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ivABSTRACT
GREEN NETWORKING: FROM CONVENTIONAL TONEXT GENERATION HETEROGENEOUS CELLULARNETWORKSInreasing energy osts drive the teleommuniation servie providers to beomehighly interested in energy e�ient operations. The exponential growth in mobile dataexhange whih is further augmented by the rapid proliferation of smart phones in-reases the operational expenses of the ellular network operators signi�antly. Also,eologists state that the primary triggering fator of the global warming is adding ex-essive amounts of greenhouse gases to the atmosphere and 72% of the totally emittedgreenhouse gases is arbon dioxide (CO2). Inreasing environmental awareness om-bined with the high energy pries has driven the network operators to redue their CO2footprint by adopting energy e�ient green methods. In this thesis, our main fousis to save energy in three types of wireless ellular networks (i) Conventional CellularNetworks (ii) Paket-swithed Cellular Networks and (iii) Next Generation Multi-tierCellular Networks. We formulate novel mathematial optimization problems for eahof the listed ellular networks to �nd the best possible topology whih minimizes theoverall power onsumption of the network while satisfying a ertain quality of servielevel. Our deision variables in the optimization models are swithing base stationson/o� and adaptively adjusting their transmission power levels as well as deployingadditional pio base stations as a remedy aording to the present tra� onditions.Although the optimization tools provide the optimum solutions for smaller instanesof the problem, we propose novel heuristis to solve large-sale realisti instanes dueto their prohibitive omplexity. Results of extensive simulations, whih are designed aslose to real life onditions as possible, show that the proposed green methods help tomaintain an energy-aware network and save signi�ant amount of energy by adjustingthe network topology to the urrent tra� onditions adaptively.



vÖZET
GELENEKSEL A�LARDAN YEN� NES�L ÇOKTÜRELHÜCRESEL A�LARA YE��L �LET���M
Artan enerji maliyetleri nedeniyle, telekomünikasyon servis sa§lay��lar�n�n enerjietkin yöntemlere olan ilgisi her geçen gün artmaktad�r. Telsiz veri ileti³imi ve ak�ll�telefon kullan�m oranlar�n�n h�zla artmas�, ep telefonu operatörlerinin i³letme maliyet-lerini de bir hayli artt�rm�³t�r. Bunlar�n yan� s�ra, çevrebilimiler taraf�ndan küresel�s�nman�n ba³l�a nedeninin atmosfere fazla miktarda sal�nan sera gaz� oldu§u ve sal�-nan sera gaz�n�n %72'sinin karbondioksit (CO2) oldu§u belirtilmektedir. Yüksek enerjimaliyetleri ve artan çevresel fark�ndal�k, ep telefonu operatörlerini enerji etkin ye³ilyöntemler kullanarak CO2 ayak izlerini ve enerji haramalar�n� azaltmaya itmi³tir.Bu tezde, (i) klasik hüresel a§lar (ii) paket anahtarlamal� çoktürel hüresel a§lar ve(iii) yeni nesil çok katmanl� hüresel a§lar olmak üzere üç farkl� telsiz a§ tipi içinenerji tasarruf yöntemleri önerilmektedir. S�ralanan her bir a§ tipi için toplam enerjitüketimini en aza indirmeyi amaçlayan, bunu yaparken de belirli bir servis kalitesinisa§layan matematiksel eniyileme modelleri geli³tirilmi³tir. Eniyileme modellerindekikarar de§i³kenleri ise, mevut veri tra�§i yo§unlu§una göre yeni baz istasyonlar� yer-le³tirmek, baz istasyonlar�n� aç�p kapatmak ve yay�m güçlerini de§i³tirmektir. Mevuteniyileme araçlar� küçük ölçekli problemler için kesin sonuçlar üretse de, daha kar-ma³�k büyük ölçekli problemlerin çözümü için yeni sezgisel algoritmalar tasarlanm�³t�r.Gerçek hayat ko³ullar�na mümkün oldu§u kadar yak�n örneklerle yap�lan ba³ar�m de§er-lendirmesi sonuçlar�na göre, önerilen ye³il yöntemlerin a§ topolojisini mevut veri tra�§iko³ullar�na göre uyarlayarak enerji fark�ndal�kl� a§lar yaratt�§� ve önemli miktarda güçtasarrufu sa§lad�§� gösterilmi³tir.



viTABLE OF CONTENTS
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ivÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vLIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixLIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiLIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xivLIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xix1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1. Researh Overview and Key Contributions . . . . . . . . . . . . . . . . 31.2. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52. STATE OF THE ART ON GREEN NETWORKING . . . . . . . . . . . . . 72.1. Energy E�ient BS Deployment Strategies . . . . . . . . . . . . . . . . 72.2. Energy E�ient Dynami Resoure Management . . . . . . . . . . . . 92.3. Energy E�ieny Through BS Cooperation . . . . . . . . . . . . . . . 132.4. Renewable Energy Resoures . . . . . . . . . . . . . . . . . . . . . . . . 142.5. Energy E�ieny in Mobile Terminals . . . . . . . . . . . . . . . . . . 162.6. Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173. GREEN CONVENTIONAL CELLULAR NETWORKS . . . . . . . . . . . 203.1. Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2. System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2.1. Where should GDBP be applied? . . . . . . . . . . . . . . . . . 213.2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3.1. Plain GDBP . . . . . . . . . . . . . . . . . . . . . . . 243.2.3.2. GDBP with BS transition overhead . . . . . . . . . . . 263.3. Green dynami BS planning algorithm . . . . . . . . . . . . . . . . . . 273.4. Appliation senario and performane evaluation . . . . . . . . . . . . . 293.4.1. Appliation senario and parameters . . . . . . . . . . . . . . . 293.4.2. Experiment Methodology . . . . . . . . . . . . . . . . . . . . . 33



vii3.4.3. Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . 333.5. Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394. GREEN PACKET-SWITCHED CELLULAR NETWORKS . . . . . . . . . 404.1. Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2. TAM Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 424.2.1. General Problem Formulation . . . . . . . . . . . . . . . . . . . 424.2.2. Details of the Problem Formulation . . . . . . . . . . . . . . . . 444.2.2.1. BS Power Consumption . . . . . . . . . . . . . . . . . 444.2.2.2. Interferene . . . . . . . . . . . . . . . . . . . . . . . . 454.3. Green Tra�-Aware Topology Management Algorithm . . . . . . . . . 474.4. Greedy TAM Heuristi . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.5. Appliation Senario and Performane Evaluation . . . . . . . . . . . . 514.5.1. Appliation Senario and Parameters . . . . . . . . . . . . . . . 514.5.1.1. Tra� Pattern . . . . . . . . . . . . . . . . . . . . . . 524.5.2. Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . 554.6. Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595. GREEN NEXT GENERATION MULTI-TIER CELLULAR NETWORKS . 605.1. Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.2. Spatio-temporal User Density Estimation of the Pilot Appliation Area 615.3. Green Pio BS Deployment . . . . . . . . . . . . . . . . . . . . . . . . 725.3.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 725.3.2. Interferene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.3.3. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.3.4. User Assoiation . . . . . . . . . . . . . . . . . . . . . . . . . . 755.3.5. Green Pio BS Deployment Algorithm . . . . . . . . . . . . . . 765.3.5.1. Area Spetral E�ieny . . . . . . . . . . . . . . . . . 775.3.6. Greedy Pio BS Deployment Algorithm . . . . . . . . . . . . . . 815.4. Green Dynami BS Operation . . . . . . . . . . . . . . . . . . . . . . . 825.4.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 825.4.2. BS Power Consumption . . . . . . . . . . . . . . . . . . . . . . 845.4.3. Interferene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii5.4.4. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.4.5. User Assoiation . . . . . . . . . . . . . . . . . . . . . . . . . . 875.4.6. Green Dynami BS Operation Algorithms . . . . . . . . . . . . 875.4.6.1. Area Spetral E�ieny . . . . . . . . . . . . . . . . . 875.4.6.2. O�ine-entralized Dynami BS Operation Algorithm . 895.4.6.3. Online-distributed Dynami BS Operation Algorithm . 915.4.6.4. Greedy Dynami BS Operation Algorithms . . . . . . 945.5. Appliation Senario and Performane Evaluation . . . . . . . . . . . . 955.5.1. Appliation Senario and Parameters . . . . . . . . . . . . . . . 955.5.2. Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . 965.6. Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



ixLIST OF FIGURES
Figure 1.1. Base station loation and overage redundany of a single operatorbased on the RSSI value from Sydney Central Business Distrit,Australia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Figure 1.2. Normalized tra� pro�le of a entral (top) and four neighboring(bottom) BSs during one week [1℄. . . . . . . . . . . . . . . . . . . 3Figure 2.1. Classi�ation of green dynami BS operation strategies. . . . . . . 18Figure 3.1. FastWISE algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 3.2. An example sinusoidal tra� load for 24h with fmin = 0.1, fmax =

0.9, and tp = 14h. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 3.3. A Sample deployment on�guration with 10000 UCs (1 mil. users)and 200 BSs in a 5 x 5 km2 area. . . . . . . . . . . . . . . . . . . 31Figure 3.4. Comparative power onsumption throughout a day. . . . . . . . . 35Figure 3.5. Distribution of feasible MC experiments and its omparison withFastWISE and NLP. . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 3.6. E�et of αsw on the objetive funtion given in Equation 3.6. . . . 37Figure 3.7. E�et of αsw on the umulative number of BS on/o� transitions. . 37Figure 3.8. Resulting overage of FastWISE under light tra� load. . . . . . . 38



xFigure 3.9. Resulting overage of FastWISE under heavy tra� load. . . . . . 38Figure 4.1. Green TAM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 50Figure 4.2. Greedy TAM Heuristi. . . . . . . . . . . . . . . . . . . . . . . . . 51Figure 4.3. Three di�erent regions of Maslak, Istanbul. . . . . . . . . . . . . . 54Figure 4.4. Three example normalized tra� pro�les reated by using Equa-tion 4.16 for NT = 24. . . . . . . . . . . . . . . . . . . . . . . . . 54Figure 4.5. Comparative power onsumption throughout a day for the smalltest senario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Figure 4.6. Comparative power onsumption throughout a day for the largetest senario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Figure 5.1. Blueprint of Taksim area shapes and labels. . . . . . . . . . . . . . 62Figure 5.2. 3D model of the pilot overage area. . . . . . . . . . . . . . . . . . 65Figure 5.3. Average number of users in the overage area. . . . . . . . . . . . 68Figure 5.4. OpenCellID BS information repository loaded on OpenStreetMap. 70Figure 5.5. Current loations of miro BSs. . . . . . . . . . . . . . . . . . . . 71Figure 5.6. Possible pio BS loations with K-Means lustering. . . . . . . . . 78Figure 5.7. Green Pio BS Deployment Algorithm. . . . . . . . . . . . . . . . 80



xiFigure 5.8. Greedy Pio BS Deployment Algorithm. . . . . . . . . . . . . . . . 82Figure 5.9. Change of miro and pio BS power onsumption with utilizationand tx power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Figure 5.10. O�ine-entralized Dynami BS Operation Algorithm. . . . . . . . 91Figure 5.11. Simpli�ed state transition diagram of the online-distributed dy-nami BS operation algorithm. . . . . . . . . . . . . . . . . . . . . 92Figure 5.12. Greedy Dynami BS Operation Algorithm v1. . . . . . . . . . . . 95Figure 5.13. Greedy Dynami BS Operation Algorithm v2. . . . . . . . . . . . 95Figure 5.14. Comparative pio BS power onsumption during peak tra� . . . 100Figure 5.15. Comparative power onsumption throughout a day. . . . . . . . . 101Figure 5.16. Comparative power saving ratio on weekday and weekend. . . . . 102Figure 5.17. Average BS-user distane. . . . . . . . . . . . . . . . . . . . . . . . 104Figure 5.18. Average BS utilization. . . . . . . . . . . . . . . . . . . . . . . . . 105Figure 5.19. User density heat map and orresponding ative BS status for timeslot 10:00-20:00-02:00 on a weekday. . . . . . . . . . . . . . . . . . 107Figure 5.20. User density heat map and orresponding ative BS status for timeslot 10:00-20:00-02:00 at weekend. . . . . . . . . . . . . . . . . . . 108



xiiLIST OF TABLES
Table 3.3. Senario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 32Table 3.5. Comparison of average run times. . . . . . . . . . . . . . . . . . . 34Table 3.6. Comparative energy ost saving. . . . . . . . . . . . . . . . . . . . 35Table 4.3. Senario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 4.5. Comparison of average run times. . . . . . . . . . . . . . . . . . . 55Table 4.6. Comparative energy ost saving. . . . . . . . . . . . . . . . . . . . 58Table 4.7. Total energy savings throughout a day ompared to all BSs operatewith PL 1, PL 2 and PL 3. . . . . . . . . . . . . . . . . . . . . . . 58Table 5.1. Shape types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 5.2. Shape numeri values example. . . . . . . . . . . . . . . . . . . . . 64Table 5.3. User density estimations of eah type for 10m2 area. . . . . . . . . 67Table 5.4. Area ratio and tra� ontribution of eah plae type. . . . . . . . 69Table 5.7. Typial BS power onsumption �gures. . . . . . . . . . . . . . . . 85Table 5.8. Senario parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 97Table 5.10. Comparison of omputational omplexity and average run times. . 98



xiiiTable 5.11. Comparative energy ost saving. . . . . . . . . . . . . . . . . . . . 103



xivLIST OF SYMBOLS
Ax Area spetral e�ieny after deployment of a pio base stationto andidate loation x
At Area spetral e�ieny over the total overage area at time t
A Area spetral e�ieny
Abpt Transmission state variable for base station b power level p attime t
B Set of all base stations where B = {1, . . . , NB}

B
off Set of urrently swithed o� base stations

B
on Set of urrently swithed on base stations (Bon = B−B

off)
B

high Set of overloaded swithed on base stations
B

neig
b Set of neighboring base stations of the base station b

B
M Set of miro base stations where B

M = {1, . . . , NBM

}

B
P Set of pio base stations where B

P = {1, . . . , NBP

}

Ccur
b Current tra� load of base station b

Cbpu Coverage variable for base station b for user u with power level
p
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θbx Neighbor Base Station Deployment metri
ξb Current Saturation Proximity Metri of base station b
ξ̂bp Estimated Saturation Proximity Metri of the base station bif it is ativated with power level p
ξmax
bp Maximum Saturation Proximity Metri of other ative BSswhen base station b is ativated with power level p
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11. INTRODUCTION
Inreasing energy osts fore the teleommuniation servie providers to deliverenergy e�ient operations. The exponential growth in mobile data exhange rates [2℄whih is further augmented by the rapid proliferation of smart phones signi�antlyinreases the Operational Expenses (OPEX) of the ellular network operators. Also,eologists state that the primary triggering fator of the global warming is adding ex-essive amounts of greenhouse gases to the atmosphere and 72% of the totally emittedgreenhouse gases is arbon dioxide (CO2) [3℄. Information and ommuniation teh-nology (ICT) industry produes 2% of the overall CO2 emission throughout the worldby onsuming 3% of the worldwide energy [4,5℄. When the exponential growth in dataexhange [2℄ is onsidered, it is lear that the ICT setor will beome one of the majorCO2 emission soures within the next few deades. Therefore, developing and applyingenergy-e�ient green methods in the ICT industry and reduing its CO2 footprint arenow more essential than ever.Sine wireless ellular aess networks onstitute a signi�ant portion of the ICTindustry [6℄, it would not be wrong to think that measures to be taken in this �eld ansigni�antly ontribute to make the overall ommuniation industry greener. Althoughwireless ellular aess networks onsist of two parts, whih are radio and the ore,vast majority of the energy is onsumed by the radio segment [7, 8℄. Therefore, it isonsidered that Base Stations (BSs) whih are the integral part of the radio segmentare the right plae to start saving energy [9℄.Parallel to the ubiquitous overage demand and growing needs of the subsribers,ellular network operators inrease their Capital Expenses (CAPEX) and invest moremoney to deploy large number of BSs to provide better servie quality in terms of datarate, overage, all bloking and dropping probabilities. Consequently, the BS densityinreases and yields to a signi�ant amount of BS redundany and eletromagnetipollution, espeially in rowded urban areas. Figure 1.1 shows the BS loation andoverage redundany of a single operator from Sydney Central Business Distrit, Aus-
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Figure 1.1. Base station loation and overage redundany of a single operator basedon the RSSI value from Sydney Central Business Distrit, Australia.tralia. This BS information on the map is extrated from a website [10℄ whih makesuse of the Australian Communiations and Media Authority's RadCom registry. Thearea overed in the map is 1.5 × 1.5 km2 and has a total of 139 BSs. As suggested inIEEE 802.16m Evaluation Methodology Doument [11℄, the overage map is reatedby using the COST-Hata [12℄ metropolitan area propagation model with 2000 Mhzfrequeny, 1.5 and 15 meters mobile station and BS antenna heights respetively. EahBS is transmitting with a power of 46 dBm, 17 dBi antenna gain and minimum a-eptable Reeived Signal Strength Indiator (RSSI) at the reeiver is assumed to be-90 dBm.In order to ful�ll the requirements of the users regardless of time and spae,network operators usually plae BSs to support the peak tra� onditions. Therefore,BSs are under-utilized during o�-peak times suh as late night hours or holidays. Areal tra� pro�le olleted from a entral BS and four neighboring BSs during oneweek is given in Figure 1.2 [1℄. As expeted, the tra� load dereases dramatiallyduring the late night hours. Yet, low tra� may also be observed all day long duringweekends or holidays in partiular plaes suh as business or trade enters. Hene,adoption of green tra�-aware topology management shemes an save large amountsof energy by reduing the redundany and derease the OPEX of the servie providerssigni�antly. Moreover, redution of the energy onsumption also helps to slow down
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Figure 1.2. Normalized tra� pro�le of a entral (top) and four neighboring (bottom)BSs during one week [1℄.the global warming proess by mitigating the CO2 emission to the atmosphere.This thesis addresses the above mentioned issues by proposing e�ient green el-lular network deployment and operation methods for three di�erent ellular networktypes: (i) Conventional Cellular Networks (CCNs) (ii) Paket-Swithed Cellular Net-works (PSCNs) (iii) Next-Generation Multi-Tier Cellular Networks (NGMCNs). Inthe deployment phase, we analyze the tra� load pattern of the overage area andfous on deploying minimum amount of pio BSs as a remedy. On top of that, we tryto minimize the total power onsumption of the network during operation phase byswithing BSs on/o� and adaptively adjusting their transmission powers aording tothe present tra� onditions. Through extensive real-life-sale simulation runs, it isshown that the proposed green networking methods help to maintain an energy-awarenetwork and ahieve signi�ant amount of power savings.1.1. Researh Overview and Key ContributionsIn this thesis, we onentrate on saving energy by (i) green BS design and de-ployment (ii) adaptive BS swithing on/o� (iii) adaptive BS transmission power ad-justment aording to the present tra� onditions in the overage area. Partiulary,we fous on onventional Time Division Multiple Aess (TDMA) / Frequeny Division



4Multiple Aess (FDMA) ellular networks, Wideband Code Division Multiple Aess(W-CDMA) paket-swithed ellular networks and Evolved Universal Terrestrial Ra-dio Aess (E-UTRA) based next generation ellular networks in order. However, thehallenge is to derease the energy expenditure while always guaranteeing an aept-able Quality of Servie (QoS) level. To address this, we formulate novel linear andnonlinear programming models to �nd the best possible BS topology whih minimizesthe energy onsumption while satisfying the ertain servie quality requirements of thesubsribers. Although small instanes of the derived problems an be solved by theoptimization tools, large realisti size problems are quite di�ult to be handled dueto their prohibitive spae and omputational omplexity. Therefore, we also proposenovel heuristis to solve the large-sale instanes of the formulated problem withinreasonable time durations. In order to make aurate performane evaluation of ourtehniques, we use real-life network topologies and tra� data in our simulations, andompare our results with the previously proposed methods in the literature [13�15℄.Main ontributions of this thesis an be summarized as follows:
• Integration of Dynami Transmission Power Adjustment: Unlike majority of theprevious studies [15�18℄, where only BS on/o� swithing is utilized, we also takethe dynami power adjustment apability of the urrent BSs tehnology intoaount in order to reate more energy-aware network topologies by de�ning aset of transmission power levels. Using di�erent transmission power levels, wehave the opportunity to dynamially hange the overage of the BSs aordingto the present tra� onditions.
• Novel Optimization Models: Detailed mathematial optimization models are for-mulated to minimize the total power onsumption while satisfying a ertain levelof QoS. By using the derived models, we are able to obtain optimum results byusing the optimization tools for the small instanes of the problem.
• Real-life Senarios: We justify our proposed methods by applying them to senar-ios as lose to real life onditions as possible. For this purpose Maslak and Taksimregions of Istanbul are used as a test ase. Furthermore, we reated a detailed



5map of the Taksim area for better estimation of spatio-temporal user density. Tothe best of our knowledge, this kind of detailed user density estimation study ofa partiular area is one of its kind in the literature.
• Novel Heuristis: To overome the prohibitive omplexity of the formulated op-timization problems, espeially for the real-life sale large instanes, fast ande�etive heuristis are proposed. They an be also onsidered as operating algo-rithms of the proposed methods to ahieve the mentioned power savings in theirrespetive performane evaluation setions.
• Deployment of Pio BSs as a Remedy: For the NGMCNs, we propose deployingadditional pio BSs on top of the existing network infrastruture to meet theinreasing data exhange demands of the subsribers. Therefore, our green net-working strategy is not limited to dynami adjustment only, but also enompassesthe network design and BS deployment phases.1.2. Thesis OutlineChapter 2 presents a review of the state-of-the-art green networking tehniquesinluding a taxonomy of the previously proposed methods in the literature.Chapter 3 desribes the proposed green tehniques for power saving in HybridTDMA/FDMA based onventional ellular networks. This hapter also elaborates theproper appliation areas of the derived green networking methods.In Chapter 4, we disuss green W-CDMA based paket-swithed ellular networksby taking the e�et of interferene into aount. After we present the system model,assumptions and the problem formulation, we explain the proposed tehnique to min-imize the power onsumption. We also give a omparative performane evaluation ofour method on a test ase senario based on Maslak distrit of Istanbul.In Chapter 5, we present green BS deployment and operation strategies for E-UTRA based next-generation multi-tier ellular networks suh as LTE-Advaned. SineNGMCNs are not fully deployed and operational for the time being, we also take



6the network design phase into aount and try to keep the network green during theoperation phase. In this hapter, we also reate a detailed map of Taksim as thepilot appliation area and make a spatio-temporal user density estimation. We thenpropose an energy-aware pio BS deployment method as well as three di�erent dynamitopology management tehniques.Chapter 6 draws the onlusions of the thesis with a summary of our ontributionstogether with the possible researh diretions to explore.



