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ABSTRACT 

QUALITY-OF-SERVICE-AWARE MULTICAST ROUTING FOR 

MULTIMEDIA APPLICATIONS IN MOBILE AD HOC NETWORKS 

The conceptual shift in the expectations of wireless users towards multimedia and 

group-oriented computing has a significant impact on today’s networks in terms of need 

for mobility, quality of service (QoS) and multicast routing. Mobile ad hoc networks can 

provide users with these features. However, it is imperative for them to combine QoS and 

multicast routing strategies in order to utilize the wireless medium efficiently. 

This work defines the ad hoc QoS multicast (AQM) routing protocol, which achieves 

multicast efficiency by tracking the availability of resources for each node within its 

neighbourhood. Computation of free bandwidth is based on reservations made for ongoing 

sessions and the requirements reported by the neighbours. The QoS status is announced at 

session initiation and updated periodically to the extent of QoS provision. Nodes are 

prevented from applying for membership if there is no QoS path for the session. When 

nodes wish to join a session with certain service requirements, a three-phase process 

ensures that the QoS information is updated and used to select the most appropriate routes. 

The allowed maximum hop count of the session is taken into account in order to satisfy the 

delay requirements of the multimedia applications. To cope with the continuous nature of 

streaming multimedia, AQM nodes check the availability of bandwidth within their 

neighbourhood not only for themselves but within a virtual tunnel of nodes. Objection 

queries are issued prior to reservation to avoid excessive resource usage due to allocations 

made by nodes which cannot detect each other directly. A priority queue determines the 

transmission order of data packets according to their traffic classes to support even those 

applications with more stringent QoS requirements. AQM evolves the initial multicast tree 

into a mesh during data flow to improve robustness. New performance metrics are 

introduced to evaluate the efficiency of AQM regarding the satisfaction level of session 

members. Simulation results show that, by applying novel QoS management techniques, 

AQM significantly improves multicast efficiency for members as well as for sessions. 
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ÖZET 

GEZGİN TASARSIZ AĞLARDA ÇOĞULORTAM UYGULAMALARI 

İÇİN SERVİS NİTELİĞİ DESTEKLİ ÇOĞULYAYIN 

Telsiz ağlarda kullanıcı beklentilerinin çoğulortam ile gruplar arası bilgisayar 

kullanımına doğru geçirdiği kavramsal dönüşüm, günümüz ağlarında etkisini gezginlik, 

servis niteliği, çoğulyayın gereksinimi olarak gösterir. Gezgin tasarsız ağlar kullanıcılara 

bu olanağı sağlayabilir. Ancak, telsiz iletişim ortamının etkin kullanımı için, çoğulyayın 

yol atama yordamlarının nitelikli servis ile bütünleştirilmesi temel bir gerekliliktir. 

Bu çalışma, çoğulyayın etkinliğini her düğümün kendi komşuluk alanı içindeki ağ 

kaynaklarının yeterliğini izleyerek sağlayan, tasarsız, servis niteliği destekli bir çoğulyayın 

yol atama (AQM – ad hoc quality of service multicast routing) yordamı tanımlar. 

Kullanılabilir bantgenişliği süregelen oturumlara ayrılan ve komşular tarafından bildirilen 

gereksinim düzeylerine göre belirlenir. Servis nitelik düzeyi oturum açılışında duyurulup, 

oturumun gerektirdiği nitelik düzeyinin izin verdiği sınırlara dek düzenli olarak 

güncellenir. Düğümlerin, uygun servis niteliğinin sağlanamayacağı oturumlar için katılım 

isteğinde bulunmaları engellenir. Bir düğüm bir oturuma katılacağında, üç adımdan oluşan 

bir süreç gereken niteliklere en uygun yolu seçer. Çoğulortam uygulamalarının gerektirdiği 

gecikme sınırlarına uymak için, adayların oturum sunucusuna kadar izin verilen sıçrama 

sayısı sınırlandırılır. Akışkan çoğulortamın doğasına uygun olarak, düğümler bantgenişliği 

gereksinimlerini yalnız kendileri için değil, verinin sürekli akacağı sanal bir tünel boyunca 

belirler. Kaynakların aşırı kullanımını önlemek amacıyla, birbirini doğrudan algılamayan 

düğümlerin olası bir kaynak ayırma işleminden etkilenip etkilenmediği, itiraz sorgularıyla 

denetlenir. Bir öncelik kuyruğu, veri paketlerinin iletim sırasını ait oldukları trafik sınıfına 

gore belirler. AQM, gürbüzlüğünü artırmak için, oluşturduğu çoğulyayın ağacını veri akışı 

sırasında bir örgüye evirir. AQM’nin oturum üyelerine sağladığı tatmin düzeyi, önerilen 

yeni başarım ölçütleri ile de değerlendirilmiştir. Bilgisayarlı benzetim sonuçları 

göstermiştir ki, servis niteliği yönetimindeki yenilikçi teknikleri ile AQM, gerek üyeler, 

gerekse oturumlar için çoğulyayın etkinliğini önemli ölçüde artırmaktadır. 
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1. INTRODUCTION 

The increasing popularity of video, voice and data communications over the Internet 

and the rapid penetration of mobile telephony have stimulated a change in consumers’ 

expectations. Even though voice still accounts for the significant part of the world’s 

mobile communications traffic, the number of group-oriented services and multimedia 

applications is increasing. The evolution of wireless communication technologies has 

reached a point where it is both popular and easy to integrate them to portable computing 

devices, which have initially been intended for personal use. Today, a new generation of 

such computers is being developed, offering users more computational power than ever, in 

addition to mobility, the principal distinguishing characteristic of personal communication. 

Research and development are taking place to define the next generation of wireless 

broadband multimedia communication systems. The global multimedia network of the 

future will probably consist of a fixed network with a wired backbone, an infrastructured 

mobile network with base stations and, at the peripherals, ad hoc mobile networks, which 

will be connected to the main internetwork via ad hoc switches [1, 2]. While current 

communication systems are primarily designed for one specific type of application such as 

speech, video or data, the next generation will integrate various functions and applications 

incorporating data, audio, graphics, video, images and animation. Wireless communication 

will provide high-speed, high-quality information exchange between handheld devices. 

Therefore, it is essential that wireless and multimedia be brought together [3, 4]. 

The commercial success of the portable computers shows that consumers want their 

information to be part of themselves. On the other hand, they also want to communicate 

with others as well as a variety of information services [5]. It is therefore reasonable to 

assume that people want the same communication capabilities on the move as they enjoy 

in their home or office [4]. The simultaneous popularity of portable computing and 

networking poses a paradox, since portable devices are not connected to the conventional 

wired networks. This paradox can only be resolved by wireless data networks, through 

which the users retain the advantages of mobility and being connected at the same time 

[5]. However, the integration of new technologies into these devices requires configuration 
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like computers, which is a challenge for the inexperienced user. Thus, it becomes an 

increasingly important feature that, once a mobile device is operational, it is able to 

configure itself with all its personal and networking capabilities, asking its users only for 

their personal preferences. Only by making the administrative work transparent to the end 

user can wireless technologies contribute to the penetration of mobile computing devices. 

The widespread use of mobile and handheld computing devices increases the 

popularity of mobile ad hoc networks, which are self-organizing communication groups 

formed impromptu by wireless mobile hosts. They make their administrative decisions in a 

distributed manner without any centralized control. They are free from the boundaries of 

any pre-existing infrastructure and can be deployed anytime, anywhere [1, 6-8]. The nodes 

in a mobile ad hoc network move arbitrarily. Thus, the network topology changes 

frequently and unpredictably. The routing functionality possessed by the nodes enables 

them to communicate with each other through multihop paths made of intermediate nodes 

that relay the packets from the source towards the destination, even if these reside beyond 

the transmission range of each other [1, 6, 9]. Due to their quick and economically less 

demanding deployment, mobile ad hoc networks are considered for many commercial 

applications, including home networks, nomadic computing, wireless local area, mesh or 

sensor networks and an increasing number of collaborative and distributed applications 

such as short-term communication for emergency operations, search and rescue, disaster 

relief, public events, game playing and temporary offices [4, 10, 11]. The requirement of a 

temporary network for instantaneous communication among a group of people makes 

mobile ad hoc networks an excellent solution for these cases. A major factor that favours 

them for such tasks is the self-configuration ability of the system with minimal overhead. 

Figure 1.1 shows an example for a mobile ad hoc network of ten nodes. 

There are many applications of mobile ad hoc networks that involve point-to-

multipoint or multipoint-to-multipoint communication patterns, which makes the efficient 

support of group communications a critical issue. The multicast communications model 

can facilitate effective and collaborative communication among groups [12]. Multicast 

routing is a promising technique to provide a subset of network nodes with the group-

oriented service they demand while not jeopardizing the resource requirements of others. 

This is important for mobile ad hoc networks. The advantage of multicast routing is that 
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packets are only replicated when it is necessary to reach two or more receivers on disjoint 

paths. This way, bandwidth consumption, router processing and delivery delay can be 

minimized. In wireless networks, it is particularly important to reduce transmission 

overhead. Thus, multicast routing can improve wireless link efficiency by exploiting the 

inherent broadcast property of the wireless medium [13]. Combining the features of 

mobile ad hoc networks with the usefulness of multicast routing, a number of group-

oriented applications with close collaborative efforts can be realized [14]. However, node 

mobility, with constraints of delay, loss and bandwidth, makes multicast routing very 

challenging. Robustness, efficiency, control overhead, quality of service (QoS) and group 

management are some of the major issues in designing multicast routing protocols [11]. 

The emergence of all these new technologies ensures that multimedia applications 

will dominate the mobile communications usage [15]. In order to meet the qualitative 

expectations of mobile users for such applications, mobile ad hoc networks need support 

for multimedia, which can generally be defined as a combination of data, audio, graphics, 

video, images and animation, showing real-time, variable bit-rate traffic characteristics. 

This makes QoS a fundamental requirement. The QoS concept defines a guarantee given 

by the network to satisfy a set of predetermined service performance constraints for the 

user in terms of end-to-end delay, jitter, available bandwidth and packet loss probability 

[8] such that the required functionality of an application can be achieved. QoS support for 

multimedia applications often requires negotiation between the host and the network and is 

closely related to resource allocation schemes, priority scheduling and call admission 

control [11]. 
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Figure 1.1.  A mobile ad hoc network 



 
4

1.1. Quality of Service Systems and Mobile Ad Hoc Networks 

A QoS system consists of several components, including service differentiation, 

admission control and resource allocation [16-18]. Service differentiation schemes use 

QoS techniques such as priority assignment and fair scheduling. Priority assignment 

mechanisms are also referred to as packet-level scheduling systems [16]. Every node 

defines a queuing discipline that changes the waiting times of the frames and assigns 

smaller values to high-priority traffic to determine which packet to send during the next 

transmission period [17]. Fair scheduling algorithms, on the other hand, require the 

cooperation of all the nodes within a neighbourhood to determine which nodes have 

channel access priority [16]. They partition resources among flows in proportion to a given 

weight and regulate the waiting times for fairness among traffic classes [17]. 

Since the exact condition of the wireless network is not known, an accurate decision 

is not possible regarding the admission of a new flow. Measurement-based admission 

control mechanisms are based on observations on the existing network status, whereas 

calculation-based mechanisms make use of performance metrics they define for evaluating 

the status of the network. Without admission control and bandwidth reservation, the 

provision of QoS only by differentiating flows and coordinating channel access order is 

not effective for high traffic loads [18]. A contention-aware admission control protocol 

(CACP) introduces the concept of an extended contention area covering the carrier sensing 

range of a node [19]. Admission decisions are based on the information collected from the 

neighbours in the contention area, which consists of the smallest local bandwidth available 

and the consumed bandwidth within that area. None of the nodes intentionally breaks QoS 

by admitting too many flows. 

Due to the dynamic nature of mobile ad hoc networks characterized by variable link 

behaviour, node movements and topology changes, it is very important to design efficient 

methods of conserving the scarce resources [10]. Once a route is selected for a specific 

connection request and reservation of resources is completed, these resources are not 

available to subsequent requests until the end of the granted connection. The objective of 

resource allocation is to decide how to reserve resources such that QoS requirements of all 

the applications can be satisfied [20]. 
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Another important feature of a QoS system is the congestion control scheme. 

Congestion occurs when the data sent exceeds the capacity of the network and causes 

excessive delay and loss. It can be avoided by predicting it and reducing the transmission 

rate. If congestion is local, it can also be handled by routing around the congested node 

without reducing the data rate [21]. A multicast congestion control scheme for multi-layer 

data traffic is proposed to be applied at the bottlenecks of the multicast tree using the 

queue states [22]. Some flow information is maintained at each node and data layers are 

blocked and released to solve congestion problems and adjust the bandwidth rate. 

Current research on the implementation of QoS to mobile ad hoc networks is mainly 

limited to medium access control (MAC) and routing. Generally, a time division multiple 

access (TDMA) or a clustered code division multiple access (CDMA) over TDMA 

network synchronized on a frame and slot basis is assumed, where topologies do not 

change very fast and slot assignment is left to the underlying MAC layer [23-28]. There is 

a control phase in each frame, whereby nodes exchange connectivity information while 

clusterheads synchronize slots and frames, in addition to assigning slots and code to 

connection requests [23]. Each node broadcasts its QoS information during the control 

phase, at the end of which each node knows the channel reservation status of the next 

information phase [24]. The goal of the QoS routing algorithm is to find a shortest path 

such that the available bandwidth on the path is above the minimal requirement. To 

compute this path, not only the available bandwidth on each link on the path has to be 

known, but also the scheduling of free slots has to be determined. Thus, heuristics are 

developed for bandwidth calculation, slot assignment and rerouting in the presence of 

broken paths [25]. A set of free and non-conflicting slots is calculated on three adjacent 

links and propagated towards the destination [26]. Bandwidth calculation is done end-to-

end; i.e., only destinations reply to connection requests. A timer is refreshed or expired 

based on the usage of the QoS routes. Based on the free slot information in the path-

searching packets they receive, destinations can either select single paths, or determine a 

multi-path route to satisfy their QoS requirements [27]. Imprecise QoS information is kept 

at each node for every other, whereas the state of immediate neighbours is traced more 

accurately [28]. Additional MAC assumptions include a mechanism of beacons, contention 

resolution and local message broadcasting. 
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Mobile ad hoc networks possess various unique properties which make them very 

different from traditional wired and even wireless systems. It is a significant technical 

challenge to provide reliable high-speed end-to-end communications in mobile ad hoc 

networks, due to their dynamic topology, distributed management and multihop 

connections [4]. In addition, the actual throughput of wireless communications is often 

much less than the maximum radio transmission rate, due to the effects of multiple access, 

fading, noise and interference conditions. Furthermore, these effects result in time-varying 

channel capacity, making it difficult to determine the aggregate bandwidth between two 

endpoints. Finally, resources such as energy, bandwidth, processing power and memory, 

which are relatively abundant in wired environments, are strictly limited and have to be 

preserved in mobile ad hoc networks [16]. 

It is not an easy task to incorporate QoS to ad hoc multicast routing. Wireline QoS 

algorithms rely on the availability of precise state information, whereas in an ad hoc 

network this information is inherently imprecise [29]. Nodes join, leave and rejoin the 

network at any place. Links appear or disappear at any time. Thus, protocols designed for 

wired networks are not appropriate for ad hoc networks due to their lack of adaptation to 

the unpredictable network topology and excessive overhead [4, 11]. Various protocols are 

developed to build and maintain a multicast graph and perform routing in mobile ad hoc 

networks. However, they rarely attempt to cover the multimedia QoS requirements of 

sessions within the task of ad hoc multicast routing, which is becoming increasingly 

important as the demand for mobile multimedia increases. Incremental changes on existing 

ad hoc schemes cannot efficiently address the critical issues mentioned above. 

1.2. Research Overview and Contributions 

In this thesis, the ad hoc QoS multicast (AQM) routing protocol is presented as a 

composite solution to the problem. AQM tracks QoS availability within each node’s 

neighbourhood based on current reservations made for ongoing sessions and the 

requirements reported by the neighbours and announces it at session initiation. This 

information is updated periodically to the extent of QoS provision. Nodes are prevented 

from applying for membership if there is no QoS path for the session. When a node wants 

to join a session with certain service requirements, a request-reply-reserve process ensures 
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that this QoS information is updated and used to select one of the routes which can meet 

the requirements of that session. The allowed maximum hop count of the session is taken 

into account in order to satisfy the delay requirements of the multimedia applications. 

Objection queries are utilized during this process to avoid excessive allocation of 

resources. At each node, a priority queue determines the transmission order of data packets 

according to their traffic classes in order to fulfil even the requirements of those 

applications with more stringent QoS restrictions. AQM evolves the initial multicast tree 

into a mesh during data flow to improve robustness. Simulation results show that AQM 

significantly improves multicast routing efficiency for members and sessions through QoS 

management. The main contributions of the thesis can be summarized as follows: 

• The concept of QoS-awareness is integrated to multicast routing in mobile ad hoc 

networks. Specifically, the hybrid approach of proactive session management and 

reactive membership management with the introduction of the objection query 

mechanism keeps nodes informed on QoS. A simple delay component is added to 

the protocol by limiting the number of hops allowed to join a session of a specific 

QoS class. Using these features, AQM nodes are able to make their decisions on 

sending join requests or replies based on the availability of QoS. Although there are 

several resource management schemes developed to serve ad hoc routing and 

multicast protocols as QoS modules, there has not been an ad hoc multicast protocol 

that incorporates QoS directly in its admission and routing decisions prior to AQM. 

• The concept of the virtual tunnel of bandwidth is introduced to compare a node’s 

usable bandwidth to the bandwidth requirement of a new session more accurately. 

With the help of this concept, the continuous nature of data flow in a multimedia 

application is taken into account. Thus, the estimation of the available bandwidth is 

improved, which also helps the nodes make more accurate reservation decisions. 

• A priority queue is implemented at each node in order to schedule data packets with 

regard to the application class that they belong to. Such a queuing discipline is a very 

important part of a QoS-aware routing protocol since it is the only means of service 

differentiation during data flow. Thus, AQM can sort data traffic according to their 

QoS requirements and prioritize flows that are more sensitive to loss and delay. 
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• The analysis of the control overhead, which considers the multi-hop nature, the 

limited transmission range and the omni-directional communication property of ad 

hoc networks, provides a method for the computation of the probabilities that a node 

reaches a multicast tree in a certain number of hops and an estimate of the number of 

nodes involved in the process. Some of the results of the analysis are not specific to 

AQM and can be useful for a general interpretation of ad hoc multicast strategies. 

• New performance metrics, which are both qualitative and measurable, are defined in 

order to evaluate the efficiency of AQM. Since the motivation of the proposed 

protocol is the provision of QoS to the multicast users in the ad hoc network, it is 

necessary to define new criteria to measure service satisfaction of the session 

members. Thus, the concept of QoS sustainability is introduced to evaluate AQM 

with regard to members with insufficient perceived QoS, which has a direct impact 

on service satisfaction, the primary QoS criterion. In addition, overloaded members 

and sessions are observed to examine the efficiency of AQM in resource allocation. 

• A mobile ad hoc network environment is designed which supports multiple QoS 

classes simultaneously, such that a realistic usage scenario can be achieved. 

Background data traffic is also incorporated in this scenario along with multicast 

data traffic in order to observe their mutual effects on the performance of each other. 

Simulations are conducted in this environment for a network lifetime as long as one 

hour in order to get an impression of the long-term behaviour of AQM maintaining 

multiple multicast sessions of arbitrary numbers of members in a distributed manner. 

Since these sessions belong to different service classes, they also have different QoS 

requirements. Previous performance evaluations in the research literature mainly 

limit themselves to one multicast session, a restricted number of members and at 

most a few minutes of simulated time. 

1.3. Thesis Outline 

Section 2 summarizes previous research efforts made in the field of multicast routing 

in mobile ad hoc networks. A general classification of the protocols is made. Several 

proposed multicast protocols are examined and their main ideas are briefly described. 
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Section 3 introduces AQM. First, the modular architecture of the protocol is 

described. Then the definitions are given for various information entities used. Finally, the 

procedures used by each module are explained in detail. The algorithmic structures for the 

initiation and termination of sessions, the joining and leaving of members are presented. 

Section 4 describes bandwidth estimation in AQM. It defines a node’s bandwidth 

requirement and a neighbourhood’s allocated resources. Then the available bandwidth is 

estimated. Finally, the term virtual tunnel of bandwidth is introduced, which is a decision 

mechanism to check more accurately if the available bandwidth is enough to support QoS. 

Section 5 evaluates the performance of AQM through simulation. First, the metrics 

of performance are defined. Then the simulation settings are summarized. Finally, 

evaluation results are presented. The behaviour of AQM is simulated using different 

parameters, evaluating it with regard to node density, network load and QoS requirements. 

Section 6 analyses the control overhead incurred by AQM. Based on the ranges that 

ad hoc nodes are able to reach each other and the geometric properties of their intersection, 

the number of nodes involved in the control processes of AQM is derived. Following this 

analysis, the overhead of AQM control packets on the ad hoc network is formulated. 

Section 7 makes improvements in AQM based on the previously presented results. 

The problem experienced by the protocol is identified and the objection query mechanism 

is developed as an extension to AQM in order to improve its performance. The simulations 

are repeated for the improved version of AQM and the results are interpreted. 

Section 8 presents a priority queuing system incorporated in AQM for the timely and 

successful delivery of data packets based on their traffic classes. The need for service 

differentiation is explained and the queuing discipline is developed. The simulations are 

repeated to compare AQM’s performance with and without the class-based priority queue. 

Section 9 concludes the thesis, summarizing the work done and the results achieved. 

The contributions are restated and some insight into future research directions is given. 
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2. A BRIEF HISTORY OF MULTICAST IN AD HOC NETWORKS 

According to its general definition in the domain of conventional, wired networks, 

multicast routing is a transmission technique that allows a single data packet sent by a 

source to be replicated by intermediate nodes at each separation point of disjoint paths as 

necessary and passed to a selected subset of all possible destinations [30, 31]. When an 

application has to send the same information to a number of destinations, multicast routing 

provides a more efficient solution than unicasting the data packets to each node separately 

or broadcasting them throughout the network. It reduces the transmission overhead both on 

the source as well as on the network and speeds up the delivery of information at the 

destinations [32]. 

The first multicast-based applications have been developed for local area networks 

(LAN), such as Ethernet [33]. As these networks have become interconnected by store-

and-forward packet switches in order to build extended LANs, extensions and new 

algorithms have been proposed to support the migration of the applications and provide 

efficient routing for multicast across these interconnected networks [32, 34 ]. Today, 

multicast routing has a number of practical applications, some of which are multimedia 

streaming, video conferencing, database management, distributed computation and real-

time workgroup activities such as exchanging files, graphics or messages [31]. 

As a result of the developments in the field of wireless communications, multicast 

routing protocols also play an important role in mobile ad hoc networks to provide 

communication and coordination among a given set of nodes. It is particularly 

advantageous to facilitate multicast rather than use multiple unicast in ad hoc networks, 

where scarce resources are shared in the wireless medium. However, conventional wired 

network multicast protocols do not perform well in the ad hoc domain due to the unreliable 

nature of the wireless links and dynamic network topology. The multicast protocols used 

in the conventional wired networks usually require global knowledge on routing such as 

link state or distance vector structures, which are not feasible for ad hoc networks [11]. 

Therefore, several ad hoc multicast routing protocols are proposed to address the problem, 

some of which are categorized in Table 2.1 and summarized in the following sections. 
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Table 2.1.  Chronology of ad hoc multicast routing protocols 

Multicast 
Protocol 

First 
Publication 

Multicast 
Topology 

Initiation 
Type 

Flooding 
Control 

Periodic 
Control 

AMRoute 1998/08 Shared-tree Source Yes Yes 

ASTM 1998/11 Shared-tree Receiver Yes Yes 

FGMP 1998/11 Mesh Receiver Yes Yes 

AMRIS 1998/11 Shared-tree Source Yes Yes 

CAMP 1999/03 Mesh Receiver No No 

MAODV 1999/08 Shared-tree Receiver Yes Yes 

MCEDAR 1999/09 Source-tree Receiver Yes No 

ODMRP 1999/09 Mesh Source Yes Yes 

BEMR 1999/10 Source-tree Receiver Yes No 

DDM 2000/07 Source-tree Receiver Yes Yes 

NSMP 2000/08 Mesh Source Yes Yes 

ABAM 2000/09 Source-tree Source Yes No 

MZR 2001/07 Source-tree Source Yes Yes 

MMA 2001/08 Shared-tree Receiver No Yes 

ITAMAR 2001/10 Source-tree Source n/a n/a 

DCMP 2002/06 Mesh Source Yes Yes 

LTM 2002/10 Source-tree Source n/a n/a 

WBM 2002/11 Source-tree Receiver Yes No 

RDG 2003/03 Mesh Receiver Yes Yes 

PLBM 2003/05 Source-tree Receiver No Yes 

PPMA 2004/06 Source-tree Source n/a n/a 

PUMA 2004/10 Mesh Receiver No Yes 

MANSI 2005/02 Shared-tree Receiver Yes Yes 
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2.1. Classification of Ad Hoc Multicast Routing Protocols 

There are various categories into which ad hoc multicast routing protocols can be 

classified. For instance, they can be classified by how multicast connectivity is established 

and maintained. In a source-initiated approach, a multicast tree or mesh is constructed per 

sender, where the formation of the multicast group is initiated by the source. The source 

polls the network periodically with join request packets. Receivers wishing to join the 

multicast group respond with join reply packets when the propagated request reaches 

them. In a receiver-initiated approach, a single multicast connection is shared by all 

senders of the same group. A receiver floods a join request packet to search for a path to a 

multicast group. One common technique used with this approach is to assign a node, 

known as the rendezvous point or the core, to accept join requests from members. The 

multicast connection then consists of shortest paths from the core to each of the members. 

Another possible classification is based on the operation type of the ad hoc multicast 

protocols. According to this classification, a protocol can be either proactive or reactive. 

Proactive protocols typically require table-driven preparation activities, whereas in 

reactive protocols the process is on-demand. This classification is inherited from ad hoc 

routing protocols. It is shown by previous research that, generally, on-demand approaches 

are better-suited than table-driven ones due to the dynamic nature of ad hoc networks. 

Based on the multicast topology, multicast routing protocols are grouped into two 

types: tree-based and mesh-based. In tree-based protocols, there exists only one possible 

path between a source-destination pair, whereas in mesh-based protocols, there may be 

more. Tree-based protocols are further categorized into shared-tree and source-tree 

topologies. In the former, all members of a multicast group are connected via a single 

shared tree, whereas in the latter, a group consists of multiple trees rooted at their 

respective sources. While tree-based protocols are more efficient in terms of resource 

usage, mesh-based protocols are more robust to the changes in the network. In the 

following sections, previous research on ad hoc multicast routing is examined based on 

this topological classification. As explained in Section 3, AQM initially constructs a 

multicast tree and evolves it into a mesh during the session. Therefore, it is appropriate to 

investigate its predecessors with this perspective. 
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2.2. Shared-Tree-Based Multicast Routing Protocols 

In a tree-based multicast routing protocol, a node accepts packets only when they 

come from another node which a tree branch has been established with. Thus, there is only 

a single path between a sender-receiver pair. A subset of the tree-based protocols 

constructs a single, shared multicast routing tree spanning all the group members. Such a 

tree may not be optimal for the individual sources, but they are more scalable when the 

number of sources in a session or the number of multicast sessions increases. Some of 

these protocols are presented in the following sections. 

2.2.1. Ad Hoc Multicast Routing Protocol 

Ad hoc multicast routing (AMRoute) is a shared-tree protocol running over an 

underlying mesh [35, 36]. It has two main components: mesh creation and tree creation. 

Dynamic logical group cores create and maintain the multicast tree and add new members. 

Neighbouring tree nodes are interconnected via unicast tunnels. It is the underlying unicast 

protocol’s responsibility to maintain connectivity among members. 

After a mesh is created, all cores periodically broadcast join request messages to 

discover mesh neighbours. When a core or non-core member receives this request, it 

replies with a join acknowledgement message. If a member does not wish to join the 

session or wishes to leave, it sends a negative acknowledgement to its neighbours. The 

cores also send periodic tree creation messages along unicast tunnels. Members receiving 

these non-duplicate messages forward them to other mesh links and mark incoming and 

outgoing links as tree links. If a link is not going to be used, a negative acknowledgement 

is sent back in response to the tree creation message along the incoming link. In the mesh 

merging process, multiple active cores may coexist. Nodes receive tree creation messages 

from different cores. A core resolution algorithm decides on a unique core for the mesh. 

2.2.2. Adaptive Shared-Tree Multicast Routing 

Adaptive shared-tree multicast (ASTM) protocol facilitates a rendezvous point as the 

root of the multicast tree to combine the advantages of per-source and shared trees [13, 37, 
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38]. Receivers send their join requests periodically to the rendezvous point for the creation 

of the multicast tree with a list of sources they expect to get data packets from. Sources 

send their data to the rendezvous point to be forwarded to the receivers. Intermediate 

nodes on the path between the source and the rendezvous point may not forward these 

packets to other nodes if the protocol is operating in the unicast sender mode. However, 

forwarding to other nodes known to be receivers of the source is allowed in the multicast 

sender mode of the protocol. 

ASTM also allows sources to multicast without the intervention of the rendezvous 

point, if there are nodes which belong to the tree between the rendezvous point and 

themselves. This method is called adaptive per source multicast routing. According to this 

method, packets might travel paths other than the shortest path. Therefore, a receiver 

should not be forced to travel on the tree rooted at the rendezvous point if the source is 

nearby. Moreover, receivers should be allowed to switch between the rendezvous-point-

rooted tree and the per-source tree dynamically using relative path length and link load as 

decision criteria. Switching is possible for a receiver by sending a join request to the 

source for a forwarding path and letting the record for the source-receiver pair expire in 

the forwarding list of the rendezvous point. When nodes move and the relative path length 

becomes infeasible to use that path, the receiver can switch back to the shared forwarding 

tree rooted at the rendezvous point. 

2.2.3. Ad Hoc Multicast Routing Protocol Utilizing Increasing ID-Numbers 

The ad hoc multicast routing protocol utilizing increasing ID-numbers (AMRIS) 

builds a shared tree for each multicast session [39]. A single source with the smallest 

member ID broadcasts the new session packet. Other nodes generate their own IDs based 

on the ID and hop count values they receive in this packet in an increasing manner, put the 

new ID to the packet and rebroadcast it. Multiple copies of the new session packet are not 

processed. The new session packet propagates outward from the session source in the form 

of an expanding ring. Eventually, all nodes have their own IDs regarding this session. 

They also keep a neighbour status table. 
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When a node sends a join request to its neighbouring potential parent, the latter 

checks the ID of the requester and replies with an acknowledgement if the ID is greater 

than its own. Otherwise, the parent sends back an error message and waits for the requester 

to increase its ID. If the parent itself is not yet a member of the session, it sends its own 

passive join request to its potential parent. The process is completed when the requesters, 

upon receiving acknowledgements from their parents, send confirmation messages to show 

that they have actually selected their parents for the session. A node wishing to join a 

session without a potential parent around broadcasts a request with a certain range. All 

nodes within that range must attempt to join the multicast tree with their own passive join 

requests. A node leaves a session by sending a session leave packet to its potential parent. 

2.2.4. Multicast Ad Hoc On-Demand Distance Vector Routing 

Multicast ad hoc on demand distance vector (MAODV) routing protocol tries to 

provide unicast, multicast and broadcast capability to its users [7, 40, 41]. It is derived 

from AODV [42, 43]. It is a tree protocol whereby routes are discovered on demand and 

use a broadcast discovery mechanism. Multicast and unicast routing information help each 

other to learn new routes. The multicast group leader maintains a group sequence number 

and broadcasts it periodically, which is very important to keep the routing information 

fresh. 

A node wishing to join a multicast group generates a route request with its join flag 

set. If the multicast group leader is known, it can be found in the request table and the 

request is unicast to the leader. Otherwise, the request has to be broadcast. Only the leader 

or members of the multicast group with a higher sequence number than that in the join 

request may respond to the request by generating a route reply and unicasting it back to the 

requester. Other nodes may only rebroadcast or forward the packet. If the requester does 

not receive a route reply after a certain number of attempts, it becomes a group leader. 

