
A BAYESIAN APPROACH TO THE CLUSTERING PROBLEM WITH

APPLICATION TO GENE EXPRESSION ANALYSIS

by

Işık Barış Fidaner

B.S., Computer Engineering, Bogazici University, 2005

M.S., Computer Engineering, Bogazici University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2016

iii

ACKNOWLEDGEMENTS

I thank my thesis supervisor Ali Taylan Cemgil, and our colleagues Betül Kırdar,

Ayça Cankorur-Çetinkaya and Duygu Dikicioğlu.

iv

ABSTRACT

A BAYESIAN APPROACH TO THE CLUSTERING

PROBLEM WITH APPLICATION TO GENE

EXPRESSION ANALYSIS

This thesis investigates methods for extraction of information from gene ex-

pression time series data. These time series provide indirect measurements about the

underlying biological mechanisms, hence their analysis heavily depends on statistical

modelling techniques. One particularly popular analysis approach is clustering genes

by their similarity of expression profiles. However, for scientific data analysis, cluster-

ing requires a rigorous methodology and Bayesian nonparametrics provides a promising

framework. In this context, two novel models were developed: Infinite Multiway Mix-

ture (IMM) that extends the standard infinite mixture model; and Infinite Mixture of

Piecewise Linear Sequences (IMPLS) that assumes a specific structure for its mixture

components, tailored towards gene expression time series. In the Bayesian paradigm,

the key object for gene analysis is the posterior distribution over partitionings, given

the model and observed data. However, a posterior distribution over partitionings is

a highly complicated object. Here, we apply Markov Chain Monte Carlo (MCMC)

inference to obtain a sample from the posterior distribution of gene partitionings, and

cluster genes by a heuristic algorithm. An alternative, novel approach for the analysis

of distributions over partitions is also developed, that we named as entropy agglomera-

tion (EA). We demonstrate the use of EA by a clustering experiment on a literary text,

Ulysses by James Joyce. In our bioinformatics application CLUSTERnGO (CnG), the

relevance of resulting clusters are evaluated by applying standard multiple hypothesis

testing to compare them against previous biological knowledge encoded in terms of

a Gene Ontology. The complete workflow of CnG consists of a four-phase pipeline

(Configuration, Inference, Clustering, Evaluation).

v

ÖZET

ÖBEKLEME PROBLEMİNE BAYESCİ BİR YAKLAŞIM

VE GEN İFADESİ ANALİZİNDE UYGULANMASI

Bu tezde gen ifadesi zaman serisi verisinden bilgi çıkarılması için yöntemler

araştırılmıştır. Bu zaman serileri altta yatan biyolojik mekanizmalara dair dolaylı

ölçümler sağlar, bu yüzden analizlerde istatistiksel modelleme tekniklerine yoğunca

başvurulur. Özellikle popüler bir analiz yaklaşımı, ifade profili benzerliklerine göre gen-

leri öbeklemektir. Fakat bilimsel veri analizi açısından öbekleme güçlü bir metodoloji

gerektirir ve Bayesci nonparametri bu konuda gelecek vaat eden bir çerçeve sağlar. Bu

bağlamda, iki yeni model geliştirildi: Standart sonsuz karışım modelini genişleten Son-

suz Çokyönlü Karışım (IMM); ve karışım bileşenlerinde gen ifadesi zaman serilerine

uyarlanmış özgül bir yapıyı varsayım alan Parçalı Doğrusal Dizilerin Sonsuz Karışımı

(IMPLS). Bayesci paradigmada gen analizi için anahtar nesne, model ve gözlemler

verildiğinde, bölüntüler üzerindeki sonsal dağılımdır. Fakat, bölüntüler üzerinde bir

sonsal dağılım oldukça karmaşık bir nesnedir. Burada Markov zinciri Monte Carlo

çıkarımı uygulayarak gen bölüntülerinin sonsal dağılımından bir örneklem elde ediy-

oruz, ve sezgisel bir yöntemle genleri öbekliyoruz. Bölüntüler üzerindeki dağılımların

analizi için entropi toplaşması (EA) adını verdiğimiz alternatif, yeni bir yaklaşım da

geliştirildi. EA’nın kullanımı, edebi bir metne (Ulysses, James Joyce) uygulanan

öbekleme deneyiyle gösterildi. Biyoenformatik uygulamamız olan CLUSTERnGO’da

(CnG) sonuçta çıkan öbeklerin amaca uygunluğunu değerlendirmek için standart çoklu

hipotez testi uygulanır, bir gen ontolojisine ait terimlerle kodlanmış önceki biyolojik

bilgilerle karşılaştırılır. CnG’nin süreç akışı dört fazdan oluşur (Yapılandırma, Çıkarım,

Öbekleme, Değerlendirme).

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. What is clustering? . 3

1.2. What is a clustering algorithm? . 4

1.3. Multiway clustering . 8

1.4. Time-series modeling . 9

1.5. Summarizing a combinatorial sample set 10

2. BAYESIAN CLUSTERING AND INFINITE MIXTURE MODELS 12

2.1. Mixture models . 16

2.1.1. The finite mixture model . 19

2.1.2. The infinite mixture model (DPM) 25

3. INFINITE MULTIWAY MIXTURE . 32

3.1. Multiway clustering . 32

3.2. The D-way Poisson mixture model . 33

3.3. Layer assignments . 33

3.3.1. Representing the latent tensor 34

3.3.2. Partitioning a factor’s indices 35

3.3.3. Determining the parameters of the model 35

3.4. Variational inference for the finite mixture 36

3.5. The infinite mixture and MCMC inference 37

4. INFINITE MIXTURE OF PIECEWISE LINEAR SEQUENCES 38

4.1. Introduction . 38

4.2. The model . 40

vii

4.3. MCMC inference . 41

4.4. Likelihoods and linear segments . 41

4.5. Posterior probabilities . 43

4.6. Experiment and results . 45

5. CUMULATIVE STATISTICS AND ENTROPY AGGLOMERATION 48

5.1. Partitioning of elements in Bayesian nonparametrics 48

5.2. Basic definitions and the motivating problem 50

5.3. Cumulative statistics to represent structure 53

5.4. Entropy to quantify segmentation . 56

5.5. Entropy agglomeration and experimental results 60

5.6. Discussion . 62

6. CLUSTERING WORDS BY PROJECTION ENTROPY 64

6.1. The input text and its representation 65

6.2. Clustering the word sets . 66

6.3. On the meaning of projection entropy 67

7. CLUSTERnGO (CnG) MODELING PLATFORM 69

7.1. Algorithm . 70

7.1.1. Configuration Phase (CONF) 71

7.1.2. Inference Phase (INF) . 73

7.1.3. Clustering Phase (CLUS) . 73

7.1.4. Evaluation Phase (EVAL) . 74

7.2. Implementation . 74

7.2.1. CONF: Temporal segmentation (TS) 74

7.2.2. INF: MCMC for IMPLS . 75

7.2.3. CLUS: Two-stage clustering (TSC) 77

7.2.4. EVAL: Multiple hypothesis testing 78

8. CONCLUSION . 80

REFERENCES . 83

viii

LIST OF FIGURES

Figure 1.1. Algorithmic clustering assigns the observed samples. 5

Figure 1.2. K-means clustering algorithm consists of two steps. 8

Figure 2.1. Simple generative model with two variables. 15

Figure 2.2. A model that generates 3 parameters and 7 observations 15

Figure 2.3. Graphical notation for a mixture model 17

Figure 2.4. Bayesian graph for the finite mixture model 22

Figure 3.1. The D-way mixture model . 34

Figure 4.1. Random clusters from the maximum probability iteration. 45

Figure 4.2. Histograms of K, α, a, b. 46

Figure 5.1. Young diagrams show that the partitions are conjugate. 54

Figure 5.2. Cumulative statistics of the examples and their average. 54

Figure 5.3. COD matrices correspond to the red dotted paths. 55

Figure 5.4. Per-element information . 57

Figure 5.5. Weighted information . 57

ix

Figure 5.6. CODs and entropies over E3 . 58

Figure 5.7. H(Z) in constructing Z . 59

Figure 5.8. Comparing two statistics . 59

Figure 5.9. Entropy agglomeration and results from experiments. 63

Figure 6.1. Text is represented by a feature allocation. 65

Figure 7.1. Structural design of the algorithm. 70

Figure 7.2. A dendrogram generated in CONF. 72

x

LIST OF TABLES

Table 6.1. Sample word pairs to illustrate entropic correlations. 67

xi

LIST OF SYMBOLS

Bj A block

C PLS matrix

Cd Multiway mixture assigments

D Number of dimensions

d Pitman-Yor process discount parameter

Dir Dirichlet distribution

E A sample set of partitionings or feature allocations

F A feature allocation

f(Z) Statistic for a partitioning Z

G Gamma distribution

H(PROJ(Z, S)) Projection entropy of a partitioning Z onto a subset S

H(Z) Entropy of a partitioning Z

i Sample index in the dataset

k Mixture component index

K Number of mixture components

K+ Number of non-empty mixture components

L Number of PLS parameters

Mult Multinomial distribution

[n] The set of integers 1 up to n

N Number of samples in the dataset

N Gaussian distribution

p(·) Probability distribution

pein(B) Per-element information of a block B

PO Poisson distribution

PROJ(Z, S) Projection of a partitioning Z onto a subset S

S A subset of elements

s Segment size in a block

V Variance

xii

X Data tensor

xi Observed samples

zi Mixture assignments

Z A partition

α Dirichlet distribution concentration parameter

∆ Number of additional dimensions

∆i,k A COD matrix

ǫ Gaussian error

θk Mixture component parameters

Θ Latent tensor

ι Sample index in the data tensor

κ Parameter index in latent tensor

λk Mixture component precision

π Mixture proportions

π(Z) Probability distribution of a partitioning Z

σ A permutation of elements

Φ A population of subsets of samples)

Φk(Z) Cumulative statistic of a partitioning Z

Ψ A population of subsets of elements)

| ... conditioned on ...

∼ ... is distributed according to ...

∞ Infinity

⊢ ... is a partitioning of ...

xiii

LIST OF ACRONYMS/ABBREVIATIONS

CLUS Clustering phase of CnG

CnG CLUSTERnGO

COD Cumulative occurence distribution

CONF Configuration phase of CnG

CRP Chinese restaurant process

DAG Directed acyclic graph

DP Dirichlet process

DPM Dirichlet process mixture

EA Entropy agglomeration

EVAL Evaluation phase of CnG

FDR False discovery rate

GO Gene ontology

IBP Indian buffet process

IMM Infinite Multiway Mixture

IMPLS Infinite Mixture of Piecewise Linear Sequences

INF Inference phase of CnG

MAP Maximum a posteriori

MCMC Markov chain Monte Carlo

MLE Maximum likelihood estimation

pdf Probability density function

PDP Poisson-Dirichlet process

PE Projection entropy

PLS Piecewise linear sequence

PYP Pitman-Yor process

SBP Stick breaking process

TS Temporal segmentation in CONF

TSC Two-stage clustering in CLUS

1

1. INTRODUCTION

In this thesis we focus on the generic problem of extraction of reliable structural

information from noisy datasets, in particular time series data obtained from large

scale gene expression experiments. The time series are observations of the expression

levels of over 5600 genes at irregular times obtained from a yeast cell using microarray

technology.

The greater scientific question in all these gene expression studies is the detection

of specific interactions that occur among various groups of genes. Identification of these

interactions helps in revealing the structure of the metabolic, regulatory or signalling

mechanisms that are vital parts of a cell’s life cycle. These highly complex biological

mechanisms are often represented as networks; however even at the current relatively

advanced technological level, precise information about these mechanisms can be ob-

tained only via indirect measurements, hence statistical modelling techniques must be

heavily employed for drawing valid conclusions from experimental data. Conclusions

must be validated in the face of already established biological facts; this also requires

that inferences must be summarized and described in a concise manner.

In this context, one particularly popular and useful approach to summarize the

vast amount of experimental data is based on clustering. Here, the key idea is that

the expression levels of related genes will exhibit a similar behavior and this similar-

ity provides some important clues about the functioning of the underlying biological

system. However, for drawing scientifically relevant and reliable conclusions, both the

concept of similarity and model validation needs to be based on rigorous and generic

methodology.

In contrast to other data analytics domains where machine learning methods are

applied, biology and bioinformatics as scientific disciplines have much more stringent

requirements in terms of validation of results from data analysis. Therefore, we have

based our statistical methodology on Bayesian nonparametrics. Bayesian nonpara-

2

metrics provides a computational framework that can answer several questions such

as model selection, data fusion, characterization of uncertainty, and tailored model

development to reflect prior knowledge about the experimental conditions.

Based on this approach to clustering, we have developed and tested a full pro-

cessing pipeline and the associated statistical methodology for time series data. The

pipeline implemented in our application CLUSTERnGO (CnG) consists of four phases

that also provide the framework of the questions we have studied.

The first two phases of our approach are the Configuration and Inference phases.

Here, configuration refers to the selection of a particular model and inference refers

to the computation of possible partitionings and other nuisance parameters. In the

thesis, we have developed two novel Bayesian nonparametric models: Infinite Multiway

Mixture (IMM) that extends the standard infinite mixture model; and Infinite Mixture

of Piecewise Linear Sequences (IMPLS) that assumes a specific structure for its mixture

components, tailored towards gene expression time series. In the inference phase, a

Markov Chain Monte Carlo (MCMC) algorithm takes a gene expression data set and

computes a sample set of likely partitionings of the elements (genes or proteins, etc.)

conditioned to the given dataset. Technically, this is achieved by sampling from the

posterior distribution over possible partitionings.

The third phase is the actual Clustering phase. Here, a clustering algorithm is

employed to process the obtained sample set of partitionings in order to find particular

clusters of elements (genes or proteins, etc.); all clusters that are sufficiently likely

according to certain thresholds for similarity and dissimilarity. In CnG, Two-Stage

Clustering is implemented as a heuristic solution for this phase. To find a better

solution, we took a theoretical approach to this question and developed cumulative

statistics and entropy agglomeration (EA) in order to express and summarize sample

sets of partitionings and feature allocations. In order to evaluate the EA method,

we also designed separate experiments outside of the biological domain, where the

paragraphs of a literary text (a famous novel from 1922: Ulysses by James Joyce) were

put to analysis to reveal the contextual relations among its words.

3

The final phase is the Evaluation phase. Here, the relevance of resulting clusters

are evaluated by comparing them against previous biological knowledge. CnG imple-

ments standard multiple hypothesis testing of clusters with respect to a Gene Ontology

database. In this way, we were able to detect clusters that can significantly represent

particular Gene Ontology terms. The entire processing pipeline is implemented as a

software package and released under GNU General Public License. The software has

already been used by other researchers and cited shortly after its release.

1.1. What is clustering?

Clustering algorithms are arguably among the most important and popular tools

of machine learning. However, clustering as a mathematical problem is by no means an

elementary one. In fact, it is an ill-posed problem that presents many difficulties. The

problem emerges by asking the following question: How can we group a given set of

elements —based on what we know about them— into a set of clusters (where “cluster”

refers to a subset of similar elements)? The computational answer to this question is

to design a clustering algorithm, which will be able to perform the desired operation

automatically in a satisfactory manner. A clustering algorithm, implemented as a

software program, takes the information supplied about a set of observed elements as

its input, and produces a set of resulting clusters to which these elements are assigned

as its output.

Clustering algorithms are employed in many application fields as they constitute

one of the basic means for extracting and summarizing information from datasets.

Moreover, as indicated by the rise of big data research in machine learning, there

is an emerging need to develop generic methodologies for rendering vast amounts of

available data practically accessible and interpretable for various uses. Thus, it is

an important task to formulate the clustering problem in a consistent and general

manner. Such a formulation would contribute to theory —which can thus achieve

better comprehensions of various other problems by comparing them with the clustering

problem— as well as practice —which can thus better summarize data and render it

more accessible for its purposes.

4

Clusters may represent different things depending on the context of the appli-

cation field. For example, in natural language processing, they may represent topics

that consist of word-elements; in bioinformatics, metabolic processes that consist of

gene-elements; in sociology, social categories that consist of person-elements; in epi-

demiology, health conditions that consist of symptom-elements, and so on. Since they

are solutions to a generic problem, clustering algorithms are applicable in any knowl-

edge discipline by treating its building blocks as the data elements to be clustered.

In this thesis, we address specific questions about the clustering problem and

present a clustering application CLUSTERnGO (CnG) for gene expression analysis.

The next section provides a general description of the clustering problem, and the

sections that follow introduce questions addressed in the rest of the thesis.

1.2. What is a clustering algorithm?

A cluster designates a subset of elements that are similar to one another. A

clustering algorithm refers to an algorithm that can obtain subsets of similar elements

from a given dataset. We call these subsets the “resulting clusters” found by the

algorithm. Clustering algorithms may use any means to obtain the resulting clusters,

but it is very common that they consist of several intermediate procedures, and one

should generally expect that these intermediate procedures are built on a few basic

atomic operations: insert element into cluster, remove element from cluster, compute

quantity for cluster, compute quantity for element, compute quantity for the clustering

configuration, etc.

As a practical guideline, a clustering algorithm is considered to be successful if

each of the resulting clusters is similar within itself and different from the others. In

effect, algorithms that can obtain successful results more frequently are considered to

be better than the other algorithms. However, such guidelines remain vague, and one

cannot validate and compare the criteria that justify the use of a clustering algorithm,

unless these guidelines are supported by theoretical definitions of one’s objectives.

5

• •
•

• ••
•

• •
•

• ••
•

x1• x2•
x3•

x4•
x5•x6•

x7•

(b) Clusters A (c) Clusters B(a) Observations

Figure 1.1. Algorithmic clustering assigns the observed samples to clusters.

Let us begin with an illustrative example. See Figure 1.1a, which shows a simple

dataset to be clustered. There are seven observed samples x1, . . . , x7. An observed

sample designates an instance of any kind of mathematical object, provided that these

instances constitute a sample set in a well-defined sample space, which is in this case

the real plane R2. The clustering algorithm is expected to group the observed samples

according to their similarities. For samples from R
2, it is appropriate to use the Eu-

clidean distances between sample pairs as a general measure of dissimilarity between

samples. On the real plane, one can simply assume that the smaller the distance be-

tween the elements, the closer they are to one another, and therefore the more similar

they are. For example we can see on Figure 1.1a that the samples x4 and x5 are close

to each other. Given the sample space, this implies a smaller Euclidean distance, and

it can be interpreted as a reliable indication of their similarity. In comparison we can

say that the samples x3 and x5 are not close, there is a greater distance between them,

and they are dissimilar to one another, as implied by a parallel reasoning.

It is expected that the clustering algorithm will assign the given samples to a

number of clusters. Assume that our algorithm resulted in the clusters shown in Figure

1.1b, where seven samples are assigned to three clusters {x1, x3, x6, x7}, {x2}, {x4, x5}.
Even if we haven’t defined an objective function that quantifies this result we can still

check whether it accurately represents the similarity relations among these samples by

looking at the distances between samples. For instance, samples in the cluster {x4, x5}
are similar to one another, so it looks like an accurate result to get from a clustering

algorithm. For example if it was {x3, x5} instead, since these two samples are not sim-

ilar to one another, it would be an inaccurate result to get from a clustering algorithm.

But depending on the sample space used and the notion of similarity employed in the

approach, such simple criteria may not be available. A variety of metrics and functions

6

have been developed in order to measure the efficiency of clustering results for different

problems, but there is no widely accepted standard, so we have to consider clustering

as an abstract notion to be concretized according to the application question at hand.

