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ABSTRACT

GREEN NETWORKING: FROM CONVENTIONAL TO
NEXT GENERATION HETEROGENEOUS CELLULAR
NETWORKS

Increasing energy costs drive the telecommunication service providers to become
highly interested in energy efficient operations. The exponential growth in mobile data
exchange which is further augmented by the rapid proliferation of smart phones in-
creases the operational expenses of the cellular network operators significantly. Also,
ecologists state that the primary triggering factor of the global warming is adding ex-
cessive amounts of greenhouse gases to the atmosphere and 72% of the totally emitted
greenhouse gases is carbon dioxide (COs). Increasing environmental awareness com-
bined with the high energy prices has driven the network operators to reduce their CO,
footprint by adopting energy efficient green methods. In this thesis, our main focus
is to save energy in three types of wireless cellular networks (i) Conventional Cellular
Networks (ii) Packet-switched Cellular Networks and (iii) Next Generation Multi-tier
Cellular Networks. We formulate novel mathematical optimization problems for each
of the listed cellular networks to find the best possible topology which minimizes the
overall power consumption of the network while satisfying a certain quality of service
level. Our decision variables in the optimization models are switching base stations
on/off and adaptively adjusting their transmission power levels as well as deploying
additional pico base stations as a remedy according to the present traffic conditions.
Although the optimization tools provide the optimum solutions for smaller instances
of the problem, we propose novel heuristics to solve large-scale realistic instances due
to their prohibitive complexity. Results of extensive simulations, which are designed as
close to real life conditions as possible, show that the proposed green methods help to
maintain an energy-aware network and save significant amount of energy by adjusting

the network topology to the current traffic conditions adaptively.



OZET

GELENEKSEL AGLARDAN YENI NESIL COKTUREL
HUCRESEL AGLARA YESIL ILETISIM

Artan enerji maliyetleri nedeniyle, telekomiinikasyon servis saglayicilarinin enerji
etkin yontemlere olan ilgisi her gecen giin artmaktadir. Telsiz veri iletisimi ve akilli
telefon kullanim oranlarinin hizla artmasi, cep telefonu operatorlerinin isletme maliyet-
lerini de bir hayli arttirmigtir. Bunlarin yani sira, cevrebilimciler tarafindan kiiresel
isinmanin baglica nedeninin atmosfere fazla miktarda salinan sera gazi oldugu ve sali-
nan sera gazinin %72’sinin karbondioksit (CO3) oldugu belirtilmektedir. Yiiksek enerji
maliyetleri ve artan cevresel farkindalik, cep telefonu operatorlerini enerji etkin yesil
yontemler kullanarak CO, ayak izlerini ve enerji harcamalarini azaltmaya itmigtir.
Bu tezde, (i) klasik hiicresel aglar (ii) paket anahtarlamali ¢oktiirel hiicresel aglar ve
(iii) yeni nesil ¢cok katmanh hiicresel aglar olmak iizere ii¢ farkh telsiz ag tipi igin
enerji tasarruf yontemleri onerilmektedir. Siralanan her bir ag tipi i¢in toplam enerji
tiiketimini en aza indirmeyi amaclayan, bunu yaparken de belirli bir servis kalitesini
saglayan matematiksel eniyileme modelleri gelistirilmigtir. Eniyileme modellerindeki
karar degiskenleri ise, mevcut veri trafigi yogunluguna gore yeni baz istasyonlar: yer-
lestirmek, baz istasyonlarini acip kapatmak ve yayim giiclerini degistirmektir. Mevcut
eniyileme araclari kiiciik olgekli problemler icin kesin sonuclar iiretse de, daha kar-
magik biiyiik ol¢ekli problemlerin ¢6ziimii i¢in yeni sezgisel algoritmalar tasarlanmigtir.
Gergek hayat kogullarina miimkiin oldugu kadar yakin 6rneklerle yapilan bagarim deger-
lendirmesi sonuclarina gore, 6nerilen yesil yontemlerin ag topolojisini mevcut veri trafigi
kosullarina gore uyarlayarak enerji farkindalikl aglar yarattigi ve 6nemli miktarda giic

tasarrufu sagladigl gosterilmigtir.
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1. INTRODUCTION

Increasing energy costs force the telecommunication service providers to deliver
energy efficient operations. The exponential growth in mobile data exchange rates |2]
which is further augmented by the rapid proliferation of smart phones significantly
increases the Operational Expenses (OPEX) of the cellular network operators. Also,
ecologists state that the primary triggering factor of the global warming is adding ex-
cessive amounts of greenhouse gases to the atmosphere and 72% of the totally emitted
greenhouse gases is carbon dioxide (COs) [3|. Information and communication tech-
nology (ICT) industry produces 2% of the overall CO5 emission throughout the world
by consuming 3% of the worldwide energy [4,5]. When the exponential growth in data
exchange [2] is considered, it is clear that the ICT sector will become one of the major
CO, emission sources within the next few decades. Therefore, developing and applying
energy-efficient green methods in the ICT industry and reducing its CO, footprint are

now more essential than ever.

Since wireless cellular access networks constitute a significant portion of the ICT
industry [6], it would not be wrong to think that measures to be taken in this field can
significantly contribute to make the overall communication industry greener. Although
wireless cellular access networks consist of two parts, which are radio and the core,
vast majority of the energy is consumed by the radio segment [7,8|. Therefore, it is
considered that Base Stations (BSs) which are the integral part of the radio segment
are the right place to start saving energy [9].

Parallel to the ubiquitous coverage demand and growing needs of the subscribers,
cellular network operators increase their Capital Expenses (CAPEX) and invest more
money to deploy large number of BSs to provide better service quality in terms of data
rate, coverage, call blocking and dropping probabilities. Consequently, the BS density
increases and yields to a significant amount of BS redundancy and electromagnetic
pollution, especially in crowded urban areas. Figure 1.1 shows the BS location and

coverage redundancy of a single operator from Sydney Central Business District, Aus-
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Figure 1.1. Base station location and coverage redundancy of a single operator based

on the RSSI value from Sydney Central Business District, Australia.

tralia. This BS information on the map is extracted from a website [10] which makes
use of the Australian Communications and Media Authority’s RadCom registry. The
area covered in the map is 1.5 x 1.5 km? and has a total of 139 BSs. As suggested in
IEEE 802.16m Evaluation Methodology Document [11], the coverage map is created
by using the COST-Hata [12| metropolitan area propagation model with 2000 Mhz
frequency, 1.5 and 15 meters mobile station and BS antenna heights respectively. Each
BS is transmitting with a power of 46 dBm, 17 dBi antenna gain and minimum ac-
ceptable Received Signal Strength Indicator (RSSI) at the receiver is assumed to be
-90 dBm.

In order to fulfill the requirements of the users regardless of time and space,
network operators usually place BSs to support the peak traffic conditions. Therefore,
BSs are under-utilized during off-peak times such as late night hours or holidays. A
real traffic profile collected from a central BS and four neighboring BSs during one
week is given in Figure 1.2 [1]. As expected, the traffic load decreases dramatically
during the late night hours. Yet, low traffic may also be observed all day long during
weekends or holidays in particular places such as business or trade centers. Hence,
adoption of green traffic-aware topology management schemes can save large amounts
of energy by reducing the redundancy and decrease the OPEX of the service providers

significantly. Moreover, reduction of the energy consumption also helps to slow down
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Figure 1.2. Normalized traffic profile of a central (top) and four neighboring (bottom)
BSs during one week [1].

the global warming process by mitigating the CO5 emission to the atmosphere.

This thesis addresses the above mentioned issues by proposing efficient green cel-
lular network deployment and operation methods for three different cellular network
types: (i) Conventional Cellular Networks (CCNs) (ii) Packet-Switched Cellular Net-
works (PSCNs) (iii) Next-Generation Multi-Tier Cellular Networks (NGMCNs). In
the deployment phase, we analyze the traffic load pattern of the coverage area and
focus on deploying minimum amount of pico BSs as a remedy. On top of that, we try
to minimize the total power consumption of the network during operation phase by
switching BSs on/off and adaptively adjusting their transmission powers according to
the present traffic conditions. Through extensive real-life-scale simulation runs, it is
shown that the proposed green networking methods help to maintain an energy-aware

network and achieve significant amount of power savings.

1.1. Research Overview and Key Contributions

In this thesis, we concentrate on saving energy by (i) green BS design and de-
ployment (ii) adaptive BS switching on/off (iii) adaptive BS transmission power ad-
justment according to the present traffic conditions in the coverage area. Particulary,

we focus on conventional Time Division Multiple Access (TDMA) / Frequency Division



Multiple Access (FDMA) cellular networks, Wideband Code Division Multiple Access
(W-CDMA) packet-switched cellular networks and Evolved Universal Terrestrial Ra-
dio Access (E-UTRA) based next generation cellular networks in order. However, the
challenge is to decrease the energy expenditure while always guaranteeing an accept-
able Quality of Service (QoS) level. To address this, we formulate novel linear and
nonlinear programming models to find the best possible BS topology which minimizes
the energy consumption while satisfying the certain service quality requirements of the
subscribers. Although small instances of the derived problems can be solved by the
optimization tools, large realistic size problems are quite difficult to be handled due
to their prohibitive space and computational complexity. Therefore, we also propose
novel heuristics to solve the large-scale instances of the formulated problem within
reasonable time durations. In order to make accurate performance evaluation of our
techniques, we use real-life network topologies and traffic data in our simulations, and

compare our results with the previously proposed methods in the literature [13-15].

Main contributions of this thesis can be summarized as follows:

e Integration of Dynamic Transmission Power Adjustment: Unlike majority of the
previous studies [15-18], where only BS on/off switching is utilized, we also take
the dynamic power adjustment capability of the current BSs technology into
account in order to create more energy-aware network topologies by defining a
set of transmission power levels. Using different transmission power levels, we
have the opportunity to dynamically change the coverage of the BSs according
to the present traffic conditions.

e Nowel Optimization Models: Detailed mathematical optimization models are for-
mulated to minimize the total power consumption while satisfying a certain level
of QoS. By using the derived models, we are able to obtain optimum results by
using the optimization tools for the small instances of the problem.

e Real-life Scenarios: We justify our proposed methods by applying them to scenar-
ios as close to real life conditions as possible. For this purpose Maslak and Taksim

regions of Istanbul are used as a test case. Furthermore, we created a detailed



map of the Taksim area for better estimation of spatio-temporal user density. To
the best of our knowledge, this kind of detailed user density estimation study of
a particular area is one of its kind in the literature.

e Nowel Heuristics: To overcome the prohibitive complexity of the formulated op-
timization problems, especially for the real-life scale large instances, fast and
effective heuristics are proposed. They can be also considered as operating algo-
rithms of the proposed methods to achieve the mentioned power savings in their
respective performance evaluation sections.

e Deployment of Pico BSs as a Remedy: For the NGMCNs, we propose deploying
additional pico BSs on top of the existing network infrastructure to meet the
increasing data exchange demands of the subscribers. Therefore, our green net-
working strategy is not limited to dynamic adjustment only, but also encompasses

the network design and BS deployment phases.

1.2. Thesis Outline

Chapter 2 presents a review of the state-of-the-art green networking techniques

including a taxonomy of the previously proposed methods in the literature.

Chapter 3 describes the proposed green techniques for power saving in Hybrid
TDMA /FDMA based conventional cellular networks. This chapter also elaborates the

proper application areas of the derived green networking methods.

In Chapter 4, we discuss green W-CDMA based packet-switched cellular networks
by taking the effect of interference into account. After we present the system model,
assumptions and the problem formulation, we explain the proposed technique to min-
imize the power consumption. We also give a comparative performance evaluation of

our method on a test case scenario based on Maslak district of Istanbul.

In Chapter 5, we present green BS deployment and operation strategies for E-
UTRA based next-generation multi-tier cellular networks such as LTE-Advanced. Since

NGMCNs are not fully deployed and operational for the time being, we also take



the network design phase into account and try to keep the network green during the
operation phase. In this chapter, we also create a detailed map of Taksim as the
pilot application area and make a spatio-temporal user density estimation. We then
propose an energy-aware pico BS deployment method as well as three different dynamic

topology management techniques.

Chapter 6 draws the conclusions of the thesis with a summary of our contributions

together with the possible research directions to explore.



2. STATE OF THE ART ON GREEN NETWORKING

In recent years, the advent of smart phones, tablets and laptops has enabled the
widespread use of bandwidth-hungry applications, which in turn led an immense growth
in mobile data usage. To accommodate increasing mobile data exchange requirements
of the subscribers, network operators have started to deploy denser access networks per
unit area, thus vastly increasing the energy consumption. Growing energy consumption
with increasing energy costs coupled with its adverse impact on the environment have
led to numerous research works on the topic called green networking. In this chapter,
we provide an overview of the recent approaches for green networking along with an

extensive taxonomy of the strategies proposed in the literature.

Energy efficient hardware and cooling system design techniques are proven meth-
ods to decrease the network power consumption considerably [19-24|. However, these
methods are applied in the early hardware design and manufacturing phase at the phys-
ical layer. Since our research is focused on energy efficiency through network planning
and management, energy efficient hardware design is outside the scope this thesis. The
readers may refer to [19-24] for energy efficient hardware and cooling system design

techniques.

2.1. Energy Efficient BS Deployment Strategies

There are numerous works in the literature addressing the problem of energy
efficient BS deployment in wireless cellular networks. Among them, Zheng et al. [25]
propose a cellular network planning framework considering the use of renewable en-
ergy sources and energy balancing. They formulate an optimization problem with an
objective function of minimizing three components: (i) total installation cost (ii) total
connection cost and (iii) total cost of consumed power from the electric grid. According
to the results of their novel heuristics proposed to solve the formulated optimization
problem, they achieve considerable CAPEX and OPEX savings in comparison with the

traditional deployment strategies.



In [26], authors focus on the problem of energy efficient base station positioning
and frequency assignment based on a realistic traffic estimation for the city of Zurich
given in |27]. They follow a heuristic approach and propose multi-objective genetic
algorithms with very low computational complexity to solve the problem. Given the
CAPEX for BS installation, they show that their approach satisfies the traffic demand
in the coverage area with minimum amount of BSs and decreases the inter-cell interfer-
ence significantly. Similarly, discrete optimization models and algorithms are proposed
to determine where to locate the new BSs in [28]. Authors propose different versions of
two greedy procedures and a tabu search algorithm, which take the installation costs,

signal quality and traffic coverage into account.

Boiardi et al. [29] propose an optimization framework that selects the BSs to be in-
stalled and jointly switches them on/off with respect to changing traffic load conditions.
According to their findings, for the power management to be truly effective, networks
have to be designed by taking the operational management into account. Hence, they
focus on finding the best trade-off between keeping low initial investments and reduc-
ing energy consumption. They introduce a trade-off parameter between CAPEX and
OPEX, and their optimization framework allows network operators to obtain network

topologies with different characteristics by varying that parameter.

On the other hand, finding the optimal BS density in the coverage area rather
than the specific BS locations to accommodate the user requirements is attracting
significant amount of attention in the literature. Recently, Peng et al. [30] formulate a
network energy consumption minimization framework which jointly optimizes the BS
density and BS transmission power. Their numerical simulation results show that the
heterogeneous network deployment has an advantage in energy efficiency performance
compared to the homogeneous network deployment. In Section 5.5.2, we provide a
comparative performance evaluation of the BS deployment strategy proposed in this

study with our green pico BS deployment method.

Another study related to optimal BS density is given in [31]. Authors adopt

stochastic geometry theory to analyze the optimal BS density for both homogeneous



and heterogeneous cellular networks to minimize network energy cost. Based on realis-
tic parameters of the EARTH [32,33| project, compared to the traditional macro-only
homogeneous cellular network, deploying micro BSs can reduce about 40% of the to-
tal energy cost, and further reduce up to 35% with BS sleeping capability. A similar
stochastic geometry based model is also proposed in [34] for energy efficiency in single-

tier homogenous and K-tier heterogeneous cellular networks.

2.2. Energy Efficient Dynamic Resource Management

Due to fluctuating traffic conditions during the day, static resource management
is not considered as optimal in terms of energy efficient network operation. However,
dynamic resource management methods are effective only when cellular networks are
experiencing low traffic load. If the traffic demand is intense all the time, there will

not be any available margin for power saving.

One of the most utilized resource for dynamic management in cellular networks is
the BS transmission power. In the literature, there are example studies which consider
the dynamic cell size adjustment in order to reduce the energy consumption. Among
them, Niu et al. [14] introduce the cell zooming concept for energy saving to adap-
tively adjust the size of the cells according to the current traffic load. In their work,
a cell zooming server which is a virtual entity in the network controls the procedure
of cell zooming. The cell zooming server collects the information such as the traffic
load, channel conditions and user requirements; then analyzes whether there are op-
portunities for cell zooming or not. Based on the cell zooming concept, they propose
centralized and distributed versions of user association algorithms to save energy by
putting redundant BSs into sleep mode. In Section 4.5.2, we also provide a comparative
performance evaluation of the centralized algorithm proposed in this study with our

methods.

Oh et al. [15] proposed an algorithm called SWES along with three other versions
of it for BS on/off switching. They introduce the notion of network-impact which

considers the effect of BS transitions on the neighboring BSs in terms of traffic load and
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try to find solutions which have the minimum effect on the network. It is shown that,
according to the test case results conducted with a real-life topology and traffic load
data, their algorithms can achieve energy savings up to 50-80%. In Section 5.5.2, we
use SWES algorithm as a competitor and provide comparative performance evaluation

with our green networking methods.

Another work considering variable cell sizes for energy saving is presented in [16].
In this work, Bhaumik et al. consider two types of BSs which are subsidiary BSs with
low transmit power and umbrella BSs with high transmit power. They propose a self
operating network by adaptively switching subsidiary and umbrella BSs on and off
according to the current traffic demands. Similarly, Kokkinogenis et al. [17| assume a
cellular network consisting of micro and macro BSs where micro BSs have the ability
of being switched on/off while macro BSs can iteratively adjust their transmission
power until the required QoS is achieved. They propose static centralized, dynamic
distributed and hybrid topology management schemes to reduce the overall energy

consumption of the network while satisfying certain QoS requirements.

Chiaraviglio et al. [18| propose a novel approach to save energy in UMTS networks
by reducing the number of active access devices when they are under-utilized. Authors
derive two models for both circuit switched and packet switched services separately for

quantification of possible energy savings.

Recently, a green cell breathing and offloading mechanism for heterogeneous net-
works is proposed in [35]. Authors control the BS switching-off aggressiveness by using
a traffic threshold approach in the context of heterogeneous macro and femto cell de-
ployments. They explore the impact of combining cell breathing with a second layer of
small cells, i.e. femtocells, on BS offloading and switch-off. The effect of access policies

from 3GPP Closed Subscriber Groups on the network performance is also analyzed.

In another recent study, Son et al. [36]| investigate the energy-efficient design of
heterogeneous cellular networks, especially with a focus on deployment and operation

strategies. They formulate a general optimization problem with an objective of min-
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imizing the total energy consumption cost while satisfying the requirement of area
spectral efficiency. This problem is then decomposed into two problems: (i) deploy-
ment problem at peak time and (ii) operation problem at off-peak time. They propose
a greedy algorithm as an offline centralized solution and two online distributed algo-

rithms using the Lagrangian relaxation technique.

In [37], traffic-aware sleeping control and power matching technique of a single BS
in cellular networks are studied. The aim of this study is to find the sleeping control and
power matching configurations that achieve the Pareto optimal tradeoff between total
power consumption and average delay. According to proposed sleeping control schemes;
the BS goes to sleep whenever there is no active user, and wakes up when N users are
assembled or after a period of multiple or single vacation time. Authors also analyze the
relationship between total power consumption and average delay with varying service
rate theoretically and argue that sacrificing delay cannot always be traded for energy
saving. Similarly, Niu et al. [38] characterize the fundamental tradeoffs between total
energy consumption and overall delay in a BS with sleep mode operations by queueing
models. Authors derive closed-form formulas to demonstrate the tradeoffs between the

energy consumption and the mean delay for different wake-up policies.

