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(BAP 10A01D5, BAP 14A01P2) of Boğaziçi University and the Turkish Ministry of

Development under the TAM Project, number 2007K120610.



iv

ABSTRACT

COMPUTER AIDED DETECTION OF SPINA BIFIDA

USING FEATURES DERIVED FROM CURVATURE

SCALE SPACE AND ZERNIKE MOMENTS

The work of this dissertation focuses on a specific computer aided diagnosis

(CAD) problem, although the main concept can be generalized to similar problems.

Our aim is to detect the presence of the spina bifida (open spine) neural tube defect

that is evident for a physician when the fetal skull image of a subject is examined. The

objective of applications performing automatic anomaly detection can be set in their

original contexts. Such systems, as a second observer, may help avoid false diagnoses.

Fetal skull shapes possess markers that signal the presence of spina bifida. That is why

this thesis concentrates on exploiting features extracted from skull shapes obtained via

ultrasound (US ). Among the variety of shape representation and feature extraction

schemes, we have implemented and experimented with two. Both the curvature scale

space (CSS ) and moment-based (i.e. Zernike moments) representations have proved

to be robust in that the extracted features provide classification invariant under the

similarity transformations of translation, rotation and scaling. Classification of shapes

is commonly coupled with the problem of segmentation. Since the fully-automatic

segmentation of US images is practically difficult, we have attempted to achieve seg-

mentation semi-automatically after the manual marking of a small number of points

on images, based on simple heuristics and the Active Shape Models (ASM ). Our exper-

iments use k-nearest neighbor (kNN ) and Support Vector Machines (SVM ) classifiers.

The inherent problem of rarity of medical data sets is tackled with methods of un-

dersampling and oversampling. The results, reported for ground truth segmentations,

reveal the availability of optimal operating points serving particular objectives.
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ÖZET

EĞRİLİK ÖLÇEK UZAYINDAN VE ZERNİKE

MOMENTLERİNDEN TÜRETİLEN ÖZNİTELİKLERLE

SPİNA BİFİDANIN BİLGİSAYAR DESTEKLİ TANISI

Bu tezdeki yaklaşım ve yöntemler başka problemlere genelleştirilebilir olmakla

birlikte, özelde iyi belirlenmiş bir bilgisayar destekli tanı problemi üzerinde uygu-

lanmıştır. Amacımız, fetal kafatası imgeleri uzmanlarca incelendiğinde görülebilen

spina bifida (açık omurga) sinir tüpü hasarının saptanmasıdır. Otomatik hastalık

tespiti yapan uygulamaların amacı özgün çerçevelerde belirlenebilir. Bu tip sistem-

ler, yanlış teşhisleri önlemek amaçlı alternatif gözlemciler olarak kullanılabilir. Spina

bifidanın varlığı fetal kafatası biçiminin taşıdığı işaretlerden anlaşılmakta ve bu yüzden,

okuyacağınız tezde, ultrason (US) ile edinilen fetal kafatası imgelerinden çıkarılan

biçim öznitelikleri kullanılmaktadır. Literatürdeki biçim gösterimi ve öznitelik edinim

teknikleri çeşitlilik gösterirken, bunlardan ikisi gerçeklenmiştir. Eğrilik ölçek uzayı ve

momentlere (Zernike momentleri) dayalı gösterimler, özniteliklerin ötelenme, dönme ve

ölçeklenme dönüşümleri altında değişimsiz olması veya yapılandırılabilmeleri itibariyle,

gürbüz gösterimler olarak değerlendirilmektedir. Biçimlerle sınıflandırma, genellikle,

bölütleme sorunu ile beraber ortaya çıkmaktadır. US imgelerinin tam-otomatik olarak

bölütlenmesi uygulamada zor olduğundan, tezimizde, az sayıda nokta işaretlenerek

yarı-otomatik bölütleme hedeflenmiştir. Kullanılan yöntemler basit sezgisellere ve ak-

tif görünüm modellerine dayanmaktadır. Deneylerde en yakın komşu ve destek vektör

makineleri sınıflandırıcıları kullanılmakta ve tıbbi verilerin doğasındaki azlık sorunu

yüzünden veri kümeleri alt-örnekleme ve üst-örneklemeyle işlenmektedir. Temelde

doğru bölütlemelerle bildirilen sonuçlar, belirli amaçları gözeten en iyi işletim nok-

talarının belirlenebileceğini göstermektedir.
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1. INTRODUCTION

1.1. Motivation

Computer aided diagnosis/detection (CADx/CADe) aims at assisting humans in

the interpretation of medical data. Most commonly, the term refers to automatized

procedures that produce outputs from radiological images of body structures. Each

particular CAD application has a scope of usage in a well-defined problem domain

and due to the ethical constraints arising in medicine, the produced outputs can not

be fully-trusted and humans are responsible for the final decision. Nevertheless, CAD

systems can be employed to help specialists evaluate the huge information available

within images in a short time, or may be used as agents to prevent wrong decisions.

As the name implies, CAD systems are typically designed to detect conspicuous

sections/structures and identify the presence of particular defects/pathologies. The

treatment plan for particular cases may be organized followed by the interpretation

of medical images, both by specialists and as suggested by CAD outputs. CAD is a

relatively new interdisciplinary field combining technologies from artificial intelligence

and radiological and digital image processing whose primary objective is to play a

supporting role in medical decision making processes. Automatic pattern recognition

is essential for CAD; since the problems of detection and recognition of body structures

in medical images, are studied within this area of computer science.

Medical imaging techniques; that is, the sources of inputs to CAD systems, in-

clude magnetic resonance imaging (MRI), computed tomography (CT), X-ray and

ultrasound (US). Interpreting the images is the task of doctors (i.e. radiologists or ex-

perts of specific fields) and the objective is to arrive at decisions to guide any following

treatment. Computer aided diagnosis/detection is the interdisciplinary field targeting

to ease and improve this task. In this dissertation, we handle a specific CAD problem,

spina bifida detection, attempting to solve it using US images of fetal skulls as inputs.
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Pattern recognition, in general, requires representing samples with a descriptive

set of features and running classification routines to assign labels to samples. For

instance, the support vector machines (SVM) technique models separating hyperplanes

between instances of different classes and classification is performed based on which side

of a hyperplane an instance (i.e. the features) is. On the other hand, a lazy approach

such as the k-nearest neighbor (kNN) scheme decides based on distances of instances

to one another. The distance computation may be between equal-sized feature vectors.

There may also be cases where feature vectors are of different sizes or explicit feature

representation is hard/impractical. An approach to follow is to perform classification

using sound representations and distance measures where feature vectors of equal size

are not necessary. In the kNN method, no model fitting is required and the classifier

decides based on the state of neighborhoods defined with respect to each sample.

Classification modules that operate on image inputs, such as those of CAD sys-

tems, must be supported by tools which present inputs to the module in a suitable

form. Images, in their raw state, can often not serve as the input (i.e. set of features)

for classification. First of all, the entire body of an image (i.e. all pixels and their at-

tributes such as spatial coordinates and intensities) is not of interest and the portions

for which the classification problem is defined and from which descriptive features or

proper representations are derived must be isolated. This is the problem of segmen-

tation to be a priori solved. In the CAD domain, the image portions that need to

be transferred to the further stages of signal processing are referred to as regions of

interest (ROI). Following ROI detection (i.e. segmentation), features can be extracted

using one of a wealthy set of techniques. The selection of the technique to use is a

design decision and some may work better than others.

Figure 1.1 shows the block diagram of a pattern recognition system for computer

aided detection of spina bifida. There are two possible paths to follow after input

images are described as skull shapes: in (i), features extracted from a skull shape are

evaluated by a classifier built on a set of model shapes (e.g. SVM) and a class label

is assigned; whereas in (ii), the input shape is matched to the models in the database

using the extracted features and similarity scores are computed for an appropriate
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interpretation. (ii) works with the principle of similarity matching such as the lazy

kNN classifier and many retrieval systems.

Figure 1.1. Pattern recognition (CAD) system for spina bifida detection.

Machine learning problems may be accompanied with the additional issues of

rarity and class imbalance. Credit card fraud detection, detection of oil spills from

satellite images, computer aided diagnosis of rare diseases are examples of such prob-

lems. Rarity may be absolute and hence the number of learning samples insufficient. It
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may also be relative, standing for cases where the ratios of samples with different class

labels are considerably different, to give rise to the class imbalance problem. When

a machine learning system has to be designed under the rarity and class imbalance

constraints, special care must be taken to handle learning data for the realization of

a robust system. Various approaches for this task are available in the literature. As-

sessing classifier performance, especially for those designed with rarity and imbalance

burdens, is demanding and must be carefully done suiting the needs of target appli-

cations. There exist popular performance measures such as precision, recall, GMRP,

F-measure, etc. which can be employed when the classical measure of classification

accuracy is unsatisfactory. Receiver Operating Characteristics (ROC) analysis is a

commonly-followed procedure to evaluate classifiers at a number of operating points

and to show their superiorities over others.

In summary, the realization of a successful CAD system depends on careful con-

siderations for identifying a particular problem in a well-defined domain, selecting the

input modality (type of input), the methodology used in segmentation, how features are

extracted out of ROIs or how those ROIs are compactly and descriptively represented

and finally the classification algorithm running with correctly-chosen parameters. De-

ciding how well classification performs with all the considered selections and design

decisions, is perhaps the most challenging work among all. This is especially true for

CAD systems which are designed using data sets that possess rarities and imbalances.

As a result, one must be highly cautious when generalizing outcomes of such systems.

1.2. Spina Bifida

In this dissertation, the goal is the automatized detection of the common neural

pathology called spina bifida (open/split spine) from ultrasound (US) images of fetal

skulls acquired in prenatal terms. As the name implies, spina bifida is one of a group

of defects known as neural tube defects (NTD) related to the spine and spinal cord.

In neural development of embryos, a tissue called the neural plate folds and forms a

tube, which then folds into the spinal cord. Incorrect folding of the neural plate causes

the spina bifida defect [1], whose result is an abnormally formed section of the spinal
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column. Abnormality occurs at some vertebral column location, referred to as the lesion

level. People suffering from spina bifida experience loss of body control below the lesion.

The higher the lesion level (the more cranial or the closer to the brain), the more severe

the defect. Loss of body control may appear as problems in bladder control, sensation

loss and paralysis. Figure 1.2 and Figure 1.3 show the axial and sagittal sections of

defective fetal spines viewed with US. The prevalence of spina bifida is one-two cases

per 1000 births worldwide and the incidence is observed to vary up to three-four cases

per 1000 in some populations. Although what causes the injury is not well known; the

consumption of folic acid, a type of vitamin B, by pregnant women shows to prevent

up to 70% of neural tube defects including spina bifida. Spina bifida can be grouped

Figure 1.2. Axial sonogram of a fetus with spina bifida.

Figure 1.3. Sagittal sonogram of a fetus with spina bifida.

in three main types, two of which can be readily diagnosed at birth. The third type

appears later in life. The least common type is called meningocele identified by a sac

protruding from the back which contains fluid tissues that cover the spinal cord. A
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more common form is myelomeningocele with the sac not only containing fluid but

also nerves of the spinal cord. The third type, spina bifida occulta, is not apparent

at birth and discovered much later in life. This type of the defect rarely causes a

problem for 5-10% of the people who have it. Figure 1.4 shows schematic illustrations

for the structures of a healthy spine (i) together with those having meningocele (ii)

and myelomeningocele (iii). US examination is a convenient tool to discover neural

Figure 1.4. Types of spina bifida: (i) normal (ii) meningocele (iii) myelomeningocele.

tube defects in the prenatal stage. Detection of the defect before birth leads to careful

planning and effective remedy. Surgical treatment after birth and fetal surgery may be

possible, however, most pregnancies with neural tube defects are terminated because

of the poor future quality of life of newborns having such defects. Observing the spine

itself for detection is not a necessity because fetal heads contain markers indicating the

presence of spina bifida. The so-called lemon sign [2] that appears when the frontal

bones of the skull look flattened and inwardly bent, is a very typical marker. Figure 1.5

shows the transcerebellar section of a malformed skull of a defective fetus with lemon

sign. The two main dimensions of a transcerebellar skull are called occipitofrontal

diameter (OFD) and biparietal diameter (BPD) as shown in Figure 1.6.
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Figure 1.5. Fetal head with lemon sign.

Figure 1.6. Dimensions of a skull.

1.3. Contributions

Solutions for automatically detecting spina bifida in prenatal terms have been

proposed using inputs acquired by ultrasound viewing and classification has been per-

formed via both parametric [3–5] and non-parametric [6] techniques. Although the

well-defined and quite specific problem seems to be attacking at a tight-fitting target,

the applications using similar constructs can be extended for many other problems

and the conclusions drawn remain valid. Particularly, the related sub-problems of seg-

mentation, feature representation and extraction, handling rare and unbalanced data

together with rational quality assessment are all considered.

Our first solution approach employs the CSS representation [5,6] of contours and
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the kNN (k-nearest neighbor) algorithm [6] run on those. Distance computation in

kNN does not require feature vectors of equal sizes and is performed using a matching

procedure (e.g. CSS matching) on appropriate representations of skulls contours. This

is a similarity-based classification approach learning from neighbors and accepted as

it is. It may be applicable in many contexts as well as the specific problem of the

dissertation. The CSS representation has been used in image retrieval before, however

our study benefits CSS in classification. The class imbalance problem is addressed with

a simple oversampling trick that counts instances of the rare class more than those of

the frequent class. In another variant, the balance of data sets is achieved by discarding

most of the majority class samples and equalizing the number of rare class samples to

that of the majority class.

In the second solution scheme, magnitudes of Zernike moments computed on

black-and-white (BW (or binary) images [4] are used as inputs to an SVM-based

classifier [3, 4]. In the BW images of fetal skulls, internal regions of skull contours

are filled in with white pixels and then the moment computation is carried on. Since

the invariance properties under similitude transformations of images are essential for

robust recognition, the Zernike moments computations are performed on normalized

images. The number of Zernike moments required in the particular classification task

is determined by a simple heuristic that observes reconstruction quality (i.e. accuracy)

with different numbers of moments.

Our experiments with SVMs are performed after resampling the learning data

with combinations of oversampling and undersampling. We perform oversampling by

creating synthetic rare-class samples and undersample the frequent class, both in the

feature space with different rates. We have implemented and experimented with a

particular extension of the synthetic minority oversampling technique (SMOTE ) (i.e.

borderline-SMOTE).

The segmentation problem is handled independently from feature extraction and

classification by the proposed semi-automatic methods of an intensity-based averaging

(a very personal heuristic) and the Active Shape Models (ASM) [7] technique adapted
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to our specific problem and the type of data our CAD systems work on.

Finally, the results obtained within each setting (i.e. configuration) of experi-

ments (either due to the methods used, different parameters for a specific method or

differences in resampling) are comparatively analyzed and discussed.

1.4. Organization of the Dissertation

Background and literature survey towards solutions are provided in Chapter 2.

In Chapter 3, the CSS representation of contours, in particular contours of fetal skulls,

and the proposed solution employing this representation scheme are described. Chapter

4 is an elaboration on Zernike moments out of which features for parametric classifica-

tion techniques are derived and whose exact computation invariant under translation,

rotation and scaling is described. The details of feature acquisition for fetal skull

shapes are also presented in Chapter 4. The support vector machines (SVM) classi-

fier used in parametric classification is summarized in Chapter 5. Chapter 6 brings

out the prior problem of segmentation with classifiers initiated with raw image inputs

and describes proposed solutions. In Chapter 7, performance evaluation of classifiers,

the rare/imbalanced data problem are considered and the strategies utilized to handle

spina bifida detection with relevant customizations are explained. Experimental results

with the implemented classifiers obtained for inputs of ground truth segmentations are

presented in Chapter 8. Chapter 9 concludes the dissertation with discussions and

future work. For comparative reference, Appendix A presents results when the inputs

are acquired with the proposed semi-automatic segmentation procedures.
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2. BACKGROUND

Essential basics and literature review on computer aided diagnosis and related

problems are presented in this chapter. The presentation includes CAD in general;

shape representation, description, feature extraction techniques; classification and seg-

mentation. Not required from a general perspective but dealt with in the scope of our

problem of spina bifida detection, we also devote a section to the rarity of classes/cases

and the class imbalance problems.

2.1. Computer Aided Diagnosis

CAD has become a major area of research with computer outputs serving as

second opinion and helping experts in the interpretation of medical images. What to

expect from a CAD system is not the same as that from a physician. The performance

of computers does not have to be better than or comparable to that of physicians, but

is supposed to play supporting and complementary roles. Computerized analysis of

medical images started in the 1960s [8–13], however, the concept of automated com-

puter diagnosis evolved to computer aided diagnosis and systematic research began

in the 1980s. The implication of the current trend of CAD is embedding successful

applications in the Picture Archiving and Communications System (PACS) environ-

ment [14].

There has been an extensive amount of literature on CAD and particular appli-

cations, which is quite difficult to keep up with. Different groupings may include detec-

tions of malignant pulmonary nodules, various cancer types such as lung, breast and

colon; coronary artery disease, mammographic masses, peripheral soft tissue masses,

vertebral deformities, intracranial aneurysms, interval changes in bone scans and po-

tentially many more.

Chest radiographs (X-ray) are generally used to distinguish malignant and benign

pulmonary nodules. Nakamura et al. [15] utilize artificial neural networks in order to
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estimate the likelihood of solitary pulmonary nodules and perform a computerized

analysis. Aoyama et al. [16] and Shiraishi et al. [17] propose computerized schemes for

distinguishing the two types of nodules. Katsuragawa et al. [18,19], Ishida et al. [20] and

Ashizawa et al. [21,22] target diagnosing, characterizing and analyzing interstitial lung

disease. Nakamori et al. [23, 24] analyze features of digital chest images and perform

detection of anomalies based on sizes of lung and heart (i.e. cardiomegaly). Sanada

et al. [25] handle automated detection of pneumothorax. Kano et al. [26], Difazio et

al. [27], Ishida et al. [28], Li et al. [29] and Kakeda et al. [30, 31] use chest images and

deal with detection of interval changes. Shiraishi et al. [32] introduce detection of lung

nodules in lateral views to improve the performance of the CAD scheme using only PA

(posterior-anterior) views.

Fraioli et al. [33] evaluate the performance of a CAD algorithm for lung can-

cer screening using CT images of chests on a homogeneous population having a large

number of members and compare system performance to that of radiologists. Inves-

tigations on detection of breast cancer by means of mammographic images have also

been considered. Freer and Ulissey [34] report the results of a prospective study of

12,860 patients in a breast center with mammography screening and computer aided

detection of breast cancer. Gur et al. [35] show the changes in breast cancer detec-

tion and mammography recall rate after the introduction of a CAD system. Birdwell

et al. [36], Cupples et al. [37], Morton et al. [38] and Dean and Ilvento [39] provide

prospective evaluations and case studies. Rangayyan et al. [40] present a review of

computer aided diagnosis of breast cancer. Linguraru et al. [41] demonstrate a CAD

system for colon cancer detection from CT colonography.

Arnoldi et al. [42], Halpern and Halpern [43] and Kang et al. [44] tackle with coro-

nary artery disease detection and offer solutions. Dominguez and Nandi [45] propose

a scheme to detect masses in mammograms. Chen et al. [46] exploit geometric and

texture features in detection of peripheral soft tissue tumors. Kasai et al. [47, 48] de-

velop a method for detection of vertebral fractures on lateral chest radiographs to help

physicians in early diagnosis of osteoporosis. Arimura et al. [49, 50] realize automated

detection of intracranial aneurysms from MR angiography. Shiraishi et al. [51] uti-



12

lize a temporal-subtraction image obtained with non-linear image warping and detect

interval changes in successive whole-body bone scans.

To sum up, many examples of CAD applications exist and the potential of new

ones to be introduced is huge and very promising. An intuitive review of CAD sys-

tems including the history, current status and future expectations is available in the

compilation of Doi [52].

2.2. Shape Description

An important visual property of objects is shape, out of which useful features

to identify, describe and recognize objects can be derived. The spina bifida detection

problem manifests itself as a shape recognition task in that shapes of transcerebellar

skulls are examined to detect presence of the lemon sign marker and hence of spina

bifida. In computer vision and associated recognition tasks, shape features of objects

of interest in digital images are in common use to arrive at classification decisions.

There exist many 2D shape representation and description techniques among which

one can choose from to get an appropriate set of features to be utilized in particular

recognition or retrieval (e.g. content-based image retrieval (CBIR)) applications.

In the outermost scope, shape representation schemes can be identified as either

contour-based or region-based. Contour-based techniques exploit the shape bound-

ary information, whereas region-based methods employ all the information available

through all the image pixels within a shape region. Each of the two groups of techniques

can further be discriminated as being global or structural. Global representation con-

siders shapes as a whole and structural methods describe them as segments/sections.

An implicit representation of entire shapes is available within global descriptions, how-

ever, for a full specification with structural descriptions, the features of the shape must

be known for all segments (perhaps, mutually exclusive). It should also be noted that,

whether the representation is global or structural, shape features can only be partially

retrieved in cases when digital images contain only some portion of objects of interest

and do not display entire shape regions. Any shape description technique derives fea-
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tures from the space domain or a transform domain. The sections that follow give a

brief overview of shape description approaches. Zhang and Lu [53] present a review in

a richer and much broader sense.

2.2.1. Global Contour-Based Methods

Simple global shape descriptors include those such as area, circularity, eccentricity

and major axis orientation. These descriptors do not have the ability to discriminate

similar shapes but can only be used as filters to avoid false hits and combined with

other descriptors to describe shapes.

A common practice in shape retrieval is to compute matching scores between

shapes to measure how similar two shapes are. In correspondence-based matching,

points along contours of objects to be compared are sampled and the comparison is

done using the two sets of points A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. The

Hausdorff distance [54] between A and B is defined as

hsdf(A,B) = max(max
a∈A

min
b∈B
‖a− b‖,max

b∈B
min
a∈A
‖b− a‖) (2.1)

where ‖a− b‖ is the norm of a and b. The disadvantages of Hausdorff distance include

its sensitivity to noise and outliers in addition to the lack of invariance properties under

scale, translation and rotation changes. For a matching between a model shape and

another shape in an image to take place, the model shape has to be overlapped on

the image with different positions, orientations and scales. On the other hand, partial

matching of shapes can be performed using Hausdorff distance.

Another correspondence-based shape matching scheme proposed by Belongie et

al. [55] uses shape contexts. A shape context is a global feature extracted from the

set of points that identify a particular shape. To construct a shape context, all points

are considered one by one and the vectors from any point Pi to all other points of the

shape are found. The lengths l and orientations θ are quantized and a histogram map

representing Pi is constructed. This process is repeated for all points of the shape,
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the vectors are put in log-polar space, all the histograms are flattened, and they are

concatenated to form the context of the shape. Shape matching using shape contexts

is performed by a matrix-wise matching procedure and the method is an improvement

over matching using Hausdorff distance.

A shape signature is a shape representation by a one dimensional function derived

from shape boundary points. Centroidal profile, complex coordinates, centroid distance,

tangent angle, cumulative angle, curvature, area and chord-length are examples of shape

signature. Normalization achieves translation and scale invariance of shape signatures.

Compensating for orientation changes in shape matching requires shift matching of

signatures in either 1D or 2D. Due to the high matching cost and sensitivity of shape

signatures to noise and slight changes in the boundary, large matching errors can arise.

Direct representation of shapes using shape signatures is inappropriate and further

processing is required to enhance robustness and minimize matching load. Reducing

the dimensions of a signature-based boundary representation is obtainable by using

moments [56]. Although the implementation of boundary moments is easy, the physical

interpretation of high-order moments is quite difficult and intractable.

Elastic matching, where a deformed template is generated as the sum of an orig-

inal template and a warping deformation, is proposed by Bimbo and Pala [57]. Shape

similarity between the original template shape and an image shape is measured by

minimizing a compound function consisting of strain energy, bend energy and degree

of overlapping terms. Shape complexity of the template shape and correlation be-

tween the template curvature and that of the image shape are also taken into account

to compute a similarity measure. The computed parameters are then classified by a

back-propagation neural network. Computation and matching complexities associated

with elastic matching make the technique impractical for online image retrieval. Other

disadvantages of the method are the lack of rotation invariance of shape descriptions

and the arbitrary nature of warping.

Describing shapes in the spectral domain is preferred to overcome the problems

of noise sensitivity and boundary variations. Spectral transforms such as Fourier and
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wavelet provide shape descriptors derived from 1D shape signatures. Fourier descrip-

tors (FD) are in common use for closed contours [56, 58]. The variations include FD

for partial boundaries [59] and affine-invariant representations [60, 61]. Fourier invari-

ants that describe the rotational symmetry of shapes is introduced by Granlund [62].

An FD scheme that can describe disjoint or articulated contour shapes is presented

by Rauber [63]. Instead of conventional distance measurement techniques for comput-

ing the distance of two sets of FDs, Richard and Hemami [64] introduce a complex

distance measurement (i.e. true distance). True distance measurement requires two

Fourier transforms for a matching and spends considerably more time than an ordi-

nary distance computation. FDs, particularly used for character recognition and object

classification, possess several advantages such as simple computation, each descriptor

having a specific physical meaning, normalization and matching simplicity and the

ability to capture both global and local features. Wavelet descriptors (WD) used in

shape representation [65–67] are both spatially and spectrally multi-resolution. This is

an advantage over FDs, however, the increase in spatial resolution sacrifices frequency

resolution. WDs are impractical for online shape retrieval because of complicated

matching consisting of a large number of operations and the fact that matching is also

dependent on shape complexity.

Time-series models (especially autoregressive (AR) modeling [68]), based on stochas-

tic modeling of a 1D function obtained from the shape, are used to obtain shape de-

scriptors. When complex boundaries are involved, few AR parameters are insufficient

for adequate descriptions and an empirical decision concerning the number of param-

eters has to be taken. Furthermore, the associated physical meanings of AR model

coefficients are not clear.

The scale space method produces shape signatures by tracking the positions of in-

flection points in shape boundaries at successively decreasing scales, where the bound-

ary becomes smoother as the width (σ) of a Gaussian low pass filter increases. Spatial

domain methods are usually accompanied with noise sensitivity and boundary varia-

tion problems and thus the use of the scale space method is justified. Inflection points

that remain present for a large number of scales in the representation are supposed to
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reflect significant object characteristics. The end result of a scale space description is

known by several names such as interval tree, fingerprint and scale space image. Inter-

val trees and their associated branches are first interpreted by Asada and Brady [69,70].