The output of a clustering algorithm is usually assumed to cover all elements, i.e.

no element can remain unassigned. It is also generally assumed that each element will

be assigned to only a single cluster, i.e. clusters must not overlap. Mathematically, this

means that the clustering assignments determine a partitioning. If these assumptions

are removed the clustering assignments will determine a feature allocation, which is

a superclass of partitionings. For example, {x1, x3, x6}, {x2, x5}, {x4, x5} is a feature

allocation that is not a partitioning, because x7 remains unassigned, and two clusters

overlap at x5. In practice it is more convenient to keep these two assumptions and

work on partitionings since they involve fewer number of possibilities. It would be

much more complicated to take into account feature allocations in general.

Most clustering algorithms are iterative, i.e. given the observations, the algorithm

will run over several consecutive iterations until it produces the final output. Usually

in such a scheme, each iteration receives the clustering assignments from the previous

iteration, and runs a procedure that is expected to modify these assignments in a way

to improve them, for instance from Clusters A to Clusters B in Figure 1.1. In other

words, each iteration reassigns the elements into a new clustering configuration that

may or may not be better than the previous one. After several iterations that seek to

optimize the clustering assignments, the final assignment will be displayed to the user

as the output of the clustering algorithm.

Almost every clustering algorithm can be expressed as an iterative procedure that

optimizes a certain objective function. To justify the objective function used in the clus-

tering algorithm, researchers naturally need conceptual frameworks to articulate and

clarify their research questions. However, once the objective function is algebraically

defined, and once an iterative procedure that efficiently optimizes this objective func-

tion is algorithmically designed, it becomes possible to formulate the principles that

effectively justify the clustering algorithm in a way that is perfectly indifferent to the

7

conceptual approaches that may have initially informed the research question. That’s

why one must always distinguish the application point of view to a clustering problem

from the theoretical point of view to the clustering problem.

From the application point of view, there are as many clustering problems as there

are datasets to be clustered. Each dataset represents its own experimental research

context that is going to inform any clustering approaches that its own requirements may

demand. From the theoretical point of view, however, one can only speak of a clustering

problem by defining an algebraic objective and designing an algorithmic solution, and

once this is done, there is only a single clustering problem in question and nothing else.

The two main purposes of this reduction are (1) to obtain a typical formulation that

simplifies the statement of the problem, and (2) to open up a broad space of possible

solutions that has already been developed and tested in the machine learning literature.

Before getting to the thorough description of our Bayesian theoretical approach, we

would like to illustrate the problem in the context of a popular algorithm: K-means.

Let x1, . . . , xN be a set of observed samples in a state space. And let the number

of clusters K be pre-determined. K-means algorithm minimizes this objective function:

F (x1, . . . , xN) =

K
∑

k=1

∑

xi∈Ck

‖xi − ck‖2 (1.1)

where Ck denotes the kth cluster, ‖ · ‖2 designates a norm in the state space, and

ck =
1

|Ck|
∑

xi∈Ck

xi (1.2)

is the kth cluster centroid. At the beginning of K-means clustering, the K cluster

centroids have to be initialized at K points in the state space of observed samples.

This initialization of cluster centroids can be random or algorithmically determined.

In the iterative procedure of K-means clustering, the following two steps (illustrated in

Figure 1.2) are repeated until the cluster centroids converge to unchanging positions:

8

• • c3×
×c1•

• •c2×•
•

• •
c3×

×c1•
• •
c2×•

•
Move the centroidsReassign the samples

Figure 1.2. K-means clustering is an iterative algorithm that consists of two steps.

1) Reassign each sample to the closest centroid (according to the given norm).

2) Move each cluster centroid to the mean value of its assigned samples.

K-means clustering provides a fairly simple description and a quite efficient solu-

tion for the clustering problem. But it also displays several shortcomings. Firstly, K

is a very central high-level parameter in the clustering problem that should not be left

to supplementary procedures that will run outside of the main clustering algorithm:

It must have a logical formulation that takes K into account. Secondly, the initial

positions of the K centroids have a huge effect on where they will convergence at the

end, and therefore these initial positions should not be left to supplementary proce-

dures outside the main algorithm either: It must provide a flexibility that can cover

the whole state space. Thirdly, even if a cluster is defined to be “a subset of elements

that are similar to one another,” this does not automatically imply that a cluster can

be represented by a centroid to which samples will be assigned depending on their

distances to this centroid according to a norm in the state space. The notion of simi-

larity can be defined in several ways, each of which implying a different representation

for the clusters. For these reasons, we are going to investigate the clustering problem

theoretically through Bayesian nonparametrics. The next chapter provides a technical

introduction on infinite mixture models. The following sections give brief introductions

for the contributions of the thesis.

1.3. Multiway clustering

When the sample set is modeled by an infinite mixture model, the independence

among the sequence of observations x1, . . . , x7 is represented by the infinite random

atomic sequence of mixture proportions and parameters drawn from the nonparametric

9

Dirichlet prior: (π1, θ1), (π2, θ2), (π3, θ3), But in some cases, the observed samples

might be indexed in more than one dimension. For instance, we might be modeling a

matrix {x1:N1,1:N2} or a tensor {x1:N1,1:N2,1:N3} of observations. In such cases, the as-

sumption of independence among the observations does not naturally follow from the

indexing scheme of the observations. One can naturally assume that the sequence of

indices in each single dimension (either 1, . . . , N1 or 1, . . . , N2) should represent an in-

dependence among its particular index values 1, 2, 3, However, among the separate

dimensions represented by the indices i, j, k of xi,j,k, there remains a dependence rela-

tion embedded in the tensor of observations: how to handle the multiway dependence

among the dimensions of a tensor?

In the case of an observation vector {xi} with a single dimension, we can take its

index i to distinguish among the independent observations. In some datasets, an obser-

vation tensor X with more than one index may be necessary. We address this question

by devising a multiway representation: Infinite Multiway Mixture (IMM), where an

observation tensor X is modeled by a smaller latent tensor Θ, by putting nonparamet-

ric priors on each of its dimensions. In addition, Θ is taken to be a factorization of M

latent tensors Θm, in order to model the dependence among these dimensions.

1.4. Time-series modeling

A practical clustering problem is how to cluster a set of time-series samples. In

this problem, each observed sample is an independent M-dimensional vector that repre-

sents values that were observed at certain time points: x1:N,1:M where M designates the

length of a single observation. In certain gene expression analysis problems, microarray

experiments are designed so that the expression levels of the N genes of interest are

observed at M particular time points thoughout the experiment process. These time

points may be unequally distributed during the experiment, so that subsequent time

points may be seconds, minutes, or even hours apart from each other. In order to

model a sample set of such time-series data by an infinite mixture model, we present

a method that introduces a particular covariance structure for the mixture component

likelihoods.

10

This modification applies a matrix multiplication that structures each mixture

component mean vector as a piecewise linear sequence (PLS), which involves prede-

termined segments of subsequent time points, each segment maintaining a constant

slope. By applying this matrix transformation, we effectively state that the sequence

of expression values for a single gene xi,1, . . . , xi,M are not independent. Since we state

that these values maintain constant slopes along certain segments of time points, we

do not leave all of their covariance to the implicit Gaussian noise in the mixture model,

but we represent some of their covariance by the transformation matrix. We call this

model, an infinite mixture of piecewise linear sequences (IMPLS). This model is also

employed in the bioinformatics application CLUSTERnGO.

1.5. Summarizing a combinatorial sample set

Dirichlet process was initially defined as the stochastic process all of whose mea-

surable partitions are Dirichlet-distributed [1]. Although this definition remains the

basic theoretical reference and the source of its name, various alternative formulations

of this stochastic process have been developed since then [2]. The invention of Chi-

nese restaurant process, one of the best-known iterative constructions of the Dirichlet

process, historically depended on a formula from the population genetics literature:

Ewens [3] (with the elaboration of Watterson [4]) had devised a method for sampling

distributions of selectively neutral alleles. By taking the probability distribution for-

mula from Ewens’ method and carrying out a mathematical and logical analysis, King-

man [5] described the meaning of this method by defining it as an Ewens structure,

which he classified as a partition structure, a concept he constructed by relying on the

theory of partitions [6]. Chinese restaurant process (CRP), relies theoretically on this

concept [7].

However, the concept of partition structure has certain limitations. Kingman

[5] defined ‘representable’ partition structures as those which can be written as the

integral of a continuous function with respect to a probability measure on the infinite

dimensional simplex. Ewens structure is a representable partition structure, but not all

partition structures are representable in this sense. An instance of a ‘non-representable’

11

partition, pointed out to him by Watterson, is the distribution that concentrates on

the partition in which all allele types only appear once. In this thesis, we provide

an alternative conceptual formulation for partitionings that also applies to feature

allocations. In clustering, the clusters are usually assumed to constitute a partitioning

of data elements, i.e. a set of disjoint subsets —called ‘blocks’— that cover each of the

given elements once. In other cases, where clusters are allowed to repeat or omit some

of the elements, they constitute a feature allocation, a superclass of partitionings. We

devise the basics for a combinatorial statistics methodology that we call cumulative

statistics. A practical algorithm that we propose based on this concept is entropy

agglomeration (EA).

The contributions of the thesis are distributed to the chapters as follows:

• Infinite Multiway Mixture with Factorized Latent Parameters (Chapter 3)

• Infinite Mixture of Piecewise Linear Sequences (Chapter 4)

• Cumulative Statistics and Entropy Agglomeration (Chapter 5)

• Clustering Words by Entropy Agglomeration (Chapter 6)

• CLUSTERnGO: Cluster analysis of gene expression profiles (Chapter 7)

Chapter 8 concludes the thesis.

12

2. BAYESIAN CLUSTERING AND INFINITE MIXTURE

MODELS

Bayesian theory provides a principled approach to do model-based inferences for

clustering and other machine learning purposes. There is a large theoretical literature

on Bayesian inference methods with several models and approaches to all kinds of

machine learning problems. But we restrict our focus to the use of Bayesian mixture

models in the clustering problem. This focus allows us to elaborate the development

of our contributions more strictly in terms of both theory and practice. The fact that

there are so many texts in the theoretical literature of Bayesian methods owes partly

to the practical usability of these methods and partly to the simple logic that they rely

on, namely, the Bayes rule. This is why we would like to begin our presentation with a

description of this rule. It is stated as follows: Posterior is proportional to prior times

likelihood. In the statement, the three terms posterior, prior and likelihood refers to

probabilities, i.e. quantities that take values between zero and one, quantities that are

functions of certain probabilistic events. The other terms proportional and times in

the statement refers to simple algebraic multiplicative operations. The mathematical

formulation of the Bayes rule can be written as follows:

P (A | B) ∝ P (A) P (B | A) (2.1)

There are two events that follow one another: First A happens. Then B happens. In

the formula ‘P (A | B)’ represents the posterior, ‘P (A)’ the prior and ‘P (B | A)’ the
likelihood. The proportionality of the posterior is expressed by the symbol ‘∝’ and the

quantity “prior times likelihood” is expressed simply by writing these functions side

by side: “P (A) P (B | A).” One must indicate that this logical formula determines all

the possible meanings and interpretations of the three quantities that it relates. Even

when the quantities are independently determined each by a formula of its own, their

logical relation and proper interpretation are ultimately decided by the Bayes rule.

13

In this way, a temporal relation between two events A and B can be formulated

in order to compute their probabilities. One can also express the Bayesian probabilistic

relation of several events, if it is possible to express their relation in terms of the Bayes

rule. Integrations over probabilistic functions and various analytical manipulation of

these integration formulas allow us to express many complex relationships in terms of

the Bayes rule. Hence the vast theoretical literature of Bayesian statistics.

These events related by the Bayes rule can be organized in a generative model.

In a generative model, each event represents the initialization of a variable. In our

example: In the first step, A is set to a value, call it a. In the second step, B is set to

a value, call it b. Their dependence is given by the Bayes rule. In this way, a variable

A is symbolically differentiated from the value a that it is instantiated with. This

differentiation in each variable is reflected to the three terms of the formula, so that

P (A = a | B = b) represents a particular probability from the posterior, P (A = a)

represents a particular probability from the prior and P (B = b | A = a) a particular

probability from the likelihood. These particular probabilities must not be confused

with the general probabilities that take part in the Bayes rule. To illustrate this for a

single variable: Depending on the mathematical expression of the variable A, its prior

P (A) can be a vector, it can be a matrix, it can be a tensor. But P (A = a) expresses

a single quantity between zero and one that represents our belief on the probability of

A being instantiated with a.

The general probabilistic relation expressed by the Bayes rule can be represented

in a more exact algebraic equation that we call the Bayes theorem or the Bayes law :

P (A | B) =
P (A) P (B | A)

P (B)
(2.2)

In this version of the Bayes rule the factor of proportionality P (B) is explicitly repre-

sented as the denominator on the right hand side. It is especially crucial to logically

distinguish P (A) and P (B) despite the apparent symmetry implied by the equation.

Both can be called ‘marginals’ because both involve a single variable. But the main

difference is that the prior P (A) is given by the model, whereas the factor of propor-

14

tionality P (B) at the denominator must be computed as a summation over a:

P (B) =
∑

a

P (A = a) P (B | A = a) (2.3)

This is the most general expression of the Bayes theorem that underlies all Bayesian

methodology. To illustrate this equation, let us define a generative model with two

variables: Let θ ∈ R
2 be an underlying parameter that we cannot observe. Let x ∈ R

2

be an observed sample that depends on the parameter θ. Let p(θ) be the prior for the

hidden parameter θ and let p(x|θ) be the likelihood which represents our belief on how

the observed sample x depends on the hidden parameter θ. So we have:

p(θ|x) =
p(θ) p(x|θ)

p(x)
(2.4)

In this equation, the lowercase p(·) designates a probability density function over R2.

Given the prior p(θ) and the likelihood p(x|θ), we can use the Bayes rule to infer the

corresponding posterior p(θ|x). The generative model consists of two steps:

θ ∼ p(θ)

x ∼ p(x|θ) (2.5)

The only evident fact is that we have observed a sample x1 as the value for the variable

x. By modeling the variable x, we assume that the sample x1 was generated according

to the model written above. To write explicitly: In the first step, a parameter θ1 is

drawn from the prior p(θ). In the second step, a sample x1 is drawn from the likelihood

p(x|θ = θ1). The prior p(θ) for the parameter θ and the likelihood p(x|θ) that relates
the parameter variable θ to the observation variable x is illustrated on Figure 2.1 in grey

dashed ellipses. Based on the fact that x1 is observed and the model assumptions, we

can infer the posterior p(θ|x = x1) for the parameter variable θ given our observation

x = x1. The posterior p(θ|x = x1) and the marginal p(x) are illustrated on Figure

2.1 in blue dashed ellipses. As in the previous formulation, the denominator p(x),

15

x1•
×θ1 ×θ1

x1•

Generate sampleGenerate parameter Observation

p(θ)

p(x1|θ)
p(x|θ1)

p(θ|x1) p(x)

Figure 2.1. Simple generative model with two variables.

sometimes called evidence or normalization constant, is computed by an integration:

p(x) =

∫

p(θ) p(x|θ) dθ (2.6)

If we extend this model to incorporate N observations that depend on K parameters,

we can have a mixture model that involves K mixture components. Our initial example

with 7 observations drawn from 3 parameters is shown in Figure 2.2. To express this

generation of variables as a mixture model, another set of variables called sample

assignments z1, . . . , z7 will be needed. Let us just state that it is well known that the

K-means clustering algorithm as we described above relies on such a mixture model as

its generative model (For a detailed explanation, see [8]). If there is a predetermined

number K of mixture components in the model as in K-means clustering, it’s called

a finite mixture model. To evade this constraint, infinite mixture models are used.

An infinite mixture model has an infinite number of mixture components in theory,

but when actually generating samples from an infinite mixture model, almost all of

these mixture components will be empty, since only a finite number of samples can be

generated in finite time.

x1• x2•
x3•

x4•
x5•x6•

x7•

θ3×

×θ1 θ2×
• • θ3×

×θ1•
• •θ2×•

•
Generate samplesGenerate parameters Observation

Figure 2.2. A model that generates 3 parameters and 7 observations from them.

16

An infinite mixture model is conventionally derived by taking the limit of a fi-

nite mixture model as the number of mixture components goes to infinity [9]. This

generates an infinite sequence of parameters and an infinite sequence of mixture pro-

portions. In the conventional representation, these two sequences are matched in an

infinite sequence of atomic samples that make up a random measure, called a mixing

distribution. Dirichlet process (DP) is the best-known Bayesian prior that generates

such a mixing distribution. It’s called a nonparametric prior due to the infinite se-

quence of parameters it generates. Iterative schemes for DP like Polya urn process [10]

and Chinese restaurant process [7] are useful in devising Bayesian inference methods

for such infinite atomic sequences over a finite quantity of observed samples. In the

next section, we explain finite mixture models, derive infinite mixture models, and

recite basic Monte Carlo inference methods based on the iterative constructions of the

infinite mixture models.

2.1. Mixture models

Mixture models are among the most common probabilistic models used for clus-

tering. Basically, they are generative models. A generative model, sometimes called a

Bayesian network, is often defined as an interdependent DAG (directed acyclic graph)

of random variables. On this graph, every node denotes a random variable, and every

edge denotes the dependence of a random variable to another random variable. Each

random variable on the graph is generated either by a likelihood or by a prior pdf (prob-

ability density function). Variables that depend on other variables are generated by

likelihoods, whereas variables that do not depend on any other variable are generated

by priors. For example, in a mixture model, π and θ̃ do not depend on other variables,

so they are generated by priors, whereas zi and xi are generated by likelihoods, because

they depend on other variables, as shown in Figure 2.3.

A special convention in these graphs is the plate notation. A plate is a rectangle

around a group of nodes. It indicates that each of these nodes represents several random

variables. A node in a plate is written with an index, and a range of numbers is shown

on the plate. This indicates that the node’s index takes values in that range, so that

17

i=1,. . . ,N k=1,. . . ,K

π zi xi θ̃k

Figure 2.3. Graphical notation for a mixture model

the model contains distinct variables for each value in this index range. For example, in

Figure 2.3, the node xi represents N variables x1, x2, . . . , xN . When an edge is between

nodes on different plates, it’s assumed that all of the variables represented by both

sides are connected, as the case with xi and θ̃k on the graph. The graph shows the

dependencies between variables, but the generative model can fully be represented only

when the likelihoods and priors that generate the random variables are defined. These

are written for the mixture model as follows:

π ∼ Dir(π| α
K
, . . . ,

α

K
)

θ̃k ∼ H(θ̃k)

zi | π ∼ Mult(zi|π)

xi | θ̃, zi ∼
K
∏

k=1

F (xi|θ̃k)zik (2.7)

On each line of this definition, a variable and its dependencies are shown on the left,

and a pdf is shown on the right hand side of the symbol ‘∼’, which means that the

variable is distributed according to that pdf, i.e. the variable is drawn from that pdf.

In the mixture model defined above, Dir and Mult are known pdfs, whereas H and F

are model-specific pdfs that need to be defined. The product of all the likelihoods and

priors in a generative model gives the joint pdf of all variables. This product written

as an equation is called a factorization of this joint pdf. Other pdfs can be derived

from this factorization using integration and Bayes rule. Before making inference on

the generative model, it needs to be decided which variables are to be inferred, then a

pdf from the model’s factorization is derived and chosen to be the target pdf.

