: assume BS i is swit
hed on with PL j9: for all k ∈ B

on do10: 
al
ulate ξcurk11: end for12: end for13: a
tivate BS i ∈ B
off with PL j ∈ PA having minimum possible ξ̂ij satisfying ξmax

ij −ξ̂ij < ∆ξi14: until βcur ≥ βmin������quality assuran
e phase������15: repeat16: for all i ∈ B
high do17: for all j ∈ (Bneig

i

⋂

B
off) and k ∈ PA do18: 
al
ulate ξ̂jk19: end for20: a
tivate BS j ∈ B

neig
i with PL k ∈ PA having the smallest ξ̂jk21: end for22: until Bhigh = ∅ Figure 4.1. Green TAM algorithm.The se
ond phase is the quality assuran
e phase. The aim of this phase is toensure that all BSs are operating below their maximum tra�
 load 
apa
ities, thusmaking sure that all served users are satis�ed in terms of their QoS requirements. Ifo�ered tra�
 load of a parti
ular BS is higher than its 
apa
ity, all swit
hed o� neigh-boring BSs are visited and their estimated SPMs are 
al
ulated. The neighboring BShaving the smallest estimated SPM is a
tivated until the tra�
 load of that parti
ularBS de
reases below its maximum tra�
 load 
apa
ity.The 
omplexity fun
tion of the GTA is polynomial and the highest order is foundin line 10 of the algorithm. Computational 
omplexity of the GTA is O(N7) and the



51a�e
ting parameters are the number of time slots, the number of BSs, the number ofpower levels, the 
overage area and the grid area.4.4. Greedy TAM Heuristi
In this se
tion, we introdu
e a greedy heuristi
 to solve the formulated TAMproblem. The results of this heuristi
 are also used during the 
omparative performan
eevaluation in Se
tion 4.5.2. It starts with a
tivating all BSs with their maximumtransmission PL. Then the heuristi
 visits ea
h BS one by one and tries to dea
tivatethe under-utilized ones. If dea
tivation is not possible, then seeks for an opportunityto de
rease their transmission PL without violating the QoS 
onstraints.1: A
tivate all BSs with max PL2: for all i ∈ B and j ∈ P do3: Set PL of BS i to minimum possible3 j without violating the QoS 
onstraints4: end for Figure 4.2. Greedy TAM Heuristi
.4.5. Appli
ation S
enario and Performan
e Evaluation4.5.1. Appli
ation S
enario and ParametersIn order to make proper assessment of the proposed methods, it is required to
reate a test environment as 
lose to real life 
onditions as possible. However, it ismostly not possible to solve large problem instan
es with the formal optimization toolslike CPLEX [81℄ or GUROBI [82℄; due to very high spa
e and 
omputational 
omplex-ity. Therefore, we envisioned a small and a large test s
enario for the performan
eevaluation. By solving the small instan
es of the TAM problem with the optimizationtool and the proposed GTA, we show the e�e
tiveness of our heuristi
 and then applyour heuristi
 to large problem instan
es 
on�dently.
3Note that j ∈ P whi
h in
ludes swit
hing a BS o� with j = 0



52We adopt three distin
t transmission PAs for BSs in 
omplian
e with the 
urrentstate of the BS manufa
turing te
hnology. If a BS is up, it transmits with one ofthe power levels pi where i ∈ {2, 3, 4} and if the BS is swit
hed o� its power levelis set to one. Sin
e all of our test area exhibits the same terrain feature (urban), asingle propagation model suitable for metropolitan areas (COST-Hata [12℄) is usedthroughout the whole area. However, in 
ase of need, the test area may be partitionedinto sub-areas 
ontaining di�erent terrain features and other propagation models 
anbe in
orporated for these spe
i�
 portions of the 
overage area.Although our model 
an a

ommodate BSs with di�erent tra�
 load 
apa
ities,we assume all BSs are identi
al and have the same 
apa
ity for the performan
e eval-uation purposes. For the small test instan
e, the whole 
overage area is 
omposed ofa business 
enter and the maximum aggregate tra�
 load of ea
h 50 × 50 m2 grid isassumed to be 4 Mbps. For the large test instan
e, there are three di�erent regionswhi
h are a business 
enter, a residential area and a forest/park. Ea
h 100 × 100 m2grid 
reates an aggregate of 10, 4 and 0.01 Mbps maximum tra�
 respe
tively. BSsare deployed a

ording to the spe
i�
 tra�
 requirements of ea
h grid in the 
overagearea. However, two BSs 
annot be 
loser than the MIBD to ea
h other.We take the Maslak distri
t of Istanbul as an example for our test s
enarios whi
his 
overing an area of 5×5 km2 as depi
ted in Figure 4.3. We assume that the aggregatetra�
 load of ea
h grid type follows their spe
i�
 patterns given in Figure 4.4 and thereare 200 BSs deployed to a

ommodate the peak-time tra�
. As QoS metri
s, proposedadaptive topology should satisfy the minimum aggregate data rate requirements of ea
hgrid in the 
overage area and 
over at least 99% of the area at all times. Importantparameters used in the sample appli
ation s
enario are summarized in Table 4.3. Forthe sake of varian
e 
ontrol, 10 di�erent test 
ases are generated for ea
h of the smalland large s
enarios and the average of the results are presented.4.5.1.1. Tra�
 Pattern. Similar to Se
tion 3.4, we assume a sinusoidal pattern through-out the day resembling the real-life tra�
 pro�le given in Figure 1.2 and the many other
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Table 4.3. S
enario parameters.Parameter ValueSmall LargeCoverage Area 1× 1 km2 5× 5 km2# BSs (NB) 30 200Grid Area 50 × 50m2 100 × 100m2# Grid Types 1 3MIBD 100mBS Core Power 60 Watt# PLs 3BS Transmission PLs 12 - 36 - 108 WattBS Tra�
 Capa
ity (D) 100 Mbps# Time Slots in a Day 24Min. Coverage Ratio (βmin) 99%Min. SINR (Ψmin) 6 dBSpreading Fa
tor 32Orthogonality Loss Fa
tor (αo) 0.5Allowed SPM Redundan
y (∆ξ) 20%

measurement studies presented in [1, 72, 73℄. The tra�
 fun
tion is de�ned as:
wh

g =
fmax
g − fmin

g

2
(4.16)

wo
g =

fmax
g + fmin

g

2
(4.17)

f(g, t) = wh
g cos(2π

t− tpg

NT
) + wo

g (4.18)
where fmin

g and fmax
g are the minimum and the maximum aggregate tra�
 loads of grid

g throughout the day, wh
g and wo

g are the height and o�set of the sinusoidal tra�
 wave
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Figure 4.3. Three di�erent regions of Maslak, Istanbul.of grid g and tpg is the time slot in whi
h the aggregate tra�
 load of grid g has its peak.Although the TAM problem formulation has the �exibility to assign di�erent tra�
pro�les for ea
h grid, we de�ne three distin
t tra�
 pro�les for the business 
enter, theresidential area and the forest/park as seen in Figure 4.3 by utilizing Equation 4.16.Figure 4.3 depi
ts a rough partitioning of the Maslak distri
t and its neighborhood.Created tra�
 pro�les 
an be seen in Figure 4.4 where tpb , tpr and tpf are the peak timeslots; fmin
b , fmin

r and fmin
f are the minimum aggregate tra�
 loads and �nally; fmax

b ,
fmax
r and fmax

f are the maximum aggregate tra�
 loads of the girds for business 
enter,residential area and forest/park respe
tively.

0 5 10 15 20

f
b
min

f
b
max

t
b
p NT

f
r
min

f
r
max

t
r
pf

f
min

f
f
max

t
f
p

Time (hour)

T
ra

ffi
c 

Lo
ad

 

 
Business Center
Residential Area
Forest

Figure 4.4. Three example normalized tra�
 pro�les 
reated by using Equation 4.16for NT = 24.



554.5.2. Performan
e EvaluationPerforman
e of GTA is evaluated by using both small-s
ale and large real-life-s
aletest 
ases and 
ompared with the results of an LP tool [81℄, a greedy heuristi
 and two
ompetitor green BS planning algorithms previously proposed in the literature [13,14℄.Among the 
ompetitor algorithms, SLAKE [13℄ is a distributed sleep-wake up algorithminspired by the e
ologi
al proto
ooperation prin
iple. It 
onsists of a sleeping and atra�
 distribution pro
edure. On the other hand, Niu et al. Algorithm [14℄ utilizesthe 
ell zooming 
on
ept for energy saving to adaptively adjust the size of the 
ellsa

ording to the 
urrent tra�
 load. It is assumed that a 
ell zooming server whi
h isa virtual entity in the network 
ontrols the pro
edure of 
ell zooming.We modeled the TAM problem with AMPL [76℄ and used a 
ommer
ial linearoptimization tool IBM ILOG CPLEX [81℄ to solve it. In order to redu
e the spa
eand 
omputational 
omplexity of the problem, we de
ompose the problem into smallerparts independent from ea
h other. We solve the problem for ea
h time slot separatelyand add them up to �nd the obje
tive fun
tion given in Equation 4.1.Before pro
eeding to the details of the 
omparative performan
e evaluation, we�nd it useful to start with examining the average run times of the applied methods.Average run times of GTA, greedy heuristi
, LP tool and SLAKE whi
h are 
olle
tedfrom a 
omputer with 4 hexa-
ore Xeon x5650 2.67 GHz pro
essors and 24 GB ofTable 4.5. Comparison of average run times.Small S
enario Large S
enarioGTA 33s 3h 14m 13sNiu et al. Algorithm 20s 2h 16m 44sGreedy Heuristi
 2s 13m 23sLP Tool 5m 46s -SLAKE 9s 39m 31s
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Figure 4.5. Comparative power 
onsumption throughout a day for the small tests
enario.memory are given in Table 4.5. For the small test s
enario, the greedy heuristi
 is thefastest method as expe
ted. On the other hand, the LP tool 
onsumes mu
h moretime 
ompared to the other methods sin
e it tries to �nd the exa
t optimum solution.For the large test s
enario, GTA requires more than three hours to �nd an energye�
ient topology for one day. Although ea
h time slot has di�erent run times due tothe di�erent amount of o�ered tra�
 loads, it takes approximately 8 minutes to �nd afeasible solution for a time slot.The 
omparative power 
onsumptions throughout a day are given in Figure 4.5for the small test s
enario. If none of the green te
hniques are applied to the network,the power 
onsumption does not 
hange throughout the day regardless of the varyingtra�
 load. On the other hand, LP tool provides the optimum solutions and �ndsthe most power e�
ient topologies possible. Although some amount of power 
an bepreserved with the greedy heuristi
, it is 
lear that GTA, SLAKE and Niu et al.'sAlgorithm perform better in terms of power e�
ien
y. When we 
ompare GTA andSLAKE, GTA a
hieves an average of 19% more power savings and 
reates a moreenergy-aware network 
ompared to SLAKE. Similarly, GTA a
hieves 11% more powersavings than Niu et al.'s Algorithm. As opposed to 
ompetitor methods, our proposedGTA utilizes the dynami
 tx power adjustment 
apability of BSs and in
orporatesbetter de
ision metri
s su
h as BS UM and SPM to minimize the total network power
onsumption.



57

0 5 10 15 20
2

4

6

8

10

12

14

16

Time (hour)

P
ow

er
 C

on
su

m
pt

io
n 

(k
W

)

 

 

Greedy Heuristic
GTA
SLAKE
Niu et al. Algorithm
All BS open with PL 1

Figure 4.6. Comparative power 
onsumption throughout a day for the large tests
enario.Figure 4.6 depi
ts the 
omparative power 
onsumptions for the large test s
e-nario. It is possible to observe that the power expenditure trends of all methods areproportional to the total aggregate tra�
 load of the network. However, GTA savesthe largest amount of power and a
hieves 50%, 32%, 22% and 14% more power redu
-tion with respe
t to the stati
 BS operation, greedy heuristi
, SLAKE and Niu et al.'sAlgorithm in order.In Table 4.6; daily, monthly and annual energy 
ost savings are given. The ele
-tri
ity pri
es for peak (5pm-10pm), morning (6am-5pm) and o�-peak (10pm-6am) timesare 39.38, 22.01 and 9,48 kurus/kWh (0,18, 0,1 and 0,04 $/kWh) respe
tively in
lud-ing the 22% tax for the industrial 
onsumers in 
omplian
e with the TEDAS (TurkishEle
tri
ity Distribution Company) [83℄, Turkey's governmental ele
tri
ity retailer 
om-pany. City-wide and 
ountry-wide savings are 
al
ulated by 
omparing parameters ofthe test 
ase with the total urban surfa
e area and total urban population of Istanbuland Turkey respe
tively. Istanbul with more than 14 million inhabitants, is one of thebiggest 
ities in the world and 
onstitutes approximately 20% of the Turkey's popula-tion. Therefore, the respe
tive in
rease between the test 
ase and the 
ity-wide 
ostsavings may seem to be very high while the in
rease between the 
ity and 
ountry-wide
ost savings are quite low for this spe
i�
 example. On the other hand, for anotherservi
e provider operating in a 
ountry with smaller but many 
ities, signi�
ant savings
an be still obtained.



