
AUTOMATED REASONING ON EXCEPTIONS IN COMMITMENT-BASED

MULTIAGENT SYSTEMS

by

Remzi Özgür Kafalı

B.S., Computer Engineering, Boğaziçi University, 2004

M.S., Systems & Control Engineering, Boğaziçi University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2012



iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Assoc. Prof. Pınar Yolum for her

continuous support and guidance on making this thesis come through. I would also

like to thank my committee members Prof. H. Levent Akın, Prof. Yaman Barlas, Prof.

Oğuz Dikenelli, and Assist. Prof. Alper Şen for their invaluable comments.

I would like to thank Paolo Torroni from Bologna University and Francesca Toni

from Imperial College London for their contributions in this thesis. I would also like to

thank Marco Montali and Federico Chesani from Bologna University for providing us

with a working implementation of REC, which enabled us to run experiments. I would

also like to thank my colleagues in the Multiagent Systems research group in Boğaziçi

University for their comments in our group discussions.

My dear parents have always been supportive for my choices in life. Although

I’ve spent the second half of my life abroad, their consistent visits helped me feel at

home all the time. My brother and I share common interests in life, which is a rare

blessing to have. Although we have our differences (e.g., I play Terran, he plays Zerg,

and I prefer Les Pauls, he prefers Stratocasters), at the end of the day it is a great

feeling to accomplish something in common. I am also very thankful to his wife for

putting up with our fierce discussions in our StarCraft sessions.

There are certain people that have kept my spirit up while I was struggling with

my research. I would like to thank Tasteless and Artosis for their excellent GSL casts,

and MarineKingPrime for his entertaining games and amazing micro skills.

The research done in this thesis is supported by Boğaziçi University Research

Fund under grant BAP5694, The Scientific and Technological Research Council of

Turkey under Program 2219, and the Turkish State Planning Organization (DPT)

under the TAM Project, number 2007K120610.



iv

ABSTRACT

AUTOMATED REASONING ON EXCEPTIONS IN

COMMITMENT-BASED MULTIAGENT SYSTEMS

Exceptions constitute a significant portion of people’s lives. When things do not

go as planned, due to environmental reasons or because one does not bring about his

responsibility in a given task, unexpected situations occur. When faced with excep-

tions, people need to deal with them in a timely fashion in order to restore proper

working. However, dealing with exceptions is not an easy task for people to accom-

plish. First, it requires understanding that something has gone wrong (detection).

Second, the actual source of the problem needs to be identified (diagnosis). Moreover,

in some situations, identifying that an exception will possibly occur in the future helps

changing the course of previously planned actions in order to avoid the exception (pre-

diction). Accordingly, this thesis proposes to use agents for automating the reasoning

on exceptions. We model the problem domains with open multiagent systems, and use

commitments to formalize agent interactions. We propose automated methods based

on computational logic for detecting, predicting, and diagnosing exceptions. We prove

that our methods are sound and complete. We study our methods on two domains,

online social networks and e-commerce, which exhibit different characteristics for the

exceptions that may arise in them. Our specific contributions in this thesis are three-

fold. First, we extend the scope of detected exceptions in the literature such that an

exception is not limited to a commitment violation. Second, we provide a prediction

system based on model checking that identifies exceptions before they even occur. Fi-

nally, we investigate the temporal relations among commitments in order to diagnose

what has gone wrong during an agent’s execution.



v

ÖZET

TAAHHÜT TABANLI ÇOK ETMENLİ SİSTEMLERDE

İSTİSNAİ DURUMLAR ÜZERİNE OTOMATİK AKIL

YÜRÜTME

İstisnai durumlar insanların hayatında önemli bir yer oluşturmaktadır. Bir kişi

göreviyle ilgili üzerine düşeni yapmadığından, veya bulunulan ortamdan kaynaklanan

nedenlerden dolayı işler planlandığı gibi gitmediğinde, beklenmedik durumlar oluşur.

İnsanların istisnai durumlarla karşılaştıklarında normal çalışmalarına geri dönebilmeleri

için bunlarla başa çıkmaları gerekir. Fakat bu, insanlar için başarması kolay bir iş

değildir. Öncelikle, bir şeylerin yanlış gittiğini anlamalıdırlar (tespit). Daha sonra,

sorunun neden kaynaklandığını bulmalıdırlar (teşhis). Bunlara ek olarak, bazı durum-

larda ileride istisnai bir durum oluşacağını önceden belirlemek bu durumu önlemek

için gerekli adımların atılmasına yardımcı olur (öngörü). Bunlara dayanarak, bu tezde

etmenlerin istisnai durumlar üzerine otomatik olarak akıl yürütmelerini öneriyoruz.

Problem alanlarını çok etmenli sistemler olarak modelleyip, etmenler arasındaki etk-

ileşimi taahhütler ile şekillendiriyoruz. İstisnai durumlarla başa çıkabilmek için mantık

tabanlı otomatik metodlar sunuyoruz. Bu metodların geçerliliğini ve bütünlüğünü

ispatlıyoruz. Bu metodları, oluşabilecek istisnai durumlar açısından farklı karakteris-

tikleri olan sosyal ağlar ve e-ticaret alanlarında inceliyoruz. Bu tezdeki katkılarımız üç

tanedir. İlk olarak, literatürde yer alan istisnai durumların kapsamını sadece taahhüt

ihlali ile sınırlı kalmayacak şekilde genişletiyoruz. İkinci olarak, istisnai durumları daha

oluşmadan fark edebilecek model denetleme tabanlı bir öngörü sistemi sunuyoruz. Son

olarak, taahhütler arasındaki zamansal ilişkileri bir etmenin işleyişinde neyin yanlış

gittiğini teşhis edebilmek için inceliyoruz.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. DETECTION OF EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1. World Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. Commitment Model . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3. Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5. Recoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6. REC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3. PREDICTION OF EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Comparing Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2. Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3. Generating Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1. Privacy-Aware OSN Architecture . . . . . . . . . . . . . . . . . 44

3.3.2. Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3. PROT OSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4. Predicting Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1. Counter Example Processing . . . . . . . . . . . . . . . . . . . . 56



vii

3.4.2. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4. DIAGNOSIS OF EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1. Commitments with Temporal Constraints . . . . . . . . . . . . . . . . 67

4.2. Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3. Commitment Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4. Diagnosis Process: Architecture, Procedure, and Properties . . . . . . . 80

4.5. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1. Case I: Misalignment . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2. Case II: Misbehavior . . . . . . . . . . . . . . . . . . . . . . . . 93

5. MONITORING OF COMMITMENT DELEGATIONS . . . . . . . . . . . . 98

5.1. Commitments with Extended Temporal Constraints . . . . . . . . . . . 100

5.2. Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3. Similarity relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1. Chains of delegations . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2. Temporal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4. Commitment monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1. Distributed monitoring procedure . . . . . . . . . . . . . . . . . 116

5.4.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1. Request Credit Card . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2. Refurbish House . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6. APPLYING ARGUMENTATION TO DIAGNOSIS . . . . . . . . . . . . . . 126

6.1. Argumentation Architecture . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2. Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1. Assumption-Based Argumentation (ABA) . . . . . . . . . . . . 129

6.2.2. Domain-Dependent Rules . . . . . . . . . . . . . . . . . . . . . 132

6.2.3. General-Purpose Reasoning Rules . . . . . . . . . . . . . . . . . 133

6.3. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1. Customer’s Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.2. Bookstore’s Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



viii

7.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.1. Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.2. Distributed Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.3. Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3. Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

APPENDIX A: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

APPENDIX B: REC Implementation for Detection . . . . . . . . . . . . . . . 166

B.1. Commitment Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.2. Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.3. Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.4. Recoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

APPENDIX C: REC Output for Diagnosis . . . . . . . . . . . . . . . . . . . . 176

APPENDIX D: REC Implementation for Delegation Monitoring . . . . . . . . 178

APPENDIX E: REC Output for Delegation Monitoring . . . . . . . . . . . . . 184

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



ix

LIST OF FIGURES

Figure 1.1. Phases of exception handling. . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1. Distributed multiagent architecture. . . . . . . . . . . . . . . . . . 11

Figure 2.2. Commitment states. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.3. Understanding exceptions. . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.4. A partial view of the satisfiability network. . . . . . . . . . . . . . 25

Figure 2.5. State satisfiability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.6. State recoverability. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.7. Exception: Charlie expects early sharing of his location. . . . . . . 35

Figure 2.8. No exception: Charlie does not expect sharing of his location. . . . 37

Figure 2.9. Charlie and the OSN operator’s projections do not match. . . . . 37

Figure 2.10. Recoverable vs. non-recoverable exception. . . . . . . . . . . . . . 39

Figure 3.1. Privacy-aware OSN architecture. . . . . . . . . . . . . . . . . . . . 45

Figure 3.2. PROT OSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.3. PROT OSS interface. . . . . . . . . . . . . . . . . . . . . . . . . 50



x

Figure 3.4. Commitments module. . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.5. Prediction interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.6. Prediction for disclosed location scenario. . . . . . . . . . . . . . . 58

Figure 3.7. Friends model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.8. Prediction for document sharing scenario. . . . . . . . . . . . . . . 61

Figure 4.1. Delivery process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.2. Coupled knowledge-base of the customer and the bank. . . . . . . 70

Figure 4.3. Coupled knowledge-base of the bank and the store. . . . . . . . . 70

Figure 4.4. Coupled knowledge-base of the customer and the store. . . . . . . 71

Figure 4.5. Coupled knowledge-base of the store and the courier. . . . . . . . 71

Figure 4.6. Coupled knowledge-base of the courier and the customer. . . . . . 71

Figure 4.7. Commitments in the delivery process at time 6.0. . . . . . . . . . 72

Figure 4.8. Delegatee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.9. Commitment similarity in REC (excerpt). . . . . . . . . . . . . . . 80

Figure 4.10. Commitment relations. . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.11. Diagnosis architecture. . . . . . . . . . . . . . . . . . . . . . . . . 86



xi

Figure 4.12. Trace of events for Case I. . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.13. Trace of events for Case II. . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.1. Refurbish house. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.2. Explicit delegation. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.3. Weak explicit delegation. . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.4. Implicit delegation. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.5. Weak implicit delegation. . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.6. Antecedent delegation. . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.7. Weak antecedent delegation. . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.8. Types of delegation. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.9. Causal delegation similarity. . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.10. Sequential delegations. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.11. Causal delegation chains. . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 6.1. Delivery process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure C.1. Misalignment: Top (Customer, Bank) - Bottom (Store, Courier). . 176

Figure C.2. Misbehavior: Top (Customer, Bank) - Bottom (Store, Courier). . . 177



xii

Figure E.1. Client in Request Credit Card (exception). . . . . . . . . . . . . . . 184

Figure E.2. Bank in Request Credit Card (exception). . . . . . . . . . . . . . . 184

Figure E.3. Client in Request Credit Card (no exception). . . . . . . . . . . . . 185

Figure E.4. Bank in Request Credit Card (no exception). . . . . . . . . . . . . 185

Figure E.5. Builder in Refurbish House. . . . . . . . . . . . . . . . . . . . . . . 186



xiii

LIST OF TABLES

Table 2.1. Examples of states. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.2. Examples of recoverability. . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.1. Outcome of experiments. . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3.2. Performance results for Example 3.4. . . . . . . . . . . . . . . . . . 55

Table 4.1. Similarity relations: relevance and cover. . . . . . . . . . . . . . . . 74

Table 4.2. Similarity relations: shift and delegation. . . . . . . . . . . . . . . 75

Table 4.3. Similarity relations: shift delegation. . . . . . . . . . . . . . . . . . 79

Table 4.4. Notation used for diagnosis process. . . . . . . . . . . . . . . . . . 81

Table 4.5. Levels of forward-shift. . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 5.1. Notation used for the monitoring procedure. . . . . . . . . . . . . . 117

Table A.1. Combination of terms for Theorem 1. . . . . . . . . . . . . . . . . 165



xiv

LIST OF SYMBOLS

C the domain of commitments

A the domain of agents

CA the set of commitments that agent A is aware of

CCA the set of commitments in CA that are relevant to C

CCeA the set of commitments in CA that are an extension of C

CCfA the set of commitments in CA that are a forward-shift of C

CCbA the set of commitments in CA that are a backward-shift of C

CCXA the set of commitments in CA that are a (proper) delegation

of C to X ∈ A
CCeXA the set of commitments in CA that are an extension delegation

of C to X ∈ A
CCfXA the set of commitments in CA that are a forward-shift delega-

tion of C to X ∈ A
CCbXA the set of commitments in CA that are a backward-shift dele-

gation of C to X ∈ A
CC∗XA CCXA ∪ CCeXA ∪ CCfXA ∪ CCbXA

CA the set of all commitments (CA =
⋃
A∈A CA)

CCA the set of commitments in CA that are relevant to C

δpro set of proper delegations of a given commitment

δimp set of improper delegations of a given commitment

δexc commitments to be excluded from a monitoring process

δout, δj, δk output of monitoring processes (sets of improper delegations)



xv

LIST OF ACRONYMS/ABBREVIATIONS

ABA Assumption-Based Argumentation

ComMon Commitment Monitoring tool

KGP Knowledge, Goals and Plans model of agency

PROT OSS PRivacy viOlaT ions in Online Social networkS

REC Reactive Event Calculus



1

1. INTRODUCTION

Exceptions are part of every day life. Things may go wrong or may not comply

with what is expected in a given situation. People face unexpected situations at home

while browsing the Internet, when they are driving their cars during the rush hour, or

at work while doing business with others. Generally, if things are not going as planned

in carrying out a task, one might conclude that there is an exception. Some exceptions

can be identified easily. For example, if you cannot access your e-mails, you might

conclude that there is a problem with your mail client. However, not all exceptions

are identified immediately. If your car breaks in the middle of the road, you may not

know for sure what has caused it to stop working.

People need to deal with exceptions in order to continue working towards their

goals. In particular, they first need to understand that something is wrong if they

sense an interference in their proper working. Understanding that an exception has

occurred is important, but not sufficient since one cannot return back to work unless

the exception is resolved. Some exceptions are harder to resolve. When many people

are involved in a single joint task, an exception gets harder to deal with. Consider

a Web-based software application which searches through patients given some search

criteria and lists their details. Three people work on the development of this software.

A Web developer creates the user interface, a database administrator manages the

database, and a software engineer builds the middleware that connects the database

and the user interface. Assume that the Web developer senses a delay in the retrieval

of search results. Now, the problem might be related to several issues; (i) a network

connection issue affecting the software to connect to the database, or (ii) a database

query that is not optimized, or (iii) a database table that is not indexed correctly to

deal with the query, or lastly (iv) any combination of these. The developers need to

collaborate to find out the underlying reason.

In this thesis, we focus on two domains with different characteristics in terms of

exceptions that may arise in them. The first domain is online social networks (OSNs).



2

In an OSN, several users interact with each other, and they share content through the

network. Describing which users will access this content determines a user’s privacy.

Therefore, a privacy exception here corresponds to a content being accessed by a user

that it is not explicitly aimed for. The second domain is e-commerce, where several

parties do business together to reach their goals, either individual or joint. These

business protocols are usually governed by contracts, and exceptions in e-commerce

are associated with contracts being violated. Examples 1.1 and 1.2 describe a scenario

for each domain, respectively.

Example 1.1. Consider a document sharing network where users can share private

content with their friends. The network operator has a separate privacy agreement

with each user stating that their content will remain private unless they share it with a

friend. We have three users for this network; Charlie, Sally, and Linus.

Example 1.2. Consider an online bookseller that delivers books on demand. A cus-

tomer, Ali, logs on to the online store of the bookseller, purchases a book of his choice,

and enters his delivery information. The bookseller then processes Ali’s order, and

delivers his book to his specified address using a courier.

Now, let us see what might go wrong in these settings. First, consider the privacy

domain. Assume that Charlie shares his CV with Sally as he needs her help organizing

it. If Sally also asks for help from Linus, then Linus will access Charlie’s CV even

though Charlie has not shared it with Linus. This is an exception for Charlie. How

can Charlie detect this exception, i.e., how can he understand that his CV might be

visible to Linus through this network?

Second, consider the e-commerce domain. Ali orders a book from the bookseller,

and the bookseller informs Ali that the book will be delivered in five days by the

courier. If the book does not arrive after five days has passed, then Ali will understand

that there is something wrong. But, how can Ali detect the cause of (i.e., diagnose)

this exception? That is, how can he know for sure whether it is the bookseller that has

delayed the order, or it is the courier that has delayed the delivery?



3

Considering the above examples, it is a time consuming and tedious task for

people to deal with those exceptions. It is better to have software agents to represent

humans, and do these tasks on behalf of them. Accordingly, we propose to use agents

to automate the reasoning on such exceptions. An agent is an intelligent entity (i.e., a

software process) that perceives, reasons, and acts within an environment [1]. It may

directly interact with its environment as well as interacting with other agents. In a

multiagent system, several agents interact with each other. The type of interactions

may change according to the context of the environment; cooperation, competition, or

both [2]. Agents are autonomous, e.g., they can decide whom to interact with, and

they are heterogeneous, e.g., it is difficult to make assumptions about their present or

future behavior.

A multiagent system may be a closed multiagent system or an open multiagent

system. For a closed multiagent system, the set of agents is predefined by the controller

of the system. An open multiagent system differs from a closed multiagent system since

it allows arbitrary external agents to join and leave the system at any time. At any

point in time, an agent may not know about the existence of other agents, or their

expected behaviors. Thus, it cannot assume how they will act in certain situations, or

put a restriction on their actions as in closed systems. The privacy and e-commerce

settings above can be modelled as open multiagent systems [3]. In open multiagent

systems, it is important to regulate the interactions of agents, so that if something goes

wrong during those interactions, the agents can reason using their interaction history.

We use commitments to formalize agent interactions. Commitments are widely

used to describe formal agent interaction in multiagent research [4–7]. They provide

a flexible way for agents to execute protocols, since they do not constrain the agents

in terms of how they should satisfy their obligations. A commitment is formed be-

tween a debtor and a creditor agent, in which the debtor is committed to satisfy the

commitment’s consequent. For Example 1.1, a privacy agreement between the net-

work operator and a user can be represented by a commitment, where the debtor is

the network operator, the creditor is the user, and the consequent is to preserve the

user’s privacy on his shared documents. For Example 1.2, a contract between the cus-



4

Agent1’s

current

situation

Agent1’s

expected

situation

Agent2’s

current

situation

Agent2’s

expected

situation

detection

detection

diagnosis prediction

Figure 1.1. Phases of exception handling.

tomer and the bookseller can be represented by a commitment, where the debtor is

the bookseller, the creditor is the customer, and the consequent is to deliver the book.

Note that this commitment will also have an antecedent to purchase the book. That

is, the bookseller will be committed to deliver the book after the customer makes the

purchase.

This thesis proposes automated methods that deal with exceptions in commitment-

based multiagent systems. Figure 1.1 depicts the phases of exception handling that we

focus on. Agents have expectations about the future when they execute in a multiagent

system. These expectations may be based on the agent’s goals, its relations with other

agents (e.g., commitments), or its previous experience on the task to be executed. If

the agent faces a situation that does not comply with its expectations, then it should

understand that there is an exception. This is the first phase in handling an excep-

tion, i.e., detection of exceptions. For example, if Ali does not receive the book he

has ordered until the specified deadline, then he understands that there is something

wrong. In order to detect an exception, the agent compares its current situation with

the projection it has previously made, e.g., its expectations. If the agent’s current

situation is good enough to to meet its projections, then there is nothing wrong with

the agent’s execution. Otherwise, we say that the agent detects an exception.

One other phase that is as important as detection is to foresee that something

might go wrong in the future, i.e., prediction of exceptions. For example, if Ali knows



5

that there will be a bad snow storm, he can understand that the delivery will be delayed.

In order to predict an exception, the agent makes use of other agents’ projections as

well as some assumptions that might be true in the future.

Once the agent detects or predicts an exception, it needs to understand the

underlying reason that has caused the exception, i.e., diagnosis of exceptions. For

example, when Ali sees that the delivery is delayed, he needs to understand why this

delay has occurred. He can ask the bookseller about the delay, or he can directly call the

courier. In order to diagnose an exception, agents iteratively check their commitments

to find out where the exception has initiated from.

The last step in handling an exception is to resolve the exception. That is, the

agent needs to take proper action in order to fix the exceptional situation. However,

this is a domain-dependent and agent-dependent task. Each agent may act differently

in order to resolve an exception based on the environment it executes in. We do not

deal with this phase in this thesis.

The contributions of this thesis are the following:

We extend the scope of exceptions to include cases where commitment violation

is not the sole cause. With our proposal, an agent can signal an exception even though

there is no commitment violation, or it may not signal an exception even if one of its

commitment is violated. We provide a sound and complete framework to provide such

reasoning based on comparing an agent’s current situation with its projections about

the future (Chapter 2 [8, 9]).

We apply model checking to predict exceptions based on a set of assumptions

on the current environment. The outcome of prediction tells the agent whether its

commitments will be violated based on the information it has given. If a violation

is predicted, the setting in which violation is possible will also be presented to the

agent. This way, an agent can understand whether performing an action will prevent

its commitment from being fulfilled. If so, the agent may choose not to perform that



6

action (Chapter 3 [10]).

We exhaustively investigate the temporal relations among commitments. We

use these relations to perform distributed diagnosis that deal with misalignment of

commitments and improper commitment delegations. We show that our proposed

framework is sound. We implement the framework in REC, a tool for monitoring

commitments at run-time (Chapter 4 [11,12] and Chapter 5 [13,14]). We also present

an application of argumentation techniques and agent dialogues to perform diagnosis

of commitment exceptions (Chapter 6 [15,16]).

The rest of this thesis is structured as follows:

Chapter 2 describes our approach for detection of exceptions, and presents a case

study on online social networks. Chapter 3 describes our approach for prediction of ex-

ceptions, and extends the case study that is used for detection. Chapter 4 describes our

approach for diagnosis of exceptions, and presents a case study on a delivery scenario

from e-commerce. Chapter 5 describes our approach for monitoring of commitment

delegations, and presents a different case study from e-commerce. Chapter 6 describes

an application of argumentation, and extends the case study that is used for diagnosis.

Chapter 7 concludes this thesis. First, we review the relevant literature on commit-

ments, distributed diagnosis, and exceptions. We discuss how our work relates to and

differs from those work. Then, we review our contributions for this thesis. Finally, we

present possible future directions to extend the ideas presented in this thesis.



7

2. DETECTION OF EXCEPTIONS

Commitments are an important abstraction for understanding and reasoning

about agent interactions [4–6, 17, 18]. The key idea in modeling agent interactions

with commitments is that messages are given a meaning based on creation and manip-

ulation of commitments. That is, each message among agents either commits an agent

to bring about a proposition or alters one of the existing commitments of an agent.

Knowing the meaning of each message in the system empowers the agents to decide on

their actions on their own.

An execution of interactions is successful when agents fulfill their commitments.

In a single-agent environment, if we assume that the environment is fully cooperative,

then the agent itself is the only entity that will affect the execution of the system.

However, in multiagent systems, even when the environment behaves as expected,

taking the correct actions does not guarantee that execution of the system will go as

planned since other agents are also involved. Exceptions—deviations from the expected

execution—may occur. It is, thus, necessary to monitor how the execution is processing.

If the execution is not progressing as expected, it is best for the agent to step in and

take further actions to make the execution right again. Specifically, the agent can go

back to its commitments to examine what has gone wrong and in principle find ways

to correct the execution.

We start investigating such exceptions in Web systems, where preserving the

privacy of users is important. The general process of preserving privacy is through

privacy agreements. Web systems announce their policies through privacy agreements.

Users are expected to use the system only if they are comfortable with the agreement.

In settings, where the Web system is a single locus of computation, carrying out privacy

dealings through an agreement is reasonable. An example to such a setting is that of an

e-mail system. The e-mail system announces to the user (via an agreement), whether

it will share his account details or e-mail contents with others. Knowing this, the user

can decide whether this is an appropriate e-mail system for his needs.



8

In online social networks, though, the loci of computation is distributed. The

system that provides the social network service (such as Facebook) allows users to see

each others’ content, make comments, and even share the content with others. In such

systems, it is difficult to maintain the privacy of users. Even if the system itself does

not share the user information with other systems, other users on the social network

can propagate a private content to others, for whom the content was not initially meant

for. Or, other applications that benefit from the online social network can use private

information for marketing or presentability purposes.

Hence, in systems that provide online social networks, even when a system owner

correctly follows the privacy agreement that it announces, the privacy of users can easily

be breached through interactions with other users. Consider the following scenario in

Example 2.1.

Example 2.1. The following relations hold among the three users of an online social

network (OSN): Charlie and Sally are friends, and Charlie and Linus are colleagues.

The OSN operator has two commitments with Charlie: (i) the OSN operator will share

Charlie’s new location with his friends at most in 15 minutes after he moves to a

new location, (ii) the OSN operator will not disclose Charlie’s location to any of his

colleagues.

Following this example, a typical understanding of an exception is that if Charlie

moves to a new location, and his friend Sally is not updated of his new location in 15

minutes, then an exception occurs. Similarly, if Charlie’s location is disclosed to Linus,

then another exception occurs. This typical interpretation of an exception corresponds

to commitment violation. While this is certainly important, an exception is not always

a synonym for violation. Hence, there could be other cases where the commitment

is not violated but an exception occurs and vice versa. Let us illustrate these points

following Example 2.1.

• Assume that there is a mild earthquake. Charlie predicts that network connection



9

will be down for some period of time. Hence, even though his location is not

shared within 15 minutes (and the commitment is violated), Charlie does not

signal an exception and does not take any actions.

• Assume that Charlie is well aware that the OSN operator always shares changes

in location in less than 5 minutes. Hence, even though it has been only 10 minutes

(and the commitment is not violated), Charlie signals an exception and takes an

action to handle the exception, e.g., contacts the OSN operator.

• In either of the above cases, from Sally’s point of view, there is no exception,

since she does not have a commitment with the OSN operator. She is not aware

of the fact that Charlie’s location will be shared with her.

The above example demonstrates two crucial facts about exceptions in multiagent

systems.

Partial view: Each agent perceives the environment locally and is only aware of a

part of the world. This stems from the fact that agents do not share all the information

they have with other agents and that some information as well as interactions are

private. As a result of this, contrary to centralized systems, where exceptions generally

interfere with the working of the entire system, in multiagent systems, an exception

may only be visible to a part of the system. That is, a deviation among two agents

may have no effect on a third agent; moreover, the third agent may not be aware of

the exception. This is an immediate result of the fact that agents have a local view of

the environment.

Subjectivity: Each agent has a personalized (or subjective) projection about the

future based on its previous interactions with others and capturing its commitments.

These projections represent an agent’s expectations of the future. Consider the first

case described in the above examples: since there is an earthquake, and Charlie learns

about this, he makes a projection that his location will not shared on time (i.e., the OSN

operator’s commitment for sharing his location will be violated). If the commitment is

then actually violated, his current state will still satisfy his projection, because he was

not expecting a prompt sharing anyway. Hence, even though there is a commitment



10

violation, Charlie will not immediately take action. Now consider the second case. Even

though the commitment is not violated yet, Charlie may decide to step in and nag the

OSN operator. Notice that an agent’s projections do not necessarily correspond to an

agent’s goals or desires. As in the example above, Charlie may expect a late sharing

of his location, knowing the existence of the earthquake, but certainly that is not his

goal.

Each agent in a multiagent system needs to decide with local, private information

whether its interactions are progressing as it has projected. It is important to be able

to decide this, because if a projected state is not attainable, then an agent would need

to step in and take further actions to correct the workings of the system.

Accordingly, we develop a principled, distributed approach to enable agents to

specify their commitments, represent their projections, and more importantly compute

whether their projections are attainable with the current execution of the system they

are in. The specific contributions of this chapter are as follows:

• In order to relate agents’ current states with their projections, we propose a sat-

isfiability relation. In addition to the usual satisfiability relation in propositional

logic, this relation also works on commitments by comparing stateful commit-

ments. If a projected state is not satisfiable by a current state of an agent, we

conclude that there is an exception in the system. We prove that our satisfiability

relation signals an exception if and only if there is an exception in the system.

• Apart from satisfiability, we also formalize a recoverability relation in order to

identify whether an exception is recoverable or not. That is, can the agents take

proper action to recover from the exception?

Following the examples above, the second case describes a recoverable exception.

Note that Charlie has signaled an exception before the commitment has been

violated. Since the commitment is still active, there is still a chance that the

OSN operator will honor its commitment, and complete the sharing on time.

• We extend the Reactive Event Calculus (REC) to handle conditional commit-

ments and their states. We further implement our satisfiability and recoverability



11

Agenti

Reasoner

Agentj

Reasoner

Agentk

Reasoner

frequest(i,j)

→ friend(i,j)

— — — — —

Protocolij

crequest(k,i) →

colleague(k,i)

— — — — —

Protocolik

move(j,w)

→ at(j,w)

— — — — —

Protocoljk

active →

fulfilled

— — — — —

Commitment Theory

share

10:05

location

private

share

10:15

projects

projects

projects

enacts enacts

enacts

enacts

enacts

enacts

Figure 2.1. Distributed multiagent architecture.

relations in REC, and provide it as a tool to detect exceptions.

• We analyze a case study to show that our tool can successfully catch exceptions,

similar to the ones listed above.

2.1. Architecture

We focus on exceptions that are part of contract-based multiagent systems (e.g.,

e-commerce and e-business applications). In such systems, protocols are described as

a set of contracts [19, 20], each describing a certain transaction between some of the

participants, e.g., agents. Note that privacy is a key property in business protocols,

which is preserved by agents’ policies [21]. An effective way of preserving privacy is to

enable distributed protocol execution. That is, each agent views its part of the protocol

only, and manipulates its own contracts.

Agents may have different projections about their future. By sensing the differ-

ences between their projections and the reality they face, they should be able to signal



12

exceptions, recover from them, and continue proper working. Figure 2.1 shows the dis-

tributed multiagent architecture that we propose to detect such exceptions at run-time.

Here, in the privacy domain, the agents represent the users of the OSN. Simply, the

agents enact a distributed protocol described by a set of interaction and commitment

manipulation rules, and periodically check for exceptions throughout their progress. To

do so, an agent compares its projection with its current state of the world at a given

point in time. In Figure 2.1, the circles denote agents. Each agent has a reasoner inside

that enables it to infer whether projected states are reached or not. Each agent enacts

a protocol, which is shown with a rounded rectangle in the figure. Note that each

agent has access to a portion of the protocol that is relevant for itself. Each agent has

a projected state, shown by a cloud in the figure. The lines between the elements show

how they are connected. For example, the projection on the top left is only connected

to the related agent Agenti, whereas the protocol description Protocolij is connected to

the two related agents Agenti and Agentj. The dashed arrows show which information

is fed into the agent’s reasoner, e.g., the rules in the commitment theory are used by

the agents in order to reason on their commitments. Next, we briefly describe each

element and give a sample execution to demonstrate their usage.

Protocol description: Following a distributed execution, protocol descriptions

are shared among related agents, so that an agent only has access to protocol rules

concerning itself [21]. In real life, each agent would be aware of the protocol that it is

involved in, but would not know the agreements among other entities. In addition, by

coupling the protocol descriptions among agents, we ensure that they share the same

semantics for the protocol rules (e.g., infer the same consequences for actions), thus

providing interoperability [22]. An example rule describes how the friend request action

is processed, e.g., the agents involved in the action and the consequences of the action.

Commitment theory: The commitment theory defines the rules for creating and

manipulating commitments. A commitment is a live object that changes state due to

the interactions of the agents [5, 6]. A commitment state captures the current status

of a commitment. For example, when a commitment is first created it would be in an

active state waiting to be fulfilled. Once the commitment is actually carried out, the



13

commitment would go into a fulfilled state. We explain the lifecycle of a commitment

in more depth when we describe the formal model.

In our architecture, the commitment theory is shared among all the agents. This

is required so that all agents can manipulate their commitments in the same way. This

is also important to prevent commitment misalignments [12, 23] from occurring, e.g.,

both the creditor and the debtor infer the same commitment state. An example rule

in the commitment theory describes the conditions on how a commitment makes a

transition from the active state to the fulfilled state, e.g. when the property of the

commitment is satisfied.

Projection: Each agent may have several projections about its future, which

describe its expectations. For example, after moving to a new location at 10 : 00,

Charlie expects his location to be shared with his friends by 10 : 15.

Event: Events correspond to the actions of the agents. Each event is associated

with a time point that describes at which time the event has occurred. For example,

when Charlie goes to his office at time 10 : 00, this corresponds to a move event by

Charlie to location office at time point 10 : 00.

Reasoner: Each agent has a separate reasoner that it uses to check for excep-

tions. The reasoner is fed with the protocol rules, the commitment theory, the agent’s

projections, and a sequence of events that are significant to the agent’s execution. Ac-

cordingly, the reasoner produces an output that tells whether there is an exception in

the current state of the agent.

Now, let us see how the following execution of Charlie from Example 2.1 is con-

nected with the above elements:

(i) The commitment ensures sharing of Charlie’s new location in 15 minutes (protocol

description),

(ii) Charlie moves to his office at 10 : 00 (event),



14

(iii) Upon Charlie’s move, the OSN operator becomes committed to Charlie (commit-

ment theory),

(iv) Based on the commitment, Charlie expects his new location to be shared by

10 : 15 (projection),

(v) Charlie checks to see whether his projection is satisfied or not, and finds out it is

not since Sally has not been informed that Charlie has come to his office. Based

on this finding, Charlie signals an exception (reasoner).

In order to detect such exceptions, we need a reasoner that can interpret our

commitment theory and compare agent states to decide if a projected state is satisfiable

by the current state. To realize this reasoning, we first develop a formal model of

satisfiability in terms of states and commitments. Next, we implement this reasoning

using the Reactive Event Calculus.

2.2. Commitments

A commitment represents a contract from a debtor agent towards a creditor agent

about a specific property [4]. Definition 35 defines a commitment formally. Below, Ai

and Aj denote agents (e.g., agents that enact a business protocol); Ant and Con are

propositions.

Definition 1. A commitment CSt
Ai,Aj

(Ant, Con) denotes the commitment between the

agents Ai and Aj, with St being its state. In particular, four commitment states are

meaningful for our work; conditional, active, fulfilled and violated. The above is a

conditional commitment; if the antecedent Ant is satisfied (i.e., becomes true), then

the debtor Ai becomes committed to the creditor Aj for satisfying the consequent Con,

and the commitment becomes active. If Ant is already True (denoted >), then this is an

active base-level commitment; Ai is committed to Aj for satisfying Con unconditionally.

Antecedent and consequent are propositions.

We follow the idea and notation of [23–25] to represent commitments (i.e., every

commitment is conditional). A base-level commitment is simply a commitment with



15

its condition being true. We also separate the agents from the antecedent and the con-

sequent. This way, we can omit the agents from the commitment description whenever

they are not significant.

2.3. Formal Model

Our formal model is based on the description of the world through states and the

evolution of the states through agents’ commitments [4–6].

2.3.1. World Model

Each agent views a part of the world since the execution of the multiagent system

is distributed among the agents. Hence, a state is subjective to an agent and captures

the agent’s view-point at a time point.

Definition 2. A time point is a discrete measure of time and is totally ordered. We

use t1, t2, . . . , tn to denote time points.

A state consists of propositions that are known to be true at that time point

and commitments that are represented via their states. Propositions tell what has

happened in the system so far (i.e., facts) to the agent’s perception. We assume that

the system is monotonic and so once a proposition becomes true, it cannot become

false.

Definition 3. A proposition can be an atomic proposition, its negation or conjunction

of atomic propositions.

Definition 4. A term T is either a proposition φ or a commitment C.

Definition 5. A state contains terms that hold at a particular time point T . To keep

processing simple, we partition propositions Φ and commitments C in two different sets.

Hence, ST (X) = 〈Φ, C〉.

We differentiate between three types of states with the variable X:



16

Table 2.1. Examples of states.

(a) S10:05(G) = 〈{newlocation}, {Caosn,charlie (newlocation, shared)}〉

(b) S10:05(charlie) = 〈{newlocation}, {Caosn,charlie (newlocation, shared)}〉

(c) S10:05(sally) = 〈{}, {}〉

(d) S10:05(charliep) = 〈{newlocation, shared}, {}〉

• ST (G): The world is described by a global state which demonstrates a global

view of the multiagent system at time T . The global state is not meant to be

known or processed by any of the agents in the multiagent system.

• ST (A): In contrast with the global state, each agent A has a local state (i.e., its

local world model), which is a subset of the real world at time T . In a distributed

execution, agents perceive the real world from different view-points. Thus, their

states may differ from each other based on their observations.

• ST (Ap): In order to enable agents about reasoning about the future, it is impor-

tant to represent how the agent projects the future. That is, based on its current

state and its current commitments in this state, how does the agent project the

world to evolve at a future time point? We represent this with the notion of

a projected state, which represents a projection of A for the world at time T .

The projected state is a representation of what the agent expects when time has

evolved to that point1 . Note that the agent always makes the projection at an

earlier time point.

1In this thesis, we use the term “projection” whenever we refer to the expectations of an agent
about a future state of the world.



17

Table 2.1 shows examples for each type of state for the same time point 10 :

05. In (a), the global state of the world for time 10 : 05 is shown. It contains a

single proposition which tells that Charlie has moved to a new location, and an active

commitment from the OSN operator to Charlie, which tells that the sharing of Charlie’s

new location is still in process. In (b), Charlie’s state for the same time point 10 : 05

is shown, which is identical to the global state. That is, Charlie fully perceives his

environment at this point. However, it is not always the case that the agents can

perceive everything in their environment. For example, in (c), Sally, is neither aware

of the commitment between Charlie and the OSN operator, nor aware of the fact

that Charlie has moved to a new location. In (d), Charlie’s projection for time 10 :

05 is shown. One can easily see that Charlie expects sharing of his location to be

completed for this time point. However, from the local state of Charlie, we see that the

corresponding commitment is still active. Indeed, there is an inconsistency between

what Charlie perceives and expects.

A rational agent tries to perform actions that will enable its projected state to be

realized. However, note that a projected state may not be realized solely by the agent

itself since it may contain propositions or commitments that can only be satisfied by

others.

2.3.2. Commitment Model

Commitments are live objects; we always consider a commitment with its state

[5, 6]. Next, we describe each commitment state with respect to the corresponding

world states and the transitions in between. Assume the following state ST (A) = 〈Φ,

C〉 and that CSt(Q, P ) ∈ C. Let’s walk through the different values for St.

Conditional: When the commitment is in conditional state, denoted Cc(Q, P ),

if Q is brought about, then the debtor will be committed to bring about P . When the

state is conditional, then Q, P 6∈ Φ. In other words, the commitment Cc(Q, P ) cannot

coexist in the same state with its antecedent or consequent:



18

• If the commitment’s antecedent Q already holds, then the commitment is no

longer conditional (i.e., its condition is satisfied), and it will become active.