Nodes receiving join requests update their route and multicast tables with the downstream 

next hop information. Nodes receiving reply messages update their tables with the 

upstream next hop information. They increment hop counts and forward the message to the 

node that has originated the request, which eventually receives several route replies, 

selects the best one in terms of highest sequence numbers and lowest hop count and 
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enables that route by unicasting a multicast activation message to its next hop neighbour 

on the selected path. Intermediate nodes receiving the activation message enable their 

multicast table entries for the requester. If they are already multicast group members, 

further propagation of the message is not necessary. Otherwise, they unicast it upstream 

along the best route according to the replies they received previously. Nodes having 

generated or forwarded replies, but not received any activation, delete their entries after a 

timeout. Figure 2.1 illustrates the three phases of such a join operation in MAODV.  

The maintenance of the tree is accomplished by means of an expanding ring search 

started by the downstream node with a fresh join request, which contains the hop distance 

of the requester to the group leader and the last known sequence number. This request can 

be answered only by those tree members which are closer to the group leader and have a 

greater sequence number for the session. Nodes wishing to leave the group prune 

themselves by unicasting a multicast activation message to their next hop with the prune 

flag set. 

 
Figure 2.1.  Multicast join operation of MAODV [40] 
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2.2.5. Mobile Multicast Agents 

A multicast routing algorithm based on mobile multicast agents (MMA) in ad hoc 

networks uses a two-level hierarchy, where a special subset of network nodes form a spine 

to act as a virtual backbone on top of a clustered structure [44]. Spine nodes are called 

MMAs, which are responsible for multicast tree discovery and maintenance. MMAs are 

also used as relay hosts, so that the multicast tree is composed of a sender host, MMAs and 

multicast group members. Route information is only stored in MMAs. Thus, tree discovery 

is simplified and the time to find the tree is reduced. 

According to this algorithm, the multicast group is only composed of MMAs that 

dominate some multicast members. Thus, only MMAs are flooded with route request 

packets and control overhead is reduced. A clusterhead is automatically selected as a 

MMA. Spine nodes function as MMAs of their dominating nodes. Spine construction is 

based on an approximation to a minimum connected dominating set. The MMA multicast 

algorithm is based on AODV [42, 43]. 

When a node wants to join a multicast group, it sends a request packet to its MMA, 

which checks its routing table for that multicast group. If MMA already knows the 

multicast tree valid for that group, it uses this tree. If no information is available, the 

MMA broadcasts a route request to the spine to initiate a route discovery process. Each 

MMA looks up its own routing table for the desired multicast group tree and sends back a 

reply if it does. Otherwise, it broadcasts the request further to its neighbouring MMAs. If 

an intermediate MMA has partial information on the desired group, then it adds this 

information to the request packet to show that routes to some members have been found 

and broadcasts the request further. It also appends its cached routes to a reply packet and 

sends it back to the requesting MMA. 

Non-spine nodes are periodically queried by dominating MMAs to detect new 

entries or absence of old ones in the domination area. Route errors and acknowledgements 

are used for route maintenance. The load of the protocol is mainly on MMAs. Time must 

be spent to construct a spine by seeking MMAs before communication. 
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2.2.6. Multicast for Ad Hoc Networks with Swarm Intelligence 

The multicast for ad hoc networks with swarm intelligence (MANSI) protocol is 

inspired from the nature, where especially social insects such as ants and honeybees work 

collectively as a group to achieve globally optimized behaviour, although each individual 

has limited intelligence [45]. Similarly, MANSI utilizes small control packets which 

deposit information at the nodes they visit. This information is used by other control 

packets later. MANSI adopts a core-based approach to establish connectivity among 

members. The core is the first sender of a multicast session. The initial announcement is 

flooded by the core towards the receivers and the nodes on the reverse paths serve as 

forwarding nodes to the group members. MANSI determines a forwarding set using the 

intermediate nodes shared among multicast senders. This set connects all group members 

for each multicast group and evolves in such a way that its cost decreases during the 

lifetime of the session. MANSI tries to reduce the number of nodes used to establish 

connectivity. For this purpose, nodes tend to choose paths that are partially shared by 

others to reduce the size of the forwarding set. Periodic exploration messages are deployed 

by members to search for new forwarding nodes with lower cost. Active forwarding 

members reply to these search packets. If the cost of the new path is lower for the 

intermediate and requesting nodes, the requester switches to the new route and the old one 

expires. Figure 2.2 shows a change of multicast routes to reduce the number of forwarding 

nodes in the tree and achieve lower cost. 

 
Figure 2.2.  Multicast connectivity examples in MANSI [45] 
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2.3. Source-Tree-Based Multicast Routing Protocols 

In contrast to the shared-tree approach, multicast groups generated by a source-tree-

based protocol consist of multiple trees rooted at their respective sources. Source-tree-

based protocols perform better than shared-tree-based protocols under heavy traffic since 

they achieve more efficient load balancing. Some of these protocols are presented in the 

following sections. 

2.3.1. Multicast Core-Extraction Distributed Ad Hoc Routing 

Multicast core-extraction distributed ad hoc routing (MCEDAR) is a protocol trying 

to bring mesh robustness and tree efficiency together [46]. It is an extension to CEDAR, 

which establishes a core network and uses it as a route management infrastructure [47, 48]. 

Each node selects a neighbour with maximum degree and maximum number of joined 

nodes as its core. When a node joins a core, it broadcasts its neighbourhood information. 

Thus, each core has enough local topology data to reach the domains of other cores. Core 

broadcast messages have the form of unicast between cores and are sent to discover 

destination locations and topology information. In MCEDAR, the multicast group is a 

subgraph extracted from the core. 

 
Figure 2.3.  The join protocol of MCEDAR [46] 
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In order to join the multicast group, a node requests its dominating core to broadcast 

a join request with a join ID set to infinity. Non-member cores forward the request. A 

member core receiving the request replies with a join acknowledgement if its own join ID 

is smaller than that of the requester. It also forwards the request. Intermediate nodes accept 

a limited number of acknowledgement messages for a request. They become members by 

setting their join ID to the maximum of their current ID and the arriving ID. They forward 

the acknowledgements with their new join ID and add corresponding entries to their parent 

and child sets. If an intermediate node rejects an acknowledgement, it suppresses the 

message and notifies its parent to be removed from the child set. Eventually, the core 

which has sent the request receives the acknowledgements and the node joins the group. 

Figure 2.3 displays the join process of MCEDAR. 

Every member tries to keep a certain number of parents in the multicast group by 

sending new join requests periodically. Rejoin requests are issued with the current ID 

when all parents are lost, which causes a global ordering on join IDs and can trigger 

cascade changes in the entire graph. 

2.3.2. Bandwidth-Efficient Multicast Routing 

Bandwidth-efficient multicast routing (BEMR) tries to achieve bandwidth efficiency 

by utilizing a small number of control packets and multicast efficiency by decreasing the 

number of transmissions for packet delivery in the multicasting process [49, 50]. For this 

purpose, newly joining nodes try to find the nearest forwarding multicast member and tree 

reconfiguration is done only when a link break is detected, avoiding the periodic 

transmission of control packets. 

When a new node broadcasts a join request, each node receiving the request adds its 

ID and increments the hop count before flooding it back to the network. The hop count 

indicates the number of new nodes that need to be added to the multicast group in order to 

create a path from the group to the node originating the request. Forwarding nodes receive 

some of these requests, choose the best hop alternative and send a reply packet along the 

selected path. The requester eventually receives multiple replies, chooses the best hop 

alternative and sends a reserve packet along the same path. All nodes on this path become 
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forwarding nodes. The route setup process is illustrated in Figure 2.4. To leave a session, 

nodes send prune messages to their upstream neighbours. If the neighbour does not have 

any other downstream multicast member, it also leaves the session. 

 
Figure 2.4.  Route setup in BEMR [50] 

The routes in BEMR can later be optimized by removing unnecessary forwarding 

nodes. The optimization process creates a shorter route when a forwarding node or 

receiver receives a multicast packet with a smaller hop count, as a result of moving into 

the range of an upstream forwarding node. In this case, the node sends a reserve packet to 

the new upstream node and a leave packet to the old one. 

There are two schemes in BEMR to recover from link failures. In the first scheme, 

the upstream node detects the failure and looks for a new route to the lost downstream 

node by flooding a broadcast-multicast control packet locally. When the downstream node 

receives this packet, it sends a reserve packet back and rejoins the multicast group. In the 

second scheme, the downstream node tries to reconnect to the multicast group by flooding 

a join packet locally. When nodes from the multicast group receive the packet, they reply. 

The downstream node selects its new upstream node and sends a reserve packet to it. 

2.3.3. Differential Destination Multicast Routing 

Differential destination multicast (DDM) lets source nodes manage group 

membership as admission controllers and stores multicast forwarding state information 
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encoded in headers of data packets to achieve stateless multicast routing [51-53]. The 

protocol is intended for small multicast groups and is not general-purpose. 

In DDM, join messages are unicast to the source, which tests admission 

requirements, adds the requester to its member list and acknowledges it as a receiver. The 

source needs to refresh its member list in order to purge stale members. It sets a poll flag 

in data packets and forces its active receivers to resend join messages in order to remain in 

the member list of the source. Leave messages are also unicast to the source, which 

removes the leaving member from its list. Forwarding computation is based on 

destinations encoded in the headers. During this process, a node has to check the header 

for any DDM block or poll flag intended for it and take the appropriate actions. 

In order to achieve stateless multicast, DDM keeps the destination addresses of a 

multicast session encoded in the header of the data packets, which are sent to the next node 

using the underlying unicast protocol. However, there is a second operation mode in 

DDM, whereby nodes remember the destination addresses and there is no need to store 

them in data packets. Instead, the upstream node informs the downstream node with a data 

packet containing a differential type address block when the list of destinations changes. 

2.3.4. Associativity-Based Ad Hoc Multicast Routing 

Associativity-based ad hoc multicast (ABAM) builds a source-based multicast tree 

[54, 55]. Association stability, which is achieved when the number of beacons received 

consecutively from a neighbour reaches a threshold, helps the source select routes which 

will probably last longer and need fewer reconfigurations. The concept as well as the route 

selection algorithm is based on the Associativity-based routing (ABR) protocol [55, 56]. 

The tree formation is a process consisting of three phases. The first phase is initiated by 

the source by broadcasting a message to the group it intends to reach, whereby it 

specifically identifies its receivers. In the second phase, valid receivers, which already 

know possible routes to the source, run a route selection algorithm to select and reply with 

routes of highest association stability. Upon receiving the replies, the source runs a tree 

selection algorithm to find common links, builds the shared-link multicast tree and sends a 

setup message to its receivers, which is the third phase of the process. 
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To join a multicast tree, a node broadcasts a request, collects replies from group 

members, selects the best route and sends a confirmation. Tree reconfigurations occur 

when the associative property is violated due to node mobility. Broken links are repaired 

by the upstream members of the tree through the use of local queries. If the repair attempts 

of the upstream nodes fail, the disconnected receiver sends a new join query packet. To 

leave a multicast tree, a notification is propagated upstream along the tree until a 

branching or receiving node is reached. 

2.3.5. Multicast Zone Routing 

The multicast zone routing (MZR) protocol tries to limit the flooding of the control 

packets generated by a node during the member searching process within its zone [57]. 

The concept is borrowed from the zone routing protocol (ZRP), which associates each 

node with a routing zone [58]. Routing inside a zone is table-driven, whereas routing 

across zones is on-demand. In its multicast version, the source first builds a tree inside its 

zone by unicasting a tree create packet to the nodes within the zone. Interested receivers 

reply with acknowledgement packets. Then, the tree is extended outside the zone by the 

source with a tree propagation packet sent to the border nodes of the zone. The border 

nodes convert these packets into tree create packets and distribute them within their zones. 

Once the multicast tree is created, the source periodically transmits tree refresh packets. If 

any node on the tree does not receive these packets for a certain period of time, it removes 

the tree from its records. Downstream nodes have to detect link breaks and rejoin the 

group. Similar to the tree generation process, the join packet is first sent to the zone nodes. 

If no join acknowledgement is received, a join propagate packet is sent to the border 

nodes. 

2.3.6. Weight-Based Multicast 

The weight-based multicast (WBM) protocol provides a receiver with the options of 

joining the multicast session at the nearest point to either the tree or the source [11, 59]. 

The protocol facilitates a weight when deciding on the entry point. Thus, it considers both 

the number of intermediate nodes which need to be added to the tree, as well as the hop 

distance to the source before joining a multicast group. 



 
24

A new receiver about to join a group broadcasts a join request, copies of which are 

forwarded until they reach some nodes on the tree. Several replies are returned, which 

contain the hop distance of the replying node both to the source and to the requesting node. 

The new receiver selects the best alternative by calculating a weighted sum of these values 

and sends a join confirmation along the selected path. The join weight parameter depends 

on the network load and the size of the multicast group. 

WBM uses a localized prediction technique for the maintenance of the multicast tree. 

Each node maintains a neighbour multicast tree table to keep the hop distance information 

of the tree nodes. When a downstream node receives data from its parent node, it predicts 

the time duration for which the nodes remain within the transmission range of each other. 

If this duration is below a threshold, then the node decides that it needs a new parent, 

raises a handoff flag in the data packet and forwards it. A neighbouring node overhearing 

such a packet looks up its neighbour multicast tree table and sends a handoff packet back 

to the node requiring handoff if there is a tree member node which can be the new parent. 

Upon receiving several handoff packets, the node requiring handoff selects one of them 

and send a handoff confirmation to the neighbour, which forwards it to the tree member so 

that the node requiring handoff can rejoin the multicast tree. 

2.3.7. Preferred-Link-Based Multicast 

The preferred-link-based multicast (PLBM) protocol uses the notion of preferred 

links and facilitates the two-hop local topology information for efficient multicast routing 

[11, 60]. Each node maintains a list of its two-hop neighbours, which is kept up-to-date by 

means of small control packets called beacons and transmitted periodically by every node. 

Each node also maintains information on the multicast tree. 

A node wishing to join the multicast tree checks its list of neighbours to see whether 

the multicast source, a multicast member or a forwarding node is around. If this is the case, 

it sends a join confirm packet to this neighbour. Otherwise, it checks the same list to see 

whether there are neighbours which can be preferred to send a join query. The decision on 

the eligibility of the neighbours is made by an algorithm originally developed for the 

PLBR protocol [11, 61 ], which is the unicast ancestor of PLBM. According to one 
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implementation of this algorithm, preference is given to those neighbours with a higher 

neighbour degree. As higher degree neighbours can reach more nodes, a few of them is 

sufficient to cover all the nodes in the two-hop neighbourhood, which reduces the number 

of broadcasts. A subset of the eligible nodes are inserted into the preferred list field of the 

join query, which is then sent away to be further forwarded by those nodes. 

Upon receiving the join request, a node on the preferred list sends a join reply if it is 

already connected to the multicast tree. Otherwise, it forwards the packet after generating 

its own preferred list. When the originator of the join request receives a reply, it sends a 

join confirm packet to the node which has sent the reply. Intermediate nodes receiving the 

join confirm packet mark themselves as connected and forward the packet. They also store 

the information on the next two-hop both upstream and downstream for this connection. 

Figure 2.5 illustrates the propagation of the join queries of two ordinary nodes 

towards the multicast source, the join replies sent in response to the second query by two 

forwarding nodes and a join confirm packet sent by a node which discovers a forwarding 

node within its two-hop neighbourhood. 

 
Figure 2.5.  Examples for the join process of various types of nodes in PLBM [60] 
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Disconnected paths in PLBM are repaired by using the list of two-hop neighbours 

and the two-hop connection information of the tree. A node with downstream multicast 

members tries to connect to any tree node in its two-hop neighbourhood. If there are no 

such nodes, it initiates a join query and also sends another message to its downstream 

nodes to prevent them from sending their own join queries and keep the subtree connected. 

2.4. Mesh-Based Multicast Routing Protocols 

Since there is only a single path between senders and receivers in tree-based 

multicast routing protocols, they are vulnerable to the dynamics of the ad hoc network 

such as node mobility and link breaks. In contrast, mesh-based multicast protocols 

maintain a mesh consisting of a connected component of the network containing all the 

receivers of a group. They aim to construct a mesh that allows data packets to be 

transmitted over more than one path from a sender to a receiver to increase robustness at 

the price of redundancy in data transmission. Some of these protocols are presented in the 

following sections. 

2.4.1. Forwarding Group Multicast Protocol 

The forwarding group multicast protocol (FGMP) introduces the forwarding group 

concept [13, 62], which is later adopted by ODMRP. The main difference between FGMP 

and ODMRP is that the latter is a source-initiated protocol. FGMP keeps track of the nodes 

participating in packet forwarding, which are called the forwarding group. It uses this 

group, which is periodically refreshed, to limit the region of flooding. It uses flags instead 

of upstream or downstream link status information and makes use of the inherent 

broadcast capability of the wireless medium by exploiting the fact that in such an 

environment it is sufficient if a node just knows whether it has to forward data packets or 

not. Its multicast forwarding activities are based on nodes rather than links.  

FGMP is a hybrid protocol between flooding and shortest tree multicast routing. The 

maintenance of its forwarding group can apply two schemes. In the receiver advertising 

scheme, join requests are issued by receivers periodically, which flood the global network. 

When these arrive at the server, it updates its member table with the new members, creates 
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a forwarding table from existing routing tables and finally broadcasts the forwarding table. 

Only those nodes that are among the next hop neighbours in the forwarding table take the 

packet into consideration. They set their forwarding flags, create their own forwarding 

tables and broadcast them in a similar manner until all receivers are reached. Figure 2.6 

illustrates an example for this process. The sender advertising scheme works similarly but 

in the opposite direction, i.e., receivers periodically broadcast joining tables, which are 

forwarded upstream towards the sender. It is noteworthy that forwarding tables are not 

stored at the nodes. They are just temporarily created and broadcast. 

 
Figure 2.6.  Forwarding group and tables in FGMP [62] 

2.4.2. Core-Assisted Mesh Protocol 

The core-assisted mesh protocol (CAMP) generalizes multicast routing trees into 

graphs by creating a shared mesh structure for each multicast group [63-66].Within a 

group, cores are used to limit the control traffic caused by join requests. Each node defines 

its predecessor in the multicast mesh from which it receives data as its anchor. In other 

words, anchors are those nodes that are expected to rebroadcast the multicast data they 
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receive to the routers downstream. Each node maintains a set of tables for routing, core-to-

group mapping as well as anchor and multicast group management. When a node updates 

its anchor or multicast table, it sends a reporting message to all its neighbours. 

The basic join mechanism is initiated by a host asking its router to join a group. 

CAMP assumes the availability of routing information from a unicast protocol. Thus, the 

router checks if there are any data-forwarding members of that group among its 

neighbours. If this is the case, the router directly announces its membership. Otherwise, it 

broadcasts a join request, which contains the information on the intended relay node 

towards the group core. Any member router of the intended multicast group can send a 

join acknowledgement. The requesting router and its relays become part of the group when 

they receive the first acknowledgement. Relays forward these replies towards their 

requester. A router leaves a multicast group if it has no member hosts and is not required 

as an anchor for any neighbouring node for that group. According to this mechanism, 

routers have to be group members to forward data packets of their hosts. However, CAMP 

has a secondary join mechanism which allows non-member sources to forward data in one 

direction only. Figure 2.7 illustrates the traffic flow in each of these schemes, whereby the 

solid arrows represent the flow of real data and the dashed arrows indicate overhead. 

 

Figure 2.7.  Traffic flow from router h and non-member source A in CAMP [65] 
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CAMP uses a scheme based on the transmission of heartbeat messages to ensure that 

the mesh contains all the reverse shortest paths. When the number of packets a mesh 

member receives from a multicast source via the reverse shortest path is under a threshold, 

the mesh member sends a heartbeat message along that shortest path towards the source. A 

router receiving a heartbeat forwards it if its successor towards the source is already a 

mesh member. Otherwise, it sends a push join and waits for an acknowledgement. A router 

receiving a push join sends an acknowledgement if it is the intended relay, is already a 

group member and has a path to the target of the push join. Then it forwards it to the next 

relay towards that target. Following this scheme, CAMP guarantees that every receiver in 

a multicast group knows a reverse shortest path to each source of that group. 

2.4.3. On-Demand Multicast Routing Protocol 

The on-demand multicast routing protocol (ODMRP) uses the concept of a 

forwarding group [6, 67-70], which is illustrated in Figure 2.8. Sources periodically 

broadcast join query messages to invite new members and refresh existing membership 

information as well as the routes between themselves and their receivers. When a node 

receives a non-duplicate join query, it stores the upstream node address in its routing table. 

If the time-to-live (TTL) field of the packet is greater than zero, the node also updates the 

join request with its own address, decrements the TTL field and rebroadcasts the packet. 

When a node decides to join a session, it sends a join reply packet along the reverse path to 

the source. When a node receives a join reply, it checks the table of next nodes to see if it 

is on the path to the source. If this is the case, it sets its forwarding group flag and 

broadcasts its own join reply after updating the table of next nodes. If a node receives a 

join reply to an already known source, however, no new join reply is sent. 

Periodic join requests initiated by the source must be answered by session members 

in the form of join replies to remain in the group. Forwarding group nodes reset their flags 

if they do not receive any join replies. Each node maintains a routing table, a forwarding 

group table and a message cache to detect duplicate packets. Redundant routes in the mesh 

provide alternate routes for data delivery in the face of mobility and link breaks. Data 

packets can still reach destinations while the primary route is being reconstructed. 
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An extension is applied to ODMRP in order to achieve reliable data delivery [71]. 

According to this extension, sequence numbers are maintained by each node for data 

packets sent and received. Data packets are forwarded to each downstream group member 

in a round robin fashion, such that the sequence numbers are compared at both ends and 

missing packets are retransmitted by the sender. During the process, other neighbours 

receive data packets and update their sequence numbers as well. The process continues 

until the current node receives all the data packets it has missed and then is repeated with 

the next downstream group member. 

In order to improve the local route recovery process of ODMRP without incurring a 

high maintenance overhead, another extension is proposed which introduces a passive data 

acknowledgement scheme, where control information is collected from data packets 

instead of beacon signals [72]. According to this extension, information on new routes is 

also collected from data packets, which enables dynamic local route maintenance. Since 

each node knows the status of its downstream forwarders, not too much route information 

needs to be collected in case of local route maintenance. The recovery process is 

performed by the upstream forwarding node to look for downstream nodes. 

 
Figure 2.8.  The forwarding group concept of ODMRP [70] 
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2.4.4. Neighbour-Supporting Ad Hoc Multicast Routing Protocol 

Neighbour-supporting multicast protocol (NSMP) utilizes node locality to reduce 

route maintenance overhead [73, 74]. A mesh is created by a new source, which broadcasts 

a flooding request. Intermediate nodes cache the upstream node information contained in 

the request and forward the packet after updating this field. When the request arrives at 

receivers, they send replies to their upstream nodes. On the return path, intermediate nodes 

make an entry to their routing tables and forward the reply upstream towards the source. 

 
Figure 2.9.  Multicast mesh creation in NSMP [74] 

The mesh creation is illustrated in Figure 2.9. In order to maintain the connectivity 

of the mesh, the source employs local route discoveries by periodically sending local 

requests, which are only relayed to mesh nodes and their immediate neighbours to limit 

flooding while keeping the most useful nodes informed. If a new receiver wishes to join 

the multicast group, it waits for one of these local requests and then joins the group by 

sending a reply. Replies are sent back to the source to repair possible broken links. Nodes 

more than two hops away from the source cannot join the mesh with local requests. They 

have to flood member requests. On the other hand, sources periodically flood special 

request packets to recover the network from partitions. NSMP favours paths with a larger 

number of existing forwarding nodes to reduce the total number of multicast packet 

transmissions. 
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2.4.5. Dynamic Core-Based Multicast Routing Protocol 

The dynamic core-based multicast routing protocol (DCMP) tries to reduce the 

control overhead by using a smaller number of forwarding nodes on a mesh and to prevent 

the packet delivery ratio from decreasing at the same time [75]. Its mesh creation protocol 

resembles that of ODMRP. However, DCMP defines active and core active sources, which 

are the nodes allowed to flood join request packets in the network and create a mesh. 

 
Figure 2.10.  The mesh topology of DCMP [75] 
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Figure 2.10 illustrates a sample multicast mesh with various types of nodes. In 

addition to flooding join requests, active and core active sources can also send data 

packets. Passive sources, on the other hand, are not allowed to flood join request packets 

and can only send data packets to their associated active sources to be forwarded over the 

mesh. Thus, both the number of forwarding nodes and control overhead are reduced. The 

maximum number of passive sources is limited to guarantee that the mesh still has enough 

forwarding nodes. The maximum hop distance between a passive source and its active 

source is also limited so that the packet delivery ratio is not at stake. 

2.4.6. Route-Driven Gossip 

The route-driven gossip (RDG) protocol is developed to achieve probabilistic 

reliable multicast in ad hoc networks [76, 77]. According to the probabilistic reliability 

principle, if some group member sends out a flow of data packets, a certain group member 

receives a fraction of these packets with a certain probability. RDG nodes gossip 

uniformly about multicast data, acknowledgements and membership, also considering 

network parameters such as the availability of routing information. RDG can be deployed 

on any basic on-demand routing protocol, which has to be extended with control packets 

for group requests and replies.  

In RDG, each node has a list of accessible group members, which is known as its 

view of the network. A node joins a multicast group by flooding the network with a 

request, whereby it announces its existence and searches for other members. All nodes 

receiving the request update their views and send replies. The requester also updates its 

view when it receives a reply. There is a periodic gossip task, whereby gossip messages 

are sent to a subset of randomly selected neighbours from a node’s current view. Gossip 

messages are used to update receivers’ views. The sender of a gossip is added to or 

removed from the views of the receivers of the gossip according to the current or intended 

membership status in the message. Gossip messages also carry data stored in the buffers of 

the nodes. A data packet is removed from the buffer after having been gossiped a 

predefined number of times. RDG yields reliable delivery results close to flooding with far 

less load on the network. Figure 2.11 illustrates the gossip process of RDG, where the 

number of randomly selected neighbours is two. 
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Figure 2.11.  An example run of RDG [76] 

2.4.7. Protocol for Unified Multicasting Through Announcements 

The protocol for unified multicasting through announcements (PUMA) aims 

efficient and robust multicast routing in mobile ad hoc networks [78]. PUMA creates a 

shared mesh for each multicast group and has a dynamic core election mechanism where 

the first receiver of the group becomes the core. Subsequent receivers join the group with 

the help of the core. The core sends periodic multicast announcements. Connectivity lists 

are established at the other nodes using these announcements, such that each node is 

informed of at least one next-hop node towards the core. The connectivity lists are used for 

mesh creation and data routing. Each receiver connects to the core along all shortest paths 

and all intermediate nodes collectively form the mesh. Nodes prepare their own 

announcements based on the best announcement they receive, which is determined by its 

freshness and its sender’s distance to the core. 
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When a node wishes to send data to a group, it forwards the data packets to the node 

from which it has received the best multicast announcement. If the connection to that node 

is broken, the sender tries the next best alternative. Initially, only receivers are mesh 

members. Non-receivers become mesh members only if they have mesh children 

according to their connectivity list. Eventually, all shortest paths from the receiver to the 

core are included to the mesh. An announcement is produced by a node if the core 

changes, the node receives a fresh announcement or the mesh member status of the node 

itself changes. During the data forwarding process, a non-member delivers its packets to 

its neighbour having sent the best announcement. Outside the mesh, only parents of 

receivers forward these data packets towards the core. As soon as the data packet enters 

the mesh, it is flooded by the mesh members without consulting the connectivity list. 

Figure 2.12 shows the mesh creation process of PUMA. 

 
Figure 2.12.  Mesh creation in PUMA [78] 
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2.5. Multicast Optimization Protocols 

Some of the multicast protocols do not intend to solve the routing problem directly. 

They are rather interested in the development of a scheme which tries to optimize a certain 

aspect of the multicast network, such as node reliability, tree lifetime or route stability. 

2.5.1. Independent-Tree Ad Hoc Multicast Routing 

Independent-tree ad hoc multicast routing (ITAMAR) provides heuristics to generate 

a set of independent multicast trees, such that a tree is used until it fails and then replaced 

by an alternate tree [79, 80]. Maximally independent trees are computed by minimizing the 

number of edges and nodes which are common to the trees in question under the 

assumption that node movements are independent of each other. Some overlapping is 

allowed since totally independent trees might be less efficient and contain more links. 

Thus, the correlation between the failure times of the trees is minimal, which leads to 

improved mean times between route discoveries. New trees are computed when the 

probability of failure for the current set of trees rises above a threshold. Given a mobility 

pattern, it is important to estimate the time this happens. Then, instead of replacing a tree 

even if one link fails, an independent path algorithm can find a set of backup paths to 

replace the damaged part of the tree. 

2.5.2. Lantern-Tree-Based Multicast 

The lantern-tree-based multicast (LTM) protocol is a resource management scheme 

which can serve as the bandwidth reservation module of an on-demand multicast routing 

protocol [81, 82]. It provides end-to-end calculation and allocation of bandwidth from a 

source to a group of destinations by means of multipath routing. The scheme provides a 

single path if bandwidth is sufficient or a lantern-path if it is not. A lantern is defined as 

one or more subpaths with a total bandwidth between a pair of two-hop neighbouring 

nodes. A lantern path is a path with one or more lanterns between a source and a 

destination. Finally, a lantern tree is defined as a multicast tree which contains at least one 

lantern-path between any of its source-destination pairs. Figure 2.13 illustrates the lantern 

tree concept. 
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Figure 2.13.  A tree, a lantern-tree and a worst-case lantern-tree in LTM [82] 

According to LTM, the source sends a lantern-path request. The path is created if 

such a lantern exists. The process is repeated until a possible lantern-path arrives at the 

destination. Then a lantern-path is constructed. The replying paths from the destination 

back to the source are merged together to construct the lantern tree. The advantages of the 

lantern-tree approach are task sharing and higher stability. Sub-paths are responsible for a 

portion of the total bandwidth requirement and also for a fewer number of bandwidth 

requirements. 

2.5.3. Probabilistic Predictive Multicast Algorithm 

Probabilistic predictive multicast algorithm (PPMA) tracks relative node movements 

and statistically estimates their relative positions in the future to maximize the multicast 

tree lifetime by exploiting more stable links [83, 84]. Thus, by keeping track of the 

network state evolution, it tries to solve the drawbacks of lack of tree robustness and 

reliability in highly mobile environments. PPMA defines a probabilistic link cost as a 

function of energy, distance and node lifetime. It tries to keep all the nodes alive as long as 

possible. The protocol models the residual energy available for communication for each 

node, which is proportional to the probability of being chosen to a multicast tree. Nodes of 

low energy cannot join any more multicast trees.  

The PPMA algorithm has a centralized and a distributed version. In the centralized 

version, a node has a set of potential fathers for a given number of hops. Higher priority is 

given to those nodes within transmission range having other children in order to exploit the 
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broadcast property of the wireless medium. The closest one among the potential fathers is 

chosen for power efficiency reasons. In the distributed version, a private cost is defined to 

find the minimum cost path to the source, in addition to a public cost to enable a node to 

join a tree. A new receiver finds the best public-cost path and joins the tree, whereas an old 

receiver changes its path if it finds a smaller private cost. The cost can be typically an 

entity such as energy consumption. 
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3. AD HOC QUALITY OF SERVICE MULTICAST ROUTING 

The motivation behind QoS support for multicast routing in mobile ad hoc networks 

is the fact that multimedia applications are becoming increasingly important for wireless 

group communication. For an efficient ad hoc QoS multicast routing strategy, the 

implementation of QoS classes, negotiations between the network and its users, bounded 

end-to-end delay, jitter, as well as packet loss probability, bandwidth reservation and 

mobility management are very important. In the following sections, the structural 

components of AQM are presented, which address these issues. 

AQM tracks the availability of resources within each node’s neighbourhood based 

on current reservations made by that node for ongoing sessions and the requirements 

reported to that node by its neighbours. The allowed maximum hop count of the session is 

also taken into account in order to satisfy the delay requirements of the multimedia 

applications. The QoS status of the network is announced along with the QoS requirements 

of the session at the time of session initiation and updated periodically to the extent of QoS 

provision. In other words, session announcements are forwarded by a node only if the 

available QoS conditions allow the node to support that session in case a downstream node 

requests service later. Thus, nodes are prevented from applying for membership if there is 

no feasible QoS path for the session at the time of their request. When a node requests to 

join a session, a three-phase process consisting of request, reply and reserve steps is 

utilized whereby the updated QoS information helps the routers select one of the 

appropriate paths which can meet the service requirements of that session. 