58Table 4.6. Comparative energy 
ost saving.Daily($) Monthly($) Annual($)Test Case City-wide Country-wide Country-wide with CEGTA 60 1,827 21,925 4,670,025 17,279,092 49,072,621Niu et al. Algorithm 58 1,744 20,929 4,457,877 16,494,144 46,843,368SLAKE 55 1,674 20,096 4,280,448 15,837,657 44,978,945Greedy Heuristi
 52 1,575 18,901 4,025,913 14,895,878 42,304,293When the numbers in Table 4.6 are examined, it is possible to say that theproposed tra�
-aware topology management s
heme 
an dramati
ally de
rease theenergy expenditures of the servi
e providers. For this example, GTA 
an a
hieve morethan 4 million $ 
ost savings for Istanbul and 17 million $ for Turkey. Moreover, anew term 
alled �Cas
ade E�e
t" (CE) is introdu
ed in [84℄ and demonstrated thata 1 Watt savings at the pro
essor level produ
ed a 2.84 Watt savings at the fa
ilitylevel through the CE. When this e�e
t is taken into a

ount, the a
tual amount ofenergy savings and CO2 emission redu
tion be
omes mu
h more than the predi
tedraw amounts as shown in the last 
olumn of Table 4.6.In Table 4.7; the total energy savings throughout a day 
ompared to the 
asesthat all BSs operate with PL 1, PL 2 and PL 3 are given. As expe
ted, more energy
an be saved as the normal operation transmission power of the BSs in
reases. GTATable 4.7. Total energy savings throughout a day 
ompared to all BSs operate withPL 1, PL 2 and PL 3.PL 1 PL 2 PL 3(kWh) (kWh) (kWh)GTA 173.65 288.85 634.45Niu et al. Algorithm 146.41 261.60 607.20SLAKE 124.06 239.26 584.86Greedy Heuristi
 91.47 206.67 552.27



59a
hieves 18%, 39% and 89% more energy 
onsumption for the PL 1 
ase; 10%, 21%and 40% for PL 2 
ase; 5%, 9% and 15% for the PL 3 
ase with respe
t to Niu et al.'sAlgorithm, SLAKE and greedy heuristi
 in order.4.6. Con
lusionIn this 
hapter, we fo
us on saving energy in heterogeneous pa
ked-swit
hed 
el-lular networks by both swit
hing BSs on/o� and adaptively adjusting their transmis-sion powers a

ording to the 
urrent tra�
 
onditions. We formulated a novel linearprogramming model for the TAM problem and try to �nd the best possible networktopology whi
h minimizes the total energy 
onsumption without degrading a 
ertainlevel of QoS. We also derived a deterministi
 heuristi
 
alled GTA to solve the largerealisti
 instan
es of the formulated TAM problem. In order to make an a

urate per-forman
e evaluation of the proposed methods, we derived small and large test s
enariosand 
ompared our results with the results of a 
ommer
ial optimization tool, a greedyheuristi
 and two 
ompetitor green BS planning algorithms previously proposed in theliterature. It is shown that our tra�
-aware topology management s
heme adapts the
urrent tra�
 
onditions and saves signi�
ant amount of energy without violating theQoS 
onstraints of the subs
ribers.



605. GREEN NEXT GENERATION MULTI-TIER CELLULARNETWORKS
5.1. Introdu
tionIn this 
hapter, our goal is to derive e�
ient green network design, deploymentand operation te
hniques for NGMCNs. Sin
e NGMCNs are not fully deployed andoperational for the time being, we design the network as green from the beginning andkeep green during the network operation phase. This 
hapter of the thesis 
onsistsof three work pa
kages. The �rst work pa
kage is the mapping pro
ess of a pilotappli
ation area and 
reating a spatio-temporal user density estimation. The se
ondwork pa
kage is the deployment of additional pi
o BSs on top of the existing networkinfrastru
ture to a

ommodate the peak tra�
 
onditions. We keep the 
urrent networkinfrastru
ture be
ause it is more 
ost-e�
ient from the servi
e provider's point of view.Finally, the third work pa
kage is the green dynami
 BS operation of the network
onsisting of heterogeneous elements for power saving.In the �rst work pa
kage, we 
reate a detailed 3-Dimensional map of the pilotappli
ation area to be used in the se
ond and third work pa
kages. In the se
ond workpa
kage, given the peak tra�
 loads and a set of 
urrently deployed mi
ro BSs in the
overage area, we formulate a mathemati
al optimization model to address the greenpi
o BS deployment problem. We also propose a novel heuristi
 and a greedy algorithmto install the minimum number of pi
o BSs to support the peak tra�
 
onditions with-out 
ompromising the QoS requirements of the subs
ribers. Lastly, in the third workpa
kage, we formulate a novel LP model for the green dynami
 BS operation problemto �nd the optimum topology whi
h minimizes the power 
onsumption while satisfying
ertain servi
e quality standards su
h as 
overage and a
hievable data rate. Along withthe problem formulation, we also propose an o�ine-
entralized, an online-distributedand two 
entralized greedy algorithms to solve it. For 
omparative performan
e eval-uation, we 
ompare the results of our proposed green BS deployment and dynami




61operation methods with two of the previously proposed te
hniques [15℄ [30℄ in theliterature and a 
ommer
ial optimization tool.Although there are some studies in the literature related to the tra�
-awaretopology management, our method di�ers in the following aspe
ts:
• Similar to the previous methods proposed for CCNs and PSCNs in Chapters 3and 4, we utilize the dynami
 power adjustment 
apability of the BSs in order to
reate more energy-aware network topologies.
• We justify our proposed methods by applying them to s
enarios as 
lose to reallife 
onditions as possible. For this purpose, we 
reated a detailed map of theTaksim area for a better estimation of the spatio-temporal user density. To thebest of our knowledge, this kind of detailed user density estimation study of aparti
ular area is one of its kind in the literature.
• We propose to deploy additional pi
o BSs on top of the existing network infras-tru
ture to meet the in
reasing data ex
hange requirements of the subs
ribers.Therefore, our green networking strategy is not limited to dynami
 operationonly, but also en
ompasses the network design and deployment phases.
• We provide low 
omplexity heuristi
s for both green pi
o BS deployment andgreen dynami
 BS operation problems. These heuristi
s 
an be also 
onsidered asoperating algorithms to a
hieve the provided power saving �gures in Se
tion 5.5.2.
• We derive both o�ine-
entralized and online-distributed algorithms along withtwo 
entralized greedy algorithms to solve the green dynami
 BS operation prob-lem. Hen
e, 
ellular network operators have the freedom to apply the most suit-able approa
h a

ording to their spe
i�
 requirements.5.2. Spatio-temporal User Density Estimation of the Pilot Appli
ationAreaWe sele
t Taksim [85℄ as our pilot appli
ation area whi
h is a highly 
rowdedurban 
enter 
omposed of various pla
es su
h as o�
es, s
hools, shopping malls, 
afes,restaurants, bars and tourist attra
tion points. Firstly, a satellite image raster map
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Figure 5.1. Blueprint of Taksim area shapes and labels.of the Taksim area is 
reated as a base for further operations. This base is obtainedby merging 17 high resolution Google Earth [86℄ images into a single map. On top ofthe base map, ea
h stru
ture / building / street is drawn as re
tangular shapes and ablueprint of the 
overage area is 
reated in Mi
rosoft Visio [87℄ with a resolution of twometers. Subsequently, ea
h re
tangular shape is labeled with a unique id to fa
ilitatethe 
lassi�
ation and prevent possible 
on�i
tions. Resulting blueprint of the Taksimarea is given in Figure 5.1. This map, whi
h in
ludes 1365 lines and 1080 labels, is
reated with an e�ort of more than 80 working hours.Before pro
eeding to 
olle
t the required data for tra�
 demand estimation, we
reated 17 
lass types for pla
es in Taksim area and they are listed in Table 5.1. Thereason behind this 
lassi�
ation is to make a better spatio-temporal tra�
 estimation.By assigning a 
lass type to ea
h shape 
reated in the blueprint, we will be able



63Table 5.1. Shape types.Type No Type Name1 Cafe/Restaurant Early Closing2 Cafe/Restaurant Late Closing3 Bar/Night Club4 Shopping5 O�
e/Work Pla
e Early Closing6 O�
e/Work Pla
e Late Closing7 Mosque/Chur
h8 S
hool Weekday9 S
hool All Week10 Pedestrian Road Heavily Crowded11 Pedestrian Road Lightly Crowded12 Residential13 Movie Theater Art Gallery14 Otel15 Hostel16 Hospital17 Dereli
t Buildingto simulate the overall tra�
 demand of the 
overage area. Ea
h 
lass is 
arefullyidenti�ed to 
reate a model of the Taksim area as 
lose to real life situation as possible.Sin
e Taksim is a highly 
rowded urban area 
omposed of a variety of pla
es, furtherredu
tion in the number of 
lasses may de
rease the a

ura
y of the tra�
 demandestimation. On the other hand, the a

ura
y may be improved by in
reasing thenumber of 
lasses with a 
ost of introdu
ing additional overhead and 
omplexity tothe 
lassi�
ation pro
ess. We try to keep the 
lass 
ount as low as possible whilemaintaining an a

eptable level of tra�
 demand estimation a

ura
y.In Table 5.2, an example of the 
olle
ted data is depi
ted for tra�
 demand esti-mation. The �rst set of 
olle
ted data is the X and Y 
oordinates of the shape 
orners.By 
olle
ting the 
oordinate data, we determine the boundaries of ea
h shape and able



64Table 5.2. Shape numeri
 values example.Label P1 P2 P3 P4 FloorNo X Y X Y X Y X Y Start End Type Des
ription1 943 576 902 565 900 576 940 587 0 2 5 Institut Fran
ais O�
e2 978 587 943 576 928 633 941 636 0 2 9 Institut Fran
ais Course3 931 622 905 616 902 627 928 633 0 2 5 Institut Fran
ais O�
e4 914 580 900 576 888 624 902 627 0 2 9 Institut Fran
ais Course5 940 587 914 580 905 616 931 622 0 1 9 Institut Fran
ais Course0 2 1 Restaurant Early6 885 560 869 555 863 580 885 588 2 4 6 CHP Beyoglu Distri
t Presiden
y7 885 588 863 580 851 622 876 628 0 2 7 Armenian Chur
h0 1 5 Dry Cleaning, Funeral and Undertaking8 893 625 878 621 872 645 887 651 1 3 5 O�
e Early9 862 548 851 542 841 566 855 572 0 8 5 O�
e Early0 1 2 Bereket Halk Doner10 851 542 844 539 834 562 841 566 1 8 6 O�
e Late11 844 539 838 536 828 558 834 562 0 1 13 AFM Cinema1 5 2 Burger King12 838 536 832 533 822 553 828 558 0 7 2 Borsa Restaurant. . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . .1079 333 469 327 468 324 522 329 523 0 1 11 Pedestrian Road Lightly Crowded1080 318 398 314 396 268 443 271 448 0 1 11 Pedestrian Road Lightly Crowdedto asso
iate ea
h grid with their respe
tive shape type. However, 
oordinates of the four
orners only allow us to 
reate a 2-Dimensional o

upan
y map of the area. Therefore,we also 
olle
ted the ground and top �oors of ea
h pla
e as an additional 
oordinate ofZ to model the tra�
 demand in 3-Dimensions. Up to this point, 
olle
ted data maybe extra
ted by using satellite images and street view of Google [88℄, Yandex [89℄ andOpenStreet [90℄ Maps. However, it is not as easy as it seems to 
olle
t the ground andtop �oors of ea
h pla
e. Taksim area is required to be visited many times to 
olle
tthis information properly. Last and the most time 
onsuming part of the table is thetype and brief des
ription of the shape. Ea
h pla
e needs to be identi�ed, whi
h meanstens of kilometers of hiking in the 
overage area, and then 
lassi�ed as one of the typesgiven in Table 5.1.The reader may noti
e that there are some shapes 
onsisting of more than onepla
e type. This issue raises when there are multiple type of pla
es lo
ated in the same
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Figure 5.2. 3D model of the pilot 
overage area.building. Shape number 6 in Table 5.2, whi
h is a four-story building, may be an ex-ample of this situation. There is a restaurant in the �rst two �oors while the remainingtwo �oors of the same building are o

upied by the distri
t presiden
y of a major po-liti
al party in Turkey. Sin
e the explained situation is very 
ommon in Taksim area,we identi�ed 1534 di�erent pla
es although there are 1080 stru
ture/building/streetlabeled in the blueprint given in Figure 5.1. Identi�
ation and 
lassi�
ation of thepla
es to �ll Table 5.2 took approximately 200 working hours.After 
ompleting the shape numeri
 values sheet given in Table 5.2, a 3D modelof the 
overage area is 
reated by using X3D [91℄, an XML-based 3D graphi
s tool. The



66resulting 3D model along with its 
olor 
ode 
an be seen in Figure 5.2. An additionalsoftware is developed in Mi
rosoft Visual Studio 2008 [92℄ to 
reate the X3D 
odeitself. Although the 
olor-
oded 3D model of the 
overage area represents a usefulvisualization, it does not provide mu
h by itself about the spatio-temporal user densityof the area. Therefore, we are also required to estimate the average user densities ofea
h pla
e type throughout the day to 
reate a 
omplete tra�
 load view of Taksimarea. For this purpose, we 
olle
ted another set of data given in Table 5.3. In the table,estimated average user densities per 10m2 is provided both for weekday and weekend.Presented data is the result of 
ountless observation expeditions being made to the
overage area during di�erent times of the day. Besides its s
ienti�
 side, the observerhas also a

umulated very pre
ious so
ial real life experien
e during these expeditionsby having 
han
e to visit various type of pla
es lo
ated in one of the most 
rowded and
osmopolitan region around the world.All the numbers provided in Table 5.3 are 
arefully assigned to ea
h pla
e type.As an example, the user density of Taksim Commer
ial Vo
ational High S
hool, whi
hneeds to be 
lassi�ed as �S
hool Weekday", in
reases dramati
ally just before the be-ginning of the 
lass hours. User volume is maintained till the end of 
lasses. However,the density in the evening does not drop as sharp as it in
reases in the morning dueto many reasons su
h as 
lub or sports a
tivities, additional 
lasses for the voluntarystudents. After a 
ertain point, the s
hool is quite va
ant for the remainder of theday until the start of the 
lass hour in the next day. As expe
ted, the user densityis observed to be very low for �S
hool Weekday" type pla
es during weekend. On the
ontrary, Cumhuriyet Meyhanesi, whi
h needs to be 
lassi�ed as �Bar/Night Club", isvery dense during nights. This density further in
reases at the weekends. As a result,
omplete 3-Dimensional view of the spatio-temporal user density estimation in Taksimarea is obtained by applying the �gures given in Table 5.3. To the best of our knowl-edge, this kind of detailed user density estimation study of a parti
ular area is one ofits kind in the literature.