• If the commitment’s consequent P already holds, then the commitment is no

longer conditional, and it will become fulfilled. Afterward, it is not significant

whether the antecedent is also satisfied or not.

Active: A commitment can be in an active state following two different paths:

• The commitment is initially created without a condition, denoted as Ca(>, P ).

We require that P 6∈ Φ. In other words, the commitment Ca(>, P ) cannot coexist

in the same state with its consequent. If the commitment’s consequent P already

holds, then the commitment is no longer active, and it will become fulfilled. Once

the consequent is satisfied, then the commitment’s life-cycle ends.

• Alternatively, a conditional commitment may be detached into an active com-

mitment. That is, if the state that includes the commitment Cc(Q, P ) makes a

transition to a state where the commitment’s antecedent holds, then the commit-

ment will become active, Ca(Q, P ).

Fulfilled (after conditional): The commitment is in fulfilled state, denoted Cf (Q,

P ), when at ST−1, Cc(Q, P ) exists and at ST , P ∈ Φ. That is, if the state that

includes the commitment Cc(Q, P ) makes a transition to a state where the commit-

ment’s consequent holds, then the commitment will become fulfilled. The conditional

commitment’s life-cycle ends with this state.

Fulfilled (after active): The commitment is in fulfilled state, denoted Cf (>, P ),

when at ST−1, Ca(Q, P ) exists and at ST , P ∈ Φ. That is, if the state that includes

the commitment Ca(>, P ) makes a transition to a state where the commitment’s

consequent holds, then the commitment will be in the fulfilled state. The base-level

commitment’s life-cycle ends with this state.

Violated: The commitment is in violated state, denoted Cv(Q, P ), if it were

active and its consequent does not hold. It can either be that there is a time out in



19

Cc(Q, P )

conditional

Cf (Q, P ), P

fulfilled

Ca(Q, P ), Q

active

Cv(Q, P ), Q, ¬P

violated

Cf (Q, P ), Q, P

fulfilled

(a) Conditional

Ca(>, P )

active

Cv(>, P ), ¬P

violated

Cf (>, P ), P

fulfilled

(b) Base-level

Figure 2.2. Commitment states.

which P has not been realized and thus ¬P holds or ¬P is specifically made true by

an agent. Hence, the constraint we require is that if a commitment is in a violated

state, then it must have been active and its consequent must be false. That is, when

at ST−1, Ca(Q, P ) exists and at ST , ¬P ∈ Φ. Again, the commitment’s life-cycle ends

with this state.

Definition 6. An active state of a commitment can only be followed by a fulfilled or

violated state and a conditional state can only be followed by an active or a fulfilled

state.

Figure 2.2 summarizes the commitment states; 2.2(a) for conditional commit-

ments and 2.2(b) for base-level commitments. This flow of states is consistent with

existing work [5,6] and represents a review of the state of the art. The transitions that

are given in Figure 2.2 are complete in the sense that there are no other ways to change

commitment states. Note that double ellipses represent terminal commitment states

(i.e., the commitment’s life-cycle ends in those states).

Definition 7. A commitment CSt1
1 (p, q) is content-wise identical to a commitment

CSt2
2 (r, s), denoted C1 =c C2, iff p = r and q = s.

Definition 8. A commitment CSt1
1 (p, q) is a successor of a commitment CSt2

2 (r, s),

denoted C2 � C1, iff C1 =c C2 and St1 follows St2 as defined in Definition 6.



20

2.3.3. Exceptions

We understand exceptions as situations that are worse off for an agent than is

expected by the agent. To formalize this, we formalize the benefits of terms for an

agent.

Definition 9. TP (S) is the set containing the terms in state S that include proposition

P .

The terms in TP (S) can be the following:

• Cv(Q, P ) or Cv(>, P ): for simplicity we use Cv(P ) to denote both, which rep-

resents a violated commitment towards P .

• Ca(Q, P ) or Ca(>, P ): similarly, we use Ca(P ) to denote both.

• Cf (Q, P ) or Cf (>, P ): we use Cf (P ) to denote both.

• P : is a proposition.

Definition 10. The utility of a term X shows how desirable X is in the execution.

We assume a function u from terms into real numbers so that each agent can compute

and compare the utilities of terms.

Axiom 1. From the creditor’s point of view, the following is meaningful: u(Cv(P ))

< u(Ca(P )) < u(Cf (P )) = u(P ). That is, the creditor would benefit most if the

commitment is fulfilled. Less beneficial is an active commitment and the worst is a

violated commitment. This ordering is compatible with the commitment valuations

proposed by Yolum and Singh [26]. Note that u(Cf(Q, P )) = u(Cf(>, P )), so we use

the short-hand u(Cf (P )) to denote the utility of both.

Axiom 1 shows how the utility relation is ordered for each possible term that

includes proposition P . Note that the utility relation reflects an agent’s expectations

from a commitment.

Figure 2.3 demonstrates the condition where an exception will occur. The X axis

shows expected terms, whereas the Y axis shows the actual terms. When an agent



21

u(Cv(P ))

u(Ca(P ))

u(Cf (P ))

u(P )

u(TP (ST (A)))

u(Cv(P )) u(Ca(P )) u(Cf (P )) u(P )

u(TP (ST (Ap)))

EXCEPTION

Figure 2.3. Understanding exceptions.

ends up achieving a term that has lower utility than its expected term, then this will

yield an exception. For example, if the agent expects Cf (P ), but in reality, the world

has Ca(P ), then it should signal an exception and take an action. The area under the

dashed line shows the cases where the agent would signal an exception.

Definition 11 describes exceptions formally based on this intuition. In particular,

there are two cases that cause exceptions. In the first case, if there is a term in

the projected state and there are no corresponding terms in the real state, then it

means that the agent expects something to happen, but there are no events related

to that occurring. Note that Charlie expects his location to be shared. If he sees

no commitment from the the OSN operator towards sharing his location, then he

understands that there is something wrong. In the second case, even though there is a

term related to the one in the projected state, the utility of the term in the projected

state is higher than the utility of the term in the real state. Again, consider Charlie’s

case. He expects sharing to be completed. However, assume that the commitment from

the OSN operator is still active. Obviously, the utility of the commitment is higher



22

for Charlie when it is fulfilled, since he is the creditor of the commitment. Thus, he

understands that his current situation is not good enough as he has expected. This

definition of an exception captures the idea that an exception is subjective in the sense

that one agent may identify a particular situation as an exception while another agent

may not, depending on its expectations. Notice that our commitment model ensures

that only one of the commitment terms can exist in a particular state. Moreover, P

can only coexist with Cf (P ) in the same state.

Definition 11. An exception occurs for agent A at time T related to proposition P ,

denoted exception(A, T , P ), iff

• the projected state contains a term but the real state does not contain any terms;

that is: ∃ x: x ∈ TP (ST (Ap)) and TP (ST (A)) = ∅, or

• the projected state contains a term that is higher in utility than the related term in

the real state; that is: ∃ x, y: x ∈ TP (ST (Ap)), y ∈ TP (ST (A)), and u(x) > u(y).

Note that Definition 11 does not compare the total utility value of the states but

of individual terms. The intuition is that we do not want the summation of utilities to

cover for the differences in individual differences. For example, assume that there are

two terms in the real state as well as in the projected state. It might be the case that

when analyzed individually one of the terms in the real state has lower utility than

its associated term in the projected state. Once there is a problem related to a single

proposition in an agent’s state, then there is an exception in that state. Our definition

follows this idea and signals an exception. However, if we had looked at the utilities

of the states as a whole, it might have been the case that the utility gained through

the second term is much higher in the real state, yielding a high utility for the real

state than the projected state. Since the utility had been higher in the real state, we

would not have signaled an exception, missing a possible exception on the first term.

Assume that Charlie moves to his office, and he expects his friends Sally and Alice to

be informed of this. In addition, it is more important for Charlie at the time that Alice

immediately gets aware of his new location. Now, if Alice is informed of his location,

and Sally is not, and if we consider the utilities together, then, we might miss the case



23

that Sally is not informed of Charlie’s location at all.

2.4. Satisfiability

We capture the projections of an agent through projected states. On one hand, a

projected state is similar to a temporal achievement goal [27], where the agent plans to

reach some properties or be involved in some commitments at a certain time point. On

the other hand, projected states do not necessarily represent goals. They also model

the agent’s expectations about the future. That is, the agent may assume certain

properties to hold in the future even though it does not wish so, e.g., Charlie may

expect a late sharing if he knows about the earthquake.

It is important that an agent can compare its real and projected states. This

is crucial for the agent to understand if everything is progressing as it has expected.

Basically, there are two outcomes of this comparison. If the agent finds out that the

the situation observed in its real state is not good enough to support its projection,

then it understands that something has gone wrong. If not, then its execution is fine.

For comparing the real and projected states, we propose a satisfiability relation. It

compares two states and tells if one satisfies the other. This is a strong relation in

the sense that once a state satisfies another, then the two states are either equal or

the former can replace the latter. This captures our intuition that if the current state

of the world is equivalent to or better than the projected world state, the execution

is in order and no action needs to be taken. However, if the comparison yields that

the current state does not satisfy a projected state, then there is an exception and it

should be handled by the agent.

Our understanding of satisfiability is inspired from satisfiability in propositional

logic. However, in this case, we do not only have propositions but also commitments

with states. Hence, we need a relation that can also take care of comparisons of stateful

commitments. Our satisfiability relation is denoted by X �Y , and is read as “Y is

satisfiable by X”. Since the proposed relation will be used to compare the current

state of an agent with a projected state, X will correspond to the real state and Y



24

will correspond to the projected state of the agent. The satisfiability relation we need

should have these properties:

• Reflexive: If the current and projected states are identical, we expect our satisfi-

ability relation to hold.

• Non-symmetric: If the current state is worse than a projected state, the current

state will not satisfy the expectation, but the other direction will hold. Hence,

the satisfiability relation should be non-symmetric.

• Transitive: If a current state satisfies a projected state, which in turn satisfies a

third state, we want to conclude that the first state would satisfy the third state

as well.

We formalize the intuition of satisfiability via the following axioms. Figure 2.4 is

an aid in following the axioms. Given two atomic propositions newlocation and shared,

Figure 2.4 depicts some possible terms that can be derived from them and draws the

satisfiability relation between them. Note that the proposition newlocation represents

that Charlie has moved to a new location, and the proposition shared represents that

his new location is shared among his friends. Arrows show the direction of satisfiability.

To reduce clutter, we remove the agent names. In order to understand satisfiability

between states, we start with studying satisfiability between terms.

Axiom 2. A proposition φj is satisfiable by a proposition φi, denoted φi �φj, iff φi `

φj.

Axiom 2 follows directly from logic entailment in propositional logic. When

commitments are involved, we need to go beyond basic logic entailment. Accordingly,

Axiom 3 states that if a proposition entails a commitment’s consequent, then the

commitment is satisfiable independently of its state.

Axiom 3. A base-level commitment CSAi,Aj
(>, Con) is satisfiable by a proposition φ,

denoted φ �CSAi,Aj
(>, Con), iff φ ` Con.

We can study Axiom 3 as three cases that correspond to the different commitment



25

newlocation
1

shared
2

Cf (>, shared)
3

Ca(>, shared)
4

Cv(>, shared)
5

Cv(newlocation, shared)
6

Cf (newlocation, shared)
7

Ca(newlocation, shared)
8

Cc(newlocation, shared)
9

Figure 2.4. A partial view of the satisfiability network.

states {f , a, v}.

• A proposition entailing a fulfilled commitment’s consequent posesses the same

outcome as the commitment itself. For example, in Figure 2.4, nodes 2 and 3

(shared �Cf (>, shared)) exhibit this relation. The interpretation is that if

Charlie has a projection that his commitment towards sharing his location will

be fulfilled and if he perceives that the sharing is performed, then his projection

is satisfied. Hence, the proposition satisfies the fulfilled commitment.

• A proposition entailing an active commitment’s consequent is more beneficial

than the commitment itself. For example, in Figure 2.4, nodes 2 and 4 (shared

�Ca(>, shared)) exhibit this relation. That is, if Charlie has a projection that

his commitment will be active but perceives that the sharing is actually already

performed, then he is indeed in a better situation. Hence, the proposition satisfies

the active commitment.

• A proposition entailing a violated commitment’s consequent is more beneficial

than the commitment itself. For example, in Figure 2.4, nodes 2 and 5 (shared

�Cv(>, shared)) exhibit this relation. Now, if Charlie expects that his commit-

ment will be violated, then he will be satisfied when he actually sees that the



26

sharing is performed. Hence, the proposition satisfies the violated commitment.

Axiom 4. A conditional commitment CSAi,Aj
(Ant, Con) is satisfiable by a proposition

φ, denoted φ �CSAi,Aj
(Ant, Con) , iff

• φ ` Con, or

• φ ` Ant and S ∈ {v}.

Axiom 4 describes the cases when a proposition would satisfy a conditional com-

mitment. If the proposition already entails the consequent of the conditional commit-

ment, then no matter what the state of the conditional commitment is the proposition

satisfies the conditional commitment. The intuition is that by carrying out the con-

ditional commitment at different stages, the creditor will at most get the consequent.

If the consequent is already there, then this yields the same output. Otherwise, if

the proposition entails the antecedent, the only way for the proposition to satisfy the

conditional commitment is if the conditional commitment is violated. That is, the

antecedent has been realized but the consequent is not going to be realized.

Axiom 5. A proposition φ is satisfiable by a base-level commitment CSAi,Aj
(>, Con),

denoted CSAi,Aj
(>, Con) �φ, iff Con ` φ and S ∈ {f}.

Similar to Axiom 3, Axiom 5 states that if the commitment’s consequent entails

the proposition, then the proposition is only satisfiable if the commitment is fulfilled.

This time, we are again considering nodes 2 and 3 but computing whether node 3

satisfies node 2 (Cf (>, shared) �shared). A fulfilled commitment towards sharing

means that sharing has occurred. Indeed, this is equivalent to the proposition shared.

Axiom 6. A base-level commitment CS2
Ak,Al

(>, Con2) is satisfiable by a base-level

commitment CS1
Ai,Aj

(>, Con1), denoted CS1
Ai,Aj

(>, Con1) �CS2
Ak,Al

(>, Con2), iff

• Con1 ` Con2 and S1 ∈ {f}, or

• Con1 ` Con2, S1 ∈ {a}, and S2 ∈ {a, v}, or



27

• Con1 ` Con2, S1 ∈ {v}, and S2 ∈ {v}.

Axiom 6 uses the ideas in Axioms 3 and 5 for comparing base-level commitments.

Let us review each case:

• A projection of a commitment in any state can be satisfied by a fulfilled commit-

ment as long as its consequent is entailed. For example, in Figure 2.4, nodes 3

and 4 (Cf (>, shared) �Ca(>, shared)) exhibit this relation, since the fulfilled

commitment is better than a projection where the commitment is only active.

• A projection of an active or violated commitment can also be satisfied by an

active commitment. For example, in Figure 2.4, nodes 4 and 5 (Ca(>, shared)

�Cv(>, shared)) exhibit this relation.

• A projection of a violated commitment can also be satisfied by another violated

commitment. That is, if the expectation was that the commitment would have

been violated, nothing worse can happen concerning the commitment. Hence,

any commitment state is as good as the violated state.

Axiom 7. A conditional commitment CS2
Ak,Al

(Ant, Con2) is satisfiable by a base-level

commitment CS1
Ai,Aj

(>, Con1), denoted CS1
Ai,Aj

(>, Con1) �CS2
Ak,Al

(Ant, Con2), iff

• Con1 ` Con2 and S1 ∈ {f}, or

• Con1 ` Con2, S1 ∈ {a}, and S2 ∈ {a, v, c}, or

• Con1 ` Con2, S1 ∈ {v}, and S2 ∈ {v}, or

• Con1 ` Ant, S1 ∈ {f}, and S2 ∈ {v}.

Axiom 7 describes when a base-level commitment satisfies a conditional commit-

ment. First, let’s look at the cases where the consequent of the base-level commitment

entails the consequent of the conditional commitment. If the base-level commitment

is fulfilled, then this satisfies any state of the conditional commitment since this is

the best that can result from the conditional commitment. The active state of the

base-level commitment satisfies all states of the conditional commitment except the



28

fulfilled state, since the base-level commitment is in active state, the consequent does

not hold. In the case of violated state, since neither consequent is going to be real-

ized, the base-level commitment satisfies the conditional commitment. If instead the

consequent of the base-level commitment satisfies the antecedent of the conditional

commitment, there is only one state combination that yields satisfaction: when the

base-level is fulfilled and the conditional commitment is violated.

Axiom 8. A proposition φ is satisfiable by a conditional commitment CSAi,Aj
(Ant,

Con), denoted CSAi,Aj
(Ant, Con) �φ, iff

• Ant ` φ and S ∈ {a, v}, or

• Con ` φ and S ∈ {f}.

Axiom 8 describes the two ways that a conditional commitment satisfies a propo-

sition. The first case states that if a conditional commitment reaches an active state,

then it satisfies its antecedent. This is straightforward since the only way to reach an

active conditional commitment is by having the antecedent hold. Further, if the con-

sequent never becomes true (i.e., the commitment is violated), the commitment would

still satisfy the antecedent; hence for example, in Figure 2.4, node 6 would satisfy node 1

(Cv(newlocation, shared) �newlocation). Note that the fulfilled state is not included

in this case, because the conditional commitment may have been fulfilled directly from

the conditional state leaving us with no information about the antecedent itself. The

second case states that a fulfilled conditional commitment satisfies its consequent. In

Figure 2.4, a similar example would be among nodes 7 and 2 (Cf (newlocation, shared)

�shared).

Axiom 9. A base-level commitment CS2
Ak,Al

(>, Con2) is satisfiable by a conditional

commitment CS1
Ai,Aj

(Ant, Con1), denoted CS1
Ai,Aj

(Ant, Con1) �CS2
Ak,Al

(>, Con2), iff

• Con1 ` Con2 and S1 ∈ {f}, or

• Con1 ` Con2, S1 ∈ {a}, and S2 ∈ {a, v}, or

• Con1 ` Con2, S1 ∈ {v}, and S2 ∈ {v}, or



29

• Ant ` Con2 and S1 ∈ {a, v}.

Axiom 9 describes the conditions in which a conditional commitment satisfies a

base-level commitment. If we consider the consequents of the commitments, then the

relation between the two commitments contain the relations between two base-level

commitments (Axiom 6). The only extra case here is when the antecedent of the con-

ditional commitment can entail the consequent of the base-level commitment. In this

case, even if the consequent of the conditional commitment does not hold, the con-

ditional commitment will satisfy the base-level commitment. Note that a conditional

commitment that is in a conditional state cannot satisfy a base-level commitment.

Axiom 10. A conditional commitment CS2
Ak,Al

(Ant2, Con2) is satisfiable by a condi-

tional commitment CS1
Ai,Aj

(Ant1, Con1), denoted CS1
Ai,Aj

(Ant1, Con1) �CS2
Ak,Al

(Ant2,

Con2), iff

• Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {f}, or

• Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {a}, and S2 ∈ {a, v, c}, or

• Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {v}, and S2 ∈ {v}, or

• Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {c}, and S2 ∈ {c}, or

• Ant1 ` Con2 and S1 ∈ {a, v}.

Axiom 10 applies a similar reasoning to Axiom 6 for conditional commitments.

For example, Cf (newlocation, shared) �Cf (>, shared) (denoted with nodes 7 and 3 in

Figure 2.4). Here both commitments are fulfilled with the same consequent. Moreover,

Cf (newlocation, shared) �Ca(newlocation, shared). Here, the fulfilled commitment

entails shared, thus satisfying the active commitment towards shared.

The above axioms cover the possible satisfiability relations among terms.

Theorem 1. �relation is reflexive, non-symmetric, and transitive.

The above development shows how a term satisfies another term. Starting from



30

• newlocation

• Cfosn,charlie (>, shared)

St3(charlie)

• newlocation

• shared

St3(charliep)

�

Figure 2.5. State satisfiability.

that, we need to show how a state satisfies another state. As a motivating example,

consider the states in Figure 2.5. To decide whether the state on the right is satisfiable

by the state on the left, we need to figure out whether there exists a term on the left

state for each term on the right state such that the term on the left satisfies the term on

the right. That is, the term newlocation in state St3(charliep) is satisfiable by the term

newlocation in state St3(charlie). Similarly, the term shared in state St3(charliep) is

satisfiable by the term Cfosn,charlie (>, shared) in state St3(charlie).

Axiom 11. A term Tj is satisfiable by a state ST (X) = 〈Φ, C〉, denoted ST (X) �Tj,

iff ∃ Ti: Ti ∈ Φ ∪ C and Ti �Tj.

According to Axiom 11, a term is satisfiable by a state if there is a term in the

state that satisfies the former term.

Definition 12. A state STn(Aj) is satisfiable by a state STm(Ai), denoted STm(Ai)

�STn(Aj), iff ∀ T ∈ STn(Aj): STm(Ai) �T .

According to Definition 12, a state is satisfiable by another state if every term in

the former state is satisfiable by the latter.

By computing the satisfiability relation as explained above, an agent can catch an

exception and take an action as it sees fit. We now show that our satisfiability relation

is sound and complete. That is, our satisfiability relation signals an exception only

when there is an exception (soundness) and if there is an exception it always signals it

(completeness).

Theorem 2. For an agent A, at time T , given a proposition P , ST (A) 6�ST (Ap) iff

exception(A, T , P ).



31

Table 2.2. Examples of recoverability.

(a) Caosn,charlie (>, shared)} 1 shared

(b) Ccosn,charlie (newlocation, shared)} 2 shared

(c) Cvosn,charlie (newlocation, shared)} 6shared

2.5. Recoverability

The satisfiability relation enables us to compute exceptions at run time. If there

is an exception, a second question comes up. Is the exception recoverable? That is, is

it possible to take some steps to put the execution back into the projected state? In

order to decide if an exception is recoverable or not, we use a second relation called

recoverability. This relation is denoted by X Y , which is read as “Y is recoverable

from X”.

Recoverability is again first defined among terms and then among states. We

define the following levels of recoverability:

K-recoverability: Y is k-recoverable from X, denoted X k Y , iff it takes k

commitment operations (i.e., state changes) for X to satisfy Y . Definition 13 describes

k-recoverability recursively. In the base case, if Y is satisfiable by X, we mean that

Y has already been recovered. We call this case zero-recoverable. In the recursive

case, we are saying that Y is k-recoverable from X, if there exists X ′ such that X ′ is

recoverable from X by a single commitment operation (Definition 8) and Y is k − 1

recoverable from X ′.

Definition 13. Y is k-recoverable by X, iff either Y is satisfiable by X, or there is X ′



32

such that X ′ is a successor of X, and Y is (k-1)-recoverable by X. Formally,

• X 0 Y iff X �Y .

• X k Y iff ∃ X ′: X � X ′ and X ′ k−1 Y .

Table 2.2a shows an example of one-recoverability; when the sharing of Charlie’s

location occurs, the commitment’s state changes from active to fulfilled, thus the propo-

sition shared will be satisfied. Table 2.2b shows an example of two-recoverability; first

Charlie goes to his office, which brings the commitment to the active state (newlocation

is satisfied). Then, the commitment is fulfilled (shared is satisfied).

Non-recoverability: Y is not recoverable by X, denoted X 6Y , iff there is no way

of going from X to Y . That is, there is no way of realizing the term Y after the term

X holds. Definition 14 describes non-recoverability formally.

Definition 14. Y is not recoverable by X, iff there is no such k that Y is k-recoverable

by X. Formally, X 6Y iff @ k: X k Y .

Table 2.2c shows an intuitive example for non-recoverability; once a commitment

is violated, then its consequent cannot be reached. This can be verified by inspecting

Figure 2.2; the violated commitment state is a terminal state meaning that once a

commitment is violated, then the commitment’s life-cycle ends (i.e., it stays violated).

That is, even if the proposition of the commitment becomes true after the commitment

becomes violated, we do not modify the state of the commitment anymore. Thus, a

fulfilled commitment is not recoverable from its violated state.

One can easily verify that the recoverability relation is also reflexive, non-symmetric,

and transitive.

State recoverability: Next, we describe state recoverability in terms of k-recoverability.

Axiom 12. A term Tj is k-recoverable from a state ST , denoted ST k Tj, iff ∃ Ti: Ti
∈ ST and Ti k Tj.



33

Similar to term satisfiability, a term is recoverable by a state if there is a term in

the state that the former term is recoverable by it.

Definition 15. A state STn(Aj) is k-recoverable from state STm(Ai), denoted STm(Ai)

k STn(Aj), iff ∀ T ∈ STn(Aj): either STm(Ai) �T or STm(Ai) k T , and ∃ Tr ∈

STn(Aj): STm(Ai) 6�Tr.

• newlocation

• Caosn,charlie (>, shared)

St2(charlie)

• newlocation

• shared

St2(charliep)



Figure 2.6. State recoverability.

According to Definition 15, a state is recoverable by another state if every term

in the former state is either satisfiable or recoverable by the latter, and at least one

term is not satisfiable. Figure 2.6 shows an example: the term newlocation in state

St2(charliep) is satisfiable by the term newlocation in state St2(charlie). Moreover,

the term shared in state St2(charliep) is recoverable (but not satisfiable) by the term

Caosn,charlie (>, shared) in state St2(charlie). Thus, St2(charlie) St2(charliep).

Now, we describe how to utilize the recoverability relation in order to understand

whether an exception is recoverable or not.

Definition 16. An exception is recoverable for agent A at time T only if ST (A) k

ST (Ap).

It is important for the agent to understand whether the exception is recoverable

or not. If recoverable, the agent can take proper action to recover from the exception.

For example, if Charlie thinks that the sharing should have been completed, and there

is a commitment from the OSN operator towards sharing his location that is still

active, then the exception signaled by Charlie can be recovered by the OSN operator,

via fulfillment of the commitment. In addition, we associate a parameter k with the

recoverability relation, to provide a measure of recoverability. As an example, consider



34

again the above case; the OSN operator needs to perform a single action to satisfy

sharing (one-recoverable). This is indeed more desirable than any case where the

OSN operator (or another party) has to perform several actions to satisfy Charlie’s

projection (k-recoverable where k > 1). So, in a sense the parameter k acts as a

measure to calculate how bad the exception is.

2.6. REC

The Reactive Event Calculus (REC) extends the Event Calculus, which is based

on Prolog. REC has been developed to monitor commitments in run-time. We employ

REC for the reasoner component in Figure 2.1. Note that each agent has a separate

REC engine that it can run at any time throughout the execution. When used for

commitment tracking (e.g., monitoring the states of commitments), the REC engine is

generally fed with three types of input:

• Commitment theory contains the rules on how commitments are manipulated.

This is a shared rule-base for all the agents.

• Protocol description contains the protocol rules that describe the consequences of

the agents’ actions as well as domain facts. This is an agent-dependent as well

as domain-dependent rule-base as each agent has a separate protocol description

that covers its own view.

• Event trace contains the actions that the agents perform throughout time. Like

the protocol description, the event traces are also agent-dependent. That is, each

agent is aware of the events that are related to it, but does not see the events

that might take place among other agents.

Once the REC engine is run with above input, it produces an outcome that

demonstrates the fluents the agent is aware of through time (e.g., states of commit-

ments). This process is often called commitment tracking [28]. However, here, we do

not use REC only for monitoring commitment states, but also to detect exceptions at

run-time. Thus, we further integrate the agent’s projections and an exception theory



35

• newlocation

• Caosn,charlie (newlocation,

shared)

St6(charlie)

• shared

St6(charliep)
6�

(a) States (b) j-REC output

Figure 2.7. Exception: Charlie expects early sharing of his location.

into REC in order to do so.

Here, we assume some basic knowledge of Prolog. In REC, we can express that

an event initiates (or terminates) a fluent or property of the system, by way of initi-

ates(Event, Fluent, Time) (or terminates(Event, Fluent, Time)) relations. Negation is

denoted with \+. A detailed explanation of how REC manipulates commitment states

can be found in [29].

We have implemented the framework in j-REC; a Java-based version of REC

[7,28]. The full implementation can be downloaded from http://mas.cmpe.boun.edu.

tr/ozgur/code.html, under Section “2. Experiments for Monitoring Interactions”.

We illustrate the important points in Appendix B.

2.7. Case Study

Let us review several cases to demonstrate the usage of the satisfiability relation

for detecting exceptions.

Exception for Charlie: Figure 2.7(a) demonstrates an intuitive case. The left box

shows Charlie’s state at time t6, while the right box shows his projected state for the



36

same time point. The following REC rule describes an exception according to Charlie’s

projected state:

� �
i n i t i a t e s ( , except ion , 6):−

\+ s a t i s f i a b l e ( exp ( shared , 6 ) ) .� �
The satisfiable(exp(Fluent, Time)) predicate in the rule describes the expectation

of the Fluent to be satisfied at time point Time. So, the complete rule states that if the

sharing of Charlie’s location is not performed by time t6 (note the negation sign before

the satisfiable predicate), then Charlie will signal an exception following the initiates

relation. Note that the placeholder for the Event here is empty since the exception

is not caused by the occurrence of a specific event, but rather the unsatisfiability of

an expectation. At time t6, the OSN operator currently has an active commitment to

Charlie for sharing his location. However, Charlie expects sharing to be completed.

Recall that for a state to be satisfiable, all its terms should be satisfiable (Definition

12). There is only one term in state St6(charliep), which is the proposition shared.

However, none of the Axioms for satisfiability can be applied to satisfy shared from the

terms in state St6(ali). Thus, Charlie’s projected state is not satisfiable. This causes

an exception for Charlie according to Definition 11. Figure 2.7(b) shows the output of

j-REC for this case. The horizontal axis shows the timeline of events that have occurred

during Charlie’s execution. Notice a tick event is associated with every non-occupied

(i.e., no protocol events) discrete time-point. This is required for REC to process

properly, since it is event-driven, e.g., a new event triggers REC to process further.

The fluents are positioned vertically, and their truth values (and the corresponding

states for commitments) are computed according to the events. You can see from the

figure that at t6, newlocation is true and the commitment is active, which corresponds

to Charlie’s state in Figure 2.7(a)2 . When REC processes at t6 with the exception rule

above, the fluent exception becomes true as Charlie’s state fails to satisfy his projection.

No exception for Charlie: Figure 2.8(a) demonstrates a slightly different case.

Charlie’s state is the same as before. However, this time, he does not expect sharing to

2Note that we omit from the state the fluents that represent the stock values of items.



37

• newlocation

• Caosn,charlie (newlocation,

shared)

St6(charlie)

• Caosn,charlie (>, shared)

St6(charliep)
�

(a) States (b) j-REC output

Figure 2.8. No exception: Charlie does not expect sharing of his location.

be fulfilled at time t6. His exception condition can be described by the following REC

rule:

� �
i n i t i a t e s ( , except ion , 6):−

\+ s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , shared ) ) ) , 6 ) ) .� �
According to Axiom 9, Caosn,charlie (>, shared) is satisfiable by Caosn,charlie (newlocation,

shared). Thus, no exception occurs for Charlie. Figure 2.8(b) shows the output of j-

REC for this case. Notice that the exception fluent does not hold since Charlie’s

projected state is attainable.

• newlocation

• Caosn,charlie (newlocation,

shared)

St6(osn)

• Caosn,charlie (>, shared)

St6(osnp)

�

Figure 2.9. Charlie and the OSN operator’s projections do not match.

Exception for Charlie, no exception for the OSN operator: Consider Figures 2.7(a)

and 2.9 together. There is an exception for Charlie as he expects sharing at time

t6. However, the OSN operator’s projection for t6 is that the commitment to share

Charlie’s location is still active. The projected state of the OSN operator is satisfiable



38

by the actual state. Thus, there is no exception for the OSN operator. Note that, in

a centralized environment, this would never happen. That is, a central monitor either

signals an exception or not. Here, on the other hand, we allow autonomous agents to

have their own projections about the future. Accordingly, an exception for one agent

might just be an expected situation for another.

Next, we will see some examples of recoverable vs. non-recoverable exceptions.

Recoverable exception for Charlie: Consider again Figure 2.7(a). Charlie expects

sharing at time t6, however the commitment towards sharing is still active. Now, the

following REC rules describe a recoverable exception according to Charlie’s projected

state:

� �
i n i t i a t e s ( , except ion , 6):−

\+ s a t i s f i a b l e ( exp ( shared , 6 ) ) .

i n i t i a t e s (E, r ecoverab l e , 6):−

i n i t i a t e s (E, except ion , 6 ) ,

kRecoverable ( exp ( shared , 6 ) ) .� �
The kRecoverable(exp(Fluent, Time)) predicate, which is similar to the satisfiable

predicate, describes the expectation of the Fluent to be k-recoverable at time point

Time. So, if there is an exception but the projected state is still k-recoverable from the

actual state, then Charlie will understand that the exception is recoverable. Indeed,

although the commitment is not fulfilled and thus causes an exception, there is still

chance of recovery since the commitment is active. That is, the OSN operator can still

perform the sharing. Figure 2.10(a) shows the output of j-REC for this case. Note that

the fluents exception and recoverable both become true at time t6.

Non-recoverable exception for Charlie: Assume that the situation in Figure 2.7(a)

has been slightly changed; Charlie expects sharing at time t15, however sharing does

not occur. The following REC rules describe a nonrecoverable exception according to

Charlie’s projected state:



39

(a) Recoverable: j-REC output (b) Non-recoverable: j-REC output

Figure 2.10. Recoverable vs. non-recoverable exception.� �
i n i t i a t e s ( , except ion , 15):−

\+ s a t i s f i a b l e ( exp ( shared , 1 5 ) ) .

i n i t i a t e s (E, nonrecoverable , 15):−

i n i t i a t e s (E, except ion , 15) ,

nRecoverable ( exp ( shared , 1 5 ) ) .� �
Here, the nRecoverable(exp(Fluent, Time)) predicate describes the non-recoverability

of the Fluent at time point Time. The commitment is violated at time t14. When Char-

lie checks for an exception, he sees that there is no chance of sharing anymore. This is

because the violated commitment state is terminal; it cannot be fulfilled later. Figure

2.10(b) shows the output of j-REC for this case. Note that the fluents exception and

nonrecoverable both become true at time t15 as the commitment is violated.

In this chapter, we have proposed a satisfiability relation that can be used to

compare agents’ states. When used to compare an agent’s state with its projected

state, the outcome tells whether there is an exception for the agent or not. That is, if

the agent’s projected state is not satisfiable by its current state, then the agent signals

an exception. In addition, the agent may verify its compliance to the protocol it is

executing by consistently comparing its current state to its projected states. This way,

the agent can identify at which point of the protocol there has been a problem.

We extend the concept of exceptions that are described in the literature. Often, an



40

exception is considered identical to a contract violation. While we accommodate that

perspective, we also take into account the agent’s expectations from their contracts.

Note that we would normally signal an exception when a commitment is still active

when it should be fulfilled. However, by letting the projected state to be constructed

according to the agent’s projections, an insignificant exception is avoided, e.g., when

Charlie is already aware that the sharing of his location will be delayed due to the

earthquake.



41

3. PREDICTION OF EXCEPTIONS

So far, we have seen a method that allows agents to detect exceptions, by com-

paring their current states with their projections. While detecting that something has

gone wrong based on the actual events that took place in the world is important, iden-

tifying that an exception might occur if the agent takes a certain course of action could

be as important. While the former allows agents to deal with the exceptions that have

taken place, the latter enables agents to possibly avoid exceptions before they even take

place. Following the scenarios in the previous chapter, assume that Charlie had known

that if he were to be with Sally, then Linus would have identified his location. Then,

Charlie would have cancelled his meeting with Sally, if he would not want his location

to be disclosed. This gives Charlie more control over his actions. He could choose a

safer path, e.g., where his commitments would not be violated. In this chapter, we

describe how exceptions can be predicted beforehand, either by taking into account

others’ projections, or by introducing some extra information into the reasoning (e.g.,

assumptions about other interactions in the environment).

First, we propose a method for the agent to understand that there is an exception

even though its current state satisfies its projection. That is, the agent compares its

projection with others for the same situation in order to find out a conflict. We use

model checking to generate such projections. Then, we extend this method by relaxing

the agent’s model of its environment, enabling it to put in some assumptions regarding

possible interactions of other agents in the system. This way, the agent can predict

possible future states of the system, and identify whether there will be a contract

violation in any of them.

3.1. Comparing Projections

Even though the agent’s current state satisfies its projection, there may still be

exceptions because the agent has misinterpreted its environment. This may be due to

any missing information the agent has, which in turn affects the projection it makes.



42

To predict such exceptions, it is better that the agent compares its projection with

others, and sees whether they are expecting the same outcome.

In many situations, other agents might have extra information regarding the

agent’s interactions indirectly. This extra information may enable them to make better

judgements on the outcomes of the agent’s commitments. That is, they may project

a future state of the environment that cannot be projected by the agent given the

information it has. If we continue on the privacy domain, this may correspond to a

scenario, where a relation does not include the agent itself, but it may still affect the

privacy of the agent. Consider a document sharing scenario where only friends have

access to shared documents. Assume Charlie and Sally are friends, but Charlie and

Linus are not. Thus, when Charlie shares a document, then Sally will be able to access

it while Linus cannot. Now, if Sally and Linus are also friends, then Linus can access the

document through Sally. However, as far as Charlie is concerned, his document is only

visible to Sally. Here, the OSN operator has more information on the current state of

the system than Charlie himself. Thus, it can make a better projection on whether his

commitment will be violated or not. Considering the above example, Charlie thinks

that Linus cannot access his document. However, when the OSN operator makes a

projection regarding Charlie’s state, it finds out that Linus is also able to access the

document.

Next, we briefly describe model checking. Then, we propose a method for gener-

ating projections based on model checking that identifies such privacy violations.

3.2. Model Checking

Model checking is a computational method to automatically verify whether a

given property holds for a system [30,31]. The system under consideration is modeled

as a state transition graph in some formal language and the property that is aimed

to be verified is represented as a logic formula in a suitable language, such as linear

temporal logic (LTL) or computation tree logic (CTL) [32]. Given the system model

and the logic formula of the investigated property, a model checking algorithm checks



43

whether the system model satisfies the desired property.

In our work we use NuSMV, a state of the art model checker based on binary

decision diagrams [33]. A NuSMV model defines a set of variables and how these

variables evolve according to possible executions of the modeled system. For instance,

a variable may represent that two users are friends in a social network and evolution of

this variable can be modeled according to the operations provided on this relation by

the modeled social network. In other words, a NuSMV model defines the underlying

operational mechanism of the considered system. Once there is such a model, NuSMV

can be used to verify certain properties of the model. For instance, a property of the

social network about privacy could be that the location of a user is not revealed to

users that are not friends.

NuSMV uses CTL to represent properties that are aimed to be verified. CTL is

a branching time logic, where the future is modeled as a tree structure in which each

branch corresponds to a possible different future. CTL formulas are built up from a

set of propositional variables, the usual logic connectives and a set of temporal modal

operators. The first type of temporal operators are A and E, which quantify over

paths. A stands for all and means that the quantified formula has to hold on all paths.

