
A SCHEDULING MODEL FOR CENTRALIZED COGNITIVE RADIO

NETWORKS

by

Didem Gözüpek

B.S., Telecommunications Engineering, Sabancı University, 2004

M.S., Electrical Engineering, New Jersey Institute of Technology, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2012

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Assoc. Prof. Fatih Alagöz

for his invaluable guidance and encouragement throughout these years. He has been

much more than an advisor, more like an elder brother to me. I am also extremely

grateful to Assist. Prof. Mordechai Shalom for introducing me to the exciting fields

of algorithmic graph theory and approximation algorithms. His clever comments and

solid theoretical background have tremendously increased the quality of this thesis.

In particular, Chapter 6 of this thesis is an outcome of our collaborative work. I feel

extremely lucky to have met him not only because of his contribution to my thesis but

also for his role in my future career and research interests. I hope to continue working

with him throughout the rest of my professional life.

I would like to thank my jury members Assoc. Prof. Tuna Tuğcu, Assist. Prof.

Tınaz Ekim, and Prof. Özgür Barış Akan for their time and insightful comments.

Their remarks have significantly improved the quality of this thesis.

I would like to thank Dr. Seyed Buhari for our fruitful research collaboration,

which led to Chapter 8 of this thesis. I am grateful to Prof. Shmuel Zaks, Ariella

Voloshin, and Assist. Prof. Mordechai Shalom from Technion, Israel for their hospi-

tality and making my short stay in Haifa a very fruitful one.

I was honored and priveleged to receive “ASELSAN PhD Fellowship” award to

support my dissertation during the final year of my Ph.D. study. I believe the fellowship

constitutes the foundation of a long standing collaboration with ASELSAN for the

upcoming years of my professional life.

My PhD years would definitely not be so enjoyable without the wonderful social

environment of our department. My deep thanks especially go to the SATLAB com-

munity: Gaye & Yunus Emre, Birkan, Derya, Suzan, Şükrü, İlker, Gürkan, Seçkin, and

Salim. Our picnics, birthday parties, breakfasts, coffee breaks, and loud chats are defi-

iv

nitely the moments I am really going to miss. Thank you all for your great friendship,

especially the SATLAB women Derya, Gaye, and Suzan. I also would like to thank all

other members of the CMPE community: Akın, Nadin, Haşim, Çetin, Neşe, Furkan,

Pınar, Tekin, Gül, ... I am sure that the list is incomplete.

I am extremely grateful to my mother Şahsine Gözüpek, my father İsmail Gözüpek,

and my sister and best friend Sinem Gözüpek for their constant love and support in

my life. I always feel like the luckiest person in the world to have such a great family.

I would not be at where I am today if it was not for my family. Last but definitely

not the least, I am deeply indebted to my husband Erdinç Kocaman for his continuous

support and magically changing my life since the day we met. This thesis is dedicated

to these great four people.

This thesis has also been supported by the State Planning Organization of Turkey

(DPT) under grant number DPT-2007K 120610 and Scientific and Technological Re-

search Council of Turkey (TUBITAK) 2211 National PhD Scholarship.

v

ABSTRACT

A SCHEDULING MODEL FOR CENTRALIZED

COGNITIVE RADIO NETWORKS

In this thesis, we present a scheduling model for centralized cognitive radio

networks. Our model consists of a set of schedulers that focus on the data transmission

of the secondary users and determine with which frequency, time slot and data rate

each secondary user will transmit to the cognitive base station. Common features

of the schedulers are that all of them ensure that the primary users in the service

area of the cognitive base station are not disturbed, no collisions occur among the

secondary users, and reliable communication of the secondary users with the cognitive

base station is maintained. Our schedulers differ from each other mainly in terms of

their objectives. We propose schedulers that maximize the overall cognitive radio cell

throughput, minimize the average scheduling delay of the secondary users, provide max-

min, weighted max-min and proportional throughput fairness, maximize the number of

secondary users that are satisfied in terms of throughput, and take the different delay

costs of switching to different frequency bands into account. In addition to heuristic

algorithms and simulation based studies, we also present a graph theoretic approach

and prove several NP-hardness and inapproximability results, propose polynomial time

graph algorithms as well as approximation algorithms.

vi

ÖZET

MERKEZİ BİLİŞSEL RADYO AĞLARI İÇİN BİR

ÇİZELGELEME ÇATISI

Bu tezde merkezi bilişsel radyo ağları için bir çizelgeleme modeli öneriyoruz.

Modelimiz ikincil kullanıcıların veri iletimine odaklanan ve merkezi bilişsel baz ista-

syonuna hangi frekans, zaman dilimi ve veri hızıyla iletim yapacaklarını belirleyen

çizelgeleyiciler kümesinden oluşmaktadır. Çizelgeleyicilerin ortak özellikleri merkezi

bilişsel baz istasyonunun hizmet alanı içindeki birincil kullanıcıların rahatsız olma-

malarını, ikincil kullanıcılar arasında çarpışma olmamasını ve ikincil kullanıcılar ile

bilişsel baz istasyonu arasındaki iletişimin itimat edilebilir olmasını garanti etmeleridir.

Çizelgeleyicilerimiz birbirlerinden temel olarak amaç fonksiyonlarıyla ayrılmaktadır.

Hücredeki ikincil kullanıcıların toplam iş oranını azamileştiren, ikincil kullanıcıların

çizelgeleme gecikmesini asgarileştiren, azami-asgari, ağırlıklı azami-asgari ve orantısal

açıdan adillik sağlayan, iş oranı açısından tatmin olan ikincil kullanıcı sayısını aza-

mileştiren ve farklı frekans bantlarına geçişin farklı gecikme maliyetlerini dikkate alan

çizelgeleyiciler öneriyoruz. Buluşsal algoritmalara ve benzetim çalışmalarına ek olarak

aynı zamanda çizge teorisi tabanlı bir yaklaşım öneriyor, NP-zorluk ve yaklaşıklanamama

sonuçları ispatlıyor ve polinom zamanlı çizge algoritmaları ile yaklaşıklama algorit-

maları öneriyoruz.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . x

LIST OF TABLES . xiii

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

2. RELATED WORK . 4

2.1. Scheduling in Cognitive Radio Networks 4

2.2. Interference Temperature Concept . 6

2.3. Genetic Algorithms in Cognitive Radio Networks 7

2.4. Fair Scheduling Algorithms in Cognitive Radio Networks 8

2.5. Graph Theoretic Approaches . 10

2.6. Throughput Satisfaction Based Scheduling 10

2.7. Spectrum Switching Delay . 12

3. THROUGHPUT AND DELAY OPTIMAL SCHEDULERS UNDER INTER-

FERENCE TEMPERATURE CONSTRAINTS 13

3.1. Problem Formulation . 13

3.2. Proposed Interference Temperature Based Schedulers 16

3.2.1. Throughput Optimal Scheduler 16

3.2.2. Delay Optimal Scheduler . 18

3.2.3. Maximum Frequency Selection (MFS) Suboptimal Scheduler . . 19

3.2.4. Probabilistic Frequency Selection (ProbFS) Suboptimal Scheduler 20

3.2.5. Computational Complexity Comparison 21

3.3. Numerical Evaluation . 21

4. GENETIC ALGORITHM BASED SCHEDULERS UNDER INTERFERENCE

TEMPERATURE CONSTRAINTS . 28

4.1. Overview of Genetic Algorithms . 28

viii

4.2. GA Based Suboptimal Schedulers . 29

4.2.1. Chromosome Representation (Encoding) 31

4.2.2. Initial Population Creation . 31

4.2.3. Fitness Function Evaluation . 31

4.2.4. Selection . 34

4.2.5. Crossover . 36

4.2.6. Mutation . 37

4.2.7. Stopping Criteria . 37

4.3. Numerical Evaluation . 37

5. THROUGHPUT MAXIMIZING AND FAIR SCHEDULERS 52

5.1. Problem Formulations and Proposed Solutions 53

5.1.1. Throughput Maximizing Scheduler (TMS) 55

5.1.2. Max-Min Fair Scheduler (MMFS) 61

5.1.3. Weighted Max-Min Fair Scheduler (Weighted MMFS) 63

5.1.4. Proportionally Fair Scheduler (PFS) 65

5.1.5. Our Proposed Heuristic Algorithm 67

5.2. Numerical Evaluation . 69

6. GRAPH THEORETIC APPROACH TO THROUGHPUTMAXIMIZING AND

FAIR SCHEDULERS . 88

6.1. Proposed Solutions . 88

6.1.1. Preliminaries . 88

6.1.2. Algorithms for the TMS Problem 93

6.1.2.1. A Polynomial-Time Algorithm 93

6.1.2.2. Special Cases . 94

6.1.3. Algorithms for the MMFS Problem and its Complexity 96

6.1.3.1. Hardness Results . 97

6.1.3.2. Algorithms . 99

6.1.3.3. Related work on the Santa Claus Problem 102

6.1.3.4. Special Cases . 104

6.1.4. Results about the PFS Problem 105

6.2. Practical Implications . 107

ix

6.3. Numerical Evaluation . 108

7. THROUGHPUT SATISFACTION BASED SCHEDULER 111

7.1. Problem Formulation . 111

7.2. Computational Complexity . 113

8. SPECTRUM SWITCHING DELAY AWARE SCHEDULER 115

8.1. Motivation . 115

8.2. Problem Formulation . 118

8.3. Proposed Algorithm . 123

8.4. Simulation Results . 127

9. CONCLUSIONS AND FUTURE WORK . 134

9.1. Summary of Contributions . 134

9.2. Practical Implications of the Foundations of the Thesis 137

9.3. Future Work . 138

REFERENCES . 140

x

LIST OF FIGURES

Figure 3.1. The considered centralized CRN architecture. 14

Figure 3.2. Average network throughput and scheduling delay for varying num-

ber of cognitive nodes. 22

Figure 3.3. Average network throughput and scheduling delay for varying num-

ber of primary neighbors of the cognitive nodes. 23

Figure 3.4. Average network throughput and scheduling delay for varying in-

terference temperature limit. 24

Figure 3.5. Gilbert-Elliot channel model. 25

Figure 3.6. Average network throughput and scheduling delay with Gilbert-

Elliot channel. 26

Figure 4.1. Block diagram for our proposed GA based algorithm. 30

Figure 4.2. Pseudocode for fitness comparison. 33

Figure 4.3. Pseudocode for Roulette Wheel Selection. 35

Figure 4.4. Average network throughput and average number of iterations for

throughput maximizing GA based scheduling scheme with Case 3,

N = 5, Nbest=50, µm=0.01, uniform crossover, and varying popu-

lation size. 42

xi

Figure 4.5. Average network throughput and average number of iterations for

the GA based throughput maximizing scheduling scheme with Case

3, N = 5, Npop=100, µm=0.01, uniform crossover, and varying Nbest. 43

Figure 4.6. Average network throughput and average number of iterations for

the GA based scheduling scheme with with N = 5, Npop = 100,

Nbest = 50, and varying µm. 45

Figure 5.1. Framework for our cognitive scheduling mechanism. 54

Figure 5.2. FAIRSCH (Our proposed heuristic algorithm). 68

Figure 5.3. PU spectrum occupancy model. 70

Figure 5.4. Average total throughput for varying number of SUs (N) and fre-

quencies (F). 76

Figure 5.5. Average total network throughput for throughput maximizing sched-

uler for varying N and M . 77

Figure 5.6. Average total network throughput for throughput maximizing sched-

uler for varying N and F . 77

Figure 5.7. Average total network throughput for throughput maximizing sched-

uler for varying F and a. 78

Figure 5.8. All schedulers for N = 5, window size (ϕ) = 5, and target weights:

