
AUTOMATIC SYNTHETIC BENCHMARK GENERATION FOR MULTICORE

SYSTEMS

by

Etem Deniz

B.S., Computer Engineering, Dokuz Eylül University, 2009

M.Sc., Computer Engineering, Boğaziçi University, 2011

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2015

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor

Professor Alper Şen for his invaluable guidance, great patience, friendly attitude, and

encouraging support. This thesis would not be possible without his efforts.

I would like to thank my thesis committee members Professor Oğuz Tosun, Haluk

Rahmi Topçuoğlu, Can Özturan, and Zeki Bozkuş for their valuable efforts and insight-

ful comments.

I am thankful to Jim Holt, Brian Kahne, Michele Reese, and Jaksa Djordjevic

from Freescale for providing invaluable comments and feedback and for helping me

with hardware measurements.

I would like to acknowledge fellowships and grants that supported my research

during my PhD: Semiconductor Research Corporation under task 2082.001, European

Commission, Boğaziçi University Research Fund, Turkish Academy of Sciences, and

Scientific and Technical Research Council of Turkey (TÜBİTAK).

Last but not least, I would like to dedicate this thesis to my wife Merve and

daughters Miray and Melis, for their love, patience, sacrifices, and understanding -

they allowed me to spend most of the time on this thesis.

iv

ABSTRACT

AUTOMATIC SYNTHETIC BENCHMARK GENERATION

FOR MULTICORE SYSTEMS

We present a novel automated multicore benchmark synthesis framework for mul-

ticore systems including CPUs and GPUs with characterization and generation com-

ponents to speed up architectural simulation of modern architectures. We first identify

a set of important application characteristics for CPUs and GPUs. Then, our frame-

work captures these characteristics of original multicore applications and generates

synthetic multicore benchmarks from those applications where synthetic benchmarks

are a miniaturized form of applications that allow high simulation speeds and act as

proxies of proprietary applications. We use parallel software architectural patterns in

capturing important characteristics of CPU applications where we apply different ma-

chine learning techniques in a novel approach to automatically detect parallel patterns

used in applications. In addition, we compare these techniques in terms of accuracy

and speed and demonstrate that detecting parallel patterns is crucial for performance

improvements and enables many architectural optimizations. The resulting synthetic

benchmarks are small, fast, portable, human-readable, and they accurately reflect the

key characteristics of the original multicore applications. Our synthetic CPU bench-

marks use either Pthreads or Multicore Association (message passing and resource

management) libraries and synthetic GPU benchmarks use OpenCL library. To the

best of our knowledge, this is the first time synthetic OpenCL benchmarks for GPUs

are generated from existing applications. We implement our techniques for CPUs in

the MINIME tool and generate synthetic benchmarks. Similarly, we implement our

techniques for GPUs in the MINIME-GPU tool and experimentally validate them.

v

ÖZET

ÇOK ÇEKİRDEKLİ SİSTEMLER İÇİN OTOMATİK

KARŞILAŞTIRMA TESTİ YARATMA

Modern çok çekirdekli CPU ve GPU mimari simülasyonunu hızlandırmak için

sentetik karşılaştırma uygulamalarını otomatik şekilde yaratan, karakterizasyon ve sen-

tezleme bileşenleri olan yeni sentezleme araçları geliştirdik. İlk olarak, CPU ve GPU sis-

temleri için önemli olan karakteristiklerin kümesi belirledik. Daha sonra geliştirdiğimiz

araçlar ile bu karakteristikleri mevcut uygulamalardan toplayarak bu uygulamaların

yüksek hızda simülasyonuna olanak sağlayan minyatür halleri olan sentetik karşılaştırma

uygulamaları oluştururduk. CPU uygulamalarının önemli karakteristiklerini toplamak

için yazılım mimari kalıplarını kullandık ve çeşitli makine öğrenme tekniklerini uygu-

layarak bu yazılım mimari kalıpları otomatik olarak tanımladık. Bununla beraber bu

makine öğrenme tekniklerini doğruluk ve hız açısından karşılaştırdık ve yazılım mi-

mari kalıplarının tanımlanmasının performans ve mimari eniyileme açısından önemli

olduğunu gösterdik. Sentezlenen karşılaştırma uygulamalarımız küçük, hızlı, taşınabilir

ve okunabilir olduğu gibi sentezlendikleri gerçek uygulamanın karakteristiklerini de

doğru şekilde taklit etmektedir. Sentetik CPU karşılaştırma uygulamalarımız Pthreads

veya Multicore Association (mesaj iletim veya kaynak yönetim) kütüphanelerini ve sen-

tetik GPU karşılaştırma uygulamalarımız OpenCL kütüphanesini kullanabilmektedir.

Bu çalışma ile varolan GPU uygulamarından ilk kez sentetik OpenCL karşılaştırma

uygulaması geliştirildi. CPU tekniklerimiz için MIMIME aracını geliştirdik ve sentetik

karşılaştırma uygulamaları yarattık. Benzer şekilde, GPU tekniklerimiz için MINIME-

GPU aracını geliştirerek deneylerle tekniklerimizi doğruladık.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . xi

LIST OF TABLES . xviii

LIST OF SYMBOLS . xx

LIST OF ACRONYMS/ABBREVIATIONS . xxiii

1. INTRODUCTION . 1

1.1. Contributions . 4

1.2. Organization . 7

2. BACKGROUND . 8

2.1. Software Architectural Patterns . 8

2.2. Multicore Programming APIs . 10

2.3. GPUs and Programming Models . 12

2.3.1. OpenCL Programming Model 12

2.3.2. Target GPU Architecture . 14

2.4. Machine Learning Techniques . 15

2.4.1. k-Nearest Neighbor . 15

2.4.2. Decision Trees . 15

2.4.3. Naive Bayes Classifier . 16

2.4.4. Neural Networks . 16

2.4.5. Principal Component Analysis with K-means 17

2.5. Benchmarks for Performance Evaluation 18

2.5.1. Synthetic Benchmarks . 19

3. SYNTHETIC BENCHMARK GENERATION FOR MULTICORE CPUs . . 20

3.1. Overview . 20

3.2. High-level Framework . 22

3.3. Multicore Benchmark Characterization 23

3.3.1. Data Sharing Characteristics . 23

vii

3.3.2. Thread Communication Characteristics 25

3.3.3. General Threading Characteristics 25

3.3.4. Performance Characteristics . 26

3.3.5. Characterization Tools . 27

3.4. Parallel Pattern Recognition . 27

3.5. Pattern-Aware Synthetic Benchmark Generation 30

3.5.1. Code Generation for High Level Metrics 30

3.5.2. Similarity Measurement . 34

3.5.3. Code Generation for Low Level Metrics 34

3.5.4. A Detailed Example of CPU Benchmark Synthesis 36

3.6. Synthetic Benchmark Generation for Embedded Multicore Systems . . 37

3.7. Experiments . 41

3.7.1. Evaluation of Benchmark Synthesis 42

3.7.2. Assessing Similarity . 45

3.7.3. Assessing Architecture Changes 47

3.7.4. Assessing Input Changes . 48

3.7.5. Correlation between Parallel Pattern Score and Overall Similarity

Score . 49

3.7.6. Synthetic Benchmark Generation for Embedded Multicore Systems 51

3.7.7. Discussion . 56

3.8. Summary . 64

4. THREAD-LEVEL SYNTHETIC BENCHMARKS FOR MULTICORE CPUs 65

4.1. Overview . 65

4.2. Thread-level Synthetic Benchmark Development Framework 66

4.2.1. Benchmark Characterizer . 67

4.2.2. Benchmark Generator . 68

4.3. Application-level versus Thread-level Synthetic Benchmarks 70

4.4. Experiments . 72

4.4.1. Decision tree based parallel pattern recognition 77

4.5. Summary . 78

5. SYNTHETIC BENCHMARK GENERATION FOR GPUs 79

viii

5.1. Overview . 79

5.2. High-level Framework . 81

5.3. Benchmark Characterization . 82

5.4. Benchmark Generation . 86

5.4.1. Similarity Measurement . 87

5.4.2. Code (Block) Generation . 87

5.4.3. A Detailed Example of GPU Benchmark Synthesis 92

5.5. Experiments . 93

5.5.1. Simulation and Benchmarks . 94

5.5.2. Applying PCA to Validate the Importance of Characteristics . . 95

5.5.3. Synthetic Benchmark Generation Results 96

5.5.4. Assessing Similarity . 98

5.5.5. Validation of Synthetic Benchmarks on Real Hardware 99

5.5.6. Assessing Architecture Changes 102

5.5.6.1. Synthesis for GPUs having Derived Architectural Con-

figurations . 105

5.5.7. Assessing Input Changes . 110

5.6. Discussion . 111

5.7. Summary . 113

6. USING MACHINE LEARNING TECHNIQUES TO DETECT PARALLEL

PATTERNS OF MULTI-THREADED APPLICATIONS 114

6.1. Overview . 114

6.1.1. Motivation for Classifying Parallel Patterns 116

6.2. Parallel Pattern Classification Using Machine Learning 118

6.3. Characterization of Multi-threaded Applications 118

6.3.1. Data Preparation . 120

6.3.1.1. Data Collection . 120

6.3.1.2. Data Pre-processing 121

6.4. Experiments . 123

6.4.1. Pattern Classification Results 124

6.4.2. Decision Trees . 126

ix

6.4.2.1. Construction of a Decision Tree 126

6.4.2.2. Using the Decision Tree 128

6.4.3. Naive Bayes Classifier . 129

6.4.3.1. Construction of a Naive Bayes Classifier 129

6.4.3.2. Using the Naive Bayes Classifier 131

6.4.4. Neural Networks . 131

6.4.4.1. Construction of a Neural Network 131

6.4.4.2. Using the Neural Network 133

6.4.5. Principal Component Analysis with K-means 133

6.4.5.1. Construction of a Principal Component Analysis with

K-means . 133

6.4.5.2. Using the Principal Component Analysis with K-means 134

6.4.6. Feature Selection for Our Machine Learning Techniques 136

6.4.7. Comparison of Our Machine Learning Techniques 138

6.4.8. Using Parallel Patterns Detection Results 139

6.4.8.1. Synthetic Benchmark Generation 139

6.4.8.2. Correlation of Parallel Pattern with Synthetic Bench-

mark Similarity . 141

6.5. Discussion . 142

6.5.1. Data Collection Scalability . 142

6.5.2. Training Set Size and Cross Validation 143

6.5.3. Impact of Multiple Inputs . 144

6.5.4. Multiple Parallel Patterns . 145

6.6. Summary . 145

7. RELATED WORK . 147

7.1. Synthetic Benchmark Generation for Multicore CPUs 147

7.1.1. Software Architectural Patterns 147

7.1.2. Benchmark Characterization . 147

7.1.3. Synthetic Benchmark Generation 148

7.2. Thread-level Synthetic Benchmark for CPUs 150

7.2.1. Benchmark Characterization . 150

x

7.3. Synthetic Benchmark Generation for GPUs 151

7.3.1. Benchmark Characterization . 151

7.3.2. Synthetic Benchmark Generation 152

7.4. Machine Learning Techniques to Detect Parallel Patterns 153

7.4.1. Parallel Pattern Detection . 153

7.4.2. Machine Learning Techniques 154

8. CONCLUSIONS AND FUTURE WORK . 157

8.1. Summary . 157

8.2. Future Work . 161

REFERENCES . 164

xi

LIST OF FIGURES

Figure 2.1. Parallel patterns for software. 9

Figure 2.2. OpenCL platform model. 13

Figure 2.3. OpenCL programming and memory model. 13

Figure 2.4. Simplified AMD Southern Islands GPU architecture [1]. 14

Figure 3.1. MINIME: Pattern-aware multicore benchmark synthesizer archi-

tecture. 22

Figure 3.2. Code block to increment/decrement IPC, CMR, and BMR. 35

Figure 3.3. Parallel patterns scores of matrix multiplication. 37

Figure 3.4. Synthetic matrix multiplication benchmark. 38

Figure 3.5. Comparison of IPC between the synthetic and original benchmarks.

The synthetic generated on System-I is used on System-II and

System-IV and re-synthesized for System-III. 45

Figure 3.6. Comparison of CMR between the synthetic and the original bench-

marks. The synthetic generated on System-I is used on System-II

and System-IV and re-synthesized for System-III. 46

Figure 3.7. Comparison of BMR between the synthetic and the original bench-

marks. The synthetic generated on System-I is used on System-II

and System-IV and re-synthesized for System-III. 46

xii

Figure 3.8. IPC values of original benchmarks for small, medium, and large

inputs on System-I. 48

Figure 3.9. Linear regression analysis between Data Sharing Score + Thread

Communication Score and Total Pattern Score. 49

Figure 3.10. Linear regression analysis of Bodytrack for parallel pattern and

overall similarity score relation. 50

Figure 3.11. Linear regression analysis of ippktcheck for parallel pattern and

overall similarity score relation. 50

Figure 3.12. Overall similarity scores of synthetic benchmarks from PARSEC

for MRAPI/MCAPI on HW1. 53

Figure 3.13. Overall similarity scores of synthetic benchmarks from Rodinia for

MRAPI/MCAPI on HW1. 54

Figure 3.14. Thread Communication scores of the synthetic benchmarks from

PARSEC for MRAPI and MCAPI. 55

Figure 3.15. Thread Communication scores of the synthetic benchmarks from

Rodinia for MRAPI and MCAPI. 55

Figure 3.16. Comparison of CCR between the synthetic and the original bench-

marks from PARSEC. 57

Figure 3.17. Comparison of CCR between the synthetic and the original bench-

marks from Rodinia. 57

xiii

Figure 3.18. Comparison of IPC between the synthetic and the original bench-

marks from PARSEC for MRAPI. 58

Figure 3.19. Comparison of IPC between the synthetic and the original bench-

marks from Rodinia for MRAPI. 58

Figure 3.20. Comparison of CMR between the synthetic and the original bench-

marks from PARSEC. 59

Figure 3.21. Comparison of CMR between the synthetic and the original bench-

marks from Rodinia. 59

Figure 3.22. Comparison of BMR between the synthetic and the original bench-

marks from PARSEC. 60

Figure 3.23. Comparison of BMR between the synthetic and the original bench-

marks from Rodinia. 60

Figure 3.24. Overall similarity scores of synthetic benchmarks from PARSEC

for MRAPI/MCAPI on HW2. 61

Figure 3.25. Overall similarity scores of synthetic benchmarks from Rodinia for

MRAPI/MCAPI on HW2. 61

Figure 3.26. Comparison of IPC between the synthetic and the original bench-

marks from PARSEC on HW2. 62

Figure 3.27. Comparison of IPC between the synthetic and the original bench-

marks from Rodinia on HW2. 62

xiv

Figure 4.1. MINIME (thread-level): multi-threaded benchmark development

framework. 67

Figure 4.2. Code block to increment/decrement IPC. 69

Figure 4.3. Characteristics of Blackscholes benchmark and its application-

level synthetic. 70

Figure 4.4. Characteristics of Blackscholes benchmark and its thread-level

synthetic. 70

Figure 4.5. Characteristics of Blackscholes benchmark and thread-level syn-

thetic of Blackscholes with 8 threads. 75

Figure 4.6. Average, maximum, and minimum thread similarity scores of all

thread-level synthetic benchmarks. 76

Figure 4.7. Comparison of average thread similarity scores for application-level

and thread-level synthetic of all benchmarks. 77

Figure 5.1. MINIME-GPU: multicore benchmark synthesizer for GPUs. 81

Figure 5.2. Host program of a synthetic benchmark. 85

Figure 5.3. Kernel program of a synthetic benchmark. 85

Figure 5.4. Sample code blocks to increment/decrement the values of kernel

program (instruction throughput and computation-to-memory ac-

cess) characteristics. 88

xv

Figure 5.5. Sample code blocks to increment/decrement the values of kernel

program (dynamic memory instruction mix, memory efficiency, and

compute unit occupancy) characteristics. 89

Figure 5.6. Synthetic benchmark (kernel program) for QuasiRandomSequence. 92

Figure 5.7. Principal components and their variance. 95

Figure 5.8. PCA loadings with respect to each characteristic. 96

Figure 5.9. Comparison of IPC between the synthetic and original benchmarks. 97

Figure 5.10. Comparison of memory coalescing between the synthetic and orig-

inal benchmarks. 99

Figure 5.11. Comparison of VALU utilization between the synthetic and original

benchmarks on real hardware (HD 7950). 102

Figure 5.12. Comparison of SGPRs utilization between the synthetic and origi-

nal benchmarks on real hardware (HD 7950). 102

Figure 5.13. Comparison of sensitivity to architecture changes for BitonicSort

and QuasiRandomSequence. 102

Figure 5.14. The IPC error score for different GPUs (HD 7970, HD 7870, HD

7850, and HD 7770). 103

Figure 5.15. The hit ratio error score for different GPUs (HD 7970, HD 7870,

HD 7850, and HD 7770). 103

xvi

Figure 5.16. IPCs of original and synthetic benchmarks on different GPUs (HD

7970, HD 7870, HD 7850, and HD 7770). 104

Figure 5.17. Hit ratios of original and synthetic benchmarks on different GPUs

(HD 7970, HD 7870, HD 7850, and HD 7770). 104

Figure 5.18. The number of (in-flight) wavefronts error score for the GPUs hav-

ing derived architectural configurations (HD 7970, HD 7870d, HD

7850d, and HD 7770d). 105

Figure 5.19. Number of (in-flight) wavefronts of original and synthetic bench-

marks on the GPUs having derived architectural configurations

(HD 7970, HD 7870d, HD 7850d, and HD 7770d). 105

Figure 5.20. The IPC error score for the GPUs having derived architectural

parameters (HD 7970, HD 7970d1, HD 7970d2, and HD 7970d3). . 107

Figure 5.21. IPCs of original and synthetic benchmarks on the GPUs having de-

rived architectural parameters (HD 7970, HD 7970d1, HD 7970d2,

and HD 7970d3). 107

Figure 5.22. The cache hit ratio error score for different cache configurations

(Config-0, Config-1, Config-2 and Config-3). 109

Figure 5.23. Cache hit ratios of original and synthetic benchmarks on different

cache configurations (Config-0, Config-1, Config-2 and Config-3). . 109

Figure 5.24. The IPC values of original benchmarks for small, medium, and

large inputs on HD 7970. 110

Figure 6.1. Decision tree for parallel pattern classification. 127

xvii

Figure 6.2. ROC curve of our decision tree. 128

Figure 6.3. Confusion matrix of the naive Bayes classifier using the Gaussian

method on the training set. 129

Figure 6.4. Confusion matrix of the naive Bayes classifier using the Kernel

Density Estimation method on the training set. 130

Figure 6.5. Configuration of our neural network. 131

Figure 6.6. Training performance of the neural network. 132

Figure 6.7. Confusion matrix of the neural network on the training set. 133

Figure 6.8. Principal components and their variance. 134

Figure 6.9. The PCA space that is projected into 2 dimensions (PC1 and PC2).135

Figure 6.10. Accuracies of our machine learning techniques using the selected

sub-characteristics proposed by MI. 136

Figure 6.11. Characterization speedup of decision tree over kNN in Chapter 3. 138

xviii

LIST OF TABLES

Table 1.1. Our synthetic benchmarks. 6

Table 3.1. CPU benchmark characteristics. 24

Table 3.2. Data sharing reference behavior [2]. 29

Table 3.3. Thread communication reference behavior. 29

Table 3.4. General threading reference behavior. 29

Table 3.5. Algorithm to generate the code for a thread ti based on parallel

pattern. 30

Table 3.6. Multicore machine configurations. 41

Table 3.7. Pattern recognition and synthesis results. 43

Table 3.8. Multicore hardware configurations. 51

Table 3.9. Benchmark synthesis results for embedded multicore systems. . . . 52

Table 4.1. Multicore machine configuration. 72

Table 4.2. Benchmark characteristics and pattern classification results. 73

Table 4.3. Thread-level synthetic benchmark generation results. 74

Table 5.1. GPU benchmark characteristics. 83

xix

Table 5.2. GPU architectural configurations. 94

Table 5.3. Synthesis results on AMD HD 7970 platform. 98

Table 5.4. GPU architectural parameters. 107

Table 5.5. GPU cache configurations. 109

Table 6.1. Characteristics of multi-threaded applications. 119

Table 6.2. Pattern classification results. 125

Table 6.3. Cut-offs of our ROC curve. 129

Table 6.4. Comparison of machine learning techniques. 136

Table 6.5. Pattern recognition and synthesis results. 140

Table 8.1. Our synthetic benchmarks with experimental details. 160

xx

LIST OF SYMBOLS

number sign, for example ‘#Cores’ indicates ‘number of cores’

#reader the unique number of threads that read the same cacheline

#st the number of threads that do not have the sub-characteristic

x in the 2S range around M

#writers the unique number of threads that write the same cacheline

#wt the number of all worker threads

atss average thread similarity score

CC the number of threads that are communicating in both the

original and the synthetic workloads

chorg given a similarity characteristic, ch, the value of ch for the

original application

chsyn given a similarity characteristic, ch, the value of ch for the

synthetic application

CN the number of threads that are communicating in the original

but not in the synthetic workload

commTH pairwise communicating threads

CV the coefficient of variation

errorratemt the error rate for a similarity metric mt

errorratech the error rate for a similarity characteristic ch

iss individual similarity score

issBMR individual similarity score for BMR

issCCR individual similarity score for CCR

issCMR individual similarity score for CMR

issIPC individual similarity score for IPC

M mean

mt a similarity metric

mtorg given a similarity metric, mt, the value of mt for the original

workload

mtsyn given a similarity metric, mt, the value of mt for the synthetic

workload

xxi

normPC the normalized program counter sub-characteristic

normx the normalized sub-characteristic for sub-characteristic x

numTH the total number of threads during execution

mtorg given a similarity metric, mt, the value of mt for the original

application

mtsyn given a similarity metric, mt, the value of mt for the synthetic

application

NC the number of threads that are communicating in the syn-

thetic but not in the original workload

NN the number of threads that are not communicating in both

the original and the synthetic workloads

org BMR BMR of the original benchmark

org CMR CMR of the original benchmark

org IPC IPC of the original benchmark

oss overall similarity score

ossapp overall similarity score for application-level CPU benchmarks

osscpu overall similarity score for CPU benchmarks

ossemb overall similarity score for embedded CPU benchmarks

ossgpu overall similarity score for GPU benchmarks

S standard deviation

sharedCL the ratio of cachelines used for communication to all cachelines

used during execution gives shared cachelines

sim BMR BMR similarity

sim CMR CMR similarity

sim IPC IPC similarity

sim IPCi the IPC similarity of thread i

similarity the similarity rate

sscoreCMR the similarity score for a similarity metric CMR

sscoreIPC the similarity score for a similarity metric IPC

sscoremt the similarity score for a similarity metric mt

sscoreTC the similarity score for a similarity metric TC

syn BMR BMR of the synthetic benchmark

xxii

syn CMR CMR of the synthetic benchmark

syn IPC IPC of the synthetic benchmark

ti i-th thread

tssi thread similarity score for a thread i in a benchmark

U the number of unique start (entry point) program counters

xxiii

LIST OF ACRONYMS/ABBREVIATIONS

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

BIC Bayesian Information Criterion

BMR Branch Misprediction Rate

CB Code Block

CCR Communication to Computation Ratio

CMAR Computation-to-Memory Access Ratio

CMR Cache Miss Rate

CPI Cycles Per Instruction

CPU Central Processing Unit

CU Compute Unit

CUDA Compute Unified Device Architecture

DaC Divide and Conquer

DiscoPoP Discovery of Potential Parallelism

DS Data Sharing

DSP Digital Signal Processor

DT Decision Tree

EbC Event-based Coordination

EEMBC Embedded Microprocessor Benchmark Consortium

FIFO First In First Out

FIR Finite Impulse Response

FPR False Positive Rate

FS Feature Selection

GCC GNU Compiler Collection

GD Geometric Decomposition

GNU GNU’s Not Unix

GPGPU General Purpose Computing on Graphical Processing Unit

xxiv

GPU Graphics Processor Unit

GT General Threading

IC Dynamic instruction count

ID3 Iterative Dichotomiser 3

IP Intellectual Property

IPC Instructions Per Cycle

ISA Instruction Set Architecture

KB Kilobyte

KDE Kernel Density Estimation

kNN k-Nearest Neighbor

LLC Last Level Cache

LLVM Low Level Virtual Machine

LOC Lines of Code

LT Lifetime

MATLAB MATrix LABoratory

MB Megabyte

MCA Multicore Association

MCAPI Multicore Communication API

MI Mutual Information

MPI Message Passing Interface

MRAPI Multicore Resource Management API

MSE Mean Square Error

NAS NASA Advanced Supercomputing

NASA National Aeronautics and Space Administration

NBC Naive Bayes Classifier

NNW Neural Network

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OSS Overall Similarity Score

PAPI Performance Application Programming Interface

xxv

PARSEC Princeton Application Repository for Shared-Memory Com-

puters

PC Program Counter

PCA Principal Component Analysis

PCs Principal Components

PL Parallel Pattern type

Pl Pipeline

POSIX Portable Operating System Interface for Unix

RCT Ratio of Communicating Threads

RCV Ratio of Communication Volume

RD Recursive Data

ROC Receiver Operating Characteristic

SDK Software Development Kit

SGPRs Scalar General-Purpose Registers

SI Southern Islands

SIMD Single Instruction Multiple Data

SMP Symmetrical Multicore Processor

TC Thread Communication

TLB Translation Lookaside Buffer

TP Task Parallel

TPR True Positive Rate

VALU Vector Arithmetic Logic Unit

1

1. INTRODUCTION

The exponential improvement in single core CPU performance has recently come

to an end due to thermal and power problems. This has led to the development of

multicore CPUs, which can improve performance given parallel applications. Mean-

while, GPUs have become an important platform for data parallel applications thanks

to their high parallel architecture. It is important to analyze and optimize these multi-

core systems to achieve high performance with low power consumption as these systems

are becoming very widely used in high performance computing and demanding con-

sumer applications. However, effectively analyzing and optimizing multicore CPUs and

GPUs is a nontrivial task that requires domain knowledge in multicore architecture,

parallelism fundamentals, and parallel programming paradigms. That is, the task of

developing and optimizing multicore systems has been complicated by the concurrent

nature of multicore systems since concurrent systems can get into an exponential num-

ber of scenarios that cannot be completely analyzed. In addition to the concurrent

nature of hardware, concurrent software is also becoming common place where new

multicore software paradigms are developed to exploit the performance available in

multicore hardware.

Benchmarks are tests of computer systems including CPUs and GPUs that help

estimate performance and power consumption of a system on a workload. Computer

architects use simulation software (simulators) to model the architecture of the newly

developed systems and run benchmarks on these simulators. However, running bench-

marks on these simulators are typically many orders of magnitude slower than running

them on real machines. Hence, executing many benchmark applications on these simu-

lators will not be possible during the allowed design time due to faster time-to-market

necessitates.

One of the commonly used techniques to boost the performance of simulations is

to use synthetic benchmarks where synthetic benchmarks are a miniaturized form of

benchmarks. These benchmarks can either be derived from existing applications or be

2

generated from scratch by varying various program characteristics. Synthetic bench-

marks do not perform any useful computation, yet they can approximate characteristics

of real-life applications, hence they need to be accurate. A synthetic benchmark also

needs to be smaller and faster than the original application that it is derived from so

that it simulates faster.

The emergence of multicore systems has made parallel benchmark suites ubiqui-

tous. These new generation of benchmarks are used for early design exploration and

allow evaluating performance, power consumption, and reliability of the future parallel

computer architectures such as multicores, many-cores, accelerators, and supercomput-

ers. Some of the commonly used parallel benchmark suites are PARSEC [3], Rodinia [4],

Parboil [5], EEMBC [6], SPLASH-2 [7], and NAS Parallel Benchmarks [8]. These ex-

isting benchmark suites are big and rely on presence of shared memory architectures,

or Pthreads, OpenMP, and OpenCL libraries as well as uniform CPU Instruction Set

Architectures (ISAs). Multicore systems may not be able to use these benchmarks as

they may not support such architectures. There is a need for benchmarks suitable for

any given infrastructure, that is, SMP or message passing architectures. Furthermore,

proprietary customer codes may not be available to the hardware designer.

To meet the preceding needs, we need to develop new benchmarks but bench-

mark development process is time- and labor-intensive. In this thesis, we present a

novel synthetic benchmark generation approach for CPUs and GPUs. Our approach

helps developers and researchers focus on analyzing the synthetic benchmark results by

hiding the difficulties of the benchmark development from them. Our approach is capa-

ble of generating synthetic benchmarks that are small, fast, and they accurately mimic

the characteristics of the original applications they are generated from. They can be

used for early performance studies of multicore systems in both actual hardware and

simulation. We implemented our approach in fully automated frameworks for CPUs

and GPUs. Our fully automated synthetic benchmark generation frameworks comprise

of two main steps: (1) characterizing an application to capture its inherent character-

istics and modeling the captured application characteristics by an abstract benchmark

model, (2) generating a synthetic benchmark using the abstract benchmark model.

3

Application characteristics can be divided into microarchitecture independent

characteristics such as instruction mix, instruction level parallelism, data locality,

thread communication; or microarchitecture dependent characteristics such as branch

miss prediction and cache miss rate. In fact, significant work has been done to char-

acterize single threaded CPU benchmarks [9, 10]. Although, there has been work in

multi-threaded program characteristics such as memory level parallelism, ultimately

the synthetic CPU benchmark generated by using these characteristics is a low level

program. However, the development of synthetic CPU benchmarks demands high level

characteristics since our goal is to develop synthetic CPU benchmarks suitable for any

given infrastructure and low level characteristics simply do not allow the portability

that we require.

As a solution, we detect these high level parallel pattern characteristics in devel-

oping synthetic multicore benchmarks. Patterns, in our case, parallel patterns, help

ease the burden of parallel programming by bringing best practices to commonly occur-

ring programming challenges. Parallel patterns are high level characteristics that define

the structure of a multicore application in terms of data sharing, thread communica-

tion, general threading behaviors. They provide a way to design and create robust and

understandable parallel multicore applications rapidly. Hence, using these high level

parallel patterns in multicore benchmarks is crucial. Furthermore, detecting parallel

patterns used in applications provides performance improvements and enables many

architectural optimizations; however, this topic has not been widely studied. Nev-

ertheless, manual detection of parallel patterns is an expensive and time-consuming

task, which is becoming prohibitive with the increasing size of multi-threaded appli-

cations [11, 12]. Hence, we use machine learning techniques, which are often feasible

and cost-effective for classification [13,14], to automatically detect parallel patterns in

these applications. Specially, we implemented k-nearest neighbor, decision trees, naive

Bayes classifier, neural networks, and principal component analysis techniques for this

purpose. The characteristics that we use to capture the behavior of real GPU appli-

cations are instruction throughput, compute unit occupancy, computation-to-memory

access ratio, memory instruction mix, and memory efficiency. These characteristics are

widely used in the literature [15–19].

4

Once, we capture the characteristics of an original application, we generate a

synthetic benchmark from these characteristics. Note that we also use parallel pattern

characteristics captured from the original application in developing synthetic CPU

benchmarks. Our synthetic CPU benchmarks are in a high level programming lan-

guage, C, as opposed to assembly in earlier works. Also, they can be generated using

either Pthreads or Multicore Associations (message passing and resource management)

libraries [20]. On the other hand, the synthetic GPU benchmark consists of host (CPU)

and compute device (GPU) code and it is generated in C++ using OpenCL library. Our

synthetic benchmarks preserve all of the application-level characteristics captured from

the original application. Furthermore, to obtain high-fidelity synthetic benchmarks, we

generate thread-level synthetic CPU benchmarks where they preserve the character-

istics of individual threads by using hardware performance counter results for each

thread. We show that thread-level synthesis is more challenging than application-level

synthesis since application-level synthetics preserve aggregate characteristics whereas

thread-level synthetics preserve per thread characteristics and the behavior of each

thread impacts each other’s behavior.

1.1. Contributions

This research presents an automatic synthetic benchmark generation framework

for multicore systems including CPUs and GPUs. This thesis demonstrates that our

synthetic benchmarks are smaller and faster than the original applications that they

are derived from. That is, we show that generating synthetic benchmarks for target

applications is a good solution to speed up architectural simulation of modern CPU

and GPU architectures. Also, they are portable and human readable and they do

not compromise the proprietary nature of the original applications. That is, the syn-

thetic benchmarks have no functionality and cannot be reverse engineered to obtain

the original applications. Furthermore, we leverage software architectural patterns

in developing synthetic benchmarks for multicore CPU systems. To the best of our

knowledge, this is the first time software architectural patterns are used to benchmark

synthesis. This thesis makes the following major contributions.

5

Synthetic Benchmark Generation for Multicore CPUs (first published

in [21–23]):

• The key novelty of our approach is that we use parallel patterns in generating

synthetic multicore applications.

• We formalize parallel pattern recognition process by presenting reference behav-

iors for each parallel pattern type.

• We present an algorithm for synthetic multicore benchmark generation and de-

veloped MINIME tool.

• Our synthetics are portable since they are generated in a high level programming

language, C, as opposed to assembly in earlier works. Also, they can be generated

using either Pthreads or MCA libraries.

• We show that synthetic benchmarks are representative across a range of multicore

machines with different architectures, while being on average 21× faster and 14×

smaller than original benchmarks.

Thread-Level Synthetic Benchmarks for Multicore CPUs (first pub-

lished in [24]):

• We present an algorithm for thread-level synthetic multicore benchmark genera-

tion.

• We compare application-level and thread-level synthetic benchmark generation

results where thread-level synthetic benchmarks are more similar to the original

benchmark that they are generated from.

• We demonstrate that we can generate multi-threaded synthetic benchmarks for

real-life PARSEC and Rodinia benchmarks, while being faster (on average 147×)

and smaller (on average 11×) than originals.

Synthetic Benchmark Generation for GPUs (first published in [25]):

• We use principal component data analysis methodology to identify critical GPU

application characteristics.

6

Table 1.1. Our synthetic benchmarks.

Synthetic Benchmark

Application-level CPU Thread-level CPU GPU

Input PARSEC, Rodinia

(OpenMP), and EEMBC

MultiBench suites in C

using Pthreads

PARSEC and Rodinia

(OpenMP) suites in C

using Pthreads

AMD APP SDK

benchmarks in

C/C++ using

OpenCL

Output Synthetic benchmarks in C

using Pthreads, MCAPI or

MRAPI

Synthetic benchmarks

in C using Pthreads,

MCAPI or MRAPI

Synthetic benchmarks

in C/C++ using

OpenCL

Avg. app-level similarity 92% 93% 96%

Avg. thread-level similarity 44% 84% -

Avg. speedup 21× 147× 541×

Avg. code size reduction 14× 11× 1×

• A synthetic benchmark generation framework is proposed to generate synthetic

OpenCL benchmarks for GPUs from a given GPU application.

• We implemented our solution in MINIME-GPU tool.

• The experimental results showed that our synthetic benchmarks mimic the char-

acteristics of the original applications they are generated from across different

architectures where the average similarity is 96% and average speedup is 541×.

Using Machine Learning Techniques to Detect Parallel Patterns of

Multi-Threaded Applications (first published in [26]):

• We apply machine learning techniques in a novel approach to automatically detect

parallel patterns and we compare these techniques in terms of accuracy and speed.

• We demonstrate that k-nearest neighbor, naive Bayes classifier, and decision trees

are the most accurate techniques with a 100%, 96%, and 92% accuracy, respec-

tively.

• We show that decision trees is the fastest technique where they provide a 5.7×

average characterization speedup over the other techniques that do not use feature

selection and a 4.8× speedup over the other techniques that use feature selection.

7

Overall, Table 1.1 summarizes the synthetic benchmarks we generate in this the-

sis. In the table, we show the inputs, outputs, and experimental results including

average application-level similarity, thread-level similarity, speedup obtained in terms

of execution time, and code size reduction in lines of code going from the original

to the synthetic for our application-level CPU, thread-level CPU, and GPU synthetic

benchmarks. Note that thread-level similarity is not applicable for synthetic GPU

benchmarks and also there is no reduction in code size for synthetic GPU benchmarks

since original GPU applications are already small.

1.2. Organization

This thesis is organized as follows. We present some background information on

software architectural patterns, programming models for CPUs and GPUs, machine

learning models, and benchmarks for performance evaluation in Chapter 2. We show

how we automatically generate synthetic benchmarks for multicore CPUs in Chapter

3. Chapter 4 describes our technique for thread-level synthetic benchmark generation

for multicore CPUs. In Chapter 5, we present our synthetic benchmark generation

technique for GPUs. We give the details of the machine learning techniques we used to

detect parallel pattern of multi-threaded applications in Chapter 6. We discuss related

work in Chapter 7. We provide conclusions and directions for future work in Chapter

8.

8

2. BACKGROUND

In this chapter, we present some background information on software architectural

patterns, programming models for CPUs and GPUs, machine learning techniques, and

benchmark suites. We rely on this background information to explain our benchmark

synthesis and pattern detection techniques in the thesis.

2.1. Software Architectural Patterns

Architectural patterns are fundamental organizational descriptions of common

top-level structures observed in a group of software systems [27]. One of the most

important decisions during the design of the overall structure of a software system is the

selection of an architectural pattern. Architectural patterns allow software developers

to understand complex software systems in larger conceptual blocks and their relations,

thus reducing the adoption complexity and providing less error prone applications.

Architectural design patterns have been developed for object-oriented software

and have been found to be very useful [28]. Similarly, a parallel pattern language

which is a collection of design patterns, guiding the users through the decision process

in building a parallel system has been developed [29]. In a pattern language, patterns

are organized into a hierarchical structure so that the user can design complex systems

going through the collection of patterns. A parallel pattern language also provides

domain-specific solutions to the application designers in less time. In this thesis, we

use the term parallel pattern as synonym for parallel software architectural pattern.

There exist three classes of parallel patterns based on organization of tasks, data,

and flow of data. Figure 2.1 shows parallel patterns in a decision tree [30]. We detect

these parallel patterns as described in Chapter 6 and then we use them in benchmark

synthesis as described in Chapters 3 and 4. Each parallel pattern has unique archi-

tectural characteristics to exploit. When a work is divided among several independent

tasks, which cannot be parallelized individually, the parallel pattern employed is Task

9

Organization
type?