In the literature, there are example studies which consider distributed dynamic
resource management such as [39] and [40]. Authors propose a distributed cooperative
framework to improve the energy efficiency of green cellular networks in [39]. Based
on the traffic load, neighboring BSs cooperate to optimize the BS sleeping strategies
while guaranteeing QoS requirements of the subscribers. An energy saving problem
is formulated as a constrained graphic game and the existence of a generalized Nash
equilibrium is proved. Accordingly, a decentralized iterative algorithm to find the
best equilibrium point is designed where only local information exchange among the
neighboring BSs is needed. Similarly, a distributed BS switch on/off algorithm is
proposed for LTE-Advanced networks which exploits the knowledge of the distance
between the MTs and their associated BS in [40].
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In [41], authors focus on energy efficiency in densely deployed femtocell networks
where a large number of open-access femto BSs are deployed in a public hotspot area
such as airport or shopping mall. The effect of the femto BS-sleeping ratio on the
energy efficiency is quantitatively studied by using a stochastic geometry-based model.
Then the optimal femto BS-sleeping ratio is obtained by considering both the network
traffic load and the location of the designated femtocell deployment area in order to

maximize the total energy saving.

Rengarajan et al. [42] present a novel approach for estimating both the energy
savings that can be achieved in cellular access networks by using sleep modes, as well
as the energy-optimal BS densities as a function of user density. Their approach allows
the derivation of realistic estimates of the energy-optimal density of BSs corresponding

to a given user density, under fixed performance constraints.

Another network sleep mode scheme for reducing energy consumption of radio
access networks is proposed in [43]. An optimal Markov Decision Processes based
controller that associates to each traffic an activation/deactivation policy is derived.
This controller reduces the ping-pong effect resulting in unnecessary BS on/off oscilla-
tions and focuses on finding the optimal policy dynamically based on the present user

activity in the cell.

In [44], the problem of finding the fraction of BSs that can be switched off while
maintaining QoS for given load conditions is explored. As a QoS metric, authors
measure the average waiting time of subscribers. Their approach consists of two steps.
In the first step, they determine the optimal on/off pattern of base stations and MT-BS
association policy for a fixed fraction of base stations to be switched off. In the second
step, they focus on finding the maximum fraction of base stations that can be switched

off for given traffic load conditions.
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2.3. Energy Efficiency Through BS Cooperation

Mobile service providers recently introduced the concept of network sharing with
the objective of reducing both their CAPEX and OPEX. The main idea is cooperating
and sharing infrastructures of the service providers with each other in order to adapt
the active capacity to the current traffic conditions, and thus save energy. This sharing

may further include their approaches for implementing sleep modes [45].

In [46], a traffic-intensity-aware multicell cooperation scheme is introduced which
adapts the cellular network topology according to user traffic demands in order to
reduce the number of active BSs. Then a novel energy-aware multicell cooperation
method is proposed to reduce on-grid power consumption by offloading traffic from
on-grid base stations to off-grid base stations powered by renewable energy. Moreover,
coordinated multipoint transmission is investigated to improve the energy efficiency of

cellular networks.

A resource on/off switching framework that adapts to the changing network traffic
load and maximizes the amount of energy saving under service quality constraints in
a cooperative networking environment is presented in [47]. The proposed framework
relies on cooperation among different networks to save energy on two scales: (i) On a
large scale, networks with overlapped coverage alternately switch their BSs on and off
according to the long-term fluctuations in traffic load (ii) On a small scale, each active

BS switches its channels on and off according to the short-term fluctuations in traffic

load.

Ghazzai et al. [48] investigate the collaboration between multiple mobile operators
to optimize the energy efficiency of cellular networks. They use LTE-A case for their
framework study and try to reduce CO, emission of the network via collaborative
techniques and using BS sleeping strategy. A low complexity algorithm is proposed that
establishes the cooperation decision criteria based on roaming prices and profit gains
of competitive mobile operators. Similarly, Bousia et al. [49] study energy efficiency

issues in multi-operator mobile networks. Their aim is to save energy by switching off
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the redundant BSs without compromising the offered QoS. They propose a novel game
theoretic strategy using cost-based functions to decide the most suitable BSs to remain

active.

Inspired by the ecological protocooperation principle, Hossain et al. [13] pro-
pose a BS cooperation scheme to achieve higher energy efficiency in cellular access
networks. BSs cooperatively and dynamically switch between on/off states and adjust
their transmission power levels depending on the current traffic conditions. They intro-
duce a distributed sleep-wake up algorithm called SLAKE which consists of a sleeping
and a traffic distribution procedure. Since their algorithm also utilizes BS transmission
power adjustment besides BS on/off switching similar to our focus, we compare the

performance of our methods with SLAKE in Section 4.5.2.

In [50], authors propose an energy-efficient BS switching strategy, and use cooper-
ative communication techniques among the BSs to effectively extend network coverage.
They take both the path-loss and fading effects into consideration, and derive closed-
form expressions for the call blocking and the channel outage probability. They also
try to guarantee the QoS of the subscribers by identifying the MTs situated at the

worst-case locations.

Unlike other studies related to cooperative green networking, Zou et al. [51] in-
vestigate MT cooperation with each other in transmitting their data packets to BS
by exploiting the multiple network access interfaces to improve the energy efficiency in
cellular uplink transmission. They develop a closed-form expression of energy efficiency
(Bits/Joule) given target outage probability and data rate requirements. Their numer-
ical results show that their proposed inter-network cooperation significantly improves

the energy efficiency when the cooperating users move towards to each other.

2.4. Renewable Energy Resources

Green energy resources such as sustainable biofuels, solar and wind energy are

promising options to reduce the COy footprint of the cellular networks. Ericsson [52]
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has developed a wind-powered BS for cellular networks and Nokia Siemens Networks [53]
has also introduced a green BS which totally relies on a combination of solar and wind

power without any grid electricity.

In [54], authors study cellular access networks which solely rely on renewable
energy resources. They focus on BS power generator (photovoltaic panels) and energy
storage dimensioning according to daily power consumption of the BSs and daily / sea-
sonal radiative power of the sun in three different locations: (i) Torino (ii) Palermo
(iii) Aswan. They also investigate the effectiveness of solar power system with wind

turbines, along with BS sleep modes.

However, due to unreliable dynamics of green energy harvesting and the limited
capacity of the current energy storage technology, green energy may not guarantee suf-
ficient power supplies for BSs. Thus, researchers have been investing significant amount
of effort to overcome these challenges by introducing hybrid powered BSs where BSs
use the green energy if they have enough energy stored in their batteries; otherwise,
the BSs switch to on-grid power to operate. Among them, Han et al. [55] propose
an optimization problem to maximize the utilization of the green energy harvested
by renewable resources, and hence reduce the on-grid energy consumption of the BSs.
They decompose the problem into two sub-problems (i) the multi-stage energy alloca-
tion problem (ii) the multi-BSs energy balancing problem. Then, they propose three

algorithms to solve these sub-problems.

Recently, Wang et al. [56] proposed a new model to capture the dynamic energy
flow behavior of solar powered BS by using stochastic queue model. They also consider
fluctuation of energy generation, nonlinearity of energy storage and indeterminacy
of traffic load. Subsequently, they define three performance metrics which are (i)
service outage probability (ii) solar energy utilization efficiency and (iii) mean depth
of discharge. Under constraints on the defined metrics, they formulate a CAPEX

minimization problem and propose an adaptive genetic algorithm to solve it.
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New design methodologies for hybrid energy supply green cellular networks with
the help of Lyapunov optimization techniques are proposed in [57]. Authors adopt
grid energy consumption and achievable QoS as their performance metric and try to
optimize these metrics via BS assignment and power control. Their main contribution
is a low-complexity online algorithm to minimize the long-term average network service

cost.

2.5. Energy Efficiency in Mobile Terminals

Majority of the existing studies in the literature investigate energy efficiency of
dynamic planning approaches only from the network operator perspective. Dynamic
planning, if not carefully designed, can lead to higher energy consumption for the
mobile users in the uplink due to larger transmission distances, which in turn degrades

the uplink service quality caused by the fast depletion of mobile terminal’s battery.

In order to balance the trade-off in energy efficiency among network operators
and mobile users, Ismail et al. [58] investigate dynamic planning not only from the
network operator perspective, but also from the mobile user perspective. They propose
a dynamic planning scheme which takes both network operators (downlink) and mobile
users (uplink) energy consumption into account based on a two timescale (slow and
fast) decision strategy. In the slow scale, BS on/off switching and antenna tilting
decisions are taken while BS and MT transmission power control decision are taken in

the fast scale.

De Turck et al. [59] investigate the power saving mechanisms in mobile devices
by taking both downlink and uplink traffic into account. They analyze the effect of a
generic sleep mode mechanism in terms of mean packet delay and power consumption
tradeoff for both LTE and WiMAX networks under Markovian traffic model. According
to their findings from a real life application scenario, even a modest amount of uplink

traffic has a tremendous influence on the system performance.
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In [60], authors propose a novel traffic coalescing scheme to reduce the platform
wake events motivated by bursty and random behavior of real-world traffic workloads.
Their adaptive traffic coalescing method monitors the incoming traffic at the Network
Interface Card (NIC), and adaptively coalesces the packets for a limited duration in
the NIC buffer. They try to reduce mobile terminal wake events and enable them to
enter and stay in the low-power state longer for energy efficiency. According to real life
implementations on various mobile platforms, the proposed adaptive traffic coalescing
scheme achieves around 20% power saving without impacting performance and user

experience.

For further information, reader may refer to extensive survey studies in the lit-
erature. Among them, Ismail et al. [61] focus energy efficient techniques in BSs and
MTs from the operator and user perspectives. A survey on energy efficiency of wireless
multimedia streaming in mobile hand-held devices presented in [62] where a survey on

optimal control of sleep periods for MTs can be found in [63].

2.6. Taxonomy

In this section, we provide a classification of green dynamic BS operation schemes
previously proposed in the literature. Our first classification criteria is the scope of the
network in which green dynamic BS operation techniques are designed to be applied.
We basically divide the network scope into three parts: (i) Flat (i) Multi-tier (iii)
Heterogeneous. Flat networks consist of single type of BS where multi-tier networks
consist of more than one type of BS (e.g. macro, micro, pico). On the other hand,
heterogeneous networks consist of different type of BSs with different type of communi-
cation technologies (e.g. GPRS, IMT-2000, LTE, WiMAX). Our second classification
criteria is the metrics in which performance of the green BS operation schemes are
evaluated. Since main objective of all green networking methods is to save energy, we
excluded energy efficiency in this taxonomy. Majority of the works previously proposed
in the literature utilize aggregate throughput and average delay as their primary met-
rics. Coverage is another important metric since it is enforced by the governmental

laws to cover a certain percentage of the population or geographical area. Hybrid met-
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[Control Scheme]

Flat

Networks consisting of
single type of BS.

[64], [42], [49]

Multi-tier

Networks consisting of
more than one type of
BS (e.g. macro, micro,
pico).

[15], [16], [17], [18], [35],
[41]

Aggregate traffic load
Total accommodated

H traffic load both in up-
link and downlink.

[35]

Coverage

Coverage in terms of
both geographical area
and percentage of sub-
scribers.

[65], [66]

Online
Topology adjustment de-
cisions are made during

operation. Well responds

to unexpected traffic
variations.

[35], [15], [36], [37], [43]

Offline
Topology adjustment

Heterogeneous
Networks consisting of
different technologies
(e.g. GPRS, IMT-2000,
LTE, WiMAX).

[51]

Figure 2.1.

Delay
Average delay in the net-
work.

[38], [37], [44]

Utilization
Average utilization of
the network resources.

[41], [67]

Hybrid
Includes various per-
formance metrics such

as transmitted data

i per energy (bits/joule),
area spectral efficiency
(bits/sec/Hz/m?), solar
energy utilization (%).

[67], [36], [42]

decisions are made be-
fore hand. Has time for
complex calculations.

[64], [14]

Centralized

A central entity decides
status of each BS with
global observations.

[14], [41], [43]

Distributed

BSs determine their own
status autonomously
with their local obser-
vations.

[35], [36], [37], [40]

Cooperative

BSs cooperate with each
other for status change
decisions.

[39], [13], [51], [48], [46]

Classification of green dynamic BS operation strategies.

rics include a variety of performance indicators such as transmitted data per energy

(bits/Joule), area spectral efficiency (bits/sec/Hz/m?) and solar energy utilization. Our

third classification criteria is algorithm type. We observe two main trends in green dy-

namic BS operation algorithms: Online and Offline. Online algorithms make topology

adjustment decisions during operation and well respond to unexpected traffic varia-

tions. In Offline algorithms, topology adjustment decisions are made beforehand and

they have more time for complex calculations. Fourth and the last classification crite-
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ria is the type of control scheme and we divide it into three parts: (i) Centralized (ii)
Distributed (iii) Cooperative. In centralized scheme, a central entity decides the status
of each BS with global observations throughout the network. On the other hand, BSs
determine their own status autonomously with their local observations in distributed
scheme. Lastly, neighboring BSs cooperate with each other for status change decisions

in the cooperative scheme.
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3. GREEN CONVENTIONAL CELLULAR NETWORKS

3.1. Introduction

In this chapter, we focus on saving energy by adaptively switching the BSs of
wireless cellular access networks on and off according to the current traffic conditions.
Moreover, we also adopt dynamic transmission power adjustment with the help of
high-efficiency power amplifiers. However, the challenge is to decrease the energy ex-
penditure while always guaranteeing a certain Grade of Service (GoS) over the whole
area. Therefore, we formulate a novel nonlinear programming (NLP) model for the
Green Dynamic BS Planning (GDBP) problem to find the best possible BS topology
which minimizes the energy consumption while satisfying the communication demands
of the users. We then propose a heuristic to solve that problem and compare our re-
sults with the results of a non-commercial optimization software and numerous Monte
Carlo (MC) experiments. It is shown that our green dynamic BS planning scheme
saves significant amount of energy. Although there are some studies in the literature

related to the dynamic BS switching, our method differs in the following aspects:

e Unlike most of the previous studies, we utilize the dynamic power adjustment
capability of the current BSs technology by adjusting the output of the power
amplifier. Using different transmission PLs, we have the opportunity to dynami-
cally change the coverage of the BSs according to the present traffic conditions.

e Majority of the studies in the literature assume that BSs make switch on or
off decisions locally by comparing their current traffic loads with a predefined
threshold. In our work, we try to satisfy certain GoS requirements collectively
by making system-wide decisions throughout the whole network.

e The BS on/off transitions are taken into account in order to minimize the addi-
tional overhead introduced by frequent topology changes such as BS initialization,
user association, and handover.

e We justify our proposed methods by applying them to real-life-scale scenarios

rather than small-scale test cases.
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e A detailed integer NLP model is formulated for the GDBP problem and solved by
a non-commercial optimization tool. By using the derived programming model,
optimum results can be obtained from the optimization tools for the small ins-
tances of the problem. In order to show the significance of the results, a very
large number of MC experiments are also conducted.

e A fast and effective heuristic called FastWISE is proposed for solving large ins-
tances of the GDBP problem.

The rest of this chapter is organized as follows: In Section 3.2, we elaborate
the proper application areas of the GDBP, assumptions, and problem formulation.
The proposed GDBP algorithm is explained in Section 3.3. An example application
scenario, details of the system parameters, and comparative performance analysis of
the proposed methods are presented in Section 3.4. Finally, Section 3.5 draws the

conclusions.

3.2. System model

Before going into detail, possible application areas of the GDBP along with their

advantages and disadvantages are investigated from the green networking perspective.

3.2.1. Where should GDBP be applied?

As we mentioned before, the primary objective of GDBP is to save energy while
satisfying a certain level of service quality. Hence, there must be excess energy con-
sumption in order to benefit from GDBP properly. If the energy is already being used
effectively, applying an energy-saving method will be nothing more than unnecessary

increase of complexity.

Crowded urban areas with high BS densities are the most suitable places for
GDBP rather than suburban or rural areas. However, each urban area has its own
traffic pattern which directly determines the efficiency of the GDBP. Therefore, we

categorize urban areas into four distinct regions and comment on those regions whether
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GDBP should be applied or not.

e Town centers (business). Business, trade, or industrial areas as well as commercial
centers can be considered in this class. The user density, hence the offered traffic
load, is quite high in these places during the daytime. However, the user density
and the traffic load drop sharply during the night-time since most of the business
and commercial areas are closed. Moreover, low traffic profiles continue all day
long during weekends and holidays. Therefore, a significant change in the traffic
profile occurs throughout the day and week, which makes business town centers
the most suitable place for GDBP to be applied.

e Town centers (entertainment). This kind of places include shopping and exhibi-
tion centers, tourist attraction points, museums, and concert halls. Although the
traffic profile of entertainment and business town centers follow a similar pattern,
they differ during weekends and holidays. Entertainment town centers are also
highly preferred during weekends and holidays, even more than weekdays. How-
ever, the temporal change throughout the day does not happen to be as much
as in the business town centers. Therefore, entertainment town centers are our
secondary target for energy savings.

e Residential areas. These regions are mostly occupied by houses, schools, hospitals,
and small commercial shops such as grocery stores. User density increases here
in the evening for sure. However, it would not be true to say that there is no
traffic at all during the day time. Individuals such as pensioners, housekeepers, or
children spend most of their time within the territory of their houses. Although
the traffic load changes in residential areas within the day, it is not as explicit as
in town centers.

e Seasonal tourism centers. In seasonal tourism centers, there happens to be two
colossal changes in user density throughout the year. Sunny seasides are filled up
with tourists during summer, whereas snowy ski centers are very crowded during
winter. However, most of the wireless network operators simply deploy mobile
BSs to those areas in order to meet the high season requirements. Since using

mobile BSs is a kind of dynamic planning itself, it can be considered as a broader
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and more systematic approach to GDBP including additional capabilities of BS

installment and replacement.

In summary, the application site should have at least two important features in
order to fully benefit from GDBP: (i) unbalanced temporal distribution of the traffic
load and (ii) high BS density.

3.2.2. Assumptions

A BS can be on or off depending on the current traffic conditions in our work.
When it is switched on, the total power consumption of the BS is the combination
of two components [68]: (i) core power and (ii) transmission power. The BS core
power consumption (such as air conditioning, signal processing) is assumed to be fixed
regardless of the traffic load. However, the transmission power is adaptively adjusted
to the current traffic conditions. A set of transmission PLs need to be defined according
to the application requirements and the capabilities of the BS equipment in use. Each
BS can select a certain PL for transmission and cannot change it during that particular
time slot. Since it is not practical to model a huge number of subscribers individually,
we assume users are placed as chunks, like group of workers in a floor of a building or

customers waiting in a bank office.

3.2.3. Problem formulation

In order to solve the problem by classical optimization tools, we need to first
put the GDBP problem into a mathematical form. In this section, we formulate our
problem by using two different objective functions. The first one minimizes the total
energy consumption, while the second one additionally minimizes the BS on/off tran-
sitions in order to reduce the amount of topology changes. Hence, the overhead caused
by frequent topology changes, such as BS initialization, user association, and handover,

can be minimized.
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3.2.3.1. Plain GDBP. Our formulation consists of three parts. The first part contains

the constant parameters given by our sample application scenario. The second part is
the model variables which will be determined by the solver, and the last part is the

problem itself.