72. STATE OF THE ART ON GREEN NETWORKING
In reent years, the advent of smart phones, tablets and laptops has enabled thewidespread use of bandwidth-hungry appliations, whih in turn led an immense growthin mobile data usage. To aommodate inreasing mobile data exhange requirementsof the subsribers, network operators have started to deploy denser aess networks perunit area, thus vastly inreasing the energy onsumption. Growing energy onsumptionwith inreasing energy osts oupled with its adverse impat on the environment haveled to numerous researh works on the topi alled green networking. In this hapter,we provide an overview of the reent approahes for green networking along with anextensive taxonomy of the strategies proposed in the literature.Energy e�ient hardware and ooling system design tehniques are proven meth-ods to derease the network power onsumption onsiderably [19�24℄. However, thesemethods are applied in the early hardware design and manufaturing phase at the phys-ial layer. Sine our researh is foused on energy e�ieny through network planningand management, energy e�ient hardware design is outside the sope this thesis. Thereaders may refer to [19�24℄ for energy e�ient hardware and ooling system designtehniques. 2.1. Energy E�ient BS Deployment StrategiesThere are numerous works in the literature addressing the problem of energye�ient BS deployment in wireless ellular networks. Among them, Zheng et al. [25℄propose a ellular network planning framework onsidering the use of renewable en-ergy soures and energy balaning. They formulate an optimization problem with anobjetive funtion of minimizing three omponents: (i) total installation ost (ii) totalonnetion ost and (iii) total ost of onsumed power from the eletri grid. Aordingto the results of their novel heuristis proposed to solve the formulated optimizationproblem, they ahieve onsiderable CAPEX and OPEX savings in omparison with thetraditional deployment strategies.



8In [26℄, authors fous on the problem of energy e�ient base station positioningand frequeny assignment based on a realisti tra� estimation for the ity of Zurihgiven in [27℄. They follow a heuristi approah and propose multi-objetive genetialgorithms with very low omputational omplexity to solve the problem. Given theCAPEX for BS installation, they show that their approah satis�es the tra� demandin the overage area with minimum amount of BSs and dereases the inter-ell interfer-ene signi�antly. Similarly, disrete optimization models and algorithms are proposedto determine where to loate the new BSs in [28℄. Authors propose di�erent versions oftwo greedy proedures and a tabu searh algorithm, whih take the installation osts,signal quality and tra� overage into aount.Boiardi et al. [29℄ propose an optimization framework that selets the BSs to be in-stalled and jointly swithes them on/o� with respet to hanging tra� load onditions.Aording to their �ndings, for the power management to be truly e�etive, networkshave to be designed by taking the operational management into aount. Hene, theyfous on �nding the best trade-o� between keeping low initial investments and redu-ing energy onsumption. They introdue a trade-o� parameter between CAPEX andOPEX, and their optimization framework allows network operators to obtain networktopologies with di�erent harateristis by varying that parameter.On the other hand, �nding the optimal BS density in the overage area ratherthan the spei� BS loations to aommodate the user requirements is attratingsigni�ant amount of attention in the literature. Reently, Peng et al. [30℄ formulate anetwork energy onsumption minimization framework whih jointly optimizes the BSdensity and BS transmission power. Their numerial simulation results show that theheterogeneous network deployment has an advantage in energy e�ieny performaneompared to the homogeneous network deployment. In Setion 5.5.2, we provide aomparative performane evaluation of the BS deployment strategy proposed in thisstudy with our green pio BS deployment method.Another study related to optimal BS density is given in [31℄. Authors adoptstohasti geometry theory to analyze the optimal BS density for both homogeneous



9and heterogeneous ellular networks to minimize network energy ost. Based on realis-ti parameters of the EARTH [32,33℄ projet, ompared to the traditional maro-onlyhomogeneous ellular network, deploying miro BSs an redue about 40% of the to-tal energy ost, and further redue up to 35% with BS sleeping apability. A similarstohasti geometry based model is also proposed in [34℄ for energy e�ieny in single-tier homogenous and K-tier heterogeneous ellular networks.2.2. Energy E�ient Dynami Resoure ManagementDue to �utuating tra� onditions during the day, stati resoure managementis not onsidered as optimal in terms of energy e�ient network operation. However,dynami resoure management methods are e�etive only when ellular networks areexperiening low tra� load. If the tra� demand is intense all the time, there willnot be any available margin for power saving.One of the most utilized resoure for dynami management in ellular networks isthe BS transmission power. In the literature, there are example studies whih onsiderthe dynami ell size adjustment in order to redue the energy onsumption. Amongthem, Niu et al. [14℄ introdue the ell zooming onept for energy saving to adap-tively adjust the size of the ells aording to the urrent tra� load. In their work,a ell zooming server whih is a virtual entity in the network ontrols the proedureof ell zooming. The ell zooming server ollets the information suh as the tra�load, hannel onditions and user requirements; then analyzes whether there are op-portunities for ell zooming or not. Based on the ell zooming onept, they proposeentralized and distributed versions of user assoiation algorithms to save energy byputting redundant BSs into sleep mode. In Setion 4.5.2, we also provide a omparativeperformane evaluation of the entralized algorithm proposed in this study with ourmethods.Oh et al. [15℄ proposed an algorithm alled SWES along with three other versionsof it for BS on/o� swithing. They introdue the notion of network-impat whihonsiders the e�et of BS transitions on the neighboring BSs in terms of tra� load and



10try to �nd solutions whih have the minimum e�et on the network. It is shown that,aording to the test ase results onduted with a real-life topology and tra� loaddata, their algorithms an ahieve energy savings up to 50-80%. In Setion 5.5.2, weuse SWES algorithm as a ompetitor and provide omparative performane evaluationwith our green networking methods.Another work onsidering variable ell sizes for energy saving is presented in [16℄.In this work, Bhaumik et al. onsider two types of BSs whih are subsidiary BSs withlow transmit power and umbrella BSs with high transmit power. They propose a selfoperating network by adaptively swithing subsidiary and umbrella BSs on and o�aording to the urrent tra� demands. Similarly, Kokkinogenis et al. [17℄ assume aellular network onsisting of miro and maro BSs where miro BSs have the abilityof being swithed on/o� while maro BSs an iteratively adjust their transmissionpower until the required QoS is ahieved. They propose stati entralized, dynamidistributed and hybrid topology management shemes to redue the overall energyonsumption of the network while satisfying ertain QoS requirements.Chiaraviglio et al. [18℄ propose a novel approah to save energy in UMTS networksby reduing the number of ative aess devies when they are under-utilized. Authorsderive two models for both iruit swithed and paket swithed servies separately forquanti�ation of possible energy savings.Reently, a green ell breathing and o�oading mehanism for heterogeneous net-works is proposed in [35℄. Authors ontrol the BS swithing-o� aggressiveness by usinga tra� threshold approah in the ontext of heterogeneous maro and femto ell de-ployments. They explore the impat of ombining ell breathing with a seond layer ofsmall ells, i.e. femtoells, on BS o�oading and swith-o�. The e�et of aess poliiesfrom 3GPP Closed Subsriber Groups on the network performane is also analyzed.In another reent study, Son et al. [36℄ investigate the energy-e�ient design ofheterogeneous ellular networks, espeially with a fous on deployment and operationstrategies. They formulate a general optimization problem with an objetive of min-



11imizing the total energy onsumption ost while satisfying the requirement of areaspetral e�ieny. This problem is then deomposed into two problems: (i) deploy-ment problem at peak time and (ii) operation problem at o�-peak time. They proposea greedy algorithm as an o�ine entralized solution and two online distributed algo-rithms using the Lagrangian relaxation tehnique.In [37℄, tra�-aware sleeping ontrol and power mathing tehnique of a single BSin ellular networks are studied. The aim of this study is to �nd the sleeping ontrol andpower mathing on�gurations that ahieve the Pareto optimal tradeo� between totalpower onsumption and average delay. Aording to proposed sleeping ontrol shemes;the BS goes to sleep whenever there is no ative user, and wakes up when N users areassembled or after a period of multiple or single vaation time. Authors also analyze therelationship between total power onsumption and average delay with varying servierate theoretially and argue that sari�ing delay annot always be traded for energysaving. Similarly, Niu et al. [38℄ haraterize the fundamental tradeo�s between totalenergy onsumption and overall delay in a BS with sleep mode operations by queueingmodels. Authors derive losed-form formulas to demonstrate the tradeo�s between theenergy onsumption and the mean delay for di�erent wake-up poliies.In the literature, there are example studies whih onsider distributed dynamiresoure management suh as [39℄ and [40℄. Authors propose a distributed ooperativeframework to improve the energy e�ieny of green ellular networks in [39℄. Basedon the tra� load, neighboring BSs ooperate to optimize the BS sleeping strategieswhile guaranteeing QoS requirements of the subsribers. An energy saving problemis formulated as a onstrained graphi game and the existene of a generalized Nashequilibrium is proved. Aordingly, a deentralized iterative algorithm to �nd thebest equilibrium point is designed where only loal information exhange among theneighboring BSs is needed. Similarly, a distributed BS swith on/o� algorithm isproposed for LTE-Advaned networks whih exploits the knowledge of the distanebetween the MTs and their assoiated BS in [40℄.



12In [41℄, authors fous on energy e�ieny in densely deployed femtoell networkswhere a large number of open-aess femto BSs are deployed in a publi hotspot areasuh as airport or shopping mall. The e�et of the femto BS-sleeping ratio on theenergy e�ieny is quantitatively studied by using a stohasti geometry-based model.Then the optimal femto BS-sleeping ratio is obtained by onsidering both the networktra� load and the loation of the designated femtoell deployment area in order tomaximize the total energy saving.Rengarajan et al. [42℄ present a novel approah for estimating both the energysavings that an be ahieved in ellular aess networks by using sleep modes, as wellas the energy-optimal BS densities as a funtion of user density. Their approah allowsthe derivation of realisti estimates of the energy-optimal density of BSs orrespondingto a given user density, under �xed performane onstraints.Another network sleep mode sheme for reduing energy onsumption of radioaess networks is proposed in [43℄. An optimal Markov Deision Proesses basedontroller that assoiates to eah tra� an ativation/deativation poliy is derived.This ontroller redues the ping-pong e�et resulting in unneessary BS on/o� osilla-tions and fouses on �nding the optimal poliy dynamially based on the present userativity in the ell.In [44℄, the problem of �nding the fration of BSs that an be swithed o� whilemaintaining QoS for given load onditions is explored. As a QoS metri, authorsmeasure the average waiting time of subsribers. Their approah onsists of two steps.In the �rst step, they determine the optimal on/o� pattern of base stations and MT-BSassoiation poliy for a �xed fration of base stations to be swithed o�. In the seondstep, they fous on �nding the maximum fration of base stations that an be swithedo� for given tra� load onditions.



132.3. Energy E�ieny Through BS CooperationMobile servie providers reently introdued the onept of network sharing withthe objetive of reduing both their CAPEX and OPEX. The main idea is ooperatingand sharing infrastrutures of the servie providers with eah other in order to adaptthe ative apaity to the urrent tra� onditions, and thus save energy. This sharingmay further inlude their approahes for implementing sleep modes [45℄.In [46℄, a tra�-intensity-aware multiell ooperation sheme is introdued whihadapts the ellular network topology aording to user tra� demands in order toredue the number of ative BSs. Then a novel energy-aware multiell ooperationmethod is proposed to redue on-grid power onsumption by o�oading tra� fromon-grid base stations to o�-grid base stations powered by renewable energy. Moreover,oordinated multipoint transmission is investigated to improve the energy e�ieny ofellular networks.A resoure on/o� swithing framework that adapts to the hanging network tra�load and maximizes the amount of energy saving under servie quality onstraints ina ooperative networking environment is presented in [47℄. The proposed frameworkrelies on ooperation among di�erent networks to save energy on two sales: (i) On alarge sale, networks with overlapped overage alternately swith their BSs on and o�aording to the long-term �utuations in tra� load (ii) On a small sale, eah ativeBS swithes its hannels on and o� aording to the short-term �utuations in tra�load. Ghazzai et al. [48℄ investigate the ollaboration between multiple mobile operatorsto optimize the energy e�ieny of ellular networks. They use LTE-A ase for theirframework study and try to redue CO2 emission of the network via ollaborativetehniques and using BS sleeping strategy. A low omplexity algorithm is proposed thatestablishes the ooperation deision riteria based on roaming pries and pro�t gainsof ompetitive mobile operators. Similarly, Bousia et al. [49℄ study energy e�ienyissues in multi-operator mobile networks. Their aim is to save energy by swithing o�



14the redundant BSs without ompromising the o�ered QoS. They propose a novel gametheoreti strategy using ost-based funtions to deide the most suitable BSs to remainative.Inspired by the eologial protoooperation priniple, Hossain et al. [13℄ pro-pose a BS ooperation sheme to ahieve higher energy e�ieny in ellular aessnetworks. BSs ooperatively and dynamially swith between on/o� states and adjusttheir transmission power levels depending on the urrent tra� onditions. They intro-due a distributed sleep-wake up algorithm alled SLAKE whih onsists of a sleepingand a tra� distribution proedure. Sine their algorithm also utilizes BS transmissionpower adjustment besides BS on/o� swithing similar to our fous, we ompare theperformane of our methods with SLAKE in Setion 4.5.2.In [50℄, authors propose an energy-e�ient BS swithing strategy, and use ooper-ative ommuniation tehniques among the BSs to e�etively extend network overage.They take both the path-loss and fading e�ets into onsideration, and derive losed-form expressions for the all bloking and the hannel outage probability. They alsotry to guarantee the QoS of the subsribers by identifying the MTs situated at theworst-ase loations.Unlike other studies related to ooperative green networking, Zou et al. [51℄ in-vestigate MT ooperation with eah other in transmitting their data pakets to BSby exploiting the multiple network aess interfaes to improve the energy e�ieny inellular uplink transmission. They develop a losed-form expression of energy e�ieny(Bits/Joule) given target outage probability and data rate requirements. Their numer-ial results show that their proposed inter-network ooperation signi�antly improvesthe energy e�ieny when the ooperating users move towards to eah other.2.4. Renewable Energy ResouresGreen energy resoures suh as sustainable biofuels, solar and wind energy arepromising options to redue the CO2 footprint of the ellular networks. Erisson [52℄



15has developed a wind-powered BS for ellular networks and Nokia Siemens Networks [53℄has also introdued a green BS whih totally relies on a ombination of solar and windpower without any grid eletriity.In [54℄, authors study ellular aess networks whih solely rely on renewableenergy resoures. They fous on BS power generator (photovoltai panels) and energystorage dimensioning aording to daily power onsumption of the BSs and daily / sea-sonal radiative power of the sun in three di�erent loations: (i) Torino (ii) Palermo(iii) Aswan. They also investigate the e�etiveness of solar power system with windturbines, along with BS sleep modes.However, due to unreliable dynamis of green energy harvesting and the limitedapaity of the urrent energy storage tehnology, green energy may not guarantee suf-�ient power supplies for BSs. Thus, researhers have been investing signi�ant amountof e�ort to overome these hallenges by introduing hybrid powered BSs where BSsuse the green energy if they have enough energy stored in their batteries; otherwise,the BSs swith to on-grid power to operate. Among them, Han et al. [55℄ proposean optimization problem to maximize the utilization of the green energy harvestedby renewable resoures, and hene redue the on-grid energy onsumption of the BSs.They deompose the problem into two sub-problems (i) the multi-stage energy alloa-tion problem (ii) the multi-BSs energy balaning problem. Then, they propose threealgorithms to solve these sub-problems.Reently, Wang et al. [56℄ proposed a new model to apture the dynami energy�ow behavior of solar powered BS by using stohasti queue model. They also onsider�utuation of energy generation, nonlinearity of energy storage and indeterminayof tra� load. Subsequently, they de�ne three performane metris whih are (i)servie outage probability (ii) solar energy utilization e�ieny and (iii) mean depthof disharge. Under onstraints on the de�ned metris, they formulate a CAPEXminimization problem and propose an adaptive geneti algorithm to solve it.



16New design methodologies for hybrid energy supply green ellular networks withthe help of Lyapunov optimization tehniques are proposed in [57℄. Authors adoptgrid energy onsumption and ahievable QoS as their performane metri and try tooptimize these metris via BS assignment and power ontrol. Their main ontributionis a low-omplexity online algorithm to minimize the long-term average network servieost. 2.5. Energy E�ieny in Mobile TerminalsMajority of the existing studies in the literature investigate energy e�ieny ofdynami planning approahes only from the network operator perspetive. Dynamiplanning, if not arefully designed, an lead to higher energy onsumption for themobile users in the uplink due to larger transmission distanes, whih in turn degradesthe uplink servie quality aused by the fast depletion of mobile terminal's battery.In order to balane the trade-o� in energy e�ieny among network operatorsand mobile users, Ismail et al. [58℄ investigate dynami planning not only from thenetwork operator perspetive, but also from the mobile user perspetive. They proposea dynami planning sheme whih takes both network operators (downlink) and mobileusers (uplink) energy onsumption into aount based on a two timesale (slow andfast) deision strategy. In the slow sale, BS on/o� swithing and antenna tiltingdeisions are taken while BS and MT transmission power ontrol deision are taken inthe fast sale.De Turk et al. [59℄ investigate the power saving mehanisms in mobile deviesby taking both downlink and uplink tra� into aount. They analyze the e�et of ageneri sleep mode mehanism in terms of mean paket delay and power onsumptiontradeo� for both LTE and WiMAX networks under Markovian tra� model. Aordingto their �ndings from a real life appliation senario, even a modest amount of uplinktra� has a tremendous in�uene on the system performane.



17In [60℄, authors propose a novel tra� oalesing sheme to redue the platformwake events motivated by bursty and random behavior of real-world tra� workloads.Their adaptive tra� oalesing method monitors the inoming tra� at the NetworkInterfae Card (NIC), and adaptively oaleses the pakets for a limited duration inthe NIC bu�er. They try to redue mobile terminal wake events and enable them toenter and stay in the low-power state longer for energy e�ieny. Aording to real lifeimplementations on various mobile platforms, the proposed adaptive tra� oalesingsheme ahieves around 20% power saving without impating performane and userexperiene.For further information, reader may refer to extensive survey studies in the lit-erature. Among them, Ismail et al. [61℄ fous energy e�ient tehniques in BSs andMTs from the operator and user perspetives. A survey on energy e�ieny of wirelessmultimedia streaming in mobile hand-held devies presented in [62℄ where a survey onoptimal ontrol of sleep periods for MTs an be found in [63℄.2.6. TaxonomyIn this setion, we provide a lassi�ation of green dynami BS operation shemespreviously proposed in the literature. Our �rst lassi�ation riteria is the sope of thenetwork in whih green dynami BS operation tehniques are designed to be applied.We basially divide the network sope into three parts: (i) Flat (ii) Multi-tier (iii)Heterogeneous. Flat networks onsist of single type of BS where multi-tier networksonsist of more than one type of BS (e.g. maro, miro, pio). On the other hand,heterogeneous networks onsist of di�erent type of BSs with di�erent type of ommuni-ation tehnologies (e.g. GPRS, IMT-2000, LTE, WiMAX). Our seond lassi�ationriteria is the metris in whih performane of the green BS operation shemes areevaluated. Sine main objetive of all green networking methods is to save energy, weexluded energy e�ieny in this taxonomy. Majority of the works previously proposedin the literature utilize aggregate throughput and average delay as their primary met-ris. Coverage is another important metri sine it is enfored by the governmentallaws to over a ertain perentage of the population or geographial area. Hybrid met-



18Green Dynami BS OperationSopeFlatNetworks onsisting ofsingle type of BS.[64℄, [42℄, [49℄Multi-tierNetworks onsisting ofmore than one type ofBS (e.g. maro, miro,pio).[15℄, [16℄, [17℄, [18℄, [35℄,[41℄HeterogeneousNetworks onsisting ofdi�erent tehnologies(e.g. GPRS, IMT-2000,LTE, WiMAX).[51℄

MetrisAggregate tra� loadTotal aommodatedtra� load both in up-link and downlink.[35℄CoverageCoverage in terms ofboth geographial areaand perentage of sub-sribers.[65℄, [66℄DelayAverage delay in the net-work.[38℄, [37℄, [44℄UtilizationAverage utilization ofthe network resoures.[41℄, [67℄HybridInludes various per-formane metris suhas transmitted dataper energy (bits/joule),area spetral e�ieny(bits/se/Hz/m2), solarenergy utilization (%).[67℄, [36℄, [42℄

Algorithm TypeOnlineTopology adjustment de-isions are made duringoperation. Well respondsto unexpeted tra�variations.[35℄, [15℄, [36℄, [37℄, [43℄O�ineTopology adjustmentdeisions are made be-fore hand. Has time foromplex alulations.[64℄, [14℄

Control ShemeCentralizedA entral entity deidesstatus of eah BS withglobal observations.[14℄, [41℄, [43℄DistributedBSs determine their ownstatus autonomouslywith their loal obser-vations.[35℄, [36℄, [37℄, [40℄CooperativeBSs ooperate with eahother for status hangedeisions.[39℄, [13℄, [51℄, [48℄, [46℄

Figure 2.1. Classi�ation of green dynami BS operation strategies.ris inlude a variety of performane indiators suh as transmitted data per energy(bits/Joule), area spetral e�ieny (bits/se/Hz/m2) and solar energy utilization. Ourthird lassi�ation riteria is algorithm type. We observe two main trends in green dy-nami BS operation algorithms: Online and O�ine. Online algorithms make topologyadjustment deisions during operation and well respond to unexpeted tra� varia-tions. In O�ine algorithms, topology adjustment deisions are made beforehand andthey have more time for omplex alulations. Fourth and the last lassi�ation rite-



19ria is the type of ontrol sheme and we divide it into three parts: (i) Centralized (ii)Distributed (iii) Cooperative. In entralized sheme, a entral entity deides the statusof eah BS with global observations throughout the network. On the other hand, BSsdetermine their own status autonomously with their loal observations in distributedsheme. Lastly, neighboring BSs ooperate with eah other for status hange deisionsin the ooperative sheme.