E stands for exists and means that the quantified formula has to hold at least on one

path. The other four temporal operators X, F , G and U are specific to a single path.

X stands for next and means that its bounded formula has to hold at the next state

of the given path. F stands for eventually and means that the bounded formula has

to hold eventually at some future state(s) of the given path. G stands for globally and

means that the bounded formula has to hold at all future states of the given path.

Finally, U stands for until and it is the only binary operator. It means that the first

formula bounded to U has to hold until the second formula starts to hold.

3.3. Generating Projections

It is most important that the agent makes a projection as accurate as possible, in

order to be able to identify exceptions. Here, we propose a method for agents to gen-



44

erate projections based on a given state of the world. These projections tell the agent

what to expect if it reaches such a state during execution. Thus, generating accurate

projections will help the agent identify future states that may lead to exceptions.

Accordingly, we have developed PROT OSS [10], a run time tool to generate

projections for the agent, based on its current state of the world. The main technique

underlying our approach is model checking, which given a model of the system checks

whether certain properties hold. For the privacy domain, we use PROT OSS to detect

possible privacy breaches in online social networks. Our system model represents the

privacy agreements of a system with users as well as the relations of users formally.

Using this model, we can check interesting properties such as whether a certain user’s

content will ever reach a certain individual even when that individual is not an acquain-

tance or whether the relations among individuals can lead to unwanted information to

be revealed to certain individuals for which the content was not intended. We show

that PROT OSS can detect subtle information leakages that are not easy to detect in

conventional online social networks. We demonstrate these over scenarios.

3.3.1. Privacy-Aware OSN Architecture

We are interested in online social networks (OSNs) that are administered by an

OSN operator. Each user can post content as it sees fit. The content could vary. One

can post personal information such as her location, the people she is with, and so on

as well as links to news, jokes and so forth. Our primary aim in this work is the first

set of information since we are interested to see how private information can float in

the system.

Since it is a social network, users are related to each other. As in newer social

networks, users can be related to each other through different relations. For example,

Charlie could be a friend of Linus but a colleague of Sally. These relations identify

how much and of what type of content would be shared with other users. For example,

Charlie would share his whereabouts with his friends, but may not want to share this

with colleagues. Essentially, the OSN operator is responsible for ensuring that these



45

OSN operator

User1

User2

Usern

privacy agreement

– – –

– – –

– – –

privacy agreement

– – –

– – –

– – –

privacy agreement

– – –

– – –

– – –

relations

relations

content

content

PROT OSS

Figure 3.1. Privacy-aware OSN architecture.

expectations are met. That is, the OSN operator is supposed to ensure that only the

users with the right privileges are shown private content.

Figure 3.1 demonstrates the architecture that we use to verify privacy agreements.

The circles represent the users. The users are connected to each other through relations

and they provide content.

Among each user and the OSN operator, there exists a privacy agreement. This

is an agreement that contains clauses about which relations are entitled to which priv-

ileges. For example, an agreement between Charlie and the OSN operator can state

that all friends of Charlie are entitled to see his location. This is not a static agreement.

That is, as Charlie creates more relations with other users, this privacy agreement is

updated accordingly. Since the OSN operator is responsible for realizing the clauses

in the privacy agreement, it needs a mechanism to check whether it can honor the

agreement. We call this the privacy checker (PROT OSS).

PROT OSS uses the network information as well as the agreement information

to decide whether the agreements can be honored in the system. For example, if Charlie

does not want any of his colleagues to see his location and if he has identified Linus



46

both as a colleague and a friend, then OSN will end up disclosing the location to a

colleague. In this case, OSN should let Charlie know that a colleague will hear of his

location and maybe let him decide what to do.

3.3.2. Running Example

Consider the following social network with specific components as outlined above:

(i) Users: We have three users of the OSN; charlie, sally, and linus.

(ii) Relations: The users of the system can initiate relations among themselves.

This is typical of online social networks [34]. We assume that the following relations

exist:

• colleague(X, Y ): Users X and Y are colleagues.

• friend(X, Y ): Users X and Y are friends.

We instantiate them as follows: friend(sally, linus) and colleague(charlie, linus).

We assume that if a relation is not instantiated, then it doesn’t hold. Hence, for ex-

ample, one can conclude that sally and charlie are not friends.

(iii) Content: To complement the relations of the system, we have two types of

content. These are:

• location(X, W ): User X is at location W .

• with(X, Y ): User X is with user Y .

(iv) OSN operator: There is a single OSN operator in the system. It is responsible

for displaying appropriate information to the users based on its own policies; i.e.,

decides what will be visible to each user. For example, visible predicate below describes

whom to grant access to:



47

• R1: visible(with(X, Y ), Z) ← friend(X, Z) ∨ friend(Y , Z): This rules states

that any friend of the user X or Y knows who X or Y is with.

• R2: visible(location(X, W ), Y ) ← friend(X, Y ): This rule states that any

friend of the user X knows the location of X.

(v) Privacy agreements: Privacy agreements contain the clauses for disclosing

information. We essentially represent these through commitments among the OSN

operator and a particular user. The commitments capture how visibility will be released

to other parties. For each of the scenarios below, we use a subset of the following

commitments:

• C1: C(osn, sally, friend(sally, X), visible(with(sally, Y ), X)): The OSN op-

erator commits to the user sally that her friends will be able to see who she is

with.

• C2: C(osn, sally, friend(sally, X), visible(location(sally, W ), X)): The OSN

operator commits to sally that her friends will be able to see where she is.

• C3: C(osn, charlie, colleague(charlie, X), ¬ visible(location(charlie, W ), X)):

The third commitment is slightly different from the first two. Here, the OSN

operator commits to the user charlie that his colleagues will not see where he is.

Next, we describe several scenarios that might occur in such a system. The OSN

operator, three users, two relations, and two contents all exist in the below scenarios.

First, we begin with a setting in which no location information is passed among

the users. Example 3.1 demonstrates this case.

Example 3.1. Consider a setting where rule R1, and commitments C1 and C3 exist.

In this setting, friends know who each other is with, but they do not know where they

are. Hence, if Charlie is in Montreal for a conference, then Linus should not be shown

this information.

Next, we extend the first setting where we allow location information to be passed



48

among users. Example 3.2 demonstrates this case.

Example 3.2. Consider a setting where rules R1 and R2, and commitments C1, C2,

and C3 exist. In this setting, friends both know who each other is with, and where they

are. Hence, if Charlie is in Montreal, then Linus will have access to this information,

if they are friends.

Now, we will look at settings where all the rules and commitments exist, and

different combinations of relations among the users may result in different outcomes

for the commitments. Examples 3.3 and 3.4 demonstrate such cases.

Example 3.3. Consider a setting where charlie and linus are colleagues, sally and

linus are friends, and charlie is with sally. Without knowing the rest of the network,

we can infer the following from this setting:

• linus should not know where charlie is since they are colleagues,

• linus knows where sally is and who she is with since they are friends.

Example 3.4. Consider a setting where only charlie and linus are colleagues, and

charlie is with sally. There are no other relations among the users or any content

information. In this setting, charlie’s privacy agreement states that linus cannot know

where charlie is.

3.3.3. PROT OSS

The reasoning necessary for the examples above are done within the privacy

checker of the OSN operator (Figure 3.2). PROT OSS is a tool to realize this reason-

ing. As input, it uses the privacy agreements of the users, user relations, the content

they upload as well as some inference rules. Using this input state, it decides whether

a certain privacy property that is of concern will be violated. This corresponds to the

projection of the agent that is generated for this input state. Using this projection,

the agent identifies whether there will be an exception.



49

PROT OSS

privacy

agreements
relations content

privacy

property

privacy violation

(True/False)

Figure 3.2. PROT OSS.

Figure 3.3 shows a screenshot of the PROT OSS interface, which is built in Java3

. From the interface, we can create the social network (together with its relations)

according to the number of agents set or we can simply upload an existing social

network specification, similar to the one in the running example. Once the model of

the social netwoek is created (on the left pane), we can check wheter the properties of

interest are satisfied by the model. After the execution is completed, the output of the

check is shown with relevant performance statistics (on the right pane). This output

specifies whether the property of interest (e.g., whether OSN’s commitment to hide a

user’s location) can be violated or not in a given social network. A user can then use

this output to decide its actions.

The PROT OSS engine uses NuSMV model checker as a core component. How-

ever, NuSMV is not by itself capable of checking models with commitments in them.

Hence, we have first introduced a commitment module into the NuSMV model checker,

based on Telang and Singh’s work [35].

Figure 3.4 shows the commitments module that we use to describe commitments.

We have modeled two types of commitments in order to account for both

• regular consequents that the commitment is violated when the consequent is

3The full implementation can be downloaded from http://mas.cmpe.boun.edu.tr/ozgur/code.

html, under Section “4. Experiments for Model Checking Privacy Agreements”.



50

Figure 3.3. PROT OSS interface.

unsatisfied, e.g., the OSN operator commits to make sure friends can see where

each other is, and

• negated consequents that the commitment is violated when the consequent is

satisfied, e.g., the OSN operator commits to make sure colleagues cannot see

where each other is.

Below are three instances of the commitments module, that represent the com-

mitments given in the running example.

� �
c11 : commitment ( f r i e n d s a l l y l i n u s , v i s i b l e w i t h c h a r l i e s a l l y l i n u s ) ;

c5 : commitment ( f r i e n d s a l l y l i n u s , v i s i b l e l o c a t i o n s a l l y l i n u s ) ;

c15 : neg commitment ( c o l l e a g u e c h a r l i e l i n u s , v i s i b l e l o c a t i o n c h a r l i e l i n u s ) ;� �



51

� �
MODULE commitment ( ant , cons )

CONSTANTS CONDITIONAL, ACTIVE, FULFILLED, VIOLATED;

DEFINE

s t a t u s :=

case

! ant : CONDITIONAL;

ant & cons = Undetermined : ACTIVE;

ant & cons = True : FULFILLED;

ant & cons = False : VIOLATED;

esac ;

MODULE neg commitment ( ant , cons )

CONSTANTS CONDITIONAL, ACTIVE, FULFILLED, VIOLATED;

DEFINE

s t a t u s :=

case

! ant : CONDITIONAL;

ant & cons = Undetermined : ACTIVE;

ant & cons = False : FULFILLED;

ant & cons = True : VIOLATED;

esac ;� �
Figure 3.4. Commitments module.

Inference rules are an important aspect of PROT OSS. An example inference

rule is the following:

� �
v i s i b l e ( l o c a t i o n (Y, W1 ) , Z) ←

v i s i b l e ( with (X, Y) , Z) ∧ v i s i b l e ( l o c a t i o n (X, W2 ) , Z)� �
This rule states that if X and Y are together and this fact is visible to Z, then

when Z knows the location of X, he will also know the location of Y . These rules

define semantic relations among concepts in the real world so that PROT OSS can

make further inferences beyond its privacy agreement.

Given the above as input, PROT OSS can then check whether a privacy con-

dition of concern takes place or not. Below we give two example properties. Both

of these properties are phrased from charlie’s point of view. The first property (P1)

checks whether there is a chance that the OSN operator’s commitment to charlie is



52

violated at some point after it has become active. Remember that this commitment

states that charlie’s location is not going to be visible to his colleagues. A violation of

this commitment means that charlie’s privacy may be jeopardized. The second prop-

erty (P2), however, checks whether the commitment will be violated every time it has

become active. That is, no matter what happens during run-time, charlie’s privacy

will be violated.

� �
SPEC

AG ( c o l l e a g u e c h a r l i e l i n u s −> EF c15 . s t a t u s = VIOLATED) ;

SPEC

AG ( c o l l e a g u e c h a r l i e l i n u s −> AF c15 . s t a t u s = VIOLATED) ;� �
3.3.4. Case Study

Here, we simulate the scenarios described in the running example from the point

of view of the user charlie. Then, based on the outcome produced by PROT OSS,

we comment on how these settings have an effect on the privacy of charlie. Table 3.1

shows the results of our execution. False means that the property does not hold for

that example, while true means the property holds. Since we are checking whether a

commitment is violated, true corresponds to a violation and thus breach of privacy.

Table 3.1. Outcome of experiments.

Experiment Setting Property P1 Property P2

Example 3.1 False False

Example 3.2 True False

Example 3.3 True True

Example 3.4 False False

When we run PROT OSS on setting described in Example 3.1, we see that both

formulas return false (Table 3.1). That is, the commitment C3 (c15 in the NuSMV

code) will not be violated in this setting, meaning that the location of charlie will not

be visible to a colleague of his. This is an expected outcome, since there is no way of



53

knowing where another user is (since rule R2 does not exist). This is an example of

compile-time verification where the OSN operator knows that its commitments are safe

with this set of relations. The actions of the users will not jeopardize the agreements.

When we run PROT OSS on the setting described in Example 3.2, we see that

the first formula returns true and the second formula returns false. That is, while

the OSN operator’s commitment C3 will not be violated every time, there is indeed a

progression of events that will lead to the violation of C3. This means that C3 is no

longer completely safe for the OSN operator. A simple case that depicts the violation

is the following: Assume charlie is a colleague of linus. If they are also friends, then

charlie’s location will be visible to linus. Thus, the C3 will be violated.

� �
next ( c o l l e a g u e c h a r l i e l i n u s ):= TRUE;

next ( f r i e n d s a l l y l i n u s ):= TRUE;

next ( w i t h c h a r l i e s a l l y ):= TRUE;

next ( . . . ) : = {TRUE, FALSE} ;� �
The above NuSMV code segment represents the setting described in Example 3.3.

Note that next(...) is just a shortcut for every other variable being randomly assigned

during state progression. This setting corresponds to the second case described above

for Scenario 2. When we run PROT OSS on this setting, we see that both formulas

return true. This means that this combination of relations and contents lead to the

violation of commitment C3 no matter how other relations are formed. This time the

violation can be detected based on relations and inference rules. A case that describes

this situation is the following: Assume charlie is a colleague of linus, and linus is

sally’s friend. Thus, linus knows where sally is. Now, if charlie is with sally, then

linus will also know where charlie is (according to the inference rule), which again

violates C3.

Note that if we were only checking the privacy agreements among the users and



54

the OSN, we would conclude that the location of charlie is not being revealed, since

the OSN operator does not explicitly make this information public. However, with the

help of inference rules, we can reason on the concept of privacy and decide that the

location will be revealed through other means.

� �
next ( c o l l e a g u e c h a r l i e l i n u s ):= TRUE;

next ( w i t h c h a r l i e s a l l y ):= TRUE;

next ( . . . ) : = {FALSE} ;� �
The above NuSMV code segment represents the setting described in Example

3.4. When we run PROT OSS on this example, we see that both formulas return

false. This means that commitment C3 will not be violated as long as the relations and

content other than charlie and linus being colleagues and charlie being with sally

remain false.

Note that while we check the above two properties as examples, the CTL language

allows a richer variety of privacy properties to be specified. In addition to these, we

could specify properties that check whether a commitment is going to be violated

immediately in the next state of execution or whether the location will not be revealed

until a particular proposition or relation starts to hold in the system. Such properties

can be useful when initiating a new relation in the system.

Performance Results: Now, we briefly study the performance results related to

the workings of NuSMV on our privacy models. Table 3.2 shows the performance

of NuSMV for Example 3.4 on an Intel Core 2 Duo 2.4 GHz computer with 4 GB

of memory running Ubuntu 11.10 32-bit OS. The results demonstrate the number

of states, the memory used, and the time consumed based on 3 to 15 agent models.

Note that the time and memory consumption increases exponentially since the NuSMV

model grows based on the number of agents, i.e., the number of possible relations among

the agents increase exponentially with the number of agents. For small networks, the

computation times lie within reasonable amounts. However, with large networks, the



55

Table 3.2. Performance results for Example 3.4.

#Agents #States Memory Time

3 4.4 K 2.1 MB 0.01 s

4 27.8 K 2.9 MB 0.03 s

5 109.8 K 20.6 MB 0.11 s

6 172.7 K 30.7 MB 0.15 s

7 374.9 K 36.7 MB 0.32 s

8 879.1 K 54.4 MB 0.68 s

9 1.4 M 72.5 MB 1.93 s

10 2.8 M 80.9 MB 13.11 s

13 5.7 M 173.7 MB 63.23 s

15 39.8 M 732.1 MB 228.1 s

checking time can become intolerable for quick decisions. Hence, it is important to

optimize these results for large networks by pruning the state space appropriately so

that only a relevant part of the OSN is investigated for each decision.

3.4. Predicting Exceptions

Now, we are going to change the way that PROT OSS can be used, in order to

enable agents to predict privacy violations at an earlier state. Given a current state of

the system, the agent adds some assumptions on top of the relations that are known

to it. These assumptions are about the relations of other agents that the agent thinks

are either true or false. The following list describes what can be assumed by the agent

about its environment:

• The relations among other agents, e.g., X and Y are friends, or X is a colleague

of Y .

• The content related to an agent, e.g., X is in location W , or X is with Y .



56

Every other relation that is unknown to the agent are set as free variables that

can be instantiated to either true or false in different runs during the model check-

ing process. Once the agent has created a state by describing known, assumed, and

unknown relations, this state is verified for commitment violations. Note that since

some relations are set to unknown, not only this particular state is checked, but several

variations of it are also verified.

Consider the setting given in Example 3.3 from the privacy domain. Charlie

knows its own relations with others. Thus, he sets colleague(charlie, linus) to true.

Now, if Charlie thinks that sally and linus are friends, then he also sets the relation

friend(sally, linus) to true. Charlie set every other relation that either he is not in-

volved in, or he does not know about, as free variables. For example, with(sally, linus)

is not set to true or false, but left for PROT OSS to be decided during execution.

Given this setting, PROT OSS verifies that Charlie’s commitment is violated. In ad-

dition, it tells Charlie the state that leads to the violation. In this case, the additional

information that Charlie has not given to PROT OSS, and has lead to the violation

is with(charlie, sally). This state is also a projection of Charlie, not only based on the

current state, but also depending on some assumptions.

Accordingly, we provide a user interface where prediction can be performed using

different settings. Once the prediction program is run, it checks the possible future

states generated through the free variables, and tells whether there will be a com-

mitment violation. Moreover, whenever a violation is possible, the program interface

presents the relations that will lead to the violation.

3.4.1. Counter Example Processing

Figure 3.5 shows a screenshot of the prediction interface that extends PROT OSS.

It is built in Java, and once a NuSMV model is selected, it shows the relations and the

formula to be verified. The user can alter the relations, creating a prediction setting.

This setting will then be checked for violations according to the commitment given

in the formula. The output shows the combination of relations that will lead to the



57

Figure 3.5. Prediction interface.

violation, if any violation is to occur.

3.4.2. Case Study

Now, we describe the workings of the prediction interface on two different settings.

Disclosed location scenario: Figure 3.6 shows the output of the prediction pro-

gram that is run on a setting described for the disclosed location scenario. Now, when

providing the setting for prediction, we specifically set all the relations of charlie to

either true or false. Because, it is reasonable to assume that charlie knows about all

the relations that he is involved in. So, charlie and linus are colleagues, but they are

not friends. In addition, charlie and sally are friends, but they are not colleagues.



58

Figure 3.6. Prediction for disclosed location scenario.

This describes the actual state of charlie. Here, charlie does not give any additional

information about the environment (e.g., assumptions). The other relations that are

unknown to charlie are set as free variables, thus, PROT OSS sets them to either

true or false in different runs. When we run the prediction program with this setting,

it generates a possible scenario that will lead to the violation of charlie’s commit-

ment. According the scenario, if sally and linus are friends, and charlie is with sally,

then charlie’s location will be visible to linus. This corresponds to the setting given

in Example 3.3. However, note that here we do not give PROT OSS the two rela-

tions that cause the violation, friend(sally, linus) and with(charlie, sally). Rather,

PROT OSS tells us the relations.

Document sharing scenario: Now, we introduce another setting where prediction



59

is useful. Figure 3.7 summarizes the NuSMV model for the friend-only document

sharing scenario. There are four users; x, y, z, and w. The only relation available in

the system is the friend relation. The network provider commits to the user x, that if

x and z are not friends, then z cannot access x’s documents.

The inference rules that are given in the ASSIGN block of the NuSMV code

segment describe how a document of x will be visible to z. There are four rules

that describe how the variable visible X Z is evaluated after every state change in

the system, each depending on the relations among other agents as well as x’s own

relations.

The formula basically aims at identifying whether it is possible for x’s commit-

ment to be violated when x and z are not friends. If the commitment is violated,

then it means that z can access x’s shared document even though they are not friends.

Since the formula is written in such a way that it asks whether the commitment will

not be violated in any execution, the prediction program will search for all possible

executions, and try to prove that the commitment will not be violated in any of those

executions. If it fails to prove so, it will present a counter-example to the fact that

the commitment is not violated. That is, it will give a trace of an execution in which

the commitment is violated. Looking at this trace, an agent can understand which

relations can cause the violation of the commitment.

Figure 3.8 shows the output of the prediction program that is run on a setting

described for the document sharing scenario. Here, x and w are friends, and x does

not know about any other relations in the system. When we run this setting with the

prediction program, we see that if w and y are friends, and y and z are friends, then

x’s document will be visible to z even though they are not friends.

In this chapter, we have proposed a method to allow an agent to further detect

exceptions even when it does not expects anything wrong from its point of view. The

method takes into account other agents’ projections for the same situation, since they

may have a wider perception of the environment. In addition, we proposed another



60

� �
VAR

fr iend X Y : boolean ;

f r i end X Z : boolean ;

friend X W : boolean ;

f r i end Y Z : boolean ;

friend Y W : boolean ;

fr iend Z W : boolean ;

v i s i b l e X Y : {Undetermined , True , Fa l se } ;

v i s i b l e X Z : {Undetermined , True , Fa l se } ;

v i s ib le X W : {Undetermined , True , Fa l se } ;

c : neg commitment ( ! f r i end X Z , v i s i b l e X Z ) ;

ASSIGN

next ( v i s i b l e X Z ):=

case

fr iend X Y & fr i end Y Z & ! f r i end X Z : True ;

friend X W & friend Z W & ! f r i end X Z : True ;

f r iend X Y & friend Y W & friend Z W & ! f r i end X Z : True ;

friend X W & friend Y W & fr i end Y Z & ! f r i end X Z : True ;

TRUE: Undetermined ;

e sac ;

SPEC

AG ( ! f r i end X Z −> AF c . s t a t u s != VIOLATED) ;� �
Figure 3.7. Friends model.

method, that extends the former, to enable agents to predict possible exceptions before

they occur.

Predicting an exception beforehand gives the agent control over its actions. For

example, in the privacy domain, if the agent already knows that creating a relation

with another agent will jeopardize its privacy, then it will probably choose not to have

that relation. Moreover, the agent may choose not to get involved in a commitment,

if it knows that there is a strong chance of the commitment being violated.



61

Figure 3.8. Prediction for document sharing scenario.



62

4. DIAGNOSIS OF EXCEPTIONS

The next phase in handling an exception, after it is detected or predicted, is to

diagnose what has gone wrong. That is, once an agent has identified that there is

something wrong with its execution, it needs to find out what has caused the problem,

in order to take proper action towards fixing that problem. So far, we have seen

how exceptions can be detected in privacy agreements. In such systems, once the

privacy statement is agreed upon, the contract is binding for the involved parties for

an unlimited period of time, or until it is cancelled by either party. However, not

all contracts have such properties. Now, we move to a domain where contracts have

deadlines. That is, the property associated with the contract has to be brought about

within a specific period of time.

Contracts are a traditional means to regulate and secure business transactions in

open electronic markets. In such markets, agents may take on different roles such as

buyers, sellers, auditors, information vendors, financial institutions and other interme-

diaries. Contracts make the dependencies between the contract participants explicit,

and contain the norms that govern relevant interaction [36]. Like in privacy agree-

ments, we represent e-commerce contracts with social commitments. Commitments [4]

are an increasingly common way of representing contracts among software agents. In

realistic e-commerce environments, a commitment is associated with a deadline, telling

that its property has to be brought about within that time bound [7]. Otherwise, a

violation occurs regarding that commitment. A violation of a commitment means an

exception for its creditor.

Contracts are manipulated in two phases; contract negotiation and contract ex-

ecution [36, 37]. Contract negotiation is out of the scope of this thesis. Rather, we

assume that agents start executing the protocol with predetermined (and possibly ne-

gotiated) contracts. For contract execution, we do not consider an authority that

supervises the interactions of the agents regarding their contracts. Instead, agents

may run distributed monitoring on the environment, and verify their contracts accord-



63

ingly. Another thing to consider about contract violation is sanctions. That is, once a

commitment is violated, a suitable penalty is applied to the debtor. In order for sanc-

tions to function properly, timely monitoring is required, since there may be deadlines

associated with issuing sanctioning procedures.

In a distributed contract-based setting, each agent keeps track of its own com-

mitments. Thus, the cause of an exception is often a misalignment between the debtor

and the creditor’s individual copies of the same commitment. Example 4.1 presents

such a scenario from a real-life delivery process.

Example 4.1. The customer, the bank, the store and its courier: a book’s online

purchase. Let us consider a scenario with a customer, Ali, who wishes to buy a copy

of a book from an online store. The transaction needs two additional parties: a bank

to carry out the payment and a courier to deliver the book to Ali.

The process begins with Ali paying for the book using the bank on Monday. The

contract between Ali and the store states that the book will be delivered in five business

days as of the time the bank verifies Ali’s payment. Assume that the bank verifies Ali’s

payment on Wednesday. Now, Ali expects a delivery by the following Wednesday. But

what if the bank does not notify the store about the verification of Ali’s payment until

Friday? When the store receives the notification, it infers the deadline for delivery as

the following Friday (two days later than Ali has previously inferred!). When Ali does

not receive the book on Wednesday, he contacts the store to ask the reason of the delay.

The store tells Ali that there are two more days until the deadline. At this point, Ali

understands that there is a mismatch between their copies of the contracts. He has to

decide what to do next. One such possibility is to align his contract with the store’s, by

changing his deadline, and wait a bit longer.

One key point in Example 4.1 is the ability of parties to reason about contractual

obligations, based on contractual clauses, i.e., implications and facts that specify the

contract, and on relevant events that occur at specific points in time. The presence



64

of domain-related as well as general-purpose knowledge that agents can use to make

inferences about the state of their commitments is a common setting in realistic e-

commerce scenarios. It is also important to stress that parts of such knowledge, such

as contract specifications, are agreed upon, shared, by the interested agents, whereas

other parts of it, such as knowledge about the occurrence of relevant events, depend on

observations made by agents autonomously and independently, and are thus a potential

source of mismatch.

For instance, at some point Ali becomes aware of a mismatch between the store’s

understanding of the commitment about the book and his own. In particular, he

realizes that they are inferring different deadlines. That is a typical misalignment of

commitments, due to differences between the debtor’s and the creditor’s observations

[23].

Another possible mismatch can be due to the debtor’s misbehavior, e.g., the store

delegates its commitment to the courier but then gives a wrong deadline. Finally,

a mismatch may be caused by a simple misunderstanding among agents, e.g., Ali

receives another book instead of the book. Schroeder and Schweimeier [38] study such

misunderstandings using negotiation and argumentation theory. In this work, we only

consider misalignment caused by different observations of the agents, and misbehavior

caused by the debtor failing to oblige4 .

Among the few related works, Chopra and Singh [23] formalize commitment align-

ment in multiagent systems. They consider misalignment of commitments that arise

from different observations of the debtor and the creditor. They show how the cred-

itor can prevent misalignments, by informing the debtor when the condition of each

conditional commitment is satisfied, so that debtor and creditor can infer the same

base-level commitments. This approach requires extra communication. If we assume

exceptions to be rare events in process executions, such a communication overhead

may be unjustified. Accordingly, we choose to verify alignment on demand, i.e., when

4Here, “misbehavior” must be literally intended as a failure to function correctly. We do not mean
to imply intentionality in such failures. The question why an agent misbehaves is entirely outside of
the scope of this thesis.



65

an exception occurs. Besides, Chopra and Singh do not formalize commitment dead-

lines. We instead accommodate commitments with temporal constraints. The main

differences regarding our formalization and theirs are:

• There are no temporal constraints on commitments in Chopra and Singh’s for-

malization. However, without an explicit notion of time, it is hard to capture the

scenarios that are presented in this chapter.

• Chopra and Singh propose a strength relation for commitments based on their

properties (conditions and propositions). They also handle asynchronous mes-

saging and have mechanisms of cancel and release of commitment, which we do

not. Currently, we consider only base-level commitments with single properties.

However, we focus on the similarity relation for commitments since it provides

a basis for verifying alignment. On one hand, the similarity relation takes into

account the deadlines associated with commitments when verifying alignment

in time. On the other hand, it takes into account the agents associated with

commitments when tracing for delegations.

• Chopra and Singh propose a solution for misalignment by ensuring that the cred-

itor of a commitment informs the debtor when the condition of the commitment

is brought about. So, the debtor of the commitment will also infer the same

base-level commitment the creditor infers. We believe that this solution may

be an overkill in large-scale e-commerce applications. Under normal conditions,

the execution will proceed as desired and the agents will infer the same commit-

ments most of the times. Thus, it may be more efficient to verify alignment if

something goes wrong (i.e., in the case of an exception). Moreover, when dead-

lines are involved, a delay in such a notification message will also cause a similar

misalignment between the debtor and the creditor’s individual commitments.

Accordingly, we propose a distributed collaborative process to diagnose exceptions

due to misalignment or misbehavior. When the creditor agent detects that one of its

commitments is violated, it initiates the diagnosis process by making a diagnosis request

to the commitment’s debtor. As diagnosis proceeds, agents exchange information about



66

relevant commitments. In Example 4.1, Ali makes a diagnosis request to the store about

his violated commitment. The diagnosis process may involve a larger set of agents, e.g.,

the store may have delegated its commitment to the courier. In the end, such a process

results in one of the following outcomes:

(i) a misalignment is found, with a possible commitment to be aligned with (if any

exists), or

(ii) a misbehavior is found, with the identification of a “culprit” agent.

There are two cases of misalignment: (i) the one described by Chopra and

Singh [23] where the creditor infers the commitment, but the debtor does not, and

(ii) a temporal misalignment which we describe here, where the debtor infers a later

deadline for the commitment than the creditor. In the case of a temporal misalign-

ment, the agents can maintain alignment via an alignment policy described by a set

of commitment update rules. This is often the case for real-life delivery scenarios; the

customer may accept to wait a bit longer, if it is a matter of adjusting a deadline. Al-

ternatively, agents can start negotiating about what to do next. That can solve both

situations of misalignment and misbehavior. More elaborate solutions are indeed pos-

sible. We do not address negotiation in this thesis, and this trivial form of automatic

realignment is simply a by-product of our diagnosis procedure.

Our diagnosis architecture includes “coupled” knowledge-bases, in which agents

store the protocol rules and contracts they agree upon. That is, a part of a protocol

formalization concerning two agents is stored in a knowledge-base containing agreed-

upon protocol rules that are accessible by and thus shared between these two agents.

Similarly, a contract is contained in the knowledge-base shared between its participants.

In particular, these coupled knowledge-bases contain commitment and protocol rules

and facts agreed upon by the interested parties. They do not contain an extensional

description of the commitments, e.g., the current states of the commitments. These

are elaborated individually by the agents.

Each agent has a separate trace of happened events according to what it observes.



67

Thus, an agent can only track down the status of its own commitments. It is worth-

while stressing that identifying an agent as being a culprit for misbehavior does not

necessarily make that agent dishonest or malicious. The agent may have unintention-

ally caused an exception, but it can still be motivated to help identifying its cause,

e.g., in order to keep its good reputation. Therefore, we safely assume that agents are

always honest and collaborative during diagnosis. That is, when an agent is requested

to take part in the diagnosis process, it does so.

The procedure we propose always terminates, is sound and, if associated with

suitable agent policies, is capable of removing misalignment whenever possible. We

discuss these and other results. In order to evaluate our approach, we extend the

scenario described in Example 4.1 by presenting a case study that leads to both mis-

alignment and misbehavior diagnosis outcomes. We formalize the agents’ interactions

in REC.

4.1. Commitments with Temporal Constraints

It is more realistic to consider commitments with time [7]. That is, the debtor is

committed to satisfy the property for the creditor within a predefined deadline. Here,

we use the Reactive Event Calculus (REC) [28] to model time-aware commitments

(i.e., commitments with temporal constraints). REC models two types of temporal

constraints on commitments: (i) an existential temporal constraint where the property

of the commitment has to be brought about inside a time interval, and (ii) a univer-

sal temporal constraint where the property of the commitment has to be maintained

valid along a time interval. In this chapter, we focus on base-level commitments with

existential temporal constraints.

We use the following syntax to represent an existential base-level commitment

throughout this chapter:

s(c(x, y, property(e(t1, t2), p))),



68

where:

• s is a label identifying the state of the commitment at a specific time point. It

can be active, fulfilled, or violated5 ;

• x and y are the debtor and the creditor of the commitment, respectively;

• the existential temporal constraint e(t1, t2) on the property p, which is represented

by a logic formula, means that p must be satisfied at some time t, t1 ≤ t ≤ t2.

Note that the state, the debtor and creditor agents are the same as our previous

commitment definition (Definition 35). Here, we only use the consequent since we

deal with base-level commitments. However, the consequent is now attached with a

temporal property as described above.

When the commitment is first created by the create operation [5], the commit-

ment’s state s is active. It remains active until t1. After t1, if p is satisfied between

t1 and t2, the commitment’s state s becomes fulfilled as soon as p is satisfied. Oth-

erwise, it becomes violated as soon as t2 is past. A detailed explanation of how REC

manipulates commitment states can be found in [29].

InREC, we can express that an event initiates (or terminates) a fluent or property

of the system, by way of initiates(Event, Fluent, Time) relations (see an example in

Figure 4.6 below). We use the following syntax to represent a happened event:

hap(event(exec(e(x, y, χ1, ..., χn))), t).

Each event is thus represented as an exec message between an agents x, the

sender, and y, the receiver. The event description is represented by e, and χ1 through

χn are the parameters associated with e. The time in which the event has occurred is

represented by t.

5We use this notation for presentation purposes only. In REC, the state is also a parameter of the
commitment description, and any number of states can be accommodated.



69

4.2. Running Example

Figure 4.1 shows the delivery process introduced in Example 4.1. We assume

that the customer has already placed the order, by direct or indirect interaction with

the store, e.g., via an e-commerce Web site. We thus focus on the subsequent phases

(payment & delivery).

In a desired execution, first the customer sends the payment to the bank regard-

ing its purchase from the store (pay). Then, the bank verifies the payment of the

customer (verify), and informs the store about the verification (notify verification).

Upon receiving the verification, the store requests the delivery of the book from the

courier (request). Finally, the courier delivers the book to the customer (deliver), and

informs the store about the delivery (notify delivery). Figures 4.2 through 4.6 show how

this process is formalized in REC, in coupled knowledge-bases. Recall that the cou-

pled knowledge-base of two agents contain the protocol rules and contract descriptions

involving those agents.

Customer

Bank

Store

Courier

pay

verify

notify verification

request

notify delivery

deliver

Figure 4.1. Delivery process.

Figure 4.2 shows the REC rules shared among the customer and the bank agents.

We model the agents’ interactions as exec events from a sender towards a receiver. The

first two rules (CB1 and CB2) describe the effects of such events in terms of fluents paid

and verified. When the payment is sent from the customer to the bank, the fluent paid

starts to hold (CB1). Likewise, when bank verifies the customer’s payment, the fluent

verified starts to hold (CB2). The last parameter for both initiates rules is a blank

variable, telling that the time of event is not significant for its effect to happen. The

last rule (CB3) corresponds to the create operation described for commitments [5, 7].

Here, the syntax of create in CB3 follows the literature; the first parameter is the event

that initiates the base-level commitment (this is the requirement for Event Calculus),



70

the second parameter is the debtor of the commitment (a commitment can only be

created by its debtor), and the last parameter is the commitment itself. Since we deal

with time-aware commitments here, the body of the rule handles the time constraints

associated with the commitment. That is, when the customer sends the payment for

an item to the bank, then the bank will be committed to verifying that payment in

three time units (without loss of generality, we use days as the time unit from now on).

Lines starting with % are comments.� �
% CB1 : pay

initiates(exec(pay (Customer ,Bank ,Item ) ) ,paid(Item ) , ) .

% CB2 : v e r i f y payment

initiates(exec(verify (Bank ,Customer ,Item ) ) , verified(Item ) , ) .

% CB3 : pay−v e r i f y commitment

create(exec(pay (Customer ,Bank ,Item ) ) ,Bank ,

c (Bank ,Customer ,property (e(Ts ,Te ) ,verified(Item ) ) ) ,Ts):−

Te is Ts+ 3 .� �
Figure 4.2. Coupled knowledge-base of the customer and the bank.

Figure 4.3 shows the REC rules shared among the bank and the store agents.

The only rule, BS1, is similar to CB2, the only difference being the receiver. That is,

the bank notifies the store about the verification of the customer’s payment6 .� �
% BS1 : v e r i f y payment

initiates(exec(verify (Bank ,Store ,Item ) ) , verified(Item ) , ) .� �
Figure 4.3. Coupled knowledge-base of the bank and the store.

Figure 4.4 shows the REC rules shared among the customer and the store agents.

The only rule CS1 describes the commitment between them. The semantics is that

when the bank sends the payment verification, then the store will be committed to

deliver the item in five days7 .

6For the sake of simplicity, we do not indicate further conditions on Bank, Store, and Item, which
are free variables. A detailed implementation would require to express restrictions on such variables,
i.e., to define the “context” [39].

7The blank variable in the receiver location of the exec message accounts for either the customer
or the store. When the customer receives the message, it will infer the commitment. Similarly, the
store will infer the commitment when it is the receiver of that message.



71

� �
% CS1 : v e r i f y−d e l i v e r commitment

create(exec(verify (Bank , , Item ) ) ,Store ,

c (Store ,Customer ,property (e(Ts ,Te ) ,delivered(Item ) ) ) ,Ts):−

Te is Ts+ 5 , holds at( in stock (Item ,Store ) ,Ts ) .� �
Figure 4.4. Coupled knowledge-base of the customer and the store.

Figure 4.5 shows the REC rules shared among the store and the courier agents.� �
% SD1 : send f o r d e l i v e r y

initiates(exec(request(Store ,Courier ,Item ) ) , requested(Item ) , ) .

% SD2 : d e l i v e r

initiates(exec(deliver (Courier ,Store ,Item ) ) ,delivered(Item ) , ) .

% SD3 : send−d e l i v e r commitment

create(exec(request(Store ,Courier ,Item ) ) ,Courier ,

c (Courier ,Store ,property (e(Ts ,Te ) ,delivered(Item ) ) ) ,Ts):−

Te is Ts+ 3 .� �
Figure 4.5. Coupled knowledge-base of the store and the courier.