The interpretations are mainly based on detecting the peaks of the tree branches from

coarse scales towards fine scales. Mokhtarian and Mackworth [71] present the applica-

tion of scale space for shoreline registration and call the acquired signature curvature

scale space (CSS ) contour image. The detected peaks are generally not considered as

realizations of primitive events, but are used in the matching of shapes. Mokhtarian

et al. [71–73] and Abbasi et al. [74] later extend the method to shape retrieval.

2.2.2. Structural Contour-Based Methods

Structural shape description methods work by breaking the shape boundary to a

number of primitives or segments whose combination provides a full description of the

whole boundary. Conceptually, each segment is represented as a string symbol which

includes attributes of the associated segment. The concatenation of the symbols si for

all segments forms the string Ṡ that is the description of the boundary:

Ṡ = s1s2 . . . sn (2.2)

Chain code, introduced by Freeman [75], describes an object by a sequence of unit-

size line segments with a given orientation. The method allows encoding arbitrary

geometric configurations where curves are represented as a sequence of unit-size vectors

each with one of a limited set of directions. A general chain code [76] is one with N = 2k

possible vector directions. Chain codes are normalized with respect to the selection

of the first boundary pixel when they are used for matching. Rotational invariance of

chain codes through cyclic permutations can be achieved by representing the boundary

using differences of successive directions instead of relative directions and selecting the

permutation with the smallest number. Although scaling objects to the same size is

a straightforward matter, scale invariance of chain codes is a troublesome issue since

scaling changes code length and makes comparison of two shapes impractical. Chain



17

codes have high dimensionality and noise sensitivity and are generally not used as a

feature of last stage but fed as input to a higher-level analysis.

Polygon approximation [77,78] breaks down a shape boundary into line segments

and the vertices of the polygon are used as primitives. Each primitive is associated with

a 4-element feature vector containing internal angle, distance from the next vertex,

x and y coordinates. Similarity of two shapes is measured as the editing distance

between two feature strings. Mehrotra and Gary [79] represent a shape as a chain

of vectors, where a set of interest points for a shape are detected from the polygonal

approximation of the boundary. Polygonal approximation lacks translation, rotation

and scale invariance and its application to natural objects is impractical. Berretti et al.

[80] propose another type of approximation using a set of tokens retrieved by detecting

the curvature zero-crossings of a smoothed version of the object boundary. Each token

is a curve segment and represented with its maximum curvature and orientation. The

similarity of tokens is measured by a weighted Euclidian distance. Since orientation of

tokens are included in feature sets, the representation is not rotation invariant.

Dudek and Tsotsos [81] obtain shape primitives from a curvature-tuned smooth-

ing technique, analyze shapes in scale space and use a model-by-model matching

scheme. Each segment is described by its length, an integer-valued position and a

curvature-tuning parameter. Shape description is through the concatenation of all

string descriptors belonging to the shape. A model-by-model matching of shapes is

performed with dynamic programming. Shape features are treated in a curvature scale

space so as to perform matching at different scales. The inclusion of segment lengths

make the representation scale-variant. The matching algorithm uses three empirical or

adhoc parameters and limits the applicability of the approach.

In syntactic analysis of shapes [82], the inspiration is the similarity of natu-

ral shape compositions to language compositions. Languages are formed by sentences

built from phrases which are formed by words that consist of characters in an alphabet.

Syntactic analysis of shapes, similarly, uses a set of primitives for shape description.

The set of predefined primitives is called a codebook and each primitive is a codeword.
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Matching of shapes employs string matching rules. The disadvantage with the syntac-

tic approach is the dependency of alphabets to applications and shape databases in

consideration.

Although the desired invariance properties of scale, translation and rotation can

be attained with other description techniques, they depend on viewpoint [83]. Tech-

niques that employ shape invariants aim to acquire boundary properties that remain

unchanged under a more general class of transformations. Various examples of invari-

ants include geometric invariants such as cross-ratio, length ratio, distance ratio, angle,

area [84], triangle [85], invariants from coplanar points [83]; algebraic invariants such

as determinant, eigenvalues [86], trace [83]; differential invariants such as curvature,

torsion and Gaussian curvature. Geometric and algebraic invariants are useful in ap-

plications where boundary segments can be represented by lines or algebraic curves.

Differential invariants, that are local and large in number, can be formed where geo-

metric and algebraic invariants are not applicable.

2.2.3. Global Region-Based Methods

One main class of region-based shape description methods contains moment in-

variants. Hu [87] presents the first work on image moment invariants to be used in 2D

pattern recognition. The general form of a regional (i.e. 2D) moment is

mpq =
∑
x

∑
y

xpyqf(x, y) (2.3)

where p, q = 0, 1, 2, . . . are moment orders for x and y dimensions. f(x, y) is a 2D func-

tion defined on regional positions (x, y) (e.g. the image intensity function). Geometric

moment invariants, having the desired properties of invariance with respect to scale,

translation and orientation, are derived by using non-linear combinations of lower order

moments. Using higher order moments has not been addressed in pattern analysis and

recognition. Small values of computed moments generally require a normalization prior

to their use in applications. Only a few moment invariants from lower order moments
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can be acquired and they are not sufficient to describe shapes effectively. The deriva-

tion of higher order moments is difficult. Algebraic moment invariants introduced by

Taubin and Cooper [88,89] are computed from the first m central moments. They can

be computed up to an arbitrary order, are invariant under affine transformations and

work either very well or very poorly on different objects. When pixel distributions of

objects is important rather than their outline, the performance is high; however, poor

performance is obtained when outline configurations are important.

The idea of replacing xpyq in the algebraic moment transform of Equation 2.3 by

general kernels Pp(x) and Pq(y) is used by Teague [90] to introduce orthogonal moments

of Legendre and Zernike. Legendre and Zernike polynomials used for replacing xpyq

are both complete sets of an orthogonal basis and that is why Legendre and Zernike

moments are called orthogonal moments. Pseudo-Zernike moments are another type

of orthogonal moments obtained by using real-valued radial polynomials in Zernike

polynomials as the moment transform kernel. Optimal utilization of shape information

and accurate reconstruction of shapes is achieved by orthogonal moment transforms.

In the detailed study of Teh and Chin [91]; concerning orthogonal Legendre, Zernike,

pseudo-Zernike moments and non-orthogonal geometric, complex, rotation moments;

it is shown that geometric moments, complex moments and pseudo-Zernike moments

are affected less by noise than Legendre moments which are severely affected. The

reconstruction power of Zernike and pseudo-Zernike moments is more than that of

Legendre moments both for noisy and noiseless images. The reconstruction error for

noisy images reaches a minimum value and starts to increase as the number of used

moments increases, indicating the lower reliability of higher order moments in noisy

environments. Liao and Pawlak [92] show that coarser quantization (i.e. less resolu-

tion) of images produces more accurate moments. Shape description using moments

is generally concise and robust. Computations of and shape matching with moments

are easy, however, associating precise physical meanings for higher order moments is

difficult.

Zhang and Lu [93] propose a generic Fourier descriptor (GFD) for shapes, ac-

quired by applying a 2D Fourier transform on polar-raster sampled shape images.
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Shape similarity is measured using the city block distance of GFDs (i.e. normalized

coefficients of the GFD transform). GFD features are pure spectral and their retrieval

performance is better than that of Zernike moments due to the multi-resolution analysis

involved.

Lu and Sajjanhar [94] introduce a grid-based shape descriptor obtained by over-

laying a grid of cells on a shape, scanning the cells from left to right and top to bottom

and marking the cells with 1 or 0 depending on whether a cell is occupied or not.

The resulting bitmaps are then used in measuring the similarity of two shapes with

a metric such as Hamming distance. The grid descriptor is simple and intuitive but

rotation normalization performed based on the major axis orientation is sensitive to

noise and unreliable. Goshtasby [95] uses a shape matrix derived from a circular raster

sampling. Concentric circles and corresponding radial lines are overlaid on a shape and

the intersection points of circles and lines constitute shape matrix entries.

2.2.4. Structural Region-Based Methods

For any two points P1 and P2 in a region R̃, if the line segment P1P2 is inside R̃, R̃

is called a convex region. The convex hull of R̃ is the smallest convex region H̃ satisfying

the condition R̃ ⊆ H̃. The difference region H̃ − R̃ is called the convex deficiency of

R̃. To obtain a convex hull representation of a region, the region boundary is first

smoothed to eliminate undesired effects of digitization, noise, segmentation variations;

its convex hull is extracted [56, 83] and the convex hull is recursively partitioned to

detect deficiencies and convex hulls at lower levels. Each recursive step is composed

of finding the convex hull of an extracted deficiency at a previous step and further

detecting the deficiencies along the boundary defined by the extracted deficiency and

its corresponding convex hull. Recursion ends when no convex deficiencies for some

recursive step can be detected. The shape representation is by means of a concavity

tree, whose root is the shape region R̃ and whose all leaves correspond to subregions

that can no longer produce convex deficiencies (i.e. no more concavity can be detected).

Concavities can be described by their areas, bridge (line cut of the concavity) lengths,

maximum curvature values, distances between maximum curvature points to bridges,
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etc. Shape matching can be handled as a string matching or graph matching problem.

Methods to represent shape regions as skeletons, defined as connected sets of

medial lines along branches of regions, aim to eliminate redundancy and use only

the topological information related to object structure. Blum [96] discusses skeleton

methods as the medial axis transform (MAT ).

2.3. Classification

The target of a classifier application is identifying input data as a member of

one of a set of categories (i.e. classes/labels/concepts). This classification problem is

examined in the more general scope of machine learning. Machine learning is actu-

ally programming computers to perform actions that humans can do with or without

knowing the exact biological procedure carried out by the brain. To make computers

imitate the decision processes of human beings is through optimizing some performance

criterion using example data or past experience [97]. Alternatively, machine learning is

the scientific discipline studying how the data we observe can be explained. Although

human beings (i.e. experts of some field) are supposed to be more talented than com-

puters to arrive at decisions, such processes may contain extensive amount of data to

handle and be impractical. It is useful to extract knowledge from big data collections

(also called data mining and knowledge discovery from databases (KDD)) and repre-

sent this knowledge by simple and explanatory models. The theory of statistics serves

as the core component utilized in most machine learning applications to construct

mathematical models that explain the observed data. There are many fields such as

forensics, psychology, agriculture, multimedia, biometrics, medical imaging, robotics,

etc. where machine learning applications are benefited from. Pattern recognition ap-

plications are those which operate by analyzing data obtained from the members of

a category, capturing the pattern specific to those members and recognizing objects

of interest by checking this pattern. When there are two or more classes of data to

identify in some sample space, the machine learning problem is referred to as classi-

fication and the associated computer program is a classifier. Machine learning is not

only composed of fitting mathematical models to data but also contains components
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of artificial intelligence. The systems must be intelligent (i.e. must learn) to adapt to

changing environments. The mathematical models defined up to some parameters are

optimized using training data. The applications produced by the trained models may

be used as either descriptive or predictive, depending on whether the objective is to

gain knowledge from data or to make predictions with new data.

There exist a variety of approaches that have been applied in the literature for

constructing classifiers. From a top view, all of them are evaluated based on the

criteria of accuracy, construction and classification complexities, robustness, scalability

and interpretability. Accuracy is the ability of a classifier to make correct predictions on

data. The time and space used in generating classifiers and using them to predict labels

of samples is an issue related to the computational cost of these processes. The ability

of producing correct predictions with noisy or missing data indicates the robustness

of classifiers. Efficient classifier construction and prediction using large volumes of

data are considered as the scalability property. Finally, interpretability is the level of

understanding and insight provided by classifiers. Interpretability is a rather subjective

issue and may be difficult to assess. In the following flow, we shortly mention “some”

of the popular classification approaches.

Class-labeled training data may be used to learn decision trees. Decision trees

are tree structures where internal nodes denote some test on a data attribute, branches

are paths followed according to the result of the test and leaf nodes are class labels.

Building decision trees does not require any domain knowledge and the learned concepts

(i.e. rules) are appropriate for exploratory knowledge discovery. During each step of

tree construction, the attribute that best partitions the input data arriving at a node to

distinct classes is selected and the test is performed on that attribute. Quinlan develops

and presents the decision tree algorithms of ID3 [98] and C4.5 [99] as benchmarks to

which supervised algorithms designed later are compared. Breiman et al. describe the

generation of binary decision trees in their book Classification and Regression Trees

(CART ) [100]. Decision trees are used for rule extraction by traversing paths from

the root node to each leaf node. The extracted IF-THEN rules consist of antecedent

parts (i.e. IF) formed by logically ANDing the splitting criteria along given paths and
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consequent parts (i.e. THEN) holding class predictions in leaf nodes.

Interesting relationships between attribute (input data or features) conditions

and class labels can be characterized by association rules. With frequent patterns,

these association rules can be used for effective classification. An association rule

is of the form X → Y, meaning that the realization of X implies the realization of

Y. In associative classification, associative rules are generated and analyzed for use

in classification. Strong associations between frequent patterns (i.e. conjunctions of

attribute-value pairs) and class labels can be discovered and classification rules can be

generated. Since highly-confident associations among multiple attributes are explored

by association rules, some constraints of decision tree induction such as considering

only one attribute at a time, are overcome with this approach. Liu et al. [101] present

the first and simple algorithm (Classification-Based Association (CBA)) to perform

associative classification.

Bayesian classifiers are statistical classifiers that can predict class membership

probabilities. Bayesian classification is based on Bayes’ theorem given in Equation 2.4,

Pr(H|X) =
Pr(X|H)Pr(H)

Pr(X)
(2.4)

where Pr(H|X) is the posterior probability of H conditioned on X. Similarly, Pr(X|H)

is the posterior probability of X conditioned on H; Pr(H) and Pr(X) are the prior

probabilities of H and X, respectively. If H is considered to be the realization of

a particular class membership, Pr(H|X) can be computed using estimated values of

Pr(X|H), Pr(H) and Pr(X). In the Bayesian classification context where the posterior

probability Pr(H|X) is to be computed with Pr(H) being the prior probability of H not

conditioned on any other event, Pr(X|H) is called the class likelihood of input data X

when the belonged class is indicated by H and Pr(X) is called the evidence standing for

the marginal probability of the occurrence of X. When X is multidimensional, depen-

dencies among components of X (i.e. xi) may exist. Performing sound classification

using the Bayes’s rule in such cases relies on constructing graphical models showing the

dependencies/interactions among input variables and training the model with appro-
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priate algorithms. These graphical models are referred to as Bayesian networks, belief

networks or probabilistic networks [102]. In naive Bayes classification, all input vari-

ables are assumed to be conditionally independent and the multivariate classification

problem can be handled as a group of univariate problems.

Artificial neural networks [103], whose underlying concept has originally risen

in the fields of psychology and neurobiology, have been used in computer science for

classification tasks. A neural network is a set of connected input/output units where

each connection has a weight associated with it. Learning of neural networks is accom-

plished by adjusting the weights in order to correctly predict the labels of input data.

In the simplest case of a perceptron model, the units of the network are either input

units or the output unit. In the general case, a set of perceptrons can be connected

in serial or parallel fashion to form a neural network of some topology. The inputs of

some perceptrons may be the outputs of some other perceptrons arranged to perform

a specific task (in particular, classification). The general network topology is known

as a multilayer perceptron (MLP), which has hidden or intermediate layers in addition

to input and output layers. An MLP is able to implement nonlinear discriminants

used for classification. Neural networks, trained using the backpropagation algorithm,

require long learning times and therefore feasibility is a concern prior to their use.

Although having been criticized for their poor interpretability, their high tolerance on

noisy data and skill to classify previously unseen patterns are the advantages of neural

networks.

Support vector machines (SVM ) classification is a popular method that uses a

linear discriminant to separate the instances of two classes. The method, although lin-

ear in nature, works both for linear and nonlinear data. This is accomplished by using

a nonlinear mapping to transform the original training data to a higher-dimensional

space where separation is performed by means of a linear optimal separating hyper-

plane. Nonlinear mappings of input data to a sufficiently high dimension ensures that

separation can be performed linearly. Optimal separating hyperplanes (i.e. decision

boundaries) are found using support vectors, which are those training samples of either

class closest to the hyperplane from both sides. The distance between the closest in-
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stance to the hyperplane at one side and the closest instance to it at the other side is

called margin, which one wants to maximize for better generalization ability. SVMs

are highly accurate due to their ability to model complex nonlinear decision boundaries

and support vectors provide a compact description of the learned model. Historically,

Boser et al. [104] present the first paper on support vector machines in 1992. Neverthe-

less, the groundwork on statistical learning theory by Vapnik and Chervonenkis [105]

has been around for more time. SVMs have been applied in various fields such as

handwritten digit recognition, speaker identification, object recognition, etc.

In contrast to the eager classification techniques presented so far in this section,

the k-nearest neighbor (kNN ) classifier is a lazy approach that does not construct a

model for classification. A database of training instances is stored and nothing is done

for generalization until a new instance (i.e. test tuple) to be classified arrives. Nearest

neighbor classifiers learn based on similarity of new instances to those in the training

set. The kNN classifier returns the most similar (i.e. nearest) k training tuples to the

test tuple and the decision of which class the test instance belongs to is given based

on a score such as the majority vote or weighted counts of the neighbors (e.g. closer

training instances are counted more than farther ones). The closeness of two tuples can

be defined in terms of a distance metric such as the Euclidian distance. The Euclidian

distance dist(X̃1, X̃2) of tuples X̃1 = (x̃11, x̃12, . . . , x̃1n) and X̃2 = (x̃21, x̃22, . . . , x̃2n)

with n attributes each is given in Equation 2.5:

dist(X̃1, X̃2) =

√√√√ n∑
i=1

(x̃1i − x̃2i)2 (2.5)

Of course, the selection of the k parameter is usually empirical and sometimes may

require additional insight such as domain knowledge, etc. Considering the number of

training samples, the kNN classifier (generally all lazy classifiers) are labor-intensive

and their popularity may be attributed to the availability of high computing power.

Although such classifiers offer little explanation for the structure of data, they support

incremental learning and model complex decision surfaces not as easily describable by

other learning algorithms.
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2.4. Segmentation

Isolating image pixels that are of particular interest with the purposes set by

predefined tasks and generally in the context of specific automatized applications is

known as the problem of image segmentation. In fact, there is an awful lot of data

contained in images acquired in raw state that are either redundant, useless or even

task-complicating when dealt with. To obtain compact representations describing only

the “interesting” portions of images (i.e. objects or regions of interest (ROI)) out of

which descriptively useful features are extracted, the segmentation step must be car-

ried prior to further steps of image processing, feature extraction, pattern recognition,

classification, etc. Segmentation subdivides an image into its constituent regions or

objects, where the definition of a region (or object) is strictly dependent on problem

specification which also includes the level to which subdivision is carried. The general

principle is stopping segmentation when objects of interest have been isolated from

their surroundings.

Image segmentation [56, 106–108], excluding simple cases when image structure

can be well-modeled, is one of the most difficult tasks in computer vision that remains

unsolved. Measuring the success of a segmentation procedure is not a trivial issue in

general, may be taken as subjective to human perception and may also be associated

with the performance of computer analysis tasks that follow. Due to the subjectivity

of success measures and the dimness of having a single segmentation routine working

well for all possible problems, it is natural to conclude that no formal theory for seg-

mentation exists. Classifying segmentation algorithms based on some criteria is yet

another uneasy and impractical issue. From a broad perspective, segmentation proce-

dures attempt to exploit discontinuities and similarities of image intensity values. We

now present a summary on methodologies utilized in a variety of image processing and

computer vision applications. The methods apply to monochrome images, however

generalization to color images is usually possible.
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2.4.1. Discontinuity Detection

Since segmenting images aims at locating interesting objects which are usually

marked by the presence of simple geometric entities; the detection of primitives such

as points, lines and edges appears as a non-avoidable step in many segmentation tasks.

The simplest way to follow for detecting intensity discontinuities at a single pixel is

to run a mask on the image window that encompasses the pixel of interest. The

response of a mask is usually defined with respect to its center which is positioned on

the particular image pixel whose response is sought. Equation 2.6 depicts the response

Ṙ of a particular image pixel to a 3x3 mask which is centered on the pixel,

Ṙ =
9∑
i=1

civi = c1v1 + c2v2 + . . .+ c9v9 (2.6)

where vi is the intensity of the pixel associated with mask coefficient ci. Decisions

regarding the value of Ṙ are taken after comparison against a threshold τ .

Figure 2.1 displays 3x3 masks to detect isolated points (i.e. pixels) and lines

of one-pixel thickness oriented horizontally, vertically, diagonally at 45◦ and −45◦. It

should be noted that the weights of each mask sum to zero to guarantee that Ṙ values

will be 0 for regions of constant intensity and larger weights are used for preferred

directions of lines. Being more general than points and lines, edges are the essential

structures that signal meaningful discontinuities in images. Edges are detected using

the first and second order derivatives of the image intensity function f(x, y) where x

and y stand for image point coordinates (i.e. pixels). The first order derivative used

in image processing is called the gradient. It is the vector Of defined as

Of = [Gx Gy]
T =

[
δf

δx

δf

δy

]T
(2.7)

with magnitude

Of =
√
Gx

2 +Gy
2 (2.8)
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Figure 2.1. Masks for point and line detection.

which sometimes is approximated by omitting the square root operation or by adding

the absolute values of the vector components. The approximations still act as deriva-

tives, because their values are zero in constant-intensity regions and proportional to

the degree of intensity change in areas of varying intensity. The gradient vector points

in the direction of maximum rate of change of f . The angle α of this rate of change is

α = tan−1 (Gy/Gx) (2.9)

and the magnitude of the gradient vector is simply referred to as “the gradient”. Al-

though the second-order derivatives of f can also be used in edge detection, it has

disadvantages such as noise sensitivity, detecting double edges and inability to detect

edge directions which make their direct utilization in edge detection unsuitable. It is of-

ten the case that locations where the magnitude of the first order derivative (gradient)

is greater than a specified threshold are found and marked as edge pixels.
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Estimating the first order derivatives Gx and Gy of the image function f(x, y)

digitally is achieved via the sets of masks shown in Figure 2.2. That is, the gradient

value at the center pixel of a neighborhood is computed by running the masks on the

neighborhood. Sobel [109] and Prewitt [110] edge detectors use 3x3 masks whereas

Roberts [111] detector works on 2x2 windows. The Laplacian of Gaussian (LoG)

Figure 2.2. Masks for edge detection.

edge detector works by first convolving the image intensity function with the second

derivative (i.e. Laplacian) of a Gaussian function in order to smooth it and yield a

double-edged image, and then by detecting the zero-crossings between double edges to

locate the edges. Alternatively, a zero-crossings edge detector is based on the same

concept as a LoG detector but uses a possibly different filter for smoothing (i.e. it is

the generalization of the LoG detector using a non-Gaussian filter).

Another popular and effective edge detector is proposed by Canny [112] in 1986.
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An input image is smoothed with a Gaussian filter to reduce noise. The gradient

magnitude and direction at each pixel of the smoothed image is computed using one of

the masks of Figure 2.2. The pixels which have locally maximum gradient magnitudes

in the direction of associated gradient vectors are identified as edge pixels. The gradient

magnitude image of the edge pixels contains ridges. The algorithm tracks along the top

values of these ridges, those pixels that are not actually on ridge tops are set to zero (i.e.

nonmaxima suppression) and thin lines in the output image are obtained. Thresholding

this image using two threshold values classifies ridge pixels as either strong or weak edge

pixels or not an edge pixel at all. Finally, edge linking is performed by incorporating

weak edge pixels that are 8-connected to strong edge pixels.

2.4.2. Similarity-Based Techniques

Testing intensities of image pixels against particular values and acting based on

whether this value is exceeded or not is known as thresholding and can be considered

as the simplest approach to obtain two groups having similar pixels in each. Select-

ing threshold values can be performed by detecting the modes in histograms visual-

izing intensity distributions. Mode selection is achieved either visually by inspecting

histograms or by an automatic procedure such as that of Otsu [113]. Having L dis-

crete intensity values in the range {0, 1, . . . , L− 2, L− 1}, Otsu’s method exhaustedly

searches for the threshold value τ that minimizes the weighted within-class variance

σW
2, equivalently that maximizes the between-class variance σB

2 of the two groups of

pixels. Pixels having intensity values in {0, . . . , τ − 1} form one group and those in

{τ, τ + 1, . . . , L− 1} form the other group. σ2
W and σ2

B are defined as

σ2
W = Pr1(τ)σ2

1 + Pr2(τ)σ2
2 (2.10)

σ2
B = σ2 − σ2

W (2.11)
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where Pr1(τ) and Pr2(τ) are the probabilities of the two groups obtained with τ , σ2
1

and σ2
2 are their variances, and σ2 is the variance of all pixels. Global thresholding fixes

τ for all pixels whereas local thresholding lets τ vary within image regions.

Clustering refers to partitioning a set of vectors into groups having similar values.

As applicable to image segmentation, the vector components may be intensities, color

values, texture measurements or any property derived from the former. Once vectors in

the measurement space have been obtained and grouping performed with appropriate

clustering techniques, connected regions can be obtained via connected components

labeling. In K-means clustering, there are K clusters, C1, . . . ,CK , with their associated

means, µ1, . . . , µK and assigning cluster indices to vectors tries to minimize an error

function E defined as

E =
K∑
k=1

∑
xi∈Ck

||xi − µk|| (2.12)

where xi are the measurement space vectors. One of the natural algorithms for cluster-

ing is divisive clustering that starts with a single cluster and splits them. The other is

agglomerative clustering initiated with each vector being a separate cluster and merg-

ing them iteratively at successive steps. Perhaps the most popular clustering algorithm

is iterative K-means clustering, which uses Equation 2.12 explicitly at each iterative

step to refine the assignment of vectors to clusters and update the means until conver-

gence. Isodata clustering is another iterative technique assuming the existence of K

clusters employing a split-and-merge strategy. Histogram-based clustering techniques

operate on the data as a single pass and the retrieved modes manifest themselves as

clusters. Ohlander et al. [114] propose a histogram-based clustering technique, where

mode seeking is applied first on the entire image and then recursively on the obtained

clusters until the splitting of clusters can no more be carried. Shi and Malik [115]

formulate image segmentation as a graph partitioning problem that reduces to an

eigenvector/eigenvalue problem.

The objective of segmentation can be stated as partitioning an image into regions.
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Region growing is the term used for the process of starting with one or more pixels

determined manually or by an automatic procedure (i.e. seeds) and appending to each

seed those neighboring pixels that are similar with respect to some criteria. Different

from general clustering, region growing takes into account the connectivity relations

of pixels during its operation. A stopping rule for growth must also be specified.

Basically, region growing should stop when no more adjacent pixels to a region satisfy

the determined growth criteria. Alternatives to growing regions starting with seed

points include allowing splitting and merging of regions. If at any point two connected

regions satisfy the common criteria used for growing, then it is sensible to merge these

two regions into a single region. On the contrary, conditions that necessitate splitting

regions could hold.