η1 = 0.05, η2 = 0.1, η3 = 0.2, η4 = 0.25, η5 = 0.4. 79

Figure 5.9. All schedulers for varying window size (ϕ), N = 5, and target

weights: η1 = 0.05, η2 = 0.1, η3 = 0.2, η4 = 0.25, η5 = 0.4. 81

xii

Figure 5.10. Throughput maximizing, max-min fair, and proportionally fair sched-

ulers for varying number of SUs, F = 15, and ϕ = 5. 83

Figure 5.11. Performance of our heuristic algorithm for varying number of SUs. 84

Figure 5.12. Performance of our heuristic algorithm for N=5 and varying num-

ber of frequencies. 86

Figure 5.13. Performance of our heuristic algorithm for N=15 and varying num-

ber of frequencies. 87

Figure 6.1. Algorithm THRMAX. 94

Figure 6.2. Algorithm MAXMINEQ. 101

Figure 6.3. Average minimum throughput for varying number of SUs (N). . . 109

Figure 8.1. S2DASA (Algorithm for the problem in Equations 8.1-9). 125

Figure 8.2. Average total throughput of all schedulers for varying β. 129

Figure 8.3. Average total throughput of all schedulers for varying number of

frequencies (F). 130

Figure 8.4. Average total throughput of all schedulers for varying number of

secondary users (N). 131

Figure 8.5. Average total throughput comparison with constant switching delay.133

xiii

LIST OF TABLES

Table 4.1. Test case parameters. 38

Table 4.2. Results for throughput maximizing GA scheduler

N = 5, Npop = 100, Nbest = 50, µm = 0.01, and single-point crossover. 39

Table 4.3. Crossover type comparison for throughput maximizing GA sched-

uler Case 3, N = 5, Npop = 100, Nbest = 50, µm = 0.01. 41

Table 4.4. Parameter settings for throughput maximizing GA scheduler with

varying number of cognitive nodes. 44

Table 4.5. Results for delay minimizing GA scheduler for N = 5, Npop =

100, Nbest = 75, µm = 0.01. 46

Table 4.6. Crossover type comparison for delay minimizing GA scheduler for

N = 5, Npop = 100, Nbest = 75, µm = 0.01 with Case 3. 46

Table 4.7. Average scheduling delay and average number of iterations for the

GA based scheme with Case 3, uniform crossover, N = 5, Nbest =

75, µm = 0.01, and varying population size. 47

Table 4.8. Average scheduling delay and average number of iterations for the

GA based scheduling scheme with Case 3, uniform crossover, N =

5, Npop = 100, µm = 0.01, and varying Nbest. 48

Table 4.9. Average scheduling delay and average number of iterations for the

GA based scheduling scheme with Case 3, uniform crossover, N =

5, Npop = 100, Nbest = 75, and varying µm. 49

xiv

Table 4.10. Parameter settings for delay minimizing GA scheduler with varying

number of cognitive nodes. 50

Table 5.1. Parameter names and low/high values for the 26 factorial design. . 71

Table 5.2. ANOVA results. 73

Table 5.3. Final Regression Model. 75

Table 5.4. Parameter Values for Detailed Experiments. 75

Table 5.5. Achieved and target throughput ratios for weighted max-min fair

scheduler. 80

Table 6.1. Average minimum throughput and CPLEX gap values for varying

number of SUs (N). 109

xv

LIST OF SYMBOLS

a Number of antennas of SUs

B Bandwidth

F Number of frequencies

F The set of F frequencies

I A function associating an interval of natural numbers with

each vertex in a graph

N Number of secondary users

N The set of N secondary users

M Number of primary users

Ri
ϕ Aggregate average throughput of secondary user i in the last

ϕ scheduling periods

T Number of time slots in a scheduling period

T The set of T time slots in a scheduling period

Ts Time slot length

Uif The maximum number of packets that can be sent by sec-

ondary user i using frequency f in every time slot during the

scheduling period

Vp Velocity of primary users

Vs Velocity of secondary users

β Switching delay in terms of milliseconds for each unit step in

the frequency range

∆iaft The absolute difference in terms of the number of frequencies

that antenna a of secondary user i has to step to use frequency

f in time slot t

ηi Target throughput proportion (weight) of secondary user i

µm Mutation rate

σ2 Noise variance

xvi

ϕ Window size (number of scheduling periods) during which the

changes in the network conditions are considered to be impor-

tant

Φft
CBS The set of primary users that are actively utilizing frequency

f in the coverage area of the CBS in time slot t

Ωmin
i The minimum throughput requirement of secondary user i

xvii

LIST OF ACRONYMS/ABBREVIATIONS

ANOVA Analysis of Variation

AWGN Additive White Gaussian Noise

CBS Cognitive Base Station

CCC Common Control Channel

CI Confidence Interval

CR Cognitive Radio

CRN Cognitive Radio Network

FCC Federal Communications Commission

GA Genetic Algorithm

ILP Integer Linear Program

IT Interference Temperature

LBAP Linear Bottleneck Assignment Problem

LP Linear Program

MFS Maximum Frequency Selection

MKP Multiple Knapsack Problem

MMFS Max-Min Fair Scheduling

MNSU Maximizing the Number of Satisfied Users

PFS Proportionally Fair Scheduler

PLL Phase Locked Loop

PTAS Polynomial Time Approximation Scheme

PU Primary User

RWMM Random Waypoint Mobility Model

S2DASA Spectrum Switching Delay Aware Scheduler

SU Secondary User

TMS Throughput Maximizing Scheduling

VCO Voltage Controlled Oscillator

1

1. INTRODUCTION

Research studies exhibit that spectrum is sparsely utilized in some frequency

bands, whereas it is overcrowded in other frequency bands [1]. The escalating demand

for the radio spectrum driven by the continuous growth of wireless technologies and ser-

vices necessitates new methods to combat the acute shortage of bandwidth by utilizing

the spectrum more efficiently. In this respect, dynamic spectrum access (DSA) methods

that enable the devices to opportunistically access the licensed frequency bands have

been proposed. Cognitive radios, which are computationally intelligent devices that

can sense the environment and adapt their communication parameters in accordance

with the network and user demands, are able to realize the DSA methodology [2].

A cognitive radio network (CRN) consists of primary users (PU) and secondary

users (SU). The former is a licensed user and hence has exclusive rights to access the

radio spectrum, whereas the latter is an unlicensed user that can opportunistically

access the temporarily unused licensed spectrum bands, provided that it vacates them

as soon as the PU of that particular band appears [3]. In the rest of this thesis, we

use the terms cognitive users and secondary users interchangeably. In Chapter 2, we

discuss related work corresponding to each chapter of this thesis.

Federal Communications Commission (FCC) has proposed a new model, referred

to as interference temperature (IT) model [4], that enables true coexistence between

licensed and unlicensed users. In this model, SUs are permitted to simultaneously op-

erate on the same frequencies as the PUs provided that the interference perceived by

the PUs is within predefined acceptable limits, quantified by the interference temper-

ature threshold for that particular frequency. In Chapter 3, we formulate throughput

and delay optimal schedulers for cognitive radio networks under interference tempera-

ture constraints. Furthermore, we also propose two suboptimal schedulers, referred to

as maximum frequency selection (MFS) and probabilistic frequency selection (ProbFS).

To the best of our knowledge, ours is the first study on scheduling in cognitive radio

networks meeting the interference temperature constraints of the PUs.

2

Suboptimal schedulers presented in Chapter 3 have low computational complex-

ity; however, their throughput and delay performance is not satisfactory. Hence, the

design of better performing, yet computationally efficient schedulers is important. We

address this issue in Chapter 4 and propose two genetic algorithm (GA) based sub-

optimal schedulers that yield very close performance to the values obtained from the

optimization software CPLEX [5]. To the best of our knowledge, the use of GAs for

scheduling in cognitive radio networks has not previously been explored.

IT model incurred a lot of debate since its proposition by FCC. Finally, FCC

abandoned the IT concept [6]. From Chapter 5 onwards, we distance ourselves from

the IT debate and rely on a much simpler physical layer model, which can be actualized

using conventional physical and MAC layer spectrum sensing mechanisms in the CRN

literature [7, 8]. In this context, we formulate in Chapter 5 throughput maximizing,

max-min fair, weighted max-min fair, and proportionally fair schedulers for central-

ized cognitive radio networks, where the SUs possibly have multiple antennas for data

transmission. The major merit of our proposed scheduling scheme is that it is a very

general model accomplishing many tasks at the same time such as frequency, time

slot, data rate, and power allocation in a heterogeneous multi-user and multi-channel

environment. Another distinctive feature of our fair schedulers is that they take the

throughput values experienced by the SUs in the recent past into account and use this

information in the current scheduling decision. We also propose heuristic algorithms

for our fair schedulers and evaluate their performance through simulations.

We present in Chapter 6 a graph theoretic approach to the throughput maximiz-

ing, max-min fair, weighted max-min fair, and proportionally fair schedulers formulated

in Chapter 5. First, we propose a polynomial time algorithm for the throughput maxi-

mizing scheduling problem. We then elaborate on certain special cases of this problem

and explore their combinatorial properties. Second, we prove that the max-min fair

scheduling problem is NP-Hard in the strong sense. We also prove that the problem

cannot be approximated within any constant factor better than 2 unless P = NP .

Additionally, we propose an approximation algorithm for the max-min fair scheduling

problem with approximation ratio depending on the maximum possible data rates of

3

the secondary users. We then focus on the combinatorial properties of certain special

cases and investigate their relation with various problems such as the multiple knap-

sack, matching, terminal assignment, and Santa Claus problems. We then prove that

the proportionally fair scheduling problem is NP-Hard in the strong sense and can-

not have an approximation algorithm with absolute approximation ratio smaller than

log(
4

3
). Our graph theoretic approach sheds light on the complexity and combinatorial

properties of our proposed throughput maximizing and fair scheduling problems.

We consider in Chapter 7 a scenario where each SU has a possibly different

minimum throughput requirement below which the SU is not satisfied. The value

of this minimum throughput requirement may depend on the application executed

by the SU. For instance, delay sensitive real-time applications usually necessitate a

higher minimum data rate. The goal of the scheduler proposed in Chapter 7 is to

maximize the number of SUs that are satisfied in terms of throughput. We prove that

this problem is NP-Hard in the strong sense and cannot be approximated within any

constant factor better than 2 unless P = NP . We also prove that this problem is at

least as hard as the max-min fair scheduling problem, which has been formulated in

Chapter 5 and proved in Chapter 6 to be a computationally very difficult problem.