Tasks

Task Parallel Divide and
Conquer

Data

Geometric
Decomposition

Recursive
Data

Flow of Data

Pipeline Event‐based
Coordination

Linear Recursive Linear Recursive Regular Irregular

Figure 2.1. Parallel patterns for software.

Parallelism (TP). The independent tasks may read shared data, but they produce in-

dependent results. In Divide and Conquer (DaC), a problem is structured to be solved

in sub-problems independently, and merging the outputs later. This pattern is used

to solve many sorting, computational geometry, graph theory, and numerical prob-

lems. Divide and conquer algorithms can cause load-balancing problems when using

non-uniform sub-problems, but this can be resolved if the sub-problems can be further

reduced.

In data centric patterns, data is decomposed aligned with the set of tasks. When

the data decomposition is linear, the parallel pattern that is employed is called Geomet-

ric Decomposition (GD). In GD, data decomposition can inherently deliver a natural

load balancing process since data is partitioned into equal size. Matrix, list, and vec-

tor operations are examples of geometric decomposition. Parallel pattern used with

recursively defined data structures is called Recursive Data (RD). Graph search and

tree algorithms are example usages of recursive data.

Apart from task parallelism and data parallelism, if a series of ordered but in-

dependent computation stages need to be applied on data, where each output of a

computation becomes input of a subsequent computation, Pipeline (Pl) parallel pat-

tern is used. Each stage processes its data serially and all stages run in parallel to

increase the throughput. Event-based Coordination (EbC) parallel pattern defines a

set of tasks that run concurrently where each event triggers starting of a new task. In

10

this pattern, the interaction can take place at irregular and unpredictable intervals.

In a multi-threaded application that uses parallel patterns, generally a big prob-

lem is divided into sub-problems. In these applications, execution starts on the main

thread and the main thread creates worker threads for solving sub-problems in paral-

lel. In TP, communication is low and each thread can work on problems with different

sizes. The problem is divided into sub-problems in DaC, so the worker threads can

solve the sub-problems independently with few communications. In GD, each worker

thread works on one part of a big data with many communications. RD is similar to

GD but the big data such as a graph is not partitioned equally. In Pl, each worker

thread does some work and passes the partial result to the worker thread in the next

stage. This results in few communications between threads. When the interactions

between stages are not feed-forward, we have EbC.

The above architectural patterns capture the essence of multicore applications at

a high level. This concept has not been used in synthetic benchmark generation before

us and allows us to have portable benchmarks that preserve both high level and low

level characteristics.

2.2. Multicore Programming APIs

Multicore programming Application Programming Interfaces (APIs) reduce the

complexity involved in writing software for multicore systems. Since multicore pro-

gramming APIs standardize task management, communication, and resource sharing,

they establish portability and makes it easier to reuse the application across different

multicore platforms. Utilizing multicore programming APIs, system developers can

write portable programs that can scale throughout current and future generations of

multicore processors and architectures, benefiting application, processor and system

developers. Multicore programming APIs also allow chip vendors and third-party tool

providers to take over the resource management, so programmers can focus on high-

level applications. While generating synthetic benchmarks as described in Chapters 3

and 4, we support multiple multicore programming APIs such as POSIX, Multicore

11

Resource Management API (MRAPI), and Multicore Communication API (MCAPI).

Note that while POSIX targets general purpose computing, MCAPI and MRAPI tar-

get embedded computing for closely distributed systems. Since we generate synthetic

benchmarks for embedded systems, we use MCAPI and MRAPI apart from POSIX.

We now describe these multicore programming APIs in more detail.

POSIX API is a well-known API that defines a standard operating system in-

terface and environment to support applications portability at the source code level.

We use Pthreads library from POSIX API because Pthreads is an accepted and widely

used standard for shared memory in multicore systems. The Pthreads library is a set

of C programming language types and procedure calls. This library provides functions

for creating/destroying threads, and for coordinating threads while accessing shared

resources. Pthreads library supplies locks (mutexes, semaphores), conditions variables

to use while coordinating threads. Threads can also read/write global data as well as

shared memory.

MCAPI [20] is a message-passing API that aims to supply communication and

synchronization between closely distributed multicore embedded systems. Whereas the

Message Passing Interface (MPI) [31] supplies communication in widely distributed

systems such as computer networks and does not reflect anything about cores at the

programming level. Since we target multicore systems we use MCAPI that provides

scalable, high performance, low latency, and low overhead communication for hetero-

geneous platforms (in terms of core, interconnect, memory, operating system, software

tool-chain, and programming language). MCAPI has three fundamental communica-

tion types: connectionless datagrams for messages; connection-oriented, unidirectional,

FIFO packet streams for packet channels; and connection-oriented single-word unidirec-

tional, FIFO packet streams for scalar channels. Basic elements of the MCAPI topology

are nodes, which can be a process, a thread, or a hardware accelerator. Communication

occurs between endpoints, which are termination points and created on nodes on each

side of the communication. Both connectionless and connection-oriented communica-

tions take place between endpoints. MCAPI provides sufficient number of functional-

ities while hiding or minimizing communication overhead to get better performance.

12

MCAPI also provides source-code compatibility that allows multicore applications to

be ported from one operating environment to another.

MRAPI [20] is a resource management API that manages synchronization con-

structs such as mutexes, semaphores reader/writer locks, shared and distributed mem-

ory regions, and hardware information available at run-time called metadata in closely

distributed multicore embedded systems. Note that Pthreads library also provides

similar functionalities but Pthreads library relies on the presence of a multicore oper-

ating system. Since we target multicore embedded systems where an operating sys-

tem or Pthreads library support cannot be present, we use MRAPI in our synthetic

benchmarks. MRAPI provides the ability to declare and allocate/destroy shared mem-

ory regions and to identify nodes which have access to each region. MRAPI pro-

vides application-level synchronization primitives for coordinating concurrent access

to shared resources (homogeneous or heterogeneous cores or chips, hardware accel-

erators, memory regions). MRAPI also supports the ability to create/destroy and

manage synchronization constructs. Similar to MCAPI, MRAPI is scalable and pro-

vides source-code compatibility that allows multicore applications to be ported from

one operating environment to another.

2.3. GPUs and Programming Models

In this section, we provide a summary of the background information required to

understand benchmark characterization and synthesis for GPUs described in Chapter

5.

2.3.1. OpenCL Programming Model

Open Computing Language (OpenCL) is an open standard based upon C for

portable parallel applications across heterogeneous platforms including CPUs, GPUs,

and DSPs [32]. OpenCL provides an API to develop parallel applications using task-

based and data-based parallelism. Figure 2.2 shows OpenCL platform model [32] where

an OpenCL platform has a host connected to a number of compute devices. Note that

13

. .
.. .

.. .
.

. .
.. .

.. .
.

. .
.. .

.. .
.

. .
.. .

.
. . .

Processing
Element

Compute
Unit

Compute
Device

Host

Figure 2.2. OpenCL platform model.

Figure 2.3. OpenCL programming and memory model.

the host is the CPU that submits works to the compute devices. A compute device

consists of one or more compute units (cores) where a compute unit is composed of a

set of processing elements.

Figure 2.3 shows OpenCL programming and memory model [1]. OpenCL (pro-

gramming model) allows developing OpenCL programs, which requires developing

codes for the host side (host program) and device side (kernel program) as well. The

kernel program has parallel functions called kernels, which are the basic units of ex-

ecutable code. The host is developed in C/C++ using OpenCL API (library) and it

manages the device to execute the kernel program. When a host program invokes a

14

Chapter 7

The AMD Southern Islands GPU Model

In version 3.0, Multi2Sim introduced a model for the Evergreen family of AMD GPUs (Radeon HD
5000-series). The Northern Islands family of GPUs (Radeon HD 6000-series) did not change
significantly from the Evergreen family, with the most notable difference being a switch from 5-way
VLIW instructions to 4-way VLIW instructions. The most recent GPUs from AMD, the Southern
Islands family (Radeon HD 7000-series), constitute a dramatic change from the Evergreen and
Northern Islands GPUs. All levels of the GPU, from the ISA to the processing elements to the memory
system, have been redesigned. Thanks to continued collaboration with AMD, support for the Southern
Islands family of GPUs is introduced in Multi2Sim version 4.0.

7.1 Running an OpenCL Kernel on a Southern Islands GPU
The code execution on the GPU starts when the host program launches an OpenCL kernel. An
instance of a kernel is called an ND-Range, and is formed of work-groups, which in turn are comprised
of work-items (see Chapter 5). When the ND-Range is launched by the OpenCL driver, the
programming and execution models are mapped onto the Southern Islands GPU. Figure 7.1 shows a
high-level block diagram of the architecture of a Southern Islands GPU, matching the number of
components to the specific case of an HD Radeon 7970.
An ultra-threaded dispatcher acts as a work-group scheduler. It keeps consuming pending work-groups
from the running ND-Range, and assigns them to the compute units, as they become available. The
global memory scope accessible to the whole ND-Range corresponds to a physical global memory
hierarchy on the GPU, formed of caches and main memory (Figure 7.1a).

Figure 7.1: Simplified block diagram of the Radeon HD 7970 GPU.

89

Figure 2.4. Simplified AMD Southern Islands GPU architecture [1].

kernel, an index space called N-Dimensional Range (NDRange) that can be arranged

into 1, 2 or 3 dimensions is defined. An NDRange consists of work-items and a number

of work-items are organized into a work-group. Note that each work-item executes the

same kernel (usually on different data). OpenCL provides the notion of dimension to

define the number of work-items where global dimensions define the range of computa-

tion (whole computation space) and local dimensions define the size of the work-groups.

OpenCL memory model defines a three-level memory hierarchy for a compute device.

All work-items can access a global memory, work-items in a single work-group share a

local memory, and every work-item has a private memory (registers) that is not acces-

sible from other work-items. Note that synchronization is allowed between work-items

within a work-group and there is no synchronization between work-groups.

2.3.2. Target GPU Architecture

In this thesis, we target the most recent Advanced Micro Devices (AMD) Southern

Islands (SI) GPUs and Figure 2.4 shows a simplified diagram of this architecture [1].

In the OpenCL terminology, we denote AMD SI GPU as the compute device, SIMD

units as compute units, and SIMD lanes as processing elements. AMD SI has scalar

and vector arithmetic-logic units and also it has multiple levels of memory. An ultra-

threaded dispatcher in AMD SI schedules work-groups that are pending on the running

ND-Range. Also, wavefronts that consist of 64 work-items are created to efficiently run

the same code in a SIMD fashion.

15

2.4. Machine Learning Techniques

In this section, we provide information about machine learning techniques that we

use to detect (classify) parallel patterns of multi-threaded CPU applications as shown

in Chapter 6. Since we have predefined classes of parallel patterns as described in

Section 2.1, we use classification techniques from machine learning algorithms instead

of clustering techniques [13, 14]. Note that classification is the task to learn to assign

data to predefined classes and in clustering, no predefined classification is required and

large data sets are grouped according to their similarity. In classification, a model is

constructed from a training set and then this model is used to classify unseen new data.

Next, we briefly describe these classification techniques.

2.4.1. k-Nearest Neighbor

In k-Nearest Neighbor (kNN) [13, 14], the class of a data sample is assigned to

the class that is most common among its k nearest neighbors. If k is 1, then the data

sample is simply assigned to the class of its nearest neighbor. In general, Euclidean

Distance measure is used to calculate how close the data samples are.

2.4.2. Decision Trees

A decision tree [13, 14] is a hierarchical tree structure that is constructed from

known data samples, where an internal node of the tree denotes a test on a feature (sub-

characteristic) and a leaf node represents a class. Since there can be continuous valued

features in a data sample, these features are discretized during decision tree generation

by splitting their range into two intervals. Once the decision tree is constructed, it

is possible to use the decision tree to predict the classes of previously unseen data

samples. Decision rules that provide unique paths for the sample data to the class that

it belongs to are used to classify unseen data samples. A decision tree may overfit the

training set and this can result in poor accuracy for unseen data samples. In this case,

the tree is pruned by deleting nodes.

16

2.4.3. Naive Bayes Classifier

A naive Bayes classifier (NBC) [13, 14] is a statistical classifier that is based on

Bayes’ theorem and performs prediction of class membership probabilities. An NBC

works by using a training set that is a set of data samples already associated to a class.

Using the training set, the classifier computes for each feature (sub-characteristic) of

a data sample, the probability that a data sample belongs to each of the considered

classes. To calculate the probability that a data sample belongs to a class, the classifier

multiplies together the individual probability of each of its features in this class. The

class with the highest probability is the one the data sample is most likely to belong

to. NBC assumes that all of the features of a data sample independently contribute

to the probability that a data sample belongs to a class even if the features of a data

sample depend on each other. When there exist continuous valued features in the data

set, NBC uses probability distribution methods such as Gaussian to model continuous

values.

2.4.4. Neural Networks

Neural networks (NNW) [13, 14] are computational models that are useful for

pattern recognition and data classification. The objective of neural networks is to

transform the given inputs into the desired outputs. A neural network includes a set of

input/output units called neurons that are connected to each other and each connection

has a weight. In a neuron, each input is multiplied by a connection weight and the

products are summed. A transfer function takes the sum and generates a result for the

next layer or a final output.

Neural networks are composed of an arbitrary number of neurons with an arbi-

trary topology. Neural networks have an input layer, an output layer, and one or more

hidden layers between the input and output layers. While information travels only one

direction in feedforward (topology) networks, information travels in both directions in

feedback (topology) networks.

17

During the learning phase of a neural network, the performance of the neural net-

work, which is the difference between the predicted and the actual output, is measured

at each iteration. According to the performance of the neural network, the connection

weights are updated using a training function. Once the neural network meets the

target performance, it can predict the class label of unseen input data.

2.4.5. Principal Component Analysis with K-means

The performance of machine learning techniques can be poor, when dimensional-

ity of data is high. There can be redundant dimensions (features) that represent very

little information. Hence, reducing the number of the features can improve the per-

formance of machine learning techniques. Principal Component Analysis (PCA) [33]

is a statistical technique to find the major contributors to the variance of the data.

PCA reduces dimension of the data and projects the high dimensional data into a

low dimensional, in general, 2 or 3 dimensional, sub-space. This projection preserves

the highest variance observed in the data on the first dimension, the second highest

variance on the second dimension, and so on.

The idea is that a combination of PCA and k-means clustering [34] can be used

for data classification since the new low dimensional sub-space preserves much of the

original variance and expresses the original data. In this technique, k-means clustering

is performed on the sub-space, after generating the PCA sub-space. The k-means algo-

rithm clusters data samples based on their principal components into k partitions and

finds the centroid of each cluster of data. The algorithm calculates the distance, such

as Euclidean distance, between a data sample and the cluster centroids and assigns

the data sample to the closest cluster. Cluster centroids are then re-calculated accord-

ing to new class memberships. This process continues until no more changes in class

memberships are done. The output of the k-means algorithm is the cluster centroids

and the cluster memberships of data samples. Once the cluster centroids are found,

the class of a new unseen data can be determined by using a classification algorithm.

18

2.5. Benchmarks for Performance Evaluation

Benchmarking is one of the most important methods that is used for perfor-

mance evaluation of computer system designs [35]. In benchmarking, the execution of

the benchmark applications, which represent the real-life applications of interest, are

studied. It is crucial that the behaviors (characteristics) of the selected benchmarks ac-

curately cover the behaviors of the applications of interest as well as the target system.

For example, one needs multi-threaded benchmarks to analyze multicore systems.

A benchmark suite includes a set of benchmarks to represent a wide range of

real-life applications and targets specific systems. We perform experiments on several

benchmark suites in order to validate our techniques. Since our goal is to generate

synthetic benchmarks for multicore systems, we use parallel benchmark suites including

PARSEC [3] that targets multi-threaded applications for shared memory architectures

and Rodinia [4] that targets heterogeneous systems including GPUs. Also, note that

there exist several benchmark suites of sequential applications. For example, SPEC

CPU2006 (serial) [36] contains serial programs and does not target parallel machines

and MiBench [37] targets uniprocessor embedded systems. In this section, we describe

the characteristics of these parallel benchmark suites.

PARSEC is a well-known, open-source multi-threaded benchmark suite with fun-

damental parallelism constructs. It includes a diverse set of workloads from different

domains such as media processing or financial analysis that mimic large-scale commer-

cial workloads.

Rodinia is a benchmark suite for heterogeneous computing. To help developers

study emerging platforms including CPUs and GPUs, Rodinia covers a wide range of

parallel communication patterns, synchronization techniques, and power consumption

behaviors. The benchmarks in the suite have been parallelized with OpenMP for mul-

ticore CPUs and with the Compute Unified Device Architecture (CUDA) and OpenCL

APIs for GPUs.

19

EEMBC MultiBench [6] uses a thread-based API to establish a common pro-

gramming model and targets the evaluation of scalable SMP architectures with shared

memory. Individual benchmarks in EEMBC MultiBench target three forms of concur-

rency: data decomposition, multiple data stream processing, and processing of multiple

workloads.

2.5.1. Synthetic Benchmarks

Synthetic benchmarks are simplified artificial applications that can represent real-

life applications or benchmarks. One approach to generate synthetic benchmarks is

deriving them from existing applications and another approach is generating them by

varying application characteristics. In this approach, a synthetic benchmark is con-

structed to represent existing application characteristics (metrics) such as instruction

mix, cache miss rate, and thread communication. Once the synthetic benchmark is

generated from an original existing application, it’s accuracy (similarity) is measured

in order to validate the representativeness of the synthetic benchmark. We use the

following definitions to measure the similarity between a synthetic benchmark and the

original application that it is derived from.

Definition 2.1 (error rate). Given a similarity metric (characteristic), mt, and the

value of mt for the synthetic and original application as mtsyn and mtorg, respectively,

the error rate for mt is, errorratemt = |(mtsyn−mtorg)|/mtorg.

Definition 2.2 (individual similarity score). The individual similarity score (issmt) is

issmt = [1− errorratemt]× 100 and ranges from 0 to 100.

Definition 2.3 (overall similarity score). The overall similarity score (oss) is oss =

(issmt−1 + issmt−2 + . . . + issmt−N) / N , where N is the number of the individual

similarity scores.

20

3. SYNTHETIC BENCHMARK GENERATION FOR

MULTICORE CPUs

3.1. Overview

Multicore chips can allow higher performance at lower energy. However, devel-

opment of new multicore systems requires a large number of benchmarks. At the same

time, there is an increase in simulation runtimes of benchmarks that limits our ability

to fully explore the design space. We need to develop faster benchmarks.

In order to develop a synthetic benchmark, the first step is to characterize the

given application. Characterization consists of a description of the application by

means of quantitative parameters and functions; the objective is to derive a model

able to show, capture, and reproduce the behavior of the application and its most

important features. Application characteristics can be divided into microarchitecture

independent characteristics such as instruction mix, instruction level parallelism, data

locality, thread communication; or microarchitecture dependent characteristics such as

branch miss prediction and cache miss rate. In fact, significant work has been done

to characterize single threaded benchmarks [9, 10]. Although, there has been work in

multi-threaded program characteristics such as memory level parallelism, ultimately

the synthetic benchmark that has so far been developed in the literature is a low level

program unlike ours. The development of synthetic benchmarks for multicore systems

demands high level characteristics since our goal is to develop synthetic benchmarks

suitable for any given infrastructure and low level characteristics simply do not allow

the portability that we require.

In order to solve above limitations, we need to develop new benchmarks but

benchmark development process is time- and labor-intensive. We present a novel syn-

thetic benchmark synthesis approach using parallel patterns that addresses these lim-

itations. Synthetic benchmarks do not perform any useful computation, yet they can

21

approximate characteristics of real-life applications. These benchmarks can be gener-

ated by varying application characteristics or can be derived from existing benchmarks.

A synthetic benchmark is smaller and faster than the original benchmark that it is de-

rived from hence it simulates faster. In this chapter, we generate synthetic multicore

benchmarks that are fast, portable, and suitable for any given infrastructure.

We experimentally validate our techniques by generating synthetic multicore

benchmarks from PARSEC, Rodinia, and EEMBC benchmark suites using our MIN-

IME tool. Our synthetics can use either Pthreads or Multicore Association (MCA)

libraries [38], the latter allowing us to have infrastructure independent benchmarks.

Synthetic benchmarks are compared with the original benchmarks using similarity

metrics based on both microarchitecture dependent and independent characteristics.

We found that synthetic benchmarks using Pthreads library are similar on average 92%

to the original benchmarks and our benchmarks using MCA libraries are similar up

to 95% and on average above 86%. We also found that the synthetics that correctly

captured the parallel patterns in the originals have a high level of similarity.

We first published our results on synthetic CPU benchmark generation in [21–23].

In particular, this chapter makes the following contributions.

• The key novelty of our approach is that we use parallel patterns in generating

synthetic multicore applications.

• We formalize parallel pattern recognition process by presenting reference behav-

iors for each parallel pattern type.

• We present an algorithm for synthetic multicore benchmark generation for CPUs.

• Our synthetics are portable since they are generated in a high level programming

language, C, as opposed to assembly in earlier works. Also, they can be generated

using either Pthreads or MCA libraries.

• Our synthetics are suitable for embedded systems and can run on any given

infrastructure thanks to using MCA libraries.

• Our synthetics can act as proxies for proprietary customer applications that are

not publicly available.

22

Figure 3.1. MINIME: Pattern-aware multicore benchmark synthesizer architecture.

• We developed MINIME tool and experimentally validate our techniques on both

x86 and Power Architecture systems using PARSEC, Rodinia and EEMBC Multi-

Bench benchmark suites. Experiments show that our synthetics are similar with

the originals with respect to several metrics. They are also faster and smaller

than originals and they mimic the behavior of the original on different microar-

chitectures.

• We study the impact of input changes on the synthetics. We also perform correla-

tion studies to determine the importance of correct parallel patterns in achieving

high similarity.

• We show that synthetic benchmarks are representative across a range of multicore

machines with different architectures, while being on average 21× faster and 14×

smaller than original benchmarks.

3.2. High-level Framework

Figure 3.1 shows a high level view of our fully automated framework MINIME.

Our tool contains three main modules: benchmark characterizer, parallel pattern rec-

ognizer, and benchmark synthesizer. In benchmark characterizer module, we derive a

23

model that can capture, and reproduce the behavior of the original application and its

most important features. Then, in pattern recognizer module, we detect (recognize) the

parallel pattern of the original application from the captured characteristics. Lastly, in

benchmark synthesis module, we generate a synthetic benchmark by using the derived

model and detected parallel pattern. Next, we explain the benchmark characterizer,

parallel pattern recognizer, and benchmark synthesizer modules in detail.

3.3. Multicore Benchmark Characterization

We use both microarchitecture independent and dependent characteristics to ob-

tain characteristics of an application. These characteristics form an abstract benchmark

model. Our abstract benchmark model captures the important high level and low level

application characteristics that potentially impact an application’s performance and ar-

chitectural pattern. Note that at the cost of slightly reduced accuracy, our benchmark

model captures an application behavior with just a few microarchitecture independent

characteristics as compared to previous works [39, 40] that use a high number of such

characteristics. As can be seen in Table 3.1, we analyze multicore benchmark char-

acteristics in four groups: Data Sharing (DS), Thread Communication (TC), General

Threading (GT), and Performance, where each group also has sub-characteristics. Our

data sharing, thread communication, and general threading characteristics are similar

to [2]. We formalize them and add a new group of performance characteristics here.

While data sharing, thread communication, and general threading groups include high

level (software architectural) sub-characteristics, performance group includes low level

(non-software architectural) sub-characteristics except communication to computation

ratio. We now describe each group in more detail.

3.3.1. Data Sharing Characteristics

Sub-characteristics in the data sharing group are private, read-only, producer/-

consumer, and migratory, similar to [2, 41]. We have formalized this concept in this

thesis as follows. We use #readers and #writers to indicate the unique number of

threads that read or write the same cacheline, respectively. We use cachelines as our

24

Table 3.1. CPU benchmark characteristics.

Characteristics Sub-characteristics Level

Data Sharing

Private

High
Read-only

Producer/Consumer

Migratory

Thread

Communication

None

HighFew

Many

General

Threading

(per thread)

Program Counter (PC)

High

Dynamic instruction count

Creator thread

Creation time

Exit time

Lifetime

Performance

Instructions Per Cycle (IPC)

LowCache Miss Rate (CMR)

Branch Misprediction Rate (BMR)

Communication to Computation Ratio (CCR) High

technique uses binary instrumentation that models memory accesses per cacheline.

Definition 3.1 (private). If #readers = #writers = 1, the data has private sub-

characteristic.

Definition 3.2 (read-only). If #readers > 0 and #writers = 0, the data has read-

only sub-characteristic.

If multiple threads access the same data and at least one operation is write then

this means that the data is shared between threads. Shared can be classified into two

sub-characteristics.

Definition 3.3 (producer/consumer). If #readers > #writers, the data has produc-

er/consumer sub-characteristic.

25

Definition 3.4 (migratory). If #readers ≤ #writers, the data has migratory sub-

characteristics, where a thread reads and writes to a shared data item and this behavior

is repeated by many threads.

3.3.2. Thread Communication Characteristics

Sub-characteristics in the thread communication group are none, few, and many,

similar to [2]. We have formalized this concept in this thesis as follows. The ratio of

cachelines used for communication to all cachelines used during execution gives shared

cachelines, denoted by sharedCL. We use numTH to denote the total number of

threads during execution and commTH to denote pairwise communicating threads

and can be at most numTH2.

Definition 3.5 (none). When (commTH < numTH) and (sharedCL ≤ 0.3), thread

communication characteristic of an application is none.

Definition 3.6 (few). When (commTH = numTH) and (0.3 ≤ sharedCL ≤ 0.8),

the thread communication characteristic is few.

Definition 3.7 (many). When (commTH > numTH) and (0.8 ≤ sharedCL ≤ 1),

the thread communication characteristic is many.

We experimentally determine 0.3 and 0.8 where these values give the most accu-

rate thread communication characteristics. For example, while threads can communi-

cate in any direction in geometric decomposition, there exists a communication from

a thread in stage i to a thread in stage i + 1 in pipeline pattern.

3.3.3. General Threading Characteristics

We keep a track of the following general threading sub-characteristics for each

thread. These are Program Counter (PC), dynamic instruction count (IC), creator

thread, and creation/exit time. First, we use the program counter to indicate the start-

ing program counter of a thread. Threads with the same program counter execute the

26

same function, whereas threads with different program counters each execute a unique

function. Second, we use dynamic instruction counts of threads to decide whether

threads are balanced or not, since load balancing is important for better utilization

of multicore hardware. Third, we build a creator-child graph of threads by using the

creator thread information. To label threads in this graph, we use Pthreads [42] terms,

namely, creator thread, main thread, and worker thread. In the case of OpenMP [43]

applications, we assume that the compiled code uses Pthreads library. We label a

thread that calls the pthread create() function as the creator thread of the new

child thread. The main thread is the thread that is the first thread in the process

and runs the main() entry function. The worker thread is used to describe all threads

except for the main thread. A main thread or a worker thread can also be a creator

thread. For example, a master thread in OpenMP, which can be a main thread or a

worker thread, can create a number of worker threads that execute blocks of code in

parallel. Fourth, we collect creation and exit times of threads and calculate the lifetime

(LT) sub-characteristics of threads. Similar lifetimes can point to balanced threads,

and creation times are used to decide whether threads are created dynamically. Since

applications with the same number of instructions can have different lifetimes due to

different instruction mixes, the lifetime sub-characteristics cannot be approximated

with the dynamic instruction count.

3.3.4. Performance Characteristics

Sub-characteristics in the performance group are microarchitecture dependent

characteristics including Instructions Per Cycle (IPC), last level Cache Miss Rate

(CMR), and Branch Misprediction Rate (BMR) and microarchitecture independent

characteristics including Communication to Computation Ratio (CCR). IPC is the ra-

tio of the number of instructions retired to clock cycles. CMR is the ratio of the last

level cache demand requests that missed the last level cache to the last level cache

demand requests. BMR is the ratio of the number of mispredicted branches retired

to the number of branch instructions retired. CCR is the ratio of communication in-

structions (load and store) to the computation instructions (instructions except load

27

and store). These metrics are used commonly in the literature to assess performance

of applications.

3.3.5. Characterization Tools

We use a dynamic binary instrumentation tool, named DynamoRIO [44], which is

similar to Pin [45], for gathering above-mentioned high level characteristics during the

execution of an application. DynamoRIO is an open source run-time code manipula-

tion system that supports code transformations on any part of an application, while it

executes. We also use Umbra [46], which is an efficient and scalable memory shadowing

tool built on top of DynamoRIO. We developed our characterizer as a client of Dy-

namoRIO and Umbra. Note that our tool instruments applications at the binary level

which allows us to work with legacy/proprietary Intellectual Properties (IPs) and not

compile/link applications. Our client analyzes the data sharing pattern of the applica-

tion by observing cacheline accesses. Similarly, we use our client to determine thread

communication between threads. We dynamically build a thread communication ma-

trix during the execution of an application, where two threads are communicating if

one thread writes to a cacheline and the other one reads from the same cacheline. For

tracking general threading information, our client wraps thread creation operations, de-

tects the program counter, dynamic instruction count, creator, and creation/exit time

of each thread. We also used perf tool (Linux profiling with performance counters) [47]

to obtain microarchitecture dependent characteristics. The perf tool is a kernel-level

subsystem that provides a framework for collecting performance data. It can be used to

measure one or more hardware events including instructions, cycles, cache misses, and

branch misses. For instance, perf tool can compute the IPC from a process’s counts of

instructions and cycles.

3.4. Parallel Pattern Recognition

Once we obtain the characteristics of a given application, we use machine learning

techniques to automatically detect parallel patterns. In this chapter, we use k-Nearest

Neighbor (kNN) classification where k is 1 to decide the parallel pattern of the appli-

28

cation. In addition, we use other machine learning techniques including decision trees

and neural network to detect parallel patterns as we will describe in Chapter 6. In

kNN, there exist two steps, which are the construction of a classification model and

the usage of the model. In the first step, we use a set of reference behaviors that

capture the key characteristics that each parallel pattern exhibits in order to construct

a model that recognizes the parallel patterns described above. We use all high level

characteristics except CCR given in Table 3.1 as the key characteristics. We do not use

CCR because data sharing and thread communication characteristics implicitly cover

this information.

We describe the reference behaviors for each group of characteristics and for each

parallel pattern in Table 3.2 which is similar to the work in [2], Table 3.3, and Table

3.4. The table entries are either empty, or they contain single or multiple stars, where

the higher number of stars denote the higher likelihood of the corresponding pattern

to exhibit the sub-characteristics. For example, in Table 3.4 all sub-characteristics

are most similar for threads in an application with GD pattern. We developed our

reference behaviors for each group of characteristics by investigating the behavior of

threads for each pattern type in the literature [30]. We then experimentally validated

that these characteristics and reference behaviors are indeed observed in multi-threaded

applications for which we knew the pattern for. Note that these applications were not

used in the experiments.

In the second step, we measure the Euclidean distance between each group of

characteristics of the application and characteristics of the reference behavior defined in

the model. The scores of the parallel patterns are assigned to be inversely proportional

to the distances to the application characteristics for that group, where the highest

score is 100 (for the closest) and the lowest score is 0 (for the farthest). Hence, we

calculate data sharing score, thread communication score, and general threading score

for each type of pattern. We then sum the scores for each parallel pattern and the

parallel pattern with the highest total pattern score gives the parallel pattern of the

application.

29

Table 3.2. Data sharing reference behavior [2].

TP DaC GD RD Pl EbC

Private **** * * **** * *

Read-only *** * ***

Prod/Cons ** ****

Migratory ** *** ** **** ****

Table 3.3. Thread communication reference behavior.

TP DaC GD RD Pl EbC

None **** *** *

Few * ** * * **** ****

Many * **** ****

Table 3.4. General threading reference behavior.

TP DaC GD RD Pl EbC

PC *** ** **** ****

Dyn. Inst. Count ** * **** ** ** ***

Creator **** ** **** *** *** *

Creation Time *** * **** ** *** **

Exit Time ** *** ** *

Lifetime ** ** **** * *** **

We now give examples of parallel pattern recognition. The parallel pattern of an

application with read-only and private data sharing characteristics, and no inter-thread

communication, where threads have unique PCs, and threads are created by the same

thread at the beginning of the application is task parallel. As a real example we can

use an image recognition application in which four separate identification tasks share

the same input image data and each task is specialized to identify different objects such

as people or place in the image. An example of geometric decomposition pattern can

be an application with many producer/consumer and few migratory data sharing char-

30

Table 3.5. Algorithm to generate the code for a thread ti based on parallel pattern.

Input Thread ti, Characteristics and parallel pattern of the original application, library of the synthetic

Output Code block for thread ti

Algorithm Steps

Step Operation TP DaC GD RD Pl EbC

Step 1 Create communication objects X X X X X

Step 2 Perform initial computation operations X X

Step 3 Create child threads, if they exist in the original application X X X

Step 4 Get/Open communication objects X X X

Step 5 Begin loop, if pattern is pipeline X

Step 6 Perform initial communication operations X X X X X

Step 7 Perform internal computation operations X X X X X X

Step 8 Perform final communication operations X X X X X

Step 9 End loop, if pattern is pipeline X

Step 10 Wait for child threads, if they exist in the original application X X X

Step 11 Perform final computation operations X X

Step 12 Delete/Release/Close communication objects X X X X X

acteristics, many data dependent inter-thread communication, and balanced threads

that share the same PC and created by the main thread at the same time.

3.5. Pattern-Aware Synthetic Benchmark Generation

We iteratively generate the synthetic benchmark code in a fully automated man-

ner without any user intervention. The iterations continue until thresholds for indi-

vidual similarity scores and overall similarity score are satisfied or the user defined

threshold for the number of iterations is reached. The iterative process includes code

generation for high level metrics, similarity measurement between the original applica-

tion and the synthetic benchmark, and code generation for low level metrics based on

characteristics of the original application. Next, we describe each step in details.

3.5.1. Code Generation for High Level Metrics

The generated code consists of a main function and a function for each task

where a task can be executed by one or more worker threads that are spawned from

any thread using the pthread create() function call. We apply the algorithm given in

Table 3.5 to generate the function of each (worker) thread, ti. The characteristics,

31

hence the parallel pattern of the original application, the particular thread ti, and the

library type (Pthreads, MCAPI, or MRAPI) are given as inputs to the algorithm. The

output of the algorithm is the code block for thread ti. Each step of the algorithm

defines an operation and whether the operation in that step is performed for that

parallel pattern type (denoted by X).

We also demonstrate our algorithm on a matrix multiplication application in Sec-

tion 3.5.4 and generate the synthetic given in Figure 3.4. The synthetic is commented

with the corresponding algorithm steps. Since the parallel pattern of the matrix multi-

plication application is geometric decomposition, we perform the steps given in column

GD of Table 3.5.

• Step 1: Thread ti creates communication objects that are used for data shar-

ing. Communication objects include shared memory, semaphores, mutexes for

Pthreads/MRAPI library and endpoints, scalar/packet channels for MCAPI li-

brary. We determine these objects based on the parallel pattern type and library

used. Also, we use data sharing and thread communication characteristics of the

original application to determine the objects. For example, when we are syn-

thesizing MCAPI benchmarks, communication operations are message send/re-

ceive for geometric decomposition and recursive data patterns and packet/scalar

send/receive for pipeline and event-based coordination patterns. Similarly, a task

parallel benchmark uses barriers and a pipeline benchmark uses semaphores be-

tween stages.

• Step 2: Thread ti performs initial computation operations before splitting the

problem. For example, in divide and conquer parallel pattern, ti splits the data

into sub-partitions.

• Step 3: Thread ti creates child threads if they exist for ti in the original appli-

cation. In some parallel patterns such as divide and conquer and recursive data,

threads can be created dynamically by other threads during the execution.

• Step 4: Thread ti gets the references of communication objects created by other

worker threads at Step 1 (in case of Pthreads/MRAPI) or opens communication

32

channels (in case of MCAPI).

• Step 5: Parallel patterns except pipeline do not need to execute this step as they

do not run in a loop.

• Step 6: Since threads need to access data before performing computation on

the data, we add initial communication operations among threads according to

the thread communication characteristics, thread communication matrix, of the

original application. These operations are either read/write (in case of Pthread-

s/MRAPI) or message/packet send/receive operations (in case of MCAPI). We

decide on the type of messages and the number of operations in this step. We

also use mutex and semaphore objects in order to provide thread synchronization

and ordering. For parallel patterns except task parallel, we add communication

operations between threads that communicate in the original application.

• Step 7: After accessing the data either by reading shared memory or receiving

message(s), ti performs computation operations on this data, an increment in our

case, and generates output data.

• Step 8: Thread ti performs similar operations as done at Step 6 but this time the

output data, which is generated at Step 7, is used during communication. For

instance, in pipeline parallel pattern, ti reads/receives the data from previous

stage at Step 6, then processes the data at Step 7, and writes/sends the data to

the next stage as seen in this step.

• Step 9: For pipeline parallel pattern, this is the end point of the loop, which

begins at Step 5.

• Step 10: Thread ti waits for child thread(s) to complete if they were created at

Step 3.

• Step 11: If thread ti has child thread(s) then it performs final computation op-

erations after all threads are exited. For example, in divide and conquer parallel

pattern, this is the operation phase after joining the worker threads.

• Step 12: Thread ti deletes communication objects such as shared memory and

semaphores created at Step 1. ti also releases or closes communication objects,

which are got or opened at Step 4.

33

The synthetic benchmark preserves data sharing characteristics of the original

application by performing computation and communication operations described in

the algorithm. For example, for the synthetic matrix multiplication example, the size

of the global shared variables is calculated by using producer/consumer data sharing

characteristic of the original application. Also, every thread performs equal number

of iterations on one part of the shared data in a producer/consumer fashion according

to the thread communication characteristics of the original application. Note that

thread communication characteristics are preserved using Step 6 and Step 8. Also, we

make sure that the synthetic preserves general threading characteristics as follows. The

synthetic uses the same number of threads and each thread in the synthetic is created

by the same thread as the original. Since we perform computation operations (Step 2,

Step 7, Step 11) for each thread according to the lifetime relative to other threads, the

synthetic preserves the lifetime and dynamic instruction count of each thread. Threads

that run different functions in the original application run different functions in the

synthetic.