Other techniques based on similarity work using various ideas. Background sub-

traction is an approach that can be used when objects of interest lie on a stable back-

ground. Excluding the background pixels from the image would then isolate sought

objects/regions. Computing distance between corresponding images/frames could be

performed via adhoc methods of frame differencing, histogram-based comparison, block

comparison, edge differencing, etc. All these methods compare pixel features such as

gray-level/color intensities or higher level structures such as edge maps from two im-

ages. The spatial insensitivity of histograms is treated with placing grids on images,

organizing them as a set of blocks much smaller in size and reducing the degree of

insensitivity using a block-by-block comparison.

2.4.3. Fitting Models

Groups of pixels may belong to a simple family of components and it may be

desired to detect such components for further analysis. Lines, circles, ellipses, etc.

might be of interest and mathematical models could be exploited to either reveal their

existence or locate them accurately in images. Vital image characteristics are usu-

ally available by means of edges which can rarely be detected completely because of

noise, nonlinear illumination and other effects that introduce random intensity discon-

tinuities. Similarly, isolated pixels that belong to components described by particular
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mathematical models may be at hand but exact structures including some pixels and

excluding others may not be visible. Such situations require explicit representations of

the underlying structures. Estimating the parameters of a model for a group of pixels,

or identifying those pixels that belong together for some model is called fitting.

The Hough transform technique records all structures on which points can lie

and selects the structures getting high votes. This is by considering the fitting problem

not in the pixel coordinate space but in the parameter space. Each image pixel in

consideration has the potential to lie on infinitely many structures defined by parameter

values used for model description. For all points and a subdivision of the parameter

space to accumulator cells each standing for a tuple of parameter values, those cells

that define the structure on which the point can lie are determined and the vote for

the corresponding cell (initialized to zero at the beginning) is incremented. When this

procedure ends, the accumulator cells having high votes manifest themselves as the

structures to be selected. The quite general technique can be applied for detecting lines,

circles and to any type of curves having analytic equations of the form f(ẋ, a) = 0 where

ẋ are vectors denoting image points on the curve and a is the vector of parameter values.

A range of a values with proper quantization is determined and the accumulator array

A[a] is initialized to zero. Each ẋ is considered, the corresponding set of parameter

vectors a satisfying f(ẋ, a) = 0 are determined and the accumulator array values A[a]

are incremented. Local maxima in A (parameters having high votes) correspond to the

curve function f .

Fitting has practical limitations such as missing data points, outliers, high dimen-

sionality of data and parameters, error definition, additional constraints for fitting, etc.

These factors may occasionally turn fitting worthless and the robustness may be ques-

tionable. The target of using probabilistic methods in curve fitting and introducing a

dimension of uncertainty to the process is to improve the quality of fits by avoiding the

undesired effects of the aforementioned problems, to some extent. Assuming that fit-

ting must be done with missing (i.e. incomplete) data, the fitting process (e.g. fitting a

line) to an incomplete set of points can follow the lines of the Expectation-Maximization

(EM ) [116, 117] algorithm, where at each iterative step an expectation for complete



34

data using incomplete data and current parameter values is computed followed by re-

estimating parameter values to maximize the likelihood of the incomplete data. The

algorithm terminates when convergence is reached and fitting is carried with the best

estimate of the complete data. Although the method does not guarantee to arrive at a

global maximum, local maxima which are candidates for a good solution are found. In

the RANdom SAmple Consensus RANSAC fitting of models, few points are randomly

selected and fitting is performed with the selected points. The distances of the points

not used in fitting to the output are tested against a threshold and close but unused

points are detected. If the number of close points is large enough, it is decided that

a good fit is found and fitting is repeated with all points (random subset of points

and close points) terminating the algorithm. Obviously, this is an iterative method

that runs until a good fit is found. The algorithm requires a number of parameters

including the number of points in random selections, the distance threshold used for

testing closeness and a criterion to decide if a fit is good (usually the number of points

close to the fit).

2.4.4. Miscellaneous

The widespread phenomenon of texture is related to the spatial arrangement of

intensities or colors. Texture measures providing vales for each pixel describing the

texture around the pixel neighborhood can be used to segment images into regions of

similar texture. Texture measures may either be used to measure similarities of pixels

used in region-based segmentation procedures such as region growing and clustering,

or to detect texture discontinuities (i.e. texture edges) for separating image areas with

different texture distributions. Belongie et al. [118] present a segmentation method

exploiting color and texture information with the EM algorithm whose results are

presented for natural scenes.

Model-based approaches for segmentation turn out to be successful for images

containing objects which fit particularly well to defined models of rigid shapes. In

most segmentation problems including the localization of medical structures such as

internal body organs, the sought objects possess a degree of variability and they do not
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fit to models of rigid shapes. A deformable template model is one that deforms a shape

to match a known object in a given image under an implicit or explicit optimization

criterion. Following its frontiers [119,120], Cootes et al. [121] propose the Active Shape

Models (ASM ) which learns shape variability through observation. Active Appearance

Models (AAM ) [122] extends ASM to incorporate both shape and textual information

across objects (i.e. pixel intensities) in deformable template models.

2.5. Rarity and Imbalance

The inductive bias of most data mining systems is towards favoring generaliza-

tion over specialization in order to minimize overall misclassification. Although such a

generality bias is satisfactory for common cases/classes, it prevents successful classifi-

cation of rare class samples. To handle the problems involved in classification problems

utilizing training sets which contain few samples of a class/case in an absolute sense

due to lack of data or when compared to instances of other classes/cases (i.e. relative

rarity), appropriate actions during the learning phase modifying used datasets must

be taken. This preprocessing is supposed to improve the detection rate of positive

instances, for which classifiers are actually intended, and lead to realistic (i.e. fair)

performance assessment of classifiers. Rare classes and rare cases differ in that rarity

of a class refers to uneven class distributions (also known as class imbalance) and rare

cases correspond to relatively small but meaningful subsets of the data space that may

contain samples of any class [123]. In spite of this conceptual difference, the associated

problems of and the solution approaches for both are similar.

Basically, assessing classification performance is by means of comparing classifier

decisions on samples and true labels of those samples. Any metric employed to report

performance is formulated as functions of these comparisons. The two distinct classes

are called positive and negative. In general, the class whose detection is deemed more

vital is designated as the positive class and the other as the negative class. When the

decided label of any sample is the same as its true label, this contributes to success

and the opposite accounts for failure. In a diagnostic system with two types of actual

events (possibility of two distinct labels for any sample) and correspondingly two types
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of possible decisions, the classification of a sample can result in one of four situations,

either contributing to success or causing failure. TP (true positive) refers to positive

events correctly classified as positive, FP (false positive) to negative events incorrectly

classified as positive, FN (false negative) to positive events incorrectly classified as

negative and TN (true negative) to negative events correctly classified as negative.

The counts of occurrences of these situations is displayed as a contingency table [124]

(or a contingency matrix). Table 2.1 displays the 2x2 contingency table of a two-

class problem. The columns of the contingency matrix are associated with the actual

events (i.e. whether an instance is positive or negative) and the rows with the label

assignments of the classifier.

Table 2.1. 2x2 contingency table.

Event

Positive Negative

Decision
Positive TP FP

Negative FN TN

One significant problem of data mining with rarity is the employment of improper

evaluation metrics. Classification accuracy, being the most commonly used evaluation

metric that computes the fraction of correctly-classified samples, does not value rare

classes as much as common classes and thus is not a true indicator of classification per-

formance for rare classes. Receiver Operating Characteristics (ROC ) analysis [125] and

the associated area under the ROC curve (AUC ) [126] assessing the overall classifica-

tion performance have come into common use both to guide data mining and produce a

numeric performance figure. ROC curves can be used to visualize and assess tradeoffs

of classification rules such as increasing the detection rate of positive samples at the

expense of introducing more negative samples misclassified as positive. AUC is not

biased against the rare class since it does not put more emphasis on one class than the

other. Precision and recall, originating in information retrieval, are metrics indicating

the percentage of a classification rule correctly predicting a class and the fraction of

class instances covered by the rule. Some metrics using variations of precision and
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recall such as Geometric Mean of Recall and Precision (GMRP) and F-measure [127]

are also popular. Adjusting F-measure parameters lets weigh and specify relative im-

portances of precision and recall. Joshi [128] puts the metrics defined by precision

and recall of the target rare class into a common analytical context to allow for objec-

tive comparisons and judges their suitability for rare class problems over variations of

learning difficulty and rarity levels.

Class imbalance causes problems in the form of difficulty to detect regularities

within rare cases/classes, hence causes insufficient or misleading learning and wrong

generalization. Learning algorithms employing divide-and-conquer strategies with the

rarity problem lead to data fragmentation and regularities can only be found in indi-

vidual partitions that contain less data. As a result, data mining problems involving

rarity should not be attacked with divide-and-conquer algorithms. Another source of

problem in learners is associated with their inductive bias. Most learning systems use a

general bias to avoid overfitting but this may adversely affect the performance on rare

classes. Noise, being a problem in any context, has a greater impact when learning with

rarity is considered because fewer noisy examples would affect learned subconcepts and

avoiding overfits would be more critical.

Sampling is the most common technique used to address problems associated

with rarity. It is a preprocessing step taken to modify the data distributions in the

training sets so as to make the representation of rare classes equally-well to those of

the majority classes. Simple sampling techniques include undersampling, which ran-

domly discards majority class examples and oversampling, which randomly duplicates

rare class examples. The objective of sampling is to modify the distributions of the

classes to make them well-represented in the training set. Random undersampling may

potentially lose valuable information whereas random oversampling adds exact copies

of rare class samples to the training set adding no new information and increasing the

risk of overfitting. Since the basic versions of sampling do not work well in practice,

some heuristic sampling methods have come out. Kubat and Matwin [129] propose

OneSidedSelection that eliminates special majority class examples (noisy, redundant

or those close to the boundary separating the two classes) and keep all minority class
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examples. Chawla et al. [130] propose Synthetic Minority Oversampling TEchnique

(SMOTE ) which performs oversampling of the rare class samples by producing syn-

thetic samples using each sample and its k nearest neighbors. The experiments show

that the accuracy of classifiers is improved, and combining SMOTE with undersam-

pling performs better than plain undersampling. Gaining optimal performance from

sampling methods that depends on class distributions based on sampling ratios is an-

other consideration. Although intuition suggests that 1:1 class distributions would

produce optimal performance, experimental studies show that 2:1 or even 3:1 ratios in

favor of the majority class yield better results.

Boosting, effectively altering the distribution of training data and which can be

viewed as a generalized sampling method, is a sequential ensemble learning algorithm

that can improve the performance of weak base learners. For a series of basic clas-

sifiers, the weights of training samples are adaptively changed such that the samples

misclassified in the previous iteration are assigned more weight than the others. Since

rare class samples are more error-prone than majority class samples, it is reasonable

to believe that boosting would assign more weight to members of the rare class and

improve their classification. Standard boosting [131] treats false positives and false

negatives equally, hence the majority class may still dominate the training set after

successive iterations. RareBoost [132] focuses on both precision and recall equally and

updates the weights of positive samples and negative samples differently. Chawla et

al. [133] propose SMOTEBoost where SMOTE is applied in boosting iterations.

Other approaches to handle rarity include cost-sensitive learning, learning only

the rare class, selecting more appropriate inductive bias, incorporating knowledge/human

interaction in data mining, etc. Weiss [123] and Han et al. [134] present detailed dis-

cussions and surveys on rare class mining.
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3. CURVATURE SCALE SPACE REPRESENTATION

The curvature scale space [71,135] is a contour-based global representation tech-

nique in the spatial domain for planar shapes. CSS exploits the point locations where

curvature drops to zero along a contour (curve) at multiple scales. When sampling of

points is required, they are picked at equal distances to ensure robustness. To represent

the curve completely, points are marked along the whole contour at a sufficient resolu-

tion (sampling rate) and no contour section (arc) is left unmarked. If some section of

a represented curve is missing due to occlusion or other constraints, the representation

is considered to be partial.

The CSS representation has very desirable properties for robust and invariant

description of shapes. Since the location of a shape in a scene is not considered,

the CSS representation is translation invariant. It is rotation invariant because any

change in the orientation of a shape results only in circular shifts of the underlying

CSS image. In other words, changing the starting point for a set of sampled contour

points corresponds to rotated versions of the same contour. All such representations

are essentially the same and rotation effects can easily be removed when the selection

of starting points is considered. Scale invariance of CSS is trivially observed knowing

that all shapes are represented using the same number of evenly spaced contour points

and at a continuum of scale values corresponding to possible scales at which the shape

is viewed.

Two planar curves are said to have the same shape if there exists a transformation

consisting of uniform scaling, translation and rotation such that when this transfor-

mation is applied on one of the curves, the result is identical to the other curve. CSS

allows the representations of curves having the same shape to be the same. This is

important for robust classification of shapes since changes in any of scaling, translation

and rotation must not affect the recognition result. The CSS representation is invari-

ant in that two curves with the same shape have the same representation. It is unique

because two curves with different shapes have different representations. Finally, the
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stability property asserts that small shape differences of two curves correspond to small

differences in their representations and small differences of representations correspond

to small shape differences.

Let r(u) = (x(u), y(u)) be a parametric vector equation for the curve r, where

x(u) and y(u) are the parametric representations of the x and y coordinates of r.

Provided that a set of coordinates (xi, yi) of r is given and functional models are found

for x(u) and y(u), curvature values κ(u) can be computed using Equation 3.1, where

ẋ(u), ẍ(u), ẏ(u), ÿ(u) denote the first and second derivatives of the twice-differentiable

functions x(u) and y(u), respectively:

κ(u) =
ẋ(u).ÿ(u)− ẍ(u).ẏ(u)

(ẋ2(u) + ẏ2(u))3/2
(3.1)

Different parameterizations u for x(u) and y(u) exist. The most natural pa-

rameterization uses arc length. In this approach, the curve is successively sampled at

equi-distant points along the contour where the distance measure is the arc length of

curve segments between two adjacent points. Instead of using arc length as a parame-

ter, one may try different parameterizations that are believed to sample closed curves

better. Such an approach is called iso-area normalization [136], where any two adja-

cent curve points and the centroid of the contour constitute slices of the shape having

equal areas. Let Pi and Pi+1 denote adjacent sampled points along a contour and M

denote the centroid of the contour. Furthermore, let sampling be done for N points

on the curve and A(.) be the area function. The parameterization U of curves with

iso-area normalization is

U = {ui | i ∈ Z+, 1 ≤ i ≤ N and ∀i A(PiPi%N+1M) = ∆} (3.2)

where ∆ is a constant. When M is inside the shape boundaries and the total area of

the shape is Atot, ∆ = Atot/N . The values x(ui) and y(ui) are the x and y coordinates

of the sampled curve points. The exact values of ui are of no concern as long as the
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condition in Equation 3.2 is satisfied and exact functional forms of x(u) and y(u) are

not required in curvature computations. Each of the values in Equation 3.3, Equation

3.4 and Equation 3.5 can be assigned to ui:

ui = i | 1 ≤ i ≤ N hence ui ∈ [1, N ] (3.3)

ui = i/N | 1 ≤ i ≤ N hence ui ∈ (0, 1] (3.4)

ui = (i− 1).(2π/N) | 1 ≤ i ≤ N hence ui ∈ [0, 2π) (3.5)

Figure 3.1 illustrates iso-area normalization for four points of a sampled curve:

Figure 3.1. Iso-area normalization.

The curvature of a curve, κ(u) is defined as

κ(u) = lim
h→0

φ

h
(3.6)

where φ is the angle between tangent vectors t(u) and t(u+ h), u being the parameter

of the curve. Computing the curvature of a curve consists of estimating the values

at all sampled points. The invariance of the CSS representation with respect to scale

arises from the fact that curvature values are obtained for a range of scales, from fine

to coarse. Before the curvature computation is performed for a scale, the original curve
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r(u) is held subject to a smoothing process and the curve points are resampled from

the smoothed curve. The iterations proceed with coarser scales, one at a time. The

iterative procedure of obtaining smoother curves for each of the scales is known as curve

evolution. To evolve a curve r(u) = (x(u), y(u)), a 1D Gaussian kernel with standard

deviation σ, g(u, σ) is used. The resulting curve R(u) = (X(u), Y (u)) is computed by

convolving x(u) and y(u) with g(u, σ) as stated in Equation 3.7 and Equation 3.8:

X(u, σ) = x(u) ∗ g(u, σ) (3.7)

Y (u, σ) = y(u) ∗ g(u, σ) (3.8)

The selection of σ in the iterative curve evolution process is towards increasing its value

at successive iterations. Given the standard deviation of the Gaussian kernel in the

first iteration as σ0 , the standard deviation for iteration n can be computed as

σn = σ0
√
n. (3.9)

Other types of selections are possible. In our experiments, we have found the rule of

Equation 3.9 working and curve features well-captured at decreasing levels of detail.

The turning angle (TA) and differential turning angle (dTA) [137–139] concepts

are useful in the computation of curvature values at sampled points when the sampling

rate (curve resolution) is sufficiently high. In the limit case where the number of curve

points is infinite, the differential turning angle is exactly identical to curvature. Turning

angles are appropriate to establish curvature values at sampled points.

A CSS image of a curve is a representation of the curve where the sampled points

with zero curvature values are marked. The CSS image of a curve at a particular scale
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σ is defined as

κ(u, σ) = 0. (3.10)

The CSS image is the collection of points satisfying Equation 3.10 for all values of u

and σ. That is, the CSS image is defined for all values of the u parameter and all scales

σ. A CSS image is actually a 2D plot where the horizontal and vertical axes list u and

σ values respectively. Curvature zero-crossings are marked for (u, σ) pairs.

Figure 3.2. Differential turning angle.

3.1. Turning Angle Based Representation

Given three adjacent points Pi−1, Pi, Pi+1 located on a curve, the turning angle

associated with the vector
−−−−→
Pi−1Pi is the angle between the vector and the x-axis in the

positive direction. The differential turning angle at point Pi, is defined as the difference

between the turning angles of
−−−−→
PiPi+1 and

−−−−→
Pi−1Pi. Denoting the turning angle of

−−−−→
Pi−1Pi

with θi−1 and that of
−−−−→
PiPi+1 with θi, the differential turning angle φi at Pi is

φi = θi − θi−1. (3.11)
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Figure 3.2 is an illustration of turning angle and differential turning angle. Differential

turning angles are descriptive of contour characteristics at various scales. In dTA

Figure 3.3. Skull contour sampled with 360 points.

computation for closed contours, the convention is to select a starting point P0 and

order the points in counterclockwise direction. That is Pi+1 is the point located coun-

terclockwise with respect to Pi for each i. The differences of turning angles between

pairs of adjacent points are computed to obtain the dTA function δ(u). Figure 3.4

shows δ(u) of the contour in Figure 3.3 at scale σ = 0.1246. Figure 3.5 shows δ(u)

for all considered scales σ. The plot of δ(u, σ) is a depth-image where low intensities

correspond to small dTA values (i.e. negative) and high intensities correspond to large

dTA values (i.e. positive). δ(u, σ) is called the dTASS (differential turning angle scale

space) function (scalogram or map) of the contour under consideration.

Positive and negative values of differential turning angles may correspond to local

maxima and local minima of the dTA function δ(u), respectively. All zero values are

the zero-crossings of δ(u). Local minima of dTA functions are known as alpha(α) points

and local maxima are called beta(β) points. Zero values in the dTA function are referred

to as gamma(γ) points. An essential points image shows all α, β and γ points (i.e.
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Figure 3.4. dTA function δ(u) at scale σ = 0.1246 for the contour of Figure 3.3.

Figure 3.5. dTASS scalogram of the contour of Figure 3.3.
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extreme points) of the dTASS map and no others. Figure 3.6 illustrates the essential

points image of the contour of Figure 3.3. Comparing Figure 3.5 and Figure 3.6 helps

observe the relationship between differential turning angles and dTASS scalograms.

A CSS image of a curve and its dTASS scalogram which shows only γ points

are identical. The contour points with zero differential turning angles are those points

where the curvature is zero. With δ(u, σ) denoting the differential turning angle func-

tion of r(u) at scale σ, κ(u, σ) denoting the curvature function and N being the number

of points of r(u), the relationship between differential turning angles and curvatures of

points Pi = (x(ui), y(ui)) is stated as

lim
1≤i≤N, N→∞

δ(ui, σ) = κ(ui, σ). (3.12)

Figure 3.7 shows the CSS image of the contour in Figure 3.3. CSS images are con-

venient representations for curves, features can be extracted from them or two such

representations can be compared to measure distance/similarity.

Figure 3.6. Essential points image of the contour in Figure 3.3.
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Figure 3.7. CSS image for the contour of Figure 3.3.

3.2. CSS Images Computation

The contour of concern r(u) is represented by two parametric functions x(u) and

y(u). Cubic B-splines are used to model these functions with N = 360 points. As a

result, the integer-valued pixels of the curve are replaced by real-valued points. The

curve is then normalized using the procedure outlined by Avrithis et al. [140]. The

orthogonalization procedure takes the center of gravity of r(u) as the origin M of the

coordinate system. Furthermore, the moments of inertia m01, m10, m11 are set to

zero and m02, m20 are set to one. The 360 points sampled after B-spline modeling

are ordered counterclockwise and finally applying iso-area normalization fine-tunes the

coordinates of sampled points in order to arrive at the point coordinates where each

pair of adjacent points is separated by shape slices of equal area originating at M .

Representing the curve of this stage with r̂(u), the CSS image computation begins.

Given the points Pi = r̂(x̂(ui), ŷ(ui)) of r̂, i = 1, 2, 3, . . . , 360, where P1 is the

point located at θ = 0 angle with respect to the XY coordinate system whose origin

is M , the differential turning angles for all points are computed. The computation for

differential turning angles is an iterative procedure. At iteration n, r̂ = (x̂(u), ŷ(u))
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is smoothed with a Gaussian kernel of standard deviation σn = σ and a smoothed

version R̂ = (X̂(u, σ), Ŷ (u, σ)) of r̂ is obtained. R̂ is subjected to a gain control [141]

process to bring it to approximately the same size as r̂. The gain-controlled curve

R̂g = (X̂g(u, σ), Ŷg(u, σ)) is computed by Equation 3.13 and Equation 3.14,

X̂g(u, σ) = Sx[X̂(u, σ)− X̂M(σ)] + X̂M(σ) (3.13)

Ŷg(u, σ) = Sy[Ŷ (u, σ)− ŶM(σ)] + ŶM(σ) (3.14)

where X̂M(σ) and ŶM(σ) are the coordinates of the center of gravity of the smoothed

contour R̂. The coefficients Sx and Sy are defined by Equation 3.15 and Equation 3.16,

Sx =

∑N
i=1 |x̂(ui)− x̂M |∑N

i=1 |X̂(ui, σ)− X̂M(σ)|
(3.15)

Sy =

∑N
i=1 |ŷ(ui)− ŷM |∑N

i=1 |Ŷ (ui, σ)− ŶM(σ)|
(3.16)

where x̂M and ŷM are the coordinates of the center of gravity of r̂.

The differential turning angles of all N points of R̂g are computed and recorded.

The outcome of each iteration is the dTA function δ of R̂g at scale σn. The δ function

values are examined to detect zeroes. In practice, it is not possible to find absolute

zeroes because of finite sampling; however, transitions from negative values to positive

and from positive values to negative are the locations where a curvature zero can be

marked. Given δi > 0 and δi+1 < 0 OR δi < 0 and δi+1 > 0, the index z of the point

of zero curvature is decided by

z =

i if |δi| ≤ |δi+1|,

i+ 1 otherwise.

(3.17)
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The iterations of CSS computation can be terminated when no zero curvature points

can be detected for iteration n. This is because encountering zeroes at coarser scales

is not possible. Starting the computation process by letting n = 1 is possible, but very

fine scales of curves are often considered to contain noise. To remove this noise content

in further stages of signal processing, zeroes of curvature at a number of fine scales

can be discarded. In our implementation, we set σ0 = π/180 and start the iterations

letting n = 51. We do not take the first 50 scales into consideration. For each n, σn is

computed with Equation 3.9 and the computations of the iteration are performed. We

stop iterating when no more curvature zeroes are found. For normalization purposes

(i.e. for displaying rotation invariance), the CSS image is circularly-translated such

that the maximum σ coordinate of γ points is located at u = π. This corresponds to

a horizontal shift of the CSS image. What leaves the constant-sized image at the right

or the left edge enters the image at the left or the right edge. The CSS representation

remains the same no matter how the CSS image is horizontally-shifted.

3.3. Enhancing CSS Features

Curvature zeroes are present for curves that possess concave segments. CSS

representation is poor for convex curve segments. Zero values of curvature occur at

points where a transition from a concave curve portion to a convex portion takes

place. Such points are called inflection points. A curve which has no concavity (i.e.

which is entirely convex) has no inflection points having zero curvature, hence the CSS

representation is null and can not produce any descriptive features.

Kopf et al. [142] present a method to enhance CSS features for convex curve seg-

ments. In this method, the actual contour is mirrored using a circular mirror centered

in the center of gravity M of the shape enclosed by the actual (i.e. real) contour. The

reflected contour produced as the outcome of this process is treated with the same

procedure as the actual contour was subjected to. As a result, two CSS images are

obtained to represent a single contour and the set of features is enriched.

The circle to serve as the mirror and the shape itself are both centered at M =
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(Mx,My). The contour must entirely be within the circle of radius D. R̂g(u) =

(X̂g(u), Ŷg(u)) being the points of the actual contour, the formulation to obtain the

points of the reflected contour Rref (u) = (Xref (u), Yref (u)) is given as

Xref (u) = (X̂g(u)−Mx)
2D − dist(R̂g(u),M)

dist(R̂g(u),M)
+Mx (3.18)

Yref (u) = (Ŷg(u)−My)
2D − dist(R̂g(u),M)

dist(R̂g(u),M)
+My (3.19)

where dist(.) is the Euclidian distance function. Figure 3.8 shows the contour of Figure

3.3 and its reflection on the circular mirror. The CSS images of the actual and reflected

contours of Figure 3.3 are displayed in Figure 3.9. The positive and negative values

are for the actual and the reflected contours, respectively.

Figure 3.8. Contour of Figure 3.3 and its reflection.
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Figure 3.9. CSS images of actual and reflected contours of Figure 3.3.

3.4. CSS Matching

Two CSS images that are representations of two different contours can be com-

pared in order to produce a matching score corresponding to the similarity of the two

contours or a difference figure to indicate how different from each other the contours

are. In the matching procedure, one need not deal with normalizations to compensate

for translation, rotation and scale invariance because the CSS representation itself has

the invariance property with respect to all these transformations.