Heuristic algorithms for the throughput satisfaction based scheduling problem in this

chapter have been developed in [9].

When a cognitive radio (CR) device changes its operation frequency, it experi-

ences a hardware switching delay to tune to its new frequency before it can fully utilize

it. This delay in general depends on the difference between the two frequency bands;

i.e., switching from central frequency of 800 MHz to 10 GHz conduces larger delay than

switching from 800 MHz to 850 MHz due to the hardware capabilities of the frequency

synthesizer. We formulate in Chapter 8 a scheduling problem that takes into account

the different hardware delay experienced by the secondary users while switching to

different frequency bands and propose a polynomial time suboptimal algorithm. To

the best of our knowledge, ours is the first study on scheduling in CRNs that takes

into account the hardware switching delay depending on the separation between the

current and subsequent frequency bands.

4

2. RELATED WORK

2.1. Scheduling in Cognitive Radio Networks

Fundamental problems of scheduling schemes have been extensively studied in

conventional wireless networks [10–13]; however, the emergence of new concepts like

cognitive radio brings this topic into the focus of research again. The cognitive radio

paradigm introduces new challenges to the scheduling schemes since the varying chan-

nel availability due to coexistence with PUs requires the cognitive users to determine

when and on which channel they should tune to in order to exchange data with their

neighbors.

Works about scheduling in CRNs can be broadly categorized into two groups: The

ones about overlay spectrum sharing paradigm and the ones about underlay spectrum

sharing paradigm. Overlay spectrum sharing treats the availability of a frequency

band as a binary decision; i.e., either the band is available for SU transmission or not,

whereas underlay spectrum sharing is based on the idea of ensuring that the interference

experienced by a PU is below a tolerable upper limit. The proposed scheduling model

in this thesis falls into the underlay spectrum sharing category.

The work in [14], for instance, concentrates on the spectrum overlay paradigm

by modeling the interference as a multi-channel contention graph (MCCG). Authors

in [15] propose a spectrum decision framework for centralized CRNs by considering

application requirements and current spectrum conditions. Unlike our work, the work

in [16] focuses on inter-cell spectrum sharing and propose a joint spectrum and power

allocation framework. Both [15] and [16] are based on the spectrum overlay paradigm

since they handle spectrum availabilities as a binary decision, i.e., a spectrum band is

either available or not.

The integer linear programming (ILP) formulation for the MAC-layer scheduling

introduced in [17] minimizes the schedule length in multi-hop cognitive radio networks.

5

They also propose a distributed heuristic to determine the channels and time slots

for the cognitive nodes. However, both in their optimization formulation and the

suboptimal heuristic, they do not consider the interference to the PUs.

The optimization problem formulated by the work in [18] considers interference

constraints and channel heterogeneity, which implies that different channels support

different transmission ranges. Our work in this thesis also has this channel heterogene-

ity feature since we model the maximum transmission power of different frequencies

with respect to the maximum tolerable interference values in the CRN cell. Different

maximum transmit power values imply different transmission ranges for the frequen-

cies. However, our work is different from [18] in numerous ways. First, we focus on a

spectrum underlay model, where SUs transmit at the same time and frequency with

the PUs while adhering to the tolerable interference limits. In contrast, authors in [18]

focus on a spectrum overlay model, where SUs opportunistically utilize the spatio-

temporally unoccupied portions of the spectrum. Second, they base their model on

an ad hoc cognitive radio network architecture, while we focus on a centralized cogni-

tive radio network. Third, they consider only frequency domain channel assignment,

whereas we consider both frequency and time domain channel assignment; i.e., our pro-

posed models determine the assignment of both time slots and frequencies to the SUs.

Fourth, unlike the schedulers in this thesis, the objective function in [18] maximizes

the total spectrum utilization. Their objective function tries to establish as many links

between the SUs as possible. In other words, all frequencies have the same weight

in their work, whereas there is a maximum rate constraint for each frequency in our

work. Fifth, they use a simple linear expression for the relation between the transmis-

sion range and interference range, while we guarantee the reliable communication with

the base station and consider the tolerable interference values.

The works in [19–22] also focus on the spectrum overlay paradigm. Our work in

this thesis is distinct in principle from all works in the literature about overlay spectrum

sharing because we do not consider interference as a binary decision. In particular, we

take into account the interference temperature constraints in Chapter 3 and maximum

allowed interference power at PUs in Chapter 5. Hence, our work in this thesis falls

6

into the underlay spectrum sharing category.

2.2. Interference Temperature Concept

Studies on the interference temperature concept mainly revolve around methods

that optimize various objectives such as QoS, transmission power allocation or channel

capacity subject to the interference temperature constraints. For instance, authors

in [23] provide an analysis of the achievable capacity by the interference temperature

model. They model the RF environment and derive the probability distributions gov-

erning the interference temperature.

The work in [24] formulates a nonlinear social rate optimization problem with

QoS and interference temperature constraints. Note that unlike our work, their prob-

lem does not consider the frequencies that each SU will be using but only determines

the rate and transmission power of the users. Hence, unlike our study, the work in [24]

is not a scheduling issue that determines the frequency and time slot allocation of the

cognitive users. Moreover, they only consider a single interference temperature mea-

surement point, whereas we satisfy in Chapter 3 the constraints in all the measurement

points.

Authors in [25] concentrate on the power control problem in cognitive radio net-

works under interference temperature constraints. They firstly examine the power con-

trol problem without interference temperature constraints. Subsequently, they refor-

mulate the same problem by taking interference temperature constraints into account

and model it as a concave minimization problem with linear constraints.

The study in [26] considers the interference temperature model from a different

perspective. Binary and transmitter-centric constraints are often used in the literature,

where a reuse distance between pair-wise sets of transmitters are considered and the

reuse of a set of channels is prohibited within this reuse distance. On the contrary, the

work in [26] proposes non-binary and receiver-centric constraints, where the aggregate

interference at the receiver is considered and multiple transmitters are allowed to use

7

the same set of channels as long as they satisfy the interference temperature limit at

the receiver.

To the best of our knowledge, our work in Chapter 3 is the first study on schedul-

ing in cognitive radio networks under interference temperature constraints.

2.3. Genetic Algorithms in Cognitive Radio Networks

The usage of genetic algorithms (GA) has been proven to be quite successful for

channel assignment schemes in cellular networks [27, 28]. In cognitive radio networks

context, on the other hand, the studies about the usage of GAs mainly revolve around

the configuration of various cognitive radio parameters such as pulse shape, symbol

rate, and modulation. Authors in [29] present GA-based adaptive component of the

cognitive radio engine developed at the Virginia Tech Center for Wireless Telecom-

munications (CWT). They firstly formulate a multi-objective optimization problem,

and then evaluate the fitness function for this overall problem as the weighted sum

of the fitness values of each objective. In line with this formulation, they define the

chromosome structure as consisting of power, frequency, pulse shape, symbol rate, and

modulation.

The cognitive radio software testbed discussed in [30] includes a cognitive radio

engine based on GAs. The engine executes two separate GAs to select the channel and

transmission parameters, each of which is a multi-objective problem similar to the one

in [29].

Authors in [31] formulate the channel assignment problem specific to cognitive

radio networks and propose an island GA, in which the population is divided into sub-

populations called islands and the chromosomes interact through migration to other

islands. The channel assignment problem that they consider determines which chan-

nel (frequency) to assign for which communication link; hence, it is a static one-shot

assignment procedure. In our work, in contrast, we focus on the scheduling problem

rather than the channel assignment problem. Therefore, unlike the work in [31], we

8

also have a time aspect; i.e., the problems we focus on determine both the frequencies

and the time slots to assign to the SUs.

The population adaptation technique introduced in [32] again considers cognitive

radio engines and devises a method to expedite the convergence of the GAs. Their

method is based on having the cognitive engine to utilize the information about the

wireless environment learned in the previous cognition cycles and seeding the initial

generation of the GA with high scoring chromosomes from the previous run. Their

results demonstrate that this approach performs quite well in slowly varying wireless

environments but yields poor results when the conditions are changing fast.

2.4. Fair Scheduling Algorithms in Cognitive Radio Networks

Opportunistic scheduling exploits the time-varying channel conditions in wireless

networks to increase the overall performance of the system. It has received a lot of

attention in the general wireless networking domain [11, 33, 34]. A scheme designed

only to maximize the overall throughput can be unfairly biased, especially when there

are users with persistently bad channel conditions. Therefore, maintaining some no-

tion of fairness, such as max-min and proportional fairness, is a vital criterion that

opportunistic scheduling algorithms should address.

There are various efforts in the literature that address fairness in the general

domain of wireless networks. Authors in [35] propose a set of algorithms for the assign-

ment of max-min fair shares to nodes in a wireless ad hoc network. The work in [36]

proposes schedulers that provide deterministic and probabilistic fairness by decoupling

throughput optimization and fairness guarantees as two distinct blocks. Authors in [37]

propose a fair framework for ad hoc wireless networks via a contention resolution al-

gorithm. However, none of these works takes into account the unique features of the

CRN concept such as the requirement to ensure PU protection; therefore, they are

unsuitable for implementation in CRNs.

The opportunistic nature of the CRN concept lends itself conveniently to the

9

opportunistic scheduling paradigm. In CRN context, not only the physical channel

conditions such as fading and path loss, but also the PU activity is a determinant

of the channel quality of an SU. This way, an opportunistic scheduler provides the

ability to opportunistically utilize from the time-varying PU activity. Likewise, a purely

opportunistic scheduler may cause an SU that persistently has an active PU in its

vicinity starve in terms of throughput. Thus, providing fairness again comes into play

here to compensate for the throughput losses of the SUs that have active PUs in their

surroundings. In addition to time, frequency is also a resource that needs to be shared

fairly among the SUs in CRNs. Unlike the works in [11, 33–37], our focus in Chapter

5 is specifically on cognitive radio networks. In particular, we formulate a scheduling

scheme that utilizes the opportunistic nature of the CR paradigm as well as taking

fairness notions into account.

Most of the scheduling works about underlay spectrum sharing in the litera-

ture focus on rate and power allocation without emphasizing other criteria such as

frequency allocation, possibly having multiple antennas, ensuring reliable communi-

cation, and joint temporal/throughput fairness. The work in [38] proposes a joint

scheduling and power control scheme for centralized CRNs. Authors in [39] focus on

capacity maximization in multi-hop CRNs. None of the works in [38,39] focus on issues

such as fairness or multiple antennas. The major difference of our work in Chapter

5 from these works is that we provide a much more general and complete scheduling

model that achieves frequency, time slot, data rate, and power allocation, while at the

same time accommodating multiple antennas for data transmission, a heterogenous

multiuser and multi-channel environment, taking into account numerous physical layer

information such as fading, path loss, mobility, and time-varying channels in addition

to ensuring that SUs maintain a reliable communication and PUs are not disturbed by

SU transmissions. Moreover, we also have a temporal notion of fairness (by ensuring

that each SU is assigned at least one time slot) in addition to throughput fairness.