Since our synthetics must have the same parallel pattern as the original, our tool

first checks whether the parallel pattern of the synthetic is the same as the original.

If it is not, the problematic group of characteristics is localized and then a synthetic

with a reconfigured group of data sharing, thread communication, or general threading

characteristics is generated until the parallel pattern matches or the number of itera-

tions reaches the upper bound. For example, in order to improve thread communication

characteristics, we either add the missing inter-thread communications between threads

in the synthetic that exist in the original or remove the extra inter-thread communi-

cations that exist in the synthetic but not in the original. When we are improving

thread communication similarity, we update operations at Step 6 and Step 8. Once

the parallel pattern of the original and synthetic are the same, the synthetic preserves

all 3 groups of high level characteristics including 13 sub-characteristics.

34

3.5.2. Similarity Measurement

After the first candidate synthetic benchmark with the correct parallel pattern is

generated above, we use similarity metrics that are IPC, CMR, BMR, CCR to measure

the similarity between the synthetic benchmark and the original application. Note that

we do not use high level characteristics in similarity measurement because we make sure

that the synthetic preserves these high level characteristics as described above. We use

the individual similarity score to quantify the similarity of a synthetic benchmark and

an original application. We calculate the overall similarity score as osscpu = (issIPC +

issCMR + issBMR + issCCR) / 4.

3.5.3. Code Generation for Low Level Metrics

Once we know how to measure the similarity between the original application

and the synthetic benchmark, at each iteration, we find the metric with the lowest

individual score below the user defined threshold and improve the similarity for that

score by adding code blocks suitable for that metric. The iterations continue until

thresholds for individual and overall similarity scores are satisfied or the user defined

threshold for the number of iterations is reached.

Figure 3.2 shows the C code blocks we use to increment/decrement IPC, CMR,

and BMR. When issIPC is the lowest score, we either insert a C code block with high

(integer addition) or low (division) IPC to the main function of the candidate synthetic

benchmark. When issCMR is the lowest score and the CMR of the original is higher

than the CMR of the synthetic, then we insert a code block that includes accesses to

data that are not already cached. Otherwise, we insert a new code block where the

data that are already in cache are accessed many times. When issBMR is the lowest

score and the BMR of the original is higher than the BMR of the synthetic, then we

insert a new code block with many branch mispredictions. Otherwise, we insert a

new code block with many true branch predictions. In the case where issCCR is the

lowest score and CCR of the original is higher than CCR of the synthetic, then we

add communication operations to the synthetic. Otherwise, our code block contains

35

1 /∗∗ code b l o c k to increment IPC ∗∗/

2 for (i = 0 ; i < WORK SIZE; i++) {

3 i r e s = i 1 + i2 ; /∗ i n t i1 , i2 ; ∗/

4 }

5

6 /∗∗ code b l o c k to decrement IPC ∗∗/

7 for (i = 0 ; i < WORK SIZE; i++) {

8 dres = d1 / d2 ; /∗ doub le d1 , d2 ; ∗/

9 }

10

11 /∗∗ code b l o c k to increment CMR ∗∗/

12 for (i = 0 ; i < WORK SIZE; i++) {

13 array [rand () % ar rayS i z e] = 0 ; /∗ arrayS i ze i s l a r g e r than cache ∗/

14 }

15

16 /∗∗ code b l o c k to decrement CMR ∗∗/

17 for (i = 0 ; i < WORK SIZE; i++) {

18 for (a = 0 ; a < a r rayS i z e1 ; a++) { /∗ arraySize1 i s sma l l e r than cache ∗/

19 for (b = 0 ; b < a r rayS i z e2 ; b++) { /∗ arraySize2 i s sma l l e r than cache ∗/

20 array [a] [b] = 2 ∗ array [a] [b] ;

21 } } }

22

23 /∗∗ code b l o c k to increment BMR ∗∗/

24 for (i = 0 ; i < WORK SIZE; i++) {

25 randNum = rand () ;

26 r3 = randNum % 3 ;

27 i f (r3 == 0) { bres = b1 + b2 + (b1 / b2) ; /∗ i n t b1 , b2 , bres ; ∗/ }

28 i f (r3 == 1) { bres = b1 + b2 + (b1 / b2) ; }

29 r4 = randNum % 4 ;

30 i f (r4 == 0) { bres = b1 + b2 + (b1 / b2) ; }

31 i f (r4 == 1) { bres = b1 + b2 + (b1 / b2) ; }

32 r8 = randNum % 8 ;

33 i f (r8 == 0) { bres = b1 + b2 + (b1 / b2) ; }

34 i f (r8 == 1) { bres = b1 + b2 + (b1 / b2) ; }

35 i f (r8 == 2) { bres = b1 + b2 + (b1 / b2) ; }

36 i f (r8 == 3) { bres = b1 + b2 + (b1 / b2) ; }

37 }

38

39 /∗∗ code b l o c k to decrement BMR ∗∗/

40 for (i = 0 ; i < WORK SIZE; i++) {

41 i f (workCount >= 0) { /∗ always t rue p r ed i c t i on ∗/

42 bres = b1 + b2 + (b1 / b2) ; /∗ i n t b1 , b2 , bres ; ∗/

43 } }

Figure 3.2. Code block to increment/decrement IPC, CMR, and BMR.

36

computations but not communication operations. Note that adding a new code block

has side effects on other metrics. However, new code blocks do not affect the high

level characteristics and do not change the parallel pattern of the synthetic. Once the

appropriate code blocks are inserted into the synthetic, then we adjust WORK SIZE

given in the figure according to the IPC of the original and synthetic. When the

IPCs are close to each other, we use a small value for WORK SIZE and vice versa.

Similarly, we adjust WORK SIZE for CMR and BMR.

3.5.4. A Detailed Example of CPU Benchmark Synthesis

We demonstrate our technique on a multi-threaded matrix multiplication appli-

cation. We omit the original code and only show the synthetic in Figure 3.4. This

application has geometric decomposition behavior where each matrix is divided into 3

parts and each worker thread works on one part. Note that we observe producer/con-

sumer data sharing pattern and many thread communication pattern as expected in

geometric decomposition. The general threading characteristics show that the PCs and

creator of threads are the same because we have 3 threads created by the main thread

and all threads execute the same function. Since each thread does multiplication oper-

ations on equal size data, dynamic instruction counts of the threads are similar. Also,

since all threads are created at the beginning of the execution and their operation sizes

are similar, we have the same creation/exit times as well as similar lifetimes.

Next, we recognize the parallel pattern of the original application. Figure 3.3

shows the parallel pattern recognition scores for data sharing, thread communication,

and general threading characteristics in a Kiviat diagram. Since geometric decom-

position has the highest score in total, our algorithm recognizes the parallel pattern

correctly as geometric decomposition.

Then, we generate a miniaturized multicore synthetic benchmark for the matrix

multiplication application using the algorithm given in Table 3.5. While generating this

synthetic, we set the individual similarity score to 80 and overall similarity score to 90.

Although the initial candidate benchmark preserves all high level characteristics, and

37

Figure 3.3. Parallel patterns scores of matrix multiplication.

the parallel pattern, it has different IPC, CMR, and BMR values which are 0.75, 0.30,

and 0.40, respectively, whereas for the same performance characteristics the original

has values 2.32, 0.17, and 0.55, respectively. The initial candidate synthetic benchmark

has the following similarity scores: issIPC = 33, issCMR = 24, issBMR = 73, issCCR

= 93, osscpu = 56. Since issCMR is the lowest score, we first add a code block to

decrement CMR. In the following iterations, we add code blocks to increment IPC and

to increment BMR. After 3 iterations we meet both the individual similarity scores and

overall similarity score as follows: issIPC = 92, issCMR = 94, issBMR = 91, issCCR =

94, osscpu = 93. The IPC, CMR, and BMR values of the synthetic are 2.14, 0.18, and

0.50, respectively. We show the final synthetic in Figure 3.4. The execution times of

the original and synthetic are 0.08 and 0.02 seconds, respectively. Hence, we have a

4× speedup. We achieve large speedups for large scale applications as will be shown

in the experiments.

3.6. Synthetic Benchmark Generation for Embedded Multicore Systems

Embedded multicore systems are being deployed in many domains ranging from

medical to automotive to networks. These embedded multicore systems may not be

able to use traditional benchmarks such as PARSEC, Rodinia as well as our syn-

thetic benchmarks in Pthreads. This is because these benchmarks rely on presence

38

1 typedef struct { unsigned int t i d ; } threadData ;

2 int globAddr1 [1 2 0 0] ; /∗ g l o b a l memory : input ∗/ // Step 1

3 int globAddr2 [1 2 0 0] ; /∗ g l o b a l memory : output ∗/ // Step 1

4

5 void ∗ task0 (void ∗param) {

6 threadData∗ td = (threadData ∗) param ;

7 int input , output , op ; /∗ the v a r i a b l e s used in Step 6 , 7 , 8 ∗/

8 /∗ code b l o c k f o r worker thread 1 ∗/

9 i f (td−>t i d == 2) {

10 for (op = 0 ; op < 400 ; op++) { /∗ #opera t ions dec ided in Step 7 ∗/

11 input = globAddr1 [op] ; /∗ read from g l o b a l mem ∗/ // Step 6

12 output = input++; /∗ perform computation on input ∗/ // Step 7

13 globAddr2 [op] = output ; /∗ wr i t e to g l o b a l mem ∗/ // Step 8

14 } }

15 i f (td−>t i d == 3) {

16 for (op = 400 ; op < 800 ; op++) { /∗ #opera t ions dec ided in Step 7 ∗/

17 input = globAddr1 [op] ; /∗ read from g l o b a l mem ∗/ // Step 6

18 output = input++; /∗ perform computation on input ∗/ // Step 7

19 globAddr2 [op] = output ; /∗ wr i t e to g l o b a l mem ∗/ // Step 8

20 } }

21 i f (td−>t i d == 4) {

22 for (op = 800 ; op < 1200 ; op++) { /∗ #opera t ions dec ided in Step 7 ∗/

23 input = globAddr1 [op] ; /∗ read from g l o b a l mem ∗/ // Step 6

24 output = input++; /∗ perform computation on input ∗/ // Step 7

25 globAddr2 [op] = output ; /∗ wr i t e to g l o b a l mem ∗/ // Step 8

26 } }

27 return NULL;

28 }

29

30 int main (int argc , char ∗∗ argv) {

31 /∗ i n i t i a l i z a t i o n s ∗/

32 threadData tData [3] ; p thread t threads [3] ; int rc , t = 0 , n ;

33 /∗ code b l o c k f o r computation ∗/

34 for (n = 0 ; n < 3 ; n++, t++) { /∗ Create and run a l l the threads ∗/

35 rc = pthr ead c r ea t e (&threads [t] , NULL, task0 , (void ∗) &tData [t]) ;

36 i f (rc) {

37 f p r i n t f (s tde r r , ‘ ‘ERROR; return code from pthr ead c r ea t e () i s %d\n ’ ’ , r c) ;

38 e x i t (−1);

39 } }

40 for (t = 0 ; t < 3 ; t++) { /∗ Wait f o r a l l t hreads ∗/

41 p th r ead j o i n (threads [t] , NULL) ;

42 }

43 /∗ code b l o c k s f o r CMR, IPC , and BMR to match s im i l a r i t y ∗/

44 e x i t (0) ; /∗ g l o b a l memory i s removed au tomat i ca l l y ∗/ // Step 12

45 }

Figure 3.4. Synthetic matrix multiplication benchmark.

39

of shared memory architectures, or Pthreads, OpenMP, OpenCL libraries as well as

uniform CPU ISAs where these embedded systems may not support such architectures

or libraries. Hence, there is a need to develop benchmarks suitable for any given in-

frastructure, that is, SMP or message passing architectures, as well as benchmarks

suitable for heterogeneous embedded multicore systems. In order to address above

problems with benchmarks, we use the benchmark characteristics and software archi-

tectural patterns to develop synthetic benchmarks for embedded multicore systems

suitable for any given infrastructure. Thanks to MCAPI and MRAPI, which are two

of the standards developed by MCA [20], we target heterogeneous embedded multicore

systems. MRAPI specifies essential application-level resource management capabili-

ties to handle memory management and supply synchronization for multicore systems.

MCAPI is a lightweight message passing API that aims to supply communication and

synchronization between closely distributed embedded systems. Our framework also al-

lows to change the communication paradigm between the original and synthetic. That

is, if the original uses shared memory paradigm, the synthetic could use either shared

memory (MRAPI) or message passing (MCAPI).

Our synthetic benchmarks are synthesized as C programs with MRAPI or MCAPI

library and they preserve the microarchitecture independent and dependent behaviors.

In order to achieve this, we measure the similarity between the original workload and

the synthetic benchmark with respect to several similarity metrics. The similarity

metrics that we use are the Parallel Pattern type (PL), Thread Communication (TC)

behavior, Communication/Computation Ratio (CCR), IPC, CMR, and BMR. Many

of the microarchitecture dependent metrics have previously been used to determine

similarity but the software architectural patterns have not been used during synthesis.

We now describe how we calculate the individual similarity score for each metric.

Definition 3.8 (parallel pattern similarity score). The Parallel Pattern (PL) similarity

score is calculated by comparing first whether the original and the synthetic have the

same number of patterns, if not, a score of zero is generated. If they have the same

number of patterns then we check the ratio of the number of matching pattern types in

40

both workloads to the number of all pattern types in the original workload.

Definition 3.9 (thread communication similarity score). The Thread Communication

(TC) similarity score is calculated by comparing the communication behavior between

pairs of threads in the original workload and pairs of threads in the synthetic workload.

We calculate it as follows: (CC +NN)/(CC +CN +NC +NN). For a given pair of

threads (assuming the number of threads is the same for both workloads), if the threads

are communicating in both the original and the synthetic workloads, we increment the

integer value CC. If the threads are not communicating in both the original and the

synthetic workloads, we increment the integer value NN . If the threads are communi-

cating in the original but not in the synthetic workload, we increment the integer value

CN , and similarly we increment NC. This score gives us an accurate number in terms

of the communication behavior.

Definition 3.10 (communication to computation ratio similarity score). The Com-

munication to Computation Ratio (CCR) similarity score is the average of the error

rate of communication between the original and the synthetic workloads and the error

rate of computation between the original and the synthetic workloads.

Our synthesis flow makes sure that parallel pattern similarity score is always 100%

for our synthetic benchmarks. The similarity scores for the remaining IPC, CMR, and

BMR metrics are calculated by using individual similarity score formula. Finally, we

calculate the overall similarity score as ossemb = (issTC + issCCR + issIPC + issCMR

+ issBMR) / 5. We do not use the PL score because we make sure that the synthetic

and the original workloads have the same types of patterns.

We follow the steps given in Table 3.5 to generate synthetic embedded multicore

benchmarks. When all the steps given above are completed, a miniaturized multi-

core synthetic benchmark for embedded multicore systems is obtained. This synthetic

benchmark keeps the performance attributes of the original workload as we show in

the experimental works. Note that our framework allows changing the communica-

tion paradigm between the original and synthetic. That is, if the original uses shared

memory paradigm, the synthetic could use either shared memory (MRAPI) or message

41

Table 3.6. Multicore machine configurations.

Parameter System-I System-II System-III System-IV

#Cores 4 2x4 8 2

#Logical procs 8 2x8 8 4

DRAM 6 GB 32 GB 4 GB 4 GB

L1 I/D 32 KB, 8 way 32 KB, 4 way 32 KB, 8 way 32 KB, 8 way

L2 256 KB, 8 way 256 KB, 8 way 128 KB, 8 way 256 KB, 8 way

LLC (L3) 6 MB, 12 way 8 MB, 16 way 2 MB, 32 way 3 MB, 12 way

Branch 2-level 2-level 512-entry, 2-level

Predictor correl, 64-bit correl, 64-bit 2-bit correl, 64-bit

Architecture x86, 64-bit x86, 64-bit Power, 64-bit x86, 64-bit

Core i7 Xeon e5520 FSL, P4080ds Core i5

passing (MCAPI).

3.7. Experiments

We performed experiments to validate our benchmark characterization, pattern

recognition, and benchmark synthesis techniques. In order to show that our approach

works across different architectures and different number of cores and cache sizes, we

targeted 4 different actual multicore machines as shown in Table 3.6. During experi-

ments, Intel SpeedStep R© and Hyper-Threading technologies were enabled and threads

were not pinned to cores. We used GCC 4.6.1 for x86 64 Ubuntu Linux on System-I,

System-II, and System-IV and GCC 4.6.2 for P4080ds Linux on System-III. We com-

piled original benchmarks with default options, and synthetic benchmarks with ‘-O0’

option so that the compiler did not remove our code blocks.

We used PARSEC [3], Rodinia (OpenMP) [4], and EEMBC MultiBench [6] bench-

marks as original benchmarks and generated synthetic benchmarks that use Pthreads,

MRAPI, or MCAPI libraries. These benchmarks cover a big range of multicore bench-

marks that are available. We use EEMBC MultiBench benchmarks that are multi-

threaded and that have a single kernel. We used the test input for PARSEC, default

42

input for Rodinia, and medium input for EEMBC MultiBench.

We implemented our techniques in MINIME tool that consists of nearly 10K lines

of C code and 500 lines of Python script. Our tool and all of our benchmarks can be

downloaded from our website1 . We ran the original and synthetic benchmarks 10 times

in order to obtain similarity scores. We also set the maximum number of iterations to

40, the overall similarity score to 90%, and individual similarity scores to 80%. The

similarity scores we used are the maximum achievable scores with our framework. We

display results for synthetic benchmarks that use Pthreads library but we generated

synthetic benchmarks for MRAPI and MCAPI libraries as well and had similar results.

Also, due to compilation and binary instrumentation problems, we do not list results

for all applications in these benchmark suites.

We generated two sets of synthetics, first on x86 ISAs (specifically on System-I)

then on Power ISA. This is because each ISA has different characteristics and con-

straints that impact the behavior of a benchmark such as stack operations, ISA-specific

complex operators, and calling conventions. Furthermore, our high level character-

ization tools DynamoRIO and Umbra currently support x86 ISA, hence we devised

another technique to generate the synthetic on Power ISA. First, we generate the syn-

thetic with high level characteristics on System-I. We then start from this synthetic on

System-III and add code blocks for low level characteristics on System-III. Note that

the high level structure of the synthetic benchmark does not change going from x86 to

Power ISA.

3.7.1. Evaluation of Benchmark Synthesis

Table 3.7 shows the results of our pattern recognition and synthesis results on

System-I. In the table, we show the parallel pattern of the original benchmark found

by us through code analysis, the lines of code (LOC), and the number of iterations

(#iter) it takes to generate the synthetic benchmark. We also validated the parallel

patterns of PARSEC benchmarks from the literature since they are available. Note that

1http://depend.cmpe.boun.edu.tr/tools/minime

43

Table 3.7. Pattern recognition and synthesis results.

Original Benchmark Synthetic Benchmark

Suite Benchmark LOC Parallel Pattern LOC #iter Speedup(×) CodeSize(×) OSS

P
A

R
S

E
C

Blackscholes 1262 Task Parallel 124 2 10 10 95

Bodytrack 7696 Geometric Decomposition 403 16 11 19 90

Canneal 2794 Task Parallel 136 2 22 20 93

Dedup 7125 Pipeline 440 9 36 16 94

Facesim 20275 Task Parallel 127 5 15 159 94

Ferret 10765 Pipeline 1426 5 67 7 90

Fluidanimate 2784 Geometric Decomposition 330 2 15 8 90

Swaptions 1095 Task Parallel 144 2 13 7 91

X264 38546 Pipeline 940 12 26 41 92

R
o
d

in
ia

Kmeans 2146 Task Parallel 180 15 36 11 90

HotSpot 196 Geometric Decomposition 195 10 16 1 94

Back Propagation 478 Task Parallel 129 5 20 3 94

SRAD 495 Task Parallel 222 17 12 2 93

Breadth-First Search 125 Task Parallel 195 18 35 0 94

CFD Solver 1539 Task Parallel 243 11 10174 6 90

LU Decomposition 541 Geometric Decomposition 199 32 10 2 94

Heart Wall Tracking 2244 Task Parallel 180 16 34 12 90

Particle Filter 398 Geometric Decomposition 242 9 10 1 91

PathFinder 127 Geometric Decomposition 343 14 13 0 95

LavaMD 353 Geometric Decomposition 274 19 30 1 90

E
E

M
B

C

M
u

lt
iB

en
ch

idctrn01 655 Task Parallel 284 20 16 2 94

md5 188 Geometric Decomposition 332 10 10 0 94

ippktcheck 693 Geometric Decomposition 362 11 10 1 94

ipres 1508 Geometric Decomposition 343 36 42 4 90

rotatev2 804 Task Parallel 222 5 10 3 90

mp2decode 9089 Geometric Decomposition 622 12 11 14 93

parallel patterns of Rodinia benchmarks are not known from the literature. However,

our framework finds that Rodinia benchmarks have only task parallel and geometric

decomposition patterns. This is expected because OpenMP does not support other

patterns. That is, if the data used in OpenMP is private, then it results in task

parallel pattern, otherwise the pattern is geometric decomposition. We observe that

PARSEC and Rodinia benchmark suites do not contain all parallel patterns such as

recursive data pattern. The column Speedup(×) shows speedup obtained in terms of

execution time and the column CodeSize(×) refers to the reduction in lines of code

going from the original to the synthetic.

44

When generating synthetics, we make sure that they have exactly the same par-

allel patterns as the original benchmarks. Our synthetics have the same number of

threads as the originals, hence they are not generated for a specific number of cores.

Recognizing and generating the parallel pattern correctly is the most important step

in a synthetic because recognizing a wrong pattern can result in wrong communica-

tion and computation behaviors as well as dissimilar performance characteristics in the

synthetic. This can also result in higher number of iterations to match the synthetic

with the original one or not be able to match at all. For example, when we manually

force the parallel pattern of Ferret benchmark from PARSEC as task parallel instead

of pipeline, we obtain a synthetic with only 50% overall similarity score even after 20

iterations. However, our pattern recognizer correctly recognizes the parallel pattern as

pipeline and our synthesizer generates a synthetic in 5 iterations with 90% overall sim-

ilarity score. This observation explicitly indicates a relationship between the high level

architectural pattern and performance characteristics, which we will experimentally

show later as well.

From the table, it can also be seen that the synthetics are much smaller and faster

hence less complex than the originals leading to high simulation speeds, which is one

of the main goals of this study. The average speedup is 21× (without CFD Solver)

and the average code reduction is 14×. Note that CodeSize(×) is denoted as 0 in some

cases. This corresponds to the cases where the original code size is very small hence the

synthetic code size is larger than the original, yet the synthetic can run much faster.

The execution time of CFD Solver benchmark from Rodinia is 305.22 seconds, which

is the longest among all benchmarks and the execution time of the synthetic is 0.03

seconds. Hence, we have 10174× speedup. It is clear that when the execution time or

the code size of an original benchmark is high, we have a larger speedup or code size

reduction.

In most cases, we generate the synthetic after 20 iterations. When the value of

any characteristic of an original benchmark is too low or too high, the WORK SIZE of

the code block we add to the synthetic becomes larger. This results in high influence on

other characteristics that we try to match and managing these side effects requires more

45

Figure 3.5. Comparison of IPC between the synthetic and original benchmarks. The

synthetic generated on System-I is used on System-II and System-IV and

re-synthesized for System-III.

iterations and may result in lower similarity scores. For example, LU Decomposition

took 32 iterations because the cache miss rate of the original benchmark is very low.

Similarly, ipres took 36 iterations because the BMR of the original benchmark is very

high. Also, the execution time of the synthetic benchmark increases with the increasing

iteration size.

In the table, we show the overall similarity scores in the column OSS for System-

I where the average is 92%. The average overall similarity scores are 91%, 92%, and

90% for System-II, System-III, and System-IV, respectively. These scores show that

synthetics are above the range set by the user (90%) and have high degree of similarity

with the originals.

3.7.2. Assessing Similarity

We next compare the similarity of our synthetic benchmarks with the original

benchmarks in order to validate the accuracy of our synthetic benchmarks where we use

the similarity metrics described in Section 3.5, which are IPC, CMR, BMR, and CCR.

We calculated the error between the synthetic benchmark and the original benchmark

with respect to each of these metrics. We also present the average and maximum error

for each metric.

46

Figure 3.6. Comparison of CMR between the synthetic and the original benchmarks.

The synthetic generated on System-I is used on System-II and System-IV and

re-synthesized for System-III.

Figure 3.7. Comparison of BMR between the synthetic and the original benchmarks.

The synthetic generated on System-I is used on System-II and System-IV and

re-synthesized for System-III.

Figures 3.5, 3.6, and 3.7 compare IPC, CMR, and BMR between the synthetic

and original benchmarks, respectively, for the four systems. The average errors on

System-I are 8%, 10%, 6%, and 8% and the maximum errors are 16%, 17%, 18%, 17%

for IPC, CMR, BMR, and CCR, respectively. We also measured the similarity scores

for Instruction and Data Level 1 cache hit rates on System-I and the average errors are

1% and 5%, respectively. We obtain similar results on other systems where the average

errors for Instruction and Data Level 1 cache hit rate are smaller than 2% and 7%,

respectively. The results show that all synthetics are similar to the originals within the

bounds set by the user and are acceptable for a high level synthetic benchmark.

47

We observe that improving one individual score can worsen other scores, that is,

the added code block can have side effects. For example, at iteration 10 of ippktcheck,

issCMR and issBMR are 65 and 90, respectively. Hence, we add a code block to improve

CMR score. However, after addition of this code block at iteration 11, issCMR and

issBMR become 84 and 82, respectively. That is, BMR score is decreased. Although this

show that the addition of code blocks can have side effects, using our algorithm given

in Table 3.5, synthetics have been successfully generated for the given similarity scores.

If the user wants to obtain synthetics with much higher similarity, match instruction

mix, or match Cycles Per Instruction (CPI) stack, we can use inline assembly in our

code blocks as an alternative technique. However, this will lead to synthetics that are

not portable, hence we chose not to follow this technique.

3.7.3. Assessing Architecture Changes

We next compare hardware configuration independence (portability) of our syn-

thetics by first generating the synthetic on System-I and then executing the same

synthetic on System-II and System-IV. Note that we could not use this synthetic on

System-III as it has a different ISA as described above. When we used the synthetic

generated on System-I on System-III, high level characteristics of this synthetic such

as parallel pattern matched but low level characteristics did not match as expected.

Figure 3.5 compares the IPC between the synthetic and original benchmarks

on four systems, where the synthetic generated on System-I is used on System-II and

System-IV. We see that when the IPC of the original benchmark changes from System-

I to System-II and System-IV, the IPC of the synthetic benchmark changes similarly,

which is what we want for portability. The average IPC error on four systems is 8%,

9%, 9%, and 9% and the maximum IPC error is 16%, 14%, 16%, and 16%, respectively.

For example, the IPC of Kmeans benchmark is 1.64, 1.09, and 1.22 on System-I, System-

II, and System-IV, while the IPC of the synthetic benchmark is 1.84, 1.20, and 1.33,

respectively. The average CMR error on four systems is 10%, 10%, 8%, and 10% and

the maximum CMR error is 17%, 20%, 15%, and 17%, respectively. The average BMR

error on four systems is 6%, 7%, 10%, and 6% and the maximum BMR error is 18%,

48

Figure 3.8. IPC values of original benchmarks for small, medium, and large inputs on

System-I.

17%, 20%, and 18%, respectively. We obtain similar results for CCR and Instruction

and Data Level 1 cache hit rates. Hence, our synthetics are portable across different

hardware configurations.

3.7.4. Assessing Input Changes

We analyze the impact of input changes on characteristics of original and synthetic

benchmarks. In particular, we test whether we can use the synthetic that is generated

for a particular input size, say small, as a synthetic for other input sizes, say medium

or large. To test this claim, one can check whether the individual and overall similarity

scores are met, when the synthetic for a particular input size is used for other input

sizes. For this purpose, we run original benchmarks from PARSEC, Rodinia, and

EEMBC MultiBench with small, medium, and large inputs.

We observed that when input sizes change, individual similarity scores for high

level characteristics are met for all benchmarks but individual similarity scores for

low level characteristics are not met for some benchmarks. In particular, when we

consider all low level characteristics, we observe that for 18 of the 26 benchmarks, a

single synthetic for one input type can be used for other input sizes. We display the

IPC values of original benchmarks for small, medium, and large inputs on System-I in

Figure 3.8. From the figure, we see that for ipres benchmark, IPC values remain nearly

the same for different inputs (0.63, 0.65, and 0.63 for small, medium, and large inputs,

respectively). This is also the case for other low level characteristics of this benchmark.

49

Figure 3.9. Linear regression analysis between Data Sharing Score + Thread

Communication Score and Total Pattern Score.

Hence, we can use the same synthetic generated for one input size for different input

sizes. Whereas, for Blackscholes benchmark, IPC values change drastically (0.68,

0.95, and 1.03 for small, medium, and large inputs, respectively). Hence, we cannot

use the synthetic, say for the small input size for other input sizes, as the similarity

scores do not match.

3.7.5. Correlation between Parallel Pattern Score and Overall Similarity

Score

We ran regressions to analyze the correlation between high level characteristics

and the parallel pattern. We found that the combination of data sharing and thread

communication characteristics has the highest correlation with the parallel pattern.

Figure 3.9 shows this relationship where the correlation coefficient is 0.91.

Next, we analyze the correlation between the parallel pattern score and the overall

similarity score. In order to check this correlation, from a given original application,

we generated six synthetic benchmarks each using a different parallel pattern and only

one having the correct pattern. Note that these synthetics are obtained only after one

iteration step and no code blocks have been added for matching similarity metrics. We

then calculate the total pattern score and overall similarity score for each synthetic. We

observed that when the synthetic gets the highest total pattern score, that is, when

50

Figure 3.10. Linear regression analysis of Bodytrack for parallel pattern and overall

similarity score relation.

Figure 3.11. Linear regression analysis of ippktcheck for parallel pattern and overall

similarity score relation.

it has the correct parallel pattern, we also have the highest overall similarity score.

Figures 3.10 and 3.11 show a linear correlation between the total pattern score and

the overall similarity score for Bodytrack and ippktcheck benchmarks, respectively.

In the figure, the overall similarity score for Bodytrack is 61, when it has the correct

parallel pattern and it is between 24 and 30 for other parallel patterns. Similarly,

the overall similarity score for ippktcheck is 72 for the correct parallel pattern and

between 36 and 61 for other parallel patterns. Moreover, there exists a linear correlation

between the total pattern score and the overall similarity score. Correlation coefficient

for Bodytrack is 0.96 and it is 0.88 for ippktcheck. The average correlation coefficient

is 0.68 for all benchmarks used during experiments.

51

Table 3.8. Multicore hardware configurations.

Parameter HW1 HW2

#Cores 4 2x4

#Logical procs 8 2x8

DRAM 6 GB 32 GB

L1 I/D 32 KB, 8 way 32 KB, 4 way

L2 256 KB, 8 way 256 KB, 8 way

LLC (L3) 6 MB, 12 way 8 MB, 16 way

Branch 2-level 2-level

Predictor correl, 64-bit correl, 64-bit

Architecture x86, 64-bit x86, 64-bit

Core i7 Xeon e5520

3.7.6. Synthetic Benchmark Generation for Embedded Multicore Systems

We performed experiments to analyze the correlation (similarity) of synthetic

benchmarks for embedded multicore systems and real (original) benchmarks. In order

to show that our approach works across different number of multicores and cache sizes,

we targeted different core and cache platforms. The experiments were performed on

two hardware configurations as shown in Table 3.8. We used PARSEC [3], and Rodinia

(OpenMP) [4] benchmarks as real benchmarks and generated synthetic benchmarks in

MRAPI and MCAPI from them. We ran the original and the synthetic benchmarks 10

times in order to obtain similarity scores. We also set the number of iterations to 20,

the overall similarity score to 80% and individual similarity scores to 70%. We used

the medium input for PARSEC and default input for Rodinia.

Table 3.9 shows our benchmark synthesis results. We show the lines of code

(LOC) for the original and the synthetic benchmarks as well as the number of iter-

ations (#iter) it takes to generate the synthetic benchmark. It can be seen that the

synthetic is much smaller and less complex than the original as expected, hence lead-

ing to high simulation speeds. Also, in general, we generate the synthetic after only

a few iterations. X264 took 17 iterations because the synthetic benchmark is large in

52

Table 3.9. Benchmark synthesis results for embedded multicore systems.

Original Synthetic

Suite Benchmark LOC LOC #iter

P
A

R
S
E

C
Blackscholes 1262 116 1

Bodytrack 7696 1197 5

Canneal 2794 116 1

Dedup 7125 756 1

Facesim 20275 190 1

Ferret 10765 2722 4

Fluidanimate 2784 867 9

Swaptions 1095 189 6

X264 38546 1647 17

R
o
d
in

ia

Kmeans 2146 177 9

HotSpot 196 130 3

Back Propagation 478 130 15

SRAD 495 115 6

Breadth-First Search 125 185 8

CFD Solver 1539 189 1

LU Decomposition 541 553 5

Heart Wall Tracking 2244 177 4

Particle Filter 398 189 14

PathFinder 127 190 2

LavaMD 353 190 4

terms of lines of code as well as the number of library function calls. These result in

high influence on the metrics that we are trying to match. Furthermore, X264 has two

patterns that makes it harder to synthesize.

We next compared the similarity of our synthetic benchmarks with the real bench-

marks using both microarchitecture independent metrics such as PL, TC, and CCR as

well as microarchitecture dependent metrics such as IPC, (L1 and L2) CMR, and BMR.

53

Figure 3.12. Overall similarity scores of synthetic benchmarks from PARSEC for

MRAPI/MCAPI on HW1.

We calculated the error between the synthetic benchmark and the original benchmark

with respect to each of these metrics. We also present the average error for each metric.

The first set of experiments are performed on hardware configuration HW1.

Figures 3.12 and 3.13 compare the overall similarity scores of the synthetic bench-

marks for MRAPI and MCAPI on HW1. The average similarity score is 87% and the

minimum similarity score is 81% for MRAPI in Swaptions, x264, and Heart Wall

Tracking. The maximum similarity score for MRAPI is Dedup with 95%. The aver-

age similarity score is 86% and the minimum similarity score is 81% for MCAPI in

Swaptions, Bodytrack, and Heart Wall Tracking. The maximum similarity score

for MCAPI is 94% for Blacksholes and Back Propagation. We observe that the

synthetic and the original workloads are similar to each other over 80%, which was

what was set by the user. These scores also show the high quality of synthetics.

Figures 3.14 and 3.15 compare Thread Communication score of the synthetic

benchmarks for MRAPI and MCAPI. The average error is 4% and the maximum

error is 17% for MRAPI in Bodytrack. The average error is 2% and the maximum

54

Figure 3.13. Overall similarity scores of synthetic benchmarks from Rodinia for

MRAPI/MCAPI on HW1.

error is 10% for MCAPI in Canneal. MRAPI and MCAPI overall similarity and

thread communication scores are close to each other. They both use the same library

platform hence this is expected. Unless specified otherwise, we display results for

MRAPI synthetic benchmarks.

Figures 3.16 and 3.17 compare CCR between the synthetic and the real bench-

marks for MRAPI. The average error is 19% and the maximum error is 29% for Kmeans.

We observe that improving one metric can worsen others. Specifically, for Kmeans, we

added a C code block in order to decrease the cache miss rate, which led to an increase

in CCR error. Figures 3.18 and 3.19 compare IPC between the synthetic and the real

benchmarks. The average error is 16% and the maximum error is 30% for Particle

Filter. Figures 3.20 and 3.21 compare CMR between the synthetic and the real

benchmarks. The average error is 16% and the maximum error is 30% for Ferret, and

LU Decomposition. The reason why these synthetic benchmarks have large error is

that the real benchmarks have the smallest (0.2%) and the highest (33.7%) cache miss

rates that result in high loop counts with side effects in our synthetics. Figures 3.22

and 3.23 compare BMR between the synthetic and the real benchmarks. The average

55

Figure 3.14. Thread Communication scores of the synthetic benchmarks from

PARSEC for MRAPI and MCAPI.

Figure 3.15. Thread Communication scores of the synthetic benchmarks from

Rodinia for MRAPI and MCAPI.

56

error is 12% and the maximum error is 29% for X264. Note that the average error for

the above set of metrics is 16% and the maximum error is 30%. This is expected since

our goal is to maximize those high level metrics such as the parallel pattern and thread

communication. Even though these error results may seem high the overall score is

still above 85% on average.

We also performed experiments where we increased the user defined overall sim-

ilarity scores to 90%. We observed that the lines of code in the synthetic benchmarks

do not increase however the number of iterations goes up. Also, we are unable to reach

90% for benchmarks where the microarchitecture dependent metrics such as cache miss

rate is very low. However, there is a lot of work in the literature that develops synthetics

with these low level metrics and we plan to exploit those works in the future.

We next compare hardware configuration independence of our results by running

experiments on HW2. All of the runs on HW2 use the same synthetic benchmarks

synthesized from the HW1 configuration, not re-synthesized benchmarks. Figures 3.24

and 3.25 compare the overall similarity scores of the synthetic benchmarks for MRAPI

and MCAPI on HW2. The average similarity score is 85% and the minimum simi-

larity score is 81% for MRAPI in Swaptions, X264, and Heart Wall Tracking. The

maximum similarity score for MRAPI is 93% for Dedup and Back Propagation. The

average similarity score is 84% and the minimum similarity score is 81% for MCAPI in

Swaptions and Heart Wall Tracking. The maximum similarity score for MCAPI is

93% for Back Propagation. Figures 3.26 and 3.27 compare IPC between the synthetic

and the real benchmarks on HW2. The average error rate is 16% and the maximum

error rate is 30% for Particle Filter. We observe from HW2 results that the both

the overall similarity scores and IPC scores are independent of hardware configurations.