According to the protocol architecture, the algorithmic structure of an AQM node 

consists of four modules, which are the application module, the session module, the 

membership module and the network module. This modular architecture complies with the 

three layers in the network protocol stack generally concerned with multicast routing in 

mobile ad hoc networks [11]. The application module utilizes the services of the session 

and membership modules to satisfy the multicast requirements of the applications. The 

session module manages the distribution and maintenance of information on existing as 

well as new multicast sessions. The membership module is responsible for forming and 
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maintaining the multicast groups. Finally, the network module maintains the connectivity 

of the system and adapts it to the topological changes in the neighbourhood of a node. The 

architectural framework of AQM is illustrated in Figure 3.1, where the modules are placed 

with respect to the relations between them. 

Application Module 
 
Decisions on session initiation and termination 
Decisions on application-specific QoS preferences of initiated sessions 
Decisions on joining and leaving other nodes’ sessions 
 

Session Module 
 
Announcements: 
• Session initiation 
• Session update (periodic) 
• Session termination 

 
Management: 
• Lost and dropped sessions 

 
Maintenance: 
• Session table 
• Membership table 

 

 Membership Module 
 
Announcements: 
• Join request 
• Forwarder addition 
• Leave notification 

 
Management: 
• Other nodes’ join processes 

 
Maintenance: 
• Request table 

 

Network Module 
 
Packet transmission, reception, classification and delivery to upper modules 
 
Maintenance: 
• Neighbourhood table 

 

Figure 3.1.  The architecture of the AQM protocol 

3.1. Definitions 

The AQM protocol makes use of various information entities such as packets and 

tables to maintain the multicast routing information. In addition, AQM tracks the state of a 

node within each session based on the task that the node accomplishes for that session. 

Finally, AQM runs several procedures to fulfil its multicast routing function based on QoS 

requirements by utilizing these packets, tables and the state information of the nodes. 
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Each AQM node tracks the state of other nodes as well as of its own as accurately as 

possible separately for each session. When a node has to take any action, such as handling 

a session initiation, update, termination or loss packet received from another node, it 

makes some decisions, which include whether to forward the packet, to destroy it, or to 

generate and send a new packet of a different type. Similarly, in case of a session join 

request, intermediate nodes have to decide whether to get involved when they receive any 

packets during the process and what the appropriate action is. All these decisions can be 

made by the receiver of the packet in an intelligent manner only after considering the state 

information they have on themselves as well as the packet senders. These decisions may 

also require changes in the current state information of a node. Regarding one session, 

there are six different states that a node can be in, which are given in Table 3.1. 

Each AQM node maintains four different routing tables in order to take part in the 

management of the sessions and of the membership procedures. Information on existing 

sessions, node states regarding each session, join requests being processed and node 

connectivity is kept in these tables. The table of sessions and the table of members are 

populated by session initiation and update packets and the entries are deleted on the 

reception of loss and termination packets. The table of members is also populated by the 

join reply packets since they are obviously sent by session members. The table of requests 

is a temporary structure which is used by intermediate nodes during the request, reply and 

reserve phases of ongoing join requests. The table of neighbours keeps a node informed of 

the existence and resource allocation of all the nodes within its transmission range. The 

data in this table comes from the greeting messages of the neighbours and is deleted when 

a neighbour ceases to send such messages for a predefined period of time. The routing 

tables and their short descriptions are presented in Table 3.2. 

Each AQM node uses ten different control messages to communicate with others in 

order to initiate or terminate sessions, join or leave them, take part in their session and 

membership processes and keep each other informed of the current status of a session as 

well as on their own existence. The control messages are defined in Table 3.3. 

The structures of these information entities are presented in the following sections, 

where their usage within the AQM procedures is also explained in greater detail. 
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Table 3.1.  Definitions for the node states in AQM 

Node State Abbreviation Description 

Initiator MCN_INIT When a node decides to start a new session and 
announces it to the other nodes in the network, the 
node becomes a session initiator. 

Server MCN_SRV When the first member joins the session and the 
initiator starts sending multicast data to this 
member, the initiator becomes a session server. 

Predecessor MCN_PRED When a node receives the announcement for a new 
session from other intermediate nodes, it registers 
these nodes as its session predecessors. 

Receiver MCN_RCV When a node decides to join another node’s session 
and completes the necessary procedure to build a 
path between the session server and itself 
successfully, it becomes a session receiver. 

Forwarder MCN_FWD When a node receives a message stating that it is on 
the selected path between a multicast sender and a 
receiver, the node becomes a session forwarder. 

Forwarding 
receiver 

MCN_FRCV When a node is a receiver and also forwards data to 
others in a session, it is called a forwarding receiver. 

 

Table 3.2.  Definitions for the tables in AQM 

Table name Abbreviation Description 

Sessions TBL_SESSION Nodes keep track of the existing sessions by 
entering them in this table with the information they 
receive from the other nodes. 

Members TBL_MEMBER Nodes use this table to maintain their relations with 
the other nodes in regard to each specific session. 

Requests TBL_REQUEST Since nodes take part in the session joining 
processes of others, they have to keep track of the 
active join requests while they are handling them. 

Neighbours TBL_NEIGHBOUR Each node has to know its neighbours in order to 
detect a possible loss of connection and be able to 
take the necessary actions. 
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Table 3.3.  Definitions for the messages in AQM 

Message name Abbreviation Description 

Session initiation SES_INIT Nodes announce their new sessions by 
sending these messages, which are 
propagated by the others. 

Session update SES_UPDATE Session initiators or servers periodically 
send these messages to inform new nodes 
of the existence of their sessions. 

Session termination SES_TERMINATE Session initiators or servers send these 
messages in order to close the session they 
have started. 

Session lost SES_LOST When nodes detect the loss of a neighbour, 
they have to check also whether they have 
lost their only connection to one or more 
sessions. In this case, they inform the others 
of the loss of the session using the session 
lost messages. 

Session leave SES_LEAVE Nodes wishing to leave a session they have 
joined send these messages. 

Join request JOIN_REQ Nodes wishing to join other nodes’ sessions 
send these messages, which are propagated 
by intermediate nodes towards session 
members. 

Join reply JOIN_REP Session members receiving join requests 
respond with these messages if they decide 
that they are capable of serving the request. 

Join reserve JOIN_RES Nodes having sent join requests and 
received replies send these messages in 
return to reserve resources along the path 
they select. 

Join error JOIN_ERR Nodes having sent join replies and received 
reserve messages respond with these 
messages if they are not capable of serving 
the request any more. 

Neighbour greeting NBR_HELLO All nodes send periodic greeting messages, 
which are not propagated beyond their one-
hop neighbours, to inform them of their 
existence. 
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3.2. The Application Module 

The application module of the AQM protocol is the interface between the user and 

the multicast routing system. Based on the decisions made by the user, this module 

initiates, terminates, joins and leaves sessions. Shortly after being activated, all AQM 

nodes become aware of the existing sessions they can join. Thus, a user can choose one of 

these sessions based on the application information provided by the session server, such as 

its type, duration, cost and QoS requirements. Alternatively, users can initiate their own 

sessions, whereby they set the QoS class and other preferences of the application, become 

a session server and wait for other users to join their session. Session servers are also 

responsible for streaming the multimedia contents in form of data packets they prepare. 

3.2.1. Usage of QoS Classes 

Different QoS classes are necessary to support various types of applications in an 

efficient manner. In any multimedia network, there may be multiple application types 

being run simultaneously, which need to be classified in terms of their varying QoS 

requirements. To represent such a generic networking environment in this thesis, a sample 

set of multimedia applications is assumed, which are defined by typical bandwidth 

requirements, end-to-end delay in terms of maximum allowable number of hops, average 

session and membership durations. Depending on the user profiles, network conditions and 

computational capabilities of the mobile multimedia devices, other applications with 

different QoS settings can easily be added to the set. 

Another advantage of defining QoS classes is that it also limits the amount of 

information to be transmitted between network nodes. It is otherwise impossible to define 

and forward a best QoS combination without making some assumptions or disregarding 

some valuable data about the current QoS conditions being experienced by the network. 

Many times it is the case that a certain path offers the best conditions in terms of available 

bandwidth and packet loss probability while a different path with the shortest delay and 

minimum hop count values exists. Therefore, it may be preferable that nodes only inform 

others of the availability of a certain QoS support level and send updates only when this 

level changes. 
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3.3. The Session Module 

The main function of the session module is the management of multicast sessions. 

Triggered by the application module, the session module generates and distributes session 

initiation and termination messages. It also handles similar messages received from other 

AQM nodes and delivered via the network module. Finally, it is the responsibility of the 

session module to maintain session integrity throughout the network by utilizing periodic 

session update and occasional session loss announcements. 

Table 3.4.  Data fields used in the table of sessions (TBL_SESSION) 

Field name Description 

Initiator The node that initiates and announces the session. A node can 
initiate and serve only one session at a given time. A node joins a 
session by sending a request to its initiator. However, a request can 
also be replied by an intermediate node which is an active member 
of the session. 

Identifier A sequence number given by the session initiator to each new 
session it starts in an incremental manner. This is one of the ways 
how outdated join requests are distinguished from fresh ones. 

QoS class As the session initiator starts the application, the QoS class that it 
belongs to is selected, which automatically defines the bandwidth 
requirement and the hop count limitation of the session. 

Termination The termination time of the session. The average duration of a 
session depends on the type of the application. However, individual 
values may vary. With the help of this information, users can decide 
whether or not to join a specific session or process the join requests 
related to it. 

Status Nodes need a flag to rise when they forward a session initiation or 
update packet they have received. This is useful to prevent the 
unnecessary processing and forwarding of packets in case they 
receive another packet announcing the same session. 

Timestamp The time of the last modification on the record. Initially, it is the 
time of session initiation. The timestamp is refreshed after the 
reception of each new session update message. Intermediate nodes 
compare the difference between the timestamp and the current time 
with the session update timer and decide whether a session is still 
up-to-date or lost. 
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The table of sessions (TBL_SESSION), which is introduced in Section 3.1, is used 

mainly by the session module. Each node maintains a session table, where it puts and 

updates session data acquired by the initiation, update, termination and loss packets 

mentioned above. The structure of the session table is given in Table 3.4. 

The table of members (TBL_MEMBER), which is also introduced in Section 3.1, is 

used by the session module as well. In close relation with the table of sessions, each node 

also maintains a member table, where it puts and updates membership data. Whenever a 

node receives an initiation, update, termination or loss packet and revises the contents of 

its session table, it also creates or updates a record in the member table for the node that 

delivers the packet,. The structure of the member table is given in Table 3.5. 

In addition to these two tables, four different types of control packets are utilized by 

the session module to manage the flow of information regarding the sessions between the 

mobile terminals. These are session initiation (SES_INIT), update (SES_UPDATE), 

termination (SES_TERMINATE) and loss (SES_LOST) packets. 

Table 3.5.  Data fields used in the table of members (TBL_MEMBER) 

Field name Description 

Session initiator The node that initiates and announces the session. This field is used 
in conjunction with the following identifier field to keep the table of 
members in relation with the table of sessions. 

Session identifier The sequence number given by the session initiator to each new 
session it starts in an incremental manner. 

Member The identification of the node, such as its node number, which the 
table entry belongs to. The node may not be an active member of the 
session yet. Nevertheless, a record is created for each node that can 
later serve as one. 

State The actual role of the node in the session. The table owner’s 
decisions regarding a session are based on the state of the members. 

Hop count The total number of hops between the session initiator and the table 
owner on the path via the predecessor that the table entry belongs to.

Timestamp The time of the last modification on the record. 
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3.3.1. Session Initiation 

A session is started by a session initiator (MCN_INIT), which can be any node that 

broadcasts a session initiation packet (SES_INIT) consisting of the identification number 

and the QoS class of the new session, which sets the bandwidth and hop count rules to join 

it. If necessary, the session definition can be enhanced with the duration and the cost of the 

application, the minimum number of users to activate the session and the maximum 

number of acceptable users. 

Read SES_INIT data received from application module; 
Calculate neighbourhood bandwidth allocation; 
Calculate available bandwidth; 
IF (available bandwidth >= session bandwidth) 
 { 
 Send SES_INIT packet; 
 Enter SES_INIT data into TBL_SESSION; 
 Enter own node [state = MCN_INIT] into TBL_MEMBER; 
 Set timer for first session update; 
 } 
Report initiation decision to application module; 

Figure 3.2.  Procedure for the initiation of a new session 

Figure 3.2 shows the pseudocode of the session initiation procedure. According to 

this procedure, the actual command to send a SES_INIT packet comes from the 

application module. Upon the arrival of the command, the session module checks the 

availability of bandwidth to ensure that subsequent join requests can be accepted and 

necessary data flow can be maintained. At this phase it is not necessary to check the hop 

count limitation since a session is guaranteed to allow one hop. If the QoS conditions are 

met, the session module broadcasts the SES_INIT packet and makes the relevant entries to 

TBL_SESSION and TBL_MEMBER. It also schedules an interrupt by setting a timer for 

sending the first session update. Finally, the session module gives feedback to the 

application module about the session initiation. 

A table of active sessions (TBL_SESSION) is maintained at each node to keep the 

information on session definitions. Using their session tables, nodes forward initiation 

packets of previously unknown sessions. A membership table (TBL_MEMBER) is used to 

denote the status of the predecessors (MCN_PRED) which have informed the node of the 
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existence of a particular multicast session and the QoS support status of the path from the 

session initiator up to this node via that predecessor. The hop count information in the 

packet is used to prevent loops in the forwarding process. The session initiation packet is 

forwarded as long as the QoS requirements are met. Before the packet is rebroadcast, each 

node updates its QoS information fields with the current QoS conditions experienced by 

that node. The packet is dropped if QoS requirements cannot be met any more. 

Read SES_INIT packet received from network module; 
Calculate neighbourhood bandwidth allocation; 
Calculate available bandwidth; 
IF ((new session) && (available bandwidth >= session bandwidth)) 
 { 
 Enter SES_INIT data into TBL_SESSION; 
 Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
 Enter own node [state = MCN_PRED] into TBL_MEMBER; 
 IF (own hop count <= session hop limit) 
  { 
  Forward SES_INIT packet; 
  } 
 } 
ELSE IF ((known session) && (new predecessor)) 
 { 
 Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
 IF (new hop count < own hop count) 
  { 
  Update own node [new hop count] in TBL_MEMBER; 
  } 
 IF ((NOT forwarded SES_INIT packet) && 
    (available bandwidth >= session bandwidth)&& 
    (own hop count <= session hop limit)) 
  { 
  Forward SES_INIT packet; 
  } 
 } 

Figure 3.3.  Procedure for handling the received session initiations 

Figure 3.3 displays the pseudocode for the handling of the SES_INIT packets by the 

intermediate nodes that receive them. These packets arrive at the session module of such a 

node via its network module. First, the packet receiver checks its TBL_SESSION to see 

whether this is a known session to it. In case this is a new session, the node also ensures 

that enough bandwidth is available to serve the session since, although they are neighbours 

with the packet sender, their neighbourhoods are not exactly the same and there are 

differences in the available bandwidth they can occupy. The node enters the session into 

TBL_SESSION and itself as well as the packet sender into TBL_MEMBER with the state 
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information MCN_PRED to denote that, if necessary, it can connect to the session initiator 

through that node. In case this is a known session reported by a new predecessor, the node 

enters the packet sender into TBL_MEMBER and updates its own hop count if there is an 

improvement. If the session initiation data has previously not been forwarded and the 

maximum allowed hop count for the session is not yet exceeded, SES_INIT is forwarded. 
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Figure 3.4.  The AQM session initiation process 

Figure 3.4 gives a demonstrative example for the phases of session initiation. 

SES_INIT is broadcast by MCN_INIT node n0 for a new session. It propagates through the 

network with time, informing all the nodes from n1 to n8, which become MCN_PRED and 

update their TBL_SESSION and TBL_MEMBER. n9 is not informed since it is beyond the 

QoS limits in terms of hop count. ti < ti+1, 0 ≤ i ≤ 3, represent the relative timing of the 

packets. Upstream re-arrival arrows of SES_INIT are not shown to keep the figure simple. 

3.3.2. Session Updates 

After the initial announcement, the session information is refreshed periodically via 

session update packets (SES_UPDATE) sent by the session initiator. Similar to the session 

initiation packets, they are propagated throughout the network as long as the QoS 

requirements of the session can be fulfilled. Unlike the session initiation packets, however, 

each new update packet is forwarded once even if it belongs to a previously known session 

and comes from a known predecessor. This ensures that all new nodes in a neighbourhood 

are informed of the existence of the ongoing sessions they can join. A node in the process 

of sending session updates has to consider the possibility that the session cannot be 
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supported any more due to the changes in network topology or QoS conditions. In other 

words, it may be the case that a session initiator that has previously broadcast a session 

initiation packet does not have enough available bandwidth to send the application data if 

any node wishes to join its session. In that case, the network has to be informed that a 

previously announced session is temporarily unavailable. This is done by the initiator by 

omitting the session update message. All the nodes in the network set session update 

timers to check whether a session is being updated in a timely manner. If a node does not 

receive updates of a particular session for a time exceeding this timer, it considers that 

session lost and deletes all the related information from TBL_SESSION and 

TBL_MEMBER. Other details of lost session handling are given in Section 3.3.4. 

Calculate neighbourhood bandwidth allocation; 
Calculate available bandwidth; 
IF ((own state == MCN_SRV) || ((own state == MCN_INIT) && 
   (available bandwidth >= session bandwidth))) 
 { 
 Send SES_UPDATE packet; 
 } 
Set timer for next session update; 

Figure 3.5.  Procedure for sending a session update 

Figure 3.5 shows the pseudocode of the session update procedure. A session server 

sends its update directly since it already has receivers and resources are already allocated. 

However, an initiator has to check bandwidth availability. If QoS conditions cannot be met 

anymore, the initiator chooses not to send this SES_UPDATE. It can announce its session 

again at a later update if QoS improves. 

Figure 3.6 displays the pseudocode for the handling of the SES_UPDATE packets 

by the intermediate nodes that receive them. If a node that does not know the session 

receives a SES_UPDATE, it treats the packet like a SES_INIT. If the session is known but 

the packet sender is new, it enters the new predecessor information into its 

TBL_MEMBER. If both the session and the predecessor are known, existing predecessor 

information is updated. The node also updates its own hop count if there is an 

improvement. Based on the availability of the necessary QoS conditions for the known 

session, SES_UPDATE is either forwarded or not. 
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Read SES_UPDATE packet received from network module; 
Calculate neighbourhood bandwidth allocation; 
Calculate available bandwidth; 
IF ((new session) && (available bandwidth >= session bandwidth)) 
 { 
 Enter SES_UPDATE data into TBL_SESSION; 
 Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
 Enter own node [state = MCN_PRED] into TBL_MEMBER; 
 IF (own hop count <= session hop limit) 
  { 
  Forward SES_UPDATE packet; 
  } 
 } 
ELSE IF ((known session) && (new predecessor)) 
 { 
 Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
 IF (new hop count < own hop count) 
  { 
  Update own node [new hop count] in TBL_MEMBER; 
  } 
 IF ((NOT forwarded SES_UPDATE packet) &&  
    (available bandwidth >= session bandwidth)&& 
    (own hop count <= session hop limit)) 
  { 
  Forward SES_UPDATE packet; 
  } 
 } 
ELSE IF ((known session) && (known predecessor)) 
 { 
 Update predecessor [new hop count] in TBL_MEMBER; 
 Get predecessors’ [min hop count] from TBL_MEMBER; 
 Update own node [min hop count + 1] in TBL_MEMBER; 
 IF ((NOT forwarded SES_UPDATE packet) && 
    (available bandwidth >= session bandwidth)&& 
    (own hop count <= session hop limit)) 
  { 
  Forward SES_UPDATE packet; 
  } 
 } 

Figure 3.6.  Procedure for handling the received session updates 

3.3.3. Session Termination 

The session is closed by its initiator with a session termination message 

(SES_TERMINATE). Upon receiving the packet, all nodes knowing that session clean 

their tables, whereas nodes forwarding multicast data also free their resources allocated to 

the session. A node receiving a session termination packet forwards it if it is aware of the 

session as a predecessor or is currently forwarding session data to at least one active 

session member. Receivers of a terminated session are forced to leave the session. 
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Read SES_TERMINATE data received from application module; 
IF ((own state == MCN_SRV) || ((own state == MCN_INIT) && 
   ((forwarded SES_INIT packet) || (forwarded SES_UPDATE packet)))) 
 { 
 Send SES_TERMINATE packet; 
 } 
Delete session record from TBL_SESSION; 
Delete all member records of session from TBL_MEMBER; 

Figure 3.7.  Procedure for the termination of a session 

Figure 3.7 shows the pseudocode of the session termination procedure. Similar to the 

session initiation procedure, the command to send a SES_TERMINATE packet comes 

from the application module. The session module sends the packet if it is an active server 

with one or more receivers or it has previously announced its session. The module also 

clears all data related to this session from TBL_SESSION as well as TBL_MEMBER. 

Read SES_TERMINATE packet received from network module; 
IF (known session) 
 { 
 Forward SES_TERMINATE packet; 
 Delete session record from TBL_SESSION; 
 Delete all member records of session from TBL_MEMBER; 
 } 

Figure 3.8.  Procedure for handling the received session terminations 

Figure 3.8 displays the pseudocode for the handling of the SES_TERMINATE 

packets by the intermediate nodes that receive them. When a node is informed of the end 

of a session, it forwards the information if it is an active member of the session serving one 

or more receivers downstream. In case the node is only a receiver without any successors 

or it knows about the session but is not an active member of it, the node forwards the 

SES_TERMINATE even if it has not forwarded the corresponding SES_INIT or 

SES_UPDATE packets to make sure that no nodes attempt to join a terminated session. 

This behaviour may create a small amount of redundancy, which is justified by the need to 

adapt the dynamic topological conditions of a mobile ad hoc network. Finally, the session 

and membership records of TBL_SESSION and TBL_MEMBER are cleaned. 
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3.3.4. Session Losses 

One of the major concerns for mobile ad hoc communications is the ability of the 

routing infrastructure to cope with the dynamics of node mobility. In order to maintain 

connectivity and support QoS with maximum possible accuracy and minimum overhead 

under mobility, nodes perform periodic cleanup operations on their session, membership 

and neighbourhood tables. If a node loses one of its neighbours, it is highly possible that 

the loss affects its connectivity to one or more sessions, be it an active member such as a 

server, a forwarder or a receiver, or just an ordinary predecessor merely aware of the 

session. Thus, a node has to inform its successors when it loses its connection to a session. 

This task is accomplished through the use of the lost session (SES_LOST) messages. 

Figure 3.9 shows the pseudocode for the announcement procedure of lost sessions. If 

a node loses a neighbour which is serving it as a MCN_SRV or MCN_FWD in a particular 

session, it checks its TBL_MEMBER to see whether there are any other nodes connecting 

it to the session. If there are other MCN_FWD nodes or the MCN_SRV, then the node is 

not affected by the loss. If there are only MCN_PRED nodes, the node itself becomes a 

MCN_PRED. If there are no other nodes related to the session in any way, it deletes all 

data related to the session from its TBL_SESSION and TBL_MEMBER. If it is a 

forwarding member of the session or a receiver which has previously forwarded any 

SES_UPDATE packets announcing that session, it also informs its successors with a 

SES_LOST packet. If, on the other hand, a session server or a forwarding member loses a 

receiver, it updates its status to MCN_INIT, MCN_RCV or MCN_PRED depending on the 

existence of other receivers in that session. It does not need to inform other nodes of the 

lost session. However, it has to notify its predecessors that it leaves the session if its state 

changes from MCN_FWD to MCN_PRED as a result of losing its only receiver. Finally, if 

a MCN_PRED node loses its only predecessor for a specific session, it sends a SES_LOST 

to its successors and lets them know that it should be deleted from the list of predecessors 

for that session. Downstream nodes receiving the SES_LOST packet interpret them in a 

similar way to update their states regarding the lost session and forward the packet if 

necessary. This mechanism, combined with the periodic session updates mentioned 

previously, keeps nodes up-to-date regarding the QoS status of the sessions and prevents 

them from making infeasible join requests in terms of resource allocation. 
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Delete lost node from TBL_MEMBER; 
Get predecessors’ [min hop count] from TBL_MEMBER; 
Update own node [min hop count + 1] in TBL_MEMBER; 
IF (((lost node state == MCN_SRV) && 
 (NOT other nodes [state == MCN_FWD])) || 
 ((lost node state == MCN_FWD) && 
 (NOT other nodes [state == MCN_SRV]))) 
 { 
 IF (other nodes [state == MCN_PRED]) 
  { 
  Update own node [state = MCN_PRED] in TBL_MEMBER; 
  } 
 ELSE 
  { 
  Delete session record from TBL_SESSION; 
  Delete all member records of session from TBL_MEMBER; 
  } 
 IF ((own node state == MCN_FWD) || 
    (own node state == MCN_FRCV) || 
    ((own node state == MCN_RCV) && 
    (forwarded SES_UPDATE packet))) 
  { 
  Send SES_LOST packet; 
  } 
 } 
ELSE IF (lost node state == MCN_RCV) 
 { 
 IF (NOT other nodes [state == MCN_RCV]) 
  { 
  IF (own node state == MCN_SRV) 
   { 
   Update own node [state = MCN_INIT] in TBL_MEMBER; 
   } 
  ELSE IF {own node state == MCN_FRCV} 
   { 
   Update own node [state = MCN_RCV] in TBL_MEMBER; 
   } 
  ELSE IF {own node state == MCN_FWD} 
   { 
   Update own node [state = MCN_PRED] in TBL_MEMBER; 
   Send SES_LEAVE packet; 
   } 
  } 
ELSE IF (((lost node state == MCN_PRED) ||  
     (lost node state == MCN_INIT)) &&  
     (own node state == MCN_PRED)) 
 { 
 IF ((NOT other nodes [state == MCN_PRED]) && 
    (NOT other nodes [state == MCN_INIT])) 
  { 
  Delete session record from TBL_SESSION; 
  Delete all member records of session from TBL_MEMBER; 
  IF (forwarded SES_UPDATE packet) 
   { 
   Send SES_LOST packet; 
   } 
  } 
 } 

Figure 3.9.  Procedure for the announcement of a lost session 
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The handling of the lost session information is an operation-intensive procedure. It is 

applied regularly by each node having detected the disappearance of a neighbour, whereby 

each session is examined with regard to whether it is related to the lost neighbour and the 

case requires further processing such as informing the successors. In contrast to the other 

procedures of the session module, which take worst-case running times O(n), the lost 

session notifications yield an O(n2) upper bound. Other aspects of neighbourhood 

maintenance are explained is Section 3.5.1. 

Figure 3.10 displays the pseudocode for the handling of the SES_LOST packets by 

the intermediate nodes that receive them. According to this procedure, there are three 

important session parameters that affect the decisions of the node receiving a SES_LOST. 

These parameters are: (i) The state of the packet sending node as known by the receiving 

node; (ii) The new state of the packet sending node as reported by itself in the packet; (iii) 

The own state of the packet receiving node regarding the session in question. 

If the state of the immediate predecessor that has forwarded the SES_LOST packet is 

MCN_FWD according to the record of the receiver’s TBL_MEMBER and this 

predecessor claims that it has become a MCN_PRED, this means that the receiver of the 

SES_LOST packet has just lost a session forwarder. It has to check whether it has other 

predecessors in the MCN_FWD state or it is served directly by a MCN_SRV, the session 

server. If it does, then the node does not have to do anything and can continue receiving 

multicast data from its remaining forwarders or server. If not, the node itself becomes a 

MCN_PRED and forwards the packet further downstream if its old state was either 

MCN_FWD or MCN_FRCV, which means that it has successors to inform as well. 

If the state of the predecessor changes from MCN_FWD to NULL and the states of 

the other predecessors are neither MCN_SRV nor MCN_FWD, this means that the 

receiver of SES_LOST has lost its connection to the session completely. In that case, it 

deletes this predecessor from its TBL_MEMBER and looks for other session predecessors 

in order to determine its own new state. If it finds at least one other MCN_PRED in the 

table, it updates its own state to MCN_PRED. If there are no other predecessors at all, the 

node deletes the session from its TBL_SESSION. It forwards the SES_LOST packet if it 

has successors or been a receiver and forwarded the SES_UPDATE packet of this session. 
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Read SES_LOST packet received from network module 
IF ((packet sender state == MCN_FWD) && (new state == MCN_PRED) && 
 ((NOT other nodes [state == MCN_FWD]) && 
 (NOT other nodes [state == MCN_SRV]))) 
 { 
 Update packet sender [state = MCN_PRED] in TBL_MEMBER; 
 IF ((own node state == MCN_FWD) || (own node state == MCN_FRCV)) 
  { 
  Forward SES_LOST packet; 
  } 
 Update own node [state = MCN_PRED] in TBL_MEMBER; 
 } 
ELSE IF ((packet sender state == MCN_FWD) && (new state == NULL) && 
 ((NOT other nodes [state == MCN_FWD]) && 
 (NOT other nodes [state == MCN_SRV]))) 
 { 
 Delete packet sender from TBL_MEMBER; 
 IF (other nodes [state == MCN_PRED]) 
  { 
  Get predecessors’ [min hop count] from TBL_MEMBER; 
  Update own node [min hop count + 1] in TBL_MEMBER; 
  Update own node [state = MCN_PRED] in TBL_MEMBER; 
  } 
 ELSE 
  { 
  Delete session record from TBL_SESSION; 
  Delete all member records of session from TBL_MEMBER; 
  } 
 IF (((own node state == MCN_RCV) &&  
    (forwarded SES_UPDATE packet) &&  
    (NOT other nodes [state == MCN_PRED])) || 
    (own node state == MCN_FWD) || (own node state == MCN_FRCV)) 
  { 
  Forward SES_LOST packet; 
  } 
 } 
ELSE IF ((packet sender state == MCN_PRED) && (new state == NULL)) 
 { 
 Delete packet sender from TBL_MEMBER; 
 Get predecessors’ [min hop count] from TBL_MEMBER; 
 Update own node [min hop count + 1] in TBL_MEMBER; 
 IF (own node state == MCN_PRED) 
  { 
  IF ((NOT other nodes [state == MCN_PRED]) && 
     (NOT other nodes [state == MCN_INIT])) 
   { 
   Delete session record from TBL_SESSION; 
   Delete all member records of session from TBL_MEMBER; 
   IF (forwarded SES_UPDATE packet) 
    { 
    Forward SES_LOST packet; 
    } 
   } 
  } 
 } 

Figure 3.10.  Procedure for handling the received lost session announcements 
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Finally, if the state of the node sending the SES_LOST packet is previously recorded 

as MCN_PRED by the receiver and the new state of the node is NULL according to the 

arriving packet, the receiver deletes the node from and updates its own record in its 

TBL_MEMBER first. Then it checks its own state for the session. If it is an active member 

of the session such as a forwarder or a receiver, it has to have a forwarder, which means 

that the SES_LOST packet does not need further processing. If, on the other hand, the 

receiver is a MCN_PRED itself, then it has to check whether it has other predecessors 

connecting it to the session. If this is not the case, the receiver deletes all related data from 

its TBL_SESSION and TBL_MEMBER. It also forwards the SES_LOST packet if it has 

previously forwarded a SES_ UPDATE for that session. 

3.4. The Membership Module 

As soon as a session is introduced to the network and the initial announcement is 

made, the nodes that become aware of the session are free to join it. Initiated actually by 

the application module, a join request message is prepared and broadcast by the 

membership module to build a path between the requesting node and the existing multicast 

graph. When it is time to leave a session, the application module of the session member 

triggers the membership module to send a notification-of-leave message upstream towards 

the predecessors of the node. The membership module also handles similar messages 

received from other nodes in the process of joining or leaving a session. 

In addition to the session and member tables defined in Section 3.3, intermediate 

nodes maintain a temporary request table (TBL_REQUEST) to keep track of the requests 

and replies they have forwarded and prevent false or duplicate packet processing. Each 

request has an expiration time, at the end of which the request is considered rejected by the 

requesting node if no replies have been received. Expired requests are deleted from 

TBL_REQUEST. The fields of the request table are given in Table 3.6. 

Five different types of control packets are utilized by the membership module to 

manage the flow of information regarding the join and leave processes between the mobile 

nodes. These are request to join (JOIN_REQ), reply (JOIN_REP), reserve (JOIN_RES), 

error (JOIN_ERR) and notification of leave (SES_LEAVE) packets. 
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Table 3.6.  Data fields used in the table of requests (TBL_REQUEST) 

Field name Description 

Session initiator The node that initiates and announces the session. This field is used 
in conjunction with the following identifier field to keep the table of 
members in relation with the table of sessions. 

Session identifier The sequence number given by the session initiator to each new 
session it starts in an incremental manner. 