Previous works in the literature [14,38–41] do not concurrently allow these two differ-

ent notions of fairness. Furthermore, our schedulers have a windowing mechanism that

can be tailored by the CBS at her own discretion to increase the total throughput by

allowing a little deviation from target throughput ratios of the SUs in our weighted

10

max-min fair scheduler. To the best of our knowledge, none of the previous work in

the literature encompasses all of these features.

2.5. Graph Theoretic Approaches

Graph theoretic techniques have previously been used for peer-to-peer networks

[42] and wavelength division multiplexing (WDM) networks [43]. Some scheduling

problems in wireless networks have also been addressed by using graph theoretic tech-

niques [44, 45]. On the other hand, graph theoretic approaches in CRNs are mainly

based on simple variants of graph coloring problems. Authors in [46] formulate a

spectrum allocation problem considering the different channel availabilities at differ-

ent nodes in a CRN and show that it is a list coloring problem. The work in [47]

also addresses dynamic spectrum allocation problem using list coloring and proposes

centralized and decentralized suboptimal algorithms. Moreover, authors in [40] reduce

their spectrum allocation problems to a variant of graph coloring problem. The authors

in [48] also focus on centralized and distributed DSA problem in CRNs by proving NP-

hardness of their problem and presenting an approximation algorithm. To the best of

our knowledge, very few works that provide a comprehensive graph theoretic approach

for scheduling in CRNs exist in the literature. Moreover, unlike most work in the liter-

ature that use graph coloring arguments, we use in Chapter 6 various techniques from

matching theory as well as relating our scheduling problems to numerous combinatorial

optimization problems such as knapsack, terminal assignment, generalized assignment,

partition, and Santa Claus problems.

2.6. Throughput Satisfaction Based Scheduling

Maximizing user satisfaction has been addressed by works about scheduling in

various areas of wireless networks. For instance, authors in [49] propose a resource al-

location algorithm to maximize user satisfaction in OFDMA systems. Their algorithm

assigns subcarriers to the users in an OFDMA system while maximizing the number of

satisfied users, where a user is satisfied if the average data rate it experiences is greater

than or equal to its average data rate requirement. Their two-step algorithm provides

11

a suboptimal solution to their formulated problem. Authors in [50] also address users’

satisfaction in OFDMA albeit with a different approach. Instead of formulating a dif-

ferent optimization problem, they propose a dynamically configurable framework that

combines maximum rate, max-min fairness, and proportional fairness policies to max-

imize the number of satisfied users. Besides, the scheduling approach proposed by the

authors in [51] aims to maximize the number of satisfied users in a multirate wireless

system. Since their formulated problem is NP-complete, they present an approximation

algorithm based on two phase combinatorial reverse auction.

Users’ satisfaction has also been addressed in the realm of CDMA networks.

Authors in [52] formulate a resource allocation framework for CDMA cellular networks

supporting multimedia services. A user’s utility characterizes its degree of satisfaction

(happiness) with the received service. By using network utility maximization theory,

they propose a method to dynamically adapt the users’ utility functions. Additionally,

authors in [53] aim at maximizing users’ utilities in CDMA networks by considering the

probabilistic short term throughput requirements of real-time services and long term

throughput requirements of non real-time services. They demonstrate that their joint

scheduling approach yields substantial performance improvements.

Maximizing user satisfaction in terms of throughput has received little attention

in CRNs. Authors in [54] provide a scheduling mechanism that maximizes the sum

of utility functions of the source flow rates of origin-destination pairs in an ad hoc

CRN. Unlike our work in Chapter 7, they concentrate on the scheduling of flows rather

than packets. Moreover, their focus is on ad hoc CRNs, whereas we concentrate on

centralized CRNs. Furthermore, our scheduling mechanism not only determines data

rates, but also frequencies and time slots. The work in [55], on the other hand, derives

opportunistic scheduling policies with utilitarian fairness for OFDM systems. Their

methods are specifically designed for OFDM systems. Furthermore, authors in [56]

focus on a cooperation-based spectrum leasing scenario where they maximize the total

expected utility while satisfying an average performance constraint for each primary

node in the network. Unlike our work, their focus is on cooperation and time slot is

the only resource that needs to be shared between SUs and PUs. Furthermore, PUs

12

and SUs in their scenario communicate with a central entity, whereas in our work only

SUs communicate with a central entity (CBS).

To summarize, existing opportunistic scheduling algorithms in CRNs do not aim

to maximize the number of SUs whose minimum throughput requirements have been

met. Therefore, we address this open research issue in Chapter 7 as part of our schedul-

ing model.

2.7. Spectrum Switching Delay

Some works in the literature use the term channel switching latency to refer to

the delay encountered while searching for an idle channel [57], whereas some other

works [58] use the term to refer to the hardware switching delay of the frequency

synthesizer given that the CR device has already determined the idle channel to switch

to. Our focus in Chapter 8 is on the latter definition of the term.

Channel switching delay in CRNs is mostly considered in the realm of routing

[58–63]. The primary goal in most of these works [60,63] is to minimize the number of

channel switchings along the route; hence, they do not differentiate between switching

to different frequencies and assume that all of the channel switchings cause a certain

delay irrespective of the frequency separation distance. Only a few of these works

about routing [58,59] consider the possibly different delays depending on the wideness

between the frequency bands. Besides, current works about scheduling and channel

assignment in CRNs [17, 22, 48, 64, 65] do not take the spectrum switching delay into

account. To the best of our knowledge, our work in Chapter 8 is the first study on

scheduling in CRNs that takes into account the hardware switching delay depending

on the separation between the current and subsequent frequency bands.

13

3. THROUGHPUT AND DELAY OPTIMAL

SCHEDULERS UNDER INTERFERENCE

TEMPERATURE CONSTRAINTS

3.1. Problem Formulation

We propose in this chapter throughput and delay optimal schedulers for cen-

tralized CRNs under interference temperature constraints. Contents of this chapter

appeared in [66].

Interference temperature is the temperature equivalent of the RF power available

at a receiving antenna per unit of bandwidth. It is formally defined as [67]:

IT (f c, B) =
PIF (f

c, B)

kB
(3.1)

where IT (f c, B) is the interference temperature for channel c with central frequency

f c and bandwidth B, PIF (f
c, B) is the average interference power in Watts centered at

frequency f c and covering the bandwidth B in Hertz, and k is Boltzmann’s constant

(1.38 × 10−23 Joules/Kelvin). Under this model, a channel is available at a cognitive

node m if the transmission due to m does not increase the interference temperature at

any other primary node in the interference range of m beyond a predefined threshold.

This constraint can be conveyed as [67]:

IT (f c, B) +
Lc
mnPm(f

c, B)

kB
< IT th

c (3.2)

In the above formulation, Lc
mn refers to the distance dependent path loss in transmission

from node m to n on channel c, Pm(f
c, B) is the transmission power of m, and IT th

c

is the interference temperature threshold for channel c. The threshold values should

be determined by the regulatory bodies for each frequency band in a given geographic

region.

14

CBS

SU

PU

SU
SU

PU

PU

PU

Primary Ad
hoc Network

PBSPU PU

PU
PU

PU

PU

PU

PBS: Primary Base Station
CBS: Cognitive Base Station
PU: Primary User
SU: Secondary User

Centralized CRN cell
that we focus on

Figure 3.1. The considered centralized CRN architecture.

We consider a time slotted IEEE 802.22 system, where the cognitive devices

are managed by the cognitive base station (CBS) [68], which is aware of the DSA

concept and has cognitive capabilities. Figure 3.1 illustrates the considered network

architecture. The scheduler resides at the CBS and determines how many packets and

with which frequency each cognitive user will transmit in each time slot. If we denote

the number of packets in the buffer of SU i at the beginning of time slot t by xi,t, the

number of packets transmitted by SU i in time slot t by ui,t, the fading coefficient of the

channel between user i and the CBS in time slot t by Ai,t, the frequency used by user i

in time slot t by fi,t, the vector of buffer states for a total number of N cognitive nodes

as xt = [x1,t, x2,t, ..., xN,t], the vector of transmitted packets as ut = [u1,t, u2,t, ..., uN,t],

the vector of channel fading coefficients as At = [A1,t, A2,t, ..., AN,t], and the vector

of transmission frequencies as ft = [f1,t, f2,t, ..., fN,t], then the scheduler’s mapping is

α : [xt, At]→ [ut, ft].

On the other hand, reliable communication can be guaranteed by having the

scheduler to choose the power level Pm(f
c, B) in time slot t such that the number

of packets transmitted ui,t is equal to the Shannon capacity function for a Gaussian

channel [69]. If the noise variance is
σ2

|Ai,t|2
and the average power is Pi,t, then

ui,t = B × Ts

S
× ln(1 +

|Ai,t|2Pi,t

σ2
) (3.3)

where B is the bandwidth, S is the packet size and Ts is the time slot length. For

15

simplicity, we assume that S = B × Ts. Therefore,

Pi,t =
σ2(eui,t − 1)

|Ai,t|2
(3.4)

In line with the above information, we formulate the following scheduling problem,

which maximizes the network throughput while satisfying the interference temperature

constraints:

max
ut,ft

E{
N
∑

i=1

ui,t} (3.5)

s.t.

PIF (fi, B) + Lfi
ij

σ2(eui,t − 1)

|Ai,t|2
<IT th

fi
kB; ∀j ∈ Φi, ∀i ∈ {1, .., N} (3.6)

fi,t 6= fi′ ,t; ∀i,i
′ ∈ {1, .., N}, i 6= i

′

(3.7)

ui,t ≤ xi,t; ∀i (3.8)

where PIF (fi, B) denotes the average sensed interference power at frequency fi over

bandwidth B, Lfi
ij is the distance dependent path loss from node i to node j with

frequency fi, IT th
fi

is the interference temperature threshold for frequency fi, Φi is

the set of primary nodes in the interference range of cognitive node i, N is the total

number of cognitive nodes, and fi,t is the frequency used by node i in time slot t.

In the above formulation, Equation 3.5 maximizes the expected value of the total

number of packets transmitted by all the cognitive users, Equation 3.6 satisfies the

interference temperature constraint, Equation 3.7 ensures that at most one cognitive

user can transmit using a certain time slot and frequency combination, and Equation

3.8 represents the fact that a user cannot transmit more than the number of packets

in its buffer at the beginning of the time slot.

The way the cognitive nodes learn about the already existing interference temper-

ature in the neighboring primary nodes is an open issue in [4]. Therefore, as in [67], we

assume a specialized environment where cognitive radios can locate licensed signals and

measure the interference temperature. In other words, cognitive nodes learn about the

16

interference perceived by their neighboring primary nodes through their local spectrum

sensing observations, which we denote here by PIF (fi, B).

3.2. Proposed Interference Temperature Based Schedulers

3.2.1. Throughput Optimal Scheduler

Our solution to the problem in Equations 3.5-8 consists of two stages. In the first

stage, every cognitive node i computes the maximum number of packets that can be

transmitted for every frequency by solving the following problem for each frequency fi:

D(fi) =min(C(fi, j)); ∀j ∈ Φi (3.9)

s.t.