In other words, we observe nearly the same scores on both hardware configurations.

3.7.7. Discussion

Our techniques allow designers to use synthetic benchmarks in the early design

stage of multicore systems where benchmarks need to be run frequently on hardware

57

Figure 3.16. Comparison of CCR between the synthetic and the original benchmarks

from PARSEC.

Figure 3.17. Comparison of CCR between the synthetic and the original benchmarks

from Rodinia.

58

Figure 3.18. Comparison of IPC between the synthetic and the original benchmarks

from PARSEC for MRAPI.

Figure 3.19. Comparison of IPC between the synthetic and the original benchmarks

from Rodinia for MRAPI.

59

Figure 3.20. Comparison of CMR between the synthetic and the original benchmarks

from PARSEC.

Figure 3.21. Comparison of CMR between the synthetic and the original benchmarks

from Rodinia.

60

Figure 3.22. Comparison of BMR between the synthetic and the original benchmarks

from PARSEC.

Figure 3.23. Comparison of BMR between the synthetic and the original benchmarks

from Rodinia.

61

Figure 3.24. Overall similarity scores of synthetic benchmarks from PARSEC for

MRAPI/MCAPI on HW2.

Figure 3.25. Overall similarity scores of synthetic benchmarks from Rodinia for

MRAPI/MCAPI on HW2.

62

Figure 3.26. Comparison of IPC between the synthetic and the original benchmarks

from PARSEC on HW2.

Figure 3.27. Comparison of IPC between the synthetic and the original benchmarks

from Rodinia on HW2.

63

models, hence there is a need for high speed. However, when design matures, original

benchmarks should be used for final accurate performance evaluation. When using

synthetics for design space exploration, performance evaluation, or bottleneck identi-

fication, one should note the characteristics that are kept similar in synthetics with

respect to the originals and use synthetics for performance evaluation of such char-

acteristics. For example, our synthetics should not be used for compiler optimization

studies since our code blocks do not necessarily perform useful computation hence they

can be removed by a compiler. In addition, we do not preserve the code complexity

of an original application, hence one should not use a synthetic for code complexity

analysis. Since some applications have inherently many inputs some of which could

not be covered in the early design stage, generating different synthetics for each input

as we did in Section 3.7.4 cannot solve the input change issue. We also assume that

the application has a well-defined parallel pattern as synthetic generation is based on

parallel patterns. Hence, in order to generate simpler and accurate benchmark, one

should follow the parallel patterns completely. Note that all the benchmarks that we

used utilizes only a single parallel pattern and we are not aware of a benchmark suite

with multiple patterns.

Our experiments showed that synthetic benchmarks are portable across different

architectures including different number of processors and cache sizes. We observed

that if the number of cores or cache sizes are increased by more than 2× or decreased by

more than 0.5× from the base configuration that the synthetic was generated on, then

our synthetic may no longer be portable. This is because big changes in architectures

result in big changes in CPU stall times and cache conflicts and preserving these changes

in the synthetic benchmark requires collecting a large number of characteristics, which

is costly and results in slower synthesis process. Whereas, we capture an application’s

behaviors with just a few characteristics at the cost of potentially reduced sensitivity to

architecture changes. For example, the CMR of Ferret changes from 33.1 to 14.1 and

the CMR of the corresponding synthetic changes from 29.0 to 20.7 going from a system

with 6 MB cache to a new system with 20 MB cache (> 2× change). Although CMRs

of both the original and the synthetic decrease, the rate of decrease is not similar.

Finally, we note that the portability of a synthetic benchmark also depends on the

64

application that it is generated from. For example, if an application uses only 1 MB of

4 MB system cache, moving the application to a new system with 20 MB cache does

not break the portability of the synthetic benchmark.

3.8. Summary

We developed a fully automated framework, MINIME, capable of generating

infrastructure independent synthetic multicore benchmarks. Our main novelty comes

from using parallel patterns for generating synthetics. These high level characteristics

are essential in capturing the behavior of multicore applications such as data sharing

and thread communication. Our synthetic benchmarks are readable and portable since

they are generated in a high level programming language, C, as opposed to assembly

in earlier works. Also, they can use either Pthreads or MCA libraries. Synthetic

benchmarks are suitable for embedded multicore systems and can run on any given

infrastructure thanks to using MCA libraries.

We experimentally validated MINIME on both x86 and Power Architecture sys-

tems using PARSEC, Rodinia, and EEMBC MultiBench benchmark suites. Experi-

ments show that our synthetic benchmarks are similar with the original benchmarks

with respect to several metrics. They are also faster (on average 21×) and smaller (on

average 14×) than original benchmarks and they mimic the behavior of the original

on different microarchitectures. We performed correlation studies to determine the

importance of correct parallel patterns in achieving high similarity. We also studied

the impact of input changes on the synthetics.

65

4. THREAD-LEVEL SYNTHETIC BENCHMARKS FOR

MULTICORE CPUs

4.1. Overview

The microprocessor industry including mobile, desktop, and server platforms has

moved towards multicore architecture design. To take full advantage of multicore

CPUs, CPU applications should rely on thread-level parallelism. As a result, multi-

threaded applications have been widely used in many domains including scientific and

commercial applications. Hence, when we are generating synthetic benchmarks from

these multi-threaded applications, we need new techniques for accurate and effective

multi-threaded benchmark synthesis.

MINIME tool can generate synthetic benchmarks for multicore systems. However,

the accuracy of our synthetic benchmarks generated in Chapter 3 are lower since we

do not preserve the characteristics of individual threads in synthetic benchmarks. In

this chapter, we use hardware performance counters to keep an aggregated version of

characteristics that counts for all threads of the process rather than obtaining counts

per-thread. Based on these counter values, certain code blocks are added to the main

function of the synthetic benchmark. We call those synthetics as application-level

synthetics. In this chapter, we preserve the characteristics of individual threads in

the synthetic benchmark and implement our solution in the MINIME tool. We call

these new synthetics as thread-level synthetics. Thread-level synthetics preserve the

characteristics of individual threads by using hardware performance counter results for

each thread. Then, this accurate information is used to add code blocks per thread,

which is more challenging than in application-level synthetics, where an aggregate code

block is added to the main function only.

We exploit parallel patterns in thread-level synthetic benchmark generation as in

application-level synthetic benchmark generation. We use a new decision tree based

66

pattern recognition algorithm with lower characterization overhead and faster speed

than k-nearest neighbor based approaches used in Chapter 3.

We perform experiments using PARSEC and Rodinia benchmark suites and gen-

erate new thread-level synthetics for applications in these suites. Experiments show

that our synthetics are more accurate than application-level synthetics, where the aver-

age thread similarity score is 84% for thread-level synthetics versus 44% for application-

level synthetics. Our synthetic benchmarks are also faster (on average 147×) and

smaller (on average 11×) than the original benchmarks that they are generated from.

We first published our results on thread-level synthetic CPU benchmark genera-

tion in [24]. In particular, this chapter makes the following contributions.

• We present an algorithm for thread-level synthetic multicore benchmark genera-

tion.

• We compare application-level and thread-level synthetic benchmark generation

results where thread-level synthetic benchmarks are more similar to the original

benchmark that they are generated from.

• We demonstrate that we can generate multi-threaded synthetic benchmarks for

real-life PARSEC and Rodinia benchmarks, while being faster (on average 147×)

and smaller (on average 11×) than originals.

4.2. Thread-level Synthetic Benchmark Development Framework

Figure 4.1 shows the architecture of our MINIME (thread-level) tool, which we

adapted for thread-level synthesis. The tool has three modules, namely, benchmark

characterizer, parallel pattern classifier, and benchmark generator, where the bench-

mark characterizer captures the important characteristics for each thread of a given

original application, the parallel pattern recognizer detects the parallel pattern of the

application using the captured characteristics, and the benchmark synthesizer automat-

ically generates a thread-level synthetic benchmark using the detected parallel pattern.

In this thread-level synthesis chapter, we use decision trees technique to determine the

67Framework

11

Benchmark Characterizer

Parallel Pattern Classification

Original Multicore Benchmark

Synthetic Benchmark

Similar to the original?Similar to the original?

Synthetic Multicore Benchmark in
MCAPI/MRAPI/Pthreads

Yes

No

Benchmark Generation

Type of Parallel Pattern

Characteristics

For each thread

For each thread

For each thread

Figure 4.1. MINIME (thread-level): multi-threaded benchmark development

framework.

parallel pattern of a given application. We describe this technique in the experiments

section. We will now explain benchmark characterizer and benchmark generator com-

ponents.

4.2.1. Benchmark Characterizer

The benchmark characterizer module collects characteristics of the original ap-

plication using a combination of dynamic binary instrumentation and performance

monitoring counters as we described in Chapter 3. In the previous version of MIN-

IME, we use Linux perf tools [47] to query hardware performance counters at the

application level. Application level characterization cannot capture all characteristics

of multi-threaded applications because threads share hardware resources such as pro-

cessor, last level cache and characteristics of each thread impact the performance of

multicore applications. Thread-level characterization is crucial for developers and re-

searchers to develop efficient multicore hardware and software. Therefore, there is a

need for a new type of thread-level characterization of multi-threaded applications.

In order to add support for thread-level characteristics collection, we add sup-

port for PapiEx tool [48] in this chapter. PapiEx is a command line utility to measure

per-thread and application level hardware performance counters with Performance Ap-

68

plication Programming Interface (PAPI) [49]. We collect instructions per cycle (IPC),

cache miss rate (CMR), and branch misprediction rate (BMR) characteristics with

PapiEx per thread. These are the most commonly used performance counters in the

literature.

We use the same characteristics described in Chapter 3 except thread commu-

nication. Now, we describe thread communication characteristics where we use Ratio

of Communicating Threads (RCT) and Ratio of Communication Volume (RCV) sub-

characteristics. These sub-characteristics are derived using the total number of threads,

the number of communicating threads, the total number of cachelines used, and the

number of cachelines used in communication. We say that two threads communicate

if one thread reads a cacheline written by the other thread.

Definition 4.1 (ratio of communicating threads). Ratio of Communicating Threads

(RCT) is (the number of communicating threads / the total number of threads).

Definition 4.2 (ratio of communication volume). Ratio of Communication Volume

(RCV) is (the number of cachelines used in communication / the total number of

cachelines used)

4.2.2. Benchmark Generator

The benchmark generator module generates a multi-threaded synthetic bench-

mark using the parallel pattern type of the application and the performance counter val-

ues as described above. However, thread-level synthesis process differs from application-

level process as follows. Benchmark generator works iteratively and improves the sim-

ilarity between the behaviors of the original and synthetic threads at each iteration

until a given threshold is reached. During each iteration, code blocks are added for

each thread for the performance counter values that are not similar starting from the

most dissimilar ones. At the end of the iterations, each thread in the synthetic bench-

mark preserves performance characteristics of the corresponding thread in the original

multi-threaded benchmark leading to accurate synthetics.

69

1 /∗ code b l o c k to increment IPC ∗/

2 for (i = 0 ; i < WORK SIZE; i++) {

3 i r e s = i 1 + i2 ; /∗ i n t i1 , i2 ; ∗/

4 }

5

6 /∗ code b l o c k to decrement IPC ∗/

7 for (i = 0 ; i < WORK SIZE; i++) {

8 td r e s = d1 / d2 ; /∗ doub le d1 , d2 ; ∗/

9 }

Figure 4.2. Code block to increment/decrement IPC.

We now define formally our similarity metrics for each of the IPC, CMR, and

BMR characteristics. We calculate iss IPC, iss CMR, and iss BMR by using indi-

vidual similarity score formula. We define thread similarity score (tssi) for each thread

i in a benchmark as follows.

Definition 4.3 (thread similarity score). tssi = (iss IPCi + iss CMRi + iss BMRi)

/ 3, where iss IPCi is the IPC similarity of thread i, iss CMRi is the CMR similarity

of thread i, and iss BMRi is the BMR similarity of thread i.

Similarly, we define average thread similarity score (atss) as follows.

Definition 4.4 (average thread similarity score). Given n threads, atss = (tss1+ . . .+

tssn)/n.

In Chapter 3, we define the overall similarity score, which is an application-level

similarity score, as ossapp = (iss IPC + iss CMR + iss BMR) / 3. As we will show

in the next section, having a high ossapp value does not mean having high tss values.

Whereas, having a high tss value not only implies having a high ossapp value but also

a more accurate synthetic.

At each iteration, we check whether every thread’s similarity score meets a user

defined tss. If not, then for each thread we find the metric with the minimum score.

For example, if the minimum score is for IPC, then we insert a code block as shown

70

Figure 4.3. Characteristics of Blackscholes benchmark and its application-level

synthetic.

Figure 4.4. Characteristics of Blackscholes benchmark and its thread-level

synthetic.

in Figure 4.2 either to increment or decrement IPC of synthetic benchmark. Similarly,

we add code blocks for CMR and BMR metrics.

4.3. Application-level versus Thread-level Synthetic Benchmarks

In this section, we show the advantage of using thread-level synthetic benchmarks

over application-level benchmarks using the Blackscholes benchmark from PARSEC

benchmark suite. The application has 4 threads.

In Figure 4.3, we show the IPC, CMR, BMR performance characteristics of the

original Blackscholes benchmark (denoted by org IPC, org CMR, org BMR) and

71

the application-level synthetic of Blackscholes (denoted by syn IPC, syn CMR,

syn BMR), respectively.

In application-level synthetic, aggregate values of performance counters are col-

lected during characterization and these values are preserved in the synthetic bench-

mark by adding code block to the main function. That is, although application-level

performance characteristics are preserved (as seen in the plot denoted by Application),

performances characteristics of each thread is not preserved and show huge differences.

For example, while CMR of Thread 1 of the original benchmark org CMR is 3.7,

CMR of Thread 1 of the synthetic benchmark syn CMR is 13.6. This demonstrates

that application-level similarity generates inaccurate synthetics and does not preserve

thread-level behaviors

Figure 4.4 shows the performance characteristics of the original Blackscholes

benchmark and thread-level synthetic of Blackscholes. During thread-level synthesis,

values of performance counters are collected for each thread individually and these

values are preserved in the synthetic benchmark by adding code blocks to the function

of each thread. We now see that thread-level similarity not only provides accurate

synthetics by preserving the behavior of each original thread in the synthetic but it also

preserves the overall behavior of the original application (application-level behavior)

as well.

The advantages of using our new thread-level synthetic benchmark generation

technique over our application-level synthetic benchmark generation technique are as

follows. Our new technique generates more similar (accurate) synthetic benchmarks in

terms of thread-level and application-level. Also, our new technique generates faster

synthetic benchmarks compared to our technique described in Chapter 3 as will be

shown in the experiments. On the other hand, using our new technique over our

technique described in Chapter 3 has some potential downsides. Since we add code

blocks to each thread instead of adding them only to the main thread as we do in

Chapter 3, our thread-level synthetic benchmarks can be larger than our application-

level synthetic benchmarks in terms of lines of code. Similarly, generating thread-level

72

Table 4.1. Multicore machine configuration.

Parameter System

#Cores 4

DRAM 6 GB

L1 I/D 32 KB, 8 way

L2 256 KB, 8 way

LLC (L3) 6 MB, 12 way

Branch Predictor 2-level correl, 64-bit

Architecture x86, Core i7 64-bit

synthetic benchmarks requires more iterations because collecting and preserving per

thread characteristic is more costly.

4.4. Experiments

We performed experiments to validate our thread-level synthetic generation tech-

nique implemented in MINIME (thread-level) tool. The tool and the benchmark results

can be downloaded from our website2 .

Table 3.6 shows the details of the multicore machine configuration where we ran

our experiments. Our multicore machine uses an Intel i7 processor with 4 cores and

6MB cache. Intel SpeedStep R© and Hyper-Threading technologies were enabled and

threads were not pinned to cores during our experiments. As the compiler tool set,

we use GCC 4.6.1 for x86 64 Ubuntu Linux. We compile original benchmarks with

default options, and we use ‘-O0’ option for synthetic benchmarks. This is because we

generate code blocks for synthetic benchmarks in C and enabling optimizations can

result in removing these code blocks.

We used PARSEC [3] and Rodinia (OpenMP) [4] benchmarks as original bench-

marks and generated synthetic benchmarks that use POSIX Pthreads, MRAPI, or

2http://depend.cmpe.boun.edu.tr/tools/minime

73

Table 4.2. Benchmark characteristics and pattern classification results.

Original Benchmark

Suite Benchmark LOC #wThreads Known Classified

P
A

R
S
E

C

Blackscholes 1262 8 TP TP

Bodytrack 7696 9 GD GD

Canneal 2794 4 TP GD

Dedup 7125 8 Pl Pl

Facesim 20275 5 TP TP

Ferret 10765 18 Pl Pl

Fluidanimate 2784 4 GD GD

Swaptions 1095 4 TP TP

X264 38546 15 Pl Pl

R
o
d
in

ia

Kmeans 2146 3 TP TP

HotSpot 196 3 GD GD

Back Propagation 478 7 TP TP

SRAD 495 1 TP TP

Breadth-First Search 125 3 TP TP

CFD Solver 1539 7 TP GD

LU Decomposition 541 3 GD GD

Heart Wall Tracking 2244 3 TP TP

Particle Filter 398 7 GD GD

PathFinder 127 3 GD GD

LavaMD 353 3 GD GD

MCAPI parallel libraries. We used the simmedium input for PARSEC and default

input for Rodinia. For each benchmark, we ran the original and the synthetic bench-

marks 10 times in order to obtain characteristics. We also set tssi to 80% for each

thread and iteration threshold to 100.

Table 4.2 shows benchmark characteristics and our pattern classification results.

The column Known shows the pattern of the benchmark known from the literature

74

Table 4.3. Thread-level synthetic benchmark generation results.

Original Benchmark Application-level Thread-level

Suite Benchmark #iter LOC Speedup(×) atss #iter LOC Speedup(×) atss

P
A

R
S
E

C

Blackscholes 2 124 10 24 50 431 21 89

Bodytrack 16 403 11 28 74 728 127 82

Canneal 2 136 22 76 25 409 78 82

Dedup 9 440 36 61 60 613 11 85

Facesim 5 127 15 30 98 250 475 83

Ferret 5 1426 67 18 81 1222 344 80

Fluidanimate 2 330 15 43 16 368 18 82

Swaptions 2 144 13 66 100 306 146 84

X264 12 940 26 60 80 553 20 80

R
o
d
in

ia

Kmeans 15 180 36 39 36 245 778 85

HotSpot 10 195 16 57 49 220 22 81

Back Propagation 5 129 20 56 42 547 15 83

SRAD 17 222 12 59 32 104 66 81

Breadth-First Search 18 195 35 23 85 263 180 87

CFD Solver 11 243 10174 37 93 352 2593 91

LU Decomposition 32 199 10 38 94 138 21 81

Heart Wall Tracking 16 180 34 33 45 286 114 89

Particle Filter 9 242 10 30 80 476 125 84

PathFinder 14 343 13 61 88 551 27 85

LavaMD 19 274 30 37 23 230 206 83

and column Classified shows the pattern of the benchmark we classified. We show the

number of the worker threads (#wThreads) in original benchmarks which will be kept

the same in synthetic benchmarks. The lines of code is denoted by (LOC).

Table 4.3 shows our thread-level synthetic benchmarks that use POSIX Pthreads

API. We also generated synthetic benchmarks that use MCAPI and MRAPI APIs and

obtained similar results. We also show results for application-level benchmarks from

Chapter 3 for comparison purposes. In the table, we show the number of iterations

(#iter) it takes to generate the synthetic benchmark with the required target similarity

percentage. The column Speedup(×) shows the speedup in terms of running time and

the column atss shows the average thread similarity score for the given benchmark.

75

Figure 4.5. Characteristics of Blackscholes benchmark and thread-level synthetic of

Blackscholes with 8 threads.

On average, we generate the synthetic benchmark that satisfies the target score

in 63 iterations. It takes more iterations when performance characteristics of a thread

is too low or too high such as the BMR of Swaptions is 10% which leads to high

influence between threads. We have maximum 2593× speedup in CFD Solver since

the running time of original benchmark is longer (337.15 seconds) than the others.

The average speedup is 147× without CFD Solver and it is 269× with CFD Solver.

This demonstrates that we have large speedup values when the running time of orig-

inal application is high. Similarly, the code size is reduced in synthetics. We have

maximum 81× reduction in lines of code for Facesim and on average we have 11×

code size reduction. Since there is no code for communication in task parallel synthetic

benchmarks, their code sizes are smaller than other synthetics.

In Figure 4.5, we show the microarchitecture dependent characteristics of original

Blackscholes benchmark and thread-level synthetic of Blackscholes with 8 threads.

In the figure, for each thread we show IPC, CMR, and BMR of original and synthetic

benchmark. tsss of threads are 85, 95, 93, 93, 89, 88, 85, and 86, respectively. The

average thread similarity score (atss) of Blackscholes benchmark is 89. Our tech-

nique is applicable for arbitrary number of the threads for example the results for

Blackscholes with 4 threads was shown in Figure 4.4. Next, we show the detailed

similarity scores for all benchmarks.

In Figure 4.6, we give average tsss for all benchmarks and we show the minimum

and maximum tsss as error bars. The maximum atss is 91 in CFD Solver and the av-

76

Figure 4.6. Average, maximum, and minimum thread similarity scores of all

thread-level synthetic benchmarks.

erage of all atsss is 84. The minimum atss is 80 in Ferret and X264. This is because

the original benchmarks have very high BMR (7.6%) values compared to other bench-

marks and converging benchmarks with very high or low values of microarchitecture

dependent characteristics is harder than others. The figure shows that threads in the

synthetic and the original benchmarks are similar to each other over 80%, which was

set by the user. Currently, 80% is the threshold we set for atss since a higher value is

not possible with the code blocks that we generate. This can be improved if we employ

low level code blocks such as assembly but since this will prevent our code from being

portable we decided not to pursue this route. In any case, the obtained results show

the high quality of thread-level synthetics generated by our automated framework

We now compare our new thread-level synthetic benchmarks with our previous

application-level synthetic benchmarks. We use the average thread similarity score of

both types of synthetic benchmarks for comparison. We ran our new characterizer on

the application-level synthetics that are generated in Chapter 3 in order to collect their

thread-level characteristics. Figure 4.7 shows our results. It is clear from the figure

that thread-level synthetics have much better average thread similarity score (84% on

average) than application-level synthetics (44% on average). Hence, the accuracy of

our new thread-level synthetic benchmarks is much better than earlier application-level

synthetic benchmarks.

77

Figure 4.7. Comparison of average thread similarity scores for application-level and

thread-level synthetic of all benchmarks.

4.4.1. Decision tree based parallel pattern recognition

In this section, we describe an automated way of recognizing parallel patterns

described in Section 4.2. There exist several machine learning techniques for data

classification in the literature. Each technique has advantages and disadvantages. For

example, classification with decision trees is memory efficient and fast compared to

the memory intensive kNN. We use a parallel pattern recognition technique using the

k-nearest neighbor (kNN) technique in Chapter 3 where we use 12 characteristics with

an accuracy of 100%. Given the advantages of decision trees, we want to improve the

performance of our parallel pattern recognition technique. As we will experimentally

show, the decision tree technique requires fewer number of characteristics compared

to the kNN technique. Hence, characterization overhead of the decision tree technique

is lower and it runs faster. We describe the details of using decision trees for pattern

recognition in Chapter 6.

We show the parallel pattern classification results of our decision tree in column

Known of Table 4.2. Our decision tree correctly classifies 18 of the 20 benchmarks in

the test set with a 90% accuracy. Hence, the accuracy of our decision tree is high.

We define the characterization overhead as the ratio of the running time of a multi-

threaded application to the un-instrumented running time of the same application.

78

Similarly, we define the speed as the amount of time needed for an algorithm to perform

learning and classification. The characterization overhead is 3.5×, since we use only

four sub-characteristics for classification instead of twelve and the speed is 0.01 seconds.

Whereas, for our pattern recognition results with kNN technique the characterization

overhead is 20.2×, since we use all 12 characteristics and the speed is 0.04 seconds.

4.5. Summary

We describe a new thread-level synthetic benchmark generation framework that

generates synthetic benchmarks from the benchmarks given in an existing benchmark

suite. Our synthetics not only preserve the performance behaviors of individual threads

in existing benchmarks unlike earlier works but they are much faster (average 147×

speedup) and smaller (average 11× reduction) than originals. Our thread-level syn-

thetics have also better accuracy than the earlier application-level synthetics. We also

developed a new decision tree based parallel pattern recognition technique that is faster

than kNN parallel pattern recognition technique.

79

5. SYNTHETIC BENCHMARK GENERATION FOR

GPUs

5.1. Overview

GPUs have become increasingly a popular platform for data parallel applications

thanks to their high parallel throughput and high memory bandwidth. GPUs present

high performance but they require optimizations to achieve this high performance. In

addition, GPU applications demonstrate different characteristics from CPU applica-

tions since GPUs have significantly different architectures from CPUs. Hence, in early

design exploration of GPUs, it is important to have GPU specific benchmarks that have

similar performance characteristics with the applications that will run on the GPU.

We present a novel synthetic benchmark generation approach for GPUs. Our

approach is capable of generating synthetic benchmarks that are small, fast, and they

accurately mimic the characteristics of the original applications they are generated

from. They can be used for early performance studies of GPUs in both actual hardware

and simulation. As described in [50], CPU simulation acceleration techniques such

as sampling and statistical simulation cannot be easily applied to GPUs since each

thread in a GPU application executes a small number of instructions compared to

CPU applications. Our approach helps developers and researchers focus on analyzing

the synthetic benchmark results by hiding the difficulties of benchmark development

from them.

Our fully automated synthetic benchmark generation approach comprises of two

steps: (1) characterizing a GPU application to capture its inherent characteristics and

modeling the captured application characteristics into an abstract benchmark model,

(2) generating a synthetic GPU benchmark using the abstract benchmark model. We

generate our synthetic benchmarks using OpenCL [32], which is a framework for devel-

oping applications that run across heterogeneous platforms consisting of CPUs, GPUs,

80

and DSPs.

During benchmark characterization, unique behaviors of an application of interest

are captured as a set of quantifiable abstract characteristics. Accurate synthetic bench-

mark generation requires a sufficient number of characteristics to capture and model

the behaviors of an existing application. The characteristics that we use to capture the

behavior of a GPU application are instruction throughput, compute unit occupancy,

computation-to-memory access ratio, memory instruction mix, and memory efficiency.

In other words, we speed up GPU architectural simulation by generating synthetic

benchmarks from existing benchmarks that mimic these characteristics. These charac-

teristics are widely used in the literature [15–19]. We also apply principal component

analysis to find the most important characteristics. Once we characterize and model the

original application as an abstract benchmark model, we generate a synthetic bench-

mark from this model. The synthetic benchmark consists of host (CPU) and compute

device (GPU) code and it is generated in C++ using OpenCL library. Our synthetic

benchmarks preserve all of the characteristics captured from the original application

and they can be executed either on a simulator or a target platform.

Our fully automated benchmark synthesis framework for GPUs is called MINIME-

GPU and we experimentally validate the efficiency of our approach using our frame-

work. MINIME-GPU is an extension of our tool MINIME targeting synthetic CPU

benchmark generation. During the experiments, we use Multi2Sim [1] simulator to

collect the characteristics of GPU applications. We generated synthetic benchmarks

from AMD benchmark suite [51] for AMD Southern Islands GPUs [52] that are avail-

able with Multi2Sim distribution [1]. The experimental results show that our synthetic

benchmarks mimic the characteristics of the original applications they are derived from

where the average similarity is 96% and average speedup is 541×. We also experimen-

tally validate that our synthetic benchmarks mimic the behaviors of the originals across

different architectures on both the Multi2Sim simulator as well as on real GPU hard-

ware. Furthermore, they are human readable and cannot be reverse engineered to

create the original code or algorithms.

81MINIME-GPU: Multicore Benchmark
Development Framework

11

Benchmark Characterizer

Original GPU Application

Synthetic Benchmark
(Host and Kernel Program)

Similar to the original?Similar to the original?

GPU Benchmark in OpenCL

Yes

No, improve the
similarity for the least
similar characteristic

Benchmark Synthesizer

Instruction throughput,
Computation-to-memory
access ratio,
Memory instruction mix,
Memory efficiency,
Compute unit occupancy

OpenCL
Library

Benchmark Characterizer

Characteristics

Fe
ed

ba
ck

:
Ch

ar
ac

te
ris

tic
s

&
 S

im
ila

rit
ie

s

similarity for a characteristic ch =
[1 - errorratech] × 100 where
errorratech = |(chsyn - chorg)| / chorg

Figure 5.1. MINIME-GPU: multicore benchmark synthesizer for GPUs.

We first published our results on synthetic GPU benchmark generation in [25].

In summary, this chapter makes the following contributions.

• We use principal component data analysis methodology to identify critical GPU

application characteristics.

• A synthetic benchmark generation framework is proposed and implemented to

generate synthetic OpenCL benchmarks for GPUs from a given GPU application.

• Our synthetic GPU benchmarks are portable, human readable, smaller, and faster

than the original applications that they are generated from.

• Our synthetic GPU benchmarks do not compromise the proprietary nature of

the original applications since one cannot obtain the original application from

our synthetic benchmarks by reverse engineering.

• The experimental results showed that our synthetic benchmarks mimic the char-

acteristics of the original applications they are generated from across different

architectures where the average similarity is 96% and average speedup is 541×.

5.2. High-level Framework

Figure 5.1 shows our fully automated high-level benchmark synthesis framework

for GPUs, called MINIME-GPU. Our framework contains two main modules: bench-

82

mark characterizer and benchmark synthesizer. Benchmark characterizer captures the

characteristics of a GPU application and generates an abstract GPU benchmark model

from these characteristics. Benchmark synthesizer, firstly, generates a candidate syn-

thetic GPU benchmark from generated abstract benchmark model. Then, benchmark

synthesizer iteratively calculates the similarity between the original application and

synthetic benchmark and improves the similarity by generating new synthetic bench-

marks. This approach is similar with the MINIME framework proposed in Chapter

3 for multicore CPU benchmark synthesis. However, this approach differs from the

MINIME by targeting GPU architectures, using GPU specific characteristics and gen-

erating synthetic benchmarks using OpenCL library. We further discuss this in the

related work section. Note that in this chapter, we generate synthetic benchmarks

that only preserve the characteristics of kernel programs, that is, we do not mimic the

characteristics of host programs as in [50]. This is because we target the GPU ap-

plications in which the whole solution of the problem is implemented on the compute

device side. Also, we are not aware of a benchmark suite in which some parts of a

problem are solved on the host side and the other parts are solved on the compute

device side. In any case, for such CPU/GPU benchmarks, we can use MINIME (CPU)

to generate synthetic benchmarks for host programs and MINIME-GPU to generate

synthetic GPU benchmarks for kernel programs.

5.3. Benchmark Characterization

When generating a synthetic benchmark, the efficacy of benchmark characteri-

zation to capture the behaviors of an original application is crucial. This is because

only the behaviors captured from the original application can be preserved in the corre-

sponding synthetic benchmark. Hence, we design a benchmark model to cover the most

crucial characteristics that capture the major behaviors of a GPU application. In our

model, we use instruction throughput, computation-to-memory access ratio, memory

instruction mix, memory efficiency, and compute unit occupancy characteristics. Note

that we also use these characteristics to determine program similarity as we show in

Section 5.4. These characteristics are widely used in the literature and they effectively

83

Table 5.1. GPU benchmark characteristics.

Group Characteristics

Instruction throughput Instruction per cycle (IPC)

Computation-to-memory access Computation-to-memory access ratio (CMAR)

Dynamic memory instruction mix

Private memory ratio

Local memory ratio

Global memory ratio

Memory efficiency
Memory coalescing

Hit ratio

Compute unit occupancy

Work-items per work-group

Registers per work-item

Local memory per work-group

Number of (in-flight) wavefronts

capture the behaviors of GPU applications [15–19]. Also, we validate the effectiveness

of these characteristics using Principal Component Analysis (PCA) as shown in the

experiments section.

Now, we describe each characteristic shown in Table 5.1 in detail.

• Instruction throughput represents the total throughput of an application and we

use instruction per cycle (IPC) to measure it.

• Computation-to-memory access ratio (CMAR) is the ratio of computations (the

number of scalar, vector, and branch instructions) to memory accesses (the num-

ber of private, local, and global memory operations). We use this characteristic to

determine if an application is compute-insensitive or memory-insensitive, where

a higher CMAR indicates a compute-insensitive application and a lower CMAR

indicates a memory-insensitive application.

• Dynamic memory instruction mix is the distribution of memory instruction types

that are executed. We use private, local, and global memory ratios to de-

84

termine the memory instruction mix. We measure private memory ratio as the

number of private memory instructions executed divide by the total number of

memory instructions executed. Similarly, we calculate local and global memory

ratios. These characteristics are crucial for performance because different mem-

ory instructions have different throughputs. For example, a higher global memory

ratio can result in poor performance and scalability.

• Memory efficiency is measured by using memory coalescing and hit ratio. Mem-

ory coalescing refers to combining multiple memory accesses into a single com-

bined access. Since fewer requests result in less contention to global memory,

a high ratio of coalesced memory accesses improves application performance.

Hence, memory coalescing can be the first optimization to consider in which

memory bandwidth usage is reduced. Note that the maximum memory coalesc-

ing can be 1 when all accesses are coalesced and the minimum memory coalescing

can be 0 when there is no coalesced access. Also, we measure hit ratio for caches,

TLBs, and main memory, which is the number of hits divided by the number of

accesses. Similarly, a higher hit ratio results in a high performance and the hit

ratio ranges from 0 to 1.

• Compute unit occupancy refers to the utilization of the computation resources

(wavefronts) of a compute unit on a GPU. Work-items per work-group (work-

group size), registers per work-item, and local memory per work-group

limit the number of (in-flight) wavefronts per compute unit. Note that a

higher compute unit occupancy indicates a higher utilization of computation re-

sources. In order to mimic the compute unit occupancy behavior of an original

application, we need to capture these characteristics.

During the characterization of a GPU application, we analyze the final executable

binary files instead of analyzing the source code. Hence, we do not need the source code

of an original application, hence our approach can work on proprietary applications.

85

1 Benchmark syn () {

2 /∗ Constructor : I n i t i a l i z e c l a s s member v a r i a b l e s . ∗/

3 }

4

5 int setup () {

6 /∗ Perform a l l benchmark se tup ∗/

7 setupBenchmark syn () ; /∗ Al l o ca t e and i n i t i a l i z e hos t memory . ∗/

8 setupCL () ; /∗ Perform OpenCL r e l a t e d i n i t i a l i z a t i o n s :

9 ∗ crea t e kerne l0 from synthe t i cKerne l0 , c rea t e context , command queue , e t c . ∗/

10 }

11

12 int runCLKernels0 () {

13 /∗ Set va lue s f o r ke rne l ’ s arguments , enqueue c a l l s to the kerne l ,

14 ∗ and wait u n t i l the ke rne l execu t ion i s completed . ∗/

15 setWorkGroupSize0 () ; /∗ Set the work−group s i z e ∗/

16 }

17

18 int run () {

19 /∗ Run OpenCL kerne l program(s) . ∗/

20 runCLKernels0 () ; /∗ run kerne l0 crea ted in setupCL func t ion . ∗/

21 }

22

23 int cleanup () {

24 /∗ Cleanup OpenCL API (context , memory bu f f e r , e t c .) resources and

25 ∗ program (input / output memory , e t c .) resources . ∗/

26 }

27

28 int main (int argc , char ∗ argv []) {

29 Benchmark syn clBenchmark syn ; // Create a s yn t h e t i c benchmark o b j e c t

30 clBenchmark syn . setup ; // Setup

31 clBenchmark syn . run () ; // Run

32 clBenchmark syn . c leanup () ; // Cleanup

33 }

Figure 5.2. Host program of a synthetic benchmark.

1 /∗ matrixA and matrixB are inpu t s and matrixC i s output . ∗/

2 k e r n e l void synthe t i cKerne l 0 (g l o b a l f l o a t 4 ∗matrixA , g l o b a l f l o a t 4 ∗matrixB ,

3 g l o b a l f l o a t 4 ∗matrixC , u int widthA , u int widthB , l o c a l f l o a t 4 ∗blockA)

4 {

5 /∗ Code b l o c k s to improve the s im i l a r i t i e s o f c h a r a c t e r i s t i c s .

6 ∗ For example , code b l o c k to decrement IPC or to increment memory coa l e s c in g ∗/

7 }

Figure 5.3. Kernel program of a synthetic benchmark.

86

5.4. Benchmark Generation

In this section, we elaborate on how we generate a synthetic benchmark from

the captured characteristics of an original application, that is the abstract benchmark

model. The generated synthetic benchmark consists of a host program and a kernel

program. We show the host program with its basic functions in Figure 5.2 and the ker-

nel program in Figure 5.3. The host program has a main function and other functions

to setup and run OpenCL kernel(s). In the main function, first, we create a (C++)

synthetic benchmark object by using the class constructor and then perform setup,

run, and cleanup operations on this object, respectively. In the setup function, we

adjust the width and the height of inputs/outputs and then allocate and initialize host

memory. We then create OpenCL constructs including context, device list, command

queue, and memory buffers. Note that, we create the OpenCL program construct by

using offline compilation mechanism in which we build the kernel program executable

offline and then load the binary at runtime. In the run function, we execute all kernel

program(s) each corresponding to a kernel in the original application. In the runCLK-

ernels0 function, we set values for the kernel’s arguments including inputs, outputs,

and sizes such as height and width, enqueue calls to the kernel by using the command

queue, and wait until the kernel execution is completed. In the setWorkGroupSize0

function, we set the work-group size (work-items per work-group) based on the char-

acteristic of the original application. Lastly, in the cleanup function, we remove the

allocated/created resources including memory, context, and memory buffer.