Requester The identification of the node, such as its node number, which the 
table entry belongs to. 

Expiration The time of expiration for the request, at the end of which the 
request is considered rejected. 

Forwarder The immediate predecessor which the reply comes from. In case the 
requester chooses the path via the table owner, this information is 
used to trace the path back towards the first active session member 
which accepted the join request and originated the reply. 

Status Intermediate nodes have to keep track of the phase a particular join 
request has been through or is currently in, such as request 
forwarded, reply forwarded, reserve forwarded, or reserve error. 

Timestamp The time of the last modification on the record. 

 

3.4.1. Joining a Session 

Joining a session is a three-phase process, which consists of the request, reply and 

reserve steps. Sometimes the reserve step may fail due to changes in the QoS conditions. 

In this case, a fourth step is involved, where the requesting node is informed of the error. 

The various phases of a join request are tracked by each intermediate node in temporary 

request tables (TBL_REQUEST). 

Nodes can only join sessions known to them. When a node broadcasts a join request 

(JOIN_REQ) packet for a session, only upstream neighbours which are aware of the 

session take the request into consideration. These are predecessors of the requester and 

propagate the packet upstream as long as QoS can be satisfied. The upstream flow of the 



 
59

request is guaranteed by comparing the hop count information of the packet with the 

distance to the server of the related session at intermediate nodes. 

Read JOIN_REQ data received from application module 
IF (own node state == MCN_FWD) 
 { 
 Update own node [state = MCN_FRCV] in TBL_MEMBER; 
 Report successful join to application module; 
 } 
ELSE 
 { 
 Enter JOIN_REQ data into TBL_REQUEST; 
 Send JOIN_REQ packet; 
 Update process status [request forwarded] in TBL_REQUEST; 
 Set expiration timer for JOIN_REQ; 
 } 

Figure 3.11.  Procedure for the request to join a session 

Figure 3.11 shows the pseudocode for initiating a join request. According to this 

process, a node can directly join a session if it is already an active member of that session. 

In other words, if the requesting node itself is a MCN_FWD, this means that, having made 

all the necessary arrangements such as resource allocation and route selection, it is already 

forwarding multicast data to one or more downstream members. Thus, the node becomes a 

MCN_FRCV without consulting any upstream nodes and the membership module returns 

a success report to the application module. Otherwise, the node issues a JOIN_REQ, puts 

the request data in TBL_REQUEST and sets a timer for the expiration of the request if no 

replies are received after a predefined timeout. The expiration timer can also be used such 

that all the collected replies are processed at the end of it. 

A forwarded request eventually reaches some nodes which are already members of 

that session and therefore can directly send a reply (JOIN_REP) back to the requester. 

Members of a session are the initiator, the forwarders and the receivers. Downstream 

nodes, having forwarded join requests and waiting for replies, send these replies to the 

requesting node. Alternatively, they can also aggregate the replies they receive at the end 

of a predefined time period, select the one offering the best QoS conditions, combine it 

with the QoS they can currently offer and then send it towards the requester. The 

information about the originator and the immediate forwarder of the reply is kept in the 

packet. 
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Read JOIN_REQ packet received from network module; 
IF ((known session) && (process status == NULL) && 
 (own hop count < packet sender hop count)) 
 { 
 Calculate neighbourhood bandwidth allocation; 
 Calculate available bandwidth; 
 IF ((available bandwidth >= session bandwidth) && 
    (own hop count <= session hop limit) && 
    (own node state == MCN_PRED)) 
  { 
  Enter JOIN_REQ data into TBL_REQUEST; 
  Update process status [request forwarded] in TBL_REQUEST; 
  Forward JOIN_REQ packet; 
  Set expiration timer for JOIN_REQ; 
  } 
 ELSE IF (((own node state == MCN_SRV) ||  
    (own node state == MCN_FWD) || 
    (own node state == MCN_FRCV)) || 
    (((own node state == MCN_INIT) || 
    (own node state == MCN_RCV)) && 
    (available bandwidth >= session bandwidth) && 
    (own hop count <= session hop limit))) 
  { 
  Enter JOIN_REQ data into TBL_REQUEST; 
  Send JOIN_REP packet; 
  Update process status [reply forwarded] in TBL_REQUEST; 
  } 
 } 

Figure 3.12.  Procedure for the reception of a join request 

Figure 3.12 displays the pseudocode for the handling of the JOIN_REQ packets by 

the intermediate nodes. However, these packets are only handled on their first arrival if the 

session is known. If the intermediate node is not an active member of the session and the 

QoS conditions permit, it forwards the JOIN_REQ packet and sets the expiration timer for 

the new request. If, on the other hand, the node is a MCN_SRV already sending multicast 

data to its receivers or a member which has completed a previous join process 

successfully, such as a MCN_FWD or a MCN_FRCV, it can respond to the request with a 

JOIN_REP. Finally, a MCN_INIT waiting for its first receiver or a MCN_RCV which 

receives multicast data but does not forward them have to check for necessary QoS 

conditions since they have not allocated any resources yet. If QoS requirements can be 

met, they can respond to the request with a JOIN_REP. In all these cases, a record is 

entered to TBL_REQUEST to show the current request status. 



 
61

Read JOIN_REP packet received from network module 
IF ((process status == request forwarded) && (NOT expired JOIN_REQ)) 
 { 
 Reset expiration timer for JOIN_REQ; 
 IF ((packet sender state == NULL) && 
     (packet sender’s hop count < own hop count)) 
  { 
  Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
  IF (packet sender’s hop count + 1 < own hop count) 
   { 
   Update own node [packet sender’s hop count + 1] 
                                           in TBL_MEMBER; 
   } 
  } 
 IF (own request) 
  { 
  Update packet sender [role = upstream node] in TBL_REQUEST; 
  Update packet sender [state = MCN_FWD] in TBL_MEMBER; 
  Update own node [state = MCN_RCV] in TBL_MEMBER; 
  Update process status [reserve forwarded] in TBL_REQUEST; 
  Send JOIN_RES packet to packet sender; 
  Report successful join to application module; 
  } 
 ELSE 
  { 
  Calculate neighbourhood bandwidth allocation; 
  Calculate available bandwidth; 
  IF ((available bandwidth >= session bandwidth) && 
     (own hop count <= session hop limit)) 
   { 
   Update packet sender [role = upstream node] 
                                          in TBL_REQUEST; 
   Update process status [reply forwarded] 
                                          in TBL_REQUEST; 
   Forward JOIN_REP packet; 
   } 
  } 
 } 

Figure 3.13.  Procedure for the reception of a join reply 

Figure 3.13 shows the pseudocode for the handling of the JOIN_REP packets. Nodes 

also make use of the replies they receive during a session join process. If the reply is sent 

by a previously unknown node in response to a request it has forwarded for a session, the 

node enters that predecessor into its member table for future routing operations. If 

JOIN_REP is received by an intermediate node, it checks its TBL_REQUEST as a first 

step to see if it has forwarded a corresponding JOIN_REQ. If this is the case, the node has 

to forward the received JOIN_REP packet also. If the necessary QoS conditions exist, the 

node updates the record in its TBL_REQUEST and sends the JOIN_REP packet 

downstream towards the originator of the join request. As mentioned above, an alternate 
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procedure can be developed to make the intermediate nodes collect the replies they receive 

until the request expires and forward the one with the best QoS conditions to the requester. 

When the JOIN_REP packet arrives at the originator of the JOIN_REQ, it changes 

its status from MCN_PRED to MCN_RCV and sends a JOIN_RES to the selected node 

that has forwarded the reply, which also becomes MCN_FWD in TBL_MEMBER of the 

requester. The status of the request is updated in TBL_REQUEST. At this point, the 

requester assumes that the join process is completed successfully and the membership 

module reports the result to the application module. If a JOIN_ERR is received later, this 

is also reported and appropriate action is taken. Again, an alternate procedure is possible 

whereby the requester postpones the path selection until the end of the JOIN_REQ 

expiration and then selects the reply with the best QoS conditions among possibly several 

JOIN_REP messages that it receives. 

Figure 3.14 displays the pseudocode for handling the JOIN_RES packets. Upon 

receiving it, intermediate nodes check whether they are among the intended forwarders on 

the path from the selected replier towards the requester. If this is the case and they can still 

afford the resources for the session, they change their status from MCN_PRED to 

MCN_FWD, reserve resources and update their TBL_MEMBER to keep the list of their 

forwarders and successors for that session up-to-date. They forward the JOIN_RES packet 

upstream. Eventually, the reserve message reaches the originator of the reply, which can 

be a MCN_INIT with some or without any members, a MCN_FWD with one or more 

successors, or a MCN_RCV. If the replier is the session initiator and this is its first 

member, it changes its status to MCN_SRV. If it is a receiver, it becomes a MCN_FWD. 

In both cases, the replier records its successor in its TBL_MEMBER and reserves 

resources to start sending multicast data. If the node is an active server or forwarder, it 

must have already reserved resources. It only adds the new member to its TBL_MEMBER 

and continues sending the regular multicast data. 

Intermediate nodes having sent a reply to a join request do not actually reserve 

resources until they receive the corresponding reservation packet. Since it is not certain 

that they are on the best QoS path according to the requester, they wait for this 

confirmation before activating that reservation and updating their resource availability 
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data. Therefore, it is possible that a node receives simultaneous join requests for other 

sessions before having made that final reservation for an ongoing join process and replies 

the new requests although the cumulative QoS requirements cannot be satisfied anymore. 

If multiple requesters select the path via the common replier as their path to join their 

multicast sessions and send their reservation packets in that direction, the node grants only 

the reservation that arrives first and sends reservation error messages (JOIN_ERR) to the 

others to let them know that the final reservation of resources fails for them. In this case, 

the failing requesters select the next best replies from their request tables and try these 

alternatives by sending their reservation messages to the nodes which have sent them. 

Read JOIN_RES packet received from network module 
IF (process status == reply forwarded) 
 { 
 Calculate neighbourhood bandwidth allocation; 
 Calculate available bandwidth; 
 IF ((available bandwidth >= session bandwidth) && 
    (own hop count <= session hop limit)) 
  { 
  IF (own node state == MCN_PRED) 
   { 
   Get upstream node from TBL_REQUEST; 
   IF (upstream node state == MCN_INIT) 
    { 
    Update upstream node [state = MCN_SRV] 
                                       in TBL_MEMBER; 
    } 
   ELSE 
    { 
    Update upstream node [state = MCN_FWD] 
                                       in TBL_MEMBER; 
    } 
   Update own node [state = MCN_FWD] in TBL_MEMBER; 
   Forward JOIN_RES packet to upstream node; 
   } 
  ELSE IF (own node state == MCN_INIT) 
   { 
   Update own node [state = MCN_SRV] in TBL_MEMBER; 
   } 
  ELSE IF (own node state == MCN_RCV) 
   { 
   Update own node [state = MCN_FRCV] in TBL_MEMBER; 
   } 
  Update packet sender [state = MCN_RCV] in TBL_MEMBER; 
  } 
 ELSE 
  { 
  Send JOIN_ERR packet to packet sender; 
  } 
 } 

Figure 3.14.  Procedure for the reception of a join reserve 
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Figure 3.15.  The AQM session joining process 

Figure 3.15 gives a demonstrative example for the phases of joining a session. (a) 

JOIN_REQ is issued by n5. It propagates towards any member of the session as long as 

QoS can be satisfied. Nodes from n1 to n4 update their TBL_REQUEST as they forward 

the packet since they are not session members. (b) JOIN_REP is sent back from n0 to n5. It 

is forwarded by n1, n2, n3, n4. (c) n5 sends JOIN_RES along the selected QoS path via n4, 

n2, n0, which reserve resources and update their status. Other nodes ignore the message. ti 

< ti+1, 0 ≤ i ≤ 8, represent the relative timing of the messages. 

Each time a request-reply-reserve process completes successfully, intermediate 

nodes gather enough routing and membership data to take part in the packet forwarding 

task. When a host sends multicast packets for a particular multicast session, its neighbours 

already know if they are involved in the session by checking the two tables related to each 

other, one with information on their own membership status and another with a list of 

multicast sessions they are responsible of forwarding. 

3.4.2. Adding Extra Forwarders 

One of the major concerns about mobile ad hoc networks is the fact that they have to 

operate in an environment of continuous topological changes. The mobility and the limited 

transmission range of nodes cause their wireless links to break very frequently, leading to 
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disconnections and data loss. Therefore, it is particularly important that AQM increases its 

robustness. This can be done if extra forwarders can be added to the initial multicast tree, 

evolving it to a multicast mesh during the course of the data streaming phase in an 

intelligent way such that member connectivity is strengthened without compromising 

efficiency in resource usage. AQM makes use of the inherent broadcast capability of the 

ad hoc network to achieve this goal. 

IF (packet sender state == MCN_INIT) 
 { 
 Update packet sender [state = MCN_SRV] in TBL_MEMBER; 
 } 
ELSE IF (packet sender state == MCN_PRED) 
 { 
 Update packet sender [state = MCN_FWD] in TBL_MEMBER; 
 } 
ELSE IF (packet sender state == NULL) 
 { 
 Enter packet sender [state = MCN_FWD] into TBL_MEMBER; 
 Update packet sender [packet’s hop count - 1] in TBL_MEMBER; 
 IF (packet’s hop count < own hop count) 
  { 
  Update own node [packet’s hop count] in TBL_MEMBER; 
  } 
 } 
Send JOIN_RES packet to packet sender; 

Figure 3.16.  Procedure for the addition of an extra forwarder during data reception 

Figure 3.16 shows the pseudocode for the addition of a new forwarder to the 

multicast graph by a receiver. If a MCN_RCV, a MCN_FRCV or a MCN_FWD starts 

overhearing multicast data packets from a new node, which is a predecessor or a 

previously unknown node according to its TBL_MEMBER, this means that there is 

actually a new active session member within its transmission range other than its selected 

MCN_FWD for the session. In this case, the receiver decides that it can use this new node 

streaming multicast data actually to another node as an extra forwarder in order to improve 

its chance of remaining connected to the session despite frequent topological changes. The 

receiver registers this additional forwarder as a new MCN_FWD in its TBL_MEMBER 

for that session. It also informs the new forwarder of its existence to ensure that the 

forwarder is also aware of its new receiver. In addition to increasing the probability of 

connectivity and decreasing the frequency of reconnection attempts for the node itself, this 

operation is also useful for other receivers further downstream in case the node is not just a 
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MCN_RCV but a MCN_FRCV or a MCN_FWD since it improves their chances of 

connectivity as well. As a result of this, session satisfaction is increased in general. 

Moreover, since the robustness achieved through the addition of extra forwarders leads to 

fewer session losses, the operation also yields to less control overhead. 

Read JOIN_RES packet received from network module; 
IF (packet sender state != MCN_RCV) 
 { 
 Update packet sender [state = MCN_RCV] in TBL_MEMBER; 
 } 

Figure 3.17.  Procedure for the addition of an extra receiver during data transmission 

Figure 3.17 displays the short pseudocode for the handling of a received JOIN_RES 

packet by an active session member such as a MCN_SRV, MCN_FWD or MCN_FRCV 

forwarding multicast data packets. Upon reception, the node adds the packet sender to the 

group of receivers regarding that session. This operation ensures that even if the forwarder 

loses all of its previously-known receivers, it still continues to forward data packets to the 

one which has registered itself directly through the data streaming process. 

The addition of extra forwarders during the data streaming phase has several 

benefits. First of all, forwarders and receivers are connected to their session servers 

through multiple intermediate forwarders, which makes session losses a less frequent 

issue. In other words, by increasing redundancy in their graphs, multicast sessions become 

less prone to lost forwarders. Secondly, a receiver adds a new forwarder only if it delivers 

fresh data packets, i.e., the extra forwarders create new paths for the receivers which are 

shorter than they have initially selected. These improvements lead to increased data 

delivery rates and decreased end-to-end delay, which means that more session members 

are satisfied by the provided QoS. Moreover, the addition of the extra forwarders does not 

generate extra data traffic since they are already forwarding data to their existing receivers. 

3.4.3. Leaving a Session 

The decision to leave a session is made by the application module, which triggers the 

membership module. A node needs to inform its forwarders on the multicast graph upon 
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leaving a session. After receiving the quit notification (SES_LEAVE), the forwarding 

nodes delete the leaving member from their member tables. If this has been its only 

successor in that session, a forwarding node checks its own status regarding the session. If 

the forwarder itself is also a receiver, it updates its status. Otherwise, it frees resources and 

notifies its predecessors of its own leave. 

Read SES_LEAVE data from application module 
IF (own node state == MCN_RCV) 
 { 
 Update own node [state = MCN_PRED] in TBL_MEMBER; 
 Send SES_LEAVE packet; 
 } 
ELSE IF (own node state == MCN_FRCV) 
 { 
 Update own node [state = MCN_FWD] in TBL_MEMBER; 
 } 

Figure 3.18.  Procedure for leaving a session 

Figure 3.18 shows the pseudocode for leaving a session. A node can send the 

SES_LEAVE packet only if it is a MCN_RCV and does not have any successors that it 

serves. If it does, it changes its state from MCN_FRCV to MCN_FWD but has to remain a 

session member. 

Read SES_LEAVE packet from network module 
IF (packet sender state == MCN_RCV) 
 { 
 Delete packet sender from TBL_MEMBER; 
 IF (NOT other nodes [state == MCN_RCV]) 
  { 
  IF (own node state == MCN_FRCV) 
   { 
   Update own node [state = MCN_RCV] in TBL_MEMBER; 
   } 
  ELSE IF (own node state == MCN_SRV) 
   { 
   Update own node [state = MCN_INIT] in TBL_MEMBER; 
   } 
  ELSE 
   { 
   Update own node [state = MCN_PRED] in TBL_MEMBER; 
   Send SES_LEAVE packet; 
   } 
  } 
 } 

Figure 3.19.  Procedure for handling the received session leave notification 



 
68

Figure 3.19 displays the pseudocode for handling the received SES_LEAVE packets. 

Upon receiving the notification, the node checks if it has other receivers. If it does not, it 

means that the node has lost its only or last receiver regarding the session. When this is the 

case, a MCN_FRCV becomes a MCN_RCV, a MCN_SRV becomes a MCN_INIT and a 

MCN_FWD becomes a MCN_PRED. The last possibility implies that the node does not 

have to be actively connected to the multicast group. Thus, it sends a SES_LEAVE of its 

own to inform its predecessors that it is no longer required as a multicast member. 

3.5. The Network Module 

The network module of the AQM protocol is the interface between the multicast 

routing system and the wireless communication infrastructure. The most important service 

provided by this module is the transmission and reception of packets. On the other hand, it 

is also the responsibility of the network module to classify the packets it receives from 

other nodes and deliver them to either the session or the membership module. Finally, the 

table of neighbours (TBL_NEIGHBOUR), which is briefly explained in Section 3.1, is 

maintained by the network module. Each node has a neighbour table, where it puts and 

updates neighbour data acquired by the greeting messages received. Since nodes also 

exchange their bandwidth allocation data with these messages, the information aggregated 

in the table of neighbours is used by the session and membership modules of the node to 

calculate the total bandwidth reservation within a neighbourhood and derive the available 

bandwidth for future routing operations. The details of these calculations are presented in 

Section 4. The structure of the neighbour table is given in Table 3.7. 

Table 3.7.  Data fields used in the table of neighbours (TBL_NEIGHBOUR) 

Field name Description 

Neighbour The node that periodically sends greeting messages to the table owner. 

Bandwidth Current bandwidth requirement of the neighbour concerning the sessions. 

Status Recent history of the node, e.g., new, lost, found or deleted. 

Timestamp The time of the last greeting message received from the neighbour. 
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In order to populate this table, another type of control packet is utilized by the 

network module, which is the neighbour greeting (NBR_HELLO) message.  

3.5.1. Neighbourhood Maintenance 

Each node periodically broadcasts greeting messages (NBR_HELLO), informing its 

neighbours of its existence as well as its bandwidth allocation, which is determined by the 

QoS classes of the sessions being served or forwarded by that node. Greeting messages 

can be piggybacked to other control and data messages to reduce control overhead. In 

other words, nodes do not need to send greeting messages explicitly unless they have not 

sent any piggybacked greeting messages for a certain period of time. Each node aggregates 

the information it receives with these messages in its neighbourhood table 

(TBL_NEIGHBOUR). Thus, the table shows the existence and current bandwidth 

allocation of all neighbours of a node. This table is used to calculate the total bandwidth 

currently allocated to multicast sessions in the neighbourhood, which is the sum of all the 

allocated capacities of the neighbouring nodes for that time frame. Neighbourhood tables 

also help nodes with their decisions on packet forwarding. Session initiation packets are 

forwarded only if a node has neighbours other than its predecessors for that session. 

If a node does not receive any greeting messages from a neighbour for a while, it 

considers that neighbour lost. Lost neighbours are kept in the neighbourhood table for a 

predefined short amount of time, at the end of which they are deleted if they do not 

reappear. To prevent unnecessary message exchanges, nodes need to detect new 

neighbours quickly and distinguish them from reappearing lost neighbours, which do not 

necessitate any update. If the deleted neighbour is related to a session, it is also removed 

from the session, membership and request tables. When this is the case, additional action 

can be necessary depending on the state of the deleted neighbour as well as that of the 

node itself. An important task related to the handling of lost neighbours is the 

announcement of lost sessions, which is explained in greater detail in Section 3.3.4. This is 

an essential operation to keep the nodes up-to-date regarding the sessions and ready for 

future membership management activities such as initiating new join requests or replying 

to other nodes’ join requests. 
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3.6. Comments on Implementation 

As mentioned previously, research and development are taking place to define the 

next generation of wireless broadband multimedia communication systems. The global 

multimedia network of the future will probably consist of a fixed network with a wired 

backbone, an infrastructured mobile network with base stations and, at the peripherals, ad 

hoc mobile networks, which will be connected to the main internetwork via ad hoc 

switches. A global solution for a future internetwork has to consist of solutions for each 

type of network and mechanisms for integrating these solutions. As far as multicast 

sessions are concerned, the goal is to provide a seamless service whereby a single 

multicast group can span both network types, which requires the design of a gateway 

between the ad hoc and the wired networks [2]. 

Since AQM is a special-purpose, QoS-aware multicast routing protocol, it provides 

additional functionality to a portable computing device which has the basic radio 

transmission and reception capabilities. Such a device is typically equipped with wireless 

communication hardware and software such as the wireless LAN (WLAN) standard 

known as IEEE 802.11 [85]. Thus, it can reach an access point and connect to the WLAN 

infrastructure in order to communicate with other nodes in the WLAN domain or even in 

the wired portion of the LAN and also access the Internet. Thus, different situations are 

possible regarding the real-life scenarios mentioned above, three of which are summarized 

in the following paragraphs. Although AQM is a stand-alone protocol which is designed 

for ad hoc QoS multicast routing only, an AQM-enabled portable computing device should 

preferably be capable of handling these situations. 

First of all, it is possible that an AQM-enabled device enters the WLAN domain. In a 

typical campus environment, the wired backbone network is extended by infrastructured 

wireless coverage via access points. Thus, AQM-enabled devices can communicate with 

each other in an ad hoc fashion when they are outside the WLAN domain. However, they 

can also reach the backbone if they enter the coverage area of an access point. When an 

infrastructured wireless network is available, the AQM-enabled device should be able to 

communicate with the access point and register itself with the WLAN in order to benefit 

from the services offered. This requires that the device can switch to the conventional 
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transmission control protocol/Internet protocol (TCP/IP) stack with WLAN support at the 

data link layer. Thus, it is possible that an AQM-enabled device can still connect to the 

LAN/WLAN with the help of the access point even if it is out of reach of the other AQM-

enabled devices. 

Secondly, it is possible that an ordinary computer in the LAN/WLAN domain wishes 

to join an AQM session. As explained previously, an AQM-enabled device initiates and 

announces a multicast session which is propagated through the ad hoc network. When the 

announcement reaches an access point with the AQM gateway functionality, necessary 

conversions have to be made in order to propagate the AQM session through the 

LAN/WLAN domain. Similarly, AQM session update, termination and join messages have 

to be converted to and from the existing Internet multicast protocol at the intersection point 

of the wired and ad hoc domains. One of the important tasks with regard to this process is 

that the gateway receiving the session initiation message from an AQM-enabled device has 

to associate the AQM session with a multicast address which can be identified in the 

LAN/WLAN domain such that connections can be established between wired and ad hoc 

devices. 

Finally, it is also possible that an AQM-enabled device joins a multicast session 

which is initiated by a non-AQM-enabled device in the LAN/WLAN domain. It is 

preferable to let the AQM gateways deal with the protocol conversion tasks in order to 

enable such a session. Internet multicast requires specific mechanisms to track group 

membership, such as the Internet Group Management Protocol (IGMP) [86] and Multicast 

Listener Discovery (MLD) for [87]. With both protocols, routers periodically send query 

messages and receive reports of all multicast addresses being listened to by local hosts. 

Although the conversion procedure is mainly the reverse of the one explained above, the 

sessions initiated on the wired part of the network need to be announced on the ad hoc part 

according to the rules of AQM. In other words, the use of AQM as a multicast routing 

protocol only makes sense if the management of the session on the LAN/WLAN part of 

the network is based on the same QoS rules. Since the multicast strategy adopted by the 

LAN/WLAN may be completely different from AQM, it is necessary to develop a 

mechanism to be implemented at the gateway, which decides whether a LAN/WLAN 

session is AQM-compatible and announces only those sessions that comply with this rule 
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to the ad hoc portion of the network. If the necessary conversion functionality cannot be 

implemented at the gateways, this task is shifted to the last AQM-enabled ad hoc device 

communicating with it. In this case, the device is responsible to convert AQM control 

messages to the Internet multicast protocol control messages to be processed in the 

LAN/WLAN domain. 

Seamless integration of ad hoc routing protocols with the existing Internet 

infrastructure has previously been addressed in the literature. An example of these efforts 

is the testbed implemented for the dynamic source routing (DSR) protocol, which operates 

at the IP layer and permits interoperation between different physical network interfaces 

[88]. Its implementation conceptually operates as a virtual link layer just under the normal 

IP layer. There is a gateway to connect nodes of the ad hoc network to nodes outside the 

network. There are also other mobile nodes, which use DSR when they realize that they 

are in the range of the DSR network but use mobile IP at the same time to enable packets 

from outside the DSR network to reach them. They also use mobile IP to connect to the 

Internet. Similar to the mobile IP scheme, all nodes have a unique IP address called their 

home address. The route discovery mechanism is extended to support communication 

between nodes inside the ad hoc network and those outside in the Internet. If a route 

request reaches the gateway node, which knows that the destination is reachable outside 

the ad hoc network, it sends a proxy reply listing itself as the second-to-last node in the 

route. 

A further testbed example deals with the implementation and validation of the ad hoc 

multicast protocol ODMRP [89]. In this work, ODMRP control packets are implemented 

as new types of IGMP packets which include a data section. The existing IGMP packet 

structure and handler function are expanded to include control functionality. Multicast 

backbone traffic is forwarded from the wired to the wireless network via gateways and 

routers that use the distance vector multicast routing protocol (DVMRP), which routes 

multicast datagrams through the Internet. The streaming of the multicast traffic in the 

wireless testbed is realized by ODMRP and DVMRP routers. A hybrid router that converts 

DVMRP multicast feed into ODMRP-ready multicast can be developed. 
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Today’s WLAN and mobile Internet users expect access to the services available in 

wired networks, including multimedia applications. Many efforts are being made to 

provide efficient mobility and multicast support and bring the two together in the next 

generation networks [90]. On the other hand, the diversification of today’s networks yields 

ever more heterogeneity with various types of terminals, whereas protocols are mainly 

designed for one type only. In addition, node mobility is not considered in wired network 

protocols. Therefore, it is preferable to adapt an ad hoc protocol to the wired domain and 

not vice versa. What are necessary are a dual protocol stack and a translation mechanism 

to exchange control messages between the protocols [91]. When there are wired and 

wireless devices together in a multicast group, a gateway node is needed in between for 

translation. This node should have a low failure probability as well as mobility and be 

close to the access point of the WLAN. The translation function can be implemented at 

each ad hoc node or at a wired node that can be reached by the ad hoc nodes via a 

rendezvous point. 
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4. ESTIMATION OF BANDWIDTH REQUIREMENTS 

The nodes in an ad hoc network have to maintain their resource information with as 

much accuracy as possible to support QoS, which includes the ability to keep track of 

available bandwidth within their neighbourhood. AQM nodes present a proactive 

behaviour with regard to management of the multicast session information by maintaining 

routing tables. They keep themselves and their neighbours aware of the changes in the 

QoS conditions and node connectivity regarding the multicast sessions known to them. 

The rationale behind this method is that QoS management in a highly dynamic 

environment such as mobile ad hoc networks cannot be achieved satisfactorily without 

informing the network of these issues in advance.  

Ad hoc networks are highly dynamic and available resources may change 

considerably after the arrival of the QoS conditions with the first session initiation packet. 

Therefore, the nature of a join process is on-demand. AQM checks the most up-to-date 

QoS conditions during this process. Greeting messages are exchanged between neighbours 

to update nodes on the bandwidth allocation within a neighbourhood. This is how the 

nodes are able to provide their neighbours with valid routes when asked to take part in a 

request-reply-reserve process of another node wishing to join a multicast session. 

4.1. Resource Allocation 

The estimation of the available bandwidth is an important task for AQM. As shown 

in the pseudocode presented in Section 3, the procedures of AQM check the bandwidth 

availability for QoS purposes whenever a node has to decide whether or not to take part in 

multicast activities. Therefore, it is necessary to clarify the method developed for the 

calculation of the available bandwidth. Due to the broadcasting nature of the wireless 

medium, residual capacities are node-based, i.e., a node’s available bandwidth is the 

residual capacity in its neighbourhood. In an ideal model, it is assumed that the bandwidth 

of a link can be determined on its neighbouring links [28]. Thus, each node calculates its 

current bandwidth allocation by aggregating the bandwidth requirements of the multicast 

sessions it takes part in as a server or forwarder. 
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Definition 4.1: Let N = { network nodes }, the set of the nodes in the ad hoc network and 

S = { multicast sessions }, the set of the multicast sessions. Let SSi ⊆  denote the subset of 

sessions that have node Ni∈  on their multicast graph as a data forwarding node. Let 
ksb  

be the bandwidth requirement of any session ik Ss ∈  served by node Nk ∈ . 

The total bandwidth allocation bi of node i can be formulated as follows: 

 ∑
∈

=
ik

k
Ss

si bb  (4.1) 

After making this calculation, each node informs its neighbours of the total amount 

of bandwidth it allocates to ongoing sessions via periodic greeting messages, which are 

introduced in the preceding section. The reserved bandwidth in a neighbourhood is the 

sum of the capacities allocated by all the nodes in that neighbourhood.  

Definition 4.2: Let r be the transmission range of the nodes in the ad hoc network and dij 

the Euclidian distance between two nodes Nji ∈, . Let Ni = { j: dij ≤ r }, NNi ⊆ , the set 

of the neighbours of i, which is also defined as the neighbourhood of node i. 

Being informed of the bandwidth allocation of all its neighbours, node i calculates 

iNb , the total bandwidth allocation of its neighbourhood as follows: 

 ∑
∈

=
i

i
Nj

jN bb  (4.2) 

Thus, each node derives the remaining bandwidth iβ  available in its neighbourhood, 

which is the maximum amount of bandwidth that it can allocate to new join requests, by 

subtracting the reserved bandwidth 
iNb from the maximum bandwidth β  provided by the 

wireless medium: 

 
iNi b−= ββ  (4.3) 
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It is noteworthy that for each node, the result of Equation 4.1 changes whenever the 

node gets an active role in a new session or is released by an ongoing session, whereas the 

results of Equation 4.2 and Equation 4.3 can change with every greeting message from a 

new or existing neighbour. Thus, bi, iNb and iβ  have to be recalculated each time the node 

is about to decide on accepting or rejecting a new session join request. On the other hand, 

these recalculations are not necessary if the new request is for a session ik Ss ∈ , which the 

node is already serving and has already checked and allocated the necessary resources. 

4.2. Virtual Tunnel of Bandwidth 

Although neighbours keep each other informed of their current bandwidth 

allocations through the use of the periodic greeting messages, a node has to decide 

promptly whether or not to take part in a session in response to another node’s join request 

based on the information at hand. This information may not be accurate enough 

considering the fact that the decisions, which lead to a multi-hop path from the server to 

the requester, are made by a string of nodes one by one without sending extra greeting 

packets or any other messages carrying updated information to each other. Thus, a node 

has to evaluate the availability of resources not only for itself but for all the members of 

the string that are within its range. It has to check whether, once selected by the requester 

as a forwarder for the multicast session, it can afford the bandwidth needed to support the 

streaming of the multimedia data of a certain QoS class through a multi-hop connection. In 

other words, it has to take the continuous flow of data in multimedia applications into 

account. 