IT th
fi
kB − PIF (fi, B) > 0 (3.10)

C(fi, j) = ln (
(IT th

fi
kB − PIF (fi, B))× |Ai,t|2

σ2Lfi
ij

+ 1) (3.11)

In the above formulation, ⌊D(fi)⌋ equals the maximum number of packets that can be

transmitted by cognitive node i using frequency fi while adhering to the interference

temperature constraints for all the primary nodes that are in the interference range

of node i. Afterwards, all the cognitive nodes send their ⌊D(fi)⌋ values to the CBS.

We assume here that the cognitive nodes have a priori knowledge about the number

of primary nodes in their interference range as well as the path loss values to their

neighbors. How the nodes acquire this information is beyond the scope of this work.

In the second stage of the algorithm, the CBS constructs a matrix called U = [Uif],

where Uif is the maximum number of packets that can be transmitted by user i using

frequency f , and hence being equal to the ⌊D(fi)⌋ value. The CBS then executes the

17

following binary integer linear program:

max(
N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

T
) (3.12)

s.t.

F
∑

f=1

T
∑

t=1

Xift ≥ 1; ∀i ∈ {1, .., N} (3.13)

Xift +Xi′ft ≤ 1; ∀i, i′ ∈ {1, .., N}, i 6= i
′

, ∀f, ∀t (3.14)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (3.15)

where N is the total number of cognitive nodes, F is the total number of frequencies, T

is the total number of time slots, and Xift is a binary variable such that Xift = 1 if user

i transmits with frequency f in time slot t, and 0 otherwise. In the above formulation,

Equation 3.13 ensures that each cognitive user is assigned at least one time slot, whereas

Equation 3.14 guarantees that at most one user can transmit in a certain time slot and

frequency pair, thereby avoiding collisions among the secondary nodes. Consider the

case that a PU is in the interference range of two cognitive users. Since the cognitive

users determine their ⌊D(fi)⌋ values, and consequently the Uif values by taking only

their own transmissions into account, having more than one cognitive user transmit in

the same frequency and time slot may increase the aggregate interference perceived at

the PU beyond the interference temperature limit. Therefore, in addition to avoiding

collisions among the secondary nodes, Equation 3.14 is also necessary to ensure that

the aggregate interference temperature at the PUs is within the predetermined limits.

Besides, the schedule length T is the duration of time in which the changes in the sensed

interference values, denoted by PIF (fi, B), as well as the path loss values to the PUs

in the interference range are small enough not to have any impact on the Uif values.

Note that because of the floor operator in ⌊D(fi)⌋, the schedule length T does not

mandate PIF (fi, B) and the path loss values to remain constant in that time period,

but only requires that the change in their values does not alter Uif . The value of T ,

in general, depends on the characteristics of the spectrum environment. For instance,

a slowly varying spectrum environment like the TV broadcast bands utilized by an

18

IEEE 802.22 network allows T to have a fairly large value. To ensure the feasibility of

constraint in Equation 3.13, which prescribes that at least one time slot is assigned to

each cognitive user, it is necessary that F × T ≥ N . In the simulations part of this

chapter, we set T = N because T = N is sufficiently large to ensure the fulfillment of

constraint in Equation 3.13.

Once the scheduler determines the Uif values, each node i transmits min(xi,t, Uif)

number of packets in time slot t. We consider traffic in which all flows are continuously

backlogged such that the achieved throughput is entirely related to the scheduling

process and channel conditions without any variation due to traffic fluctuation.

3.2.2. Delay Optimal Scheduler

The first stage of the scheduler that minimizes the scheduling delay is the same

as in the throughput optimal scheduler. However, in the second stage the delay opti-

mal scheduler implements the following nonlinear binary integer program with linear

constraints:

min(

N
∑

i=1

F
∑

f=1

T
∑

t=1

tUifXift

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

) (3.16)

s.t.

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift > 0; (3.17)

(3.13) and (3.14) (3.18)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (3.19)

In the above formulation, when Xift = 1, each one of the Uif packets waits for t time

slots, starting from the beginning of the schedule. We use the term scheduling delay to

refer to the number of time slots that a packet has to wait until its transmission, given

that the packet is scheduled for transmission in that particular schedule. Therefore,

19

the total scheduling delay of these Uif number of packets is equal to tUif . Hence,
N
∑

i=1

F
∑

f=1

T
∑

t=1

tUifXift denotes the total scheduling delay experienced by all the transmit-

ted packets in the schedule. Because the total number of transmitted packets equals
N
∑

i=1

F
∑

f=1

∑

t

UifXift, the objective function in Equation 3.16 minimizes the scheduling

delay in terms of time slots experienced per packet. Moreover, Equation 3.17 is neces-

sary to avoid the situation that the scheduler always selects the frequencies with which

the nodes can send zero packets for the sake of reducing the average delay. Without

Equation 3.17, the scheduler can arrive at the irrational decision of having none of the

nodes being able to transmit any packets, which would result in zero throughput. In

order to guarantee a certain throughput value while minimizing the scheduling delay,

constraint in Equation 3.17 can be modified as follows:

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift > Ω, where

Ω is the required minimum total throughput value. The two optimization problems

in Equations 3.12-14 and Equations 3.16-18 are binary integer programming problems,

which are in general known to be NP-hard. Branch-and-bound algorithms [70, 71] are

usually adopted in the literature to address this kind of problems.

3.2.3. Maximum Frequency Selection (MFS) Suboptimal Scheduler

In the first stage of the MFS scheduler, each cognitive node i sends the frequency

with which it wishes to transmit to the CBS. The nodes make their selection by finding

max
fi

D(fi). In the second stage, CBS makes the time slot assignments by first grouping

the nodes with respect to the frequencies that they wish to transmit with. Among the

cognitive nodes in the same frequency group, CBS assigns the node with max
fi

D(fi)

to the first time slot, the second maximum to the second time slot etc. This way,

the condition that at most one cognitive node can be assigned a certain time slot and

frequency combination is ensured. Furthermore, the scheduling delay is also reduced

by doing the time slot assignment in the decreasing order of their allowable number of

packets to transmit.

20

3.2.4. Probabilistic Frequency Selection (ProbFS) Suboptimal Scheduler

As in the MFS scheduler, in the first stage each node sends the frequency with

which it wishes to transmit to the CBS. However, the selection of the desired frequency

is made probabilistically as follows: A cognitive node i chooses frequency fi with

probability pfi =
⌊D(fi)⌋

∑

fi

⌊D(fi)⌋
. In order to reduce the average delay, if frequency fi

was selected in the previous schedule and node i waited for Tfi time slots with a

schedule length of T , then as a penalty metric pfi is updated as pfi × (1 − Tfi

T
). The

selection probability of the frequency that has the highest number of packets among

the remaining ones is increased by
pfi × Tfi

T
, which makes the total probability equal

to 1. The second stage of the ProbFS scheduler is the same as MFS.

In order to better comprehend the different behavior of MFS and ProbFS sched-

ulers, suppose that there are three SUs and three frequencies in the network. Assume

that max
fi

D(fi) = f 3 for all the three nodes and ⌊D(fi)⌋ = 22, 21, 20 for node 1, 2,

and 3 respectively. Thus, MFS scheduler selects node 1 for the first time slot, node 2

for the second time slot and node 3 for the third time slot. Assume that node 3 can

transmit 19 and 18 packets with the other frequencies f 1 and f 2. Note that node 3

could have used f 1 and f 2 in the first and second time slots, while other nodes used

f 3. This would decrease the scheduling delay for node 3 because the packets would

wait for less number of time slots by being able to transmit earlier. Nevertheless, MFS

scheduler does not allow this frequency and time slot usage pattern by always selecting

max
fi

D(fi). In contrast, ProbFS scheduler probabilistically allows node 3 to select fre-

quencies f 1 or f 2 as the frequency that it wishes to transmit with, hence enabling node

3 to transmit in earlier time slots. This way, ProbFS scheduler disperses the selected

frequencies and avoids the above situation, which could occur with MFS scheduler.

Because of this behavior of the ProbFS scheduler in addition to the penalty metric

that it introduces, we intuitively expect ProbFS scheduler to have less scheduling de-

lay on the average. Nevertheless, since ProbFS scheduler probabilistically allows the

selection of frequencies whose maximum number of packets for transmission is smaller,

we intuitively expect the average throughput of ProbFS scheduler to be smaller than

21

the throughput of MFS scheduler.

3.2.5. Computational Complexity Comparison

If the number of frequencies is F and each cognitive node has M primary neigh-

bors in its interference range, the first stage of all the schedulers requires M × F

computations at each node. We can assume that M is fixed. Hence, the computa-

tional complexity of the first stage is O(F). On the other hand, there is one value

for the maximum allowable number of packets to transmit corresponding to a certain

frequency for each secondary node in the suboptimal schedulers. Since the number of

cognitive nodes is N , the computational complexity of the suboptimal schedulers is

O(NF).

3.3. Numerical Evaluation

We simulate the suboptimal schedulers using OPNET Modeler 14.0 [72]. While

the first stage of the optimal schedulers is simulated and the Uif values are obtained

in OPNET, the optimization procedures in the second stages are implemented using

CPLEX [5]. First, we consider AWGN channels; i.e., |Ai,t| = 1, ∀i and ∀t. Second,

we evaluate the performance of our proposed schedulers under Gilbert-Elliot fading

channel model. Bandwidth is B = 10 MHz and the noise variance is σ2 = 10−10. PU

activity is modeled such that the initially sensed interference for each frequency fi is

uniformly distributed in [0, 2× IT th
fi
kB/σ2]. If the sensed interference at the beginning

of a particular scheduling period is PIF (fi, B), then the sensed interference in the next

scheduling period is uniformly distributed in [PIF (fi, B) − δ, PIF (fi, B) + δ], where δ

is selected to be 0.65 mW. Besides, path loss of the cognitive nodes to each primary

neighbor is uniformly distributed between 0 and 1. Average values in all of the results

were obtained using 10 different seeds and 10000 scheduling periods for each seed. In

the simulation results, TOS CPLEX and DOS CPLEX denote the CPLEX results of

the throughput optimal and delay optimal scheduler, respectively.

In the first set of simulations, each cognitive node has three primary neighbors

22

in its interference range. The channel between the SUs and the CBS is AWGN chan-

nel. There are three frequencies with interference temperature thresholds of 1000◦K,

2000◦K, and 3000◦K.

5 10 15 20 25 30
12

14

16

18

20

22

24

26

28

Number of cognitive nodes

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e

sl
ot

)

MFS
ProbFS
TOS CPLEX

(a) Average network throughput

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of cognitive nodes

S
ch

ed
ul

in
g

D
el

ay
 (

tim
e

sl
ot

s/
pa

ck
et

)

MFS
ProbFS
DOS CPLEX

(b) Average scheduling delay

Figure 3.2. Average network throughput and scheduling delay for varying number of

cognitive nodes.