Table 5.3. User density estimations of ea
h type for 10m2 area.TimeslotType #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24WEEKDAY1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1 1.5 1.5 2 3 3 2 1.5 1.5 2 2 2 1 0.5 0.5 0.12 3 3 2 2 1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 2 33 5 4 3 2 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1 2.5 4 5 54 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 1.5 1 0.5 0.15 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.16 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.17 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.18 0.1 0.1 0.1 0.1 0.5 2 3 5 5 5 5 5 5 5 5 5 5 3 1 1 0.5 0.1 0.1 0.19 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2.5 2.5 2.5 2 2 2.5 2.5 2.5 2.5 2.5 2.5 2 2 1 0.1 0.110 4 3 2 1 1 2 3 3 3 3 3.5 4 4 3.5 3 3 3 4 5 5 4 4 4 411 1.2 0.9 0.6 0.3 0.3 0.6 0.9 0.9 0.9 0.9 1.05 1.2 1.2 1.05 0.9 0.9 0.9 1.2 1.5 1.5 1.2 1.2 1.2 1.212 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 113 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2 3 3 4 4 4 4 5 5 5 5 5 4 214 2 2 2 2 2 2 2 1.5 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 215 5 5 5 5 5 5 5 4 2 2 2 2 2 2 2 2 2 2 3 4 4 5 5 516 1.2 1.2 1.2 1.2 1.2 1.2 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 1.2 1.2 1.2 1.2 1.2 1.217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0WEEKEND1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 1.8 2.7 2.7 3.6 5.4 5.4 3.6 2.7 2.7 3.6 3.6 3.6 1.8 0.9 0.5 0.12 6 6 4 4 2 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1 1 1 1 2 3 3 4 63 12 9.6 7.2 4.8 2.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.2 2.4 6 9.6 12 124 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 2.7 2.7 2.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 2.7 1.8 0.9 0.15 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.16 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.17 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.18 0.01 0.01 0.01 0.01 0.05 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.1 0.1 0.05 0.01 0.01 0.019 0.1 0.1 0.1 0.1 0.75 0.75 1.5 3 3.75 3.75 3.75 3 3 3.75 3.75 3.75 3.75 3.75 3.75 3 3 1.5 0.1 0.110 8 6 4 2 2 4 6 6 6 6 7 8 8 7 6 6 6 8 10 10 10 10 10 1011 2.4 1.8 1.2 0.6 0.6 1.2 1.8 1.8 1.8 1.8 2.1 2.4 2.4 2.1 1.8 1.8 1.8 2.4 3 3 2.4 2.4 2.4 2.412 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 1.2 1.213 0.1 0.1 0.1 0.1 0.1 0.1 1 1 2 4 4 6 6 8 8 8 8 10 10 10 10 10 8 414 3 3 3 3 3 3 3 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.25 2.25 2.25 3 3 315 7.5 7.5 7.5 7.5 7.5 7.5 7.5 6 3 3 3 3 3 3 3 3 3 3 4.5 6 6 7.5 7.5 7.516 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5.3. Average number of users in the 
overage area.The total number of individual subs
ribers throughout a day on weekday andweekend are depi
ted in Figure 5.3. Minimum of 49,166 and maximum of 177,260population values are a
hieved during 04:00 and 14:00 on weekdays, while 72,165 and207,809 population values are a
hieved during 04:00 and 19:00 on weekends respe
tively.In a

ordan
e with many previous studies in the literature whi
h investigates the tra�
load patterns of mobile a

ess networks [1, 72, 73℄, weekday tra�
 of Taksim followsa sinusoidal pattern throughout the day. The tra�
 load in the 
overage area dropssigni�
antly during night time whereas a high tra�
 demand is observed during daytime, espe
ially in working hours. On the 
ontrary, weekend tra�
 pro�le in Taksimdoes not mat
h with the general assumption of �low tra�
 load during weekend andholidays". Although this assumption may be quite reasonable for pla
es 
omprisingof business and trade 
enters, o�
es or s
hools; Taksim exhibits unique aspe
ts inmany ways with respe
t to other 
rowded urban areas. There are variety of di�erenttypes of pla
es in
luding o�
es, residential areas, s
hools, weekend 
lasses and touristattra
tion points. Moreover, Taksim is the heart of night life in Istanbul, whi
h isone of the most 
rowded 
ities in the world with an approximate population of 20million. For the reasons mentioned, the weekend tra�
 load in Taksim is higher thanthe weekday tra�
 load. This behavior is observed both day and night time. Ex
eptfrom the spatial tra�
 
hange, Figure 5.3 also 
learly shows that there are signi�
anttemporal tra�
 load 
hanges throughout the day and we have enough margin to saveenergy with e�
ient green networking methods.



69Table 5.4. Area ratio and tra�
 
ontribution of ea
h pla
e type.Tra�
 Contribution (%)Pla
e Type Total Area Ratio (%) Weekday WeekendCafe/Restaurant Early Closing 5.5 4.4 5.8Cafe/Restaurant Late Closing 2.6 1.9 2.8Bar/Night Club 7.7 7.6 13.3Shopping 9.0 6.7 9.0O�
e/Work Pla
e Early Closing 19.0 17.3 13.0O�
e/Work Pla
e Late Closing 10.2 11.8 8.9Mosque/Chur
h 1.7 0.9 0.7S
hool Weekday 7.2 12.7 1.0S
hool All Week 2.0 2.0 2.3Pedestrian Road Heavily Crowded 5.0 11.3 17.9Pedestrian Road Lightly Crowded 3.1 2.1 3.1Residential 15.1 8.0 7.2Movie Theater Art Gallery 2.2 3.7 5.5Otel 5.1 5.3 5.9Hostel 0.8 2.0 2.3Hospital 1.9 2.3 1.3Dereli
t Building 2.0 0 0Table 5.4 provides the ratio of the surfa
e area for ea
h pla
e type over thewhole 
overage area along with their average 
ontribution to the total 
reated tra�
load. Although the area ratio 
olumn is a vivid eviden
e of Taksim's 
osmopolitannature; o�
es, residential and shopping areas, bars, s
hools and 
afeterias 
onstitutethe signi�
ant portion. It is also worth noting that the tra�
 load 
ontribution of ea
htype is not always proportional to their respe
tive area ratio. More spa
ious types ofpla
es su
h as residential areas 
reate lower tra�
 loads whereas more 
rowded pla
essu
h as bars, night 
lubs and s
hools 
reate higher tra�
 loads with respe
t to theira
tual total area. Another important observation is the tra�
 load 
ontribution 
hangebetween weekdays and weekends. Although there are signi�
ant variations betweenthe weekday and weekend tra�
 load 
ontributions, the 
hange in bars, night 
lubs,weekday s
hools and pedestrian walkways 
an be 
ounted as the most signi�
ant ones.Installing a new BS to the lo
ation of an existing 
ell site is de�nitely 
heaperthan establishing a new site from the s
rat
h. Contributing fa
tors to this di�eren
ein
ludes power and data 
abling, mast installation, payment to the land owner, et
.Therefore, 
urrent 
ell sites are preferred to deploy the new BSs of another te
hnology,
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Figure 5.4. OpenCellID BS information repository loaded on OpenStreetMap.whi
h is assumed to be LTE in our 
ase. However, obtaining the 
urrent BS lo
ationinformation is not an easy task. Although we attempted to get the BS lo
ations andthe tra�
 load information from two of Turkey's major mobile servi
e providers, we
ould not manage to a

omplish it. As a last resort, we de
ided to 
olle
t this data byourselves with the help of a third party mobile appli
ation.Although there are a bun
h of available appli
ations in the market, OpenCel-lID [93℄ was the most promising one for our 
ase. OpenCellID is the world's largest
ollaborative 
ommunity proje
t that 
olle
ts GPS positions of 
ell towers, for a mul-titude of 
ommer
ial and private purposes. It has an Android OS based free mobileappli
ation used by the voluntary individuals. A simple log is maintained by the appli-
ation whi
h in
ludes the dis
overed BS IDs, lo
ations, dis
overy time stamp, operatorname, et
. The OpenCellID proje
t also keeps a huge database of the dis
overed BS
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Figure 5.5. Current lo
ations of mi
ro BSs.information. Ea
h mobile appli
ation user 
an register himself/herself and obtain anAPI key. Then, the log �le 
an be uploaded by using the obtained API key to the 
om-mon database. A

ording to their o�
ial statement, the OpenCellID database 
ontainsalmost 7 million unique GSM Cell IDs and 1.2 billion measurements as of Jan 2015.The data 
an be downloaded from the database in a s
alar format or 
an be applied asan additional layer on top of OpenStreetMap. In Figure 5.4, BS data of Taksim areaobtained from the OpenCellID repository is plotted on top of OpenStreetMap.Figure 5.5 depi
ts the BS lo
ations of a major mobile servi
e provider in Turkey.Although the 
overage area is less than 1km2, surprisingly there are 21 BSs belongingto a single operator. In order to dis
over the lo
ations of the BSs, more than 20 kmof walking was required while 
arrying an OpenCellID installed smart phone. Thelo
ations of the dis
overed 
ells are identi�ed with an average a

ura
y of 5m.



725.3. Green Pi
o BS DeploymentIn this se
tion, our aim is to minimize the number of deployed pi
o BSs whileguaranteeing a 
ertain QoS level in terms of 
overage and a
hievable data rate. Forthis purpose, we dis
retized the 
overage area by dividing it into 1m2 grids and ea
hgrid has a tra�
 o

upan
y a

ording to its asso
iated type as listed in Table 5.3.However, existing mi
ro BSs along with to-be-deployed pi
o BSs are required to satisfyuser requirements at all times. Therefore, we take the peak tra�
 loads of ea
h pla
etype into a

ount. For example, the tra�
 demand in Istiklal Avenue peaks between19:00-24:00 on weekends while the tra�
 demand in Pera Fine Arts High S
hool ismaximum during 08:00-17:00 on weekdays.5.3.1. Problem FormulationGiven the peak tra�
 load of ea
h pla
e type and set of 
urrently deployedmi
ro BSs, we formulate a mathemati
al optimization problem for additional pi
o BSdeployment.Parameters:
NBM : Number of mi
ro BSs
NBP : Number of pi
o BSs
NPM : Number of mi
ro power levels
NG : Number of 
overage grids
B

M : Set of mi
ro BSs where B
M = {1, . . . , NBM

}

B
P : Set of pi
o BSs where B

P = {1, . . . , NBP

}

B : Set of BSs where B = B
M ∪B

P

G : Set of 
overage grids
NXP : Number of 
andidate pi
o BSs deployment lo
ations
X

P : Set of 
andidate pi
o BSs deployment lo
ations where X
P =

{1, . . . , NXP

}
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NXneig : Number of neighboring 
andidate pi
o BSs deployment lo
ationsfor overloaded BSs
X

neig
b : Set of neighboring 
andidate pi
o BSs deployment lo
ations forBS b where X

neig
b ⊂ X

P

Db : Data �ow 
apa
ity of BS b
βmin : Minimum a

eptable user satisfa
tion ratio where 0 ≤ βmin ≤ 1

β : User satisfa
tion ratio during peak tra�
 
onditions where 0 ≤

β ≤ 1

Ψmin : Minimum a

eptable SINR at the re
eiver
Ψgb : Re
eived SINR by grid g from BS b
L(b, g): Path loss exponent from BS b to grid g
fb : Tra�
 load of BS b
Model variables:

Sgb =











1, if Grid g is asso
iated with BS b
0, otherwiseThe obje
tive fun
tion is given asmin |BP | (5.1)

subje
t to
fb ≤ Db ∀b ∈ B (5.2)

Ψgb ≥ SgbΨ
min ∀(g ∈ G, b ∈ B) (5.3)

β ≥ βmin (5.4)
∑

b∈B

Sgb ≤ 1 ∀g ∈ G (5.5)