The first two rules (SD1 and SD2) describe the events for the request of a delivery,

and the delivery itself. The last rule SD3 describes the commitment between the two

agents. The semantics is that when the store requests the delivery of an item, then the

courier will be committed to deliver that item in three days.

Figure 4.6 shows the REC rules shared among the courier and the customer

agents. The only rule DC1 is similar to the rule SD2, in which the only difference is

the receiver.� �
% DC1 : d e l i v e r

initiates(exec(deliver (Courier ,Customer ,Item ) ) ,delivered(Item ) , ) .� �
Figure 4.6. Coupled knowledge-base of the courier and the customer.

For illustration purposes, the commitment rules contain the parties Customer,

Bank, Store, and Courier. These parties represent the roles that agents will enact

during the protocol’s execution. The real contracts, however, should define explicitly

which agents are involved in the contract, e.g., they should include a specific customer



72

Bank

Customer Store

Courier

fulfilled(c(bank,customer,property(e(1.0,4.0),verified(book))))

active(c(store,customer,property(e(3.0,8.0),delivered(book))))

active(c(courier,store,property(e(5.0,8.0),delivered(book))))

Figure 4.7. Commitments in the delivery process at time 6.0.

name. Such definitions could be written modularly in REC, by resorting to the concept

of role [40].

Figure 4.7 demonstrates a snapshot of the agents’ commitments in the delivery

process. The snapshot is taken at time 6.0. One can see that the bank has already

fulfilled the commitment towards verifying the customer’s payment. Upon receiving

the verification of payment, the store has created the commitment towards delivering

the book to the customer. In addition, it has delegated the commitment to the courier.

Implementation: We have implemented the diagnosis framework in the j-REC

tool for run-time monitoring which embeds a tuProlog reasoner8 . We could thus run

experiments in a simulated environment9 . The code also contains a commitment-based

definition of the diagnosis method. We use commitments to model collaboration. In

particular, each agent is committed to answer (faithfully) to a diagnosis request within a

certain deadline. Different evolutions of commitments related to the business (as shown

in the pictures below) and to the diagnosis can be tested by trying various sequences

of event histories, such as those contained in each eventTrace.txt file of each agent’s

folder. The j-REC tool only needs Java. For simplicity, there is one customized version

of j-REC Tool in each of 4 agents (ali, bank, store, and courier). The simplest way to

8http://sourceforge.net/projects/tuprolog
9Here, we only show some excerpts of the whole code. A running prototype with a full implemen-

tation can be downloaded from http://mas.cmpe.boun.edu.tr/ozgur/code.html, under Section 1.
Experiments for Diagnosis of Misalignment vs. Misbehavior.



73

run the example is to execute java -jar CMon.jar (or double-click on the CMon.jar

file icon) on a selected agent folder (see Appendix C for details).

4.3. Commitment Similarity

Chopra and Singh [23] propose a stronger-weaker relation for commitments using

the commitments’ conditions and propositions (i.e., properties). However, we do not fo-

cus on the properties of the commitments. Instead, we make comparisons based on the

temporal constraints associated with their properties (i.e., deadlines), and the agents

involved (i.e., debtor and creditor). Accordingly, we propose the following similarity

levels for commitments. We consider two commitments about the same transaction

(e.g., payment and delivery of a certain book) to be relevant to each other. A commit-

ment’s property suffices to identify a specific transaction. Thus the following definition:

Definition 17. (Relevance) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p))) is

relevant to commitment c2 = s2(c(x2, y2, property(e(t3, t4), p))).

Example 4.2. Table 4.1a shows an example of relevance; c1 and c2 are relevant since

their properties are identical (even though their state, debtor, creditor and temporal

properties may differ).

Remark 1. Relevance is an equivalence relation, i.e., it is reflexive, symmetric and

transitive.

Definition 18. (Cover) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) covers

commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to c2, t1 ≥ t3,

and t2 ≤ t4.

Definition 19. (Extension) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is

an extension of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant

to c2, t1 < t3, and t2 > t4.

Example 4.3. Table 4.1b shows an example of cover; c3 covers c4 since they are

relevant to each other, and the time span of c3 is within that of c4. That is, if the

customer wants delivery to be performed between times 3-10, then he will also accept



74

Table 4.1. Similarity relations: relevance and cover.

(a) c1 = active(c(courier, store, property(e(7.0,10.0), delivered(book))))

c2 = violated(c(store, customer, property(e(3.0,8.0), delivered(book))))

(b) c3 = active(c(store, customer, property(e(5.0,8.0), delivered(book))))

c4 = active(c(store, customer, property(e(3.0,10.0), delivered(book))))

delivery between 5-8. Conversely, c4 is an extension of c3, in which the customer may

not accept an extended deadline for delivery.

Definition 20. (Forward-shift) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1)))

is a forward-shift of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is

relevant to c2, t1 ≥ t3, and t2 > t4.

Definition 21. (Backward-shift) Commitment c1 = s1(c(x1, y1, property(e(t1, t2),

p1))) is a backward-shift of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if

c1 is relevant to c2, t1 < t3, and t2 ≤ t4.

Example 4.4. Table 4.2a shows an example of forward-shift; c5 is a forward-shift of c6

since they are relevant to each other, the starting point of c5’s time span is no less than

that of c6, and its end point (deadline) is strictly greater than c6’s deadline. Conversely,

c6 is a backward-shift of c5.

Note that forward-shift is not the inverse of backward-shift. For instance, c4 from

Example 4.3 is a backward-shift of c5 from Example 4.4, but c5 is not a forward-shift

of c4.

Remark 2. The following properties hold for the relations introduced so far. Cover is

reflexive, asymmetric, and transitive. Extension, forward-shift, and backward-shift are

all anti-symmetric and thus non-reflexive, but they are transitive.



75

Table 4.2. Similarity relations: shift and delegation.

(a) c5 = active(c(store, customer, property(e(5.0,10.0), delivered(book))))

c6 = violated(c(store, customer, property(e(3.0,8.0), delivered(book))))

(b) c7 = active(c(courier, store, property(e(5.0,8.0), delivered(book))))

c8 = active(c(store, customer, property(e(3.0,8.0), delivered(book))))

Lemma 1. Any two commitments ci and cj that are relevant to each other are in one

(and only one) of the four temporal relations specified in Definitions 18-21. In other

words, if commitment ci is relevant to commitment cj, then one and only one of the

following relations holds:

• ci covers cj;

• ci is an extension of cj;

• ci is a forward-shift of cj;

• ci is a backward-shift of cj.

(each option excludes the other ones).

Proof. There are 13 possible (exclusive) relations between two time intervals according

to Allen [41]. We show that our temporal relations cover all of those. Let us now

enumerate each possible case; below [t1, t2] and [t3, t4] are the temporal constraints of

ci and cj, respectively.

(i) t2 < t3: ci is a backward-shift of cj,

(ii) t1 > t4: ci is a forward-shift of cj,

(iii) t1 = t3 and t2 = t4: ci covers cj,



76

x1

x2 y1 = y2

(a) new debtor for the same creditor

x1

y2x2 = y1

(b) debtor is the new creditor

Figure 4.8. Delegatee.

(iv) t2 = t3: ci is a backward-shift of cj,

(v) t1 = t4: ci is a forward-shift of cj,

(vi) t1 > t3 and t2 < t4: ci covers cj,

(vii) t1 < t3 and t2 > t4: ci is an extension of cj,

(viii) t1 < t3 < t2 < t4: ci is a backward-shift of cj,

(ix) t3 < t1 < t4 < t2: ci is a forward-shift of cj,

(x) t1 = t3 and t2 < t4: ci covers cj,

(xi) t1 = t3 and t2 > t4: ci is a forward-shift of cj,

(xii) t1 > t3 and t2 = t4: ci covers cj,

(xiii) t1 < t3 and t2 = t4: ci is a backward-shift of cj.

The proof that the relations above are mutually exclusive trivially follows from

definitions.

Lemma 1 states that we can compare any two relevant commitments in terms

of the (temporal) similarity relations we propose, and that we can partition the set

of relevant commitments based on such relations. Let us now introduce the notion of

delegatee, which we need in the following definitions regarding commitment delegation.

Definition 22. (Delegatee) The debtor-creditor couple (x1, y1) is a delegatee of the

debtor-creditor couple (x2, y2) if (a) x1 6= x2 and y1 = y2, or (b) x1 6= y2 and x2 = y1.



77

Figure 4.8 demonstrates the delegatee relation. There are two cases; (a) the

debtor of the commitment delegates it to a new debtor (the debtor of the former

commitment has no longer the responsibility), (b) the debtor of the commitment gets

involved in a new commitment with another agent towards the same property, this

time it is the creditor of the new commitment.

Example 4.5. As an example of case (a), consider the following scenario: the store

is committed to the customer for delivering the book. Now assume that the store does

not currently have the book in stock. Thus, the store delegates its commitment to

another store, and informs the customer about the new commitment. For case (b),

consider again that the store has the commitment to the customer, but this time it

needs a courier in order to deliver the book to the customer. Thus, it gets involved

in another commitment with the courier towards delivery. The latter commitment is

again a delegation of the former commitment.

Some authors [5, 23] propose a more restricted definition of delegation which is

limited to case (a). There, when a delegation occurs, only the debtor of the commitment

changes. Definition 22 extends the notion of delegation by case (b). This provides a way

to trace a set of delegated commitments when diagnosing an exception (e.g., identify

the sequence of delegations). The first case does not support this by just looking at

the commitments themselves. That is, if the commitment is delegated several times,

it is not possible to keep track of the delegation sequence.

Remark 3. Delegatee is anti-symmetric and thus non-reflexive. It is also not transi-

tive.

The delegatee relation only makes sense when embedded in a commitment, as

described next.

Definition 23. (Delegation) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1)))

is a (proper) delegation of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1

covers c2, and (x1, y1) is a delegatee of (x2, y2).



78

Definition 23 describes commitment delegation; commitment c2 is delegated to

agent x1. The delegation of a commitment usually has the same state as the commit-

ment itself.

Example 4.6. Table 4.2b shows an example of delegation; c7 is a delegation of c8 since

c7 covers c8, and the debtor-creditor couple of c7 is a delegatee of that of c8.

Alongside with proper delegations of commitments there may be “improper” del-

egations, which may cause an exception. The exception is usually due to an agent

failing to bring about a property within a given time interval. Such improper dele-

gations may give rise to exceptions because they extend in one way or another the

time interval specified in the initial commitment. We distinguish between three differ-

ent types of improper delegation: forward-shift delegation, extension delegation, and

backward-shift delegation.

Definition 24. (Forward-shift delegation) Commitment c1 = s1(c(x1, y1, property(e(t1,

t2), p1))) is a forward-shift delegation of commitment c2 = s2(c(x2, y2, property(e(t3,

t4), p2))) if c1 is a forward-shift of c2, and (x1, y1) is a delegatee of (x2, y2).

Definition 25. (Extension delegation) Commitment c1 = s1(c(x1, y1, property(e(t1,

t2), p1))) is an extension delegation of commitment c2 = s2(c(x2, y2, property(e(t3,

t4), p2))) if c1 is an extension of c2, and (x1, y1) is a delegatee of (x2, y2).

Example 4.7. Table 4.3a shows an example of forward-shift delegation; c9 is a forward-

shift delegation of c10 since c9 is a forward-shift of c10, and the debtor-creditor couple

of c9 is a delegatee of that of c10.

Definition 26. (Backward-shift delegation) Commitment c1 = s1(c(x1, y1, property(e(t1,

t2), p1))) is a backward-shift delegation of commitment c2 = s2(c(x2, y2, property(e(t3,

t4), p2))) if c1 is a backward-shift of c2, and (x1, y1) is a delegatee of (x2, y2).

Example 4.8. Table 4.3b shows an example of backward-shift delegation; c11 is a

backward-shift delegation of c12 since c11 is a backward-shift of c12, and the debtor-

creditor couple of c11 is a delegatee of that of c12.



79

Table 4.3. Similarity relations: shift delegation.

(a) c9 = active(c(courier, store, property(e(7.0,10.0), delivered(book))))

c10 = violated(c(store, customer, property(e(3.0, 8.0), delivered(book))))

(b) c11 = active(c(courier, store, property(e(4.0,7.0), delivered(book))))

c12 = active(c(store, customer, property(e(5.0, 10.0), delivered(book))))

Remark 4. Delegation, forward-shift delegation, and backward-shift delegation are all

anti-symmetric and thus non-reflexive, they are also not transitive.

Lemma 2. Any two commitments, ci and cj, such that ci’s debtor and creditor are

delegatees of cj’s debtor and creditor, are in one (and only one) of the four delegation

relations specified in Definitions 23-26. In other words, if ci = si(c(xi, yi, p)), cj =

sj(c(xj, yj, q)), and (xi, yi) is a delegatee of (xj, yj), then one and only one of the

following relations holds:

• ci is a delegation of cj;

• ci is an extension delegation of cj;

• ci is a forward-shift delegation of cj;

• ci is a backward-shift delegation of cj.

(one option excludes the other ones).

Proof. The proof trivially follows from Lemma 1 and from Definitions 23-26.

Thanks to Lemma 2, we can partition the set of possible commitments linked by

delegation to a given commitment based on their mutual temporal relations.



80

� �
% S1 : r e l e v a n t

r e l e v a n t ( c (X1 , Y1 , property (e( Ts1 , Te1 ) ,P) ) , c (X2 , Y2 , property (e( Ts2 , Te2 ) ,P ) ) ) .

% S2 : forward−s h i f t

f s h i f t ( c (X1 , Y2 , property (e( Ts1 , Te1 ) , P1 ) ) , c (X2 , Y2 , property (e( Ts2 , Te2 ) , P2))) :−

r e l e v a n t ( c (X1 , Y1 , property (e( Ts1 , Te1 ) , P1 ) ) , c (X2 , Y2 , property (e( Ts2 , Te2 ) , P2 ) ) ) ,

Ts1 > Ts2 , Te1 > Te2 .

% S3 : d e l e g a t e e

d e l e g a t e e ( (X1 ,Y) , (X2 ,Y)):− X1 \= X2 .

d e l e g a t e e ( (X1 ,Y) , (Y, Y2)):− X1 \= Y2 .

% S4 : forward−s h i f t d e l e g a t i o n

f s h i f t d e l e g a t i o n ( c (X1 , Y1 , property (e( Ts1 , Te1 ) , P1 ) ) , c (X2 , Y2 , property (e( Ts2 , Te2 ) , P2))) :−

f s h i f t ( c (X1 , Y1 , property (e( Ts1 , Te1 ) , P1 ) ) , c (X2 , Y2 , property (e( Ts2 , Te2 ) , P2 ) ) ) ,

d e l e g a t e e ( (X1 , Y1) , (X2 , Y2 ) ) .� �
Figure 4.9. Commitment similarity in REC (excerpt).

Figure 4.9 shows some of the REC rules for the similarity relations.

4.4. Diagnosis Process: Architecture, Procedure, and Properties

The purpose of diagnosis is to investigate the state of commitments in the sys-

tem, and return a possible cause of violation; either a misalignment or a misbehavior.

Throughout this section, we provide the details regarding our diagnosis process.

Let C be the set of all commitments in the system and A be the set of all agents in

the system. When a diagnosis process is initiated by an agent A ∈ A, we are interested

in identifying the cause of violation of a specific commitment C ∈ C. We denote by

CA ⊆ C the set of commitments A is aware of. By definition, C ∈ CA.

With respect to Definition 17, CCA ⊆ CA is the set of all and only the commitments

that are relevant to C. Moreover, members of CCA that are a delegation of C by

Definition 23 belong to CCXA ; those that are a forward-shift of C by Definition 20

belong to CCfA , and those that are a forward-shift delegation of C by Definition 24

belong to CCfXA . By definition, CCXA ⊂ CCA and CCfXA ⊂ CCfA ⊂ CCA , while C ∈ CCA by



81

Table 4.4. Notation used for diagnosis process.

Symbol Description

C the domain of commitments

A the domain of agents

CA the set of commitments that agent A is aware of

CCA the set of commitments in CA that are relevant to C

CCeA the set of commitments in CA that are an extension of C

CCfA the set of commitments in CA that are a forward-shift of C

CCbA the set of commitments in CA that are a backward-shift of C

CCXA the set of commitments in CA that are a (proper) delegation of

C to X ∈ A

CCeXA the set of commitments in CA that are an extension delegation of

C to X ∈ A

CCfXA the set of commitments in CA that are a forward-shift delegation of

C to X ∈ A

CCbXA the set of commitments in CA that are a backward-shift delegation of

C to X ∈ A

CC∗XA CCXA ∪ CCeXA ∪ CCfXA ∪ CCbXA

CA the set of all commitments (CA =
⋃
A∈A CA)

CCA the set of commitments in CA that are relevant to C

reflexivity (see Remark 1) and C /∈ CCfA , C /∈ CCXA because forward-shift and delegation

relations are anti-symmetric (see Remarks 2 and 4).

For ease of reference, we summarize our notation in Table 4.4, and graphically

illustrate the relations among commitments in Figure 4.10. Note that each set of

commitments may contain violated, active and fulfilled commitments.

Definition 27 below formally defines the concept of diagnosis. A diagnosis process

starts from a violated commitment C, and aims to identify the reason behind that



82

CA

CCA• C

CCXACCfA
CCfXA

violated

active

fulfilled

Figure 4.10. Commitment relations.

violation, either as a misalignment among C and a relevant commitment c, or as a

misbehavior of the debtor x of a relevant commitment. The outcome of such a process

is what we call diagnosis.

Definition 27. Given a set of agents A, an agent A ∈ A, and a violated commit-

ment C ∈ CA, diagnosis of C by A is identified as an atom δ ∈ {misalignment(c),

misbehavior(x)}, for some c ∈ C ∪ {∅}, or x ∈ A.

To denote that a given atom δ represents such a diagnosis, we write 〈A,A〉
d(C)

� δ,

or simply A
d(C)

� δ when the set of agents in the system is clear from the context. Some-

times it is useful to focus the diagnosis on a specific set of commitments. This happens

when some of the commitments relevant to C have been found not to be relevant to

the diagnosis process. Thus to prevent unnecessary iterations and ensure that the di-

agnosis process always terminates, we keep track of already diagnosed commitments

for exclusionary purposes.

We will write A
d(C)

�∆ δ to indicate that δ is a diagnosis of C which excludes a

given set ∆ of commitments from the set of commitments relevant to C.

While Definition 27 describes the generic outcome of a diagnosis process, we are

interested only a diagnosis that actually identifies the reason of C’s violation. We call

it a correct diagnosis. The two possible outcomes of a correct diagnosis are:



83

(i) Misalignment : When we are in the presence of a (correct) misalignment diagnosis,

one of the following applies:

• there is a commitment that is relevant to C, such that its creditor infers the

commitment but its debtor does not,

• there is a violated commitment that is relevant to C, such that its debtor

infers that the commitment is active (i.e., forward-shift or extension).

In the first case, the debtor’s and creditor’s event traces are misaligned. In par-

ticular, debtor does not infer the creditor’s commitment because it does not have

the event in its trace that would create such a commitment (e.g., the bank never

informs the store about the customer’s payment, thus the store is not committed

to deliver). In the second case, the debtor infers the creditor’s commitment with

a shifted deadline (e.g., the bank indeed informs the store, but at a later time

than the customer). Both cases are considered as misalignments in our diagno-

sis process, since the debtor is not directly responsible for the violation of the

commitment.

(ii) Misbehavior : When we are in the presence of a (correct) misbehavior diagnosis,

one of the following applies:

• there is a violated commitment that is relevant to C, such that its debtor

infers the commitment, and the debtor has not delegated the commitment,

• there is a violated commitment that is relevant to C, such that its debtor in-

fers the commitment, and the debtor has delegated the commitment without

respecting its deadline (i.e., forward-shift delegation or extension delegation).

In the first case, the debtor also infers the violated commitment. Since the debtor

has not delegated the commitment to another agent, it has the full responsibility

for the violation (e.g., the store does not deliver in time). In the second case,

the debtor has not violated the commitment itself since it has delegated the

commitment to another agent. Nevertheless, it is still responsible for the violation

since the deadline of the commitment is shifted during delegation (e.g., the store

gives the delivery package to the courier too late). Thus, both cases are considered

as misbehaviors in our diagnosis process.



84

Definition 28 describes correct diagnosis formally taking into account the above

cases.

Definition 28. A correct diagnosis of C ∈ CA by A ∈ A is a δ such that A
d(C)

� δ and:

(i) if δ = misalignment(∅), then

∃x, y ∈ A, c = violated(c(x, y, property( e(t1, t2), p))) ∈ CCA, such that

• c ∈ Cy (c is known to its creditor, y), and

• CCx = ∅ (c is not known to its debitor, x);

if δ = misalignment(c), c ∈ C, then

∃x, y ∈ A, c = violated(c(x, y, property( e(t1, t2), p))),

c′ = s(c(x, y, property( e(t3, t4), p))) ∈ CCA, such that

• s ∈ {active, fulfilled},

• c ∈ Cy (c is known to be active or fulfilled to its creditor, y),

• c′ ∈ Cx (its debitor, x, considers it violated), and

• c′ is a forward shift or an extension of c (thus the misalignment);

(ii) if δ = misbehavior(x), then

∃x, y ∈ A, c = violated(c(x, y, property( e(t1, t2), p))) ∈ CCA, such that c ∈ Cx ∩

Cy (both debtor and creditor know c is violated), and either

• CcYx = ∅ for all Y ∈ A (the debtor, x, has not delegated c to anyone), or

• CcfYx ∪ CceYx 6= ∅ for some Y ∈ A (x has delegated c using wrong deadlines).

Note that Definition 28 describes diagnosis by looking at the multiagent system as

a whole, i.e., it gives an account of what has gone wrong in the system, by considering

all the commitments and the agents, and tell what a diagnosis should be in each case.

We will now propose a procedure that can achieve this result in a distributed way,

in which no agent has a global view. Figure 4.11 describes the architecture used to per-

form such distributed diagnosis. Agents are equipped with local and private knowledge-

bases. Note that this is consistent with the distributed detection architecture described

before. Agents are connected to others through the coupled knowledge-bases. Recall

that we use such knowledge-bases to represent knowledge shared by agents pairwise or



85

group-wise, such as protocol rules, commitment rules and 2-party contracts. However,

the actual instances of commitments (e.g., an active commitment of the store towards

delivery) are not stored within those knowledge-bases, but they are instead inferred

based on the existing knowledge at run time and on suitable monitoring capabilities.

Each agent individually monitors the state of commitments within its own scope. To

this end, it may use a REC engine such as j-REC (that is also used for detection),

or any other suitable run-time monitoring application equipped with a commitment

theory and a domain representation.

For example, the customer can run its REC engine to track down the state of

its commitment for delivery, to make sure that nothing is wrong. If it detects that

the commitment is violated, it can verify whether its violated commitment is aligned

with the other agents’ commitments. In such a case, the customer initiates a diagnosis

process to find out what has happened. The diagnosis process may involve a number of

other agents depending on where the exception originated from. We cannot determine

a priori who will be involved; if all agents in A or only a subset.

The diagnosis process will step through a series of diagnosis requests among

agents in A until one of the outcomes in Definition 28 is reached and returned back

recursively to the initiator. In each iteration, the diagnosing agent processes through

its commitments, identifies the ones that are relevant to the subject commitment, and

checks to see if it can find a relation among them that fits one of the cases as described

in Definition 28. If so, the diagnosis ends with a result. Otherwise, it means that

the agent has delegated the commitment faultlessly (i.e., there is nothing wrong the

current diagnosing agent’s actions). Now, the agent delegates the diagnosis process to

the delegatee of the commitment. Recall that we do not allow multiple delegations of

the same commitment to several agents. Thus, an agent can delegate its commitment

to a single agent only. Thus, the next iteration of diagnosis always continues with only

one branch.

Definitions 29-34 specify the diagnosis process declaratively.



86

Agenti

RECi

Agentj

RECj

KBij

– –

– –

initiates(. . . ),

. . .

violated(c(. . . )),

. . .

active(c(. . . )),

. . .

Agent

REC KB

– –

– –

.

.

.

Agent

REC

KB

– –

– –

Agent

RECKB

– –

– –

.

.

.

Agent

REC

KB

– –

– –

Figure 4.11. Diagnosis architecture.

Definition 29. (misalignment diagnosis without further evidence)

CCA \∆ = ∅

A
d(C)

�∆ misalignment(∅)

If no commitment is found that is relevant to C, diagnosis identifies a misalign-

ment as described in case (1a) of Definition 28. This is the case when the debtor does

not infer the creditor’s commitment at all. Note that there is no candidate commitment

for realignment in this case.

Definition 30. (misalignment diagnosis following forward-shift)

c ∈ CCfA ∪ CCeA \∆ ∧ CC∗XA \∆ = ∅ ∧ {c = active(C ′) ∨ c = fulfilled(C ′)}

A
d(C)

�∆ misalignment(C ′)

If a commitment C ′ is found that is a forward-shift or an extension of C, and such

a commitment is not violated, but instead still active, or even fulfilled, this means that

there is a temporal misalignment between the creditor’s and the debtor’s copies of the



87

same commitment10 . The debtor may be intending to bring about the property of the

commitment. Alas, too late! The diagnosis returns the debtor’s copy as a candidate

for alignment as described in case (1b) of Definition 28.

Definition 31. (misalignment diagnosis following wrong delegation)

c ∈ CCfXA ∪ CCeXA \∆ ∧ {c = active(C ′) ∨ c = fulfilled(C ′)}

A
d(C)

�∆ misalignment(C ′)

Similar to Definition 30, if agent A finds a commitment C ′ which is still active,

or already fulfilled, it means that C ′ has been delegated away. Again, there is a

possibility of recovering from the violation (e.g., the creditor may not mind the delay).

The diagnosis returns the debtor’s copy as a candidate for alignment.

Definition 32. (misbehavior diagnosis following failure to meet deadline)

violated(C ′) ∈ CCA \∆ ∧ CC∗XA \∆ = ∅

A
d(C)

�∆ misbehavior(A)

If an agent finds a violated commitment relevant to C, but no delegation of it, it

means that the debtor failed to fulfill the commitment in time, and that it is no one

else’s responsibility. Thus, diagnosis returns the debtor as a culprit as described in

case (2a) of Definition 28.

Definition 33. (misbehavior diagnosis following wrong delegation)

violated(C ′) ∈ CCfXA ∪ CCeXA \∆

A
d(C)

�∆ misbehavior(A)

10A diagnosis process is always initiated following the violation of a commitment. Thus, the
backward-shift of a violated commitment will also be violated, and cannot cause a misalignment. For
this reason, we do not inspect backward-shift-related commitments in the diagnosis process.



88

If a violated commitment is found that is a forward-shift delegation, or an ex-

tension delegation of C, this means that the debtor has delegated its commitment

without respecting its deadline. Accordingly, diagnosis reports the debtor as a culprit

as described in case (2b) of Definition 28.

Definition 34. (propagation of diagnosis following successful local check)

c ∈ CCXA ∪ CCbXA \∆ ∧X
d(C)

�∆∪c δ

A
d(C)

�∆ δ

Definition 34 covers the last case, in which a violated commitment is found that

is either a delegation or a backward-shift delegation of C. This means that the debtor

has correctly delegated its commitment, but the debtor of the delegated commitment

(delegatee) has not fulfilled the commitment as it should have. Diagnosis continues with

the delegatee. Recall that we allow only a single delegation of the same commitment.

Thus, diagnosis continues with one branch only. To prevent infinite loops, the next

agent to continue diagnosis will exclude those commitments in ∆, since they have

already been inspected.

To execute such a diagnosis process, agents only need to be able to infer the state

of commitments at run-time, and have basic inference capabilities such as simple oper-

ations with sets. Importantly, since each inference rule involves only one agent making

an inference about the state of its commitments, and possibly a request to another

specific agent (the delegatee of one of its commitments), it is possible to implement

the diagnosis process in a distributed way. In particular, a j-REC implementation of

such a process is available.

Let us now analyze and discuss the behaviour and outcomes of the diagnosis

process. LetM1 be any method that implements a diagnosis process following Defini-

tions 29-34. The following properties hold for M1:



89

Property 1: M1 terminates. We consider two cases for termination: (i) there

does not exist any circular chain of delegations, and (ii) there exists a circular chain of

delegations. Termination for the former case is trivial since the number of iterations

is bounded with the number of agents in the system. For the latter case, consider the

following circular chain of delegations among the commitments; c1 = c(x, y, ...), c2

= c(z, x, ...), ..., cn−1 = c(w, u, ...), cn = c(y, w, ...). After each agent takes one

diagnosis turn, agent y is requested to diagnose on commitment cn. Now, y cannot

request a further diagnosis from agent x on c1 since c1 is already contained in the set

of commitments that are previously diagnosed on (by Definition 34).

Property 2: M1 makes a correct diagnosis. If M1 returns a misalignment, then

a misalignment has occurred in the system. Similarly, if M1 returns a misbehavior,

then a misbehavior has occurred in the system. In other words,M1’s outcome satisfies

the conditions stated in Definition 28. However, the other direction is not always true.

That is, if a misalignment has occurred in the system,M1 may return a misbehavior if

it is also the case that a misbehavior has occurred prior to the misalignment. Similarly,

if a misbehavior has occurred in the system,M1 may return a misalignment if it is also

the case that a misalignment has occurred prior to the misbehavior. This is intuitive

as we try to deal with the first possible reason for the exception.

We provide a notion of restricted completeness for M1, in the sense that our

diagnosis process only identifies the first exception (either a misalignment or a misbe-

havior) that has possibly occurred in a chain of delegations. An alternative would be

that, Definitions 29-34 would exhaustively account for every possible exception that

may have occurred during the process. However, the motivation behind our reasoning

is that once an exception is identified, it does not seem interesting to look for further

misalignments or misbehaviors. As a matter of fact, every other exception that occurs

afterwards can be considered as a consequence of the first one. Since M1 identifies

that first exception (i.e., the most significant one), we say that it is complete in that

sense.

The conditions of Definitions 29-34 are also mutually exclusive. Therefore, the



90

following property holds:

Property 3: M1 is deterministic. Let us now discuss the outcomes of this di-

agnosis process in case of misbehavior or misalignment. In the case of a temporal

misalignment, M1 returns a commitment C ′ which is the reason of the misalignment.

If that is the only reason of violation in the system (i.e., if there are no other misbehav-

iors nor misalignments), a simple way to achieve realignment is the following Policy

P1. Agents following P1 will align their violated commitments with the one that is

presented as the outcome of the diagnosis procedure, by following these commitment

update rules:

• Alignment with forward-shift or extension: If the agent has commitment c1, and

the diagnosis process has proposed a commitment c2 which is a forward-shift or

an extension of c1, then the agent will replace its commitment c1 with c2.

• Alignment with forward-shift delegation or extension delegation: If the agent has

commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))), and the diagnosis process

has proposed a commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) which is

a forward-shift delegation or an extension delegation of c1, then the agent will

replace c1 with c3 = s2(c(x1, y1, property(e(t3, t4), p2))).

The adoption of Policy P1 amounts to an implicit acceptance of a delayed commitment

fulfillment.

The two final results below are a consequence of P1’s soundness, determinism and

(restricted) completeness results.

Property 4: M1 and P1 provide a means of alignment. This is true when a single

misalignment has occurred in the system, and no misbehaviors have occurred prior to

that misalignment. In that case, if all agents involved in the diagnosis process adopt

P1, once M1 terminates and all applicable P1 rules have been applied, there will be

no more violated commitment in the system.



91

Example 4.9. Assume that the agent has violated(c(store, customer, property (e(3.0,

8.0), delivered(book)))), and it is presented with a forward-shift delegation of this

commitment, active(c(courier, store, property(e(7.0,10.0), delivered(book)))). Then,

the agent will update its commitment to active(c(store, customer, property (e(7.0,

10.0), delivered(book)))) following the rule for alignment with forward-shift delegation.

Example 4.9 describes a case where the store makes a delegation to the courier

without respecting the deadline of the customer’s commitment. When such cases occur

in real life, the customer often chooses to adapt to the new deadline discovered. This

is a means of alignment for the exception faced.

The update rules we propose provide a sample policy that agents can adapt in or-

der to realign their commitments with other agents. This ensures that no commitment

violations occur due to misalignment. Policy P1 can also be combined with a form of

compensation, e.g., the agent will adopt the commitment update rules, in exchange for

a monetary compensation. The compensation may also apply in the case of a propa-

gated diagnosis process. For example, the customer has asked the store to diagnose its

violated commitment. The store, in turn, has asked the courier for a diagnosis. As a

result, assume that the courier has identified a misalignment. Now, both the store and

the customer may realign their commitments regarding the courier’s commitment. In

such a case, who will get the compensation? This is an interesting issue that we plan

to investigate when considering recovery scenarios.

Property 5: M1 “finds the culprit”. This is true when a single misbehavior has

occurred in the system, and no misalignments have occurred. In that case,M1 returns

an answer δ(X), X ∈ A, such that there exists an alternative possible trace of events

in X’s execution which will lead to no violation.



92

Ali Bank Store Courier

pay(ali,bank,book)
1.0

verify(bank,ali,book)
3.0

verify(bank,store,book)
5.0

request(store,courier,book)
7.0

deliver(courier,ali,book)
10.0

deliver(courier,store,book)
10.0

Figure 4.12. Trace of events for Case I.

4.5. Case Study

Next, we present two separate traces of happened events from the delivery process,

each leading to a different outcome of diagnosis. We assume that all agents adopt P1,

whenever there is a misalignment issue.

4.5.1. Case I: Misalignment

Figure 4.12 shows the trace of events for the first case. This case represents

a misalignment of commitments between the customer (Ali) and store agents. The

misalignment is caused by the late notification of the bank agent. Let us review the

trace of events. Ali sends the payment to the bank at day 1, regarding its purchase

of the book from the store. At day 3, the bank verifies Ali’s payment. However, the

bank sends the notification of Ali’s payment to the store at day 5. This is where

the misalignment occurs between Ali and the store. Recall that their commitment is

triggered by the bank’s confirmation of payment. Then, the store requests the delivery

of the book from the courier agent at day 7. Finally, the courier delivers the book to

Ali at day 10. At the same time, the courier notifies the store about the delivery.

Let us now track the commitments of agents in time. At day 3, Ali infers c1

= active (c(store, ali, property( e(3.0, 8.0), delivered (book)))). At day 5, the store



93

infers c2 = active (c(store, ali, property( e(5.0, 10.0), delivered (book)))). Notice

the deadline shift between those two commitments. At day 7, both the store and the

courier infer c3 = active (c(courier, store, property( e(7.0, 10.0), delivered (book)))).

At day 9, when Ali runs its REC engine, it detects that c1 has been violated. Figure

C.1 in Appendix C shows the REC output for this instance.

Since there is a commitment violation, Ali initiates the diagnosis process with a

diagnosis request for the store, i.e., by asking the store to find an answer δ such that

store
d(c1)

�∅ δ.

According to the output of its monitoring facility, the store finds c2, which is a

(still active) forward-shift of c1. Things could still be OK for the store if the store

had delegated the task with a correct deadline. Unfortunately, this is not the case.

Based on its records, the store verifies that an active commitment, c3, is a forward-shift

delegation of c1. Thus, the store will immediately inform Ali of a misalignment following

wrong delegation (see Definition 31): δ = misalignment(c3). Ali then updates its

commitment c1 with c3 via the alignment policy P1, and waits for the new deadline.

At day 10, the updated commitment is fulfilled since the courier makes the delivery.

4.5.2. Case II: Misbehavior

Figure 4.13 shows the trace of events for a case of misbehavior, which is diagnosed

via a propagation of the diagnosis request. Let us review the trace of events. Ali sends

the payment to the bank at day 1, regarding its purchase of the book from the store. At

day 3, the bank verifies Ali’s payment, and sends the notification to the store. Then,

the store requests the delivery of the book from the courier at day 5. The courier

delivers the book to Ali at day 10, and notifies the store about the delivery. This time,

however, the courier should have delivered earlier. Thus, this is where the courier

violates its commitment by disrespecting its deadline.



94

Ali Bank Store Courier

pay(ali,bank,book)
1.0

verify(bank,ali,book)
3.0

verify(bank,store,book)
3.0

request(store,courier,book)
5.0

deliver(courier,ali,book)
10.0

deliver(courier,store,book)
10.0

Figure 4.13. Trace of events for Case II.

Let us track the commitments of the agents in time. At day 3, both Ali and the

store infer c1 = active (c(store, ali, property( e(3.0, 8.0), delivered (book)))). At day

5, both the store and the courier infer c2 = active (c(courier, store, property( e(5.0,

8.0), delivered (book)))). Similar to the first case, Ali detects that c1 is violated when

it runs its REC engine at day 9.

Ali initiates the diagnosis process with the diagnosis request

store
d(c1)

�∅ δ.

Accordingly, the store will find a violated commitment c1, and a correct delegation c2 of

c1, which is also violated. This eliminates all the diagnosis cases inM1, except the last

one. Thus, the store redirects the diagnosis request to the courier (see Definition 34):

courier
d(c2)

�{c1} δ.

the courier finds that c2 is violated. Since there is no delegation of c2, the courier is

the cause of the exception (by Definition 32). The answer δ = misbehavior(courier)

is passed from the courier to the store, and from the store back to Ali. Figure C.2 in

Appendix C shows the REC output for this instance.



95

In this chapter, we have mainly studied diagnosis of exceptions when the commit-

ments of agents are misaligned with each other. Among the set of possible causes for

misalignment [23,38,42], we are interested in the temporal aspects. That is, we aimed

at fixing misalignments that are caused by conflicts in the commitments’ deadlines.

We have argued that a conflict of deadlines among two relevant commitments may be

caused either by individual observations of agents that are in conflict with each other

(i.e., misalignment), or by a delegation that does not respect a previously established

deadline (i.e., misbehavior). We have proposed commitment similarity relations that

can be used to verify if two commitments are aligned in time. In the case of mis-

alignment, the agents can update their commitments based on the alignment policy

we have proposed. Providing an update of contract deadlines is an effective way of

compensation that mimics real-life situations very closely. While this constitutes one

step of diagnosis, we also provide the culprit agent in the case of misbehavior.

Agents’ goals are also important when considering the commitments in a protocol

[25, 27]. Agents try to manipulate (e.g., create or delegate) their commitments with

each other in order to satisfy their goals. An agent’s goal can be an achievement goal,

or a maintenance goal [27]. Here, we have in a way dealt with achievement goals. That

is, the existential temporal constraint on a base-level commitment corresponds to an

achievement goal, in which the debtor of the commitment has to satisfy a property for

the creditor within a deadline. What we have not dealt with here are maintenance goals,

which can be represented by universal temporal constraints on commitments. That is,

the debtor of the commitment has to ensure that the property of the commitment is

valid throughout a certain period of time.