203. GREEN CONVENTIONAL CELLULAR NETWORKS
3.1. IntrodutionIn this hapter, we fous on saving energy by adaptively swithing the BSs ofwireless ellular aess networks on and o� aording to the urrent tra� onditions.Moreover, we also adopt dynami transmission power adjustment with the help ofhigh-e�ieny power ampli�ers. However, the hallenge is to derease the energy ex-penditure while always guaranteeing a ertain Grade of Servie (GoS) over the wholearea. Therefore, we formulate a novel nonlinear programming (NLP) model for theGreen Dynami BS Planning (GDBP) problem to �nd the best possible BS topologywhih minimizes the energy onsumption while satisfying the ommuniation demandsof the users. We then propose a heuristi to solve that problem and ompare our re-sults with the results of a non-ommerial optimization software and numerous MonteCarlo (MC) experiments. It is shown that our green dynami BS planning shemesaves signi�ant amount of energy. Although there are some studies in the literaturerelated to the dynami BS swithing, our method di�ers in the following aspets:

• Unlike most of the previous studies, we utilize the dynami power adjustmentapability of the urrent BSs tehnology by adjusting the output of the powerampli�er. Using di�erent transmission PLs, we have the opportunity to dynami-ally hange the overage of the BSs aording to the present tra� onditions.
• Majority of the studies in the literature assume that BSs make swith on oro� deisions loally by omparing their urrent tra� loads with a prede�nedthreshold. In our work, we try to satisfy ertain GoS requirements olletivelyby making system-wide deisions throughout the whole network.
• The BS on/o� transitions are taken into aount in order to minimize the addi-tional overhead introdued by frequent topology hanges suh as BS initialization,user assoiation, and handover.
• We justify our proposed methods by applying them to real-life-sale senariosrather than small-sale test ases.
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• A detailed integer NLP model is formulated for the GDBP problem and solved bya non-ommerial optimization tool. By using the derived programming model,optimum results an be obtained from the optimization tools for the small ins-tanes of the problem. In order to show the signi�ane of the results, a verylarge number of MC experiments are also onduted.
• A fast and e�etive heuristi alled FastWISE is proposed for solving large ins-tanes of the GDBP problem.The rest of this hapter is organized as follows: In Setion 3.2, we elaboratethe proper appliation areas of the GDBP, assumptions, and problem formulation.The proposed GDBP algorithm is explained in Setion 3.3. An example appliationsenario, details of the system parameters, and omparative performane analysis ofthe proposed methods are presented in Setion 3.4. Finally, Setion 3.5 draws theonlusions. 3.2. System modelBefore going into detail, possible appliation areas of the GDBP along with theiradvantages and disadvantages are investigated from the green networking perspetive.3.2.1. Where should GDBP be applied?As we mentioned before, the primary objetive of GDBP is to save energy whilesatisfying a ertain level of servie quality. Hene, there must be exess energy on-sumption in order to bene�t from GDBP properly. If the energy is already being usede�etively, applying an energy-saving method will be nothing more than unneessaryinrease of omplexity.Crowded urban areas with high BS densities are the most suitable plaes forGDBP rather than suburban or rural areas. However, eah urban area has its owntra� pattern whih diretly determines the e�ieny of the GDBP. Therefore, weategorize urban areas into four distint regions and omment on those regions whether



22GDBP should be applied or not.
• Town enters (business). Business, trade, or industrial areas as well as ommerialenters an be onsidered in this lass. The user density, hene the o�ered tra�load, is quite high in these plaes during the daytime. However, the user densityand the tra� load drop sharply during the night-time sine most of the businessand ommerial areas are losed. Moreover, low tra� pro�les ontinue all daylong during weekends and holidays. Therefore, a signi�ant hange in the tra�pro�le ours throughout the day and week, whih makes business town entersthe most suitable plae for GDBP to be applied.
• Town enters (entertainment). This kind of plaes inlude shopping and exhibi-tion enters, tourist attration points, museums, and onert halls. Although thetra� pro�le of entertainment and business town enters follow a similar pattern,they di�er during weekends and holidays. Entertainment town enters are alsohighly preferred during weekends and holidays, even more than weekdays. How-ever, the temporal hange throughout the day does not happen to be as muhas in the business town enters. Therefore, entertainment town enters are ourseondary target for energy savings.
• Residential areas. These regions are mostly oupied by houses, shools, hospitals,and small ommerial shops suh as groery stores. User density inreases herein the evening for sure. However, it would not be true to say that there is notra� at all during the day time. Individuals suh as pensioners, housekeepers, orhildren spend most of their time within the territory of their houses. Althoughthe tra� load hanges in residential areas within the day, it is not as expliit asin town enters.
• Seasonal tourism enters. In seasonal tourism enters, there happens to be twoolossal hanges in user density throughout the year. Sunny seasides are �lled upwith tourists during summer, whereas snowy ski enters are very rowded duringwinter. However, most of the wireless network operators simply deploy mobileBSs to those areas in order to meet the high season requirements. Sine usingmobile BSs is a kind of dynami planning itself, it an be onsidered as a broader



23and more systemati approah to GDBP inluding additional apabilities of BSinstallment and replaement.In summary, the appliation site should have at least two important features inorder to fully bene�t from GDBP: (i) unbalaned temporal distribution of the tra�load and (ii) high BS density.3.2.2. AssumptionsA BS an be on or o� depending on the urrent tra� onditions in our work.When it is swithed on, the total power onsumption of the BS is the ombinationof two omponents [68℄: (i) ore power and (ii) transmission power. The BS orepower onsumption (suh as air onditioning, signal proessing) is assumed to be �xedregardless of the tra� load. However, the transmission power is adaptively adjustedto the urrent tra� onditions. A set of transmission PLs need to be de�ned aordingto the appliation requirements and the apabilities of the BS equipment in use. EahBS an selet a ertain PL for transmission and annot hange it during that partiulartime slot. Sine it is not pratial to model a huge number of subsribers individually,we assume users are plaed as hunks, like group of workers in a �oor of a building orustomers waiting in a bank o�e.3.2.3. Problem formulationIn order to solve the problem by lassial optimization tools, we need to �rstput the GDBP problem into a mathematial form. In this setion, we formulate ourproblem by using two di�erent objetive funtions. The �rst one minimizes the totalenergy onsumption, while the seond one additionally minimizes the BS on/o� tran-sitions in order to redue the amount of topology hanges. Hene, the overhead ausedby frequent topology hanges, suh as BS initialization, user assoiation, and handover,an be minimized.



243.2.3.1. Plain GDBP. Our formulation onsists of three parts. The �rst part ontainsthe onstant parameters given by our sample appliation senario. The seond part isthe model variables whih will be determined by the solver, and the last part is theproblem itself.Parameters:
NB : Number of BSs
NP : Number of PLs
NU : Number of user hunks (UCs)
NT : Number of time intervals
B : Set of BSs where B = {1, 2, 3 . . . , NB}

P : Set of PLs where P = {1, 2, 3 . . . , NP}

U : Set of UCs where U = {1, 2, 3 . . . , NU}

T : Set of disrete time intervals within the day where T =

{1, 2, 3 . . . , NT}

PWcore : Core power onsumed by the BS
PWtx(p): Funtion of transmission power onsumed by the BS with respetto PL
αsw : Penalty of making a BS swith (on/o�)
W

cap
b : Data �ow apaity of BS b

fflow(t) : Funtion of tra� load per UC with respet to time
βmin : Minimum aeptable user overage ratio
Cbpu : 





1, BS b an over user u with power p
0, otherwise

Model variables:
Obt =











1, BS b is up at time t
0, otherwise
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Abpt =











1, BS b transmits with power p at time t
0, otherwise

Mubt =











1, UC u selets BS b at time t
0, otherwiseDummy variables:

Subt =











1, UC u is served by BS b at time t
0, otherwise

=
∑

p∈P

ObtCbpuMubtAbpt ∀u ∈ U, ∀b ∈ B, ∀t ∈ T

N c
t = Number of overed UCs at time t

=
∑

u∈U

∑

b∈B

Subt ∀t ∈ T

N sw = Number of BS swithes (on/o�) during 24h
=

∑

b∈B

∑

t∈T

(

Obt ⊕Ob((t+1) mod NT )

)

The objetive funtion is given asmin∑
b∈B

∑

p∈P

∑

t∈T

Obt

(

PWcore + AbptPW
tx(p)

) (3.1)
subjet to

∑

p∈P

Abpt = 1 ∀b ∈ B, ∀t ∈ T (3.2)
∑

b∈B

Mubt = 1 ∀u ∈ U, ∀t ∈ T (3.3)
∑

u∈U

Subtf
flow(t) ≤W

cap
b ∀b ∈ B, ∀t ∈ T (3.4)
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N c

t

NU
≥ βmin ∀t ∈ T (3.5)

As mentioned earlier, the ultimate goal of our �rst objetive funtion in Equa-tion 3.1 is to minimize the energy power onsumption of the network. The onstraintin Equation 3.2 makes sure that a BS operates at a single transmission power level atany time, and Equation 3.3 is responsible for a user being served by a single BS ata partiular instant. Equations 3.4 and 3.5 ensure that the resulting energy-e�ienttopology does not violate the apaity onstraint of the BSs and provides the requiredoverage ratio over the area, respetively. By not violating the apaity onstraints ofthe BS, it is also assured that subsribers reeive an aeptable servie quality.3.2.3.2. GDBP with BS transition overhead. In this setion, we are taking the BStransitions into aount in order to minimize the additional overhead introdued byfrequent topology hanges suh as BS initialization, user assoiation, and handover [69℄.Among them, handling the handovers is the most ruial one sine it diretly a�etsthe servie quality of the subsribers. Besides well-known problems inherited fromonventional handover proedures, another hallenging issue is to handover a groupof subsribers at the same time when a serving BS is swithed o�. There has beensome researh e�ort on group handover tehniques [70, 71℄, and most of them targetthe passengers traveling on publi transportation vehiles suh as buses and trains.Majority of the group handover shemes require prediting the handover and makeneessary preparations before starting the handover proedure itself. In our ase, theentral ontrol entity, whih deides and implements the network topology hanges,may do the neessary ontrol signaling and inform the neighboring BSs about thepossible group handover before shutting a BSs down. Also, a possible BS transitionand handover proedure is disussed in [15℄.In order to minimize the side e�ets of topology hanges, we use a seond objetivefuntion given in Equation 3.6 whih minimizes the BS on/o� swithes in additionto the overall power onsumption. The BS swith penalty, αsw, ontrols the power



27onsumption vs. BS transition overhead trade-o�. Thus, network operators have thehane to �ne tune the objetive funtion aording to their priorities. The e�et ofthis parameter is further investigated in Setion 3.4.3.
min∑

b∈B

∑

p∈P

∑

t∈T

Obt

(

PWcore + AbptPW
tx(p)

)

+ αswN sw (3.6)
Although we put the GDBP problem into a mathematial form, it is still a hal-lenging task to solve it with the optimization tools sine we use large real-life-sale testsenarios for performane evaluation. Furthermore, nonlinearity of the problem alsoinreases its omplexity and yields to longer run times. Therefore, we propose a fastheuristi to solve large-sale instanes of the problem within aeptable time durations.3.3. Green dynami BS planning algorithmIn this setion, we derive a heuristi alled FastWISE whih onsists of threephases for the GDBP problem. Additional variables used in FastWISE:
OCAcur : Overlapping overage area of the urrent BS
OCAmax: Maximum allowed overlapping overage area in order toswith a BS on during initialization phase
B

off : Set of urrently swithed o� BSs
W cur : Tra� load of the urrent BS
B

high : Set of swithed on BSs havingW cur ≥W cap (users served bythose BSs most likely to su�er high bloking probabilities)
CUE : Covered1 user per energy ratio of the urrent BS when it isswithed on
βcur : Current user overage ratio of the network1Inremental users overed by that partiular BS when it is swithed on



28������Initialization phase������1: for all B do2: alulate proper2 PL3: alulate OCAcur4: if OCAcur ≤ OCAmax then5: swith urrent BS on6: end if7: end for�������Iteration phase�������8: repeat9: for all Boff do10: alulate CUE for eah power level11: end for12: swith on BS having maximum CUE13: until βcur ≥ βmin������-Validation phase������-14: for all Bhigh do15: repeat16: swith on the losest BS17: until W cur ≤ W cap18: end forFigure 3.1. FastWISE algorithm.The omplete proedure of FastWISE is given in Figure 3.1. It starts with theinitialization phase. In this phase, FastWISE visits all BSs and ativates the oneswhih have smaller overlapping overage than a prede�ned threshold with the maximumpossible transmission power level. By doing this, FastWISE tries to use BSs with highertransmission power levels without violating the apaity onstraints in order to giveenergy-saving opportunities to neighboring BSs. Therefore, a preliminary overage isprovided at the end of this phase. FastWISE ontinues with the iteration phase. Theaim of this phase is to make inremental improvements at eah step on top of thepreliminary overage produed by the initialization phase until a target overage ratiothroughout the network is ahieved. Initially, a Covered User per Energy (CUE) ratio2Proper PL is the highest possible PL that a BS an operate without violating the apaityonstraint.



29is alulated for eah inative BS for eah power level. This ratio implies the numberof additional overed users per unit energy if that partiular BS is swithed on. Aslong as the desired overage ratio is not ahieved, the BS having the highest CUE ratiois simply swithed on. Unlike the initialization, the iteration phase tries to maximizethe energy utilization without making any apaity onstraint heks. However, thismay yield to overloaded BSs whih in turn ause higher all bloking probabilities.Therefore, the third step is required to validate that the tra� apaity onstraints aremet for all serving BSs, whih is the validation phase. In this last part of the heuristi,all serving BSs are visited and a list of neighboring BSs is reated for all overloadedones. In order to share the load of the overloaded BSs, starting from the losest one,neighboring BSs in the list are simply ativated until the o�ered tra� load dropsbelow its apaity. At the end of this phase, FastWISE ensures that all serving BSsare operating well below their apaities.3.4. Appliation senario and performane evaluation3.4.1. Appliation senario and parametersIn order to model the unbalaned temporal distribution of the load reated bymobile users, we assume a sinusoidal pattern throughout the day resembling the real-life tra� load given in Figure 1.2 and many other measurement studies presentedin [1,72,73℄. However, the tra� pro�le does not stritly have to follow the shape of asine wave. For the GDBP, reasonable amount of temporal tra� �utuations throughout the day will reate a margin for energy saving. Although we have a ertain tra�pro�le assumption, it is still possible to engineer the shape of that pro�le up to someextent. For example, the night-time tra� load may not be as low as we expet orthe peak-time tra� may not even get lose to 100% utilization in some partiularplaes. Therefore, we introdue a lower and a higher bound for the tra� load ratherthan assuming a regular sinusoidal wave ranging between 0% and 100% utilization. Infat, when we introdue those lower/higher bounds, we pratially de�ne the heightand o�set of the sinusoidal wave itself. Hene, they together de�ne how the tra�load hanges throughout the day. The �nal and vital parameter to onstrut the tra�
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Figure 3.2. An example sinusoidal tra� load for 24h with fmin = 0.1, fmax = 0.9,and tp = 14h.pro�le is the time slie in whih the tra� load reahes its peak. With this parameter,we an shift the sinusoidal wave in time domain until it �ts the tra� pro�le of a regionof interest. The tra� funtion is de�ned as
wh =

fmax − fmin

2
(3.7)

wo =
fmax + fmin

2
(3.8)

f(t) = wh cos(2π
t− tp

NT

) + wo (3.9)where fmin and fmax are the minimum and the maximum tra� loads throughout theday, wh and wo are the height and o�set of the sinusoidal tra� wave, and tp is thetime slie in whih the tra� load has its peak. An example tra� pro�le reated byEquation 3.7 an be seen in Figure 3.2.We adopt three distint transmission PLs for BSs, whih we believe is not irra-tional when the urrent state of the BS manufaturing tehnology is onsidered. If aBS is up, then it is transmitting with one of PLn where n ∈ {1, 2, 3}. When we hangethe transmit power of a BS, we subsequently hange its overage range. Sine all of ourtest area exhibits the same terrain feature (urban), a single propagation model is usedthroughout the whole area. However, in ase of need, test area may be partitioned
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Figure 3.3. A Sample deployment on�guration with 10000 UCs (1 mil. users) and200 BSs in a 5 x 5 km2 area.into di�erent terrain features and other propagation models an be inorporated forthose spei� portions of the overage area. We assume perfet free-spae path loss foralulating the omnidiretional overage ranges. When we �xed the signal frequeny,free-spae path loss beomes proportional to the square of the distane between thetransmitter and reeiver. However, all propagation models an be used with our prob-lem formulation aording to the wireless hannel onditions in the overage area.Although our model an aommodate BSs with di�erent tra� �ow apaities,we assume all BSs are idential and have the same apaity. Both user hunks andBS loations follow Gaussian distributions where BSs are entered in the middle of thearea and user hunks are entered around the BSs. However, two BSs annot be loserthan the Minimum Inter-BS Distane (MIBD) to eah other.In order to make proper assessment of the proposed methods, it is required toreate a test environment as lose to real life onditions as possible. Therefore, weenvision a densely populated (1 million subsribers) business enter as advised in Se-



32tion 3.2.1 whih is overing an area of 5×5 km2. We assume the tra� load follows thesame pattern given in Figure 1.2 and there are 200 BSs deployed to aommodate thepeak-time tra�. A sample deployment on�guration used for performane evaluationis given in Figure 3.3. As GoS metris, the network should provide the maximum of
10−2 bloking probability [74℄ and over at least 99% of the area at all times. Importantparameters used in the sample appliation senario are summarized in Table 3.3. Forthe sake of variane ontrol, 10 di�erent test ases are generated and average of theresults are presented. Table 3.3. Senario parameters.Parameter ValueCoverage Area 5× 5km2# BSs (NB) 200# UCs (NU ) 10000Chunk size 100 usersBS Loation Std.Dev. 1000mUser Loation Std.Dev. 100mMIBD 150mBS Core Power 150 Watt# PLs (NP ) 3BS Transmission PLs 30 - 90 - 270 WattBS Coverage Distanes 300 - 520 - 900 mBS Capaity (W cap) 66 ErlangMax. Prob. of Bloking 10−2Average Call Duration 30 seAverage Call Arrival Rate 10 alls/day/user# Time Slots Within a Day (NT ) 24Min. Aeptable Coverage Ratio (βmin) 99%Penalty of a BS Swith (αsw) 0 - 75 - 300 - 1500



333.4.2. Experiment MethodologyPerformane of FastWISE is evaluated by using real-life-sale test ases and om-pared with the results of a NLP tool [75℄. Also, MC experiments are used by generatinga large set of random solutions to investigate the statistial quality of the FastWISEresults. However, the initial results of fully random MC experiments were mostly un-feasible and too poor to be ompared with other results. In order to obtain morehallenging results, we hange the random solution generation method by assigningdi�erent probability of drawing to eah ase and all it MC∗. By this way, we reatea hundred thousand biased samples whih ontain muh more feasible results than thefully random MC method. The idea behind MC∗ is to generate more suitable topologyinstanes by taking the urrent tra� load into aount. For example, MC∗ swithesmore BS on if the tra� load is high and less BS if the tra� load is low. Similarly,MC∗ favors higher power levels for the ativated BSs during low tra� onditions toreate a margin for neighboring BSs to save energy. Thus, MC∗ reates more feasiblesolutions than the plain MC and gives us the hane to make better assessment of theproposed tehniques.We model the problem with A Modeling Language for Mathematial Program-ming (AMPL) [76℄ and used a non-ommerial nonlinear optimization tool alled BasiOpen-soure Nonlinear Mixed INteger programming (BONMIN) [75℄. However, al-though we use a very powerful omputer, it was not possible to solve the problem as awhole due to high spae and omputational omplexity. Therefore, we deompose theproblem into smaller parts. For Plain GDBP, we solve eah time slot separately andadd them up to �nd the objetive funtion given in Equation 3.1. We approah theseond problem similarly but this time we feed the results of the previous slot as aninput to the next one in order to ompute the objetive funtion given in Equation 3.6.3.4.3. Performane EvaluationBefore proeeding to the omparative performane evaluation, we �nd it useful tostart with examining the run times. Average run times of FastWISE and NLP whih are



34olleted from a powerful omputer with 4 hexa-ore Xeon x5650 2.67 GHz proessorsand 24 GB of memory are given in Table 3.5. For FastWISE, the iteration is observedto be the most time onsuming phase as expeted sine small improvements are doneuntil a target overage ratio is ahieved. However, the overall exeution time of theFastWISE an be onsidered as aeptable. On the other hand, NLP takes longer timeto �nd feasible solutions than FastWISE, and it inreases parallel to the o�ered tra�load. In Table 3.5, 24 time slots are redued to 12 sine some of them have the sameamount of tra� load due to the sinusoidal tra� pro�le. It takes lose to an averageof four days for the NLP tool to �nd a solution for one instane.Table 3.5. Comparison of average run times.FastWISE NLPPhase Run Time Time Slot Run TimeInitialization 4m 3s 1, 6, 24 296m2, 5 268m3, 4 253m7, 23 312mIteration 65m 46s 8, 22 423m9, 21 456m10, 20 501m11, 19 517mValidation 12s 12, 18 538m13, 17 542m14, 16 535m15 548mTotal 70m 01s Total 5189mThe omparative power onsumptions throughout a day are given in Figure 3.4.If none of the green tehniques applied to the network, the power onsumption doesnot hange throughout the day regardless of the varying tra� load. Although someamount of power an be preserved with MC∗, it is lear that both FastWISE and NLPperform better in terms of the power onsumption. NLP outperforms FastWISE in
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Figure 3.4. Comparative power onsumption throughout a day.light tra� onditions while the opposite is valid under heavily loaded onditions. Dueto large sale of the test senario and high omputational omplexity of the proposedNLP, we set a maximum iteration limit on the optimization software in order to boundthe run times. It returns the best possible solution found within the given number ofbranh-and-bound iterations.In Table 3.6; daily, monthly, and annual energy ost savings are given. Theeletriity pries for peak (2pm-8pm), shoulder (7am-2pm and 8pm-10pm) and o�-peak(all other times) times are 44.11, 18.7 and 10.34 ents/kWh respetively in omplianewith the EnergyAustralia [77℄, one of Australia's largest eletriity retailers. When thegiven �gures in Table 3.6 are saled for the whole ountry, it is lear that GDBP anTable 3.6. Comparative energy ost saving.Daily($) Monthly($) Annual($)FastWISE 168 5,043 60,521NLP 143 4,317 51,809MC∗ 55 1,654 19,857
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Figure 3.5. Distribution of feasible MC experiments and its omparison withFastWISE and NLP.dramatially derease the energy expenditures of the servie providers, possibly a fewmillions of dollars per year, whih onstitutes the largest portion of the OPEX.In Figure 3.5, the probability distribution of feasible MC experiments is givenwith a �tted Gaussian Distribution. When averaged results of FastWISE and NLPare given in the same �gure ompared with the results of the MC experiments, it isquite ertain that they are statistially signi�antly better. In other words, it is nearlyimpossible to generate results with MC experiments as power e�ient as the ones withFastWISE and NLP.Figures 3.6 and 3.7 evaluate the GDBP with BS transition overhead introduedin Setion 3.2.3.2. Figure 3.6 depits the e�et of αsw on the objetive funtion givenin Equation 3.6. When we set αsw = 0, the objetive funtion redues to Plain GDBPgiven in Equation 3.1. For its maximum value, we set αsw = 1500. In this ase, BStransition penalty in the objetive funtion dominates the transmission power on-sumption and the network tends to keep its urrent topology rather than adaptingto the hanging tra� onditions. As the BS swith penalty inreases, the objetivefuntion value also inreases. When we set the swith penalty to higher values, the
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Figure 3.6. E�et of αsw on the objetive funtion given in Equation 3.6.
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Figure 3.7. E�et of αsw on the umulative number of BS on/o� transitions.optimization tool does not swith o� the redundant BSs as long as the resulting energysaving is smaller than the introdued transition overhead. Therefore, the topology isadjusted by swithing large number of BSs on or o� for higher transition penalties.As a result, the objetion funtion graph takes a more zigzag like shape for higherpenalties while it is smoother for lower values of αsw.When a swithing penalty is introdued in the objetive funtion, the numberof BS transitions dramatially dereases as seen in Figure 3.7. This �gure depits the
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(a) After initialization phase
(βcur = 83.06%, pblck = 1.7x10−3)

(b) After iteration phase
(βcur = 99.02%, pblck ≈ 0)

() After validation phase
(βcur = 99.02%, pblck ≈ 0)Figure 3.8. Resulting overage of FastWISE under light tra� load.