18

There are different kinds of Bayesian inference methods. If the pdf of interest

can be computed numerically, it’s called exact inference. In exact inference, the terms

of a factorization are actually multiplied and summed up to compute the results of

the integrals. Exact computation is usually not feasible, so approximate inference is

used in most cases. There are inference methods to obtain optimal samples from a

pdf. Variational inference methods are optimization algorithms that find samples at

the peaks of a target pdf. They are called maximum likelihood estimation (MLE) or

maximum a posteriori (MAP) depending on the chosen target pdf.

In this thesis, Markov chain Monte Carlo (MCMC) methods are used for Bayesian

inference. These methods are not optimization algorithms that settle on a single sample

after some iterations. Instead, they are sampling methods that generate a set of samples

as a representative group for the pdf of interest. One obtains a different sample set for

each time an MCMC method is run, but all of these sets are approximately distributed

according to the chosen target pdf. If an MCMC method is run for a short time, one can

still get a sample set that roughly represents the target pdf. If it’s run for a longer time,

one obtains a sample set that more precisely represents the target pdf. Gibbs sampling,

a common method, designates a specific class of Metropolis-Hastings algorithms where

each variable is sampled from its full conditional given all the other variables. In

a single iteration of Gibbs sampling, each of the variables are sampled one by one,

according to its own full conditional. After iterating MCMC many times, the samples

obtained at these iterations can be used as a sample set to approximately represent

the target pdf. To apply Gibbs sampling on a generative model, full conditionals

need to be derived for all variables that will be inferred. If this is not possible, one

can still design a Metropolis-Hastings method that does not require this derivation.

For more information about generative models and inference methods, please refer to

the book “Pattern Recognition and Machine Learning” by Christopher M. Bishop [8].

Dirichlet process mixture (DPM) is one of the most fundamental models in Bayesian

nonparametrics: it’s a mixture model with infinite number of mixture components. It

can be used for clustering by interpreting its mixture components as clusters. The prior

of a DPM is a Dirichlet process (DP). In the following part, a finite mixture model with

K mixture components is defined, and how to generate samples from it. Then, the full

19

conditionals are derived to be used in a Gibbs sampler, and finally, mixture parameters

are integrated out to derive full conditionals to be used in a collapsed Gibbs sampler.

In the next part, we define the infinite mixture, which is obtained by bringing K in the

finite mixture to infinity. This new mixture with infinite number of mixture components

is a DPM. Then, three different formulations of DPM are examined. We first explain

the Polya Urn Scheme, the associated sample generation method and full conditional to

use in Gibbs sampling. Then, we explain the Chinese Restaurant Process (CRP), which

has a similar sample generation method. For CRP, full conditionals are derived for both

Gibbs sampling and collapsed Gibbs sampling. Finally, Stick Breaking Process and a

possible sample generation method is described. Although there are many inference

methods for DPM that have been proposed in recent years, here we discuss the most

basic MCMC methods that were summarized by R. Neal in 2000 [11]. The conventions

for the variables of DPM are taken from an encyclopedia article of Dirichlet process

by Y. W. Teh [12]. In the following two subsections we explain basic generation and

inference procedures for finite mixture models and infinite mixture models in detail.

2.1.1. The finite mixture model

Imagine a simple model, where an observed variable x only depends on a hidden

parameter θ̃ through a likelihood function F (x|θ̃). In this simple model, θ̃ would

be inferred directly by using the evidence x, the prior of θ̃ and the given likelihood

function. A mixture model is similar to this simple model, except that there are several

values for the hidden parameter, denoted as θ̃k where k = 1, . . . , K. Each of these K

parameters θ̃k define a component in the mixture. In a mixture model, in addition to

the observation x, another variable is needed: the sample assignment z that determines

which parameter generates x by assigning x to one of the K mixture components.

2.1.1.1 The likelihoods and the mixture density. Let’s say there are N observed

samples xi where i = 1, . . . , N . If sample xi belongs to the kth component of the

mixture, it is assumed to be distributed according to the corresponding likelihood

20

function:

p(xi|θ̃, zik = 1) = F (xi|θ̃k) (2.8)

In this equation, the sample assignment zi is a binary vector with K elements. When

zik = 1, all other elements zij are zero, and this means that the sample xi is assigned

to the kth component of the mixture.

zik =

1 if observation xi belongs to mixture component k

0 otherwise
(2.9)

Thus, before drawing the samples xi, one must draw the assignments zi to which they

depend on. Before drawing zi, one must determine πk as the prior proportions for each

of the mixture components. These proportions must sum up to one:

K
∑

k=1

πk = 1 (2.10)

The sample assignments zi are drawn from a multinomial distribution with the pro-

portions vector π = {πk} as its parameter.

zi | π ∼ p(zi|π) = Mult(zi|π) =
K
∏

k=1

πzik
k (2.11)

When the sample assignment zi is known, xi can be sampled from the mixture compo-

nent it is assigned to:

xi | θ̃, zi ∼ p(xi|θ̃, zi) =

K
∏

k=1

F (xi|θ̃k)zik (2.12)

21

The likelihoods over xi and zi are defined conditional to π and θ̃k.

zi | π ∼ p(zi|π) = Mult(zi|π) =

K
∏

k=1

πzik
k

xi | θ̃, zi ∼ p(xi|θ̃, zi) =

K
∏

k=1

F (xi|θ̃k)zik (2.13)

If the likelihood of xi is derived by integrating over its sample assignment zi, one

obtains the sample pdf p(xi|θ̃, π) of a mixture model, which is also called a mixture

density function:

p(xi|θ̃, π) =
∑

zi

p(zi|π) p(xi|θ̃, zi) =
K
∑

k=1

πk F (xi|θ̃k) (2.14)

The distributions of xi and zi only involve the likelihood probabilities, and are adequate

to make a maximum-likelihood estimation (MLE). However, to find a maximum a

posteriori (MAP) estimate, one needs the posterior distributions of xi and zi that

depend on the priors of their parameters: priors over the mixture proportions vector

π and the mixture component parameters θ̃k.

2.1.1.2. The priors and the complete generative model. The proportions vector

π is drawn from a symmetrical Dirichlet distribution:

π ∼ p(π) = Dir(π| α
K
, . . . ,

α

K
) =

Γ(α)

Γ(α/K)K

K
∏

k=1

π
α
K
−1

k (2.15)

This distribution can have three different shapes:

(i) α = K : A uniform, flat distribution.

(ii) α > K : A unimodal dome, its mean at πk = 1
K
.

(iii) α < K : A round valley, K modes at its corners πk = 1

22

For α > K, α is called the pseudocount hyperparameter, because it behaves as

if there were α number of previously observed samples that were distributed equally

among the K mixture components. As the α parameter is further increased, the

dome becomes taller, and the region around its mode πk = 1
K

becomes more and

more pronounced. If K is relatively large, some of the K mixture components may be

empty, i.e. they may not have samples assigned to them. Number of non-empty mixture

components is denoted by K+. For α < K, α is called the diversity hyperparameter,

because the greater the α value, the more non-empty mixture components exist, i.e.

K+ is greater. When α is increased, the valley becomes flatter, and its corners πk = 1

become less pronounced, allowing a more diverse distribution of samples among the K

mixture components. A mixture component parameter θ̃k is drawn from H :

θ̃k ∼ p(θ̃k) = H(θ̃k) (2.16)

The prior H(θ̃k) is usually chosen as the conjugate prior of the mixture component

function F (xi|θ̃k). Finally, the complete generative model for the finite mixture is

obtained by combining the previous equations:

π ∼ Dir(π| α
K
, . . . ,

α

K
)

θ̃k ∼ H(θ̃k)

zi | π ∼ Mult(zi|π)

xi | θ̃, zi ∼
K
∏

k=1

F (xi|θ̃k)zik (2.17)

i=1,. . . ,N k=1,. . . ,K

π zi xi θ̃k

Figure 2.4. Bayesian graph for the finite mixture model

23

This model defines the generation process in two stages. Firstly, a particular

mixture model is generated by drawing π and θ̃k for k = 1, . . . , K. Secondly, N

observations from this model are generated by drawing zi and xi for all i = 1, . . . , N .

Dependencies among the random variables of this model can be clearly seen in Bayesian

graph notation in Figure 2.4. Samples are generated by the following steps:

(i) Sample π from Dir(α)

(ii) Sample θ̃k from H for all k = 1, . . . , K

(iii) Sample zi from Mult(π) for all i = 1, . . . , N

(iv) Sample xi from
∏

k F (xi|θk)zik for all i = 1, . . . , N

2.1.1.3. Gibbs sampling for the finite mixture model. For applying Gibbs sam-

pling on the mixture model, full conditionals are needed. To derive full conditionals,

the factorization for the full joint pdf is written:

p(z, x, θ̃, π) = p(π) {
K
∏

k=1

p(θ̃k)} {
N
∏

i=1

p(zi|π)} {
N
∏

i=1

p(xi|θ̃, zi)} (2.18)

By writing the likelihoods and priors, the expression for the full joint is obtained:

p(z, x, θ̃, π) ={ Γ(α)

Γ(α/K)K

K
∏

k=1

π
α
K
−1

k } {
K
∏

k=1

H(θ̃k)}

{
N
∏

i=1

K
∏

k=1

πzik
k }{

N
∏

i=1

K
∏

k=1

F (xi|θ̃k)zik} (2.19)

In our example problem, the following functions will be used (P and Q are scalars):

H(θ) = N (0, P)

F (x|θ) = N (θ,Q) (2.20)

24

The full joint becomes:

p(θ̃, z, x, π) = exp{ − D

2Q
+

K
∑

k=1

{Skθ̃k
Q
− 1

2
θ̃2k (

1

P
+
Nk

Q
)}

+
K
∑

k=1

(Nk +
α

K
− 1) log πk + log Γ(α)

−K log Γ(
α

K
)− NK

2
log 2πQ− K

2
log 2πP}

Nk =

N
∑

i=1

zik Sk =

N
∑

i=1

zikxi D =

N
∑

i=1

x2i (2.21)

By choosing relevant terms from the joint pdf, the full conditionals for π, θ̃k and zi are

obtained:

p(π | z) = Dir(π | Nk +
α

K
)

p(θ̃k | x, z) = N (θ̃k|mk, Vk)

Vk =
Q

Nk +Q/P
mk =

Sk

Nk +Q/P

p(zi | xi, θ̃, π) = Mult(zi | φi)

φik =
πk√
2πQ

exp(−(xi − θ̃k)
2

2Q
) (2.22)

Gibbs sampling algorithm for the mixture model is as follows:

(i) Sample π from p(π | z)
(ii) Sample θ̃k from p(θ̃k|x, z) for all k = 1, . . . , K

(iii) Sample zi from p(zi | xi, θ̃, π) for all i = 1, . . . , N

(iv) Go to 1

2.1.1.4. Collapsed Gibbs sampling for the finite mixture model. For applying col-

lapsed Gibbs sampling on the mixture model, θ̃ is integrated out from the joint pdf to

25

obtain:

p(z, x, π) = exp(
K −N

2
log 2πQ− K

2
log 2πP − D

2Q

+ log Γ(α)−K log Γ(
α

K
) +

∑

k

{(Nk +
α

K
− 1) log πk

− 1

2
log (Nk +Q/P) +

S2
k

2Q(Nk +Q/P)
} (2.23)

By choosing relevant terms from the joint pdf p(z, x, π), the full conditionals for π and

zi are obtained:

p(π | z, x) = Dir(π|Nk +
α

K
)

p(zi | z−i, x, π)

∝ exp{
∑

k

{Nk log πk −
1

2
log (Nk +

Q

P
) +

S2
k

2Q(Nk +
Q
P
)
}} (2.24)

Collapsed Gibbs sampling algorithm for the mixture model is as follows:

(i) Sample π from p(π | z)
(ii) Sample zi from p(zi | z−i, x, π) for all i = 1, . . . , N

(iii) Go to 1

2.1.2. The infinite mixture model (DPM)

For obtaining the infinite mixture model, one needs an appropriate formulation

to use when K →∞. Assume that π and θ̃k are given. The sample likelihood is

p(xi|π, θ̃) =
K
∑

k=1

πkF (xi|θ̃k) (2.25)

26

Then, G(θ) is introduced as a summation of K weighted dirac delta functions in pa-

rameter space Θ:

G(θ) =

K
∑

k=1

πkδ(θ − θ̃k) (2.26)

and rewrite the sample density as

p(xi|G) =
∫

F (xi|θ)G(θ)dθ (2.27)

First formulation of a model:

p(xi|π, θ̃) =
K
∑

k=1

πkF (xi|θ̃k) (2.28)

Second formulation of the same model:

p(xi|G) =
∫

F (xi|θ)G(θ)dθ (2.29)

This new formulation is equivalent to

θi ∼ G

xi | θi ∼ F (xi|θi) (2.30)

The new variable G now has infinite number of atoms

G(θ) =

∞
∑

k=1

πkδ(θ − θ̃k) (2.31)

To have an infinite mixture model, a prior over G needs to be defined. It turns out

that this prior is a Dirichlet process

G ∼ DP (H,α) (2.32)

27

where H is the base distribution and α is the diversity parameter. The infinite mixture,

or the Dirichlet process mixture:

G ∼ DP (H,α)

θi ∼ G

xi | θi ∼ F (xi|θi) (2.33)

It is equivalent to a mixture model where K →∞. It can be shown that the posterior

of a DP behaves as follows:

p(G) = DP (H,α)

p(G|θ1) = DP (
α

α+ 1
H +

1

α + 1
δ(θ1) , α + 1)

p(G|θ1,2) = DP (
α

α+ 2
H +

1

α + 1

∑

j=1,2

δ(θj) , α+ 2)

. . .

p(G|θ1:i−1) = DP (
α

α+ i− 1
H +

1

α + i− 1

i−1
∑

j=1

δ(θj) , α + i− 1) (2.34)

2.1.2.1. Generate samples using the Polya Urn Scheme. The definition of DP is

used to find θi conditional to {θ1:i−1}

θi | θ1:i−1 ∼ p(θi|θ1:i−1) =
1

i− 1 + α

i−1
∑

j=1

δ(θi − θj) +
α

i− 1 + α
H (2.35)

The value θi is either one of the previous values, or it’s a new value:

Pick one of θ−i with probability
1

i− 1 + α

Sample θi from H with probability
α

i− 1 + α
(2.36)

28

Samples are generated by the following steps:

(i) Pick a new mixture component parameter θ1 from H

(ii) Initialize i = 2

(iii) Pick an old θi from {θ1:i−1} with probability i− 1, or

pick a new θi from H with probability α

(iv) Increment i, go to step 3

2.1.2.2. Gibbs sampling based on the Polya Urn Scheme. Full conditional for θi

is obtained by combining with likelihood:

p(θi | θ−i, x) ∝ p(θi | θ−i) p(xi | θi)

p(θi | θ−i, x) ∝
∑

j 6=i

F (xi|θj) δ(θi − θj) + α Pi

∫

F (xi|θ)H(θ)dθ (2.37)

Therefore,

Pick θj ∈ θ−i with probability ∝ N (xi | θj , Q)

Pick θi from Pi with probability ∝ α N (xi | 0, Q+ P) (2.38)

where Pi is the posterior with single observation:

Pi = p(θ|xi) = N (θ| xi
1 +Q/P

,
Q

1 +Q/P
) (2.39)

Gibbs sampling algorithm for Polya Urn Scheme is as follows:

(i) Sample θ̃k from p(θi | θ−i, x) for all k = 1, . . . , K

(ii) Go to 1

29

2.1.2.3. Generate samples using the Chinese Restaurant Process. The distribu-

tion is integrated over π to find zi conditional to {z1:i−1}

zi | z1:i−1 ∼ p(zik = 1 | z1:i−1) =
Nk,−i +

α
K

i− 1 + α
Nk,−i =

∑

j 6=i

zjk (2.40)

When K →∞, this goes to

lim
K→∞

p(zik = 1 | z1:i−1) =
Nk,−i

i− 1 + α
, if Nk,−i > 0

lim
K→∞

∑

k|Nk,−i=0

p(zik = 1 | z1:i−1) =
α

i− 1 + α
, for all Nk,−i = 0 (2.41)

A new sample is assigned to a mixture component with probability proportionate to

the population of that mixture component. A new mixture component is created for

this sample with probability α. Samples are generated by the following steps:

(i) Assign first sample to first mixture component z11 = 1

(ii) Initialize i = 2

(iii) Pick zik = 1 with probability Nk,−i =
∑

j 6=i zjk, or

pick an unused assignment zi with probability α

(iv) Increment i, go to step 3

2.1.2.4. Gibbs sampling based on the Chinese Restaurant Process. For applying

Gibbs sampling, full conditionals for θ̃k and zi are needed. Full conditional for θ̃k is

the same as in the finite mixture model:

p(θ̃k | x, z) = N (θ̃k | mk, Vk)

Vk =
Q

Nk +Q/P
mk =

Sk

Nk +Q/P
(2.42)

30

Full conditional for zi is obtained as follows:

p(zik = 1 | z−i, xi, θ̃) ∝ p(xi | zi, θ̃k) p(zik = 1 | z−i)

p(zik = 1 | z−i, xi, θ̃) ∝ F (xi|θ̃k)
Nk,−i +

α
K

i− 1 + α
(2.43)

Probability to choose a previous θ̃k:

lim
K→∞

p(zik = 1 | z−i, xi, θ̃k) ∝ F (xi|θ̃k) Nk,−i , if Nk,−i > 0 (2.44)

Pick a new θ̃k from Pi = p(θ|xi) = N (θ| Q
1+Q/P

, xi

1+Q/P
):

lim
K→∞

∑

k|Nk,−i=0

p(zik = 1 | z−i, xi, θ̃k) ∝ α

∫

F (xi|θ)H(θ)dθ

∝ α N (xi | 0, Q+ P) (2.45)

Gibbs sampling algorithm for Chinese Restaurant Process is as follows:

(i) For i = 1, . . . , N , let zik = 1

• If Nk,−i = 1, remove θ̃k

• Sample zi from p(zi | z−i, xi, θ̃).

• If a new cluster is created, sample a new θ̃k from H

(ii) Sample θ̃k from p(θ̃k|x, z) for all k = 1, . . . , K

(iii) Go to 1

31

2.1.2.5. Collapsed Gibbs sampling based on the Chinese Restaurant Process. The

distribution is integrated over θ̃ before deriving the conditional over zi.

Pick a previous θ̃k with prob. ∝ Nk,−i

∫

F (xi|θ)P−i(θ)dθ

∝ Nk,−i N (xi | mk, Q+ Vk)

Pick a new θ̃k from Pi with prob. ∝ α

∫

F (xi|θ)H(θ)dθ

∝ α N (xi | 0, Q+ P) (2.46)

where P−i is the posterior of θ given all x−i:

P−i(θ) = N (θ | mk, Vk)

Vk =
Q

Nk,−i +Q/P
mk =

Sk,−i

Nk,−i +Q/P
(2.47)

Collapsed Gibbs sampling for Chinese Restaurant Process is as follows:

• Sample zi from p(zi|z−i, x) for all i = 1, . . . , N

• Go to 1

32

3. INFINITE MULTIWAY MIXTURE

In this chapter, we describe an infinite multiway mixture (IMM) model that we

developed by extending the infinite mixture model toD+∆ dimensions. Its parameters

are represented as a tensor factorization. We define a D-way Poisson mixture, where

a large observed tensor X is generated by the mixture proportions πd and a smaller

latent tensor Θ, which is represented as a factorization of M latent factors Θm of varying

dimensionalities.