There are other settings, different from e-commerce as we experiment here, that

monitoring and diagnosis is essential in identifying exceptions. Kalech and Kaminka

[43, 44] consider diagnosis of exceptions arising from disagreements due to different

observations in multiagent teamwork, e.g., in robotics or in a combat-field setting.

Agent death, or unreachable agents, is an important issue in such settings in the

sense that an unreachable agent will obviously not participate in the diagnosis. Since

we assume that our diagnosis process needs the collaboration of the agents that are



96

Table 4.5. Levels of forward-shift.

c1 = active(c(store, customer, property(e(3.0,8.0), delivered(book))))

c2 = active(c(store, customer, property(e(5.0,10.0), delivered(book))))

c3 = active(c(store, customer, property(e(9.0,14.0), delivered(book))))

involved in the mismatch, it is not possible to diagnose cases of agent death [45].

In order to demonstrate how our approach works, we have extended a delivery

process description by involving temporal constraints, and formalized it in REC [7,

28]. We have designed and presented two different exception cases according to the

two possible outcomes of our diagnosis procedure. The forward-shift relation we have

proposed is the main cause of exceptions triggered by misalignment. In particular,

forward-shift can further have different levels. Table 4.5 shows three commitments;

both c2 and c3 are forward-shifts of c1. For diagnosis purposes, each one is considered

as misalignment. However, assume that the current time is 4.0 and the customer has

the commitment c1; it wishes to understand whether the delivery will take place at time

8.0. If the store has the commitment c2, then the customer may think that an exception

is probable. But, there is still a chance that delivery will take place at time 8.0, since

8.0 is within the temporal interval of c2. On the other hand, if the store has the

commitment c3, then the customer can understand that there is no chance of delivery

taking place at time 8.0. This type of reasoning can be used to predict exceptions,

e.g., prognosis. As for future work, we plan to investigate how our similarity relations

can be used for prognosis. In addition, we plan to extend our commitment similarity

relation to cover the strength relation of Chopra and Singh. This will also allow us

to investigate cases where multiple delegations are possible for the same commitment.

We plan to look at the Tropos framework for complex delegation schemes [46].

The backward-shift and the backward-shift delegation relations we propose here



97

are not operational for diagnosis purposes. Since a diagnosis process is always initiated

after a commitment violation is detected, the backward-shift (delegation) of the vio-

lated commitment will also be violated, thus cannot cause a misalignment. However,

when prognosis is also involved, backward-shift (delegation) may also be the cause of a

misalignment. For example, the customer may not wish to receive the delivery earlier

than a specific date. We will investigate such cases when we consider prognosis. An-

other possible direction for future work is to decide what to do next with the culprit

agent identified (e.g., recovery). We are currently working on how to proceed with such

diagnosis via the exchange of happened events. That is, the agents should reason both

on the similarity among events and the relevance between commitments and events in

order to find a suitable recovery.



98

5. MONITORING OF COMMITMENT DELEGATIONS

The use of commitments to model agent interaction has been advocated especially

in heterogeneous and open settings where autonomous agents must flexibly interact,

e.g., to handle exceptions and exploit opportunities [5]. One reason why commitment-

based approaches are more flexible than traditional approaches is that they enable the

stakeholders to delegate their commitments. Delegation may be desirable fore several

reasons. One reason is that an agent may not be capable of satisfying the properties

he committed to bringing about. This is very normal in e-commerce scenarios. For

example, a merchant may delegate a delivery task to a courier. In that case, a new com-

mitment is formed C(courier, merchant, >, delivered) as a delegation of C(merchant,

customer, paid, delivered) from the merchant (delegator) to the courier (delegatee),

about the delivery task (delegandum).

In order to safeguard protocol flexibility and agent autonomy, it makes sense to

leave a certain degree of freedom in the delegation process. For example, a delegator

wants to autonomously decide when to set deadlines to his delegatees, based on a

number of criteria. More or less flexible deadlines can result, e.g. from contractual

negotiations, normative constraints, or reputation-based considerations. Whatever the

reason for delegation, it is always important to understand whether the flexibility that

comes together with such a mechanism introduces any weakness in the system, which

may lead to undesirable global states.

Usually, commitments formed between different agents are connected to each

other; either explicitly (by delegation), or implicitly (other dependencies). The delega-

tion operation extends the set of agents related with a commitment. In the merchant-

courier example, the delivery commitment between the merchant and customer agents

is extended with the courier agent. The customer may not be aware of this extension

until the delivery is completed, or something goes wrong (e.g., the deadline passes). In

that case, this connection should be revealed so that if the problem is related to the

courier, it can be identified.



99

C1 = C(contractor, landlord, paid, refurbished(r[5, 10]))

C2 = C(builder, contractor, paidB, bathroom(r[5, 10]))

C5 = C(builder, contractor, paidK, kitchen(r[5, 10]))
C3 = C(layer, builder, shower, tiles(r[3, 5]))

C4 = C(assembler, builder, paidS, shower(r[5, 7]))
C6 = C(painter, builder, appliances, painted(r[3, 5]))

C7 = C(supplier, builder, appliances(a[8, 10]))

Figure 5.1. Refurbish house.

Let us look at a more complicated case. Consider the commitments and their

delegations in Figure 5.1. The landlord wants to refurbish his house, so he makes a

commitment with the contractor (C1). In order to refurbish the house, the contractor

makes two commitments with the builder; one for the bathroom (C2) and one for the

kitchen (C5). Building the bathroom requires first the shower (C4), then the tiles (C3).

Similarly, building the kitchen requires first the appliances (C7), then the painting of

the walls (C6).

When there are many commitments in the system at hand (like in Figure 5.1),

in order to identify an exception we need effective ways to explore the space of com-

mitments. In particular, we need to identify links between commitments and exclude

irrelevant instances from our search. The process of tracking down individual commit-

ment states is called commitment monitoring [7, 28]. We extend monitoring to enable

run-time tracking of exceptions via the links between agents’ commitments. To this

end, we define a simple language for commitments and deadlines, inspired from [7],

which enables modeling a variety of interesting e-commerce situations. The language

allows us to define properties as conjunctions of atomic propositions. Properties are

associated with deadlines that can be absolute or relative. No deadlines are associated

with the antecedent, and the property language does not accommodate negation nor

disjunction. This simplification makes it possible to efficiently and safely monitor the

states of all possible delegations that can be referred to any given commitment. In this

way, an agent can make reasonable assumptions about whether such a commitment is

likely to be fulfilled or not.



100

We define a complete set of possible rational delegation schemes, identifying for

each combination of (possibly nested) delegations what critical situations may lead

to improper delegation and possibly to commitment violation. We give an exhaustive

account of all possible improper delegations, and show a sound and complete distributed

reasoning procedure that is able to find all improper delegations of a given commitment.

5.1. Commitments with Extended Temporal Constraints

We now extend our commitment description with extended temporal properties.

Definition 35. C(X, Y , Q, P (γ[t1, t2])) represents a commitment, where the debtor

X commits to the creditor Y for satisfying the consequent P when the antecedent Q

holds. If Q is >11 , then X is committed to Y unconditionally. P has to be satisfied

within the interval γ[t1, t2], where γ[t1, t2] can be one of the following:

• a[t1, t2] defines an absolute deadline, where P has to be brought about at some

point between t1 and t2;

• r[t1, t2] defines a relative deadline, where P has to be satisfied between t1 and t2

time units as of the time t Q gets satisfied, i.e., P has to be brought about at

some point between t+ t1 and t+ t2. A relative deadline is only defined when the

antecedent is not >.

In the remainder of this chapter, we may use the term base-level to refer to

commitments whose antecedent is >, and conditional to refer to commitments whose

antecedent is not > [5]. When we discuss commitments independently of the temporal

dimension, we may also use the simplified notation C(X, Y , Q, P ).

In Definition 35, X, Y are agents, and Q, P are (conjunctions of) atomic propo-

sitions. We do not support negation or disjunction of propositions, nor nested com-

mitments. When P is a conjunction of propositions, we assume that all the atomic

propositions in P have the same deadline.

11> is a constant symbol indicating a fictitious property that does not need to be satisfied because
it is already true.



101

Example 5.1. C(merchant, customer, paid, packaged ∧ delivered(r[4, 7])) tells that

the packaging and delivery should take place between four and seven time units after

the payment is completed, since r[4, 7] represents a relative deadline, and it applies

to all properties in the consequent. Thus, if the payment is done at time 3, then this

commitment will become C(merchant, customer, >, packaged ∧ delivered(a[7, 10])),

which is in the active state and tells that the merchant has to package and deliver the

merchandise between times 7 and 10 (absolute deadline).

5.2. Delegation

When an agent X is bound to a commitment C, it may decide to carry out the

consequent (if X is the debtor) or the antecedent (if X is the creditor of a conditional

commitment) only by itself, or by delegating C in part, or in full, to other agents,

which will act as subcontractors. Multiple commitments may then originate from C.

These will be, directly or indirectly, related to C.

Previous work has looked at commitments and their relations from different an-

gles. Chopra and Singh [23, 42] compare commitments via a strength relation using

the commitments’ properties, Kafalı et al. [12] focus on the temporal aspects of com-

mitments and provide similarity relations based on the commitments’ deadlines. We

combine both approaches, propose direct and indirect delegation relations, and show

which cases are relevant to monitoring.

Definition 36. A delegation of a commitment C(X, Y , Q, P ), called primary, is a

new commitment where either X or Y plays the role of the creditor or debtor (delegator),

and a new agent Z (delegatee) is responsible for bringing about part of the antecedent Q

(when Q is not >) or part of the consequent P. The common property between primary

and delegation is called delegandum.

In the sequel, we use the notation debtor(Cm, X) to indicate that X is Cm’s

debtor and delegatee(Cm, Cj, Y ) to indicate that Y is the delegatee of Cm’s delegation

Cj.



102

Six types of delegation are particularly meaningful. Let us define and illustrate

them one by one, considering variations of C(merchant, customer, paid, packaged ∧

delivered) as our primary.

merchant customer

courier

C(merchant, customer, paid, packaged ∧ delivered)

delegation of primary
C(courier, customer, paidDelivery, delivered)

delivered

primary

Figure 5.2. Explicit delegation.

Definition 37. Commitment C(Z, Y , Q′, P ′) is an explicit delegation of commitment

C(X, Y , Q, P ) iff P |= P ′12 .

This type of delegation was proposed by Yolum and Singh [5] as the result of

a “Delegate” operation. A new commitment is created, whereby the new debtor is

committed to the same creditor, and if P = P ′, the primary is canceled following a

“Cancel” operation [5]. An explicit delegation is shown in Figure 5.2. The new debtor

courier replaces the old debtor merchant.

merchant customer

courier

C(merchant, customer, paid, packaged ∧ delivered)

delegation of primary
C(customer, courier, delivered, paidDelivery)

delivered

primary

Figure 5.3. Weak explicit delegation.

Definition 38. Commitment C(Y , Z, Q′, P ′) is a weak explicit delegation of commit-

ment C(X, Y , Q, P ) iff P |= Q′.

12The semantics of |= will depend on the language of the antecedent/consequent properties. Here
for simplicity, we consider properties to be conjunctions of propositions, therefore P |= P ′ ⇔ (P =
P ′) ∨ (P = P ′ ∧ P ′′), where P, P ′, P ′′ are all (conjunctions of) propositions. Since we use these
definitions to evaluate the relevance/similarity of commitments to one another, |= does not consider
temporal aspects.



103

The creditor Y of the primary is now the debtor of the new commitment, and

Y wishes to achieve P (or part of it) via a new creditor Z. This is a weak delegation

to achieve P since there is no obligation for Z to satisfy P, unless Z needs Q satisfied.

The concept of weak delegation was introduced by Kafalı and Torroni [13], inspired by

Chopra et al. ’s work [25]. A weak explicit delegation is shown in Figure 5.3. Note

that the roles of creditor and debtor are reversed, and accordingly also antecedent and

consequent are reversed.

merchant customer

courier

C(merchant, customer, paid, packaged ∧ delivered)

C(courier, merchant, paidDelivery, delivered)
delegation of primary

delivered

primary

Figure 5.4. Implicit delegation.

Definition 39. Commitment C(Z, X, Q′, P ′) is an implicit delegation of commitment

C(X, Y , Q, P ) iff P |= P ′.

The debtor of the primary is now the creditor of a new commitment for (part of)

the consequent P. The primary becomes dependent on the delegation, in a chain-like

fashion. This type of delegation chain was proposed by Kafalı et al. [12]. An implicit

delegation is shown in Figure 5.4. Note that the creditor is the merchant, which is the

primary’s debtor. The primary is not canceled, because a commitment must be kept

to the initial creditor (the customer).

merchant customer

courier

C(merchant, customer, paid, packaged ∧ delivered)

delegation of primary delivered
C(merchant, courier, delivered, paidDelivery)

primary

Figure 5.5. Weak implicit delegation.

Definition 40. Commitment C(X, Z, Q′, P ′) is a weak implicit delegation of com-

mitment C(X, Y , Q, P ) iff P |= Q′.



104

The debtor of the primary also becomes the debtor of a new commitment where

the antecedent is (part of) the primary’s consequent. This type of delegation, as well as

the next two (antecedent and weak antecedent delegation), were introduced by Kafalı

and Torroni [13]. A weak implicit delegation is shown in Figure 5.5.

merchant customer

bank

C(merchant, customer, paid ∧ confirmed, delivered)

delegation of primary
C(bank, customer, enoughCredit, paid)

paid

primary

Figure 5.6. Antecedent delegation.

Definition 41. Commitment C(Z, Y , Q′, P ′) is an antecedent delegation of commit-

ment C(X, Y , Q, P ) iff Q is not >and Q |= P ′.

The creditor of the primary also becomes the creditor of a new commitment for

(part of) the antecedent of the primary. An antecedent delegation shown in Figure 5.6.

Because the initial consequent (delivered) does not appear in the antecedent delegation,

in order to maintain a commitment about the initial consequent, the primary is not

canceled. Antecedent delegations and implicit delegations can be combined together

and bind multiple commitments into causal similarity relations.

The last type of delegation we consider is the weak variant of antecedent delega-

tion.

merchant customer

bank

C(merchant, customer, paid ∧ confirmed, delivered)

delegation of primary
C(customer, bank, paid, enoughCredit)

paid

primary

Figure 5.7. Weak antecedent delegation.

Definition 42. Commitment C(Y , Z, Q′, P ′) is a weak antecedent delegation of com-

mitment C(X, Y , Q, P ) iff Q is not >and Q |= Q′.



105

The creditor of the primary is now the debtor of a new commitment whose an-

tecedent is (part of) the antecedent of the primary. As in the previous case, the primary

is not canceled. A weak antecedent delegation of the primary is shown in Figure 5.7.

Figure 5.8 summarizes the various types of commitment delegation. The figure

shows only the key aspects that distinguish each type of delegation. Each agent is

represented by a circle, with the agent’s name inside (X, X ′, Y , Y ′). Each commitment

is represented by an arrow from the debtor to the creditor, e.g., the first commitment

is from X to Y . The delegating agent is displayed with a thicker line. Only the

delegandum is displayed. The antecedent is represented at the creditor end of the

arrow, whereas the consequent is represented near the debtor end of the arrow. If a

delegation cancels the primary, the primary is represented by a dashed line arrow, to

emphasize that the primary is no longer in place.

X Y
P' ∧ P''

X'

P'
implicit 

delegation

X Y
P' ∧ P''

Y'

P'
weak implicit 
delegation

X Y( P' ∧ P'' )

X'

P'
explicit 

delegation

P''

X Y( P' ∧ P'' )

Y'

P'
weak explicit 
delegation

P''

X YQ' ∧ Q''

X'

Q'
antecedent 
delegation

X Y

Y'

Q'
weak antecedent 

delegation

Q' ∧ Q''

w
ea

k 
va

ria
nt

s
st

an
da

rd
 ty

pe
s

antecedent delegationsconsequent delegations

Figure 5.8. Types of delegation.

Definitions 37 through 42 give an exhaustive account of how a commitment can

be rationally delegated, i.e., by preserving the responsibilities of roles in relation with

the primary’s properties [13].



106

5.3. Similarity relations

We will now shift the focus to commitments that are linked to each other via

other commitments. To this end, in [14] we introduced the concept of commitment

similarity, which we explore here in greater detail, and extend to capture the notion of

chains of delegations. We then analyse the temporal properties of chains of delegations,

and isolate cases of improper delegation in the chain, in order to identify exceptions as

they occur.

5.3.1. Chains of delegations

Let us introduce the idea of commitment similarity with an example.

Example 5.2. Consider set CS5.2 = {CS5.2.1, CS5.2.2, CS5.2.3} (see Figure 5.9), where:

CS5.2.1 = C(merchant, customer, paid, delivered)

CS5.2.3 = C(courier, merchant, confirmed ∧ paidDelivery, delivered)

CS5.2.2 = C(bank, merchant, enoughCredit, paidDelivery)

According to CS5.2.1, once the customer pays, the merchant will have the mer-

chandise delivered. Now, the merchant delegates the delivery to the courier via CS5.2.3.

However, in order to deliver, the courier needs the delivery to be paid. Thus, the mer-

chant makes another delegation to the bank via CS5.2.2. As long as the merchant has

enough credits in his account, the bank will send the payment for him.

Example 5.2 illustrates a causal relation between commitments here: in order to

satisfy CS5.2.1’s delegation CS5.2.3, a new commitment CS5.2.2 is in place. In particular,

CS5.2.3 is the link between two otherwise seemingly unrelated commitments. We will

say that CS5.2.1 and CS5.2.2 are causal-delegation similar via CS5.2.3. To put it formally:

Definition 43. Commitment C1 = C(X1, Y1, Q1, P1) is causal-delegation similar to

commitment C2 = C(X2, Y2, Q2, P2) via commitment C3 = C(X3, Y3, Q3, P3) if



107

merchant customer

courierbank

C1: C(merchant, customer, paid, packaged ∧ delivered)

C3: C(courier, merchant, confirmed ∧ paidDelivery, delivered)

deliveredC2: C(bank, merchant, enoughCredit, paidDelivery)

paidDelivery

cause

outcome

(antecedent delegation of connective)

(implicit delegation of outcome)
connective

Figure 5.9. Causal delegation similarity.

(i) P1 |= P3 and X1 = Y3 (implicit delegation), and

(ii) Q3 |= P2 and Y3 = Y2 (antecedent delegation).

We call C1 outcome, C2 cause, and C3 connective.

Definition 43 connects two commitments through two delegations; one consequent

(implicit) and one antecedent delegation. Here, C1 and C2 can also be base-level

commitments since Q1 and Q2 are not part of the relation. However, C3 cannot be a

base-level commitment since Q3 is part of the relation. Definition 43 allows us to trace

chained commitments where the property P changes along the delegation chain.

Causal delegation similarity is a very special case of delegation chains. Let us

see what we can tell in general about such chains. Now, consider the delegations that

do not cancel the primary: (weak) implicit and (weak) antecedent delegations. If we

start from a primary C(X, Y , Q′ ∧ Q′′, P ′ ∧ P ′′) and apply two delegations in a row,

we obtain 16 different cases. These are illustrated in Figure 5.10.

The two bottom rows of Figure 5.10 show a (weak) antecedent delegation followed

by other delegations. Because we are not considering temporal constraints (e.g., time

intervals to represent deadlines) associated with the antecedent, these cases are not

interesting for monitoring. There are 8 cases left, of which only 4 involve more than

two commitments in the scope of a single agent (X). One such case is implicit dele-

gation followed by antecedent delegation, corresponding to a causal delegation (Figure



108

X Y
P' ∧ P''

X''

Q'

causal delegation: implicit 
delegation followed by 
antecedent delegation

X'

P'
Q' ∧ Q''

X Y

X'

P'

weak antecedent delegation 
followed by implicit 

delegation

Y'

Q'

Q' ∧ Q''

P' ∧ P''

X Y

X'' Q'

antecedent delegation 
followed by implicit 

delegation

X'

Q'

Q' ∧ Q''

X Y
P' ∧ P''

X'

P'

weak implicit delegation 
followed by antecedent 

delegation

Y'

P'

ext. causal delegation: 
implicit delegation followed 
by weak antecedent deleg.

X Y
P' ∧ P''

Y'

Q'

X'

P'
Q' ∧ Q''

X YP' ∧ P''

Y'

P'

X'

Q'

ext. causal delegation: 
weak implicit delegation 

followed by implicit deleg.

Q' ∧ Q''

X YP' ∧ P''

X'

P'

Y'

P'

implicit delegation followed 
by weak implicit delegation

X Y

X'

Q'

weak antecedent delegation 
followed by antecedent 

delegation

Y'

Q'

Q' ∧ Q''

X Y

Y' Q'

antecedent delegation 
followed by weak implicit 

delegation

X'

Q'

Q' ∧ Q''

P' ∧ P''

weak implicit delegation 
followed by weak 

antecedent delegation

X YP' ∧ P''

Y'

P'

Y''
P'

X Y

Y''

P'

weak antecedent delegation 
followed by weak implicit 

delegation

Y'

Q'

Q' ∧ Q''

P' ∧ P''

X YP' ∧ P''

X'

P'

X''

P'

implicit delegation followed 
by implicit delegation

X YP' ∧ P''

Y'

P'

Y''

Q'

ext. causal delegation: 
weak impl. deleg. followed 

by weak impl. deleg.

Q' ∧ Q''

X Y

Y''

Q'

weak antecedent delegation 
followed by weak antecedent 

delegation

Y'

Q'

Q' ∧ Q''

im
pl

ic
it

w
ea

k 
im

pl
ic

it
an

te
ce

de
nt

w
ea

k 
an

te
ce

de
nt

implicit weak implicit antecedent weak antecedent

X Y

X''

P'

antecedent delegation 
followed by antecedent 

delegation

X'

Q'

Q' ∧ Q''

P' ∧ P''

X Y

X''

P'

antecedent delegation 
followed by weak antecedent 

delegation

X'

Q'

Q' ∧ Q''

P' ∧ P''

Figure 5.10. Sequential delegations.

43). In fact, all 4 cases introduce a causal dependency between the first and the last

commitment in the delegation chain, via a third commitment. Thus we can identify

outcome, connective, and cause for each of them. Figure 5.10 displays a double-line

arrow from cause to outcome in each case of causal delegation similarity. We can then

revise Figure 43:

Definition 44 (extends Definition 43). Commitment C1 = C(X1, Y1, Q1, P1) is causal-

delegation similar to commitment C2 = C(X2, Y2, Q2, P2) via commitment C3 = C(X3,

Y3, Q3, P3) iff



109

• P1 |= P3, Q3 |= P2, and X1 = Y2 = Y3 (implicit delegation followed by antecedent

delegation), or

• P1 |= P3, Q3 |= Q2, and X1 = X2 = Y3 (implicit delegation followed by weak

antecedent delegation), or

• P1 |= Q3, P3 |= P2, and X1 = Y2 = X3 (weak implicit delegation followed by

implicit delegation), or

• P1 |= Q3, P3 |= Q2, and X1 = X2 = X3 (weak implicit delegation followed by

weak implicit delegation).

We call C1 outcome, C2 cause, and C3 connective.

We can further extend this definition to the case of N delegations. With the help

of Figure 5.10 we can understand how chains of delegations can be constructed, starting

from either of the 4 cases above. For example, after implicit delegation followed by

antecedent delegation, we can have another antecedent delegation from X’s side, falling

in the case shown at the intersection between the third row and the third column of

Figure 5.10 (antecedent delegation followed by antecedent delegation), and so on. Not

all possibilities are open. Figure 5.11 shows how chains of causal delegations can be

obtained, all with X as a stakeholder (debtor or creditor).

weak implicit
delegation

implicit
delegation

weak antecedent
delegation

antecedent
delegation

weak implicit
delegation

implicit
delegationX YP

Cm

wi-chain delegations 
of Cm

extended wi-chain 
delegation of Cm

wia-chain delegations 
of Cm

extended wia-chain 
delegation of Cm

wi-chain delegations 
of Cm

P

Y' X
P

Y'' X
P'

X' XP*

P'

P''

R

X'' X
R

X''' X
R'

R'

R''

XP* XR*
... ...

X* X
R*

Figure 5.11. Causal delegation chains.



110

We shall now formally define a causal delegation chain. We will do it incremen-

tally.

Definition 45. A commitment Cj is a wi-chain delegation of a commitment Cm iff

• Cj is a weak implicit delegation of Cm, or

• ∃ Ck s.t. Ck is a wi-chain delegation of Cm, and Cj is a weak implicit delegation

of Ck, or

• ∃ Ck s.t. Ck is an extended wia-chain delegation of Cm (see Definition 48), and

Cj is a weak implicit delegation of Ck

Definition 46. A commitment Cj is an extended wi-chain delegation of a com-

mitment Cm iff

• Cj is an implicit delegation of Cm, or

• ∃ Ck s.t. Ck is a wi-chain delegation of Cm, and Cj is an implicit delegation of

Ck, or

• ∃ Ck s.t. Ck is an extended wia-chain delegation of Cm (see Definition 48), and

Cj is an implicit delegation of Ck

Definition 47. A commitment Cj is a wia-chain delegation of a commitment Cm

iff

• ∃ Ck s.t. Ck is an extended wi-chain delegation of Cm, and Cj is an antecedent

delegation of Ck, or

• ∃ Ck s.t. Ck is a wia-chain delegation of Cm, and Cj is an antecedent delegation

of Ck

Definition 48. A commitment Cj is an extended wia-chain delegation of a com-

mitment Cm iff

• ∃ Ck s.t. Ck is an extended wi-chain delegation of Cm, and Cj is a weak antecedent

delegation of Ck, or



111

• ∃ Ck s.t. Ck is a wia-chain delegation of Cm, and Cj is a weak antecedent dele-

gation of Ck

All these are cases of indirect delegations.

Definition 49. Commitment Cj is an indirect delegation of commitment Cm, denoted
:::;
deleg(Cj, Cm), iff

• Cj is a wi-chain delegation of Cm, or

• Cj is an extended wi-chain delegation of Cm, or

• Cj is a wia-chain delegation of Cm, or

• Cj is an extended wia-chain delegation of Cm.

Definition 50. A causal delegation chain from a commitment Cm (outcome) to a

commitment Ck (cause) is a sequence σ of commitments σ = [C0, C1, . . . , Ck], (k ≥ 2),

such that

(i) C0 = Cm, and

(ii) ∀i, 1 ≤ i ≤ k, Ci is a delegation of Ci−1, and

(iii) ∀i, 1 ≤ i ≤ k,
:::;
deleg(Cj, Cm).

We will conclude this section by extending the definition of delegation, in the

light of these new notions.

Definition 51. Commitment Cj is a direct delegation of commitment Cm, denoted
−−−→
deleg(Cj, Cm), iff

• Cj is an explicit delegation of Cm, or

• Cj is a weak explicit delegation of Cm, or

• Cj is an implicit delegation of Cm, or

• Cj is a weak implicit delegation of Cm, or

• Cj is an antecedent delegation of Cm, or

• Cj is a weak antecedent delegation of Cm.



112

Definition 52. [extends Definition 36] Let Cm, Cj be two commitments, Cm, Cj ∈ C.

We say that Cj is a delegation of a commitment Cm, denoted deleg(Cj, Cm), iff

•
−−−→
deleg(Cj, Cm), or

•
:::;
deleg(Cj, Cm).

Definition 52 accounts for all paths between a given commitment (primary) and its

direct and indirect delegations. For each commitment whose antecedent or consequent

is a conjunction of properties, there may be more than one delegation. We thus obtain

a delegation tree. We can trace all delegations of a given commitment by exhaustive

search of the delegation tree.

5.3.2. Temporal analysis

We will now enrich the relations we have defined so far, by taking into account

temporal constraints. We seek to identify and understand the reasons behind excep-

tional situations that can lead to faulty behavior. To this end we will define cases of

delegations in which the deadline of the primary is not properly propagated onto the

delegation. We will use the term improper to label a delegation that exceeds the dead-

line of the primary commitment. We will consider the overall system as it is observed

at a specific time, time of observation.

Definition 53 describes how we compare two deadline intervals.

Definition 53. Let t be the time of observation. A deadline interval Ij=γ[t1, t2]

exceeds a deadline interval Ik=γ′[t3, t4], iff either of the following holds:

• Ij is an absolute deadline, Ik is an absolute deadline, and t1 < t3 or t2 > t4;

• Ij is an absolute deadline, Ik is a relative deadline, and t1 < t3 + t or t2 > t4 + t;

• Ij is a relative deadline, Ik is an absolute deadline, and t+ t1 < t3 or t+ t2 > t4;

• Ij is a relative deadline, Ik is a relative deadline, and t1 < t3 or t2 > t4.



113

We use the notion of exceeding deadline intervals to define improper delegations.

In general, if the deadline interval of a delegation’s consequent exceeds that of the

primary consequent, we might have a problem regarding an improper delegation.

The first thing one should notice is that we cannot have an improper (weak)

antecedent delegation, since our commitment language does not allow us to specify

deadline intervals for the antecedent of a commitment. Besides, as we discussed earlier,

we cannot track down improper delegations of (weak) explicit delegations, because

explicit delegations cancel the primary, therefore we cannot compare the two deadline

intervals any more13 .

Definition 54. Let Cm, Cj be two commitments, such that Cj is a (weak) implicit

delegation of Ck. We say that Cj is an improper consequent delegation of Cm iff Cj’s

interval exceeds Cm’s interval.

Example 5.3. Consider for instance set CS5.3 = {CS5.3.1, CS5.3.2, CS5.3.3}, where:

CS5.3.3 = C(merchant, customer, >, delivered ∧ invoiced(a[10, 12]))

CS5.3.1 = C(courier, merchant, >, delivered(a[10, 12]))

CS5.3.2 = C(accountant, merchant, >, invoiced(a[11, 14]))

Assume that the current time is 8. Now, this is an improper delegation, because

the deadline of CS5.3.2 is greater than that of CS5.3.3. Note that the occurrence of an ex-

ception, although likely, is not inevitable since the accountant may still satisfy invoiced

at time 12.

The case of causal delegation chains is trickier.

Definition 55. Let Cm, Cj ∈ C, deleg(Cj, Cm), and σ=[Cm, C1, . . . , Cj] be a causal

delegation chain from Cm to Cj in C. Let Ii=γ[ti,start, ti,end] be Ci’s interval, for each

13We could assume that agents always keep track of canceled commitments, but this assumption
would interfere with agent autonomy, and it would be in contrast with our agent architecture-agnostic
approach. Thus on the agent side we do not assume any knowledge other than the minimum needed
for commitment-based interaction to take place, i.e., that an agent knows what active or conditional
commitments are in place, of which he is either the debtor or the creditor.



114

Ci in σ, 0 ≤ i ≤ j (Cm=C0). Let t be the time of observation. We say that Cj is an

improper causal delegation of Cm iff either of the following holds:

(i) all Ii are relative, and t+ Σj
i=0ti,start < t0,start or t+ Σj

i=0ti,end > t0,end;

(ii) let Ik be the last absolute deadline in σ14 :

• Im is an absolute deadline and

tk + Σj
i=k+1ti < t0,start or tk + Σj

i=k+1ti > t0,end, or

• Im is a relative deadline and

tk + Σj
i=k+1ti < t+ t0,start or tk + Σj

i=k+1ti > t+ t0,end.

Example 5.4. Consider set CS5.4 = {CS5.4.1, CS5.4.2, CS5.4.3}, where:

CS5.4.1 = C(bank, client, requested, delivered(r[5, 7]))

CS5.4.3 = C(courier, bank, printed, delivered(r[3, 5]))

CS5.4.2 = C(office, bank, confirmed, printed(r[2, 3]))

When investigated properly, one can see the problem with these conditional com-

mitments. In order for the card to be delivered, it has to be printed first, and the time

requirements for those two processes exceed the time limit that the bank has towards

the client. The bank should have gotten into other commitments that would have lead

the fulfillment of its primary commitment towards the client [25]. However, note that

CS5.4.2 and CS5.4.3 may still fulfill CS5.4.1 since the debtors of those commitments may

satisfy the consequents before the deadlines.

Definition 56. Let Cm, Cj ∈ C, deleg(Cj, Cm). Cj is an improper delegation of Cm,

denoted delegimp(Cj, Cm), iff

• Cj is an improper consequent delegation of Cm, or

• Cj is an improper causal delegation of Cm, or

• ∃ Ck ∈ C such that deleg(Ck, Cm) and delegimp(Cj, Ck).

14In other words, Ik ∈ σ is an absolute deadline, @k′ > k s.t. Ik′ ∈ σ is an absolute deadline.



115

A delegation which is not improper is called a proper delegation and denoted by

delegprop(Ci, Cm) (meaning that Ci is a proper delegation of Cm).

This concludes the temporal analysis of direct and indirect delegations, which

allows us to identify what we need to look for, in order to detect and possibly prevent

faulty activity executions. In the next section, we describe a distributed, collaborative

procedure to detect improper delegations.

5.4. Commitment monitoring

In abstract terms, at a given time of observation t, a monitoring process M

identifies all the improper delegations Mt that occurred up to t.

Definition 57. A monitoring process M is a process whose inputs are

• a set A of agents,

• a set C of commitments among agents in A,

• a narrative Tt of events up to a given time of observation t, and

• a commitment model and domain knowledge defining the states of commitments

in C based on Tt;

and whose output is Mt = {(Ci, Cj)|delegimp(Ci, Cj)}.

We use M to denote the monitoring process itself. M is a collaborative, dis-

tributed process that consistently checks for improper delegations during the proto-

col’s execution. Similar to diagnosis, which looks for assumptions over executions of

activities that classify these executions either as correct or faulty [47], monitoring seeks

to detect and possibly prevent faulty executions. It is important that monitoring is

carried out at runtime, in reaction to events that bring about properties characterising

a possibly faulty state. M is an abstract concept, as we cannot assume that there is

always an agent who has complete global knowledge.



116

A monitoring process can be initiated by an agent X ∈ A that detects an

anomaly. If, for instance, the anomaly is associated with a property P that has not

been brought about within a deadline due to a commitment Cm, and X had dele-

gated Cm to another agent Y , X will ask Y ’s collaboration in understanding what

went wrong. Accordingly, Y will run a monitoring process about P , and report back

to X. The initial commitment about P may in turn be linked to a number of other

commitments, thus originating a chain of commitments, possibly involving additional

agents, other than X and Y . In the end, a monitoring task around Cm produces a set

Mt(Cm) = {(Ci, Cm)|delegimp(Ci, Cm)},Mt(Cm) ⊆Mt. IfMt(Cm) 6= ∅, an exception

is raised.

In a concrete implementation, answering to a monitoring request could be imple-

mented as a background agent behavior, whereas issuing a monitoring request could be

implemented by a communicative act from an agent X to an agent Y , that implements

the “answering to a monitoring request” behavior. A possible concrete architecture for

distributed monitoring is described in [12], where observations are local to the agent,

and commitment-based contract specifications are instead shared, i.e., accessible to

both the debtor and the creditor of each commitment. Each agent has a separate

Reactive Event Calculus (REC) [48] engine running in background, providing the core

reasoning ability required to implement the “answering to a monitoring request” be-

havior and check that commitments are properly fulfilled, or, in case of exception, to

raise a flag, and possibly involve other agents in the monitoring process.

5.4.1. Distributed monitoring procedure

We will now describe the distributed monitoring procedure that agents follow

to detect improper delegations. The monitoring procedure is a derivation process,

described by the local rules L1 and L2 (intra-agent reasoning) and the social rules S1 -

S3 (inter-agent reasoning). Table 5.1 summarizes the notation.

Given an agent X ∈ A and a commitment Cm ∈ C, a derivation X�∅δoutCm starts

when X decides to monitor one of its commitments Cm. The ∅ symbol (which is an



117

Table 5.1. Notation used for the monitoring procedure.

Symbol Description

δpro set of proper delegations of a given commitment

δimp set of improper delegations of a given commitment

C = {〈C, δpro, δimp〉, . . . } for each known commitment C, a triplet consisting of: C,

its proper delegations δpro, and its improper delegations,

δimp

X 5REC C C contains all (locally) known information about X’s com-

mitments, extracted by a REC reasoner such as ComMon

[49]

δexc commitments to be excluded from a monitoring process

δout, δj, δk output of monitoring processes (sets of improper

delegations)

X �δexc
δout

Cm the result of a monitoring process issued by X about Cm

and excluding δexc is the set of improper delegations δout

X �δexc
δout

Y � Cm the result of a monitoring process requested by X to agent

Y about Cm and excluding δexc is the set of improper del-

egations δout

debtor(Cm, X) agent X is the debtor of commitment Cm

delegatee(Cm, Cj, Y ) agent Y is the delegatee in the delegation Cj of Cm

input to the derivation) signifies that no commitment is initially excluded from the

monitoring process, because no commitment has been analysed yet. The output δout

is a set of improper delegations, which might be empty in some cases. The monitoring

procedure may propagate from agent to agent, as described by the social rules. As

commitments get analysed by the agents involved in the monitoring process, they are

included in the set δexc when performing further derivation. In this way, we prevent

agents from analysing the same commitment more than once. In the rules for collab-

orative reasoning (“social monitoring”), we use the notation �, whose semantics is

given in S3, to indicate a request for monitoring.



118

Each agent involved will only use its local knowledge of commitments to con-

tribute to the derivation by applying local and social rules. Part of the local reasoning

amounts to checking which commitments are linked to the subject commitment, via

proper or improper delegations. This is defined in the REC15 language, assuming that

for commitment tracking purposes each agent relies upon tools such as ComMon. How-

ever, in the general case, the delegation check could be done by using any procedure

that queries a local database of commitments.

Local monitoring: These are the rules used for monitoring the agent’s commit-

ments locally. They describe intra-agent reasoning, which is based on the agent’s local

knowledge base (i.e., own commitments and fluents). This is performed via the agent’s

internal REC engine, for which the details will be given in the implementation part.

L1)
X 5REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ δout = δimp \ δexc ∧ δout 6= ∅

X �δexc
δout

Cm

By rule L1, if the agent identifies any improper delegations of the currently mon-

itored commitment Cm via querying its REC engine locally, and these commitments

are not already contained in δexc (the set containing the commitments that are already

processed during monitoring), then they are added to the output (δout) of the monitor-

ing process. Consider the commitments in Example 5.3: let X be the merchant, Cm

be CS5.3.3, and δexc = ∅. Now, when the merchant queries his REC engine, he will find

out that δpro = {CS5.3.1} and δimp = {CS5.3.2}. Thus, δout = {CS5.3.2} which contains

the only improper delegation of CS5.3.3.

15REC (Reactive Event Calculus) is an event calculus-based language and reasoning framework [48,
50]. ComMon is an award-winning REC-based monitoring engine [49]. ComMon can be downloaded
from http://ai.unibo.it/projects/comMon.