(a) After initialization phase
(βcur = 49.12%, pblck = 16x10−3)

(b) After iteration phase
(βcur = 99.1%, pblck = 892x10−3)

() After validation phase
(βcur = 99.12%, pblck = 9x10−3)Figure 3.9. Resulting overage of FastWISE under heavy tra� load.umulative sum of BS transitions for di�erent αsw values. The total number of BStransitions throughout the day is redued by 52%, 89% and 93% for αsw = 75, 300and 1500 respetively. Hene, the additional overhead introdued by frequent topologyhanges are signi�antly redued. However, as the BS swith penalty gets higher,the �exibility of the GDBP dereases whih yields to less energy e�ient solutions.Therefore, the network operators should deliately hoose this parameter aording totheir requirements.Figures 3.8 and 3.9 depit the overage of FastWISE after eah phase during lightand heavy tra� onditions. In the initialization phase, FastWISE tries to �ll the gapswithout violating the apaity onstraints as seen in Figures 3.8(a) and 3.9(a). Thenin the iteration phase, it swithes on the BSs with appropriate power levels in orderto satisfy the overage onstraints as seen in Figures 3.8(b) and 3.9(b). Finally in



39the validation phase, FastWISE heks the o�ered loads for eah BS and validates thatthey are not overloaded. If a BS is overloaded, FastWISE swithes the neighboring ellson to alleviate its load until that partiular BS an aommodate the o�ered tra�without violating the GoS onstraints. The resulting overage after the validationphase given in Figures 3.8() and 3.9().3.5. ConlusionIn this hapter, we fous on saving energy by both swithing BSs on/o� and adap-tively adjusting their transmission power aording to the urrent tra� onditions. Toahieve that goal, we formulated a novel nonlinear programming model for the GDBPproblem to �nd the best possible BS topology whih minimizes the energy onsumptionof the network while satisfying a ertain level of GoS. Although optimization tools anprodue optimum results for the small instanes of the problem, they annot ope withlarge instanes as their omplexity beomes prohibitive. Therefore, we derived a greedyheuristi alled FastWISE to solve the large realisti size instanes of the formulatedproblem and ompared our results with the results of a non-ommerial optimizationtool and numerous MC experiments. It is shown that our green dynami BS planningsheme adaptively adjusts to the urrent tra� load and saves signi�ant amount ofenergy without violating the GoS onstraints suh as the probability of bloking andthe overage ratio.



404. GREEN PACKET-SWITCHED CELLULAR NETWORKS
4.1. IntrodutionIn this hapter, we fous on saving energy by adaptively swithing the BSs ofpaket-swithed ellular networks on and o� and by adjusting the BS transmissionpower levels aording to the present tra� onditions. Partiulary, we fous on W-CDMA based paket-swithed ellular networks and adopt dynami transmission poweradjustment with the help of high e�ieny power ampli�ers. However, the hallengeis to derease the energy expenditure while always guaranteeing a ertain QoS levelover the whole overage area. We de�ne this problem as Tra�-Aware Topology Man-agement (TAM) problem. To address this, we formulate a novel Linear Programming(LP) model for the desribed TAM problem to �nd the best possible BS topology whihminimizes the energy onsumption while satisfying the ertain servie quality require-ments of the subsribers. Although small instanes of the TAM problem an be solvedby the optimization tools, large realisti size problems are quite di�ult to be han-dled due to high spae and omputational omplexity. Therefore, we propose a novelheuristi to solve the large-sale instanes of the formulated problem and ompare ourresults with the results of two previously proposed methods [13℄ [14℄, a greedy heuris-ti and a ommerial optimization tool. It is shown that the proposed TAM shemehelps to maintain an energy-aware network and saves signi�ant amount of energy byadaptively adjusting the network topology aording to the present tra� onditions.Although there are some studies in the literature related to the tra�-aware topologymanagement, our method di�ers in the following aspets:

• Unlike most of the previous studies, where only BS on/o� swithing is uti-lized [15℄ [16℄ [17℄ [18℄, we also take into aount the dynami power adjustmentapability of the urrent BSs tehnology in order to reate energy-aware networktopologies by de�ning a set of transmission PLs.
• Compared to solutions that show how muh energy e�ieny an be ahievedor that propose heuristi algorithms [18℄ [65℄ [78℄, we �rst formulate a detailed



41integer LP model for the TAM problem to minimize energy onsumption whilesatisfying a ertain level of QoS. Using this model, the problem is solved by aommerial optimization tool whih provides the optimum solutions to the smallerinstanes of the problem.
• While some of the existing studies show how muh energy e�ieny an beahieved, they do not propose operating algorithms to ahieve suh savings [15℄.Additionally, although the LP tool provides the optimum solutions, it requireslong omputational times and it is not possible to handle large instanes dueto the omputational omplexity. Therefore, a fast and e�etive heuristi alledGreen TAM Algorithm (GTA) is proposed and its performane is ompared withthe results obtained with the optimization tool and two ompetitor methods fromthe literature (i) SLAKE [13℄ (ii) Niu et al.'s Algorithm [14℄ in terms of runningtimes, energy savings and energy-ost savings.
• Majority of the studies in the literature assume that the BSs make on/o� dei-sions loally by omparing their urrent tra� loads with a prede�ned thresh-old [13℄ [15℄ [16℄. In our work, we try to satisfy ertain QoS requirements olle-tively by making system-wide deisions throughout the whole network. Althoughsuh a solution requires a entralized ontroller, it provides better energy savingsby onsidering the system-wide details. The distributed solution for the TAMproblem is studied in Chapter 5.The rest of this hapter is organized as follows: Setion 4.2 elaborates the systemmodel, assumptions and problem formulation while the proposed solution tehnique isexplained in Setion 4.3. The proposed greedy heuristi is explained in Setion 4.4.Appliation senarios, details of the system parameters and omparative performaneevaluation of the proposed methods are presented in Setion 4.5. Finally, Setion 4.6onludes this hapter.



424.2. TAM Problem FormulationWe assume that a BS an be remotely swithed on and o� from a entral entityaording to the present tra� onditions. When a BS is up, it has the ability to hangeits transmission power [79℄ by using power ampli�ers. Therefore, a set of transmissionpower levels is required to be de�ned aording to the appliation requirements andthe apabilities of the BS equipment in use. When a BS is up, it transmits with aertain power level and the status of a BS annot be hanged until the next time slot.Sine it is not pratial to model a huge number of subsribers and their mobilitypatterns individually, the overage region is divided into small grids. Eah grid has itsown harateristis in terms of user density, user mobility and tra� pro�le. In oursystem model, we take the aggregate tra� load reated by the users loated in thesegrids into aount.4.2.1. General Problem FormulationParameters:
NB : Number of BSs
NP : Number of PLs
NG : Number of grids
NT : Number of time slots within the day
B : Set of BSs where B = {1, . . . , NB}

P : Set of PLs where P = {1, . . . , NP}

PA : Set of ative1 PLs where PA = {2, . . . , NP}

G : Set of grids where G = {1, 2, 3 . . . , NG}

T : Set of disrete time slots within the day where T = {1, 2, 3 . . . , NT}

W (b, p) : Total onsumed power by BS b transmitting with PL p

Db : Data �ow apaity of BS b
f(g, t) : Average aggregate tra� load generated by grid g at time t1The �rst PL simply means that the BS is swithed o� and PA ⊆ P
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βmin : Minimum aeptable user satisfation ratio where 0 ≤ βmin ≤ 1

Ψmin : Minimum aeptable SINR at the reeiver
Ψgbt : Reeived SINR by grid g from BS b at time t
L(b, p, g): Path loss from BS b transmitting with PL p to grid g
Model variables:

Abpt =











1, BS b transmits with power p at time t
0, otherwise

Sgbt =











1, Grid g is assoiated with BS b at time t
0, otherwiseThe objetive funtion is given asmin∑

b∈B

∑

p∈P

∑

t∈T

AbptW (b, p) (4.1)
subjet to

∑

g∈G

Sgbtf(g, t) ≤
∑

p∈PA

AbptDb ∀(b ∈ B, t ∈ T) (4.2)
Ψgbt ≥ SgbtΨ

min ∀(g ∈ G, b ∈ B, t ∈ T) (4.3)
∑

g∈G

∑

b∈B

Sgbt ≥ βminNG ∀t ∈ T (4.4)
∑

p∈P

Abpt = 1 ∀(b ∈ B, t ∈ T) (4.5)
∑

b∈B

Sgbt ≤ 1 ∀(g ∈ G, t ∈ T) (4.6)Goal of our objetive funtion in Equation 4.1 is to minimize the total energy onsump-tion throughout the network. Equation 4.2 ensures that all ative BSs do not exeed



44their data �ow apaity. Equation 4.3 provides that eah grid assoiated with a BS isbeing served by at least a ertain Signal to Interferene and Noise Ratio (SINR) value.By not violating the BS apaity and SINR onstraints given in Equations 4.2 and 4.3;TAM sheme ensures the subsriber satisfation at all times by maintaining aeptablelevel of quality in terms of both delay and data rate. Equation 4.4 is responsible forobtaining the required user satisfation ratio over all users, i.e., it is guaranteed thata ertain perentage of the users are overed and served properly. The onstraint inEquation 4.5 makes sure that a BS operates at a single transmission PL in a partiulartime slot and Equation 4.6 is responsible for that a grid is being served by a single BSat a partiular instant.By integrating the apability of di�erent apaity and power onsumption modelsfor eah BS type, our TAM problem formulation gains the ability to support hetero-geneous networks. Although frequent topology hanges introdue additional overheadsuh as BS initialization, user assoiation and handover, we believe that the overheadintrodued by the BS transitions may be tolerated with proper handling mehanismssuh as proative hando� signaling and smart user assoiation sine we are workingwith one hour-time resolution. However, the overhead stemming from BS transitionsneeds to be taken into aount and addressed arefully in ase of shorter time slots.4.2.2. Details of the Problem Formulation4.2.2.1. BS Power Consumption. The total power onsumption of the BS is the om-bination of two omponents: (i) Core power (ii) Transmission power. The BS orepower onsumption (suh as air onditioning, signal proessing) is assumed to be �xedregardless of the tra� load. On the other hand, the transmission power an be dy-namially adjusted with the help of high e�ieny power ampli�ers. The total poweronsumption of the BS is given by [37℄ [80℄
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W (b, p) =











0, p = 1

W c
b +W tx

bp , otherwise (4.7)where W c
b is the ore power onsumed by the BS b and the W tx

bp is the transmissionpower onsumed by the BS b while transmitting with PL p.4.2.2.2. Interferene. There are two soures of interferene in W-CDMA ellular net-works: intra-ell and inter-ell. The intra-ell interferene is the total interfereneaused by the signals emitted from the serving BS and the inter-ell interferene isaused by the signals transmitted from all other BSs. In perfet transmission ondi-tions, there should be no intra-ell interferene sine all of the signals are orthogonal.However, the intra-ell interferene annot be totally avoided due to multipath propa-gation and SINR is given by
Ψ = SF

P r

αoI in + Iout + η
(4.8)

where SF is the spreading fator, P r is the reeived signal power, I in is the intra-ellinterferene, Iout is the inter-ell interferene, αo is the orthogonality loss fator and ηis the noise power.In the TAM problem, P r
gbt, I ingbt, and Ioutgbt are the reeived signal power, intra-ellinterferene and inter-ell interferene experiened in grid g from BS b at time t inorder and they are given by
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P r
gbt =

∑

p∈PA

AbptL(b, p, g)W (b, p) (4.9)
I inubt = αo

∑

p∈PA

AbptL(b, p, g)W (b, p) (4.10)
Ioutubt =

∑

i∈B|i 6=b

∑

p∈PA

AiptL(i, p, g)W (i, p) (4.11)
When Equations 4.9, 4.10 and 4.11 are plugged in to Equation 4.8, we get Equa-tion 4.12 and it is possible to alulate the SINR of a partiular grid g served by BS b attime t. Aordingly, the ahievable data rate of eah user loated at their orrespond-ing grids an be inferred from their SINR value by using Shannon's formula. Sine theinterferene dominates the SINR value, we will neglet the e�et of the noise fatorin the performane evaluation setion for the sake of simpliity. Also, the path lossmatrix L(b, p, g), for eah BS b, PL p and grid g triple is generated beforehand by usingthe COST-Hata metropolitan area propagation model [12℄ and fed to the optimizationsoftware as an input to speed up the alulation of the SINR.

Ψgbt = SF

∑

p∈PA

AbptL(b, p, g)W (b, p)

(αo − 1)
∑

p∈PA

AbptL(b, p, g)W (b, p) +
∑

i∈B

∑

p∈PA

AiptL(i, p, g)W (i, p) + η(4.12)Although some assumptions are made about the BS apaity, BS power on-sumption, propagation and interferene; our problem formulation an easily inorpo-rate other models aording to the spei� requirements of the appliation area andBS equipments.



474.3. Green Tra�-Aware Topology Management AlgorithmIn this setion, we derive a deterministi heuristi alled GTA to solve the largerealisti instanes of the formulated TAM problem. Before going into details of theGTA, some additional variables are explained.Additional variables used in GTA:
B

off : Set of urrently swithed o� BSs
B

on : Set of urrently swithed on BSs (Bon = B−B
off)

B
high: Set of BSs having Ccur

b > Db; b ∈ B
on (Users served by those BSsmost likely to su�er worse servie quality than expeted)

B
neig
b : Set of neighboring BSs of the BS b; b ∈ B (At most two maxi-mum2 overage distane away)

ψmax
b : Maximum UM of the BS b; b ∈ B

ξb : Current SPM of BS b; b ∈ B
on

ξ̂bp : Estimated SPM of the BS b if it is ativated with PL p; b ∈

B
off , p ∈ PA

ξmax
bp : max(ξi), i ∈ B

on when BS b is ativated with PL p; b ∈ B
off , p ∈

PA

∆ξb : Allowed SPM redundany of BS b; b ∈ B
off

Ccur
b : Current tra� load of BS b; b ∈ B

on

W cur
b : Current power onsumption of BS b; b ∈ B

on

Ĉbp : Estimated tra� load of BS b if it is ativated with PL p; b ∈

B
off , p ∈ PA

βcur : Current user overage ratio of the network
We de�ne a new BS Utilization Metri (UM) where the optimum value is ob-tained when a BS is onsuming minimum amount of power while operating with itsmaximum permitted tra� load without violating the QoS onstrains. In this way, we2The longest possible overage distane between any grid-BS pair in an interferene-free environ-ment



48are trying to maximize the utilization of the BS while minimizing the onsumed powerper bit. However, 100% BS apaity utilization may ause some problems in terms ofproviding the required servie quality to the subsribers sine there will not be anyresidual resoures available in ase of an unexpeted tra� demand. Therefore, settingthe maximum tra� load apaity of a BS as the 90% or 95% of its total apaityand sparing some slak resoures would be useful. The maximum possible UM of apartiular BS b is denoted by ψmax
b and given by Equation 4.13. Additionally, we intro-dued a new term alled Saturation Proximity Metri (SPM) whih is used to measure�how lose a BS is to its maximum UM" and given by Equation 4.14. As this metrigets loser to zero, it means that the BS is operating loser to its maximum UM andvie versa. High SPM values mean that the BSs are operating whether overloaded orunder-utilized. ξ̂bp is the estimated SPM of BS b if it is ativated with PL p and givenby Equation 4.15. This metri is alulated to deide whether a BS is eligible to beswithed on or not.

ψmax
b =

1

W (b, p = 2)
(4.13)

ξcurb =

∣

∣

∣

∣

ψmax
b −

Ccur
b

DbW
cur
b

∣

∣

∣

∣

(4.14)
ξ̂bp =

∣

∣

∣

∣

∣

ψmax
b −

Ĉbp

DbW (b, p)

∣

∣

∣

∣

∣

(4.15)
Before explaining the algorithm itself, we will elaborate on the trade-o�s anddesign riteria. The design riteria behind the GTA algorithm is to maximize theutilization of the ative BSs in order to reate a margin for the other BSs to switho�, hene save energy. To ahieve that goal, we de�ned the previously explainedparameters of UM and SPM. These parameters are merely indiators of BS utilizationto observe the urrent status of the network and take orretive ations for savingenergy. However, there is a trade-o� between saving energy and subsriber satisfation.To overome this hallenge, GTA provides required overage while trying to keep theenergy expenditure as low as possible and ensures that all BSs are operating below theirmaximum tra� load apaities, thus being ertain that all served users are satis�ed



49in terms of their QoS requirements.The GTA algorithm onsists of two phases whih are the overage assurane andthe quality assurane phases. In the overage assurane phase, the ultimate goal is toprovide the required overage while trying to keep the energy expenditure as low aspossible. At the beginning of the overage assurane phase, estimated SPM values arealulated for every swithed o� BS and PL ouple and sorted asending. Beginningfrom the BSs having the lowest estimated SPM value, eah swithed o� BS is assumedto be ativated. Then, the impat of that ativation on the network is observed byalulating and storing the atual SPM values of all ative BSs. After ativating eahswithed o� BSs and observing their impat on the network, the one having minimumestimated SPM value satisfying that the di�erene between the maximum SPM ofswithed on BSs and the estimated SPM of the urrent BS is smaller than a prede�nedthreshold is swithed on. Hene, we prevent the urrently ativated BS from reduingthe SPM values of the other swithed on BSs and keep the overall network energye�ient.In summary, eah swithed o� BS is assumed to be ativated one by one, andthe state of the network after this step is observed. By this way, we look one stepahead of the urrent state of the network for making the right deision. We ativatethe BS having the smallest SPM value whih means that partiular BS is operatinglose to its minimum possible power onsumption rate and maximum possible tra�load. However, SPM value of a urrently ative BS may be redued while swithing onan additional BS sine users are assoiated with the BS providing the best SINR value.To avoid that situation, we introdued a threshold alled allowed SPM redundany.When a BS is assumed to be ativated, SPM of the other ative BSs are realulated.If swithing on a BS redues the SPM of urrently ative BSs less than the de�nedSPM redundany threshold, that BS is allowed to be ativated. However, if ativatingthat partiular BS reates more than an antiipated level of overage redundany, i.e.,dereases the SPM of an already ativated BS more than the threshold value, that BSis not ativated and the next BS having the minimum estimated SPM is taken intoonsideration.