74Goal of our obje
tive fun
tion in Equation 5.1 is to minimize the total numberof deployed pi
o BSs for both energy e�
ien
y and CAPEX redu
tion. Constraint inEquation 5.2 ensures that all BSs (both pi
o and mi
ro) do not ex
eed their maximumdata �ow 
apa
ity. Equation 5.3 provides that ea
h grid asso
iated with a BS re
eivessu�
ient signal strength. By not violating the BS 
apa
ity and SINR 
onstraintsgiven in Equation 5.2 and Equation 5.3; proposed optimization problem ensures thesubs
riber satisfa
tion at all times by maintaining an a

eptable level of quality interms of both delay and a
hievable data rate. Equation 5.4 is responsible for obtainingthe required user satisfa
tion ratio over all users, i.e., it is guaranteed that a 
ertainper
entage of the users are 
overed and served properly. The 
onstraint in Equation 5.5makes sure that a parti
ular grid is being served by a single BS at a parti
ular timeslot.5.3.2. Interferen
eAs elaborated in Se
tion 4.2.2.2, there are two sour
es of interferen
e in LTEnetworks whi
h are intra-
ell and inter-
ell. The intra-
ell interferen
e is the totalinterferen
e 
aused by the signals emitted from the serving BS and the inter-
ell inter-feren
e is 
aused by the signals transmitted from all other BSs. In perfe
t transmission
onditions, there should be no intra-
ell interferen
e sin
e all of the signals are orthog-onal. However, the intra-
ell interferen
e 
annot be totally avoided due to multipathpropagation and SINR is given by
Ψ =

P r

αoI in + Iout + η
(5.6)where P r is the re
eived signal power, I in is the intra-
ell interferen
e, Iout is theinter-
ell interferen
e, αo is the orthogonality loss fa
tor and η is the noise power.Sin
e the interferen
e dominates the SINR value, we will negle
t the e�e
t of thenoise fa
tor in the performan
e evaluation se
tion for the sake of simpli
ity. For our
al
ulations, we use the COST-Hata metropolitan area propagation model [12℄ whi
his assumed to be the most suitable model for 
rowded urban areas. However, this



75model is valid for the frequen
ies up to 2000 Mhz. COST-231 Wal�s
h-Ikegami [94℄model is an extension of COST Hata-Hodel and 
an be used for frequen
ies higherthan 2000 MHz. In Turkey, it is announ
ed by the Ministry of Transport, MaritimeA�airs and Communi
ations that 4G frequen
y band au
tions will be done for threedi�erent portions of the spe
trum, namely 800, 1800 and 2600 Mhz. Therefore, asuitable propagation model is required to be sele
ted a

ording to the frequen
y bandbeing used by the servi
e provider. The SINR from BS b to 
overage grid g is given by
Ψbg =

P tx
b L(b, g)

αoP
tx
b L(b, g) +

∑

b′∈B\{b}

P tx
b′ L(b

′, g) + η
(5.7)where P tx

b is the transmission power of BS b.5.3.3. CoverageA parti
ular grid g is assumed to be 
overed if the re
eived SINR from any BS ishigher than the minimum a

eptable level Ψmin. The binary 
overage fun
tion in theGreen Pi
o BS Deployment Problem is given by
Γ(g) =











1, if Ψgb > Ψmin ∃b ∈ B

0, otherwise (5.8)The total 
overage ratio for the area of interest is required to be higher than a threshold
βmin and given by

β =

∑

g∈G

Γ(g)

NG
(5.9)

5.3.4. User Asso
iationIn Green Pi
o BS Deployment Problem, a MT stationed within a 
overage gridis not ne
essarily being servi
ed by the 
losest BSs. Ea
h 
overage grid is asso
iated



76with the BS whi
h provides the highest SINR. However, a parti
ular grid is said tobe 
overed if and only if the re
eived SINR value is higher than the minimum SINRrequirement to guarantee an a

eptable subs
riber data rate. The Grid-BS asso
iationrule is given by
Sgb =















1, if Ψgb ≥ Ψmin and b = argmax
b′∈B

(Ψgb′)

0, otherwise (5.10)Although satisfying the SINR requirement is a big step for the 
overage, it is notenough by itself for proper 
overage. Sin
e BSs have limited resour
es (i.e. bandwidth,ba
khaul link 
apa
ity), their tra�
 load is also important. Therefore, we need tobe 
ertain that the minimum re
eived SINR requirement at the MT is satis�ed andthe respe
tive tra�
 load of the serving BS is below its maximum 
apa
ity. Sin
e wedeploy pi
o BSs a

ording to a

ommodate the peak time tra�
 
onditions, we takethe maximum tra�
 o

upan
y of the 
overed grids into a

ount. Total tra�
 load ofa BS b 
an be formulated as
fb =

∑

g∈G

Sgbf
p
g (5.11)where f p

g is the peak aggregate tra�
 o

upan
y of grid g.5.3.5. Green Pi
o BS Deployment AlgorithmAlthough we formulate an optimization model for the Green Pi
o BS DeploymentProblem, it is very 
hallenging to solve large real-life instan
es of the problem with op-timization tools due to prohibitive 
omputational and spa
e 
omplexity. On the otherhand, it may be possible to solve the problem by optimization tools for smaller numberof 
andidate pi
o BS deployment lo
ations NXP for our test 
ase s
enario. However,limiting the possible pi
o BS deployment lo
ations redu
es the feasible solution spa
esigni�
antly whi
h in turn de
reases the quality of the resulting topologies. Hen
e, inthis se
tion we fo
us on deriving an e�
ient heuristi
 to install the minimum number



77of pi
o BSs in order to support the peak tra�
 
onditions without 
ompromising theQoS requirements of the subs
ribers.5.3.5.1. Area Spe
tral E�
ien
y. For the Green Pi
o BS Deployment Algorithm, weadopt the Area Spe
tral E�
ien
y (ASE) [95℄ as a performan
e indi
ator. ASE isde�ned as the summation of the spe
tral e�
ien
y over the 
overage area. A

ordingto Shannon-Hartley theorem, spe
tral e�
ien
y (bits/se
/Hz) at 
overage grid g isgiven by
C(g) = log2(1 + max

b∈B
(Ψgb)) (5.12)Area spe
tral e�
ien
y(bits/se
/Hz/m2) de�nes the sum of the maximum average datarates per unit bandwidth per unit area and given by

A =

∑

g∈G

C(g)p(g)

mNG
(5.13)where p(g) is the probability of a user being at a parti
ular 
overage grid g and m isthe 
overage grid size in square meters.The ASE is a measure of the maximum average data rate per unit bandwidth perunit area supported by a BS and it is 
losely related with 
onstraints in Equations 5.3and 5.4. It is 
ertain that deployment of an additional BS in
reases the ASE of the
overage area unless it is very 
lose to an existing BS and interfering with ea
h other.Moreover, ASE in
rement is expe
ted to be higher in 
ase a new BS is deployed toan area with low spe
tral e�
ien
y. Therefore, iterative ASE in
rement steps providebetter 
overage of the area of interest along with high average SINR values. Let Axis the ASE after deployment of a pi
o BS to 
andidate lo
ation x. Then, the ASEin
rease in the 
overage area is identi�ed by the di�eren
e between the ASE beforeand after deployment of the new pi
o BS and given by

∆Ax = Ax −A (5.14)
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(b) Iteration #20Figure 5.6. Possible pi
o BS lo
ations with K-Means 
lustering.Although Green Pi
o BS Deployment Algorithm 
an attempt to install BSs to anysuitable lo
ation in the 
overage area, this approa
h in
reases the 
omplexity of thealgorithm polynomially. Moreover, myriad of similar BS deployment results 
an beprodu
ed sin
e the resolution of the 
overage area is very high (1m2 grid size). Toover
ome these 
hallenges, we determine to limit the possible pi
o BS deploymentlo
ations and set to a su�
iently large number denoted by NXP . However, 
andidatepi
o BS deployment lo
ations are required to be sele
ted e�
iently. Therefore, weused K-Means 
lustering [96℄, whi
h is a widely-known ma
hine learning method toidentify the 
oordinates of the 
andidate lo
ations. K-Means algorithm uses an iterativere�nement te
hnique and is 
omposed of two steps, namely the Assignment and Update.In the Assignment step, ea
h grid is assigned to its nearest mean where new meanlo
ations are 
al
ulated a

ording to the previous assignments in the Update step.Di�erent from the original algorithm, we 
al
ulate the 
ontribution of ea
h 
overagegrid by multiplying the Eu
lidean distan
e to the mass 
enter with its tra�
 o

upan
y.Hen
e, we keep the 
luster 
enters, i.e. possible pi
o BS deployment lo
ations, 
loseto the grids where the tra�
 load 
on
entration is higher. Although we take K=300in our Green Pi
o BS Deployment Algorithm, an example set of 
andidate pi
o BSlo
ations XP with K=100 is depi
ted in Figure 5.6 for simpli
ity. Sin
e the K-Meansalgorithm 
onverges and improvements are negligible after the 20th iteration, we set theiteration 
ount as 20. In Figure 5.6(a), initial 
andidate pi
o BS deployment lo
ationsare plotted while �nal lo
ations are given in Figure 5.6(b) after the last iteration.



79We de�ne a new de
ision parameter 
alled Neighbor BS Deployment (NBD) met-ri
 to be used in the quality assuran
e phase of the Green Pi
o BS Deployment Algo-rithm and denoted by θ. The maximum NBD value is obtained when a to-be-deployedneighboring BS is able to alleviate as mu
h tra�
 load as possible from the over-loaded BS without ex
eeding its own maximum tra�
 load 
apa
ity. To simplify theNBD metri
 formulation, let ∆ℓbx is the handed over tra�
 load from over-utilizedBS b to the newly deployed neighboring pi
o BS at 
andidate lo
ation x and givenby ∆ℓbx = fb − f ′
bx where f ′

bx is the tra�
 load of BS b after the neighboring BS isdeployed at 
andidate lo
ation x. Let φx = Dx − fx is the di�eren
e between themaximum tra�
 load 
apa
ity of the newly deployed BS at lo
ation x and its 
urrentload after the deployment. The NBD metri
 θbx between the overloaded BS b and thedeployed neighbor pi
o BS at 
andidate lo
ation x is given by
θbx = ∆ℓbx − αu|φx| (5.15)where αu is the utilization penalty. It is undesirable to 
reate more overloaded BSs inthe network while trying to minimize their total number. Therefore, a newly deployedBS should not be allowed to take too mu
h load of its overloaded neighbor BS andbe
ome another overloaded BS itself. Deploying an under-utilized neighbor BS is alsoa waste of pre
ious resour
es and will not alleviate the load of overloaded BS. Therefore,we introdu
e a penalty for both over-utilization and under-utilization 
ases of newlydeployed BSs. Sin
e ex
eeding the maximum load 
apa
ity does not improve the
urrent situation anyhow, we set higher utilization penalty for over-utilized BSs where

au =











1, if φx ≤ 0

20, otherwise (5.16)By setting au = 20 for over-utilized BSs, we give our Green Pi
o BS Deployment Algo-rithm a 
han
e to deploy a slightly overloaded pi
o BS in 
ase of all other neighboringlo
ations do not alleviate the load of the overloaded BS su�
iently.



80������
overage assuran
e phase������1: B
P = {∅}2: while β < βmin do3: for all x ∈ X

P do4: Assume a pi
o BS b deployed at lo
ation x5: Cal
ulate ∆Ax6: end for7: deploy pi
o BS b at lo
ation x∗ = argmax
x∈XP

(∆Ax)8: B
P = B

P ∪ {b}, XP = X
P \{x}9: end while������quality assuran
e phase������10: while (

B
high = {b | fb > Db, ∀b ∈ B}

)

6= {∅} do11: for all b ∈ B
high do12: Dis
over Xneig
b where X

neig
b ⊂ X

P13: for all x ∈ X
neig
b do14: Cal
ulate θbx15: end for16: Deploy pi
o BS at lo
ation x∗ = argmax

x∈X
neig

b

(θbx)17: B
P = B

P ∪ {b}, XP = X
P \{x∗}18: end for19: end whileFigure 5.7. Green Pi
o BS Deployment Algorithm.We set the number of neighboring 
andidate pi
o BSs deployment lo
ationsNXneigto 10 in our simulations. Although higher number of NXneig value enhan
es the solutionspa
e and may yield to better results theoreti
ally, distant lo
ations from a parti
ularoverloaded BS are less likely to redu
e its load. Moreover, 
al
ulating the e�e
t of more
andidate lo
ations in
reases the 
omplexity of the algorithm. Therefore, limiting the

NXneig to a su�
iently large number results in lower runtime without degrading theperforman
e of the algorithm.The pseudo 
ode of the Green Pi
o BS Deployment Algorithm is given in Fig-ure 5.7. The ultimate goal is to minimize the total number of deployed pi
o BSs asgiven in Equation 5.1 while satisfying 
overage and a
hievable data rate requirements.Our algorithm 
onsists of two phases whi
h are the 
overage assuran
e and the quality



81assuran
e phases. The aim of the 
overage assuran
e phase is to provide the required
overage with minimum amount of additional pi
o BS. At the beginning of the 
overageassuran
e phase, a new pi
o BS is assumed to be deployed at ea
h 
andidate pi
o BSdeployment lo
ation x and ∆Ax is 
al
ulated for all x ∈ X
P . Then, a new pi
o BS isdeployed to the lo
ation x having the highest ∆Ax value. As the last step of this phase,deployed BS is added to the set BP and the respe
tive 
andidate lo
ation is removedfrom the set X