When a session initiator, which has announced a session of a certain QoS class and 

is waiting for its first member, receives a join request, it checks whether enough bandwidth 

is available to start sending multicast data by comparing the residual bandwidth of the 

neighbourhood to the requirement of its application. The problem arises when the residual 

bandwidth is satisfactory for the initiator to start serving data, but not enough for the 

immediate downstream neighbour to forward it towards the requester. Since the data is a 

multimedia stream, both nodes need bandwidth continuously. The problem is the same for 

the other predecessors downstream which are about to become forwarders. 
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An active session server or a forwarding intermediate member should not reply a 

new join request automatically although they have allocated necessary resources and are 

serving one or more receivers already. The arrival of the new request means that a new 

downstream node is about to join the multicast graph, which will start forwarding packets 

and consume additional resources. Therefore it is not enough that a node is already 

forwarding packets for a session to decide on supporting the new request for the same 

session since it may be the case that the new forwarder cannot find available resources. 

In order to prevent overload, nodes have to ensure that once they accept being a 

forwarding member of a session, the available bandwidth within their neighbourhood is 

also enough for their predecessors and successors. In other words, a node has to forward a 

join request or a reply only if the residual bandwidth in its neighbourhood will also be 

enough for the immediate forwarders of the node, both upstream as well as downstream, in 

case the node will be on the multicast path chosen by the requester. The streaming nature 

of multimedia applications requires such a pipelined approach to checking bandwidth 

availability, which is termed the virtual tunnel of bandwidth in the following paragraphs. 

Figure 4.1 shows a virtual tunnel of bandwidth between the server and the receiver. 

At each hop on the path, the sending and receiving nodes of the multicast data have to 

consider the issues mentioned above, e.g., n0 sends packets and lets n1 forward them, 

whereas n1 first receives, then sends packets and finally lets n2 forward them to n3. 

 

{MCN_SRV} {MCN_RCV} 

{MCN_FWD} {MCN_FWD} 

0 2 1 3 

 
Figure 4.1.  The virtual tunnel of bandwidth for the multicast members 
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Definition 4.3: Let 
ksiF ,  = { downstream neighbours of i and forwarders in sk }, isi NF

k
⊆, , 

the set of the downstream forwarders that are within the neighbourhood of node i, which 

take part in the data forwarding process of ik Ss ∈ . Let 
kk sisi F ,, =φ , the cardinality of 

ksiF , . 

Depending on the value of 
ksi,φ  and the position of node i on the multicast graph of 

sk, the bandwidth 
ksiq , that is necessary in the neighbourhood of i to satisfy the QoS 

requirements of sk and support the continuous flow of the data packets for the session is 

calculated as follows: 
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where node k is the server of the session. 
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Figure 4.2.  The multicast graph of s0 and the neighbourhood of n1 

Figure 4.2 shows a directed multicast graph rooted at n0 to demonstrate the calculation of 

0,1 sq , the required QoS bandwidth from the viewpoint of the intermediate forwarder n1 for 
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a session s0. In the example, n1 has three downstream forwarders in this session, n2, n4 and 

n7. Thus, 
ksi,φ  is equal to three and the total amount of bandwidth which has to be available 

in the neighbourhood of n1 is five 
ksb  according to Equation 4.4. This is the sum of the 

individual bandwidth requirements of n0, n1, n2, n4 and n7. First, n1 receives packets from 

n0, which requires 
ksb . Then it forwards them to n2, n4 and n7 in a broadcasting manner, 

which requires another 
ksb .Finally, it allows each of these three downstream nodes to send 

the packets further downstream, which requires three 
ksb . 

Concerning a session initiator about to allocate resources for its first member, twice 

as much bandwidth has to be available in the neighbourhood than the amount required by 

the QoS class of the session. There is only one forwarding node immediately following the 

server on the path to the member, which naturally belongs to the same neighbourhood as 

the initiator. Being within the transmission range of each other, they share the bandwidth 

of the same neighbourhood. Therefore, a session server has to ensure that its successor also 

has enough bandwidth available to forward multicast data packets that it receives. For the 

general case, the server requires 
ksb  for sending its own packets; and an additional 

kk ssi b,φ  

have to be available such that each of its 
ksi,φ  successors are able to forward these packets. 

Following the path downstream towards the new member, any intermediate node 

about to take part in the packet forwarding process for the first time has to check for 

availability of three times the QoS bandwidth needed by the session, since it shares the 

bandwidth of the same neighbourhood with the two nodes immediately preceding and 

succeeding it. Once the multicast session starts, it receives packets from its predecessor, 

rebroadcasts them and allows its successor to forward the packets further downstream. For 

the general case, a forwarder needs 
ksb  to be available to its predecessor, requires 

ksb  for 

its own transmission and needs an additional 
kk ssi b,φ  to be at the disposal of its successors. 

In summary, nodes have to check for availability of necessary bandwidth according 

to their position within the multicast graph before accepting a request. For a member 

already forwarding packets of that session, this requirement is met automatically since the 

node has already been through this allocation process. Similarly, a receiver receiving a join 
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request does not present a problem to the system since it is aware of the resource allocation 

made previously by its immediate forwarder and also knows that it should check for 

availability of additional resources in order to reply the requests and become a forwarder. 
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(a) n5 checks its neighbourhood for 

0sb  and sends its join request 

(c) n4 checks its neighbourhood for 

2
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(c) n2 checks its neighbourhood for 

3
0sb  and forwards the request 

(d) n0 checks its neighbourhood for 

2
0sb  and sends its reply 

Figure 4.3.  The propagation of a join request along the virtual tunnel of bandwidth 
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The join process of AQM is explained in Section 3.4.1 with the help of an example 

depicted in Figure 3.15. Figure 4.3 shows the virtual tunnel of bandwidth approach on the 

same example, where nodes check for resource availability in a pipelined fashion. Node n0 

initiates a session with a bandwidth requirement of 
0sb . Having received the initiation 

message, n5 wishes to join that session. (a) First, it checks if there is 
0sb  available in its 

neighbourhood to ensure a feasible request such that, once a path is found, a predecessor 

will be able to allocate that bandwidth to forward multicast data to it. Then it sends its 

request, which is forwarded further upstream by n4 only if the latter also has enough free 

bandwidth in its neighbourhood. (b) Sharing the same neighbourhood with its predecessor 

n2 and its successor n5, n4 will need two 
0sb  if it becomes a forwarder, 

0sb  for receiving 

multicast data from n2 and another 
0sb  for forwarding it to n5, which is just a receiver not 

forwarding any packets. (c) n2, on the other hand, shares the resources of the same 

neighbourhood with n0 and n4. It checks for three 
0sb  since its immediate successor n4 is 

not the requester and will also become a forwarder, which means that there will be a three-

hop data flow in this neighbourhood. In other words, n2 has to make sure that its successor 

n4 can also forward the streaming data, after its predecessor n0 and n2 itself. (d) Finally, the 

initiator n0 checks for two 
0sb  since it has to ensure that n2 can forward the data packets it 

will send as a server. If enough bandwidth is available, n0 sends a reply which is forwarded 

towards the requester following the same rules. 

When it is time to allocate resources, each node only needs to reserve 
0sb , which is 

the amount of bandwidth required to forward the packets one hop downstream. The 

importance of the virtual tunnel approach is that it allows a sequence of three nodes to 

check whether they can support a session while sharing the same neighbourhood. 

As more nodes join the multicast session and the multicast graph grows, the virtual 

tunnel of bandwidth approach converges to a general guideline which can be expressed as 

follows. For the session servers to sustain the continuous flow of the multicast data 

packets, the required bandwidth in the neighbourhood is the QoS bandwidth of the session 

multiplied by one plus the number of immediate neighbours which are also downstream 

forwarders of the session. This means that whenever the server sends a data packet, all of 
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its forwarders forward it one after the other. For the intermediate forwarders, the required 

bandwidth in the neighbourhood is one unit more than that of the servers, since they also 

have to receive data from their upstream forwarders. Finally, receivers only need an 

amount equal to the QoS bandwidth of the session that it actually used for their 

predecessors to forward multicast data to them. 

4.3. Comments and Related Work 

The estimation of the available bandwidth is an essential task for any QoS-related 

routing protocol. In this regard, the method for the calculation of the residual bandwidth, 

which is presented in this section, provides a sufficient estimate to the available bandwidth 

within the neighbourhood for a node. AQM nodes share this information among their 

neighbours with periodic greeting messages in order to keep themselves aware of the 

amount of bandwidth that they are allowed to allocate to new session requests. 

On the other hand, the bandwidth estimation method described in this section is not a 

fundamental component of the AQM protocol. The available bandwidth calculated with 

this method is referred to as the effective bandwidth after having considered the channel 

contention overhead [92]. However, AQM is able to adapt any other technique for the 

prediction of the available bandwidth. 

Available bandwidth estimation and monitoring is one of the essential tasks to 

accomplish for the development of an efficient methodology for bandwidth management 

[93]. There have been several proposals in the research literature for the estimation of the 

available bandwidth, where the wireless channel is generally described as a shared-access 

communication medium. The available bandwidth varies with the number of nodes 

contending for the channel and competition for bandwidth is not only end-to-end but also 

at every link [94]. 

Three methods are developed in [95] to predict the achievable bandwidth. According 

to the first method, each node broadcasts its own load information periodically to its one-

hop neighbours, in addition to the load information of its two-hop neighbours. This way, 

each node gathers information on its three-hop neighbourhood and uses it for an 



 
83

approximation of the achievable bandwidth. In the second method, the transmission delay 

is measured, which is inversely proportional to the service rate of the network, which is 

defined heuristically as the achievable bandwidth. Finally, the third method suggests that 

the nodes on a defined route also contend with each other and the achievable bandwidth is 

the minimum available on this route divided by the number of nodes on the route 

contending with the bottleneck node providing the minimum bandwidth. 

The estimation of available bandwidth is considered the basis for admission control. 

In [ 96 , 97 ], an admission control and dynamic bandwidth management scheme is 

proposed. The bandwidth requirement of an application is converted to a channel time 

requirement and weighted according to the requirements of other connections. The channel 

time is then shared between connections. The weights are dynamically adjusted as the 

available bandwidth changes. A central bandwidth manager obtains the bandwidth 

requirements from the connections at the beginning. It controls admission at connection 

establishment and redistributes bandwidth shares at connection teardown. It rejects the 

connection if the minimum channel time requirement cannot be supported. 

Another computation method is developed by the ad hoc QoS on-demand routing 

(AQOR) algorithm in order to estimate the available bandwidth and perform accurate 

admission control [98]. Admission control decisions are made by every node based on the 

analysis of the traffic in the shared channel access network. To this end, each node sends 

hello packets to its neighbours, which contain information on self-traffic. The total traffic 

flow in the neighbourhood of a node is given as the sum of self-traffic and the traffic of the 

neighbours, which is deduced from the hello packets received. The available bandwidth is 

found by subtracting this value from the maximum transmission bandwidth. 

As mentioned earlier in this section, these or other bandwidth estimation techniques 

can be combined with AQM. Depending on the network conditions and the support of the 

lower layers, important issues such as contention and interference can be taken into 

account. Thus, more sophisticated prediction schemes can be implemented by AQM in 

order to make the reservation decisions more accurate. 
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5. COMPUTATIONAL EXPERIMENTS 

The evaluation of QoS multicast routing performance in ad hoc networks requires 

criteria that are both qualitative and measurable. The main concern of this section is to test 

the efficiency of AQM in providing multicast users with QoS and satisfying the service 

requirements of multimedia applications. Therefore, it is necessary to define the criteria to 

measure user satisfaction both at member and session levels, whereas previous research 

mainly focuses on quantitative aspects of efficiency such as packet loss ratio and control 

overhead. Thus, a new performance metric is introduced first, in addition to conventional 

criteria inspired by the related work in the literature. Next, the simulation settings are 

presented, under which the proposed multicast routing system is compared to a non-QoS 

protocol. The settings include the logical node structures, the usage scenarios, the network 

parameters and the mobility assumptions designed and combined in such a manner that a 

fair comparison can be made between AQM and its competitor in a realistic ad hoc 

network environment. Finally, simulation results are presented graphically and interpreted. 

The results show that, by applying novel QoS management techniques, AQM significantly 

improves multicast efficiency for members as well as sessions. 

5.1. Performance Metrics 

Distributed, loop-free, on-demand operation is a very important qualitative property 

for ad hoc networks [99]. However, the evaluation of ad hoc routing protocols also 

necessitates quantitative metrics, which can be measured to give a notion about their 

internal efficiency. The goodput, i.e., the packet loss rate defined by the ratio of the 

number of packets received to the number of packets transmitted, the average end-to-end 

delay and throughput as well as the control overhead are widely used to evaluate ad hoc 

routing protocols. These are also adopted by ad hoc QoS routing protocols [24-26], in 

addition to QoS-oriented metrics such as the success ratio defined by the number of 

accepted connections divided by the number of connection requests, the average path cost 

[27, 28] and the incompleteness ratio defined by the number of broken connections divided 

by the number of successful QoS requests [24, 27]. 
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The efficiency of ad hoc multicast routing protocols is further measured by their data 

packet delivery ratio, data forwarding, i.e., packet replication efficiency defined by the 

number of data packets transmitted per original data packet and control overhead [40, 50, 

52, 53, 70, 74]. Other metrics used are average delay, percentage of lost packets, number 

of control packets received by each node [63-65], multicast tree lifetime [79, 80] and 

energy consumption [83]. Finally, the multicast session success rate is defined by the 

number of accepted receivers divided by the number of requests to join a session [81, 82]. 

In the following sections, the performance criteria used in this thesis are presented. 

Divided into three groups, they evaluate AQM with regard to its efficiency as a QoS-aware 

multicast routing protocol in general, its performance in satisfying QoS requirements in 

particular and its consequences on the other aspects of the mobile ad hoc network. 

5.1.1. Satisfaction of Session Members 

The success of a QoS multicast routing system depends primarily on the satisfaction 

of its members. In this regard, the most important criterion for the QoS-related multicast 

routing decisions made by AQM is the improvement in the ratio of session members 

satisfied by the perceived quality of their applications. It is one of AQM’s main concerns 

that network resources are not excessively utilized to avoid possible collisions, packet loss 

and delay due to overload and keep the QoS conditions at a satisfactory level. Once 

accepted to a session, the QoS status perceived by individual nodes during the course of 

the session is vital. Therefore, it is necessary to observe the changes in member-level QoS. 

The member QoS sustainability ratio QMember is defined to evaluate this aspect of AQM 

and formulated as follows: 

 
a
dQMember −=1  (5.1) 

where d is the number of members dropped off a session due to insufficient QoS and a 

represents the number of nodes accepted to sessions as receivers. The decision on the 

sustainability of QoS is based on a combination of various other QoS metrics presented in 

Section 5.1.2. The equation gives the percentage of members which are served by the ad 



 
86

hoc network with acceptable QoS during their entire session membership. The member 

QoS sustainability ratio is an important criterion for the evaluation of member satisfaction 

since it is also a measure of the percentage of members experiencing severe delay and loss 

problems due to allocations exceeding the resource limits of the network. 

The success rate of member satisfaction is an important criterion for the performance 

of a multicast routing protocol providing QoS. However, it has to be taken into account 

that the member satisfaction achieved by the prevention of overload has an effect on the 

system, which can be observed by the percentage of users that are admitted to the multicast 

sessions. An efficient QoS multicast protocol should not allow its user admission rate to 

drop unacceptably as a result of the application of QoS restrictions. In other words, the 

majority of the users who wish to join a multicast session should still be admitted even 

with QoS limitations. Thus, the member acceptance ratio AMember is formulated as follows: 

 
g
aAMember =  (5.2) 

where g is the total number of join requests issued by all ad hoc nodes. Their ratio reflects 

the success rate of AQM in accepting a node’s request to join a session. As mentioned 

above, the member acceptance ratio is an important performance metric which is used in 

previous research efforts [27, 28, 81, 82]. It is important that a QoS-aware multicast 

protocol can maintain a good balance between these two aspects of member satisfaction. 

5.1.2. Individual QoS Criteria 

There are several important metrics which give a particularly detailed insight on the 

performance of a QoS-aware routing protocol. Some of these metrics are the end-to-end 

delay, jitter, interarrival time and loss rate of data packets [99]. In fact, QoS can be defined 

as the differentiation of network services by these metrics. On the other hand, the data 

streaming capability is an essential feature of a multicast protocol that aims to provide 

multimedia services with QoS in an ad hoc network. Therefore, the packet interarrival time 

is considered particularly important for AQM, in addition to delay, jitter and loss. Thus, 

AQM is compared to its non-QoS competitor with regard to these criteria. In addition, 
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these metrics are used by AQM during the course of the sessions to observe the streaming 

of data and decide on the members’ QoS sustainability, which is introduced in Section 

5.1.1. Therefore, it is necessary to examine these criteria in more detail. 

5.1.3. Effects on Network Load 

It is inevitable that the computational overhead of a routing protocol increases with 

its complexity. However, it is possible to keep this overhead at an acceptable level while 

adding QoS functionality to a protocol, especially in order to deal with the effects of 

mobility, the changes in topology and the issues of scalability. Thus, the member control 

overhead CMember is formulated as follows: 

 
afz

cCMember ++
=  (5.3) 

where c represents the total number of multicast control packets received and processed by 

the nodes of the ad hoc network, z is the total number of session servers and f is the total 

number of forwarders. The sum of z, f and a gives the total number of active nodes in the 

network. An active node is a session member participating in at least one multicast session 

as a server, forwarder or receiver. Thus, the division gives the number of control packets 

per multicast member to manage and maintain the AQM system. As mentioned above, the 

member control overhead has also been used in previous research efforts [63-65]. 

Another important factor which deserves attention is the effect of AQM on the best-

effort traffic performance. It is generally assumed that users may maintain background 

activities such as e-mail communication, Internet browsing or file transfer while attending 

interactive sessions. Therefore, AQM is also evaluated regarding the background traffic. 

5.2. Simulation Settings 

The simulations are conducted using OPNET Modeler 11.5 Educational Version and 

Wireless Module [100]. AQM nodes are modelled in three layers with application, session 

and network managers. The application manager is responsible for selecting the type of 
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application, setting its QoS requirements, as well as making decisions on session initiation, 

termination, join and leave. The session manager is responsible for declaring new sessions 

initiated by its application manager to other nodes, sending requests for sessions its 

application manager wishes to join, keeping lists of sessions, members and requests of 

other nodes, processing and forwarding their information messages and taking part in their 

join processes when necessary. The network manager is responsible for packet arrival and 

delivery, in addition to broadcasting periodic greeting messages and receiving other nodes’ 

greeting messages in order to process them to derive free bandwidth information. A node 

can take part at only one application at a time as a server or receiver. However, it can 

participate in any number of sessions as a forwarder as long as QoS conditions allow. The 

usage scenarios consist of open-air occasions such as search and rescue efforts and visits to 

nature in an area with boundaries, where a network infrastructure is not available. 

The non-QoS protocol developed for comparison purposes resembles basically a 

modified version of MAODV [40, 41], which is the tree-based multicast extension of the 

AODV protocol [42, 43]. MAODV utilizes the information collected during the unicast 

route discovery, which is not implemented in the non-QoS protocol developed for the 

simulations to achieve fair comparison conditions. MAODV maintains sequence numbers 

for multicast groups, which are updated by the group leaders, to ensure that the most 

recent route to the multicast group is used. Like AQM, the non-QoS protocol supports 

multiple sessions as well as multiple service classes simultaneously. However, it does not 

make any intelligent decisions based on QoS availability when responding to session join 

requests. In the non-QoS protocol, all sessions are announced along the network and all 

nodes can join all sessions regardless from bandwidth and delay limitations. 

Simulations are repeated 10 times for each data point and results are aggregated with 

a 95 per cent confidence interval in a multicast scenario with a set of four QoS classes to 

represent various applications coexisting in the system. Nodes initiate or join sessions 

according to a certain probability. Generated sessions are assigned randomly according to 

their relative frequencies to one of the four QoS classes defined in Table 5.1. To comply 

with the sample bandwidth requirements and delay tolerance characteristics given as part 

of the QoS definitions, nodes are restricted to certain minimum bandwidth and maximum 

hop count regulations. In other words, a node is allowed to join a session only if it can find 
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a path to the server with more bandwidth available than the minimum amount and less 

hops away than the maximum allowed. In the simulations, a low delay tolerance 

corresponds to a maximum allowed hop distance of three, whereas a high delay tolerance 

is represented by a maximum of four hops. Apart from this, there are no limits to the size 

of the multicast groups. 

Table 5.1.  QoS requirements of application classes 

QoS 
Class 

Application        
Type 

Bandwidth 
Requirement

Average 
Duration

Delay 
Limit 

Interarrival 
Time

1 Voice conversation 128 Kbps 300 s 10 ms 33 ms

2 Streaming music 256 Kbps 900 s 50 ms 33 ms

3 Video conference 512 Kbps 600 s 10 ms 40 ms

4 Streaming video 2 Mbps 1,200 s 50 ms 40 ms

 

The effect of mobility on the performance of AQM is observed under the random 

waypoint mobility model [101, 102]. In contrast to previous performance evaluations in 

the research literature, which limit their simulations to a few minutes, one hour of network 

lifetime has been simulated to get a realistic impression of the aggregated behaviour of 

multiple multicast sessions being maintained simultaneously in a distributed manner. The 

parameters of the mobility model and other simulation settings are given in Table 5.2. 

Three sets of simulations are conducted with these common parameters. The first set 

examines the effect of network density on AQM. In this set, the size of the physical 

coverage area of the network is the actual variable. However, the average number of 

neighbours within a node’s transmission range is used in the figures in order to present the 

results with a clearer representation of network density. The value is the multiplication of 

the network population with the ratio of a node’s transmission area to the whole network 

area. The former two are constants given in Table 5.2. The second set, whereby the 

percentage of the sessions which belong to the heaviest service class is the variable, aims 

to test the effect of the changes in multicast traffic load on AQM. In this set, the other 

classes share the remaining occurrence probability equally. Finally, the third set is 
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conducted to observe the effect of background traffic load on AQM. In this set, the file 

size of the background data, which is transferred between two neighbours, is the 

simulation variable. For each node, there is a time gap defined by the background 

inactivity period between the end of a file transfer and the start of a new request. The file 

transfer process is based on a modified version of the trivial file transfer protocol (TFTP) 

[103]. The results achieved by this set give an indication for AQM’s reaction to changing 

background activity rate. Table 5.3 summarizes the variables used in the simulation sets. 

Table 5.2.  Simulation parameters for the performance evaluation 

Parameter Description Value 

Background inactivity period 300 s (exponential) 

Greeting message interval 10 s 

Maximum link bandwidth 10 Mbps 

Mobility model Random waypoint 

Node pause time 10 – 40 s (uniform) 

Node speed 1 – 4 m/s (uniform) 

Multicast inactivity period 100 s (exponential) 

Network population 100 nodes 

Session update message interval 15 s 

Wireless transmission range 250 m 

 

Table 5.3.  Simulation variables of the performance evaluation 

Set Variable        
Description 

Number of 
Nodes in Range

Heavy Multicast 
Class Ratio 

Background 
Data File Size

1 Network density 10 – 50 0.25 2 MB

2 Multicast traffic load 20 0.20 – 1.00 2 MB

3 Background traffic load 20 0.25 0 – 8 MB
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5.3. Performance Evaluation 

Several important metrics are presented in Section 5.1 in order to evaluate the 

performance of AQM. Since a QoS-based protocol needs special criteria to show its 

quality, the QoS sustainability ratio is defined for session members by Equation 5.1. In 

addition, the member acceptance ratio defined by Equation 5.2 and the control overhead 

per member defined by Equation 5.3, which are inspired by previous research, are also 

used to show the price that mobile users have to pay for being able to run multimedia 

applications with certain QoS guarantees. Finally, conventional metrics such as end-to-end 

delay, interarrival time and loss rate for data packets are added to the performance criteria 

to observe the performance of AQM in more detail under these individual aspects of QoS. 

Three simulation variables are selected to compare the efficiency of AQM to a non-

QoS protocol under changing network conditions, namely the network density, the ratio of 

sessions that belong to the multicast class incurring heavy traffic and finally the size of the 

background data traffic. These are important criteria to judge a protocol’s efficiency 

against the effect of the multicast activity rate as well as the multimedia and best-effort 

traffic load. In the following sections, AQM is compared to the non-QoS protocol 

described in Section 5.2 based on these criteria under the application scenarios given in 

Table 5.1. 

5.3.1. Satisfaction of Session Members 

As defined in Section 5.1.1, there are two performance metrics to evaluate the 

member satisfaction, which are the QoS sustainability and acceptance ratios of session 

members. These metrics should rather be interpreted together in order to see their relation. 

First, the effect of the changes in network density is observed on both metrics. Then, the 

effect of traffic load is evaluated by increasing the ratio of initiated sessions with higher 

QoS requirements in the network. Finally, the effect of background traffic on the 

performance is presented. A major conclusion drawn from the simulation results presented 

in this section is that there is a tradeoff between member acceptance and sustainability of 

QoS. Thus, AQM lets one of them degrade gracefully in order to maintain the other at an 

acceptable level when necessary. The logic behind these decisions is explained below. 
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Figure 5.1.  Member QoS sustainability ratio as a function of network density 
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Figure 5.2.  Member acceptance ratio as a function of network density 
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Figure 5.1 compares AQM to the non-QoS protocol regarding the ratio of accepted 

session members which can be provided with the required QoS for the duration of their 

membership. AQM monitors its receivers with regard to their perceived QoS such as their 

average data waiting times and packet loss rates for each of their session memberships. If a 

member experiences loss or delay beyond the limits of acceptable QoS, AQM decides that 

the QoS of the membership cannot be sustained any more and drops the member off the 

session to prevent further waste of resources. On the other hand, such a member is not 

dropped in the non-QoS protocol. In order to make a fair comparison, however, it is 

marked “should-have-been-dropped”. It can be seen from the figure that AQM is able to 

sustain the membership QoS for a significant portion of the members once it accepts them 

to a session, whereas the non-QoS protocol can only provide poor QoS conditions to its 

users, mainly due to the fact that it accepts too many join requests without considering the 

resource limitations of the network. The member acceptance ratios of the protocols are 

displayed in Figure 5.2. As expected, AQM has a lower rate of member acceptance as a 

result of its stringent QoS restrictions and resource management precautions. However, it 

is still able to achieve an acceptance ratio close to its non-QoS competitor and preserve 

this ratio even as the network density increases and resources are shared by more nodes. 

Nevertheless, AQM nodes experience a decrease in the ratio of satisfied members as 

the node density increases. The number of independent requests to be processed by several 

nodes simultaneously increases with network density. Several join processes start running 

in parallel and more than a feasible number of requests are accepted by their respective 

repliers before they can be informed on each other’s allocations. Thus, the acceptance ratio 

is kept high as shown in Figure 5.1 at the cost of excessive resource allocation, which 

eventually leads to higher data packet loss rates due to increased interference and 

collisions. Consequently, AQM has to sacrifice an increasing portion of its session 

members as shown in Figure 5.2. It can be said that AQM is forced to adopt a reactive 

approach since it cannot predict an increase in simultaneous requests in the network. 

Improvements are possible for such cases with more frequent neighbour greetings and 

session updates as well as new join process facilities such as objection queries, which are 

introduced in Section 7, at the cost of increased control overhead. However, in comparison 

to the non-QoS protocol, AQM still provides QoS to a significantly higher ratio of its 

multicast session members with an acceptable ratio of rejected and dropped members. 
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Figure 5.3.  Member QoS sustainability ratio as a function of multicast traffic load 
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Figure 5.4.  Member acceptance ratio as a function of multicast traffic load 
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Figure 5.3 and Figure 5.4 give the results of AQM performance with regard to QoS 

sustainability and member acceptance as the ratio of multicast sessions that belong to the 

class with higher QoS requirements increases. In contrast with the network density results 

presented in Figure 5.1 and Figure 5.2, AQM maintains the QoS level of its accepted 

members at the cost of decreasing its member acceptance ratio. The reason for this change 

in behaviour is the fact that AQM can use more up-to-date resource allocation information 

when there are fewer simultaneous join requests within a neighbourhood. In other words, 

AQM can act proactively by eliminating infeasible join requests as shown in Figure 5.4 

and keep its member QoS sustainable as shown in Figure 5.3, if resource allocations at the 

end of simultaneous join processes are independent of each other. It can keep its nodes up-

to-date regarding the QoS conditions in the network and the status of the existing sessions. 

AQM nodes do not accept new requests if they cannot afford the required bandwidth and 

hop count requirements. Thus, not all requests are granted an acceptance and the member 

acceptance ratio is generally lower than a non-QoS protocol. The increase in the QoS 

sustainability performance of the non-QoS protocol is the result of the decrease in its 

member acceptance ratio due to loss of control messages under heavy data traffic. 

Another important aspect of the results presented in Figure 5.3 and Figure 5.4 is the 

fact that the non-QoS protocol cannot achieve the QoS sustainability rate of AQM even 

though its member acceptance ratio is very close to AQM for higher rates of heavy-class 

multicast traffic. This is a clear indication that AQM is more than admission control. A 

sustainable QoS rate close to that of AQM cannot be achieved merely by accepting join 

requests randomly at a rate close to that of AQM. AQM has many other features such as a 

QoS-controlled join process, resource allocation and hop count limitation which lead to a 

more balanced network load and increases the ratio of member satisfaction. 

Figure 5.5 and Figure 5.6 show the QoS sustainability and member acceptance 

performances of AQM and its non-QoS competitor under the effect of increasing 

background traffic load. Since background traffic is defined as a best-effort service, it does 

not affect the decisions regarding the allocation of multicast resources. Therefore, the 

member acceptance ratios of both protocols remain relatively unchanged. When the file 

size becomes larger, on the other hand, it causes the probability of packet collisions to 

increase, which results in a slight degradation of member QoS sustainability. 
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Figure 5.5.  Member QoS sustainability ratio as a function of background traffic load 
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Figure 5.6.  Member acceptance ratio as a function of background traffic load 
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It is also interesting to observe the background traffic success rate of AQM when the 

size of the transferred file increases, which is presented in Section 5.3.3. 

The results presented in this section show that the QoS support provided by AQM 

significantly increases member satisfaction during multicast sessions. AQM outperforms 

the non-QoS protocol by sustaining QoS for a high ratio of members even under high 

traffic load conditions. It is a widely accepted assumption that dropped connections are 

generally more annoying than rejected ones. Thus, the member QoS sustainability ratio is 

a more important criterion than the member acceptance ratio, which means that AQM 

requires some improvements regarding its performance in dense networks. Moreover, an 

intermediate member with unacceptable QoS performance affects all its neighbours as well 

as all related sessions and is expected to cause collisions, packet losses and intolerable 

delays at the lower layers if it is not dropped. While the application of QoS restrictions 

causes more users to be rejected, the lack of these restrictions yields to performance 

degradation in the network. Without a policy to manage network resources effectively, 

users experience difficulties in getting any service as the bandwidth requirements increase. 

5.3.2. Individual QoS Criteria 

As mentioned in Section 5.1.1 and Section 5.1.2, AQM decides on the sustainability 

of a member’s QoS based on a combination of various QoS metrics such as the ratio of 

lost data packets, the average of end-to-end delay and interarrival time. AQM continuously 

observes the data streaming performance of each session at each member and compares 

the results to the QoS requirements defined in Table 5.1. When a member experiences loss 

or delay exceeding the QoS limits for an unacceptable amount of time, AQM decides that 

the member should be forced to drop the session, since it is obvious that the member to be 

sacrificed and its potential successors cannot benefit from QoS-guaranteed service 

anymore. This is a necessary countermeasure in order to protect the rest of the network 

from performance degradation. Therefore, these three basic QoS metrics deserve a more 

thorough examination, which is provided in this section. Similar to the previous section, 

these individual performance criteria are evaluated with regard to three different variables. 