50������overage assurane phase������1: Swith o� all BSs2: repeat3: for all i ∈ B
off and j ∈ PA do4: alulate ξ̂ij5: end for6: sort_asending(ξ̂ij)7: for all i ∈ B
off and j ∈ PA do8: assume BS i is swithed on with PL j9: for all k ∈ B

on do10: alulate ξcurk11: end for12: end for13: ativate BS i ∈ B
off with PL j ∈ PA having minimum possible ξ̂ij satisfying ξmax

ij −ξ̂ij < ∆ξi14: until βcur ≥ βmin������quality assurane phase������15: repeat16: for all i ∈ B
high do17: for all j ∈ (Bneig

i

⋂

B
off) and k ∈ PA do18: alulate ξ̂jk19: end for20: ativate BS j ∈ B

neig
i with PL k ∈ PA having the smallest ξ̂jk21: end for22: until Bhigh = ∅ Figure 4.1. Green TAM algorithm.The seond phase is the quality assurane phase. The aim of this phase is toensure that all BSs are operating below their maximum tra� load apaities, thusmaking sure that all served users are satis�ed in terms of their QoS requirements. Ifo�ered tra� load of a partiular BS is higher than its apaity, all swithed o� neigh-boring BSs are visited and their estimated SPMs are alulated. The neighboring BShaving the smallest estimated SPM is ativated until the tra� load of that partiularBS dereases below its maximum tra� load apaity.The omplexity funtion of the GTA is polynomial and the highest order is foundin line 10 of the algorithm. Computational omplexity of the GTA is O(N7) and the



51a�eting parameters are the number of time slots, the number of BSs, the number ofpower levels, the overage area and the grid area.4.4. Greedy TAM HeuristiIn this setion, we introdue a greedy heuristi to solve the formulated TAMproblem. The results of this heuristi are also used during the omparative performaneevaluation in Setion 4.5.2. It starts with ativating all BSs with their maximumtransmission PL. Then the heuristi visits eah BS one by one and tries to deativatethe under-utilized ones. If deativation is not possible, then seeks for an opportunityto derease their transmission PL without violating the QoS onstraints.1: Ativate all BSs with max PL2: for all i ∈ B and j ∈ P do3: Set PL of BS i to minimum possible3 j without violating the QoS onstraints4: end for Figure 4.2. Greedy TAM Heuristi.4.5. Appliation Senario and Performane Evaluation4.5.1. Appliation Senario and ParametersIn order to make proper assessment of the proposed methods, it is required toreate a test environment as lose to real life onditions as possible. However, it ismostly not possible to solve large problem instanes with the formal optimization toolslike CPLEX [81℄ or GUROBI [82℄; due to very high spae and omputational omplex-ity. Therefore, we envisioned a small and a large test senario for the performaneevaluation. By solving the small instanes of the TAM problem with the optimizationtool and the proposed GTA, we show the e�etiveness of our heuristi and then applyour heuristi to large problem instanes on�dently.
3Note that j ∈ P whih inludes swithing a BS o� with j = 0



52We adopt three distint transmission PAs for BSs in ompliane with the urrentstate of the BS manufaturing tehnology. If a BS is up, it transmits with one ofthe power levels pi where i ∈ {2, 3, 4} and if the BS is swithed o� its power levelis set to one. Sine all of our test area exhibits the same terrain feature (urban), asingle propagation model suitable for metropolitan areas (COST-Hata [12℄) is usedthroughout the whole area. However, in ase of need, the test area may be partitionedinto sub-areas ontaining di�erent terrain features and other propagation models anbe inorporated for these spei� portions of the overage area.Although our model an aommodate BSs with di�erent tra� load apaities,we assume all BSs are idential and have the same apaity for the performane eval-uation purposes. For the small test instane, the whole overage area is omposed ofa business enter and the maximum aggregate tra� load of eah 50 × 50 m2 grid isassumed to be 4 Mbps. For the large test instane, there are three di�erent regionswhih are a business enter, a residential area and a forest/park. Eah 100 × 100 m2grid reates an aggregate of 10, 4 and 0.01 Mbps maximum tra� respetively. BSsare deployed aording to the spei� tra� requirements of eah grid in the overagearea. However, two BSs annot be loser than the MIBD to eah other.We take the Maslak distrit of Istanbul as an example for our test senarios whihis overing an area of 5×5 km2 as depited in Figure 4.3. We assume that the aggregatetra� load of eah grid type follows their spei� patterns given in Figure 4.4 and thereare 200 BSs deployed to aommodate the peak-time tra�. As QoS metris, proposedadaptive topology should satisfy the minimum aggregate data rate requirements of eahgrid in the overage area and over at least 99% of the area at all times. Importantparameters used in the sample appliation senario are summarized in Table 4.3. Forthe sake of variane ontrol, 10 di�erent test ases are generated for eah of the smalland large senarios and the average of the results are presented.4.5.1.1. Tra� Pattern. Similar to Setion 3.4, we assume a sinusoidal pattern through-out the day resembling the real-life tra� pro�le given in Figure 1.2 and the many other
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Table 4.3. Senario parameters.Parameter ValueSmall LargeCoverage Area 1× 1 km2 5× 5 km2# BSs (NB) 30 200Grid Area 50 × 50m2 100 × 100m2# Grid Types 1 3MIBD 100mBS Core Power 60 Watt# PLs 3BS Transmission PLs 12 - 36 - 108 WattBS Tra� Capaity (D) 100 Mbps# Time Slots in a Day 24Min. Coverage Ratio (βmin) 99%Min. SINR (Ψmin) 6 dBSpreading Fator 32Orthogonality Loss Fator (αo) 0.5Allowed SPM Redundany (∆ξ) 20%

measurement studies presented in [1, 72, 73℄. The tra� funtion is de�ned as:
wh

g =
fmax
g − fmin
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2
(4.16)
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) + wo
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where fmin

g and fmax
g are the minimum and the maximum aggregate tra� loads of grid

g throughout the day, wh
g and wo

g are the height and o�set of the sinusoidal tra� wave
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Figure 4.3. Three di�erent regions of Maslak, Istanbul.of grid g and tpg is the time slot in whih the aggregate tra� load of grid g has its peak.Although the TAM problem formulation has the �exibility to assign di�erent tra�pro�les for eah grid, we de�ne three distint tra� pro�les for the business enter, theresidential area and the forest/park as seen in Figure 4.3 by utilizing Equation 4.16.Figure 4.3 depits a rough partitioning of the Maslak distrit and its neighborhood.Created tra� pro�les an be seen in Figure 4.4 where tpb , tpr and tpf are the peak timeslots; fmin
b , fmin

r and fmin
f are the minimum aggregate tra� loads and �nally; fmax

b ,
fmax
r and fmax

f are the maximum aggregate tra� loads of the girds for business enter,residential area and forest/park respetively.
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554.5.2. Performane EvaluationPerformane of GTA is evaluated by using both small-sale and large real-life-saletest ases and ompared with the results of an LP tool [81℄, a greedy heuristi and twoompetitor green BS planning algorithms previously proposed in the literature [13,14℄.Among the ompetitor algorithms, SLAKE [13℄ is a distributed sleep-wake up algorithminspired by the eologial protoooperation priniple. It onsists of a sleeping and atra� distribution proedure. On the other hand, Niu et al. Algorithm [14℄ utilizesthe ell zooming onept for energy saving to adaptively adjust the size of the ellsaording to the urrent tra� load. It is assumed that a ell zooming server whih isa virtual entity in the network ontrols the proedure of ell zooming.We modeled the TAM problem with AMPL [76℄ and used a ommerial linearoptimization tool IBM ILOG CPLEX [81℄ to solve it. In order to redue the spaeand omputational omplexity of the problem, we deompose the problem into smallerparts independent from eah other. We solve the problem for eah time slot separatelyand add them up to �nd the objetive funtion given in Equation 4.1.Before proeeding to the details of the omparative performane evaluation, we�nd it useful to start with examining the average run times of the applied methods.Average run times of GTA, greedy heuristi, LP tool and SLAKE whih are olletedfrom a omputer with 4 hexa-ore Xeon x5650 2.67 GHz proessors and 24 GB ofTable 4.5. Comparison of average run times.Small Senario Large SenarioGTA 33s 3h 14m 13sNiu et al. Algorithm 20s 2h 16m 44sGreedy Heuristi 2s 13m 23sLP Tool 5m 46s -SLAKE 9s 39m 31s
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Figure 4.5. Comparative power onsumption throughout a day for the small testsenario.memory are given in Table 4.5. For the small test senario, the greedy heuristi is thefastest method as expeted. On the other hand, the LP tool onsumes muh moretime ompared to the other methods sine it tries to �nd the exat optimum solution.For the large test senario, GTA requires more than three hours to �nd an energye�ient topology for one day. Although eah time slot has di�erent run times due tothe di�erent amount of o�ered tra� loads, it takes approximately 8 minutes to �nd afeasible solution for a time slot.The omparative power onsumptions throughout a day are given in Figure 4.5for the small test senario. If none of the green tehniques are applied to the network,the power onsumption does not hange throughout the day regardless of the varyingtra� load. On the other hand, LP tool provides the optimum solutions and �ndsthe most power e�ient topologies possible. Although some amount of power an bepreserved with the greedy heuristi, it is lear that GTA, SLAKE and Niu et al.'sAlgorithm perform better in terms of power e�ieny. When we ompare GTA andSLAKE, GTA ahieves an average of 19% more power savings and reates a moreenergy-aware network ompared to SLAKE. Similarly, GTA ahieves 11% more powersavings than Niu et al.'s Algorithm. As opposed to ompetitor methods, our proposedGTA utilizes the dynami tx power adjustment apability of BSs and inorporatesbetter deision metris suh as BS UM and SPM to minimize the total network poweronsumption.
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Figure 4.6. Comparative power onsumption throughout a day for the large testsenario.Figure 4.6 depits the omparative power onsumptions for the large test se-nario. It is possible to observe that the power expenditure trends of all methods areproportional to the total aggregate tra� load of the network. However, GTA savesthe largest amount of power and ahieves 50%, 32%, 22% and 14% more power redu-tion with respet to the stati BS operation, greedy heuristi, SLAKE and Niu et al.'sAlgorithm in order.In Table 4.6; daily, monthly and annual energy ost savings are given. The ele-triity pries for peak (5pm-10pm), morning (6am-5pm) and o�-peak (10pm-6am) timesare 39.38, 22.01 and 9,48 kurus/kWh (0,18, 0,1 and 0,04 $/kWh) respetively inlud-ing the 22% tax for the industrial onsumers in ompliane with the TEDAS (TurkishEletriity Distribution Company) [83℄, Turkey's governmental eletriity retailer om-pany. City-wide and ountry-wide savings are alulated by omparing parameters ofthe test ase with the total urban surfae area and total urban population of Istanbuland Turkey respetively. Istanbul with more than 14 million inhabitants, is one of thebiggest ities in the world and onstitutes approximately 20% of the Turkey's popula-tion. Therefore, the respetive inrease between the test ase and the ity-wide ostsavings may seem to be very high while the inrease between the ity and ountry-wideost savings are quite low for this spei� example. On the other hand, for anotherservie provider operating in a ountry with smaller but many ities, signi�ant savingsan be still obtained.



58Table 4.6. Comparative energy ost saving.Daily($) Monthly($) Annual($)Test Case City-wide Country-wide Country-wide with CEGTA 60 1,827 21,925 4,670,025 17,279,092 49,072,621Niu et al. Algorithm 58 1,744 20,929 4,457,877 16,494,144 46,843,368SLAKE 55 1,674 20,096 4,280,448 15,837,657 44,978,945Greedy Heuristi 52 1,575 18,901 4,025,913 14,895,878 42,304,293When the numbers in Table 4.6 are examined, it is possible to say that theproposed tra�-aware topology management sheme an dramatially derease theenergy expenditures of the servie providers. For this example, GTA an ahieve morethan 4 million $ ost savings for Istanbul and 17 million $ for Turkey. Moreover, anew term alled �Casade E�et" (CE) is introdued in [84℄ and demonstrated thata 1 Watt savings at the proessor level produed a 2.84 Watt savings at the failitylevel through the CE. When this e�et is taken into aount, the atual amount ofenergy savings and CO2 emission redution beomes muh more than the preditedraw amounts as shown in the last olumn of Table 4.6.In Table 4.7; the total energy savings throughout a day ompared to the asesthat all BSs operate with PL 1, PL 2 and PL 3 are given. As expeted, more energyan be saved as the normal operation transmission power of the BSs inreases. GTATable 4.7. Total energy savings throughout a day ompared to all BSs operate withPL 1, PL 2 and PL 3.PL 1 PL 2 PL 3(kWh) (kWh) (kWh)GTA 173.65 288.85 634.45Niu et al. Algorithm 146.41 261.60 607.20SLAKE 124.06 239.26 584.86Greedy Heuristi 91.47 206.67 552.27



59ahieves 18%, 39% and 89% more energy onsumption for the PL 1 ase; 10%, 21%and 40% for PL 2 ase; 5%, 9% and 15% for the PL 3 ase with respet to Niu et al.'sAlgorithm, SLAKE and greedy heuristi in order.4.6. ConlusionIn this hapter, we fous on saving energy in heterogeneous paked-swithed el-lular networks by both swithing BSs on/o� and adaptively adjusting their transmis-sion powers aording to the urrent tra� onditions. We formulated a novel linearprogramming model for the TAM problem and try to �nd the best possible networktopology whih minimizes the total energy onsumption without degrading a ertainlevel of QoS. We also derived a deterministi heuristi alled GTA to solve the largerealisti instanes of the formulated TAM problem. In order to make an aurate per-formane evaluation of the proposed methods, we derived small and large test senariosand ompared our results with the results of a ommerial optimization tool, a greedyheuristi and two ompetitor green BS planning algorithms previously proposed in theliterature. It is shown that our tra�-aware topology management sheme adapts theurrent tra� onditions and saves signi�ant amount of energy without violating theQoS onstraints of the subsribers.



605. GREEN NEXT GENERATION MULTI-TIER CELLULARNETWORKS
5.1. IntrodutionIn this hapter, our goal is to derive e�ient green network design, deploymentand operation tehniques for NGMCNs. Sine NGMCNs are not fully deployed andoperational for the time being, we design the network as green from the beginning andkeep green during the network operation phase. This hapter of the thesis onsistsof three work pakages. The �rst work pakage is the mapping proess of a pilotappliation area and reating a spatio-temporal user density estimation. The seondwork pakage is the deployment of additional pio BSs on top of the existing networkinfrastruture to aommodate the peak tra� onditions. We keep the urrent networkinfrastruture beause it is more ost-e�ient from the servie provider's point of view.Finally, the third work pakage is the green dynami BS operation of the networkonsisting of heterogeneous elements for power saving.In the �rst work pakage, we reate a detailed 3-Dimensional map of the pilotappliation area to be used in the seond and third work pakages. In the seond workpakage, given the peak tra� loads and a set of urrently deployed miro BSs in theoverage area, we formulate a mathematial optimization model to address the greenpio BS deployment problem. We also propose a novel heuristi and a greedy algorithmto install the minimum number of pio BSs to support the peak tra� onditions with-out ompromising the QoS requirements of the subsribers. Lastly, in the third workpakage, we formulate a novel LP model for the green dynami BS operation problemto �nd the optimum topology whih minimizes the power onsumption while satisfyingertain servie quality standards suh as overage and ahievable data rate. Along withthe problem formulation, we also propose an o�ine-entralized, an online-distributedand two entralized greedy algorithms to solve it. For omparative performane eval-uation, we ompare the results of our proposed green BS deployment and dynami



61operation methods with two of the previously proposed tehniques [15℄ [30℄ in theliterature and a ommerial optimization tool.Although there are some studies in the literature related to the tra�-awaretopology management, our method di�ers in the following aspets:
• Similar to the previous methods proposed for CCNs and PSCNs in Chapters 3and 4, we utilize the dynami power adjustment apability of the BSs in order toreate more energy-aware network topologies.
• We justify our proposed methods by applying them to senarios as lose to reallife onditions as possible. For this purpose, we reated a detailed map of theTaksim area for a better estimation of the spatio-temporal user density. To thebest of our knowledge, this kind of detailed user density estimation study of apartiular area is one of its kind in the literature.
• We propose to deploy additional pio BSs on top of the existing network infras-truture to meet the inreasing data exhange requirements of the subsribers.Therefore, our green networking strategy is not limited to dynami operationonly, but also enompasses the network design and deployment phases.
• We provide low omplexity heuristis for both green pio BS deployment andgreen dynami BS operation problems. These heuristis an be also onsidered asoperating algorithms to ahieve the provided power saving �gures in Setion 5.5.2.
• We derive both o�ine-entralized and online-distributed algorithms along withtwo entralized greedy algorithms to solve the green dynami BS operation prob-lem. Hene, ellular network operators have the freedom to apply the most suit-able approah aording to their spei� requirements.5.2. Spatio-temporal User Density Estimation of the Pilot AppliationAreaWe selet Taksim [85℄ as our pilot appliation area whih is a highly rowdedurban enter omposed of various plaes suh as o�es, shools, shopping malls, afes,restaurants, bars and tourist attration points. Firstly, a satellite image raster map
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Figure 5.1. Blueprint of Taksim area shapes and labels.of the Taksim area is reated as a base for further operations. This base is obtainedby merging 17 high resolution Google Earth [86℄ images into a single map. On top ofthe base map, eah struture / building / street is drawn as retangular shapes and ablueprint of the overage area is reated in Mirosoft Visio [87℄ with a resolution of twometers. Subsequently, eah retangular shape is labeled with a unique id to failitatethe lassi�ation and prevent possible on�itions. Resulting blueprint of the Taksimarea is given in Figure 5.1. This map, whih inludes 1365 lines and 1080 labels, isreated with an e�ort of more than 80 working hours.Before proeeding to ollet the required data for tra� demand estimation, wereated 17 lass types for plaes in Taksim area and they are listed in Table 5.1. Thereason behind this lassi�ation is to make a better spatio-temporal tra� estimation.By assigning a lass type to eah shape reated in the blueprint, we will be able



63Table 5.1. Shape types.Type No Type Name1 Cafe/Restaurant Early Closing2 Cafe/Restaurant Late Closing3 Bar/Night Club4 Shopping5 O�e/Work Plae Early Closing6 O�e/Work Plae Late Closing7 Mosque/Churh8 Shool Weekday9 Shool All Week10 Pedestrian Road Heavily Crowded11 Pedestrian Road Lightly Crowded12 Residential13 Movie Theater Art Gallery14 Otel15 Hostel16 Hospital17 Derelit Buildingto simulate the overall tra� demand of the overage area. Eah lass is arefullyidenti�ed to reate a model of the Taksim area as lose to real life situation as possible.Sine Taksim is a highly rowded urban area omposed of a variety of plaes, furtherredution in the number of lasses may derease the auray of the tra� demandestimation. On the other hand, the auray may be improved by inreasing thenumber of lasses with a ost of introduing additional overhead and omplexity tothe lassi�ation proess. We try to keep the lass ount as low as possible whilemaintaining an aeptable level of tra� demand estimation auray.In Table 5.2, an example of the olleted data is depited for tra� demand esti-mation. The �rst set of olleted data is the X and Y oordinates of the shape orners.By olleting the oordinate data, we determine the boundaries of eah shape and able



64Table 5.2. Shape numeri values example.Label P1 P2 P3 P4 FloorNo X Y X Y X Y X Y Start End Type Desription1 943 576 902 565 900 576 940 587 0 2 5 Institut Franais O�e2 978 587 943 576 928 633 941 636 0 2 9 Institut Franais Course3 931 622 905 616 902 627 928 633 0 2 5 Institut Franais O�e4 914 580 900 576 888 624 902 627 0 2 9 Institut Franais Course5 940 587 914 580 905 616 931 622 0 1 9 Institut Franais Course0 2 1 Restaurant Early6 885 560 869 555 863 580 885 588 2 4 6 CHP Beyoglu Distrit Presideny7 885 588 863 580 851 622 876 628 0 2 7 Armenian Churh0 1 5 Dry Cleaning, Funeral and Undertaking8 893 625 878 621 872 645 887 651 1 3 5 O�e Early9 862 548 851 542 841 566 855 572 0 8 5 O�e Early0 1 2 Bereket Halk Doner10 851 542 844 539 834 562 841 566 1 8 6 O�e Late11 844 539 838 536 828 558 834 562 0 1 13 AFM Cinema1 5 2 Burger King12 838 536 832 533 822 553 828 558 0 7 2 Borsa Restaurant. . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . .1079 333 469 327 468 324 522 329 523 0 1 11 Pedestrian Road Lightly Crowded1080 318 398 314 396 268 443 271 448 0 1 11 Pedestrian Road Lightly Crowdedto assoiate eah grid with their respetive shape type. However, oordinates of the fourorners only allow us to reate a 2-Dimensional oupany map of the area. Therefore,we also olleted the ground and top �oors of eah plae as an additional oordinate ofZ to model the tra� demand in 3-Dimensions. Up to this point, olleted data maybe extrated by using satellite images and street view of Google [88℄, Yandex [89℄ andOpenStreet [90℄ Maps. However, it is not as easy as it seems to ollet the ground andtop �oors of eah plae. Taksim area is required to be visited many times to olletthis information properly. Last and the most time onsuming part of the table is thetype and brief desription of the shape. Eah plae needs to be identi�ed, whih meanstens of kilometers of hiking in the overage area, and then lassi�ed as one of the typesgiven in Table 5.1.The reader may notie that there are some shapes onsisting of more than oneplae type. This issue raises when there are multiple type of plaes loated in the same
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Figure 5.2. 3D model of the pilot overage area.building. Shape number 6 in Table 5.2, whih is a four-story building, may be an ex-ample of this situation. There is a restaurant in the �rst two �oors while the remainingtwo �oors of the same building are oupied by the distrit presideny of a major po-litial party in Turkey. Sine the explained situation is very ommon in Taksim area,we identi�ed 1534 di�erent plaes although there are 1080 struture/building/streetlabeled in the blueprint given in Figure 5.1. Identi�ation and lassi�ation of theplaes to �ll Table 5.2 took approximately 200 working hours.After ompleting the shape numeri values sheet given in Table 5.2, a 3D modelof the overage area is reated by using X3D [91℄, an XML-based 3D graphis tool. The



66resulting 3D model along with its olor ode an be seen in Figure 5.2. An additionalsoftware is developed in Mirosoft Visual Studio 2008 [92℄ to reate the X3D odeitself. Although the olor-oded 3D model of the overage area represents a usefulvisualization, it does not provide muh by itself about the spatio-temporal user densityof the area. Therefore, we are also required to estimate the average user densities ofeah plae type throughout the day to reate a omplete tra� load view of Taksimarea. For this purpose, we olleted another set of data given in Table 5.3. In the table,estimated average user densities per 10m2 is provided both for weekday and weekend.Presented data is the result of ountless observation expeditions being made to theoverage area during di�erent times of the day. Besides its sienti� side, the observerhas also aumulated very preious soial real life experiene during these expeditionsby having hane to visit various type of plaes loated in one of the most rowded andosmopolitan region around the world.All the numbers provided in Table 5.3 are arefully assigned to eah plae type.As an example, the user density of Taksim Commerial Voational High Shool, whihneeds to be lassi�ed as �Shool Weekday", inreases dramatially just before the be-ginning of the lass hours. User volume is maintained till the end of lasses. However,the density in the evening does not drop as sharp as it inreases in the morning dueto many reasons suh as lub or sports ativities, additional lasses for the voluntarystudents. After a ertain point, the shool is quite vaant for the remainder of theday until the start of the lass hour in the next day. As expeted, the user densityis observed to be very low for �Shool Weekday" type plaes during weekend. On theontrary, Cumhuriyet Meyhanesi, whih needs to be lassi�ed as �Bar/Night Club", isvery dense during nights. This density further inreases at the weekends. As a result,omplete 3-Dimensional view of the spatio-temporal user density estimation in Taksimarea is obtained by applying the �gures given in Table 5.3. To the best of our knowl-edge, this kind of detailed user density estimation study of a partiular area is one ofits kind in the literature.