Parameters:

NB : Number of BSs

NP : Number of PLs

NY : Number of user chunks (UCs)

NT : Number of time intervals

B : Set of BSs where B = {1,2,3..., NP}

P : Set of PLs where P = {1,2,3..., N}

U : Set of UCs where U = {1,2,3..., NV}

T : Set of discrete time intervals within the day where T =

{1,2,3...,NT}

PW"® . Core power consumed by the BS

PW*™(p): Function of transmission power consumed by the BS with respect
to PL

v : Penalty of making a BS switch (on/off)

W, : Data flow capacity of BS b

fH°%(t) : Function of traffic load per UC with respect to time

[min : Minimum acceptable user coverage ratio

1, BS b can cover user u with power p
C(bpu

0, otherwise

Model variables:

1, BSbisup at time ¢
Oy =

0, otherwise



1, BS b transmits with power p at time ¢
Abpt =
\O, otherwise
.
1, UC u selects BS b at time ¢
Mubt =
0, otherwise

Dummy variables:

g 1, UC u is served by BS b at time ¢
ubt —

0, otherwise
= OuClypuMup Ay Yu € UNb € BVt €T
peP

Ny = Number of covered UCs at time ¢

= ZZsubt VteT

uelU beB

N®" = Number of BS switches (on/off) during 24h

= Z Z (Obt © Ob((t+1) mod NT))

beB teT

The objective function is given as

min Z Z Z Oyt (PW® + Ay PW™(p))

bEB pEP teT

subject to

d Ay=1 YeBVLET

peP

> My =1 VueUWteT

beB

> SunfN(t) < W™ WbeBVteT

uelU
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NC min
N; >3 VteT (3.5)

As mentioned earlier, the ultimate goal of our first objective function in Equa-
tion 3.1 is to minimize the energy power consumption of the network. The constraint
in Equation 3.2 makes sure that a BS operates at a single transmission power level at
any time, and Equation 3.3 is responsible for a user being served by a single BS at
a particular instant. Equations 3.4 and 3.5 ensure that the resulting energy-efficient
topology does not violate the capacity constraint of the BSs and provides the required
coverage ratio over the area, respectively. By not violating the capacity constraints of

the BS, it is also assured that subscribers receive an acceptable service quality.

3.2.3.2. GDBP with BS transition overhead. In this section, we are taking the BS

transitions into account in order to minimize the additional overhead introduced by
frequent topology changes such as BS initialization, user association, and handover [69].
Among them, handling the handovers is the most crucial one since it directly affects
the service quality of the subscribers. Besides well-known problems inherited from
conventional handover procedures, another challenging issue is to handover a group
of subscribers at the same time when a serving BS is switched off. There has been
some research effort on group handover techniques |70, 71|, and most of them target
the passengers traveling on public transportation vehicles such as buses and trains.
Majority of the group handover schemes require predicting the handover and make
necessary preparations before starting the handover procedure itself. In our case, the
central control entity, which decides and implements the network topology changes,
may do the necessary control signaling and inform the neighboring BSs about the
possible group handover before shutting a BSs down. Also, a possible BS transition

and handover procedure is discussed in [15].

In order to minimize the side effects of topology changes, we use a second objective

function given in Equation 3.6 which minimizes the BS on/off switches in addition

SwW

to the overall power consumption. The BS switch penalty, oV, controls the power
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consumption vs. BS transition overhead trade-off. Thus, network operators have the
chance to fine tune the objective function according to their priorities. The effect of

this parameter is further investigated in Section 3.4.3.

min» Y Y " Oy (PW° 4 Ay PW™(p)) + ™ N*Y (3.6)

beB peP teT

Although we put the GDBP problem into a mathematical form, it is still a chal-
lenging task to solve it with the optimization tools since we use large real-life-scale test
scenarios for performance evaluation. Furthermore, nonlinearity of the problem also
increases its complexity and yields to longer run times. Therefore, we propose a fast

heuristic to solve large-scale instances of the problem within acceptable time durations.
3.3. Green dynamic BS planning algorithm

In this section, we derive a heuristic called FastWISE which consists of three

phases for the GDBP problem. Additional variables used in FastWISE:

OCA™ : Overlapping coverage area of the current BS
OCA™*: Maximum allowed overlapping coverage area in order to

switch a BS on during initialization phase

Bof : Set of currently switched off BSs
wewr . Traffic load of the current BS
Bhieh . Set of switched on BSs having W > 11/<ap (users served by

those BSs most likely to suffer high blocking probabilities)
CUE : Covered! user per energy ratio of the current BS when it is
switched on

[ :  Current user coverage ratio of the network

Incremental users covered by that particular BS when it is switched on
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—————— Initialization phase——————

1: for all B do
2: calculate proper? PL
3: calculate OCA™
4: if OCA®" < OCA™** then
5: switch current BS on
6: end if
7: end for
——————— Iteration phase———————
8: repeat

9: for all B°f do

10: calculate CUE for each power level
11: end for

12: switch on BS having maximum CUE
13: until e > gmin

14: for all Bhigk do

15: repeat

16: switch on the closest BS
17: until W < Wweap

18: end for

Figure 3.1. FastWISE algorithm.

The complete procedure of FastWISE is given in Figure 3.1. It starts with the
initialization phase. In this phase, FastWISE visits all BSs and activates the ones
which have smaller overlapping coverage than a predefined threshold with the maximum
possible transmission power level. By doing this, Fast WISE tries to use BSs with higher
transmission power levels without violating the capacity constraints in order to give
energy-saving opportunities to neighboring BSs. Therefore, a preliminary coverage is
provided at the end of this phase. FastWISE continues with the steration phase. The
aim of this phase is to make incremental improvements at each step on top of the
preliminary coverage produced by the initialization phase until a target coverage ratio

throughout the network is achieved. Initially, a Covered User per Energy (CUE) ratio

2Proper PL is the highest possible PL that a BS can operate without violating the capacity

constraint.
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is calculated for each inactive BS for each power level. This ratio implies the number
of additional covered users per unit energy if that particular BS is switched on. As
long as the desired coverage ratio is not achieved, the BS having the highest CUE ratio
is simply switched on. Unlike the initialization, the iteration phase tries to maximize
the energy utilization without making any capacity constraint checks. However, this
may yield to overloaded BSs which in turn cause higher call blocking probabilities.
Therefore, the third step is required to validate that the traffic capacity constraints are
met for all serving BSs, which is the validation phase. In this last part of the heuristic,
all serving BSs are visited and a list of neighboring BSs is created for all overloaded
ones. In order to share the load of the overloaded BSs, starting from the closest one,
neighboring BSs in the list are simply activated until the offered traffic load drops
below its capacity. At the end of this phase, Fast WISE ensures that all serving BSs

are operating well below their capacities.

3.4. Application scenario and performance evaluation

3.4.1. Application scenario and parameters

In order to model the unbalanced temporal distribution of the load created by
mobile users, we assume a sinusoidal pattern throughout the day resembling the real-
life traffic load given in Figure 1.2 and many other measurement studies presented
in [1,72,73]. However, the traffic profile does not strictly have to follow the shape of a
sine wave. For the GDBP, reasonable amount of temporal traffic fluctuations through
out the day will create a margin for energy saving. Although we have a certain traffic
profile assumption, it is still possible to engineer the shape of that profile up to some
extent. For example, the night-time traffic load may not be as low as we expect or
the peak-time traffic may not even get close to 100% utilization in some particular
places. Therefore, we introduce a lower and a higher bound for the traffic load rather
than assuming a regular sinusoidal wave ranging between 0% and 100% utilization. In
fact, when we introduce those lower/higher bounds, we practically define the height
and offset of the sinusoidal wave itself. Hence, they together define how the traffic
load changes throughout the day. The final and vital parameter to construct the traffic
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Figure 3.2. An example sinusoidal traffic load for 24h with f™in = 0.1, f™& = (.9,
and tP = 14h.

profile is the time slice in which the traffic load reaches its peak. With this parameter,
we can shift the sinusoidal wave in time domain until it fits the traffic profile of a region

of interest. The traffic function is defined as

wh = M (3.7)
wo = LT . S (3.8)
£(#) = wh cos(2r =) 4 e (3.9)

Nr

where f™ and f™* are the minimum and the maximum traffic loads throughout the
day, w" and w® are the height and offset of the sinusoidal traffic wave, and t* is the
time slice in which the traffic load has its peak. An example traffic profile created by

Equation 3.7 can be seen in Figure 3.2.

We adopt three distinct transmission PLs for BSs, which we believe is not irra-
tional when the current state of the BS manufacturing technology is considered. If a
BS is up, then it is transmitting with one of PL,, where n € {1,2,3}. When we change
the transmit power of a BS, we subsequently change its coverage range. Since all of our
test area exhibits the same terrain feature (urban), a single propagation model is used

throughout the whole area. However, in case of need, test area may be partitioned
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Figure 3.3. A Sample deployment configuration with 10000 UCs (1 mil. users) and
200 BSs in a 5 x 5 km? area.

into different terrain features and other propagation models can be incorporated for
those specific portions of the coverage area. We assume perfect free-space path loss for
calculating the omnidirectional coverage ranges. When we fixed the signal frequency,
free-space path loss becomes proportional to the square of the distance between the
transmitter and receiver. However, all propagation models can be used with our prob-

lem formulation according to the wireless channel conditions in the coverage area.

Although our model can accommodate BSs with different traffic flow capacities,
we assume all BSs are identical and have the same capacity. Both user chunks and
BS locations follow Gaussian distributions where BSs are centered in the middle of the
area and user chunks are centered around the BSs. However, two BSs cannot be closer

than the Minimum Inter-BS Distance (MIBD) to each other.

In order to make proper assessment of the proposed methods, it is required to
create a test environment as close to real life conditions as possible. Therefore, we

envision a densely populated (1 million subscribers) business center as advised in Sec-
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tion 3.2.1 which is covering an area of 5 x 5 km?. We assume the traffic load follows the
same pattern given in Figure 1.2 and there are 200 BSs deployed to accommodate the
peak-time traffic. A sample deployment configuration used for performance evaluation
is given in Figure 3.3. As GoS metrics, the network should provide the maximum of
1072 blocking probability [74] and cover at least 99% of the area at all times. Important
parameters used in the sample application scenario are summarized in Table 3.3. For
the sake of variance control, 10 different test cases are generated and average of the

results are presented.

Table 3.3. Scenario parameters.

Parameter Value

Coverage Area 5 x bkm?

# BSs (NB) 200

# UCs (NVY) 10000

Chunk size 100 users

BS Location Std.Dev. 1000m

User Location Std.Dev. 100m

MIBD 150m

BS Core Power 150 Watt

# PLs (NT) 3

BS Transmission PLs 30 - 90 - 270 Watt
BS Coverage Distances 300 - 520 - 900 m
BS Capacity (W) 66 Erlang

Max. Prob. of Blocking 1072

Average Call Duration 30 sec

Average Call Arrival Rate 10 calls/day/user
# Time Slots Within a Day (N7) 24

Min. Acceptable Coverage Ratio (™) 99%
Penalty of a BS Switch (a®%) 0-75-300 - 1500
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3.4.2. Experiment Methodology

Performance of Fast WISE is evaluated by using real-life-scale test cases and com-
pared with the results of a NLP tool [75]. Also, MC experiments are used by generating
a large set of random solutions to investigate the statistical quality of the FastWISE
results. However, the initial results of fully random MC experiments were mostly un-
feasible and too poor to be compared with other results. In order to obtain more
challenging results, we change the random solution generation method by assigning
different probability of drawing to each case and call it MC*. By this way, we create
a hundred thousand biased samples which contain much more feasible results than the
fully random MC method. The idea behind MC* is to generate more suitable topology
instances by taking the current traffic load into account. For example, MC* switches
more BS on if the traffic load is high and less BS if the traffic load is low. Similarly,
MC* favors higher power levels for the activated BSs during low traffic conditions to
create a margin for neighboring BSs to save energy. Thus, MC* creates more feasible
solutions than the plain MC and gives us the chance to make better assessment of the

proposed techniques.

We model the problem with A Modeling Language for Mathematical Program-
ming (AMPL) [76] and used a non-commercial nonlinear optimization tool called Basic
Open-source Nonlinear Mixed INteger programming (BONMIN) [75]. However, al-
though we use a very powerful computer, it was not possible to solve the problem as a
whole due to high space and computational complexity. Therefore, we decompose the
problem into smaller parts. For Plain GDBP, we solve each time slot separately and
add them up to find the objective function given in Equation 3.1. We approach the
second problem similarly but this time we feed the results of the previous slot as an

input to the next one in order to compute the objective function given in Equation 3.6.

3.4.3. Performance Evaluation

Before proceeding to the comparative performance evaluation, we find it useful to

start with examining the run times. Average run times of FastWISE and NLP which are
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collected from a powerful computer with 4 hexa-core Xeon x5650 2.67 GHz processors
and 24 GB of memory are given in Table 3.5. For FastWISE, the iteration is observed
to be the most time consuming phase as expected since small improvements are done
until a target coverage ratio is achieved. However, the overall execution time of the
FastWISE can be considered as acceptable. On the other hand, NLP takes longer time
to find feasible solutions than FastWISE, and it increases parallel to the offered traffic
load. In Table 3.5, 24 time slots are reduced to 12 since some of them have the same
amount of traffic load due to the sinusoidal traffic profile. It takes close to an average

of four days for the NLP tool to find a solution for one instance.

Table 3.5. Comparison of average run times.

Fast WISE NLP
Phase Run Time | Time Slot | Run Time
1,6, 24 296m
2,5 268m
Initialization 4m 3s
3,4 253m
7,23 312m
8, 22 423m
9,21 456m
Iteration 65m 46s
10, 20 501m
11, 19 517m
12, 18 538m
13, 17 542m
Validation 12s
14, 16 535m
15 548m
Total 70m 01s Total 5189m

The comparative power consumptions throughout a day are given in Figure 3.4.
If none of the green techniques applied to the network, the power consumption does
not change throughout the day regardless of the varying traffic load. Although some
amount of power can be preserved with MC*, it is clear that both Fast WISE and NLP

perform better in terms of the power consumption. NLP outperforms FastWISE in
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Figure 3.4. Comparative power consumption throughout a day.

light traffic conditions while the opposite is valid under heavily loaded conditions. Due
to large scale of the test scenario and high computational complexity of the proposed
NLP, we set a maximum iteration limit on the optimization software in order to bound
the run times. It returns the best possible solution found within the given number of

branch-and-bound iterations.

In Table 3.6; daily, monthly, and annual energy cost savings are given. The
electricity prices for peak (2pm-8pm), shoulder (7am-2pm and 8pm-10pm) and off-peak
(all other times) times are 44.11, 18.7 and 10.34 cents/kWh respectively in compliance
with the EnergyAustralia [77], one of Australia’s largest electricity retailers. When the
given figures in Table 3.6 are scaled for the whole country, it is clear that GDBP can

Table 3.6. Comparative energy cost saving.

Daily($) Monthly($) Annual($)
Fast WISE 168 5,043 60,521
NLP 143 4,317 51,809
MC* 55 1,654 19,857
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Figure 3.5. Distribution of feasible MC experiments and its comparison with

FastWISE and NLP.

dramatically decrease the energy expenditures of the service providers, possibly a few

millions of dollars per year, which constitutes the largest portion of the OPEX.

In Figure 3.5, the probability distribution of feasible MC experiments is given
with a fitted Gaussian Distribution. When averaged results of FastWISE and NLP
are given in the same figure compared with the results of the MC experiments, it is
quite certain that they are statistically significantly better. In other words, it is nearly

impossible to generate results with MC experiments as power efficient as the ones with

FastWISE and NLP.

Figures 3.6 and 3.7 evaluate the GDBP with BS transition overhead introduced
in Section 3.2.3.2. Figure 3.6 depicts the effect of o on the objective function given
in Equation 3.6. When we set o = 0, the objective function reduces to Plain GDBP
given in Equation 3.1. For its maximum value, we set o®¥ = 1500. In this case, BS
transition penalty in the objective function dominates the transmission power con-
sumption and the network tends to keep its current topology rather than adapting
to the changing traffic conditions. As the BS switch penalty increases, the objective

function value also increases. When we set the switch penalty to higher values, the
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Figure 3.6. Effect of o®" on the objective function given in Equation 3.6.
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Figure 3.7. Effect of o®¥ on the cumulative number of BS on/off transitions.

optimization tool does not switch off the redundant BSs as long as the resulting energy
saving is smaller than the introduced transition overhead. Therefore, the topology is
adjusted by switching large number of BSs on or off for higher transition penalties.
As a result, the objection function graph takes a more zigzag like shape for higher

penalties while it is smoother for lower values of a®¥.

When a switching penalty is introduced in the objective function, the number

of BS transitions dramatically decreases as seen in Figure 3.7. This figure depicts the
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Figure 3.8. Resulting coverage of FastWISE under light traffic load.
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Figure 3.9. Resulting coverage of FastWISE under heavy traffic load.

cumulative sum of BS transitions for different o®" values. The total number of BS
transitions throughout the day is reduced by 52%, 89% and 93% for ¥ = 75, 300
and 1500 respectively. Hence, the additional overhead introduced by frequent topology
changes are significantly reduced. However, as the BS switch penalty gets higher,
the flexibility of the GDBP decreases which yields to less energy efficient solutions.

Therefore, the network operators should delicately choose this parameter according to

their requirements.

Figures 3.8 and 3.9 depict the coverage of Fast WISE after each phase during light
and heavy traffic conditions. In the initialization phase, Fast WISE tries to fill the gaps
without violating the capacity constraints as seen in Figures 3.8(a) and 3.9(a). Then
in the iteration phase, it switches on the BSs with appropriate power levels in order

to satisfy the coverage constraints as seen in Figures 3.8(b) and 3.9(b). Finally in
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the validation phase, Fast WISE checks the offered loads for each BS and validates that
they are not overloaded. If a BS is overloaded, Fast WISE switches the neighboring cells
on to alleviate its load until that particular BS can accommodate the offered traffic
without violating the GoS constraints. The resulting coverage after the validation

phase given in Figures 3.8(c) and 3.9(c).

3.5. Conclusion

In this chapter, we focus on saving energy by both switching BSs on /off and adap-
tively adjusting their transmission power according to the current traffic conditions. To
achieve that goal, we formulated a novel nonlinear programming model for the GDBP
problem to find the best possible BS topology which minimizes the energy consumption
of the network while satisfying a certain level of GoS. Although optimization tools can
produce optimum results for the small instances of the problem, they cannot cope with
large instances as their complexity becomes prohibitive. Therefore, we derived a greedy
heuristic called FastWISE to solve the large realistic size instances of the formulated
problem and compared our results with the results of a non-commercial optimization
tool and numerous MC experiments. It is shown that our green dynamic BS planning
scheme adaptively adjusts to the current traffic load and saves significant amount of
energy without violating the GoS constraints such as the probability of blocking and

the coverage ratio.
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4. GREEN PACKET-SWITCHED CELLULAR NETWORKS

4.1. Introduction

In this chapter, we focus on saving energy by adaptively switching the BSs of
packet-switched cellular networks on and off and by adjusting the BS transmission
power levels according to the present traffic conditions. Particulary, we focus on W-
CDMA based packet-switched cellular networks and adopt dynamic transmission power
adjustment with the help of high efficiency power amplifiers. However, the challenge
is to decrease the energy expenditure while always guaranteeing a certain QoS level
over the whole coverage area. We define this problem as Traffic-Aware Topology Man-
agement (TAM) problem. To address this, we formulate a novel Linear Programming
(LP) model for the described TAM problem to find the best possible BS topology which
minimizes the energy consumption while satisfying the certain service quality require-
ments of the subscribers. Although small instances of the TAM problem can be solved
by the optimization tools, large realistic size problems are quite difficult to be han-
dled due to high space and computational complexity. Therefore, we propose a novel
heuristic to solve the large-scale instances of the formulated problem and compare our
results with the results of two previously proposed methods [13| [14], a greedy heuris-
tic and a commercial optimization tool. It is shown that the proposed TAM scheme
helps to maintain an energy-aware network and saves significant amount of energy by
adaptively adjusting the network topology according to the present traffic conditions.
Although there are some studies in the literature related to the traffic-aware topology

management, our method differs in the following aspects:

e Unlike most of the previous studies, where only BS on/off switching is uti-
lized [15] [16] [17] [18], we also take into account the dynamic power adjustment
capability of the current BSs technology in order to create energy-aware network
topologies by defining a set of transmission PLs.

e Compared to solutions that show how much energy efficiency can be achieved

or that propose heuristic algorithms [18] [65] [78], we first formulate a detailed
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integer LP model for the TAM problem to minimize energy consumption while
satisfying a certain level of QoS. Using this model, the problem is solved by a
commercial optimization tool which provides the optimum solutions to the smaller
instances of the problem.

e While some of the existing studies show how much energy efficiency can be
achieved, they do not propose operating algorithms to achieve such savings [15].
Additionally, although the LP tool provides the optimum solutions, it requires
long computational times and it is not possible to handle large instances due
to the computational complexity. Therefore, a fast and effective heuristic called
Green TAM Algorithm (GTA) is proposed and its performance is compared with
the results obtained with the optimization tool and two competitor methods from
the literature (i) SLAKE [13] (ii) Niu et al.’s Algorithm [14] in terms of running
times, energy savings and energy-cost savings.

e Majority of the studies in the literature assume that the BSs make on/off deci-
sions locally by comparing their current traffic loads with a predefined thresh-
old [13] [15] [16]. In our work, we try to satisfy certain QoS requirements collec-
tively by making system-wide decisions throughout the whole network. Although
such a solution requires a centralized controller, it provides better energy savings
by considering the system-wide details. The distributed solution for the TAM

problem is studied in Chapter 5.