The entities to use in a comparison/matching process of two CSS images could be

the positions of peaks of γ points (i.e. the u coordinate at which arc-shaped curves in

the CSS image reach their maximum σ values), the heights of those peaks (σ) and the

widths of the arc-shaped curves at the bottomline of the image. Besides these three

types of basic features, it may be possible to identify others. Figure 3.10 illustrates the

position, height and width properties of an arc-shaped curve of a CSS image. Using

positions and heights of peaks of γ points as descriptive entities is rather easy to justify.
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Figure 3.10. Entities of CSS arcs: position u, height σ, width w.

The differences of position and of height for arcs of γ points, of course, do matter in

discrimination. In order to improve the description of arcs, one may also consider

the width attribute. The width w actually corresponds to the normalized length of

curve segments the CSS image arc is associated with. As mentioned before, CSS

arcs correspond to concave curve segments and the associated height σ is the degree

at which concavity disappears (vanishes). When heights σ of CSS arcs is the same,

different widths w are associated with deep or shallow concavities. Large w values

signal deep concavities where the length of the associated curve segment is relatively

large (i.e. concavity is deep) and small w values signal shorter curve segments (i.e.

concavity is shallow). In the CSS matching algorithm of Richter et al. [143], the width

attribute is used to decide whether two CSS arcs can ever be matched. If the widths

of two arcs from two CSS images differ much, a matching of the two arcs is considered

not to be possible. In our versions of the CSS matching algorithm of Abbasi et al. [74],

we either completely discard the width attribute or use it in the computation of the

match cost of two CSS arcs. In fact, fetal skull images do not differ much in their

nature of concave curve segments. In our extended version of CSS matching [74], we

use heights σ and widths w of arcs to measure how well the patterns (i.e. shapes) of

CSS arcs match. In the plain version, only the Euclidian distances between γ-peaks

are used.
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3.4.1. CSS Matching Algorithm

The CSS matching algorithm compares two sets of γ-peaks, one for the image and

one for the model. The outcome of the algorithm is the matching score of the image

and the model. The matching score is an accumulation of costs for pairs of peaks, again

one from the image and one from the model and considered as the minimum distance

between the two. An outline of the matching algorithm [74] is as follows:

(i) Create nodes to use during the matching process. In each node, one peak from

the image and one peak from the model take place. The node creation process is

described in the following list:

• Select the largest scale peak from the image and the largest scale peak from

the model.

• If model peaks that are close to the largest scale peak of the image (within

80% of the σ coordinate of the image peak) exist, create nodes corresponding

to the image peak and each model peak satisfying the closeness criterion.

• Repeat steps a and b for the second largest scale peak of the image and all

the peaks of the model.

(ii) For each node created in (i), compute a shift parameter T :

T = um − ui (3.20)

where um and ui stand for the u coordinates of the model and image peaks of

the node and T is used to translate the image to equalize the u coordinate of the

image peak to that of the model peak. Initialize the match cost of the node as

the absolute difference of the σ coordinates of the image and the model.

(iii) For each node created in (i), create two lists I list and M list. I list will accom-

modate the image peaks matched within that node and M list will do the same

for the model peaks within the same node. Initialize I list and M list to contain

the image peak and the model peak of the node, respectively.

(iv) Expand each node and update the lists and costs associated with the nodes. Node
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expansion is described in Section 3.4.1.1.

(v) Select the node with minimum cost. If there are no image or model peaks that

remain unmatched, return that node as the minimum cost node. Otherwise, go

back to (iv) and expand the minimum cost node.

(vi) Reverse the roles of the image and the model so that the image becomes the

model and the model becomes the image. Repeat (i) through (v) to compute the

match cost for this case. Take the minimum cost found in (i) through (vi) as the

match cost of the two curves.

3.4.1.1. Node Expansion. To expand a node, execute the following steps:

(i) Select the largest scale image peak that is not in I list. Apply the shift parameter

T of the node to map the selected image peak to the model image. Take the

nearest model peak not in M list.

(ii) If the selected image peak and model peak are close enough (within 20% of the

maximum possible horizontal distance), find the cost of the match (to be described

in Section 3.4.1.2). Otherwise, define the cost of the match as the σ value of the

selected image peak.

(iii) This step applies to cases when the number of image peaks and that of model

peaks are different. If there is no more image peak to match, define the cost of

the match as the σ value of the largest scale model peak. Similarly, if there is

no more model peak to match, define the cost of the match as the σ value of the

selected image peak.

(iv) Update the overall match cost of the node by adding the cost of the match to it.

Also update the two lists I list and M list of the node accordingly.

3.4.1.2. Computing Match Costs. Computing the cost of a particular match of two

peaks is done in either of one of two ways, depending on what the design decision is.

This decision can be taken as subjective.

Let F1 = (u1, σ1, w1) and F2 = (u2, σ2, w2) be the attributes of the first and second
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CSS peaks and their associated arcs which are matched. In addition, let mx = 1 or

mx = 2 depending on whether σ1 < σ2 or σ2 < σ1, similarly let Mx = 1 or Mx = 2

depending on whether σ1 > σ2 or σ2 > σ1. When σ1 = σ2, both mx and Mx can take

either of the two values. In our implementation, the cost of the match is computed in

either of the two ways as C1 or C2 as given by Equation 3.21 and by Equation 3.22,

C1 =
√

(circ diff(u1, u2))2 + (σ1 − σ2)2 (3.21)

C2 =
√

(circ diff(u1, u2))2 + (σ1 − σ2)2 + |max(σ1, σ2)

min(σ1, σ2)
wmx − wMx| (3.22)

where circ diff(u1, u2) is the function that measures the distance between u1 and u2

when positioning is circular. Circular difference is defined by Equation 3.23,

circ diff(u1, u2) =

|u1 − u2|/N if |u1 − u2| < (N/2),

(N − |u1 − u2|)/N otherwise.

(3.23)

where 1 ≤ i ≤ N for all ui ∈ {1, 2, 3, . . . , N − 2, N − 1, N} and i ∈ Z+. N is actually

the number of sampled points on a curve. As can be seen, circ diff(u1, u2) ∈ [0, 1) is

a normalized distance measure. wmx and wMx are also normalized distances because

they are computed using the circ diff(.) function. uL and uR being the u coordinates

of the two endpoints of a CSS arc, the associated width w of the arc is computed as

w = circ diff(uL, uR). (3.24)

The first match cost C1 is simply the straight-line distance between two peaks. On

the other hand, the second match cost C2 also includes the difference of widths, as an

additive term, when the width of the arc of the peak with smaller σ has been amplified

with a factor to equalize its height to that of the peak with larger σ. This term, in a

way, measures the dissimilarity of the two arc patterns (shapes).
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3.4.2. CSS Matching Example

For an illustration of CSS matching and the involved features, we consider the

CSS images in Figure 3.13 of the normalized skull contours in Figure 3.12, which are

associated with the fetal skulls viewed in Figure 3.11. The CSS image of the first

contour (extracted from the first US image) contains four arcs and the CSS image of

the second contour has three arcs. For any CSS arc, there are three features u, σ and

w as shown in Figure 3.10. For any CSS image, the features are those for all arcs of the

image. Table 3.1 displays the features of the two CSS images of Figure 3.13. The rows

of the table correspond to the features of individual CSS arcs. The ordering of the arcs

from top to bottom is from the highest σ value to the lowest in accordance with the fact

that γ peaks with higher σ are considered before those with lower σ in CSS matching.

The number of arcs for any two CSS images and thus the number of features of the two

may be different, as in the example. In Figure 3.14, the three pairs of image and model

peaks that result in the lowest match cost in CSS matching (considering Equation 3.21)

are shown. The blue lines and dots correspond to the image peaks and the red are for

the model peaks. Comparing the CSS images of Figure 3.13 and the plot of peaks in

Figure 3.14 may produce a perception such that the heights of peaks that correspond

in the two figures are different. This is because each row of pixels in the CSS images

is associated with a particular σ and the differences of σ between consecutive rows are

not the same for all pairs of adjacent rows, however the plot of Figure 3.14 reflects

actual values of σ and the scaling is absolutely correct. All in all, the CSS images of

Figure 3.13 and the peaks in Figure 3.14 actually correspond. Figure 3.14 shows the

pairs of matching peaks inside different ellipses. One of the peaks of the model does

not match to any image peak. Clearly, the CSS matching procedure of [74] does not

require equal-sized feature vectors. The costs of matching the CSS images in Figure

3.13 computed with Equation 3.21 and Equation 3.22 turn out to be C1 = 0, 6473 and

C2 = 0, 6925, respectively. C2 must always be greater than or equal to C1 because of

the additive term in Equation 3.22.
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Figure 3.11. US image samples.

Figure 3.12. Normalized skull contours associated with the images of Figure 3.11.

Figure 3.13. CSS images of the contours in Figure 3.12.
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Table 3.1. Features of the CSS images of Figure 3.13.

CSS image on the left of Figure 3.13 CSS image on the right of Figure 3.13

u1 σ1 w1 u2 σ2 w2

0,5000 0,2857 0,0444 0,5000 0,2553 0,0361

0,3472 0,2541 0,0278 0,1833 0,2535 0,0361

0,6167 0,2418 0,0361 0,8250 0,1771 0,0167

0,1528 0,2348 0,0194

3.5. Distance Matrix-Like Matrix Matching

Measuring the similarity of two CSS images can also be done using the γ-peak

points matching procedure of Kpalma et al. [138]. This method employs the Distance

Matrix-Like Matrix (DMLM ), whose entries are defined as the distances between pairs

of peak points in two CSS images. There exists a distance for every pair of peak points,

one point from the query CSS image and the other from the model CSS image. The

ijth entry of the DMLM associated with two images is the distance between peak point

i in the query image and peak point j in the model image.

Figure 3.14. CSS matching: peaks of Figure 3.13 (blue: image, red: model).
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3.5.1. DMLM Peak Points Matching Procedure

All peaks in the query are matched with at most one peak of the model. When

the number of peaks of the query image is more than that of the model peaks that can

be used in matching, the output model is zero-padded. On the other hand, when the

number of model peaks is more, some model peaks are discarded. For a matching in

a pair of peak points, one from each image, to take place; the distance between them

(such as Euclidian or Manhattan) must be less than some threshold distance distMAX.

In our implementation, we use the straight-line (Euclidian) distance measure between

points. At the end, when matching is complete, two equal-sized feature vectors qV

and moV are obtained and their similarity is an indication of how similar the two

CSS images are. In the sequel, q is a prefix to mean a query point, m is the same for

a model point and mo is a prefix that will be used to identify model output points.

For clarification, we distinguish query, model and model output points as follows: The

query points (q) are matched to the model points (m), the result of matching is the

model output points (mo). Although the number of query points and model points do

not have to be the same, there are as many query points as model output points at the

end of matching and before similarity computation.

Given two CSS images (i.e. γ-peaks of the CSS images), the work of Kpalma

et al. [138] proposes to assign the role of query (q) to one image, assign the role of

model (m) to the other image, match the two images, extract the model output (mo)

peaks, form the equal-sized feature vectors qV and moV of the query and the model

output, and finally compute the similarity of qV and moV . Next, the roles of query

and model are exchanged and the same procedure is applied once more to compute

another similarity score. The maximum of the two similarities is taken as the similarity

of the images of γ-peaks, hence of the CSS images and hence of the contours (curves).

In our implementation, we prefer to assign the query role to the image of γ peaks with

larger number of peaks and the model role to that with smaller number of peaks. Only

when the number of peaks for both CSS images is the same, we measure similarity in

two directions. Our intuition is that assimilating a richer image to a poorer image is

more sensible than assimilating a poorer image to a richer image.
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To exploit rotation invariance implicit for CSS images and find the best position

to match two images, we execute DMLM peak points matching for a set of horizontal

shifts of the u parameter. This set of horizontal shifts is computed by considering the

heights σ of peaks in the query image which are at least as high as half of the maximum

peak height of the same image. For peaks of the query image satisfying this criterion,

if the difference of the height of any peak of the model image and the height of the

considered query peak is not more than half the height of the taller of two peaks, a

horizontal shift value (the difference of u values of the two peaks) is added to a list of

shift parameters. We execute the matching procedure for all values in the shift list and

select the largest similarity.

Before computing the DMLM for two sets of γ-peaks, the peaks of both the

query and the model (a shifted version of it) are sorted in decreasing order of σ values.

This may be viewed as a preprocessing action to consider larger maxima first during

DMLM computation. The distances in the DMLM of the query and model images of

γ-peaks and a distance threshold distMAX are used to match the peaks in the query

image and the peaks in the model image. For the specific application of matching

fetal skull contours, we take distMAX = 0.2. (u is normalized to [0, 1)). If no

model point mPj that can be matched to a query point qPi exists, the query point is

matched to the point moPi = (qui, 0). In other words, the abscissa u (i.e. position)

remains the same as that of the query point but the scale value is set to zero (i.e.

zero-padded). An example of a DMLM for two sets of γ-peaks (q and m) of Figure

3.15, corresponding to the CSS images of Figure 3.13 is given in Table 3.2. The ellipses

show the pairwise matches of the query points to the model points. Note that the

second and third query points (qP2 and qP3) are not close enough to any model point,

that is why the scale values of the corresponding model output points are set to zero.

A procedure to match all query points to model points is given in the algorithm of

Figure 3.16. The five model output points for the query points of Figure 3.15 are

moP1 = (mu1,mσ1),moP2 = (qu2, 0),moP3 = (qu3, 0) and moP4 = (mu2,mσ2).

After all query points are matched to model points and model output points (mo)

are found, the feature vectors can be defined by concatenating the coordinates of each
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Figure 3.15. DMLM matching: peaks of Figure 3.13 (blue: query, red: model).

set of points (q and mo). Denoting the number of query points with qD, the feature

vectors qV and moV are given by

qV = (qu1, qu2, . . . , quqD , qσ1, qσ2, . . . , qσqD)

moV = (mou1,mou2, . . . ,mouqD ,moσ1,moσ2, . . . ,moσqD).

(3.25)

Table 3.2. DMLM example for γ peaks of Figure 3.12.

DMLM

Model points

(mP1 . . .mP3)

1 2 3

Query points

(qP1 . . . qP4)

1 0.0304 0.3183 0.3427

2 0.1528 0.1639 0.4839

3 0.1174 0.4335 0.2182

4 0.3478 0.0358 0.6747
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1: for i← 1, no query points do

2: retrieve model point mPj closest to query point qPi

3: if dist(qP i,mPj) < distMAX then

4: moPi ← (muj,mσj)

5: else

6: moPi ← (qui, 0)

7: return moPi for all i

Figure 3.16. Pseudo-code for DMLM matching.

3.5.2. Similarity Computation

α being the angle between two feature vectors qV and moV , the similarity of the

vectors is computed by

sim(qV,moV ) = 50(1 + cos(α))
min(||qV ||, ||moV ||)
max(||qV ||, ||moV ||)

(3.26)

where sim(.) ∈ [0%, 100%]. For the sake of completing the example of Figure 3.15

(Table 3.2); the qV , moV and sim(qV,moV ) values are shown in Table 3.3.

Table 3.3. qV , moV and sim(qV,moV ) values for the example of Figure 3.15.

qV = (0.5000, 0.3472, 0.6167, 0.1528, 0.2857, 0.2541, 0.2418, 0.2348)

moV = (0.5000, 0.1833, 0.6167, 0.1528, 0.2553, 0.2535, 0, 0)

sim(qV,moV) = 47.8215%
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4. ZERNIKE MOMENTS

Orthogonal moments such as Zernike [90, 144] have become popular in applica-

tions including pattern recognition. Orthogonality of Zernike moments [91] asserts

that they can be used to represent images with minimum redundancy. In addition,

the rotational invariance property of their magnitudes with easy scale and translation

normalization makes them attractive for image representation.

This chapter provides a theoretical background on Zernike moments, a method for

their exact computation devised by Hosny [145]; schemes for acquiring translation and

scale invariance and for deciding the maximum order of moments to use in classification,

all adopted from the work of Khotanzad and Hong [146]; and presents the overall

methodology to compute invariant features (i.e. magnitudes of Zernike moments) of

fetal skull shapes in the context of spina bifida detection.

4.1. Image Representation with Zernike Moments

A complex Zernike polynomial Vpq with order p and repetition q, p and q satisfying

p ∈ Z, p ≥ 0, q ∈ Z and p− q is even, is defined inside the unit circle (x2 + y2 = 1) as

Vpq(x, y) = Vpq(r, θ) = Rpq(r)e
jqθ (4.1)

where j =
√
−1, r is the length of the vector

−→
P from the origin to the pixel (x, y) and

θ is the angle between
−→
P and the x-axis in counterclockwise direction. The real-valued

radial Zernike polynomial Rpq is given by

Rpq(r) =

p−|q|
2∑

k=0

(−1)k
(p− k)!

k!(p+|q|
2
− k)!(p−|q|

2
− k)!

r(p−2k) (4.2)



64

with Rpq = Rp,−q. Zernike polynomials form a complete orthogonal set where their

orthogonality relation is defined as

∫ ∫
x2+y2=1

Vnm(x, y)V ∗pq(x, y)dxdy

=

∫ 2π

0

∫ 1

0

Vnm(r, θ)V ∗pq(r, θ)rdrdθ

=
π

n+ 1
ηnpηmq (4.3)

with

ηab =

1 if a = b

0 otherwise.

(4.4)

Zernike moments are the projections of the image function f(x, y) onto the orthogonal

basis. For f(x, y) that vanishes outside the unit circle, the Zernike moment Zpq is

defined as

Zpq =
p+ 1

π

∫ ∫
x2+y2≤1

V ∗pq(r, θ)f(x, y)dxdy. (4.5)

In polar coordinates, Zpq is expressed as

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0

V ∗pq(r, θ)f(r, θ)rdrdθ. (4.6)

Replacing the integrals in Equation 4.5 with summations, the Zernike moments of

discrete image functions can be computed as

Zpq =
p+ 1

π

∑
x

∑
y

V ∗pq(r, θ)f(x, y), x2 + y2 ≤ 1. (4.7)

Magnitudes of Zernike moments are naturally rotational invariants. Given f(r, θ) and

f rot(r, θ − α) as the image functions of the original image and its rotated version

by an angle α in the counterclockwise direction respectively, Zrot
pq = Zpqe

−jqα. Since
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|e−jqα| = 1, the magnitude values before and after rotation are identical.

Summation to infinite order p and repetition q is impossible. Image reconstruction

can be performed using Zernike moments up to order max as shown in Equation 4.8:

f̂(x, y) =
max∑
p=0

∑
q

ZpqVpq(r, θ) (4.8)

q in Equation 4.8 are both positive and negative. That is,

f̂(x, y) =
max∑
p=0

∑
q<0

ZpqVpq(r, θ) +
max∑
p=0

∑
q≥0

ZpqVpq(r, θ). (4.9)

Zpq and Vpq are both complex quantities. Since working with real-valued functions is

easier; noting that V ∗pq = Vp,−q, Equation 4.8 is expanded as

f̂(x, y) =
max∑
p=0

∑
q>0

Zp,−qVp,−q(r, θ) +
max∑
p=0

∑
q≥0

ZpqVpq(r, θ)

=
max∑
p=0

∑
q>0

Z∗p,qV
∗
p,q(r, θ) +

max∑
p=0

∑
q≥0

ZpqVpq(r, θ)

=

[
max∑
p=0

∑
q>0

[
Z∗p,qV

∗
p,q(r, θ) + ZpqVpq(r, θ)

]]
+ Zp0Vp0

=

[
max∑
p=0

∑
q>0

{(
Re(Zpq)− j Im(Zpq)

)
Rpq(r)(cos pθ − j sin pθ)

+

(
Re(Zpq) + j Im(Zpq)

)
Rpq(r)(cos pθ + j sin pθ)

}]
+

(
Re(Zp0) + j Im(Zp0)

)
Rp0(r) (4.10)

and the reconstruction formula using moments up to order max appears in Equation

4.11,

f̂max(x, y) =
Cp0
2
Rp0(r) +

max∑
p=0

p∑
q=0

p−q even

(Cpq cos qθ + Spq sin qθ)Rpq(r) (4.11)
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where Cpq and Spq are given by

Cpq = 2 Re(Zpq) =
2p+ 2

π

∫ ∫
x2+y2≤1

f(x, y)Rpq(r) cos qθ dxdy (4.12)

Spq = −2 Im(Zpq) =
−2p− 2

π

∫ ∫
x2+y2≤1

f(x, y)Rpq(r) sin qθ dxdy. (4.13)

The total number of Zernike moments used to reconstruct an image is

Ntotal =

(max+2
2

)
2

max is even

(max+1
2

)
2

+ (max+1
2

) max is odd.

(4.14)

During image reconstruction, the individual components of the orthogonal Zernike

moments are added to obtain the reconstructed image. Low order moments represent

low-frequency image content while high order moments describe fine detail.

4.2. Computation of Exact Zernike Moments

Hosny [145] proposes a method for exact computation of full and subsets of

Zernike moments. The centers of pixels of an NxM digital image are denoted by

(xi, yj) at which the image function f is defined. Before the computations are car-

ried, a transformed image defined in [−1/
√

2, 1/
√

2] x [−1/
√

2, 1/
√

2] is obtained by a

square to circular mapping shown in Figure 4.1. The transformed image coordinates

are given by

xi =
2i−N − 1

N
√

2
, yj =

2j −M − 1

M
√

2
(4.15)

rij =
√
x2i + y2j , θij = tan−1(yj/xi) (4.16)
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with i = 1, 2, . . . , N and j = 1, 2, . . . ,M . The sampling intervals, ∆x and ∆y, for the

transformed image (i.e. horizontal and vertical sizes of pixels) are

∆x =
√

2/N, ∆y =
√

2/M. (4.17)

Real-valued radial Zernike polynomials defined in Equation 4.2 can be rewritten as

Figure 4.1. Square to circular mapping: reprinted from Hosny [145].

Rpq(r) =

p∑
k=q

p−k even

Apqkr
k (4.18)

where Apqk are the coefficients of those polynomials defined as

Apqk =
(−1)((p−k)/2)

(
p+k
2

)
!(

p−k
2

)
!
(
k+q
2

)
!
(
k−q
2

)
!
. (4.19)

Computation of Apqk is a time consuming process. Instead, the recurrence relations in

Equation 4.20, Equation 4.21 and Equation 4.22 are used to efficiently compute these

coefficients:

Appp = 1 (4.20)
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Ap(q−2)p =
p+ q

p− q + 2
Apqp (4.21)

Apq(k−2) = − (k + q)(k − q)
(p+ k)(p− k + 2)

Apqk (4.22)

The image-independent Apqk coefficients can be precomputed and stored for future use.

The relation between Zernike moments and complex moments is given by

Zpq =
p+ 1

π

∑
k=|q|

p−k even

ApqkC k−q
2
, k+q

2
(4.23)

where Apqk are the coefficients of radial Zernike polynomials and Cp,q are the complex

moments of order p + q defined, making use of the binomial theorem, as a linear

combination of geometric moments G of the same order or less:

Cp,q =

p∑
a=0

q∑
b=0

 p

a

 q

b

 (−1)bja+bGp+q−a−b,a+b (4.24)

Geometric moments of order p+ q is defined as

Gp,q =

∫ 1√
2

−1√
2

∫ 1√
2

−1√
2

xpyqf(x, y)dxdy. (4.25)

Exact computation of complex moments is based on exact computation of geometric

moments. A procedure to compute exact values of geometric moments is introduced

also by Hosny [147].

Zernike moments can easily be computed according to the difference m of moment

order p and repetition q as illustrated in Figure 4.2. The formulae for computing Zernike
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Figure 4.2. Zernike moments computation according to the difference m between

moment order p and repetition q: reprinted from Hosny [145].

moments are given in Equation 4.26 and Equation 4.27,

Zp,p =
p+ 1

π
C0,p (4.26)

Zp,p−m =

m
2∑

a=0

Ap,p−m,p−2aCm
2
−a,p−m

2
−a (4.27)

where p = 0, 1, 2, . . . ,max, m is an integer that starts at m = 2 and incremented by

two at each iteration, m ≤ p and p−m is even. The pseudocode of the algorithm for

computing the full set of Zernike moments up to order max is shown in Figure 4.3.

1: for p← 0 : 1 : max do

2: Zp,p ← ((p+ 1)/π) ∗ C0,p

3: for m← 2 : 2 : max do

4: for p← m : 1 : max do

5: Compute Zp,p−m using the formula of Equation 4.27

Figure 4.3. Pseudo-code for computation of full set of Zernike moments.
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4.3. Invariant Computation with Translation and Scale Normalization

The rotational invariance of the magnitudes of Zernike moments makes it suffi-

cient to transform the set of all processed images to a frame where their translation

and scale parameters are the same (i.e. translation and scale uniformity) prior to mo-

ments computation in order to obtain robust results from automatized processes that

utilize these magnitudes. We adopt the methodology of Khotanzad and Hong [146] for

translation and scale normalization.

Translation and scale uniformity are achieved by utilizing general (regular) mo-

mentsmpq of images. An image is transformed into a new one whose first order moments

m01 and m10 are both zero in order to obtain translation invariance. This is equivalent

to saying that the centroid of the original image f(x, y) (i.e. that of the ROI) is shifted

such that the centroid of the new image is the coordinate origin of the rectangular

image frame. Notationally, f(x, y) becomes f(x+ x̄, y + ȳ) where x̄ and ȳ are

x̄ =
m10

m00

, ȳ =
m01

m00

. (4.28)

Scale invariance is accomplished by adjusting the value of the general moment m00 to

a fixed value ν for all images. In the case of binary images, it should be noted that m00

is the total number of ROI pixels. Denoting with f(x/a, y/a) a scaled version of the

original image function f(x, y), mpq of f(x, y) and m′pq of f(x/a, y/a) are related by

m′pq =
∑
x

∑
y

xpyqf(x/a, y/a)

=
∑
x

∑
y

apxpaqyqf(x, y)a2

=
∑
x

∑
y

ap+q+2xpyqf(x, y)

= ap+q+2
∑
x

∑
y

xpyqf(x, y)

= ap+q+2mpq. (4.29)

The target m′00 = ν requires the substitution a =
√
ν/m00. Scale invariance is achieved
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by transforming the image f(x, y) to f(x/a, y/a) with a =
√
ν/m00.

To sum up, both scale and translation invariance are obtained by transforming

the original image function f(x, y) into a new image function fnorm(x, y) where

fnorm = f(x/a+ x̄+ y/a+ ȳ) (4.30)

with (x̄, ȳ) the centroid of f(x, y), a =
√
ν/m00 and ν a predetermined value. If the

coordinate (x/a + x̄, y/a + ȳ) does not correspond to a pixel location, the associated

function value is interpolated from neighboring pixels.