Table 5.3. User density estimations of eah type for 10m2 area.TimeslotType #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24WEEKDAY1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1 1.5 1.5 2 3 3 2 1.5 1.5 2 2 2 1 0.5 0.5 0.12 3 3 2 2 1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 2 33 5 4 3 2 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1 2.5 4 5 54 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 1.5 1 0.5 0.15 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.16 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.17 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.18 0.1 0.1 0.1 0.1 0.5 2 3 5 5 5 5 5 5 5 5 5 5 3 1 1 0.5 0.1 0.1 0.19 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2.5 2.5 2.5 2 2 2.5 2.5 2.5 2.5 2.5 2.5 2 2 1 0.1 0.110 4 3 2 1 1 2 3 3 3 3 3.5 4 4 3.5 3 3 3 4 5 5 4 4 4 411 1.2 0.9 0.6 0.3 0.3 0.6 0.9 0.9 0.9 0.9 1.05 1.2 1.2 1.05 0.9 0.9 0.9 1.2 1.5 1.5 1.2 1.2 1.2 1.212 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 113 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 2 3 3 4 4 4 4 5 5 5 5 5 4 214 2 2 2 2 2 2 2 1.5 1 1 1 1 1 1 1 1 1 1 1.5 1.5 1.5 2 2 215 5 5 5 5 5 5 5 4 2 2 2 2 2 2 2 2 2 2 3 4 4 5 5 516 1.2 1.2 1.2 1.2 1.2 1.2 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 1.2 1.2 1.2 1.2 1.2 1.217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0WEEKEND1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 1.8 2.7 2.7 3.6 5.4 5.4 3.6 2.7 2.7 3.6 3.6 3.6 1.8 0.9 0.5 0.12 6 6 4 4 2 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1 1 1 1 2 3 3 4 63 12 9.6 7.2 4.8 2.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.2 2.4 6 9.6 12 124 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 1.8 2.7 2.7 2.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 2.7 1.8 0.9 0.15 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.16 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1 2 3 3 3 2.5 3 3 3 3 3 3 3 2 1 0.5 0.17 0.1 0.1 0.1 0.1 0.1 1 0.5 0.5 0.5 1 1 1 2 1 1 2 1 1 2 1 1 0.5 0.1 0.18 0.01 0.01 0.01 0.01 0.05 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.1 0.1 0.05 0.01 0.01 0.019 0.1 0.1 0.1 0.1 0.75 0.75 1.5 3 3.75 3.75 3.75 3 3 3.75 3.75 3.75 3.75 3.75 3.75 3 3 1.5 0.1 0.110 8 6 4 2 2 4 6 6 6 6 7 8 8 7 6 6 6 8 10 10 10 10 10 1011 2.4 1.8 1.2 0.6 0.6 1.2 1.8 1.8 1.8 1.8 2.1 2.4 2.4 2.1 1.8 1.8 1.8 2.4 3 3 2.4 2.4 2.4 2.412 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 1.2 1.213 0.1 0.1 0.1 0.1 0.1 0.1 1 1 2 4 4 6 6 8 8 8 8 10 10 10 10 10 8 414 3 3 3 3 3 3 3 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.25 2.25 2.25 3 3 315 7.5 7.5 7.5 7.5 7.5 7.5 7.5 6 3 3 3 3 3 3 3 3 3 3 4.5 6 6 7.5 7.5 7.516 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5.3. Average number of users in the overage area.The total number of individual subsribers throughout a day on weekday andweekend are depited in Figure 5.3. Minimum of 49,166 and maximum of 177,260population values are ahieved during 04:00 and 14:00 on weekdays, while 72,165 and207,809 population values are ahieved during 04:00 and 19:00 on weekends respetively.In aordane with many previous studies in the literature whih investigates the tra�load patterns of mobile aess networks [1, 72, 73℄, weekday tra� of Taksim followsa sinusoidal pattern throughout the day. The tra� load in the overage area dropssigni�antly during night time whereas a high tra� demand is observed during daytime, espeially in working hours. On the ontrary, weekend tra� pro�le in Taksimdoes not math with the general assumption of �low tra� load during weekend andholidays". Although this assumption may be quite reasonable for plaes omprisingof business and trade enters, o�es or shools; Taksim exhibits unique aspets inmany ways with respet to other rowded urban areas. There are variety of di�erenttypes of plaes inluding o�es, residential areas, shools, weekend lasses and touristattration points. Moreover, Taksim is the heart of night life in Istanbul, whih isone of the most rowded ities in the world with an approximate population of 20million. For the reasons mentioned, the weekend tra� load in Taksim is higher thanthe weekday tra� load. This behavior is observed both day and night time. Exeptfrom the spatial tra� hange, Figure 5.3 also learly shows that there are signi�anttemporal tra� load hanges throughout the day and we have enough margin to saveenergy with e�ient green networking methods.



69Table 5.4. Area ratio and tra� ontribution of eah plae type.Tra� Contribution (%)Plae Type Total Area Ratio (%) Weekday WeekendCafe/Restaurant Early Closing 5.5 4.4 5.8Cafe/Restaurant Late Closing 2.6 1.9 2.8Bar/Night Club 7.7 7.6 13.3Shopping 9.0 6.7 9.0O�e/Work Plae Early Closing 19.0 17.3 13.0O�e/Work Plae Late Closing 10.2 11.8 8.9Mosque/Churh 1.7 0.9 0.7Shool Weekday 7.2 12.7 1.0Shool All Week 2.0 2.0 2.3Pedestrian Road Heavily Crowded 5.0 11.3 17.9Pedestrian Road Lightly Crowded 3.1 2.1 3.1Residential 15.1 8.0 7.2Movie Theater Art Gallery 2.2 3.7 5.5Otel 5.1 5.3 5.9Hostel 0.8 2.0 2.3Hospital 1.9 2.3 1.3Derelit Building 2.0 0 0Table 5.4 provides the ratio of the surfae area for eah plae type over thewhole overage area along with their average ontribution to the total reated tra�load. Although the area ratio olumn is a vivid evidene of Taksim's osmopolitannature; o�es, residential and shopping areas, bars, shools and afeterias onstitutethe signi�ant portion. It is also worth noting that the tra� load ontribution of eahtype is not always proportional to their respetive area ratio. More spaious types ofplaes suh as residential areas reate lower tra� loads whereas more rowded plaessuh as bars, night lubs and shools reate higher tra� loads with respet to theiratual total area. Another important observation is the tra� load ontribution hangebetween weekdays and weekends. Although there are signi�ant variations betweenthe weekday and weekend tra� load ontributions, the hange in bars, night lubs,weekday shools and pedestrian walkways an be ounted as the most signi�ant ones.Installing a new BS to the loation of an existing ell site is de�nitely heaperthan establishing a new site from the srath. Contributing fators to this di�ereneinludes power and data abling, mast installation, payment to the land owner, et.Therefore, urrent ell sites are preferred to deploy the new BSs of another tehnology,
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Figure 5.4. OpenCellID BS information repository loaded on OpenStreetMap.whih is assumed to be LTE in our ase. However, obtaining the urrent BS loationinformation is not an easy task. Although we attempted to get the BS loations andthe tra� load information from two of Turkey's major mobile servie providers, weould not manage to aomplish it. As a last resort, we deided to ollet this data byourselves with the help of a third party mobile appliation.Although there are a bunh of available appliations in the market, OpenCel-lID [93℄ was the most promising one for our ase. OpenCellID is the world's largestollaborative ommunity projet that ollets GPS positions of ell towers, for a mul-titude of ommerial and private purposes. It has an Android OS based free mobileappliation used by the voluntary individuals. A simple log is maintained by the appli-ation whih inludes the disovered BS IDs, loations, disovery time stamp, operatorname, et. The OpenCellID projet also keeps a huge database of the disovered BS
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Figure 5.5. Current loations of miro BSs.information. Eah mobile appliation user an register himself/herself and obtain anAPI key. Then, the log �le an be uploaded by using the obtained API key to the om-mon database. Aording to their o�ial statement, the OpenCellID database ontainsalmost 7 million unique GSM Cell IDs and 1.2 billion measurements as of Jan 2015.The data an be downloaded from the database in a salar format or an be applied asan additional layer on top of OpenStreetMap. In Figure 5.4, BS data of Taksim areaobtained from the OpenCellID repository is plotted on top of OpenStreetMap.Figure 5.5 depits the BS loations of a major mobile servie provider in Turkey.Although the overage area is less than 1km2, surprisingly there are 21 BSs belongingto a single operator. In order to disover the loations of the BSs, more than 20 kmof walking was required while arrying an OpenCellID installed smart phone. Theloations of the disovered ells are identi�ed with an average auray of 5m.



725.3. Green Pio BS DeploymentIn this setion, our aim is to minimize the number of deployed pio BSs whileguaranteeing a ertain QoS level in terms of overage and ahievable data rate. Forthis purpose, we disretized the overage area by dividing it into 1m2 grids and eahgrid has a tra� oupany aording to its assoiated type as listed in Table 5.3.However, existing miro BSs along with to-be-deployed pio BSs are required to satisfyuser requirements at all times. Therefore, we take the peak tra� loads of eah plaetype into aount. For example, the tra� demand in Istiklal Avenue peaks between19:00-24:00 on weekends while the tra� demand in Pera Fine Arts High Shool ismaximum during 08:00-17:00 on weekdays.5.3.1. Problem FormulationGiven the peak tra� load of eah plae type and set of urrently deployedmiro BSs, we formulate a mathematial optimization problem for additional pio BSdeployment.Parameters:
NBM : Number of miro BSs
NBP : Number of pio BSs
NPM : Number of miro power levels
NG : Number of overage grids
B

M : Set of miro BSs where B
M = {1, . . . , NBM

}

B
P : Set of pio BSs where B

P = {1, . . . , NBP

}

B : Set of BSs where B = B
M ∪B

P

G : Set of overage grids
NXP : Number of andidate pio BSs deployment loations
X

P : Set of andidate pio BSs deployment loations where X
P =

{1, . . . , NXP

}
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NXneig : Number of neighboring andidate pio BSs deployment loationsfor overloaded BSs
X

neig
b : Set of neighboring andidate pio BSs deployment loations forBS b where X

neig
b ⊂ X

P

Db : Data �ow apaity of BS b
βmin : Minimum aeptable user satisfation ratio where 0 ≤ βmin ≤ 1

β : User satisfation ratio during peak tra� onditions where 0 ≤

β ≤ 1

Ψmin : Minimum aeptable SINR at the reeiver
Ψgb : Reeived SINR by grid g from BS b
L(b, g): Path loss exponent from BS b to grid g
fb : Tra� load of BS b
Model variables:

Sgb =











1, if Grid g is assoiated with BS b
0, otherwiseThe objetive funtion is given asmin |BP | (5.1)

subjet to
fb ≤ Db ∀b ∈ B (5.2)

Ψgb ≥ SgbΨ
min ∀(g ∈ G, b ∈ B) (5.3)

β ≥ βmin (5.4)
∑

b∈B

Sgb ≤ 1 ∀g ∈ G (5.5)



74Goal of our objetive funtion in Equation 5.1 is to minimize the total numberof deployed pio BSs for both energy e�ieny and CAPEX redution. Constraint inEquation 5.2 ensures that all BSs (both pio and miro) do not exeed their maximumdata �ow apaity. Equation 5.3 provides that eah grid assoiated with a BS reeivessu�ient signal strength. By not violating the BS apaity and SINR onstraintsgiven in Equation 5.2 and Equation 5.3; proposed optimization problem ensures thesubsriber satisfation at all times by maintaining an aeptable level of quality interms of both delay and ahievable data rate. Equation 5.4 is responsible for obtainingthe required user satisfation ratio over all users, i.e., it is guaranteed that a ertainperentage of the users are overed and served properly. The onstraint in Equation 5.5makes sure that a partiular grid is being served by a single BS at a partiular timeslot.5.3.2. InterfereneAs elaborated in Setion 4.2.2.2, there are two soures of interferene in LTEnetworks whih are intra-ell and inter-ell. The intra-ell interferene is the totalinterferene aused by the signals emitted from the serving BS and the inter-ell inter-ferene is aused by the signals transmitted from all other BSs. In perfet transmissiononditions, there should be no intra-ell interferene sine all of the signals are orthog-onal. However, the intra-ell interferene annot be totally avoided due to multipathpropagation and SINR is given by
Ψ =

P r

αoI in + Iout + η
(5.6)where P r is the reeived signal power, I in is the intra-ell interferene, Iout is theinter-ell interferene, αo is the orthogonality loss fator and η is the noise power.Sine the interferene dominates the SINR value, we will neglet the e�et of thenoise fator in the performane evaluation setion for the sake of simpliity. For ouralulations, we use the COST-Hata metropolitan area propagation model [12℄ whihis assumed to be the most suitable model for rowded urban areas. However, this



75model is valid for the frequenies up to 2000 Mhz. COST-231 Wal�sh-Ikegami [94℄model is an extension of COST Hata-Hodel and an be used for frequenies higherthan 2000 MHz. In Turkey, it is announed by the Ministry of Transport, MaritimeA�airs and Communiations that 4G frequeny band autions will be done for threedi�erent portions of the spetrum, namely 800, 1800 and 2600 Mhz. Therefore, asuitable propagation model is required to be seleted aording to the frequeny bandbeing used by the servie provider. The SINR from BS b to overage grid g is given by
Ψbg =

P tx
b L(b, g)

αoP
tx
b L(b, g) +

∑

b′∈B\{b}

P tx
b′ L(b

′, g) + η
(5.7)where P tx

b is the transmission power of BS b.5.3.3. CoverageA partiular grid g is assumed to be overed if the reeived SINR from any BS ishigher than the minimum aeptable level Ψmin. The binary overage funtion in theGreen Pio BS Deployment Problem is given by
Γ(g) =











1, if Ψgb > Ψmin ∃b ∈ B

0, otherwise (5.8)The total overage ratio for the area of interest is required to be higher than a threshold
βmin and given by

β =

∑

g∈G

Γ(g)

NG
(5.9)

5.3.4. User AssoiationIn Green Pio BS Deployment Problem, a MT stationed within a overage gridis not neessarily being servied by the losest BSs. Eah overage grid is assoiated



76with the BS whih provides the highest SINR. However, a partiular grid is said tobe overed if and only if the reeived SINR value is higher than the minimum SINRrequirement to guarantee an aeptable subsriber data rate. The Grid-BS assoiationrule is given by
Sgb =















1, if Ψgb ≥ Ψmin and b = argmax
b′∈B

(Ψgb′)

0, otherwise (5.10)Although satisfying the SINR requirement is a big step for the overage, it is notenough by itself for proper overage. Sine BSs have limited resoures (i.e. bandwidth,bakhaul link apaity), their tra� load is also important. Therefore, we need tobe ertain that the minimum reeived SINR requirement at the MT is satis�ed andthe respetive tra� load of the serving BS is below its maximum apaity. Sine wedeploy pio BSs aording to aommodate the peak time tra� onditions, we takethe maximum tra� oupany of the overed grids into aount. Total tra� load ofa BS b an be formulated as
fb =

∑

g∈G

Sgbf
p
g (5.11)where f p

g is the peak aggregate tra� oupany of grid g.5.3.5. Green Pio BS Deployment AlgorithmAlthough we formulate an optimization model for the Green Pio BS DeploymentProblem, it is very hallenging to solve large real-life instanes of the problem with op-timization tools due to prohibitive omputational and spae omplexity. On the otherhand, it may be possible to solve the problem by optimization tools for smaller numberof andidate pio BS deployment loations NXP for our test ase senario. However,limiting the possible pio BS deployment loations redues the feasible solution spaesigni�antly whih in turn dereases the quality of the resulting topologies. Hene, inthis setion we fous on deriving an e�ient heuristi to install the minimum number



77of pio BSs in order to support the peak tra� onditions without ompromising theQoS requirements of the subsribers.5.3.5.1. Area Spetral E�ieny. For the Green Pio BS Deployment Algorithm, weadopt the Area Spetral E�ieny (ASE) [95℄ as a performane indiator. ASE isde�ned as the summation of the spetral e�ieny over the overage area. Aordingto Shannon-Hartley theorem, spetral e�ieny (bits/se/Hz) at overage grid g isgiven by
C(g) = log2(1 + max

b∈B
(Ψgb)) (5.12)Area spetral e�ieny(bits/se/Hz/m2) de�nes the sum of the maximum average datarates per unit bandwidth per unit area and given by

A =

∑

g∈G

C(g)p(g)

mNG
(5.13)where p(g) is the probability of a user being at a partiular overage grid g and m isthe overage grid size in square meters.The ASE is a measure of the maximum average data rate per unit bandwidth perunit area supported by a BS and it is losely related with onstraints in Equations 5.3and 5.4. It is ertain that deployment of an additional BS inreases the ASE of theoverage area unless it is very lose to an existing BS and interfering with eah other.Moreover, ASE inrement is expeted to be higher in ase a new BS is deployed toan area with low spetral e�ieny. Therefore, iterative ASE inrement steps providebetter overage of the area of interest along with high average SINR values. Let Axis the ASE after deployment of a pio BS to andidate loation x. Then, the ASEinrease in the overage area is identi�ed by the di�erene between the ASE beforeand after deployment of the new pio BS and given by

∆Ax = Ax −A (5.14)
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(b) Iteration #20Figure 5.6. Possible pio BS loations with K-Means lustering.Although Green Pio BS Deployment Algorithm an attempt to install BSs to anysuitable loation in the overage area, this approah inreases the omplexity of thealgorithm polynomially. Moreover, myriad of similar BS deployment results an beprodued sine the resolution of the overage area is very high (1m2 grid size). Tooverome these hallenges, we determine to limit the possible pio BS deploymentloations and set to a su�iently large number denoted by NXP . However, andidatepio BS deployment loations are required to be seleted e�iently. Therefore, weused K-Means lustering [96℄, whih is a widely-known mahine learning method toidentify the oordinates of the andidate loations. K-Means algorithm uses an iterativere�nement tehnique and is omposed of two steps, namely the Assignment and Update.In the Assignment step, eah grid is assigned to its nearest mean where new meanloations are alulated aording to the previous assignments in the Update step.Di�erent from the original algorithm, we alulate the ontribution of eah overagegrid by multiplying the Eulidean distane to the mass enter with its tra� oupany.Hene, we keep the luster enters, i.e. possible pio BS deployment loations, loseto the grids where the tra� load onentration is higher. Although we take K=300in our Green Pio BS Deployment Algorithm, an example set of andidate pio BSloations XP with K=100 is depited in Figure 5.6 for simpliity. Sine the K-Meansalgorithm onverges and improvements are negligible after the 20th iteration, we set theiteration ount as 20. In Figure 5.6(a), initial andidate pio BS deployment loationsare plotted while �nal loations are given in Figure 5.6(b) after the last iteration.



79We de�ne a new deision parameter alled Neighbor BS Deployment (NBD) met-ri to be used in the quality assurane phase of the Green Pio BS Deployment Algo-rithm and denoted by θ. The maximum NBD value is obtained when a to-be-deployedneighboring BS is able to alleviate as muh tra� load as possible from the over-loaded BS without exeeding its own maximum tra� load apaity. To simplify theNBD metri formulation, let ∆ℓbx is the handed over tra� load from over-utilizedBS b to the newly deployed neighboring pio BS at andidate loation x and givenby ∆ℓbx = fb − f ′
bx where f ′

bx is the tra� load of BS b after the neighboring BS isdeployed at andidate loation x. Let φx = Dx − fx is the di�erene between themaximum tra� load apaity of the newly deployed BS at loation x and its urrentload after the deployment. The NBD metri θbx between the overloaded BS b and thedeployed neighbor pio BS at andidate loation x is given by
θbx = ∆ℓbx − αu|φx| (5.15)where αu is the utilization penalty. It is undesirable to reate more overloaded BSs inthe network while trying to minimize their total number. Therefore, a newly deployedBS should not be allowed to take too muh load of its overloaded neighbor BS andbeome another overloaded BS itself. Deploying an under-utilized neighbor BS is alsoa waste of preious resoures and will not alleviate the load of overloaded BS. Therefore,we introdue a penalty for both over-utilization and under-utilization ases of newlydeployed BSs. Sine exeeding the maximum load apaity does not improve theurrent situation anyhow, we set higher utilization penalty for over-utilized BSs where

au =











1, if φx ≤ 0

20, otherwise (5.16)By setting au = 20 for over-utilized BSs, we give our Green Pio BS Deployment Algo-rithm a hane to deploy a slightly overloaded pio BS in ase of all other neighboringloations do not alleviate the load of the overloaded BS su�iently.