3.1. Multiway clustering

Multiway clustering is a problem that has recently gained attention. In [13], the

multiway clustering problem is formulated with reference to earlier work on using hy-

pergraphs to approach VLSI and PCB clustering placement problem. As elaborated

in [14], a hypergraph is a general representation that contains hyperedges of any size

that relate any combination of entities. In [15], a general multiway framework is pre-

sented to handle various kinds of hyperedges. Our model assigns D-tuples of objects

to D-tuples of clusters, thus only involves D-way hyperedges that relate D objects of

different types.

We use D-way tensors to represent the variables. In [16], a probabilistic tensor

factorization framework is presented for multiway analysis. We use a similar framework

to represent the latent D-way tensor of component parameters in the multiway mix-

ture. In [17], an MCMC method was proposed for nonparametric biclustering problem.

Biclustering is a special case of D-way clustering for D = 2, thus its solution can be

applied to the general multiway problem.

In the following sections, we first formulate the multiway clustering problem as

a finite mixture, and present a variational inference method. Then, we suggest an

MCMC inference method to be used with the infinite mixture model.

33

3.2. The D-way Poisson mixture model

In our problem, we have D types of objects, and Nd objects from each object

type d ∈ {1, . . . , D}. Each of the observations is given for a D-tuple of these objects,

together making up the D-way tensor X with sizes N1, . . . , ND in its D dimensions.

We model X as a Poisson mixture of latent parameters in a smaller D-way tensor Θ

with sizes K1, . . . , KD. Here, Kd is the number of clusters for a given dimension, and

in general it is significantly smaller than Nd. A D-way tensor is indexed by an ‘index

set’ of D indices. Each observation in the tensor X is denoted X(ι) where ι is the index

set {i1, . . . , iD} and id ∈ {1, . . . , Nd}. Similarly, the tensor Θ is indexed by κ that is

the index set {k1, . . . , kD} where kd ∈ {1, . . . , Kd}.

3.3. Layer assignments

In D-way clustering, for each object type d, Nd objects of this type are to be

assigned to the corresponding Kd clusters. For D = 1, single observations in X are

assigned to single parameters in Θ. For D = 2, rows of observations in X are assigned

to rows of parameters in Θ, and columns to columns. When D = 3, matrices in three

different orientations from X are assigned to matrices of corresponding orientations

in Θ. For the general case, (D-1)-way tensors in X are assigned to (D-1)-way tensors

in Θ. We call such a (D-1)-way tensor a ‘layer’, and indicate it by a dimension d,

and a value for its index jd. The layer’s orientation is given by d, and its placement

inside the tensor by jd. We call Cd an indicator variable. For each orientation d,

that Cd(id, kd) = 1 indicates that the layer at id of X is assigned to the layer at kd

of Θ. A single observation X(ι) is thus assigned by the indicators C1, . . . , CD to the

layers at the indices k1, . . . , kD of Θ. These indices form the set κ, and as a result,

the observation is assigned to the latent parameter at Θ(κ). In the mixture model,

we assume that each observation X(ι) is Poisson distributed with the intensity as the

latent parameter Θ(κ) to which it is assigned.

X(ι) | Θ, C ∼
∏

κ

PO(Θ(κ))
∏D

d=1 Cd(id,kd) (3.1)

34

D

Nd
N1, . . . , ND K1, . . . , KD

πd(.) Cd(id, .) X(ι) Θ(κ)

Figure 3.1. The D-way mixture model

We model each of the vectors Cd(id, .) by a discrete distribution πd(.) of size Kd. This

vector is in turn modeled by a symmetric Dirichlet prior with concentration αd. The

full model is shown in Figure 3.1.

Cd(id, .) | πd ∼ Discrete(πd(.))

πd(.) ∼ Dir(
αd

Kd
, . . . ,

αd

Kd
) (3.2)

3.3.1. Representing the latent tensor

Up to this point, we have described a general D-way mixture model. What makes

our model specific is the representation of the latent tensor Θ. We assume that Θ is a

function of other M latent factors Θm of different dimensionalities.

Θ(κ) =
∑

β

M
∏

m=1

Θm(γm) (3.3)

The factorization is summed over a set of indices β to get the latent tensor Θ indexed

by κ. Here, β denotes an ‘additional’ set of indices {kD+1, . . . , kD+∆} that extends the
‘original’ set denoted by κ. The union of these two gives the full set of indices κ∪̇β =

{k1, . . . , kD+∆}. Each of the M factors is indexed by γm, such that ∪Mm=1γm = κ∪̇β. We

consider the factors Θm as the actual hidden parameters, and put on them a Gamma

35

prior, which is conjugate with the Poisson distribution.

Θm(γm) ∼ G(A,
B

A
) (3.4)

3.3.2. Partitioning a factor’s indices

The index set γm of a factor is partitioned into three disjoint sets in two consec-

utive steps as follows:

γm = ηm ∪̇ βm = ηm ∪̇ σm ∪̇ λm (3.5)

In the first step, it is partitioned into its ‘original’ indices ηm = γm∩κ and ‘additional’

indices βm = γm ∩ β. We then introduce β−m = ∪m′ 6=mβm to denote the additional

indices that belong to any factor other than m. In the second step, βm is further

partitioned into the indices shared with other factors σm = βm ∩ β−m and the indices

that are not shared λm = βm\β−m.

3.3.3. Determining the parameters of the model

For a given D, a finite multiway mixture model is selected by determining:

(i) The sizes {K1, . . . , KD} of the latent tensor Θ (the number of clusters for all

object types).

(ii) The concentration parameters α1, . . . , αD for each of the object types.

(iii) The number of factors M, and the index sets γ1, . . . , γM for each of these factors.

When these are given, we can also determine the set of additional indices β =

∪Mm=1γm\κ.
(iv) The prior parameters A and B for the factors Θm.

Various factorizations of Θ lead to different models. To mention two basic examples:

When M = 1 and γ1 = κ, the latent tensor Θ(κ) is modelled directly. When M = D

36

and γd = {kd}, the tensor Θ is the product of D vectors Θd(kd).

3.4. Variational inference for the finite mixture

We develop an Expectation-Maximization algorithm that involves these steps:

(i) Calculate the expectation of p(C | X,Θ, π).
(ii) For each d ∈ {1, . . . , D}, calculate the πd that maximizes p(X,C,Θ, π).

(iii) For each m ∈ {1, . . . ,M}, calculate the Θm that maximizes p(X,C,Θ, π).

In the expectation step (1), we use the posterior of the layer assignments.

p(C | X,Θ, π) ∝ {
∏

ι

∏

κ

PO(X(ι) |
∑

β

M
∏

m=1

Θm(γm))
∏

d Cd(id,kd)}

{
∏

d

∏

id

∏

kd

πd(kd)
Cd(id,kd)} (3.6)

In the maximization step (2), we update πd(kd) by the equation:

π∗
d(kd) =

αd

Kd
− 1 +

∑

id
E[Cd(id, kd)]

αd −Kd +Nd
(3.7)

In the next step (3), we update Θm(γm) by the following formula:

Θ∗
m(γm) =

A− 1 +
∑

ι

∑

κ\γm
{X(ι)

∏
d:kd∈λm

Kd
∑

λ′m 6=λm
Θm(ηm∪σm∪λ′

m)
}E[∏dCd(id, kd)]

B
A
+
∑

ι

∑

κ\γm
{∑β

∏

m′ 6=mΘm′(γm′)}E[∏dCd(id, kd)]
(3.8)

For any factor Θm(γm) with no additional indices (for each m where βm = ∅), the
fraction in the numerator of the formula reduces to 1. When there is no factorization

(M = 1), the coefficient in the summation in the denominator also reduces to 1.

37

3.5. The infinite mixture and MCMC inference

By taking a finite D-way mixture, and bringing Kd → ∞ for some or all of the

object types, we can obtain an infinite multiway mixture (IMM). We are developing an

MCMC method for inferring the layer assignments in such a nonparametric multiway

mixture model. A variety of MCMC methods for DPM are presented in [18] including

Gibbs sampling, Metropolis-Hastings updates and auxiliary parameters to handle both

conjugate and non-conjugate priors. In [17], such a method is developed for a nonpara-

metric biclustering model, which can be obtained from our D-way model for D = 2.

The method proposed is based on a property which we will express in our terms as

follows. When Cd are given, for each κ, there is a set or a ‘block’ of observations that

are assigned to it:

{X(ι) : κ} = {X(ι) :
∏

d

Cd(id, kd) = 1} (3.9)

Conditional to Θ, these blocks of observations are independent and thereby their like-

lihoods:

p(X | Θ, C) ∼
∏

κ

p({X(ι) : κ} | Θ(κ)) (3.10)

In case of a conjugate prior, we can also integrate out Θ to get the following:

p(X | C) ∼
∏

κ

∫

p({X(ι) : κ} | Θ(κ)) p(Θ(κ)) dΘ(κ) =
∏

κ

p({X(ι) : κ}) (3.11)

Using this property, an MCMC algorithm similar to [17] can be developed for the

infinite D-way mixture. IMM is a simple but powerful generative model that combines

infinite mixture modeling with tensor factorization. The index notation borrowed

from tensor factorization is used to formulate a multiway mixture model over several

dimensions. IMM provides an elegant model that explores certain theoretical ideas

from related domains.

38

4. INFINITE MIXTURE OF PIECEWISE LINEAR

SEQUENCES

In this chapter, a Bayesian nonparametric method for clustering time sequences is

presented, based on the assumption that samples in each cluster are distributed around

a number of line segments. The model is convenient for analysing results from gene

expression experiments that involve a number of temporal ‘phases’ of collected data.

An infinite mixture model with dynamic number of clusters and dynamic hyperparam-

eters is designed. As its components, piecewise linear sequences were used to model

the ‘trends’ of behavior in these phases. A Markov chain Monte Carlo scheme was

developed to sample from the mixture’s posterior. The presented method is applied to

a dataset of gene expression profiles with six phases of behaviour. Infinite mixture of

piecewise linear sequences (IMPLS) is an automatic model-based method that yields

a summarized representation of the given set of gene expression profiles.

4.1. Introduction

Clustering of time-series data have been useful in various biological problems, the

most popular being gene expression profiles. As was pointed out by Yeung et al. [19],

algorithms used to cluster gene expression profiles are in practice mostly heuristic-

based, as opposed to more rigorous model-based approaches. These heuristic methods

such as hierarchical clustering [20], self-organizing maps [21] and k-means [22] are

practical and fast methods for extracting further observations from a dataset at hand,

but their results are not dependable, because they require users to make decisions that

are not based on a theoretic model. In the model-based approach, decisions only involve

the model being constructed and inference methods can be developed independently

from the model. Moreover, a proper model-based approach can be combined with

heuristic methods, which are only to be employed before the time of inference to help

with model decisions, and after the time of inference for further inspecting the results.

39

In the last decade, nonparametric Bayesian models [2] emerged as a model-based

option that allows enhanced flexibility in modeling structural relations. In our study,

a nonparametric Bayesian model is employed for time-series analysis. The most well-

known nonparametric Bayesian models are infinite mixtures. Infinite mixtures involve

stochastic processes as priors. Dirichlet process (DP) and Pitman-Yor process (PYP)

are such priors. These priors have conditional probabilistic ‘constructions’ like Chinese

restaurant processes (CRP) or stick breaking processes, and these constructions allow

for deriving iterative inference methods [18].

Medvedovic et al. [23] applied Gaussian infinite mixture model for clustering gene

expressions. An MCMC inference method was applied by Qin [24] based on collapsed

Gibbs sampling. In this model, based on a CRP construction of a DP mixture, the

set of samples in a given gene expression profile are assumed to be independently

distributed. Joshi et al. [25] extended this approach for the simultaneous co-clustering

of genes and samples.

Our model differs from these models in that we model each mixture component

with a corresponding piecewise linear sequence (PLS). In a PLS, samples are divided

into line segments that designate the ‘phases’ of an experiment. It is assumed that

every phase of samples displays a linear relation with a constant slope, and there are

jumps in between these segments. These slopes can be interpreted as different ‘trends’

of gene expression behavior. We model gene expressions as an infinite mixture of PLS

(IMPLS), summarizing the dataset in terms of these trends of behavior. The MCMC

inference method samples most of the hyperparameters, reaching convergence in a

larger parameter space. The idea of the PLS model derives from experimental observa-

tions by Dikicioğlu et al. [26]. In their experiments with the yeast cell, they discovered

that gene expressions that come from time points of the same order (seconds, minutes,

hours) showed correlated behavior among themselves. Neighboring time points nat-

urally organized into segments that mark the ‘phases’ of their experiment. To apply

IMPLS to another dataset, its common segment structure has to be decided by making

a similar preliminary correlation analysis of samples from different time points.

40

4.2. The model

Suppose that we have N genes indexed by i ∈ {1, . . . , N} and their expression

profiles xi, vectors of size M , which are to be modelled as distributed around an

unknown number of piecewise linear sequences. Cluster assignments zi of these genes

are assumed to come from a two-parameter CRP, an iterative construction for a Pitman-

Yor process:

z1:N | α, d ∼ CRP (α, d) (4.1)

A PLS is defined by L parameters in the following order: initial value, slope of first seg-

ment, jump to second segment, slope of the second segment, jump to third segment, etc.

and the prior variances of these three types of parameters are given by Vinit, Vjump, Vslope.

These variances form the diagonal of the matrix Σ. For every cluster k ∈ {1, . . . , K}
there is an L-vector µk that defines a PLS with a Gaussian prior:

µk | Vinit, Vjump, Vslope ∼ N (µk | 0,Σ) (4.2)

Each cluster also has a precision (inverse variance) parameter λk with a Gamma prior:

λk | a, b ∼ G(λk | a, b) (4.3)

Finally, we have the likelihood, which determines that each observation is distributed

according to a Gaussian with mean Cµk and variance 1/λk, where k is the cluster that

this sample belongs to. C is a constant matrix that transforms PLS parameters into

their corresponding PLS mean:

xi | µ, λ, zi ∼
K
∏

k=1

N (xi | Cµk, λ
−1
k I)zik (4.4)

41

4.3. MCMC inference

In Markov chain Monte Carlo (MCMC) methods, a Markov chain is designed

to converge to a specified target distribution. Gibbs sampling and collapsed Gibbs

sampling are MCMC methods that are frequently used. Metropolis-Hastings (MH) is

a more generic MCMC method based on rejection sampling [27]. Qin [24] employed

collapsed Gibbs sampling to gene expressions by integrating out cluster centers and

variances. But this is not possible with our model. We run MH steps to sample cluster

precisions λk, and use these values to run collapsed Gibbs sampling steps to sample zi

by integrating out the cluster centers µk. Our MCMC algorithm consists of three steps

repeatedly applied to converge to the target distribution p(x, z, λ, α, d, a, b)

(i) For each k = 1, . . . , K, apply MH steps to re-sample λk by p(λk | x1:N , z1:N).
(ii) For each i = 1, . . . , N , apply collapsed Gibbs sampling for zi by p(zi | x1:N , z−i, λ1:K)

using auxiliary variable method for sampling new λk.

(iii) MH steps to sample α, d, a, b by their respective uninformative priors 1
α
, 1

d
, 1

and b.

The PLS prior parameters Vinit, Vjump, Vslope are fixed at a sufficiently large number to

assign equal probability for different PLS parameter values.

4.4. Likelihoods and linear segments

The samples to be partitioned are time series vectors of size M . Likelihood

of the mixture component parameters are given by N (µk | 0,Σ). Likelihood of the

observations is given by N (xi | C µk, λ
−1I).

The parameter µk determined by the first distribution is a vector of size L < M ,

and the covariance of this distribution Σ is a non-negative diagonal matrix of size L×L.
In the second line, µk is transformed by the C matrix of size M × L. In order for the

vector that results from this transformation to be a piecewise linear sequence, C matrix

must be constructed as below.

42

Let’s assume that there are J linear segments and that the segment j on vector

xi begins from the index mj and goes until the index mj+1 − 1. In this case, m1 = 1

and mJ ≤ M . Each linear segment requires two parameters: the amount of jump at

the first element of the segment and the amount of constant change from the second

element onwards. For instance if we want to segment M = 7 into two segments of size

3 and 4, we must choose J = 2, m1 = 1, m2 = 4.

In order to construct the C matrix we first need to determine the r vector:

r1 = 1

rm = rm−1 +

1 if ∃j(m = mj ∨m = mj + 1)

0 otherwise
(4.5)

This vector is a numerical sequence that begins with 1 and is incremented at the

elements that correspond to the first and second elements of the linear segments. The

value rm gives the number of parameters required for the first m observations, therefore

the total number of parameters is rM = L. For the example above it will be determined

to be r = (1, 2, 2, 3, 4, 4, 4). The matrices Σ and C are determined as follows:

Σl,l =

P0 l = 1 ise

Vslope if ∃m, j(m = mj ∧ rm = l)

Vjump otherwise

C1,1:L = (1, 0, 0, . . . , 0)

Cm,l = Cm−1,l +

1 if rm = l

0 otherwise
(4.6)

Among the values that constitute the diagonal of Σ, Vinit is the initial variance of

the first linear segment, Vslope is the variance of the jumps between segments, and

Vjump is the variance of the constant change in the subsequent elements of a linear

segment. Each row of the C matrix is obtained by inserting one of the parameters

43

to the previous row. The column whose values are incremented, corresponds either to

the jump parameter if it passes from one linear segment to another, or to the constant

change parameter if the same segment continues. For the example above Σ and C will

be as below.

Σ = diag(Vinit, Vjump, Vslope, Vjump)

C =

1 0 0 0

1 1 0 0

1 2 0 0

1 2 1 0

1 2 1 1

1 2 1 2

1 2 1 3

(4.7)

4.5. Posterior probabilities

Chinese restaurant process, with the likelihoods, constitutes an infinite mixture

model. While making inference, we need posterior probability values in order to assign

the observations to the mixture components. These probabilities, for each assignment,

are conditional to the previous assignments, just like the prior probabilities:

p(zik = 1 | zi−1, xi, θk) ∝

Nk F (xi | θk) if k ≤ K+
i−1

α
∫

F (xi | θ) p(θ)dθ otherwise
(4.8)

The probability to be inserted to a previous mixture component, is multiplied by the

likelihood of that mixture component. Whereas the probability to open a new mixture

component, is multiplied by the expected value according to the prior distribution of

the likelihood parameter.

44

Since we will apply collapsed Gibbs sampling, by summating over θk, we obtain

the following posterior probabilities:

p(zik = 1 | zi−1, xi) ∝

Nk

∫

F (xi | θ) p(θ | x1:i−1, z1:i−1)dθ if k ≤ K+
i−1

α
∫

F (xi | θ) p(θ)dθ otherwise
(4.9)

By writing model equations in place we obtain the following equation:

p(zik = 1 | zi−1, xi) ∝

Nk exp(ψ0 + ψk
3 − 1

2Q
xTi xi

+ST
k ψ

k
4Sk + (Sk + xi)

Tψk
5 (Sk + xi)) if k ≤ K+

i−1

α exp(ψ0 + ψ1 − 1
2Q
xTi xi + xTi ψ2xi) otherwise

(4.10)

Here the vector Sk is the sum of the observations in mixture component k at the

moment after the observation i − 1 is assigned. The statistics designated by ψ are as

follows:

ψ0 = − M

2
log 2π − 1

2
log |QI|

ψ1 = − 1

2
log |Σ|+ 1

2
log |V1|

ψ2 =
1

2Q2
CV1C

T

ψk
3 = − 1

2
log |VNk

|+ 1

2
log |VNk+1|

ψk
4 = − 1

2Q2
CVNk

CT

ψk
5 =

1

2Q2
CVNk+1C

T

Vn = (Σ−1 +
n

Q
CTC)−1 (4.11)

The matrices V1, VNk
and VNk+1 are determined by the equation for Vn.