4.4. Number of Zernike Features to Use in Classification

The inherent rotational invariance property of the magnitudes of Zernike moments

accompanied with translation and scale normalization applied on input images (as

outlined in Section 4.3) before moment computation suggest their use in classification

as descriptive features. It is also noteworthy to state that, the scale and translation

uniformity obtained with the procedure of Section 4.3 makes two of the Zernike features

valueless. These two features are |Z00| that is the same for all images and |Z11| that is

zero. To see why this is so, the observations shown in Equation 4.31, Equation 4.32,

Equation 4.33 and Equation 4.34 regarding the values of C00, S00, C11 and S11 using

which |Z00| and |Z11| can be derived are made:

C00 =
2

π

∫ ∫
x2+y2≤1

fnorm(x, y)R00(r)dxdy

=
2

π

∫ ∫
x2+y2≤1

fnorm(x, y)dxdy

=
2

π
m00 (4.31)

S00 = 0 (4.32)
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C11 =
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)R11(r) cos θ dxdy

=
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)r cos θ dxdy

=
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)xdxdy

=
4

π
m10 (4.33)

S11 =
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)R11(r) sin θ dxdy

=
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)r sin θ dxdy

=
4

π

∫ ∫
x2+y2≤1

fnorm(x, y)ydxdy =
4

π
m01 (4.34)

Since m00 = ν, |Z00| = |(C00/2) − j(S00/2)| = ν/π and since m10 = m01 = 0, |Z11| =

|(C11/2)− j(S11/2)| = 0 for all normalized images.

Automatically selecting the maximum number of Zernike features (i.e. the max-

imum order p∗ up to which absolute values of Zernike moments are used) necessary to

represent images for classification is inspired by the idea of Khotanzad and Hong [146].

It is soberly argued that a good set of features for a given image is one which can

characterize and represent the image well. The difference between an image and its

reconstructed version using a finite set of its moments is a good indicator of how well

the image is represented with those moments. The less this difference is, the better

the representation. Feature selection can be based on an iterative process that re-

constructs a given image with a set of moments (of order p = 0 through p = max),

measures the difference between the original image and its reconstruction and decides

on the representation power of the set of used moments (i.e. whether the used moments

are sufficient or not) with respect to a threshold ε; where max starts at zero and is

incremented at each successive iteration. In other words, the maximum order p∗ of

moments used to represent an image can be found by reconstructing the image with all

moments having maximum order max and checking if the difference of the two images

is less than the distance threshold ε. In the case of binary images, the reconstruction
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f̂(x, y) of f(x, y) using moments of order p = 0 through p = max computed from

f(x, y) is given by

f̂(x, y) = M

(∣∣∣∣max∑
p=0

∑
q

ZpqVpq(r, θ)

∣∣∣∣) ∀x∀y (4.35)

where M(.) is a function that consists of a mapping to [0, 255] gray-level range and

thresholding at 128. Generalizing Equation 4.35 to gray-level images is straightforward.

Finally, the absolute difference between f̂ and f is measured using Hamming distance

H(f, f̂), which is the total number of pixels that differ in f and f̂ . The value of

p∗ is found using a procedure where reconstructions are performed using moments

of order p = 0 through p = max and checking H(f, f̂) until H(f, f̂) < ε, where

max = 0, 1, . . . ,maxp. With the assumption that the moments up to maximum order

p ≤ maxp output a reconstructed image f̂ from the moments of f where H(f, f̂) < ε

for some p, the maximum order required for a good representation of f is p. The value

of maxp is determined by trial and error. For a given database of N images, pmax is

the maximum of all p values (i.e. pi, i = 1, 2, . . . , N) acquired for all images.

4.5. Feature Computation for Fetal Skull Images

The steps followed in the entire process of Zernike moments computation, in-

cluding normalization with respect to translation and scale, determining the maximum

order of moments required for a good classification of the images (i.e. shapes) in the

images database are presented in this section.

The shapes database used in description is obtained by manually marking 24

points along the boundaries of fetal skulls each present in one US image of the images

database and placing nine more points between each two consecutive marked points

with cubic B-splines to obtain 24 + 24x9 = 240 points in total. For each image, the 240

pairs of 240 consecutive points are linearly connected consistent with their order on the

boundary. After the closed boundary corresponding to the contour of the skull in the

image is obtained, the internal region enclosed by the boundary is filled in with white
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pixels to obtain a binary image where white pixels are those of the skull region and

black pixels are outside. The image at this stage is cropped along the four sides of the

rectangular image frame so that the white skull region is displayed in a compact frame

containing fewer pixels than the initial image. Provided that point-marking is done with

maximum accuracy expected from a medical expert, the described process produces a

shapes database consisting of ground truth shapes of skulls contained in the images

of the images database, one skull in each image. In our collection of transcerebellar

skull images, 358 fetal skulls and hence 358 skull shapes in the shapes database exist.

Figure 4.4 illustrates two examples from the images database and the corresponding

two shapes from the shapes database obtained manually. All skull shapes from which

Figure 4.4. Two examples from the images database and corresponding shapes.

the corresponding moments are computed are included in 256x256 images. Prior to

moments computation, each of these square images is supposed to contain one skull

shape normalized with respect to translation and scale. A 256x256 image is made up

of 65,536 pixels. The ν parameter that we select for scale uniformity is 12,800. That is,

the skull shapes after scale normalization are intended to contain 12,800 white pixels
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in the 256x256 image. Given that a shape before scale normalization consists of m00

white pixels, the shape must be stretched/shrank in both x and y dimensions with a

factor of

k =

√
ν

m00

(4.36)

so that the shape consists of ν pixels after normalization. Due to discretization (quan-

tization) involved in the stretching/shrinking process, it is probable that the scale-

normalized shape does not contain exactly ν pixels but as many as the best approxi-

mation of this number. More precisely, let |m| and |n| be the integer-valued difference

between the maximum and minimum x coordinates of shape pixels and that of y coor-

dinates defined as

|m| = xmax − xmin + 1 and |n| = ymax − ymin + 1. (4.37)

|m| and |n| can be referred to as perpendicular (with respect to x or y axes) lengths

of the shape as appearing in the initial shape image. The perpendicular lengths of the

scale-normalized shape |M | and |N | are then defined as

|M | = round(k.|m|) and |N | = round(k.|n|). (4.38)

where round(.) quantizes its argument to the nearest integer. Having retrieved |m|, |n|

and having computed |M |, |N |; the |m|x|n| rectangular image obtained from the input

shape image where the shape pixels touch all the four sides of the image frame, is re-

sized to a new image of size |M |x|N | which serves as the scale-normalized shape image

Is. What remains to complete the normalization process is to place Is in a 256x256

blank image Iblank such that the center of gravity of the shape Is (obtained via regular

moments m01,m10 and m00) coincides with pixel (128, 128) of Iblank. As a result, the

translation normalization is also achieved. The output is the final shape image Ist after

scale and translation normalization. When the described procedure is applied on all

shape images in the shapes database, all output images possess translation and scale
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uniformity. It should be once more noted that no rotation is involved during normal-

ization since magnitudes of Zernike moments are invariant under rotation. Figure 4.5

displays the normalized versions of the shapes in Figure 4.4 with respect to scale and

translation. The maximum order of moments required in classification is determined

Figure 4.5. Shapes of Figure 4.4 normalized with respect to scale and translation.

with the moments computed from Ist images of all shapes in the database and the

reconstructions of Ist (i.e. Irec) using the computed moments up to the order with a

reconstruction error H(Irec, Ist) ≤ ε = 150. ν = 12, 800 and ε = 150 imply that the

used moments must provide reconstructions with an error of at most 1.17%. Figure

4.6 presents the algorithm that runs on all shapes in the shapes database and outputs

the maximum order of Zernike moments used in classification. For reference, Figure

4.7 shows the reconstructions of the normalized shapes Ist of Figure 4.5 using Zernike

moments of sufficient order (H(Ist, Irec) ≤ 150).

The pmax value (maximum order of moments whose magnitudes are to be used

in classification) determined by the algorithm of Figure 4.6 turns out to be 43 for

the 358 skull shapes of our collection. The number of moments up to order 43 is

((43 + 1)/2)2 + ((43 + 1)/2) = 506 (Refer to Equation 4.14. Excluding |Z00| and |Z11|,

that are not distinguishing when the normalization of Section 4.3 is applied before

moments computation, results in feature vectors of size 504 for each skull shape.
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1: pmax ← 0 . maximum order of Zernike moments

2: for all shapes I in the shapes database do

3: Normalize I with the procedure of Section 4.3 to obtain the corresponding Ist

4: Compute moments Z of Ist up to order 50 with the procedure of Section 4.2

5: p← 0

6: while p < 51 do . Assume while loop breaks with p ≤ 50

7: Reconstruct Ist using Z of order 0 through p with Equation 4.11 to get Irec

8: if H(Ist, Irec) > 150 then . Hamming distance test

9: p← p+ 1

10: else

11: break

12: if p > pmax then

13: pmax ← p

14: return pmax

15: return |Z| for all shapes

Figure 4.6. Pseudo-code for determining the maximum order of Zernike moments

whose magnitudes are used as features in classification.

Figure 4.7. Reconstructions of the normalized shapes in Figure 4.5 (left:

H(Ist, Irec) = 135), right: H(Ist, Irec) = 147).
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5. SUPPORT VECTOR MACHINES CLASSIFICATION

Support Vector Machines (SVM) is a popular method that learns the linear dis-

criminant of two classes by modeling a separating hyperplane. Assuming a linearly-

separable distribution, the principal idea in the design of an SVM classifier is to maxi-

mize the distance of instances to the separating hyperplane on either side of it belonging

to different class memberships. The key characteristics of SVM learning can be con-

ceived by this simple approach, however most real data sets are not linearly separable

because of noise and in the general nonseparable case the inductive bias is maximizing

generality as well as minimizing training error. The learning strategy is introduced

by Vapnik [104, 105, 148–150] and has been used in many machine learning applica-

tions due to its theoretical strength and performance. In this thesis, SVMs are utilized

for classifying fetal skulls as either defective or healthy using 504-dimensional feature

vectors (magnitudes of Zernike moments of skull shapes).

5.1. Separable Case: Maximal Margin

C1 and C2 being the classes in a two-class problem, let X = {xt, rt} denote

training samples where xt are input column vectors and rt are corresponding class

labels being either +1 or -1 (i.e. rt = +1 if xt ∈ C1 and rt = −1 if xt ∈ C2). The aim

is to find the weight vector w and constant w0 such that the conditions

wTxt + w0 ≥ +1 for rt = +1 (5.1)

wTxt + w0 ≤ −1 for rt = −1 (5.2)

are satisfied. The inequalities in Equation 5.1 and Equation 5.2 can be rewritten as

rt(wTxt + w0) ≥ +1. (5.3)
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What is required is not simply

rt(wTxt + w0) ≥ 0, (5.4)

which holds when an instance is on the correct side of the separating hyperplane. It

is also desired that the instances are some distance away. The distance between the

closest instances on either side of the hyperplane is called the margin which is to be

maximized to attain best generalization. The separating hyperplane that maximizes

the margin is called the optimal-separating hyperplane.

The distance of xt to the discriminant is

|wTxt + w0|
||w||

. (5.5)

With rt ∈ {−1,+1}, the distance of Equation 5.5 can be written as

rt(wTxt + w0)

||w||
(5.6)

and this distance must be at least some value ρ as in

rt(wTxt + w0)

||w||
≥ ρ, ∀t. (5.7)

Infinitely many solutions for ρ exist if w is scaled. For a unique solution, ρ||w|| is fixed

to one and maximizing the margin corresponds to minimizing ||w||. This quadratic

optimization problem can be defined as

minimize
||w||2

2
subject to rt(wTxt + w0) ≥ +1,∀t (5.8)

and solved directly to find w and w0. The solution complexity depends on the input

dimensionality d. As a result, there are instances on both sides of the hyperplane

which are 1/||w|| away from the hyperplane. The total margin is then 2/||w||. Figure



80

5.1 illustrates the linearly-separable case with related concepts of optimal separating

hyperplane (H(x) = 0) and margin (2/||w||). The instances that fall on one of the

two hyperplanes (H(x) = −1 and H(x) = +1 in Figure 5.1) are called support vectors.

If the instances are not linearly separable, the input vectors can be mapped to a

Figure 5.1. Linearly separable inputs (support vectors circled).

higher dimensional space, where linear separation is possible, by using nonlinear basis

functions. Linear separability in the new space corresponds to separability by non-

linear functions in the original input space. Since the dimensionality d of the new

space is generally much higher, it is desired to make the complexity of the optimization

problem depend not on d but on the number of training instances N . In the new

formulation, Equation 5.8 is written as an unconstrained Lagrangian problem,

Lp(w, w0, α) =
1

2
||w||2 −

N∑
t=1

αt[rt(wTxt + w0)− 1]

=
1

2
||w||2 −

∑
t

αtrt(wTxt + w0) +
∑
t

αt, (5.9)

where αt are the Lagrange multipliers. Lp should be minimized with respect to w

and w0 and maximized with respect to αt ≥ 0. Consequently, the saddle point is

the solution. The dual problem of this convex quadratic optimization problem can

equivalently be solved making use of the Karush-Kuhn-Tucker conditions. In the dual
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problem, Lp is maximized with respect to αt subject to the constraints that the partial

derivatives of Lp with respect to w and w0 are zero as in Equation 5.10 and Equation

5.11 together with αt ≥ 0:

∂Lp
∂w

= 0 ⇒ w =
∑
t

αtrtxt (5.10)

∂Lp
∂w0

= 0 ⇒
∑
t

αtrt = 0 (5.11)

The dual of Lp in Equation 5.9 is stated as

Ld(α) =
1

2
(wTw)−wT

∑
t

αtrtxt − w0

∑
t

αtrt +
∑
t

αt

= −1

2
(wTw) +

∑
t

αt

= −1

2

∑
t

∑
u

αtαurtru(xt)
T
xu +

∑
t

αt. (5.12)

Ld is maximized with respect to αt subject to
∑

t α
trt = 0 and αt ≥ 0,∀t. Quadratic

optimization methods are used to solve the dual problem whose solution complexity

depends on the sample size N . There are N solutions for αt, most of which vanish with

αt = 0. Only a small fraction of the solutions has αt ≥ 0 and their corresponding xt are

the support vectors. w is the weighted sum of these instances as shown in Equation

5.10. The support vectors are the xt satisfying

rt(wTxt) = 1 (5.13)

and lying on the margin. Any support vector can be used to compute w0 as

w0 = rt −wTxt. (5.14)

In practice, it is customary to perform the calculation in Equation 5.14 for all support
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vectors and take the average in order to attain numerical stability. The hyperplane

that defines the discriminant is given by

H(x) = wTx+ w0 (5.15)

and the classifier decides the class to be C1 (rt = +1) if H(x) > 0 and C2 (rt = −1)

otherwise.

5.2. Nonseparable Case: Soft-Margin Hyperplane

When the input data are not linearly separable, a hyperplane that results in

minimum error is sought. Slack variables ξt to store deviations from the margin are

defined. Deviations may be such that an instance is located on the wrong side of the

hyperplane or on the correct side of but not far enough from it. Figure 5.2 shows

examples of training instances with no deviation (i.e. correctly classified with ξ = 0)

and with the two types of deviations (i.e. misclassified with ξ ≥ 1 and correctly

classified but inside the margin with 0 ≤ ξ < 1). Using the slack variables, Equation

Figure 5.2. Linearly nonseparable inputs: (i) correct side, sufficiently away (ii) wrong

side (iii) correct side, in the margin.
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5.3 is relaxed as

rt(wTxt + w0) ≥ 1− ξt. (5.16)

and there is no problem as long as ξt = 0. If 0 < ξt < 1, xt is correctly classified but

in the margin and if ξt ≥ 1, xt is misclassified. The soft error is defined as
∑

t ξ
t and

added to the primal equation Lp as a penalty term:

Lp(w, w0, α) =
1

2
||w||2 + C

∑
t

ξt −
∑
t

αt[rt(wTxt + w0)− 1 + ξt]−
∑
t

βtξt. (5.17)

βt are the new Langrange parameters to assure ξt are positive and C is the penalty

factor. Equation 5.17 penalizes both misclassified instances and correctly classified ones

that are inside the margin for better generalization. The dual problem Ld is defined

such that the function to maximize with respect to αt is identical to that of Equation

5.12 subject to the constraints
∑

t α
trt = 0 and 0 ≤ αt ≤ C,∀t. As in the separable

case, w is defined by the few non-zero αt and w0 is solved for similarly.

5.3. Kernel Functions

An SVM is a linear classifier, but in most cases it is restrictive. SVMs can be

extended to non-linear classifiers by mapping the input to a higher-dimensional space

using suitably chosen basis functions Φ̄(x). The linear model in the new k-dimensional

z space achieved by a nonlinear transformation of the original input x corresponds to a

nonlinear model in the original d-dimensional x space. New dimensions are calculated

through the basis functions as

z = Φ̄(x) (5.18)
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where zj = Φ̄j(x), j = 1, . . . , k. Assuming z1 = Φ̄1(x) ≡ 1 and not using a separate w0

term, the discriminant in the z-space can be written as

H(x) = wT z = wT Φ̄(x) =
k∑
j=1

wjΦ̄j(x). (5.19)

Generally, k is much larger than d and also larger than N and hence, solving the dual

problem is advantageous to solving the primal problem. Since there is no guarantee

that the input is linearly separable in the new z-space, the more general case of the

soft margin hyperplane is used to define the dual problem and obtain a solution. Se-

lecting the value of the C parameter is critical since a large value would highly penalize

nonseparable points and many support vectors would be stored causing overfitting,

whereas a small C would lead to underfitting. The solution is

w =
∑
t

αtrtzt =
∑
t

αtrtΦ̄(xt) (5.20)

and the discriminant is given by

H(x) = wT Φ̄(x) =
∑
t

αtrtΦ̄(xt)Φ̄(x). (5.21)

In kernel machines, the inner product Φ̄(xt)
T

Φ̄(x) is replaced by a kernel function,

K(xt, x), between the support vectors and inputs in the original x-space to determine

the discriminant as

H(x) =
∑
t

αtrtK(xt, x). (5.22)

Examples of kernel functions include linear functions (K(xt, x) = xTxt), polynomi-

als of degree n (K(xt, x) = (xTxt + 1)
n
), Gaussian radial-basis functions (K(xt, x) =

e−
||xt−x||2

2σ2 ) and sigmoidal functions (K(xt, x) = tanh(2xTxt + 1)).
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6. SEGMENTATION

For a CAD system that uses image inputs to be of practical use, human inter-

vention must be minimized. In an ideal scenario, an image is presented to the system

and the system responds to this input. Unfortunately, the majority of input images

are acquired in a raw format and robust operation of systems having image inputs

(specifically the spina bifida detection system operating on fetal skull images) depends

drastically on how those images are preprocessed and objects of interest (i.e. regions

of interest (ROI)) are extracted.

Experience shows that as the degree of rawness increases, achieving a fully auto-

matic segmentation with robust outputs becomes harder. Considering our case of fetal

skull images acquired via US, the degrees of freedom include viewing planes (e.g. tran-

scerebellar), scale, position, orientation, lighting conditions (settings), etc. When other

conditions such as the lack of complete structures (e.g. some part of skull boundary

is not visible – not due to occlusion but other factors that arise from US acquisition

and that we can not clearly identify) and the presence of multiple similar structures

(e.g. some portion of an image resembles a skull very much although it is not a skull or

there is really more than one skull as in the cases of twin pregnancies) are taken into

account, the difficulty of the segmentation task reveals itself solidly. In this section, the

observations and remarks on the segmentation attempts that have shown unsuccessful

are documented as well as those which can be deemed successful.

6.1. Automatic Segmentation Attempts

6.1.1. Model Fitting

Assuming that a fetal skull can coarsely be approximated with elliptical shapes,

running the Pseudo-Random Sample Consensus (PRANSAC ) [151] ellipse fitting al-

gorithm and then extracting a more precise skull region using sorts of region growing

approaches have been tried. PRANSAC ellipse fitting requires a three-point fitting
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procedure where the ellipse center is estimated using the tangent lines to the ellipse

at these points. The tangent lines are estimated using a least squares method with

the feature points around the selected three ellipse points. At the very beginning, the

set of image points from which the three ellipse points are selected must be deter-

mined. Various approaches have been tried including edge pixels (which often appear

as discontinuous patches that harden the task), pixels with high intensities retrieved

after thresholding and the DBSCAN (Density Based Spatial Clustering of Applications

with Noise) [152] algorithm used to cluster neighboring pixels with similar intensities.

No matter which individual method or which combination of the multiple methods

are used, the problem with the selection of any three ellipse points is that there is a

huge number of those triples to make it feasible for a robust fit. Leaving aside the

complexity of fitting, it is difficult to decide whether some fit is good enough and if so

whether another better fit exists. In short, a way (some criterion) for concluding if a

particular fit is truly successful seems to be unavailable. PRANSAC ellipse fitting can

be thought of as a “needle in a hay-stack” problem where no optimal (or even valid)

solution is guaranteed. Moreover, even if an acceptable solution is assumed, the region

growing methodology to follow can not be set with proper rules and hence the final

segmentation is very likely to be poor.

6.1.2. Active Appearance Models

An Active Appearance Model (AAM ) [122, 153] provides a statistical model of

object shapes and appearances (i.e. texture) in training images (AAM model building).

Similar objects in other images are later matched to this model and segmentation

achieved (AAM fitting). AAM, in fact, is one of a group of methods that address

the problem of variability commonly referred to as deformable template models. In

the training phase of this sophisticated deformable template model, a set of images

together with coordinates of landmark points that appear in all images is provided and

statistical models of shape and appearance are produced. During fitting, the difference

between a target image and the current estimate of shape and appearance are used

to drive an optimization process to arrive at a matching. AAMs have been used to
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model face images and in medical image interpretation. The experiments with fetal

skull images show that AAM fitting fails for the majority of available samples for a

number of reasons listed below:

• Modeling variances in shape and appearance is meaningful when coordinates of

points that correspond and related quantities vary with small amounts. For

instance; given two images and two corresponding landmark points in each image,

if the point in one image is located to the top left corner of the image frame and

the point in the other image is located to the lower right corner, there is no use

to model shape variance since the variation spans almost the entire image frame.

For another example, consider two corresponding points in two images. If the

intensities at the pixels are, say zero at one image and 255 at the other, there is

no use in modeling texture variance since the variation spans the entire intensity

space. The scenarios of the two examples are not unrealistic with US images of

fetal skulls. Figure 6.1 and Figure 6.2 show two sets of images that display the

range of variation in shape and appearance, respectively.

Figure 6.1. Two corresponding landmarks located very differently.

• Partially true for the case with skulls to an extent and being true in general,

AAMs are not suitable for amorphous shapes such as clouds. In other words, it

must be possible to obtain a training set of representative samples.

• Manual annotation of training images is cumbersome and prone to errors.

• The sizes of training sets may over-constrain variances in shape and texture.

• Initialization before AAM fitting is critical for good segmentation. If fitting starts

with an inappropriate initialization, convergence to wrong outcomes is likely.
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Figure 6.2. Two corresponding landmarks of considerably different intensities.

• Occlusions (e.g. missing data) result in optimization failure in AAM fitting.

• Noise may always cause problems in model building and fitting.

6.2. Full-Automaticity vs. Semi-Automaticity

Full automaticity in any machine application is a desired property. It would be

very convenient if one was able to present any fetal US image to a machine-based

decision-making system and get a sound response. However, this is practically im-

possible because available input images are acquired in very diverse conditions and

automatic alignment of them is also as much impossible due to the unavailability of

automatically retrieved landmarks. It would have been possible to detect landmark

points (at least one) automatically if those landmarks were characterized with some

property common to all such points and appropriate for machine processing, however,

as far as we have experimented and to the best of our skills, such a property does not

exist.

Once the chances of full-automatic segmentation are seen to have been eliminated,

the objective is to achieve segmentation with minimal human interaction. This is

acceptable as long as not much human effort is required and the entire CAD system

serves useful purposes. Semi-automatic segmentation for the specific case of skull

contour extraction is defined as follows: Given an input image, the user marks four

points on the skull contour which are the two ends of the occipitofrontal diameter (OFD)

and the two ends of the biparietal diameter (BPD). After these four points are marked,



89

the segmentation system runs to find a fixed number of skull boundary points evenly

spaced on the boundary utilizing an average shape model obtained through marking

points on a training set of images, considering the correspondences of points for all

training set images and transforming all marked images to a normalized frame where

normalized images are obtained by translating, rotating and scaling the training set

images using appropriate parameters. The point-marking process need not know which

point is which and the markings of the four points can be done in any order.

6.3. Semi-Automatic Segmentation

Segmenting fetal skulls consists of two main tasks:

(i) Constructing an average shape model using training images

(ii) Segmenting an image using the average shape model and four marked points

The first step is done once offline and thus does not contribute to running time.

For a representative average model, we have preferred to do this construction using a

set of training images, however, this action is in no way obligatory and other ways can

be followed to obtain this average model. As long as the designer is confident, it may

even be the case that an average shape model is imperatively dictated.

6.3.1. Average Shape Model Construction

For each training image, 240 (a design choice) points that are located on the object

of interest (the skull boundary) are identified. Identifying the set of 240 points one

by one manually is a tedious and cumbersome process. Instead of manually marking

all these points, only 24 of them are marked starting from the frontal end (i.e. of the

OFD) and proceeding in a clockwise orientation until the marking process arrives at

the point that is only one step away from the frontal end point in a counterclockwise

direction. During marking, care must be taken to ensure that each set of consecutive

markings provides even spacing of points and that the definitive points of skulls (the

two ends of the OFD and the two ends of the BPD) are marked at correct step indices
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related to the traversal of contours. For example; the frontal end must be marked at

the first step, the right end must be marked at the seventh step, the occipital end must

be marked at the thirteenth step and the left end must be marked at the nineteenth

step. Following the markings of the 24 points, cubic B-splines are used to locate nine

more points between points in each pair of these 24 consecutive points. As a result,

the contour is defined with 240 evenly spaced points (24 + 24x9 = 240 points in total).

Clearly, the acquisition of the 240 boundary points is identical to the actions taken

to obtain the shapes in the shapes database used in Zernike moments computation of

Section 4.5. Figure 6.3 shows a sample US image that contains a fetal skull whose shape

is defined with 240 points. Having annotated a training image, normalization actions

Figure 6.3. Skull contour defined with 240 points (only 24 manually marked).

to display and express the skull in a normalized frame are taken step by step. The

following is an ordered list of actions that are carried out to perform the normalization

for a single image:

(i) Rotate the annotated image I so that the line connecting the end points of the

OFD is parallel to the horizontal axis of the image frame. The result image is Ir.