80������overage assurane phase������1: B
P = {∅}2: while β < βmin do3: for all x ∈ X

P do4: Assume a pio BS b deployed at loation x5: Calulate ∆Ax6: end for7: deploy pio BS b at loation x∗ = argmax
x∈XP

(∆Ax)8: B
P = B

P ∪ {b}, XP = X
P \{x}9: end while������quality assurane phase������10: while (

B
high = {b | fb > Db, ∀b ∈ B}

)

6= {∅} do11: for all b ∈ B
high do12: Disover Xneig
b where X

neig
b ⊂ X

P13: for all x ∈ X
neig
b do14: Calulate θbx15: end for16: Deploy pio BS at loation x∗ = argmax

x∈X
neig

b

(θbx)17: B
P = B

P ∪ {b}, XP = X
P \{x∗}18: end for19: end whileFigure 5.7. Green Pio BS Deployment Algorithm.We set the number of neighboring andidate pio BSs deployment loationsNXneigto 10 in our simulations. Although higher number of NXneig value enhanes the solutionspae and may yield to better results theoretially, distant loations from a partiularoverloaded BS are less likely to redue its load. Moreover, alulating the e�et of moreandidate loations inreases the omplexity of the algorithm. Therefore, limiting the

NXneig to a su�iently large number results in lower runtime without degrading theperformane of the algorithm.The pseudo ode of the Green Pio BS Deployment Algorithm is given in Fig-ure 5.7. The ultimate goal is to minimize the total number of deployed pio BSs asgiven in Equation 5.1 while satisfying overage and ahievable data rate requirements.Our algorithm onsists of two phases whih are the overage assurane and the quality



81assurane phases. The aim of the overage assurane phase is to provide the requiredoverage with minimum amount of additional pio BS. At the beginning of the overageassurane phase, a new pio BS is assumed to be deployed at eah andidate pio BSdeployment loation x and ∆Ax is alulated for all x ∈ X
P . Then, a new pio BS isdeployed to the loation x having the highest ∆Ax value. As the last step of this phase,deployed BS is added to the set BP and the respetive andidate loation is removedfrom the set X

P . By inreasing the Ae in the referene overage area, not only theoverage ratio but also the ahievable data rate requirements of the subsribers givenin Equations 5.3 and 5.4 improve.The seond phase is the quality assurane phase. The purpose of this phaseis to ensure that all BSs are operating below their maximum tra� load as givenin Equation (5.2). If there are overloaded BSs in the urrent network on�guration,neighboring andidate pio BS deployment loations of overloaded BSs are identi�edand their respetive NBD metri is alulated. Subsequently, a new pio BS is deployedto the neighboring andidate deployment loation having the maximum NBD metrivalue. This step is repeated until no overloaded BS remains in the network. SineNBD metri is a measure of how e�iently a neighboring pio BS alleviates the load ofoverloaded BS without violating its own apaity onstraints, quality assurane phasequikly eliminates overloaded BSs and deploys the minimum number of pio BSs as aremedy.5.3.6. Greedy Pio BS Deployment AlgorithmIn this setion, we introdue a greedy heuristi to solve the formulated GreenPio BS Deployment Problem. The results of this heuristi are also used during theomparative performane evaluation in Setion 5.5.2. Greedy Pio BS DeploymentAlgorithm exhaustively visits eah andidate pio BS deployment loation and alu-lates their respetive ASE inrease ∆Ax. Subsequently, it deploys a pio BS at theandidate loation whih provides the maximum ASE inrease in the overage area ifand only if this augmentation does not violate the BS apaity onstraint for all ativeBSs inluding itself. The pseudoode of the Greedy Pio BS Deployment Algorithm is



82given in Figure 5.8 and its performane is further investigated in Setion 5.5.2.1: while β < βmin do2: for all x ∈ X
P do3: Assume a pio BS is deployed at andidate loation x4: Calulate ∆Ax5: Find overloaded BSs Bhigh

x after deployment at andidate loation x6: end for7: Deploy a pio BS at loation x∗ = argmax
x∈XP

(∆Ax) i� B
high
x = {∅}8: X

P = X
P \{x∗}9: end whileFigure 5.8. Greedy Pio BS Deployment Algorithm.5.4. Green Dynami BS OperationIn this setion, we formulate a mathematial optimization problem to minimizethe network power onsumption during the operation phase. Aording to the formu-lated problem, we then propose an o�ine-entralized and an online-distributed novelgreen dynami BS operation algorithms for power saving.5.4.1. Problem FormulationParameters:

NT : Number of time slots within the day
T : Set of disrete time slots within the day
P

M : Set of miro BS power levels
P

P : Set of pio BS power levels
P : Set of power levels where P = P

M ∪P
P

WM(p, f): Total onsumed power by a miro BS transmitting with power level pand tra� load f
W P (p, f) : Total onsumed power by a pio BS transmitting with power level p andtra� load f
fgt : Aggregate tra� oupany of overage grid g at time t
fbt : Tra� load of BS b at time t



83Model variables:
Kbpt =











1, BS b transmits with power p at time t
0, otherwise

Sgbt =











1, Grid g is assoiated with BS b at time t
0, otherwiseThe objetive funtion for the Green Dynami BS Operation Problem is given asmin ∑

t∈T

(

∑

b∈BM

∑

p∈PM

KbptW
M(p, fbt) +

∑

b∈BP

∑

p∈PP

KbptW
P (p, fbt)

) (5.17)
Subjet to

fbt ≤ Db ∀(b ∈ B, t ∈ T) (5.18)
Ψgbt ≥ SgbtΨ

min ∀(g ∈ G, b ∈ B, t ∈ T) (5.19)
β(t) ≥ βmin ∀t ∈ T (5.20)

∑

p∈P

Kbpt = 1 ∀(b ∈ B, t ∈ T) (5.21)
∑

b∈B

Sgbt ≤ 1 ∀(g ∈ G, t ∈ T) (5.22)
Our objetive funtion in Equation 5.17 aims to minimize the total energy on-sumption of both pio and miro BSs throughout the network. Equation 5.18 is re-sponsible for the operation of all ative BSs below their data �ow apaity at all times.Equation 5.19 provides that eah grid assoiated with a BS is being served by at leasta ertain SINR value. Equation 5.20 ensures that the required user satisfation ratiois ahieved over all users. In other words, a ertain perentage of the users are overedand served properly aording to their QoS requirements. The onstraint in Equa-tion 5.21 makes sure that a BS operates at a single transmission power level during a



84partiular time slot and Equation 5.22 is responsible for that a grid is being served bya single BS at a partiular instant.5.4.2. BS Power ConsumptionPower onsumption of a BS an be broken down into two parts: (i) ore (stati)power and (ii) dynami power. The ore power onsumption is onstant as long as theBS is ative whereas the dynami power onsumption is subjet to hange proportionalto the present tra� load onditions of the BSs. Total power onsumption of BS b,with transmit power p and tra� load f is given by
W (b, p, f) =











0, p = 1

W c
b +W d

bpf , otherwise (5.23)where W c
b is the ore (stati) power onsumed by the BS b and the W d

bpf is the dynamipower onsumed by the BS b with transmit power level p and tra� load of f .Core and dynami power onsumption of BS are given by
W c

b = WDC
b +WMS

b +W cool
b (5.24)

W d
bpf =

f

Db

(

p

µPA
b

+ PRF
b + PBB

b

) (5.25)where WDC
b , WMS

b , W cool
b , PRF

b and PBB
b are DC-DC power supply, mains supply(AC-DC unit), ative ooling, RF transeiver, baseband unit (digital signal proessing)power onsumption and µPA

b is the power ampli�er e�ieny of BS b respetively [79,80℄. Typial values for miro and pio BSs power onsumption are given in Table 5.7 inaordane with [80℄. Power ampli�er e�ienies for miro and pio BSs are assumedto be 22.8% and 6.7% in order [80℄.
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Table 5.7. Typial BS power onsumption �gures.

WDC WMS W cool PRF PBBMiro 9.3 11.1 6.2 13 54.6Pio 1 1.4 n/a 2 6Although as many BS types as required an be aommodated in our mathemat-ial model, we remove the b index from the power onsumption equations and simplyprovide the miro and pio BS power onsumptions by
WM(p, f) = 26.6 +

f

DM

(

p

0.228
+ 67.6

) (5.26)
W P (p, f) = 2.4 +

f

DP

(

p

0.067
+ 8

) (5.27)where WM(p, f) and W P (p, f) are respetive power onsumptions of miro and pioBSs with transmission power p, tra� load f , data �ow apaity DM for miro and
DP for pio BSs.
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Figure 5.9. Change of miro and pio BS power onsumption with utilization and txpower.



86In Figure 5.9, hange of miro and pio BS power onsumption is given withrespet to utilization and tx power. Pio BS power onsumption �gures are lower thanthe miro BS for smaller tx power values regardless of the utilization, sine the orepower onsumption is the dominating fator. On the other hand, as the tx powerand utilization inreases and the dynami power onsumption beomes the dominatingfator, the power onsumption of the pio BS inreases dramatially. The reasonbehind this inrease is the low e�ieny of the pio BS power ampli�er. However,the pio BS equipment is not designed to transmit with high power levels and themajority of the pio BS manufaturers does not provide dynami tx power adjustmentability. Therefore, we �xed the tx power of the pio BSs as 2 Watts in our performaneevaluation simulations. For miro BSs, we de�ned 5 di�erent tx power levels withorresponding power of 3, 8, 13, 18 and 24 Watts in order.5.4.3. InterfereneBy using the same formula given in Equation 5.6, SINR from BS b in grid g attime slot t is given by
Ψbgt =

∑

p∈PA

KbptL(b, g)p

αo

∑

p∈PA

KbptL(b, g)p+
∑

b′∈B\{b}

∑

p∈PA

Kb′ptL(b′, g)p+ η
(5.28)where PA = P\{p = 0}5.4.4. CoverageA partiular grid g is overed at time t if the reeived SINR from any BS is higherthan the minimum aeptable level and binary overage funtion is given by

Γ(g, t) =











1, if Ψgbt > Ψmin ∃b ∈ B

0, otherwise (5.29)



87The total overage ratio for the area of interest at time t is given by
βt =

∑

g∈G

Γ(g, t)

NG
(5.30)

5.4.5. User AssoiationA partiular grid is assoiated with the BS providing the maximum SINR valueunless the reeived SINR value is lower then the minimum aeptable threshold. As-soiation rule of grid g with BS b at time t is given by
Sgbt =















1, if Ψgbt ≥ Ψmin and b = argmax
b′∈B

(Ψgb′t)

0, otherwise (5.31)The total tra� load of a BS b at time t an be given as
fbt =

∑

g∈G

Sgbtfgt (5.32)
5.4.6. Green Dynami BS Operation AlgorithmsIt is possible to solve the Green Dynami BS Operation Problem with optimiza-tion tools suh as CPLEX [81℄ or GUROBI [82℄ sine we put it in a mathematialform. However, �nding optimum solutions is very hallenging due to the omputa-tional and spae omplexity of our large-sale realisti test ase senario. Therefore,we propose fast and e�ient heuristis to solve large realisti instanes of the problemin this setion.5.4.6.1. Area Spetral E�ieny. Similar to the Green Pio BS Deployment, we alsoutilize the ASE metri for the Green Dynami BS Operation. The Spetral e�ieny



88(bits/se/Hz) at overage grid g at time t is given by
C(g, t) = log2(1 + max

b∈B
(Ψgbt)) (5.33)Area spetral e�ieny (bits/se/Hz/m2) over the total overage area at time t is givenby

At =

∑

g∈G

C(g, t)p(g, t)

mNG
(5.34)where p(g, t) is the probability of a user being at a partiular overage grid g at time t.However, this time we modify the ASE inrement metri ∆A de�ned in Se-tion 5.3.5 to measure the inrease on the provided average data rate per unit band-width per unit area per power. In other words, we use the ASE inrement per watt asa performane metri. Hene, it is ensured that the maximum possible overage andahievable data rate inrease over the referene area is provided with the minimumamount of power onsumption.A natural question may arise why this metri is not used for the Green Pio BSDeployment. The reason lies with the homogeneity of the deployed BSs. Sine thepower onsumption �gures of the deployed pio BSs are idential, their respetive ASEinrease per power is also proportional with the ASE inrease. Therefore, using theASE inrement per power metri does not hange the results at all. Also, the e�et ofBS load on the power onsumption is aptured indiretly with θbx metri. On the otherhand, ASE inrease per watt metri ultimately makes sense for the Green Dynami BSOperation sine there are heterogenous BSs ativated with di�erent PLs.The ASE inrement per watt (bits/se/Hz/m2/watt) in the referene area whenBS b is ativated with PL p at time t is given by

∆Aw
bpt =

At

W (b, p, fbt)
(5.35)



89where the tra� load fbt and power onsumptionW (b, p, f) are given in Equations 5.32and 5.23 respetively.5.4.6.2. O�ine-entralized Dynami BS Operation Algorithm. The Green Pio BS De-ployment and Green Dynami BS Operation problems are very similar in nature. Thesimilarity an be easily understood from the mathematial problem formulations givenin Setion 5.3.1 and 5.4.1. Therefore, it is onvenient to use the Green Pio BS De-ployment Algorithm as a template for the O�ine-entralized Dynami BS OperationAlgorithm.The main objetive of the O�ine-entralized Dynami BS Operation Algorithmis to dynamially adjust the use of BS resoures aording to the temporal hanges inthe tra� load throughout the day and reate a more energy-aware network as givenin Equation 5.17. The O�ine-entralized algorithm is exeuted by a entral entity anddetermines the network topology beforehand. The tra� load estimations and existingBS topology are given to the algorithm as an input. The output is the energy-awarenetwork topology. The deision parameters of the algorithm are the status of all BSs,i.e. on/o�, and the tx power of ative BSs.Before proeeding to the algorithm itself, we need to rede�ne some of the pa-rameters used in the Green Pio BS Deployment Algorithm. Let ∆ℓbb′p′ is the handedover tra� load from over-utilized BS b to the newly ativated neighboring BS b′ withPL p′ and given by ∆ℓbb′p′ = fb − f ′
bb′p′ where f ′

bb′p′ is the tra� load of BS b after theneighboring BS b′ is swithed on with PL p′. Let φb′p′ = Db′ − fb′p′ is the di�erenebetween the maximum tra� load apaity of the newly deployed BS b′ and its urrentload after it has been swithed on with PL p. The NBD metri θbb′p′ between theoverloaded BS b and the swithed on b′ with PL p′ is given by
θbb′p′ = ∆ℓbb′p′ − αu|φb′p′| (5.36)



90where αu is the same utilization penalty desribed in the Green Pio BS DeploymentAlgorithm. For the sake of mathematial simpliity, subsript t representing the timeof day is omitted in the NBD formulation.Similar to the Green Pio BS Deployment Algorithm, we hange the status ofneighboring BSs to alleviate the load of the overloaded BSs. We set the number ofneighboring {BS,PL} pair NBneig of an overloaded BS to 15 in our simulations for thesame reasons explained in Setion 5.3.5. We keep this number higher than the oneused in the Green Pio BS Deployment Algorithm sine a partiular BS is representedby more than one �eld due to di�erent PL on�gurations. We inluded the PL inthe neighbor BS list beause a PL inrease of an already ative neighboring BS mayalso redue the load of an overloaded BS while a PL derease most likely worsens thesituation. Therefore, the set of neighboring {BS,PL} pairs of an overloaded BS b isomposed of either (i) all possible PLs of the swithed o� neighboring BSs or (ii) higherPLs of an already ative neighboring BSs and denoted by B
neig
b . In ase there is anoverloaded BS b is identi�ed, eah {b',p'} pair in the set of Bneig
b visited and the onehaving the maximum θbb′p′ is implemented.The pseudoode of the O�ine-entralized Dynami BS Operation Algorithm isgiven in Figure 5.10. It takles with eah time slot independently. For eah timeslot, it starts with an empty set of ative BSs. Then the algorithm ativates {BS,PL}pairs whih maximizes the ASE inrease per watt (∆Aw

bpt) metri in the overage area.Iterative inrement of this metri ensures not only inreasing overage ratio, but alsohigher average SINR values throughout the overage area. This step is repeated untilthe minimum overage ratio over all users are ahieved for the urrent time slot. Whenthe required overage ratio is obtained, we utilize the rede�ned NBD metri to eliminatethe overloaded BSs similar to the Green Pio BS Deployment Algorithm. Firstly,neighboring {BS,PL} pairs are disovered for eah overloaded BS. In the next step,respetive NBD metri of eah disovered neighboring {BS,PL} pairs are alulated andthe one having the maximum value is ativated. By this way, ativated neighboringBSs are able to alleviate the tra� load of the overloaded BSs as muh as possiblewithout exeeding their own tra� load limits.



911: for all t ∈ T do2: Bt = {∅}, Boff
t = B3: while βt < βmin do4: for all feasible {b ∈ B

off
t , p ∈ PA} pair do5: Assume BS b is swithed on with PL p6: Calulate ∆Aw

bpt7: end for8: Swith on BS b with PL p having max ∆Aw
bpt9: Bt = Bt ∪ {b, p}, Boff

t = B
off
t \{b}10: end while11: while (

B
high
t = {b | fbt > Db, ∀b ∈ B}

)

6= {∅} do12: for all b ∈ B
high
t do13: Disover Bneig
b14: for all {b′, p′} pair ∈ B

neig
b do15: Calulate θbb′p′16: end for17: Swith on BS b′ with PL p′ having max θbb′p′18: Bt = Bt ∪ {b′, p′}, Boff

t = B
off
t \{b′}19: end for20: end while21: end forFigure 5.10. O�ine-entralized Dynami BS Operation Algorithm.5.4.6.3. Online-distributed Dynami BS Operation Algorithm. The online-distributedDynami BS Operation Algorithm aims to adapt the urrent network onditions andreate an energy-aware topology in a distributed and online manner. Eah BS takesits own deisions autonomously in oordination with the neighboring BSs. However,the topology adjustments are merely based on a limited set of network statistis ol-leted by loal observations. Another drawbak of the online-distributed algorithmsis the additional signaling overhead introdued by requirement of oordination withthe neighboring BSs. Moreover, the overall impat of the loal deisions on the wholenetwork is not possible to omprehend from a BS point of view. Therefore, the qual-ity of the BS swithing and power adjustment deisions dereases in omparison withthe entralized methods. On the other hand, online-distributed approahes are moreresponsive to unexpeted tra� load variations and well adapt to the underestimated
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Figure 5.11. Simpli�ed state transition diagram of the online-distributed dynami BSoperation algorithm.or overestimated tra� load onditions with respet to o�ine-entralized methods.Simpli�ed state transition diagram of Online-distributed Dynami BS OperationAlgorithm is given in Figure 5.11. Before entering the green operation mode, eah BSundertakes a neighbor disovery routine. During this routine, all BSs loated in thearea of interest should be swithed on and the minimum aeptable overage ratio mustbe satis�ed. The latter requirement is ruial beause after entering the distributedgreen operation mode, there is no entral entity to hek if the required overage overthe whole area is provided. Sine eah BS makes their loal deisions, the distributedsheme relies on the amount of handovers to satisfy the overage onstraint throughout the operation yle.



93Initially, eah member of the energy saving sheme disovers its neighbors andenters the green operation mode starting from the Ative state. Sine de�ned timeslies are our referene for network adjustments, eah BS maintains a Time Slot Changetimer. When the timer expires, a Time Slot Change event is triggered and every BSheks its respetive tra� load. However, this timer an be easily replaed with amore frequent trigger to respond the tra� load hanges instantly. On the other hand,frequent BS swith on/o� transitions may result in unsatis�ed users due to high amountof handover requests. Therefore, the time interval between eah BS load hek eventneeds to be arefully hosen.If the urrent load of the BS is lower than the Swith O� Threshold, the BS sendsRequest to Swith O� (RTO) message to its neighbors and waits for Clear to SwithO� (CTO). Neighbor BSs reeiving the RTO message hek if they are able to aom-modate the additional tra� load aused by swithing the sender of the RTO o�. Sineall MTs keep trak of BSs providing the best and the seond best signal strength forbetter handover management, the required information is readily available. A simpleexhange of this information between the BSs and serving MTs is su�ient to alulatethe additional tra� load arising from a neighbor BS swith o�. If the additional tra�load an be aommodated, the neighbor BS transmits a CTO message to the sender ofthe RTO. If the additional tra� load auses the neighbor BS to exeed its maximumapaity, a Negative CTO (NCTO) is sent. When the CTO messages are reeived fromall neighbor BSs or Wait For CTO Timer expires, the BS sends BS_OFF signal to itsneighbors announing that it is going to be swithed o� and enters the Swithed O�state. Neighbor BSs reeiving the BS_OFF signal takes the neessary preautions toaept the to-be-handed-over users from the swithing o� BS and inserts the BS indexof the to-be-swithed-o� BS into a stak alled Swithed O� Neighbor BS Stak. Thisstak is going to be used for load balaning of the overloaded BSs later. If a NCTOmessage is reeived, the BS goes bak to the Ative state and remains swithed on.If the load of a partiular BS is higher than the maximum tra� load apaitywhen the Time Slot Change event is triggered, it pops a BS index from the SwithedO� Neighbor BS Stak and transmits a BS_ON signal. After the neighbor BS is



94swithed on, the overloaded BS hands over some of its load aording to the urrentSINR measurements. This proess is repeated until present load of the overloaded BSdereases below the maximum tra� load apaity. Sine the Swithed O� NeighborBS Stak operates with a FIFO mehanism, eah BS keeps trak of temporal topologyhanges and able to restore bak to the previous onditions if their respetive tra�load exeeds the maximum apaity.5.4.6.4. Greedy Dynami BS Operation Algorithms. In this setion, we propose twogreedy heuristis to solve the formulated Green Dynami BS Operation Problem. Theresults of these heuristis are going to be used during the omparative performaneevaluation in Setion 5.5.2. Greedy Dynami BS Operation Algorithms (GDOA) ini-tially ativates all BSs with their maximum allowed transmission PL. Subsequently,they exhaustively attempt to derease the transmission PL of eah BS inluding theoption of to be ompletely swithed o� in a entralized-o�ine manner. However, eahiteration is performed unless the QoS requirements suh as overage, ahievable datarate and BS tra� load apaity are not violated.We notied that the order in whih BSs are evaluated for possible power on-sumption redution has signi�ant impat on the resulting network on�guration. Inorder to obtain an energy e�ient network topology, an optimum mixture of both pioand miro BSs are required where BSs with higher tx power at as umbrella ells andBSs with lower tx power at as hot spots to �ll the overage gaps. Therefore, greedilyswithing most of the miro BSs at the beginning eliminates the opportunity of swith-ing under-loaded pio BSs afterwards due to overage onstraints. Hene, we proposedtwo di�erent versions of the same greedy algorithm. The pseudoode of the GDOAsversion 1 and 2 is given in Figures 5.12 and 5.13 in order. The �rst version starts withthe miro BSs for possible power saving while the seond version starts with the pioBSs. The impat of hanging the BS evaluation order in performane evaluation isprovided in Setion 5.5.2.