Figures 3.2a and 3.2b illustrate the average network throughput and average

scheduling delay values where the number of cognitive nodes varies between 5 and

30. For all three schemes, throughput values remain almost invariant as the number

of secondary nodes increases, whereas the average scheduling delay increases almost

linearly. Furthermore, ProbFS scheduler has a slightly less average scheduling delay

than MFS at the expense of a little decrease in average network throughput compared

to MFS. This improvement in delay is due to the penalty metric introduced in ProbFS

in order to decrease the scheduling delay. Note here that because of the scale of the

graph, the difference between the throughput values of MFS and ProbFS schedulers

for 15 and 30 nodes is not visible. The actual average network throughput values for

30 nodes are 16.51 packets/time-slot for MFS and 16.47 packets/time-slot for ProbFS.

Similarly, the average throughput for 15 nodes is 16.07 packets/time-slot for MFS and

15.97 packets/time-slot for ProbFS.

In the second set of simulations, again there are three frequencies with interference

23

1 2 3 4 5 6 7 8 9
14

16

18

20

22

24

26

28

30

32

Number of primary neighbors

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e

sl
ot

)

MFS
ProbFS
TOS CPLEX

(a) Average network throughput

1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of primary neighbors

S
ch

ed
ul

in
g

D
el

ay
 (

tim
e

sl
ot

s/
pa

ck
et

)

MFS
ProbFS
DOS CPLEX

(b) Average scheduling delay

Figure 3.3. Average network throughput and scheduling delay for varying number of

primary neighbors of the cognitive nodes.

temperature thresholds of 1000◦K, 2000◦K, and 3000◦K, and the channel between the

SUs and the CBS is AWGN channel. However, this time we vary the number of primary

neighbors of each cognitive node while keeping the total number of cognitive nodes

constant. Figures 3.3a and 3.3b illustrate the average network throughput and average

scheduling delay for 15 cognitive nodes with varying number of primary neighbors for

each node. For all the scheduling schemes, throughput decreases as the number of

primary neighbors for each secondary node increases. However, the rate of decrease

diminishes as the number of primary neighbors increases. The reason for this behavior

is that cognitive nodes have more interference temperature constraints as the number

of their primary neighbors increases. Therefore, their ⌊D(fi)⌋ values and consequently

Uif values decrease and hence the average network throughput diminishes. Figure

3.3b illustrates that the average scheduling delay decreases as the number of primary

neighbors for each cognitive node increases and the rate of decrease diminishes as the

number of primary neighbors increases. This behavior in average scheduling delay is

in line with the throughput performance results of Figure 3.3a.

In the third set of simulations, we again model the channel between the SUs and

the CBS as an AWGN channel. We vary the interference temperature limits of the fre-

quencies, while keeping the total number of cognitive nodes and the number of primary

neighbors of each cognitive node constant. Figure 3.4a illustrates the average network

24

1000 2000 3000 4000 5000 6000 7000 8000 9000
15

20

25

30

Interference Temperature Limit for the first frequency (Kelvin)

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e

sl
ot

)

MFS
ProbFS
TOS CPLEX

(a) Average network throughput

1000 2000 3000 4000 5000 6000 7000 8000 9000
15.95

16

16.05

16.1

16.15

16.2

16.25

Interference Temperature Limit for the first frequency (Kelvin)

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e

sl
ot

)

MFS
ProbFS

(b) Average network throughput

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Interference Temperature Limit for the first frequency (Kelvin)

S
ch

ed
ul

in
g

D
el

ay
 (

tim
e

sl
ot

s/
pa

ck
et

)

MFS
ProbFS
DOS CPLEX

(c) Average scheduling delay

1000 2000 3000 4000 5000 6000 7000 8000 9000
1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

2.04

2.06

Interference Temperature Limit for the first frequency (Kelvin)

S
ch

ed
ul

in
g

D
el

ay
 (

tim
e

sl
ot

s/
pa

ck
et

)

MFS
ProbFS

(d) Average scheduling delay

Figure 3.4. Average network throughput and scheduling delay for varying interference

temperature limit.

throughput for 15 cognitive nodes, each having 3 primary neighbors in its interference

range with increasing values of interference temperature limit. In this figure, values

on the x-axis correspond to the interference temperature limit for the first frequency.

That is to say, if the value on the x-axis is A◦K, then the limits for the second and

third frequencies are A + 1000◦K and A + 2000◦K respectively. Figure 3.4a indicates

that the network throughput increases as the interference temperature limit increases.

The results in Figure 3.4b are essentially the same as the ones in Figure 3.4a with the

only difference that we do not show the results of the throughput optimal scheduler

in Figure 3.4b in order to provide a better visualization of the throughput increase in

the MFS and ProbFS schedulers as the interference temperature limit increases. This

increase in average network throughput is due to the fact that the ⌊D(fi)⌋ values and

25

consequently the Uif values of the cognitive nodes increase as the interference temper-

ature limits increase because increasing the interference temperature limit represents

the FCC allowing more interference from unlicensed devices. Furthermore, the rate

of increase decreases for the optimum scheduler as the interference temperature limit

increases. The observed decrease in the rate of increase is consistent with the results

in [73], where the network capacity saturates at a certain level after an initial increase

as the interference temperature limit increases.

Figure 3.4c shows the average scheduling delay of 15 cognitive nodes, again each

having 3 primary neighbors in its interference range, for increasing values of interference

temperature limit. This figure illustrates that the average scheduling delay increases as

the interference temperature limit increases. Figure 3.4d better illustrates the increase

in MFS and ProbFS schedulers. Similar to the situation between Figures 3.4a and

3.4b, the only difference between Figures 3.4c and 3.4d is that we do not show the

performance results of the delay optimal scheduler in Figure 3.4d in order to provide

a better visualization of the increase in the average scheduling delay as the interfer-

ence temperature limit increases. Moreover, the results also indicate that the average

scheduling delay values of the optimal as well as the MFS scheduler stabilize around

7000◦K. This increase in average scheduling delay is consistent with the increase in

average network throughput as the interference temperature limit increases.

(good)

|Ai,t |= 0.9

(bad)

|Ai,t |= 0.1prob=0.9

prob=0.1

prob=0.1

prob=0.9

Figure 3.5. Gilbert-Elliot channel model.

The fourth set of simulations investigate the impact of channel fading on the

performance of our proposed schedulers. We model the fading process as a Gilbert-

26

Elliot channel, which we illustrated as a 2-state Markov process in Figure 3.5. The

fading coefficient is high when the channel is in the good state, whereas it is low in

the bad state. We have chosen the state transition probabilities as 0.1, which is a

small number compared to 0.9, the probability of staying in the same state. We have

made this selection in order to reflect the slow fading channel process. The rest of the

simulation conditions is the same as the ones in the first set of simulations, where we

evaluated the AWGN channels.

5 10 15 20 25 30 35 40
10

12

14

16

18

20

22

24

26

28

Number of cognitive nodes

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e

sl
ot

)

MFS, AWGN
MFS, Gilbert−Elliot
ProbFS, AWGN
ProbFS, Gilbert−Elliot
TOS CPLEX, AWGN
TOS CPLEX, Gilbert−Elliot

(a) Average network throughput

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Number of cognitive nodes

S
ch

ed
ul

in
g

D
el

ay
 (

tim
e

sl
ot

s/
pa

ck
et

)

MFS, AWGN
MFS, Gilbert−Elliot
ProbFS, AWGN
ProbFS, Gilbert−Elliot
DOS CPLEX, AWGN
DOS CPLEX, Gilbert−Elliot

(b) Average scheduling delay

Figure 3.6. Average network throughput and scheduling delay with Gilbert-Elliot

channel.

Figure 3.6a illustrates the average network throughput with Gilbert-Elliot channel

as the number of cognitive nodes increases from 5 to 40 for all three schedulers. To

facilitate the visual comparison with the AWGN channel performance, we have also

shown in Figure 3.6a the performance results previously displayed in Figure 3.2a. In

line with the theoretical expectations, the average network throughput decreases as

the fading conditions in the channel deteriorate. Hence, Gilbert-Elliot channel for all

three schedulers yields reduced average network throughput when compared to their

AWGN channel counterparts.

Figure 3.6b shows the average scheduling delay with Gilbert-Elliot channel as the

number of cognitive nodes increases from 5 to 40 for all three schedulers. For better

visual comparison with the AWGN channel performance, we have also shown here the

27

performance results previously illustrated in Figure 3.2b. The reason that the average

scheduling delay of the Gilbert-Elliot channel is less than the AWGN channel for all

the three schedulers is that ⌊D(fi)⌋ values and consequently Uif values decrease as

the fading condition of the channel deteriorates. The reasoning here is the same as

the one where we varied the number of PUs in the interference range of each SU: The

decrease in Uif values leads to reduced average scheduling delay due to the formulation

in Equation 3.16. As in the preceding simulation results, the decrease in the average

scheduling delay is consistent with the decrease in the average network throughput.

To put it in a nutshell, the average network throughput of the MFS scheduler is

slightly higher than that of the ProbFS scheduler in all the simulation results. Further-

more, the average scheduling delay of the ProbFS scheduler is slightly lower than that

of the MFS scheduler in all the results. These two observations are consistent with

our theoretical expectations, which we outlined in Section IV-D. On the one hand, the

reason for the superior throughput performance of the MFS scheduler is that MFS

scheduler always selects the channel with the maximum allowable number of packets

to transmit per time slot, whereas the ProbFS scheduler may select the channel with

reduced allowable number of packets to transmit per time slot owing to its probabilistic

selection of the channels. On the other hand, the delay performance of the ProbFS

scheduler is better than that of MFS scheduler due to the penalty metric introduced in

the design of ProbFS. Besides, the throughput and delay performance of the optimal

schedulers are significantly better than that of suboptimal schedulers. As a research

challenge, simulation results indicate that better performing, yet computationally effi-

cient suboptimal schedulers are needed. We address this open research issue in Chapter

4 by proposing genetic algorithm based schedulers.

28

4. GENETIC ALGORITHM BASED SCHEDULERS

UNDER INTERFERENCE TEMPERATURE

CONSTRAINTS

In this chapter, we propose genetic algorithm (GA) based schedulers for the

throughput and delay optimal scheduling problems formulated in Chapter 3. Contents

of this chapter appeared in [74].

4.1. Overview of Genetic Algorithms

A genetic algorithm (GA) is a biologically inspired heuristic search technique

appropriate for problems with large search spaces. It operates by emulating natural

processes like reproduction, evolution, and survival. In nature, populations of individ-

uals compete for resources, and the best suited for competition survive, whereas the

weakest tends to die out. This phenomenon is referred to as “survival of the fittest” in

evolution. These ideas were first incorporated into a problem solving algorithm by [75]

and they are now used in a multitude of problems.

A GA operates by evolving a population of solutions called chromosomes. A

chromosome is a binary string that represents one sample in the solution space of

the problem. The bits of the string are regarded as the genes of the chromosome.

The fitness value assigned to a chromosome exhibits the extent to which the chromo-

some satisfies the problem requirements. A GA takes a group of chromosomes from

a population using a genetic operation called selection, and mixes the genes of these

chromosomes using crossover to produce offspring. These offspring solutions may be

further randomly altered using a genetic operation called mutation.