(ii) Crop Ir to get rid of unnecessary portions of the image. Denoting the length of

the line connecting the end points of the OFD in Ir with M (i.e. length of major
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axis) and the length of the line connecting the end points of the BPD with m

(i.e. length of minor axis), cropping produces an image whose horizontal length

is 12M
10

and vertical length is 12m
10

. The result image Irc contains the entire skull

boundary, extends to left and right with a distance of 10% of M for the two

directions, similarly extends to up and down with a distance of 10% of m for the

two directions. Figure 6.4 shows how cropping is done for a hypothetical contour.

Figure 6.4. Cropping: the entire image Ir, the image in white rectangle Irc.

(iii) An average model is to be computed using images of equal sizes. That is why,

resize Irc to an image of standard size. We have selected the horizontal size of

such an image to be 228 pixels and the vertical size to be 200 pixels. These

numbers approximate the ratio of major axis length M to the minor axis length

m of skulls (M/m) well. The result image is Ircs.

(iv) In a real scenario, the rotated version of Ircs (with an angle of 180◦ either clockwise

or counterclockwise) and the mirror images of Ircs and its rotated version may be

encountered. These variations are possible since “left” has no bias over “right” or

“up” has no bias over “down” in biological skull formation and image acquisition.

Obtain all these versions of Ircs to be used in average shape model construction.

The results of this step are I1rcs = Ircs (normalized image itself), I2rcs (rotation of

I1rcs by 180◦), I3rcs (mirror image of I1rcs) and I4rcs (mirror image of I2rcs). Figure

6.5 shows I1rcs, I
2
rcs, I

3
rcs and I4rcs for the image of Figure 6.3.
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Figure 6.5. I1rcs (top left), I2rcs (top right), I3rcs (bottom left) and I4rcs (bottom right) of

the image in Figure 6.3.

While running the normalization steps for a training image, the x and y coordinates

of the annotated points in training images are adjusted so that they reflect the results

of normalization actions. The adjustments can be in the form of updating the point

coordinates or updating the point indices. In particular, the point with index one of

I1rcs becomes the point with index 121 in I2rcs. Similarly, the point with index 61 of I1rcs

becomes the point with index 181 in I2rcs. As another example, the point with index

10 of I1rcs becomes the point with index 112 in I3rcs.

Assuming that the normalization procedure has been performed for all N training

images, the average shape model Iavg can be constructed using the 4N outputs of

normalization. The construction consists of simply finding the averages of coordinates

of 240 model points xi and yi over all 4N sets of points (xij, yij) where 1 ≤ i ≤ 240
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and 1 ≤ j ≤ 4N , as in Equation 6.1:

xi =
4N∑
j=1

xij/4N and yi =
4N∑
j=1

yij/4N (6.1)

After average shape model construction and prior to its use for segmenting a particular

image of the same size, the lines passing through the center of gravity of the model

image and each model point are considered. For each of the 240 model points, the

segmentation result (i.e. the appropriate pixel) is to be searched on the line segment

of length 20 that is centered on the model point. The coordinates of points on line

segments are taken to be pixel values which are pairs of integers (best approximations

for these pairs are selected). The segmentation process described in Section 6.3.2 deals

with pixel intensity distributions along line segments. Figure 6.6 displays the average

shape model image Iavg that has been computed with N = 358 annotated training

images (4x358 = 1432 images in total) and the line segments that pass through each

model point.

Figure 6.6. Average shape model (240 points) and corresponding line segments with

pixel approximations.
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6.3.2. Intensity-Based Averaging

Given an input image I to be segmented for a skull contour, the user is supposed

to mark four points whose positions are approximately those of the two end points of

the OFD and the two end points of the BPD of the fetal skull in I. The order that the

user follows when marking these 4 points is of no importance because the preprocessing

held prior to the segmentation algorithm takes necessary actions to handle assigning

correct roles to the marked points. Figure 6.7 is an example to mark four points in the

semi-automatic segmentation scheme. To arrive at a satisfactory segmentation result,

the points must be marked with a minimal accuracy constraint; otherwise one can not

expect successful segmentation. To make I fit to the frame of the average shape model

Figure 6.7. Marking four points in semi-automatic segmentation.

Iavg with identical sizes (200x228), a normalization procedure similar to that applied to

every training image during model construction is carried out. Normalization consists

of rotation, cropping and scaling. Determining the angle of rotation necessitates iden-

tifying which two of the marked four points stand as the end points of the major axis

(OFD) of the coarse ellipse that corresponds to the skull region in I. The procedure

for this identification and finding the true rotation angle is presented next:

(i) For all groupings of the marked four points (P1, P2, P3, P4) that puts two points in

one group and the remaining two points in another group (e.g {(P1, P4)(P2, P3)}),
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estimate the two lines L1 and L2 defined by the points (Pa, Pb) and (Pc, Pd) in

the two groups and find the intersection point Q of L1 and L2. Let daQ, dbQ,

dcQ, ddQ, dab and dcd be the straight-line distances between points denoted by

subscript indices.

• If daQ + dbQ = dab and dcQ + ddQ = dcd, decide Q to be the true center of

gravity and proceed to (ii).

• Else repeat (i) with another grouping.

(ii) If dab > dcd, decide [PaPb] to be the major axis and [PcPd] the minor axis.

(iii) Else decide [PcPd] to be the major axis and [PaPb] the minor axis.

(iv) Compute rotation angle θ using the orientation of the major axis.

Figure 6.8 shows the lines L1 and L2, the intersection point Q (which can also

be conceived as the centroid of the skull) and the rotation angle θ. I is rotated using

Figure 6.8. Determining the rotation angle θ for the image of Figure 6.7.

the outcome of the described procedure so that the major axis of the skull is aligned

with the horizontal axis of the image frame. The rotation may result in the placement

of the frontal end of the skull to the left and the occipital end to the right or vice

versa. This is also not of any importance because the steps taken in average shape

model construction handle both possibilities arising from rotation as well as mirror

image cases. After the rotation is performed, cropping and scaling are applied similar

to the ones used in the average shape model construction process. The result image
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Iinp is of size 200x228. Figure 6.9 shows Iinp after the normalization process is applied

on the image of Figure 6.7. The segmentation algorithm is to identify 240 different

Figure 6.9. Iinp (the input to segmentation) for the image of Figure 6.7.

points, each of which lies on a separate line segment determined in the average shape

model construction process. It is noted that 240 non-intersecting line segments, each

corresponding to one of the 240 average shape model points, exist. Identifying the

point on a line segment output by the segmentation heuristic that is used consists

of considering the intensity distribution of pixels along the line segment and finding

the point location with a weighting performed with respect to pixels intensities at all

pixels of the considered line segment. The facts, decisions and assumptions that hold

through the segmentation procedure, that are all visually verified by the outputs of the

experiments, are presented as a list here:

(i) The pixels corresponding to the middle points of line segments are the actual

model points (corresponding pixels).

(ii) The lengths of line segments corresponding to model points is 20. This number

does not correspond to the number of pixels along the line segment but to the

Euclidian distance between the end points of any line segment. The number of

pixels on a line segment can be as many as 21 when the line segment is vertical

or horizontal with respect to the image axes.

(iii) The underlying lines of the line segments pass through the centroid of the average
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shape model and one of the model points.

(iv) Not all the intensities at the pixels of line segments are considered as decisive

factors during segmentation. If any pixel intensity is lower than a threshold value

τ , its value is set to zero and practically not used in computations that determine

point locations that the segmentation procedure outputs.

(v) The threshold value τ is determined using Otsu’s method [113]. Other methods

can be applicable. During the computation of τ , the intensity values belonging

to the input image Iinp at all the pixels on all the 240 line segments are used

together. The threshold value τ is fixed for the image (i.e. for all line segments).

Figure 6.10 shows the binary image of the line segments of the average shape

model accompanied with the line segment indices associated with frontal end point (of

the OFD), right end point (of the BPD), occipital end point (of the OFD) and left end

point (of the BPD). The numbering proceeds increasingly in a clockwise orientation.

Figure 6.11 and Figure 6.12 show the original and simplified (some values eliminated

Figure 6.10. Binary image of line segments and the numbering scheme.

after thresholding) intensity distributions for the image of Figure 6.9 at pixel locations

of two different line segments. Figure 6.13 shows the intensity distribution of pixels of

the first line segment when no pixels can pass the threshold test. This is displayed for

the input image at the top of the same figure.
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Figure 6.11. Intensity distributions (τ = 111, left: original, right: simplified) of the

image of Figure 6.9 for the first line segment.

The heuristic for determining a “correct” segmentation point along a line segment

is computing a weighted average of the locations of the pixels of the line segment where

the weights are the intensities of those pixels. Once more, we note that the intensities

Figure 6.12. Intensity distributions (τ = 111, left: original, right: simplified) of the

image of Figure 6.9 for the 50th line segment.

below the threshold τ are treated zero. What refers to the “location” concept here is

not the actual pixel coordinates but integers which stand for the index of pixels along

the line segment of consideration. For example, if a line segment consists of 21 pixels,

then the pixel indices satisfy 1 ≤ i ≤ 21. All locations are paired with actual pixel
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coordinates specific for each line segment. The implementation can keep track of which

location corresponds to which pair of pixel coordinates (x, y).

Figure 6.13. Input skull image (top) and intensity distributions (τ = 103, left:

original, right: simplified) for the first line segment.

The computation of the location of a “correct” point is given by

iseg =

∑L
i=1 i.f(i)∑L
i=1 f(i)

(6.2)

where L is the total number of locations, i denotes location indices, iseg is the location

of the output point of segmentation and f(i) is the function returning the threshold-

simplified intensity of the pixel at location i. When iseg does not show up as an integer,

it is rounded ensuring a value in the correct range (i.e. 1 ≤ i ≤ L). Furthermore, when

all f(i) are zero as in the example of Figure 6.13, the midpoint of the corresponding

line segment (i.e. the corresponding point of the average shape model) is selected as

the iseg location. Finally, the pixel corresponding to the iseg location is marked as
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the segmentation point. The procedure is repeated for 240 points (line segments) to

retrieve the 240 segmentation points.

6.3.2.1. Smoothing. Our heuristic seems to be working singularly for each individual

point but there is one more action to be performed before connecting all adjacent point

pairs with straight line segments and arriving at the final segmentation result of the

entire image (i.e. the skull boundary). The extracted set of points does not contribute

to a boundary that is smooth enough to be considered appropriate both visually and

for machine applications. A smoothing process that adjusts the pixel coordinates of

the 240 points is applied and the boundary is constructed with the smoothed set of

points. For smoothing purposes, we have chosen to run a moving average window with

size 11 on the x and y coordinates of all points and round the outcomes. Figure 6.14

shows the segmentation result for the image of Figure 6.9 before and after smoothing.

Figure 6.15 shows the segmentation result where the extracted region is superimposed

on the original input image of Figure 6.9.

Figure 6.14. Segmentation results (left: before smoothing, right: after smoothing).

For reference and visually validating the segmentation procedure with intensity-

based averaging, the inputs and outputs of four skull images from our collection are

displayed in Figure 6.16.
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Figure 6.15. Segmented image of Figure 6.9.

6.3.3. Active Shape Models

Model-based techniques are useful and work well to locate rigid objects in images.

When the appearance of objects of interest can vary, as in the case of skull boundaries,

it is more problematic to apply model-based approaches. A number of deformable

template models [119–122, 153] have been proposed to handle this variability. Active

Shape Models (ASM ) [121] is a technique that learns shape variability through the use

of shapes in a training set, where all shapes are annotated with a number of points.

For a reliable deformable model to be built, the annotations must be correct and the

correspondence of all points in all images must be known. Active shape models do

not sacrifice model specificity in order to accommodate variability and let the models

deform only in ways characteristic of the objects they represent. The built models can

be used to search images to locate objects of interest using proper initialization and

iterative refinement. In our work, we use the ASM implementation of Kroon [154] to

locate fetal skulls in US images as an alternative segmentation tool. Essential theory on

ASM and the details specific to our application follow in the remainder of this chapter.

6.3.3.1. Statistical Shape Models. The shape of an object is a property that remains

invariant under similarity transformations of translation, rotation and scaling; and is
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Figure 6.16. Segmentation with intensity-based averaging (left: inputs, right:

outputs).
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a signature of the object. It is described by the location of n points in any dimension

(e.g. planar shapes are in 2D). Generalizing shapes such that the points describing

them do not only include spatial coordinates but other dimensions such as time is also

possible. Assuming that n points are used to annotate each shape in a training set of

N shapes, statistical models of shapes can be derived both to analyze new shapes and

to synthesize others similar to those in the training set. In a 2D image, the n points

{(xi, yi)} can be represented as a 2n-element vector x = (x1, . . . , xn, y1, . . . , yn)T . For

a training set with N shapes, N such vectors xi can be generated.

Before performing statistical analysis on shapes, the training set must be aligned

to a common coordinate frame such that the definitive (i.e. center of gravity) and an-

notated (i.e. those along the border) points of shapes correspond. In our application,

we use the 4x358 = 1432 normalized (cropped, rotated and scaled) skull images for

statistical analysis. The normalization procedure of Section 6.3.1 presents all images

and their corresponding annotated points in a coordinate frame free of the variations

attributable to similarity transformations. It should be noted here that the presented

images are also used in the average shape model construction stage of segmentation

with intensity-based averaging. Hence, it is easy to see the identicalness of the coor-

dinate frame used in ASM segmentation to that of segmentation via intensity-based

averaging. Although the aforementioned normalization is valuable in that variations

of considerable magnitude are eliminated, it is rather coarse with respect to alignment

required in ASM analysis. For the required fine alignment that precedes statistical

shape analysis (shape model building), there exist methods among which the Pro-

crustes Analysis [155] is the most popular. In Procrustes analysis, shapes are aligned

so as to minimize the sum of distances of all shapes to the mean shape (
∑
|xi − x̄|2).

Although analytic solutions for aligning a set exists, a simple iterative approach to

follow is presented in the algorithm of Figure 6.17. The training set with N aligned

examples forms a distribution in the nd-dimensional space. The aim is to obtain a

parameterized model of the form x = M(b), where b is a set of parameters describing

this distribution. Such a model can be used to generate new vectors x. If the distri-

bution pr(b) can be modeled, one could limit b such that the generated x are similar

to the examples in the training set. Estimating pr(x) from the model would then also
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1: Translate all examples so that their centers of gravity are at the origin

2: Pick one example as the initial estimate of the mean shape and scale it (|x̄ = 1|)

3: Record the estimate as x̄0 to define the default reference frame

4: Align all shapes with the current estimate of the mean

5: Re-estimate mean from aligned shapes

6: Align mean shape with x̄0 and scale it so that |x̄ = 1|

7: If no convergence, go to 4 . Convergence is achieved if the current estimate of

mean does not change significantly

Figure 6.17. Procrustes analysis for aligning shapes.

be possible.

Modeling shape variation starts with applying Principle Component Analysis

(PCA) to the cloud of data xi in the nd-dimensional space to reduce the dimensionality

and simplify the problem. This computes the main axes of the cloud and lets any shape

be approximated with fewer than nd parameters. The mean of the data is

x̄ =
1

N

N∑
i=1

xi (6.3)

and the covariance matrix is

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T . (6.4)

Denoting the eigenvectors of S with Φi and the corresponding eigenvalues with λi such

that λi are sorted (λi ≥ λi+1); Φ, shown in Equation 6.5 contains the t eigenvectors

with the largest eigenvalues:

Φ = {Φ1|Φ2| . . . |Φt} (6.5)
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Any training set example x can be approximated by

x ≈ x̄ + Φb (6.6)

where b is a t-dimensional vector of model parameters given by

b = ΦT (x− x̄). (6.7)

The vector b contains the parameters of a deformable template model. A shape x can

be varied by varying the elements of b as suggested by Equation 6.6. λi corresponds

to the variance of the ith parameter bi. Applying the limits ∓3λi to bi guarantees the

generation of shapes similar to the ones in the training set. t can be chosen in several

ways. In the simplest case, it could be required that a particular fraction of the total

variance is explained by t parameters. The selection of t can be based on the variation

explained by t eigenvectors. The constraint to determine t is given by

t∑
i=1

λi ≥ f̃σ2
T (6.8)

where f̃ ∈ [0, 1] is the fraction desired to be explained (e.g. 98%) and σ2
T is the total

variance explained with all eigenvectors Φ.

6.3.3.2. Interpreting Images with Active Shape Models. Image interpretation involves

finding the set of parameters that best match the model to the image. In ASM, the

set of parameters defines the shape and position of the target object in the image. For

a set of model parameters b that is characteristic of the shape and another set of pose

parameters p that define how the object is translated, oriented and scaled; an instance

of the model projected onto the image can be generated and the target object can be

compared to this instance by a fit function F(b,p). The best set of shape and pose

parameters to interpret the target object in the image is that optimizing the fitness

measure. For example, if F(b,p) is an error measure, it is aimed to be minimized.

Similarly, if it stands for the conditional probability Pr(b,p|I) that (b,p) is realized
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when the interpreted image is I, the objective is to maximize the measure. Theoreti-

cally, a suitable fit function must be selected and a general-purpose optimizer used for

optimization. Assuming that the shape model represents boundaries and strong edges,

the fit function may measure the distance between a given model point and the nearest

strong edge in the image. Figure 6.18 illustrates this scenario where the fit measure is

defined as

F(b,p) = dist(P, Pse). (6.9)

The fit measure relies on the target points being the correct points. If some points are

incorrect, the quality of fit is not indicated correctly.

Figure 6.18. Example of fit function F(b,p): distance between model point P and

nearest strong edge Pse.

Looking for nearby strong edges is not the only choice for iteratively optimizing

the fit. Local structure around model points may be learned from training images and

the interpretation process may search for the best match around the current model

point learned from training examples. Alternatively, an image can be sampled around

the current model point and the match quality can be determined by how well the

samples match the models derived from the training set. Interpretation is carried

out for every model point, one by one, to arrive at a full interpretation of an image.

It should be noted that, given poor initializations of model instances, the general
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optimization problem is very hard. Obtaining good interpretations (i.e. segmentations)

depends on how well model instances are initialized prior to running local optimization

strategies. Starting from wrong positions leads to either divergence or convergence on

wrong structures of locally similar shapes to those in the training set. With a good

enough initialization Z0 of an ASM projected on an image, an iterative approach to

improve the fit Zi works by examining the region around each model point to find best

matches, updating Zi according to the newly found model points and correspondingly

updating the shape (b) and pose (p) parameters until convergence.

As stated before, the assumption that strong nearby edges are the true locations

for which model points should converge in the search for correctly locating target

objects does not always hold. This suggests learning what the neighborhood of model

points is like from training examples through building models. It is customary to

sample along profiles normal to the model boundary at each model point as shown in

Figure 6.18. For a given model point in the ith training image, sampling along the

profile at k pixels either side of the point is performed and 2k + 1 samples are placed

in a vector gi. The effects of global intensity changes can be eliminated by sampling

the derivatives along the profile instead of the intensities. A normalization by dividing

the sum of elements in gi is then performed as in Equation 6.10:

gi ←
1∑
j |gij|

gi (6.10)

The computations are repeated for all training images and the set of normalized samples

{gi} is obtained. Assuming {gi} are distributed as multivariate Gaussian, the mean ḡ

and variance Sg are computed giving a statistical model of gray-level profile about the

point. This is repeated for every model point giving one gray-level model for each point.

The quality of fit for a new sample gnew is measured by the Mahalanobis distance of

the sample from the model mean given by

F(gnew) = (gnew − ḡ)TS−1g (gnew − ḡ) (6.11)
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which is linearly related to the probability that gnew is drawn from the distribution.

Minimizing F(gnew) is equivalent to maximizing this probability. During the search

around a model point, sampling is performed for 2m + 1 pixels (m pixels on either

side) along the profile. Assuring that m > k, the quality of fit to the corresponding

gray-level model is tested at 2(m−k) pixels along the sample and the location with the

lowest F(gnew) value is selected as the new model point. The aforementioned procedure

is repeated for all model points and suggested new locations are found. The shape and

pose parameters are then updated to best match the model to the new points.

6.3.3.3. Multi-Resolution Active Shape Models. Statistical model building for gray-

levels along normal profiles of points and the ASM search can be implemented in a

multi-resolution framework, hence improving efficiency and robustness. For the multi-

resolution implementation, a Gaussian pyramid representation of each image is re-

quired. The base of the pyramid is the original image and the successive levels are

obtained by repeated smoothing and sub-sampling of images. Each subsequent level

of the Gaussian pyramid is formed by smoothing and sub-sampling the image of the

previous level to get an image with half the size in both spatial dimensions. Statistical

models of gray-level values along normal profiles at each point are built for all levels

of the pyramid. The same number of pixels, regardless of level, are generally used in

profile models. This accounts to more of the image being represented at coarse levels.

The search starting at coarse levels and refining the found points in finer resolutions

leads to a faster search algorithm. Since the number of pixels used in search is the same

for any level, coarse levels allow quite large movements and the model is expected to

converge to a good solution as the levels move towards finer resolutions. Determining

when the search process should continue at a finer resolution depends on the number of

times the best found pixel is within the central 50% of the profile. For example, if for

some pyramid level, at least 90% of the best found pixels of all current model points

are within ns/2 pixels (ns being the length of normal profiles) of the corresponding

model point, the algorithm decides the search to have converged at that pyramid level

and moves to the next finer resolution.
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6.3.3.4. Skull Segmentation with Active Shape Models. The ASM of skull images in

our database is learned using the normalized images (i.e. the training set) obtained by

the procedure of Section 6.3.1. The training set contains 4x358 = 1432 skull images

with one skull in each. The skulls in the images are annotated with 240 landmarks.

Kroon’s implementation [154] aligns the vertices in the training set by centering the

landmarks to remove translation effects, computing the angles defined by the vectors

from each landmark to the mean of the landmarks (i.e. the center) and then rotating

every landmark using the mean of the computed angles as the rotation angle, the same

angle for all points. It is commented in the code that using Procrustes analysis for

alignment is also possible, however the simpler alignment methodology is preferred.

The aligned data of vertex coordinates are used to build the statistical shape model

described in Section 6.3.3.1. The leading eigenvectors which explain 98% of the total

variance are retained to achieve compactness and remove contour noise.

In constructing models for gray-level profiles of landmarks and in ASM search, a

multi-resolution framework with two scales is used. The landmark profiles normal to

the model boundary are acquired at 49 pixels (k = 24 pixels either side of the landmark

and the same for both scales). Building gray-level profiles is performed in either of two

ways: If the original search method using Mahalanobis distances to profile means ḡ is

intended, the edge gradient information (derivatives) is used to compute means and

covariances of landmark profiles over the training set. An alternative search method

utilizes intensities of profile pixels on which PCA is applied. Similar to shape model

construction, the eigenvectors explaining 98% of the intensity variation in gray-level

profiles are kept. During search, the aim is to minimize the distance to the mean of the

considered intensity profiles. We have observed that the second search method (using

intensities of profile pixels) provides visually better segmentation with our data set.

The inputs to the ASM search are identical to those used in segmentation with

intensity-based averaging. The user marks the two endpoints of the OFD and those

of the BPD in the raw image of a transcerebellar skull. The normalization of Section

6.3.2 is performed and the outcome is fed as input to ASM search. The ASM search

is preceded with the segmentation procedure of intensity-based averaging to get the
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“non-smooth” contour points of the normalized skull image. We initiate the ASM

search with the non-smooth model boundary instance obtained through intensity-based

averaging and run the search until iteration limits are exhausted. At each scale, the

search runs for 40 iterations. The search length to detect the optimal contour point

position is one pixel in both normal directions. The methodology can be considered as

smoothing applied to the contour points output by the segmentation procedure utilizing

intensity-based averaging. The shape constraints, in effect, account for smoothing the

initial contour discovered by intensity-based averaging. Figure 6.19 shows examples of

ASM segmentation, where the input images are the same as those in Figure 6.16. It is

evident that utilizing the intensities of profile pixels with PCA provides considerably

better results than using the edge gradient information and measuring the quality with

Mahalanobis distance to the mean of profile samples.
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Figure 6.19. Segmentation with active shape models for the inputs of Figure 6.16

(left: edge gradient modeling, right: intensity modeling).
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7. RARITY AND PERFORMANCE EVALUATION

The robustness of classifiers depends on the availability of learning data that

evenly span the input space with members of every involved class of the problem. Un-

fortunately, available training data for some problems do not meet this requirement

and hence designed classifiers can not be trusted to assign correct labels to new in-

stances that were not used for training. The spina bifida detection is such a problem,

where the obtainable learning data contain many healthy samples compared to few de-

fective samples causing imbalance in data distribution and perhaps not covering some

portions of the input space at all. Rare class mining requires tackling the problems

arising with absolute and relative rarity. As far as we consider, modifying distributions

of training data and properly assessing classification performance are the two branches

that designers must cope with when attacking problems associated with rarity. In this

chapter; we briefly elaborate on common performance evaluation metrics, the basics of

ROC analysis [125] employed to evaluate classifier performance at a range of operating

points and the SMOTE oversampling strategy [130] that has been used to resample data

sets for SVM learning. Our experiments using kNN classifiers with CSS features uti-

lize resampling of training instances using exact copies of the rare class instances with

higher membership counts. Further details of actions taken to handle rarity and assess

performance specific for the spina bifida detection problem are available in Chapter 8.

7.1. Performance Metrics

Once a two-class problem is assumed (i.e. positive and negative classes), accessing

classification performance is achieved by means of performance indicators, the most

general being the accuracy metric. Accuracy is defined as the ratio of the number

of correct classifications to the number of all samples. Adopting the notation of the

contingency table of Table 2.1, accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
. (7.1)
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The number of positive instances in a data set (either training or test) is Np = TP +

FN , that of negative instances is Nn = TN + FP and the number of all instances

is N = TP + FP + TN + FN . Being a general metric, accuracy is not suitable for

skewed (unbalanced) data distributions. In a rare-class problem where 99% of the

samples are those of the prevalent class and the rest contains rare class samples; even

if all samples are predicted to be of the majority class, the accuracy metric figure

is 0.99 that signals very successful classification performance realized on the data set.

However, it is clear that this is not what is intended and proper evaluation metrics that

value the prediction of the rare class are required. Recall (also known as sensitivity)

and precision are the two basic metrics which can be used on their own or in the

derivations of other metrics to incorporate both of them in performance indicators.