951: Ativate all BSs with max PL2: for all b ∈ B
M and p ∈ P

M do3: Set PL of miro BS b to minimum possible1 p without violating the QoS onstraints4: end for5: for all b ∈ B
P and p ∈ P

P do6: Swith pio BS b o�2 unless QoS onstraints are violated7: end for Figure 5.12. Greedy Dynami BS Operation Algorithm v1.1: Ativate all BSs with max PL2: for all b ∈ B
P and p ∈ P

P do3: Swith pio BS b o�2 unless QoS onstraints are violated4: end for5: for all b ∈ B
M and p ∈ P

M do6: Set PL of miro BS b to minimum possible1 p without violating the QoS onstraints7: end for Figure 5.13. Greedy Dynami BS Operation Algorithm v2.5.5. Appliation Senario and Performane Evaluation5.5.1. Appliation Senario and ParametersIn order to make proper performane evaluation of the proposed methods, wewould like to reate a test environment as lose to the real life onditions as possible.Therefore, we seleted Taksim, whih is one of the Turkey's most famous and rowdedplaes, as the pilot appliation area of the proposed green networking methods asmentioned in Setion 5.2. In our system model, mobile servie providers utilize theloations of the existing BSs for the NGMCNs motivated by a series of reasons led bythe redued installation ost. Therefore, we fous on deploying additional pio BSs asa remedy to a network where miro BSs are already deployed. The aim of the pioBS deployment is minimizing the number of deployed BSs while satisfying the QoSrequirements. After the minimum number of required pio BSs and their respetive1Note that p ∈ P whih inludes swithing a BS o� with p = 02Reall from Setion 5.4.2 that there is no dynami tx power adjustment for pio BSs in oursenario where P
M = {0, 1} whih represents on and o� states of the pio BS



96loations to support the peak tra� onditions are determined, green dynami BSoperation tehniques are proposed to adapt the spatio-temporal tra� load variationsand reate an energy-aware network. We fous on the network topology adaptation andenergy saving by both swithing BSs on/o� and adaptively adjusting their transmissionpowers aording to the urrent tra� onditions.We divided the overage area into 17 di�erent plae types, and divided the plaesfurther 1m2 grids. Respetive tra� loads of the grids are alulated aording to theirtype by using Table 5.3 as a lookup. Although the total number of users loated ina grid is proportional with the tra� oupany of the grid, still we need to estimatethe tra� load ontribution of the users from the servie provider's point of view. Forthis reason, we de�ne a new parameter alled User Tra� Load Fator to estimate theaverage tra� load ontribution of the subsribers. In other words, User Tra� LoadFator represents the perentage of the users atively getting servie from a partiularoperator at a partiular instant. Considering numerous mobile onsumer behaviorreports [97�100℄ and subsriber numbers of eah servie provider in Turkey, we set theUser Tra� Load Fator as 1%. However, this value is merely a parameter whih anbe easily hanged as required.Although we used pio and miro BSs in our test senarios, our model an a-ommodate as many types of BSs as required. As QoS metris, the resulting networktopologies of the proposed green pio BS deployment and green dynami BS operationtehniques should satisfy the minimum aggregate data rate requirements of eah gridand over at least 99% of the area at all times. Important parameters used in theappliation senario are summarized in Table 5.8. 10 di�erent test ases were reatedrandomly for the sake of variane ontrol and the average of the results are presented.5.5.2. Performane EvaluationPerformane of our proposed green pio BS deployment and dynami operationmethods are both evaluated by using real-life-sale test ases. For the green pio BSdeployment, we ompared our method with a greedy algorithm and a reently proposed



97
Table 5.8. Senario parameters.Parameter ValueCoverage Area 800 × 680m2Grid Area 1× 1m2# Plae Types 17Miro BS Tx PLs 3 - 8 - 13 - 18 - 24 WattPio BS Tx Power 2 Watt# Time Slots in a Day 24Min. Coverage Ratio 99%Min. SINR 6 dBOrthogonality Loss Fator 0.5Miro BS PA E�ieny 22.8%Pio BS PA E�ieny 6.7%# Candidate pio BS 300Deployment LoationsUser Tra� Load Fator 1%

ompetitor energy-aware ellular network deployment tehnique [30℄. In [30℄, authorspropose a network energy onsumption minimization framework whih jointly optimizesthe BS density and BS transmission power under overage performane onstraints.They utilize area power onsumption (W/m2) as the energy e�ieny metri.For the green dynami BS operation, we ompared the results of our methodswith the onventional stati operation, two entralized greedy heuristis, a ompetitorgreen BS operation algorithm alled SWES [15℄ and an optimization tool IBM ILOGCPLEX [81℄. However, �nding the exat optimum solutions with CPLEX were not pos-sible within reasonable amount of omputation times. Therefore, we set a 3-hours runtime limit and give the best results found until the limit along with their gap betweenthe best integer objetive and the objetive of the best node remaining. On the other



98Table 5.10. Comparison of omputational omplexity and average run times.Complexity Average Complexity FuntionRun TimeGreen Pio BS Deployment Alg. O(N4) 2h 27m NBM

.NXP

.(NG)2Greedy Pio BS Deployment Alg. O(N4) 1h 22m NBM

.NXP

.(NG)2Peng et al. Alg. [30℄ O(N4) 2h 46m NBM

.NXP

.(NG)2Centralized Dynami Operation Alg. O(N6) 7h 43m NT .NBM

.NBP

.NPM

.(NG)2Greedy Dynami Operation Alg. v1
O(N6)

4h 52m
NT .NBM

.NBP

.NPM

.(NG)2Greedy Dynami Operation Alg. v2 5h 10mDistributed Dynami Operation Alg. O(N) N/A NTSWES [15℄ O(N) N/A NTCPLEX N/A 144h (�xed) N/Ahand, the other ompetitor SWES is an online and hybrid (distributed/entralized)algorithm whih aims to redue energy onsumption of the network by swithing BSson/o�. SWES swithes o� BSs one by one, taking the additional load inrementsbrought to its neighboring BSs into aount. Although the network impat of BSon/o� transitions are alulated in a distributed manner, SWES still requires a entralontroller for the implementation of the topology adjustments.The results presented in this setion are olleted from a omputer with an AMDFX 8-ore 4 Ghz proessor and 16 GB of memory. Proposed methods are implementedin Mirosoft Visual Studio 2008 [92℄ environment with more than ten thousand linesof C++ ode. The total time spent to ollet the results of 10 repetitions for eahmethod is approximately ten days.The omputational omplexity, average run times, and parameters e�eting bothomputational and spae omplexity of the proposed and ompetitor methods are givenin Table 5.10. The omputational omplexity of all investigated tehniques are poly-nomial. For the dynami operation algorithms, presented run times over two separateexeution of the same algorithm with di�erent tra� load on�gurations for weekdayand weekend. Therefore, it is onvenient to say that a single exeution takes approxi-mately half of the given run times. For CPLEX, we set a 3-hours run time limit for eah



99time slot whih in turn results in total 144h runtime (for eah time slot for weekdayand weekend).Pio BS deployment algorithms are the fastest methods sine they are exeutedonly one at the deployment phase and there is no time dimension in the e�etingparameters as opposed to the dynami BS operation algorithms. Among them, greedypio BS deployment algorithm is the fastest. Our proposed Green Pio BS Deploymentheuristi and Peng et al.'s Algorithm take approximately two and a half hours to�nalize. On the other hand, dynami BS operation algorithms take longer than pioBS deployment algorithms. Greedy algorithms obtain similar run times as expetedsine they are idential exept their order of BS evaluation. Centralized DynamiBS Operation Algorithm requires more than seven hours to �nd an energy e�ientnetwork topology for a yle of one week. Lastly, we set a 3-hours run time limit forthe optimization tool due to high omplexity and give the best results found until thelimit along with their gap value.For the Green Pio BS Deployment Problem, our objetive funtion given inEquation 5.1 is to minimize the number of deployed pio BSs to aommodate thepeak tra� onditions without violating the user overage and BS apaity onstraints.Aording to our appliation senario simulations based on the parameters given inTable 5.8; an average of 96, 100 and 138 pio BSs are deployed by the Green PioBS Deployment Algorithm, Peng et al.'s Algorithm and Greedy Pio BS DeploymentAlgorithm respetively.In Figure 5.14, omparative pio BS power onsumption during peak tra� isgiven with respet to number of andidate pio BS deployment loations NXP . Ourproposed Green Pio BS Deployment Algorithm and Peng et al.'s Algorithm ahievevery similar power savings while greedy algorithm performs worse. For fewer NXP ,the resulting topologies are infeasible sine the user overage and the BS apaity on-straints are violated even though a pio BS is deployed in every andidate loation.As the number of andidate pio BS deployment loations inreases, pio BS deploy-ment algorithms are able to ahieve more power-e�ient network on�gurations. How-
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Figure 5.14. Comparative pio BS power onsumption during peak tra�ever, the additional power savings beome negligible when ompared to the introduedomplexity for our proposed Green Pio BS Deployment Algorithm and Peng et al.'sAlgorithm for NXP

> 300. Although our Green Pio BS Deployment Algorithm andPeng et al.'s Algorithm obtain similar power savings without violating the user over-age and BS apaity onstraints, it is onvenient to say that our algorithm provideshigher ahievable data rates sine it utilizes the ASE as performane metri.In this setion, we evaluate the omparative performane of our proposed greendynami BS operation tehniques. Figure 5.15(a) depits the omparative power on-sumptions on weekdays. It is observed that the power expenditure trends of all methodsfollow a similar pattern with the tra� load given in Figure 5.3. Proposed algorithmsdynamially respond to the tra� load hanges and try to save energy without violatingthe QoS requirements of the subsribers. The reason behind the energy expenditure�utuations in stati operation or �no green method applied senario" is the BS poweronsumption model introdued in Setion 5.4.2. Sine the onsumed power in a BSis orrelated with its respetive tra� load, the total network power onsumption issubjet to hange although no dynami topology adjustment is being applied. Theo�ine-entralized algorithm saves the largest amount of power whereas the online-distributed algorithm, SWES and GDOA v1 ahieve nearly the same performane. Onthe other hand, although GDOA v2 saves signi�ant amount of power with respet to
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CPLEX(b) Weekend.Figure 5.15. Comparative power onsumption throughout a day.the stati operation, this saving is less than the other proposed methods. By analyzingthe results of the optimization tool and their average gap values, we an argue thatthe o�ine-entralized algorithm ahieves energy-e�ient topologies very lose to theoptimum.Similar to the weekday results, weekend power onsumption �gures are propor-tional to the tra� load as observed in Figure 5.15(b). However, this time, the gapbetween the stati operation and the green methods is narrower due to the high tra�load during weekends. The o�ine-entralized algorithm again ahieves more power e�-ient results. SWES, Online-distributed algorithm, GDOA v1 and v2 follow the o�ine-entralized algorithm in order. The o�ine-entralized algorithm has both enough timeand omputational power to make omplex resoure management deisions. However,it requires a entral entity for exeution and does not respond well to unexpetedtra� variations sine the topology adjustment deisions are made beforehand. Al-though the online-distributed algorithm makes loal deisions with limited number ofobservations, it obtains quite ompetitive results with respet to the other entralizedalgorithms whih an take sophistiated network adjustment ations by utilizing plentyof network statistis. The online-distributed algorithm and SWES ahieves similar re-sults. However, SWES performs slightly better sine it alulates the impat of BStransitions loally while makes the implementation deisions on a ental ontroller. Onthe other hand, the online-distributed algorithm does not require a entral ontroller.
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Figure 5.16. Comparative power saving ratio on weekday and weekend.Another observation is that the average gap between the best integer objetive and theobjetive of the best node remaining is smaller during low tra� onditions whereasthe gap inreases during high tra� onditions.Comparative power saving ratio on a weekday and weekend is given in Figure 5.16.In fat, the results are obtained by extrating the integral of the stati operationline from the integral of respetive green method lines given in Figures 5.15(a) and5.15(b) with an interval of [0,23℄. Hene, this �gure is also an overall visualization ofhow e�ient eah proposed method is in terms of power saving. O�ine-entralizedalgorithm ahieves more than 50% power saving on weekdays and 40% on weekends.On the other hand, SWES, Online-distributed algorithm and GDOA v1 ahieves similarpower saving ratios around 45% on weekday and 33% on weekend. As expeted, theoverall power saving ratios for weekend are onsiderably less than the weekday due too�ered tra� loads depited in Figure 5.3.In Table 5.11; weekly, monthly and annual energy ost savings are given. The ele-triity pries for peak (5pm-10pm), morning (6am-5pm) and o�-peak (10pm-6am) timesare 41.61, 23.37 and 10.21 kurus/kWh (0,143, 0,081 and 0,035 $/kWh) respetively in-luding the 22% tax for the industrial onsumers in ompliane with the TEDAS [83℄,Turkey's governmental eletriity retailer ompany. City-wide savings are alulated by



103Table 5.11. Comparative energy ost saving.Weekly($) Monthly($) Annual($)Test Case City-wide Country-wide Country-widewith CECentralized Algorithm 25.6 110 1,321 3,726,694 13,788,769 39,160,104Distributed Algorithm 21.3 92 1,100 3,101,602 11,475,927 32,591,634Greedy v1 20.6 89 1,062 2,995,989 11,085,161 31,481,857Greedy v2 15.1 65 783 2,208,119 8,170,040 23,202,914SWES [15℄ 22.3 96 1,150 3,243,116 11,999,531 34,078,669CPLEX 27.8 119 1,436 4,050, 512 14,986,895 42,562,783omparing parameters of the test ase (0.5 km2 area and 136,346 average population)with the total urban surfae area and population of Istanbul [101℄ (2761 km2 urbanarea (out of total 5370 km2) and 14.5 million inhabitants). Country-wide savings arealso saled similarly.Proposed green dynami BS operation tehniques dramatially derease the en-ergy expenditures of the servie providers as given in Table 5.11. Aording to oursimulations, the entralized algorithm an ahieve approximately 3.7 million $ ostsavings for Istanbul and 13.7 million $ for Turkey annually. When the CE e�et intro-dued in Setion 4.5.2 is taken into aount, the atual amount of ost savings beomeeven more signi�ant.Due to its impat on the reeived signal strength and MT battery life, we alsoinvestigated the BS-User distane in our test ases. Figure 5.17 depits the average BS-user distane throughout the day on weekdays and weekends. Sine the deployed BSdensity in the Taksim area augmented with the pio BSs is very high, the average BS-User distane is slightly more than 20m when all of the BSs are ative. However, whenthe green networking methods are applied and redundant BSs are started to be swithedo�, the average BS-user distane is also starting to inrease. The average distanebetween BSs and users doubles when the o�ine-entralized algorithm is applied withrespet to the stati operation. The reason for observing high values during low-tra�onditions and low values during high-tra� onditions is related with the number of
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(b) Weekend.Figure 5.17. Average BS-user distane.ative BSs. However, the �utuations are not as muh as the ones observed in Figure 5.3beause we arefully align the pio BS loations with the K-Means lustering algorithmaording to the tra� hot spots prior to the deployment. Similar to the o�ine-entralized algorithm, we also observe higher average BS-user distanes for CPLEXsine it �nds the minimum possible set of BSs with respet to the other methods.Another interesting observation is the relatively high BS-User distane for the GDOAv2. Sine GDOA v2 �rst attempts to swith o� the redundant pio BSs as long asthe overage and user QoS requirements are satis�ed, most of the remaining ativeBSs are miro BSs. Fewer miro BSs are su�ient to provide those requirements sinethey have longer overage ranges. Aordingly, the average BS-User distane inreaseswhen few miro BSs are ative. Yet another importane of this metri is its e�et onthe MT power onsumption. As the distane between the MTs and the serving BSsinreases, MTs are obliged to inrease their transmission power to ommuniate withthe distant BSs. As investigated in Setion 2.5, this results in faster depletion of theMT battery [61,62℄. However, in a network with very high BS density suh as our ase,we assume that the e�et of the BS-User distane on the MT power onsumption isnegligible.The average BS utilization on weekdays and weekends are depited in Figure 5.18.In perfet onditions, it is desired to observe a straight horizontal line in this �gureregardless of the hanging tra� onditions. This horizontal line means that the applied
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CPLEX(b) Weekend.Figure 5.18. Average BS utilization.green methods keep the tra� loads of ative BSs in a desired level and hene, inreasethe overall utilization of the network resoures. As observed in the �gures, espeiallyin Figure 5.18(a), there is a derease in the average BS utilization during night time.This under-utilization is stemming from the minimum overage ratio onstraint wheresome BSs have to be swithed on, although the tra� demand is low, in order toprovide the required overage ratio over the whole area. This yields to under-utilizedative BSs for the sake of adequate overage. In the previous �gures, we observed thatthe o�ine-entralized algorithm adjusts to the hanging tra� onditions better thanthe other methods exept CPLEX and saves more power. As a result of this fat,the o�ine-entralized algorithm performs better with an average of 57% and 60% BSutilization on weekdays and weekends whih are 3.35 and 2.6 times higher than thestati operation. On the other hand, CPLEX ahieves approximately 60% and 63% BSutilization on weekdays and weekends. For all methods, inluding the stati operation,weekend BS utilizations are slightly higher than that of the weekdays. The ause ofthis observation is simply the higher tra� load in weekends as seen in Figure 5.3.In Figures 5.19 and 5.20, oupany of the overage area on weekdays and week-ends for time slots 10:00, 20:00 and 02:00 are given in order along with their ative BSon�gurations obtained from the O�ine-entralized Dynami BS Operation Algorithm.The heat maps represent the user density per m2 whereas their respetive BS deploy-ment on�gurations depit the loation, type and tx power level of the swithed on



106BSs. It is lear in the olor-oded user density maps that there are signi�ant amountof both spatial and temporal user density variations. Shools and o�es are rowdedin the morning; pedestrian roads, shopping areas and restaurants are rowded in theevening; bars and night lubs are rowded at night. As expeted, the o�ine-entralizedDynami BS Operation Algorithm adjusts the network topology to the hanging traf-� demand onditions by swithing BSs on/o� and alternating BS tx power levels.The BS onentration on yellow-red oded areas is a lear demonstration of how greentra�-aware topology management framework operates.



Figure 5.19. User density heat map and orresponding ative BS status for time slot 10:00-20:00-02:00 on a weekday.



Figure 5.20. User density heat map and orresponding ative BS status for time slot 10:00-20:00-02:00 at weekend.



1095.6. ConlusionIn this hapter, we onentrated on green networking methodologies for NGM-CNs. Unlike our previous proposals for the CCNs and PSCNs, we adopt a holistiapproah and take all of the design, deployment and operation phases into aountsine NGMCNs are not fully deployed and operational yet. We started with mappingproess of Taksim as our pilot appliation area in order to reate a spatio-temporal userdensity. Aording to the extrated user density, we made an estimation of the tra�load and used this information to install additional pio BSs on top of the existinginfrastruture to aommodate the peak tra� onditions. The proposed green pioBS deployment algorithm redues both OPEX and CAPEX of the servie providersby deploying minimum number of pio BSs while maintaining an aeptable level ofQoS over the whole overage area. Lastly, we propose an o�ine-entralized and anonline-distributed green dynami BS operation algorithms for power saving during theoperation phase. The o�ine-entralized algorithm has both enough time and ompu-tational power to make omplex resoure management deisions. However, it requiresa entral entity for exeution and does not respond well to unexpeted tra� varia-tions sine topology adjustment deisions are made beforehand. On the other hand, theonline-distributed algorithmmakes topology adjustment deisions during operation ande�iently adapts to the unexpeted tra� load hanges. It also sales better than theo�ine-entralized algorithm sine BSs determine their own status autonomously withtheir loal observations in a distributed manner. The drawbak of online-distributed al-gorithm is the additional signaling overhead introdued by requirement of oordinationwith the neighboring BSs. We also solve the Green Dynami BS Operation problemwith CPLEX, a ommerial optimization tool, to give an insight about the e�ienyof our algorithms with respet to the exat optimum solutions. Although we are ableto use CPLEX for our test ase senario, low-omplexity heuristis are still requiredfor large realisti instanes of the problem. Through a realisti test ase senario, weshowed that both of our green BS deployment and dynami operation methods ahievesigni�ant power savings with respet to the stati operation, greedy heuristis andpreviously proposed two ompetitor algorithms [15℄ [30℄.



1106. CONCLUSION
In this thesis, we foused on novel green networking methodologies for three dif-ferent ellular network types; namely CCNs, PSCNs and NGMCNs. Unlike majority ofthe existing studies in the literature, we addressed the energy saving problem through(i) green BS design and deployment (ii) adaptive BS swithing on/o� and (iii) adap-tive BS transmission power adjustment aording to the present tra� onditions inthe overage area. However, the hallenge is to derease the energy expenditure whilealways guaranteeing an aeptable QoS level. Therefore, novel linear and nonlinearprogramming models are formulated to �nd the best possible BS topology whih mini-mizes the energy onsumption while satisfying the ertain servie quality requirementsof the subsribers.We started by surveying the previously proposed green networking studies in theliterature. Our survey overs not only dynami resoure management shemes but alsoenergy e�ient BS deployment and ooperation, renewable energy resoures and energye�ieny in MTs. We also present an extensive taxonomy of the surveyed strategiesfor better understanding.For the CCNs, we onentrated on saving energy by adaptively swithing the BSsof wireless ellular aess networks on and o� aording to the urrent tra� onditions.Moreover, we also adopted dynami transmission power adjustment with the help ofhigh-e�ieny power ampli�ers. We formulate a novel NLP model for the GDBPproblem to �nd the best possible BS topology whih minimizes the energy onsumptionwhile satisfying the ommuniation demands of the users. We then proposed a heuristito solve that problem and ompare our results with the results of a non-ommerialoptimization software and numerous MC experiments. It is shown that our greendynami BS planning sheme saves signi�ant amount of energy.For the PSCNs, our fous was on reating an energy-aware network by adap-tively swithing the BSs of heterogeneous ellular networks on/o� and by adjusting



111the BS transmission power levels. Di�erent from the CCNs, we also take the e�etof interferene into aount to ome up with more realisti green networking meth-ods. We formulate a novel LP model for the TAM problem to �nd the best possibleenergy-aware BS topology without violating the QoS requirements from the subsriberpoint of view. Although small instanes of the TAM problem an be solved by theoptimization tools, large realisti size problems are quite di�ult to be handled due totheir prohibitive spae and omputational omplexity. Therefore, we propose a novelheuristi to solve the large-sale instanes of the formulated problem and ompare ourresults with the results of two previously proposed methods [13℄ [14℄, a greedy heuris-ti and a ommerial optimization tool. It is shown that the proposed TAM shemehelps to maintain an energy-aware network and saves signi�ant amount of energy byadjusting the network topology aording to the present tra� onditions adaptively.Finally for the NGMCNs, our goal was to derive e�ient green network design,deployment and operation tehniques for NGMCNs. We take the advantage of stillongoing standardization proess and lak of fully deployed and operational infrastru-ture by adopting a holisti approah whih enompasses not only the operation phase,but also design and deployment phases. We divided this portion of thesis into threepakages. In the �rst pakage, we reated a detailed map of the pilot appliation areaand obtain a spatio-temporal user density estimation. Aording to this estimation, wedesigned and deployed additional pio BSs as a remedy on top of the existing infras-truture to aommodate the peak tra� onditions in the seond pakage. Lastly, weproposed green dynami BS operation tehniques to minimize the overall energy on-sumption of the network onsisting of heterogeneous elements. Unlike proposed meth-ods for CCNs and PSCNs in the previous hapters, we proposed an o�ine-entralizedand online-distributed version of the green dynami BS operation algorithm. Extensivesimulation runs based on olleted data from the pilot appliation area demonstratedsigni�ant power savings ompared to onventional stati operation, greedy heuristis,CPLEX and previously proposed two ompetitor algorithms [15℄ [30℄.In onlusion, making the mobile networks green ould not only have a positiveimpat on saving the energy, but also help to ahieve a long-term pro�tability of mobile



112servie providers and sustainability of the environment. Inreasing energy pries andenvironmental awareness has led the ellular network operators to redue their OPEXand CO2 footprints as well. Therefore, we need novel green networking tehniquesto minimize the overall network power onsumption. In this thesis, we addressed thehallenge of dereasing power onsumption while maintaining an aeptable level ofservie quality. In summary, we proposed green BS design, deployment and dynamioperation tehniques for CCNs, PSCNs and NGMCNs along with their mathematialoptimization models. Through extensive omparative performane evaluations, it isshown that the proposed green networking methods help to maintain an energy-awarenetwork and ahieve signi�ant amount of power savings.As future work, we are planning to propose e�ient tehniques to alleviate thehando� overhead stemming from frequent topology hanges. We believe that the inte-gration of smart user-BS assoiation rules to our dynami BS operation tehniques mayredue the number of hando� requests. Another promising researh issue is utilizingmultiple network aess interfaes of MTs suh as Bluetooth and Wi-Fi for transmit-ting their data pakets to the BSs. This kind of inter-network ooperation may reduethe overall BS density and up time whih in turn results in more energy e�ient net-works. Also, integrating the apability of using diretional antennas into our greennetworking methods an improve the energy saving signi�antly. Lastly, we believethat non-tehnial fators suh as priing, marketing strategies, willingness to ooper-ate among servie providers and law establishments are key fators in the suess ofthe green mobile networking tehnology.
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