45

4.6. Experiment and results

We have applied our proposed method on the carbon dataset by Dikicioğlu et

al. [26]. They collected 5667 transcriptomic profiles of the yeast cell (S. cerevisiae) in

response to the sudden and transient removal of either carbon or nitrogen limitation.

For each gene, samples were collected at 20 sec, 40 sec, 60 sec, 8 min, 16 min, 24 min,

32 min, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr, 7 hr, 1st and 2nd steady states. According to their

analysis, individual time points in the dynamic scale arranged into clusters forming

distinct phases in which the transcriptome response was observed to be similar. We

use this result to determine the C matrix in our PLS model by assuming a piecewise

linear sequence structure with 6 phases for this dataset. The MCMC was run for

10.000 iterations, sampling the assignments z1:N , cluster precisions λk as well as the

hyperparameters α, d, a, b. After the inference has finished, the most probable iteration

was chosen as the iteration 3540, which contains 269 clusters. Example clusters from

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

Figure 4.1. Random clusters from the iteration with maximum probability in the

experiment. Black lines indicate the PLS mean Cµk and the range ±3λ−
1
2

k . Blue lines

indicate the gene expression profiles in that cluster.

46

this iteration are shown on Figure 4.1. The calculated distributions of some parameters

can be observed from the histograms of the sampled parameters on Figure 4.2. The

number of clusters K, the cluster precisions λk and the hyperparameters α, d, a, b all

converge according to the target distribution p(x, z, λ, α, d, a, b) and oscillate around

their respective marginal posteriors.

The hyperparameters a, b of the cluster precisions λk converge to their respective

distributions around 8 and 1. The other two hyperparameters α, d that determine

the nonparametric prior’s tendency to create more clusters, oscillate around 60 and 0,

whereas the cluster count K oscillates around the range 270-285. In the most probable

iteration 3540 with 269 clusters, the cluster precisions λk are observed to be distributed

around 0,2. Though the convergence results of our method are desirable, the clusters

are still very numerous, and as you can see on Figure 4.1, some clusters can be very

similar in some of their phases of behavior. As actual gene expression profiles are not

naturally organized into clearly separated clusters of different behavior, the ‘clusters’

265 270 275 280 285 290 295
0

200

400

600

800

Histogram of K

75
00

 it
er

at
io

ns
 in

 3
0

bi
ns

40 50 60 70 80 90
0

200

400

600

800

Histogram of α

6 7 8 9 10
0

200

400

600

800

Histogram of a

75
00

 it
er

at
io

ns
 in

 3
0

bi
ns

0.8 0.9 1 1.1 1.2 1.3
0

200

400

600

800

Histogram of b

Figure 4.2. Histograms of K, α, a, b through the iterations.

47

resulting from our model-based inference are not also clearly separated and they show

significant similarities in their various phases.

Inference results of the IMPLS can be interpreted as a model-based ‘slicing’ of the

larger dataset of gene expression profiles into a smaller representative dataset, whose

elements are groups of genes with a corresponding piecewise linear sequence that show

their ‘trends’ of behavior in the given ‘phases’ of the experiment. Thus, the set of 269

clusters provide a summarized representation of the larger dataset of 5667 expressions,

faithfully to our PLS mixture assumptions. However, the clustering results also invite

further analysis before designing hypothesis testing schemes. It would be helpful to

inspect similarity relationships among the resulting clusters, as well as to calculate

posteriors for individual clusters with respect to the target distribution by MCMC.

48

5. CUMULATIVE STATISTICS AND ENTROPY

AGGLOMERATION

In this chapter, we present our methodology of cumulative statistics [28]. It is a

statistical approach that represents sample sets of partitionings and feature allocations

by a cumulative formulation. We also describe a clustering algorithm called Entropy

Agglomeration (EA). The use of EA will be demonstrated in the next chapter. Cumu-

lative statistics logically lies outside of Bayesian methodology, but it originates from

a theoretical question that emerges in the context of infinite mixture models, which

are among the prominent models of Bayesian nonparametrics. Here we give an ac-

count of nonparametric priors used for infinite mixture models in order to express the

theoretical question required us to develop this new approach, cumulative statistics.

5.1. Partitioning of elements in Bayesian nonparametrics

The most well-studied nonparametric prior that is used in infinite mixture mod-

els is Dirichlet process [1, 2] that makes its decisions according to a rich-gets-richer

rule, which makes new elements more likely to be assigned to the mixture components

with more numerous elements. A well-studied superclass of DP is Poisson-Dirichlet

process (PDP) [29, 30] that is based on a modified rich-gets-less-richer rule, which

allows it more likely to create new mixture components proportionally to the current

number of mixture components. The advantage of DP and PDP is that they are well-

known concepts as part of a greater literature of stochastic processes and are known

to have many theoretical properties and relations with other mathematical objects.

The disadvantage of these formulations is that they model a joint distribution over two

different aspects of an infinite mixture configuration —element assignments and mix-

ture component parameters— unable to distinguish clearly between these two tasks.

As we are more interested in the first aspect —element assignments— since they pro-

vide the clustering solution, we need to decouple it from the second aspect —mixture

component parameters. This is achieved by two basic incremental constructions for

49

infinite mixture models: Chinese restaurant process (CRP) [7] formulates an infinite

mixture model by generating a sequence of conditional element assignment probabil-

ities, whereas stick-breaking process (SBP) [31] formulates an infinite mixture model

by generating a sequence of unconditional element assignment probabilities. CRP and

SBP constructions are especially helpful in developing computational strategies for

probabilistic inference. Since the two aspects of an infinite mixture configuration may

live in different kinds of spaces, they pose different kinds of computational difficulties:

element assignments always live in a combinatorial space, whereas mixture component

parameters may live either in a combinatorial space or a continuous space depending

on the model. CRP and SBP allows us to divide this combined problem into sim-

pler sub-problems to develop more effective approaches, the most well-known methods

being Markov chain Monte Carlo (MCMC) algorithms [18].

The conceptual and computational conveniences afforded by these formulations

motivated further theoretical and practical developments: [32] combined two CRPs

in parallel to obtain an efficient probabilistic method for analysing dyadic data; [33]

connected several SBPs serially to obtain the hierarchical Dirichlet process. These

developments also inspired the invention of construction schemes for different nonpara-

metric models, such as Indian buffet process (IBP) [34] for infinite feature models [35]

and the fragmentation-coagulation process for analysing sequence data [36]. In this way,

based on a small variety of simple nonparametric priors, a large body of research has

grown in the recent decades, commonly referred to as Bayesian nonparametrics [37].

Element assignments of an infinite mixture configuration can be represented by a par-

titioning, i.e. a set of blocks in which each element appears once. As a result, to

infer element assignments of an infinite mixture model is equivalent to infer a random

partitioning. This allows us to use certain sampling methods to obtain a sample set

of partitionings drawn from the infinite mixture posterior. To apply collapsed Gibbs

sampling on an infinite mixture model, its mixture component parameters —treated

as irrelevant (nuisance) parameters— have to be integrated out of the joint probability

distribution of its mixture configuration. The resulting equation can then be used to

sample its element assignments repeatedly in a closed loop. After several iterations the

obtained sample set of partitionings will approximately represent the infinite mixture

50

posterior. If the posterior is peaked around a single partitioning, then the maximum

a posteriori solution will be quite informative. However, in some cases the posterior

is more diffuse and one needs to extract statistical information from the whole sam-

ple set of partitionings. This problem to ‘summarize’ the samples from the infinite

mixture posterior was raised in bioinformatics literature in 2002 by Medvedovic and

Sivaganesan for clustering gene expression profiles [23]. But the question proved diffi-

cult and they ‘circumvented’ it by using a heuristic linkage algorithm based on pairwise

occurence probabilities [38, 39]. In this chapter, we approach this problem and pro-

pose basic methodology for summarizing sample sets of partitionings as well as feature

allocations.

Nemenman et al. [40] showed that the entropy [41] of a DP posterior was strongly

determined by its prior hyperparameters. Archer et al. [42] recently elaborated these

results with respect to PDP. In other work, entropy was generalized to partitionings

by interpreting partitionings as probability distributions [43, 44]. Therefore, entropy

emerges as an important statistic for our problem, but new definitions will be needed

for quantifying information in feature allocations. In the following sections, we define

the problem and introduce cumulative statistics for representing partitionings and fea-

ture allocations. Then, we develop an interpretation for entropy function in terms of

per-element information in order to quantify segmentation among their elements. Fi-

nally, we describe entropy agglomeration (EA) algorithm that generates dendrograms

to summarize sample sets of partitionings and feature allocations. We demonstrate

EA on infinite mixture posteriors for synthetic and real datasets as well as on a real

dataset directly interpreted as a feature allocation.

5.2. Basic definitions and the motivating problem

We begin with basic definitions. A partitioning of a set of elements [n] =

{1, 2, . . . , n} is a set of blocks Z = {B1, . . . , B|Z|} such that Bi ⊂ [n] and Bi 6= ∅ for all
i ∈ {1, . . . , n}, Bi∩Bj = ∅ for all i 6= j, and ∪iBi = [n].1 We write Z ⊢ [n] to designate

1We use the term ‘partitioning’ to indicate a ‘set partition’ as distinguished from an integer
‘partition’.

51

that Z is a partitioning of [n].2 A sample set E = {Z(1), . . . , Z(T)} from a distribution

π(Z) over partitionings is a multiset such that Z(t) ∼ π(Z) for all t ∈ {1, . . . , T}. We

are required to extract information from this sample set. Our motivation is the follow-

ing problem: a set of observed elements (x1, . . . , xn) are clustered by an infinite mixture

model with parameters θ(k) for each component k and mixture assignments (z1, . . . , zn)

drawn from a two-parameter CRP prior with the concentration hyperparameter α and

the discount hyperparameter d [7].

z ∼ CRP (z;α, d) θ(k) ∼ p(θ) xi | zi, θ ∼ F (xi | θ(zi)) (5.1)

In the conjugate case, all θ(k) can be integrated out to get p(zi | z−i, x) to sample zi [9]:

p(zi | z−i, x) ∝
∫

p(z, x, θ) dθ ∝

nk−d
n−1+α

∫

F (xi|θ) p(θ|x−i, z−i) dθ if k ≤ K+

α+dK+

n−1+α

∫

F (xi|θ) p(θ) dθ otherwise

(5.2)

There are K+ non-empty components and nk elements in each component k. In each

iteration, xi will either be put into an existing component k ≤ K+ or it will be assigned

to a new component. By sampling all zi repeatedly, a sample set of assignments z(t)

are obtained from the posterior p(z | x) = π(Z). These z(t) are then represented by

partitionings Z(t) ⊢ [n]. The induced sample set contains information regarding (1)

CRP prior over partitioning structure given by the hyperparameters (α, d) and (2)

integrals over θ that capture the relation among the observed elements (x1, . . . , xn).

In addition, we aim to extract information from feature allocations, which constitute

a superclass of partitionings [34]. A feature allocation of [n] is a multiset of blocks

F = {B1, . . . , B|F |} such that Bi ⊂ [n] and Bi 6= ∅ for all i ∈ {1, . . . , n}. A sample

set E = {F (1), . . . , F (T)} from a distribution π(F) over feature allocations is a multiset

such that F (t) ∼ π(F) for all t. Current exposition will focus on partitionings, but we

are also going to show how our statistics apply to feature allocations.

2The symbol ‘⊢’ is usually used for integer partitions, but here we use it for partitionings (=set
partitions).

52

Assume that we have obtained a sample set E of partitionings. If it was obtained

by sampling from an infinite mixture posterior, then its blocks B ∈ Z(t) correspond

to the mixture components. Given a sample set E, we can approximate any statistic

f(Z) over π(Z) by averaging it over the set E:

Z(1), . . . , Z(T) ∼ π(Z) ⇒ 1

T

T
∑

t=1

f(Z(t)) ≈ 〈 f(Z) 〉π(Z) (5.3)

Which f(Z) would be a useful statistic for Z? Three statistics commonly appear in the

literature: First one is the number of blocks |Z|, which has been analyzed theoretically

for various nonparametric priors [2, 7]. It is simple, general and exchangable with

respect to the elements [n], but it is not very informative about the distribution π(Z)

and therefore is not very useful in practice. A common statistic is pairwise occurence,

which is used to extract information from infinite mixture posteriors in applications

like bioinformatics [23]. For given pairs of elements {a, b}, it counts the number of

blocks that contain these pairs, written
∑

i[{a, b} ⊂ Bi]. It is a very useful similarity

measure, but it cannot express information regarding relations among three or more

elements. Another statistic is exact block size distribution (referred to as ‘multiplicities’

in [35,42]). It counts the partitioning’s blocks that contain exactly k elements, written
∑

i[|Bi| = k]. It is exchangable with respect to the elements [n], but its weighted

average over a sample set is difficult to interpret. Let us illustrate the problem by a

practical example, to which we will return in the formulations:

Z(1) = {{1, 3, 6, 7}, {2}, {4, 5}} S1 = {1, 2, 3, 4}

E3 = {Z(1), Z(2), Z(3)} Z(2) = {{1, 3, 6}, {2, 7}, {4, 5}} S2 = {1, 3, 6, 7}

Z(3) = {{1, 2, 3, 6, 7}, {4, 5}} S3 = {1, 2, 3} (5.4)

Suppose that E3 represents interactions among seven genes. We want to compare the

subsets of these genes S1, S2, S3. The projection of a partitioning Z ⊢ [n] onto S ⊂ [n]

is defined as the set of non-empty intersections between S and B ∈ Z. Projection onto

53

S induces a partitioning of S.

PROJ(Z, S) = {B ∩ S}B∈Z\{∅} ⇒ PROJ(Z, S) ⊢ S (5.5)

Let us represent gene interactions in Z(1) and Z(2) by projecting them onto each subset:

PROJ(Z(1), S1) = {{1, 3}, {2}, {4}} PROJ(Z(2), S1) = {{1, 3}, {2}, {4}}

PROJ(Z(1), S2) = {{1, 3, 6, 7}} PROJ(Z(2), S2) = {{1, 3, 6}, {7}}

PROJ(Z(1), S3) = {{1, 3}, {2}} PROJ(Z(2), S3) = {{1, 3}, {2}} (5.6)

Comparing S1 to S2, we can say that S1 is ‘more segmented’ than S2, and therefore

genes in S2 should be more closely related than those in S1. However, it is more subtle

and difficult to compare S2 to S3. A clear understanding would allow us to explore

the subsets S ⊂ [n] in an informed manner. In the following section, we develop a

novel and general approach based on block sizes that opens up a systematic method

for analyzing sample sets over partitionings and feature allocations.

5.3. Cumulative statistics to represent structure

We define cumulative block size distribution, or ‘cumulative statistic’ in short, as

the function φk(Z) =
∑

i[|Bi| ≥ k], which counts the partitioning’s blocks of size at

least k. We can rewrite the previous statistics: number of blocks as φ1(Z), exact block

size distribution as φk(Z)− φk+1(Z), and pairwise occurence as φ2(PROJ(Z, {a, b})).
Moreover, cumulative statistics satisfy the following property: for partitionings of [n],

φ(Z) always sums up to n, just like a probability mass function that sums up to 1.

When blocks of Z are sorted according to their sizes and the indicators [|Bi| ≥ k] are

arranged on a matrix as in Figure 5.1a, they form a Young diagram, showing that

φ(Z) is always the conjugate partition of the integer partition of Z. As a result, φ(Z)

as well as weighted averages over several φ(Z) always sum up to n, just like taking

averages over probability mass functions (Figure 5.2). Therefore, cumulative statistics

54

B3 = {1, 3, 6, 7}

B1 = {2}
B2 = {4, 5}

|B3| ≥ 4|B3| ≥ 2 |B3| ≥ 3

|B2| ≥ 2

|B3| ≥ 1

|B2| ≥ 1

|B1| ≥ 1

φ(Z(1)) =

1

2

4

3 2 1 1

Z(1) = {{1, 3, 6, 7}, {2}, {4, 5}}

(a) Cumulative statistic for a partitioning

B3 = {1, 3}

B1 = {2}

B2 = {4}

|B3| ≥ 2|B3| ≥ 1

|B2| ≥ 1

|B1| ≥ 1

φ(PROJ(Z(1), S1)) =

1

1

2

3 1

PROJ(Z(1), S1) = {{1, 3}, {2}, {4}}

(a) For its projection onto a subset

Figure 5.1. Young diagrams show the conjugacy of the cumulative statistic

1 2 3 4 5
0

1

2

3

4

k

φ
(Z

(1
))

1 2 3 4 5
0

1

2

3

4

k

φ
(Z

(2
))

1 2 3 4 5
0

1

2

3

4

k

φ
(Z

(3
))

1 2 3 4 5
0

1

2

3

4

k

A
v
er
a
g
e
ov

er
th
re
e

Figure 5.2. Cumulative statistics of 3 examples and their average, each sum up to 7.

of a random partitioning ‘conserve mass’. In the case of feature allocations, since

elements can be omitted or repeated, this property does not hold.

Z ⊢ [n] ⇒
n

∑

k=1

φk(Z) = n ⇒
n

∑

k=1

〈 φk(Z) 〉π(Z) = n (5.7)

When we project the partitioning Z onto a subset S ⊂ [n], the resulting vector

φ(PROJ(Z, S)) will then sum up to |S| (Figure 5.1b). A ‘taller’ Young diagram

implies a ‘more segmented’ subset. We can form a partitioning Z by inserting elements

1, 2, 3, 4, . . . into its blocks (Figure 5.3a). In such a scheme, each step brings a new

element and requires a new decision that will depend on all previous decisions. It would

be better if we could determine the whole path by few initial decisions. Now suppose

that we know Z from the start and we generate an incremental sequence of subsets

S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3}, S4 = {1, 2, 3, 4}, . . . according to a permutation of

[n]: σ = (1, 2, 3, 4, . . .). We can then represent any path in Figure 5.3a by a sequence of

PROJ(Z, Si) and determine the whole path by two initial parameters: Z and σ. The

resulting tree can be simplified by representing the partitionings by their cumulative

statistics instead of their blocks (Figure 5.3b).

55

{{1}}

{{1}, {2}}

{{1, 2}}

{{1}, {2}, {3}}

{{1, 3}, {2}}
{{1}, {2, 3}}

{{1, 2, 3}}

{{1}, {2}, {3}, {4}}

{{1, 4}, {2}, {3}}
{{1}, {2, 4}, {3}}

{{1}, {2}, {3, 4}}

{{1}, {2, 3}, {4}}
{{1, 3}, {2}, {4}}

{{1, 3}, {2, 4}}
{{1, 4}, {2, 3}}

{{1, 3, 4}, {2}}
{{1}, {2, 3, 4}}

{{1, 2, 3}, {4}}

{{1, 2, 3, 4}}

{{1, 2}, {3}}

{{1, 2}, {3}, {4}}

{{1, 2, 4}, {3}}

{{1, 2}, {3, 4}}

(a) Form partitioning by inserting elements

(1)

(2, 0)

(1, 1)

(3, 0, 0)

(2, 1, 0)

(1, 1, 1)

(4, 0, 0, 0)

(3, 1, 0, 0)

(2, 2, 0, 0)

(2, 1, 1, 0)

(1, 1, 1, 1)

–1.39

–1.04

–0.69

–0.56

–0

p
a
rt
it
io
n

e
n
tr
o
p
y

(b) Form the vector by inserting elements

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

(c) All in one block

1

2

3

4

5

6

7

1

2 0

2 1 0

3 1 0 0

3 2 0 0 0

3 2 1 0 0 0

3 2 1 1 0 0 0

(d) COD matrix ∆(Z(1), (1, . . . , 7))

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0 0

(e) Each to a new block

Figure 5.3. COD matrices correspond to the red dotted paths on the trees above

Based on this concept, we define cumulative occurence distribution (COD) as

the triangular matrix of incremental cumulative statistic vectors, written ∆i,k(Z, σ) =

φk(PROJ(Z, Si)) where Z ⊢ [n], σ is a permutation of [n] and Si = {σ1, . . . , σi} for

i ∈ {1, . . . , n}. COD matrices for two extreme paths (Figure 5.3c, 5.3e) and for the

example partitioning Z(1) (Figure 5.3d) are shown. For partitionings, ith row of a COD

matrix always sums up to i, even when averaged over a sample set as in Figure 5.6.