Since it is desired to evaluate classifier performance on the rare class rather than the

majority class, recall and precision are usually defined with respect to the rare class as

in Equation 7.2 and Equation 7.3:

Recall =
TP

Np
=

TP

TP + FN
(7.2)

Precision =
TP

TP + FP
(7.3)

Recall is the fraction of the positive instances that are correctly classified as positive and

precision is the fraction of correct positive decisions. Specificity refers to the fraction of

negative samples that are correctly identified (i.e. similar to the concept of recall but

accounting for negatives). Recall does not provide an insight into how many negative

samples are misclassified and precision does not indicate how many positive instances

are incorrectly classified as negative. Using recall and precision simultaneously can

effectively evaluate classification performance in imbalanced learning problems.

F-measure weighs the relative importances of recall and precision. The generic



114

form of F-measure is

Fmeasure =
1

λ 1
Recall

+ (1− λ) 1
Precision

, 0 ≤ λ ≤ 1 (7.4)

where λ can be selected based on how much weight one wants to assign to recall and

precision. Increasing λ assigns more weight to recall (i.e. for reducing false negatives)

and decreasing λ puts more weight on precision (i.e. for reducing false positives). When

recall and precision get equal weight, λ = 0.5 and Equation 7.4 can be rewritten as

Fmeasure =
2.Recall.Precision

Recall + Precision
. (7.5)

Geometric mean of Recall and Precision (GMRP) is another common performance

metric defined as

GMRP =
√
Recall.Precision. (7.6)

7.2. ROC Analysis

Section 7.1 describes the particular point metrics of recall, precision, F-measure

and GMRP, which are all defined for classifiers operating at a single point. In contrast,

performance evaluation of classifiers can be performed at a variety of operating points,

each determined by how much true positive predictions is achieved at the expense

of false positive predictions. ROC (receiver operating characteristics) analysis is a

procedure for performance evaluation along a curve where each curve point corresponds

to a classifier operating with the indicated TP and FP rates (tp and fp). In the ROC

space shown by 2D graphs, tp is plotted on the Y axis and fp is plotted on the X

axis. Figure 7.1 shows a ROC graph on which five classifiers (A, B, C, D and E) are

marked. A perfect classifier is one that can predict all positive instances correctly

without making any incorrect positive predictions. Classifier A is an ideal classifier

with tp = 1 and fp = 0 (i.e. the ROC point (0, 1)). When comparing classifiers and
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Figure 7.1. ROC graph of five classifiers A, B, C, D and E.

selecting better ones, it is desired to have larger tp as well as lower fp. This leads to

the fact that a classifier is superior to another one if the corresponding ROC point of

the former is located to the north-west of that of the latter. Referring to Figure 7.1, we

can conclude that A is the best classifier among all and the performance of C is better

than that of D. The point (0, 0) indicates that a classifier operating at that point makes

no true positive decisions as well as causing no false positive errors. (0, 0) is in fact

where a classifier does not make any decisions at all (i.e. a non-existent classifier). The

other extreme point (1, 1) is where the classifier issues positive decisions to all samples,

thus predicts all positive samples correctly and incorrectly decides all negatives to be

positive. Making positive decisions easily (as in (1, 1)) and hardly (i.e. only with strong

evidence) leads to discriminating classifiers as either “liberal” or “conservative” [125]

respectively. A liberal classifier makes more true positive predictions accompanied

with more false positive errors. Oppositely, conservative classifiers do not often predict

instances as positive, hence false positive errors are few as well as true positive decisions.

Classifier C of Figure 7.1 is more conservative than B (equivalently B is more liberal

than C). The classifiers located on the diagonal line (y = x) are those that work by

random guessing. A classifier that predicts instances as positive half of the time and

as negative the other half is on (0.5, 0.5). Similarly, a classifier that makes positive
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predictions 20% of the time is located on (0.2, 0.2). D is a classifier that operates by

random guessing. If a classifier, such as E of Figure 7.1, is located below the diagonal

(in the lower right triangle) of the ROC graph, it is not a realistic classifier since it

performs worse than random guessing and simply reverting the decisions would result

in classification above the diagonal line.

Most classifiers are designed to yield a single point in the ROC space. On the

other hand, some classifiers produce a score of some sort such as an instance proba-

bility and base their decisions on this score. When the limits on this score are tuned

to modify the classification rule, different points on the ROC graph are obtained each

corresponding to a classifier operating with different values of the defined score, hence

at different operating points. Connecting the points on the ROC graph showing differ-

ent operating conditions of a single classifier produces a connected curve in the ROC

space and such curves are indicative of classification performance along tp and fp. Ob-

taining a justifiable ROC curve depends on sampling the score at appropriate values,

running the classifier for all sampled values (i.e. for all operating points) and properly

connecting the points. Using linear interpolation, the ROC points (i.e. (fp, tp) pairs)

are successively connected starting from the point with the smallest fp value towards

that with the largest fp value. Covering the entire X and Y axes requires connecting

the leftmost operating point to (0, 0) and the rightmost to (1, 1). Figure 7.2 shows a

ROC curve of a classifier operating at four different points. Using the ROC curve of

classifiers, the whole-curve metric of AUC (area under the ROC curve) [126] can be

defined as the area between the curve and the X axis (fp). AUC evaluates the “overall”

performance of a classifier along the whole curve. Greater AUC values indicate better

classification performance and no realistic classifier has AUC < 0.5.

7.3. Synthetic Minority Oversampling Technique

Modifying class distributions in imbalanced sets of training samples is an essential

action to be carried before the data is used to train classifiers. Without such an action,

the trained classifier can not be supposed to perform well on minority class instances.

Undersampling and oversampling are the options that designers of classifiers can take.
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Figure 7.2. ROC curve of a classifier operating at four (fp, tp) points.

The trade-offs between the two selections are generally determined by empirical studies.

When oversampling is considered, the most straightforward method is to resample data

with replacement, that is to replicate exact copies of rare class samples in the training

set. As an alternative, Chawla et al. [130] propose an oversampling approach that

creates “synthetic” examples using instances of the minority class. The technique

is called Synthetic Minority Oversampling TEchnique (SMOTE). Synthetic examples

are generated in feature space rather than raw input space. As applicable to our

database of skull images; instead of using two different skull images of defective fetuses

to generate a new skull image, the Zernike features obtained for the two skulls are used

to synthesize the Zernike features of a new skull.

Oversampling by SMOTE is performed by considering each minority class sample

and introducing synthetic samples along the line segments connecting the sample to

any of the k nearest minority class samples. The amount of oversampling determines

how many of the k nearest neighbors are used in generating new samples. For instance,

if the amount of oversampling required is 200%, then two of the k -nearest neighbors

(assuming k ≥ 2) of each rare class sample are used to create new samples. A synthetic

sample along the line between two samples (the sample in consideration and its selected
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nearest neighbor) is generated by picking a random number in [0, 1], computing the

difference between the two feature vectors, multiplying this difference vector by the

random number and finally adding this vector to the feature vector of the considered

sample. If the amount of sampling required implies that not all but some of the

k nearest neighbors of each rare class sample are used to create new samples, the

selection of which of the k nearest neighbors to use is also performed randomly. The

overall expectation of SMOTE is to make the decision region of the rare class more

general. Figure 7.3 presents the pseudo-code of SMOTE oversampling.

7.3.1. Borderline-SMOTE

Different from generating synthetic rare class samples considering all rare class

samples, Han et al. [156] generate synthetic samples only for those rare class samples

that are more apt to be misclassified. These samples lie on the borderline of minority

and majority classes, hence are called borderline samples. The intuition is that the

samples far from the borderline may contribute less to classification and SMOTE is

used to oversample only borderline rare class samples to attain better classification

performance. Whether a rare class sample is on the borderline is decided by counting

its m nearest neighbors from both the rare and majority class samples. Given a specific

rare class instance, let m′ denote the number of majority class instances among its m

nearest neighbors. If m′ = m, all nearest neighbors are of the majority class, the

sample is considered to be noise and not operated on any further. If 0 ≤ m′ < m/2,

the instance is safe and not a borderline sample. Only when m/2 ≤ m′ < m, the

instance is in danger and can easily be misclassified. Denoting the set of borderline

rare class samples with B and the set of all rare class samples with J (B ⊆ J), the

k nearest neighbors of each sample in B from J (excluding the sample itself) are

found. Depending on the sampling rate, a subset of these k nearest neighbors and the

considered rare class sample are used to synthesize a new sample by the algorithm of

Figure 7.3. Repeating the oversampling procedure for all samples in B and as dictated

by the desired oversampling rate synthesizes new rare class samples that are included

in the training set. In our implementation, we use k = 5 and m = 3.
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Algorithm SMOTE(Nr, O, k)

Input: Number of rare class samples Nr, Amount of oversampling O%, Number of

nearest neighbors k

Output: round(O/100 ∗Nr) synthetic rare class samples as the array SYNTH[ ][ ]

1: Randomize the Nr rare class samples in the array ORIG[ ][ ] . Issue a random

ordering and restore the samples in ORIG[ ][ ]

2: tall ← bO/100c . All Nr samples to be SMOTEd tall times

3: Nextra ← round((O/100− tall) ∗Nr) . Nextra samples SMOTEd once more

4: extra flag ← false . All samples to be SMOTEd tall times

5: if Nextra > 0 then

6: extra flag ← true . Some samples to be SMOTEd tall + 1 times

7: SYNTH[ ][ ]← array of synthetic rare class samples, initially ∅

8: no considered samples← Nr . All samples are considered at least once

9: if tall = 0 then

10: no considered samples← Nextra . Nextra samples considered only once

11: for i← 1, no considered samples do

12: Attr1 ← ORIG[i][ ] . Features of the ith sample

13: Compute k nearest neighbors of Attr1, randomize and store in NN array[ ]

14: no synth← tall . The number of synthetic samples for ORIG[i][ ]

15: if extra flag = true AND i ≤ Nextra then

16: no synth← tall + 1

17: for j ← 1, no synth do

18: Attr2 ← ORIG[NN array[j]][ ] . Features of the jth nearest neighbor

19: diff ← Attr2 − Attr1 . Difference

20: rand← random number in [0, 1]

21: Attrs ← Attr1 + rand ∗ diff . Generated synthetic sample

22: Append Attrs to SYNTH[ ][ ]

23: return SYNTH[ ][ ]

Figure 7.3. SMOTE oversampling.
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8. EXPERIMENTS

Our data set of fetal skull images consists of 358 samples. 29 of these are labeled

as defective and the remaining 329 are labeled as non-defective by medical experts. The

data set is highly unbalanced and robust classification performance can be obtained

using appropriate methods to handle this data set.

We run and collect results on three classifiers. The first two classifiers employ

CSS images of skull contours and use them to measure the similarity between any two

instances via either CSS matching of Abbasi et al. [74] or DMLM matching proce-

dure of Kpalma et al. [138]. The distance (or similarity) scores are processed with a

20NN classifier. The results are reported over a range of operating conditions through

ROC and precision-recall (PR) curves. The superiority of a classifier with a particular

setting over another classifier with a different setting is made visible with the whole-

curve metric of AUC [126]. Moreover, the point metrics of accuracy, recall, precision,

specificity, F-measure and GMRP are provided for some operating points. Our third

classifier is an SVM-based classifier utilizing magnitudes of Zernike moments of skull

shapes. Like the CSS-based classifiers, the performance of the SVM classifiers trained

with magnitudes of Zernike moments is reported using ROC, PR curves, the aforemen-

tioned point metrics and AUC. The SVM classification tool we employ is the LIBSVM

library by Chang and Lin [157]. There are two types of kernels that we use to build

SVM classifiers with scaled training data and for which we report results and elabo-

rate. These are linear and RBF kernels. All other parameter values used by LIBSVM

in SVM training and prediction are left as default.

Handling the class imbalance problem is achieved by a group of techniques. For

the 20NN classifiers exploiting CSS images, the membership counts of defective sam-

ples are considered larger than those of healthy samples so as to reflect class ratios

correctly. This can be treated as a simple oversampling strategy where the single

occurrences of rare class samples are updated as multiple occurrences (i.e. oversam-

pling with replacement). Alternatively, the same set of classifiers are run with random
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undersampling (RU) to equalize the number of defective and healthy samples in train-

ing sets. Rare class mining for the SVM classifier is performed using combinations

of borderline-SMOTE oversampling and random undersampling. Different parameter

selections for oversampling and undersampling rates yield different operating condi-

tions and hence different points on ROC curves. Our presentation of results based

on SVM and Zernike moments is an analysis of how oversampling and undersampling

rates affect classification performance for the spina bifida detection problem.

The skull images used in classification (either to train classifiers or assign a label

to them with the trained classifier) are not usable in their raw states. For training,

those skull contours and shapes extracted after manual segmentation (as accurately as

possible) are used since ground truth instances are required for robust training. Evalu-

ation of classification performance are then performed using ground truth instances and

the outcomes of segmentation methods of both intensity-based averaging and active

shape models. We concentrate on examples obtained with ground truth (i.e. manual)

segmentations to evaluate the performance of our classifiers. The performances of the

classifiers when the input data is obtained after applying the proposed semi-automatic

segmentation methods to raw skull images are presented in Appendix A.

8.1. Operating Conditions and Configurations for CSS-Based Classifiers

Operating conditions corresponding to points on ROC curves are associated with

particular values of a decision threshold τ ∈ [0, 1]. Given the output score Ωi of the

20NN classifier for any instance i, the decision strategy assigns the label defective if

Ωi ≥ τ and the label non-defective otherwise. The Ωi value is the ratio of the sum of

defective sample memberships to the sum of all sample memberships in the 20 nearest

neighbors of instance i. Each instance in a group is normally to be accounted for a

single membership (i.e. of value one), but for purposes of handling rarity in unbalanced

data sets, rare-class instances may be assigned a membership value greater than one
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to favor the presence of those instances. Ωi is computed as

Ωi =
md.Nd

md.Nd +mh.Nh

(8.1)

where Nd is the number of defective examples and Nh is the number of healthy samples

in the 20-neighborhood of instance i (Nh + Nd = 20), md and mh are membership

contributions of defective and healthy samples. Both of them can be taken one for

balanced datasets where the number of defective and healthy samples in training sets

are equal, however for data sets that contain considerably different numbers of defective

and healthy samples, these coefficients can be adjusted to reflect class ratios.

A number of configurations were used to report the results of the experiments

with CSS-based classifiers. The list of the elements of these configurations is as follows:

(i) Feature space: Representation of contours with CSS images

• using CSS images of only actual (real) contours

• using CSS images of both actual contours and their reflections

(ii) Distance computation: by means of CSS matching of pairs of contours

• employing u (position) and σ (height) of arcs – (i.e. C1 of Equation 3.21)

• employing u, σ and w (width) of arcs – (i.e. C2 of Equation 3.22)

(iii) Similarity computation:

• transforming the computed distance (cost) measure of CSS matching to a

similarity measure (Equation 8.2)

• computing similarities of feature vectors in DMLM matching (Equation 3.26)

(iv) Classification: kNN algorithm with k = 20 and decision thresholds τ in [0.05, 1]

with spacings of 0.05 (i.e. τ ∈ {0.05, 0.1, 0.15, 0.2, ... , 0.8, 0.85, 0.9, 0.95, 1}).

(v) Data set handling:

• oversampling for unbalanced training sets by considering the membership

contributions of the rare class examples larger than those of the majority

class examples.

• undersampling the entire data set to equalize the number of defective and

non-defective samples and working with balanced sets.
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When only actual skull contours are used with CSS matching of Abbasi et al. [74],

the distance between pairs is the cost C of CSS matching. In the case of using actual

contours and their reflections at the same time, the matching costs Cactual (of two actual

contours) and Creflected (of two reflected contours) of images are both considered. CSS

matching costs can have values in the range [0,∞). A matching cost of∞ signals that

the matched CSS images can not have the same label, however, it may often be the

case that the pair of actual contours has a finite matching cost Cactual and the pair of

reflected contours has ∞ matching cost Creflected or vice verse. To be able to handle

these cases as well as those when both costs are finite and incorporate both distances

into the computation of a single matching cost C, a weighted average of similarities

Sactual and Sreflected for actual and reflected contours are first computed to obtain a

single similarity S and S is later turned into a distance measure C. The relation

between distance (cost) C and similarity S is defined in Equation 8.2:

S = 1/C or C = 1/S (8.2)

Given Cactual and Creflected as the CSS matching costs for a pair of actual contours

and for their corresponding reflections, wactual and wreflected as the weights of those

costs, the computation of the single cost Call is given in Equation 8.3, Equation 8.4

and Equation 8.5:

Sactual =
1

Cactual
and Sreflected =

1

Creflected
(8.3)

Sall = wactual.Sactual + wreflected.Sreflected (8.4)

Call =
1

Sall
(8.5)

The DMLM matching procedure of Kpalma et al. [138] does not cause a problem like

the one mentioned for the CSS matching of Abbasi et al. [74] because similarities,
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instead of costs, of actual and reflected contours are directly computed and they may

possess only finite values in [0, 100]. As a result, Equation 8.4 can be used in the

first place to compute the combined similarity score. In our experiments, when both

contours are used, wactual of Equation 8.4 is set to 0.7 and wreflected is set to 0.3.

8.2. Data Sets and Experimental Setup in CSS-Based Classification

The results of the experiments are obtained using 100 folds (different selections

of training and test sets) for any data set. The unbalanced data set of 358 samples

is divided into two sets, one training set and one test set having 298 and 60 samples,

respectively. In the training set, 24 samples are defective and 274 are non-defective. In

the test set, five defective and 55 non-defective samples exist. Distances (or similarities)

of samples to be classified and all training samples are computed. During classification,

when the sample to be classified is in the training set, its distance to itself is not

taken into account in order to avoid bias. Since the training set is unbalanced, the

membership contribution md for defective samples is taken as 274/24 = 11, 416 and

mh for non-defective samples is taken one. This simulates oversampling of the rare

class. To perform experiments with balanced data sets, data sets consisting of all 29

defective samples and a subset of the non-defectives containing 29 samples are picked to

form a balanced data set. This process is repeated 100 times to repeat the experiments

with 100 different balanced data sets. Each data set is partitioned to a training set of

size 48 (24 defectives and 24 non-defectives) and a test set of size 10 (five defectives

and five non-defectives). The rule of 100 folds applies for each balanced data set. md

and mh are both one. Taking a small subset of non-defective samples in the formation

of data sets is, in effect, undersampling.

All reported results are those averaged for all different data sets and all folds of

each data set. There is one data set which is unbalanced and 100 different balanced data

sets obtained by undersampling (discarding the majority of non-defective samples). In

CSS-based classification, the following experimental settings are considered:

(i) Unbalanced data sets using only real (actual) contours, CSS matching, costs
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computed with Equation 3.21 (first distance metric - C1)

(ii) Unbalanced data sets using both real contours and their reflections, CSS match-

ing, costs computed with Equation 3.21 (C1)

(iii) Unbalanced data sets using only real contours, CSS matching, costs computed

with Equation 3.22 (second distance metric - C2)

(iv) Unbalanced data sets using both real contours and their reflections, CSS match-

ing, costs computed with Equation 3.22 (C2)

(v) Unbalanced data sets using only real contours, DMLM peak points matching

(vi) Unbalanced data sets using both real contours and their reflections, DMLM

matching

(vii) Balanced data sets using only real contours, CSS matching, costs computed with

Equation 3.21 (C1)

(viii) Balanced data sets using both real contours and their reflections, CSS matching,

costs computed with Equation 3.21 (C1)

(ix) Balanced data sets using only real contours, CSS matching, costs computed with

Equation 3.22 (C2)

(x) Balanced data sets using both real contours and their reflections, CSS matching,

costs computed with Equation 3.22 (C2)

(xi) Balanced data sets using only real contours, DMLM matching

(xii) Balanced data sets using both real contours and their reflections, DMLM match-

ing

8.3. CSS-Based Classification with Nearest Neighbors

ROC and PR curves of test sets obtained with the 20NN classifiers, the AUC

values of both test and corresponding training sets, point metrics of accuracy, recall,

precision, specificity, F-measure and GMRP associated with test sets at selected de-

cision thresholds are all presented in Section 8.3.1 and Section 8.3.2. Training of all

classifiers are performed with ground truth segmentations of fetal skull images. The

test sets of this chapter are also the outcomes of ground truth segmentations.
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8.3.1. Unbalanced Data and Ground Truth Segmentations

The CSS-based 20NN classifiers, defined for the possible experimental settings

stated in Section 8.2 and running on unbalanced data sets, provides the ROC curves

of Figure 8.1 and the PR curves of Figure 8.2 for test sets over 100 folds. Table 8.1

presents the F-measure and GMRP values of the same classifiers for test sets at selected

operating points (the best among all considered decision thresholds τ). Precision and

recall are assigned equal weights (i.e. λ = 0.5) in the computation of F-measure. Table

8.2 shows accuracy, recall, precision and specificity at the operating points for which

the best F-measure and GMRP values in Table 8.1 are observed.

Figure 8.1. ROC curve of CSS-based classifiers with unbalanced test sets.

8.3.2. Balanced Data and Ground Truth Segmentations

The ROC, PR curves, F-measure and GMRP values; corresponding accuracy,

recall, precision and specificity; all associated with balanced test sets are shown in

Figure 8.3, Figure 8.4, Table 8.3 and Table 8.4, respectively.



127

Figure 8.2. PR curve of CSS-based classifiers with unbalanced test sets.

Figure 8.3. ROC curve of CSS-based classifiers with balanced test sets.
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Table 8.1. F-measure, GMRP of CSS-based classifiers with unbalanced test sets.

UNBALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.35 0.1731 0.2874

CSS, C1, both 0.70 0.4706 0.4771

CSS, C2, real 0.60 0.2446 0.2569

CSS, C2, both 0.70 0.4097 0.4301

DMLM, real 0.65 0.2360 0.2943

DMLM, both 0.75 0.3919 0.3974

Table 8.2. Metrics of CSS-based classifiers with unbalanced test sets.

UNBALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.35 0.3207 0.8580 0.0963 0.2718

CSS, C1, both 0.70 0.9250 0.4040 0.5635 0.9724

CSS, C2, real 0.60 0.8188 0.3520 0.1874 0.8613

CSS, C2, both 0.70 0.9262 0.3140 0.5892 0.9818

DMLM, real 0.65 0.6845 0.5860 0.1478 0.6935

DMLM, both 0.75 0.8773 0.4700 0.3360 0.9144

8.3.3. Evaluation of CSS-Based Classifiers

Table 8.5 shows the area under the ROC curve (AUC) scores in CSS-based clas-

sification for all the considered settings on the used training and test sets. The results

obtained from the experiments using different settings and types of data sets reveal

advantages of some choices over others. These advantages are most visible when the

AUC outcomes in Table 8.5, with the best figures along each column highlighted, are

examined. The following is a list of findings:

• Employing both actual contours and their reflections to obtain CSS features al-

most always provides better classification performance than using merely the

actual contours.
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Figure 8.4. PR curve of CSS-based classifiers with balanced test sets.

• Evaluating how well contours match in CSS matching using the second distance

metric is generally advantageous to that using the first distance metric.

• The performance of DMLM matching is comparable to that of CSS matching.

It performs best for balanced training sets when both actual contours and their

reflections are used.

We can experimentally conclude that enhanced feature sets and more proper

distance measures improve classification performance. Encountering better results for

test sets in some cases when the usual expectation is to observe more success with

training sets may be judged due to several factors such as the overall unbalanced

nature of the experimental data, the differences of sample populations in training and

test data, etc. In fact, we have performed training using more samples to achieve better

learning and formed test sets with fewer samples. Besides, when one takes into account

the facts related to the rarity of one of two classes, partly-unexpected results can be

overlooked. Observing worse figures for balanced data sets than those for unbalanced

data sets is understandable since undersampling with the objective of getting balanced
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Table 8.3. F-measure, GMRP of CSS-based classifiers with balanced test sets.

BALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.30 0.6931 0.7194

CSS, C1, both 0.45 0.7401 0.7435

CSS, C2, real 0.30 0.7009 0.7259

CSS, C2, both 0.45 0.7564 0.7590

DMLM, real 0.45 0.7203 0.7421

DMLM, both 0.60 0.7354 0.7365

Table 8.4. Metrics of CSS-based classifiers with balanced test sets.

BALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.30 0.5665 0.9468 0.5467 0.1863

CSS, C1, both 0.45 0.7491 0.6753 0.8185 0.8229

CSS, C2, real 0.30 0.5789 0.9472 0.5562 0.2106

CSS, C2, both 0.45 0.7633 0.6991 0.8240 0.8276

DMLM, real 0.45 0.6206 0.9487 0.5805 0.2925

DMLM, both 0.60 0.7034 0.7768 0.6983 0.6300

data sets results in discarding valuable information content and forcing to perform

experiments with even more unpopulated sets of samples. The F-measure and GMRP

values in Table 8.1 and Table 8.3 do not contradict the conclusions drawn by observing

the AUC values, however it should be noted that the magnitude orders are different for

unbalanced and balanced data sets due to the ratio of sample populations of defectives

and non-defectives.

8.4. Data Sets and Experimental Setup in SVM Classification

The data used for SVM training consist of sampled versions of the available

data in the feature space of magnitudes of Zernike moments of skull shapes computed

considering invariance under similarity transforms. Although training is performed
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Table 8.5. AUC for all settings of CSS-based classification.

AUC
unbalanced

training

unbalanced

test

balanced

training

balanced

test

CSS, C1, real 0,6626 0,5866 0,5748 0,6937

CSS, C1, both 0,7472 0,7504 0,6450 0,7970

CSS, C2, real 0,6839 0,6315 0,6236 0,7337

CSS, C2, both 0,7538 0,7297 0,6743 0,8177

DMLM, real 0,6730 0,6442 0,6435 0,7066

DMLM, both 0,6451 0,6802 0,6837 0,7427

with sampled data, the results are reported using non-sampled (i.e. original) data sets.

Sampling in SVM classification refers to different combinations of SMOTE over-

sampling of the defectives and random undersampling of the non-defectives. The five

nearest minority instances of each borderline minority instance are considered while

generating new (synthetic) instances with borderline-SMOTE. N% oversampling of

the minority class corresponds to N/100 new samples generated from the borderline

defectives in the training set. If the number of borderline defectives in the training

set is M , each of those M defectives and bN/100c nearest neighbors among its five

nearest defective neighbors are used to generate new samples along the connecting

lines. When N/100 /∈ Z+, some of the borderline instances may be sampled once

more to achieve the desired rate N%. Our assumption is that at most all five nearest

neighbors of all borderline minority samples are used to generate synthetic samples,

thus the maximum allowed oversampling rate is 500%. An N% random undersampling

(RU) of the majority class requires randomly discarding some common class samples

so that the number of minority samples is N% of that of the majority samples at

the end of sampling. Larger N corresponds to discarding more majority samples and

thus to more undersampling. In the following presentation, 0% oversampling refers to

no oversampling performed and 0% undersampling means that none of the majority

samples are discarded (conceptually different from what has been described for N%

undersampling). Table 8.6 shows some scenarios related to the number of minority and
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majority instances in training sets before and after various combinations of SMOTE

oversampling followed by random undersampling. All training sets are composed of

Table 8.6. Examples of numbers of samples for various sampling scenarios.