119

L2)

X 5REC C ∧ 〈Cm, δpro, δimp〉 ∈ C

∧ (δpro ∪ δimp) \ δexc = ∅ ∧ debtor(Cm, X)

X �δexc
∅ Cm

By rule L2, if there are no locally known delegations of the monitored commitment

Cm, and X is Cm’s debtor, the result is an empty set. This rule complements L1, and is

a termination condition for some branches of the distributed monitoring process, when

there are no more delegations left for the subject commitment.

Social monitoring: These rules describe how the derivation process propagates

from one agent to another agent, and how the results are combined. They describe the

inter-agent reasoning, which is based on the monitoring interactions (e.g., requests and

responses) among the agents.

S1)

X 5REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ Cj ∈ δpro \ δexc
∧ delegatee(Cm, Cj, Y ) ∧ X �δexc

δj
Y � Cj

∧ X �δexc∪{Cj}
δk

Cm ∧ δout = δj ∪ δk
X �δexc

δout
Cm

By rule S1, if there is a locally known proper delegation Cj which is not to

be excluded (Cj ∈ δpro \ δexc), X delegates monitoring to Cj’s delegatee Y , thereby

obtaining a result δj. X will then continue monitoring its other delegations, excluding

Cj from the process, thereby obtaining a result δk. The final result δout is the union of

the two partial results, δj ∪ δk.



120

S2)

X 5REC C ∧ 〈Cm, δpro, δimp〉 ∈ C ∧ (δpro ∪ δimp) \ δexc = ∅

∧ debtor(Cm, Y ) ∧ X 6= Y ∧ X �δexc
δout

Y � Cm

X �δexc
δout

Cm

By rule S2, if there is no locally known delegation of the monitored commitment,

and X is the creditor of that commitment, the result δexc is that provided by Cm’s

debtor Y as Y answers X’s request for monitoring.

S3)
Y �δexc

δout
Cm

X �δexc
δout

Y � Cm

By rule S3, an agent Y answers to X’s request for monitoring concerning a given

commitment Cm by executing a monitoring process about Cm and propagating the

result back to X.

This procedure relies on local reasoning and collaboration among agents to pro-

duce monitoring results that, ideally, should be equivalent to the global results pro-

duced by the abstract monitoring process M. Indeed, under the assumption that the

REC reasoner provides sound and complete results (one such reasoner is described

in [48]), we can prove the following theorems:

Theorem 3 (Soundness). Given a commitment Cm ∈ CT , and an agent X ∈ A, if

X �∅δout Cm, Ci ∈ δout, then (Ci, Cm) ∈MT .

By Theorem 3, if the distributed monitoring process identifies an exception in

the form of an improper delegation Ci of a given commitment Cm, then (Ci, Cm) is an

outcome of the global monitoring (see Definition 57).

Theorem 4 (Completeness). ∀ (Ci, Cm) ∈ MT , ∃ an agent X ∈ A and a derivation



121

X �∅δout Cm such that Ci ∈ δout.

By Theorem 4, for any two given commitments Ci, Cm ∈ CT , if Ci is an improper

delegation of Cm, then there is a possible run of the distributed monitoring process

starting from some agent X that identifies it as such.

5.4.2. Implementation

We implemented a proof-of-concept prototype. We wrote specifications in the

REC language, and relied on ComMon [49] for monitoring of commitments. More

details on the implementation can be found in Appendix D.

5.5. Case Study

Let us now build two different settings to demonstrate how our approach works.

5.5.1. Request Credit Card

This setting builds on Example 5.4. We have the following three commitments

to represent the process for the client to request a credit card from the bank:

• C1 = C(bank, ali, requested, delivered(r[4, 7])): The bank must deliver the credit

card within 7 days of the client’s request;

• C2 = C(courier, bank, printed, delivered(r[2, 3])): When the card is requested,

the bank notifies the office for printing the card;

• C3 = C(office, bank, confirmed, printed(r[2, 3])): Then, the courier delivers the

card to the client.

The client only has access to commitment Ct
1, and he is aware of two actions, for

requesting and getting the card delivered.



122

• request(ali, bank) → requested.

• deliver(courier, ali) → delivered.

The semantics of the actions given by the above rules is that when the action

on the left-hand side is executed, then the fluent on the right-hand side holds. Now,

consider now the following trace:

4 request(ali, bank) (client requests card from bank on day 4)

7 confirm(bank, office) (bank confirms request)

10 print(office, courier) (office produces card and gives it to courier)

The following commitments are in place at time 11:

C1 = C(bank, ali,>, delivered(a[8, 11]))

C2 = C(courier, bank, printed, delivered(a[12, 13]))

C3 = C(office, bank,>, printed(a[9, 10]))

Notice the pattern among these three commitments; C2 is an implicit delegation

of C1 (Definition 39), and C3 is an antecedent delegation of C2 (Definition 41). Then

C3 is delegation-similar to C1 via C2.

First, we look at the global monitoring result considering all the commitments in

the system. Assume that no delivery has occurred until time 12. C1 is indeed violated

since its deadline has passed. Because of the similarity relation, C2 and C3’s deadlines

together affect C1. Even though the printing of the card is completed at day 10, the

courier has 3 more days for delivery, which will eventually exceed C1’s deadline. When

the delivery is completed at time 13, the commitment of the courier to the bank (C2) is

fulfilled. However, the commitment of the bank to Ali (C1) is violated. Here, the bank

should have confirmed the client’s request earlier, and notified the office accordingly.

Next, we look at the agents’ local reasoning:



123

• Ali: C = {〈C1, {}, {}〉}

(i) Rules L1, L2, and S1 do not apply (see Figure E.1 in Appendix E for REC

output),

(ii) Rule S2 delegates to the bank.

• Bank: C = {〈C1, {}, {C2, C3}〉, ...}

(i) Rule L1 applies, and finds an exception (see Figure E.2 in Appendix E for

REC output),

(ii) Rule S3 propagates the result to Ali.

Now, let us change the trace of events so that the protocol will not lead to any

exception. Consider the following trace:

4 request(ali, bank)

5 confirm(bank, office)

7 print(office, courier)

Figures E.3 and E.4 in Appendix E show the output of REC for this case. Note

that there is no fluent for improperDelegation or exception.

5.5.2. Refurbish House

Let us now focus on another setting, which is described earlier. Consider again

the commitments and delegations in Figure 5.1. Recall that the landlord wants to

refurbish his house, thus makes a commitment with the contractor, who in turn makes

commitments with the builder. Note that we also have conjunction of fluents for the

consequents of some commitments (C1, C2, C5). The following rules show how the

fluents are described as conjunctions16 .

• refurbished ← kitchen ∧ bathroom.

• bathroom ← shower ∧ tiles.

16Appendix D describes how conjunction is handled in REC.



124

• kitchen ← appliances ∧ painted.

Now, consider the trace of events for this set of commitments and fluents:

4 pay(landord, contractor)

4 payKitchen(contractor, builder)

4 payBathroom(contractor, builder)

7 payShower(builder, assembler)

9 supplyAppliances(supplier, builder)

14 assembleShower(assembler, builder)

Let us analyze what the improper delegations are according to this trace of events.

When the landlord pays to the contractor at time 4, C1 becomes C(contractor, landlord,

true, refurbished(a[9, 14])). Following that, the contractor pays for the kitchen at the

same time point, which makes C5 C(builder, contractor, true, kitchen(a[9, 14])). Now,

note that C5 is an implicit delegation of C1, C6 is an implicit delegation of C5, and

C7 is an antecedent delegation of C6. Thus, we have a wia-chain delegation from

C7 to C1 (see Definition 47). If we look at the deadline for C7, it can be fulfilled in

the interval a[8, 10]. This is an improper delegation, since when combined with C6’s

deadline interval r[3, 5], it exceeds the deadline of C5 (and C1).

Similarly, let us take a look at the delegations of C2, which is an implicit delega-

tion of C1. C3 is an implicit delegation of C2, and C4 is an antecedent delegation of

C3. Again, we have a wia-chain delegation from C4 to C1. This is also an improper

delegation, since the combined deadlines of C3 and C4 exceed that of C2 (and C1).

Figure E.5 in Appendix E shows the output of REC for the builder.

In this chapter, we have made an extensive analysis of the temporal relations for

commitment delegations. The delegation mechanism gives great flexibility to commit-

ment protocols. However, it also lay itself open to misuse and may induce possible mis-

matches amongst agent beliefs about deadlines associated with properties. Improper

delegation may eventually drive the system into a state of violation, where some agents



125

believe that there has been no violation at all. In this work, we presented an in-depth

analysis of improper delegations, and proposed an effective distributed reasoning pro-

cedure for finding all improper delegations of a given commitment. The distributed

procedure assumes that agents are able to send each other requests for monitoring

a commitment, and gather local information about such a commitment, by applying

the definitions we gave in this chapter, and possibly by collaborating with other agents

that are part of the chain of delegation. To gather information about commitments and

more in general about the state of properties (fluents) in a local environment, agents

may use a facility such as ComMon [49]. This is a REC-based [17,28,50] commitment

monitoring tool, proven to be sound and complete [48]. Because there is a sound a

complete method to reason locally, distributed reasoning is also sound and complete.

Besides this theoretical and practical result, our work contributes to research in

commitment-based agent interaction by investigating what agents should look at in

order to enable commitment monitoring, e.g. for e-commerce applications. The ap-

plicability of our method is quite broad. In practical applications, “properties” could

be for example indicators of accomplishment of specific tasks. Because our language

accommodates conjunctive properties, it can be used for modeling complex contracts.

Thus our work has a theoretical and practical significance. We do not claim that all

agents must be REC-enabled or that they must use ComMon for monitoring their com-

mitments, but we identify how agents should explore a search space of commitments,

so to say, in order to enable monitoring. Concrete implementations of our monitoring

procedure could be based standardized agent languages. We did not cover this aspect

here. However, an important result is that there are off-the-shelf tools that could be

used to implement core functionalities used by our framework. We did not formally

study the complexity of the reasoning procedure, but we conjecture that it is linear

in the size of the delegation tree. That depends on the applications, but we can as-

sume that in typical e-commerce scenarios it would be linear or at worst polynomial

in the number of agents (it definitely is linear in the number of commitments, as a

commitment cannot be a direct delegation of more than one commitment).



126

6. APPLYING ARGUMENTATION TO DIAGNOSIS

In this chapter, we show an application of Assumption-Based Argumentation

(ABA) [51–54] for reasoning about exceptions in e-commerce contracts. In open multi-

agent systems, agents need to deal with missing or conflicting information throughout

their protocol execution. Consider the delivery protocol that is used for diagnosis and

monitoring. Assume that the customer wants his package to be delivered to his home.

After the delivery deadline has passed, he senses an exception since he has not received

the package. When he asks the courier, he finds out that the courier has delivered the

package to the door keeper. Note that the customer and the courier has conflicting

information about the outcome of the delivery (two different arguments), for which

one of them has a valid justification. Since the courier has the door keeper’s signature

on the delivery chart, his argument wins over the customer’s, and the exception is

resolved. We show that argumentation techniques are well suited to carry out such

reasoning tasks and to support dialogues for collaborative diagnosis of multiagent con-

tract exceptions. The dialogues provide the information exchange among the agents to

enable diagnostic activities to step from agent to agent until the reason of the exception

is found. Reasoning is based on the ABA argumentation framework. Thanks to its

grounding on consolidated argumentation theories, we are able to describe the diagnosis

process in a high-level, declarative way. We can enable agents to construct hypotheses

(arguments) about what went wrong and exchange such hypotheses between them, and

we can ensure that the overall process is deterministic.

6.1. Argumentation Architecture

We will use c(X,Y,P(O)) and cc(X,Y,Q(O),P(O)) as commitment templates, for

base-level and conditional commitments, respectively. Here, we use O as a variable

standing for an object, e.g., a certain book, delivered(book). All variables are implicitly

universally quantified, and the actual commitments are instances of these templates. In

the case of conditional commitments, when Y satisfies Q(O) with a specific substitute

o for O, then X becomes committed to Y for satisfying P(o).



127

We will assume that commitments are represented with respect to an underlying

commitment language Lc shared amongst all agents. In the remainder of the chapter we

will use the following conventions: as earlier in this section, upper-case letters denote

variables; variables X, Y, Z are used to represent agents; P is used to represent an

atomic property; Q is used to represent a property in the form of a literal (of the form

P or ¬P ); R is used to represent a conjunction of (literal) properties. As standard,

¬¬P is P . As in Prolog, represents an anonymous variable.

For simplicity, we will assume that there is at most one cc(x, y, q(o), p(o)) for a

given x, y, and p(o). In other words, we do not consider those cases in which an agent

x conditionally commits to the same agent y to bring about the very same property

p(o) using two different contracts, which would unnecessarily complicate the diagnosis

process. Such cases are left as an extension for future work. Also, note that, for the

sake of simplicity and because we focus on diagnosis procedures, we will ignore (and

not explicitly model) the active commitment state.

Customer Bookstore

Deliverer

pay

paydeliverydeliver

Figure 6.1. Delivery process.

To describe the delivery process shown in Figure 6.1 using contracts, we use two

commitments. One tells that if customer pays for an item, then bookstore will be com-

mitted to deliver that item, cc(bookstore, customer, paid(book), delivered(book)). The

second one tells that if bookstore pays for the delivery of an item, then deliverer will be

committed to deliver that item, cc(deliverer, bookstore, paid delivery(book), delivered(book)).

As we have shown before, it may happen that the book does not get delivered.

Usually, the customer is the first one to realize. We say that the customer detects

an exception. Let us say we are now the customer. What shall we do? In order to

recover the book, we should first understand what went wrong. We will consider several

options: the bookstore may not have correctly place the order with the deliverer; the

deliverer may be late; the bookstore may not have yet received the payment; and so



128

on. A diagnosis process will tell us which of these possibilities truly explains what went

wrong. The diagnosis process is initiated by the agent detecting an exception. During

this process agents collect evidence from the environment and exchange information

with each other.

Following the KGP agent model [55], we will assume that actions may be “phys-

ical” (e.g. pay), communicative (e.g. justify), or sensing actions on the environment

(i.e. question). In the delivery process, we will consider the following physical actions:

• pay(customer,bookstore,item): a customer agent pays a bookstore agent for an

item of interest.

• paydelivery(bookstore,deliverer,item): the bookstore pays a deliverer for the de-

livery of an item of interest.

• deliver(deliverer,customer,item): a deliverer delivers an item of interest to a cus-

tomer.

Note that these physical actions are consistent with the events (e.g., pay, deliver)

that we have used in previous chapters where we have discussed agent reasoning with

REC.

The sensing actions amount to a particular type of database lookup for evidence

gathering, that we call evidence request exchange, between an agent and some trustwor-

thy element of the environment that can produce evidence. By doing so, we abstract

away from the specific ways agents interact with the environment. Note that each

agent has a partial view of the overall environment. Thus we call EX the environment

accessible to agent X. We use two types of sensing actions:

• question(X, EX , P ): agent X looks up EX to check whether property P holds or

not.

• answer(X, EX , Q): agent X gets to know from EX that Q holds.



129

Inter-agent dialogues are instead based on the following utterances (communica-

tive actions):

• explain(X, Y , P ): agent X sends a diagnosis request to Y , asking for a justifica-

tion for a given property P .

• justify(X, Y , Q, P ): agent X provides agent Y with a justification Q to why P

holds.

• rebut(X, Y , Q, ¬P ): agent X provides agent Y with a justification Q to why P

does not hold.

6.2. Reasoning

We show how agents can reason about commitment exceptions based on assumption-

based argumentation (ABA) [51–54], which we first briefly review below. We choose

this framework because it can deal with inconsistent and incomplete information in

general and in support of decision-making, it can generate justifications that can be

communicated across agents, and because of its strong theoretical properties and the

fact that it is equipped with provably correct computational mechanisms, that will

support any future deployment, e,g, using the publicly available CaSAPI ABA frame-

work [56]17 .

6.2.1. Assumption-Based Argumentation (ABA)

ABA is a general-purpose argumentation framework where arguments and attacks

between them are built from ABA frameworks, which are tuples 〈L, R, A, 〉 where:

• (L,R) is a deductive system, with L a language and R a set of inference rules,

• A ⊆ L, referred to as the set of assumptions,

• is a (total) mapping from A into L, where x is referred to as the contrary of

x.

17http://www.doc.ic.ac.uk/~dg00/casapi.html



130

Here, we assume that inference rules have the syntax s0 ← s1, . . . , sn (for n ≥ 0)

where si ∈ L. We refer to s1, . . . , sn as the premises and to s0 as the head of the rule.

If n = 0, we represent a rule simply by its head and we call the rule a fact. As in [52],

we will restrict attention to flat ABA frameworks, such that no assumption occurs in

the head of a rule.

Rules may be domain-dependent or not, and some of the premises of rules may

be assumptions. These can be used to render the rules defeasible. In this setting,

contraries of assumptions can be seen as representing “defeaters”. Assumptions can

also be used to fill gaps in incomplete knowledge/beliefs, and in this setting contraries

are reasons for not making some gap-filling choices. Also, assumptions can be used

to resolve inconsistencies (by making these depend upon assumptions that can be

defeated).

An (ABA) argument in favour of a sentence c ∈ L supported by a set of assump-

tions A ⊆ A is a proof of c from A and (some of) the rules in R. This proof can be

understood as a tree (with root the claim and leaves the assumptions), as in [54], as a

backward deduction, as in [52, 53], or as a forward deduction, as in [51], equivalently.

For the purposes of this chapter, we will use the notation A `R c to stand for an

argument for c supported by A by means of rules R ⊆ R. When the rules can be

ignored, we write an argument A `R c simply as A ` c. An argument A ` c attacks an

argument A′ ` c′ if and only if c = α for some α ∈ A′.

Several “semantics” for ABA have been defined in terms of sets of assumptions

fulfilling a number of conditions. These are expressed in terms of a notion of attack

between sets of assumptions, where A ⊆ A attacks A′ ⊆ A if and only if there is an

argument B ` c, with B ⊆ A, attacking an argument B′ ` c′, with B′ ⊆ A′.

We will focus on the following notions:

• A ⊆ A is conflict-free if and only if A does not attack itself

• A ⊆ A is admissible if and only if A is conflict-free and attacks every B ⊆ A that



131

attacks A

• A ⊆ A is preferred if and only if A is (subset) maximally admissible.

Note that these notions can be equivalently expressed in terms of arguments,

rather than assumptions, as shown in [53].

Given an ABA framework F=〈L, R, A, 〉 and a (conflict-free, admissible or

preferred) set of assumptions A ⊆ A in F , the (conflict-free, admissible or preferred,

respectively) extension EF(A) is the set of all sentences supported by arguments with

support a set of assumptions B ⊆ A:

EF(A) = {s ∈ L|∃B ` s with B ⊆ A}.

Note that conflict-free, admissible and preferred extensions are guaranteed to

exist, for any ABA framework.

In the remainder of this section, we give an ABA framework supporting the

reasoning of our agents. We will assume that each agent is equipped with an ABA

framework 〈L, R, A, 〉 such that the commitment language, Lc, is contained in the

internal language L underlying the ABA framework, namely Lc ⊆ L. We will leave

this L implicit, and focus on rules, assumptions and contraries. Indeed, L will always

consist of the set of all sentences occurring in all the given rules, as well as the given

assumptions and contraries. We will give rules/assumptions/contraries as schemata,

standing for all their ground instances over appropriate universes (for agents and prop-

erties). Until the case study, we will not focus on any specific agent and define rules,

assumptions and contraries for a generic agent X. Assumptions will be of the form

asm( ). The contrary of asm(a) will be of the form c asm(a), for any a, formally:

asm(a) = c asm(a).



132

6.2.2. Domain-Dependent Rules

These depend on the domain of application. In our example, these rules are re-

lated to the delivery process and include:

(F1) by contract(cc(bookstore, customer, paid(book), delivered(book))).

(F2) by contract(cc(deliverer, bookstore, paid delivery(book), delivered(book))).

(F3) effect(pay(customer, bookstore, book), paid(book)).

(F4) effect(paydelivery(bookstore, deliverer, book), paid delivery(book)).

(F5) effect(deliver(deliverer, customer, book), delivered(book)).

(R1) justification(¬paid delivery(book),¬delivered(book))←

¬paid delivery(book),¬delivered(book).

The first two facts model the conditional commitment between the customer and

bookstore agents (F1) and between the bookstore and deliverer agents (F2). The other

facts (F3–F5) describe the action-consequence relations. The rule R1 represents that a

problem in the delivery payment may be the reason for no delivery.

We will assume that the domain-dependent rules only define predicates by con-

tract( ), effect( , ), and justification( , ) as well as the predicates believe( ), answer( , ),

and executed( ) used below.



133

6.2.3. General-Purpose Reasoning Rules

These rules are held by agent X, independently of the specific scenario for excep-

tion diagnosis. They consist of belief rules (BR), commitment rules (CR) and action

rules (AR).

Belief rules: These allow to “internalise” beliefs drawn from observations and

expected effects of actions, unless there are reasons not to do so. They are required to

avoid epistemic inconsistencies to arise, such as believe(paid(book)) and believe(¬paid(book)).

(BR1) P ← believe(P ), asm(P ).

(BR2) ¬P ← believe(¬P ), asm(¬P ).

(BR3) believe(¬P )← asm(believe(¬P )).

(BR4) P ← answer(X,EX , P ).

(BR5) ¬P ← answer(X,EX ,¬P ).

(BR6) believe(Q)← executed(A), effect(A,Q).

Belief rules BR1–BR3 are defeasible, as represented by the presence of assump-

tions in their premises. The following rules for the contraries of the assumptions are

their defeaters:



134

(BR7) c asm(P )← ¬P.

(BR8) c asm(¬P )← P.

(BR9) c asm(believe(¬P ))← believe(P ).

Note that rules BR1–BR2 could be combined within a single rule

Q← believe(Q), asm(Q).

Similarly for BR4–BR5 and BR7–BR8. However, we prefer to leave them separate

for clarity, and to better underline the asymmetry in our treatment of positive and

negative literals (properties). In particular, note that rules BR3 and BR9, together,

model a form of closed-world assumption/negation-as-failure over properties, where

believe(¬(¬P )) can be interpreted as the negation-as-failure of P .

Rules BR4–BR9 are strict, as there are no assumptions in their premises. Rules

BR4–BR5 allow to turn observations (that a specific answer has been obtained after

consulting the agent’s environment EX) into (internalised) beliefs. The fact that these

rules are strict represents that we consider the environment as beyond doubt.

Note however that, should this not be the case, we could turn BR4–BR5 into

defeasible rules by adding suitable assumptions and definitions for their contraries.

Rule BR6 allows to introduce (non-internalised) beliefs about the effects of executed

actions. These beliefs may then become internalised by applying rules BR1–BR2.

Specific definitions of effects of actions belong to the domain-dependent part of the

beliefs.

As an illustration of the use of these rules extended with domain-dependent rules

and under the notion of admissible sets of assumptions/arguments, consider the fol-



135

lowing cases:

• believe(p) is the only domain-dependent rule;

then {asm(p)} is the only (non-empty) admissible set of assumptions, supporting

argument {asm(p)} ` p in favour of p;

• believe(¬p) is the only domain-dependent rule;

then {asm(¬p)} and {asm(believe(¬p))} and their union are the only (non-empty)

admissible sets of assumptions, all supporting arguments in favour of ¬p;

• believe(p) and believe(¬p) are the only domain-dependent rules;

then {asm(p)} and {asm(¬p)} are the only (non-empty) admissible sets of as-

sumptions, representing alternative choices for resolving the given inconsistency;

the agent can choose whichever alternative;

• there are no domain-dependent rules;

then {asm(¬p), asm(believe(¬p))} is the only (non-empty) admissible set of as-

sumptions, supporting an argument in favour of ¬p.

Note that (i) in no case an agent can assume both asm(p) and asm(¬p), (ii) it can

only derive p if it has some evidence for p, and (iii) it can only assume asm(believe(¬p))

if it cannot derive believe(p). Thus, the following result holds:

Property 1. Given an ABA framework with rules BR1−BR9 and any set of domain-

dependent rules

(i) every preferred extension E is consistent, namely there does not exist any property

P such that both P and ¬P belong to E;

(ii) every preferred extension E is total, namely for every property P either P or ¬P

belongs to E.

This result directly follows from our definition of belief rules and from the defi-

nition of preferred extensions in ABA.

Commitment rules: These model the evolution of commitments (by contract(. . . ))



136

and commitment states (fulfilled(. . . ) and violated(. . . )) 18 during the agent’s life-cycle.

(CR1) fulfilled(c(X, Y, P ))← by contract(c(X, Y, P )), P, asm(fulfilled(c(X, Y, P ))).

(CR2) by contract(c(X, Y, P ))← by contract(cc(X, Y,Q, P )), Q,

asm(by contract(c(X, Y, P ))).

(CR3) violated(c(X, Y, P ))← by contract(c(X, Y, P )),¬P, asm(violated(c(X, Y, P ))).

(CR4) c asm(fulfilled(c(X, Y, P )))← ¬P.

(CR5) c asm(by contract(c(X, Y, P )))← by contract(cc(X, Y,Q, P )),¬Q.

(CR6) c asm(violated(c(X, Y, P )))← P.

Note that, like belief rules, commitment rules may also be defeasible, since com-

mitments change during the agent’s life-cycle. That is, if a commitment has become

active from conditional based on an assumption that a proposition holds, then if we

have a defeater that defeats that assumption, the commitment becomes conditional

again. In particular, CR1 − CR3 above are defeasible.

Property 2. Given an ABA framework with rules CR1 − CR6, BR1 − BR9 and any

set of domain-dependent rules, for any preferred extension E, for any agent Y :

• there does not exist any property P such that fulfilled(c(X, Y, P )) and violated(c(X, Y,

P )) belong to E;

• for every property P such that by contract(cc(X, Y, P )) belongs to E, either

18As discussed before, we ignore the active commitment state.



137

fulfilled(c(X, Y, P )) or violated(c(X, Y, P )) belongs to E.

Part 1 follows from Part 1 of Property 1, since P and ¬P are respectively condi-

tions of CR1 and CR3. Part 2 follows from Part 2 of Property 1.

Action rules: These are of two types: for determining whether and how to consult

the environment (action question) or for determining whether and how to conduct a

request explanation dialogue. The first type of rules are:

(AR1) question(X,EX ,¬P )← violated(c(Y,X, P )), asm(question(X,EX ,¬P )).

(AR2) question(X,EX ,¬Q)← violated(c(Y,X, P )), by contract(cc(Y,X,Q, P )),

asm(question(X,EX ,¬Q)).

where contraries of assumptions are defined by rules:

(AR3) c asm(question(X,EX ,¬P ))← by contract(c(Y,X, P )), answer(X,EX ,¬P ).

(AR4) c asm(question(X,EX ,¬Q))← by contract(cc(Y,X,Q, P )),

answer(X,EX ,¬P ), asm(question(X,EX ,¬P )).

(AR5) c asm(question(X,EX ,¬Q))← by contract(cc(Y,X,Q, P )),

answer(X,EX ,¬Q).

AR3 and AR5 prevent a question by X to its environment on a violated property

or a commitment condition if the question has already been answered. AR4 forces



138

a preference of a question about a violated commitment over a question about the

condition of that commitment.

The second type of action rules regulate dialogues between agents. These are as

follows:

(DR1) explain(X, Y,¬P )← violated(c(Y,X, P )), by contract(cc(Y,X,Q, P )),

answer(EX , X,¬P ), answer(EX , X,Q), asm(explain(X, Y,¬P )).

(DR2) c asm(explain(X, Y,¬P ))← violated(c(Y,X, P )), violated(c(Z, Y, P )).

Namely, in case of a violation over P by X towards Y , and after having already

checked within its environment, X asks Y for an explanation (DR1), unless Y itself is

object of a violation on P by some other agent Z (DR2).

(DR3) justify(X, Y,R,¬P )← explain(Y,X,¬P ), justification(R,¬P ),

asm(justification(R,¬P )).

(DR4) rebut(X, Y,R, P )← explain(Y,X,¬P ), justification(R,P ),

asm(justification(R,P )).

(DR5) c asm(justification(R,X))← justification(R,¬X).

6.3. Case Study

We present here two case studies of the diagnosis process, in the delivery scenario

we have used throughout this chapter.



139

6.3.1. Customer’s Fault

This case presents the trace of the diagnosis process on the exception that is

caused by the customer (the customer has not paid for the item correctly, although he

thinks he did).

The customer’s domain-dependent rules initially consist solely of F1, F3 − F5.

The general rules are all domain-independent rules. Let us refer to the resulting ABA

framework as F . After the customer pays for the book, one fact is added to F :

(F6) executed(pay(customer, bookstore, book)) resulting in a new ABA framework F ′.

• By F6, F3, BR6 and BR1, the property paid(book) becomes supported in the

unique preferred extension P of F ′, with argument (where we use p to stand for

the property)

{asm(p)} `{F6,F3,BR6,BR1} p.

• Moreover, using additionally CR2 and F1, a contract

by contract(bookstore, customer, delivered(book))

can also be derived in the context of P , supported by the argument (where we

use c to stand for the contract and R1 to stand for {F6, F3, BR6, BR1})

{asm(p), asm(c)} `R1∪{CR2,F1} c.

• Then, the customer realizes that the book has not been delivered, supported by

argument (where we use ¬d to stand for ¬delivered(book))

{asm(¬d)} `{BR3} ¬d.



140

• This causes an exception, since an argument for a violation can be supported

in P using, additionally, CR3 (R2 = R1 ∪ {CR2, F1} ∪ {BR3} and v stands for

violated(c(bookstore, customer,delivered(book))))

{
asm(p), asm(c), asm(¬d), asm(v)

}
`R2∪{CR3} v.

• When the time comes for the agent to think about the possible reasons of the

exception, the action rules give support to a possible question for the environment

of the customer (Ec). Namely, the following argument is supported (where q

stands for question(customer, Ec,¬paid(book) and R3 = R2 ∪ {CR3})

{
asm(p), asm(c), asm(¬d), asm(v), asm(q)

}
`R3∪{AR1} q.

Thus, since q ∈ P ∩ Actions, the agent cycle selects to perform action q.

• Assume, in return, the customer learns that he did not pay, namely

(F7) answer(Ec,¬paid(book))

is observed and added to F ′, resulting in a new ABA framework F ′′. Let P ′ be

the preferred extension of F ′′. P ′ supports the conclusion that the customer did

not actually pay for the book, namely

{} `{F7,BR5} ¬p.

as well as the argument

{} `{F7,BR5,BR7} c asm(p).

This attacks all arguments including asm(p) in their support. Thus, v does not

belong to P ′ and therefore the customer is aware that no commitment is violated

(even though no delivery has occurred). Moreover, the customer knows that it



141

has not paid for the book correctly.

At the end of this process, the customer has been able to remove the exception.

6.3.2. Bookstore’s Fault

Now imagine that the bookstore has not paid for the delivery of the item correctly.

As in the previous case, the customer’s domain-dependent rules initially are

F1, F3 − F5. The general rules are all domain-independent rules. Let us refer to the

resulting ABA framework as Fc. The bookstore’s domain-dependent rules initially

consist of F1 − F5 and R1. Again, the general rules are all domain-independent rules.

Let us refer to the resulting ABA framework as Fb. The customer’s reasoning starts

and proceeds as before.

However, now, the answer

(F8) answer(Ec, paid(book))

is observed instead and added to the ABA framework of the customer. Then the

dialogue rules lead the customer to ask the bookstore to explain why the book has not

been delivered.

• An argument exists in favour of

explain(customer, bookstore,¬delivered(book))

using rule such as DR1 to construct an argument for

violated(c(bookstore, customer, delivered(book))



142

, supported by

asm(explain(bookstore, customer, delivered(book)))

as well as all assumptions for the argument in the previous case.

• Upon receipt of such an explanation request, the bookstore also derives the con-

clusion that the book has not been delivered, similarly to the previous case (but

now the bookstore is constructing the arguments). Then, again similarly to the

previous case, a violation is detected (by the bookstore now), that

violated(c(bookstore, customer, delivered(book)))

and, in addition, a further violation

violated(c(deliverer, bookstore, delivered(book)))

using rule F2 instead of F1.

• The bookstore’s ABA framework at this point supports an argument in favour of

a new action of querying the environment of the bookstore (Eb):

question(bookstore, Eb,¬paid delivery(book))

• On observation of

answer(Eb, bookstore,¬paid delivery(book))

the bookstore knows that he has not paid for delivery, therefore the set of con-

clusions supported by his ABA framework change. In particular,

violated(c(deliverer, bookstore, delivered(book)))



143

is not supported any more, while a justify for the failed delivery is now supported.

• Using rule DR4 and R1, the bookstore can now answer the customer’s request

for explanation:

justify(bookstore, customer,¬paid delivery(book),¬delivered(book))

In this chapter, we have shown that argumentation techniques, in particular ABA,

can be used as a principled way to model agent reasoning about commitment ex-

ceptions, and as a basis to run diagnosis dialogues. In spite of the many works on

argumentation-based negotiation [57], to the best of our knowledge, this is the first

attempt to use argumentation theories in the context of multiagent contracts and

exception handling. Dialogues for diagnosis are also another novel contribution, as

diagnosis does not seem to fit in any of the purposes of dialogues identified by Walton

& Krabbe [58] and in other relevant literature. Dialogues help resolve conflicts among

agents that are caused by different arguments created according to the agent’s own per-

ception. We have discussed temporal conflicts before when we deal with misalignment

of commitments. There, the agents have reasoned only on the outcomes of those con-

flicts, i.e., by detecting misalignments via the commitment similarity relations. Here,

on the other hand, we deal with the conflicts themselves and resolve them using the

justify or rebut dialogue responses.



144

7. DISCUSSION

In this chapter, we first review relevant literature and discuss the similarities and

differences between them and our research. Then, we review our contributions in this

thesis. Finally, we discuss possible future directions.

7.1. Related Work

Exceptions are of importance in many computational systems including dis-

tributed systems and multiagent systems. Detecting and diagnosing that an excep-

tion takes place in a distributed system allows entities to deal with the exception in a

timely manner. Hence, instead of a failed execution, the entities, either individually or

cooperatively, can work to solve the problem.

Exception handling in business processes is a multi-disciplinary task which at-

tracts the attention of computer science, management, economics, and several other

disciplines. The MIT Process Handbook is a giant knowledge source on business pro-

cesses which aims at combining the efforts developed so far by separate disciplines [59].

It provides a taxonomy of business processes, and proposes dependencies between those;

(i) a flow represents that a process consumes the resource produced by another process

in order to perform, (ii) a fit represents that two processes together produce a resource,

and (iii) a sharing represents that two processes consume the same resource. In this

thesis for e-commerce domain, we have chosen a delivery process since it mimics the

exception-prone structure we look for. The distributed nature of the delivery protocol

enables us to define protocols for each business party, and reason on exceptions with

partial knowledge. We mainly focus on flow type dependencies for the delivery process.

The MIT Exception Repository is an extension to the MIT Process Handbook

whose aim is to relate exception handling with business processes, and make exception

expertise available to each process [60]. The repository focuses on coordination based

exceptions which are initiated from dependency relations among processes. Similar to



145

the process taxonomy, an exception taxonomy describes the types of exceptions from

the most general to the most specialized. Related with each coordination mechanism in

the process handbook is a set of exception types described in the exception repository.

Associated with each exception type, there is a predefined exception handling process

that is used to recover from the exception. The MIT Exception Repository is a good

resource for identifying exceptions at compile time. In contrast to the static recovery

schemes, in this thesis we do not assume that the possible exceptions are static and

that they are known to participants ahead of time. Instead, we deal with run-time

exceptions that need to be detected and diagnosed during execution.

7.1.1. Commitments

Commitments are proven to be effective in modeling multiagent interactions

[4–6, 17, 19]. Commitments can be shared with only relevant parties and thus al-

low specification of interactions locally. A variety of commitment types and relations

among them have been proposed in the literature [12, 23, 61], as well as obligations

and prohibitions that can also be related with social commitments [62]. Singh [24]

discusses two commitment types: a dialectical commitment represents the word for an

agent towards the truth of a certain fact. This is suitable for negotiation or argumenta-

tion [15,63,64], where agents base their reasoning on previously committed arguments.

A practical commitment, on the other hand, represents an obligation to perform an

action in the sense that an agent promises another towards the successful completion

of a duty. This is a common way of regulating interactions in e-commerce, and we

also employ these commitments in this thesis. Singh further gives a formal syntax and

semantics for these two types of commitments based on an extension of linear-time

temporal logic.

We make use of the following four commitment states in this thesis: conditional,

active, fulfilled, and active. There are, however, other commitment states that have

been used in the literature [5, 6]. One of these states is the “expired” commitment

state, which describes that a commitment is no longer in effect. One way to formalize

this state is to associate temporal constraints to the antecedent of the commitment as



146

well. If the deadline represented by these temporal constraints is violated, then the

commitment becomes expired. Consider the following commitment: c(store, customer,

property(e(3, 10), pay), property(e(15, 30), discount)). This represents an offer from

the store to the customer that if the customer pays between the time points 3 and 10,

then he gets a discount. Note that this commitment gets expired after time point 10,

and the discount offer becomes invalid.

Commitments account for the constitutive specification of a protocol [42, 65].

They provide flexible execution for the agents as long as their commitments are satis-

fied. When an exception occurs (e.g., a commitment is violated), there may be several

reasons behind it. One such reason for exceptions in constitutively regulated proto-

cols is the misalignment of agents’ commitments. That is, the debtor and the creditor

have different understandings for the same commitment [12, 23]. In order for agents

to interoperate correctly [42] in a distributed protocol, their commitments should be

aligned. For example, if the customer expects delivery today, and the merchant thinks

the payment is not processed yet (assume that payment is required prior to delivery),

then there is obviously a problem between the two agents.

Two key properties of multi-party business processes are the conformance and

interoperability of agents. First, the agent’s design should conform to the protocol’s

standards [25, 66]. In other words, the agent should have the necessary capabilities

to satisfy its commitments. Moreover, the agent should be interoperable with other

agents [22,42]. That is, all agents should infer the same semantics for the protocol rules.

Consider the following intuitive example: the customer wishes to pay using his credit

card, however the merchant only accepts cash as payment. Obviously, these two agents

are not interoperable, since payment by credit card is not defined in the merchant’s

rule-base. Assume that they have a commitment which tells if payment is processed,

then delivery will be done. Now, when the customer makes the payment using his credit

card, he thinks that the merchant will deliver. However, looking from the merchant’s

point of view, the merchant is not committed to deliver since the payment is not

processed (until it is in cash). In this thesis, we assume that both agents conform

to the protocol they are executing and are interoperable with each other. Even then,



147

exceptions might occur. We investigate such cases.