Z ⊢ [n] ⇒
i

∑

k=1

∆i,k(Z, σ) = i ⇒
i

∑

k=1

〈 ∆i,k(Z, σ) 〉π(Z) = i (5.8)

Expected COD matrix of a random partitioning expresses (1) cumulation of elements

by the differences between its rows, and (2) cumulation of block sizes by the differences

between its columns. As an illustrative example, consider π(Z) = CRP (Z|α, d). Since
CRP is exchangable and projective, its expected cumulative statistic 〈φ(Z)〉π(Z) for

56

n elements depends only on its hyperparameters (α, d). As a result, its expected

COD matrix ∆ = 〈∆(Z, σ)〉π(Z) is independent of σ, and it satisfies an incremental

formulation with the parameters (α, d) over the indices i ∈ N, k ∈ Z
+:

∆0,k = 0 ∆i+1,k = ∆i,k +

α+d∆i,k

i+α
if k = 1

(k−1−d)(∆i,k−1−∆i,k)

i+α
otherwise

(5.9)

By allowing k = 0 and setting ∆i,0 = −α
d
, and ∆0,k = 0 for k > 0 as the two boundary

conditions, the same matrix can be formulated by a difference equation over the indices

i ∈ N, k ∈ N:

(∆i+1,k −∆i,k)(i+ α) = (∆i,k−1 −∆i,k)(k − 1− d) (5.10)

By setting ∆ = ∆(0) we get an infinite sequence of matrices ∆(m) that satisfy the same

equation:

(∆
(m)
i+1,k −∆

(m)
i,k)(i+ α) = (∆

(m)
i,k−1 −∆

(m)
i,k)(k − 1− d) = ∆

(m+1)
i,k (5.11)

Therefore, expected COD matrix of a CRP-distributed random partitioning is at a

constant ‘equilibrium’ determined by α and d. This example shows that the COD

matrix can reveal specific information about a distribution over partitionings; of course

in practice we encounter non-exchangeable and almost arbitrary distributions over

partitionings (e.g., the posterior distribution of an infinite mixture), therefore in the

following section we will develop a measure to quantify this information.

5.4. Entropy to quantify segmentation

Shannon’s entropy [41] can be an appropriate quantity to measure ‘segmentation’

with respect to partitionings, which can be interpreted as probability distributions

[43, 44]. Since this interpretation does not cover feature allocations, we will make an

alternative, element-based definition of entropy.

57

How does a block B inform us about its elements? Each element has a proportion

1/|B|, let us call this quantity per-element segment size. Information is zero for |B| = n,

since 1/n is the minimum possible segment size. If |B| < n, the block supplies positive

information since the segment size is larger than minimum, and we know that its

segment size could be smaller if the block were larger. To quantify this information, we

define per-element information for a block B as the integral of segment size 1/s over

the range [|B|, n] of block sizes that make this segment smaller (Figure 5.4).

pein(B) =

∫ n

|B|

1

s
ds = log

n

|B| (5.12)

In pein(B), n is a ‘base’ that determines the minimum possible per-element segment

size. Since segment size expresses the significance of elements, the function integrates

segment sizes over the block sizes that make the elements less significant. This def-

inition is comparable to the well-known p-value, which integrates probabilities over

the values that make the observations more significant. We can then compute the

per-element information supplied by a partitioning Z, by taking a weighted average

over its blocks, since each block B ∈ Z supplies information for a different proportion

|B|/n of the elements being partitioned. For large n, weighted per-element information

1
s

|B| n

1
|B|

1
n

log n
|B|

Figure 5.4. Per-element information

2 4 6 8 10 12
0

0.2

0.4

block size |B|

|B
|

n
lo
g

n |B
|

Figure 5.5. Weighted information

58

reaches its maximum near |B| ≈ n/2 (Figure 5.5). Total weighted information for Z

gives Shannon’s entropy function [41] which can be written in terms of the cumulative

statistics (assuming φn+1 = 0):

H(Z) =

|Z|
∑

i=1

|Bi|
n

pein(Bi) =

|Z|
∑

i=1

|Bi|
n

log
n

|Bi|
=

n
∑

k=1

(φk(Z)− φk+1(Z))
k

n
log

n

k

(5.13)

Entropy of a partitioning increases as its elements become more segmented among

themselves. A partitioning with a single block has zero entropy, and a partitioning

with n blocks has the maximum entropy log n. Nodes of the tree we examined in the

previous section (Figure 5.3b) were vertically arranged according to their entropies. On

the extended tree (Figure 5.7), nth column of nodes represent the possible partitionings

of n. This tree serves as a ‘grid’ for both H(Z) and φ(Z), as they are linearly related

with the general coefficient (k
n
log n

k
− k−1

n
log n

k−1
). A similar grid for feature allocations

can be generated by inserting nodes for cumulative statistics that do not conserve

mass. We compute projection entropy H(PROJ(Z, S)) to quantify the segmentation

of a subset S. To understand this function, we compare it to subset occurence in

1

2

3

4

5

6

7

1.0

1.7 0.3

1.7 1.0 0.3

2.7 1.0 0.3 0.0

2.7 2.0 0.3 0.0 0.0

2.7 2.0 1.0 0.3 0.0 0.0

2.7 2.3 1.0 0.7 0.3 0.0 0.0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

en
tr

op
y

1

3

6

7

2

4

5

1.0

1.0 1.0

1.0 1.0 1.0

1.3 1.0 1.0 0.7

1.7 1.3 1.0 0.7 0.3

2.7 2.3 1.0 0.7 0.3 0.0

2.7 2.3 1.0 0.7 0.3 0.0 0.0 1 3 6 7 2 4 5
0

0.2

0.4

0.6

0.8

1

en
tr

op
y

Figure 5.6. CODs and entropies over E3 for (1, 2, 3, 4, 5, 6, 7) and (1, 3, 6, 7, 2, 4, 5)

59

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

number of elements n

pa
rt

iti
on

 e
nt

ro
py

 H
(Z

)

Figure 5.7. H(Z) in constructing Z

10 0

0

1

0

0 0

0 0

0

a ∈ B b ∈ B

a ∈ B b ∈ B

c ∈ B

0

01
2 log

2
1

1
2 log

2
1

0

0

2
3 log

3
2

2
3 log

3
2

2
3 log

3
2

1
3 log

3
1

1
3 log

3
1

1
3 log

3
1

a ∈ B b ∈ B

a ∈ B b ∈ B

c ∈ B

0

Subset occurence: Projection entropy:
∑

i[S ⊂ Bi] H(PROJ(Z, S))

S
=
{
a
,b,c}

S
=
{
a
,b}

Figure 5.8. Comparing two statistics

60

Figure 5.8. Subset occurence acts as a ‘score’ that counts the ‘successful’ blocks that

contain all of S, whereas projection entropy acts as a ‘penalty’ that quantifies how

much S is being divided and segmented by the given blocks B ∈ Z. A partitioning

Z and a permutation σ of its elements induce an entropy sequence (h1, . . . , hn) such

that hi(Z, σ) = H(PROJ(Z, Si)) where Si = {σ1, . . . , σi} for i ∈ {1, . . . , n}. To find

subsets of elements that are more closely related, one can seek permutations σ that

keep the entropies low. The generated subsets Si will be those that are less segmented

by B ∈ Z. For the example problem, the permutation 1, 3, 6, 7, . . . keeps the expected

entropies lower, compared to 1, 2, 3, 4, . . . (Figure 5.6).

5.5. Entropy agglomeration and experimental results

We want to summarize a sample set using the proposed statistics. Permutations

that yield lower entropy sequences can be meaningful, but a feasible algorithm can only

involve a small subset of the n! permutations. We define entropy agglomeration (EA)

algorithm, which begins from 1-element subsets, and merges in each iteration the pair

of subsets that yield the minimum expected entropy:

(i) Initialize Ψ← {{1}, {2}, . . . , {n}}.
(ii) Find the subset pair {Sa, Sb} ⊂ Ψ that minimizes the entropy

〈 H(PROJ(Z, Sa ∪ Sb)) 〉π(Z).

(iii) Update Ψ← (Ψ\{Sa, Sb}) ∪ {Sa ∪ Sb}.
(iv) If |Ψ| > 1 then go to 2.

(v) Generate the dendrogram of chosen pairs by plotting minimum entropies for every

split.

The resulting dendrogram for the example partitionings are shown in Figure 5.9a. The

subsets {4, 5} and {1, 3, 6} are shown in individual nodes, because their entropies are

zero. Besides using this dendrogram as a general summary, one can also generate more

specific dendrograms by choosing specific elements or specific parts of the data. For a

detailed element-wise analysis, entropy sequences of particular permutations σ can be

assessed. Entropy Agglomeration is inspired by ‘agglomerative clustering’, a standard

61

approach in bioinformatics [20]. To summarize partitionings of gene expressions, [23]

applied agglomerative clustering by pairwise occurences. Although very useful and

informative, such methods remain ‘heuristic’ because they require a ‘linkage criterion’

in merging subsets. EA avoids this drawback, since projection entropy is already

defined over subsets.

To test the proposed algorithm, we apply it to partitionings sampled from infinite

mixture posteriors. In the first three experiments, data is modeled by an infinite mix-

ture of Gaussians, where α = 0.05, d = 0, p(θ) = N (θ|0, 5) and F (x|θ) = N (x|θ, 0.15)
(see Equation 5.1). Samples from the posterior are used to plot the histogram over the

number of blocks, pairwise occurences, and the EA dendrogram. Pairwise occurences

are ordered according to the EA dendrogram. In the fourth experiment, EA is directly

applied on the data. We describe each experiment and make observations:

1) Synthetic data (Figure 5.9b): 30 points on R
2 are arranged in three clusters.

Plots are based on 450 partitionings from the posterior. Clearly separating the three

clusters, EA also reflects their qualitative differences. The dispersedness of the first

cluster is represented by distinguishing ‘inner’ elements 1, 10, from ‘outer’ elements 6,

7. This is also seen as shades of gray in pairwise occurences.

2) Iris flower data (Figure 5.9c): This well-known dataset contains 150 points

on R
4 from three flower species [45]. Plots are based on 150 partitionings obtained

from the posterior. For convenience, small subtrees are shown as single leaves and

elements are labeled by their species. All of 50 A points appear in a single leaf, as they

are clearly separated from B and C. The dendrogram automatically scales to cover the

points that are more uncertain with respect to the distribution.

3) Galactose data (Figure 5.9d): This is a dataset of gene expressions by 820

genes in 20 experimental conditions [46]. First 204 genes are chosen, and first two

letters of gene names are used for labels. Plots are based on 250 partitionings from

the posterior. 70 RP (ribosomal protein) genes and 12 HX (hexose transport) genes

appear in individual leaves. In the large subtree on the top, an ‘outer’ grouping of 19

62

genes (circles in data plot) is distinguished from the ‘inner’ long tail of 68 genes.

4) IGO (Figure 5.9e): This is a dataset of intergovernmental organizations (IGO)

[47] that contains IGO memberships of 214 countries through the years 1815-2000. In

this experiment, we take a different approach and apply EA directly on the dataset

interpreted as a sample set of single-block feature allocations, where the blocks are IGO-

year tuples and elements are the countries. We take the subset of 138 countries that

appear in at least 1000 of the 12856 blocks. With some exceptions, the countries display

a general ordering of continents. From the ‘outermost’ continent to the ‘innermost’

continent they are: Europe, America-Australia-NZ, Asia, Africa and Middle East.

5.6. Discussion

In this section, we developed a novel approach for summarizing sample sets of

partitionings and feature allocations. After presenting the problem, we introduced cu-

mulative statistics and cumulative occurence distribution matrices for each of its per-

mutations, to represent a sample set in a systematic manner. We defined per-element

information to compute entropy sequences for these permutations. We developed en-

tropy agglomeration (EA) algorithm that chooses and visualises a small subset of these

entropy sequences. Finally, we experimented with various datasets to demonstrate the

method.

Entropy agglomeration is a simple algorithm that does not require much knowl-

edge to implement, but it is conceptually based on the cumulative statistics we have

presented. Since we primarily aimed to formulate a useful algorithm, we only made

the essential definitions, and several points remain to be elucidated. For instance, cu-

mulative statistics can be investigated with respect to various nonparametric priors.

Our definition of per-element information can be developed with respect to information

theory and hypothesis testing. Last but not least, algorithms like entropy agglomera-

tion can be designed for summarization tasks concerning various types of combinatorial

sample sets.

63

(a) Example partitionings:
Z(1) = {{1, 3, 6, 7}, {2}, {4, 5}}

Z(2) = {{1, 3, 6}, {2, 7}, {4, 5}}

Z(3) = {{1, 2, 3, 6, 7}, {4, 5}}

0 0.2 0.4 0.6 0.8

1, 3, 6

7

2

4, 5

entropy

2 3
0

0.5

1

1.5

2
Number of blocks

Pairwise occurences

4 5 2 7 1 3 6

4
5
2
7
1
3
6

(b) Synthetic data:

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1

2

3

4

5

6
7

8

9
10

11
12

13
1415 16

17
18

19

20

21

22

23
24

25 26

27

2829

30

0 1

21
23
27
29
22
24
26
28
25
30
11
13
12
18
14
20
16
17
15
19

1
10

2
4
5
9
3
8
6
7

entropy

3 5 7 9 11 13
0

50

100
Number of blocks

Pairwise occurences

10 20 30

10

20

30

5 6 7 8
0

20

40

60

Number of blocks

Pairwise occurences

50 100 150

50

100

150 0 1

8 B, 1 C
3 C

11 B, 8 C
1 C
2 B
1 B
1 B
1 B
1 B

5 B, 1 C
1 B
9 B
2 B
2 B
2 B
1 B
1 B

50 A, 1 B, 1 C
1 B
1 C
8 C
1 C
1 C

12 C
4 C
2 C
2 C
1 C
1 C
2 C

entropy

(c) Iris flower:

−4 −2 0 2 4
−2

−1

0

1

2

A B C

(PCA projection R
4 → R

2)

(d) Galactose:

−4 −3 −2 −1 0 1 2
−4

−2

0

2

others RP
HX

(PCA projection R
20 → R

2)

9 11 13 15 17 19
0

10

20

30

40

50

Number of blocks Pairwise occurences

50 100 150 200

50

100

150

200

Galactose:

0 0.5 1 1.5

1 PG
1 PG
1 CD
1 CD
1 PG
1 PG
1 CD
1 CD

70 RP, 4 YD
1 RP
1 RP
1 RP
1 RP
1 RP
1 RP
1 SR
1 SN
1 RR
1 SR
1 SN
1 SR
1 NT
1 ST
1 ST
1 PA
1 HP
1 SN
1 SN
1 SN
1 ST
1 SN

12 HX
1 ST
1 HA
1 TF
1 PR
1 HA
1 PR
1 HA
1 NC
1 NT
1 ME
1 RR
1 PR
1 ME

1 FI
1 FI

1 NC
1 HP
1 SN
1 PR
1 SR
1 TF
1 PR
1 AB
1 SR
1 NC
1 HP
1 LS
1 PA
1 PR
1 HP
1 AB
1 SN
1 HA
1 SN
1 NC
1 RR
1 SL
1 PR
1 LS
1 MT
1 MT
1 SL
1 PR
1 SR
1 SM
1 SN
1 SM
1 SR
1 SR
1 ME
1 SR
1 HA
1 PR
1 PR
1 TF
1 PA
1 LS
1 HA
1 PR
1 RR
1 PR
1 AB
1 PR
1 NT
1 ME
1 NT
1 FI

1 TF
1 SR
1 AB
1 FI

1 MT
1 SL
1 MT
1 SR
1 SM
1 SN
1 HA
1 HA
1 SR
1 SM
1 LS
1 PA
1 PR
1 PR
1 SL
1 PR
1 SN

entropy

(e) IGO:

0 0.2 0.4 0.6 0.8

qatar
uae

bahrain
oman

iraq
kuwait

saudiarabia
jordan

libya
lebanon

syria
algeria

morocco
tunisia
egypt

cyprus
malta
israel

iran
turkey
benin
togo

guinea
burkinafaso

niger
mali

ivorycoast
senegal

car
congobrazz

chad
cameroon

gabon
mauritania

somalia
sudan

botswana
lesotho

swaziland
mozambique

zimbabwe
eqguinea

guineabissau
kenya

tanzania
uganda
malawi
zambia

mauritius
burundi
rwanda

zaire
ethiopia

madagascar
gambia

sierraleone
liberia
ghana
nigeria

afghanistan
cambodia

laos
bangladesh

myanmar
nepal

fiji
papuanewguinea

singapore
vietnam

china
sokorea

india
pakistan
srilanka

indonesia
malaysia

philippines
thailand
albania

czechoslovakia
bahamas
grenada

suriname
barbados

guyana
jamaica
trinidad

argentina
brazil

mexico
bolivia

paraguay
chile

uruguay
colombia

peru
ecuador

venezuela
costarica
panama

elsalvador
honduras

guatemala
nicaragua

domrepublic
haiti

cuba
australia

newzealand
soafrica
canada

japan
usa

austria
switzerland

yugoslaviaserb
denmark
sweden
finland
norway
iceland

wgermany
belgium

netherlands
france

uk
greece

italy
portugal

spain
ireland

luxembourg
bulgaria
romania
hungary

poland
russia

germany

entropy

Figure 5.9. Entropy agglomeration and results from experiments (See text)

64

6. CLUSTERING WORDS BY PROJECTION ENTROPY

In this chapter we present the application of entropy agglomeration (EA) to

cluster the words of a literary text. EA is a greedy agglomerative procedure that

minimizes projection entropy (PE), a function that can quantify the segmentedness of

an element set. To apply it, the text is reduced to a feature allocation, a combinatorial

object to represent the word occurences in the text’s paragraphs. The experiment

results demonstrate that EA, despite its reduction and simplicity, is useful in capturing

significant relationships among the words in the text. This procedure was implemented

in Python and published as a free software: REBUS.

Problems in natural language processing involve many difficulties due to the va-

riety of subtleties and ambiguities in languages. On the other hand, these problems

can be familiar to people in different fields, since the spoken and written languages

constitute our common ground. It is especially favorable to approach these difficulties

with generic statistical concepts, since these can also be utilized in other challenging

fields such as bioinformatics. Here we demonstrate the use of entropy agglomeration

(EA), a recently introduced algorithm [28], by clustering the words of a literary text.