First, the effect of increasing the network density is observed. Then, the effect of multicast 

data load is evaluated. Finally, the effect of background traffic is presented. 
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Figure 5.7.  End-to-end data packet delay as a function of network density 

0

40

80

120

160

10 20 30 40 50
Number of Nodes in Range of Transmission

D
at

a 
In

te
re

rr
iv

al
 T

im
e 

(m
s)

AQM
non-QoS

 
Figure 5.8.  Data packet interarrival time as a function of network density 



 
99

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50

Number of Nodes in Range of Transmission

D
at

a 
Lo

ss
 R

at
io

AQM
non-QoS

 
Figure 5.9.  Data packet loss ratio as a function of network density 

Figure 5.7 and Figure 5.8 display the average end-to-end delay and interarrival time 

of data packets, respectively, experienced in AQM and the non-QoS protocol. The reason 

for the end-to-end delay is contention, whereas the average interarrival time increases due 

to collisions. Both happen much rarer in AQM as a result of its ability to reserve resources 

and balance the network load. There is only a slight increase in the end-to-end delay of 

AQM as the network becomes denser and a similar behaviour is observed in its data 

interarrival time. AQM’s delay variation is also much lower. The averages of the non-QoS 

protocol are higher than acceptable and increase drastically with network density. These 

results show that AQM can deliver data packets in a streaming fashion under relatively 

stable QoS conditions as required by multimedia applications. However, it should be noted 

that AQM achieves this performance at the expense of lower QoS sustainability. 

Figure 5.9 compares the data loss rate of AQM to its non-QoS competitor. The 

dropping of members with unacceptable data streaming quality enables AQM to limit the 

network load in such a way that collisions are rare and data delivery rates are high for the 

remaining session members. Thus, the data loss rate increases only slightly with network 

density, which is an important achievement for a QoS-aware multicast routing protocol. 
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Figure 5.10.  End-to-end data packet delay as a function of multicast traffic load 
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Figure 5.11.  Data packet interarrival time as a function of multicast traffic load 



 
101

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100
Percentage of Multicast Class with Heavy Load (%)

D
at

a 
Lo

ss
 R

at
io

AQM
non-QoS

 
Figure 5.12.  Data packet loss ratio as a function of multicast traffic load 

Figure 5.10 shows the end-to-end delay and jitter values of AQM and its competitor. 

In both protocols, there is an increase in delay as the ratio of heavy-class applications 

increases. For AQM, this increase is a result of the larger transmission delays incurred by 

the large-size data packets. Since there are more heavy-class applications in the network, 

more large-size data packets are produced and more time is consumed to transmit them. 

However, the delay and jitter results are still within the QoS limits of the heavy-class 

application. On the other hand, the non-QoS protocol experiences additional delay due to 

contention at lower layers, which increases its end-to-end delay beyond acceptable limits. 

Figure 5.11 and Figure 5.12 display the data interarrival times and loss rates of the 

protocols. Due to the larger data packets of the heavy class, the loss probability increases. 

Thus, AQM experiences slightly more data losses, which also affects the average time 

between data packet arrivals. Nevertheless, AQM is still able to keep these changes within 

allowed QoS limits by decreasing the member acceptance as necessary which is shown in 

Figure 5.4. The non-QoS protocol has also a lower acceptance ratio. Since the decrease is 

not based on network decisions but rather a result of lost control communication, however, 

it can only maintain a loss rate which is already too high for multimedia applications. 
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Figure 5.13.  End-to-end data packet delay as a function of background traffic load 
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Figure 5.14.  Data packet interarrival time as a function of background traffic load 
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Figure 5.15.  Data packet loss ratio as a function of background traffic load 

The last group of results in this section examine the effect of background traffic load 

on the performance of AQM and its non-QoS competitor. As explained in Section 5.2, the 

background inactivity period is the gap between two consecutive background activities. 

Thus, a node requests a new file from another node, the size of which is the simulation 

variable, only after the inactivity period has passed after the completion of the last transfer. 

Figure 5.13 shows how the background traffic affects the end-to-end delay and jitter 

experienced by the multicast traffic. Although the changes in delay and its variation are 

more severe for the non-QoS protocol than AQM, due to the fact that AQM experiences 

less contention, the results still show the need for a mechanism to differentiate between 

more and less delay-sensitive applications. On the other hand, Figure 5.14 and Figure 5.15 

show that data interarrival times and loss rates of the multicast traffic are affected not that 

much by the background traffic. Since resources are reserved for a new member as soon as 

it joins a multicast session, fewer collisions are expected. However, the reservation of the 

resources does not include the scheduling of individual packets, which means that a 

multicast data packet may still have to wait for a background data packet to be transmitted. 

This topic is addressed and a solution for the problem is proposed in Section 8. 
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5.3.3. Effects on Network Load 

AQM is a QoS-aware multicast routing protocol which is designed to operate in 

mobile ad hoc networks. Since there is a general trend in today’s networks, which include 

conventional wired as well as wireless communications, towards the coexistence of QoS 

and best-effort traffic, it is imperative to examine the performance of AQM on best-effort 

traffic. In addition, the nature of ad hoc networks requires that such a protocol works with 

an additional overhead as little as possible. Therefore, it is also necessary that the control 

overhead incurred by AQM is evaluated to have an idea on its effects on the network load. 

Figure 5.16 shows the performance of AQM and the non-QoS protocol with regard 

to their ability in maintaining a best-effort service in the background while also streaming 

data packets for multicast sessions as a multimedia service. The background traffic is 

implemented as a simple file transfer application running between neighbours. In order to 

achieve a fair comparison and evaluate AQM without the support of a transport layer, only 

the reliable unicast delivery feature of the underlying MAC layer is enabled, which is 

configured to retry sending an unacknowledged packet a predefined number of times and 

then proceed with the next packet. File transfers that can prevent their receivers from 

experiencing such losses or packet delivery timeouts are assumed to have completed 

successfully. Under these circumstances, AQM provides its users with a significantly 

better best-effort service than the non-QoS protocol. As the density of the network 

increases, the success rate of the background data delivery decreases for both. The reason 

for this decrease is the growing number of neighbours within a node’s transmission range, 

which means that more nodes share the same amount of wireless resources and try to get 

multimedia as well as background service from each other. Thus, more interference and 

collisions occur and data is lost. Nevertheless, AQM succeeds in keeping its background 

success rate significantly higher than its competitor. In addition to taking the current 

bandwidth consumption of a node into consideration, AQM also uses the information on 

QoS requirements of the ongoing sessions within the neighbourhood of the node and 

adjusts the data rate of the background activity accordingly. The non-QoS protocol, on the 

other hand, has to adjust its best-effort data rate without this additional information and 

experiences more collisions due to its over-allocations. Thus, AQM’s resource allocation 

strategies for multimedia sessions are also useful for background services. 
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Figure 5.16.  Background traffic efficiency as a function of network density 
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Figure 5.17.  Member control overhead as a function of network density 
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Figure 5.17 compares the member control overhead of AQM to the non-QoS 

protocol as the network density increases. The unit of control overhead is defined as the 

number of packets received and processed by a session member per second. The average 

overhead increases slightly in a denser network, mainly due to more join requests and 

replies forwarded as a result of higher connectivity. Since the non-QoS protocol forwards 

these types of messages without QoS considerations anyway, the increased connectivity 

does not affect its control overhead as much as AQM. Another reason for AQM’s 

increasing overhead is its member dropping process due to lack of acceptable QoS, which 

triggers subsequent actions at other session members both upstream as well as 

downstream. On the other hand, AQM eliminates infeasible join request at their sources 

and deals with less membership operations in general. Moreover, by rejecting some of the 

join requests, AQM cuts further communication with those nodes at an early stage of the 

process, whereas the non-QoS protocol communicates with all requesters until their 

routing information is delivered. Finally, AQM employs additional forwarders during the 

data streaming phase of its sessions, which increases the robustness of the multicast graphs 

and allows the protocol to experience fewer session losses to handle. These features help 

AQM prevent a much higher control overhead. 

Figure 5.18 shows the background traffic efficiency of the protocols as the ratio of 

heavy-class applications increases. Similar to the results presented by Figure 5.16, 

background data success rates decrease as multicast traffic gets heavier, due to the fact that 

the wireless channel is occupied for longer periods of time in the attempt to transmit a 

higher ratio of larger multicast packets. Still, AQM is able to support a significantly higher 

portion of background data transfers by utilizing its resources efficiently whereas the non-

QoS protocol becomes quickly overloaded as a result of excessive member acceptance. 

Figure 5.19 evaluates the control overhead of AQM and its competitor with regard to 

multicast traffic load. The overhead of both protocols grows as the ratio of heavy class 

sessions is increased. The main reason for this behaviour common to both protocols is the 

fact that they reject more join requests, which yields to new requests and replies that are 

subsequently forwarded. AQM, on the other hand, facilitates additional control messages 

for status updates regarding its sessions and extra forwarders which are notified during 

multicast data flow to improve robustness. 
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Figure 5.18.  Background traffic efficiency as a function of multicast traffic load 
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Figure 5.19.  Member control overhead as a function of multicast traffic load 
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Figure 5.20 compares the background activity success rate of AQM to the non-QoS 

protocol as the file size of the background data grows. The success rate decreases, which is 

expected since the successful transfer of a larger number of consecutive packets is much 

harder in the dynamic neighbourhood of a mobile ad hoc network. 

Finally, Figure 5.21 compares the member control overhead of AQM to the non-QoS 

protocol as the rate of background activity increases. The increase in the overhead is 

mainly caused by the loss of session update messages. Since these messages are periodic 

and rarer than other control messages as well as data packets, they are subject to a higher 

loss probability at times when they share the medium with background traffic. As a result 

of this, session losses occur slightly more frequently and the notification processes 

triggered by those incidents require more control messages to be sent. 

Although the control overhead incurred by AQM is generally higher than the non-

QoS protocol and the number of control packets per member grows significantly as the 

network density increases, it is worth mentioning that this overhead is actually very small 

when compared to the multimedia data traffic. Considering the average bandwidth 

requirements and session durations defined by the scenario in Table 5.1, the average data 

traffic per session is on the order of megabits per second. On the other hand, the size of the 

largest AQM control packet is around 200 bits, including various lower layer headers. 

AQM does not exchange the information on neighbours, members and sessions in the form 

of long lists. Therefore, it does not need to use variable-size control packets. The worst-

case average control traffic per member is on the order of 0.5 kilobits per second, which is 

the rate experienced in a highly dense network. Thus, the increased overhead of AQM is 

still reasonable considering the fact that it achieves much higher member and session 

satisfaction for the users in the ad hoc network. 

In this section, the control overhead experienced by the AQM nodes is observed in a 

general context, whereby the control packets are evaluated quantitatively without any 

classification. Thus, the aim of this section is to provide an overview of the control 

overhead incurred by AQM. In Section 6, the control overhead is analysed more 

thoroughly with particular emphasis on the session join process, which is the most 

interactive part of the protocol and therefore necessitates a deeper look. 
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Figure 5.20.  Background traffic efficiency as a function of background traffic load 
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Figure 5.21.  Member control overhead as a function of background traffic load 
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6. ANALYSIS OF THE CONTROL OVERHEAD 

The control overhead incurred by AQM can be classified into three categories in 

accordance with the protocol structure. The session module sends session initiation and 

termination packets once per session, which are relatively rare events. In addition, there 

are the periodic session update packets. The overhead caused by these messages depends 

mainly on their frequency. Notifications for lost sessions are also sent by this module, 

which is expected to happen more frequently due to node mobility. However, assuming 

that there are much more members than sessions in the network at any instant, it can be 

argued that the control packets generated by the session module are only a fraction of the 

ones generated by the membership module. The greeting messages of the network module 

are another group of periodic messages, the use of which is explained in Section 3.5.1. 

There are various packets sent by the membership module during the three-phase 

session joining process. The propagation of these packets, namely the request, reply and 

reserve messages, depends on the hop distance between the originator of the request and 

the nearest session member on the multicast tree, which can change with each request. It is 

therefore harder to perform an analysis of the control overhead incurred by the join 

requests. Since the join processes are expected to be the majority of all control events in 

the ad hoc network, however, they deserve this investigation. In the following sections, the 

join process of AQM and its impact on the system control overhead is analysed to provide 

an estimate of the amount of control messaging it incurs in the network. 

There have been research efforts previously to analyse the expected number of hops 

for a source to reach a destination [104, 105]. The expected one-hop progress of a packet 

in the desired direction is defined as the distance between the sender and a receiver 

projected on a line connecting the source and the destination. It is formulated as a function 

of the number of neighbours, the node density, the transmission range and the distance 

from the source to the destination. The average number of hops between two nodes 

randomly placed within a circular area is then found by dividing their expected distance by 

the expected one-hop progress. However, the calculation of the average number of hops is 

not trivial and requires information on the Euclidian distance between nodes. Moreover, 
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the analysis is aimed at unicast communication. Therefore, a new approach is necessary, 

which is simpler and explicitly considers the properties of multicast communication. 

In the following sections, the starting case for a session is considered as a first step, 

whereby the attempt of the first member to join the session is examined with regard to the 

possibilities of reaching the session server. Following the successful operation of the 

primary receiver to join the session, the possible behaviour of the subsequent join attempts 

is analysed. Finally, the three-phase join process is revisited for a single join attempt in 

isolation in order to observe the way a request propagates from its originator towards the 

session members and how it forces intermediate nodes to react to it. In the analysis, it is 

assumed that the protocol maintains multicast trees without evolving them to meshes, 

since this operation does not affect the results as explained at the end of Section 6.4. 

6.1. Primary Receiver of a Session 

Once a session is announced by its initiator, other nodes propagate the initiation 

messages throughout the network. As changes in the QoS conditions of the network are 

observed, session updates are utilized to inform the potential receivers of the availability of 

the session. Thus, any node that is aware of the session is eligible to join it. 

At the beginning, the multicast tree consists of the server only, which is inactive 

since it has no receivers yet. Then, the tree starts growing due to the addition of receivers, 

which makes the finding of the tree easier for subsequent join candidates. Therefore, it is 

important to observe the events during the join process of the first candidate to the session. 

Definition 6.1: Let ν  denote the number of nodes in the ad hoc network, i.e., N=ν . Let 

the network area be of circular shape with the radius R. 

Assuming uniform node deployment, the node density ρ  can be found as follows: 

 2
Rπ

νρ =  (6.1) 
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Definition 6.2: Let R be an integral multiple of r, the node transmission range. Let s be the 

server of the session located at the centre of the network area. Let m1 be the first receiver 

to join the session. 

The maximum number of hops γ  that m1 needs to take in order to reach s is: 

 
r
R

=γ  (6.2) 

Figure 6.1 depicts the area that corresponds to the one-hop neighbourhood of s. It is 

possible to formulate the probability that m1 is one hop away from s as the ratio of the 

number of nodes within this area to the number of all the nodes in the network. 

 

s 

R 

r 

 
Figure 6.1.  The one-hop neighbourhood of the session server 

Definition 6.3: Let H1 denote a discrete random variable having a probability mass 

function }{)( 1 hHPhp == , which is defined as the probability that m1 reaches s in h hops. 

The probability that m1 reaches s in one hop is: 
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ν
πρ

2

1 }1{ rHP ==  (6.3) 

 2

2

1 }1{
R

rHP ==  (6.4) 

Equation 6.4 shows that the desired probability, which is the ratio of the number of 

nodes within the respective areas, is equal to the ratio of the areas of the respective circles, 

which, in turn, is equal to the ratio of the respective radii squared. 

 

2r s 

R 

r 

 
Figure 6.2.  The two-hop neighbourhood of the session server 

Figure 6.2 depicts the two-hop neighbourhood of s. Similar to the one-hop solution, 

the probability that the first candidate m1 is exactly two hops away from s is equal to the 

ratio of the two-hop neighbourhood area of s to the area of the whole network. 

 2

22

1

)2(
}2{

R

rr
HP

π

π 



 −

==  (6.5) 
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 2

2

1
3}2{
R

rHP ==  (6.6) 

With the help of these results, the general case probability of m1 being exactly in the 

hth neighbourhood of s, where γ≤h , can be formulated as follows: 

 ( ) ( )[ ]
2

22

1
1}{

R

rhhrhHP −−
==  (6.7) 

 2

2

1 )12(}{
R

rhhHP −==  (6.8) 

Definition 6.4: If H1 is a discrete random variable having a probability mass function 

}{)( 1 hHPhp == , then the expected value of H1, which is the weighted average of the 

possible values of H1, is defined as follows: 

 [ ] ∑
>

=
0)(:

1 )(
hph

hphHE  

The expected value of the number of hops which m1 needs in order to reach s is: 

 [ ] ∑
=

−=
γ

1
2

2

1 )12(
h R

rhhHE  (6.9) 
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γ

HE  (6.12) 
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 [ ] 1

1 6
1

2
1

3
2 −

−+= γγHE  (6.13) 

The last equation above shows that the expected number of hops for the first receiver 

m1 to reach the server s of the multicast session is mainly influenced by the ratio of the 

network radius R to the transmission range r. The result is important since it directly 

affects the overhead incurred during the join process of a receiver, which is analysed in 

Section 6.3. It also has an impact on the overhead caused by subsequent join requests 

made for the same session, which is analysed in Section 6.2. 

The relation between E[H1] and γ  can be further analysed by examining Equation 

6.13 as follows: 

 
[ ] 211

6
1

2
1

3
2 −−

−+= γγ
γ
HE  (6.14) 

As the physical size of the network area increases, while the transmission range 

remains constant, γ  approaches infinity according to Equation 6.2. Thus, the limit of the 

expected value of the hop count needed by the first receiver to reach the server is: 

 
[ ]

3
2lim 1 =

∞→ γγ

HE
 (6.15) 

 [ ] γ
3
2

1 =HE  (6.16) 

 [ ]
r
RHE

3
2

1 =  (6.17) 

As mentioned previously, the expected number of hops grows linearly with the ratio 

between the physical size of the network area and the transmission range. Thus, an 

ordinary multicast routing protocol without any QoS constraints experiences increasing 

overhead as this ratio increases, regardless of the density of the nodes, which is not a 



 
116

desirable property for the sake of scalability. On the other hand, the nodes that are far 

away from the server also suffer from high delays and packet losses, in addition to 

frequent disconnections, due to the length of the path between the server and themselves. 

Therefore, it is preferable that trees with high diameter values are avoided. This is why 

AQM applies hop count limitations as part of its QoS management strategies. The QoS 

class definitions followed by AQM practically restrict γ  in Equation 6.16 for each session 

separately, restricting the receivers to a virtual network border. 

6.2. Subsequent Receivers 

By joining the multicast session, the first receiver establishes a connection with the 

session server, which is the first path on the multicast tree with a number of intermediate 

nodes one less than the hop distance selected as the first set of forwarders. Based on the 

initial assumption of uniformly distributed nodes, the resulting multicast tree and its 

aggregated coverage area can be determined, which is the superposition of the 

transmission ranges of the current session members. 

The fact that AQM favours paths with a minimum number of hops between the 

source and the destination necessitates that the sum of the Euclidian distances dij between 

three consecutive nodes on the multicast tree has a lower bound, which is the transmission 

range r. If three nodes on the tree were placed closer than r, the first node would be able to 

by-pass the second one and reach the third node directly. Thus, the minimum distance 

between two nodes on the tree is the half of r on the average. The maximum distance is the 

natural limit of the transmission range r. 

Definition 6.5: Let r  denote the average distance between two consecutive nodes on the 

multicast tree connecting s and m1. 

Then r  is bounded as follows: 

 rrr <<
2
1  (6.18) 
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Definition 6.6: Let h1 be the hop distance between the first receiver m1 and the server s, 

such that γ≤≤ 11 h . 

An example is given in Figure 6.3, where h1 equals four and the distance between the 

nodes is r. For the sake of simplicity, it is assumed that the nodes are located on a line. 

Thus, the coverage area to be examined is the upper limit with the maximum possible 

distance between two consecutive nodes. 

s f1 f2 f3 m1 
r r r r r 

 
Figure 6.3.  The multicast tree after the first receiver joins the session 

Similar to the probability calculations made for the first receiver, the probability that 

the second receiver joins the multicast tree in one hop can be defined as the ratio of this 

area to the total area of the network. The above example is redrawn in Figure 6.4 to show 

the intersecting areas to be calculated with their x values along the axis. 

 

x 

y 

0 2½r 3½r 4½r 6r 1½r 

As Am (h1-1) Af  
Figure 6.4.  The coverage area of the multicast tree after the first receiver 

Considering the general case, the number of the intermediate nodes is one less than 

h1, which is equal to the number of the intermediate areas. Thus, the coverage area of the 

multicast tree after the first receiver denoted by AT,1 is the superposition of the areas 

covered by the session server, the intermediate nodes and the receiver: 
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 ( ) mfsT AAhAA +−+= 111,  (6.19) 

Definition 6.7: Let M = { s, ml }, the set of actual session members including the server 

and the receivers. Let { }11: 1 −≤≤= hhfF h , the set of data forwarding nodes in the 

session. Let FMT ∪= , the set of the nodes on the multicast tree. 

It can be seen from Figure 6.3 and Figure 6.4 that each node at the centre of its 

respective circle has a distance of r to the next one, which means that the centres also have 

a distance of r to each other. Thus, the general equation for these circles is formulated as: 

 ( ) 222 ryrhx =+−  (6.20) 

where 1 ≤ h ≤ h1+1. 

In order to formulate the integrals and compute the areas shown in Figure 6.4, the 

integration boundaries have to be calculated by eliminating y and solving the equations of 

two consecutive circles for xh as follows: 

 ( )( ) ( )2222
1 rhxrrhxr hh −−=+−−  (6.21) 

 ( ) rhhxh 2
1

22 −+
=  (6.22) 

 rhxh 





 +=

2
1  (6.23) 

where 1 ≤ h ≤ h1. 

Solving Equation 6.23 for the various values of h, the xh values of all intersections 

are determined. Thus, the partial area around s to be included to AT,1 as As is the integral of 

the circle function given in Equation 6.20 over the interval [ ]1,0 x : 
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 dxrxrA
r

s ∫ −−=
2
3

0

22
)(2  (6.24) 

where h = 1. 

Similarly, the partial area around a forwarding node, Af, can be formulated as the 

integral of the same function over the interval [ ]hh ,1− : 
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)(2  (6.25) 

where 2 ≤ h ≤ h1. 

Since the circles are identical, the calculation of the individual forwarding areas Af 

can be made easier by using the same integral as As with shifted intervals. Thus: 

 dxrxrA
r

r

f ∫ −−=
2
3

2
1

22
)(2  (6.26) 

 dxrxrA
r

r

f ∫ −−=

2
1

22
)(4  (6.27) 

Finally, for the case where h = h1, the area Am is identical to the area As. Thus, the 

formulation of the total area AT,1 given in Equation 6.19 can be simplified as follows: 

 ( ) fsT AhAA 12 11, −+=  (6.28) 

Using Equation 6.24 and Equation 6.25 in Equation 6.19, the integral can be solved 

as follows: 
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Substituting t
r

rx sin=
−  and dttdx

r
cos1

= , 
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The probability that the second receiver is within this area, which is also the 

probability that it can reach the multicast tree in one hop, is: 
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However, it should be noted that Equation 6.33 only holds as long as AT,1 is not 

larger than the network area. Otherwise, { }12 =HP  is equal to one. 
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Using Equation 6.4, the relation of this result to the one-hop probability of the first 

receiver can be shown as: 

 { } { } 
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A second special case should be considered separately, where γ  is equal to one. In 

this case, { }11 =HP  as well as { }12 =HP  are equal to one since the transmission ranges 

cover the whole network. As a result of this, { }1=lHP  equals one for all receivers ml. 

 

s m1 

h1 r r r 

 
Figure 6.5.  An approximation to the one-hop neighbourhood of the multicast tree 

Although the coverage area of the multicast tree following the joining of the first 

receiver is computed exactly as given by Equation 6.32, an approximation is provided to 

simplify subsequent calculations, which is an upper bound to AT,1. Thus, the area can be 

approximated as shown in Figure 6.5 and formulates as follows: 
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The upper bound of the probability that the second receiver is in this area becomes: 
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The results for { }12 =HP  and { }12 =′ HP  show that the probability of reaching the 

multicast session in one hop increases for the second receiver when compared to the first. 
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Figure 6.6.  A lower-bound to the one-hop neighbourhood of the multicast tree 

It should also be noted that this result provides a looser upper bound to { }12 =HP  

since the distance between the multicast nodes are assumed to be r, which is the maximum 

value possible. Considering the minimum distance between the nodes as defined in 

Equation 6.18, the lower bound of the coverage area is as approximated in Figure 6.6. It 

can be seen that only the area covered by the intermediate nodes shrinks and the lower 

bound of the probability to join the tree in one hop is formulated as follows: 
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Having found the coverage area of the one-hop neighbourhood of the multicast tree, 

the same approximation can be used to find its two-hop neighbourhood, which is 

illustrated in Figure 6.7. These approximations help the derivation of the probabilities 

{ }hHP =′ 2  for the general case. 
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Figure 6.7.  An approximation to the two-hop neighbourhood of the multicast tree 

The area of the shaded region shown in Figure 6.7 is: 
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Hence, the area of the h-hop neighbourhood can be defined as follows: 
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Thus, the probability for the second receiver to join the multicast tree in h hops is: 
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Similar to Equation 6.33, Equation 6.43 only holds as long as hTA ,′  does not exceed 

the network area. On the other hand, there is a maximum value that h can take such that 

hTA ,′  is not larger than the network, since hTA ,′  is a function of both h and h1, whereas h 

and h1 are limited by Equation 6.2 and Definition 6.6, respectively. 
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Thus, the h-hop join probabilities for the second session member are: 
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Similar to the results presented in Equation 6.39, this result provides an upper bound 

to { }hHP =2  since the distance between the multicast nodes are assumed to be r again. 

Considering the lower bound of the distance between the nodes, the lower bound of the 

probability to join the tree in h hops is formulated as follows: 
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The results for the h-hop join probabilities of the second receiver can be generalized 

for the subsequent members of the session. Since the coverage area of the multicast tree is 

an increasing function of the number of current receivers, any new member makes it easier 

for the next join request to reach the multicast tree in fewer hops. In other words, the 

relation between the h-hop join probabilities of ml, any of the l receivers of the multicast 

session, can be formulated as follows: 

 { } { } { } { }hHPhHPhHPhHP ll =≥=≥≥=≥= − 121 K  (6.47) 

Using this relation, the h-hop join probabilities of the subsequent receivers can be 

approximated by { }hHP =2 . 

6.3. Overhead of a Join Process 

The preceding sections analyse the behaviour of the first and second receivers in a 

session. Moreover, with the aid of some simplifications it is also possible to approximate 

the behaviour of the subsequent receivers. Given these approximations for the hop count of 

a new receiver to join the multicast tree, it is possible to compute the overhead incurred, if 

the number of the nodes involved in the process at each hop can be determined. 



 
125

When a session is initiated, it is announced by the server throughout the network. As 

a result of the nature of the wireless medium, the session initiation messages propagate in 

the form of an expanding ring. Each node that is informed of the session for the first time 

forwards these packets only once, which guarantees the downstream flow of the 

information. The announcement is refreshed periodically by session update packets, which 

propagate following the same rules. Thus, the expanding ring structure, which groups the 

nodes according to their distance to the server in terms of hop count, remains intact 

throughout the session. 

A join request propagates pretty much in the same fashion as a session initiation, in 

the form of an expanding ring centred at the node which originates the request. By 

definitions of AQM, only those nodes which are aware of the session, can satisfy its QoS 

requirements and are in a ring which is closer to the session initiator than the requester 

take the message into consideration. These nodes forward it further upstream towards the 

session server. 

The ratio of these nodes in the network can be computed by finding the size of the 

intersecting areas of the two expanding rings that belong to the requesting and the serving 

nodes. An example case is illustrated in Figure 6.8, where the first requesting node m1 is 

just outside the four-hop neighbourhood, or the packet propagation wave ws,4 as it is 

labelled in the figure, of the server s. In this case, the number of nodes that become 

involved in the request-reply-reserve process can be found by calculating the sum of the 

areas A1, A2, A3, A4 and multiplying it with the node density, which is the division of the 

total number of nodes by the whole network area as formulated in Equation 6.1. 

Following the example of Figure 6.8, the node m1, which has a distance slightly 

more than four r to the server s, finds itself in ws,5. Thus, the join request has to propagate 

five hops, at the last of which it arrives at the server. This means that there are four groups 

of nodes between the requester and the server, which forward the request upstream. The 

first group to process the request consists of those nodes that are within the intersection of 

wm,1 and ws,4. These nodes are one-hop closer to the server than the requester. The second, 

third and fourth groups involved are formed similarly. They are shown in Figure 6.9. 
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Figure 6.8.  The propagation of a join request from the requester towards the server 
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Figure 6.9.  The areas containing the nodes involved in the join process 

In order to find the total number of nodes involved in the join process, the sum of the 

four areas covering these four groups of nodes, namely A1, A2, A3 and A4, have to be 

calculated. The above example is redrawn in Figure 6.10 to show the intersecting areas to 

be calculated with their x values along the axis. 
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Figure 6.10.  Integral boundaries of the areas involved in the join process 

In order to generalize the case for the join operation, the total area size has to be 

calculated as the sum of the areas covering all the affected intermediate nodes at each hop: 

 ∑
−

=

=
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1h

h
hJ AA  (6.48) 

where h1 is the number of hops from the receiver m1 to the server s. In other words, the 

number of intermediate regions between and m1 and s is one less than the number of hops 

between them. 
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There are two groups of circles to be formulated for the calculation of the integrals. 

The first group, which are centred at the server s, have the following common equation: 

 
2222

rhyx =+  (6.49) 

where 1 ≤ h ≤ h1-1. 

The second group of circles centred at the requester m1 is formulated as follows: 

 [ ]( ) ( ) 22
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22
1 1 rhhyrhx −=+−−  (6.50) 

where 1 ≤ h ≤ h1-1. 

To formulate the integrals and compute the areas A1, A2, A3, A4, the integration 

boundaries have to be calculated by eliminating y from Equation 6.49 and Equation 6.50. 

The equations of each pair of intersecting circles are solved for xh as follows: 
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where 1 ≤ h ≤ h1-1. 

Thus, the xh value of the intersection is a function of the current hop h. The total area 

involved in the join process, AJ, which is the sum of all the integrals Ah, is: 
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where 1 ≤ h ≤ h1-1 and xh is determined for each term using the function given in 6.52. 
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Using the node density ρ as given in Equation 6.1, Jν , which is the number of nodes 

within the area AJ involved in the join request of m1, can be found: 

 JJ Aρν =  (6.54) 

It is known that the join process consists of the request, reply and reserve phases in 

AQM. The request and reply packets are forwarded by Jν  nodes towards the server as 

explained above, whereas the reservation packets in the last phase are aimed at exactly one 

selected upstream node. Thus, the total number of control messages Jµ  processed by the 

intermediate nodes is: 

 12 1 −+= hJJ νµ  (6.55) 

Using this formula with the expected number of hops a receiver needs to join a 

multicast tree, it is possible to estimate the control overhead of a typical join operation or 

the control overhead per session, per member, per time unit. 

With the help of the symmetry of the shape along the axis crossing the midpoint of 

the s – m1 line at 
( )

2
11 rh −

 and applying substitution techniques, AJ can be exactly 

determined. However, since both the sum of integrals as well as the intervals of each 

integral also depends on h, it is preferable to use one of the approximations presented in 

Figure 6.11 for the calculation of the area involved in the join process. 

It can be argued that for a small number of hops, the approximations with the 

rectangular areas are more appropriate. However, the ellipse is the only shape that covers 

all of the partial areas regardless of h1, which makes it the preferred approximation to find 

an upper bound for the total area. The definition of an ellipse is the set of points in a plane 

whose distances from two fixed points in the plane have a constant sum. Since the sum of 

the radii of the intersecting expanding rings centred at s and m1 is always h1, it is obvious 

that the ellipse always covers the areas A1, A2, A3, A4. 
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Figure 6.11.  Approximations to the area involved in the join process 

The area of the ellipse can be formulated as follows: 

 12
4 11

2

−=′ hhrAJ
π  (6.56) 

The area of the rectangle can be formulated as follows: 

 ( ) 2

1 12 rhAJ −=′′  (6.57) 

Selecting the ellipse as the approximation to the area involved in the join request is 

also useful for smoothing away the decisional errors made by some of the nodes. Since the 

session update messages have a certain period, it is possible that there are nodes that react 

to join requests although they should not. These nodes may have lost their connection to 

the session or moved away from the location where they have been able to support it. In 

other words, the topological changes in the network, which is a result of node mobility as 

well as the properties of the wireless medium, may cause some of the nodes that are 

actually outside the involved area to take part falsely in the process. Thus, an ellipse 

reaching from the requester to the session server is a logical approximation to represent the 

propagation of the control messages between these two nodes. 
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6.4. Interpretation of Results 

An analysis which thoroughly examines the join process of AQM is presented. First, 

with the help of a few simplifying assumptions, the probabilities of reaching the server in a 

certain number of hops are calculated for the first receiver of a session, which is given in 

Equation 6.8. Then the same probabilities are analysed for the second join attempt, the 

result of which is given in Equation 6.45. These computations are based on the ratio 

between a node’s transmission range and the network area. Finally, the join process of a 

single AQM node is examined in isolation. The propagation of the join request is analysed 

in order to find an average value for the number of intermediate nodes involved. Using this 

result, which is formulated in Equation 6.54, it is possible to find the number of packets 

propagating in the network, which is given in Equation 6.55, during a typical join process. 