P . By in
reasing the Ae in the referen
e 
overage area, not only the
overage ratio but also the a
hievable data rate requirements of the subs
ribers givenin Equations 5.3 and 5.4 improve.The se
ond phase is the quality assuran
e phase. The purpose of this phaseis to ensure that all BSs are operating below their maximum tra�
 load as givenin Equation (5.2). If there are overloaded BSs in the 
urrent network 
on�guration,neighboring 
andidate pi
o BS deployment lo
ations of overloaded BSs are identi�edand their respe
tive NBD metri
 is 
al
ulated. Subsequently, a new pi
o BS is deployedto the neighboring 
andidate deployment lo
ation having the maximum NBD metri
value. This step is repeated until no overloaded BS remains in the network. Sin
eNBD metri
 is a measure of how e�
iently a neighboring pi
o BS alleviates the load ofoverloaded BS without violating its own 
apa
ity 
onstraints, quality assuran
e phasequi
kly eliminates overloaded BSs and deploys the minimum number of pi
o BSs as aremedy.5.3.6. Greedy Pi
o BS Deployment AlgorithmIn this se
tion, we introdu
e a greedy heuristi
 to solve the formulated GreenPi
o BS Deployment Problem. The results of this heuristi
 are also used during the
omparative performan
e evaluation in Se
tion 5.5.2. Greedy Pi
o BS DeploymentAlgorithm exhaustively visits ea
h 
andidate pi
o BS deployment lo
ation and 
al
u-lates their respe
tive ASE in
rease ∆Ax. Subsequently, it deploys a pi
o BS at the
andidate lo
ation whi
h provides the maximum ASE in
rease in the 
overage area ifand only if this augmentation does not violate the BS 
apa
ity 
onstraint for all a
tiveBSs in
luding itself. The pseudo
ode of the Greedy Pi
o BS Deployment Algorithm is



82given in Figure 5.8 and its performan
e is further investigated in Se
tion 5.5.2.1: while β < βmin do2: for all x ∈ X
P do3: Assume a pi
o BS is deployed at 
andidate lo
ation x4: Cal
ulate ∆Ax5: Find overloaded BSs Bhigh

x after deployment at 
andidate lo
ation x6: end for7: Deploy a pi
o BS at lo
ation x∗ = argmax
x∈XP

(∆Ax) i� B
high
x = {∅}8: X

P = X
P \{x∗}9: end whileFigure 5.8. Greedy Pi
o BS Deployment Algorithm.5.4. Green Dynami
 BS OperationIn this se
tion, we formulate a mathemati
al optimization problem to minimizethe network power 
onsumption during the operation phase. A

ording to the formu-lated problem, we then propose an o�ine-
entralized and an online-distributed novelgreen dynami
 BS operation algorithms for power saving.5.4.1. Problem FormulationParameters:

NT : Number of time slots within the day
T : Set of dis
rete time slots within the day
P

M : Set of mi
ro BS power levels
P

P : Set of pi
o BS power levels
P : Set of power levels where P = P

M ∪P
P

WM(p, f): Total 
onsumed power by a mi
ro BS transmitting with power level pand tra�
 load f
W P (p, f) : Total 
onsumed power by a pi
o BS transmitting with power level p andtra�
 load f
fgt : Aggregate tra�
 o

upan
y of 
overage grid g at time t
fbt : Tra�
 load of BS b at time t



83Model variables:
Kbpt =











1, BS b transmits with power p at time t
0, otherwise

Sgbt =











1, Grid g is asso
iated with BS b at time t
0, otherwiseThe obje
tive fun
tion for the Green Dynami
 BS Operation Problem is given asmin ∑

t∈T

(

∑

b∈BM

∑

p∈PM

KbptW
M(p, fbt) +

∑

b∈BP

∑

p∈PP

KbptW
P (p, fbt)

) (5.17)
Subje
t to

fbt ≤ Db ∀(b ∈ B, t ∈ T) (5.18)
Ψgbt ≥ SgbtΨ

min ∀(g ∈ G, b ∈ B, t ∈ T) (5.19)
β(t) ≥ βmin ∀t ∈ T (5.20)

∑

p∈P

Kbpt = 1 ∀(b ∈ B, t ∈ T) (5.21)
∑

b∈B

Sgbt ≤ 1 ∀(g ∈ G, t ∈ T) (5.22)
Our obje
tive fun
tion in Equation 5.17 aims to minimize the total energy 
on-sumption of both pi
o and mi
ro BSs throughout the network. Equation 5.18 is re-sponsible for the operation of all a
tive BSs below their data �ow 
apa
ity at all times.Equation 5.19 provides that ea
h grid asso
iated with a BS is being served by at leasta 
ertain SINR value. Equation 5.20 ensures that the required user satisfa
tion ratiois a
hieved over all users. In other words, a 
ertain per
entage of the users are 
overedand served properly a

ording to their QoS requirements. The 
onstraint in Equa-tion 5.21 makes sure that a BS operates at a single transmission power level during a



84parti
ular time slot and Equation 5.22 is responsible for that a grid is being served bya single BS at a parti
ular instant.5.4.2. BS Power ConsumptionPower 
onsumption of a BS 
an be broken down into two parts: (i) 
ore (stati
)power and (ii) dynami
 power. The 
ore power 
onsumption is 
onstant as long as theBS is a
tive whereas the dynami
 power 
onsumption is subje
t to 
hange proportionalto the present tra�
 load 
onditions of the BSs. Total power 
onsumption of BS b,with transmit power p and tra�
 load f is given by
W (b, p, f) =











0, p = 1

W c
b +W d

bpf , otherwise (5.23)where W c
b is the 
ore (stati
) power 
onsumed by the BS b and the W d

bpf is the dynami
power 
onsumed by the BS b with transmit power level p and tra�
 load of f .Core and dynami
 power 
onsumption of BS are given by
W c

b = WDC
b +WMS

b +W cool
b (5.24)

W d
bpf =

f

Db

(

p

µPA
b

+ PRF
b + PBB

b

) (5.25)where WDC
b , WMS

b , W cool
b , PRF

b and PBB
b are DC-DC power supply, mains supply(AC-DC unit), a
tive 
ooling, RF trans
eiver, baseband unit (digital signal pro
essing)power 
onsumption and µPA

b is the power ampli�er e�
ien
y of BS b respe
tively [79,80℄. Typi
al values for mi
ro and pi
o BSs power 
onsumption are given in Table 5.7 ina

ordan
e with [80℄. Power ampli�er e�
ien
ies for mi
ro and pi
o BSs are assumedto be 22.8% and 6.7% in order [80℄.
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Table 5.7. Typi
al BS power 
onsumption �gures.

WDC WMS W cool PRF PBBMi
ro 9.3 11.1 6.2 13 54.6Pi
o 1 1.4 n/a 2 6Although as many BS types as required 
an be a

ommodated in our mathemat-i
al model, we remove the b index from the power 
onsumption equations and simplyprovide the mi
ro and pi
o BS power 
onsumptions by
WM(p, f) = 26.6 +

f

DM

(

p

0.228
+ 67.6

) (5.26)
W P (p, f) = 2.4 +

f

DP

(

p

0.067
+ 8

) (5.27)where WM(p, f) and W P (p, f) are respe
tive power 
onsumptions of mi
ro and pi
oBSs with transmission power p, tra�
 load f , data �ow 
apa
ity DM for mi
ro and
DP for pi
o BSs.
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Figure 5.9. Change of mi
ro and pi
o BS power 
onsumption with utilization and txpower.



86In Figure 5.9, 
hange of mi
ro and pi
o BS power 
onsumption is given withrespe
t to utilization and tx power. Pi
o BS power 
onsumption �gures are lower thanthe mi
ro BS for smaller tx power values regardless of the utilization, sin
e the 
orepower 
onsumption is the dominating fa
tor. On the other hand, as the tx powerand utilization in
reases and the dynami
 power 
onsumption be
omes the dominatingfa
tor, the power 
onsumption of the pi
o BS in
reases dramati
ally. The reasonbehind this in
rease is the low e�
ien
y of the pi
o BS power ampli�er. However,the pi
o BS equipment is not designed to transmit with high power levels and themajority of the pi
o BS manufa
turers does not provide dynami
 tx power adjustmentability. Therefore, we �xed the tx power of the pi
o BSs as 2 Watts in our performan
eevaluation simulations. For mi
ro BSs, we de�ned 5 di�erent tx power levels with
orresponding power of 3, 8, 13, 18 and 24 Watts in order.5.4.3. Interferen
eBy using the same formula given in Equation 5.6, SINR from BS b in grid g attime slot t is given by
Ψbgt =

∑

p∈PA

KbptL(b, g)p

αo

∑

p∈PA

KbptL(b, g)p+
∑

b′∈B\{b}

∑

p∈PA

Kb′ptL(b′, g)p+ η
(5.28)where PA = P\{p = 0}5.4.4. CoverageA parti
ular grid g is 
overed at time t if the re
eived SINR from any BS is higherthan the minimum a

eptable level and binary 
overage fun
tion is given by

Γ(g, t) =











1, if Ψgbt > Ψmin ∃b ∈ B

0, otherwise (5.29)



87The total 
overage ratio for the area of interest at time t is given by
βt =

∑

g∈G

Γ(g, t)

NG
(5.30)

5.4.5. User Asso
iationA parti
ular grid is asso
iated with the BS providing the maximum SINR valueunless the re
eived SINR value is lower then the minimum a

eptable threshold. As-so
iation rule of grid g with BS b at time t is given by
Sgbt =















1, if Ψgbt ≥ Ψmin and b = argmax
b′∈B

(Ψgb′t)

0, otherwise (5.31)The total tra�
 load of a BS b at time t 
an be given as
fbt =

∑

g∈G

Sgbtfgt (5.32)
5.4.6. Green Dynami
 BS Operation AlgorithmsIt is possible to solve the Green Dynami
 BS Operation Problem with optimiza-tion tools su
h as CPLEX [81℄ or GUROBI [82℄ sin
e we put it in a mathemati
alform. However, �nding optimum solutions is very 
hallenging due to the 
omputa-tional and spa
e 
omplexity of our large-s
ale realisti
 test 
ase s
enario. Therefore,we propose fast and e�
ient heuristi
s to solve large realisti
 instan
es of the problemin this se
tion.5.4.6.1. Area Spe
tral E�
ien
y. Similar to the Green Pi
o BS Deployment, we alsoutilize the ASE metri
 for the Green Dynami
 BS Operation. The Spe
tral e�
ien
y



88(bits/se
/Hz) at 
overage grid g at time t is given by
C(g, t) = log2(1 + max

b∈B
(Ψgbt)) (5.33)Area spe
tral e�
ien
y (bits/se
/Hz/m2) over the total 
overage area at time t is givenby

At =

∑

g∈G

C(g, t)p(g, t)

mNG
(5.34)where p(g, t) is the probability of a user being at a parti
ular 
overage grid g at time t.However, this time we modify the ASE in
rement metri
 ∆A de�ned in Se
-tion 5.3.5 to measure the in
rease on the provided average data rate per unit band-width per unit area per power. In other words, we use the ASE in
rement per watt asa performan
e metri
. Hen
e, it is ensured that the maximum possible 
overage anda
hievable data rate in
rease over the referen
e area is provided with the minimumamount of power 
onsumption.A natural question may arise why this metri
 is not used for the Green Pi
o BSDeployment. The reason lies with the homogeneity of the deployed BSs. Sin
e thepower 
onsumption �gures of the deployed pi
o BSs are identi
al, their respe
tive ASEin
rease per power is also proportional with the ASE in
rease. Therefore, using theASE in
rement per power metri
 does not 
hange the results at all. Also, the e�e
t ofBS load on the power 
onsumption is 
aptured indire
tly with θbx metri
. On the otherhand, ASE in
rease per watt metri
 ultimately makes sense for the Green Dynami
 BSOperation sin
e there are heterogenous BSs a
tivated with di�erent PLs.The ASE in
rement per watt (bits/se
/Hz/m2/watt) in the referen
e area whenBS b is a
tivated with PL p at time t is given by

∆Aw
bpt =

At

W (b, p, fbt)
(5.35)



89where the tra�
 load fbt and power 
onsumptionW (b, p, f) are given in Equations 5.32and 5.23 respe
tively.5.4.6.2. O�ine-
entralized Dynami
 BS Operation Algorithm. The Green Pi
o BS De-ployment and Green Dynami
 BS Operation problems are very similar in nature. Thesimilarity 
an be easily understood from the mathemati
al problem formulations givenin Se
tion 5.3.1 and 5.4.1. Therefore, it is 
onvenient to use the Green Pi
o BS De-ployment Algorithm as a template for the O�ine-
entralized Dynami
 BS OperationAlgorithm.The main obje
tive of the O�ine-
entralized Dynami
 BS Operation Algorithmis to dynami
ally adjust the use of BS resour
es a

ording to the temporal 
hanges inthe tra�
 load throughout the day and 
reate a more energy-aware network as givenin Equation 5.17. The O�ine-
entralized algorithm is exe
uted by a 
entral entity anddetermines the network topology beforehand. The tra�
 load estimations and existingBS topology are given to the algorithm as an input. The output is the energy-awarenetwork topology. The de
ision parameters of the algorithm are the status of all BSs,i.e. on/o�, and the tx power of a
tive BSs.Before pro
eeding to the algorithm itself, we need to rede�ne some of the pa-rameters used in the Green Pi
o BS Deployment Algorithm. Let ∆ℓbb′p′ is the handedover tra�
 load from over-utilized BS b to the newly a
tivated neighboring BS b′ withPL p′ and given by ∆ℓbb′p′ = fb − f ′
bb′p′ where f ′

bb′p′ is the tra�
 load of BS b after theneighboring BS b′ is swit
hed on with PL p′. Let φb′p′ = Db′ − fb′p′ is the di�eren
ebetween the maximum tra�
 load 
apa
ity of the newly deployed BS b′ and its 
urrentload after it has been swit
hed on with PL p. The NBD metri
 θbb′p′ between theoverloaded BS b and the swit
hed on b′ with PL p′ is given by
θbb′p′ = ∆ℓbb′p′ − αu|φb′p′| (5.36)