The fact that GAs operate on a population of solutions rather than a single

solution implies that the algorithm makes parallel searches in the search space. The

selection operation, on the other hand, serves the purpose of eliminating the relatively

29

bad solution candidates and focusing the search operation on a relatively good portion

of the solution space. Crossover operation is based on the idea that if two solution

candidates that are both good but for different reasons (for instance the first half

of the bits in one candidate have desirable qualities, like not violating any problem

constraints, and the second half of the bits in the other candidate have good features

in a similar way), then we can obtain an even better solution if we take the good parts

of both solutions and combine them. Mutation, on the other hand, is like introducing

some noise with little magnitude into the system in order to take the search procedure

out of a locally optimal region, and enable the search process to possibly delve into a

better region of the search space.

Our motivation for utilizing GAs in designing suboptimal schedulers for the

throughput and delay optimal scheduling problems formulated in Chapter 3 is mani-

fold. First, GAs are proper for problems with large search spaces. They are equipped

with many tools to reduce computational complexity and produce a diverse set of so-

lutions since they can quickly center in on a specific solution and diversify search to

develop wide range of solutions to address unknown environments. Considering that

the solution space in the throughput and delay optimal scheduling problems is enor-

mous (even for 5 nodes, 3 frequencies and 5 time slots, the size of the solution space

for the throughput optimal scheduler is 275), GAs seem to be a suitable tool. Second,

GAs can be implemented on semiconductor devices and enable rapid integration with

wireless technologies and leverage economies of scale. Rapid prototyping is possible

using digital signal processor (DSP) or field programmable gate array (FPGA). Third,

binary decision variables Xift can be easily encoded to a binary string; therefore, GAs

can be conveniently implemented.

4.2. GA Based Suboptimal Schedulers

Figure 4.1 illustrates the flowchart of our proposed GA based algorithm for both

throughput and delay optimal scheduling schemes.

30

Initialize GA population,

assign fitness values and

take the best

chromosome as the best

solution so far

Is stopping

criteria met?

Take the best

solution so far

Yes

No

Select the

chromosomes to

be mated

(Selection)

Crossover the

selected

chromosomes

Select an unsurviving

chromosome couple from

the old population and

replace them with these

offspring in the new

population

Find the best

chromosome of

this new

population

Are all the

unsurviving

chromosomes

replaced?

No

Yes

Mutate this new

population except for

the best

chromosome

Assign fitness values

and find the best

chromosome of this

new population

Is this best

chromosome fitter

than the best

solution so far?

Update the

best solution

so far

No

Yes

Figure 4.1. Block diagram for our proposed GA based algorithm.

31

4.2.1. Chromosome Representation (Encoding)

We use binary encoded chromosomes containing the Xift values. Thus, the chro-

mosome size is equal to N×F ×T . The order used in decoding the possible Xift values

has an impact on the performance of the algorithm since this order affects the gene

pattern that can survive in the subsequent generations. In our analysis, we evaluate the

impact of the following two encoding methods. In Encoding Type-1, the chromosome

structure is [X111, X211, X311, X112, X212, · · · , X123, X223, X323], while in Encoding

Type-2, the chromosome structure is [X111, X112, X113, X121, X122, · · · , X322, X323] for

N = 3, F = 2, and T = 3.

4.2.2. Initial Population Creation

The most common way to generate the initial population is to employ uniformly

random generation for each bit of the chromosomes. We call this approach Rand in this

work. Another alternative, which we refer to as RandComp, is to randomly generate

half of the chromosomes, and then take the complement of the first half to generate

the second half [76]. This approach ensures diversity by requiring every bit to assume

both a one and a zero within the population. In both of our suboptimal schedulers, we

assess the impact of both approaches on the performance of the algorithm.

4.2.3. Fitness Function Evaluation

The extent to which a chromosome satisfies the problem requirements depends

on two factors. The first one is how much it maximizes or minimizes the objective

function, and the second one is how many of the problem constraints it violates. We

represent the former by a primary fitness value and the latter by a secondary fitness

value. If any constraint is violated, the primary fitness Fp equals zero and the secondary

fitness Fs is nonzero. Likewise, if no constraint is violated, Fs equals zero and Fp is

nonzero. More formally, we formulate the fitness values for the throughput maximizing

32

scheduler as follows:

Fp =



















0 ; if V1 + V2 > 0,
N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

T
; otherwise (if V1 + V2 = 0)

(4.1)

Fs =











0 ; if V1 + V2 = 0,

1

V1 + V2
; otherwise (if V1 + V2 > 0)

(4.2)

where V1 is the number of violations of constraint in Equation 3.13, and V2 is the

number of violations of constraint in Equation 3.14. If V1+ V2 > 0, then it means that

some constraint is violated. If V1 + V2 = 0, on the other hand, it means that none of

the constraints are violated.

Specifically, we can express V1 and V2 as follows:

V1 =

N
∑

i=1

V i
1 ,where V i

1 =



















1 ; if
F
∑

f=1

T
∑

t=1

Xift < 1, ∀ i ∈ {1, .., N},

0 ; otherwise

(4.3)

V2 =

N
∑

i=1

N
∑

i′=i+1

F
∑

f=1

T
∑

t=1

V ii
′

ft
2 (4.4)

(4.5)

V2
ii
′

ft =











1 ; if Xift +Xi′ft > 1,

0 ; otherwise

(4.6)

Besides, we define the fitness functions for the delay minimizing scheduler as

33

follows:

Fp =











































0 ; if V1 + V2 + V3 > 0,
N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

N
∑

i=1

F
∑

f=1

T
∑

t=1

tUifXift

; otherwise (if V1 + V2 + V3 = 0)
(4.7)

Fs =











0 ; if V1 + V2 + V3 = 0,

1

V1 + V2 + V3

; otherwise (if V1 + V2 + V3 > 0)
(4.8)

V3 =



















0 ; if
N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift > 0,

1 ; otherwise

(4.9)

where V3 is the number of violations of constraint in Equation 3.17, and V1 and V2 are

the same as in the throughput maximizing scheduler.

procedure CompareFitness (F α
p ,F

β
p ,F

α
s ,F

β
s)

//Return the chromosome having higher fitness value, return 0 if equal

if F α
p > F β

p then

Return α

else if F α
p < F β

p then

Return β

else if F α
s > F β

s then

Return α

else if F α
s < F β

s then

Return β

else

Return 0

end if

Figure 4.2. Pseudocode for fitness comparison.

We demonstrate in Figure 4.2 the method we employ for the overall fitness com-

34

parison of two chromosomes α and β having primary fitness F α
p , F

β
p and secondary

fitness F α
s , F

β
s . Primary fitness values have high priority in the comparison proce-

dure; that is to say, the chromosome that has higher primary fitness value than the

other chromosome is declared to have the higher fitness value. The reason for this

behavior is that a chromosome that does not violate any constraints and hence has

positive primary fitness value is fitter than the one that violates some constraint and

therefore having a primary fitness value of zero. Likewise, when comparing two chro-

mosomes that both have a positive primary fitness value (i.e., none of them violate any

constraint), the one that better satisfies the objective function has the higher fitness

value. If both chromosomes have zero primary fitness value; i.e., both chromosomes

violate some problem constraint, then the chromosome that violates less number of

problem constraints and hence has higher secondary fitness value is declared to have

the higher fitness value.

One of the possible approaches employed when handling constraint based prob-

lems using GAs is to penalize a constraint violating chromosome by setting its fitness

value to zero, and hence basically nullifying its chance to survive to the next gener-

ation [29, 77]. Nevertheless, in our scheme, since the probability that constraint in

Equation 3.14 is violated in a randomly generated population is quite high (will be dis-

cussed in detail in Section 4.3), nullifying the fitness values of the constraint violating

chromosomes would not make sense. Some gene pattern might violate a constraint,

but another part of the chromosome might be fit in terms of the primary fitness value.

Preventing this chromosome from surviving in the subsequent generations would de-

crease diversity. Diversity helps prevent the algorithm from getting stuck in a local

optimum. Therefore, we adopt the mechanisms outlined in (4.1)-(4.9) for the fitness

function evaluation.

4.2.4. Selection

After the population is sorted by comparison of the fitness values according to

Figure 4.2, the top Npop × Rselect number of chromosomes are included in the mating

pool, where Npop is the population size and Rselect is the selection rate, which was chosen

35

to be 0.5 in our work. The mother and father chromosomes are selected from this pool

and mated through crossover mechanisms (explained in detail in Section 4.2.5). Each

crossover generates two offspring, which replace two chromosomes from the bottom of

the population that is not in the mating pool. This two at a time replacement process

continues until all the chromosomes that are not in the mating pool are replaced. This

way, chromosomes that have high fitness, i.e. the ones in the mating pool, survive in

the subsequent generations. In contrast, chromosomes that have low fitness, i.e. the

ones that are not in the mating pool, do not survive and are replaced by the offspring

of the mating pool, which potentially have higher fitness.

We evaluate the performance of two different selection schemes. The first one

is Roulette Wheel Selection, also referred to as Proportional Selection or Weighted

Random Pairing with Cost Weighting [76], whereas the second one is Tournament

Selection.

procedure RouletteWheel (population)

if Np > 0 then

//Select among the chromosomes having Fp > 0

Return α with probability F α
p /

Np
∑

α′=1

F α′

p

else

//Select among the chromosomes having Fp = 0

Return α with probability F α
s /

Ns
∑

α′=1

F α′

s

end if

Figure 4.3. Pseudocode for Roulette Wheel Selection.

Roulette wheel selection is a way of choosing mother and father chromosomes

from the population in a way that is proportional to their fitness. We have made perti-

nent modifications to the general roulette wheel selection framework to accommodate

our fitness function evaluation and comparison techniques. In our version of roulette

wheel selection scheme, we choose the mother chromosome according to the algorithm

outlined in Figure 4.3, where Np is the number of chromosomes in the mating pool that

have nonzero primary fitness value (that do not violate any problem constraint) and Ns

36

denotes the number of chromosomes in the mating pool that have nonzero secondary

fitness value (that violate some problem constraint). Furthermore, F α
p and F α′

p denote

the primary fitness values of the chromosomes α and α′, respectively. Likewise, F α
s and

F α′

s denote the secondary fitness values of the chromosomes α and α′, respectively. In

order to create more diversity, we do not allow the mating of a chromosome with itself.

Hence, we select the father chromosome in the same way as the mother, but from a

population that excludes the mother.

Tournament selection approach picks a small subset of chromosomes (two or three

in general, three in our case) from the mating pool in a uniformly random manner. The

chromosome with the highest fitness in this subset becomes a parent, where the fitness

values of the chromosomes are compared with each other according to our proposed

algorithm outlined in Figure 4.2. The tournament repeats for every parent needed. It

is computationally simpler than roulette wheel selection because the population does

not need to be sorted [76].

4.2.5. Crossover

Crossover is a genetic operator analogous to reproduction and biological crossover.

It is used to vary the programming of chromosomes from one generation to the next. In

this work, we evaluate the performance of three crossover types, namely, single-point

crossover, two-point crossover, and uniform crossover.