By following the state-of-the-art NLP methods, we assume that words are the basic

elements of a text [48] [3]. Moreover, to approach text analysis in a simpler form, we

disregard all sequential ordering, considering each paragraph as a subset of words, and

the whole text as a set of paragraphs. A statistical analysis of such data would con-

ventionally be formulated in terms of joint probabilities of word sets to co-occur in the

paragraphs. Such a probabilistic formulation can be extended to potentially infinite

number of words by using Bayesian nonparametric models [49]. However, we take a

different approach: we compute projection entropies (PE) of word sets, and use them

in a clustering algorithm called entropy agglomeration (EA) to find the meaningful

correlations among the words in the text. And we will briefly review the statistical

concepts that were introduced in [28]. In the following sections, we define how the

input data is represented by feature allocations, quantified by projection entropies and

clustered by entropy agglomeration. We describe the experiment procedure on the

65

. . .

. . .

. . .

a b c d e f g h x

B1 B2 B3 B4 B|F |
Entropy: H(F) =

∑|F |
i=1

|Bi|
n

log n
|Bi|

Projection: PROJ(F, S) = {B ∩ S}B∈F\{∅}
Projection entropy: H(PROJ(F, S))

Figure 6.1. Text is represented by a feature allocation.

way, and finally present the results, which demonstrate that our algorithm is able to

capture a variety of meaningful relationships among the words of the input text. An

additional discussion of projection entropy in comparison to co-occurence is included

in the fourth section.

6.1. The input text and its representation

We picked Ulysses (1922) by James Joyce to be the input text. It consists of

7437 paragraphs and contains 29327 distinct words. But we only want to know which

words occur in which paragraphs. This information is illustrated as a bipartite graph

in Figure 6.1 where word elements below are linked to the paragraphs above them.

Any text with n distinct words will be represented by a feature allocation defined as

follows: A feature allocation of a set of elements [n] = {1, 2, . . . , n}, is a multiset of

blocks F = {B1, . . . , B|F |} such that Bi ⊂ [n] and Bi 6= ∅ for all i ∈ {1, . . . , n}. The

blocks B1, . . . , B|F | in this definition will represent the paragraphs of the input text.

See the definitions given in Figure 6.1. Entropy quantifies the segmentedness of

elements with respect to the blocks of F . It becomes maximum at the blocks that

include about half of the elements. Projection of F onto S restricts the scope of F

to this subset, functioning like a filter to focus on this particular subset. Projection

entropy computes the segmentedness for a particular subset, by projecting F onto it

(See [28]). If a subset has low PE, we say its elements have entropic correlation. The

projection size |PROJ(F, {a})| of an element a is the number of blocks that include

it. In our case, a indicates a word and its projection size is the number of paragraphs

it occurs in.

66

6.2. Clustering the word sets

Ulysses is reduced, but the feature allocation still contains too many words.

Word sets of manageable sizes are needed for analysis. Nine word sets are assembled

by restricting their projection sizes (number of paragraphs they occur in) in ranges

10, 11, 12-13, 15-17, 20-25, 30-39, 40-59, 60-149 and 150-7020. Then, the full feature

allocation is projected onto each of these word sets, and EA is run on each of these

projected feature allocations. Here is the pseudocode for the EA algorithm:

(i) Initialize Ψ← {{1}, {2}, . . . , {n}}.
(ii) Find the subset pair {Sa, Sb} ⊂ Ψ that minimizes the entropy H(PROJ(F, Sa ∪

Sb)).

(iii) Update Ψ← (Ψ\{Sa, Sb}) ∪ {Sa ∪ Sb}.
(iv) If |Ψ| > 1 then go to 2.

(v) Generate the dendrogram of chosen pairs by plotting minimum entropies for every

bifurcation.

EA generates a dendrogram for each word set to show the entropic correlations among

its elements. Dendrograms are diagrams commonly used to display results of hierarchi-

cal clustering algorithms [20,28]. Sample word pairs from EA dendrograms are shown

in Table 6.1 to illustrate the variety of entropic correlations detected by the algorithm.

These correlations indicate a diversity of semantic relationships: black-white, south-

north are antonyms; then-now, former-latter, came-went are contraries; female-male,

Eve-Adam, you-I indicate reciprocities; red-green are colors; four-five, nine-eleven are

quantities; his-he, her-she, me-my, us-our, them-their, thy-thou are inflections of differ-

ent pronouns; hear-heard, looking-looked, smile-smiled, pouring-poured are inflections

of different verbs; ireland-irish is the inflection of a nation. Some of the other con-

textual correlations of expressions, things and figures are also enumerated. Entropic

correlations cover an interesting range of meanings.

67

Differences:

black – white

south – north

then – now

former – latter

came – went

red – green

female – male

eve – adam

you – I

four – five

nine – eleven

Inflections:

his – he

her – she

me – my

us – our

them – their

thy – thou

hear – heard

looking – looked

smile – smiled

pouring – pour

ireland – irish

Expressions:

ah – sure

ay – eh

darling – perfume

thank – please

Things:

ocean – level

waves – waters

river – boat

moon – stars

birds – fly

grass – fields

window – seen

hand – eyes

face – head

cup – tea

plate – fork

food – eating

job – business

sell – trade

slice – quantity

family – memory

road – city

system – distance

Figures:

girl – sweet

dame – joy

females – period

wife – world

woman – behind

gentleman – friend

gentlemen – friends

priest – quietly

reverend – blessed

christ – jew

human – live

Table 6.1. Sample word pairs to illustrate the entropic correlations captured by EA.

6.3. On the meaning of projection entropy

Projection entropy (PE) is a useful guiding principle in exploring significant

element-wise relationships in combinatorial data. But it has a meaning that is quite

different from conventional statistical methods. Therefore in this section, we would like

to discuss the meaning of projection entropy in comparison to a well-known quantity,

co-occurence of elements, which is used for similar purposes in probabilistic modeling.

The actualizations of these quantities’ values for 2 and 3 elements are illustrated in

Figure 5.8. Firstly, as pointed out in [28], contrary to the positive sense of co-occurence

as scoring the blocks where all elements co-occur; PE has a negative sense of penalizing

the blocks that divide and separate them. Secondly, co-occurence is non-zero only at

the blocks that include all of the elements, leaving out the blocks that exclude any of

them. But PE leaves out the blocks that include all elements as well as the blocks that

exclude all elements; it is non-zero only at partial inclusions: at the blocks that include

some elements while excluding other elements. This makes PE a flexible quantity that

can adjust to the blocks where any part of the elements overlap, whereas co-occurence

is a rigid quantity that can only adjust to the blocks where all of the elements overlap.

68

Assume that we have a cluster S whose elements have constant projection sizes.

If these elements do not overlap at any of the blocks that include any of them, the

cluster’s PE will take the maximum value: the sum of projection sizes multiplied by

log |S|
|S|

. If these elements overlap at all of the blocks that include them, PE will be zero

by definition. Moreover, any additional overlapping among the elements will decrease

the cluster’s PE, if the projection sizes are kept constant. Therefore, lower PE indicates

higher overlapping in the cluster, relative to its elements’ projection sizes. To express

this element-wise overlapping indicated by a lower PE, we say that these elements have

an entropic correlation at the blocks that include them.

To understand how PE functions in entropy agglomeration, let us examine its

effect for a word pair. Assume that we have a pair from the set of words that occur

exactly in 10 paragraphs. We know that (1) projection sizes for both words are 10, (2)

co-occurence would count the blocks that include both of them, (3) PE would count

the blocks that include one of them. For this particular case, these two quantities are

directly proportional: an increase in co-occurence by 1 would decrease PE by log 2.

This makes them practically equivalent. However, if there are several projection sizes

like 20-25, words with larger projections can have partial occurences more frequently;

co-occurence would ignore these occurences, but PE may count them to penalize the

elements for occuring ‘unnecessarily’.

In conclusion, we developed in this work a text analysis tool that visualizes the

entropic correlations among the words of a given text by applying entropy agglomera-

tion to its paragraphs, and published this procedure as a free software: REBUS [50].

We demonstrated the utility of this procedure by clustering the words of a literary text

using this tool.

69

7. CLUSTERnGO (CnG) MODELING PLATFORM

In this chapter, we describe the processes of the four-phase pipeline of our bioin-

formatics application CLUSTERnGO (CnG) based on the IMPLS model.

Simple bioinformatic tools are frequently used to analyse time-series datasets

regardless of their ability to deal with transient phenomena, limiting the meaningful

information that may be extracted from them. This situation requires the development

and exploitation of tailor-made, easy-to-use, and flexible tools designed specifically for

the analysis of time-series datasets.

We present a novel statistical application called CLUSTERnGO, which uses a

model-based clustering algorithm that fulfils this need. This algorithm involves two

components of operation. Component 1 constructs a Bayesian non-parametric model

(Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a

novel clustering methodology (Two-Stage Clustering). The software can also assign

biological meaning to the identified clusters using an appropriate ontology. It ap-

plies multiple hypothesis testing to report the significance of these enrichments. The

algorithm has a four-phase pipeline. The application can be executed using either

command-line tools or a user-friendly Graphical User Interface. The latter has been

developed to address the needs of both specialist and non-specialist users. We use three

diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases,

CLUSTERnGO not only outperformed existing algorithms in assigning unique GO

term enrichments to the identified clusters, but also revealed novel insights regarding

the biological systems examined, which were not uncovered in the original publications.

The C++ and QT source codes, the GUI applications for Windows, OS X and

Linux operating systems and user manual are freely available for download under the

GNU GPL v3 license [51].

70

Figure 7.1. Structural design of the algorithm. Operations in each of the four phases

are shown in rectangular boxes, with any parameters (if applicable) written above

them. Inputs and outputs of these operations are indicated in oval boxes.

7.1. Algorithm

The algorithm we propose involves a single process of clustering analysis and

consists of four successive phases: configuration (CONF), inference (INF), clustering

(CLUS), and evaluation (EVAL) (Figure 7.1). Inputs and outputs of these operations

follow successive steps in a single pipeline. The process, taken as a whole, receives an

input dataset of dynamic profiles and assigns the profiles into an optimal number of

71

clusters based on the model determined by the user as well as reporting an output of

statistically significant Gene Ontology (GO) terms that characterize those clusters of

entities, whenever applicable. In this section, we describe the functioning of each of

the four phases in the CnG algorithm pipeline.

7.1.1. Configuration Phase (CONF)

The most important feature of datasets on transitions is the dependence of the

value of each variable on its value at the preceding time point. Therefore, it is important

to account for this information during the identification of clusters of entities displaying

similar behaviour over time. Our approach involves building a model based on the

experimental input as well as the initial design of the experiment to account for the

dependencies between consecutive time points in dealing with transient phenomena.

CONF is the phase in our algorithm that configures this model.

Our algorithm models the given time-series dataset by an infinite mixture of

piecewise linear sequences (IMPLS). IMPLS is a special infinite mixture model whose

mixture components are distributed around piecewise linear sequences (PLS). PLS

assumes a particular segmentation of time points, where in each segment corresponding

to a given time period, the measured level of the clustered entities is assumed to linearly

increase, decrease, or constitutively stay constant. PLS model is illustrated in Figure

7.2.

CONF is the initial phase for configuring the probabilistic model for Bayesian

inference. It can be configured manually by specifying a custom segmentation of time

points for the PLS model, or it can be configured semi-automatically. In the semi-

automatic mode, it takes the time-course profiles of the biological entities in the dataset

as its input and, by applying temporal segmentation (TS) to its time points, produces

the piecewise linear sequence (PLS) model that will be used in the next phase. TS has

a single parameter: the segmentation threshold. TS determines which time samples

show similar behaviour by taking values for each of the time points over the whole

dataset, and running a standard average-linkage hierarchical agglomerative clustering

72

Figure 7.2. A dendrogram generated in CONF shows correlation in segments.

Times-series observations xi are assumed to be distributed around Piecewise Linear

Sequences.

procedure based on their pairwise Gaussian distances. By applying a threshold on the

resulting dendrogram at a certain value, which we call the segmentation threshold,

time samples can be grouped such that they make up a piecewise linear sequence. The

threshold is determined by the end-user in order to represent the sub-sequences of time

points that are known to have a linear succession in the experimental setup, and by

the temporal segments in PLS model. It is possible to trace how the groupings change

as the threshold is varied, thus allowing the user to adjust the time segments until

the most biologically meaningful segmentation, based on the experimental design, is

obtained. The constructed PLS models are then used to determine the probabilistic

model in the inference phase. Although one can also take PLS segmentation as a

probabilistic variable to be inferred, in CnG, we choose to keep it as a user-defined

model parameter.

Biological experiments are usually designed to seek answers to specific questions

and have an a priori hypothesis to be tested. This hypothesis is taken into account in

73

the design of an experiment to determine the type and duration of the perturbations

as well as the sample collection regime. In CONF, the users can construct their own

models that integratively, take into account both the design of experiment and the

data collected from those experiments. Naturally the a priori expectations arising

from the initial design of the experiment may not always meet the actual outcome

represented by the data generated. This step may assume the role of an integral check

point highlighting important intrinsic characteristics of the data. It may: (i) capture

novel behaviour emerging from the data that was initially unexpected when designing

the experiment, or (ii) highlight inconsistencies or inaccuracies within the data caused

either by the experiment itself or its design.

7.1.2. Inference Phase (INF)

Following the determination of the PLS model for the given dataset in CONF, INF

carries out an operation of Markov chain Monte Carlo (MCMC) probabilistic inference

to obtain a pairwise similarity matrix. This output matrix holds the information that

will be used in determining the clusters of entities. As input, INF takes the dataset

and the PLS model as determined by CONF. As output, it produces the matrix of

posterior pairwise probabilities. To generate this matrix, INF runs an MCMC sampling

operation using four parameters: the number of chains, the number of iterations in

each chain, the number of iterations to be skipped, and the initial values for hyper-

parameters. Following the MCMC run, the pairwise similarity matrix is computed by

taking averages over all non-skipped iterations over all chains.

7.1.3. Clustering Phase (CLUS)

After obtaining a pairwise similarity matrix by probabilistic inference, we still

have to determine the exact clusters of entities and apply hypothesis-testing to detect

the significant GO terms associated with those clusters, if applicable. CLUS is the

phase that takes this matrix and applies a two-stage clustering operation to obtain

clusters (subsets) of genes. This operation has two parameters as input: merge thresh-

old and extension threshold, which are used in its two stages. Two-stage clustering may

74

result in different numbers of overlapping or non-overlapping clusters depending on the

given thresholds and the similarity matrix. The threshold parameters determine the

stringency of the operation; larger thresholds will result in a larger number of clusters

with fewer members, representing finer similarity relations, whereas smaller thresholds

will result in a smaller number of clusters that represent coarser similarity relations.

The resulting clusters are then received by the evaluation phase for hypothesis testing.

7.1.4. Evaluation Phase (EVAL)

Multiple hypothesis testing is applied on the clusters in EVAL. This operation

requires GO term assignments for all genes and an alpha parameter (a significance

threshold) to use in hypothesis testing. For any given cluster, all GO terms that are

directly or indirectly annotated with its member genes are considered as possible hy-

potheses. Each of these GO terms belongs to one of the three categories: cellular

component, molecular function, or biological process. EVAL applies multiple hypoth-

esis testing with Bonferroni or Benjamini-Hochberg correction for multiple testing to

the whole set of hypotheses comprised of GO terms from all three categories, and the

resulting significant GO terms associated with each cluster are reported in the final

output.

7.2. Implementation

7.2.1. CONF: Temporal segmentation (TS)

TS is a simple operation where segments of time points that display a correlated

behaviour are discerned by applying hierarchical agglomerative clustering to the vectors

of values over all entities at each time point in the dataset. The resulting dendrogram

is divided by a selected segmentation threshold, and the resulting subtrees are marked

as the time segments of the piecewise linear sequence model that will be used in the

next phase. The PLS segmentation can also be set manually by the user (Figure 1).

75

7.2.2. INF: MCMC for IMPLS

CLUSTERnGO (CnG) models time-course profiles using an infinite mixture of

piecewise linear sequences (IMPLS). To compute the posterior of IMPLS, it uses an

MCMC procedure.

7.2.2.1. The IMPLS model. Suppose that we have N entities indexed by i ∈
{1, ..., N} and their profiles xi, vectors of size M , which are to be modelled as dis-

tributed around an unknown number of piecewise linear sequences. Cluster Mixture

component assignments zi of these entities are assumed to come from a two-parameter

CRP, an iterative construction for a PYP:

z1:N | α, d ∼ CRP (α, d) (7.1)

A PLS model is defined by L parameters in the following order: initial value, slope of

the first segment, jump to the second segment, slope of the second segment, jump to

the third segment, and so on. The prior variances of these three types of parameters

are given by Vinit, Vjump, Vslope. These variances form the diagonal of the matrix Σµ. For

every cluster mixture component k ∈ {1, ..., K} there is an L-vector µk that defines a

PLS with a Gaussian prior:

µk | Vinit, Vjump, Vslope ∼ N (µk | 0,Σµ) (7.2)

Each cluster mixture component also has a precision (inverse variance) parameter λk

with a Gamma prior:

λk | a, b ∼ G(λk | a, b) (7.3)

Finally, we have the likelihood, which determines that each time-series is distributed

according to a Gaussian with mean C µk and variance 1/λk, where k is the cluster

mixture component that this sample belongs to. C is a constant matrix that is either

76

manually specified or determined semi-automatically by the CONF procedure. This

matrix transforms PLS parameters µk into the mixture component mean:

xi | µ, λ, zi ∼
∏

N (xi | C µk, λ
−1
k I) (7.4)

C is a matrix of basis vectors and each time-series (here, simply a finite dimensional

vector) is modelled by x = C µ+ ǫ. Mean µ is zero, < µ >= 0. The covariance of x is

thereby < xx′ >= C < µµ′ > C ′ + R = CC ′ + R. The matrix C is constructed such

that typical x are Piecewise Linear Sequences, such sequences will have the conditional

covariance CC ′ +R.

7.2.2.2. MCMC inference. A special Markov Chain Monte Carlo (MCMC) pro-

cedure was adopted in the analysis of this model due to the presence of matrix C, which

transforms the parameter vector. We run Metropolis-Hastings (MH) steps to sample

the cluster mixture component precisions λk and use these values to run collapsed Gibbs

sampling steps to sample zi by integrating out the cluster mixture component centres

µk. Our MCMC algorithm consists of three steps repeatedly applied to converge to the

target distribution p(x, z, λ, α, d, a, b).

(i) For each k = 1 . . .K, apply MH steps to re-sample λk by p(λk|x1:N , z1:N).
(ii) For each i = 1 . . .N , apply collapsed Gibbs sampling for zi by p(zi|x1:N , z−i, λ1:K)

using auxiliary variable method for sampling new λk.

(iii) Apply MH steps to sample the hyper-parameters; α, d, a, b by their, respective,

non-informative priors 1/α, 1/d, 1 and b.

The PLS prior parameters Vinit, Vjump, Vslope are each fixed at a sufficiently large

number to assign equal probabilities for different PLS parameter values. The user

is allowed to interact with the MCMC on the initial values for the IMPLS hyper-

parameters, the number of iterations to be carried out, the number of chains, or the

skip value. The default values for the number of iterations to be carried out, the

number of chains, and the skip value for the burn-in period were set as 10000, 20

77

and 2500, respectively. The number of iterations and the number of chains are kept

at high values to help the MCMC inference to more closely approach its stationary

distribution. In practice, this enables the INF phase to yield very similar results in

sucessive runs, even though it is based on a probabilistic algorithm. The default initial

settings for the hyper-parameters are as follows; a = 2.1, b = 0.24, d = 0.001 and alpha

= 100 although these parameters are readjusted during the iterations.