90where αu is the same utilization penalty des
ribed in the Green Pi
o BS DeploymentAlgorithm. For the sake of mathemati
al simpli
ity, subs
ript t representing the timeof day is omitted in the NBD formulation.Similar to the Green Pi
o BS Deployment Algorithm, we 
hange the status ofneighboring BSs to alleviate the load of the overloaded BSs. We set the number ofneighboring {BS,PL} pair NBneig of an overloaded BS to 15 in our simulations for thesame reasons explained in Se
tion 5.3.5. We keep this number higher than the oneused in the Green Pi
o BS Deployment Algorithm sin
e a parti
ular BS is representedby more than one �eld due to di�erent PL 
on�gurations. We in
luded the PL inthe neighbor BS list be
ause a PL in
rease of an already a
tive neighboring BS mayalso redu
e the load of an overloaded BS while a PL de
rease most likely worsens thesituation. Therefore, the set of neighboring {BS,PL} pairs of an overloaded BS b is
omposed of either (i) all possible PLs of the swit
hed o� neighboring BSs or (ii) higherPLs of an already a
tive neighboring BSs and denoted by B
neig
b . In 
ase there is anoverloaded BS b is identi�ed, ea
h {b',p'} pair in the set of Bneig
b visited and the onehaving the maximum θbb′p′ is implemented.The pseudo
ode of the O�ine-
entralized Dynami
 BS Operation Algorithm isgiven in Figure 5.10. It ta
kles with ea
h time slot independently. For ea
h timeslot, it starts with an empty set of a
tive BSs. Then the algorithm a
tivates {BS,PL}pairs whi
h maximizes the ASE in
rease per watt (∆Aw

bpt) metri
 in the 
overage area.Iterative in
rement of this metri
 ensures not only in
reasing 
overage ratio, but alsohigher average SINR values throughout the 
overage area. This step is repeated untilthe minimum 
overage ratio over all users are a
hieved for the 
urrent time slot. Whenthe required 
overage ratio is obtained, we utilize the rede�ned NBD metri
 to eliminatethe overloaded BSs similar to the Green Pi
o BS Deployment Algorithm. Firstly,neighboring {BS,PL} pairs are dis
overed for ea
h overloaded BS. In the next step,respe
tive NBD metri
 of ea
h dis
overed neighboring {BS,PL} pairs are 
al
ulated andthe one having the maximum value is a
tivated. By this way, a
tivated neighboringBSs are able to alleviate the tra�
 load of the overloaded BSs as mu
h as possiblewithout ex
eeding their own tra�
 load limits.



911: for all t ∈ T do2: Bt = {∅}, Boff
t = B3: while βt < βmin do4: for all feasible {b ∈ B

off
t , p ∈ PA} pair do5: Assume BS b is swit
hed on with PL p6: Cal
ulate ∆Aw

bpt7: end for8: Swit
h on BS b with PL p having max ∆Aw
bpt9: Bt = Bt ∪ {b, p}, Boff

t = B
off
t \{b}10: end while11: while (

B
high
t = {b | fbt > Db, ∀b ∈ B}

)

6= {∅} do12: for all b ∈ B
high
t do13: Dis
over Bneig
b14: for all {b′, p′} pair ∈ B

neig
b do15: Cal
ulate θbb′p′16: end for17: Swit
h on BS b′ with PL p′ having max θbb′p′18: Bt = Bt ∪ {b′, p′}, Boff

t = B
off
t \{b′}19: end for20: end while21: end forFigure 5.10. O�ine-
entralized Dynami
 BS Operation Algorithm.5.4.6.3. Online-distributed Dynami
 BS Operation Algorithm. The online-distributedDynami
 BS Operation Algorithm aims to adapt the 
urrent network 
onditions and
reate an energy-aware topology in a distributed and online manner. Ea
h BS takesits own de
isions autonomously in 
oordination with the neighboring BSs. However,the topology adjustments are merely based on a limited set of network statisti
s 
ol-le
ted by lo
al observations. Another drawba
k of the online-distributed algorithmsis the additional signaling overhead introdu
ed by requirement of 
oordination withthe neighboring BSs. Moreover, the overall impa
t of the lo
al de
isions on the wholenetwork is not possible to 
omprehend from a BS point of view. Therefore, the qual-ity of the BS swit
hing and power adjustment de
isions de
reases in 
omparison withthe 
entralized methods. On the other hand, online-distributed approa
hes are moreresponsive to unexpe
ted tra�
 load variations and well adapt to the underestimated
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Figure 5.11. Simpli�ed state transition diagram of the online-distributed dynami
 BSoperation algorithm.or overestimated tra�
 load 
onditions with respe
t to o�ine-
entralized methods.Simpli�ed state transition diagram of Online-distributed Dynami
 BS OperationAlgorithm is given in Figure 5.11. Before entering the green operation mode, ea
h BSundertakes a neighbor dis
overy routine. During this routine, all BSs lo
ated in thearea of interest should be swit
hed on and the minimum a

eptable 
overage ratio mustbe satis�ed. The latter requirement is 
ru
ial be
ause after entering the distributedgreen operation mode, there is no 
entral entity to 
he
k if the required 
overage overthe whole area is provided. Sin
e ea
h BS makes their lo
al de
isions, the distributeds
heme relies on the amount of handovers to satisfy the 
overage 
onstraint throughout the operation 
y
le.



93Initially, ea
h member of the energy saving s
heme dis
overs its neighbors andenters the green operation mode starting from the A
tive state. Sin
e de�ned timesli
es are our referen
e for network adjustments, ea
h BS maintains a Time Slot Changetimer. When the timer expires, a Time Slot Change event is triggered and every BS
he
ks its respe
tive tra�
 load. However, this timer 
an be easily repla
ed with amore frequent trigger to respond the tra�
 load 
hanges instantly. On the other hand,frequent BS swit
h on/o� transitions may result in unsatis�ed users due to high amountof handover requests. Therefore, the time interval between ea
h BS load 
he
k eventneeds to be 
arefully 
hosen.If the 
urrent load of the BS is lower than the Swit
h O� Threshold, the BS sendsRequest to Swit
h O� (RTO) message to its neighbors and waits for Clear to Swit
hO� (CTO). Neighbor BSs re
eiving the RTO message 
he
k if they are able to a

om-modate the additional tra�
 load 
aused by swit
hing the sender of the RTO o�. Sin
eall MTs keep tra
k of BSs providing the best and the se
ond best signal strength forbetter handover management, the required information is readily available. A simpleex
hange of this information between the BSs and serving MTs is su�
ient to 
al
ulatethe additional tra�
 load arising from a neighbor BS swit
h o�. If the additional tra�
load 
an be a

ommodated, the neighbor BS transmits a CTO message to the sender ofthe RTO. If the additional tra�
 load 
auses the neighbor BS to ex
eed its maximum
apa
ity, a Negative CTO (NCTO) is sent. When the CTO messages are re
eived fromall neighbor BSs or Wait For CTO Timer expires, the BS sends BS_OFF signal to itsneighbors announ
ing that it is going to be swit
hed o� and enters the Swit
hed O�state. Neighbor BSs re
eiving the BS_OFF signal takes the ne
essary pre
autions toa

ept the to-be-handed-over users from the swit
hing o� BS and inserts the BS indexof the to-be-swit
hed-o� BS into a sta
k 
alled Swit
hed O� Neighbor BS Sta
k. Thissta
k is going to be used for load balan
ing of the overloaded BSs later. If a NCTOmessage is re
eived, the BS goes ba
k to the A
tive state and remains swit
hed on.If the load of a parti
ular BS is higher than the maximum tra�
 load 
apa
itywhen the Time Slot Change event is triggered, it pops a BS index from the Swit
hedO� Neighbor BS Sta
k and transmits a BS_ON signal. After the neighbor BS is



94swit
hed on, the overloaded BS hands over some of its load a

ording to the 
urrentSINR measurements. This pro
ess is repeated until present load of the overloaded BSde
reases below the maximum tra�
 load 
apa
ity. Sin
e the Swit
hed O� NeighborBS Sta
k operates with a FIFO me
hanism, ea
h BS keeps tra
k of temporal topology
hanges and able to restore ba
k to the previous 
onditions if their respe
tive tra�
load ex
eeds the maximum 
apa
ity.5.4.6.4. Greedy Dynami
 BS Operation Algorithms. In this se
tion, we propose twogreedy heuristi
s to solve the formulated Green Dynami
 BS Operation Problem. Theresults of these heuristi
s are going to be used during the 
omparative performan
eevaluation in Se
tion 5.5.2. Greedy Dynami
 BS Operation Algorithms (GDOA) ini-tially a
tivates all BSs with their maximum allowed transmission PL. Subsequently,they exhaustively attempt to de
rease the transmission PL of ea
h BS in
luding theoption of to be 
ompletely swit
hed o� in a 
entralized-o�ine manner. However, ea
hiteration is performed unless the QoS requirements su
h as 
overage, a
hievable datarate and BS tra�
 load 
apa
ity are not violated.We noti
ed that the order in whi
h BSs are evaluated for possible power 
on-sumption redu
tion has signi�
ant impa
t on the resulting network 
on�guration. Inorder to obtain an energy e�
ient network topology, an optimum mixture of both pi
oand mi
ro BSs are required where BSs with higher tx power a
t as umbrella 
ells andBSs with lower tx power a
t as hot spots to �ll the 
overage gaps. Therefore, greedilyswit
hing most of the mi
ro BSs at the beginning eliminates the opportunity of swit
h-ing under-loaded pi
o BSs afterwards due to 
overage 
onstraints. Hen
e, we proposedtwo di�erent versions of the same greedy algorithm. The pseudo
ode of the GDOAsversion 1 and 2 is given in Figures 5.12 and 5.13 in order. The �rst version starts withthe mi
ro BSs for possible power saving while the se
ond version starts with the pi
oBSs. The impa
t of 
hanging the BS evaluation order in performan
e evaluation isprovided in Se
tion 5.5.2.



951: A
tivate all BSs with max PL2: for all b ∈ B
M and p ∈ P

M do3: Set PL of mi
ro BS b to minimum possible1 p without violating the QoS 
onstraints4: end for5: for all b ∈ B
P and p ∈ P

P do6: Swit
h pi
o BS b o�2 unless QoS 
onstraints are violated7: end for Figure 5.12. Greedy Dynami
 BS Operation Algorithm v1.1: A
tivate all BSs with max PL2: for all b ∈ B
P and p ∈ P

P do3: Swit
h pi
o BS b o�2 unless QoS 
onstraints are violated4: end for5: for all b ∈ B
M and p ∈ P

M do6: Set PL of mi
ro BS b to minimum possible1 p without violating the QoS 
onstraints7: end for Figure 5.13. Greedy Dynami
 BS Operation Algorithm v2.5.5. Appli
ation S
enario and Performan
e Evaluation5.5.1. Appli
ation S
enario and ParametersIn order to make proper performan
e evaluation of the proposed methods, wewould like to 
reate a test environment as 
lose to the real life 
onditions as possible.Therefore, we sele
ted Taksim, whi
h is one of the Turkey's most famous and 
rowdedpla
es, as the pilot appli
ation area of the proposed green networking methods asmentioned in Se
tion 5.2. In our system model, mobile servi
e providers utilize thelo
ations of the existing BSs for the NGMCNs motivated by a series of reasons led bythe redu
ed installation 
ost. Therefore, we fo
us on deploying additional pi
o BSs asa remedy to a network where mi
ro BSs are already deployed. The aim of the pi
oBS deployment is minimizing the number of deployed BSs while satisfying the QoSrequirements. After the minimum number of required pi
o BSs and their respe
tive1Note that p ∈ P whi
h in
ludes swit
hing a BS o� with p = 02Re
all from Se
tion 5.4.2 that there is no dynami
 tx power adjustment for pi
o BSs in ours
enario where P
M = {0, 1} whi
h represents on and o� states of the pi
o BS