The rest of this chapter is organized as follows: Section 4.2 elaborates the system
model, assumptions and problem formulation while the proposed solution technique is
explained in Section 4.3. The proposed greedy heuristic is explained in Section 4.4.
Application scenarios, details of the system parameters and comparative performance
evaluation of the proposed methods are presented in Section 4.5. Finally, Section 4.6

concludes this chapter.
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4.2. TAM Problem Formulation

We assume that a BS can be remotely switched on and off from a central entity
according to the present traffic conditions. When a BS is up, it has the ability to change
its transmission power [79] by using power amplifiers. Therefore, a set of transmission
power levels is required to be defined according to the application requirements and
the capabilities of the BS equipment in use. When a BS is up, it transmits with a

certain power level and the status of a BS cannot be changed until the next time slot.

Since it is not practical to model a huge number of subscribers and their mobility
patterns individually, the coverage region is divided into small grids. Each grid has its
own characteristics in terms of user density, user mobility and traffic profile. In our
system model, we take the aggregate traffic load created by the users located in these

grids into account.

4.2.1. General Problem Formulation

Parameters:
NB : Number of BSs
NP : Number of PLs
N¢ : Number of grids
NT : Number of time slots within the day
B : Set of BSs where B = {1,..., N%}
P : Set of PLs where P = {1,..., N”}
PA : Set of active! PLs where PA = {2,... N}
G : Set of grids where G = {1,2,3..., N}
T : Set of discrete time slots within the day where T = {1,2,3..., NT}

W(b,p) : Total consumed power by BS b transmitting with PL p
D, : Data flow capacity of BS b

f(g,t) : Average aggregate traffic load generated by grid g at time ¢

! The first PL simply means that the BS is switched off and PA C P



[Bmin : Minimum acceptable user satisfaction ratio where 0 < g™in < 1
Ymin : Minimum acceptable SINR, at the receiver

W gpt : Received SINR by grid g from BS b at time ¢

L(b, p, g): Path loss from BS b transmitting with PL p to grid ¢

Model variables:

1, BS b transmits with power p at time ¢
Abpt =
0, otherwise
;
1, Grid g is associated with BS b at time ¢
Sgbt =
0, otherwise

The objective function is given as

min Z Z Z Ayt W (b, p)

beB peP teT

subject to

> Spuf(g.t) <> AyDy V(bEBteT)

geG pePA

U > Sy U™ V(g€ G,beB,teT)
D) Sgw=pB""NY VteT

geG beB
d Ay =1 VY(beBteT)
peP
> S <l V(geG,teT)
beB
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(4.1)

Goal of our objective function in Equation 4.1 is to minimize the total energy consump-

tion throughout the network. Equation 4.2 ensures that all active BSs do not exceed
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their data flow capacity. Equation 4.3 provides that each grid associated with a BS is
being served by at least a certain Signal to Interference and Noise Ratio (SINR) value.
By not violating the BS capacity and SINR constraints given in Equations 4.2 and 4.3;
TAM scheme ensures the subscriber satisfaction at all times by maintaining acceptable
level of quality in terms of both delay and data rate. Equation 4.4 is responsible for
obtaining the required user satisfaction ratio over all users, i.e., it is guaranteed that
a certain percentage of the users are covered and served properly. The constraint in
Equation 4.5 makes sure that a BS operates at a single transmission PL in a particular
time slot and Equation 4.6 is responsible for that a grid is being served by a single BS

at a particular instant.

By integrating the capability of different capacity and power consumption models
for each BS type, our TAM problem formulation gains the ability to support hetero-
geneous networks. Although frequent topology changes introduce additional overhead
such as BS initialization, user association and handover, we believe that the overhead
introduced by the BS transitions may be tolerated with proper handling mechanisms
such as proactive handoff signaling and smart user association since we are working
with one hour-time resolution. However, the overhead stemming from BS transitions

needs to be taken into account and addressed carefully in case of shorter time slots.

4.2.2. Details of the Problem Formulation

4.2.2.1. BS Power Consumption. The total power consumption of the BS is the com-

bination of two components: (i) Core power (ii) Transmission power. The BS core
power consumption (such as air conditioning, signal processing) is assumed to be fixed
regardless of the traffic load. On the other hand, the transmission power can be dy-
namically adjusted with the help of high efficiency power amplifiers. The total power
consumption of the BS is given by [37] [80]
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0, —1
W (b, p) = ! (4.7)

Wy + W5, otherwise

where Wy is the core power consumed by the BS b and the W;7 is the transmission

power consumed by the BS b while transmitting with PL p.

4.2.2.2. Interference. There are two sources of interference in W-CDMA cellular net-

works: intra-cell and inter-cell. The intra-cell interference is the total interference
caused by the signals emitted from the serving BS and the inter-cell interference is
caused by the signals transmitted from all other BSs. In perfect transmission condi-
tions, there should be no intra-cell interference since all of the signals are orthogonal.
However, the intra-cell interference cannot be totally avoided due to multipath propa-

gation and SINR is given by

PT
v =SF— 4.8
aojm + ]out _|_ 7’] ( )

where SF is the spreading factor, P is the received signal power, I'™ is the intra-cell
interference, 1°" is the inter-cell interference, a, is the orthogonality loss factor and 7

is the noise power.

In the TAM problem, Pr., I'®

ot Loy, and I94" are the received signal power, intra-cell

gbt

interference and inter-cell interference experienced in grid g from BS b at time ¢ in

order and they are given by
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Ppy= Y ApLl(b,p, )W (b, p) (4.9)
pePA
];IllJt = Qp Z Abptﬁ(bapa g)W(bap) (410)
pePA

It =" ) AL, p,g)W(i,p) (4.11)

i€Bib pePA

When Equations 4.9, 4.10 and 4.11 are plugged in to Equation 4.8, we get Equa-
tion 4.12 and it is possible to calculate the SINR of a particular grid g served by BS b at
time t. Accordingly, the achievable data rate of each user located at their correspond-
ing grids can be inferred from their SINR value by using Shannon’s formula. Since the
interference dominates the SINR value, we will neglect the effect of the noise factor
in the performance evaluation section for the sake of simplicity. Also, the path loss
matrix £(b, p, g), for each BS b, PL p and grid g triple is generated beforehand by using
the COST-Hata metropolitan area propagation model [12] and fed to the optimization

software as an input to speed up the calculation of the SINR.

> A L(b,p, )W (b, p)

pePA

(ao - 1) Z Abpt‘c(bvpa g)W(bap) + Z Z Aipt‘c(iapv g)W(lvp) + n

pePA i€B pePA

\:[Igbt = SF

(4.12)

Although some assumptions are made about the BS capacity, BS power con-
sumption, propagation and interference; our problem formulation can easily incorpo-
rate other models according to the specific requirements of the application area and

BS equipments.
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In this section, we derive a deterministic heuristic called GTA to solve the large

realistic instances of the formulated TAM problem. Before going into details of the

GTA, some additional variables are explained.

Additional variables used in GTA:

Beff .
Ber

Bhigh .

neig ,
B¢

b

&b
gbp

é-énax .
D .

max .

Set of currently switched off BSs

Set of currently switched on BSs (B°* = B — B°f)

Set of BSs having Cf" > D,; b € B (Users served by those BSs
most likely to suffer worse service quality than expected)

Set of neighboring BSs of the BS b; b € B (At most two maxi-
mum? coverage distance away)

Maximum UM of the BS b; b € B

Current SPM of BS b; b € B"

Estimated SPM of the BS b if it is activated with PL p; b €
BT p c PA

max(&;),i € B when BS b is activated with PL p; b € BT p €
PA

Allowed SPM redundancy of BS b; b € B°ft

Current traffic load of BS b; b € B°"

Current power consumption of BS b; b € B

Estimated traffic load of BS b if it is activated with PL p; b €
BT p c PA

Current user coverage ratio of the network

We define a new BS Utilization Metric (UM) where the optimum value is ob-

tained when a BS is consuming minimum amount of power while operating with its

maximum permitted traffic load without violating the QoS constrains. In this way, we

2The longest possible coverage distance between any grid-BS pair in an interference-free environ-

ment
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are trying to maximize the utilization of the BS while minimizing the consumed power
per bit. However, 100% BS capacity utilization may cause some problems in terms of
providing the required service quality to the subscribers since there will not be any
residual resources available in case of an unexpected traffic demand. Therefore, setting
the maximum traffic load capacity of a BS as the 90% or 95% of its total capacity
and sparing some slack resources would be useful. The maximum possible UM of a
particular BS b is denoted by ;"** and given by Equation 4.13. Additionally, we intro-
duced a new term called Saturation Proximity Metric (SPM) which is used to measure
“how close a BS is to its maximum UM" and given by Equation 4.14. As this metric
gets closer to zero, it means that the BS is operating closer to its maximum UM and
vice versa. High SPM values mean that the BSs are operating whether overloaded or
under-utilized. fbp is the estimated SPM of BS b if it is activated with PL p and given
by Equation 4.15. This metric is calculated to decide whether a BS is eligible to be

switched on or not.

1
ma< _ - (4.13)
Wi(b,p=2)
Cgur
cur __ max 4.14
. Chy
= [P — ———— 4.15
ébp b DbW(b,p) ( )

Before explaining the algorithm itself, we will elaborate on the trade-offs and
design criteria. The design criteria behind the GTA algorithm is to maximize the
utilization of the active BSs in order to create a margin for the other BSs to switch
off, hence save energy. To achieve that goal, we defined the previously explained
parameters of UM and SPM. These parameters are merely indicators of BS utilization
to observe the current status of the network and take corrective actions for saving
energy. However, there is a trade-off between saving energy and subscriber satisfaction.
To overcome this challenge, GTA provides required coverage while trying to keep the
energy expenditure as low as possible and ensures that all BSs are operating below their

maximum traffic load capacities, thus being certain that all served users are satisfied
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in terms of their QoS requirements.

The GTA algorithm consists of two phases which are the coverage assurance and
the quality assurance phases. In the coverage assurance phase, the ultimate goal is to
provide the required coverage while trying to keep the energy expenditure as low as
possible. At the beginning of the coverage assurance phase, estimated SPM values are
calculated for every switched off BS and PL couple and sorted ascending. Beginning
from the BSs having the lowest estimated SPM value, each switched off BS is assumed
to be activated. Then, the impact of that activation on the network is observed by
calculating and storing the actual SPM values of all active BSs. After activating each
switched off BSs and observing their impact on the network, the one having minimum
estimated SPM value satisfying that the difference between the maximum SPM of
switched on BSs and the estimated SPM of the current BS is smaller than a predefined
threshold is switched on. Hence, we prevent the currently activated BS from reducing
the SPM values of the other switched on BSs and keep the overall network energy

efficient.

In summary, each switched off BS is assumed to be activated one by one, and
the state of the network after this step is observed. By this way, we look one step
ahead of the current state of the network for making the right decision. We activate
the BS having the smallest SPM value which means that particular BS is operating
close to its minimum possible power consumption rate and maximum possible traffic
load. However, SPM value of a currently active BS may be reduced while switching on
an additional BS since users are associated with the BS providing the best SINR value.
To avoid that situation, we introduced a threshold called allowed SPM redundancy.
When a BS is assumed to be activated, SPM of the other active BSs are recalculated.
If switching on a BS reduces the SPM of currently active BSs less than the defined
SPM redundancy threshold, that BS is allowed to be activated. However, if activating
that particular BS creates more than an anticipated level of coverage redundancy, i.e.,
decreases the SPM of an already activated BS more than the threshold value, that BS
is not activated and the next BS having the minimum estimated SPM is taken into

consideration.
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1: Switch off all BSs

2: repeat

3 for all i ¢ B° and j € PA do

4 calculate &;;

5 end for

6 sort_ascending(éij)

7 for all i ¢ B° and j € PA do

8 assume BS i is switched on with PL j
9 for all £ € B°" do

10: calculate "

11: end for

12: end for

13: activate BS i € B° with PL j € PA having minimum possible fij satisfying 5{;-1”7&]- < Ag
14: until e > gmin

15: repeat

16: for all i € Bheh do

17: for all j € (B! B°T) and k € PA do

18: calculate £,

19: end for

20: activate BS j € B?Eig with PL k& € PA having the smallest éjk

21: end for
22: until Bhigh — ()

Figure 4.1. Green TAM algorithm.

The second phase is the quality assurance phase. The aim of this phase is to
ensure that all BSs are operating below their maximum traffic load capacities, thus
making sure that all served users are satisfied in terms of their QoS requirements. If
offered traffic load of a particular BS is higher than its capacity, all switched off neigh-
boring BSs are visited and their estimated SPMs are calculated. The neighboring BS
having the smallest estimated SPM is activated until the traffic load of that particular

BS decreases below its maximum traffic load capacity.

The complexity function of the GTA is polynomial and the highest order is found
in line 10 of the algorithm. Computational complexity of the GTA is O(N”) and the
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affecting parameters are the number of time slots, the number of BSs, the number of

power levels, the coverage area and the grid area.

4.4. Greedy TAM Heuristic

In this section, we introduce a greedy heuristic to solve the formulated TAM
problem. The results of this heuristic are also used during the comparative performance
evaluation in Section 4.5.2. It starts with activating all BSs with their maximum
transmission PL. Then the heuristic visits each BS one by one and tries to deactivate
the under-utilized ones. If deactivation is not possible, then seeks for an opportunity

to decrease their transmission PL without violating the QoS constraints.

1: Activate all BSs with max PL
2: for allt € Band j € P do

3: Set PL of BS 4 to minimum possible? j without violating the QoS constraints

4: end for

Figure 4.2. Greedy TAM Heuristic.

4.5. Application Scenario and Performance Evaluation

4.5.1. Application Scenario and Parameters

In order to make proper assessment of the proposed methods, it is required to
create a test environment as close to real life conditions as possible. However, it is
mostly not possible to solve large problem instances with the formal optimization tools
like CPLEX [81] or GUROBI [82]; due to very high space and computational complex-
ity. Therefore, we envisioned a small and a large test scenario for the performance
evaluation. By solving the small instances of the TAM problem with the optimization
tool and the proposed GTA, we show the effectiveness of our heuristic and then apply

our heuristic to large problem instances confidently.

3Note that j € P which includes switching a BS off with j = 0
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We adopt three distinct transmission PAs for BSs in compliance with the current
state of the BS manufacturing technology. If a BS is up, it transmits with one of
the power levels p; where i € {2,3,4} and if the BS is switched off its power level
is set to one. Since all of our test area exhibits the same terrain feature (urban), a
single propagation model suitable for metropolitan areas (COST-Hata [12]) is used
throughout the whole area. However, in case of need, the test area may be partitioned
into sub-areas containing different terrain features and other propagation models can

be incorporated for these specific portions of the coverage area.

Although our model can accommodate BSs with different traffic load capacities,
we assume all BSs are identical and have the same capacity for the performance eval-
uation purposes. For the small test instance, the whole coverage area is composed of
a business center and the maximum aggregate traffic load of each 50 x 50 m? grid is
assumed to be 4 Mbps. For the large test instance, there are three different regions
which are a business center, a residential area and a forest/park. Each 100 x 100 m?
grid creates an aggregate of 10, 4 and 0.01 Mbps maximum traffic respectively. BSs
are deployed according to the specific traffic requirements of each grid in the coverage

area. However, two BSs cannot be closer than the MIBD to each other.

We take the Maslak district of Istanbul as an example for our test scenarios which
is covering an area of 5 x 5 km? as depicted in Figure 4.3. We assume that the aggregate
traffic load of each grid type follows their specific patterns given in Figure 4.4 and there
are 200 BSs deployed to accommodate the peak-time traffic. As QoS metrics, proposed
adaptive topology should satisfy the minimum aggregate data rate requirements of each
grid in the coverage area and cover at least 99% of the area at all times. Important
parameters used in the sample application scenario are summarized in Table 4.3. For
the sake of variance control, 10 different test cases are generated for each of the small

and large scenarios and the average of the results are presented.

4.5.1.1. Traffic Pattern. Similar to Section 3.4, we assume a sinusoidal pattern through-

out the day resembling the real-life traffic profile given in Figure 1.2 and the many other
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Scenario parameters.

Value

Parameter
Small Large

Coverage Area 1 x 1km? 5 x 5 km?
# BSs (NB) 30 200
Grid Area 50 x 50 m? 100 x 100 m?
# Grid Types 1 3
MIBD 100m
BS Core Power 60 Watt
# PLs 3

BS Transmission PLs

12 - 36 - 108 Watt

BS Traffic Capacity (D) 100 Mbps
# Time Slots in a Day 24
Min. Coverage Ratio (™) 99%
Min. SINR (Pmin) 6 dB
Spreading Factor 32
Orthogonality Loss Factor («,) 0.5
Allowed SPM Redundancy (A€) 20%

measurement studies presented in [1,72,73]. The traffic function is defined as:

Wg

g

, _ f;nax . f;nin

4.16
. (4.16)
max + min
o B s
t—tP
; NTg) + W) (4.18)

f(g,t) = w'cos(2m

where f;ni“ and f;"** are the minimum and the maximum aggregate traffic loads of grid

g throughout the day, wg and wy are the height and offset of the sinusoidal traffic wave
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Figure 4.3. Three different regions of Maslak, Istanbul.

of grid g and ¢ is the time slot in which the aggregate traffic load of grid g has its peak.
Although the TAM problem formulation has the flexibility to assign different traffic
profiles for each grid, we define three distinct traffic profiles for the business center, the
residential area and the forest/park as seen in Figure 4.3 by utilizing Equation 4.16.
Figure 4.3 depicts a rough partitioning of the Maslak district and its neighborhood.
Created traffic profiles can be seen in Figure 4.4 where ¢}, ¥ and t? are the peak time
slots; fy™™, fi™™ and ff" are the minimum aggregate traffic loads and finally; f;"*,
S and f7** are the maximum aggregate traffic loads of the girds for business center,

residential area and forest/park respectively.

‘‘‘‘‘ Business Center
[ P = = = Residential Area
’ '~ L Forest

fmay

Traffic Load
.
N
-

L L e g
0 5 ® 10 ©15 20 NT
i Time (hour) r

Figure 4.4. Three example normalized traffic profiles created by using Equation 4.16
for NT = 24.
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4.5.2. Performance Evaluation

Performance of GTA is evaluated by using both small-scale and large real-life-scale
test cases and compared with the results of an LP tool [81], a greedy heuristic and two
competitor green BS planning algorithms previously proposed in the literature [13,14].
Among the competitor algorithms, SLAKE [13] is a distributed sleep-wake up algorithm
inspired by the ecological protocooperation principle. It consists of a sleeping and a
traffic distribution procedure. On the other hand, Niu et al. Algorithm [14] utilizes
the cell zooming concept for energy saving to adaptively adjust the size of the cells
according to the current traffic load. It is assumed that a cell zooming server which is

a virtual entity in the network controls the procedure of cell zooming.

We modeled the TAM problem with AMPL [76] and used a commercial linear
optimization tool IBM ILOG CPLEX [81] to solve it. In order to reduce the space
and computational complexity of the problem, we decompose the problem into smaller
parts independent from each other. We solve the problem for each time slot separately

and add them up to find the objective function given in Equation 4.1.

Before proceeding to the details of the comparative performance evaluation, we
find it useful to start with examining the average run times of the applied methods.
Average run times of GTA, greedy heuristic, LP tool and SLAKE which are collected
from a computer with 4 hexa-core Xeon x5650 2.67 GHz processors and 24 GB of

Table 4.5. Comparison of average run times.