Before sampling SMOTE

rate

RU

rate

After sampling

#minority #majority #borderline #minority #majority

24 274 irrelevant 0% 0% 24 274

24 274 7 100% 100% 31 31

24 274 12 500% 50% 84 168

24 274 8 300% 125% 48 38

24 274 9 200% 100% 42 42

274 non-defective samples and 24 defectives. The test sets contain 55 non-defectives

and five defectives. 100 folds are used to perform experiments and the average results

are reported. The rule applied in forming training and test data is identical to that

used in CSS-based classification (unbalanced configuration). Training for any data set

formed from normalized Zernike moments magnitudes of shapes attained from manual

segmentation (i.e. ground truth) of skulls is carried with the sampled data obtained

after applying borderline-SMOTE and RU, each with particular rates. SMOTE over-

sampling is performed at either of 0%, 100%, 200%, 300%, 400% or 500% followed by

RU at either of 0%, 50%, 60%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%,

500%, 600%, 700%, 800%, 1000% or 2000%. The operating points of classifiers are

defined by a pair of values for SMOTE rate and RU rate (102 in total).

8.5. SVM Classification

The performance of SVM classifiers for ground truth data is presented in Section

8.5.1 with the aid of ROC and PR curves, AUC and point metric realizations of ac-

curacy, recall, precision, specificity, F-measure and GMRP. Comparative treatments,

observations and findings are given in Section 8.5.2.
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8.5.1. Ground Truth Segmentations

Figures 8.5 and Figure 8.6 illustrate the ROC and PR curves of linear-SVM and

RBF-SVM classifiers on test sets when the SMOTE oversampling rate is 500%. Points

on the curves correspond to different RU rates mentioned in Section 8.4.

Figure 8.5. ROC and PR curves of test sets (linear-SVM, 500% SMOTE).

Figure 8.6. ROC and PR curves of test sets (RBF-SVM, 500% SMOTE).

Table 8.7 shows the AUC scores of training and test sets with the linear-SVM
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and RBF-SVM classifiers when the corresponding ROC curves are obtained by fixing

the SMOTE rate and letting the RU rate vary in our experimental configurations.

Table 8.7. AUC for SVM classifiers.

AUC
linear-SVM RBF-SVM

Training Test Training Test

0% SMOTE 0.9642 0.7583 0.6186 0.7886

100% SMOTE 0.9726 0.7583 0.7536 0.8367

200% SMOTE 0.9785 0.7510 0.7927 0.8816

300% SMOTE 0.9812 0.7497 0.8152 0.8848

400% SMOTE 0.9862 0.7464 0.8231 0.8956

500% SMOTE 0.9851 0.7515 0.8348 0.8961

In Table 8.8 and Table 8.9, the best F-measure and GMRP values observed for

training and test sets with the two SVM types at each SMOTE rate are listed. The

RU rates involved in sampling and which produced the best values are also displayed.

Table 8.10, 8.11, Table 8.12 and Table 8.13 show the accuracy, recall, precision and

specificity values of training and test sets with respect to the performance achieved with

either linear-SVM or RBF-SVM classifiers, at the points where the best F-measure and

GMRP are observed.

Table 8.8. F-measure, GMRP of SVM classifiers with training sets.

F-measure & GMRP

Training sets

linear-SVM RBF-SVM

RU rate F-measure GMRP RU rate F-measure GMRP

0% SMOTE 0% 0.8530 0.8624 100% 0.3493 0.3756

100% SMOTE 0% 0.8604 0.8687 100% 0.4423 0.4423

200% SMOTE 0% 0.8648 0.8719 75% 0.4571 0.4723

300% SMOTE 0% 0.8738 0.8797 75% 0.5051 0.5175

400% SMOTE 0% 0.8820 0.8860 75% 0.5212 0.5251

500% SMOTE 0% 0.8846 0.8873 60% 0.5153 0.5227
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Table 8.9. F-measure, GMRP of SVM classifiers with test sets.

F-measure & GMRP

Test sets

linear-SVM RBF-SVM

RU rate F-measure GMRP RU rate F-measure GMRP

0% SMOTE 0% 0.7071 0.7088 100% 0.6314 0.6320

100% SMOTE 0% 0.6829 0.6830 75% 0.6091 0.6091

200% SMOTE 0% 0.6322 0.6324 75% 0.5782 0.5794

300% SMOTE 0% 0.6416 0.6421 60% 0.6265 0.6304

400% SMOTE 0% 0.5953 0.5969 50% 0.6276 0.6306

500% SMOTE 0% 0.5899 0.5912 50% 0.6125 0.6128

Table 8.10. Metrics of linear-SVM classifiers with training sets.

METRICS

Training sets

linear-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 0% 0.9794 0.7438 1.0000 1.0000

100% SMOTE 0% 0.9802 0.7558 0.9984 1.0000

200% SMOTE 0% 0.9807 0.7671 0.9910 1.0000

300% SMOTE 0% 0.9817 0.7829 0.9885 0.9964

400% SMOTE 0% 0.9826 0.8050 0.9752 0.9964

500% SMOTE 0% 0.9826 0.8213 0.9586 0.9927

8.5.2. Evaluation of SVM Classification

SVM classifiers have proven to be well-performing and robust in discriminating

members of different classes. As is the case with any classification technique, rarity

and the associated imbalance issues cause problems such as incorrect generalization,

overlearning, etc. with the model-based SVM approach. When proper methods to

handle rarity/imbalance are employed, the achieved performance can be improved as

shown by the experimental results we have attained.

The area under the ROC curve (AUC) values reported in Table 8.7 indicate that

resampling training sets by creating synthetically-generated minority class samples



136

Table 8.11. Metrics of RBF-SVM classifiers with training sets.

METRICS

Training sets

RBF-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 100% 0.9225 0.2554 0.5524 0.9745

100% SMOTE 100% 0.9037 0.4454 0.4391 0.9015

200% SMOTE 75% 0.9282 0.3650 0.6112 0.9453

300% SMOTE 75% 0.9326 0.4150 0.6453 0.9526

400% SMOTE 75% 0.9284 0.4650 0.5930 0.9489

500% SMOTE 60% 0.9315 0.4413 0.6192 0.9599

Table 8.12. Metrics of linear-SVM classifiers with test sets.

METRICS

Test sets

linear-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 0% 0.9540 0.6620 0.7589 0.9636

100% SMOTE 0% 0.9470 0.6700 0.6962 0.9636

200% SMOTE 0% 0.9358 0.6460 0.6190 0.9636

300% SMOTE 0% 0.9362 0.6660 0.6190 0.9455

400% SMOTE 0% 0.9265 0.6420 0.5550 0.9091

500% SMOTE 0% 0.9260 0.6320 0.5531 0.9273

has the potential of performance improvement. Specifically, 400% borderline-SMOTE

oversampling achieves the best performance on the ROC space for training sets with a

linear-SVM classifier. 500% borderline-SMOTE performs best on both training and test

sets when RBF-SVM classifiers are employed. Increasing the random undersampling

rate with any fixed SMOTE rate tends to move the corresponding ROC point in the

northeast direction, that is increasing both tp and fp.

As pointed out in the literature and experimentally verified, best performance

need not be obtained for training sets where the numbers of minority and majority

samples are equal. Other ratios such as 4:3, 2:1 may produce better results. This

observation leads to combining SMOTE oversampling and RU. Point metrics of F-
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Table 8.13. Metrics of RBF-SVM classifiers with test sets.

METRICS

Test sets

RBF-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 100% 0.9397 0.6040 0.6613 0.9455

100% SMOTE 75% 0.9317 0.6060 0.6122 0.9091

200% SMOTE 75% 0.9207 0.6180 0.5432 0.8909

300% SMOTE 60% 0.9403 0.5640 0.7047 0.9273

400% SMOTE 50% 0.9413 0.5720 0.6953 0.9818

500% SMOTE 50% 0.9348 0.5960 0.6300 0.9455

measure and GMRP reveal the RU rates where optimal performance for the spina

bifida detection problem with particular borderline-SMOTE rates can be obtained.

With linear-SVM classifiers, 500% SMOTE and 0%RU (no undersampling) work best

on training sets, whereas 400% SMOTE and 75% RU with RBF-SVM classifiers pro-

vides best performance on the same training sets. When test sets are considered, it is

observed that the best linear-SVM classifier is one trained with no oversampling and no

undersampling. The RBF-SVM classifier trained with no oversampling and 100% RU

turns out to be the best running on test sets. The best classifiers reported correspond to

single points on the ROC space (i.e. single classifiers) and can not be used to evaluate

classification performance along a whole ROC curve. Performance indicators on train-

ing, test data and their comparison may occasionally look unexpected. The confusion

can be resolved by considering what is meant by a training set on which performance

is reported and the data with which actual training is performed. While training of

classifiers is done using resampled versions of the original data, the performance is

computed on the original data itself. The number of samples and distributions in the

two may considerably differ and hence original training sets should be considered as

sorts of other test sets. Noting that original training sets have 298 samples and test

sets have 60 samples further convince in the possibility of the observed results.
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9. CONCLUSION

Spina bifida is among the most common birth defects that may seriously affect

the quality of life of individuals. There is no cure for nerve damage caused by the

defect. If no action is taken before birth, what can be done to prevent further damage

and infections is neurosurgical operation to close the opening on the back by putting

the spinal cord and nerve roots back inside the spine and covering with nervous mem-

brane (i.e. meninges). A shunt may also be surgically installed to drain excessive

cerebrospinal fluid back into the abdomen or chest wall. The clinical importance of

prenatal detection arises as reducing the occurrence of new cases due to terminating

pregnancies with the fear that newborns might have a poor quality of life in the future

or letting surgeons perform open or minimally-invasive fetal surgery.

Fetal US screening can usually detect the presence of the defect and CAD to

help specialists in this task is a challenge. The easiest and most tractable CAD so-

lution manifests itself as detecting the existence of lemon sign around transcerebellar

fetal skulls. In this dissertation, we have realized two schemes that could be used in

automatized detection of the defect. Both methods employ transcerebellar fetal skull

images acquired via US and attack a two-class classification problem using the features

extracted from skull shapes (or boundaries).

The first solution relies on measuring the similarity of skull boundaries and run-

ning a lazy nearest neighbor classifier for label assignment. Estimating the similarity of

skull contours is achieved by the CSS representation of curves and the features acquired

from this representation. Since features from two different curves may possess differ-

ent numbers of entities, parametric (i.e. model-based) classification has been found

inappropriate. CSS matching and DMLM matching are the two utilized methods for

matching any two CSS images to output a matching score that represents either the

distance between curves (cost of matching them) or their similarity. CSS images consist

of curvature zero-crossings (γ points) that curves possess at a continuum of scales (from

fine to coarse). The desirable properties of the CSS representation are its translation,
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rotation and scale invariance, which are deemed critical for robust recognition and re-

trieval. Moreover, it provides compact description of contours with sufficient level of

detail and abstracts the descriptions at multiple scales. In our implementations, an

extended CSS representation, using both actual contours and their reflections has also

been used. The core of the CSS-based system depends on computing CSS images from

which features are derived and the time cost can be reported based on how long it

takes to obtain a CSS image from a given contour. With our initial settings and the

way followed in CSS images computation, it takes 0.399 seconds on average to arrive

at the CSS image of a contour with an Intel Core i7 CPU running at 1.73 GHz speed

and using 6 GB RAM capacity on 64-bit Windows 7 operating system. A standard de-

viation of 0.236 seconds of this measure is observed. The variation of processing time

is associated with the variation of contour characteristics in that γ points for some

contours disappear at earlier scales whereas those for others survive for more scales.

Retrieving features of a specific CSS image and executing the matching algorithms for

that image with all the images in training sets is quite fast. The kNN classifier requires

sorting matching scores where the complexity depends log-linearly on the number of

training samples.

In the second solution method, magnitudes of Zernike moments computed from

normalized skull shapes are considered and the parametric SVM classifier is utilized.

For any skull shape, 504 Zernike features are involved because so many moments are

sufficient to reconstruct a shape within certain accuracy limits. Solving dual problems

in SVM model construction does not depend on the input dimensionality but on the

number of training instances N . Upper bounds of time and space complexity are O(N3)

and O(N2), respectively.

Major drawbacks of experimenting with medical datasets include absolute and

relative rarities. The samples that a designer is able to collect are few. In addition,

members of different classes have very unbalanced distributions. The population of the

common class is very likely to dominate that of the rare class. These factors prevent

effective classifier design and healthy judgment of classifier performance. Handling the

imbalance problem in CSS-based classification has been performed via oversampling
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rare class samples with replacement or undersampling randomly selected majority class

samples to balance class distributions. Different combinations of borderline-SMOTE

oversampling of the rare class and random undersampling of the prevalent class have

been used to resample training sets prior to SVM training. One of the reasons of

preferring a nearest neighbor classifier in CSS-based classification can be stated as

avoiding errors arising from misestimating parameter values due to lack of learning

data (i.e. overlearning), which is supposed to prevent wrong generalization. Build-

ing optimal classifiers using rare and unbalanced data with a preferred classification

technique, such as for spina bifida detection using either CSS-based kNN classifier or

SVM, is a matter of considering the operation objectives, identifying them through the

use of performance metrics and points on ROC and precision-recall curves, and finally

selecting the classifier that best satisfies the objectives.

A general observation is that discriminating samples using simple structural and

global shape descriptors is hard especially when all or most samples share close (almost

identical) values for these descriptors, thus insufficient feature representations are likely

to fail. This is why CSS representation describing contours (curves) at multiple scales

has been preferred with a non-parametric classification approach. Zernike moments

and their magnitudes are non-simple descriptors to describe shapes, that perform well

in classification and appropriate for use with parametric techniques. The deductions on

which representation and classification methodology to use with shape data are general

and each specific problem may break the statements with alternative solutions working

quite well. Rich data sets with balanced distributions are supposed to perform much

better, since the probability of missing rare cases would lower by better spanning the

input space with instances of correct labels.

Classification with shapes, in reality, is accompanied with the preceding problem

of segmentation. Although experimental results in this work are mainly reported with

ground truth (manually-segmented) shapes, two semi-automatic segmentation tech-

niques in the context of fetal skull localization have been proposed. These are the

intensity-based averaging technique and ASM segmentation, which both depend on

constructing average shape models and manually marking few (four) points on the in-
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put images to be segmented. The ultimate goal for segmentation is full-automaticity,

that is fetal skulls are supposed to be segmented with no user intervention. Automatic

segmentation naturally starts with attempts to detect discontinuities; however, edge

structures in US images are not clearly identifiable, they contain considerable amount

of noise and they do not appear as single and connected structures but with broken

boundaries that must artificially be completed. Model fitting approaches and edge

detection strategies do not perform well. Absolutely precise fetal skull segmentation

seems to be performable by only the eye of a human (i.e. a medical specialist). Our

foresight for full-automaticity is that a learning-based method such as the matching

pursuit [158–160] has the chance of being utilized for representing structures of inter-

est, decomposing them using a set of primitives (i.e. atoms) and in turn recognizimg

similar structures in images that were not used in the learning process. The quality

(correctness) of segmentation for a robust real-time system would certainly play a con-

sequential part in CAD with skull shapes (and in any application working on shape

data that is available through segmentation).
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APPENDIX A: EXPERIMENTS WITH

SEMI-AUTOMATICALLY SEGMENTED IMAGE DATA

The properties of the test sets related to how the instances in Appendix A are ob-

tained (i.e. which semi-automatic segmentation technique is used) are indicated in the

headings of Section A.1, Section A.2, Section A.4 and Section A.5. The training set in-

stances employed in actual training after sampling via oversampling with replacement,

random undersampling, borderline-SMOTE or combinations of borderline-SMOTE and

RU; are those of ground truth segmentations. The scenarios and rules of Chapter 8

are valid for the presentations in the appendix.

A.1. CSS-Based Classification and Segmentations with Intensity-Based

Averaging

Table A.1 shows the best F-measure and GMRP for unbalanced data sets (test

sets) whose samples are obtained by segmentation through intensity-based averaging.

Table A.2 lists the accuracy, precision, recall and specificity values at the corresponding

operating points.

Table A.3 shows the best F-measure and GMRP for balanced test sets whose

samples are obtained by segmentation through intensity-based averaging. The corre-

sponding values of accuracy, precision, recall and specificity are shown in Table A.4.

A.2. CSS-Based Classification and ASM Segmentations

Table A.5 shows the best F-measure and GMRP for unbalanced test sets whose

samples are obtained by ASM segmentation. The accuracy, recall, precision and speci-

ficity values at the corresponding ROC points are given in Table A.6.

Table A.7 shows the best F-measure and GMRP values for balanced test sets
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Table A.1. F-measure, GMRP of CSS-based classifiers with unbalanced test sets:

segmentations with intensity-based averaging.

UNBALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.60 0.2522 0.2743

CSS, C1, both 0.35 0.2195 0.3289

CSS, C2, real 0.70 0.2707 0.2750

CSS, C2, both 0.35 0.2210 0.3302

DMLM, real 0.70 0.2713 0.2824

DMLM, both 0.65 0.2727 0.2934

Table A.2. Metrics of CSS-based classifiers with unbalanced test sets: segmentations

with intensity-based averaging.

UNBALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.60 0.7940 0.4160 0.1809 0.8284

CSS, C1, both 0.35 0.4910 0.8600 0.1258 0.4575

CSS, C2, real 0.70 0.8577 0.3280 0.2305 0.9058

CSS, C2, both 0.35 0.4962 0.8600 0.1268 0.4631

DMLM, real 0.70 0.8343 0.3760 0.2122 0.8760

DMLM, both 0.65 0.8098 0.4320 0.1993 0.8442

whose samples are obtained by ASM segmentation. The corresponding accuracy, recall,

precision and specificity are shown in Table A.8.

A.3. CSS-Based Classification and Area under the ROC Curves

AUC scores with CSS-based classifiers on unbalanced and balanced test sets for

different settings using the two proposed semi-automatic segmentation schemes are

displayed in Table A.9.
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Table A.3. F-measure, GMRP of CSS-based classifiers with balanced test sets:

segmentations with intensity-based averaging.

BALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.25 0.6936 0.7284

CSS, C1, both 0.30 0.7248 0.7457

CSS, C2, real 0.25 0.6934 0.7283

CSS, C2, both 0.30 0.7245 0.7454

DMLM, real 0.45 0.7043 0.7184

DMLM, both 0.50 0.7098 0.7181

Table A.4. Metrics of CSS-based classifiers with balanced test sets: segmentations

with intensity-based averaging.

BALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.25 0.5536 0.9989 0.5312 0.1082

CSS, C1, both 0.30 0.6277 0.9475 0.5868 0.3078

CSS, C2, real 0.25 0.5532 0.9989 0.5310 0.1075

CSS, C2, both 0.30 0.6273 0.9474 0.5865 0.3071

DMLM, real 0.45 0.6134 0.8777 0.5881 0.3490

DMLM, both 0.50 0.6391 0.8359 0.6168 0.4423

A.4. SVM Classification and Segmentations with Intensity-Based

Averaging

The best F-measure and GMRP values arising for test sets with linear-SVM and

RBF-SVM classifiers when samples of test sets are obtained through intensity-based

averaging are shown in Table A.10. All results stand for each of the particular SMOTE

rates and corresponding RU rates where best performances are observed.

Table A.11 and Table A.12 show the values of accuracy, recall, precision and

specificity belonging to test sets for the operating points in Table A.10 for linear-SVM
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and RBF-SVM classifiers, respectively.

Table A.5. F-measure, GMRP of CSS-based classifiers with unbalanced test sets:

ASM segmentations.

UNBALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.60 0.2651 0.2768

CSS, C1, both 0.55 0.2425 0.2909

CSS, C2, real 0.60 0.2874 0.2976

CSS, C2, both 0.60 0.2747 0.2831

DMLM, real 0.70 0.2642 0.2717

DMLM, both 0.35 0.2068 0.3202

Table A.6. Metrics of CSS-based classifiers with unbalanced test sets: ASM

segmentations.

UNBALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.60 0.8200 0.3720 0.2059 0.8607

CSS, C1, both 0.55 0.7192 0.5420 0.1562 0.7353

CSS, C2, real 0.60 0.8353 0.3880 0.2283 0.8760

CSS, C2, both 0.60 0.8415 0.3620 0.2213 0.8851

DMLM, real 0.70 0.9012 0.2140 0.3450 0.9636

DMLM, both 0.35 0.4418 0.8740 0.1173 0.4025

A.5. SVM Classification and ASM Segmentations

The best F-measure and GMRP values for test sets with SVM classifiers when

the samples are obtained with ASM segmentation are shown in Tanle A.13.

Table A.14 and Table A.15 show the accuracy, recall, precision and specificity

values of test sets for the operating points in Table A.13 for linear-SVM and RBF-
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SVM classifiers, respectively.

Table A.7. F-measure, GMRP of CSS-based classifiers with balanced test sets: ASM

segmentations.

BALANCED test Threshold (τ) F-measure GMRP

CSS, C1, real 0.45 0.5204 0.5208

CSS, C1, both 0.30 0.5575 0.5575

CSS, C2, real 0.45 0.5210 0.5215

CSS, C2, both 0.45 0.5576 0.5577

DMLM, real 0.45 0.5181 0.5185

DMLM, both 0.30 0.6667 0.6866

Table A.8. Metrics of CSS-based classifiers with balanced test sets: ASM

segmentations.

BALANCED test Threshold (τ) Accuracy Recall Precision Specificity

CSS, C1, real 0.45 0.4797 0.5410 0.5013 0.4183

CSS, C1, both 0.30 0.5464 0.5520 0.5631 0.5407

CSS, C2, real 0.45 0.4804 0.5440 0.4999 0.4167

CSS, C2, both 0.45 0.5466 0.5515 0.5639 0.5418

DMLM, real 0.45 0.4764 0.5409 0.4970 0.4119

DMLM, both 0.30 0.5537 0.8760 0.5382 0.2314
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Table A.9. AUC of CSS-based classifiers with semi-automatic segmentations.

AUC
Intensity-based averaging Active shape models

unbalanced test balanced test unbalanced test balanced test

CSS, C1, real 0.6739 0.6626 0.6162 0.4673

CSS, C1, both 0.6589 0.6891 0.6261 0.5293

CSS, C2, real 0.7048 0.6631 0.5829 0.4679

CSS, C2, both 0.6197 0.7018 0.6293 0.5331

DMLM, real 0.6936 0.6934 0.6065 0.4739

DMLM, both 0.7107 0.6958 0.6554 0.5604

Table A.10. F-measure, GMRP of SVM classifiers: segmentations with intensity-based

averaging.

F-measure & GMRP

Test sets

linear-SVM RBF-SVM

RU rate F-measure GMRP RU rate F-measure GMRP

0% SMOTE 0% 0.7223 0.7391 100% 0.4463 0.4472

100% SMOTE 0% 0.6903 0.6948 100% 0.5542 0.5687

200% SMOTE 0% 0.6190 0.6198 100% 0.4988 0.5373

300% SMOTE 0% 0.6404 0.6410 100% 0.5001 0.5383

400% SMOTE 0% 0.6147 0.6147 75% 0.5511 0.5585

500% SMOTE 0% 0.6045 0.6045 60% 0.5681 0.5793

Table A.11. Metrics of linear-SVM: segmentations with intensity-based averaging.

METRICS

Test sets

linear-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 0% 0.9612 0.5960 0.9165 1.0000

100% SMOTE 0% 0.9538 0.6200 0.7785 0.9818

200% SMOTE 0% 0.9410 0.5900 0.6511 0.9818

300% SMOTE 0% 0.9433 0.6140 0.6692 0.9818

400% SMOTE 0% 0.9367 0.6180 0.6115 0.9818

500% SMOTE 0% 0.9353 0.6080 0.6010 0.9636
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Table A.12. Metrics of RBF-SVM: segmentations with intensity-based averaging.

METRICS

Test sets

RBF-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 100% 0.9172 0.4200 0.4762 0.9818

100% SMOTE 100% 0.9032 0.7140 0.4529 0.8727

200% SMOTE 100% 0.8640 0.7940 0.3636 0.8364

300% SMOTE 100% 0.8637 0.7940 0.3650 0.8182

400% SMOTE 75% 0.9138 0.6580 0.4741 0.9273

500% SMOTE 60% 0.9173 0.6060 0.4890 0.9273

Table A.13. F-measure, GMRP of SVM classifiers: ASM segmentations.

F-measure & GMRP

Test sets

linear-SVM RBF-SVM

RU rate F-measure GMRP RU rate F-measure GMRP

0% SMOTE 0% 0.7071 0.7088 100% 0.6314 0.6320

100% SMOTE 0% 0.6829 0.6830 100% 0.6091 0.6091

200% SMOTE 0% 0.6322 0.6324 75% 0.5782 0.5794

300% SMOTE 0% 0.6416 0.6421 60% 0.6265 0.6304

400% SMOTE 0% 0.5953 0.5969 50% 0.6276 0.6306

500% SMOTE 0% 0.5899 0.5912 50% 0.6125 0.6128

Table A.14. Metrics of linear-SVM: ASM segmentations.

METRICS

Test sets

linear-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 0% 0.9540 0.6620 0.7589 0.9636

100% SMOTE 0% 0.9470 0.6700 0.6962 0.9636

200% SMOTE 0% 0.9358 0.6460 0.6190 0.9636

300% SMOTE 0% 0.9362 0.6660 0.6190 0.9455

400% SMOTE 0% 0.9265 0.6420 0.5550 0.9091

500% SMOTE 0% 0.9260 0.6320 0.5531 0.9273
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Table A.15. Metrics of RBF-SVM: ASM segmentations.

METRICS

Test sets

RBF-SVM

RU rate Accuracy Recall Precision Specificity

0% SMOTE 100% 0.9397 0.6040 0.6613 0.9455

100% SMOTE 100% 0.8677 0.6700 0.3536 0.8545

200% SMOTE 75% 0.9207 0.6180 0.5432 0.8909

300% SMOTE 60% 0.9403 0.5640 0.7047 0.9273

400% SMOTE 50% 0.9413 0.5720 0.6953 0.9818

500% SMOTE 50% 0.9348 0.5960 0.6300 0.9455
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