There has been past work in the literature on comparing agents’ states. One

related work is that of Mallya and Singh [67], which focuses on similarity relations for

protocol runs. Similar to our work, a state is described as a set of propositions and

commitments, and several similarity relations are given to compare states. The idea

is to compare protocol runs in terms of states. One major difference between their

similarity relations and our satisfiability relation is that their relations are equivalence

relations (e.g., supports symmetry) while ours is not. This is mainly related to the

motivation behind using those relations. That is, they aim to merge smaller protocols

into larger ones by comparing protocol states. We, on the other hand, provide a

one-way relation (e.g., not necessarily symmetric) to compare states. Since our main

motivation is to ensure that an agent’s state complies with its projections, the inverse

direction is not significant at all (e.g., whether expectations support actual states).

Moreover, it is not necessary to ensure that both states are equivalent.

Social expectations are a mechanism to formalize the outcomes of agent interac-

tions [68]. Similar to commitments, they are used to model open MAS. Moreover, they

somewhat capture the unknown, e.g., model unobserved events or private knowledge.

As opposed to the state-oriented perspective of commitments that we also employ

in this thesis, expectations take a rule-based approach without a specified state [17].

Usually, expectations are inferred from the past interactions of agents. Here, we do

not employ rule-based social expectations, but have a notion of expectation (projec-

tion) of the future. This expectation is created according to the states of the agent’s

commitments with others.

Cranefield and Winikoff use model checking on paths to verify social expecta-

tions [69]. They formulate expectations as temporal logic rules, and use a model

checker to verify whether those expectations are fulfilled or violated over a path. Al-

though the context of their work is similar, our focus in this thesis is different. They

use model checking to track the progression of expectations over paths, while we are

not interested in the progression as such but whether such expectations are attainable.



148

Their system is neither agent-based, nor distributed. Thus, the model checker verifies

the system properties as a central authority. We, on the other hand, consider a dis-

tributed execution, where each agent can only access a portion of the protocol. Given

this, an agent can verify properties that are considered relevant, e.g., the customer

can check whether the delivery is performed on time. Moreover, an exception for one

agent may just be an ordinary case for another. Since both the protocol specification

and the states of the execution are distributed, the use of a central model checker is

not appropriate for our purposes. From a system’s point of view, there is no central

node that can access all the data in the system. Agents would be reluctant to share

information with each other. For example, if the model checker was running at the

courier agent, the customer may not provide all the details about its workings. From a

theoretical point of view, a model checker would need the entire model and a property

to decide whether the property holds or not. Since we are considering exceptions at

run time with only a partial snapshot of the execution, we would not have an exact

model of the system to apply model checking on.

In central monitoring systems, tracking the states of individual commitments is

an effective way to detect protocol exceptions [28], since all the interactions of agents

are observable. Such tracking of commitments can be done with the Event Calculus,

which is a logic used for representing events and their outcomes [70]. Commitments

can be created in the Event Calculus, and protocol evolution can be observed based

on actions that manipulate commitments. Event Calculus, in its nature, is used for

backward reasoning, thus it is goal-driven. But Reactive Event Calculus [7, 28], on

the other hand, is event-driven. That is, it enables forward reasoning in time which

allows commitment tracking during protocol execution. In particular, it can tell which

properties change state as a new event occurs.

The SCIFF framework combines backward and forward reasoning exactly for the

purpose of runtime verification [68]. It models the agents’ interactions through ex-

pectations rather than commitments. However, commitments can also be modeled

in SCIFF using expectations [17]. Once commitments and deadlines are created, the

tracking procedure just runs a monitoring process based on the happened events [7].



149

This monitoring process determines which commitments are violated. In addition, com-

pensation rules describe how the system will behave when commitments are violated

(i.e., their deadlines have passed). Thus, the procedure also offers a solution for the

exceptions that occur due to commitment violations. Misalignment of commitments

often causes such exceptions for the involved agents [23,38,42] as we have described in

this thesis.

Model checking has been used to identify a variety of failures in commitment-

based systems. Bentahar et al. consider social commitments and its operations in a

Kripke-like world model [18]. The commitment semantics and related operations are

formalized with CTL using that world model, and some properties are justified re-

garding desired execution of commitment protocols. Upon that model built with such

semantics, model checking can be utilized in verifying the compliance of agents to their

commitments. In [71], two properties of commitments are considered for verification;

fulfillment and violation. By extending the MCMAS model checker [72], several prop-

erties (e.g., safety and liveness) of commitment protocols are verified. In [35], Telang

and Singh model several business patterns as commitment interactions and map them

onto CTL specifications. Then, the aim is to use model checking to verify whether the

underlying operational model (built with commitment semantics and its operations)

supports the business specifications. Both in the works of Bentahar et al. and Telang

and Singh, the aim is to analyze the system as design time. While this is certainly

useful, many times exceptions may not be detected at design time. Hence, our de-

velopment here is towards creating methods to detect exceptions at run time. There

are major differences between these works and our work. First of all, we are not only

interested in checking whether commitments have been violated or fulfilled through

agents’ actions but also through the relations that bind the agents. This means that

even if an agent doesn’t violate a commitment through explicit actions, its relations

with other agents can make the commitment violated. Second, both in the works of

Bentahar et al. and Telang and Singh, the aim is to analyze the system at design time.

This is helpful to see if any commitments are going to be violated.

Normative multiagent systems are an alternative to commitment-based proto-



150

cols, where artificial institutions and organizations are modeled via norms rather than

commitments [73–75]. Similar to commitments, norms represent obligations for agents

to follow, but they also possess additional properties like power, which is needed to

represent the hierarchical behavior in organizations, e.g., whether an agent possessing

a certain role can enforce a norm. Norms can also be violated since there are no guar-

antees on an agent’s behavior in an open environment. Sanctions can be specified in

the case of norm violations. In this thesis, we do not consider power or the hierarchy

among agents when creating or delegating commitments. In fact, in most cases, we

start with a system that already includes the commitments among agents. Because, our

focus is on run-time exceptions related to commitments, we do not deal with specifying

commitments at design time.

In this thesis, we assume that the agents share a common commitment theory, so

that when they look at the same commitment, they understand exactly the same things.

Thus, we do not deal with misunderstandings that may arise from agents interpreting

the same commitment differently. Note that the misalignment of commitments is

different from this, where the debtor and the creditor have two different versions of the

commitment.

7.1.2. Distributed Diagnosis

Failure detection and diagnosis in distributed systems goes hand to hand with

exception handling in multiagent systems. The approaches vary from from logic-based

diagnosis [76] and model-based diagnosis [77], to multiagent diagnosis [78–81] and dis-

tributed systems diagnosis [82]. If we assume that the protocols in a multiagent system

are known to all and that there could exist agents that can monitor the entire set of

interactions, then one can develop specific agents to detect exceptions. Poutakidis et

al. [83] have developed one of the early systems for debugging problems in a multi-

agent system. Their proposed debugging environment depends on a single (central)

debugging agent, which is responsible for monitoring all the interactions among other

agents, and signal an error if there is an inconsistency (i.e., the observed interaction

does not meet the protocol specification). In the same spirit, in [84], a central agent is



151

responsible for monitoring the system. The monitoring framework makes use of LTL,

and verifies whether a formula holds in the system given a sequence of events that

occurred in that system. These approaches would be difficult to use in systems where

there is a concern of privacy and that no single agent can see the entire execution of

the system, such as the delivery process that we use in this thesis.

One major area of interest for diagnosis is the medical domain. Simply, medical

diagnosis is the process of identifying a disease based on the symptoms that are ob-

served on a patient [85]. Several different diagnostic models have been proposed in the

literature [86–89] to automate the medical diagnosis process, and to help physicians

with their decisions. These approaches range from rule-based systems to temporal

logic reasoning based on observed symptoms, and to qualitative methods which allow

flexibility in describing incomplete medical knowledge.

There are two fundamentally different approaches to diagnostic reasoning (e.g.,

where intelligent entities reason on their environment to diagnose faults or errors):

heuristic approaches, such as fault-based diagnosis (FBD) and diagnosis from the first

principles or model-based diagnosis (MBD) [90]. In FBD, the idea is to encode the

diagnostic reasoning of human experts in a given domain. The real-world system is not

modeled. All known faults are modeled instead. Conversely, MBD starts from a model

of the structure (components and their connections), a function (or behavior) of the

system, and a set of observations indicating a normal behavior. A system is considered

faulty if the observed behavior of the system contradicts the behavior predicted by

assuming that all of its components are correct [77].

As pointed out by Kalech and Kaminka following Micalizio et al. [91], fault-

based techniques [92–95], in which faults are modeled in advance, cannot be used for

multiagent diagnosis. The reason is that the interactions in multiagent systems are

unpredictable. For this reason, multiagent diagnosis is typically model-based, where

each possible fault of the system is not described explicitly. This is especially true

in open systems, where the idea of commitments is precisely to avoid enumerating all

possible ways agents can interact in order to fulfill a contract, thus providing agents



152

with more flexibility and opportunities [96].

Thus in recent years, the MBD approach has been applied to MAS diagnosis

by several research groups, including Console et al. [97] with applications in the

automotive industry [98], Roos et al. [99, 100] for plan diagnosis, and Kalech and

Kaminka [43, 44] for coordination failures in agent teams. These are in general closed

systems, where the agents or components included in the system are fixed during exe-

cution. For example, in [43], a coordination model is described by way of concurrency

and mutual exclusion constraints. The approach assumes that each agent has knowl-

edge of all the possible behaviors available to each team-member, i.e., their behavior

library. In this way, each observing agent creates a model of other agents in the team.

Transitions between one behavior to another are described in terms of preconditions

and termination conditions. Then, a “social” diagnosis is initiated as a collaborative

process aimed at finding causes of failures to maintain designer-specific social rela-

tionships [101]. More specifically to the case of team-work, a diagnosis is a set of

contradictions in beliefs that accounts for the selection of different team behaviors by

different agents [43].

MBD has also been used by Ardissono et al. to enable Web services with diag-

nostic capabilities [102]. Thus when defining complex Web services, each component

(a simple Web service) is associated with a local diagnoser, whereas the complex Web

service is associated with a global diagnoser service. Differently from Web service com-

positions, multiagent interactions are not orchestrated (as in BPEL programs), but

emerge as a result of agents’ autonomous actions. Diagnosis exception in such an open

and flexible setting calls for new approaches, such as the ones we present in this thesis.

Another approach to detecting exceptions is to divide the system into small parts

that can be monitored by different agents and then to combine the results to decide if

the execution is going as expected. This is generally called multiagent diagnosis [78,79].

While its primary application focuses on global diagnosis which gives a system-wide

solution, it can also be applied in a distributed manner. That is, each agent finds a

local diagnosis in its territory. Then, the local diagnoses are combined into a global



153

diagnosis. Simply, a diagnosis is a collection of fault modes for each component of

the system (one for each component). However, in most e-commerce scenarios (like

the delivery process described in this thesis), an exception is usually related to more

than one agent, which requires the joint effort of agents to be resolved. Consider the

delivery scenario we have used for argumentation. Only when the customer and the

courier combine their knowledge, they can find out that the package is received by

the door keeper. Thus, a collaborative diagnosis process is required to capture such

exceptions.

One general assumption with divide-and-conquer methods is that a situation is

identified as an exception unanimously. That is, each agent has a fixed notion of what

an exception is. However, again in e-commerce processes, many times one agent sees a

situation as problematic while another agent might be happy about the current status.

Hence, we need mechanisms that enable agents to detect exceptions locally rather than

globally, such as the detection mechanism we propose in this thesis.

In this thesis, we are interested in monitoring interactions when agents have

local views of the environment and their ideas of exceptions vary. Hence, the above

approaches for diagnosing exceptions are not applicable for our purposes. Instead, we

need to (i) treat multiagent systems as embodying interaction protocols that are only

partially shared and (ii) analyze exceptions as cases raising through discrepancies in

agent’s expectations of the system.

Our multiagent architecture can be considered an open system in the sense that

agents can enter or leave the system at any time during execution. However, there

are some assumptions (or restrictions) on the agents when they enter the system.

The agents should have access to the common commitment theory, and use it when

manipulating their commitments. Similarly, when they start to do business with other

agents, they are supposed to use the protocol rules described for that business. For

now, we do not provide a means to distribute this information to the agents that

are just entering the system, and assume that they start their execution with this

information at hand. In addition, the protocol rules are fixed at design-time, and



154

cannot be changed during a protocol’s execution. However, an interesting extension

to this would be to allow agents to dynamically agree on new protocol rules, and add

them into their knowledge bases.

7.1.3. Exceptions

Multiagent systems can be designed to model complicated organizations using

agent oriented software development methodologies; such as Tropos [46], or Gaia [103].

The concepts in an organization (i.e., a social community, a business dealing, or a

complicated workflow process) can be described in the agent domain as follows; (i) an

actor has strategic goals and intentions, and possesses a role in the organization (i.e.,

an agent in a multiagent system), (ii) a goal is a strategic interest of an actor that it

needs to satisfy, (iii) a plan is a path for the actor to satisfy its goal, (iv) a resource is

an entity, either physical or informational, that an actor needs, and another actor can

provide, (v) a capability is the ability of an actor to perform certain actions, and (vi)

a belief represents an actor’s knowledge about its social environment.

If we consider an open multiagent system as a social community, exceptions may

occur for several different reasons; (i) bad citizen (i.e., member of the society) behavior,

(ii) incapability of the citizens for certain tasks, or (iii) coordination problems between

the citizens. When citizens are embedded with individual exception handling routines,

the burden on the them increase significantly [45]. This distributed approach, called

the survivalist, requires the agents to include complex and most possibly domain-

dependent behaviors. In contrast, the citizen approach proposes that the exception

handling service is extracted from the problem solving agents (i.e, citizens), and served

separately as in real societies (i.e., by the government).

Workflows provide a good basis for agent-based exception handling systems [104].

Higher level exceptions may arise from organizational or coordination problems such as

the invalid structure of the workflow or the unavailability of roles at some points during

the execution of the workflow. In order for the agents to reason efficiently in exceptional

cases, they need significant amount of domain knowledge about the system they are



155

executing in. In addition, role assignment is an important challenge when considering

complicated workflows [105]. A role can be thought of as an abstract representation

of a service in an organizational model. In order to enact roles, agents may alter their

behavior in the society. Since agents continuously enter and exist the system, roles

are also switched between the agents that enact them. In addition, the agents in a

system are usually heterogeneous (i.e., possess different skills and capabilities), thus

each agent cannot fit into each role successfully. One interesting problem occurs when

an agent’s goals conflict with the goals of a role it wishes to enact, which often increases

the possibility that exceptions occur in such complicated systems.

In systems that provide online social networks, even when a system owner cor-

rectly follows the privacy agreement that it announces, the privacy of users can easily

be breached through interactions with other users. The above discussion clearly shows

that it is not enough to check the privacy agreement of the system. In addition to this,

the user’s relations with other users and what these relations enable the other users to

do should be systematically analyzed to reach a conclusion.

Krishnamurthy and Wills study the leakage of personal identifiable information

in social networks [106]. They consider personal identifiable information as any piece of

information that can by itself or when combined with other information help decipher

a person’s identity. They depict different ways that such information can leak to

external applications. The types of leakages they are concerned with are generally

based on HTTP side effects that allow information to appear in URLs or cookies that

can be used by other applications. While those identified leakages are important, the

types of leakages we are concerned here are more high-level in the sense that even when

such system level details are fixed can still exist.

Fang and LeFevre point out that following a privacy agreement for a novice

user is difficult and there is a need for easy-to-use privacy specification tools for such

users [107]. To address this, they develop a learning-based privacy wizard that asks for

some example cases from a user and learns with whom a user wants to share information

and what kind. Based on this learning, the wizard decides on the privacy settings of



156

the user. This is certainly an important aspect of privacy. In our work, we assume that

privacy agreements can be represented and processed formally so that we can focus on

the interplay between privacy agreements and user relations.

Akcora, Carminati, and Ferrari measure how risky an individual in a social net-

work is in terms of privacy [108]. They develop a method in which a user’s friends’

friends are analyzed in terms of their potential for learning and misusing personal infor-

mation. The approach is based on active learning and hence the risk is decided by the

community itself. They have adapted their approach to Facebook in order to detect

people that can potentially violate privacy of a user. While their aim is to identify

risky individuals, our aim in this thesis is to help a system decide on potential privacy

violations and inform the user appropriately.

In this thesis, we have focused on two domains, e-commerce and privacy in online

social networks, to investigate the underlying exceptions that might occur. However,

exceptions are also possible in other fields or applications. We believe that the auto-

mated methods we have proposed in this thesis are applicable to not only those two

domains, but also to others where intelligent agents can be deployed with the reasoning

capabilities we have presented here.

7.2. Conclusions

Our contributions in this thesis are the following:

• We have extended the scope of exceptions to include cases where commitment

violation is not the sole cause. That is, an agent may signal an exception even

though neither of its commitments are violated, if it observes a situation different

than what it expects. Similarly, the agent may not signal an exception even if

one of its commitments is violated, because he foresees the violation beforehand.

We have provided a systematic way to capture such exceptions.

• We have applied model checking to predict exceptions based on a set of assump-

tions on the current environment. This way, an agent can understand whether



157

performing an action will prevent its commitment from being fulfilled. If so, the

agent may choose not to perform that action.

• We have exhaustively investigated the temporal relations among commitments.

We have used these relations to build distributed diagnosis procedures that deal

with misalignment of commitments and improper commitment delegations. We

have showed that these procedures are sound, and implemented them in REC, a

tool for monitoring commitments at run-time.

Next, we review the individual contributions for each phase in exception handling.

Detection: We proposed a satisfiability relation that can be used to compare

agents’ states. When used to compare an agent’s state with its projected state, the

satisfiability relation tells whether there is an exception for the agent or not. That

is, if the agent’s projected state is not satisfiable by its current state, then the agent

signals an exception. By consistently checking its current state, the agent can identify

at which point of the protocol there has been a problem.

Moreover, we extended the concept of exceptions that are described in the liter-

ature. Often, an exception is considered identical to a contract violation. While we

accommodate that perspective, we also take into account the agent’s expectations from

their contracts.

Prediction: We proposed a method to allow agents to further detect and pre-

dict exceptions even when they do not expect anything wrong by themselves. Our

method takes into account other agents’ projections for the same situation, based on

the assumption that they may have a wider perception of the environment. Predicting

an exception beforehand gives the agent control over its actions. If the agent already

knows that taking an action will cause an exception, then it will probably choose not

to take that action.

Diagnosis & Monitoring: We studied diagnosis of exceptions when the commit-

ments of agents are misaligned with each other. In particular, we focused on the



158

temporal aspects. That is, we aimed at fixing misalignments that are caused by con-

flicts in the commitments’ deadlines. We proposed commitment similarity relations

that can be used to verify if two commitments are aligned in time. In the case of mis-

alignment, the agents can update their commitments based on the alignment policy we

proposed.

In addition, we made an extensive analysis of the temporal relations for com-

mitment delegation. While delegation allows flexibility, it may also produce possible

mismatches amongst the deadlines of agents’ commitments. Such improper delegations

may eventually drive the system into a state of violation. We presented an in-depth

analysis of improper delegations, and proposed an effective distributed reasoning pro-

cedure for finding all improper delegations of a given commitment.

Moreover, we showed an application of assumption-based argumentation, that

is used as a principled way to extend agent reasoning about commitment exceptions,

and as a basis to run diagnosis dialogues. This reasoning enables agents to resolve

conflicting cases based on justification of arguments.

7.3. Future Directions

There are several in which the ideas presented in this thesis can be extended. In

particular, we plan to investigate the following topics for future work:

• Throughout the thesis, we have a used a language for commitments that cur-

rently supports conjunction of properties only. This commitment language can

be extended to include negation, disjunction, and even nested commitments, i.e.,

other commitments in the properties (antecedent or consequent) of a commit-

ment. This will enrich our commitment language, and allow us to represent more

complex scenarios.

• We have not tested the prediction scenarios on a real social network. It will be

interesting to see how our model behaves in a real system with several users and

relations among them. In addition, the performance of model checking should



159

be investigated to see how it scales for bigger systems. Our preliminary analysis

shows that there is an exponential increase in the size of relations among users

related to the number of users in the system. When verifying properties in such

big systems, techniques like pruning the model can be useful.

• Another way to extend our prediction module is to associate probabilities with

the prediction outcomes. The agents can determine how likely their assumptions

are to occur, and accordingly, the model checking process can present several

future states, each associated with a probability showing how likely it is to have

a commitment violation in that state.

• Recently, teleo-reactive systems have gained some popularity in describing logic

based systems [109, 110]. A teleo-reactive system is a variety of production sys-

tems with access to only the current state of the environment. It combines goal-

driven behavior (i.e., proactive), with reactive behavior, which allows sensitivity

to the changing environment. It will be interesting to apply agent reasoning based

on teleo-reactive rules. In such an environment, agents can reactively respond to

exceptions following basic logic rules. In addition, they can take advantage of

situations, where some exceptions are resolved by the environment itself, or by

other agents.

• We have experienced extensive use of temporal reasoning in this thesis to cap-

ture commitment deadlines. One way to extend this temporal reasoning is to

investigate some basic relations (e.g., before, overlapping, contains) on temporal

intervals [41, 86]. This type of reasoning is used in the medical domain to di-

agnose certain types of diseases based on temporal relations among the different

phases of the disease. This is also applicable to commitment exceptions, where we

can explore certain phases of commitments (e.g., commitment states) to identify

which type of exception we are dealing with.



160

APPENDIX A: Proofs

Proof of Theorem 1

�relation is reflexive, non-symmetric, and transitive.

Proof. It is trivial that �is reflexive and non-symmetric. For atomic propositions, re-

flexivity follows from Axiom 2 and for commitments it follows from Axioms 6 and 10.

For showing non-symmetry, any unidirectional edge in Figure 2.4 serves as a counter-

example for symmetry. Consider the edge between nodes 2 and 5. The proposition

shared satisfies the violated base-level commitment Cv(>, shared), but the other di-

rection is not true. The edges between nodes 6–7 and 1–6 show similar properties.

For transitivity, we need to show that if α �β and β �γ then α �γ. Assume

α is a proposition P , β and γ are both base-level commitments with consequents P .

By Axiom 3, α �β, independently of the state of β. Now, when (i) the state of β is

fulfilled, by Axiom 6, β �γ, independently of the state of γ. Then, α �γ, by Axiom

3. When (ii) the state of β is active, by Axiom 6, β �γ, if the state of γ is active

or violated. Then, again α �γ, by Axiom 3. When (iii) the state of β is violated,

by Axiom 6, β �γ, if the state of γ is also violated. Then, again α �γ, by Axiom

3. Thus, �is transitive. Other combinations of α, β and γ follow similarly (see Table

A.1).

Proof of Theorem 2

For an agent A, at time T , given a proposition P , ST (A) 6�ST (Ap) iff
exception(A, T , P ).

Proof. We prove both directions of Theorem 2 by contradiction.



161

(i) Forward direction (Completeness): If exception(A, T , P ), then ST (A) 6�ST (Ap).

Let ∃P : exception(A, T , P ). Then, by Definition 11, either TP (ST (A)) = ∅, or ∃ x: x

∈ TP (ST (A)).

Consider the former case. Assume ST (A) �ST (Ap). This will occur only if

TP (ST (Ap)) = ∅ also. Otherwise, a term that includes P cannot be satisfied accord-

ing to the satisfiability axioms. This is a contradiction, because, by Definition 11,

TP (ST (Ap)) cannot be empty.

Now, consider the latter case. Again, assume ST (A) �ST (Ap). There are three

possibilities:

(i) ST (Ap) = 〈∅, ∅〉. Then, every state will satisfy the empty state since there are

no terms in it to satisfy (Definition 12). This is a contradiction, because, by

Definition 11, TP (ST (Ap)) cannot be empty.

(ii) TP (ST (Ap)) = ∅. Then, there is no need to satisfy a term that includes P . This

is a contradiction, because, again by Definition 11, TP (ST (Ap)) cannot be empty.

(iii) ∃ y: y ∈ TP (ST (Ap)). Then, x should satisfy y (since both are the terms that

include P ). There are three possibilities:

• x = P or x = Cf (P ). Then, according to the satisfiability axioms, x �y

for any y. This is a contradiction, because, by Definition 11, u(x) cannot be

greater than or equal to u(y).

• x = Ca(P ) and (y = Ca(P ) or y = Cv(P )). Then, by Axioms 6, 9, and 10,

x �y. This is a contradiction, because, by Definition 11, u(x) cannot be

greater than or equal to u(y).

• x = Cv(P ) and y = Cv(P ). Then, by Axioms 6, 9, and 10, x �y. This is a

contradiction, because, by Definition 11, u(x) cannot be equal to u(y).

Hence, we conclude that whenever there is an exception, ST (A) 6�ST (Ap).

(ii) Backward direction (Soundness): If ST (A) 6�ST (Ap), then ∃P : exception(A,



162

T , P ).

Let ST (A) 6�ST (Ap). Then, by Definition 12, ∃ y: y ∈ ST (Ap) and ST (A) 6�y. That

is, there is at least one term that is not satisfiable. Let y ∈ TP (ST (Ap)). That is, P

be the proposition related to the term y (either y itself or the consequent of y in case

y is a commitment). Now, assume exception(A, T , P ) does not hold. Then, ∃ x: x ∈

ST (A) and u(x) ≥ u(y). Otherwise, exception(A, T , P ) would hold. There are three

possibilities:

(i) x = P or x = Cf (P ). Then, u(x) ≥ u(y) for any y, and no exception occurs.

This is a contradiction, because, according to the satisfiability axioms x would

satisfy any such y.

(ii) x = Ca(P ) and (y = Ca(P ) or y = Cv(P )). Then, u(x) ≥ u(y), and no exception

occurs. This is a contradiction, because, by Axioms 6, 9, and 10, x would satisfy

y.

(iii) x = Cv(P ) and y = Cv(P ). Then, u(x) = u(y), and no exception occurs. This is

a contradiction, because, by Axioms 6, 9, and 10, x would satisfy y.

Proof of Theorem 3

Given a commitment Cm ∈ CT , and an agent X ∈ A, if X�∅δout Cm, Ci ∈ δout,
then (Ci, Cm) ∈MT .

Proof. We prove soundness by contradiction. Given an agent X and two commitments

Ci, Cm, assume that X �δout Cm, Ci ∈ δout, and (Ci, Cm) /∈MT .

We have three possibilities:

(i) By Rule L1; Ci is an improper delegation of Cm, and MT finds it since both Cm

and Ci are members of CT (the set of commitments MT uses for monitoring).

Thus, M1 holds. We reach a contradiction.



163

(ii) By Rule S1; there is no improper delegation of Cm. M1 does not hold. However,

by Rule S3; Y �δexc
δj

Cj should hold.

(iii) By Rule S2; there is no delegation of Cm. Again, M1 does not hold. However, by

Rule S3; Y �δexc
δout

Cm should hold.

Note that Rule L2 does not hold initially since the monitoring result is not empty.

The second and third cases propagate monitoring to other agents. At some point,

delegations of Cm cease to exist. That is, there are a finite number of delegations

for Cm
19 . Let Z be the last agent that delegates Cm. The following cases are to be

considered:

(i) Rule S2 does not apply; Z has delegated Cm.

(ii) Assume Rule S1 applies, and let the delegatee be W . For W , again the following

three cases are considered:

• Rule L1 does not apply; δimp is empty.

• Rule S1 does not apply; δpro is empty.

• Rule S2 does not apply; the debtor of the commitment Cm is W itself.

• Rule L2 applies for W ; however this results in an empty set for the moni-

toring result (δout cannot be empty). We reach a contradiction.

(iii) Rule L2 does not apply; δout cannot be empty.

(iv) Rule L1 should apply, which means that M2 holds. We reach a contradiction.

This demonstrates that every possible case of local monitoring identifying an

exception leads to a contradiction against the fact that global monitoring cannot find

that exception, thus proving soundness.

Proof of Theorem 4

∀ (Ci, Cm) ∈MT , ∃ an agent X ∈ A and a derivation X �∅δout Cm such that
Ci ∈ δout.

19Since protocol trace time is fixed, infinite delegations cannot occur.



164

Proof. We prove completeness by contradiction.

Let us consider two commitments Ci, Cm, such that (Ci, Cm) ∈MT and ∀X, δout
such that X�∅δoutCm, Ci /∈ δout. Now, let it be debtor(Cm, X). Then, if (Ci, Cm) ∈MT ,

by Definition 57 delegimp(Ci, Cm). There are three cases (Definition 56):

• Cj is an improper consequent delegation of Cm, or

• Cj is an improper causal delegation of Cm, or

• ∃ Ck ∈ C such that deleg(Ck, Cm) and delegimp(Cj, Ck).

In the first two cases, X 5REC C ∧ < Cm, δpro, δimp >∈ C ∧ Ci ∈ δimp, then

by L1 X �∅δout Cm, Ci ∈ δout. Assume X �∅δout Cm where Ci /∈ δout. Now, let Cm be a

commitment of X, i.e., X is the debtor or the creditor. Then, Ci is also a commitment

of X, because improper delegations only occur among commitments of the same agent

(Definitions 51 and 56). When X queries the REC reasoner, < Cm, δpro, {Ci, ...}> ∈

C. Thus, Rule L1 applies with Ci in δout. We reach a contradiction.

If ∃ Ck ∈ C such that deleg(Ck, Cm) and delegimp(Cj, Ck), by Definition 52, either
−−−→
deleg(Cj, Cm), or ∃ a causal delegation chain σ from Cm to Cj, whose elements are in

C, whereby again L1 would apply, or ∃ Ck ∈ C such that
−−−→
deleg(Cj, Ck) and deleg(Ck,

Cm). If delegimp(Cj, Cm) again L1 applies. Otherwise, let Y be the delegatee or debtor

of Ck, Y 6= X. In the first case (delegatee), S1 applies, and therefore S3. In the second

case (debtor), S2 applies, and therefore also S3. S3 recursively starts a new derivation,

starting from Y . By iterating the same reasoning, we eventually reach the case where
−−−→
deleg(Cj, Cm) is the only option, because a delegation tree if finite. Thus L1 applies.

We reach a contradiction.

This demonstrates that every possible case of global monitoring identifying an

exception leads to a contradiction against the fact that local monitoring cannot find

that exception, thus proving completeness.



165

Table A.1. Combination of terms for Theorem 1.

α β γ Axioms used for proof

Proposition Proposition Proposition 2

Proposition Proposition Base-level com. 2 & 3

Proposition Proposition Conditional com. 2 & 4

Proposition Base-level com. Proposition 3 & 5 & 2

Proposition Base-level com. Base-level com. 3 & 6

Proposition Base-level com. Conditional com. 3 & 7 & 4

Proposition Conditional com. Proposition 4 & 8 & 2

Proposition Conditional com. Base-level com. 4 & 9 & 3

Proposition Conditional com. Conditional com. 4 & 10

Base-level com. Proposition Proposition 5 & 2

Base-level com. Proposition Base-level com. 5 & 3 & 6

Base-level com. Proposition Conditional com. 5 & 4 & 7

Base-level com. Base-level com. Proposition 6 & 5

Base-level com. Base-level com. Base-level com. 6

Base-level com. Base-level com. Conditional com. 6 & 7

Base-level com. Conditional com. Proposition 7 & 8 & 5

Base-level com. Conditional com. Base-level com. 7 & 9 & 6

Base-level com. Conditional com. Conditional com. 7 & 10

Conditional com. Proposition Proposition 8 & 2

Conditional com. Proposition Base-level com. 8 & 3 & 9

Conditional com. Proposition Conditional com. 8 & 4 & 10

Conditional com. Base-level com. Proposition 9 & 5 & 8

Conditional com. Base-level com. Base-level com. 9 & 6

Conditional com. Base-level com. Conditional com. 9 & 7 & 10

Conditional com. Conditional com. Proposition 10 & 8

Conditional com. Conditional com. Base-level com. 10 & 9

Conditional com. Conditional com. Conditional com. 10



166

APPENDIX B: REC Implementation for Detection

B.1. Commitment Theory

The following code shows the REC rules for modeling the states of commitments.

The commitment formalization is compatible with existing work [7,28], in which rules

on manipulating base-level commitments have already been given. We extend this

formalization with conditional commitments. That is, we provide additional rules for

manipulating a commitment when the antecedent is also considered.

When there is an event E that creates a conditional commitment C at time T, then

C will be in the conditional state from T onwards (C1)20 . In REC, we can express that

an event initiates (or terminates) a temporal fluent, by way of initiates(Event, Fluent,

Time) relations. A commitment with its state is also a temporal fluent. A ccreate

clause creates a commitment in conditional state (C1). Note that the event E will be

associated with a domain action in the domain model (e.g., an offer from the merchant

to the customer). Similarly, a base-level commitment will be in the active state if there

is an event that creates it (C2). A commitment can also make a transition from the

conditional state to the active state via the detach operation. That is, if there is an

event that initiates the antecedent of the commitment, then the commitment will be

active (C3).

Notice the temporal interval e(T1, T2) in the detach clause that is associated

with the commitment’s antecedent Q. Even though we do not explicitly talk about the

temporal constraints here, they are required for REC to process the state changes. An

existential temporal constraint for the antecedent Q of the commitment means that if

Q is initiated between T1 and T2, then the commitment’s condition is satisfied, and

thus the commitment will be active. This is indeed what the detach clause in rule C3

tells.

20Note that lines starting with % are comments.



167

� �
% C1 : c r e a t e as c o n d i t i o n a l

i n i t i a t e s (E, s t a t u s (C, c o n d i t i o n a l ) , T):−

c c r e a t e (E, C, T) .

% C2 : c r e a t e as a c t i v e

i n i t i a t e s (E, s t a t u s (C, a c t i v e ) , T):−

c r e a t e (E, C, T) .

% C3 : c o n d i t i o n a l to a c t i v e

te rminate s (E, s t a t u s (C, c o n d i t i o n a l ) , T):−

detach (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, a c t i v e ) , T):−

detach (E, C, T) .

detach (E, c (X, Y, property ( e (T1 , T2) , Q) , P) , T):−

c o n d i t i o n a l ( c (X, Y, property ( e (T1 , T2) , Q) , P) , T) ,

T >= T1 , T =< T2 , i n i t i a t e s (E, Q, T) .

% C4 : c o n d i t i o n a l or a c t i v e to f u l f i l l e d

te rminate s (E, s t a t u s (C, c o n d i t i o n a l ) , T):−

d i s cha rge (E, C, T) .

t e rminate s (E, s t a t u s (C, a c t i v e ) , T):−

d i s cha rge (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, f u l f i l l e d ) , T):−

d i s cha rge (E, C, T) .

d i s cha rge (E, c (X, Y, Q, property ( e (T1 , T2) , P) ) , T):−

c o n d i t i o n a l ( c (X, Y, Q, property ( e (T1 , T2) , P) ) , T) ,

T >= T1 , T =< T2 , i n i t i a t e s (E, P, T) .

d i s cha rge (E, c (X, Y, Q, property ( e (T1 , T2) , P) ) , T):−

a c t i v e ( c (X, Y, Q, property ( e (T1 , T2) , P) ) , T) ,

T >= T1 , T =< T2 , i n i t i a t e s (E, P, T) .

% C5 : a c t i v e to v i o l a t e d

te rminate s (E, s t a t u s (C, a c t i v e ) , T):−

v i o l a t e (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, v i o l a t e d ) , T):−

v i o l a t e (E, C, T) .

v i o l a t e ( , c (X, Y, Q, property ( e (T1 , T2) , P) ) , T):−

a c t i v e ( c (X, Y, Q, property ( e (T1 , T2) , P) ) , T) , T > T2 .� �



168

From the active state, the commitment can either be fulfilled via the discharge

operation if its consequent has been initiated within the deadline (C4), or be violated

otherwise (C5). Note that a conditional commitment can also be fulfilled directly

without having its antecedent being satisfied.

B.2. Protocol Description

The following code shows theREC rules for modeling the privacy domain from the

point of view of Charlie. Charlie has a single action to perform, which is the movement

event for changing location (D1). Moreover, Charlie knows about the sharing action,

which will allow his location to be shared among his friends (D2). These two rules

describe how the truth values of the fluents change in time according to events.

Apart from the fluents, commitments are also manipulated via the ccreate and

create rules. For example, an agreement from the OSN operator to Charlie creates a

conditional commitment (D3). Notice the commitment has a temporal constraint for

its consequent. For example, when the offer is made by the OSN operator at time 4,

then the temporal constraint for sharing will be from 11 to 16.

In addition to the rules, the customer has a domain ontology where certain facts

about the domain are stored (D4). For example, Charlie knows that osn is the OSN

operator and office is a location.



169

� �
% D1 : move event

i n i t i a t e s ( exec (move( User , Locat ion ) ) , newlocat ion , ):−

i sUse r ( User ) ,

i s L o c a t i o n ( Locat ion ) .

% D2 : share event

i n i t i a t e s ( exec ( share (Osn ) ) , shared , ):−

isOsn (Osn ) .

% D3 : agreement event

c c r e a t e ( exec ( agreement (Osn , User ) ) ,

c (Osn , User ,

property ( e (Tsq , Teq ) , newlocat ion ) ,

property ( e (Tsp , Tep ) , shared ) ) ,

T):−

isOsn (Osn ) ,

i sUse r ( User ) ,

Tsq i s T + 1 ,

Teq i s Tsq + 5 ,

Tsp i s Teq + 1 ,

Tep i s Tsp + 5 .

% D5 : domain onto logy

i sUse r ( c h a r l i e ) .

i sUse r ( s a l l y ) .

i sUse r ( l i n u s ) .

isOsn ( osn ) .

i s L o c a t i o n (home ) .

i s L o c a t i o n ( o f f i c e ) .� �
B.3. Satisfiability

The following code segments show the REC rules for describing satisfiability. The

rules follow the Axioms 2 - 10. Note that exp stands for expected, such that an expected

fluent is satisfiable once the premises of the rule hold.



170

� �
% Axiom 2

s a t i s f i a b l e ( exp (P, T)):−

h o l d s a t (P, T) .

% Axiom 3

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

% Axiom 4

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( c o n d i t i o n a l ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

h o l d s a t (P, T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) ) , T)):−

h o l d s a t (Q, T) .

% Axioms 5 & 8

s a t i s f i a b l e ( exp (P, T)):−

f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) , T) .� �



171

� �
% Axioms 6 & 9 ( a )

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , true , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .� �



172

� �
% Axiom 7

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( c o n d i t i o n a l ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( c o n d i t i o n a l ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) ) , T)):−

v i o l a t e d ( c ( , , true , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) ) , T)):−

f u l f i l l e d ( c ( , , true , property ( e ( , ) , Q) ) , T) .