96lo
ations to support the peak tra�
 
onditions are determined, green dynami
 BSoperation te
hniques are proposed to adapt the spatio-temporal tra�
 load variationsand 
reate an energy-aware network. We fo
us on the network topology adaptation andenergy saving by both swit
hing BSs on/o� and adaptively adjusting their transmissionpowers a

ording to the 
urrent tra�
 
onditions.We divided the 
overage area into 17 di�erent pla
e types, and divided the pla
esfurther 1m2 grids. Respe
tive tra�
 loads of the grids are 
al
ulated a

ording to theirtype by using Table 5.3 as a lookup. Although the total number of users lo
ated ina grid is proportional with the tra�
 o

upan
y of the grid, still we need to estimatethe tra�
 load 
ontribution of the users from the servi
e provider's point of view. Forthis reason, we de�ne a new parameter 
alled User Tra�
 Load Fa
tor to estimate theaverage tra�
 load 
ontribution of the subs
ribers. In other words, User Tra�
 LoadFa
tor represents the per
entage of the users a
tively getting servi
e from a parti
ularoperator at a parti
ular instant. Considering numerous mobile 
onsumer behaviorreports [97�100℄ and subs
riber numbers of ea
h servi
e provider in Turkey, we set theUser Tra�
 Load Fa
tor as 1%. However, this value is merely a parameter whi
h 
anbe easily 
hanged as required.Although we used pi
o and mi
ro BSs in our test s
enarios, our model 
an a
-
ommodate as many types of BSs as required. As QoS metri
s, the resulting networktopologies of the proposed green pi
o BS deployment and green dynami
 BS operationte
hniques should satisfy the minimum aggregate data rate requirements of ea
h gridand 
over at least 99% of the area at all times. Important parameters used in theappli
ation s
enario are summarized in Table 5.8. 10 di�erent test 
ases were 
reatedrandomly for the sake of varian
e 
ontrol and the average of the results are presented.5.5.2. Performan
e EvaluationPerforman
e of our proposed green pi
o BS deployment and dynami
 operationmethods are both evaluated by using real-life-s
ale test 
ases. For the green pi
o BSdeployment, we 
ompared our method with a greedy algorithm and a re
ently proposed
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Table 5.8. S
enario parameters.Parameter ValueCoverage Area 800 × 680m2Grid Area 1× 1m2# Pla
e Types 17Mi
ro BS Tx PLs 3 - 8 - 13 - 18 - 24 WattPi
o BS Tx Power 2 Watt# Time Slots in a Day 24Min. Coverage Ratio 99%Min. SINR 6 dBOrthogonality Loss Fa
tor 0.5Mi
ro BS PA E�
ien
y 22.8%Pi
o BS PA E�
ien
y 6.7%# Candidate pi
o BS 300Deployment Lo
ationsUser Tra�
 Load Fa
tor 1%


ompetitor energy-aware 
ellular network deployment te
hnique [30℄. In [30℄, authorspropose a network energy 
onsumption minimization framework whi
h jointly optimizesthe BS density and BS transmission power under 
overage performan
e 
onstraints.They utilize area power 
onsumption (W/m2) as the energy e�
ien
y metri
.For the green dynami
 BS operation, we 
ompared the results of our methodswith the 
onventional stati
 operation, two 
entralized greedy heuristi
s, a 
ompetitorgreen BS operation algorithm 
alled SWES [15℄ and an optimization tool IBM ILOGCPLEX [81℄. However, �nding the exa
t optimum solutions with CPLEX were not pos-sible within reasonable amount of 
omputation times. Therefore, we set a 3-hours runtime limit and give the best results found until the limit along with their gap betweenthe best integer obje
tive and the obje
tive of the best node remaining. On the other



98Table 5.10. Comparison of 
omputational 
omplexity and average run times.Complexity Average Complexity Fun
tionRun TimeGreen Pi
o BS Deployment Alg. O(N4) 2h 27m NBM

.NXP

.(NG)2Greedy Pi
o BS Deployment Alg. O(N4) 1h 22m NBM

.NXP

.(NG)2Peng et al. Alg. [30℄ O(N4) 2h 46m NBM

.NXP

.(NG)2Centralized Dynami
 Operation Alg. O(N6) 7h 43m NT .NBM

.NBP

.NPM

.(NG)2Greedy Dynami
 Operation Alg. v1
O(N6)

4h 52m
NT .NBM

.NBP

.NPM

.(NG)2Greedy Dynami
 Operation Alg. v2 5h 10mDistributed Dynami
 Operation Alg. O(N) N/A NTSWES [15℄ O(N) N/A NTCPLEX N/A 144h (�xed) N/Ahand, the other 
ompetitor SWES is an online and hybrid (distributed/
entralized)algorithm whi
h aims to redu
e energy 
onsumption of the network by swit
hing BSson/o�. SWES swit
hes o� BSs one by one, taking the additional load in
rementsbrought to its neighboring BSs into a

ount. Although the network impa
t of BSon/o� transitions are 
al
ulated in a distributed manner, SWES still requires a 
entral
ontroller for the implementation of the topology adjustments.The results presented in this se
tion are 
olle
ted from a 
omputer with an AMDFX 8-
ore 4 Ghz pro
essor and 16 GB of memory. Proposed methods are implementedin Mi
rosoft Visual Studio 2008 [92℄ environment with more than ten thousand linesof C++ 
ode. The total time spent to 
olle
t the results of 10 repetitions for ea
hmethod is approximately ten days.The 
omputational 
omplexity, average run times, and parameters e�e
ting both
omputational and spa
e 
omplexity of the proposed and 
ompetitor methods are givenin Table 5.10. The 
omputational 
omplexity of all investigated te
hniques are poly-nomial. For the dynami
 operation algorithms, presented run times 
over two separateexe
ution of the same algorithm with di�erent tra�
 load 
on�gurations for weekdayand weekend. Therefore, it is 
onvenient to say that a single exe
ution takes approxi-mately half of the given run times. For CPLEX, we set a 3-hours run time limit for ea
h



99time slot whi
h in turn results in total 144h runtime (for ea
h time slot for weekdayand weekend).Pi
o BS deployment algorithms are the fastest methods sin
e they are exe
utedonly on
e at the deployment phase and there is no time dimension in the e�e
tingparameters as opposed to the dynami
 BS operation algorithms. Among them, greedypi
o BS deployment algorithm is the fastest. Our proposed Green Pi
o BS Deploymentheuristi
 and Peng et al.'s Algorithm take approximately two and a half hours to�nalize. On the other hand, dynami
 BS operation algorithms take longer than pi
oBS deployment algorithms. Greedy algorithms obtain similar run times as expe
tedsin
e they are identi
al ex
ept their order of BS evaluation. Centralized Dynami
BS Operation Algorithm requires more than seven hours to �nd an energy e�
ientnetwork topology for a 
y
le of one week. Lastly, we set a 3-hours run time limit forthe optimization tool due to high 
omplexity and give the best results found until thelimit along with their gap value.For the Green Pi
o BS Deployment Problem, our obje
tive fun
tion given inEquation 5.1 is to minimize the number of deployed pi
o BSs to a

ommodate thepeak tra�
 
onditions without violating the user 
overage and BS 
apa
ity 
onstraints.A

ording to our appli
ation s
enario simulations based on the parameters given inTable 5.8; an average of 96, 100 and 138 pi
o BSs are deployed by the Green Pi
oBS Deployment Algorithm, Peng et al.'s Algorithm and Greedy Pi
o BS DeploymentAlgorithm respe
tively.In Figure 5.14, 
omparative pi
o BS power 
onsumption during peak tra�
 isgiven with respe
t to number of 
andidate pi
o BS deployment lo
ations NXP . Ourproposed Green Pi
o BS Deployment Algorithm and Peng et al.'s Algorithm a
hievevery similar power savings while greedy algorithm performs worse. For fewer NXP ,the resulting topologies are infeasible sin
e the user 
overage and the BS 
apa
ity 
on-straints are violated even though a pi
o BS is deployed in every 
andidate lo
ation.As the number of 
andidate pi
o BS deployment lo
ations in
reases, pi
o BS deploy-ment algorithms are able to a
hieve more power-e�
ient network 
on�gurations. How-
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Figure 5.14. Comparative pi
o BS power 
onsumption during peak tra�
ever, the additional power savings be
ome negligible when 
ompared to the introdu
ed
omplexity for our proposed Green Pi
o BS Deployment Algorithm and Peng et al.'sAlgorithm for NXP

> 300. Although our Green Pi
o BS Deployment Algorithm andPeng et al.'s Algorithm obtain similar power savings without violating the user 
over-age and BS 
apa
ity 
onstraints, it is 
onvenient to say that our algorithm provideshigher a
hievable data rates sin
e it utilizes the ASE as performan
e metri
.In this se
tion, we evaluate the 
omparative performan
e of our proposed greendynami
 BS operation te
hniques. Figure 5.15(a) depi
ts the 
omparative power 
on-sumptions on weekdays. It is observed that the power expenditure trends of all methodsfollow a similar pattern with the tra�
 load given in Figure 5.3. Proposed algorithmsdynami
ally respond to the tra�
 load 
hanges and try to save energy without violatingthe QoS requirements of the subs
ribers. The reason behind the energy expenditure�u
tuations in stati
 operation or �no green method applied s
enario" is the BS power
onsumption model introdu
ed in Se
tion 5.4.2. Sin
e the 
onsumed power in a BSis 
orrelated with its respe
tive tra�
 load, the total network power 
onsumption issubje
t to 
hange although no dynami
 topology adjustment is being applied. Theo�ine-
entralized algorithm saves the largest amount of power whereas the online-distributed algorithm, SWES and GDOA v1 a
hieve nearly the same performan
e. Onthe other hand, although GDOA v2 saves signi�
ant amount of power with respe
t to
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CPLEX(b) Weekend.Figure 5.15. Comparative power 
onsumption throughout a day.the stati
 operation, this saving is less than the other proposed methods. By analyzingthe results of the optimization tool and their average gap values, we 
an argue thatthe o�ine-
entralized algorithm a
hieves energy-e�
ient topologies very 
lose to theoptimum.Similar to the weekday results, weekend power 
onsumption �gures are propor-tional to the tra�
 load as observed in Figure 5.15(b). However, this time, the gapbetween the stati
 operation and the green methods is narrower due to the high tra�
load during weekends. The o�ine-
entralized algorithm again a
hieves more power e�-
ient results. SWES, Online-distributed algorithm, GDOA v1 and v2 follow the o�ine-
entralized algorithm in order. The o�ine-
entralized algorithm has both enough timeand 
omputational power to make 
omplex resour
e management de
isions. However,it requires a 
entral entity for exe
ution and does not respond well to unexpe
tedtra�
 variations sin
e the topology adjustment de
isions are made beforehand. Al-though the online-distributed algorithm makes lo
al de
isions with limited number ofobservations, it obtains quite 
ompetitive results with respe
t to the other 
entralizedalgorithms whi
h 
an take sophisti
ated network adjustment a
tions by utilizing plentyof network statisti
s. The online-distributed algorithm and SWES a
hieves similar re-sults. However, SWES performs slightly better sin
e it 
al
ulates the impa
t of BStransitions lo
ally while makes the implementation de
isions on a 
ental 
ontroller. Onthe other hand, the online-distributed algorithm does not require a 
entral 
ontroller.
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Figure 5.16. Comparative power saving ratio on weekday and weekend.Another observation is that the average gap between the best integer obje
tive and theobje
tive of the best node remaining is smaller during low tra�
 
onditions whereasthe gap in
reases during high tra�
 
onditions.Comparative power saving ratio on a weekday and weekend is given in Figure 5.16.In fa
t, the results are obtained by extra
ting the integral of the stati
 operationline from the integral of respe
tive green method lines given in Figures 5.15(a) and5.15(b) with an interval of [0,23℄. Hen
e, this �gure is also an overall visualization ofhow e�
ient ea
h proposed method is in terms of power saving. O�ine-
entralizedalgorithm a
hieves more than 50% power saving on weekdays and 40% on weekends.On the other hand, SWES, Online-distributed algorithm and GDOA v1 a
hieves similarpower saving ratios around 45% on weekday and 33% on weekend. As expe
ted, theoverall power saving ratios for weekend are 
onsiderably less than the weekday due too�ered tra�
 loads depi
ted in Figure 5.3.In Table 5.11; weekly, monthly and annual energy 
ost savings are given. The ele
-tri
ity pri
es for peak (5pm-10pm), morning (6am-5pm) and o�-peak (10pm-6am) timesare 41.61, 23.37 and 10.21 kurus/kWh (0,143, 0,081 and 0,035 $/kWh) respe
tively in-
luding the 22% tax for the industrial 
onsumers in 
omplian
e with the TEDAS [83℄,Turkey's governmental ele
tri
ity retailer 
ompany. City-wide savings are 
al
ulated by