Small Scenario Large Scenario

GTA 33s 3h 14m 13s
Niu et al. Algorithm 20s 2h 16m 44s
Greedy Heuristic 2s 13m 23s
LP Tool 5m 46s -

SLAKE 9s 39m 31s
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Figure 4.5. Comparative power consumption throughout a day for the small test

scenario.

memory are given in Table 4.5. For the small test scenario, the greedy heuristic is the
fastest method as expected. On the other hand, the LP tool consumes much more
time compared to the other methods since it tries to find the exact optimum solution.
For the large test scenario, GTA requires more than three hours to find an energy
efficient topology for one day. Although each time slot has different run times due to
the different amount of offered traffic loads, it takes approximately 8 minutes to find a

feasible solution for a time slot.

The comparative power consumptions throughout a day are given in Figure 4.5
for the small test scenario. If none of the green techniques are applied to the network,
the power consumption does not change throughout the day regardless of the varying
traffic load. On the other hand, LP tool provides the optimum solutions and finds
the most power efficient topologies possible. Although some amount of power can be
preserved with the greedy heuristic, it is clear that GTA, SLAKE and Niu et al.’s
Algorithm perform better in terms of power efficiency. When we compare GTA and
SLAKE, GTA achieves an average of 19% more power savings and creates a more
energy-aware network compared to SLAKE. Similarly, GTA achieves 11% more power
savings than Niu et al.’s Algorithm. As opposed to competitor methods, our proposed
GTA utilizes the dynamic tx power adjustment capability of BSs and incorporates
better decision metrics such as BS UM and SPM to minimize the total network power

consumption.
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Figure 4.6. Comparative power consumption throughout a day for the large test

scenario.

Figure 4.6 depicts the comparative power consumptions for the large test sce-
nario. It is possible to observe that the power expenditure trends of all methods are
proportional to the total aggregate traffic load of the network. However, GTA saves
the largest amount of power and achieves 50%, 32%, 22% and 14% more power reduc-
tion with respect to the static BS operation, greedy heuristic, SLAKE and Niu et al.’s
Algorithm in order.

In Table 4.6; daily, monthly and annual energy cost savings are given. The elec-
tricity prices for peak (5pm-10pm), morning (6am-5pm) and off-peak (10pm-6am) times
are 39.38, 22.01 and 9,48 kurus/kWh (0,18, 0,1 and 0,04 $/kWh) respectively includ-
ing the 22% tax for the industrial consumers in compliance with the TEDAS (Turkish
Electricity Distribution Company) [83|, Turkey’s governmental electricity retailer com-
pany. City-wide and country-wide savings are calculated by comparing parameters of
the test case with the total urban surface area and total urban population of Istanbul
and Turkey respectively. Istanbul with more than 14 million inhabitants, is one of the
biggest cities in the world and constitutes approximately 20% of the Turkey’s popula-
tion. Therefore, the respective increase between the test case and the city-wide cost
savings may seem to be very high while the increase between the city and country-wide
cost savings are quite low for this specific example. On the other hand, for another
service provider operating in a country with smaller but many cities, significant savings

can be still obtained.
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Table 4.6. Comparative energy cost saving.

Annual($)

Daily($) | Monthly($)
Test Case | City-wide | Country-wide | Country-wide with CE

GTA 60 1,827 21,925 | 4,670,025 | 17,279,092 49,072,621
Niu et al. Algorithm 58 1,744 20,929 | 4,457,877 | 16,494,144 46,843,368
SLAKE 55 1,674 20,096 | 4,280,448 | 15,837,657 44,978,945
Greedy Heuristic 52 1,575 18,901 | 4,025,913 | 14,895,878 42,304,293

When the numbers in Table 4.6 are examined, it is possible to say that the
proposed traffic-aware topology management scheme can dramatically decrease the
energy expenditures of the service providers. For this example, GTA can achieve more
than 4 million $ cost savings for Istanbul and 17 million $ for Turkey. Moreover, a
new term called “Cascade Effect" (CE) is introduced in [84] and demonstrated that
a 1 Watt savings at the processor level produced a 2.84 Watt savings at the facility
level through the CE. When this effect is taken into account, the actual amount of
energy savings and COy emission reduction becomes much more than the predicted

raw amounts as shown in the last column of Table 4.6.

In Table 4.7; the total energy savings throughout a day compared to the cases
that all BSs operate with PL 1, PL 2 and PL 3 are given. As expected, more energy

can be saved as the normal operation transmission power of the BSs increases. GTA

Table 4.7. Total energy savings throughout a day compared to all BSs operate with
PL 1, PL 2 and PL 3.

PL1 PL2 PL3
(kWh) (kWh) (kWh)

GTA 173.65 288.85 634.45
Niu et al. Algorithm 146.41 261.60 607.20
SLAKE 124.06 239.26 584.86

Greedy Heuristic 91.47 206.67 552.27
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achieves 18%, 39% and 89% more energy consumption for the PL 1 case; 10%, 21%
and 40% for PL 2 case; 5%, 9% and 15% for the PL 3 case with respect to Niu et al.’s
Algorithm, SLAKE and greedy heuristic in order.

4.6. Conclusion

In this chapter, we focus on saving energy in heterogeneous packed-switched cel-
lular networks by both switching BSs on/off and adaptively adjusting their transmis-
sion powers according to the current traffic conditions. We formulated a novel linear
programming model for the TAM problem and try to find the best possible network
topology which minimizes the total energy consumption without degrading a certain
level of QoS. We also derived a deterministic heuristic called GTA to solve the large
realistic instances of the formulated TAM problem. In order to make an accurate per-
formance evaluation of the proposed methods, we derived small and large test scenarios
and compared our results with the results of a commercial optimization tool, a greedy
heuristic and two competitor green BS planning algorithms previously proposed in the
literature. It is shown that our traffic-aware topology management scheme adapts the
current traffic conditions and saves significant amount of energy without violating the

QoS constraints of the subscribers.
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5. GREEN NEXT GENERATION MULTI-TIER CELLULAR
NETWORKS

5.1. Introduction

In this chapter, our goal is to derive efficient green network design, deployment
and operation techniques for NGMCNs. Since NGMCNs are not fully deployed and
operational for the time being, we design the network as green from the beginning and
keep green during the network operation phase. This chapter of the thesis consists
of three work packages. The first work package is the mapping process of a pilot
application area and creating a spatio-temporal user density estimation. The second
work package is the deployment of additional pico BSs on top of the existing network
infrastructure to accommodate the peak traffic conditions. We keep the current network
infrastructure because it is more cost-efficient from the service provider’s point of view.
Finally, the third work package is the green dynamic BS operation of the network

consisting of heterogeneous elements for power saving.

In the first work package, we create a detailed 3-Dimensional map of the pilot
application area to be used in the second and third work packages. In the second work
package, given the peak traffic loads and a set of currently deployed micro BSs in the
coverage area, we formulate a mathematical optimization model to address the green
pico BS deployment problem. We also propose a novel heuristic and a greedy algorithm
to install the minimum number of pico BSs to support the peak traffic conditions with-
out compromising the QoS requirements of the subscribers. Lastly, in the third work
package, we formulate a novel LP model for the green dynamic BS operation problem
to find the optimum topology which minimizes the power consumption while satisfying
certain service quality standards such as coverage and achievable data rate. Along with
the problem formulation, we also propose an offline-centralized, an online-distributed
and two centralized greedy algorithms to solve it. For comparative performance eval-

uation, we compare the results of our proposed green BS deployment and dynamic
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operation methods with two of the previously proposed techniques [15] [30] in the

literature and a commercial optimization tool.

Although there are some studies in the literature related to the traffic-aware

topology management, our method differs in the following aspects:

e Similar to the previous methods proposed for CCNs and PSCNs in Chapters 3
and 4, we utilize the dynamic power adjustment capability of the BSs in order to
create more energy-aware network topologies.

e We justify our proposed methods by applying them to scenarios as close to real
life conditions as possible. For this purpose, we created a detailed map of the
Taksim area for a better estimation of the spatio-temporal user density. To the
best of our knowledge, this kind of detailed user density estimation study of a
particular area is one of its kind in the literature.

e We propose to deploy additional pico BSs on top of the existing network infras-
tructure to meet the increasing data exchange requirements of the subscribers.
Therefore, our green networking strategy is not limited to dynamic operation
only, but also encompasses the network design and deployment phases.

e We provide low complexity heuristics for both green pico BS deployment and
green dynamic BS operation problems. These heuristics can be also considered as
operating algorithms to achieve the provided power saving figures in Section 5.5.2.

e We derive both offline-centralized and online-distributed algorithms along with
two centralized greedy algorithms to solve the green dynamic BS operation prob-
lem. Hence, cellular network operators have the freedom to apply the most suit-

able approach according to their specific requirements.

5.2. Spatio-temporal User Density Estimation of the Pilot Application

Area

We select Taksim [85] as our pilot application area which is a highly crowded
urban center composed of various places such as offices, schools, shopping malls, cafes,

restaurants, bars and tourist attraction points. Firstly, a satellite image raster map
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Figure 5.1. Blueprint of Taksim area shapes and labels.

of the Taksim area is created as a base for further operations. This base is obtained
by merging 17 high resolution Google Earth [86] images into a single map. On top of
the base map, each structure / building / street is drawn as rectangular shapes and a
blueprint of the coverage area is created in Microsoft Visio [87] with a resolution of two
meters. Subsequently, each rectangular shape is labeled with a unique id to facilitate
the classification and prevent possible conflictions. Resulting blueprint of the Taksim
area is given in Figure 5.1. This map, which includes 1365 lines and 1080 labels, is

created with an effort of more than 80 working hours.

Before proceeding to collect the required data for traffic demand estimation, we
created 17 class types for places in Taksim area and they are listed in Table 5.1. The
reason behind this classification is to make a better spatio-temporal traffic estimation.

By assigning a class type to each shape created in the blueprint, we will be able
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Table 5.1. Shape types.

Type No Type Name

1 Cafe/Restaurant Early Closing

2 Cafe/Restaurant Late Closing

3 Bar/Night Club

4 Shopping

5 Office/Work Place Early Closing
6 Office/Work Place Late Closing

7 Mosque/Church

8 School Weekday

9 School All Week

10 Pedestrian Road Heavily Crowded
11 Pedestrian Road Lightly Crowded
12 Residential

13 Movie Theater Art Gallery

14 Otel

15 Hostel

16 Hospital

17 Derelict Building

to simulate the overall traffic demand of the coverage area. Each class is carefully
identified to create a model of the Taksim area as close to real life situation as possible.
Since Taksim is a highly crowded urban area composed of a variety of places, further
reduction in the number of classes may decrease the accuracy of the traffic demand
estimation. On the other hand, the accuracy may be improved by increasing the
number of classes with a cost of introducing additional overhead and complexity to
the classification process. We try to keep the class count as low as possible while

maintaining an acceptable level of traffic demand estimation accuracy.

In Table 5.2, an example of the collected data is depicted for traffic demand esti-
mation. The first set of collected data is the X and Y coordinates of the shape corners.

By collecting the coordinate data, we determine the boundaries of each shape and able
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Table 5.2. Shape numeric values example.

1 943 576 902 565 900 576 940 587 0 2 5 Institut Francais Office
2 978 587 943 576 928 633 941 636 0 2 9 Institut Francais Course
3 931 622 905 616 902 627 928 633 0 2 5 Institut Francais Office
4 914 580 900 576 888 624 902 627 0 2 9 Institut Francais Course
5 940 587 914 580 905 616 931 622 0 1 9 Institut Francais Course
0 2 1 Restaurant Early
6 885 560 869 555 863 580 885 588
2 4 6 CHP Beyoglu District Presidency
7 885 588 863 580 851 622 876 628 0 2 7 Armenian Church
0 1 5 Dry Cleaning, Funeral and Undertaking
8 893 625 878 621 872 645 887 651
1 3 5 Office Early
9 862 548 851 542 841 566 855 572 0 8 5 Office Early
0 1 2 Bereket Halk Doner
10 851 542 844 539 834 562 841 566
1 8 6 Office Late
0 1 13 AFM Cinema
11 844 539 838 536 828 558 834 562
1 5 2 Burger King
12 838 536 832 533 822 553 828 558 0 7 2 Borsa Restaurant
1079 333 469 327 468 324 522 329 523 0 1 11 Pedestrian Road Lightly Crowded
1080 318 398 314 396 268 443 271 448 0 1 11 Pedestrian Road Lightly Crowded

to associate each grid with their respective shape type. However, coordinates of the four
corners only allow us to create a 2-Dimensional occupancy map of the area. Therefore,
we also collected the ground and top floors of each place as an additional coordinate of
7 to model the traffic demand in 3-Dimensions. Up to this point, collected data may
be extracted by using satellite images and street view of Google [88], Yandex [89] and
OpenStreet [90] Maps. However, it is not as easy as it seems to collect the ground and
top floors of each place. Taksim area is required to be visited many times to collect
this information properly. Last and the most time consuming part of the table is the
type and brief description of the shape. Each place needs to be identified, which means
tens of kilometers of hiking in the coverage area, and then classified as one of the types

given in Table 5.1.

The reader may notice that there are some shapes consisting of more than one

place type. This issue raises when there are multiple type of places located in the same
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Figure 5.2. 3D model of the pilot coverage area.

building. Shape number 6 in Table 5.2, which is a four-story building, may be an ex-
ample of this situation. There is a restaurant in the first two floors while the remaining
two floors of the same building are occupied by the district presidency of a major po-
litical party in Turkey. Since the explained situation is very common in Taksim area,
we identified 1534 different places although there are 1080 structure/building/street
labeled in the blueprint given in Figure 5.1. Identification and classification of the

places to fill Table 5.2 took approximately 200 working hours.

After completing the shape numeric values sheet given in Table 5.2, a 3D model

of the coverage area is created by using X3D [91], an XML-based 3D graphics tool. The
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resulting 3D model along with its color code can be seen in Figure 5.2. An additional
software is developed in Microsoft Visual Studio 2008 [92] to create the X3D code
itself. Although the color-coded 3D model of the coverage area represents a useful
visualization, it does not provide much by itself about the spatio-temporal user density
of the area. Therefore, we are also required to estimate the average user densities of
each place type throughout the day to create a complete traffic load view of Taksim
area. For this purpose, we collected another set of data given in Table 5.3. In the table,
estimated average user densities per 10m? is provided both for weekday and weekend.
Presented data is the result of countless observation expeditions being made to the
coverage area during different times of the day. Besides its scientific side, the observer
has also accumulated very precious social real life experience during these expeditions
by having chance to visit various type of places located in one of the most crowded and

cosmopolitan region around the world.

All the numbers provided in Table 5.3 are carefully assigned to each place type.
As an example, the user density of Taksim Commercial Vocational High School, which
needs to be classified as “School Weekday", increases dramatically just before the be-
ginning of the class hours. User volume is maintained till the end of classes. However,
the density in the evening does not drop as sharp as it increases in the morning due
to many reasons such as club or sports activities, additional classes for the voluntary
students. After a certain point, the school is quite vacant for the remainder of the
day until the start of the class hour in the next day. As expected, the user density
is observed to be very low for “School Weekday" type places during weekend. On the
contrary, Cumhuriyet Meyhanesi, which needs to be classified as “Bar/Night Club", is
very dense during nights. This density further increases at the weekends. As a result,
complete 3-Dimensional view of the spatio-temporal user density estimation in Taksim
area is obtained by applying the figures given in Table 5.3. To the best of our knowl-
edge, this kind of detailed user density estimation study of a particular area is one of

its kind in the literature.



Table 5.3.

User density estimations of each type for 10m? area.

WEEKDAY
1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1 1.5 1.5 2 3 3 2 1.5 1.5 2 2 2 1 0.5 0.5 0.1
2 3 3 2 2 1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 2 3
3 5 4 3 2 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1 2.5 4 5 5
4 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 1.5 0.5 0.1
5 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.1
6 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.1
7 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.1
8 0.1 0.1 0.1 0.1 0.5 2 3 5 5 5 5 5 5 5 5 5 5 3 1 1 0.5 0.1 0.1 0.1
9 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2.5 2.5 2.5 2 2 2.5 2.5 2.5 2.5 2.5 2.5 2 2 1 0.1 0.1
10 4 3 2 1 1 2 3 3 3 3 3.5 4 4 3.5 3 3 3 4 5 5 4 4 4 4
11 1.2 0.9 0.6 0.3 0.3 0.6 0.9 0.9 0.9 0.9 1.05 1.2 1.2 1.05 0.9 0.9 0.9 1.2 1.5 1.5 1.2 1.2 1.2 1.2
12 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1
13 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2 3 3 4 4 4 4 5 5 5 5 5 4 2
14 2 2 2 2 2 2 2 1.5 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 2
15 5 5 5 5 5 5 5 4 2 2 2 2 2 2 2 2 2 2 3 4 4 5 5 5
16 1.2 1.2 1.2 1.2 1.2 1.2 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 1.2 1.2 1.2 1.2 1.2 1.2
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WEEKEND
1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 1.8 2.7 2.7 3.6 5.4 5.4 3.6 2.7 2.7 3.6 3.6 3.6 1.8 0.9 0.5 0.1
2 6 6 4 4 2 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1 1 1 1 2 3 3 4 6
3 12 9.6 7.2 4.8 2.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.2 2.4 6 9.6 12 12
4 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 2.7 2.7 2.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 2.7 1.8 0.9 0.1
5 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.1
6 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.1
7 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.1
8 0.01 0.01 0.01 0.01 0.05 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.1 0.1 0.05 0.01 0.01 0.01
9 0.1 0.1 0.1 0.1 0.75 0.75 1.5 3 3.75 3.75 3.75 3 3 3.75 3.75 3.75 3.75 3.75 3.75 3 3 1.5 0.1 0.1
10 8 6 4 2 2 4 6 6 6 6 7 8 8 7 6 6 6 8 10 10 10 10 10 10
11 2.4 1.8 1.2 0.6 0.6 1.2 1.8 1.8 1.8 1.8 2.1 2.4 2.4 2.1 1.8 1.8 1.8 2.4 3 3 2.4 2.4 2.4 2.4
12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 1.2 1.2
13 0.1 0.1 0.1 0.1 0.1 0.1 1 1 2 4 4 6 6 8 8 8 8 10 10 10 10 10 8 4
14 3 3 3 3 3 3 3 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.25 2.25 2.25 3 3 3
15 7.5 7.5 7.5 7.5 7.5 7.5 7.5 6 3 3 3 3 3 3 3 3 3 3 4.5 6 6 7.5 7.5 7.5
16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5.3. Average number of users in the coverage area.

The total number of individual subscribers throughout a day on weekday and
weekend are depicted in Figure 5.3. Minimum of 49,166 and maximum of 177,260
population values are achieved during 04:00 and 14:00 on weekdays, while 72,165 and
207,809 population values are achieved during 04:00 and 19:00 on weekends respectively.
In accordance with many previous studies in the literature which investigates the traffic
load patterns of mobile access networks [1,72, 73], weekday traffic of Taksim follows
a sinusoidal pattern throughout the day. The traffic load in the coverage area drops
significantly during night time whereas a high traffic demand is observed during day
time, especially in working hours. On the contrary, weekend traffic profile in Taksim
does not match with the general assumption of “low traffic load during weekend and
holidays". Although this assumption may be quite reasonable for places comprising
of business and trade centers, offices or schools; Taksim exhibits unique aspects in
many ways with respect to other crowded urban areas. There are variety of different
types of places including offices, residential areas, schools, weekend classes and tourist
attraction points. Moreover, Taksim is the heart of night life in Istanbul, which is
one of the most crowded cities in the world with an approximate population of 20
million. For the reasons mentioned, the weekend traffic load in Taksim is higher than
the weekday traffic load. This behavior is observed both day and night time. Except
from the spatial traffic change, Figure 5.3 also clearly shows that there are significant
temporal traffic load changes throughout the day and we have enough margin to save

energy with efficient green networking methods.
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Table 5.4. Area ratio and traffic contribution of each place type.