The kernel program in Figure 5.3 has two inputs (matrixA and matrixB) and an

output (matrixC) matrix where matrices can be 1- or 2-dimensional depending on the

input/output dimensions of the original application. Also, if a local memory is used

by the original application, we define and use a local memory (blockA) in the synthetic

application. An important feature of our thesis is the code blocks inserted into the

kernel to mimic the characteristics of the original application. Next, we describe how

we calculate the similarity between an original application and the synthetic benchmark

before we elaborate on code blocks.

87

5.4.1. Similarity Measurement

From the list of characteristics shown in Table 5.1, we use IPC, CMAR, private,

local, and global memory ratio, memory coalescing, and local memory per work-group

characteristics to calculate the similarity (accuracy) between a synthetic and the orig-

inal benchmark. We do not use the number of in-flight wavefronts and work-items per

work-group because we make sure that a synthetic benchmark has the same values

for the number of kernels, the number of work dimensions, global sizes, local sizes,

work-items per work-group, and the number of in-flight wavefronts. We also do not

use registers per work-item characteristic since due to a bug in Multi2Sim, we can

collect this characteristic for all original benchmarks that are available with Multi2Sim

distribution but not for synthetic benchmarks that we create. Finally, although we

do not use the hit ratio characteristic in similarity calculation, the synthetic bench-

marks preserve this characteristic as we will show in the experiments. This is because

characteristics such as global memory ratio and memory coalescing implicitly capture

(mimic) this characteristic.

We use the individual similarity score to assess the similarity of a synthetic bench-

mark and an original application. We calculate the overall similarity score as ossgpu

= (issIPC + issCMAR + issprivateMemoryRatio + isslocalMemoryRatio + issglobalMemoryRatio

+ issmemoryCoalescing + isslocalMemoryPerWorkgroup) / 7. Thresholds for individual and

overall similarity scores are given by the user.

5.4.2. Code (Block) Generation

After we measure the similarity between the original application and the corre-

sponding synthetic benchmark, if the individual and overall similarity scores meet the

individual and overall thresholds defined by the user, the synthesis process is com-

pleted. Note that our code blocks do not contain instruction set architecture (ISA)

specific assembly instructions, as was done in earlier synthetic benchmark generation

works, since they break portability. Also, we compile our synthetic benchmarks with

‘-O0’ option so that the compiler did not remove our code blocks. Otherwise we start

88

1 /∗ CB1: Code b l o c k to increment IPC ∗/

2 int i p c I ;

3 for (i p c I = 0 ; i p c I < 1 ; i p c I++)

4 matrixC [0] = 1 . 2 ;

5

6 /∗ CB2. 1 : Code b l o c k to decrement IPC used i f (candIPC − origIPC) > 9 ∗/

7 int xValue = g e t g l o b a l i d (0) ; int yValue = g e t g l o b a l i d (1) ;

8 f l o a t 4 ipc1 = matrixA [yValue ∗ widthA + xValue] ;

9 matrixA [0] = ipc1 ;

10

11 /∗ CB2. 2 : Code b l o c k to decrement IPC used o therwi se ∗/

12 f loat ipc1 = 1 , ipc2 = 2 ;

13 for (i = 0 ; i < LOOPCOUNT; i++) { // LOOPCOUNT i s v a r i a b l e

14 matrixA [i ∗ 4 + 1] = ipc1 + ipc2 ;

15 mem fence (CLKGLOBALMEMFENCE) ;

16 }

17

18 /∗ CB3: Code b l o c k to increment CMAR ∗/

19 f l o a t 4 cmar1 = matrixA [0] ;

20 matrixC [0] = cmar1 + cmar1 ; // the number o f cmar1 in sum operat ion can change

21

22 /∗ CB4: Code b l o c k to decrement CMAR ∗/

23 f l o a t 4 cmar1 , cmar2 ;

24 int cmari ;

25 for (cmari = 0 ; cmari < LOOPCOUNT; cmari++) { // LOOPCOUNT i s v a r i a b l e

26 cmar1 = cmar1 + cmar2 ;

27 }

28 matrixC [0] = cmar1 ;

Figure 5.4. Sample code blocks to increment/decrement the values of kernel program

(instruction throughput and computation-to-memory access) characteristics.

89

1 /∗ CB5. 1 : Code b l o c k to increment p r i v a t e memory r a t i o

2 ∗ used i f #i n s t r u c t i o n s o f o r i g i n a l a pp l i c a t i on <= 500 ∗/

3 f l o a t 4 pmr1 , pmr2 ; matrixC [0] = pmr1 + pmr2 ;

4

5 /∗ CB5. 2 : Code b l o c k to increment p r i v a t e memory r a t i o used o therwi se ∗/

6 f l o a t 4 pmr1 = matrixA [0] ; f l o a t 4 pmr2 = matrixB [0] ;

7 matrixC [0] = pmr1 + pmr2 ;

8

9 /∗ CB6: Code b l o c k to increment g l o b a l memory r a t i o ∗/

10 for (i = 0 ; i < LOOPCOUNT; i++) { // LOOPCOUNT i s v a r i a b l e

11 matrixC [i] = matrixA [i] + matrixB [i] ;

12 }

13

14 /∗ CB7: Code b l o c k to decrement g l o b a l memory r a t i o ∗/

15 f l o a t 4 gmr1 = matrixA [0] ;

16 f l o a t 4 gmr2 = gmr1 + 2 ; f l o a t 4 gmr3 = gmr2 + 2 ;

17 f l o a t 4 gmr4 = gmr3 + 2 ; matrixC [1] = gmr4 ;

18

19 /∗ CB8. 1 : Code b l o c k to increment memory coa l e s c in g used i f origMcol > 0.7 ∗/

20 matrixC [0] = blockA [0] ; // blockA i s a l l o c a t e d from l o c a l memory

21

22 /∗ CB8. 2 : Code b l o c k to increment memory coa l e s c in g used o therwi se ∗/

23 s i z e t t i d = STRIDE ∗ g e t g l o b a l i d (0) ; // STRIDE i s v a r i a b l e .

24 // i f origMcol > 0 .4 , STRIDE i s 2 ; e l s e i f origMcol > 0 .1 , STRIDE i s 3 ;

25 // otherwise , STRIDE i s 4 .

26 i f (t i d < 32) {

27 blockA [t i d] = 1 . 2 ;

28 matrixC [0] = blockA [t i d] ;

29 }

30

31 /∗ CB9: Code b l o c k to increment or decrement l o c a l memory per work−group ∗/

32 l o c a l f loat l o c a l d s [LOCAL MEM SIZE] ; // LOCAL MEM SIZE i s v a r i a b l e

Figure 5.5. Sample code blocks to increment/decrement the values of kernel program

(dynamic memory instruction mix, memory efficiency, and compute unit occupancy)

characteristics.

90

iterations, where at each iteration, we add, remove, or change a code block for the

characteristic that has the least similarity with the original application in the kernel

code. Figures 5.4 and 5.5 show sample code blocks, which we experimentally obtained,

to increment/decrement the values of characteristics. Now we explain each of these

code blocks.

Code blocks to mimic instruction throughput: For example, when the

IPC of an original application is higher than the IPC of the synthetic benchmark, we

add CB1, which has instructions with high IPC. We have two different code blocks

(CB2.1 and CB2.2) to decrement IPC where we use CB2.1, if the IPC of the synthetic

benchmark minus the IPC of the original application is greater than 9. Otherwise, we

use CB2.2. Note that both CB2.1 and C2.2 have instructions with low IPC.

Code blocks to mimic computation-to-memory access: We use CB3 to

increment CMAR where there exist many computation instructions and a few memory

access instructions. In the code block, the number of cmar1 used in sum operation (ma-

trixC[0] = cmar1 + ... + cmar1) can change depending on the CMAR of the original

application. For example, if CMAR of an original application is around 0.80, the num-

ber of cmar1 used in sum operation is 1, that is matrixC[0] = cmar1, and if CMAR of

an original application is around 0.44, the number of cmar1 used in sum operation is 2,

that is matrixC[0] = cmar1 + cmar1. Note that we experimentally characterized code

blocks and fond the specific values such as 0.80 and 0.44. Although we experimentally

validate these values on AMD GPUs, these characteristics are platform independent as

will be shown in the experiments. Similarly, we use CB4 to decrement CMAR where

there exist many memory access instructions and a few computation instructions. In

the code block, the number of iterations (LOOP COUNT) is a variable and depends

on the CMAR of the original application. In order to find LOOP COUNT, we initialize

it as 1 and then increment it until we meet the CMAR similarity between the original

and synthetic.

Code blocks to mimic dynamic memory instruction mix: We use code

blocks CB5.1 and CB5.2 in which we perform operations on private memories to in-

91

crement private memory ratio. If the number of instructions of an original application

is less than or equal to 500 instructions, we use CB5.1, otherwise, we use CB5.2 that

has more instructions than CB5.1. Hence, using CB5.1 provides higher speedups for

small applications since it has less number of instructions and using CB5.2 provides

a higher private memory ratio since it has more private memory instructions. Note

that the value 500 for the number of instructions is experimentally obtained, that

is, when we use CB5.2 in the synthetics for original applications with less than 500

instructions instead of CB5.1, we observe that the synthetics can be slower than the

corresponding originals, which is something that we do not want. We use CB6 in which

there exist memory operations on global memories such as matrixA, matrixB, and ma-

trixC to increment global memory ratio. In the code block, the number of iterations

(LOOP COUNT) can vary depending on the global memory ratio of the original ap-

plication. In CB7, we perform memory operations on private memories to decrement

global memory ratio of the synthetic benchmark. In this code block, we define a num-

ber of private memories (gmr1, gmr2, ..., gmrN) where the number is chosen high if

the difference between the global memory ratios of the original and synthetic is high,

otherwise the number is chosen low.

Code blocks to mimic memory efficiency: We have two different code blocks,

CB8.1 and CB8.2, to increment memory coalescing of a synthetic benchmark. If the

memory coalescing of an original benchmark is greater than 0.7, we use CB8.1; other-

wise, we use CB8.2. In CB8.2, STRIDE is variable and if the memory coalescing of

an original benchmark is greater than 0.4, STRIDE is 2; else if it is greater than 0.1,

STRIDE is 3; otherwise, STRIDE is 4. In CB8.1, each work-item accesses the same

memory location (blockA), hence we have high memory coalescing. On the other hand,

in CB8.2, each work-item accesses strided memory locations where stride lengths are

2, 3, and 4, hence they have lower memory coalescing.

Code blocks to mimic compute unit occupancy: We use CB9 to increment

or decrement local memory per work-group characteristic of a synthetic benchmark.

In this code block, we define a local memory (localds) that has the same size (LO-

CAL MEM SIZE) with the local memory used in the original application.

92

1 k e r n e l void s yn t h e t i cKe r n e l l o c a l 0 (g l o b a l f l o a t 4 ∗matrixA ,

2 g l o b a l f l o a t 4 ∗matrixB , g l o b a l f l o a t 4 ∗matrixC ,

3 u int widthA , u int widthB , l o c a l f l o a t 4 ∗blockA)

4 {

5 /∗ CB3: Code b l o c k to decrement CMAR ∗/

6 f l o a t 4 cmar1 , cmar2 ;

7 int cmari ;

8 for (cmari = 0 ; cmari < 8 ; cmari++) {

9 cmar1 = cmar1 + cmar2 ;

10 }

11 matrixC [0] = cmar1 ;

12

13 /∗ CB5. 2 : Code b l o c k to increment p r i v a t e memory r a t i o ∗/

14 f l o a t 4 pmr1 = matrixA [0] ;

15 f l o a t 4 pmr2 = matrixB [0] ;

16 matrixC [0] = pmr1 + pmr2 ;

17

18 /∗ CB8. 1 : Code b l o c k to increment memory coa l e s c in g ∗/

19 matrixC [0] = blockA [0] ;

20 }

Figure 5.6. Synthetic benchmark (kernel program) for QuasiRandomSequence.

We continue until the iteration upper bound set by the user is reached or the

individual and overall similarity scores are satisfied.

5.4.3. A Detailed Example of GPU Benchmark Synthesis

We demonstrate our approach on a GPU benchmark QuasiRandomSequence from

AMD APP SDK where we set the overall similarity rate threshold as 90% and the in-

dividual similarity score threshold as 60%. Figure 5.6 shows the final synthetic bench-

mark where it takes 11 iterations to obtain 98% overall similarity score. The individual

similarity scores except CMAR are 100% and the CMAR similarity score is 88%. The

speedup defined as the ratio of the GPU simulation time of the original application

to the GPU simulation time of the corresponding synthetic benchmark is 6.6×. For

the initial synthetic benchmark, the overall similarity score is 57% and each one of

CMAR, private memory ratio, and memory coalescing similarity scores are the lowest

(0%). Hence, during iterations we add (CB3, CB5.2, and CB8.1) code blocks shown

93

in the figure to obtain the final synthetic benchmark. Specifically, for CB3, we set

LOOP COUNT as 1 initially and then update it until we mimic the CMAR of the

original application, where it becomes 8. We use CB5.2 to increment private memory

ratio because the number of instructions of QuasiRandomSequence, which is 32288,

is more than 500. Since the memory coalescing of QuasiRandomSequence, which is

0.98, is larger than 0.7, we use CB8.1 to mimic the memory coalescing characteris-

tic of the original application. We observe that adding more code blocks decreases

speedup as expected, that is, the initial synthetic benchmark is faster than the final

one. This indicates that decreasing similarity thresholds can result in faster synthetic

benchmarks.

5.5. Experiments

We performed several experiments to validate our GPU synthetic benchmark

generation framework MINIME-GPU. MINIME-GPU and all of our benchmarks can

be downloaded from our website3 . We set the overall similarity score threshold as

90%, the individual similarity score threshold as 60%, and iteration upper bound to

20. These similarity scores are the maximum achievable scores with our framework.

Note that we performed all experiments using Multi2Sim except the real hardware

experiments in Section 5.5.5.

Table 5.2 shows the platforms that we run our experiments on. Unless other-

wise specified we perform all experiments except the ones in the assessing architecture

changes section on AMD HD 7970 GPU platform. Note that we target AMD SI GPUs

because the current version of Multi2Sim simulator does not fully support other GPU

models (AMD Evergreen GPU and NVIDIA Fermi GPU). However, in principle, our

approach can be applied to other GPUs as well. In the next section, we give details

for benchmarks and tools we used.

3http://depend.cmpe.boun.edu.tr/tools/minimegpu

94

Table 5.2. GPU architectural configurations.

Platform Compute Unit Memory Hierarchy

Device

Compute

Units

(CUs)

Processing

Elements

per CU

Register

file size

per CU

Local

memory

size per

CU

Global

memory

size

HD 7970 32 64 256KB 64KB 3GB

HD 7870 20 64 256KB 64KB 2GB

HD 7850 16 64 256KB 64KB 2GB

HD 7770 10 64 256KB 64KB 1GB

HD 7870d 20 64 64KB 16KB 2GB

HD 7850d 16 64 128KB 32KB 2GB

HD 7770d 10 64 512KB 128KB 1GB

5.5.1. Simulation and Benchmarks

We performed experiments on a system running Ubuntu Linux 12.04 x64. We use

Multi2Sim simulator 4.2, which is a cycle based detailed simulation framework for CPU-

GPU heterogeneous computing, to run original applications and synthetic benchmarks.

Multi2Sim is a fully configurable open source simulator that supports several CPU

and GPU architectures such as x86 CPU and AMD Southern Islands GPU. Since we

cannot gather all of the characteristics we described above with default Multi2Sim tool,

we have added new extensions to the tool to gather our missing characteristics. For

example, we capture and dump work dimension and global/local size characteristics

in order to mimic work-items per work-group characteristic. Target architectures can

be configured via configuration files and a user can create a new configure file or can

select an existing one depending on the target platform. We also use the integrated

Multi2C, the kernel compiler, to produce kernel binaries for synthetic benchmarks.

Note that we only use the AMD Southern Islands architecture in the experiments

since Multi2C fails to generate AMD Evergreen architecture binaries for synthetic

benchmarks. We produce host binaries for synthetic benchmarks using GCC 4.6.3. We

95

0.32

0.49

0.66
0.77

0.84
0.90 0.94 0.97 0.99 1 1

0

0.2

0.4

0.6

0.8

1

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

V
ar
ia
n
ce

Principal Component

Figure 5.7. Principal components and their variance.

use AMD Catalyst 13.20 driver and AMD APP SDK v2.9 with OpenCL 1.2 during

generation of synthetic benchmarks. We compiled synthetic benchmarks with ‘-O0’

option so that the compiler did not remove our code blocks. Hence, our synthetic

benchmarks cannot be used in compiler optimization studies.

We run experiments on all 23 benchmarks from AMD APP SDK 2.5 provided

with Multi2Sim. These are the only GPU benchmarks that run on Multi2Sim. We

used default (medium) inputs to generate synthetic benchmarks. We also used small

and large inputs to assess input dependence of synthetic benchmarks. Note that we

cannot use benchmarks from other benchmark suites including Rodinia [4] and Parboil

[5] because they are not supported by the current distribution of Multi2Sim. Once

Multi2Sim supports collecting characteristics of benchmarks from these suites, we are

planning to extend our experiments on these suites.

5.5.2. Applying PCA to Validate the Importance of Characteristics

After the characterization of an original GPU application, we gather a set of

characteristics and generate a data set. It is important that each characteristic in this

data set contributes to the behavior of the application. Hence, we perform PCA statis-

tical analysis [33] on all original benchmarks for all (eleven) characteristics described

above to select the most suitable characteristics for benchmark generation. We use

MATLAB [53] and appropriate libraries to implement PCA.

96

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

IP
C

C
M
A
R

P
ri
va
te
 m

e
m
o
ry
 r
at
io

Lo
ca
l m

e
m
o
ry
 r
at
io

G
lo
b
al
 m

e
m
o
ry
 r
at
io

M
e
m
o
ry
 c
o
al
es
ci
n
g

H
it
 r
at
io

W
o
rk
‐i
te
m
s
p
e
r
w
o
rk
‐

gr
o
u
p

R
e
gi
st
e
rs
 p
e
r
w
o
rk
‐

it
e
m

Lo
ca
l m

em
o
ry
 p
er

w
o
rk
‐g
ro
u
p

N
u
m
b
e
r
o
f
(i
n
‐f
lig
h
t)

w
av
e
fr
o
n
ts

C
o
rr
el
a
ti
o
n

Characteristic

PC1

PC2

PC3

Figure 5.8. PCA loadings with respect to each characteristic.

Typically, most of the variance is contained in the first two or three principal

components (PCs). However, in our case, we need to use the first seven PCs that

capture more than 90% of the total variance of our data set as shown in Figure 5.7.

We show factor loadings for the first three (PCs) in Figure 5.8. We use only the first

three PCs since they capture nearly 70% of the total variance of our data set and the

other PCs capture a small amount of the total variance. Note that a factor loading

closer to -1 or +1 indicates a higher influence on the principal component. We observe

that instruction throughput, memory instruction mix, and memory efficiency have the

highest correlation with PC1, compute unit occupancy and computation-to-memory

access ratio have the highest correlation with PC2, and compute unit occupancy has

the highest correlation with PC3. These correlations validate that each characteristic

we gather is important to describe the behaviors of an application.

5.5.3. Synthetic Benchmark Generation Results

Table 5.3 shows our synthetic benchmark generation results on AMD HD 7970

GPU platform. In the table, we show dwarf type [54] and the number of instructions

(#OrgInst) for each original application (benchmark). Note that a dwarf defines an

algorithmic method that captures computations and communication patterns of an

application. Hence, benchmarks with different dwarfs have different behaviors and we

validate that our approach can work on a diverse set of applications. We denote the

number of iterations that it takes to generate a synthetic benchmark by #iter. In

many cases, we generate synthetic benchmarks in less than 10 iterations where the

97

0

5

10

15

20

25

IP
C

Benchmark

Original

Synthetic

Figure 5.9. Comparison of IPC between the synthetic and original benchmarks.

maximum number of iterations is 15 for MatrixTranspose. We use Speedup(×) to

denote the ratio of the GPU simulation time of the original application to the GPU

simulation time of the corresponding synthetic benchmark. On average, our approach

speeds up GPU simulation by a factor of 513×, 539×, 550×and 567× for HD 7970, HD

7870, HD 7850, and HD 7770 platforms, respectively. The harmonic mean speedup is

541×. The minimum speedup is 1.1× for URNG, and the maximum speedup is 7284.8×

for EigenValue. We observe that obtaining a higher speedup for small applications

is difficult because they are already fast with a small number of instructions. Also,

when an original application has a characteristic with a very low or high value, the

size of our code blocks increase, hence we have a low speedup value. For example,

CMAR of original MersenneTwister is very low (0.2) and we add CB4 to decrement

CMAR of the synthetic benchmark where LOOP COUNT is 27. Since we have a high

LOOP COUNT value, the dynamic instruction count of the synthetic is also high,

which results in a low speedup. Furthermore, when the work-group count of a synthetic

benchmark, which is the total number of work-groups executed, is high the number

of instructions is also high, hence, the speedup is low. For example, SobelFilter

and URNG have 1024 and 4096 work-groups and their speedups are 1.3× and 1.1×,

respectively. In the table, we show the overall similarity score (in the column OSS) for

each benchmark where the average overall similarity score is 96%, the minimum overall

similarity score is 92% for URNG and the maximum overall similarity score is 100% for

EigenValue and MatrixMultiplication.

98

Table 5.3. Synthesis results on AMD HD 7970 platform.

Benchmark Dwarf #OrgIns #iter Speedup(×) OSS

BinarySearch Graph Traversal 128 2 2.8 95

BinomialOption Dense Linear Algebra 1984512 4 516.2 95

BitonicSort Graph Traversal 1267200 4 44.5 95

BlackScholes Sparse Linear Algebra 1139712 8 3.4 94

DCT Spectral Methods 20672 9 3.6 96

DwtHaar1D Spectral Methods 2113 10 1.4 97

EigenValue Spectral Methods 19826681 6 7284.8 100

FastWalshTransform Dense Linear Algebra 4000 4 8.0 99

FFT Spectral Methods 1316 8 14.1 98

FloydWarshall Dynamic Programming 11046882 2 280.9 90

Histogram Structured Grids 334912 3 190.1 96

MatrixMultiplication Sparse Linear Algebra 8000 6 11.1 100

MatrixTranspose Dense Linear Algebra 3392 15 1.2 96

MersenneTwister Combinational Logic 1347584 8 4.0 94

PrefixSum Dense Linear Algebra 1341 10 2.6 97

QuasiRandomSequence Combinational Logic 32288 11 6.6 98

RadixSort Graph Traversal 39488 3 2244.0 99

RecursiveGaussian Dense Linear Algebra 1606368 10 1159.0 99

Reduction Dense Linear Algebra 714 7 4.3 95

ScanLargeArrays Backtrack & Branch+Bound 3688 5 8.3 93

SimpleConvolution Structured Grids 17900 6 2.0 94

SobelFilter Dense Linear Algebra 1297944 7 1.3 93

URNG Structured Grids 2146304 11 1.1 92

5.5.4. Assessing Similarity

Now, we demonstrate individual similarity scores for each characteristic. Fig-

ure 5.9 shows IPCs for the synthetic and original benchmarks where the average IPC

similarity score is 91%, the minimum IPC similarity score is 60% for only three bench-

marks and the maximum IPC similarity score is 100% for sixteen benchmarks. Note

that Multi2Sim captures IPC values as integer values and rounds them down to 0 when

they are smaller than 1. In the figure, the IPCs of BlackScholes and its correspond-

ing synthetic benchmark are 15 and 21, respectively, hence the IPC similarity score

99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

M
em

o
ry
 C
o
a
le
sc
in
g

Benchmark

Original

Synthetic

Figure 5.10. Comparison of memory coalescing between the synthetic and original

benchmarks.

is 60%. We observe that once we add code blocks that increment private memory

ratio and decrement CMAR of the synthetic, we meet the overall (90%) and individual

(60%) similarity score thresholds. We perform a new experiment in which we set the

individual similarity score threshold to 80% to check whether we can improve the IPC

similarity for BlackScholes. In this case, we observe that adding a code block to im-

prove IPC similarity has a side effect on CMAR similarity and decreases it. We observe

that the similarity score thresholds (90% and 60%) are the maximum achievable scores

with our framework due to side effects and we are planning to handle these side effects

as a future work. Due to side effects, the original and the synthetic benchmark can di-

verge and there is no systematic bias for similarity scores of the synthetic benchmarks.

Note that handling side effects in C is harder than handling them in assembly.

Figure 5.10 shows memory efficiencies for the synthetic and original benchmarks

where the average memory coalescing similarity score is 94%, the minimum memory

coalescing similarity score is 69% for only one benchmark and the maximum memory

coalescing similarity score is 100% for twelve benchmarks. We display the results for

IPC and memory coalescing but we had similar results for other characteristics as well.

5.5.5. Validation of Synthetic Benchmarks on Real Hardware

In this section, we validate the robustness of the synthetic benchmarks generated

on the simulator platform by running them and the original applications on an actual

hardware and checking their similarity. In these experiments, we use the source code

of the synthetic benchmarks that are generated on the simulator for AMD HD 7970

100

GPU and run these synthetic benchmarks on a real AMD HD 7950 GPU hardware

(without re-generation). AMD HD 7950 GPU is similar to 7970 GPU except that it

has 28 compute units instead of 32.

We performed experiments on an HP Z800 Desktop Workstation system running

Windows 7 SP1 x64. We compiled host binaries for synthetic benchmarks using Mi-

crosoft Visual Studio 2010. We use AMD Catalyst 14.12 driver and AMD APP SDK

v2.9 with OpenCL 1.2 during the generation of kernel code of the synthetic bench-

marks. We use ‘-cl-opt-disable’ option, which disables all optimizations, so that the

compiler did not remove our code blocks. We used AMD CodeXL 1.7 tool [55] to

collect performance characteristics of original and synthetic benchmarks on the real

hardware. CodeXL is the most commonly used tool in the literature for collecting

OpenCL program characteristics on AMD GPUs.

We observe that our synthetic benchmarks mimic all but IPC and memory coa-

lescing characteristics of original applications on the real hardware. We were unable

to check IPC and memory coalescing because CodeXL does not provide these char-

acteristics. However, CodeXL provided other characteristics that were not available

in Multi2Sim. These characteristics include VALU (Vector Arithmetic Logic Unit)

utilization and SGPRs (Scalar General-Purpose Registers). Figure 5.11 shows VALU

utilization characteristic, which is the percentage of active vector ALU threads in a

wave, for the synthetic and original benchmarks where the average VALU utilization

similarity score is 83%. The maximum VALU similarity score is 100% for twelve bench-

marks. The minimum similarity score is 0% for DwtHaar1D where the VALU utilization

of the original benchmark is 39% and the VALU utilization of the corresponding syn-

thetic benchmark is 100%. This is because we cannot collect the registers per work-item

characteristic due to a bug in Multi2Sim, hence we cannot preserve the compute unit

occupancy characteristic of the original benchmark which influences VALU.

Figure 5.12 shows SGPRs characteristic, which is the number of SGPRs used

by the kernel, for the synthetic and original benchmarks where the average SGPRs

similarity score is 73%. The maximum similarity score is 100% for Histogram and the

101

minimum similarity score is 50% for BlackScholes and DwtHaar1D.

We observe that the average cache hit ratio similarity on HD 7950 is 68%, whereas

it is 82% on HD 7970. Note that cache hit ratio (provided by CodeXL) is the per-

centage of fetch, write, atomic, and other instructions that hit the data cache and

this characteristic is different from the one we used in Multi2Sim. There exist several

reasons behind this observation. The AMD Catalyst driver version that Multi2Sim

supports is version 13.20, whereas CodeXL supports version 14.12. Hence, different

drivers can generate different OpenCL binaries. Another reason is the estimation error

of Multi2Sim simulator which can be more than 30% due to the lack of fidelity in the

way the memory subsystem is simulated.

We also observe that our synthetic benchmarks mimic the MemUnitStalled, Write-

UnitStalled, and LDSBankConflict characteristics of the original benchmarks where

MemUnitStalled is the percentage of GPU time the memory unit is stalled, WriteUnit-

Stalled is the percentage of GPU time the write unit is stalled, and LDSBankConflict is

the percentage of GPU time Local Data Storage (LDS) is stalled by bank conflicts. The

average MemUnitStalled, WriteUnitStalled, and LDSBankConflict similarity between

the original and synthetic benchmarks is 65%, 73%, and 85%, respectively. Note that

we do not use these characteristics during benchmark generation, hence the similarity

score can be low (e.g. 65%). One can use these characteristics of an original application

in the synthetic benchmark generation process to improve the similarity but this will

result in runtime penalty.

Although our synthetics do not include code blocks for the characteristics includ-

ing VALU utilization and SGPRs they are still preserved. This further confirms the

robustness of our synthetic benchmarks. In order to improve the similarity between

synthetic and original benchmarks in real hardware environment, we can generate syn-

thetics in real hardware environment instead of a simulator environment similar to our

technique for CPUs.

102

0

20

40

60

80

100

V
A
LU

 U
ti
liz
at
io
n

Benchmark

HD 7950 Org

HD 7950 Syn

Figure 5.11. Comparison of VALU utilization between the synthetic and original

benchmarks on real hardware (HD 7950).

0
5
10
15
20
25
30
35
40
45

SG
P
R
s

Benchmark

HD 7950 Org

HD 7950 Syn

Figure 5.12. Comparison of SGPRs utilization between the synthetic and original

benchmarks on real hardware (HD 7950).

0

5

10

15

20

HD 7970 HD 7870 HD 7850 HD 7770

IP
C

Platform

BitonicSort

Original

Synthetic

0

0.5

1

1.5

2

HD 7970 HD 7870 HD 7850 HD 7770

IP
C

Platform

QuasiRandomSequence

Original

Synthetic

Figure 5.13. Comparison of sensitivity to architecture changes for BitonicSort and

QuasiRandomSequence.

5.5.6. Assessing Architecture Changes

When developing synthetic benchmarks, it is important that synthetic bench-

marks are portable, that is, they preserve the behaviors of original applications they

are generated from across different architectures. This is because we want benchmarks

to allow architectural exploration. In order to assess the usage of our synthetic bench-

marks on different architectures, we perform a set of experiments on four different

existing platforms, which are AMD HD 7970, HD 7870, HD 7850 and HD 7770. We

show these platforms, which have different configurations, in Table 5.2. In the experi-

ments, we generated synthetic benchmarks on AMD HD 7970 GPU and then ran these

103

0

10

20

30

40

50

60

70

80

90

100

IP
C
 e
rr
o
r
ra
te
 (
%
)

Benchmark

HD 7970

HD 7870

HD 7850

HD 77700 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.14. The IPC error score for different GPUs (HD 7970, HD 7870, HD 7850,

and HD 7770).

0

10

20

30

40

50

60

70

80

90

100

H
İt
 r
at
io
 e
rr
o
r
ra
te
 (
%
)

Benchmark

HD 7970

HD 7870

HD 7850

HD 7770

Figure 5.15. The hit ratio error score for different GPUs (HD 7970, HD 7870, HD

7850, and HD 7770).

synthetic benchmarks on other platforms (without re-generation). We observe that

our synthetic benchmarks mimic the behaviors of original applications across different

platforms. For example, we show comparison of sensitivity to architecture changes for

BitonicSort and QuasiRandomSequence in Figure 5.13. The IPC of BitonicSort

benchmark decreases going from HD 7970 (on which the synthetic benchmark is gener-

ated) to other platforms and the IPC of the synthetic benchmark follows this change.

The IPC of QuasiRandomSequence does not change going from HD 7970 to other

platforms and similarly, the IPC of the synthetic benchmark does not change. The

correlation coefficients for BitonicSort and QuasiRandomSequence are 0.99 and 1,

respectively and the average of the correlation coefficient for all benchmarks is 0.93.

Figure 5.14 shows the IPC error score for all platforms and Figure 5.16 shows

IPCs of the original and synthetic benchmarks. From the figure, it is clear that our

104

0

5

10

15

20

25

IP
C

Benchmark

HD 7970 Org

HD 7970 Syn

HD 7870 Org

HD 7870 Syn

HD 7850 Org

HD 7850 Syn

HD 7770 Org

HD 7770 Syn

Figure 5.16. IPCs of original and synthetic benchmarks on different GPUs (HD 7970,

HD 7870, HD 7850, and HD 7770).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 R
at
io

Benchmark

HD 7970 Org

HD 7970 Syn

HD 7870 Org

HD 7870 Syn

HD 7850 Org

HD 7850 Syn

HD 7770 Org

HD 7770d Syn

Figure 5.17. Hit ratios of original and synthetic benchmarks on different GPUs (HD

7970, HD 7870, HD 7850, and HD 7770).

synthetic benchmarks mimic the behavior changes of the original benchmarks across

different platforms. We observe that BinomialOption and Histogram benchmarks

have high IPC error scores moving from HD 7970 to other platforms. This is because

the IPC of original benchmarks are very low (near to zero) and a small difference

between the IPC of the original benchmark and the synthetic benchmark results in

a high error score. For instance, the IPCs of the original and synthetic Histogram

benchmarks is 1 on HD 7970 platform where the error score is 0%. When we move

the original benchmark to other platforms, the IPC becomes 0. However, the IPC of

the corresponding synthetic benchmark remains 1. Hence, this small difference (1, in

terms of IPC) results in a high (100%) error score. Figure 5.15 shows the hit ratio error

score for all platforms and Figure 5.17 shows hit ratios of the original and synthetic

benchmarks. Note that although we do not use hit ratio characteristic, which is the

average of L1 cache, L2 cache, and global memory hit ratio, in similarity measurement

105

0

10

20

30

40

50

60

70

80

90

100

N
u
m
b
e
r
o
f
(i
n
‐f
li
gh

t)
 w
av
e
fr
o
n
ts

er
ro
r
ra
te
 (
%
)

Benchmark

HD 7970

HD 7870d

HD 7850d

HD 7770d0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.18. The number of (in-flight) wavefronts error score for the GPUs having

derived architectural configurations (HD 7970, HD 7870d, HD 7850d, and HD 7770d).

0

2

4

6

8

10

N
u
m
b
er
 o
f
(i
n
‐f
lig
h
t)
 w
av
e
fr
o
n
ts

Benchmark

HD 7970 Org

HD 7970 Syn

HD 7870d Org

HD 7870d Syn

HD 7850d Org

HD 7850d Syn

HD 7770d Org

HD 7770d Syn

Figure 5.19. Number of (in-flight) wavefronts of original and synthetic benchmarks on

the GPUs having derived architectural configurations (HD 7970, HD 7870d, HD

7850d, and HD 7770d).

during benchmark generation, the average hit ratio similarity between the original and

synthetic benchmarks on HD 7970 is 82% and our synthetic benchmarks mimic the hit

ratio changes of the original benchmarks across different platforms. We also observe

that our synthetic benchmarks mimic the L1, L2, and global memory hit ratio changes

of the original benchmarks across different platforms where the average L1, L2 and

global memory hit ratio similarity between the original and synthetic benchmarks on

HD 7970 is 84%, 70%, and 98%, respectively.

5.5.6.1. Synthesis for GPUs having Derived Architectural Configurations. We observe

that the only difference between the existing four platform configurations is the number

of compute units. Hence, we perform a new set of experiments on platforms that we

derived from the existing platforms by changing register file size and local memory size

106

per CU. Table 5.2 shows these platforms (HD 7870d, HD 7850d and HD 7770d), which

are not part of Multi2Sim distribution. Global memory sizes were not changed since

the memory demands of the benchmarks that we use are small. In the experiments, we

run the synthetic benchmarks generated on HD 7970 on the other platforms (without

re-generation). We observe that CMAR, private memory ratio, local memory ratio,

global memory ratio, memory coalescing, work-items per work-group, and local mem-

ory per work-group characteristics are platform independent and they do not change

across platforms as expected. IPC and hit ratio characteristics change only when the

number of compute units changes. For example, these characteristics do not change

moving from HD 7870 to HD 7870d but, they change moving from HD 7970 to HD

7870 and our synthetic mimics these changes as shown in Figures 5.14 and 5.15.

The number of (in-flight) wavefronts characteristic depends on work-items per

work-group, registers per work-item, and local memory per work-group characteris-

tics. Our experiments demonstrate that number of (in-flight) wavefronts characteristic

changes moving from HD 7970 to a derived platform due to changes in registers per

work-item and local memory per work-group characteristics. Figure 5.18 shows the

numbers of (in-flight) wavefronts error score for all derived platforms and Figure 5.19

shows numbers of (in-flight) wavefronts of the original and synthetic benchmarks. For

example, the number of (in-flight) wavefronts of FFT benchmark on HD 7970, HD

7870d, HD 7850d, and HD 7770d, is 7, 10, 3, and 1, respectively and the corresponding

synthetic benchmark mimic these values on each platform. Hence, the error scores are

0% on all platforms. We observe that the local memory per work-group limits the

number of (in-flight) wavefronts for FFT. Hence, increasing the local memory size per

compute unit increases the number of (in-flight) wavefronts and we mimic the number

of (in-flight) wavefronts for FFT since we mimic the local memory size per compute unit.

However, the number of (in-flight) wavefronts of MatrixMultiplication benchmark

on HD 7970, HD 7870d, HD 7850d, and HD 7770d, is 10, 10, 7, and 3, respectively

and it is 10 for the corresponding synthetic benchmark on all platforms. Hence, the

error scores are 0%, 0%, 43%, and 100%, respectively. Note that we cannot mimic the

changes across different platforms since registers per work-item limits the number of

(in-flight) wavefronts for MatrixMultiplication that results in a high error score, and

107

Table 5.4. GPU architectural parameters.

Parameter HD 7970 HD 7970d1 HD 7970d2 HD 7970d3

Front-end issue latency 1 2 4 8

Front-end issue width 5 8 12 16

SIMD unit width 1 2 4 8

Scalar unit width 1 2 4 8

Scalar unit ALU latency 4 8 12 16

Vector memory unit width 1 2 4 8

Branch unit width 1 2 4 8

0

10

20

30

40

50

60

70

80

90

100

IP
C
 e
rr
o
r
ra
te
 (
%
)

Benchmark

HD 7970

HD 7970d1

HD 7970d2

HD 7970d30 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.20. The IPC error score for the GPUs having derived architectural

parameters (HD 7970, HD 7970d1, HD 7970d2, and HD 7970d3).