103Table 5.11. Comparative energy 
ost saving.Weekly($) Monthly($) Annual($)Test Case City-wide Country-wide Country-widewith CECentralized Algorithm 25.6 110 1,321 3,726,694 13,788,769 39,160,104Distributed Algorithm 21.3 92 1,100 3,101,602 11,475,927 32,591,634Greedy v1 20.6 89 1,062 2,995,989 11,085,161 31,481,857Greedy v2 15.1 65 783 2,208,119 8,170,040 23,202,914SWES [15℄ 22.3 96 1,150 3,243,116 11,999,531 34,078,669CPLEX 27.8 119 1,436 4,050, 512 14,986,895 42,562,783
omparing parameters of the test 
ase (0.5 km2 area and 136,346 average population)with the total urban surfa
e area and population of Istanbul [101℄ (2761 km2 urbanarea (out of total 5370 km2) and 14.5 million inhabitants). Country-wide savings arealso s
aled similarly.Proposed green dynami
 BS operation te
hniques dramati
ally de
rease the en-ergy expenditures of the servi
e providers as given in Table 5.11. A

ording to oursimulations, the 
entralized algorithm 
an a
hieve approximately 3.7 million $ 
ostsavings for Istanbul and 13.7 million $ for Turkey annually. When the CE e�e
t intro-du
ed in Se
tion 4.5.2 is taken into a

ount, the a
tual amount of 
ost savings be
omeeven more signi�
ant.Due to its impa
t on the re
eived signal strength and MT battery life, we alsoinvestigated the BS-User distan
e in our test 
ases. Figure 5.17 depi
ts the average BS-user distan
e throughout the day on weekdays and weekends. Sin
e the deployed BSdensity in the Taksim area augmented with the pi
o BSs is very high, the average BS-User distan
e is slightly more than 20m when all of the BSs are a
tive. However, whenthe green networking methods are applied and redundant BSs are started to be swit
hedo�, the average BS-user distan
e is also starting to in
rease. The average distan
ebetween BSs and users doubles when the o�ine-
entralized algorithm is applied withrespe
t to the stati
 operation. The reason for observing high values during low-tra�

onditions and low values during high-tra�
 
onditions is related with the number of
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(b) Weekend.Figure 5.17. Average BS-user distan
e.a
tive BSs. However, the �u
tuations are not as mu
h as the ones observed in Figure 5.3be
ause we 
arefully align the pi
o BS lo
ations with the K-Means 
lustering algorithma

ording to the tra�
 hot spots prior to the deployment. Similar to the o�ine-
entralized algorithm, we also observe higher average BS-user distan
es for CPLEXsin
e it �nds the minimum possible set of BSs with respe
t to the other methods.Another interesting observation is the relatively high BS-User distan
e for the GDOAv2. Sin
e GDOA v2 �rst attempts to swit
h o� the redundant pi
o BSs as long asthe 
overage and user QoS requirements are satis�ed, most of the remaining a
tiveBSs are mi
ro BSs. Fewer mi
ro BSs are su�
ient to provide those requirements sin
ethey have longer 
overage ranges. A

ordingly, the average BS-User distan
e in
reaseswhen few mi
ro BSs are a
tive. Yet another importan
e of this metri
 is its e�e
t onthe MT power 
onsumption. As the distan
e between the MTs and the serving BSsin
reases, MTs are obliged to in
rease their transmission power to 
ommuni
ate withthe distant BSs. As investigated in Se
tion 2.5, this results in faster depletion of theMT battery [61,62℄. However, in a network with very high BS density su
h as our 
ase,we assume that the e�e
t of the BS-User distan
e on the MT power 
onsumption isnegligible.The average BS utilization on weekdays and weekends are depi
ted in Figure 5.18.In perfe
t 
onditions, it is desired to observe a straight horizontal line in this �gureregardless of the 
hanging tra�
 
onditions. This horizontal line means that the applied
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CPLEX(b) Weekend.Figure 5.18. Average BS utilization.green methods keep the tra�
 loads of a
tive BSs in a desired level and hen
e, in
reasethe overall utilization of the network resour
es. As observed in the �gures, espe
iallyin Figure 5.18(a), there is a de
rease in the average BS utilization during night time.This under-utilization is stemming from the minimum 
overage ratio 
onstraint wheresome BSs have to be swit
hed on, although the tra�
 demand is low, in order toprovide the required 
overage ratio over the whole area. This yields to under-utilizeda
tive BSs for the sake of adequate 
overage. In the previous �gures, we observed thatthe o�ine-
entralized algorithm adjusts to the 
hanging tra�
 
onditions better thanthe other methods ex
ept CPLEX and saves more power. As a result of this fa
t,the o�ine-
entralized algorithm performs better with an average of 57% and 60% BSutilization on weekdays and weekends whi
h are 3.35 and 2.6 times higher than thestati
 operation. On the other hand, CPLEX a
hieves approximately 60% and 63% BSutilization on weekdays and weekends. For all methods, in
luding the stati
 operation,weekend BS utilizations are slightly higher than that of the weekdays. The 
ause ofthis observation is simply the higher tra�
 load in weekends as seen in Figure 5.3.In Figures 5.19 and 5.20, o

upan
y of the 
overage area on weekdays and week-ends for time slots 10:00, 20:00 and 02:00 are given in order along with their a
tive BS
on�gurations obtained from the O�ine-
entralized Dynami
 BS Operation Algorithm.The heat maps represent the user density per m2 whereas their respe
tive BS deploy-ment 
on�gurations depi
t the lo
ation, type and tx power level of the swit
hed on



106BSs. It is 
lear in the 
olor-
oded user density maps that there are signi�
ant amountof both spatial and temporal user density variations. S
hools and o�
es are 
rowdedin the morning; pedestrian roads, shopping areas and restaurants are 
rowded in theevening; bars and night 
lubs are 
rowded at night. As expe
ted, the o�ine-
entralizedDynami
 BS Operation Algorithm adjusts the network topology to the 
hanging traf-�
 demand 
onditions by swit
hing BSs on/o� and alternating BS tx power levels.The BS 
on
entration on yellow-red 
oded areas is a 
lear demonstration of how greentra�
-aware topology management framework operates.



Figure 5.19. User density heat map and 
orresponding a
tive BS status for time slot 10:00-20:00-02:00 on a weekday.



Figure 5.20. User density heat map and 
orresponding a
tive BS status for time slot 10:00-20:00-02:00 at weekend.



1095.6. Con
lusionIn this 
hapter, we 
on
entrated on green networking methodologies for NGM-CNs. Unlike our previous proposals for the CCNs and PSCNs, we adopt a holisti
approa
h and take all of the design, deployment and operation phases into a

ountsin
e NGMCNs are not fully deployed and operational yet. We started with mappingpro
ess of Taksim as our pilot appli
ation area in order to 
reate a spatio-temporal userdensity. A

ording to the extra
ted user density, we made an estimation of the tra�
load and used this information to install additional pi
o BSs on top of the existinginfrastru
ture to a

ommodate the peak tra�
 
onditions. The proposed green pi
oBS deployment algorithm redu
es both OPEX and CAPEX of the servi
e providersby deploying minimum number of pi
o BSs while maintaining an a

eptable level ofQoS over the whole 
overage area. Lastly, we propose an o�ine-
entralized and anonline-distributed green dynami
 BS operation algorithms for power saving during theoperation phase. The o�ine-
entralized algorithm has both enough time and 
ompu-tational power to make 
omplex resour
e management de
isions. However, it requiresa 
entral entity for exe
ution and does not respond well to unexpe
ted tra�
 varia-tions sin
e topology adjustment de
isions are made beforehand. On the other hand, theonline-distributed algorithmmakes topology adjustment de
isions during operation ande�
iently adapts to the unexpe
ted tra�
 load 
hanges. It also s
ales better than theo�ine-
entralized algorithm sin
e BSs determine their own status autonomously withtheir lo
al observations in a distributed manner. The drawba
k of online-distributed al-gorithm is the additional signaling overhead introdu
ed by requirement of 
oordinationwith the neighboring BSs. We also solve the Green Dynami
 BS Operation problemwith CPLEX, a 
ommer
ial optimization tool, to give an insight about the e�
ien
yof our algorithms with respe
t to the exa
t optimum solutions. Although we are ableto use CPLEX for our test 
ase s
enario, low-
omplexity heuristi
s are still requiredfor large realisti
 instan
es of the problem. Through a realisti
 test 
ase s
enario, weshowed that both of our green BS deployment and dynami
 operation methods a
hievesigni�
ant power savings with respe
t to the stati
 operation, greedy heuristi
s andpreviously proposed two 
ompetitor algorithms [15℄ [30℄.



1106. CONCLUSION
In this thesis, we fo
used on novel green networking methodologies for three dif-ferent 
ellular network types; namely CCNs, PSCNs and NGMCNs. Unlike majority ofthe existing studies in the literature, we addressed the energy saving problem through(i) green BS design and deployment (ii) adaptive BS swit
hing on/o� and (iii) adap-tive BS transmission power adjustment a

ording to the present tra�
 
onditions inthe 
overage area. However, the 
hallenge is to de
rease the energy expenditure whilealways guaranteeing an a

eptable QoS level. Therefore, novel linear and nonlinearprogramming models are formulated to �nd the best possible BS topology whi
h mini-mizes the energy 
onsumption while satisfying the 
ertain servi
e quality requirementsof the subs
ribers.We started by surveying the previously proposed green networking studies in theliterature. Our survey 
overs not only dynami
 resour
e management s
hemes but alsoenergy e�
ient BS deployment and 
ooperation, renewable energy resour
es and energye�
ien
y in MTs. We also present an extensive taxonomy of the surveyed strategiesfor better understanding.For the CCNs, we 
on
entrated on saving energy by adaptively swit
hing the BSsof wireless 
ellular a

ess networks on and o� a

ording to the 
urrent tra�
 
onditions.Moreover, we also adopted dynami
 transmission power adjustment with the help ofhigh-e�
ien
y power ampli�ers. We formulate a novel NLP model for the GDBPproblem to �nd the best possible BS topology whi
h minimizes the energy 
onsumptionwhile satisfying the 
ommuni
ation demands of the users. We then proposed a heuristi
to solve that problem and 
ompare our results with the results of a non-
ommer
ialoptimization software and numerous MC experiments. It is shown that our greendynami
 BS planning s
heme saves signi�
ant amount of energy.For the PSCNs, our fo
us was on 
reating an energy-aware network by adap-tively swit
hing the BSs of heterogeneous 
ellular networks on/o� and by adjusting



111the BS transmission power levels. Di�erent from the CCNs, we also take the e�e
tof interferen
e into a

ount to 
ome up with more realisti
 green networking meth-ods. We formulate a novel LP model for the TAM problem to �nd the best possibleenergy-aware BS topology without violating the QoS requirements from the subs
riberpoint of view. Although small instan
es of the TAM problem 
an be solved by theoptimization tools, large realisti
 size problems are quite di�
ult to be handled due totheir prohibitive spa
e and 
omputational 
omplexity. Therefore, we propose a novelheuristi
 to solve the large-s
ale instan
es of the formulated problem and 
ompare ourresults with the results of two previously proposed methods [13℄ [14℄, a greedy heuris-ti
 and a 
ommer
ial optimization tool. It is shown that the proposed TAM s
hemehelps to maintain an energy-aware network and saves signi�
ant amount of energy byadjusting the network topology a

ording to the present tra�
 
onditions adaptively.Finally for the NGMCNs, our goal was to derive e�
ient green network design,deployment and operation te
hniques for NGMCNs. We take the advantage of stillongoing standardization pro
ess and la
k of fully deployed and operational infrastru
-ture by adopting a holisti
 approa
h whi
h en
ompasses not only the operation phase,but also design and deployment phases. We divided this portion of thesis into threepa
kages. In the �rst pa
kage, we 
reated a detailed map of the pilot appli
ation areaand obtain a spatio-temporal user density estimation. A

ording to this estimation, wedesigned and deployed additional pi
o BSs as a remedy on top of the existing infras-tru
ture to a

ommodate the peak tra�
 
onditions in the se
ond pa
kage. Lastly, weproposed green dynami
 BS operation te
hniques to minimize the overall energy 
on-sumption of the network 
onsisting of heterogeneous elements. Unlike proposed meth-ods for CCNs and PSCNs in the previous 
hapters, we proposed an o�ine-
entralizedand online-distributed version of the green dynami
 BS operation algorithm. Extensivesimulation runs based on 
olle
ted data from the pilot appli
ation area demonstratedsigni�
ant power savings 
ompared to 
onventional stati
 operation, greedy heuristi
s,CPLEX and previously proposed two 
ompetitor algorithms [15℄ [30℄.In 
on
lusion, making the mobile networks green 
ould not only have a positiveimpa
t on saving the energy, but also help to a
hieve a long-term pro�tability of mobile



112servi
e providers and sustainability of the environment. In
reasing energy pri
es andenvironmental awareness has led the 
ellular network operators to redu
e their OPEXand CO2 footprints as well. Therefore, we need novel green networking te
hniquesto minimize the overall network power 
onsumption. In this thesis, we addressed the
hallenge of de
reasing power 
onsumption while maintaining an a

eptable level ofservi
e quality. In summary, we proposed green BS design, deployment and dynami
operation te
hniques for CCNs, PSCNs and NGMCNs along with their mathemati
aloptimization models. Through extensive 
omparative performan
e evaluations, it isshown that the proposed green networking methods help to maintain an energy-awarenetwork and a
hieve signi�
ant amount of power savings.As future work, we are planning to propose e�
ient te
hniques to alleviate thehando� overhead stemming from frequent topology 
hanges. We believe that the inte-gration of smart user-BS asso
iation rules to our dynami
 BS operation te
hniques mayredu
e the number of hando� requests. Another promising resear
h issue is utilizingmultiple network a

ess interfa
es of MTs su
h as Bluetooth and Wi-Fi for transmit-ting their data pa
kets to the BSs. This kind of inter-network 
ooperation may redu
ethe overall BS density and up time whi
h in turn results in more energy e�
ient net-works. Also, integrating the 
apability of using dire
tional antennas into our greennetworking methods 
an improve the energy saving signi�
antly. Lastly, we believethat non-te
hni
al fa
tors su
h as pri
ing, marketing strategies, willingness to 
ooper-ate among servi
e providers and law establishments are key fa
tors in the su

ess ofthe green mobile networking te
hnology.
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