Cafe/Restaurant Early Closing 5.5 4.4 5.8
Cafe/Restaurant Late Closing 2.6 114¢) 2.8
Bar/Night Club .7 7.6 13.3
Shopping 9.0 6.7 9.0
Office/Work Place Early Closing 19.0 17.3 13.0
Office/Work Place Late Closing 10.2 11.8 8.9
Mosque/Church 1.7 0.9 0.7
School Weekday 7.2 12.7 1.0
School All Week 2.0 2.0 2.3
Pedestrian Road Heavily Crowded 5.0 11.3 17.9
Pedestrian Road Lightly Crowded 3.1 2.1 3.1
Residential 15.1 8.0 7.2
Movie Theater Art Gallery 2.2 3.7 5.5
Otel 5.1 5.3 5.9
Hostel 0.8 2.0 2.3
Hospital 1.9 2.3 1.3
Derelict Building 2.0 0 0

Table 5.4 provides the ratio of the surface area for each place type over the
whole coverage area along with their average contribution to the total created traffic
load. Although the area ratio column is a vivid evidence of Taksim’s cosmopolitan
nature; offices, residential and shopping areas, bars, schools and cafeterias constitute
the significant portion. It is also worth noting that the traffic load contribution of each
type is not always proportional to their respective area ratio. More spacious types of
places such as residential areas create lower traffic loads whereas more crowded places
such as bars, night clubs and schools create higher traffic loads with respect to their
actual total area. Another important observation is the traffic load contribution change
between weekdays and weekends. Although there are significant variations between
the weekday and weekend traffic load contributions, the change in bars, night clubs,

weekday schools and pedestrian walkways can be counted as the most significant ones.

Installing a new BS to the location of an existing cell site is definitely cheaper
than establishing a new site from the scratch. Contributing factors to this difference
includes power and data cabling, mast installation, payment to the land owner, etc.

Therefore, current cell sites are preferred to deploy the new BSs of another technology,
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Figure 5.4. OpenCellID BS information repository loaded on OpenStreetMap.

which is assumed to be LTE in our case. However, obtaining the current BS location
information is not an easy task. Although we attempted to get the BS locations and
the traffic load information from two of Turkey’s major mobile service providers, we
could not manage to accomplish it. As a last resort, we decided to collect this data by

ourselves with the help of a third party mobile application.

Although there are a bunch of available applications in the market, OpenCel-
IID [93] was the most promising one for our case. OpenCellID is the world’s largest
collaborative community project that collects GPS positions of cell towers, for a mul-
titude of commercial and private purposes. It has an Android OS based free mobile
application used by the voluntary individuals. A simple log is maintained by the appli-
cation which includes the discovered BS IDs, locations, discovery time stamp, operator

name, etc. The OpenCelllD project also keeps a huge database of the discovered BS
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Figure 5.5. Current locations of micro BSs.

information. Each mobile application user can register himself/herself and obtain an
API key. Then, the log file can be uploaded by using the obtained API key to the com-
mon database. According to their official statement, the OpenCellID database contains
almost 7 million unique GSM Cell IDs and 1.2 billion measurements as of Jan 2015.
The data can be downloaded from the database in a scalar format or can be applied as
an additional layer on top of OpenStreetMap. In Figure 5.4, BS data of Taksim area
obtained from the OpenCelllD repository is plotted on top of OpenStreetMap.

Figure 5.5 depicts the BS locations of a major mobile service provider in Turkey.
Although the coverage area is less than 1km?, surprisingly there are 21 BSs belonging
to a single operator. In order to discover the locations of the BSs, more than 20 km
of walking was required while carrying an OpenCelllD installed smart phone. The

locations of the discovered cells are identified with an average accuracy of 5m.
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5.3. Green Pico BS Deployment

In this section, our aim is to minimize the number of deployed pico BSs while
guaranteeing a certain QoS level in terms of coverage and achievable data rate. For
this purpose, we discretized the coverage area by dividing it into 1m? grids and each
grid has a traffic occupancy according to its associated type as listed in Table 5.3.
However, existing micro BSs along with to-be-deployed pico BSs are required to satisfy
user requirements at all times. Therefore, we take the peak traffic loads of each place
type into account. For example, the traffic demand in Istiklal Avenue peaks between
19:00-24:00 on weekends while the traffic demand in Pera Fine Arts High School is

maximum during 08:00-17:00 on weekdays.

5.3.1. Problem Formulation

Given the peak traffic load of each place type and set of currently deployed

micro BSs, we formulate a mathematical optimization problem for additional pico BS

deployment.
Parameters:
NBY . Number of micro BSs
NB” . Number of pico BSs

NP . Number of micro power levels

N¢ : Number of coverage grids

BM : Set of micro BSs where BM = {1,... N3}

B”  : Set of pico BSs where BY = {1,..., NB"}

B : Set of BSs where B = B UBF

G : Set of coverage grids

NX" . Number of candidate pico BSs deployment locations

XP i Set of candidate pico BSs deployment locations where X =
{1,...,NX"}
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Number of neighboring candidate pico BSs deployment locations

for overloaded BSs

: Set of neighboring candidate pico BSs deployment locations for

BS b where X} ¢ X”

: Data flow capacity of BS b
: Minimum acceptable user satisfaction ratio where 0 < g™i» <1

: User satisfaction ratio during peak traffic conditions where 0 <

p<1

: Minimum acceptable SINR at the receiver

: Received SINR by grid g from BS b

Path loss exponent from BS b to grid g

: Traffic load of BS b

Model variables:

1, if Grid g is associated with BS b
Sgp =

0, otherwise

The objective function is given as

min |B”| (5.1)
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Goal of our objective function in Equation 5.1 is to minimize the total number
of deployed pico BSs for both energy efficiency and CAPEX reduction. Constraint in
Equation 5.2 ensures that all BSs (both pico and micro) do not exceed their maximum
data flow capacity. Equation 5.3 provides that each grid associated with a BS receives
sufficient signal strength. By not violating the BS capacity and SINR constraints
given in Equation 5.2 and Equation 5.3; proposed optimization problem ensures the
subscriber satisfaction at all times by maintaining an acceptable level of quality in
terms of both delay and achievable data rate. Equation 5.4 is responsible for obtaining
the required user satisfaction ratio over all users, i.e., it is guaranteed that a certain
percentage of the users are covered and served properly. The constraint in Equation 5.5
makes sure that a particular grid is being served by a single BS at a particular time

slot.

5.3.2. Interference

As elaborated in Section 4.2.2.2, there are two sources of interference in LTE
networks which are intra-cell and inter-cell. The intra-cell interference is the total
interference caused by the signals emitted from the serving BS and the inter-cell inter-
ference is caused by the signals transmitted from all other BSs. In perfect transmission
conditions, there should be no intra-cell interference since all of the signals are orthog-
onal. However, the intra-cell interference cannot be totally avoided due to multipath
propagation and SINR is given by

pr

Y = - 2.6
OéOIm _|_ Iout + n ( )

where PT is the received signal power, I'™ is the intra-cell interference, I°% is the

inter-cell interference, o, is the orthogonality loss factor and 7 is the noise power.

Since the interference dominates the SINR value, we will neglect the effect of the
noise factor in the performance evaluation section for the sake of simplicity. For our
calculations, we use the COST-Hata metropolitan area propagation model [12] which

is assumed to be the most suitable model for crowded urban areas. However, this
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model is valid for the frequencies up to 2000 Mhz. COST-231 Walfisch-Tkegami [94]
model is an extension of COST Hata-Hodel and can be used for frequencies higher
than 2000 MHz. In Turkey, it is announced by the Ministry of Transport, Maritime
Affairs and Communications that 4G frequency band auctions will be done for three
different portions of the spectrum, namely 800, 1800 and 2600 Mhz. Therefore, a
suitable propagation model is required to be selected according to the frequency band

being used by the service provider. The SINR from BS b to coverage grid g is given by

PrL(b, g)

aoPL(b,g) + > BrL(V,g)+n
v eB\{b}

Uy, =

(5.7)

where P/* is the transmission power of BS b.

5.3.3. Coverage

A particular grid g is assumed to be covered if the received SINR from any BS is
higher than the minimum acceptable level U™  The binary coverage function in the

Green Pico BS Deployment Problem is given by

1, if ¥, >0 JpeB
I'(g) = (5.8)
0, otherwise

The total coverage ratio for the area of interest is required to be higher than a threshold
A and given by

>. I'(g)

geG

B=""Fe" (5.9)

5.3.4. User Association

In Green Pico BS Deployment Problem, a MT stationed within a coverage grid

is not necessarily being serviced by the closest BSs. Each coverage grid is associated
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with the BS which provides the highest SINR. However, a particular grid is said to
be covered if and only if the received SINR value is higher than the minimum SINR
requirement to guarantee an acceptable subscriber data rate. The Grid-BS association

rule is given by

1, if Uy > U™ and b = argmax (V)
Sy = veB (5.10)

0, otherwise

Although satisfying the SINR requirement is a big step for the coverage, it is not
enough by itself for proper coverage. Since BSs have limited resources (i.e. bandwidth,
backhaul link capacity), their traffic load is also important. Therefore, we need to
be certain that the minimum received SINR requirement at the MT is satisfied and
the respective traffic load of the serving BS is below its maximum capacity. Since we
deploy pico BSs according to accommodate the peak time traffic conditions, we take
the maximum traffic occupancy of the covered grids into account. Total traffic load of

a BS b can be formulated as

Jo=3" Suf? (5.11)

geG

where fP is the peak aggregate traffic occupancy of grid g.
5.3.5. Green Pico BS Deployment Algorithm

Although we formulate an optimization model for the Green Pico BS Deployment
Problem, it is very challenging to solve large real-life instances of the problem with op-
timization tools due to prohibitive computational and space complexity. On the other
hand, it may be possible to solve the problem by optimization tools for smaller number
of candidate pico BS deployment locations NX for our test case scenario. However,
limiting the possible pico BS deployment locations reduces the feasible solution space
significantly which in turn decreases the quality of the resulting topologies. Hence, in

this section we focus on deriving an efficient heuristic to install the minimum number
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of pico BSs in order to support the peak traffic conditions without compromising the

QoS requirements of the subscribers.

5.3.5.1. Area Spectral Efficiency. For the Green Pico BS Deployment Algorithm, we

adopt the Area Spectral Efficiency (ASE) [95] as a performance indicator. ASE is
defined as the summation of the spectral efficiency over the coverage area. According
to Shannon-Hartley theorem, spectral efficiency (bits/sec/Hz) at coverage grid g is
given by

C(g) = log2(1 + rglezg((\lfgb)) (5.12)

Area spectral efficiency(bits/sec/Hz/m?) defines the sum of the maximum average data
rates per unit bandwidth per unit area and given by

> C(g9)p(g)

geG

A= mNG

(5.13)
where p(g) is the probability of a user being at a particular coverage grid g and m is

the coverage grid size in square meters.

The ASE is a measure of the maximum average data rate per unit bandwidth per
unit area supported by a BS and it is closely related with constraints in Equations 5.3
and 5.4. It is certain that deployment of an additional BS increases the ASE of the
coverage area unless it is very close to an existing BS and interfering with each other.
Moreover, ASE increment is expected to be higher in case a new BS is deployed to
an area with low spectral efficiency. Therefore, iterative ASE increment steps provide
better coverage of the area of interest along with high average SINR values. Let A,
is the ASE after deployment of a pico BS to candidate location x. Then, the ASE
increase in the coverage area is identified by the difference between the ASE before

and after deployment of the new pico BS and given by

AA, = A, — A (5.14)
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Figure 5.6. Possible pico BS locations with K-Means clustering.

Although Green Pico BS Deployment Algorithm can attempt to install BSs to any
suitable location in the coverage area, this approach increases the complexity of the
algorithm polynomially. Moreover, myriad of similar BS deployment results can be
produced since the resolution of the coverage area is very high (1m? grid size). To
overcome these challenges, we determine to limit the possible pico BS deployment
locations and set to a sufficiently large number denoted by NX". However, candidate
pico BS deployment locations are required to be selected efficiently. Therefore, we
used K-Means clustering [96], which is a widely-known machine learning method to
identify the coordinates of the candidate locations. K-Means algorithm uses an iterative
refinement technique and is composed of two steps, namely the Assignment and Update.
In the Assignment step, each grid is assigned to its nearest mean where new mean
locations are calculated according to the previous assignments in the Update step.
Different from the original algorithm, we calculate the contribution of each coverage
grid by multiplying the Euclidean distance to the mass center with its traffic occupancy.
Hence, we keep the cluster centers, i.e. possible pico BS deployment locations, close
to the grids where the traffic load concentration is higher. Although we take K=300
in our Green Pico BS Deployment Algorithm, an example set of candidate pico BS
locations X with K=100 is depicted in Figure 5.6 for simplicity. Since the K-Means
algorithm converges and improvements are negligible after the 20" iteration, we set the
iteration count as 20. In Figure 5.6(a), initial candidate pico BS deployment locations

are plotted while final locations are given in Figure 5.6(b) after the last iteration.
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We define a new decision parameter called Neighbor BS Deployment (NBD) met-
ric to be used in the quality assurance phase of the Green Pico BS Deployment Algo-
rithm and denoted by 6. The maximum NBD value is obtained when a to-be-deployed
neighboring BS is able to alleviate as much traffic load as possible from the over-
loaded BS without exceeding its own maximum traffic load capacity. To simplify the
NBD metric formulation, let A/, is the handed over traffic load from over-utilized
BS b to the newly deployed neighboring pico BS at candidate location x and given
by Ay, = f» — f, where f;  is the traffic load of BS b after the neighboring BS is
deployed at candidate location z. Let ¢, = D, — f, is the difference between the
maximum traffic load capacity of the newly deployed BS at location x and its current
load after the deployment. The NBD metric 6, between the overloaded BS b and the

deployed neighbor pico BS at candidate location z is given by

ebz = Agbz - au‘¢x| (515)

where «,, is the utilization penalty. It is undesirable to create more overloaded BSs in
the network while trying to minimize their total number. Therefore, a newly deployed
BS should not be allowed to take too much load of its overloaded neighbor BS and
become another overloaded BS itself. Deploying an under-utilized neighbor BS is also
a waste of precious resources and will not alleviate the load of overloaded BS. Therefore,
we introduce a penalty for both over-utilization and under-utilization cases of newly
deployed BSs. Since exceeding the maximum load capacity does not improve the

current situation anyhow, we set higher utilization penalty for over-utilized BSs where

1, if ¢, <0
ay = (5.16)

20, otherwise

By setting a, = 20 for over-utilized BSs, we give our Green Pico BS Deployment Algo-
rithm a chance to deploy a slightly overloaded pico BS in case of all other neighboring

locations do not alleviate the load of the overloaded BS sufficiently.
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B" = {0}
while 3 < ™" do
for all x € X* do
Assume a pico BS b deployed at location x
Calculate AA,
end for
deploy pico BS b at location z* = argmax(AA,)

reXP
B” = B U {b}, XP = XP\ {2}

end while

10: while (B"&" = {b | f, > Dy, Vb € B}) # {0} do
11: for all b € Bhigh do

12: Discover X} where X} ¢ XP

13: for all = € X}’ do

14: Calculate 6y,

15: end for

16: Deploy pico BS at location z* = argmax(6s,)
17: B” =B U {v}, X = XP\{x*}zGXb

18: end for

19: end while

Figure 5.7. Green Pico BS Deployment Algorithm.

We set the number of neighboring candidate pico BSs deployment locations N
to 10 in our simulations. Although higher number of NX"“’ value enhances the solution
space and may yield to better results theoretically, distant locations from a particular
overloaded BS are less likely to reduce its load. Moreover, calculating the effect of more
candidate locations increases the complexity of the algorithm. Therefore, limiting the
NX"" to a sufficiently large number results in lower runtime without degrading the

performance of the algorithm.

The pseudo code of the Green Pico BS Deployment Algorithm is given in Fig-
ure 5.7. The ultimate goal is to minimize the total number of deployed pico BSs as
given in Equation 5.1 while satisfying coverage and achievable data rate requirements.

Our algorithm consists of two phases which are the coverage assurance and the quality
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assurance phases. The aim of the coverage assurance phase is to provide the required
coverage with minimum amount of additional pico BS. At the beginning of the coverage
assurance phase, a new pico BS is assumed to be deployed at each candidate pico BS
deployment location x and AA, is calculated for all x € X*. Then, a new pico BS is
deployed to the location x having the highest AA, value. As the last step of this phase,
deployed BS is added to the set BY and the respective candidate location is removed
from the set X?. By increasing the A° in the reference coverage area, not only the
coverage ratio but also the achievable data rate requirements of the subscribers given

in Equations 5.3 and 5.4 improve.

The second phase is the quality assurance phase. The purpose of this phase
is to ensure that all BSs are operating below their maximum traffic load as given
in Equation (5.2). If there are overloaded BSs in the current network configuration,
neighboring candidate pico BS deployment locations of overloaded BSs are identified
and their respective NBD metric is calculated. Subsequently, a new pico BS is deployed
to the neighboring candidate deployment location having the maximum NBD metric
value. This step is repeated until no overloaded BS remains in the network. Since
NBD metric is a measure of how efficiently a neighboring pico BS alleviates the load of
overloaded BS without violating its own capacity constraints, quality assurance phase
quickly eliminates overloaded BSs and deploys the minimum number of pico BSs as a

remedy.

5.3.6. Greedy Pico BS Deployment Algorithm

In this section, we introduce a greedy heuristic to solve the formulated Green
Pico BS Deployment Problem. The results of this heuristic are also used during the
comparative performance evaluation in Section 5.5.2. Greedy Pico BS Deployment
Algorithm exhaustively visits each candidate pico BS deployment location and calcu-
lates their respective ASE increase AA,. Subsequently, it deploys a pico BS at the
candidate location which provides the maximum ASE increase in the coverage area if
and only if this augmentation does not violate the BS capacity constraint for all active

BSs including itself. The pseudocode of the Greedy Pico BS Deployment Algorithm is
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given in Figure 5.8 and its performance is further investigated in Section 5.5.2.

while 8 < g™ do
for all x € X do
Assume a pico BS is deployed at candidate location x

Calculate AA,

end for

Deploy a pico BS at location z* = argmax(AA,) iff Bhish = {()}
reXP
XP = XP\{a*}

1:
2
3
4
5: Find overloaded BSs Bhi#h after deployment at candidate location z
6
7
8
9:

end while

Figure 5.8. Greedy Pico BS Deployment Algorithm.

5.4. Green Dynamic BS Operation

In this section, we formulate a mathematical optimization problem to minimize
the network power consumption during the operation phase. According to the formu-
lated problem, we then propose an offline-centralized and an online-distributed novel

green dynamic BS operation algorithms for power saving.

5.4.1. Problem Formulation

Parameters:

NT : Number of time slots within the day

T : Set of discrete time slots within the day
PM : Set of micro BS power levels

P? : Set of pico BS power levels

P : Set of power levels where P = PM U P?

WM (p, f): Total consumed power by a micro BS transmitting with power level p
and traffic load f

WP (p, f): Total consumed power by a pico BS transmitting with power level p and
traffic load f

fot : Aggregate traffic occupancy of coverage grid g at time ¢

St : Traffic load of BS b at time ¢
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Model variables:

1, BS b transmits with power p at time ¢
Kbpt =
\0, otherwise
(
1, Grid g is associated with BS b at time ¢
Sgbt =
0, otherwise

The objective function for the Green Dynamic BS Operation Problem is given as

min Z( Z Z KbptWM(pa fbt) + Z Z KbptWP(p7 fbt)) (517)

teT *beBM pecPM beBF pePP

Subject to

fbt < Dy \V/(b eB,te T) (518)

W > S U™ V(g€ G,be Bt €T) (5.19)

B(t) > ™ vteT (5.20)

Y Ky=1 V(beBteT) (5.21)
peP

> S <1 VY(geG,teT) (5.22)
beB

Our objective function in Equation 5.17 aims to minimize the total energy con-
sumption of both pico and micro BSs throughout the network. Equation 5.18 is re-
sponsible for the operation of all active BSs below their data flow capacity at all times.
Equation 5.19 provides that each grid associated with a BS is being served by at least
a certain SINR value. Equation 5.20 ensures that the required user satisfaction ratio
is achieved over all users. In other words, a certain percentage of the users are covered
and served properly according to their QoS requirements. The constraint in Equa-

tion 5.21 makes sure that a BS operates at a single transmission power level during a
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particular time slot and Equation 5.22 is responsible for that a grid is being served by

a single BS at a particular instant.
5.4.2. BS Power Consumption

Power consumption of a BS can be broken down into two parts: (i) core (static)
power and (ii) dynamic power. The core power consumption is constant as long as the
BS is active whereas the dynamic power consumption is subject to change proportional
to the present traffic load conditions of the BSs. Total power consumption of BS b,

with transmit power p and traffic load f is given by

0, =1
W (b,p, f) = ! (5.23)

Wi+ W s> otherwise

where W is the core (static) power consumed by the BS b and the W,;f?f is the dynamic
power consumed by the BS b with transmit power level p and traffic load of f.