7.2.3. CLUS: Two-stage clustering (TSC)

CLUS is a deterministic phase where decisions are based on simple numerical

comparisons on pairwise posterior probabilities. Clusters cannot be determined in

the INF phase, because data is finite and there is uncertainty in the infinite mixture

posterior. The CLUS phase operates on this posterior to decide on the final clusters.

The inference results contained in the pairwise similarity matrix are translated into

a set of clusters that indicate groups of related entities through the application of a

two-stage operation in the clustering phase. The degree of similarity in clustering is

determined by two parameters: the merge threshold and the extension threshold.

Let M be the pairwise similarity matrix where Mij denotes the similarity between

entity i and entity j, namely, the posterior pairwise probabilities between these entities

as obtained from MCMC. Given this matrix M and the two threshold parameters,

two-stage clustering runs as follows:

(i) Prepare an initial set Π of 1-element clusters.

(ii) Choose the cluster pair (Sa, Sb) where the minimum similarity value between any

i ∈ Sa and j ∈ Sb is the maximum among cluster pairs.

(iii) Remove Sa and Sb, and insert their union Sa∪Sb = Sc into the set of clusters; Π.

(iv) Continue from step 2 until the obtained similarity between i ∈ Sa and j ∈ Sb is

smaller than the merge threshold.

(v) Choose the cluster-entity pair (Sa, j) where the minimum similarity value between

any i ∈ Sa and j is the maximum among all pairs.

(vi) Remove Sa and insert its increment S = Sa ∪ {j} into the set of clusters; Π.

78

(vii) Continue from step 5 until the obtained similarity between i ∈ Sa and j is smaller

than the extension threshold.

Among these steps, 2, 3, and 4 designate the first stage where small clusters

are merged into larger clusters, and 5, 6, and 7 designate the second stage where

clusters are further extended by inserting elements. Intuitively, the merge threshold

determines the size of cluster cores, whereas the extension threshold determines the

extent of overlap among cluster peripheries. Lowering the extension threshold in stage

2 can result in wide cluster peripheries that overlap for many genes. Lowering the merge

threshold in stage 1 will yield few large cluster cores, thereby effectively constraining

the possibilities of overlaps in stage 2. Using this methodology, there is no need for

any a priori knowledge or assumption concerning the number of clusters that will be

identified at the end of the process. The default settings for the merge and the extension

threshold parameters were both 0.5, although they can be individually set by the user

to any value between 0 and 1.

7.2.4. EVAL: Multiple hypothesis testing

The identified clusters of genes are significantly associated with a biological on-

tology through the application of multiple hypothesis testing in EVAL. Gene Ontology

(GO), where each gene is annotated by a list of terms from three domains: cellular

component, molecular function, and biological process was adopted as the biological

ontology in this analysis (Ashburner et al., 2000). To determine if a given cluster is

annotated by a given GO term at a frequency greater than by chance, the p-value is

computed using the hypergeometric distribution:

P = 1−
k−1
∑

i=0

(

M
i

)(

N−M
n−i

)

(

N
n

) (7.5)

Here, N is the total number of unique genes, M is the number of genes annotated by

the term, n is size of the cluster, and k is the number of annotated genes in the cluster.

Bonferroni correction was used as a conservative action to control the family-wise error

79

rate. Although the Bonferroni correction is set as default, the Benjamini-Hochberg

procedure is also provided as a more relaxed option to control the false discovery rate

(FDR) at level alpha. The assigned GO term is identified as significant if the p-value

is less than the significance threshold, whose default was set as α = 0.01.

80

8. CONCLUSION

Let us summarize the contributions of this thesis and point out some possible

future directions. As listed at the end of the Introduction, these contributions are:

1) Infinite Multiway Mixture with Factorized Latent Parameters (IMM)

2) Infinite Mixture of Piecewise Linear Sequences (IMPLS)

3) Cumulative Statistics and Entropy Agglomeration (EA)

4) Clustering Words by Entropy Agglomeration

5) CLUSTERnGO (CnG): Cluster analysis of gene expression profiles

Let us now briefly describe the listed contributions in the context of their relationship.

First of all, the last one in the list, CnG, serves as the backbone of the ideas developed

in the thesis. It is a gene expression analysis application that conducts its operations

with a structured pipeline. The design of CnG presents a basic outline that can serve as

an example for future applications. As we state in the Abstract and in the beginning

of the Introduction, the four phases of CnG (Configuration, Inference, Clustering,

Evaluation) represent a sufficiently general conceptual relation, so that the specific

implementation of each phase can be replaced by an alternative approach without

requiring modifications on this general structure. In its present implementation, the

first two phases of CnG implement an MCMC inference method that deploys an IMPLS

model. The third phase implements a heuristic clustering algorithm (TSC) and the

fourth phase applies multiple hypothesis testing on the resulting clusters with respect

to Gene Ontology terms.

The first two of the remaining four contributions, 1 and 2, develop two Bayesian

nonparametric models, IMM and IMPLS, respectively. IMM is a simple but powerful

formulation of a generative model that combines infinite mixture modeling with tensor

factorization. The index notation borrowed from tensor factorization is used to for-

mulate a multiway mixture model over several dimensions. IMM provides an elegant

model that explores certain theoretical ideas from related domains. IMPLS, on the

81

other hand, is a model specifically designed according to the needs that originated

from our task to analyze gene expression profiles. It formulates an infinite mixture

model that presupposes a structure called a Piecewise Linear Sequence (PLS) for each

of its mixture components. An MCMC inference method for IMPLS was developed

and was implemented as part of CnG.

The remaining two contributions, 3 and 4, represent an independent study that

originated from a research question that emerged in the development of CnG. It is a

question that concerns the third phase of CnG, where the application needs to take the

combinatorial sample set obtained from MCMC inference, and analyze it to decide on

a final set of clusters that will then be sent to Evaluation, the fourth and final phase. It

is a very fundamental question: How can we express and summarize partitionings and

feature allocations? The heuristic solution implemented in CnG, TSC, despite being

very useful as a practical solution, does not provide an adequate answer in face of the

theoretical question.

So in these two contributions, 3 and 4, we formulate a methodology that we call

cumulative statistics, develop a clustering algorithm that we call Entropy Agglomera-

tion (EA) and apply EA on a literary text, namely Ulysses (1922) by James Joyce. We

believe that the formulation of cumulative statistics is self-explanatory and that the

evidence presented by the experiment is sufficient to say that EA is a useful algorithm.

Having described the contributions in their relationship, let us now point out

some possible directions for future research that can proceed from the ideas presented

in the thesis. CnG (Standard version: CnG v0.30) is a very structured application,

and all of its phases are open to advancements specific to their own functionality. In

the first two phases, IMPLS can be replaced by any other Bayesian generative model

and MCMC can be replaced by any other inference methodology for that model. We

have already developed additional functionality to enable phenotype analyses in the

fourth phase, and included this functionality in the new version, CnG v0.31. Another

work to do is to replace the heuristic TSC algorithm in the Clustering phase of CnG

with the Entropy Agglomeration algorithm that we have developed.

82

In concluding the thesis, let us ask the basic question concerning our work: Do

the contributions we present in the thesis measure up to our initial objectives? In

other words, were we able to present sufficient tools and techniques in this thesis for

researchers in bioinformatics to be able to extract structural information effectively

and to detect gene interactions reliably from gene expression datasets? The short and

simple answer is: Yes, CnG was actually used to produce novel biological insights from

experiments with yeast and mouse cells, and the evidence of these accomplishment

were documented in our articles in Bioinformatics and Stem Cells [52, 53].

But according to the long answer, for a variety of reasons, these contributions

cannot be considered to constitute an ultimate solution that is fully satisfactory with

respect to our initial objective to extract reliable structural information from noisy

datasets. First of all, what we develop here are mere models inherently abstracted from

application concerns, that is, even if we take particular application goals into account

in the design process, the formulations as they are finally presented in the thesis are

indifferent to external evaluation by their nature and by definition. Secondly, what

was involved in this work was fundamentally an endeavour to construct tools: an effort

to devise coherent formulations and build useful frameworks. As a result, whether

these tools will be able to meet the application needs is highly dependent on their

actual and potential users. Thirdly, we acknowledge the fact that, since we had to deal

with difficult theoretical problems in this work, the mathematical connections of the

presented models have remained somehow fuzzy. Nevertheless, fourthly and finally,

the experiments we conducted with our tools left us convinced that these tools are and

will be useful in the present and future approaches to the clustering problem. So even

though we cannot claim a decisive triumph with respect to our initial objective, we

think that the work we present here offers a safe ground with a sound direction.

To sum up, we think that CnG, both as an actual application and as a conceptual

apparatus, can serve as a starting point for several directions of research. We also

speculate that the statistical methodology that we introduce as cumulative statistics

opens up a useful new avenue for statistical formulations of combinatorial objects.

83

REFERENCES

1. Ferguson, T. S., “A Bayesian analysis of some nonparametric problems”, The An-

nals of Statistics , Vol. 1, No. 2, p. 209–230, 1973.

2. Teh, Y. W., “Dirichlet Processes”, C. Sammut and G. I. Webb (Editors), Encyclo-

pedia of Machine Learning , Springer-Verlag, Berlin, 2010.

3. Ewens, W. J., “The sampling theory of selectively neutral alleles”, Theoretical

Population Biology , Vol. 3, No. 1, pp. 87–112, 1972.

4. Watterson, G. A., “The sampling theory of selectively neutral alleles”, Advances

in Applied Probability , Vol. 6, No. 3, pp. 463–488, 1974.

5. Kingman, J. F. C., “Random Partitions in Population Genetics”, Proceedings of

the Royal Society of London. Series A, Mathematical and Physical Sciences , Vol.

361, No. 1704, pp. 1–20, 1978.

6. Andrews, G. E., The theory of partitions , Addison-Wesley Publications, Reading,

Mass., 1976.

7. Pitman, J., “Combinatorial Stochastic Processes”, Lecture Notes in Mathematics,

Vol. 1875 , Springer-Verlag, Berlin, 2006.

8. Bishop, C. M., Pattern Recognition and Machine Learning (Information Science

and Statistics), Springer, 1st ed. 2006. corr. 2nd printing edn., October 2007.

9. Neal, R. M., “Bayesian mixture modeling”, C. R. Smith, G. J. Erickson and N. P.

O. (Editors), Maximum Entropy and Bayesian Methods: Seattle, 1991 , Vol. 11,

pp. 197–211, Kluwer Academic Publishers, The Netherlands, 1992.

10. Blackwell, D. and J. B. MacQueen, “Ferguson Distributions Via Polya Urn

84

Schemes”, The Annals of Statistics , Vol. 1, No. 2, pp. 353–355, 1973.

11. Neal, R. M., “Markov Chain Sampling Methods for Dirichlet Process Mixture

Models”, Journal of Computational and Graphical Statistics , Vol. 9, No. 2, pp.

249–265, 2000.

12. Teh, Y. W., “Dirichlet Processes”, Encyclopedia of Machine Learning , Springer,

2010.

13. Shashua, A., R. Zass and T. Hazan, “Multi-way clustering using super-symmetric

non-negative tensor factorization”, In Proc. of the European Conference on Com-

puter Vision (ECCV), 2006.

14. Zhou, D., J. Huang and B. Schölkopf, “Learning with Hypergraphs: Clustering,

and Classification, Embedding”, J. P. B. Schölkopf and T. Hoffman (Editors),

Advances in Neural Information Processing Systems 19 , pp. 1601–1608, MIT Press,

2007.

15. Banerjee, A., S. Basu and S. Merugu, “Multi-Way Clustering on Relation Graphs”,

In Proc. SIAM Conf. Data Mining .

16. Yilmaz, K. and A. T. Cemgil, “Probabilistic Latent Tensor Factorisation”, In Proc.

of International Conference on Latent Variable analysis and Signal Separation, pp.

346–353, 2010.

17. Meeds, E. and S. Roweis, Nonparametric Bayesian Biclustering , Tech. Rep. UTML

TR 2007–001, Department of Computer Science, University of Toronto, Toronto,

Canada, June 2007.

18. Neal, R. M., “Markov chain sampling methods for Dirichlet process mixture mod-

els”, Journal of Computational and Graphical Statistics , Vol. 9, p. 249–265, 2000.

19. Yeung, K. Y., C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, “Model-based

85

clustering and data transformations for gene expression data”, Bioinformatics ,

Vol. 17, pp. 977–987, 2001.

20. Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein, “Cluster analysis and

display of genome-wide expression patterns”, C. R. Smith, G. J. Erickson and P. O.

Neudorfer (Editors), Proceedings of the National Academy of Sciences , Vol. 95, pp.

14863–14868, 1998.

21. Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S.

Lander and T. R. Golub, “Interpreting patterns of gene expression with self-

organizing maps: methods and application to hematopoietic differentiation”, Proc.

Natl Acad. Sci. USA, Vol. 96, pp. 2907—-2912, 1999.

22. Tavazoie, S., J. D. Hughes, M. J. Campbell, R. J. Cho and G. M. Church, “Sys-

tematic determination of genetic network architecture”, Nat. Genet., Vol. 22, pp.

281––285, 1999.

23. Medvedovic, M. and S. Sivaganesan, “Bayesian infinite mixture model based clus-

tering of gene expression profiles”, Bioinformatics , Vol. 18, p. 1194–1206, 2002.

24. Qin, Z. S., “Clustering microarray gene expression data using weighted Chinese

restaurant process”, Bioinformatics , Vol. 22, pp. 1988—-1997, 2006.

25. Joshi, A., Y. V. Peer and T. Michoel, “Analysis of a Gibbs sampler for model based

clustering of gene expression data”, Bioinformatics , Vol. 24, pp. 176–183, 2008.

26. Dikicioglu, D., E. Karabekmez, B. Rash, P. Pir, B. Kirdar and S. G. Oliver, “How

yeast re-programmes its transcriptional profile in response to different nutrient

impulses”, BMC Systems Biology , Vol. 148, No. 5, 2011.

27. Liu, J. S., Monte Carlo Strategies in Scientific Computing , Springer, New York,

2002.

86

28. Fidaner, I. B. and A. T. Cemgil, “Summary Statistics for Partitionings and Feature

Allocations”, Advances in Neural Information Processing Systems , Vol. 26, 2013.

29. Kingman, J. F. C., Poisson processes , Oxford University Press, Oxford, 1992.

30. Pitman, J. and M. Yor, “The two-parameter Poisson–Dirichlet distribution derived

from a stable subordinator”, Annals of Probability , Vol. 25, No. 2, pp. 855–900,

1997.

31. Sethuraman, J., “A constructive definition of Dirichlet priors”, Statistica Sinica,

Vol. 4, pp. 639–650, 1994.

32. Meeds, E., Z. Ghahramani, R. M. Neal and S. T. Roweis, “Modeling Dyadic Data

with Binary Latent Factors”, Advances in Neural Information Processing Systems

19 , 2007.

33. Teh, Y. W., M. I. Jordan, M. J. Beal and D. M. Blei, “Hierarchical Dirichlet

processes”, Journal of the American Statistical Association, Vol. 101, No. 476, p.

1566–1581, 2006.

34. Griffiths, T. L. and Z. Ghahramani, “The Indian buffet process: An introduction

and review”, Journal of Machine Learning Research, Vol. 12, p. 1185–1224, 2011.

35. Broderick, T., J. Pitman and M. I. Jordan, “Feature Allocations, Probability Func-

tions, and Paintboxes”, Bayesian Analysis , Vol. 8, No. 4, pp. 801–836, 2013.

36. Teh, Y. W., C. Blundell and L. T. Elliott, “Modelling genetic variations with

fragmentation-coagulation processes”, Advances in Neural Information Processing

Systems 23 , 2011.

37. Orbanz, P. and Y. W. Teh, “Bayesian Nonparametric Models”, C. Sammut and

G. I. Webb (Editors), Encyclopedia of Machine Learning , Springer-Verlag, Berlin,

2010.

87

38. Medvedovic, M., K. Yeung and R. Bumgarner, “Bayesian mixture model based

clustering of replicated microarray data”, Bioinformatics , Vol. 20, p. 1222–1232,

2004.

39. Liu, X., S. Sivanagesan, K. Yeung, J. Guo, R. E. Bumgarner and M. Medvedovic,

“Context-specific infinite mixtures for clustering gene expression profiles across

diverse microarray dataset”, Bioinformatics , Vol. 22, pp. 1737–1744, 2006.

40. Nemenman, I., F. Shafee and W. Bialek, “Entropy and inference, revisited”, Ad-

vances in Neural Information Processing Systems 14 , 2002.

41. Shannon, C. E., “A Mathematical Theory of Communication”, Bell System Tech-

nical Journal , Vol. 27, No. 3, p. 379–423, 1948.

42. Archer, E., I. M. Park and J. W. Pillow, “Bayesian Entropy Estimation for Count-

able Discrete Distributions”, Journal of Machine Learning Research, Vol. 15, pp.

2833–2868, 2014.

43. Simovici, D., “On Generalized Entropy and Entropic Metrics”, Journal of Multiple

Valued Logic and Soft Computing , Vol. 13, No. 4-6, pp. 295–320, 2007.

44. Ellerman, D., “Counting distinctions: on the conceptual foundations of Shannon’s

information theory”, Synthese, Vol. 168, No. 1, pp. 119–149, 2009.

45. Fisher, R. A., “The use of multiple measurements in taxonomic problems”, Annals

of Eugenics , Vol. 7, No. 2, pp. 179–188, 1936.

46. Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bum-

garner, D. R. Goodlett, R. Aebersold and L. Hood, “Integrated genomic and pro-

teomic analyses of a systematically perturbed metabolic network”, Science, Vol.

292, No. 5518, pp. 929–934, 2001.

47. Pevehouse, J. C., T. Nordstrom and K. Warnke, “The COW-

88

2 International Organizations Dataset Version 2.1”, Conflict Man-

agement and Peace Science, Vol. 21, No. 2, pp. 101–119, 2004,

http://www.correlatesofwar.org/COW2%20Data/IGOs/IGOv2-1.htm, accessed

at March 2016.

48. Wood, F., J. Gasthaus, C. Archambeau, L. James and Y. W. Teh, “The Sequence

Memoizer”, Communications of the ACM , Vol. 54, pp. 91–98, 2011.

49. Teh, Y. W., “A hierarchical Bayesian language model based on Pitman-Yor pro-

cesses”, Proceedings of the 21st International Conference on Computational Lin-

guistics and the 44th annual meeting of the Association for Computational Lin-

guistics (ACL-44), pp. 985–992, 2006.

50. Fidaner, I. B. and A. T. Cemgil, “REBUS: entropy agglomeration of text”,

http://cmpe.boun.edu.tr/content/REBUS, 2014, accessed at March 2016.

51. Fidaner, I. B., A. Cankorur-Cetinkaya, D. Dikicioglu, B. Kirdar,

A. T. Cemgil and S. G. Oliver, “CLUSTERnGO (CnG) Software”,

http://cmpe.boun.edu.tr/content/CnG, 2015, accessed at March 2016.

52. Fidaner, I. B., A. Cankorur-Cetinkaya, D. Dikicioglu, B. Kirdar, A. T. Cemgil and

S. G. Oliver, “CLUSTERnGO: A user-defined modelling platform for two-stage

clustering of time-series data”, Bioinformatics , 2016.

53. Mulvey, C. M., C. Schröter, L. Gatto, D. Dikicioglu, I. B. Fidaner, A. Christo-

forou, M. J. Deery, L. T. Cho, K. K. Niakan, A. Martinez-Arias and K. S. Lilley,

“Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in

Mouse Embryonic Stem Cells”, Stem Cells , 2015.