0

5

10

15

20

25

IP
C

Benchmark

HD 7970 Org

HD 7970 Syn

HD 970d1 Org

HD 7970d1 Syn

HD 970d2 Org

HD 7970d2 Syn

HD 970d3 Org

HD 7970d3 Syn

Figure 5.21. IPCs of original and synthetic benchmarks on the GPUs having derived

architectural parameters (HD 7970, HD 7970d1, HD 7970d2, and HD 7970d3).

we cannot mimic registers per work-item characteristic. Once the bug in Multi2Sim

is fixed, we can also mimic registers per work-item characteristic as well as number of

(in-flight) wavefronts characteristic.

108

We also perform a new set of experiments on platforms that we derived from

the existing HD 7970 platform, which are denoted by HD 7970d1, HD 7970d2 and

HD 7970d3. We show these platforms, which have different architectural parameters

including front-end issue latency, SIMD unit width, and scalar unit ALU latency, in

Table 5.4. In the table, front-end issue latency is the number of cycles that it takes

to issue a wavefront to its execution unit and front-end issue width is the maximum

number of instructions that can be executed in a single cycle. SIMD unit width is the

number of instructions processed by each stage of the pipeline per cycle. Scalar unit

width, vector memory unit width, and branch unit width are similar to SIMD unit width.

Scalar unit ALU latency is the number of cycles it takes to execute a scalar arithmetic

logic instruction. In the experiments, we run the synthetic benchmarks generated

on HD 7970 on other platforms derived from HD 7970 (without re-generation). We

observe that IPC changes moving from HD 7970 to other derived platforms and our

synthetic mimics these changes as shown in Figure 5.20 where the IPC similarity score

is 91%, 91%, 91%, and 89% on HD 7970, HD 7970d1, HD 7970d2 and HD 7970d3,

respectively. Also, we show IPCs of the original and synthetic benchmarks in Figure

5.21. For example, the IPC of original Histogram benchmark is 1 on all platforms and

similarly, the IPC of the synthetic benchmark is 1 on all platforms. On the other hand,

the IPC of original BitonicSort benchmark decreases moving from HD 7970 to other

platforms and the corresponding synthetic benchmark mimics these changes. That is,

the IPC of original BitonicSort benchmark is 18, 18, 14, and 9 and the IPC of the

corresponding synthetic benchmark is 16, 15, 13, and 9 on HD 7970, HD 7970d1, HD

7970d2 and HD 7970d3, respectively.

Next, we considered other characteristics including memory instruction mix and

hit ratio to evaluate the portability of our synthetic benchmarks. We find the syn-

thetic benchmarks to accurately mimic these characteristics compared to the original

benchmarks across GPUs having different architectural parameters.

Also, we perform a new set of experiments on HD 7970 platforms with differ-

ent cache configurations. We show these cache configurations in Table 5.5. In the

experiments, we run the synthetic benchmarks generated on HD 7970 with Config-0

109

Table 5.5. GPU cache configurations.

Configuration Config-0 Config-1 Config-2 Config-3

L1 - Sets 64 128 32 64

L1 - Associativity 4 4 4 2

L2 - Sets 128 256 64 128

L2 - Associativity 16 16 16 8

0

10

20

30

40

50

60

70

80

90

100

H
it
 r
a
ti
o
 e
rr
o
r
ra
te
 (
%
)

Benchmark

Config‐0

Config‐1

Config‐2

Config‐3

Figure 5.22. The cache hit ratio error score for different cache configurations

(Config-0, Config-1, Config-2 and Config-3).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

H
it
 R
at
io

Benchmark

Config‐0 Org

Config‐0 Syn

Config‐1 Org

Config‐1 Syn

Config‐2 Org

Config‐2 Syn

Config‐3 Org

Config‐3 Syn

Figure 5.23. Cache hit ratios of original and synthetic benchmarks on different cache

configurations (Config-0, Config-1, Config-2 and Config-3).

on other platforms with different cache configurations (without re-generation). We

observe that the cache hit ratio changes moving from Config-0 to other configurations

and our synthetic mimics these changes as shown in Figure 5.22 where the average

hit ratio similarity score is 82%, 84%, 85%, and 82% on Config-0, Config-1, Config-

2 and Config-3, respectively. Also, we show hit ratios of the original and synthetic

benchmarks in Figure 5.23. For example, the hit ratio of original BinomialOption

110

0

5

10

15

20

25
IP
C

Benchmark

small

medium

large

Figure 5.24. The IPC values of original benchmarks for small, medium, and large

inputs on HD 7970.

benchmark is 36% on all configurations and similarly, the hit ratio of the synthetic

benchmark is 34% on all configurations. On the other hand, the hit ratio of original

SobelFilter benchmark changes moving from Config-0 to other configurations and

the corresponding synthetic benchmark mimics these changes. That is, the hit ratio of

original SobelFilter benchmark is 52%, 56%, 50%, and 48% and the cache hit ratio

of the corresponding synthetic benchmark is 45%, 51%, 40%, and 39% on Config-0,

Config-1, Config-2 and Config-3, respectively.

5.5.7. Assessing Input Changes

In these experiments, we analyze whether we can use the synthetic benchmark

for an original application using a different input than the one for which the synthetic

benchmark was generated for. In this analysis, we generate a synthetic benchmark

for an original benchmark using a medium input. Then, we measure the similarity

between this synthetic benchmark and the original benchmark using a different (small

or large) input. If the characteristics of the original application do not vary much

from using medium input to a different input, that is, the similarity meets the user

(individual and overall) thresholds, we can use the same synthetic benchmark for the

original benchmark using a different input. Otherwise, we need to generate a new

synthetic benchmark. Note that this analysis helps to reduce the effort of generating

new synthetic benchmarks.

111

Figure 5.24 shows the IPC values of original benchmarks for small, medium, and

large inputs on HD 7970. We observe that some benchmarks have similar IPC values

for different inputs and some benchmarks have different IPC values. For example, we

need to generate a new synthetic benchmark for DwtHaar1D using small (and also for

large) input since individual IPC similarity score is less than the individual similarity

threshold. However, the IPC of URNG does not vary much from using medium input to

small (and also large) input, hence, we can use the same synthetic benchmark for URNG

using small, medium, and large input. Similarly, we measure the individual similarity

scores for other characteristics and overall similarity rate and we decide whether we

can use the existing synthetic benchmark or we need to generate a new one.

5.6. Discussion

We observe that the main cost of generating synthetic GPU benchmarks is col-

lecting the characteristics of original applications. This is because we use a simulator

(Multi2Sim) to collect these characteristics and simulating large (original) applications

takes long time. On the other hand, our synthetic benchmarks are small and simu-

lating these synthetic benchmarks is fast. For example, collecting the characteristics

of FloydWarshall benchmark takes 767.04 seconds, however, the corresponding syn-

thetic benchmark is generated in 2 iterations and collecting the characteristics of the

synthetic benchmark takes only 1.47 seconds in the first iteration and 9.40 seconds in

the second iteration. Note that characteristics collection in the initial iterations dur-

ing benchmark generation is faster since the number of code blocks can increase with

iterations.

It is clear that the speedup we obtain by using a synthetic benchmark instead

of an original application is more important than the time required to generate the

synthetic benchmark. This is because we generate a synthetic benchmark only once and

we run this synthetic benchmark many times. For example, generating the synthetic

benchmark for FloydWarshall takes nearly 780 seconds but we obtained a synthetic

benchmark that is 431.29× faster than the original benchmark.

112

When generating synthetic benchmarks, selecting the right characteristics to

mimic is crucial for the time required to generate the synthetic benchmark, for speedup,

and the similarity score. For example, we performed a set of experiments in which we

only mimic the IPC of original applications. We observed that the average IPC sim-

ilarity goes from 91% to 94%, the average speedup goes from 513× to 56438×, and

the minimum IPC similarity goes from 60% to 66% on HD 7970 platform comparing

to using eleven characteristics. These results validate that using less number of char-

acteristics provide higher similarity as well as higher speedup. This is because using

too many characteristics can result in a long characterization process as well as less

similar synthetic benchmarks since adding a code block to improve one characteristic

similarity can decrease another characteristic similarity due to side effects. On the

other hand, using too few characteristics can fail to mimic the behavior of an original

application. In our approach, we use eleven characteristics that capture the diverse

behaviors of an original application. We also experimentally validate that many of

these characteristics are platform independent and using platform independent char-

acteristics makes our benchmarks portable across a wide range of platforms as shown

in the experiments.

Another important point when generating synthetic benchmarks is that the syn-

thetic benchmarks can be used for a study where they were not originally intended to

be used. In order to validate this case, we performed a set of experiments. In these

experiments, we compared IPC similarity when it was used during synthesis and when

it was not used during synthesis. We observed that the average IPC similarity goes

from 91% to 84%, the average speedup goes from 513× to 665×, and the minimum

IPC similarity goes from 60% to 50% on HD 7970 platform when IPC similarity is

used and not used during synthesis, respectively. These results show that average IPC

similarity is still high and acceptable.

Our synthetic benchmarks do not have any useful functionality and one cannot

obtain the original application from our synthetic benchmarks by reverse engineering.

Hence, customers can share a synthetic benchmark that is generated for their propri-

etary application without compromising on the proprietary nature of the proprietary

113

application. Once the hardware developers, architects, or designers have the synthetic

benchmark, they can optimize the (GPU) platform to provide improved performance

for the proprietary application.

Our synthetic benchmarks are meant to be used in early design exploration.

In later stages of development where more accurate performance is required original

applications are still going to be used. Also, when using our synthetics, one should

note the characteristics that are kept similar in synthetics with respect to the originals

and use synthetics for early design exploration of such characteristics.

5.7. Summary

We developed a new benchmark synthesis framework for GPUs, called MINIME-

GPU, to speed up architectural simulation of modern GPU architectures. Our frame-

work captures important characteristics of original GPU applications and generates

synthetic GPU benchmarks from those applications. We compared the similarity (ac-

curacy) of original existing applications and the corresponding synthetic benchmarks

in terms of several characteristics including instruction throughput, compute unit oc-

cupancy, and memory efficiency. The experimental results showed that our synthetic

benchmarks mimic the characteristics of the original applications they are generated

from where the average similarity is 96% and average speedup is 541×. Also, we ex-

perimentally validated that our synthetic benchmarks preserve these characteristics

across different architectures on a simulator as well as on a real GPU. Our synthetic

benchmarks are generated in OpenCL, which is portable, human readable, and widely

used for GPU programming, and they are also faster and smaller than the original

applications. Hence, our framework helps developers and researchers in performance

analysis and early architectural exploration of software and hardware.

114

6. USING MACHINE LEARNING TECHNIQUES TO

DETECT PARALLEL PATTERNS OF MULTI-THREADED

APPLICATIONS

6.1. Overview

In this chapter, we show how machine learning techniques can be effectively used

to automatically detect parallel patterns in multi-threaded applications as a guideline

for improvements. Machine learning techniques are often feasible and cost-effective for

classification and they are widely used in business, science, industry, and government

[13, 14]. Hence, in order to overcome the cost of manual parallel pattern detection,

we develop a machine leaning framework that automatically classifies multi-threaded

applications based on their parallel patterns. We implemented several machine learning

techniques for this purpose: k-nearest neighbor, decision trees, naive Bayes classifier,

neural networks, and principal component analysis. We also implemented a feature

selection technique to improve classification results.

Parallel pattern detection begins with the characterization of the given multi-

threaded application. Characterization involves describing an application as a set of

quantifiable attributes. Since parallel patterns are high level characteristics, we use

high level thread communication and data sharing behaviors to describe the software

architectural characteristics of an application. Whereas, low level microarchitecture

dependent characteristics including CPI, cache miss rate, branch misprediction rate are

commonly used in the literature [56–58] where they capture performance characteristics

instead of software architectural characteristics. Note that these characteristics cannot

be reliably obtained through static analysis but rather a dynamic analysis including

binary instrumentation and profiling with hardware counters as is commonly used in

the literature [3, 40]. Designers can then use these characteristics to understand the

application’s important features.

115

We experimentally validate that our parallel pattern detection framework can

classify the benchmarks in well-known multicore benchmark suites, namely PARSEC

and Rodinia. We compare techniques (machine learning models) in terms of speed and

accuracy since different uses of parallel patterns have different requirements from the

classification technique. For instance, dynamic thread mapping with parallel patterns

as in [59] requires the classification technique to be fast and synthetic benchmark gen-

eration with parallel patterns as in Chapter 3 requires it to be accurate. Note that

the speed is the amount of time needed for a machine learning to perform learning

and classification and the accuracy is the percentage of instances in the test set that

are correctly classified. We also show the usefulness of our parallel pattern detection

framework for synthetic benchmark generation. Our experiments show that kNN, naive

Bayes classifier, and decision trees correctly recognize parallel patterns of the bench-

marks with a 100%, 96%, 92% accuracy, respectively. At the same time, the decision

tree is the fastest technique with the lowest characterization overhead. On average, the

decision tree results in a 5.7× classification speedup over the other techniques without

feature selection and 4.8× speedup with feature selection. Our experiments also vali-

date that the synthetic benchmarks generated by using parallel patterns are similar on

average 92% to the original benchmarks, the average speedup is 23× and the average

code reduction is 20×.

We first published our results on pattern detection in [26]. In particular, this

chapter makes the following contributions.

• We apply machine learning techniques in a novel approach to automatically detect

parallel patterns and we compare these techniques in terms of accuracy and speed.

• We implemented our machine learning techniques as a part of MINIME frame-

work and experimentally validated the detection ability of them on benchmarks

including PARSEC and Rodinia.

• We demonstrate that k-nearest neighbor, naive Bayes classifier, and decision trees

are the most accurate techniques with a 100%, 96%, and 92% accuracy, respec-

tively.

• We show that decision trees is the fastest technique where they provide a 5.7×

116

average characterization speedup over the other techniques that do not use feature

selection and a 4.8× speedup over the other techniques that use feature selection.

• We also show the usefulness of the proposed techniques on synthetic benchmark

generation.

6.1.1. Motivation for Classifying Parallel Patterns

Parallel patterns describe thread communication and data sharing behaviors of

multi-threaded applications where these behaviors are important in many use cases

including synthetic benchmark generation, dynamic task mapping and compiler op-

timization, parallel application development, and selecting an optimal architecture.

Hence, automatically detecting parallel patterns by using a fast and accurate machine

learning technique enables performance improvements and optimizations where other

techniques including rewriting applications, determining compiler flag settings, and get-

ting the next generation machine can be labor-intensive, time consuming, and costly as

well as require expert knowledge. We describe parallel pattern use cases below. Note

that all of the mentioned use cases have been validated in the literature either by us

or by others.

• Synthetic benchmark generation: Synthetic benchmarks are artificial applica-

tions that mimic the characteristics of real-life applications. These benchmarks

can be developed by varying application characteristics or they can be derived

from existing applications such that they are faster and smaller than the existing

applications. Hence, they can speed up the process of early performance evalu-

ation and architectural exploration studies. Parallel patterns have been used to

generate synthetic benchmarks from existing applications as in Chapters 3 and

4. In Section 6.4 (experiments section of this chapter), we show the usefulness of

our proposed pattern recognition techniques.

• Dynamic task mapping and compiler optimization: Dynamic task mapping has

been performed using the parallel pattern knowledge as in [59]. Their techniques

improve existing dynamic mapping schemes by as much as 23%. The dynamic

117

task mapping approach necessitates a fast and low overhead pattern detection

technique. Parallel patterns have been used to devise power optimization schemes

in compilers by exploiting the opportunities of the recurring patterns of embedded

multicore programs [60]. The authors validate their technique for low power with

parallel design patterns on Finite Impulse Response (FIR) and image recognition

applications and they observe significant power reduction.

• Parallel application development: Parallel patterns are used to organize develop-

ment of parallel algorithms and programming models as in [61]. FastFlow [62],

which is a structured parallel programming framework, simplifies parallel ap-

plication development by providing a set of ready-to-use algorithmic skeletons

that capture the most common parallel patterns. Also, in [63], the authors use

parallel design patterns to develop efficient, maintainable, and portable parallel

applications. Designers can develop parallel applications using refactoring ap-

proaches based on well-understood high-level parallel design patterns as in the

ParaPhrase project [64] and [65]. In the Discovery of Potential Parallelism (Dis-

coPoP) project [66], different parallel patterns such as pipeline are detected to

parallelize sequential programs.

• Selecting an optimal architecture: Parallel patterns have also been used for

deciding the type of multicore architecture. For instance, in the ParaPhrase

project [64, 67], the authors decide the required resources in heterogeneous sys-

tems using the parallel pattern of a target application. In general, heterogeneous

multicore architectures including larger and smaller CPU cores are suitable for

divide and conquer and recursive data patterns. This is because threads in these

patterns are unbalanced and assigning larger threads to the larger cores and

smaller threads to the smaller cores provides load balancing. On the other hand,

homogeneous multicore architectures are suitable for geometric decomposition

pattern, which has balanced threads.

118

6.2. Parallel Pattern Classification Using Machine Learning

We use machine learning techniques to automatically detect parallel patterns from

an example set of multi-threaded applications to make parallel pattern classification

more efficient. Note that using hard-coded manually derived heuristics instead of ma-

chine learning techniques requires experts to write rules by analyzing data. Moreover,

when there exist enough number of training examples, machine learning techniques

outperform hand-crafted solutions in terms of accuracy, speed, and scalability. For ex-

ample, the accuracy of a speech recognition system is greater if one trains the system

using machine learning than if one attempts to manually program it [68].

We use several machine learning techniques where each technique has advantages

and disadvantages. For example, classification with decision trees is memory efficient

and fast compared to the memory intensive k-nearest neighbor. Neural networks are

slower than decision trees in both training and classification. Furthermore, neural net-

works do not present an easily-understandable classification model. Whereas, decision

trees are easy to understand and can be applied easily.

There are three steps in data classification: (1) data preparation (data collection

and data pre-processing), (2) construction of a machine learning model (training), and

(3) using the machine learning model to classify unknown data samples (testing). We

will describe Step 1 in Section 6.3 and Steps 2 and 3 will be detailed in the experiments

in Section 6.4.

6.3. Characterization of Multi-threaded Applications

In this section, we describe the essential characteristics of multi-threaded appli-

cations in order to classify them with respect to their parallel patterns. We collect

characteristics dynamically, that is, during the execution of the application, hence it is

important to keep the characterization overhead low. Furthermore, several character-

istics cannot be reliable obtained with a static analysis such as data sharing or thread

communication.

119

Table 6.1. Characteristics of multi-threaded applications.

Characteristics Sub-characteristics

General Threading

Program Counter (PC)

Dynamic instruction count (IC)

Creator thread

Creation time

Exit time

Lifetime (LT)

Thread Communication
Ratio of Communicating Threads (RCT)

Ratio of Communication Volume (RCV)

Data Sharing

Private

Read-only

Producer/Consumer

Migratory

In Table 6.1, we show three major characteristics and their corresponding sub-

characteristics. Note that we use the same characteristics that we described in Chapters

3 and 4. These characteristics are commonly used to describe the behaviors of threads

for parallel pattern detection in the literature [30]. We use high level characteristics

that capture the software architectural characteristics of an application. This is be-

cause parallel patterns are high level characteristics that define the structure of an

application in terms of thread communication and data sharing behaviors. Hence, we

cannot use low level microarchitecture dependent characteristics including CPI, cache

miss rate, branch misprediction rate (that are typically obtained using hardware per-

formance counters) since they capture performance characteristics instead of software

architectural characteristics. For example, we cannot use hardware performance coun-

ters to collect data sharing information such as which thread reads/writes from/to

which cacheline. Therefore, two applications with different parallel patterns can po-

tentially have the same performance counter values and not allow us to detect the

correct pattern.

120

Compared to the high number of characteristics used in the literature [39, 40],

we chose a small number of characteristics. Having more characteristics such as syn-

chronization constructs, instruction mix, and data flow can improve the accurate rep-

resentation of each thread’s behavior, but collecting and using a higher number of

characteristics with machine learning techniques is costly as shown in the experiments.

We now give some examples of what each sub-characteristic captures and how

it influences the classification of parallel patterns. While threads execute the same

function (PC) with different inputs in geometric decomposition and recursive data

parallel patterns, each thread executes a different function (PC) in pipeline and event-

based coordination patterns. We have low RCV and RCT values and read-only and

private data sharing in task parallel and divide and conquer patterns since there is no or

few thread communications. On the other hand, we have high RCV and RCT values in

geometric decomposition and recursive data patterns since threads communicate using

shared memory with producer/consumer data sharing.

6.3.1. Data Preparation

6.3.1.1. Data Collection. The data in our case corresponds to the sub-characteristics

of the given multi-threaded application. We use a DynamoRIO dynamic binary instru-

mentation tool and Umbra memory shadowing tool to collect these sub-characteristics

during the execution of an application as described in Chapter 3. In [46], the experi-

mental results show that the slowdown due to instrumentation varies from about 10%

to 6×. The overhead (slowdown) comes from dynamic instrumentation system itself

and the instrumentation clients, which are extra inserted instructions and application

code modifications among others [44].

In addition, we use Pin tool [45] and develop a new client similar to our Dy-

namoRIO client to collect the sub-characteristics of large applications. This is because

our DynamoRIO client works on applications that have up to 32 threads. Hence, we

use Pin in our data collection scalability experiments as we will show in Section 6.5.

121

In general, when using a dynamic binary instrumentation tool, collecting more

characteristics takes proportionally more time. This is because collecting different char-

acteristics requires instrumenting different parts of an executable code. Furthermore,

there can be some characteristics that are more expensive to collect than others. For

example, in our case, collecting RCV sub-characteristic is more expensive than col-

lecting PC sub-characteristic since we need to monitor each read and write operations

on every cacheline to gather RCV. Whereas, we only wrap thread creation operations

to gather PC. Next, we describe the pre-processing of the collected data in order to

construct models.

6.3.1.2. Data Pre-processing. Once the data (characteristics) is collected, we need to

normalize the data in order to construct models. That is, we transform raw data

into an understandable format. We now describe normalization for each group of sub-

characteristics.

We normalize the general threading sub-characteristics by scaling each of them

to 0 - 1 range. While 1 means that threads have the same sub-characteristics, 0 means

that threads have different (unique) sub-characteristics. We use the mean M , the

standard deviation S, and the coefficient of variation CV , which is defined as the ratio

of the standard deviation S to the mean M , of a sub-characteristic in normalization.

We normalize all general threading sub-characteristics except program counter and the

creator thread as follows:

• If CV ≥ 0.2, the normalized sub-characteristic normx = 0, for sub-characteristic

x. Our training model determines this value of CV and 0.2 is the value that gives

the most accurate models. Note that a higher CV value denotes inconsistency

among the sub-characteristics within the group.

• Else the normalized sub-characteristic normx = #st / #wt, where #st is the

number of threads that do not have the sub-characteristic x in the 2S range

around M and #wt is the number of all worker threads.

122

For example, when we have a multi-threaded application with 4 worker threads,

each having 2642, 2650, 2703, and 2705 dynamic instruction counts, respectively, M

is 2675, S is 34, CV is 0.01, and the normalized dynamic instruction count sub-

characteristic normIC is 1 since E = #wt = 4. The normalized sub-characteristic

indicates that the threads are the same and balanced.

For normalizing the program counter sub-characteristic, we calculate the number

of unique start (entry point) program counters (U) for all worker threads. Note that

U ranges from 1 to #wt. We then normalize the program counter as normPC =

(#wt−U)/(#wt−1). Similarly, we can normalize the creator thread sub-characteristic.

For example, if four worker threads run the same function, then U is 1, #wt is 4, and

normPC is 1. On the other hand, if each thread runs a different function, U = #wt = 4,

and normPC is 0.

Our thread communication sub-characteristics are already normalized and are

given as RCT and RCV described above. Note that different (raw) sub-characteristics

that are gathered when using different inputs can result in the same normalized sub-

characteristics, which is what we expect from normalization. For instance, when the

total number of cachelines used and the number of cachelines used in communication

are 100 and 10 in one case and 1000 and 100 in another case, the normalized RCV is

0.1 in both cases. We further address this issue in Section 6.5.

Finally, we calculate the normalized data sharing sub-characteristics as follows.

For private data sharing sub-characteristics, we have normprivate = (number of private

data sharing sub-characteristic / total number of all data sharing sub-characteristics).

We calculate other normalized data sharing sub-characteristics similarly. The next two

steps in classification with machine learning techniques will be described in the next

section.

123

6.4. Experiments

We performed experiments to validate our parallel pattern classification tech-

niques. Our multicore machine uses an Intel i7 processor with 4 cores, 6MB cache, and

6GB of memory. Note that our techniques target CPU applications but similar tech-

niques can be applied other architectures such as GPU. We classified 26 benchmarks

from PARSEC [3] and Rodinia (OpenMP) [4] suites based on their parallel patterns.

That is, our test set includes 26 benchmarks. Since our aim is to validate our techniques

on these well-known and widely used benchmarks, we do not use them during training.

We used simmedium inputs for PARSEC and default inputs for Rodinia. Note that

although our framework is capable of running with larger inputs, we do not use them

in our experiments because dynamic binary instrumentation can increase the execution

time of an application drastically. Since PARSEC and Rodinia benchmarks only use

task parallel, geometric decomposition, and pipeline among six possible parallel pat-

terns, which we will experimentally show later as well, we also classified benchmarks

including Sudoku, Fibonacci, and CarWashSim [30] that exhibit the remaining three

parallel patterns.

For training purposes, we use 40 multi-threaded applications, which are either

developed by us or used from other benchmark suites. Note that these are different

from the above mentioned 26 benchmarks that will be used for testing purposes. In

particular, for training, we use 7 benchmarks from EEMBC MultiBench [6] benchmark

suite, which contains applications that help select the best hardware for embedded

systems, and 9 benchmarks from open source benchmark suites including matrix mul-

tiplication, quick sort, and graph search. We cannot use each benchmark in the training

set with multiple inputs to get a larger training set because when the mentioned train-

ing benchmarks are used with different inputs they result in the same characteristics

and same parallel patterns as described in Chapter 3, hence not necessarily enriching

our training set. We further address the usage of different inputs in Section 6.5. The

remaining 24 benchmarks in the training set were developed by us according to the

parallel pattern definitions in [30], where we developed 4 synthetic benchmarks for

each of the six parallel patterns. Note that we developed synthetic benchmarks for the

124

training set because existing benchmarks do not cover all parallel pattern types such as

event-based coordination. Ultimately, we created a high quality, balanced training set

having diverse characteristics and covering the modeled (parallel pattern) space with

the help of synthetic benchmarks. Our synthetics are such that the number of threads

ranges from 2 to 24, the running times are between 0.01 seconds and 60 seconds, and

the lines of code are between 50 and 1000. In summary, our training set is a 40 × 12

training matrix, where for each benchmark we have 12 normalized sub-characteristics.

Since the size of our (high quality) training set is small, we also use k-fold cross vali-

dation to measure the accuracies of our techniques as described in Section 6.5. We ran

each benchmark 10 times in order to obtain thread characteristics.

To implement machine learning techniques, we use MATLAB [53]. To collect

characteristics of multi-threaded applications, we use DynamoRIO and Umbra as de-

scribed in Section 6.3.1.1. Also, we use Pin as described in Section 6.3.1.1 in data

collection scalability experiments as we will show in Section 6.5. At the end of the data

preparation step described in Section 6.3.1, we obtain 12 normalized sub-characteristics:

6 general threading, 2 thread communication, and 4 data sharing sub-characteristics.

6.4.1. Pattern Classification Results

Table 6.2 shows our parallel pattern classification results on 26 benchmarks, none

of which are used in training. The column #wt shows the total number of worker

threads that are created during the execution of each benchmark. Note that the bench-

marks we used cover a wide range of total number of worker threads. The column Pat-

tern shows the parallel pattern of the benchmark found by us through code analysis.

We also validated the parallel patterns of PARSEC benchmarks from the literature

since they are available but Rodinia patterns are not available from the literature.

Rodinia benchmarks use OpenMP parallel for construct [43] and if the data used in

OpenMP is private (e.g. reduction construct), then it results in task parallel pattern,

otherwise it results in geometric decomposition pattern. The columns kNN, DT, NBC,

NNW, and PCA show the parallel pattern classification results of k-nearest neighbor,

decision tree, naive Bayes classifier, neural network, and principal component analysis,

125

Table 6.2. Pattern classification results.

Suite Benchmark LOC #wt Pattern kNN DT NBC NNW PCA

P
A

R
S

E
C

Blackscholes 1262 8 TP TP TP TP TP TP

Bodytrack 7696 9 GD GD GD GD GD GD

Canneal 2794 4 TP TP TP TP GD* TP

Dedup 7125 8 Pl Pl Pl Pl Pl Pl

Facesim 20275 5 TP TP TP TP TP TP

Ferret 10765 18 Pl Pl Pl Pl Pl Pl

Fluidanimate 2784 4 GD GD GD GD TP* TP*

Swaptions 1095 4 TP TP TP TP TP TP

X264 38546 15 Pl Pl Pl Pl GD* GD*

R
o
d

in
ia

Kmeans 2146 3 TP TP TP TP TP TP

HotSpot 196 3 GD GD GD GD TP* EbC*

Back Propagation 478 7 TP TP GD* TP TP TP

SRAD 495 1 TP TP TP TP TP TP

Breadth-First Search 125 3 TP TP TP TP TP TP

CFD Solver 1539 7 TP TP GD* TP TP RD*

LU Decomposition 541 3 GD GD GD GD GD GD

Heart Wall Tracking 2244 3 TP TP TP TP TP TP

Particle Filter 398 7 GD GD GD GD TP* TP*

PathFinder 127 3 GD GD GD GD GD GD

LavaMD 353 3 GD GD GD GD GD EbC*

O
th

er

SSCA2v2.2 23950 8 RD RD RD Pl* GD* RD

Sudoku 196 11 RD RD RD RD RD RD

Fibonacci 55 8 DaC DaC DaC DaC DaC TP*

Merge Sort 280 16 DaC DaC DaC DaC DaC DaC

CarWashSim 253 6 EbC EbC EbC EbC Pl* RD*

MultiTellerBankSim 416 11 EbC EbC EbC EbC Pl* RD*

respectively. In the table, wrong classifications of parallel patterns are denoted by a

‘*’ symbol. For example, Back Propagation is task parallel but it is classified as geo-

metric decomposition (GD*) by our decision tree. Table 6.2 also shows that PARSEC

and Rodinia benchmarks do not contain all parallel pattern types such as divide and

conquer pattern, recursive data, and event-based coordination.

126

We will describe the details of experiments for each machine learning technique in

the following sections. In the case of kNN technique the details can be found in Chapter

3, and we enhanced that work with feature selection in this chapter and discuss those

specific results here.

We examine each machine learning technique in terms of accuracy, characteriza-

tion overhead, speed, and memory consumption. The accuracy of a machine learning

technique is the percentage of instances in the test set that are correctly classified.

The accuracy is important because a wrong classification of a multi-threaded appli-

cation results in the wrong description of its behaviors. We denote accuracy as high

(accuracy ≥ 90%), medium (90% > accuracy ≥ 80%), and low (accuracy < 80%).

The characterization overhead is the ratio of the running time of a multi-threaded ap-

plication that is instrumented using DynamoRIO dynamic binary instrumentation and

Umbra memory shadowing tools to the uninstrumented running time of the same ap-

plication. We denote the average characterization overhead as high (overhead ≥ 10×),

medium (10× > overhead ≥ 5×), and low (overhead < 5×). The speed is the

amount of time needed for a machine learning to perform learning and classification

that are done in Steps 2 and 3 of data classification. We denote the average speed as

high (speed < 0.03 seconds), medium (0.1 seconds > speed ≥ 0.03 seconds), and low

(speed ≥ 0.1 seconds). Similarly, memory usage is the amount of memory needed in

Steps 2 and 3 of data classification and we denote the average memory usage as high

(usage ≥ 10KB) and low otherwise.

6.4.2. Decision Trees

6.4.2.1. Construction of a Decision Tree. We trained our decision tree using the It-

erative Dichotomiser 3 (ID3) algorithm [13, 14] and obtained the decision tree shown

in Figure 6.1. While building our decision tree, at each step, we decide the most im-

portant sub-characteristic and a test on this sub-characteristic. The most important

sub-characteristic is the one which gives the largest split over the training set. We

quantify the largest split with information gain as defined in [13,14]. Information gain

is the reduction in entropy, which characterizes the purity of a subset of the train-

127

PC

RCV RCV

PC < 0.92

DaC

RCV < 0.30

RCT

EbC Pl

RCT < 1.00 TP

RCV < 0.40

RCT

TP

RCT < 0.01

LT

RD GD

LT < 0.85

Figure 6.1. Decision tree for parallel pattern classification.

ing set, caused by splitting the training set according to a selected sub-characteristic.

Note that the sub-characteristics we used are continuous variables based on which we

selected an optimal point to yield the highest information gain. That is, we create an

optimal point and then split the sub-characteristic list into those whose value is below

the optimal point and those that are greater than or equal to it. We then create an

internal node from the selected sub-characteristic and add one branch for each test

leading out from this node. For example, in our decision tree, the first selected sub-

characteristic is PC and the test is PC < 0.92. If all benchmarks on a test branch

have the same parallel pattern, then we add a leaf node and assign the parallel pat-

tern label. Otherwise, we continue creating new internal nodes and new tests until all

benchmarks have the same parallel pattern on a branch. After producing the decision

tree, we prune away internal nodes with low information gain to prevent overfitting.

The decision tree shows that we can classify the parallel pattern of a multi-

threaded application by only using PC, LT, RCV and RCT sub-characteristics. This

is because there exist implicit relations between sub-characteristics and we do not need

to use all sub-characteristics to classify a multi-threaded application. For example,

when threads have the same program counter, they generally have similar creation and

exit times. Similarly, when we have high RCV or RCT values, we have high produc-

er/consumer or migratory data sharing. Since we use only four sub-characteristics for

classification, benchmark characterization can be sped up and four instead of twelve

sub-characteristics can be collected.

128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Task Parallel

Geometric Decomposition

Pipeline

Divide and Conquer

Recursive Data

Event-based Coordination

.DaC
Pl

TP

GD

EbC
RD

Figure 6.2. ROC curve of our decision tree.

Our decision tree correctly classifies 32 of the 40 multi-threaded applications from

our training set with an 80% accuracy. In Figure 6.2, we show the performance of our

decision tree for each parallel pattern as a Receiver Operating Characteristic (ROC)

curve. Table 6.3 shows the maximum True Positive Rate (TPR) and maximum False

Positive Rate (FPR) cut-offs of our ROC curve. The ROC curve shows that divide and

conquer and recursive data parallel patterns have the lowest false positive rate (0.0)

and divide and conquer parallel pattern has the highest true positive rate (1.0).

6.4.2.2. Using the Decision Tree. We show the parallel pattern classification results

of our decision tree in column DT of Table 6.2. Our decision tree correctly classifies

24 of the 26 benchmarks in the test set with a 92.3% accuracy. Hence, the accuracy

of our decision tree is high. The characterization overhead is 3.5× and low, since we

use only four sub-characteristics for classification instead of twelve. The speed is 0.01

seconds and high, and the memory usage is 2KB and low.

129

Table 6.3. Cut-offs of our ROC curve.

Parallel Pattern Maximum TPR cut-off Maximum FPR cut-off

Task Parallel 0.77 0.11

Geometric Decomposition 0.78 0.10

Pipeline 0.83 0.03

Divide and Conquer 1 0

Recursive Data 0.75 0

Event-based Coordination 0.75 0.03

TP GD Pl DaC RD EbC Total

TP

GD

Pl

DaC

RD

EbC

Total

6
15.0%

5
12.5%

2
5.0%

0
0.0%

0
0.0%

0
0.0%

46.2%
53.8%

0
0.0%

8
20.0%

0
0.0%

0
0.0%

1
2.5%

0
0.0%

88.9%
11.1%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

1
2.5%

1
2.5%

66.7%
33.3%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

1
2.5%

0
0.0%

0
0.0%

3
7.5%

0
0.0%

75.0%
25.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

100%
0.0%

100%
0.0%

57.1%
42.9%

66.7%
33.3%

100%
0.0%

60.0%
40.0%

80.0%
20.0%

72.5%
27.5%

Target Parallel Pattern

O
u

tp
u

t
P

ar
al

le
l

P
at

te
rn

 Confusion Matrix

Figure 6.3. Confusion matrix of the naive Bayes classifier using the Gaussian method

on the training set.

6.4.3. Naive Bayes Classifier

6.4.3.1. Construction of a Naive Bayes Classifier. For constructing our naive Bayes

classifier using the Gaussian method, called NBC1, we use all sub-characteristics of 40

benchmarks in the training set. We trained the NBC1 using the algorithm in [13, 14].

Our classifier correctly classifies 29 of the 40 multi-threaded applications from our

training set with a 72.5% accuracy. Figure 6.3 shows the confusion matrix of NBC1 on

130

TP GD Pl DaC RD EbC Total

TP

GD

Pl

DaC

RD

EbC

Total

13
32.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

8
20.0%

0
0.0%

0
0.0%

1
2.5%

0
0.0%

88.9%
11.1%

0
0.0%

0
0.0%

6
15.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

80.0%
20.0%

100%
0.0%

97.5%
2.5%

Target Parallel Pattern

O
u

tp
u

t
P

ar
al

le
l

P
at

te
rn

 Confusion Matrix

Figure 6.4. Confusion matrix of the naive Bayes classifier using the Kernel Density

Estimation method on the training set.

the training set. In the figure, each column shows a target parallel pattern and each row

shows the parallel pattern that is predicted by NBC1. The diagonal cells of the matrix

show the number of multi-threaded applications that are correctly classified, and the

off-diagonal cells show the number of the misclassified multi-threaded applications. For

example, the cell at row 3 and column 1 shows that two task parallel applications are

classified as pipeline. The cell in the bottom right shows the total percent of correctly

classified multi-threaded applications (upside), which is 72.5% and the total percent of

misclassified multi-threaded applications (downside), which is 27.5%.