Core and dynamic power consumption of BS are given by

W = WP + WM + weeel (5.24)
f(p
Wiy = AV B+ PP (5.25)

where WPC WMS Weeol PRE and PPB are DC-DC power supply, mains supply
(AC-DC unit), active cooling, RF transceiver, baseband unit (digital signal processing)
power consumption and pf4 is the power amplifier efficiency of BS b respectively |79,
80]. Typical values for micro and pico BSs power consumption are given in Table 5.7 in
accordance with [80]. Power amplifier efficiencies for micro and pico BSs are assumed

to be 22.8% and 6.7% in order [80].
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Table 5.7. Typical BS power consumption figures.
WDC WMS Wcool PRF PBB
Micro 9.3 11.1 6.2 13 54.6
Pico 1 1.4 n/a 2 6

Although as many BS types as required can be accommodated in our mathemat-
ical model, we remove the b index from the power consumption equations and simply

provide the micro and pico BS power consumptions by

_ / p

WM (p, f) =26.6 + Do <m + 67.6) (5.26)
B / p

W P(p, fl=24+ D—P(m +8> (5.27)

where WM (p, f) and W¥(p, f) are respective power consumptions of micro and pico
BSs with transmission power p, traffic load f, data flow capacity D,; for micro and

Dp for pico BSs.
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In Figure 5.9, change of micro and pico BS power consumption is given with
respect to utilization and tx power. Pico BS power consumption figures are lower than
the micro BS for smaller tx power values regardless of the utilization, since the core
power consumption is the dominating factor. On the other hand, as the tx power
and utilization increases and the dynamic power consumption becomes the dominating
factor, the power consumption of the pico BS increases dramatically. The reason
behind this increase is the low efficiency of the pico BS power amplifier. However,
the pico BS equipment is not designed to transmit with high power levels and the
majority of the pico BS manufacturers does not provide dynamic tx power adjustment
ability. Therefore, we fixed the tx power of the pico BSs as 2 Watts in our performance
evaluation simulations. For micro BSs, we defined 5 different tx power levels with

corresponding power of 3, 8, 13, 18 and 24 Watts in order.

5.4.3. Interference

By using the same formula given in Equation 5.6, SINR from BS b in grid g at

time slot ¢ is given by

Z Kbptﬁ(ba g)p

pePA

(0% Z Kbptﬁ(bag)p+ Z Z Kb’ptﬁ(b/ag)p—'—n

pEPA b'eB\{b} pEPA

Wpgt = (5.28)

where PA = P\{p =0}

5.4.4. Coverage

A particular grid g is covered at time ¢ if the received SINR from any BS is higher

than the minimum acceptable level and binary coverage function is given by

1, if Uy, >Umn JpeB
[(g,t) = (5.29)

0, otherwise
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The total coverage ratio for the area of interest at time ¢ is given by

;}F(g,t)

R (5.30)

5.4.5. User Association

A particular grid is associated with the BS providing the maximum SINR value
unless the received SINR value is lower then the minimum acceptable threshold. As-

sociation rule of grid g with BS b at time ¢ is given by

1, if Wy > U™ and b = argmax (W )
Syt = veB (5.31)

0, otherwise

The total traffic load of a BS b at time ¢ can be given as

for = Z Sqvtfot (5.32)

geG

5.4.6. Green Dynamic BS Operation Algorithms

It is possible to solve the Green Dynamic BS Operation Problem with optimiza-
tion tools such as CPLEX [81] or GUROBI [82] since we put it in a mathematical
form. However, finding optimum solutions is very challenging due to the computa-
tional and space complexity of our large-scale realistic test case scenario. Therefore,
we propose fast and efficient heuristics to solve large realistic instances of the problem

in this section.

5.4.6.1. Area Spectral Efficiency. Similar to the Green Pico BS Deployment, we also

utilize the ASE metric for the Green Dynamic BS Operation. The Spectral efficiency
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(bits/sec/Hz) at coverage grid g at time ¢ is given by
C(g,t) = loga(1 + rll)ae%x(\lfgbt)) (5.33)

Area spectral efficiency (bits/sec/Hz/m?) over the total coverage area at time ¢ is given

by

> C(g,t)p(g,t)

geG

A = (5.34)

mNG

where p(g,t) is the probability of a user being at a particular coverage grid g at time ¢.

However, this time we modify the ASE increment metric AA defined in Sec-
tion 5.3.5 to measure the increase on the provided average data rate per unit band-
width per unit area per power. In other words, we use the ASE increment per watt as
a performance metric. Hence, it is ensured that the maximum possible coverage and
achievable data rate increase over the reference area is provided with the minimum

amount of power consumption.

A natural question may arise why this metric is not used for the Green Pico BS
Deployment. The reason lies with the homogeneity of the deployed BSs. Since the
power consumption figures of the deployed pico BSs are identical, their respective ASE
increase per power is also proportional with the ASE increase. Therefore, using the
ASE increment per power metric does not change the results at all. Also, the effect of
BS load on the power consumption is captured indirectly with 8, metric. On the other
hand, ASE increase per watt metric ultimately makes sense for the Green Dynamic BS

Operation since there are heterogenous BSs activated with different PLs.

The ASE increment per watt (bits/sec/Hz/m?/watt) in the reference area when

BS b is activated with PL p at time ¢ is given by

w A
A'/4bpt = W !

b7 o) (5:85)
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where the traffic load f;; and power consumption W (b, p, f) are given in Equations 5.32
and 5.23 respectively.

5.4.6.2. Offline-centralized Dynamic BS Operation Algorithm. The Green Pico BS De-

ployment and Green Dynamic BS Operation problems are very similar in nature. The
similarity can be easily understood from the mathematical problem formulations given
in Section 5.3.1 and 5.4.1. Therefore, it is convenient to use the Green Pico BS De-
ployment Algorithm as a template for the Offline-centralized Dynamic BS Operation
Algorithm.

The main objective of the Offline-centralized Dynamic BS Operation Algorithm
is to dynamically adjust the use of BS resources according to the temporal changes in
the traffic load throughout the day and create a more energy-aware network as given
in Equation 5.17. The Offline-centralized algorithm is executed by a central entity and
determines the network topology beforehand. The traffic load estimations and existing
BS topology are given to the algorithm as an input. The output is the energy-aware
network topology. The decision parameters of the algorithm are the status of all BSs,

i.e. on/off, and the tx power of active BSs.

Before proceeding to the algorithm itself, we need to redefine some of the pa-
rameters used in the Green Pico BS Deployment Algorithm. Let Alyy,, is the handed
over traffic load from over-utilized BS b to the newly activated neighboring BS ¢ with
PL p" and given by Alyy,y = fy — fyy, where fy,, is the traffic load of BS b after the
neighboring BS ¥’ is switched on with PL p’. Let ¢y, = Dy — fyy is the difference
between the maximum traffic load capacity of the newly deployed BS ¢’ and its current
load after it has been switched on with PL p. The NBD metric 0y, between the
overloaded BS b and the switched on & with PL p’ is given by

be/p/ = Afbb/p/ — Oéu|¢b/p/| (536)
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where o, is the same utilization penalty described in the Green Pico BS Deployment
Algorithm. For the sake of mathematical simplicity, subscript ¢ representing the time

of day is omitted in the NBD formulation.

Similar to the Green Pico BS Deployment Algorithm, we change the status of
neighboring BSs to alleviate the load of the overloaded BSs. We set the number of
neighboring {BS,PL} pair N2"" of an overloaded BS to 15 in our simulations for the
same reasons explained in Section 5.3.5. We keep this number higher than the one
used in the Green Pico BS Deployment Algorithm since a particular BS is represented
by more than one field due to different PL configurations. We included the PL in
the neighbor BS list because a PL increase of an already active neighboring BS may
also reduce the load of an overloaded BS while a PL decrease most likely worsens the
situation. Therefore, the set of neighboring {BS,PL} pairs of an overloaded BS b is
composed of either (i) all possible PLs of the switched off neighboring BSs or (ii) higher
PLs of an already active neighboring BSs and denoted by B}“®. In case there is an
overloaded BS b is identified, each {b’,p’} pair in the set of B} visited and the one

having the maximum 6y,, is implemented.

The pseudocode of the Offline-centralized Dynamic BS Operation Algorithm is
given in Figure 5.10. It tackles with each time slot independently. For each time
slot, it starts with an empty set of active BSs. Then the algorithm activates {BS,PL}
pairs which maximizes the ASE increase per watt (AA} ;) metric in the coverage area.
Iterative increment of this metric ensures not only increasing coverage ratio, but also
higher average SINR values throughout the coverage area. This step is repeated until
the minimum coverage ratio over all users are achieved for the current time slot. When
the required coverage ratio is obtained, we utilize the redefined NBD metric to eliminate
the overloaded BSs similar to the Green Pico BS Deployment Algorithm. Firstly,
neighboring {BS,PL} pairs are discovered for each overloaded BS. In the next step,
respective NBD metric of each discovered neighboring {BS,PL} pairs are calculated and
the one having the maximum value is activated. By this way, activated neighboring
BSs are able to alleviate the traffic load of the overloaded BSs as much as possible

without exceeding their own traffic load limits.
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1: for allt € T do

2 B; = {0}, B} =B

3 while ; < ™" do

4 for all feasible {b € BT p € PA} pair do
5: Assume BS b is switched on with PL p

6 Calculate AA},

7 end for

8 Switch on BS b with PL p having max AAp,
9 B, = B, U {b,p}, B = Bof\ {p}

10: end while

11:  while (B}*®" = {b| fi > Dy, Vb € B}) # {0} do

12: for all b € B}"®" do

13: Discover B}*'®

14: for all {¥/,p'} pair € B}* do

15: Calculate Gy

16: end for

17: Switch on BS b with PL p’ having max 6y,
18: B, =B, U{V,p'}, BY" = B{"\{v'}

19: end for

20: end while

21: end for

Figure 5.10. Offline-centralized Dynamic BS Operation Algorithm.

5.4.6.3. Online-distributed Dynamic BS Operation Algorithm. The online-distributed

Dynamic BS Operation Algorithm aims to adapt the current network conditions and
create an energy-aware topology in a distributed and online manner. Each BS takes
its own decisions autonomously in coordination with the neighboring BSs. However,
the topology adjustments are merely based on a limited set of network statistics col-
lected by local observations. Another drawback of the online-distributed algorithms
is the additional signaling overhead introduced by requirement of coordination with
the neighboring BSs. Moreover, the overall impact of the local decisions on the whole
network is not possible to comprehend from a BS point of view. Therefore, the qual-
ity of the BS switching and power adjustment decisions decreases in comparison with
the centralized methods. On the other hand, online-distributed approaches are more

responsive to unexpected traffic load variations and well adapt to the underestimated
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BS to Stack

Figure 5.11. Simplified state transition diagram of the online-distributed dynamic BS

operation algorithm.

or overestimated traffic load conditions with respect to offline-centralized methods.

Simplified state transition diagram of Online-distributed Dynamic BS Operation
Algorithm is given in Figure 5.11. Before entering the green operation mode, each BS
undertakes a neighbor discovery routine. During this routine, all BSs located in the
area of interest should be switched on and the minimum acceptable coverage ratio must
be satisfied. The latter requirement is crucial because after entering the distributed
green operation mode, there is no central entity to check if the required coverage over
the whole area is provided. Since each BS makes their local decisions, the distributed
scheme relies on the amount of handovers to satisfy the coverage constraint through

out the operation cycle.
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Initially, each member of the energy saving scheme discovers its neighbors and
enters the green operation mode starting from the Active state. Since defined time
slices are our reference for network adjustments, each BS maintains a Time Slot Change
timer. When the timer expires, a Time Slot Change event is triggered and every BS
checks its respective traffic load. However, this timer can be easily replaced with a
more frequent trigger to respond the traffic load changes instantly. On the other hand,
frequent BS switch on/off transitions may result in unsatisfied users due to high amount
of handover requests. Therefore, the time interval between each BS load check event

needs to be carefully chosen.

If the current load of the BS is lower than the Switch Off Threshold, the BS sends
Request to Switch Off (RTO) message to its neighbors and waits for Clear to Switch
Off (CTO). Neighbor BSs receiving the RTO message check if they are able to accom-
modate the additional traffic load caused by switching the sender of the RTO off. Since
all MTs keep track of BSs providing the best and the second best signal strength for
better handover management, the required information is readily available. A simple
exchange of this information between the BSs and serving MTs is sufficient to calculate
the additional traffic load arising from a neighbor BS switch off. If the additional traffic
load can be accommodated, the neighbor BS transmits a CTO message to the sender of
the RTO. If the additional traffic load causes the neighbor BS to exceed its maximum
capacity, a Negative CTO (NCTO) is sent. When the CTO messages are received from
all neighbor BSs or Wait For CTO Timer expires, the BS sends BS _OFF signal to its
neighbors announcing that it is going to be switched off and enters the Switched Off
state. Neighbor BSs receiving the BS OFF signal takes the necessary precautions to
accept the to-be-handed-over users from the switching off BS and inserts the BS index
of the to-be-switched-off BS into a stack called Switched Off Neighbor BS Stack. This
stack is going to be used for load balancing of the overloaded BSs later. If a NCTO

message is received, the BS goes back to the Active state and remains switched on.

If the load of a particular BS is higher than the maximum traffic load capacity
when the Time Slot Change event is triggered, it pops a BS index from the Switched
Off Neighbor BS Stack and transmits a BS ON signal. After the neighbor BS is
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switched on, the overloaded BS hands over some of its load according to the current
SINR measurements. This process is repeated until present load of the overloaded BS
decreases below the maximum traffic load capacity. Since the Switched Off Neighbor
BS Stack operates with a FIFO mechanism, each BS keeps track of temporal topology
changes and able to restore back to the previous conditions if their respective traffic

load exceeds the maximum capacity.

5.4.6.4. Greedy Dynamic BS Operation Algorithms. In this section, we propose two

greedy heuristics to solve the formulated Green Dynamic BS Operation Problem. The
results of these heuristics are going to be used during the comparative performance
evaluation in Section 5.5.2. Greedy Dynamic BS Operation Algorithms (GDOA) ini-
tially activates all BSs with their maximum allowed transmission PL. Subsequently,
they exhaustively attempt to decrease the transmission PL of each BS including the
option of to be completely switched off in a centralized-offline manner. However, each
iteration is performed unless the QoS requirements such as coverage, achievable data

rate and BS traffic load capacity are not violated.

We noticed that the order in which BSs are evaluated for possible power con-
sumption reduction has significant impact on the resulting network configuration. In
order to obtain an energy efficient network topology, an optimum mixture of both pico
and micro BSs are required where BSs with higher tx power act as umbrella cells and
BSs with lower tx power act as hot spots to fill the coverage gaps. Therefore, greedily
switching most of the micro BSs at the beginning eliminates the opportunity of switch-
ing under-loaded pico BSs afterwards due to coverage constraints. Hence, we proposed
two different versions of the same greedy algorithm. The pseudocode of the GDOAs
version 1 and 2 is given in Figures 5.12 and 5.13 in order. The first version starts with
the micro BSs for possible power saving while the second version starts with the pico
BSs. The impact of changing the BS evaluation order in performance evaluation is

provided in Section 5.5.2.
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Activate all BSs with max PL
for all b€ BM and p € PM do
Set PL of micro BS b to minimum possible! p without violating the QoS constraints
end for
for all b < BY and p € P do

Switch pico BS b off? unless QoS constraints are violated

end for

Figure 5.12. Greedy Dynamic BS Operation Algorithm v1.

Activate all BSs with max PL
for all b < BY and p € P do
Switch pico BS b off? unless QoS constraints are violated
end for
for all b € B™ and p € P do

Set PL of micro BS b to minimum possible' p without violating the QoS constraints

end for

Figure 5.13. Greedy Dynamic BS Operation Algorithm v2.

5.5. Application Scenario and Performance Evaluation

5.5.1. Application Scenario and Parameters

In order to make proper performance evaluation of the proposed methods, we
would like to create a test environment as close to the real life conditions as possible.
Therefore, we selected Taksim, which is one of the Turkey’s most famous and crowded
places, as the pilot application area of the proposed green networking methods as
mentioned in Section 5.2. In our system model, mobile service providers utilize the
locations of the existing BSs for the NGMCNs motivated by a series of reasons led by
the reduced installation cost. Therefore, we focus on deploying additional pico BSs as
a remedy to a network where micro BSs are already deployed. The aim of the pico
BS deployment is minimizing the number of deployed BSs while satisfying the QoS

requirements. After the minimum number of required pico BSs and their respective

!Note that p € P which includes switching a BS off with p =0
2Recall from Section 5.4.2 that there is no dynamic tx power adjustment for pico BSs in our

scenario where PM = {0, 1} which represents on and off states of the pico BS
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locations to support the peak traffic conditions are determined, green dynamic BS
operation techniques are proposed to adapt the spatio-temporal traffic load variations
and create an energy-aware network. We focus on the network topology adaptation and
energy saving by both switching BSs on/off and adaptively adjusting their transmission

powers according to the current traffic conditions.

We divided the coverage area into 17 different place types, and divided the places
further 1m? grids. Respective traffic loads of the grids are calculated according to their
type by using Table 5.3 as a lookup. Although the total number of users located in
a grid is proportional with the traffic occupancy of the grid, still we need to estimate
the traffic load contribution of the users from the service provider’s point of view. For
this reason, we define a new parameter called User Traffic Load Factor to estimate the
average traffic load contribution of the subscribers. In other words, User Traffic Load
Factor represents the percentage of the users actively getting service from a particular
operator at a particular instant. Considering numerous mobile consumer behavior
reports [97-100] and subscriber numbers of each service provider in Turkey, we set the
User Traffic Load Factor as 1%. However, this value is merely a parameter which can

be easily changed as required.

Although we used pico and micro BSs in our test scenarios, our model can ac-
commodate as many types of BSs as required. As QoS metrics, the resulting network
topologies of the proposed green pico BS deployment and green dynamic BS operation
techniques should satisfy the minimum aggregate data rate requirements of each grid
and cover at least 99% of the area at all times. Important parameters used in the
application scenario are summarized in Table 5.8. 10 different test cases were created

randomly for the sake of variance control and the average of the results are presented.
5.5.2. Performance Evaluation
Performance of our proposed green pico BS deployment and dynamic operation

methods are both evaluated by using real-life-scale test cases. For the green pico BS

deployment, we compared our method with a greedy algorithm and a recently proposed
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Table 5.8. Scenario parameters.

Parameter Value
Coverage Area 800 x 680 m?
Grid Area 1 x 1m?

# Place Types 17

Micro BS Tx PLs

3-8-13- 18 - 24 Watt

Pico BS Tx Power 2 Watt
# Time Slots in a Day 24
Min. Coverage Ratio 99%
Min. SINR 6 dB
Orthogonality Loss Factor 0.5
Micro BS PA Efficiency 22.8%
Pico BS PA Efficiency 6.7%
# Candidate pico BS

300
Deployment Locations
User Traffic Load Factor 1%

competitor energy-aware cellular network deployment technique [30]. In [30], authors
propose a network energy consumption minimization framework which jointly optimizes
the BS density and BS transmission power under coverage performance constraints.

They utilize area power consumption (W/m?) as the energy efficiency metric.