Combining these equations with Equation 6.8 and Equation 6.45, more general results can 

be obtained such as the average or worst-case control overhead per session, per member, 

or per unit time throughout the network. 

The results presented in Section 6.1 and Section 6.2 show that, after the first member 

of a session connects to the server, subsequent join requests can be fulfilled in fewer hops, 

requiring a lower control overhead. Figure 6.12 and Figure 6.13 depict the individual and 

cumulative probabilities for each hop using Equation 6.8 and Equation 6.45 for the first 

two session receivers in a network where 10=γ . The probabilities of the second receiver 

are calculated by using the average hop count of the first receiver as the value of h1 in 

Equation 6.45. The probabilities for lower hop counts are higher for the second receiver 

than the first, which means that it has a lower average hop count. It can be argued that, 

since the coverage area increases with each new member, this trend continues for 

subsequent receivers. 

As depicted in Figure 6.5 and Figure 6.6, two extreme cases are shown for the area 

covered by the multicast tree after the first session member, where the average distance 

between two consecutive nodes is r and 
2
r , respectively. Equation 6.45 and Equation 6.46 

use these values to find the probabilities for the number of hops required by the second 

member to join the session in these two cases. 
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Figure 6.12.  Hop count probabilities for the first and second receivers 
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Figure 6.13.  Probability distribution of the hop count for the first and second receivers 
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Figure 6.14 shows how the number of hops required by the first member to join the 

session affects the join process of the second member in a network where 10=γ , which is 

the ratio between the network radius R and the transmission range r. As mentioned in the 

previous paragraph, the expected values for the second receiver are computed from their 

respective probabilities in two extreme cases. First, the value of { }hHP =1  is calculated 

using Equation 6.8 for each possible h1 where 101 1 ≤≤ h . Then, { }hHP =′ 2 and 

{ }hHP =′′ 2  are found by using the { }hHP =1  values in Equation 6.45 and Equation 6.46, 

respectively. Finally, the expected values are determined. The two cases are shown in the 

legend with their average node distances r and 
2
r , respectively. It can be seen that the 

average hop count required by the second member decreases as the path between the first 

member and the server becomes longer. This result confirms that the increase in the 

number of intermediate nodes leads to a larger aggregate coverage area, which makes it 

easier for subsequent members to reach the tree. The average hop count of the first 

receiver, which is formulated by Equation 6.13, is drawn for comparison purposes. It can 

be argued that the trend of decreasing average values continues for the subsequent 

members of the session. Therefore, the results achieved for the second receiver can be used 

as worst-case values for the rest of the receivers. 

Figure 6.15 shows how the average number of hops for members to join a session 

increases as γ  increases. The calculations are similar to those explained above. The 

difference is that the expected values of the hop count of the first receiver is used to 

determine the averages for the second receiver for different values of γ , where 101 ≤≤ γ . 

As expected, a node needs more hops to reach the server on the average as γ  grows. 

However, there is a higher rate of change in the average number of hops for the first nodes 

to join the tree, which confirms once again that the second and later receivers require 

fewer hops for the same session. By showing that the expected hop distance to the 

multicast tree decreases with each additional receiver joining the session, it can be 

concluded that the multicast tree gets probabilistically closer for the next member. 
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Figure 6.14.  Expected value of the hop count for the first and second receivers 
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Figure 6.15.  Expected value of the hop count as a function of increasing γ  
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The analytical results presented in Figure 6.15 can be used to derive the number of 

nodes involved in a join process with the help of Equation 6.54. Equation 6.56 and 

Equation 6.57 formulate the ratio of the propagation area of a join request to the area of the 

network as a function of the number of hops between the requester and the server. Once 

this is done, it is easy to derive the number of processed control packets via Equation 6.55. 

A new set of simulations are conducted in order to validate the analytical results 

using OPNET Modeler 10.5 Educational Version and Wireless Module [100]. Simulations 

are repeated 40 times for each data point and results are aggregated with a 95 per cent 

confidence interval. Nodes are placed randomly in a circular area. Only one server is 

allowed, which is placed at the centre of the circle. Mobility is omitted. Other simulation 

settings are presented in Table 6.1. In order to achieve constant node density, the network 

population is kept proportional to 
2

R . 

Table 6.1.  Simulation settings for the analysis of the join process 

r
R  

Number of 
Receivers

Network 
Radius

Transmission 
Range 

2 25 500 m 250 m 

3 36 600 m 200 m 

4 49 700 m 175 m 

5 64 800 m 160 m 

6 81 900 m 150 m 

7 100 1 000 m 145 m 

 

Figure 6.16 compares the number of nodes involved in the join process of the first 

session member experienced via simulation with the values computed analytically. As 

mentioned above, the analysis is based on the expected values of the hop distance between 

the candidate and the server and provides an approximation to the number of intermediate 

nodes in the propagation area of the join request as given in Equation 6.57. The simulation 

results are below these values but follow the trend suggested by the analysis. 
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Figure 6.16.  The number of nodes involved in the join process of the first receiver 
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Figure 6.17.  The number of nodes involved in the join process of the second receiver 
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Figure 6.17 makes the same comparison for the second join attempt after the 

initiation of the multicast tree between the server and the first member. This time, 

however, Equation 6.56 is used to approximate the size of the propagation area with 

slightly looser bounds. This way, the possible divergence at the boundaries of the area due 

to the mobility of multiple nodes building the initial multicast tree is covered better. It can 

be seen that the expected values of the analysis as well as the results achieved by 

simulation are below the averages of the first member. Thus, it is shown both analytically 

and experimentally that the overhead of a join attempt by subsequent candidates decreases 

as more nodes become session members. On the other hand, the simulation results are 

closer to the analytical results and follow the same trend which suggests that the number of 

nodes taking part in the join process increases gracefully as the size of the network grows. 

Although the analysis presented in this section does not provide tight bounds for the 

control overhead incurred by AQM, it gives sufficient insight into the behaviour of the 

protocol. The length of the propagation area of a typical join request depends on the 

number of hops between the server and the new member, which is calculated as an 

expected value and used to determine the average number of nodes involved in the join 

process. According to the analysis results, which are also validated through simulation, 

AQM provides a session and membership management system to its users, whereby each 

new session member can join the multicast tree with an acceptable overhead, which 

degrades gracefully throughout the session. 

As mentioned previously, the registration of extra forwarders by the receivers during 

multicast data streaming is not taken into consideration since the tree-to-mesh evolution 

presented in Section 3.4.2 does not affect the analysis. It can be seen easily that the 

analysis is actually still valid with the mesh option since the extra forwarders to be 

registered are already members of their respective sessions and the join process of a 

subsequent receiver remains the same. In other words, the tree-to-mesh evolution does not 

affect the results of the analysis due to the fact that only new wireless links, but no new 

nodes are added to the multicast tree during this operation, which means that the coverage 

area of the multicast group does not change. 



 
138

7. AN IMPROVEMENT IN ADMISSION CONTROL:  

OBJECTION QUERIES 

The performance evaluation presented in Section 5 shows that AQM is superior to 

the non-QoS protocol regarding the satisfaction of session members in general. However, 

it should be examined if and how AQM can achieve a still higher QoS sustainability ratio. 

By definition, QoS sustainability decreases as a result of dropping those members which 

experience excessive delay or data loss. Both of these symptoms can be kept at lower rates 

if more accurate reservation decisions can be made by the upstream members forwarding 

data to the nodes being dropped. In other words, the network can maintain a higher QoS 

level if intermediate session members can protect themselves from too many allocations. 

Otherwise, even a small number of overloaded members can affect many concurrent flows, 

which can yield overloaded sessions and cause performance degradation when the network 

density or the traffic load is high. To overcome this problem, an extension to AQM is 

designed, whereby each node about to send a reply during the join process of another node 

consults its neighbourhood to see if there is any potential violation of resource limits. 

As mentioned previously, a node decides whether or not to take part in a session as a 

forwarder based on its current resource availability. The approach to the calculation of 

residual bandwidth, which is presented in Section 4, provides each node with a sufficient 

method to estimate the bandwidth availability within its neighbourhood individually. 

However, it does not consider the bandwidth allocations beyond direct neighbours. Thus, 

the approach helps a node protect itself, but is not enough to prevent that node’s 

neighbours from becoming overloaded. Although a node does not allocate more bandwidth 

than available in its neighbourhood, it can experience an overload problem as a result of 

the allocations made by its neighbours which cannot directly detect each other in the 

wireless medium, where resources are shared. 

In summary, an AQM node has to ensure that, by allocating bandwidth to a new 

request, it does not cause one or more of its neighbours to suffer from overload as a result 

of excessive bandwidth usage in their neighbourhood. The objection query mechanism is 

developed to serve this purpose, which is introduced in the following sections. 
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7.1. Overloaded Neighbourhood Problem 

A node can be surrounded by several neighbours, some of which are not within the 

transmission range of each other. Looking from the viewpoint of the node in the centre of 

that neighbourhood, it is possible that two of its neighbours not aware of each other can 

allocate resources in such a way that neither of them violates the QoS requirements within 

its own neighbourhood, whereas their total allocation exceeds the capacity limit of their 

common neighbour. In this case, the node in the centre experiences overload due to 

excessive resource allocation in its neighbourhood, which can be neither foreseen nor 

prevented since the surrounding nodes are not informed about each other’s reservations. 

Thus, a particular kind of hidden terminal problem prevents nodes from making more 

accurate reservation decisions. 
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Figure 7.1.  The overload problem in the neighbourhood of n6 

Figure 7.1 illustrates the overloaded neighbourhood problem caused by nodes that 

are unaware of each other’s resource utilization. It is assumed that there are two ongoing 

sessions, which do not cause any overload in the network. The first session is served by n0 

with n2 as a forwarder, n4 as a forwarding receiver and n5 as a receiver, whereas the second 

session is served by n3 with n6 as a forwarder and n7 as a receiver. Then n9 sends a join 

requests for the session of n1, which is forwarded by n8 and eventually replied by n1. The 

reply also propagates over n8 and reaches n9, which selects this path to actually join the 

session and sends the reservation message upstream. Looking from the viewpoint of n8, the 

reservation does not present any problems. Since the recent greeting messages it has 
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received from its neighbours show that the total resource allocation in its neighbourhood 

allows the acceptance of the new session, it allocates the required bandwidth and starts 

forwarding the multicast data. From the viewpoint of n6, however, there are already three 

data forwarding nodes in its neighbourhood, namely n2, n3 and n6 itself, using the available 

bandwidth of the neighbourhood to its limits. Thus, the extra bandwidth allocation of n8 

causes n6 to experience overload in its neighbourhood, mainly due to the fact that n8 is not 

aware of the bandwidth consumption of nodes n2 and n3. 

7.2. Objection Query Mechanism 

To overcome the overloaded centre node problem, an extension to the request-reply-

reserve process is necessary, whereby each replying node first consults its neighbours to 

see if any of them becomes overloaded. In other words, a node has to forward a reply only 

after querying its neighbourhood and making sure that none of its neighbours will become 

overloaded as a result of a resource allocation made for the session in question, in case the 

node will be on the path chosen by the requester. 

According to the objection query mechanism, a node about to forward a reply first 

sends an objection query to its immediate neighbours. This is a one-hop message 

containing information on the requested bandwidth, which warns all neighbours to check 

whether they become overloaded as a result of this potential allocation. If the new 

reservation causes its limit to be exceeded, the neighbour sends an objection to the node 

which has queried it. Otherwise the query is discarded. If the node having originated the 

query receives any objection, it cancels the forwarding of the reply. Otherwise the query 

times out, indicating that the reply can be sent safely. Only those neighbours who are 

serving one or more sessions may object to new allocations. It is not important that an 

inactive node becomes overloaded. Therefore, such a node discards objection queries even 

if the requested bandwidth causes overload in its neighbourhood. The objection query 

mechanism is used by each node preceding the downstream flow of the reply packet in 

time. The first replier of a request can be an active member of the session forwarding data 

packets, such as a server, a forwarder or a forwarding receiver. These nodes do not need to 

send objection queries since they must have been through the same process previously, 

consulted their neighbours and allocated the necessary resources successfully. Although a 
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receiver is also counted as an active session member, it has to send an objection query to 

its neighbours since, unlike the others, it has not allocated any resources previously. A 

session initiator, which is about to reply the request of its first member, or an intermediate 

node, which is about to forward a reply towards the requester as a predecessor also has to 

issue an objection query. 
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Figure 7.2.  The objection query received and responded by n6 

Figure 7.2 illustrates the utilization of the objection query mechanism, whereby the 

reply phase of the join process described in Figure 7.1 is revisited. In this case, the nodes 

n1 and n8 send one-hop objection queries before sending their replies. The figure focuses 

on the step where n8 receives the original reply from n1 and is about to decide whether or 

not to forward it further downstream. Thus, n8 has to look for objections from within its 

neighbourhood. Therefore it issues an objection query. The one-hop message is received 

by its neighbours n1, n9 and n6. The former two ignore the query since they have already 

made the necessary controls as members of the same multicast session. The primary 

concern of n8 by sending the query is to inform those nodes in its neighbourhood that are 

not part of the path being built. The objection query allows n6 to object to a possible 

allocation made by n8, if it starts suffering from overload, which is already sharing its 

neighbourhood bandwidth with n2 and n3. Thus, n6 sends an objection to n8 if overload 

occurs or discards the query if there is enough free bandwidth to allow the new data flow. 

There are several alternatives with regard to the implementation of the objection 

query mechanism. In a possible implementation, the objections can be postponed to the 
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reserve phase. Nodes which overhear the reservation message aimed at another node can 

object to this allocation if the node to reserve resources is also within their neighbourhood 

and causes them to be overloaded. In this case, it is necessary to inform the requester with 

an error message that the final reservation has failed and it should select another path from 

the reply messages it has received. In contrast to the original objection query mechanism, 

this is a reactive approach. Whether the proactive approach of the reply phase or the 

reactive approach of the reserve phase performs better in terms of control overhead 

depends on the general traffic characteristics of the ad hoc network. The proactive 

approach is beneficiary under heavy traffic load. Otherwise, the reactive approach is more 

efficient. In the next section, the details are given for the alternative where the mechanism 

is implemented proactively in the reply phase as explained above. 

7.3. Modifications on the Membership Module 

The implementation of the objection query mechanism necessitates an additional 

field in the table of requests (TBL_REQUEST) to hold the objection status, such as query 

sent, objection received and objection timeout, as well as an additional control packet for 

sending and receiving the objection queries (JOIN_OBJ). As mentioned before, the 

mechanism is utilized in the reply phase of the join process. Thus, two procedures need 

revisions, which handle the reception of join requests and replies. 

Similar to the procedure defined in the basic AQM protocol, a forwarded request 

eventually reaches some nodes which are already members of that session and therefore 

can directly send replies (JOIN_REP) back to the requester. Downstream nodes that have 

forwarded join requests start receiving the corresponding replies from these members. 

Since it is possible to qualify as forwarders later, they send objection queries (JOIN_OBJ) 

to their immediate neighbours before replying. Such a query is necessary to check whether 

a possible resource allocation violates the bandwidth limitations of the neighbours. It is 

otherwise impossible for a node to see the bandwidth usage beyond its neighbours and to 

know if they can become overloaded. If no objections are returned by the neighbours in a 

predefined amount of time, the nodes combine the QoS information with the QoS they can 

currently offer and send the updated JOIN_REP towards the requester. The information on 

the originator and the immediate forwarder of the reply are kept in the JOIN_REP packet. 
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Read JOIN_REQ packet received from network module; 
IF ((known session) && (process status == NULL) && 
 (own hop count < packet sender hop count)) 
 { 
 Calculate neighbourhood bandwidth allocation; 
 Calculate available bandwidth; 
 IF ((available bandwidth >= session bandwidth) && 
    (own hop count <= session hop limit) && 
    (own node state == MCN_PRED)) 
  { 
  Enter JOIN_REQ data into TBL_REQUEST; 
  Update process status [request forwarded] in TBL_REQUEST; 
  Forward JOIN_REQ packet; 
  Set expiration timer for JOIN_REQ; 
  } 
 ELSE IF (((own node state == MCN_INIT) || 
    (own node state == MCN_RCV)) && 
    (available bandwidth >= session bandwidth) && 
    (own hop count <= session hop limit)) 
  { 
  Enter JOIN_REQ data into TBL_REQUEST; 
  Update process status [request received] in TBL_REQUEST; 
  Send JOIN_OBJ packet; 
  Update objection status [query sent] in TBL_ REQUEST; 
  Set objection timer for JOIN_OBJ; 
  } 
 ELSE IF ((own node state == MCN_SRV) || 
    (own node state == MCN_FWD) || 
    (own node state == MCN_FRCV)) 
  { 
  Enter JOIN_REQ data into TBL_REQUEST; 
  Send JOIN_REP packet; 
  Update process status [reply forwarded] in TBL_REQUEST; 
  } 
 } 

Figure 7.3.  Revised procedure for the reception of a join request 

Figure 7.3 displays the revisions made to the pseudocode for the handling of the 

JOIN_REQ packets by the intermediate nodes. Considering the case where the changes to 

the procedure take place, a MCN_INIT waiting for its first receiver or a MCN_RCV which 

receives multicast data but does not forward them have to check for necessary QoS 

conditions since they have not allocated any resources yet. Even if QoS requirements can 

be met, however, they still have to ensure that their neighbours are not overloaded. Thus, 

they send one-hop JOIN_OBJ packets to their neighbours to see if there are any 

objections. They also set a timer to limit the time they will wait for objections. Finally, a 

MCN_SRV, a MCN_FWD or a MCN_FRCV already sending multicast data to their 

receivers, can respond to the request directly with a JOIN_REP as usual. In all these cases, 

a record is entered to TBL_REQUEST to show the current status of the request. 



 
144

Read JOIN_REP packet received from network module 
IF ((process status == request forwarded) && (NOT expired JOIN_REQ)) 
 { 
 Reset expiration timer for JOIN_REQ; 
 IF (packet sender state == NULL) 
     (packet sender’s hop count < own hop count)) 
  { 
  Enter packet sender [state = MCN_PRED] into TBL_MEMBER; 
  IF (packet sender’s hop count + 1 < own hop count) 
   { 
   Update own node [packet sender’s hop count + 1] 
                                           in TBL_MEMBER; 
   } 
  } 
 IF (own request) 
  { 
  Update packet sender [role = upstream node] in TBL_REQUEST; 
  Update packet sender [state = MCN_FWD] in TBL_MEMBER; 
  Update own node [state = MCN_RCV] in TBL_MEMBER; 
  Update process status [reserve forwarded] in TBL_REQUEST; 
  Send JOIN_RES packet to packet sender; 
  Report successful join to application module; 
  } 
 ELSE 
  { 
  Calculate neighbourhood bandwidth allocation; 
  Calculate available bandwidth; 
  IF ((available bandwidth >= session bandwidth) && 
     (own hop count <= session hop limit)) 
   { 
   Update packet sender [role = upstream node] 
                                        in TBL_REQUEST; 
   Update process status [reply received] 
                                        in TBL_REQUEST; 
   Send JOIN_OBJ packet; 
   Update objection status [query sent] in TBL_REQUEST; 
   Set objection timer for JOIN_OBJ; 
   } 
  } 
 } 

Figure 7.4.  Revised procedure for the reception of a join reply 

Figure 7.4 shows the revisions made to the pseudocode for the handling of the 

JOIN_REP packets. Focusing only on the changes, if an intermediate node receives a 

JOIN_REP which corresponds to a JOIN_REQ it has forwarded earlier, it has to send its 

own JOIN_OBJ to check its neighbourhood before forwarding the received JOIN_REP. If 

the necessary QoS conditions exist, the node updates the record in its TBL_REQUEST and 

sends the one-hop JOIN_OBJ packet to its neighbours to prevent any possible overload 

from occurring. It also sets a timer, at the end of which it finally forwards the JOIN_REP 

packet if it has not collected any objections in response to its query. 
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Read JOIN_OBJ packet received from network module 
IF (own bandwidth allocation) 
 { 
 Calculate neighbourhood bandwidth allocation; 
 Calculate available bandwidth; 
 IF (available bandwidth < objection query bandwidth) 
  { 
  Send back JOIN_OBJ packet; 
  } 
 } 

Figure 7.5.  Procedure for the reception of an objection query 

Figure 7.5 displays the pseudocode for the handling of the JOIN_OBJ queries. Upon 

reception of the packet, each node checks if it has any previous bandwidth allocation, 

which is the simplest way to determine whether the node has an active role in any session. 

If this is the case, the node compares the available bandwidth to the possible allocation 

related with the query and objects to this allocation if it conflicts with the resource limits. 

Read JOIN_OBJ packet received from network module 
Update process status [objection received] in TBL_REQUEST; 
Update objection status [query objected] in TBL_REQUEST; 

Figure 7.6.  Procedure for the reception of an objection in response to a query 

Figure 7.6 and Figure 7.7 show how the originator of the objection query handles the 

process. If it receives an objection within the defined timeout, it updates its records. At the 

end of the timeout, which is the deadline of waiting for objections, it checks these records 

to see whether it has received any JOIN_OBJ packets in response to its query. If this is the 

case, the JOIN_REP packet is not sent downstream any further since the node cannot 

allocate resources for this session without causing overload in its own neighbourhood. 

IF (objection status != query objected) 
 { 
 Send JOIN_REP packet; 
 Update process status [reply forwarded] in TBL_REQUEST; 
 } 
ELSE 
 { 
 Delete request record from TBL_REQUEST; 
 } 

Figure 7.7.  Procedure for the completion of the query with the objection timeout 
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7.4. Performance Evaluation 

The evaluation of AQM with the addition of objection queries presented in this 

section is based partly on a selection of the performance metrics introduced in Section 5.1, 

which are related to member satisfaction and network load. The simulation settings are 

identical to what is summarized in Section 5.1.2, with the QoS classes and simulation 

parameters as given by Table 5.1 through Table 5.3. 

As mentioned in the introduction of this section, one of the purposes of this 

evaluation is to examine the relation between QMember, AMember and the resource allocation 

strategies of AQM during a join process in more detail. Thus, the terms overloaded 

member and overloaded session are introduced, which require clearer definitions such that 

they can be used in the performance evaluation. 

An important aspect of the QoS-related multicast routing decisions made by AQM is 

the improvement in the ratio of overloaded member nodes, which has a direct impact on 

the satisfaction of session members regarding the multicast service provided. It is one of 

AQM’s main concerns that network resources are not excessively utilized to avoid 

excessive delay and packet loss due to overload and keep the QoS conditions at a 

satisfactory level. Thus, the member overload ratio OMember is formulated as follows: 

 
fz

oOMember +
=  (7.1) 

where o represents the number of overloaded nodes, which have allocated their resources 

to serve and forward more sessions than is possible without exceeding the maximum 

available bandwidth, z is the total number of session servers and f is the total number of 

session forwarders. The division gives the ratio of overloaded nodes to all serving and 

forwarding nodes and represents a member-level rate of overload. In addition to being a 

criterion for member satisfaction, the member overload ratio also gives a good notion of 

AQM’s efficiency in terms of loss and delay, since a node exceeding its bandwidth limit 

causes these two impacts on itself as well as on its neighbours. 
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Excessive bandwidth allocation by individual nodes for the course of a session has 

also an effect on other members of that session. Therefore, it is necessary to observe the 

implications of these events on sessions as well. The session overload ratio OSession is 

defined to evaluate the session-level success of AQM to prevent overload and formulated 

as follows: 

 
z
yOSession =  (7.2) 

where y is the number of sessions with at least one overloaded member and z, which 

denotes the total number of servers, is used as the total number of sessions. The term gives 

the percentage of sessions with one or more overloaded members, which can be interpreted 

as a session-level overload rate experienced by the ad hoc network. OSession is a more 

important criterion than OMember since it has a more widespread effect on the network. 

The simulations are conducted using OPNET Modeler 11.5 Educational Version and 

Wireless Module [100]. The mobility model used in the simulations is random waypoint 

and the simulation environment provided for the improved version of AQM is identical to 

the one created for the simple version of the protocol. This allows a fair comparison of the 

results. Simulations are repeated 10 times for each data point and results are aggregated 

with a 95 per cent confidence interval. The graphics of the improved version are identified 

in the figure legends with the term AQM-OQ, which stands for AQM with objection 

queries. The results of the non-QoS protocol are left out in order to avoid repetition and 

focus on the improvements of AQM. Only the first of the simulation sets presented in 

Table 5.3, which examines the effect of network density on AQM, is used for evaluation 

since the degradation in QMember is most significant when network density grows. 

7.4.1. Satisfaction of Session Members 

Figure 7.8 through Figure 7.13 show the results of the improvement effort regarding 

the satisfaction of session members in comparison with the original AQM protocol. The 

general trend observed in AQM-OQ is similar to that of AQM and the relative superiority 

to the non-QoS protocol is more or less the same. 
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Figure 7.8.  Member QoS sustainability as a function of network density 
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Figure 7.9.  Member acceptance ratio as a function of network density 
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Figure 7.8 presents the difference between the member QoS sustainability ratios of 

the original and improved versions of AQM with regard to changing network density. 

AQM-OQ has actually a lower QoS sustainability ratio than AQM when the network is 

sparse. This is a result of low connectivity, which causes both versions of AQM to drop 

members in close numbers while AQM-OQ accepts fewer join request due to its more 

aggressive admission control. However, the objection query mechanism provides AQM-

OQ with a slightly higher QoS sustainability than AQM and the difference increases as the 

network density grows, although the overall QoS sustainability decreases as expected. 

Figure 7.9 shows that the member acceptance ratio of AQM decreases when the 

objection query mechanism is enabled. This is an expected result since it is already known 

that there is a tradeoff between the sustainability of QoS for session members and the 

acceptance rate of the join requests. AQM-OQ utilizes a stricter admission control scheme 

with objection queries to detect potentially overloaded nodes beyond direct neighbours. If 

the node sending the objection query receives any objection, it cancels the reply. 

Therefore, it accepts fewer join requests. The acceptance rates of both AQM as well as 

AQM-OQ are initially high for sparse networks, due to the low connectivity of the nodes. 

As mentioned previously, AQM nodes join only those sessions that they are aware of. In a 

sparse network, session initiation and update messages cannot travel very easily. Thus, 

many nodes are prevented from sending requests since they are not aware of any available 

sessions. The result is a relatively higher member acceptance ratio, although QoS 

sustainability is not particularly high due to low connectivity. 

As the average number of nodes within a node’s transmission range increases, 

network connectivity reaches a point where more requests are made since a higher portion 

of session initiation and update messages can reach potential receivers. However, in the 

attempt to protect session members from overload, objection queries prevent many of 

these requests from being accepted. Thus, AQM-OQ accepts a lower portion of requests 

than AQM due to resource constraints. Nevertheless, the acceptance ratio of AQM-OQ 

improves as the network density grows such that it is actually better than AQM for denser 

networks, even though QoS sustainability is also improved. This behaviour seems to be 

unexpected, but can be explained after a more detailed examination of acceptance ratios 

and QoS sustainability of individual QoS classes. 
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Figure 7.10.  Class 4 member acceptance ratio as a function of network density 
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Figure 7.11.  Class 1-2-3 member acceptance ratio as a function of network density 
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Figure 7.12.  Class 4 member QoS sustainability as a function of network density 
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Figure 7.13.  Class 1-2-3 member QoS sustainability as a function of network density 
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The principal behind the objection query mechanism is a more stringent resource 

reservation scheme to protect nodes from overload. Therefore, a lower member acceptance 

ratio is expected. Instead, this ratio is actually higher in AQM-OQ than in AQM as the 

network density increases. AQM-OQ achieves this result by sacrificing more class-four 

join requests and accepting more requests from the remaining classes in return. As the QoS 

class definitions in Table 5.1 show, class-four sessions are the most resource-demanding 

applications in terms of bandwidth. Therefore, AQM-OQ works especially against those 

applications which belong to the fourth QoS class. However, the rejection of a few more 

class-four members enables significantly more members from the other three classes with 

the help of higher network connectivity. As shown in Figure 7.10, the acceptance ratio of 

class-four session join requests is lower in AQM-OQ, whereas the acceptance ratio of the 

other three classes is higher than AQM, which can be seen in Figure 7.11. As a 

consequence of this slight change in the balance of the QoS classes, which is caused by the 

objection query mechanism, the member QoS sustainability increases for both groups. The 

results, which also resemble those in Figure 7.8, are shown in Figure 7.12 and Figure 7.13. 

7.4.2. Overloaded Sessions and Members 

Figure 7.14 presents the difference between the member overload ratios of the 

original and improved versions of AQM. It can be seen that AQM already has a low 

member overload ratio, which increases only after the network exceeds a certain level of 

density. Nevertheless, even a small number of session members allocating more resources 

than available can lead to QoS degradation, if the network density continues to grow or 

bandwidth requirements become higher. Thus, the lower member overload ratio achieved 

by AQM-OQ is still important in the sense that it enables the protocol to maintain 

acceptable QoS conditions for more session members. 

Figure 7.15 compares the session overload ratio of AQM-OQ to that of AQM with 

respect to network density. An overloaded node in the ad hoc network causes all sessions 

that forward their multicast data packets through that node to become overloaded. Thus, 

the ratio of overloaded sessions in plain AQM can be disturbing even though it is small. It 

can be seen that the objection query mechanism improves the performance of AQM by 

maintaining a lower session overload even under conditions of high network density. 
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Figure 7.14.  Member overload ratio as a function of network density 
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Figure 7.15.  Session overload ratio as a function of network density 
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As mentioned previously, the session overload ratio is an indication of the number of 

sessions experiencing QoS violations caused by their members due to resource allocations 

exceeding the network limitations. It is an important criterion since an overloaded session 

member has a negative effect on all the downstream members of that session, as well as on 

the downstream members of all the other sessions that are being forwarded simultaneously 

by the same overloaded member. Thus, AQM-OQ favours the overall satisfaction of 

sessions over the satisfaction of individual nodes. 

AQM-OQ decreases the number of overloaded members and sessions to increase 

QoS sustainability. It achieves this by inquiring the network about resource availability 

even for the nodes that are outside the transmission range but still affected by the resource 

allocations of each other. Other tests are run to see the effect of the transmission range and 

the node population separately on the performance of AQM-OQ and similar results are 

obtained. The reader may refer to [106] for the details of these evaluations. 

7.4.3. Effects on Network Load 

Figure 7.16 displays the difference in the ratio of successful background activities 

between AQM and its improved version. The change of trend in the ad hoc network traffic 

towards slightly fewer class-four session memberships with the introduction of objection 

queries enables more best-effort data packets to be delivered successfully between 

neighbours, since they find better chances of transmission when there are fewer large-size 

class-four multicast data packets. Thus, in addition to a better overall QoS sustainability, 

AQM-OQ also achieves a better background traffic efficiency. 

Figure 7.17 compares the member control overhead incurred by AQM and AQM-

OQ. As expected, AQM-OQ brings a certain amount of additional overhead to the system 

with the introduction of the objection query messages, which are issued once by each 

replying node prior to sending the reply and answered by several nodes in case of an 

overload in their neighbourhoods. However, the overhead difference between AQM and its 

improved version is not significant. The main reason for this result is that AQM already 

takes a number of measures to prevent infeasible requests. Therefore, only a small number 

of nodes need to send objections in response to the queries. 
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Figure 7.16.  Background traffic efficiency as a function of network density 
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Figure 7.17.  Member control overhead as a function of network density 
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7.5. Final Remarks 

AQM-OQ, the improved version of AQM, achieves better performance in overload 

avoidance both at member as well as session levels with an acceptable cost. The increase 

in control overhead is not very significant and is paid-off by a higher QoS sustainability 

ratio and background traffic success rate. Even the member acceptance ratios are improved 

for the less resource-demanding QoS classes. Moreover, the objection query mechanism is 

an extension to AQM, which is developed for networks that put special emphasis on QoS 

restrictions. It can be turned off or applied with adaptive conditions for other networks 

which require higher acceptance rates or lower overhead. An example for such a change is 

a heuristic rule which says that a node may object to an allocation only if it exceeds the 

available bandwidth by a certain percentage. 