We observe that the accuracy of NBC1 is low because it uses the Gaussian prob-

ability distribution method to model continuous values. To improve the accuracy, we

use the Kernel Density Estimation (KDE) method [69] instead of the Gaussian method.

Our classifier using the KDE method, which is called NBC2, correctly classifies 39 of

the 40 multi-threaded applications from our training set with a 97.5% accuracy. Figure

6.4 shows the confusion matrix of NBC2 on the training set. The figure shows that only

one geometric decomposition application is misclassified as recursive data application.

131

Figure 6.5. Configuration of our neural network.

6.4.3.2. Using the Naive Bayes Classifier. We show the parallel pattern classification

results of our naive Bayes classifier NBC2 in column NBC of Table 6.2. NBC1 correctly

classifies 19 of the 26 benchmarks with a 73.1% accuracy, whereas NBC2 correctly

classifies 25 of the 26 benchmarks with a 96.2% accuracy. Hence, the accuracy of

NBC2 is high. Since the accuracy of the NBC2 is higher than the NBC1, we refer to it

as the naive Bayes classifier (NBC) from now on. The accuracy of NBC is high. The

characterization overhead is 20.2× and high, since we use all twelve sub-characteristics

for classification. The speed is 0.05 seconds and medium, and the memory usage is

3KB and low.

6.4.4. Neural Networks

6.4.4.1. Construction of a Neural Network. Our neural network is a two-layer feed-

forward network, which has one hidden layer and one output layer as seen in Figure

6.5. In the training phase of our neural network, 12 sub-characteristics and the correct

parallel pattern for each multi-threaded application in the training set are given. The

size of the input layer is 12 since we have 12 sub-characteristics and the size of the

output layer is 6 since we have 6 types of parallel patterns. Note that the output of

our neural network is a vector that has 6 elements, where only one element is 1 and

the others are 0. We set the size of the hidden layer to 10 in our experiments because

we experimentally observed that this value shows better performance than other sizes

such as 5 or 30.

We use scaled conjugate gradient method [70], which is a neural network training

function that updates weight values, to train our neural network. We use Mean Square

Error (MSE) as performance function, which is the average squared error between

132

Figure 6.6. Training performance of the neural network.

the neural network outputs and the target parallel patterns. Our neural network has

sigmoid transfer functions in the hidden layer and the output layer. We use 70% of the

training set for training, 15% to validate that the neural network does not overfit, and

15% to independently test the neural network. A trained neural network can result

in a different solution because of different initial weight values, different divisions of

data into training, validation, and test sets. To overcome this problem, we retrain our

neural network 10 times and select the one with the highest accuracy.

During the training, we use the magnitude of the gradient of performance and

the number of validation checks to terminate the training. Note that validation checks

represent the number of successive iterations that the performance fails to decrease.

The training stops when the magnitude of the gradient is less than 1e-5 or the number

of the validation checks reaches 6.

After configuring the parameters of our neural network as described above, we

train our neural network. We show training, validation, and test performance in Fig-

ure 6.6. The training of our neural network stops at 27th iteration since the validation

checks reach 6. We have the best validation performance, which is 0.084, at 21st iter-

ation. Our neural network correctly classifies 27 of the 40 multi-threaded applications

from the training set with a 67.5% accuracy and Figure 6.7 shows the confusion matrix

of our neural network on the training set.

133

TP GD Pl DaC RD EbC Total

TP

GD

Pl

DaC

RD

EbC

Total

11
27.5%

2
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

84.6%
15.4%

3
7.5%

6
15.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

66.7%
33.3%

0
0.0%

1
2.5%

5
12.5%

0
0.0%

0
0.0%

0
0.0%

83.3%
16.7%

0
0.0%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

2
5.0%

1
2.5%

0
0.0%

1
2.5%

0
0.0%

25.0%
75.0%

0
0.0%

0
0.0%

4
10.0%

0
0.0%

0
0.0%

0
0.0%

0.0%
100%

78.6%
21.4%

54.5%
45.5%

50.0%
50.0%

100%
0.0%

100%
0.0%

NaN%
NaN%

67.5%
32.5%

Target Parallel Pattern

O
u

tp
u

t
P

ar
al

le
l

P
at

te
rn

 Confusion Matrix

Figure 6.7. Confusion matrix of the neural network on the training set.

6.4.4.2. Using the Neural Network. We show the parallel pattern classification results

of our neural network in column NNW of Table 6.2. Our neural network correctly

classifies 18 of the 26 benchmarks in the test set with a 69.2% accuracy. Hence, the

accuracy of our neural network is low. The characterization overhead is 20.2× and

high, since we use all twelve sub-characteristics for classification. The speed is 0.31

seconds and low, and the memory usage is 6KB and low. Since NNW provides low

accuracy, high characterization overhead, and low speed, it is not suitable for parallel

pattern detection.

6.4.5. Principal Component Analysis with K-means

6.4.5.1. Construction of a Principal Component Analysis with K-means. In this sec-

tion, we perform Principal Component Analysis (PCA) followed by k-means clustering

on the training set. We use PCA to reduce the number of sub-characteristics that

we use for parallel pattern classification while preserving significant variances of the

raw sub-characteristics. We know that using a few number of features reduces the

running time and memory usage of our clustering and classification algorithm. Figure

134

0.19

0.36

0.51
0.62

0.71
0.8

0.87 0.92 0.96 0.98 1 1

0

0.2

0.4

0.6

0.8

1

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

V
ar
ia
n
ce

Principal Component

Figure 6.8. Principal components and their variance.

6.8 shows the application of PCA on the training set to find the principal components

and their variances. Typically, most of the variance is contained in the first two or

three principal components. However, in our case, we need to use the first six principal

components that capture 80% of the total variance of the training set. Although the

first nine principal components capture 96% of the total variance of the training set,

using more number of principal components increases the CPU and memory usage of

the clustering and classification techniques.

Once we find the principal components, we generate 6 clusters using k-means

clustering algorithm [71]. Each cluster denotes a parallel pattern type and is repre-

sented by its centroid, which is a 6-dimensional vector. Since the clusters that k-means

algorithm finds depend on the starting points, we run the k-means algorithm 10 times

and select the solution that gives the minimum total sum of distances.

After finding the centroids of the clusters, we measure the accuracy of the PCA

with k-means on the training set. We first find the principal components of the sub-

characteristics of each application and then we measure the Euclidean distance between

the principal components and each centroid. The parallel pattern type of the nearest

centroid gives the parallel pattern of the application. PCA with k-means correctly

classifies 32 of 40 applications in the training set with an 80% accuracy.

6.4.5.2. Using the Principal Component Analysis with K-means. We show the paral-

lel pattern classification results of PCA with k-means in column PCA of Table 6.2.

135

Figure 6.9. The PCA space that is projected into 2 dimensions (PC1 and PC2).

PCA correctly classifies 17 of the 26 benchmarks in the test set with a 65.4% accuracy.

We also performed a set of experiments to see whether using only the first two

principal components can accurately classify the benchmarks. Note that using only

two principal components improves the performance of the clustering and classification.

Figure 6.9 shows the PCA space that is projected into 2 dimensions (PC1 and PC2) and

the parallel pattern classification results of the 2 dimensional PCA with k-means. In the

figure, we show six cluster centroid locations that represent parallel patterns and the

parallel patterns of the benchmarks. The two dimensional PCA with k-means correctly

classifies 13 of the 26 the benchmarks with a 50% accuracy. This is because the first

two principal components only preserve 36% of the total variance of the training set.

Although using only the first two principal components is fast and memory efficient, the

accuracy is low. Our experiments show that using more than six principal components

increases the accuracy up to 85% but decreases the speed and using less than six

principal components decreases the accuracy but increases the speed. Hence, using the

first six principal components is the optimal point where there is a balance between

136

0

10

20

30

40

50

60

70

80

90

100

PC (0.76) RCT (0.67) Exit time (0.39) Prod/Con (0.37) LT (0.34) Private (0.28) Creation Time
(0.28)

RCV (0.27) Migratory (0.24) Read‐only (0.20) IC (0.18) Creator Thread
(0.1)

A
cc
u
ra
cy

Characteristics Used

kNN NBC NNW

Figure 6.10. Accuracies of our machine learning techniques using the selected

sub-characteristics proposed by MI.

Table 6.4. Comparison of machine learning techniques.

Metric kNN DT NBC NNW PCA

Accuracy High (100%) High (92.3%) High (96.2%) Low (69.2%) Low (65.4%)

Characterization Overhead High Low High High High

without FS / with FS (20.2×/17.1×) (3.5×/-) (20.2×/20.1×) (20.2×/20.2×) (20.2×/-)

Speed Medium High Medium Low Low

(0.04s) (0.01s) (0.05s) (0.31s) (0.53s)

Memory Usage Low (2KB) Low (2KB) Low (3KB) Low (6KB) Low (9KB)

the accuracy and the speed. At this optimal point, the accuracy of our PCA with

k-means is low. The characterization overhead is 20.2× and high, since we use all

twelve sub-characteristics for classification. The speed is 0.53 seconds and low, and

the memory usage is 9KB and low. Since PCA with k-means provides low accuracy,

high characterization overhead, and low speed, it is not suitable for parallel pattern

detection.

6.4.6. Feature Selection for Our Machine Learning Techniques

Since using a large number of features (characteristics) increases characterization,

training, and learning costs, we decided to select a subset of relevant features for use in

our model construction. For this purpose, we use the mutual information (MI) criterion

[72]. MI measures the amount of information that the presence of a characteristic

contributes to making the correct classification decision on a class. We ran Mutual

Information Feature Selection (FS) on the training set and obtained MI for every

feature ranked from the highest MI to the lowest. We then measured the accuracies

137

of our machine learning techniques using the sub-characteristics proposed by the MI

and obtained Figure 6.10. Note that, in this chapter, we improve kNN that is used

in Chapter 3 and [2] with feature selection where their pattern detection accuracies

are 100% and 50%, respectively. Also, Table 6.4 shows the comparison of the machine

learning techniques we used for parallel pattern classification. In the table, we present

the characterization overheads without feature selection and with feature selection, if

this applies to the particular technique, if not we denote it by a ‘-’ symbol. Note that we

do not apply FS on decision tree and PCA since our decision tree uses only 4 features

and PCA is a feature reduction technique itself. From Figure 6.10 and Table 6.4, we

observe that although the accuracy of kNN, NBC, and NNW do not improve using FS,

the number of sub-characteristics required to achieve the maximum accuracies for kNN

and NBC are slightly reduced. That is, instead of 12 sub-characteristics we can now use

10 and 11 sub-characteristics to achieve 100% and 96.2% accuracy with slightly reduced

17.1× and 20.1× average characterization overheads for kNN and NBC, respectively.

Note that the FS provides 1.2× speedup for the kNN technique going from 20.2× to

17.1×. These results show that almost all the characteristics are relevant to the target

class.

After applying FS, we analyze the characterization overheads of our techniques

compared to the decision tree. Since our decision tree has the lowest average character-

ization overhead (3.5×), we find the characterization overheads of the other techniques

where they have an accuracy that is equal or larger than the accuracy of our decision

tree (92.3%). Our kNN has a 94% accuracy with a 15.1× average characterization

overhead when we use the first 9 sub-characteristics proposed by the FS. Our naive

Bayes classifier has a 96% accuracy with a 20.1× average characterization overhead

when we use the first 11 sub-characteristics proposed by the FS. Our neural network

cannot achieve a 92.3% accuracy. Although the FS reduces the characterization over-

heads for kNN and naive Bayes classifier, their characterization overheads are higher

than the characterization overhead of our decision tree.

138

Figure 6.11. Characterization speedup of decision tree over kNN in Chapter 3.

6.4.7. Comparison of Our Machine Learning Techniques

We demonstrate the comparison of the machine learning techniques we used in

Table 6.4. The characterization phase consumes more time than the training and

classification phases. For instance, for Bodytrack benchmark, the characterization

phase takes 51 seconds, whereas the training and classification phases using NBC take

only 0.05 seconds. Hence, a technique with a low characterization overhead detects the

parallel pattern of an application faster than a technique with a high speed.

Decision tree performs best in the characterization phase. Its overhead (3.5×)

is lower than the other techniques since we collect only 4 sub-characteristics for the

decision tree and 12 sub-characteristics for other techniques. Figure 6.11 shows the

characterization speedup of decision tree over kNN technique without feature selection

for each benchmark. Note that we calculate the speedup as the ratio of the character-

ization overhead for kNN to the characterization overhead for the decision tree. From

the figure, the maximum speedup is 13.7× for Kmeans and the minimum speedup is

1.1× for Heart Wall Tracking. The decision tree has higher speedups for the bench-

marks that are long running and memory intensive such as CFD Solver and Ferret.

The average characterization overhead for kNN is 20.2× without feature selection and

17.1× with feature selection, hence the average characterization speedup of decision

tree over kNN is 5.7× and 4.8×, respectively. We observe similar speedups for decision

tree over other techniques as well, since they also use 12 sub-characteristics.

139

Decision tree also performs best in the training and classification phases as it is

the fastest (0.01 seconds), uses less memory (2KB) than other techniques.

We observed that the neural network and PCA with k-means are not suitable

for parallel pattern classification because of their low accuracies and low efficiencies.

The accuracy of kNN, NBC, and decision trees are high, and are 100%, 96%, 92%,

respectively. Hence, when there is a need for accurate classification, one can use the

kNN, NBC, or decision trees. On the other hand, when there is also need for high

speed one can use the decision tree.

6.4.8. Using Parallel Patterns Detection Results

6.4.8.1. Synthetic Benchmark Generation. We performed experiments to validate the

usefulness of our parallel pattern detection techniques by adding our techniques to

the MINIME tool that we developed. Details of this approach can be found in Chap-

ter 3 where MINIME uses parallel patterns in capturing important characteristics of

multi-threaded applications and generates synthetic multicore benchmarks from those

applications.

In the experiments, we generated multi-threaded synthetic benchmarks from

PARSEC [3] and Rodinia (OpenMP) [4] benchmarks. Our synthetics use the Pthreads

library for multi-threading. We set the overall similarity score to 90% and individual

similarity scores to 80%. Table 6.5 shows our pattern detection and synthesis results

that we previously obtained in Chapter 3. Note that we used kNN technique in the

experiments since it is the most accurate pattern recognition technique and we know

that accuracy is more important than efficiency for synthetic benchmark generation.

We show the lines of code and parallel patterns of original benchmarks (that is found

from the literature) as LOC and Parallel Pattern in the table, respectively. In the

table, we also show the number of iterations it takes to generate the synthetic bench-

mark (#iter), the speedup obtained using the synthetic in terms of execution time

Speedup(×), and the reduction in lines of code going from the original to the synthetic

CodeSize(×).

140

Table 6.5. Pattern recognition and synthesis results.

Original Benchmark Synthetic Benchmark

Suite Benchmark LOC Parallel Pattern #iter Speedup(×) CodeSize(×) OSS

P
A

R
S
E

C

Blackscholes 1262 TP 2 10 10 95

Bodytrack 7696 GD 16 11 19 90

Canneal 2794 TP 2 22 20 93

Dedup 7125 Pl 9 36 16 94

Facesim 20275 TP 5 15 159 94

Ferret 10765 Pl 5 67 7 90

Fluidanimate 2784 GD 2 15 8 90

Swaptions 1095 TP 2 13 7 91

X264 38546 Pl 12 26 41 92

R
o
d
in

ia

Kmeans 2146 TP 15 36 11 90

HotSpot 196 GD 10 16 1 94

Back Propagation 478 TP 5 20 3 94

SRAD 495 TP 17 12 2 93

Breadth-First Search 125 TP 18 35 0 94

CFD Solver 1539 TP 11 10174 6 90

LU Decomposition 541 GD 32 10 2 94

Heart Wall Tracking 2244 TP 16 34 12 90

Particle Filter 398 GD 9 10 1 91

PathFinder 127 GD 14 13 0 95

LavaMD 353 GD 19 30 1 90

For most benchmarks, we generate the synthetic benchmark in less than 20 it-

erations. In the table, speedup Speedup(×) and code size reduction Code(×) show

that our synthetic benchmarks are much faster and smaller than original benchmarks.

We denote Code(×) as 0 in cases where the original code size is very small and the

corresponding synthetic code size is larger than the original. However, even in these

cases we have faster synthetics which is our goal in generating synthetics. That is, the

original benchmarks have larger and time consuming loops comparing to our synthetic

benchmarks. It is also clear that we have a larger speedup or code size reduction for

the benchmarks with high execution time or code size. In the table, we show the over-

all similarity score (OSS) where the average is 92%. These scores demonstrate that

synthetics are above the target set by the user (90%) and have high degree of similarity

with the originals.

141

6.4.8.2. Correlation of Parallel Pattern with Synthetic Benchmark Similarity. We val-

idate the usefulness of parallel pattern detection results by analyzing the correlation

between the parallel pattern score and the overall similarity score as briefly discussed

in Chapter 3. Note that when using kNN, the parallel pattern scores are assigned to

be inversely proportional to the distances to the application characteristics, where the

highest score is 100 and the lowest score is 0.

To check this correlation, we synthesis six different synthetic benchmarks for each

original benchmark where each has a different parallel pattern. Note that only one of

them has the correct pattern. We obtain these synthetic benchmarks only after one

iteration step because our goal is not to generate accurate synthetic benchmarks, it is

to assess the usefulness of parallel patterns. After generating synthetic benchmarks,

we calculate the parallel pattern score and overall similarity score for each synthetic.

By analyzing the calculated six parallel pattern scores and overall similarity scores, we

observed that we have the highest overall similarity score for the synthetic benchmark

that has the highest pattern score, that is, the synthetic with the correct parallel

pattern. For example, when Bodytrack (or Kmeans) has the correct parallel pattern,

the overall similarity score is 61 (70), whereas the score is between 24 and 30 (32 and

53) for other parallel patterns. Note that the overall similarity scores in the correlation

experiments are low since we generate the synthetics in only one iteration and we do not

add code blocks to improve similarity scores. This is because our aim is to measure the

influence of correct pattern detection and adding code blocks for improving similarity

scores hides this influence.

Our experimental results also show that there is a linear correlation between the

pattern score and overall similarity score. The correlation coefficients are 0.96 and 0.86

for Bodytrack and Kmeans, respectively. The average correlation coefficient is 0.71 for

all benchmarks used during usefulness validation experiments.

Next, we perform the above correlation experiments to all of our pattern recogni-

tion techniques. We again generate synthetic benchmarks in one iteration by using the

parallel pattern detected by the parallel pattern detection technique. We observed that

142

overall similarity scores are 59, 55, 57, 47, and 44 for kNN, decision trees, NBC, neural

networks, and PCA with K-means, respectively. These scores validate the usefulness

of our parallel pattern classification results where the most accurate techniques (kNN,

decision trees, and NBC) result in the most accurate synthetic benchmarks. Further-

more, the synthetic benchmarks are similar on average 92% to the original benchmarks,

the average speedup is 23× (without CFD Solver) and the average code reduction is

20×.

6.5. Discussion

6.5.1. Data Collection Scalability

The experimental results show that our current set of characteristics ensures ac-

curate and efficient parallel pattern detection. Although adding more characteristics

including synchronization and instruction mix characteristics can further improve ac-

curacy or efficiency, this increases the characterization overhead. As characterization

(data collection step of data preparation) is the most time consuming step, we prefer

not to add more characteristics.

Improving data collection overhead can improve the overall speed dramatically

since the main overhead comes from data collection. One option for this is to employ

static (code) analysis. If we can obtain the source code of the application then we

can gather PC and creator thread sub-characteristics by static analysis. Note that we

cannot gather the remaining characteristics by static analysis which all depend on the

running environment and dynamic behaviors. We performed a simple experiment to

check whether using only the characteristics gathered statically (PC, creator thread)

can result in an accurate model. In this case, the accuracy of the kNN was only

17%. Also, in Chapter 3, we use kNN and observe that the combination of data

sharing and thread communication characteristics has the highest correlation with the

parallel pattern with a 0.91 correlation coefficient unlike the static general threading

characteristics.

143

Another option to improve data collection overhead is to use hardware perfor-

mance counters. However, as we described in Section 6.3, we cannot use performance

counters to collect our characteristics. We validated the scalability of our data col-

lection step by successfully characterizing large Mozilla Firefox and Chromium Web

Browser applications using our binary instrumentation technique. Specifically, we ob-

served that the number of threads in Firefox ranges from 49 to 70 depending on the

operations performed on the browser. Similarly, Chromium has 24 threads in the de-

fault case. Once we collect the characteristics of these applications, we normalize them

and detect their parallel patterns similar to the benchmarks we used.

The performances of testing and training steps are determined by the amount

of normalized data, which does not change when the number of cores is increased.

When the number of cores is increased, if the application’s performance increases then

similarly data collection performance increases. This is because dynamic binary in-

strumentation mainly inserts code into the original application code. Furthermore,

DynamoRIO and Umbra tools are meant to be efficient and scalable [44,46].

6.5.2. Training Set Size and Cross Validation

Machine learning techniques are sensitive to the size and quality of the training

set. Hence, there is need for a large benchmark suite or the training set should be

high quality if it is small. Since there are not many publicly available multi-threaded

benchmarks suites, we end up with a small training set. To remedy this situation, we

carefully select applications to obtain a high quality training set where it is composed

of applications with different characteristics and parallel patterns as described in the

experiments in Section 6.4.

Since the size of our training set is small, we also use k-fold cross validation to

measure the accuracies of our techniques. In the experiments, we use 66 benchmarks

(40 from our training set and 26 from our test set). The average accuracies are 80,

82, 50, and 48 for decision tree, naive Bayes classifier, neural network, and PCA with

k-means, respectively. We do not apply k-fold to kNN technique because it assumes

144

that there exist six applications that represent the reference behaviors of each parallel

pattern in its training set and upon using k-fold a representative from each parallel

pattern type is not necessarily guaranteed in the test set and results in poor accuracy.

The average accuracies in k-fold validation are lower than the accuracies observed

in our earlier experiments since the training and test sets in k-fold validation do not

contain all characteristics and all parallel patterns in many cases. To explain this sit-

uation, we give the following example. In case where k-fold generates a training set

with no application with pipeline parallel pattern and a test set where many applica-

tions have pipeline pattern, the accuracy is going to be poor. However, the relative

order of average accuracies using k-fold for decision trees, naive Bayes classifier, neural

network, and PCA with k-means (80, 82, 50, and 48) is similar to the ones observed in

our experiments (92.3, 96.2, 69.2, and 65.4).

Another option to increase the size of the training set is to apply multiple inputs

on the existing benchmarks, which we explain next.

6.5.3. Impact of Multiple Inputs

In order to analyze the impact of input changes on our techniques, we performed a

set of experiments using our decision tree technique. In the experiments, we generated

two different training sets (ts-small and ts-medium) using small and medium inputs

that is available for the benchmarks in the training set. Note that our results are valid

if other inputs are used as well. We then used a single test set for validation.

We now show that our normalization works correctly and for both input types the

prediction outcome is the same. Furthermore, adding both inputs to the same training

set and obtaining such a single set does not enrich the quality of our training set.

We observed that although application characteristics in ts-small and ts-medium

are slightly different (as the behavior of an application may change when its inputs

change), the parallel pattern is the same. We use the relative ratio of each sub-

145

characteristic in normalization, hence our technique correctly normalizes potentially

different characteristics. That is, the normalized characteristics of applications in both

ts-small and ts-medium have the same normalization values. For example, if data

sharing sub-characteristics of a benchmark with small input are 10, 20, 10, and 60 (for

private, read-only, producer/consumer, migratory) then they are typically 100, 200,

100, and 600 for medium input (scaled version of the small input). In both cases, the

normalized sub-characteristics are the same and are 0.1, 0.2, 0.1, and 0.6.

Since we have the same normalized characteristics for both ts-small and ts-

medium, the same efficiency and accuracy is achieved with decision trees for the training

set as well as the test set. If we join and use ts-small and ts-medium as a single training

set, we obtain duplicate elements and a low quality training set. Hence, we conclude

that using multiple inputs to get a larger training set does not improve the effectiveness

of our techniques.

6.5.4. Multiple Parallel Patterns

Although each benchmark that we used in this thesis utilize only a single parallel

pattern, we note that an implementation can potentially have a composition or hier-

archy of patterns. However, we are not aware of a publicly available multi-threaded

benchmark suite that includes benchmarks with a mixture of multiple patterns. Hence,

one would need to find/create such real life applications for performing experiments to

validate the pattern detection techniques, which detect multiple patterns. Therefore,

we do not consider such behavior in this thesis.

6.6. Summary

Detecting the parallel pattern used in a multi-threaded application is crucial to

the development and optimization of both multicore hardware and software. However,

this topic has not been widely studied. We present a novel approach to parallel pattern

detection using several machine learning techniques. We use high level thread commu-

nication and data sharing characteristics to capture the software architectural patterns

146

of multi-threaded applications since low level characteristics such as IPC, cache miss

rate, and branch misprediction rate can only capture performance characteristics.

Our experiments show that machine learning techniques can accurately and quickly

detect the parallel patterns of the benchmarks from PARSEC and Rodinia suites.

Specifically, k-nearest neighbor, naive Bayes classifier, and decision trees are the most

accurate techniques with a 100%, 96%, and 92% accuracy, respectively. Decision trees

provide a 5.7× average characterization speedup over the other techniques that do not

use feature selection and a 4.8× speedup over the other techniques that use feature

selection. Overall, the decision trees are the fastest technique with the lowest char-

acterization overhead producing the best combination of detection results. We also

observe that the neural network and PCA with k-means techniques are not suitable

for parallel pattern detection because of their low accuracies and low efficiencies. We

validated the usefulness of the proposed techniques on synthetic benchmark generation.

147

7. RELATED WORK

In this chapter, we discuss the related work that falls into three main categories.

The first category is the generation of synthetic benchmarks for CPUs. The second cat-

egory includes a novel benchmark generation technique for GPUs. The third category

is the previous work on machine learning techniques to detect parallel patterns.

7.1. Synthetic Benchmark Generation for Multicore CPUs

7.1.1. Software Architectural Patterns

In [28], the authors introduced design patterns for object-oriented programming.

In [27], the authors present architectural patterns for parallel multi-threaded applica-

tions. Goswami et al. [73] describe pattern-based approaches in parallel computing

and present a set of architectural-skeletons. Aldinucci et. al [63] demonstrate how a

set of re-usable building blocks that support efficient design of parallel skeletons/pat-

terns, can be used to design general purpose programming model and domain specific

patterns. In [74], the authors presented a novel method for representing skeletons,

which are high-level representations for parallel applications, and their composition.

In [75], the authors discuss strengths and weakness of data parallel patterns. Asanovic

et. al [76] introduce dwarfs, which are used to design and develop parallel program-

ming models and architectures. A dwarf defines an algorithmic method that captures

computations and communication patterns of an application.

7.1.2. Benchmark Characterization

There has been prior work on characterizing benchmarks mentioned in this the-

sis. In [3], the authors analyze several characteristics such as data locality, effects of

different cache block size, degree of parallelization, and temporal and spatial behavior

of communication for PARSEC. Che at al. [4] present characteristics of Rodinia bench-

marks based on inherent architectural characteristics, parallelization, synchronization,

148

communication overhead, and power consumption. A comparison of PARSEC and Ro-

dinia benchmark suites is given in [77], using instruction mix, working set, and sharing

behavior characteristics. Their work shows that many of the workloads in Rodinia

and PARSEC capture different aspects of performance metrics and they complete each

other. This thesis shows that PARSEC and Rodinia benchmarks do not cover all par-

allel patterns. Poovey et al. [78] characterized the EEMBC benchmarks on different

ISAs using trace-driven simulation. They used microarchitecture independent charac-

teristics such as dynamic instruction percentages (integer, floating-point, load, store,

branch, e.g.) and microarchitecture dependent characteristics such as cache miss rate

and branch misprediction ratios. They mainly focus on the analysis of the similarity

of performance characteristics among benchmarks.

There has been several works to understand and optimize the performance of

workloads by using performance counters [56–58]. These studies use microarchitec-

ture dependent metrics like cycles per instruction, cache miss rate, and branch mis-

prediction rate. These studies are helpful in understanding performance and finding

bottlenecks. Hoste et al. [10] introduced microarchitecture independent characteris-

tics, some of which we also use in this thesis to compare benchmarks. Hillenbrand et

al. [79] present an architecture independent methodology for analyzing communication

of multi-threaded applications. The communication patterns they use are read-only,

read/write, producer/consumer and migratory. Bharathi et al. [80] characterized work-

flows from different scientific communities.

7.1.3. Synthetic Benchmark Generation

Several works use statistical simulation for synthetic workload generation [81–84].

However, in these works mainly single threaded applications and microarchitecture

dependent characteristics have been used, whereas this thesis targets multi-threaded

applications and uses microarchitecture independent characteristics.

So far, synthetic benchmarks have mainly been developed for sequential applica-

tions [9,39]. There are some recent synthetics for multi-threaded applications in [58,85],

149

and [40] that target performance and power characteristics and may have lower error

scores. These synthetics do not target embedded multicore systems, which we can,

thanks to using MCA libraries. Note that MCAPI which is a lightweight message pass-

ing API and MRAPI which specifies essential application-level resource management

capabilities are two of the standards developed by MCA [20,38] for closely distributed

embedded systems. Since these standards are new they are lacking benchmarks. Our

benchmarks will also serve to proliferate the usage of these standards among potential

users. Also, their synthetics use low level assembly language, whereas we generate

multi-threaded benchmarks as readable and portable C code. Specially, their synthetic

benchmarks are generated for a specific number of cores and they need to be regen-

erated when the target system has different number of cores. However, we do not

generate synthetic benchmarks for a specific number of cores and multi-threaded syn-

thetic benchmarks can be used to quantify performance differences for studies when

the number of cores are changed. We do not use simulators, which may consume a

long time, for gathering application characteristics, rather we use dynamic binary in-

strumentation and performance counters. The number of characteristics we use (13) is

smaller than theirs (around 40). Finally and most importantly, we use an even higher

level of characteristics, that is, the parallel pattern that captures inherent characteris-

tics of a multi-threaded application.

In [86], the authors proposed an approach for benchmark generation from be-

havior of real applications that is captured as statistical execution profile constructed

from hardware performance counters. They target ARM-based mobile devices whereas

we target CPU devices. In [87], the author proposed a synthetic workload generation

technique in which the characteristics of the original workload are obtained from the

system functional or logical resource usage and a synthetic set of jobs are constructed

that places similar demands on the system resources. Wang et al. [88] use perfor-

mance cloning to emulate cache organizations on real hardware. They specifically

aim to mimic cache behavior, however, we mimic IPC, cache and branch prediction

behaviors as well as parallel patterns. In [89], the authors present an automatic work-

load extraction approach for embedded software performance estimation. They use

an LLVM-based characterization to collect target performance characteristics from the

150

source code, whereas we use performance counters to capture performance charac-

teristics. In [90], we present a framework that automatically generates system level

synthetic benchmarks from traditional benchmarks.

Portability of synthetics with changing microarchitectures has been studied in the

literature [10,40,91]. In [92] and [93], the authors use LLVM compiler to generate ISA

independent portable benchmarks. In particular, they generate synthetics for P4080ds

system and their average error in IPC is 37.9% with maximum error of 212%. In [94],

the authors generate portable and human-readable communication benchmarks in C

for MPI applications. Their synthetics preserve only the communication characteristics

and the execution time of original applications. In this thesis, we generate portable

and human-readable synthetics. We performed portability experiments with changing

microarchitectures as well as ISAs. Our synthetics target Pthreads applications and

they preserve several high level and low level characteristics of the originals, while being

faster than the originals.

Jung et al. [95] proposed a random synthetic program generator that is used to

train machine learning models by collecting low level characteristics from the source

code of an application. Then they use these models to predict and modify the applica-

tion and its characteristics by using the best data structures for a given input/architec-

ture combination. This approach is orthogonal to our approach. In that, we instrument

the binary of the application to collect both low level and high level characteristics in-

cluding thread communication and data sharing to generate a fast synthetic benchmark

that preserves the characteristics of the application.

7.2. Thread-level Synthetic Benchmark for CPUs

7.2.1. Benchmark Characterization

In [96], the authors propose ScarPhase, a performance counter based phase de-

tection library, to detect and classify phases in serial and parallel applications. They

collect per thread performance characteristics including cycles per instruction (CPI)

151

and L3 miss ratio where they use Linux perf to obtain these characteristics similar to

us. They validate their technique on multi-threaded application from PARSEC suite

and show that PARSEC benchmarks have a diverse set of phase behaviors. How-

ever, we show that PARSEC benchmarks do not contain all parallel patterns such

as event-based coordination. Perelman et al. [97] enhanced the single threaded Sim-

Point [98] to detect phases in parallel applications. They show that CPI and cache

hit rates are the key characteristics to understand the performance and phases of a

multi-threaded application. Similarly, we use per thread IPC and cache miss rates

as performance characteristics in benchmark synthesis. In [99], the authors charac-

terize multi-threaded applications in order to analyze the effect of shared-resource

contention on performance. They use several characteristics including L1, L2, and L3

cache misses and perform characterization of the multi-threaded PARSEC benchmarks

on real hardware. In this thesis, we also use per thread cache misses to capture and

mimic performance characteristics of multi-threaded applications.

7.3. Synthetic Benchmark Generation for GPUs

7.3.1. Benchmark Characterization

In [19], the authors present a set of microarchitecture independent GPU charac-

teristics that capture important behaviors of GPU applications: kernel stress, kernel

characteristics, divergence characteristics, instruction mix, and coalescing characteris-

tics. They use these characteristics with PCA and hierarchical clustering analysis to

analyze diversity of GPU benchmark suites. We also use many of these characteristics

and apply PCA to validate the importance of our characteristics. Che et al. [15] iden-

tify a set of important GPU characteristics, which are similar to our characteristics,

including instruction throughput, computation-to-memory access ratio, and memory

instruction mix to predict the performance of GPU applications by correlating their

characteristics to existing applications’ characteristics. The authors also conduct a

PCA to illustrate similarity among benchmarks. Bakhoda et al. [17] present perfor-

mance characteristics and performance bottlenecks of CUDA applications by analyzing

characteristics including IPC, instruction mix, memory coalescing, and warp occupancy

152

on different hardware configurations. Similarly, Kerr et. al [100] use different charac-

teristics that are similar to ones we use to identify relationships between application

behavior and performance on different heterogeneous systems. Since we preserve the

characteristics of an original application across different platforms, one can use our

synthetic benchmarks, which are fast and small, in performance characterization and

bottleneck identification studies instead of using large original applications. In [101],

the authors introduce the NUPAR benchmark suite including OpenCL and CUDA ap-

plications and they characterize these applications in terms of several characteristics

including occupancy, register utilization, local/shared memory utilization which are

similar the ones we use. Rodinia and Parboil benchmark suites [4, 5] target heteroge-

neous multicore systems. In [16], the authors characterize the performance of OpenCL

benchmarks from NAS Parallel Benchmark suite.

7.3.2. Synthetic Benchmark Generation

Synthetic benchmarks for CPU applications have been widely developed such as

in [40,102] that target performance and power characteristics. These synthetics do not

target GPUs. There exist only a few recent works on synthetic benchmark generation

for GPUs. In [50], the authors generate miniature (synthetic) proxies of CUDA General

Purpose Computing on Graphical Processing Unit (GPGPU) kernels where they mimic

performance characteristics. Also, they only focus on kernel programs and they do not

mimic host programs and data passing between CPU and GPU. This is because our

goal is to accelerate GPU architecture simulation. They obtain 49× average and 589×

maximum speedup with an average IPC error of 4.7% where we obtain 541× average

and 7284× maximum speedup with an average IPC error of 9% and overall error of 4%.

Note that they measure the similarity (accuracy) between the original and synthetic

only in terms of one characteristic (IPC). However, we use eleven characteristics in

similarity measurement and validate that our synthetics preserve all of them. Their

approach cannot generate faster synthetics for benchmarks that do not execute any

loops, whereas our approach generated faster synthetics for all benchmarks in the

experiments. They generate synthetics in CUDA and target NVIDIA GPUs and they

153

embed assembly code in CUDA. However, our portable synthetics are in OpenCL and

do not include assembly code and we target different GPUs platforms including AMD,

NVDIA, and Intel. We also validated our approach on a simulator and real hardware,

whereas they only validated on a simulator.

Huang et al. [103] use sampling technique to speed up GPU architecture simula-

tion for CUDA applications where they achieve up to 10× speedup whereas we achieve

up to 7284× speedup. Similarly, Lee et al. [104] parallelize the GPU architecture

simulation where they gain up to 4.15× speedup.

In [105], the authors present a code generator that produces matrix multiply

kernels written in OpenCL from a set of user given parameters. However, they do

not mimic the characteristics of existing applications and also they only target matrix

multiplication applications whereas we can generate synthetic benchmarks for different

types of applications. PARAPHRASE FastFlow [62] provides OpenCL-based hetero-

geneous skeletons that make easier to understand and develop GPU applications for

hybrid CPU/GPU architectures. Similarly, our small and accurate synthetic bench-

marks and collected application characteristics can be used to understand large existing

applications. In [106], the authors present a directive-based API, Dymaxion++, to en-

able programmers to optimize memory access patterns. This approach is orthogonal

to our approach. They obtain an average of 3.2× performance improvement where we

obtain on average 541× speedup. They also need the source code of original appli-

cations since they use source-to-source code translation. However, we only need the

binaries of original applications.

7.4. Machine Learning Techniques to Detect Parallel Patterns

7.4.1. Parallel Pattern Detection

Poovey et al. [2] detect parallel patterns using kNN technique (although they

do not explicitly say kNN). Our characteristics are similar to theirs. They detect

parallel patterns from PARSEC benchmarks with 50% accuracy. We also used kNN

154

to detect parallel patterns but with 100% accuracy using 13 sub-characteristics. In

these works, the authors define a set of reference behaviors that capture the important

characteristics that each parallel pattern exhibits. The Euclidean distance is measured

between the collected characteristics of a multi-threaded application and characteristics

of each reference behavior. The authors define k as 1 where the class of a data sample

is assigned to the class that is most common among its k nearest neighbors. Hence, the

parallel pattern of the multi-threaded application is classified as the parallel pattern of

its single nearest neighbor in terms of reference behaviors.