For the green dynamic BS operation, we compared the results of our methods
with the conventional static operation, two centralized greedy heuristics, a competitor
green BS operation algorithm called SWES [15] and an optimization tool IBM ILOG
CPLEX [81]. However, finding the exact optimum solutions with CPLEX were not pos-
sible within reasonable amount of computation times. Therefore, we set a 3-hours run
time limit and give the best results found until the limit along with their gap between

the best integer objective and the objective of the best node remaining. On the other
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Table 5.10. Comparison of computational complexity and average run times.

Average
Complexity Run T Complexity Function

un Time
Green Pico BS Deployment Alg. O(N%) 2h 27m NBM.NXP.(NG)2
Greedy Pico BS Deployment Alg. O(N*%) 1h 22m NBM.NXP.(NG)2
Peng et al. Alg. [30] O(N*) 2h 46m  NBY NX" (NC)2
Centralized Dynamic Operation Alg. O(N®) 7h 43m NT.NBM.NBP.NPM.(NG)2
Greedy Dynamic Operation Alg. v1 o) 4h 52m NT.NBM.NBP.NPM.(NG)2
Greedy Dynamic Operation Alg. v2 5h 10m
Distributed Dynamic Operation Alg. O(N) N/A NT
SWES [15] O(N) N/A NT
CPLEX N/A 144h (fixed) N/A

hand, the other competitor SWES is an online and hybrid (distributed/centralized)
algorithm which aims to reduce energy consumption of the network by switching BSs
on/off. SWES switches off BSs one by one, taking the additional load increments
brought to its neighboring BSs into account. Although the network impact of BS
on/off transitions are calculated in a distributed manner, SWES still requires a central

controller for the implementation of the topology adjustments.

The results presented in this section are collected from a computer with an AMD
FX 8-core 4 Ghz processor and 16 GB of memory. Proposed methods are implemented
in Microsoft Visual Studio 2008 [92] environment with more than ten thousand lines
of C++ code. The total time spent to collect the results of 10 repetitions for each

method is approximately ten days.

The computational complexity, average run times, and parameters effecting both
computational and space complexity of the proposed and competitor methods are given
in Table 5.10. The computational complexity of all investigated techniques are poly-
nomial. For the dynamic operation algorithms, presented run times cover two separate
execution of the same algorithm with different traffic load configurations for weekday
and weekend. Therefore, it is convenient to say that a single execution takes approxi-

mately half of the given run times. For CPLEX, we set a 3-hours run time limit for each
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time slot which in turn results in total 144h runtime (for each time slot for weekday

and weekend).

Pico BS deployment algorithms are the fastest methods since they are executed
only once at the deployment phase and there is no time dimension in the effecting
parameters as opposed to the dynamic BS operation algorithms. Among them, greedy
pico BS deployment algorithm is the fastest. Our proposed Green Pico BS Deployment
heuristic and Peng et al.’s Algorithm take approximately two and a half hours to
finalize. On the other hand, dynamic BS operation algorithms take longer than pico
BS deployment algorithms. Greedy algorithms obtain similar run times as expected
since they are identical except their order of BS evaluation. Centralized Dynamic
BS Operation Algorithm requires more than seven hours to find an energy efficient
network topology for a cycle of one week. Lastly, we set a 3-hours run time limit for
the optimization tool due to high complexity and give the best results found until the

limit along with their gap value.

For the Green Pico BS Deployment Problem, our objective function given in
Equation 5.1 is to minimize the number of deployed pico BSs to accommodate the
peak traffic conditions without violating the user coverage and BS capacity constraints.
According to our application scenario simulations based on the parameters given in
Table 5.8; an average of 96, 100 and 138 pico BSs are deployed by the Green Pico
BS Deployment Algorithm, Peng et al.’s Algorithm and Greedy Pico BS Deployment
Algorithm respectively.

In Figure 5.14, comparative pico BS power consumption during peak traffic is
given with respect to number of candidate pico BS deployment locations NX". Our
proposed Green Pico BS Deployment Algorithm and Peng et al.’s Algorithm achieve
very similar power savings while greedy algorithm performs worse. For fewer N XP,
the resulting topologies are infeasible since the user coverage and the BS capacity con-
straints are violated even though a pico BS is deployed in every candidate location.
As the number of candidate pico BS deployment locations increases, pico BS deploy-

ment algorithms are able to achieve more power-efficient network configurations. How-
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Figure 5.14. Comparative pico BS power consumption during peak traffic

ever, the additional power savings become negligible when compared to the introduced
complexity for our proposed Green Pico BS Deployment Algorithm and Peng et al.’s
Algorithm for N*" > 300. Although our Green Pico BS Deployment Algorithm and
Peng et al.’s Algorithm obtain similar power savings without violating the user cover-
age and BS capacity constraints, it is convenient to say that our algorithm provides

higher achievable data rates since it utilizes the ASE as performance metric.

In this section, we evaluate the comparative performance of our proposed green
dynamic BS operation techniques. Figure 5.15(a) depicts the comparative power con-
sumptions on weekdays. It is observed that the power expenditure trends of all methods
follow a similar pattern with the traffic load given in Figure 5.3. Proposed algorithms
dynamically respond to the traffic load changes and try to save energy without violating
the QoS requirements of the subscribers. The reason behind the energy expenditure
fluctuations in static operation or “no green method applied scenario" is the BS power
consumption model introduced in Section 5.4.2. Since the consumed power in a BS
is correlated with its respective traffic load, the total network power consumption is
subject to change although no dynamic topology adjustment is being applied. The
offline-centralized algorithm saves the largest amount of power whereas the online-
distributed algorithm, SWES and GDOA v1 achieve nearly the same performance. On
the other hand, although GDOA v2 saves significant amount of power with respect to
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(a) Weekday. (b) Weekend.
Figure 5.15. Comparative power consumption throughout a day.

the static operation, this saving is less than the other proposed methods. By analyzing
the results of the optimization tool and their average gap values, we can argue that
the offline-centralized algorithm achieves energy-efficient topologies very close to the

optimum.

Similar to the weekday results, weekend power consumption figures are propor-
tional to the traffic load as observed in Figure 5.15(b). However, this time, the gap
between the static operation and the green methods is narrower due to the high traffic
load during weekends. The offline-centralized algorithm again achieves more power effi-
cient results. SWES, Online-distributed algorithm, GDOA v1 and v2 follow the offline-
centralized algorithm in order. The offline-centralized algorithm has both enough time
and computational power to make complex resource management decisions. However,
it requires a central entity for execution and does not respond well to unexpected
traffic variations since the topology adjustment decisions are made beforehand. Al-
though the online-distributed algorithm makes local decisions with limited number of
observations, it obtains quite competitive results with respect to the other centralized
algorithms which can take sophisticated network adjustment actions by utilizing plenty
of network statistics. The online-distributed algorithm and SWES achieves similar re-
sults. However, SWES performs slightly better since it calculates the impact of BS
transitions locally while makes the implementation decisions on a cental controller. On

the other hand, the online-distributed algorithm does not require a central controller.
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Figure 5.16. Comparative power saving ratio on weekday and weekend.

Another observation is that the average gap between the best integer objective and the
objective of the best node remaining is smaller during low traffic conditions whereas

the gap increases during high traffic conditions.

Comparative power saving ratio on a weekday and weekend is given in Figure 5.16.
In fact, the results are obtained by extracting the integral of the static operation
line from the integral of respective green method lines given in Figures 5.15(a) and
5.15(b) with an interval of [0,23]. Hence, this figure is also an overall visualization of
how efficient each proposed method is in terms of power saving. Offline-centralized
algorithm achieves more than 50% power saving on weekdays and 40% on weekends.
On the other hand, SWES, Online-distributed algorithm and GDOA v1 achieves similar
power saving ratios around 45% on weekday and 33% on weekend. As expected, the
overall power saving ratios for weekend are considerably less than the weekday due to

offered traffic loads depicted in Figure 5.3.

In Table 5.11; weekly, monthly and annual energy cost savings are given. The elec-
tricity prices for peak (5pm-10pm), morning (6am-5pm) and off-peak (10pm-6am) times
are 41.61, 23.37 and 10.21 kurus/kWh (0,143, 0,081 and 0,035 $/kWh) respectively in-
cluding the 22% tax for the industrial consumers in compliance with the TEDAS [83],

Turkey’s governmental electricity retailer company. City-wide savings are calculated by
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Table 5.11. Comparative energy cost saving.

Annual($)
Weekly($) | Monthly($) Country-wide
Test Case | City-wide | Country-wide

with CE
Centralized Algorithm 25.6 110 1,321 3,726,604 | 13,788,769 39,160,104
Distributed Algorithm 21.3 92 1,100 3,101,602 11,475,927 32,591,634
Greedy vl 20.6 89 1,062 2,995,989 11,085,161 31,481,857
Greedy v2 15.1 65 783 2,208,119 8,170,040 23,202,914
SWES [15] 22.3 96 1,150 3,243,116 11,999,531 34,078,669
CPLEX 27.8 119 1,436 4,050, 512 | 14,986,895 42,562,783

comparing parameters of the test case (0.5 km? area and 136,346 average population)
with the total urban surface area and population of Istanbul [101] (2761 km? urban
area (out of total 5370 km?) and 14.5 million inhabitants). Country-wide savings are

also scaled similarly.

Proposed green dynamic BS operation techniques dramatically decrease the en-
ergy expenditures of the service providers as given in Table 5.11. According to our
simulations, the centralized algorithm can achieve approximately 3.7 million $ cost
savings for Istanbul and 13.7 million $ for Turkey annually. When the CE effect intro-
duced in Section 4.5.2 is taken into account, the actual amount of cost savings become

even more significant.

Due to its impact on the received signal strength and MT battery life, we also
investigated the BS-User distance in our test cases. Figure 5.17 depicts the average BS-
user distance throughout the day on weekdays and weekends. Since the deployed BS
density in the Taksim area augmented with the pico BSs is very high, the average BS-
User distance is slightly more than 20m when all of the BSs are active. However, when
the green networking methods are applied and redundant BSs are started to be switched
off, the average BS-user distance is also starting to increase. The average distance
between BSs and users doubles when the offline-centralized algorithm is applied with
respect to the static operation. The reason for observing high values during low-traffic

conditions and low values during high-traffic conditions is related with the number of
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Figure 5.17. Average BS-user distance.

active BSs. However, the fluctuations are not as much as the ones observed in Figure 5.3
because we carefully align the pico BS locations with the K-Means clustering algorithm
according to the traffic hot spots prior to the deployment. Similar to the offline-
centralized algorithm, we also observe higher average BS-user distances for CPLEX
since it finds the minimum possible set of BSs with respect to the other methods.
Another interesting observation is the relatively high BS-User distance for the GDOA
v2. Since GDOA v2 first attempts to switch off the redundant pico BSs as long as
the coverage and user QoS requirements are satisfied, most of the remaining active
BSs are micro BSs. Fewer micro BSs are sufficient to provide those requirements since
they have longer coverage ranges. Accordingly, the average BS-User distance increases
when few micro BSs are active. Yet another importance of this metric is its effect on
the MT power consumption. As the distance between the MTs and the serving BSs
increases, MTs are obliged to increase their transmission power to communicate with
the distant BSs. As investigated in Section 2.5, this results in faster depletion of the
MT battery [61,62]. However, in a network with very high BS density such as our case,
we assume that the effect of the BS-User distance on the MT power consumption is

negligible.

The average BS utilization on weekdays and weekends are depicted in Figure 5.18.
In perfect conditions, it is desired to observe a straight horizontal line in this figure

regardless of the changing traffic conditions. This horizontal line means that the applied
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Figure 5.18. Average BS utilization.

green methods keep the traffic loads of active BSs in a desired level and hence, increase
the overall utilization of the network resources. As observed in the figures, especially
in Figure 5.18(a), there is a decrease in the average BS utilization during night time.
This under-utilization is stemming from the minimum coverage ratio constraint where
some BSs have to be switched on, although the traffic demand is low, in order to
provide the required coverage ratio over the whole area. This yields to under-utilized
active BSs for the sake of adequate coverage. In the previous figures, we observed that
the offline-centralized algorithm adjusts to the changing traffic conditions better than
the other methods except CPLEX and saves more power. As a result of this fact,
the offline-centralized algorithm performs better with an average of 57% and 60% BS
utilization on weekdays and weekends which are 3.35 and 2.6 times higher than the
static operation. On the other hand, CPLEX achieves approximately 60% and 63% BS
utilization on weekdays and weekends. For all methods, including the static operation,
weekend BS utilizations are slightly higher than that of the weekdays. The cause of

this observation is simply the higher traffic load in weekends as seen in Figure 5.3.

In Figures 5.19 and 5.20, occupancy of the coverage area on weekdays and week-
ends for time slots 10:00, 20:00 and 02:00 are given in order along with their active BS
configurations obtained from the Offline-centralized Dynamic BS Operation Algorithm.
The heat maps represent the user density per m? whereas their respective BS deploy-

ment configurations depict the location, type and tx power level of the switched on
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BSs. It is clear in the color-coded user density maps that there are significant amount
of both spatial and temporal user density variations. Schools and offices are crowded
in the morning; pedestrian roads, shopping areas and restaurants are crowded in the
evening; bars and night clubs are crowded at night. As expected, the offline-centralized
Dynamic BS Operation Algorithm adjusts the network topology to the changing traf-
fic demand conditions by switching BSs on/off and alternating BS tx power levels.
The BS concentration on yellow-red coded areas is a clear demonstration of how green

traffic-aware topology management framework operates.
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Figure 5.19. User density heat map and corresponding active BS status for time slot 10:00-20:00-02:00 on a weekday.
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Figure 5.20. User density heat map and corresponding active BS status for time slot 10:00-20:00-02:00 at weekend.
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5.6. Conclusion

In this chapter, we concentrated on green networking methodologies for NGM-
CNs. Unlike our previous proposals for the CCNs and PSCNs, we adopt a holistic
approach and take all of the design, deployment and operation phases into account
since NGMCNs are not fully deployed and operational yet. We started with mapping
process of Taksim as our pilot application area in order to create a spatio-temporal user
density. According to the extracted user density, we made an estimation of the traffic
load and used this information to install additional pico BSs on top of the existing
infrastructure to accommodate the peak traffic conditions. The proposed green pico
BS deployment algorithm reduces both OPEX and CAPEX of the service providers
by deploying minimum number of pico BSs while maintaining an acceptable level of
QoS over the whole coverage area. Lastly, we propose an offline-centralized and an
online-distributed green dynamic BS operation algorithms for power saving during the
operation phase. The offline-centralized algorithm has both enough time and compu-
tational power to make complex resource management decisions. However, it requires
a central entity for execution and does not respond well to unexpected traffic varia-
tions since topology adjustment decisions are made beforehand. On the other hand, the
online-distributed algorithm makes topology adjustment decisions during operation and
efficiently adapts to the unexpected traffic load changes. It also scales better than the
offline-centralized algorithm since BSs determine their own status autonomously with
their local observations in a distributed manner. The drawback of online-distributed al-
gorithm is the additional signaling overhead introduced by requirement of coordination
with the neighboring BSs. We also solve the Green Dynamic BS Operation problem
with CPLEX, a commercial optimization tool, to give an insight about the efficiency
of our algorithms with respect to the exact optimum solutions. Although we are able
to use CPLEX for our test case scenario, low-complexity heuristics are still required
for large realistic instances of the problem. Through a realistic test case scenario, we
showed that both of our green BS deployment and dynamic operation methods achieve
significant power savings with respect to the static operation, greedy heuristics and

previously proposed two competitor algorithms [15] [30].
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6. CONCLUSION

In this thesis, we focused on novel green networking methodologies for three dif-
ferent cellular network types; namely CCNs, PSCNs and NGMCNs. Unlike majority of
the existing studies in the literature, we addressed the energy saving problem through
(i) green BS design and deployment (ii) adaptive BS switching on/off and (iii) adap-
tive BS transmission power adjustment according to the present traffic conditions in
the coverage area. However, the challenge is to decrease the energy expenditure while
always guaranteeing an acceptable QoS level. Therefore, novel linear and nonlinear
programming models are formulated to find the best possible BS topology which mini-
mizes the energy consumption while satisfying the certain service quality requirements

of the subscribers.

We started by surveying the previously proposed green networking studies in the
literature. Our survey covers not only dynamic resource management schemes but also
energy efficient BS deployment and cooperation, renewable energy resources and energy
efficiency in MTs. We also present an extensive taxonomy of the surveyed strategies

for better understanding.

For the CCNs, we concentrated on saving energy by adaptively switching the BSs
of wireless cellular access networks on and off according to the current traffic conditions.
Moreover, we also adopted dynamic transmission power adjustment with the help of
high-efficiency power amplifiers. We formulate a novel NLP model for the GDBP
problem to find the best possible BS topology which minimizes the energy consumption
while satisfying the communication demands of the users. We then proposed a heuristic
to solve that problem and compare our results with the results of a non-commercial
optimization software and numerous MC experiments. It is shown that our green

dynamic BS planning scheme saves significant amount of energy.

For the PSCNs, our focus was on creating an energy-aware network by adap-

tively switching the BSs of heterogeneous cellular networks on/off and by adjusting
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the BS transmission power levels. Different from the CCNs, we also take the effect
of interference into account to come up with more realistic green networking meth-
ods. We formulate a novel LP model for the TAM problem to find the best possible
energy-aware BS topology without violating the QoS requirements from the subscriber
point of view. Although small instances of the TAM problem can be solved by the
optimization tools, large realistic size problems are quite difficult to be handled due to
their prohibitive space and computational complexity. Therefore, we propose a novel
heuristic to solve the large-scale instances of the formulated problem and compare our
results with the results of two previously proposed methods [13| [14], a greedy heuris-
tic and a commercial optimization tool. It is shown that the proposed TAM scheme
helps to maintain an energy-aware network and saves significant amount of energy by

adjusting the network topology according to the present traffic conditions adaptively.

Finally for the NGMCNs, our goal was to derive efficient green network design,
deployment and operation techniques for NGMCNs. We take the advantage of still
ongoing standardization process and lack of fully deployed and operational infrastruc-
ture by adopting a holistic approach which encompasses not only the operation phase,
but also design and deployment phases. We divided this portion of thesis into three
packages. In the first package, we created a detailed map of the pilot application area
and obtain a spatio-temporal user density estimation. According to this estimation, we
designed and deployed additional pico BSs as a remedy on top of the existing infras-
tructure to accommodate the peak traffic conditions in the second package. Lastly, we
proposed green dynamic BS operation techniques to minimize the overall energy con-
sumption of the network consisting of heterogeneous elements. Unlike proposed meth-
ods for CCNs and PSCNs in the previous chapters, we proposed an offline-centralized
and online-distributed version of the green dynamic BS operation algorithm. Extensive
simulation runs based on collected data from the pilot application area demonstrated
significant power savings compared to conventional static operation, greedy heuristics,

CPLEX and previously proposed two competitor algorithms [15] [30].

In conclusion, making the mobile networks green could not only have a positive

impact on saving the energy, but also help to achieve a long-term profitability of mobile
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service providers and sustainability of the environment. Increasing energy prices and
environmental awareness has led the cellular network operators to reduce their OPEX
and CO, footprints as well. Therefore, we need novel green networking techniques
to minimize the overall network power consumption. In this thesis, we addressed the
challenge of decreasing power consumption while maintaining an acceptable level of
service quality. In summary, we proposed green BS design, deployment and dynamic
operation techniques for CCNs, PSCNs and NGMCNs along with their mathematical
optimization models. Through extensive comparative performance evaluations, it is
shown that the proposed green networking methods help to maintain an energy-aware

network and achieve significant amount of power savings.

As future work, we are planning to propose efficient techniques to alleviate the
handoff overhead stemming from frequent topology changes. We believe that the inte-
gration of smart user-BS association rules to our dynamic BS operation techniques may
reduce the number of handoff requests. Another promising research issue is utilizing
multiple network access interfaces of MTs such as Bluetooth and Wi-Fi for transmit-
ting their data packets to the BSs. This kind of inter-network cooperation may reduce
the overall BS density and up time which in turn results in more energy efficient net-
works. Also, integrating the capability of using directional antennas into our green
networking methods can improve the energy saving significantly. Lastly, we believe
that non-technical factors such as pricing, marketing strategies, willingness to cooper-
ate among service providers and law establishments are key factors in the success of

the green mobile networking technology.
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