An important point regarding the interpretation of the results achieved by AQM-OQ 

is that although there are almost no overloaded members and sessions in the network, 

which means that resource allocation is handled successfully by AQM, it has not been 

possible to improve the member QoS sustainability beyond a certain level, mainly due to 

the high data loss rate of the wireless medium. Thus, a QoS-aware multicast protocol can 

coordinate the usage of the allocated resources more efficiently if QoS is also supported by 

the lower layers. 

It can be argued that the success of an ad hoc QoS multicast routing protocol such as 

AQM also relies on its ability to adapt to the changes in the network and the preferences of 

its users. The evaluation of such an adaptive system may require the definition of new 

performance criteria derived from a weighted sum of the two metrics presented above. The 

reader may refer to [107] for a detailed evaluation of AQM with two examples of such 

new performance criteria. Possible combinations of the solutions presented throughout this 

thesis can be applied as alternate multicast strategies. The weights of the performance 

criteria can be given to the mobile nodes when they enter the network. This way, AQM 

can operate in an intelligent manner in order to reach an optimal state with regard to 

changing network conditions, which leads to a sustainable ad hoc multimedia network 

with QoS provision. 
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8. AN EXTENSION FOR SERVICE DIFFERENTIATION:  

PRIORITY QUEUES 

As mentioned in Section 1.1, a QoS system is the integration of several important 

components, such as admission control, resource allocation, congestion control and service 

differentiation [11, 16-18]. So far, AQM has addressed the first two of these components 

directly as a QoS-aware multicast routing protocol. It announces its nodes’ observations on 

the existing network status by means of session initiation, update and loss as well as 

neighbour greeting messages. It distributes information on new multicast sessions only to 

the extent of QoS provision. It restricts admission to sessions in order not to cause 

degradation in the perceived QoS of existing session members. It allocates resources to 

accepted sessions and does not let members accept new connections if residual resource 

availability is not enough. Once a route is selected for a specific connection request and 

reservation of resources is completed, these resources are not available to subsequent 

requests until the end of the granted connection. 

Another important component of a QoS system is the congestion control scheme. 

Congestion is the result of data flow exceeding the capacity of the network. It causes high 

delay and loss rates. AQM continuously monitors the QoS conditions as perceived by the 

session members during data delivery. Several metrics such as the delay of and the 

interarrival time between data packets and the ratio of lost packets to correctly received 

packets are defined at each node in order to decide on the sustainability of the required 

QoS for a session. If such degradation of QoS performance is observed, countermeasures 

can be taken such as reducing the transmission rate, dropping selected packets or rerouting 

the session to an alternate path. Currently, AQM simply drops the members experiencing 

unacceptable QoS conditions for a time period longer than bearable to prevent the waste of 

resources and maintain the required QoS level for other session members. This behaviour 

can be justified by the general trend in the ad hoc QoS literature towards assuming that it 

is almost impossible to guarantee the QoS requirements for the entire session [11]. 

However, other congestion control schemes can easily be implemented by AQM to take 

action against network congestion in a more sophisticated manner. 
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The last important component mentioned above is the differentiation between 

various supported QoS classes by the ad hoc network. There are basically two QoS 

techniques related to service differentiation, which are priority assignment and fair 

scheduling. These techniques also represent two distinct levels of implementation. Priority 

assignment mechanisms are also referred to as packet-level scheduling systems [16]. There 

is a priority queue in each node that determines which packet to send during the next 

transmission period based on the service class that the packet belongs to [17]. Thus, packet 

priorities are set by the respective initial sender of the packet and each node on the path 

between the source and the destination processes packets according to their priorities and 

the queuing discipline of the network but independent from the other nodes sharing the 

same wireless medium as the current node. Fair scheduling algorithms, on the other hand, 

are also known as node-level scheduling systems, which require the cooperation of all the 

nodes within a neighbourhood to determine which nodes have channel access priority [16]. 

They partition resources among flows in proportion to a given weight and regulate the 

waiting times for fairness among traffic classes [17]. In other words, there is a fundamental 

separation between the decision about the time when to send the next packet and the 

decision about the particular packet to send next. The first decision should be made by the 

node-level scheduler, whereas the second decision concerns the service classes and should 

be made by the packet-level priority mechanism. Essentially, the approach is to limit the 

scope of the scheduler to determine only which flow is allocated the channel next and let 

each flow make its own decision about which packet in the flow it wishes to transmit 

[108]. 

In this section, an extension to AQM is presented to address the service 

differentiation aspect of ad hoc QoS multicast routing. The extension involves the 

implementation of a priority queuing mechanism at each node which sorts data packets 

according to their service classes. The aim of such a mechanism is to provide multicast 

sessions of more stringent delay requirements with quick access to the wireless medium. In 

the current version of AQM, a delay-sensitive packet does not have any access priority 

over a more delay-tolerant packet, which reduces the probability of timely delivery for the 

former. Similarly, such a packet in an overloaded first-in-first-out (FIFO) queue has to 

wait the same time as other packets. Thus, the objective of priority-based queuing is to 

differentiate service classes and offer appropriate waiting times to each class [109].  



 
159

8.1. Background and Motivation 

A complete system consisting of all the required QoS components is defined as a 

QoS framework, which provides its users with the negotiated services. Its key design issue 

is whether it should serve users on a per session or a per class basis. Two of the models 

which represent these two approaches’ counterparts in conventional wired networks are 

the integrated services (IntServ) model [110] and the differentiated services (DiffServ) 

model [111], respectively. IntServ routers maintain the state information of sessions and 

offer various services. They use the resource reservation protocol (RSVP) [112] to reserve 

resources along a route. However, IntServ is not a scalable model for the Internet. DiffServ 

aggregates sessions into a limited number of classes and overcomes the scalability 

problem. Nevertheless, these models cannot be applied directly to mobile ad hoc networks 

because of the dynamic network topology, limited resource availability and error-prone 

shared wireless medium. Thus, new QoS frameworks are proposed for ad hoc networks. 

Packet prioritization and scheduling, which is an essential means of service 

differentiation, is also an important feature of these frameworks. For instance, the in-band 

signalling QoS framework (INSIGNIA) is developed to provide adaptive real-time 

services in ad hoc networks. It uses a weighted round-robin packet scheduling module 

[ 113 ]. Another model called stateless wireless ad hoc networks (SWAN) facilitates 

feedback-based control mechanisms to support real-time services and service 

differentiation [114]. It uses a packet classifier to differentiate between packets and a 

traffic shaper to regulate best-effort traffic as well as to prioritize real-time packets. A third 

model, namely the proactive real-time medium access control (PRTMAC) protocol, is a 

cross-layer framework to provide real-time traffic support and service differentiation to 

highly mobile ad hoc networks [11]. It defines three priority classes, whereby lower-

priority connections may be preempted to support a high-priority class. The QoS Protocol 

for Ad Hoc Real-Time Traffic (QPART) is another cross-layer framework, which 

introduces the concept of virtual stations [115]. Each node maintains a queue for each 

traffic class. Each queue tries to access the channel independently. A scheduler resolves 

virtual collisions. Thus, each queue can be modelled as a separate station. Priorities are 

assigned by using the minimum and maximum contention windows of individual classes 

and the management is left to the underlying MAC protocol. 
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Schedulers can be broadly classified as work-conserving and non-work-conserving 

[116]. A work-conserving scheduler does not remain idle if there is a packet in its 

transmission queue. In contrast, a non-work-conserving scheduler may become idle even 

though there is a backlogged packet in the queue if it is expecting a higher-priority packet 

to arrive. As a result, non-work-conserving schedulers generally have higher average 

packet delays. They are useful in applications where delay variance is more important than 

delay. A scheduler can be designed to serve packets based on their timestamp values. The 

packets are placed in their respective queues and sorted in accordance with their 

timestamps. Round-robin schedulers do not use timestamps and can be more easily 

implemented. However, timestamped schedulers can provide better QoS guarantees. 

Finally, in sorted-priority schedulers, each session has a different priority level and packets 

are transmitted according to their session priorities. 

Today, QoS and best-effort traffic coexist in most real-world networks, including 

conventional wired as well as wireless networks. Therefore, it is logical to assume that 

they will also coexist in mobile ad hoc networks. In such an environment, it is necessary to 

implement a scheduling mechanism in order to satisfy the requirements of both traffic 

types and achieve resource efficiency. Generally, the QoS traffic is not affected by the 

best-effort traffic if the resource reservation issue is taken care of. However, best-effort 

traffic may suffer if the overall traffic flow is not regulated. To provide fairness for the 

best-effort traffic, hierarchical packet fair queuing (H-PFQ) algorithms are designed, 

which have the potential to simultaneously support guaranteed real-time, rate-adaptive 

best-effort and controlled link-sharing services [117]. However, these algorithms work 

only for a fixed set of flows, which makes them inappropriate for mobile ad hoc networks, 

where new QoS flows join or existing QoS flows leave the network all the time. Thus, 

their decentralized versions are developed, which are hierarchical scheduling algorithms 

that adjust the bandwidth allocated to the flows in such a way that every QoS flow always 

receives a minimum bandwidth guaranteeing the required QoS and the residual bandwidth 

is shared fairly among all best-effort and QoS flows. To achieve these goals, the link 

capacity is divided between two logical servers on the first level and then the respective 

flows are scheduled by these servers on a second level. Both servers are implemented by a 

modified version of weighted fair queuing (WFQ) algorithm, which also eliminates the 

scheduling interference between the two flows [118]. 
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8.2. Priority Queuing Based on QoS Classes 

In order to provide service differentiation to various classes of multimedia 

applications and meet their QoS requirements more effectively, a priority queuing 

mechanism based on service classes is integrated into AQM. A priority module is added to 

the node structure, which is described previously in Section 3. Consequently, the initial 

protocol architecture depicted in Figure 3.1 is revised such that it includes this new module 

as shown in Figure 8.1. The details of the other four modules are omitted since they remain 

basically unchanged. 

Application Module 

     

Priority Module 
 
Initial data packet prioritization 
 
Queue management: 
• Packet insertion 
• Priority sorting 
• Packet removal 

 

 Session 
Module 

 Membership 
Module 

Network Module 

Figure 8.1.  Extended architecture of the AQM protocol 

Data packets may arrive at the priority module only from the session module and 

depart from the priority module only to be delivered to the network module. Thus, the 

priority module puts arriving packets to a transmission queue in accordance with their 

priorities. On the other hand, it is also the task of this module to select a packet from the 

queue and deliver it to the network module to be transmitted. If the node is the server of a 

session, the priority module has to set the priorities of the individual data packets 

originated from its own application layer first. If the node is a forwarder in a session, the 
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priority of the incoming data packet is already set by its server. A node can be the server of 

a session and a forwarder in several other sessions at the same time. The fact that a node 

deals with a number of sessions simultaneously is the main reason why it has to consider 

their service classes and prioritize data packets. Actually, it is the selection of the right 

data packet to remove from the queue for transmission that provides service differentiation 

which is the main objective of the priority module. 

There are a number of priority queuing algorithms in the literature that can be 

implemented by the new priority module of AQM, some of which are summarized in 

Section 8.1. One of the relatively easy implementations requires a single priority queue 

which data packets are inserted into according to their service class priorities and arrival 

times. In this section, AQM adopts this simple approach. Thus, each data packet is queued 

for transmission in order of its service class and timestamp. Here, the starvation of packets 

of lower-priority can be a problematic issue. However, the design of the priority module is 

independent from the other modules. Thus, more sophisticated queuing algorithms can be 

chosen to work within the AQM protocol architecture. For instance, the priority module 

can maintain a separate queue for each session that it is involved in and ensures that each 

queue is served for a period of time which is fairly proportional to the bandwidth 

allocation ratio of the corresponding session. This alternate approach closely resembles the 

WFQ model, which is a fair scheduling algorithm and not a priority queuing one. Since 

bandwidth allocation is an issue handled by the session and membership modules of AQM, 

the priority module developed in this section is content with the single queue approach 

where application classes are used to differentiate between data packets. 

An important part in the design of the priority module is the method it adopts to 

trigger the process for the selection of the next packet that should be delivered to the 

network module. As mentioned in Section 8.1, a scheduler can be work-conserving or non-

work-conserving. Similarly, the priority module can utilize a passive or an active queue. In 

the former case, the priority module is polled by another module for the next data packet to 

be sent. According to the architecture of AQM, this other module should be the network 

module, which also has to check the underlying MAC layer to see if it is ready for the 

transmission of the next packet. If it is assumed that the MAC layer maintains its own 

transmission buffer for the segmentation of large packets, where packets are processed in a 



 
163

FIFO order, this buffer should not be empty as long as there are packets to be transmitted 

for the sake of protocol efficiency. On the other hand, data packets should primarily queue 

up within the priority module for a dynamic and efficient prioritization to be possible. 

From AQM’s point of view, these two requirements yield a result which is that ideally 

there should be at most two packets at the transmitting end of the MAC layer, one being 

processed and the other waiting in the transmission buffer. However, this method involves 

extra coordination with the MAC layer and eventually leads to a cross-layer design, which 

is beyond the scope of the design objectives of AQM. 

In order to overcome the coordination problem confronted, the priority module can 

actively trigger the packet selection process. In other words, it decides when to remove the 

next packet from the queue and send it to the network module by itself. This is a much 

simpler method if the packet processing interval of the priority module is set realistically. 

The module should process packets fast enough such that it does experience packet 

overflow. On the other hand, it should be slow enough to allow data packets to be queued 

and prioritized. Thus, the priority module schedules the delivery of the next data packet by 

using the packet size of the last data packet that has been sent and the bandwidth of the 

wireless medium, such that the MAC layer can complete the transmission of that packet 

and get ready for the next one in time. 

The last important issue to be mentioned is the treatment of control packets. Since 

these are packets of highest priority, they do not enter the same queue as data packets at 

all. Instead, they are delivered by the session and membership modules directly to the 

network module, by-passing the priority module and obtaining priority over data packets. 

In summary, the priority module of AQM employs a single priority queue, where 

newly arrived data packets are sorted in accordance with their service classes and their 

order of arrival. The data packet with the highest priority is the one belonging to the 

premium service class and the earliest arrival time in the queue. This is the next packet to 

be sent to the network module for transmission. The priority module does not remain idle 

unless there are no packets to be processed. Thus, it acts as an entity responsible only for 

the arrangement of data packets in such a way that the packet with the highest priority is 

delivered to the MAC layer first. 
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8.3. Performance Evaluation 

The results achieved by this extension to AQM with a data packet priority queuing 

mechanism for service differentiation are evaluated in this section by examining the delay 

performance of each individual service class as well as that of the background traffic. For 

this purpose, the set of applications defined in Table 5.1 are prioritized according to their 

packet interarrival time and delay requirements. Thus, applications of class one are given 

the first priority, whereas class-two applications the second, class-three applications the 

third and finally, applications of class four are given the fourth priority. 

The simulations are conducted using OPNET Modeler 11.5 Educational Version and 

Wireless Module [100]. The tests are repeated 10 times for each data point and results are 

aggregated with a 95 per cent confidence interval. AQM nodes are modelled by the 

existing application, session, membership and network managers with the new priority 

manager added to the node architecture as shown in Figure 8.1. The average session 

durations of the applications, which are also given in Table 5.1, are halved in order to 

achieve similar membership dynamics with more condensed simulations of 15 minutes’ 

time. The multicast inactivity period is decreased to 60 seconds, whereas the background 

traffic inactivity period is set to 100 seconds. The parameters of the mobility model and 

other simulation settings remain the same as in Table 5.2. 

In order to eliminate possible effects of the simulation environment on the results 

due to additional processing delay incurred, the AQM priority queue is compared with a 

FIFO queue which is also implemented on AQM. Thus, the delay performance of AQM is 

evaluated with and without service differentiation where all other conditions are the same. 

Two sets of simulations are conducted with these common parameters. The first set 

examines the effect of network density on AQM’s priority mechanism. In this set, the 

average number of neighbours within a node’s transmission range is used to represent the 

density. The second set, whereby the ratio of sessions which belong to the heaviest service 

class is the variable, aims to test the effect of the distribution of QoS classes on service 

differentiation in AQM. In this set, the classes other than the heaviest share the remaining 

occurrence ratio equally. The details of the simulation variables are given in Table 8.1. 
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Table 8.1.  Simulation variables of the queuing performance evaluation 

Set Variable Description Number of 
Nodes in Range

Heavy Multicast 
Class Ratio 

Background 
Data File Size

1 Network density 20 – 40 0.25 2 MB

2 QoS class distribution 20 0.10 – 0.90 2 MB

 

8.3.1. Effect of Network Density 

Figure 8.2 through Figure 8.4 show the difference achieved in multicast data packet 

delivery delay of the three QoS classes with higher priorities. By utilizing the class-based 

priority queuing mechanism, each AQM node arranges the transmission order of the 

packets in favour of those with stricter QoS requirements in terms of delay. However, the 

difference is not particularly high. In addition, it can also be seen that there is a trend of 

growing delay for all three classes as the network density increases, even though the 

average delays of the priority queue are still lower than those of a FIFO queue. 

0

5

10

15

20

20 25 30 35 40
Number of Nodes in Range of Transmission

C
la

ss
 1

 D
at

a 
- 

H
op

 D
el

ay
 (

m
s)

Priority Queue
FIFO Queue

 
Figure 8.2.  Class 1 data packet delay as a function of network density 
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Figure 8.3.  Class 2 data packet delay as a function of network density 
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Figure 8.4.  Class 3 data packet delay as a function of network density 
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The basic reasoning for both of these observations is that all nodes have to contend 

against their neighbours to access the wireless medium first, since there is no QoS-related 

coordination between them. In other words, since channel access is not scheduled based on 

packet priorities, each node within a neighbourhood has an equal chance to capture the 

wireless medium regardless of the class or priority of the packet it is about to transmit. It is 

very time-consuming when e.g. a class-one packet selected by its node to be transmitted 

has to wait for another node’s transmission of a large-size class-four packet since the 

nodes do not have any information on the relative priorities of their packets. As the 

network density grows, the probability of confronting with such unfair situations increases 

for each node. Thus, the effect of priority queuing is limited. 

Figure 8.5 displays the class-four delay results of the priority and FIFO queues with 

regard to growing network density. Since the priority queue forces the data packets of this 

class to wait for the other three classes, the averages of the priority queue are higher than 

those of the FIFO queue. Moreover, the absolute value of the delay is also large due to the 

time required to transmit a large-size class-four data packet. The trend of increased delay 

can be observed for this class as the network density grows. 
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Figure 8.5.  Class 4 data packet delay as a function of network density 
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Figure 8.6.  Background data packet delay as a function of network density 

Finally, Figure 8.6 presents the packet delay experienced by the background traffic 

under changing network density conditions. AQM handles these packets with the least 

priority, since they belong to a best-effort service which is error-sensitive but tolerant of 

delay. However, the absolute value of delay is still less than that of class-four packets due 

to their small packet size. On the other hand, background traffic packets are also the most 

affected by the increase in the number of neighbours, since they have to wait for all other 

packets in addition to very high contention periods. 

8.3.2. Effect of QoS Class Distribution 

Figure 8.7 through Figure 8.9 show the improvement in packet delays achieved by 

the three higher-priority classes through the priority queue. Similar to the results presented 

in the previous section, the delays these classes experience are slightly lower when they 

are prioritized over the fourth class. However, the delays grow as the ratio of the class-four 

applications increases, mainly due to the increase in the large-size packets being 

transmitted in the network. Even though packets are prioritized within a node, contending 

nodes within its neighbourhood inhibit the queuing discipline from being more effective. 
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Figure 8.7.  Class 1 data packet delay as a function of QoS class distribution 
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Figure 8.8.  Class 2 data packet delay as a function of QoS class distribution 
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Figure 8.9.  Class 3 data packet delay as a function of QoS class distribution 

An interesting phenomenon revealed by Figure 8.9 is that class-three applications 

experience slightly lower delay with the FIFO queue until class-four applications reach a 

certain percentage. There are a significantly smaller number of class-four packets in the 

network when the ratio of heavy multicast traffic is low. This enables the FIFO queue to 

process class-three packets quicker in the absence of the large-size class-four packets. 

Thus, the FIFO queue functions in favour of class-three packets when there are very few 

class-four packets in the queue, due to the large size of the latter. On the other hand, class-

three packets have practically the least priority for the priority queue as long as there are 

not many class-four packets. When the ratio of class-four applications increases, however, 

class-three applications start being served better by the priority queue. 

Figure 8.10 displays the change in the delay performance of the class-four packets. 

As the ratio of sessions belonging to the fourth class increases, the growing number of 

large-size data packets also affects the other packets from class-four. Thus, the delay 

increases in a similar manner as the other classes. In addition, the class-four packets 

processed by the FIFO discipline experience a lower delay since they are served in order 

of arrival and get a better chance of being transmitted earlier. 
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Figure 8.10.  Class 4 data packet delay as a function of QoS class distribution 
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Figure 8.11.  Background data packet delay as a function of QoS class distribution 
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Finally, the packet delay of the background traffic, which has the lowest priority in 

the AQM priority queue, is presented in Figure 8.11. Since they are served even after the 

class-four data packets, their delay values are also higher than when they are served in a 

FIFO order. The delay increases with the ratio of class-four applications, since the fourth 

class represents heavy multicast traffic with the largest packet sizes. 

8.4. Final Remarks 

In this section, AQM is enhanced with a priority queuing mechanism in order to 

integrate service differentiation into the protocol architecture. In a mobile ad hoc network 

where multicast applications that belong to various QoS classes may coexist, AQM nodes 

are able to differentiate between data flows according to packet priorities and arrange the 

transmission order of packets such that sessions with more stringent interarrival time and 

delay requirements are served before the others. Further measurements are made in order 

to evaluate the effect of priority queuing on AQM with regard to some of the other 

performance metrics presented in Section 5.1, such as end-to-end delay, multicast data loss 

and background success rates. The end-to-end delay is observed to be proportional to the 

hop delay, whereas the results of the latter two do not differ significantly for FIFO and 

priority queues. Thus, the improvement in the hop delay is not sufficient to decrease the 

number of dropped members and increase QoS sustainability. Since these measurements 

give similar results, they are not explicitly presented here to avoid repetition. 

The priority queue implemented in this section can be improved or AQM can adopt 

alternate queuing disciplines with more sophisticated sorting and selection algorithms in 

order to achieve better service differentiation. For instance, the priority module can be 

designed such that it maintains a certain number of queues in parallel, each of which is 

responsible for a certain service class and sorts its contents according to the arrival or 

creation time of data packets. The module inserts arriving packets into their respective 

queues. When it is time to remove a packet from a queue and send it to the network 

module for transmission, it selects the queue in an intelligent manner such that starvation 

of low-priority packets is avoided. This may be the packet of highest priority from the 

queue where longer waiting times are experienced. There are many other possibilities 

concerning the implementation of queues in the literature. 
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Another important issue which may be related to the priority module of AQM is the 

possibility of traffic monitoring. Since the priority module can observe all data traffic 

crossing through a node and also be made aware of the resource reservations for each of 

these flows, it can take action in response to QoS degradation. In the current version of 

AQM, this is the task of the session module, which drops the node off the session as soon 

as such degradation is detected in it. Instead, the priority module can drop packets pushing 

but not yet violating the QoS limits according to a packet priority scheme in case of 

possible QoS degradation and try to prevent nodes from dropping. However, the benefit of 

packet dropping is limited since the main reason of QoS degradation experienced by a 

node is poor packet reception performance, which means that the problem possibly lies in 

some node up the stream. In this case, upstream session members should be notified of 

QoS degradation, which leads to the well-known topic of congestion control. 

Since the design of AQM does not involve cross-layer approaches, priority 

scheduling among neighbours is not considered so far. However, without the support of 

the underlying layers to coordinate access between the nodes in a neighbourhood, it is not 

possible to distinguish a node about to transmit high-priority data packets from other nodes 

carrying packets of lower priority. Thus, node-level service differentiation, the 

performance of which is presented through simulation results in this section, can be much 

more efficient if it is supported by network-level priority scheduling. However, this is a 

very broad and important research topic concerning the development of a QoS-aware 

MAC layer protocol. The MAC protocol determines which node should transmit next 

when several nodes contend for the wireless channel. Wireless MAC protocols with their 

basic channel-sensing and random backoff schemes are only suitable for best-effort traffic 

in mobile ad hoc networks. Supporting real-time traffic in these networks is a very 

challenging task [11]. There are, however, efforts to provide QoS support at the MAC 

level. These efforts mainly address two of the important issues regarding QoS, which are 

resource allocation and service differentiation. There are also various contention-based 

protocols with scheduling mechanisms, which focus on packet scheduling at the nodes and 

transmission scheduling of the nodes. Unfortunately, these issues are beyond the scope of 

the AQM protocol. 
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9. CONCLUSIONS 

The expectations of the wireless user shifting towards high quality, group-oriented, 

mobile multimedia communication affects the needs of today’s networks. Novel wireless 

networking technologies embedded into portable computing devices enable an ever-

growing number of users to communicate with each other while on the move, i.e., without 

being connected to a wired infrastructure. As soon as the user becomes part of such a 

wireless network, however, a series of heavy administrative tasks have to be accomplished 

to configure the device. Ad hoc networks are self-organizing communication entities 

which take over this burden and make the user enjoy full wireless functionality. 

The increasing amount of multimedia content shared over various communication 

media today makes QoS-related, resource-efficient routing strategies very important for ad 

hoc networks. Moreover, the increasing number of group-oriented applications also 

necessitates the efficient utilization of network resources. The multicast communication 

model is a promising technique which can achieve this efficiency by facilitating the 

inherent broadcast capability of the wireless medium and minimizing bandwidth 

consumption, packet processing and delivery delay. However, it is not easy to integrate 

QoS mechanisms into a multicast routing protocol. 

The multicast routing protocol presented in this thesis, AQM, provides ad hoc 

networks with the features mentioned above. It keeps the network up-to-date on the 

availability of sessions with regard to QoS considerations. It controls the availability of 

resources throughout the network and ensures that the users of an application do not suffer 

from QoS degradation due to bandwidth allocations exceeding the limits of the shared 

wireless medium. In its bandwidth calculations, AQM takes the continuity property of 

multimedia data into consideration and checks bandwidth availability along a virtual 

tunnel of nodes. It also facilitates an objection query mechanism to inform nodes of the 

possible overload of others, which cannot be detected directly. AQM sets limits to path 

length in terms of hop count and checks them in order to satisfy the delay requirements of 

multimedia applications. By applying these instruments, AQM is able to eliminate 

infeasible requests for membership preliminarily at their sources. 
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AQM introduces several ideas which are novel to multicast routing in mobile ad hoc 

networks. Most importantly, it integrates QoS-aware strategies into multicast routing for 

admission control and resource allocation. It defines the bandwidth requirement of a 

multimedia session as a continuous flow of data and makes more accurate decisions on 

resource availability. It also provides a utility which allows a node to collect information 

on resource allocation beyond its neighbours and revise its own reservation decisions, 

which can otherwise lead to excessive resource usage within a neighbourhood. At each 

node, there is a priority queue which sorts multicast data packets to be transmitted 

according to their traffic classes. This queuing discipline helps AQM differentiate between 

service classes, give higher priority to those applications with more stringent QoS 

restrictions and fulfil their requirements even though they are significantly harder to meet. 

Finally, AQM is able to evolve the initial multicast tree into a mesh during data flow to 

improve robustness. A node connects to the existing multicast graph regularly through a 

single forwarding member but is allowed to register itself with additional forwarders if it 

starts receiving multicast data from them. This operation increases robustness since a node 

does not only depend on a single predecessor for its connection to the multicast session. 

Service satisfaction is the primary evaluation criterion for a QoS-related protocol. 

Therefore, new metrics are defined to compare AQM to a non-QoS protocol, in addition to 

several regular metrics such as multicast as well as background traffic success rates, end-

to-end delay, packet interarrival time, packet loss and the control overhead. One of these 

new metrics measures the sustainability of QoS conditions at members once they are 

accepted to a session. In addition, overloaded members and sessions can be observed to 

examine the efficiency of AQM in resource allocation. AQM is evaluated with regard to 

these metrics under a realistic network scenario, where multiple QoS classes are supported 

and there are no restrictions on the number of simultaneous sessions or members. The 

results give a good insight to the quality of AQM. Simulations show that there are 

significant performance differences between the two protocols for members and sessions. 

By applying QoS restrictions to the ad hoc network, AQM achieves lower delay, loss and 

overload and improves the multicast efficiency for members and sessions. Without a QoS 

policy, users experience difficulties in getting the service they demand as the traffic load 

grows and activity rates increase. AQM proves that QoS is not only essential for, but also 

applicable to multimedia communication in mobile ad hoc networks. 
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AQM has a simple, flat network structure where all nodes are equal. It avoids 

complicated network topologies such as hierarchical or clustered structures, which are 

challenging in terms of design and maintenance and present points of failure. However, it 

is possible to adapt AQM to a clustered network to scale with network size. Intra-cluster 

multicast sessions can be handled by AQM, whereas inter-cluster communication can be 

managed by a higher-layer, hierarchical version of it, still providing the network with QoS 

features. It is not a realistic assumption that a mobile network can afford a pure on-demand 

protocol if it has to support QoS. Therefore, AQM proposes a hybrid method in terms of 

multicast routing with table-driven session management and on-demand verification of 

QoS information upon the initialization of a join process. It also presents a hybrid graph 

structure since it starts a multicast session with a tree and develops it into a mesh during 

the course of the session. 

9.1. Future Research Directions 

AQM is a multicast routing protocol for mobile ad hoc networks, which develops 

QoS strategies in order to satisfy the service-level requirements of the mobile multimedia 

user. It is possible to improve AQM further with the help of some additional information 

collected by each node in a distributed manner and shared among the neighbours in the 

network. Nodes can measure their queue sizes and estimate their average queuing delays. 

They can also measure their processing delays and derive a relation to the number of 

sessions being processed by them. More sophisticated admission, reservation and routing 

decisions can be made if these observations are shared among neighbours. AQM prevents 

excessive allocation of bandwidth and helps nodes experience less contention, which also 

affects delay. However, the queuing and processing delays give a more precise idea about 

the QoS level of a particular node. Since the propagation delay of the wireless medium is 

negligible, the current delay is mainly the sum of contention times and transmission 

delays. Therefore, this additional information can be valuable for AQM to select paths of 

lower delay. 

An interesting future work is the development of an adaptive system which applies 

alternate AQM strategies, such as enabling or disabling the objection query mechanism, 

the class-based priority queue of data packet transmission and the tree-to-mesh evolution 
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decisions, in accordance with general user preferences which can be collected from the 

mobile nodes when they enter the ad hoc network. Another topic which calls attention is 

the efficient rerouting of multicast sessions when changes occur in the network topology 

as a result of mobility or varying QoS conditions. On the other hand, the implementation 

of a realistic mobility model is also very important for an accurate evaluation of these 

protocols. Mobility changes the network topology constantly, which has a profound effect 

on the network characteristics. It is a good idea to evaluate ad hoc network protocols with 

multiple mobility models. Ad hoc applications with team collaboration and real-time 

multimedia support necessitate group mobility, which improves performance if protocols 

take advantage of its features such as multicast routing. 

Some of the recent multicast routing protocols in the literature can be assessed using 

the new performance criteria proposed in this thesis to have an alternate view to their 

performance in terms of QoS as experienced by the user. Their current evaluations are 

based on the conventional metrics mentioned above which lack in the QoS perspective. 

The scope of this thesis is the design of a QoS-aware protocol for multicast routing 

in mobile ad hoc networks and to validate it as a feasible and useful one at the higher 

layers. However, further study is necessary to observe the effects of the underlying data 

link layer protocols on the performance of AQM and develop the necessary means to 

improve this performance. For instance, the prioritization of QoS classes is easily realized 

for a single node, but priority scheduling has to be supported at the neighbourhood level to 

achieve coordination among nodes and give access priority to those carrying more QoS-

sensitive traffic. The reliable delivery of multicast data is also a hard task due to the 

request-to-send/clear-to-send (RTS/CTS) signalling problem in broadcast routing. These 

issues and others make the existence of an underlying QoS-aware MAC layer a very 

important requirement. The MAC layer is also responsible for resource reservation and the 

acquisition of available link bandwidth information, which is another significant issue 

involving infrastructure decisions. Therefore, it is necessary to implement a realistic MAC 

layer and simulate ad hoc network environments closer to real life scenarios. On the other 

hand, AQM is independent of the design of lower layers and, within the scope of this 

thesis, efforts have been made to maintain its integrity by addressing some of these issues 

in higher layers. 
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