We demonstrated ways to use several machine learning techniques as well as

kNN in this thesis. Our techniques are highly accurate such as kNN, decision trees,

and naive Bayes classifier. We improve the efficiency of kNN and other techniques with

feature selection, which has not been used for kNN earlier. Furthermore, we show that

decision trees are not only accurate but also are the fastest technique with the lowest

characterization overhead as only 4 sub-characteristics are used.

Parallel patterns have been used by Poovey et al. [59] for dynamic thread mapping

where they implement the same pattern recognition algorithm in [2] in hardware, since

their algorithm needs to work dynamically and periodically during the execution of the

program. Since the characterization overhead of decision trees is the lowest, they are

an ideal candidate for this application.

In [65], the authors detect potential pipeline and do-all parallel patterns from

sequential applications by using template matching technique. However, we detect

six parallel pattens including task parallel and geometric decomposition in parallel

multi-threaded application.

7.4.2. Machine Learning Techniques

Zanoni et al. [107] developed a tool, MARPLE-DFD, that uses machine learning

techniques to detect design patterns. Their experimental results show that the usage

of machine learning provides a significant performance improvement. We also show

155

that detecting parallel patterns provides performance improvements and enables opti-

mizations. Wang et al. [108] use machine learning techniques to partition streaming

applications. They reduce the number of the features of an application with PCA.

They then use k-means clustering and Bayesian Information Criterion (BIC) to build

their model. They run kNN technique on their model to predict the partitioning struc-

ture of an application. We use PCA to reduce the number of the sub-characteristics

we use for pattern classification similar to their work. The features of an application

they use are different from our sub-characteristics and they find ideal partitioning of

applications, whereas we find parallel patterns of applications. In [91], the authors use

PCA and BIC with k-means clustering to measure the similarity between benchmarks.

They cluster 21 benchmarks and find a subset of representative benchmarks using 29

microarchitecture independent characteristics. They find 12 optimum clusters and se-

lect one representative benchmark from each cluster. In this thesis, we use only 4

characteristics and find 6 clusters, where each cluster represents a parallel pattern. We

do not select representative benchmarks because we use a parallel pattern to describe

the characteristics of a cluster. Hence, one can easily interpret the characteristics of

a cluster without knowing the characteristics of the representative benchmark of the

cluster.

Cavazos et al. [109] collect microarchitecture dependent characteristics by us-

ing hardware performance counters and then use these characteristics with machine

learning (logistic regression) to predict good compiler optimizations that improve the

performance in terms of execution time. Cammarota et al. [110] select inlining vectors

for program performance (completion time) optimization by applying machine learning

techniques using hardware performance counters. They use 10-fold cross-validation to

select the most suitable technique similar to us. In [111], the authors use machine

learning to improve the performance and energy efficiency by predicting code transfor-

mations. They use a configuration vector (including thread count, software prefetching,

and padding) and a performance vector (including cycles per thread, cache misses, and

power meter) to represent each application and then use these vectors as inputs to

machine learning techniques. In [112, 113], the authors use performance values (com-

pletion times) to characterize parallel applications and propose a technique to find

156

a representative subset of benchmarks used for performance evolution. None of the

above techniques use parallel patterns or capture the high level software architectural

behaviors captured as general threading, thread communication, and data sharing char-

acteristics by us during their analysis. Ding et al. [114] measure code similarity in terms

of code syntax and cost-model provided metrics and then they detect codes that can

be optimized (ported) in a similar way without profiling the codes.

157

8. CONCLUSIONS AND FUTURE WORK

8.1. Summary

Development of new multicore systems including CPUs and GPUs requires a large

number of benchmarks where benchmarks capture the essence of many important real-

life applications and allow performance, and power analysis. At the same time, there is

an increase in simulation times of benchmarks that limits our ability to fully explore the

design space. Furthermore, the existing benchmarks can require specific architectures

or libraries such as shared memory architectures, or Pthreads, OpenMP, and OpenCL

libraries where multicore systems cannot not be able to use these benchmarks as they

cannot support such architectures or libraries. In addition, benchmarks or real-life

applications can be intellectual property and cannot be shared with developers for

design studies.

The solution in this thesis is to develop synthetic benchmarks suitable for any

given infrastructure where synthetic benchmarks are a miniaturized form of bench-

marks that allow high simulation speeds and act as proxies of proprietary applica-

tions. In order to derive these synthetic benchmarks from the original applications,

we propose an automatic benchmark synthesis framework with characterization and

generation components targeting multicore CPU and GPU systems. To character-

ize CPU applications, we use parallel software architectural patterns from which the

structure of the synthetic benchmark are composed. We use several machine learning

techniques, which are often feasible and cost-effective for classification, to detect the

parallel pattern used in a multi-threaded application.

We evaluated our framework on four major applications, namely, benchmark

synthesis for multicore CPUs, thread-level synthetic benchmarks for multicore CPUs,

benchmark synthesis for GPUs, and parallel pattern detection. Each of these contri-

butions are summarized in this section.

158

Synthetic Benchmark Generation for Multicore CPUs: We present a

novel automated multicore benchmark synthesis framework with characterization and

generation components. Our framework uses parallel patterns in capturing impor-

tant characteristics of multi-threaded applications and generates synthetic multicore

benchmarks from those applications. The resulting synthetic benchmarks are small,

fast, portable, human-readable, and they accurately reflect microarchitecture depen-

dent and independent characteristics of the original multicore applications. Also, they

can use either Pthreads or MCA libraries. Thanks to MCA libraries, our benchmarks

can be run on any given infrastructure, that is, SMP or message passing, unlike previ-

ously developed benchmarks. Hence, this allows us to target heterogeneous embedded

multicore systems. We implement our techniques in the MINIME tool and generate

synthetic benchmarks from PARSEC, Rodinia, and EEMBC MultiBench benchmarks

on x86 and Power Architecture platforms. We show that synthetic benchmarks are

representative across a range of multicore machines with different architectures, while

being on average 21× faster and 14× smaller than original benchmarks.

Thread-Level Synthetic Benchmarks for Multicore CPUs: We present a

novel automated thread-level synthetic benchmark generation framework with charac-

terization and generation components. The resulting thread-level synthetic benchmarks

are fast, portable, human-readable, and they accurately mimic the microarchitecture

dependent and independent characteristics of each thread in original application. We

demonstrate that we can generate multi-threaded synthetic benchmarks for real-life

PARSEC and Rodinia benchmarks, while being faster (on average 147×) and smaller

(on average 11×) than originals. The obtained results show that synthetic benchmarks

not only accurately preserve thread-level microarchitecture dependent and independent

characteristics but also parallel programming patterns.

Synthetic Benchmark Generation for GPUs: We introduce a novel au-

tomated benchmark synthesis framework for GPUs, called MINIME-GPU, to speed

up architectural simulation of modern GPU architectures. Our framework captures

important characteristics of original GPU applications and generates synthetic GPU

benchmarks using OpenCL library from those applications. To the best of our knowl-

159

edge, this is the first time synthetic OpenCL benchmarks for GPUs are generated from

existing applications. We use several characteristics including instruction throughput,

compute unit occupancy, and memory efficiency to compare the similarity of original

applications and their corresponding synthetic benchmarks. The experimental results

show that our synthetic benchmark generation framework is capable of generating syn-

thetic benchmarks that have similar characteristics with the original applications they

are generated from. On average, the similarity (accuracy) is 96% and the speedup is

541×. Also, our synthetic benchmarks use OpenCL library, that allows us to obtain

portable human readable benchmarks as opposed to using assembly level code and they

are faster and smaller than the original applications that they are generated from. We

experimentally validated that our synthetic benchmarks preserve the characteristics of

the original applications across different architectures.

Using Machine Learning Techniques to Detect Parallel Patterns of

Multi-Threaded Applications: Multicore hardware and software are becoming in-

creasingly more complex. The programmability problem of multicore software has led

to the use of parallel patterns. Parallel patterns reduce the effort and time required to

develop multicore software by effectively capturing its thread communication and data

sharing characteristics. Hence, detecting the parallel pattern used in a multi-threaded

application is crucial for performance improvements and enables many architectural

optimizations; however, this topic has not been widely studied. We apply machine

learning techniques in a novel approach to automatically detect parallel patterns and

compare these techniques in terms of accuracy and speed. We experimentally vali-

date the detection ability of our techniques on benchmarks including PARSEC and

Rodinia. Our experiments show that the k-nearest neighbor, decision trees, and naive

Bayes classifier are the most accurate techniques. Overall, decision trees are the fastest

technique with the lowest characterization overhead producing the best combination of

detection results. We also show the usefulness of the proposed techniques on synthetic

benchmark generation.

In Table 8.1, we summarize the synthetic benchmarks we generate in this thesis.

In the table, we show the inputs, outputs, experimental environment, and experimental

160

Table 8.1. Our synthetic benchmarks with experimental details.

Synthetic Benchmark

Application-level CPU Thread-level CPU GPU

Input PARSEC, Rodinia

(OpenMP), and EEMBC

MultiBench suites in C

using Pthreads

PARSEC and Rodinia

(OpenMP) suites in C

using Pthreads

AMD APP SDK bench-

marks in C/C++ using

OpenCL

Experimental environment x86 and Power Architecture

hardware

x86 hardware AMD Southern Islands

GPUs in Multi2Sim simu-

lator and AMD HD 7950

GPU hardware

Experimental setup overall similarity threshold

is 90%, individual similarity

threshold is 80%, and itera-

tion upper bound is 40

individual similarity thresh-

old is 80%, and iteration up-

per bound is 100

overall similarity threshold

is 90%, individual similarity

threshold is 60%, and itera-

tion upper bound is 20

Characterization tools DynamoRIO, Umbra, and

Linux perf

DynamoRIO, Umbra, and

PapiEx

Multi2Sim simulator

Characteristics Parallel pattern, thread

communication, data shar-

ing, general threading, and

performance (IPC, CMR,

BMR, and CCR)

Parallel pattern, thread

communication, data shar-

ing, and general threading,

and per thread performance

(IPC, CMR, and BMR)

Instruction throughput,

CMAR, dynamic memory

instruction mix, memory

efficiency, and compute unit

occupancy

Output Synthetic benchmarks in C

using Pthreads, MCAPI or

MRAPI

Synthetic benchmarks in C

using Pthreads, MCAPI or

MRAPI

Synthetic benchmarks in

C/C++ using OpenCL

Avg. app-level similarity 92% 93% 96%

Avg. thread-level similarity 44% 84% -

Avg. speedup 21× 147× 541×

Avg. code size reduction 14× 11× 1×

Avg. number of iterations 12 63 7

results including average application-level similarity, thread-level similarity, speedup,

and code size reduction for our application-level CPU, thread-level CPU, and GPU

synthetic benchmarks. We show the benchmarks we use as input and the properties of

the synthetic benchmarks we generate. We list the real hardware and simulators we use

in the experimental environment and represent the experimental setup (parameters) in-

cluding similarity and iteration thresholds. Furthermore, we show the characterization

tools we use and we list the characteristics we collect from an application to generate

a synthetic benchmark. We represent the average application-level and thread-level

similarities where the thread-level similarity is not applicable for GPU benchmarks.

161

We show the average speedup obtained in terms of execution time and the average re-

duction in lines of code going from the original to the synthetic. Note that there is no

reduction in code size for synthetic GPU benchmarks since original GPU applications

are already small. The average number of iterations it takes to generate the synthetic

benchmark is also represented in the table.

8.2. Future Work

Synthetic Benchmark Generation for Multicore Mobile Platforms: Mo-

bile devices such as smartphones and tablets are widely used in many domains and the

rate of their usage continues to grow. Meanwhile, a diverse set of mobile applications

including social networks, document processing, web browsers, and games have been

developed. It would be useful to understand the performance and power limitations

of these platforms and applications in order to improve the future mobile platforms.

Hence, an important direction in extending our work is to develop MINIME-Mobile

framework to generate synthetic benchmarks for mobile platforms.

Standalone Synthetic Benchmark Generation for Multicore Systems:

It is important to develop MINIME-Standalone framework in which we generate syn-

thetic benchmarks from user defined characteristics including parallel patterns instead

of using existing applications. Hence, one can use these user defined synthetic bench-

marks to speed up the process of early performance evaluation and architectural explo-

ration studies. Furthermore, once we generate synthetic benchmarks using MINIME-

Standalone framework, it is also important to use these synthetic benchmarks to vali-

date new multicore architectures and libraries.

Synthetic Benchmark Generation for Multicore CPUs: We can generate

synthetic CPU benchmarks that preserve phase behavior and power consumption char-

acteristics. This is because these characteristics are exploited in various tasks and our

synthetic benchmarks can also be used in these tasks once we preserve these charac-

teristics. For example, phase behavior is exploited in and power consumption is used

in power usage optimizations and dynamic voltage and frequency scaling tasks. Cur-

162

rently we use a greedy algorithm to generate synthetic benchmarks however we believe

that using genetic algorithms can improve the quality of our synthetic benchmarks.

That is, genetic algorithms can generate more accurate synthetic benchmarks in fewer

iterations.

Synthetic Benchmark Generation for GPUs: An important direction in

extending our work is to perform experiments on other GPU architectures such as Intel

and NVIDIA. Also, power consumption and communication characteristics between the

host and compute devices are characteristics that we want to preserve in the future.

It is important to mimic dwarfs of original GPU applications similar to our technique

for CPUs in which we mimic the parallel patterns of original CPU benchmarks. Note

that, in this case, we need to detect (recognize) the dwarfs of original applications. In

addition, it would be useful to preserve other patterns including prefix and reduction.

Synthetic Benchmark Generation for heterogeneous CPU and GPU

systems: In this thesis, we generate synthetic GPU benchmarks that only preserve

the characteristics of GPU kernel programs, that is, we do not mimic the characteristics

of CPU host programs. This is because, in general, the whole solution of the problem is

implemented on the GPU side. However, it would be useful to use MINIME (CPU) to

generate synthetic benchmarks for CPU host programs and MINIME-GPU to generate

synthetic benchmarks for GPU kernel programs for such CPU/GPU benchmarks in

which some parts of a problem are solved on the CPU side and the other parts are

solved on the GPU side.

Parallel Pattern Detection: Since most applications have time varying phase

behavior, parallel pattern detection techniques can be extended to detect phase be-

havior, for instance, changing between memory and compute-insensitive phases. In

addition, some applications can have a mixture of multiple parallel patterns and it

would be useful to detect these patterns in multi-threaded applications. Note that

using our techniques for GPUs can guide the development and optimization of parallel

architectures as well as novel programming models but also introduces new challenges

that include defining a set of important GPU application characteristics, correlating

163

these characteristics with GPU application patterns (dwarfs), and obtaining a large

number of GPU applications to train our techniques. It would be useful to validate the

usefulness of our techniques on choosing useful benchmarks for performance evaluation

and benchmark subsetting.

164

REFERENCES

1. Multi2Sim, “Multi2Sim: A Heterogeneous System Simulator”, 2014, https://

www.multi2sim.org/, 1 April 2014.

2. Poovey, J. A., B. P. Railing, and T. M. Conte, “Parallel Pattern Detection for

Architectural Improvements”, USENIX conference on Hot topic in parallelism

(HotPar), pp. 1–6, 2011.

3. Bienia, C., S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”, International Conference on

Parallel Architectures and Compilation Techniques (PACT), pp. 72–81, 2008.

4. Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A Benchmark Suite for Heterogeneous Computing”, IEEE Interna-

tional Symposium on Workload Characterization (IISWC), pp. 44–54, 2009.

5. Parboil Benchmark suite, “Parboil Benchmarks”, 2015, http://impact.crhc.

illinois.edu/Parboil/parboil.aspx, 1 April 2015.

6. Intel, “Embedded Microprocessor Benchmark Consortium”, 2013, http://www.

eembc.org, 1 April 2013.

7. Woo, S. C., M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-

2 Programs: Characterization and Methodological Considerations”, SIGARCH

Computer Architure News , Vol. 23, No. 2, pp. 24–36, 1995.

8. Bailey, D. H., “NAS Parallel Benchmarks”, Encyclopedia of Parallel Computing ,

pp. 1254–1259, NASA Ames Research Center, 2011.

9. Joshi, A., L. Eeckhout, and L. John, “The Return of Synthetic Benchmarks”,

SPEC Benchmark Workshop, pp. 1–11, 2008.

165

10. Hoste, K. and L. Eeckhout, “Comparing Benchmarks Using Key

Microarchitecture-Independent Characteristics”, IEEE International Symposium

on Workload Characterization (IISWC), pp. 83–92, 2006.

11. Ruparelia, N. B., “Software Development Lifecycle Models”, ACM SIGSOFT

Software Engineering Notes , Vol. 35, No. 3, pp. 8–13, 2010.

12. Deshpande, A. and D. Riehle, “The Total Growth of Open Source”, Open Source

Development, Communities and Quality , Vol. 275 of IFIP - The International

Federation for Information Processing , pp. 197–209, Springer, 2008.

13. Mitchell, T. M., Machine Learning , McGraw-Hill, Inc., 1st edition, 1997.

14. Alpaydin, E., Introduction to Machine Learning , The MIT Press, 2nd edition,

2010.

15. Che, S. and K. Skadron, “BenchFriend Correlating the Performance of GPU

Benchmarks”, International Journal of High Performance Computing Applica-

tions (IJHPCA), Vol. 28, No. 2, pp. 238–250, 2014.

16. Seo, S., G. Jo, and J. Lee, “Performance Characterization of the NAS Parallel

Benchmarks in OpenCL”, IEEE International Symposium on Workload Charac-

terization (IISWC), pp. 137–148, 2011.

17. Bakhoda, A., G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing

CUDA Workloads Using a Detailed GPU Simulator”, IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pp. 163–174,

2009.

18. Kerr, A., G. Diamos, and S. Yalamanchili, “A Characterization and Analysis

of PTX Kernels”, IEEE International Symposium on Workload Characterization

(IISWC), pp. 3–12, 2009.

166

19. Goswami, N., R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU Workloads:

Characterization Methodology, Analysis and Microarchitecture Evaluation Impli-

cations”, IEEE International Symposium on Workload Characterization (IISWC),

pp. 1–10, 2010.

20. MCA, “Multicore Association”, 2013, http://www.multicore-association.

org, 1 April 2013.

21. Deniz, E., A. Sen, J. Holt, and B. Kahne, “Using Software Architectural Patterns

for Synthetic Embedded Multicore Benchmark Development”, IEEE International

Symposium on Workload Characterization (IISWC), pp. 89–99, 2012.

22. Deniz, E. and A. Sen, “Gomulu Sistemler Icin Karsilastirma Uygulamasi Geli-

stirme”, Gomulu Sistemler ve Uygulamalari Sempozyumu (GOMSIS), pp. 1–6,

2014.

23. Deniz, E., A. Sen, B. Kahne, and J. Holt, “MINIME: Pattern-Aware Multicore

Benchmark Synthesizer”, IEEE Transactions on Computers (TC), Vol. 64, No. 8,

pp. 2239–2252, 2015.

24. Sen, A. and E. Deniz, “Thread-level Synthetic Benchmarks for Multicore Sys-

tems”, Microprocessors and Microsystems , Vol. 39, No. 7, pp. 471 – 479, 2015.

25. Deniz, E. and A. Sen, “MINIME-GPU: Multicore Benchmark Synthesizer for

GPUs”, ACM Transactions on Architecture and Code Optimization (TACO),

Vol. 12, No. 4, pp. 34:1 – 34:25, 2015.

26. Deniz, E. and A. Sen, “Using Machine Learning Techniques to Detect Parallel

Patterns of Multi-threaded Applications”, International Journal of Parallel Pro-

gramming (IJPP), Vol. OnlinePublished, No. 1, pp. 1 – 34, 2015.

27. Ortega-Arjona, J. L. and G. Roberts, “Architectural Patterns for Parallel Pro-

gramming”, European Conference on Pattern Languages of Programs (Euro-

167

PLoP), pp. 225–260, 1998.

28. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley Professional, 1st edition,

1994.

29. Keutzer, K., B. L. Massingill, T. G. Mattson, and B. A. Sanders, “A Design

Pattern Language for Engineering (Parallel) Software: Merging the PLPP and

OPL Projects”, Workshop on Parallel Programming Patterns (ParaPLoP), pp.

9:1–9:8, 2010.

30. Mattson, T., B. Sanders, and B. Massingill, Patterns for Parallel Programming ,

Addison-Wesley, 2005.

31. MPI, “The Message Passing Interface (MPI) standard”, 2013, http://www.mcs.

anl.gov/research/projects/mpi/, 1 April 2013.

32. Khronos OpenCL Working Group, “The OpenCL specification version 1.2 ”, 2012,

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf, 14 Novem-

ber 2012.

33. Dunteman, G. H., Principal Component Analysis , Sage Publications, 1989.

34. Jain, A. K. and R. C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc.,

1988.

35. John, L. K. and L. Eeckhout, Performance evaluation and benchmarking , CRC

Press, 2005.

36. SPEC CPU2006, “SPEC - Standard Performance Evaluation Corporation”, 2013,

http://www.spec.org/cpu2006/, 1 April 2013.

37. Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “MiBench: A free, commercially representative embedded benchmark

168

suite”, IEEE International Workshop/Symposium on Workload Characterization

(IISWC), pp. 3–14, IEEE, 2001.

38. Holt, J., A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister,

“Software Standards for the Multicore Era”, IEEE Micro, Vol. 29, No. 3, pp.

40–51, 2009.

39. Joshi, A., L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance Cloning:

A Technique for Disseminating Proprietary Applications as Benchmarks”, IEEE

International Symposium on Workload Characterization (IISWC), pp. 105–115,

2006.

40. Ganesan, K. and L. K. John, “Automatic Generation of Miniaturized Synthetic

Proxies for Target Applications to Efficiently Design Multicore Processors”, IEEE

Transactions on Computers (TC), Vol. 63, No. 4, pp. 833–846, 2014.

41. Barrow-Williams, N., C. Fensch, and S. Moore, “A communication character-

isation of Splash-2 and Parsec”, IEEE International Symposium on Workload

Characterization (IISWC), pp. 86–97, 2009.

42. The Open Group, “POSIX Standard, IEEE Std 1003.1, 2013 Edition”, 2014,

http://www.unix.org/version4/ieee_std.html, 1 April 2014.

43. OpenMP, “The OpenMP API Specification for Parallel Programming”, 2013,

http://openmp.org, 1 April 2013.

44. DynamoRio, “DynamoRIO Dynamic Instrumentation Tool Platform”, 2013,

http://dynamorio.org/, 1 April 2013.

45. Luk, C.-K., R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace,

V. J. Reddi, and K. M. Hazelwood, “Pin: Building Customized Program Anal-

ysis Tools with Dynamic Instrumentation”, Programming Language Design and

Implementation (PLDI), pp. 190–200, 2005.

169

46. Zhao, Q., D. Bruening, and S. Amarasinghe, “Umbra: Efficient and Scalable

Memory Shadowing”, IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pp. 22–31, 2010.

47. Linux, “Linux profiling with performance counters”, 2013, https://perf.wiki.

kernel.org, 1 April 2013.

48. PapiEx, “PapiEx - Command line/library utility to measure hardware performance

counters with PAPI ”, 2013, http://icl.cs.utk.edu/~mucci/papiex/, 1 April

2013.

49. PAPI, “Performance Application Programming Interface (PAPI)”, 2013, http:

//icl.cs.utk.edu/papi/, 1 April 2013.

50. Yu, Z., L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C. Xu, and

J. Wu, “GPGPU-MiniBench: Accelerating GPGPU Micro-Architecture Simu-

lation”, IEEE Transactions on Computers , Vol. 64, No. 11, pp. 3153–3166, 2015.

51. AMD, “AMD Accelerated Parallel Processing (APP) Software Development Kit

(SDK)”, 2014, http://developer.amd.com/sdks/amdappsdk/, 1 April 2014.

52. AMD, “AMD Southern Island Instruction Set Architecture”, 2014,

http://developer.amd.com/wordpress/media/2012/12/AMD_Southern\

_Islands_Instruction_Set_Architecture.pdf, 1 April 2014.

53. MATLAB, “MATLAB: The Language of Technical Computing - MathWorks”,

2014, http://www.mathworks.com/products/matlab/, 1 April 2014.

54. Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,

“The Landscape of Parallel Computing Research: A View from Berkeley”, Tech-

nical Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, 2006.

170

55. AMD CodeXL, “AMD CodeXL: Powerful Debugging, Profiling, and Analysis”,

2015, http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/, 1

April 2015.

56. Eeckhout, L., H. Vandierendonck, and K. De Bosschere, “Quantifying the Im-

pact of Input Data Sets on Program Behavior and its Applications”, Journal of

Instruction-Level Parallelism (JILP), Vol. 5, pp. 1–33, 2003.

57. Bird, S., A. Phansalkar, L. K. John, A. Mercas, and R. Idukuru, “Performance

Characterization of SPEC CPU Benchmarks on Intel’s Core Microarchitecture

based processor”, SPEC Benchmark Workshop, pp. 1–7, 2007.

58. Ganesan, K., L. K. John, V. Salapura, and J. C. Sexton, “A Performance Counter

Based Workload Characterization on Blue Gene/P”, International Conference on

Parallel Processing (ICPP), pp. 330–337, 2008.

59. Jason A. Poovey, T. M. C., Michael C. Rosier, “Pattern-Aware Dynamic Thread

Mapping Mechanisms for Asymmetric Manycore Architectures”, Technical Report

2011-1, School of Computer Science, Georgia Institute of Technology, Atlanta,

2011.

60. Lin, C.-Y., C.-B. Kuan, W.-L. Shih, and J. Lee, “Compilers for Low Power with

Design Patterns on Embedded Multicore Systems”, Journal of Signal Processing

Systems (JSPS), Vol. 80, No. 3, pp. 277–293, 2015.

61. McCool, M. D., “Structured Parallel Programming with Deterministic Patterns”,

Proceedings of the 2Nd USENIX Conference on Hot Topics in Parallelism (Hot-

Par), pp. 1–6, 2010.

62. FastFlow: programming multicore, “FastFlow: Pattern-based multi/many-core

parallel programming framework”, 2014, http://sourceforge.net/projects/

mc-fastflow/, 1 April 2014.

171

63. Aldinucci, M., S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati, “De-

sign Patterns Percolating to Parallel Programming Framework Implementation”,

International Journal of Parallel Programming (IJPP), Vol. 42, No. 6, pp. 1012–

1031, 2014.

64. Hammond, K., M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto, H. Gonzalez-

Velez, P. Kilpatrick, R. Keller, M. Rossbory, and G. Shainer, “The ParaPhrase

Project: Parallel Patterns for Adaptive Heterogeneous Multicore Systems”, For-

mal Methods for Components and Objects , Vol. 7542 of Lecture Notes in Computer

Science, pp. 218–236, Springer Berlin Heidelberg, 2013.

65. Huda, Z. U., A. Jannesari, and F. Wolf, “Using Template Matching to Infer Paral-

lel Design Patterns”, ACM Transactions on Architecture and Code Optimization

(TACO), Vol. 11, No. 4, pp. 64:1–64:21, 2015.

66. DiscoPoP (Discovery of Potential Parallelism), “DiscoPoP: A Profiling Tool

to Identify Parallelization Opportunities”, 2014, http://www.grs-sim.de/

research/parallel-programming/multicore-programming/discopop-

project.html, 1 April 2014.

67. Campa, S., M. Danelutto, M. Goli, H. González-Vélez, A. M. Popescu, and

M. Torquati, “Parallel Patterns for Heterogeneous CPU/GPU Architectures:

Structured Parallelism from Cluster to Cloud”, Future Generation Computer Sys-

tems (FGCS), Vol. 37, pp. 354–366, 2014.

68. Mitchell, T. M., “The Discipline of Machine Learning”, Technical Report CMU-

ML-06-108, Machine Learning Department, School of Computer Science, Carnegie

Mellon University, Pittsburgh, 2006.

69. John, G. and P. Langley, “Estimating Continuous Distributions in Bayesian Clas-

sifiers”, In Proceedings of the Eleventh Conference on Uncertainty in Artificial

Intelligence, pp. 338–345, 1995.

172

70. Moller, M. F., “A scaled conjugate gradient algorithm for fast supervised learn-

ing”, Neural Networks , Vol. 6, No. 4, pp. 525–533, 1993.

71. Bishop, C. M., Pattern Recognition and Machine Learning (Information Science

and Statistics), Springer-Verlag New York, Inc., 2006.

72. Battiti, R., “Using mutual information for selecting features in supervised neural

net learning”, IEEE Transactions on Neural Networks (NN), Vol. 5, pp. 537–550,

1994.

73. Goswami, D., A. Singh, and B. R. Preiss, “Advances in Software Engineer-

ing”, Advances in Software Engineering: Topics in Comprehension, Evolution

and Evaluation, chapter Building parallel applications using design patterns, pp.

243–265, Springer-Verlag New York, Inc., 2002.

74. Zandifar, M., M. Abdul Jabbar, A. Majidi, D. Keyes, N. M. Amato, and L. Rauch-

werger, “Composing Algorithmic Skeletons to Express High-Performance Scien-

tific Applications”, Proceedings of the 29th ACM on International Conference on

Supercomputing (ICS), pp. 415–424, 2015.

75. Skillicorn, D. B., “Models for Practical Parallel Computation”, International

Journal of Parallel Programming (IJPP), Vol. 20, No. 2, pp. 133–158, 1991.

76. Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,

“The Landscape of Parallel Computing Research: A View from Berkeley”, Tech-

nical Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, 2006.

77. Che, S., J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A

Characterization of the Rodinia Benchmark Suite with Comparison to Contem-

porary CMP Workloads”, IEEE International Symposium on Workload Charac-

terization (IISWC), pp. 1–11, 2010.

173

78. Poovey, J. A., T. M. Conte, M. Levy, and S. Gal-On, “A Benchmark Characteri-

zation of the EEMBC Benchmark Suite”, IEEE Micro, Vol. 29, No. 5, pp. 18–29,

2009.

79. Hillenbrand, D., J. Tao, and M. Balzer, “ALPS: A Methodology for Application-

Level Communication Characterization of Parsec 2.1”, Procedia Computer Sci-

ence, Vol. 4, pp. 2086–2095, 2011.

80. Bharathi, S., A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,

“Characterization of Scientific Workflows”, Workshop on Workflows in Support

of Large-Scale Science (WORKS), pp. 1 –10, 2008.

81. Oskin, M., F. T. Chong, and M. Farrens, “HLS: Combining Statistical and Sym-

bolic Simulation to Guide Microprocessor Designs”, International Symposium on

Computer Architecture, pp. 71–82, 2000.

82. Nussbaum, S. and J. E. Smith, “Modeling Superscalar Processors via Statistical

Simulation”, International Conference on Parallel Architectures and Compilation

Techniques (PACT), pp. 15–24, 2001.

83. Eeckhout, L., R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K. John, “Con-

trol Flow Modeling in Statistical Simulation for Accurate and Efficient Processor

Design Studies”, International Symposium on Computer Architecture (ISCA), pp.

350–361, 2004.

84. Ertvelde, L. V. and L. Eeckhout, “Benchmark Synthesis for Architecture and

Compiler Exploration”, IEEE International Symposium on Workload Character-

ization (IISWC), pp. 1–11, 2010.

85. Hughes, C. and T. Li, “Accelerating multi-core processor design space evaluation

using automatic multi-threaded workload synthesis”, IEEE International Sympo-

sium on Workload Characterization (IISWC), pp. 163–172, 2008.

174

86. Kim, K., C. Lee, J. H. Jung, and W. W. Ro, “Workload Synthesis: Generating

Benchmark Workloads from Statistical Execution Profile”, IEEE International

Symposium on Workload Characterization (IISWC), pp. 120–129, 2014.

87. Ferrari, D., “On the Foundations of Artificial Workload Design”, SIGMETRICS

Performance Evaluation, Vol. 12, No. 3, pp. 8–14, 1984.

88. Wang, Y. and Y. Solihin, “Emulating Cache Organizations on Real Hardware

Using Performance Cloning”, IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pp. 298–307, 2015.

89. Ittershagen, P., P. A. Hartmann, K. Grüttner, and W. Nebel, “A Workload Ex-

traction Framework for Software Performance Model Generation”, Rapid Simu-

lation and Performance Evaluation: Methods and Tools (RAPIDO), pp. 3:1–3:6,

2015.

90. Sen, A., G. Kara, E. Deniz, and S. Niar, “Fast System Level Benchmarks for Mul-

ticore Architectures”, Euromicro Conference on Digital System Design (DSD),

pp. 635–638, 2014.

91. Joshi, A., A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring Benchmark

Similarity Using Inherent Program Characteristics”, IEEE Transactions on Com-

puters (TC), Vol. 55, pp. 769–782, 2006.

92. Jo, J., L. K. John, M. Reese, and J. Holt, “Validation of Synthetic Benchmarks by

Measurement”, Workshop on Unique Chips and Systems (UCAS), pp. 1–6, 2010.

93. John, L. K., J. Jo, , and K. Ganesan, “Workload Synthesis for a Communications

SoC”, In Workshop on SoC Architecture, Accelerators and Workloads, held in

conjunction with HPCA-17 , pp. 1–8, 2011.

94. Deshpande, V., X. Wu, and F. Mueller, “Auto-generation of Communication

Benchmark Traces”, SIGMETRICS Performance Evaluation Review , Vol. 40,

175

No. 2, pp. 99–105, 2012.

95. Jung, C., S. Rus, B. P. Railing, N. Clark, and S. Pande, “Brainy: Effective Se-

lection of Data Structures”, Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, pp. 86–97, 2011.

96. Sembrant, A., D. Black-Schaffer, and E. Hagersten, “Phase Behavior in Serial and

Parallel Applications”, IEEE International Symposium on Workload Characteri-

zation (IISWC), pp. 47–58, 2012.

97. Perelman, E., M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong,

“Detecting Phases in Parallel Applications on Shared Memory Architectures”,

International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10,

2006.

98. Sherwood, T., E. Perelman, G. Hamerly, and B. Calder, “Automatically Charac-

terizing Large Scale Program Behavior”, International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS), pp.

45–57, 2002.

99. Dey, T., W. Wang, J. Davidson, and M. Soffa, “Characterizing Multi-threaded

Applications based on Shared-Resource Contention”, IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS), pp. 76–86,

2011.

100. Kerr, A., G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU Workloads and

Systems”, Workshop on General-Purpose Computation on Graphics Processing

Units (GPGPU), pp. 31–42, 2010.

101. Ukidave, Y., F. N. Paravecino, L. Yu, C. Kalra, A. Momeni, Z. Chen, N. Materise,

B. Daley, P. Mistry, and D. Kaeli, “NUPAR: A Benchmark Suite for Modern GPU

Architectures”, ACM/SPEC International Conference on Performance Engineer-

ing (ICPE), pp. 253–264, 2015.

176

102. Joshi, A. M., L. Eeckhout, R. H. Bell, Jr., and L. K. John, “Distilling the Essence

of Proprietary Workloads into Miniature Benchmarks”, ACM Transactions on

Architecture and Code Optimization (TACO), Vol. 5, No. 2, pp. 10:1–10:33, 2008.

103. Huang, J.-C., L. Nai, H. Kim, and H.-H. Lee, “TBPoint: Reducing Simulation

Time for Large-Scale GPGPU Kernels”, International Parallel and Distributed

Processing Symposium (IPDPS), pp. 437–446, 2014.

104. Lee, S. and W. W. Ro, “Parallel GPU architecture simulation framework exploit-

ing work allocation unit parallelism”, IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pp. 107–117, 2013.

105. Matsumoto, K., N. Nakasato, and S. G. Sedukhin, “Implementing a Code Gener-

ator for Fast Matrix Multiplication in OpenCL on the GPU”, IEEE International

Symposium on Embedded Multicore Socs (MCSoC), pp. 198–204, 2012.

106. Che, S., J. Meng, and K. Skadron, “Dymaxion++: A Directive-Based API to

Optimize Data Layout and Memory Mapping for Heterogeneous Systems”, IEEE

International Parallel Distributed Processing Symposium Workshops (IPDPSW),

pp. 916–924, 2014.

107. Zanoni, M., F. A. Fontana, and F. Stella, “On applying machine learning tech-

niques for design pattern detection”, Journal of Systems and Software (JSS), Vol.

103, pp. 102 – 117, 2015.

108. Wang, Z. and M. F. P. O’boyle, “Using Machine Learning to Partition Streaming

Programs”, ACM Transactions on Architecture and Code Optimization (TACO),

Vol. 10, No. 3, pp. 20:1–20:25, 2008.

109. Cavazos, J., G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and O. Temam,

“Rapidly Selecting Good Compiler Optimizations using Performance Counters”,

International Symposium on Code Generation and Optimization (CGO), pp. 185–

197, 2007.

177

110. Cammarota, R., A. Nicolau, A. V. Veidenbaum, A. Kejariwal, D. Donato, and

M. Madhugiri, “On the Determination of Inlining Vectors for Program Optimiza-

tion”, Compiler Construction, pp. 164–183, 2013.

111. Ganapathi, A., K. Datta, A. Fox, and D. Patterson, “A Case for Machine Learning

to Optimize Multicore Performance”, First USENIX Workshop on Hot Topics in

Parallelism (HotPar), pp. 1–6, 2009.

112. Cammarota, R., L. A. Beni, A. Nicolau, and A. V. Veidenbaum, “Effective Eval-

uation of Multi-core Based Systems”, International Symposium on Parallel and

Distributed Computing (ISPDC), pp. 19–25, 2013.

113. Cammarota, R., A. Kejariwal, P. D’Alberto, S. Panigrahi, A. V. Veidenbaum, and

A. Nicolau, “Pruning Hardware Evaluation Space via Correlation-Driven Appli-

cation Similarity Analysis”, Proceedings of the 8th ACM International Conference

on Computing Frontiers (FC), pp. 4:1–4:10, 2011.

114. Ding, W., O. Hernandez, T. Curtis, and B. Chapman, “Porting Applications

with OpenMP Using Similarity Analysis”, Languages and Compilers for Parallel

Computing (LCPC), pp. 20–35, Springer, 2014.