% Axiom 8

s a t i s f i a b l e ( exp (Q, T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp (Q, T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .� �



173

� �
% Axiom 10 ( a )

s a t i s f i a b l e ( exp (

f u l f i l l e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

a c t i v e ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

c o n d i t i o n a l ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

f u l f i l l e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e (

exp ( a c t i v e ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

c o n d i t i o n a l ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .

s a t i s f i a b l e ( exp (

c o n d i t i o n a l ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) ) , T)):−

c o n d i t i o n a l ( c ( , , property ( e ( , ) , Q) , property ( e ( , ) , P) ) , T) .� �



174

� �
% Axiom 10 (b)

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( f u l f i l l e d ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( a c t i v e ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( v i o l a t e d ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( c o n d i t i o n a l ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

a c t i v e ( c ( , , property ( e ( , ) , Q) , ) , T) .

s a t i s f i a b l e ( exp ( c o n d i t i o n a l ( c ( , , , property ( e ( , ) , Q) ) ) , T)):−

v i o l a t e d ( c ( , , property ( e ( , ) , Q) , ) , T) .� �
B.4. Recoverability

The following code shows the REC rules for describing recoverability. The rules

follow Definitions 13 & 14.



175

� �
% k−r e c o v e r a b l e

oneRecoverable ( exp (P, T)):−

a c t i v e ( c ( , , , property ( e ( , ) , P) ) , T) .

oneRecoverable ( exp (Q, T)):−

c o n d i t i o n a l ( c ( , , property ( e ( , ) , Q) , ) , T) .

twoRecoverable ( exp (P, T)):−

c o n d i t i o n a l ( c ( , , , property ( e ( , ) , P) ) , T) .

kRecoverable ( exp (P, T)):−

oneRecoverable ( exp (P, T) ) .

kRecoverable ( exp (P, T)):−

twoRecoverable ( exp (P, T) ) .

% non−r e c o v e r a b l e

nRecoverable ( exp (P, T)):−

v i o l a t e d ( c ( , , , property ( e ( , ) , P) ) , T) .� �



176

APPENDIX C: REC Output for Diagnosis

We show the outputs of REC for the two cases described in Chapter 4; misalign-

ment and misbehavior.

Figure C.1. Misalignment: Top (Customer, Bank) - Bottom (Store, Courier).



177

Figure C.2. Misbehavior: Top (Customer, Bank) - Bottom (Store, Courier).



178

APPENDIX D: REC Implementation for Delegation

Monitoring

We implemented a proof-of-concept monitoring framework prototype using Com-

Mon [49]. The input to the ComMon REC-based reasoner is the following:

• a commitments model that contains the rules for manipulation of commitments,

• a domain model that contains the protocol rules that describe the agents’ domain,

• an event trace that contains the actions of the agents throughout time.

Given these inputs, ComMon produces an outcome that demonstrates the agents’

fluents through time. This is used to monitor the individual states of the commitments

at run-time. Besides, we defined a subset of the commitment relations introduced

in this thesis in the REC language, thus extending the commitment model with a

similarity model and an exception model, in order to accommodate local reasoning.

A running prototype can be downloaded from http://mas.cmpe.boun.edu.tr/

ozgur/code.html, Section 3. Below we explain some important code segments from

the case study presented here, using ComMon Tool. The ComMon tool only needs

Java. The simplest way to run the example is to execute java -jar ComMon.jar (or

double-click on the ComMon.jar file icon) on a selected agent folder.

To run tests such as this one, select tab Model from the left-hand side menu and

copy-paste the KB of your agent of choice. Then hit the Run, and copy-paste on the

right-hand box called Trace the desired evolution of events. Once the events are in

place, select Start and then Log from the bottom. Use Stop to restart and Export to

save the output on a file.

Now, we describe parts of the REC code. The following code shows the commit-

ment theory that is shared by all the agents. First, the states of the commitments are



179

described. Note that, in addition to the usual four states of commitments, we have

detached to describe a conditional commitment that has become active. This is for

implementation purposes so that we do not lose track of origin of the active commit-

ment (i.e., the original condition commitment). Then, the rules that describe the state

transitions are defined. Following the Event Calculus, in REC, we can express that

an event initiates (or terminates) a temporal fluent, by way of initiates(Event, Fluent,

Time) relations. A commitment with its state is considered a temporal fluent.

� �
% commitment s t a t e s

c o n d i t i o n a l (C, T):− h o l d s a t ( s t a t u s (C, c o n d i t i o n a l ) , T) .

detached (C, T):− h o l d s a t ( s t a t u s (C, detached ) , T) .

a c t i v e (C, T):− h o l d s a t ( s t a t u s (C, a c t i v e ) , T) .

f u l f i l l e d (C, T):− h o l d s a t ( s t a t u s (C, f u l f i l l e d ) , T) .

v i o l a t e d (C, T):− h o l d s a t ( s t a t u s (C, v i o l a t e d ) , T) .

% c r e a t e as c o n d i t i o n a l or a c t i v e

i n i t i a t e s (E, s t a t u s (C, c o n d i t i o n a l ) , T):− c c r e a t e (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, a c t i v e ) , T):− c r e a t e (E, C, T) .

% c o n d i t i o n a l to a c t i v e

te rminate s (E, s t a t u s (C1 , c o n d i t i o n a l ) , T):− detach (E, C1 , C2 , T) .

i n i t i a t e s (E, s t a t u s (C1 , detached ) , T):− detach (E, C1 , , T) .

i n i t i a t e s (E, s t a t u s (C2 , a c t i v e ) , T):− detach (E, , C2 , T) .

detach (E, c (Tc , X, Y, Q, P, r e l (T1 , T2 ) ) ,

c (Tc , X, Y, true , P, abs (T3 , T4 ) ) , T):−

c o n d i t i o n a l ( c (Tc , X, Y, Q, P, r e l (T1 , T2 ) ) , T) ,

i n i t i a t e s (E, Q, T) , T3 i s T + T1 , T4 i s T + T2 .

% a c t i v e to f u l f i l l e d

te rminate s (E, s t a t u s (C, a c t i v e ) , T):− d i s cha rge (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, f u l f i l l e d ) , T):− d i s cha rge (E, C, T) .

d i s cha rge (E, c (Tc , X, Y, true , P, abs (T1 , T2 ) ) , T):−

a c t i v e ( c (Tc , X, Y, true , P, abs (T1 , T2 ) ) , T) ,

T >= T1 , T =< T2 , i n i t i a t e s (E, P, T) .

% a c t i v e to f u l f i l l e d

te rminate s (E, s t a t u s (C, a c t i v e ) , T):− v i o l a t e (E, C, T) .

i n i t i a t e s (E, s t a t u s (C, v i o l a t e d ) , T):− v i o l a t e (E, C, T) .

v i o l a t e ( , c (Tc , X, Y, true , P, abs (T1 , T2 ) ) , T):−

a c t i v e ( c (Tc , X, Y, true , P, abs (T1 , T2 ) ) , T) , T > T2 .� �



180

The following code shows the rules that describe the domain of the bank for

Request Credit Card. The domain for the bank covers most of the process, and the

domains for other agents are described similarly. First, an exception is described either

as a direct improper delegation, or an indirect improper delegation. Then, the rules for

fluent manipulation are given in terms of action-consequence relations. For example, a

payment from the client to the bank initiates the fluent paid at the time of the event.

The rules for contract execution are given in terms of commitment create operations.

For example an offer from the bank to client creates a conditional commitment between

the two agents with a relative deadline of 4 to 7 time units. This means that the delivery

should occur some time between 4 to 7 time units after the payment is done. Note that

this rule is also contained in the client’s domain model. However, not all such rules are

in the client’s domain model, e.g., the details of the transaction between the bank and

the office is omitted from the client.



181

� �
% except ion model

i n i t i a t e s ( , except ion (C1 , C2) , T):−

h o l d s a t ( improperDelegat ion (C1 , C2) , T) .

i n i t i a t e s (E, except ion (C1 , C2) , T):−

h o l d s a t ( improperDelegat ion (C1 , C) , T) ,

a c t i v e (C2 , T) , d e l e g a t i o n (C, C2 ) .

% f l u e n t manipulat ion

i n i t i a t e s ( exec ( pay ( Cl ient , Bank , Card ) ) , paid ( Card ) , ):−

i s C l i e n t ( C l i en t ) , isBank (Bank ) , i sCard ( Card ) .

i n i t i a t e s ( exec ( conf i rm (Bank , Of f i c e , Card ) ) , conf i rmed ( Card ) , ):−

isBank (Bank ) , i s O f f i c e ( O f f i c e ) , i sCard ( Card ) .

i n i t i a t e s ( exec ( p r i n t ( Of f i c e , Courier , Card ) ) , p r in ted ( Card ) , ):−

i s O f f i c e ( O f f i c e ) , i s C o u r i e r ( Cour ier ) , i sCard ( Card ) .

i n i t i a t e s ( exec ( d e l i v e r ( Courier , Cl ient , Card ) ) , d e l i v e r e d ( Card ) , ):−

i s C o u r i e r ( Cour ier ) , i s C l i e n t ( C l i en t ) , i sCard ( Card ) .

% cont rac t execut ion

c c r e a t e ( exec ( o f f e r (Bank , Cl ient , Card ) ) ,

c (T, Bank , Cl ient , paid ( Card ) , d e l i v e r e d ( Card ) , r e l (4 , 7 ) ) , T):−

isBank (Bank ) , i s C l i e n t ( C l i en t ) , i sCard ( Card ) .

c r e a t e ( exec ( conf i rm (Bank , Of f i c e , Card ) ) ,

c (T, Of f i c e , Bank , true , p r in ted ( Card ) , abs (T1 , T2 ) ) , T):−

isBank (Bank ) , i s O f f i c e ( O f f i c e ) , i sCard ( Card ) ,

T1 i s T + 2 , T2 i s T + 3 .

c c r e a t e ( exec ( o f f e r ( Courier , Bank , Card ) ) ,

c (T, Courier , Bank , pr in ted ( Card ) , d e l i v e r e d ( Card ) , r e l (2 , 3 ) ) , T):−

isBank (Bank ) , i s O f f i c e ( O f f i c e ) ,

i s C o u r i e r ( Cour ier ) , i sCard ( Card ) .

% domain onto logy

i s C l i e n t ( a l i ) .

isBank ( bank ) .

i s O f f i c e ( o f f i c e ) .

i s C o u r i e r ( c o u r i e r ) .

i sCard ( card ) .� �
The following code shows the rules that describe the domain of the builder for

Refurbish House. Here, we have conjunction of fluents for the consequents of commit-

ments. Note that we only show the part of code related to handling conjunction as



182

others parts are similar to the bank’s domain model. If the consequent of a commit-

ment is a conjunction of fluents, then we represent it as a Prolog list, which contains

all the fluents that are elements of the conjunction. We describe how delegations with

conjunctions are handled below.

� �
% cont rac t execut ion

c c r e a t e ( exec ( o f f e r ( bu i lde r , c on t ra c to r ) ) ,

c (T, bu i lde r , contractor , paidK , [ app l iances , pa inted ] , r e l (5 , 10 ) ) , T) .

c c r e a t e ( exec ( o f f e r ( bu i lde r , c on t ra c to r ) ) ,

c (T, bu i lde r , contractor , paidB , [ shower , t i l e s ] , r e l (5 , 10 ) ) , T) .� �
The following code shows the rules that describe explicit delegation. Other dele-

gation types are described similarly. Delegations with conjunction of fluents is handled

by parsing the list of fluents that make up the conjunction. Note that the deadline

intervals are not taken into consideration while describing the delegation similarity

relations.

� �
% case s o f e x p l i c i t d e l e g a t i o n

e x p l i c i t D e l e g a t i o n ( c (Tc1 , Z , Y, true , P1 , ) , c (Tc2 , X, Y, true , P2 , )):−

partOf (P1 , P2 ) , Tc1 > Tc2 , X \= Z .

e x p l i c i t D e l e g a t i o n ( c (Tc1 , Z , Y, , P1 , ) , c (Tc2 , X, Y, true , P2 , )):−

partOf (P1 , P2 ) , Tc1 > Tc2 , X \= Z .

e x p l i c i t D e l e g a t i o n ( c (Tc1 , Z , Y, true , P1 , ) , c (Tc2 , X, Y, , P2 , )):−

partOf (P1 , P2 ) , Tc1 > Tc2 , X \= Z .

e x p l i c i t D e l e g a t i o n ( c (Tc1 , Z , Y, , P1 , ) , c (Tc2 , X, Y, , P2 , )):−

partOf (P1 , P2 ) , Tc1 > Tc2 , X \= Z .

% conjunct ion

partOf (P, P) .

partOf (P, [P | ] ) .

partOf (P, [ |L]) :− partOf (P, L ) .

partOf ( [P |L1 ] , L2):− partOf (P, L2 ) , partOf (L1 , L2 ) .� �
The description for improper (causal) delegation is given in the following code by

taking into consideration the deadline intervals of the commitments.



183

� �
% improper causa l d e l e g a t i o n

i n i t i a t e s ( ,

improperDelegat ion ( c (Tc3 , X3 , Y3 , true , P3 , abs (T5 , T6 ) ) ,

c (Tc1 , X1 , Y1 , true , P1 , abs (T1 , T2 ) ) ) , T):−

a c t i v e ( c (Tc1 , X1 , Y1 , true , P1 , abs (T1 , T2 ) ) , T) ,

c o n d i t i o n a l ( c (Tc2 , X2 , Y2 , Q2, P2 , r e l (T3 , T4 ) ) , T) ,

a c t i v e ( c (Tc3 , X3 , Y3 , true , P3 , abs (T5 , T6 ) ) , T) ,

i m p l i c i t D e l e g a t i o n ( c (Tc2 , X2 , Y2 , Q2, P2 , r e l (T3 , T4 ) ) ,

c (Tc1 , X1 , Y1 , true , P1 , abs (T1 , T2 ) ) ) ,

antecedentDe legat ion ( c (Tc3 , X3 , Y3 , true , P3 , abs (T5 , T6 ) ) ,

c (Tc2 , X2 , Y2 , Q2, P2 , r e l (T3 , T4 ) ) ) ,

(T4 + T6) > T2 .� �



184

APPENDIX E: REC Output for Delegation Monitoring

Figures E.1 - E.5 display the REC outputs for the case studies presented in

Chapter 5.

Figure E.1. Client in Request Credit Card (exception).

Figure E.2. Bank in Request Credit Card (exception).



185

Figure E.3. Client in Request Credit Card (no exception).

Figure E.4. Bank in Request Credit Card (no exception).



186

Figure E.5. Builder in Refurbish House.



187

REFERENCES

1. Fisher, M. and M. Wooldridge, “On the Formal Specification and Verification

of Multi-Agent Systems”, International Journal of Cooperative Information Sys-

tems , pp. 37–66, 1997.

2. Huhns, M. N. and M. P. Singh, “Agents and Multiagent Systems: Themes, Ap-

proaches, and Challenges”, M. N. Huhns and M. P. Singh (Editors), Readings in

Agents , pp. 1–23, Morgan Kaufmann, San Francisco, 1998.

3. Nwana, H. S., J. Rosenschein, T. Sandholm, C. Sierra, P. Maes and R. Guttmann,

“Agent- Mediated Electronic Commerce: Issues, Challenges and Some View-

points”, Proceedings of the Second International Conference on Autonomous

Agents , AGENTS ’98, pp. 189–196, 1998.

4. Singh, M. P., “An Ontology for Commitments in Multiagent Systems: Toward a

Unification of Normative Concepts”, Artificial Intelligence and Law , Vol. 7, pp.

97–113, 1999.

5. Yolum, P. and M. P. Singh, “Flexible Protocol Specification and Execution: Ap-

plying Event Calculus Planning Using Commitments”, Proceedings of the 1st

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pp. 527–534, 2002.

6. Fornara, N. and M. Colombetti, “Defining Interaction Protocols Using a

Commitment-Based Agent Communication Language”, Proceedings of the 2nd

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pp. 520–527, 2003.

7. Torroni, P., F. Chesani, P. Mello and M. Montali, “Social Commitments in Time:

Satisfied or Compensated”, Declarative Agent Languages and Technologies , Vol.

5948 of Lecture Notes in Computer Science, pp. 228–243, Springer, 2009.



188

8. Kafalı, Ö. and P. Yolum, “A Distributed Treatment of Exceptions in Multiagent

Contracts (Preliminary Report)”, Proceedings of the 9th International Workshop

on Declarative Agent Languages and Technologies (DALT), 2011.

9. Kafalı, Ö. and P. Yolum, “Detecting Exceptions in Commitment Protocols: Dis-

covering Hidden States”, Languages, Methodologies and Development Tools for

Multi-Agent Systems , Vol. 6039 of LNCS , pp. 112–127, 2010.

10. Kafalı, Ö., A. Günay and P. Yolum, “PROT OSS: A Run Time Tool for Detect-

ing PRivacy viOlaT ions in Online Social networkS (Short Paper)”, IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining ,

2012.

11. Kafalı, Ö. and P. Torroni, “Exception Diagnosis in Multiagent Contract Exe-

cutions”, Annals of Mathematics and Artificial Intelligence, Vol. 64, No. 1, pp.

73–107, 2012.

12. Kafalı, Ö., F. Chesani and P. Torroni, “What Happened to My Commitment? Ex-

ception Diagnosis Among Misalignment and Misbehavior”, Computational Logic

in Multi-Agent Systems (CLIMA XI), Vol. 6245 of LNCS , pp. 82–98, 2010.

13. Kafalı, Ö. and P. Torroni, “Diagnosing Commitments: Delegation Revisited (Ex-

tended Abstract)”, AAMAS 2011: 10th International Conference on Autonomous

Agents and Multiagent Systems , pp. 1175–1176, 2011.

14. Kafalı, Ö. and P. Torroni, “Social Commitment Delegation and Monitoring”,

Computational Logic in Multi-Agent Systems (CLIMA XII), Vol. 6814 of LNCS ,

pp. 171–189, 2011.

15. Kafalı, Ö., F. Toni and P. Torroni, “Collaborative Diagnosis of Exceptions to

Contracts (Extended Abstract)”, AAMAS 2011: 10th International Conference

on Autonomous Agents and Multiagent Systems , pp. 1167–1168, 2011.



189

16. Kafalı, Ö., F. Toni and P. Torroni, “Reasoning About Exceptions to Contracts”,

Computational Logic in Multi-Agent Systems (CLIMA XII), Vol. 6814 of LNCS ,

pp. 225–242, 2011.

17. Torroni, P., P. Yolum, M. P. Singh, M. Alberti, F. Chesani, M. Gavanelli,

E. Lamma and P. Mello, “Modelling Interactions via Commitments and Expecta-

tions”, Handbook of Research on Multi-Agent Systems: Semantics and Dynamics

of Organizational Models , pp. 263–284, 2009.

18. Bentahar, J., M. El-Menshawy and R. Dssouli, “An Integrated Semantics of So-

cial Commitments and Associated Operations”, Proceedings of the Second Multi-

Agent Logics, Languages, and Organisations Federated Workshops, Turin, Italy,

September 7-10, 2009 , Vol. 494 of CEUR Workshop Proceedings , 2009.

19. Jakob, M., M. Pěchouček, S. Miles and M. Luck, “Case studies for Contract-

Based Systems”, Proceedings of the 7th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS): Industrial Track , pp. 55–62, 2008.

20. Artikis, A., “Dynamic Protocols for Open Agent Systems”, Proceedings of the 8th

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pp. 97–104, 2009.

21. Desai, N., A. U. Mallya, A. K. Chopra and M. P. Singh, “Processes = Protocols

+ Policies: A Methodology for Business Process Development”, Technical report,

NC State University, TR2004-34 , 2004.

22. Chopra, A. K. and M. P. Singh, “Producing Compliant Interactions: Confor-

mance, Coverage, and Interoperability”, Proceedings of the 4th International

Workshop on Declarative Agent Languages and Technologies (DALT), pp. 1–15,

2006.

23. Chopra, A. K. and M. P. Singh, “Multiagent Commitment Alignment”, Proceed-

ings of the 8th International Conference on Autonomous Agents and Multiagent



190

Systems (AAMAS), pp. 937–944, 2009.

24. Singh, M. P., “Semantical Considerations on Dialectical and Practical Commit-

ments”, Proceedings of the 23rd National Conference on Artificial Intelligence

(AAAI), pp. 176–181, 2008.

25. Chopra, A. K., F. Dalpiaz, P. Giorgini and J. Mylopoulos, “Reasoning about

Agents and Protocols via Goals and Commitments”, Proceedings of the 9th Inter-

national Conference on Autonomous Agents and Multiagent Systems (AAMAS),

pp. 457–464, 2010.

26. Yolum, P. and M. P. Singh, “Enacting Protocols by Commitment Concession”,

Proceedings of the 6th International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS), pp. 116–123, 2007.

27. van Riemsdijk, M. B., M. Dastani and M. Winikoff, “Goals in Agent Systems:

A Unifying framework”, Proceedings of the 7th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), pp. 713–720, 2008.

28. Chesani, F., P. Mello, M. Montali and P. Torroni, “Commitment Tracking via the

Reactive Event Calculus”, Proceedings of the 21st International Joint Conference

on Artifical Intelligence (IJCAI), pp. 91–96, 2009.

29. Chesani, F., P. Mello, M. Montali and P. Torroni, “Monitoring Time-Aware Social

Commitments with Reactive Event Calculus”, 20th European Meeting on Cyber-

netics and Systems Research, 7th International Symposium ”From Agent Theory

to Agent Implementation” (AT2AI-7), pp. 447–452, 2010.

30. Clarke, E. M. and E. A. Emerson, “Design and Synthesis of Synchronization

Skeletons Using Branching-Time Temporal Logic”, Logic of Programs, Workshop,

pp. 52–71, Springer-Verlag, London, UK, 1982.

31. Huth, M. and M. Ryan, Logic in Computer Science: Modelling and Reasoning



191

about Systems , Cambridge University Press, New York, NY, USA, 2004.

32. Emerson, E. A., Handbook of Theoretical Computer Science, Volume B: Formal

Models and Sematics (B), MIT Press, Cambridge, MA, USA, 1990.

33. Cimatti, A., E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani and A. Tacchella, “NuSMV Version 2: An OpenSource Tool for

Symbolic Model Checking”, Proc. International Conference on Computer-Aided

Verification (CAV 2002), Vol. 2404 of LNCS , Springer, Copenhagen, Denmark,

July 2002.

34. Carminati, B. and E. Ferrari, “Privacy-Aware Access Control in Social Networks:

Issues and Solutions”, Privacy and Anonymity in Information Management Sys-

tems , chap. 9, pp. 181–195, Springer Verlag, 2010.

35. Telang, P. and M. Singh, “Specifying and Verifying Cross-Organizational Business

Models: An Agent-Oriented Approach”, IEEE Transactions on Services Comput-

ing , Vol. 99, No. PrePrints, 2011.

36. Kollingbaum, M. and T. Norman, “A Contract Management Framework for Su-

pervised Interaction”, UK Multi-Agent Systems (UKMAS) Annual Conference,

Liverpool, UK , 2002.

37. Jennings, N. R., P. Faratin, T. J. Norman, P. O’Brien and B. Odgers, “Au-

tonomous Agents for Business Process Management”, International Journal of

Applied Artificial Intelligence, Vol. 14, No. 2, pp. 145–189, 2000.

38. Schroeder, M. and R. Schweimeier, “Arguments and Misunderstandings: Fuzzy

Unification for Negotiating Agents”, Electronic Notes in Theoretical Computer

Science, Vol. 70, No. 5, pp. 1 – 19, 2002.

39. Chittaro, L. and A. Montanari, “Temporal Representation and Reasoning in Ar-

tificial Intelligence: Issues and approaches”, Annals of Mathematics and Artificial



192

Intelligence, Vol. 28, No. 1-4, pp. 47–106, 2000.

40. Chesani, F., P. Mello, M. Montali and P. Torroni, “Role Monitoring in Open Agent

Societies”, Agent and Multi-Agent Systems: Technologies and Applications, 4th

KES International Symposium, pp. 112–121, 2010.

41. Allen, J. F., “Maintaining Knowledge about Temporal Intervals”, Communica-

tions of the ACM , Vol. 26, pp. 832–843, 1983.

42. Chopra, A. K. and M. P. Singh, “Constitutive Interoperability”, Proceedings of

the 7th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp. 797–804, 2008.

43. Kalech, M. and G. A. Kaminka, “On the Design of Social Diagnosis Algorithms

for Multi-Agent Teams”, IJCAI 2003: 18th International Joint Conference on

Artificial Intelligence, pp. 370–375, 2003.

44. Kalech, M. and G. A. Kaminka, “Towards Model-Based Diagnosis of Coordination

Failures”, AAAI 2005: 20th National Conference on Artificial intelligence, pp.

102–107, 2005.

45. Klein, M., J. Rodriguez-Aguilar and C. Dellarocas, “Using Domain-Independent

Exception Handling Services to Enable Robust Open Multi-agent Systems: the

Case of Agent Death”, Journal of Autonomous Agents and Multi-Agent Systems ,

pp. 179–189, 2003.

46. Bresciani, P., A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos, “Tropos:

An Agent-Oriented Software Development Methodology”, Autonomous Agents

and Multi-Agent Systems , Vol. 8, pp. 203–236, 2004.

47. Friedrich, G., “Repair of Service-Based Processes - An Application Area for Logic

Programming”, The ALP Newsletter, 2010.



193

48. Chesani, F., P. Mello, M. Montali and P. Torroni, “A Logic-Based, Reactive

Calculus of Events”, Fundamenta Informaticae, Vol. 105, No. 1-2, pp. 135–161,

2010.

49. Chesani, F., M. Montali, P. Mello and P. Torroni, “Monitoring Time-Aware Social

Commitments with Reactive Event Calculus”, Proceedings of the 7th International

Symposium ‘‘From Agent Theory to Agent Implementation’’ (AT2AI-7), 2010.

50. Torroni, P., F. Chesani, P. Mello and M. Montali, “A Retrospective on the Reac-

tive Event Calculus and Commitment Modeling Language”, C. Sakama, S. Sar-

dina, W. Vasconcelos and M. Winikoff (Editors), Proceedings of the 9th Interna-

tional Workshop on Declarative Agent Languages and Technologies (DALT 2011),

Vol. 7169 of Lecture Notes in Computer Science, pp. 120–127, Springer, 2012.

51. Bondarenko, A., P. Dung, R. Kowalski and F. Toni, “An Abstract,

Argumentation-Theoretic Approach to Default Reasoning”, Artificial Intelli-

gence, Vol. 93, No. 1-2, pp. 63–101, 1997.

52. Dung, P., R. Kowalski and F. Toni, “Dialectic Proof Procedures for Assumption-

Based, Admissible Argumentation”, Artificial Intelligence, Vol. 170, No. 2, pp.

114–159, 2006.

53. Dung, P., P. Mancarella and F. Toni, “Computing Ideal Sceptical Argumenta-

tion”, Artificial Intelligence, Vol. 171, No. 10–15, pp. 642–674, 2007.

54. Dung, P., R. Kowalski and F. Toni, “Assumption-Based Argumentation”, I. Rah-

wan and G. Simari (Editors), Argumentation in AI , pp. 199–218, Springer, 2009.

55. Kakas, A. C., P. Mancarella, F. Sadri, K. Stathis and F. Toni, “Computational

Logic Foundations of KGP Agents”, Journal of Artificial Intelligence Research,

Vol. 33, pp. 285–348, 2008.

56. Gaertner, D. and F. Toni, “Computing Arguments and Attacks in Assumption-



194

Based Argumentation”, IEEE Intelligent Systems , Vol. 22, No. 6, pp. 24–33, 2007.

57. Rahwan, I., S. D. Ramchurn, N. R. Jennings, P. Mcburney, S. Parsons and L. So-

nenberg, “Argumentation-Based Negotiation”, Knowledge Engineering Review ,

Vol. 18, pp. 343–375, 2003.

58. Walton, D. N. and E. C. W. Krabbe, Commitment in Dialogue: Basic Concepts of

Interpersonal Reasoning , State University of New York Press, Albany, NY, USA.

59. Klein, M. and C. Dellarocas, “A Systematic Repository of Knowledge About

Handling Exceptions in Business Processes”, ASES Working Report. MIT , 2000.

60. Klein, M. and C. Dellarocas, “A Knowledge-Based Approach to Handling Excep-

tions in Workflow Systems”, Computer Supported Cooperative Work , Vol. 9, No.

3/4, pp. 399–412, 2000.

61. Letia, I. A. and A. Groza, “Agreeing on Defeasible Commitments”, Proceedings of

the 4th International Workshop on Declarative Agent Languages and Technologies

(DALT), pp. 156–173, 2006.

62. Fornara, N. and M. Colombetti, “Ontology and Time Evolution of Obligations

and Prohibitions Using Semantic Web Technology”, Proceedings of the 7th Inter-

national Workshop on Declarative Agent Languages and Technologies (DALT),

pp. 101–118, 2009.

63. McBurney, P. and S. Parsons, “Dialogue Games for Agent Argumentation”, Ar-

gumentation in Artificial Intelligence, pp. 261–280, Springer, 2009.

64. McBurney, P. and S. Parsons, “Locutions for Argumentation in Agent Interac-

tion Protocols”, Proceedings of the 3rd International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pp. 1240–1241, 2004.

65. Singh, M. P. and A. K. Chopra, “Correctness Properties for Multiagent Systems”,



195

Prooceedings of the 7th International Workshop on Declarative Agent Languages

and Technologies (DALT), pp. 192–207, 2009.

66. Giordano, L. and A. Martelli, “Computational Logic in Multi-Agent Systems”,

chap. Verifying Agents’ Conformance with Multiparty Protocols, pp. 17–36,

Springer-Verlag, Berlin, Heidelberg, 2009.

67. Mallya, A. U. and M. P. Singh, “An Algebra for Commitment Protocols”, Au-

tonomous Agents and Multi-Agent Systems , Vol. 14, No. 2, pp. 143–163, 2007.

68. Alberti, M., F. Chesani, M. Gavanelli, E. Lamma, P. Mello and P. Torroni, “Ver-

ifiable Agent Interaction in Abductive Logic Programming: The SCIFF Frame-

work”, ACM Transactions on Computational Logic, Vol. 9, No. 4, pp. 1–43, 2008.

69. Cranefield, S. and M. Winikoff, “Verifying Social Expectations by Model Checking

Truncated Paths”, Coordination, Organizations, Institutions and Norms in Agent

Systems IV , pp. 204–219, 2008.

70. Kowalski, R. and M. Sergot, “A Logic-Based Calculus of Events”, New Generation

Computing , Vol. 4, No. 1, pp. 67–95, 1986.

71. El Menshawy, M., J. Benthar, H. Qu and R. Dssouli, “On the Verification of Social

Commitments and Time”, Proceedings of the 10th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pp. 483–490, 2011.

72. Lomuscio, A., H. Qu and F. Raimondi, “MCMAS: A Model Checker for the

Verification of Multi-Agent Systems”, Computer Aided Verification, Vol. 5643 of

Lecture Notes in Computer Science, pp. 682–688, 2009.

73. Hoek, W. V. D., J. A. Rodŕıguez-aguilar, C. Sierra and M. Wooldridge, “On

the Logic of Normative Systems”, Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI07 , pp. 1175–1180, 2007.



196

74. Boella, G. and L. van der Torre, “Regulative and Constitutive Norms in Norma-

tive Multiagent Systems”, Proceedings of the 10th International Conference on

the Principles of Knowledge Representation and Reasoning , pp. 255–265, AAAI

Press, 2004.

75. Fornara, N. and M. Colombetti, “Specifying and Enforcing Norms in Artificial In-

stitutions”, Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems - Volume 3 , AAMAS ’08, pp. 1481–1484, 2008.

76. Poole, D., “Normality and Faults in Logic-Based Diagnosis”, Proceedings of the

11th International Joint Conference on Artificial Intelligence (IJCAI) - Volume

2 , pp. 1304–1310, 1989.

77. Console, L. and O. Dressler, “Model-based Diagnosis in the Real World: Lessons

Learned and Challenges Remaining”, Proceedings of the 16th International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1393–1400, 1999.

78. Roos, N., A. ten Teije and C. Witteveen, “A Protocol for Multi-agent Diagnosis

with Spatially Distributed Knowledge”, Proceedings of the 2nd International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 655–661,

2003.

79. Jonge, F. D., N. Roos and C. Witteveen, “Diagnosis of Multi-Agent Plan Exe-

cution”, Multiagent System Technologies: MATES 2006, LNCS 4196 , pp. 86–97,

Springer, 2006.

80. Kaminka, G. A., “Detecting Disagreements in Large-Scale Multi-Agent Teams”,

Autonomous Agents and Multi-Agent Systems , Vol. 18, No. 3, pp. 501–525, 2009.

81. Kalech, M. and G. A. Kaminka, “Diagnosing a Team of Agents: Scaling-up”,

Proceedings of the 4th International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS), pp. 249–255, 2005.



197

82. Subbiah, A. and D. M. Blough, “Distributed Diagnosis in Dynamic Fault Envi-

ronments”, IEEE Transactions on Parallel and Distributed Systems , Vol. 15, pp.

453–467, 2004.

83. Poutakidis, D., L. Padgham and M. Winikoff, “Debugging Multi-Agent Systems

Using Design Artifacts: The Case of Interaction Protocols”, Proceedings of the 1st

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pp. 960–967, 2002.

84. Barringer, H., A. Goldberg, K. Havelund and K. Sen, “Program Monitoring with

LTL in EAGLE”, International Parallel and Distributed Processing Symposium,

Vol. 17, p. 264, 2004.

85. Ledley, R. and L. Lusted, “Reasoning Foundations of Medical Diagnosis”, Science,

Vol. 130, No. 3366, pp. 9–21, 1959.

86. Gamper, J. and W. Nejdl, “Abstract Temporal Diagnosis in Medical Domains”,

Artificial Intelligence in Medicine, Vol. 10, pp. 209–234, 1997.

87. Buchanan, B. G. and E. H. Shortliffe, Rule Based Expert Systems: The Mycin

Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley

Series in Artificial Intelligence), Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1984.

88. Console, L. and P. Torasso, “On the Co-operation between Abductive and Tem-

poral Reasoning in Medical Diagnosis”, Artificial Intelligence in Medicine, Vol. 3,

No. 6, pp. 291–311, Dec. 1991.

89. Ironi, L., M. Stefanelli and G. Lanzola, “Qualitative Models in Medical Diagno-

sis”, Artificial Intelligence in Medicine, Vol. 2, No. 2, pp. 85 – 101, 1990.

90. Lucas, P. J. F., “Analysis of Notions of Diagnosis”, Artificial Intelligence, Vol.

105, No. 1-2, pp. 295–343, 1998.



198

91. Micalizio, R., P. Torasso and G. Torta, “On-line Monitoring and Diagnosis of

a Team of Service Robots: A Model-Based Approach”, AI Communications ,

Vol. 19, pp. 313–340, 2006.

92. Horling, B., B. Benyo and V. R. Lesser, “Using Self-Diagnosis to Adapt Organi-

zational Structures”, Agents 2001: 5th International Conference on Autonomous

Agents , pp. 529–536, 2001.

93. Pencole, Y., M.-O. Cordier and L. Roze, “Incremental Decentralized Diagnosis

Approach for the Supervision of a Telecommunication Network”, IEEE Confer-

ence on Decision and Control , pp. 435–440, 2002.

94. Lamperti, G. and M. Zanella, “EDEN: An Intelligent Software Environment for

Diagnosis of Discrete-Event Systems.”, Applied Intelligence, pp. 55–77, 2003.

95. Dellarocas, C., M. Klein and J. A. Rodŕıguez-Aguilar, “An Exception-Handling

Architecture for Open Electronic Marketplaces of Contract Net Software Agents”,

ACM Conference on Electronic Commerce, pp. 225–232, 2000.

96. Singh, M. P., “Agent Communication Languages: Rethinking the Principles”,

IEEE Computer , Vol. 31, pp. 40–47, 1998.

97. Console, L., D. T. Dupré and P. Torasso, “Towards the Integration of Different

Knowledge Sources in Model-Based Diagnosis”, Trends in Artificial Intelligence,

2nd Congress of the Italian Association for Artificial Intelligence, AI*IA, Vol. 549

of LNCS , pp. 177–186, 1991.

98. Picardi, C., R. Bray, F. Cascio, L. Console, P. Dague, D. Millet, B. Rehfus,

P. Struss and C. Vallée, “IDD: Integrating Diagnosis in the Design of Automotive

Systems”, ECAI 2002: 15th European Conference on Artificial Intelligence, pp.

628–632, IOS Press, 2002.

99. Witteveen, C., N. Roos, R. van der Krogt and M. de Weerdt, “Diagnosis of Single



199

and Multi-Agent Plans”, AAMAS 2005: 4th International Joint Conference on

Autonomous Agents , pp. 805–812, ACM, 2005.

100. Roos, N. and C. Witteveen, “Models and Methods for Plan Diagnosis”, Au-

tonomous Agents and Multi-Agent Systems , Vol. 19, No. 1, pp. 30–52, 2009.

101. Kaminka, G. A. and M. Tambe, “Robust Agent Teams via Socially-Attentive

Monitoring”, Journal of Artificial Intelligence Research, Vol. 12, pp. 105–147,

2000.

102. Ardissono, L., L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan and D. T.

Dupré, “Enhancing Web Services with Diagnostic Capabilities”, Proceedings of the

2005 IEEE International Conference on Web Services (ICWS 2005), pp. 182–191,

IEEE Computer Society, 2005.

103. Wooldridge, M., N. R. Jennings and D. Kinny, “The Gaia Methodology For Agent-

Oriented Analysis And Design”, Journal of Autonomous Agents and Multi-Agent

Systems , Vol. 3, pp. 285–312, 2000.

104. Lam, J. S.-C., F. Guerin, W. Vasconcelos and T. J. Norman, “Engineering So-

cieties in the Agents World IX”, chap. Coping with Exceptions in Agent-Based

Workflow Enactments, pp. 154–170, 2009.

105. Dastani, M., V. Dignum and F. Dignum, “Role Assignment in Open Agent So-

cieties”, Proceedings of the 2nd International Conference on Autonomous Agents

and Multiagent Systems (AAMAS), pp. 489–496, 2003.

106. Krishnamurthy, B. and C. E. Wills, “On the Leakage of Personally Identifi-

able Information via Online Social Networks”, Computer Communication Review ,

Vol. 40, No. 1, pp. 112–117, 2010.

107. Fang, L. and K. LeFevre, “Privacy Wizards for Social Networking Sites”, Pro-

ceedings of the 19th International Conference on World Wide Web (WWW), pp.



200

351–360, 2010.

108. Akcora, C. G., B. Carminati and E. Ferrari, “Privacy in Social Networks: How

Risky is Your Social Graph?”, A. Kementsietsidis and M. A. V. Salles (Editors),

Proceedings of the 28th International Conference on Data Engineering (ICDE),

pp. 9–19, IEEE Computer Society, 2012.

109. Kowalski, R. A. and F. Sadri, “Logic Programs, Norms and Action”, chap. Teleo-

Reactive Abductive Logic Programs, pp. 12–32, 2012.

110. Marinovic, S., K. Twidle and N. Dulay, “Teleo-Reactive Workflows for Pervasive

Healthcare”, Pervasive Computing and Communications Workshops , pp. 316 –

321, 2010.