In single-point crossover, a single crossover point on both parents’ strings is se-

lected. All data beyond that point in either organism string is swapped between the

two parent organisms. The resulting organisms are the offspring. Two-point crossover

requires that two points are selected on the parent organism strings. Everything be-

tween the two points is swapped between the parent organisms, rendering two child

organisms. In the uniform crossover scheme, individual bits in the string are compared

between two parents. The bits are swapped with a fixed probability [76], which we

selected as 0.5.

37

4.2.6. Mutation

A bit within a chromosome is inverted with probability equal to the mutation

rate, denoted as µm. In our scheme, we mutate every chromosome of the population

except for the best chromosome. The exclusion of the best chromosome in mutations is

a common practice in GAs, since the best chromosomes are designated as elite solutions

destined to propagate unchanged [76].

4.2.7. Stopping Criteria

We stop the execution of the GA when any of the two following conditions are

met: Either the same best solution has been found for Nbest number of iterations or

the maximum number of iterations, Nmax, has been reached.

4.3. Numerical Evaluation

As in Chapter 3, we have simulated the first stages of all schedulers and acquired

the Uif values in OPNET Modeler [72]. In the second stages, we have implemented

the GA-based suboptimal schedulers in OPNET, whereas we solved the optimization

problems in CPLEX [5]. Additive white gaussian noise (AWGN) channels are con-

sidered. The bandwidth, noise variance, path loss, and PU activity models are as in

Chapter 3. In all simulations, each SU has three primary neighbors in its interference

range. There are three frequencies with interference temperature thresholds of 1000◦K,

2000◦K, and 3000◦K. For the GA based schedulers, the selection rate Rselect = 0.5

and Nmax = 5000. Average values in all results have been obtained using 10 different

seeds and 10000 scheduling periods for each seed.

The methodology we employ for both throughput maximizing and delay mini-

mizing GA based suboptimal schedulers is firstly to evaluate the impact of numerous

methods outlined in Table 4.1 in a relatively small cognitive radio network consisting of

N = 5 cognitive nodes. This first evaluation equips us with the knowledge about which

set of methods outlined in Table 4.1 suits best for our problem. We then evaluate the

38

Table 4.1. Test case parameters.

Case Initial Population Creation Encoding Selection

1 RandComp Type-1 Roulette Wheel

2 Rand Type-2 Roulette Wheel

3 Rand Type-1 Tournament

4 Rand Type-1 Roulette Wheel

performance of the schedulers using these determined methods for varying number of

cognitive nodes; i.e., N = 5, 10, . . . , 30. This sequential experimental design method of

employing a series of smaller experiments each with a specific objective is a common

method in experimental design [78] because the experimenter can quickly learn crucial

information from a small group of runs that can be used to plan the next experiment.

Employing a very large experiment directly in the first steps is usually considered to

be a waste of time [78]. In line with this design approach, we initially make a series

of experiments using N = 5 SUs and observe the impact of different method combina-

tions, and then evaluate the scalability of the system with N = 5, 10, ..., 30 SUs using

the methods that have been found to yield better results in the initial experiments.

Firstly, we consider 5 SUs with Npop = 100, Nbest = 50, µm = 0.01, and single-

point crossover. We evaluate the performance of parameter sets defined in Table 4.1.

For the throughput maximizing GA based suboptimal schedulers, the achieved average

network throughput and the average number of iterations are stated in Table 4.2.

First of all, when we compare the results of GA-based solutions (Case 1-4), we

see that all of our GA based solutions yield almost twice better results than the MFS

and ProbFS schedulers proposed in Chapter 3, at the same time being very close to

the throughput optimal scheduler’s performance.

When we compare the results of Case 1 and 4, where only the initial population

creation method is different, we observe that Case 1 has a slightly larger throughput

39

Table 4.2. Results for throughput maximizing GA scheduler

N = 5, Npop = 100, Nbest = 50, µm = 0.01, and single-point crossover.

Case Average network throughput Average number of iterations

1 26.58 155.27

2 26.23 171.24

3 26.43 132.77

4 26.57 154.24

Throughput Optimal 27.41 −
MFS 14.33 −

ProbFS 13.74 −

at the expense of a slightly higher number of iterations, leading to the conclusion that

either scheme might be preferred. Since the resulting throughput of both schemes are

very close to the optimal one, we prefer to select Case 4 as our candidate parameter

set.

When we examine the results of Case 2 and Case 4, where only the encoding type

is different, we observe that Case 4 achieves higher throughput as well as a significantly

reduced average number of iterations. In order to investigate the reason for the superior

performance of Encoding Type-1 over Encoding Type-2, note that Encoding Type-1 has

the ability to recognize a gene pattern that does not violate constraint in Equation 3.14

because the genes that correspond to the same time slot and frequency pair are next

to each other in this representation. For instance, if a chromosome starts with the bit

string [010100 . . .], then X111 = 0, X211 = 1, X311 = 0 and X112 = 1, X212 = 0, X312 = 0

for N = 5, F = 3, and T = 5. This gene pattern does not violate constraint in

Equation 3.14 and hence has higher fitness value. In consequence, Encoding Type-1

enables this kind of a gene pattern to prevail and produce better individuals in the

subsequent generations through crossover. Similarly, Encoding Type-2 is capable of

preserving gene patterns that do not violate constraint in Equation 3.13.

40

Let Pnv−1 , where nv stands for “not violate”, denote the probability that con-

straint in Equation 3.14 is not violated in a randomly generated chromosome for N

nodes, F frequencies, and T time slots. If we consider the entire binary string of the

chromosome as the concatenation of F ×T string groups, each with N strings encoded

according to Encoding Type-1, and denote the probability that constraint in Equation

3.14 is not violated in a group by Pgnv−1, where gnv stands for “group not violate”,

then Pnv−1 = (Pgnv−1)
F×T . Besides, probability that constraint in Equation 3.14 is not

violated in a group equals the probability that bit ‘1’ occurs at most once in a randomly

generated string of length N , which in turn equals 0.5N + (N × 0.5N) = (N + 1)/2N .

Thus, Pnv−1 = ((N + 1)/2N)F×T .

Likewise, let Pnv−2 denote the probability that constraint in Equation 3.13 is not

violated in a randomly generated chromosome of length N ×F ×T . If we consider the

whole binary string as the concatenation of N string groups each with F × T strings

encoded according to Encoding Type-2 and denote the probability that constraint in

Equation 3.13 is not violated in a group by Pgnv−2, then Pnv−2 = (Pgnv−2)
N . Note that

Pgnv−2 equals the probability that bit ‘1’ occurs at least once in a randomly generated

string of length F ×T . Therefore, Pgnv−2 = 1− (0.5)F×T and Pnv−2 = (1− (0.5)F×T)N .

Even for N = 5, F = 3, and T = 5, Pnv−1 = 1.24 × 10−11, whereas Pnv−2 = 0.99.

Therefore, we can conclude that the probability that constraint in Equation 3.14 is

violated in a randomly generated chromosome is much higher than the probability

that constraint in Equation 3.13 is violated. Whenever Equation 3.14 is violated, it

will drive the primary fitness value of the chromosome to zero; therefore, being able

to recognize and track a non-violating pattern will enable this gene pattern with good

traits to prevail in the next generations and thus conduce better fitness values as well

as faster convergence. For this reason, Encoding Type-1 yields superior performance

compared to Encoding Type-2.

Finally, when we compare the performance of Case 3 and Case 4 in Table 4.2,

where only the selection type differs, we observe that the average number of iterations

of tournament selection is less than the one of roulette wheel selection at the expense

of a little decrease in average network throughput. Since the difference in throughput

41

is slight, we conclude that faster convergence is more important and hence Case 3 is

superior to Case 4. Therefore, in the following simulations, we evaluate Case 3 with

different crossover types.

Table 4.3. Crossover type comparison for throughput maximizing GA scheduler Case

3, N = 5, Npop = 100, Nbest = 50, µm = 0.01.

Crossover Type Average throughput Average number of iterations

Single Point 26.43 132.77

Two Point 26.44 130.88

Uniform 26.48 127.20

Throughput Optimal 27.41 −
MFS 14.33 −

ProbFS 13.74 −

Table 4.3 presents the average network throughput and average number of it-

erations values for Case 3 with single-point, two-point and uniform crossover, where

N = 5, Npop = 100, Nbest = 50, and µm = 0.01. We observe that uniform crossover

outperforms the other two schemes both in terms of average network throughput and

average number of iterations. Therefore, in the following, we use Case 3 with uniform

crossover.

Figures 4.4a and 4.4b present the average throughput and average number of

iterations, respectively, for the throughput optimal, MFS, and ProbFS schedulers as

well as the throughput maximizing GA based scheduling scheme with Case 3, uniform

crossover, N = 5, Nbest = 50, µm = 0.01, and varying Npop. Increasing the population

size decreases the average number of iterations and increases the throughput; however,

the computational cost of a single iteration increases since more chromosomes have

to be processed in each iteration. Moreover, the performance improvement decreases

as the population size increases. The results indicate that setting Npop = 100 is a

reasonable decision in terms of both performance criteria. Furthermore, we can also

42

20 40 60 80 100 120
12

14

16

18

20

22

24

26

28
Throughput Maximizing GA Scheduler

Population size

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

GA
Throughput Optimal
MFS
ProbFS

(a) Average network throughput

20 40 60 80 100 120
120

125

130

135

140

145

150

155

160
Throughput Maximizing GA Scheduler

Population size

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

GA

(b) Average number of iterations

Figure 4.4. Average network throughput and average number of iterations for

throughput maximizing GA based scheduling scheme with Case 3, N = 5, Nbest=50,

µm=0.01, uniform crossover, and varying population size.

see that our GA based approach outperforms the other suboptimal schedulers, i.e. MFS

and ProbFS, with several orders of magnitude, while at the same time yielding very

close performance to the throughput optimal scheduler.

Figures 4.5a and 4.5b show the average network throughput and average number

of iterations, respectively, for the throughput optimal, MFS, and ProbFS schedulers as

well as the throughput maximizing GA based scheduling scheme with Case 3, uniform

crossover, N = 5, Npop = 100, µm = 0.01, and varying Nbest. As Nbest increases,

the increase in throughput decreases after some point, whereas the average number of

iterations increases linearly with increasing Nbest. The results point out that setting

Nbest = 50 is feasible when we take both performance criteria into account.

Figures 4.6a and 4.6b exhibit the average network throughput and average num-

ber of iterations for the throughput optimal, MFS, and ProbFS schedulers as well as the

throughput maximizing GA based scheduling scheme with Case 3, uniform crossover,

N = 5, Npop = 100, Nbest = 50, and varying µm. Both average throughput and average

number of iterations initially increase as µm increases; however, they decrease after

some point. Setting µm to a too high value can result in the introduction of unneces-

43

10 20 30 40 50 60 70 80 90
12

14

16

18

20

22

24

26

28
Throughput Maximizing GA Scheduler

N
best

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

GA
Throughput Optimal
MFS
ProbFS

(a) Average network throughput

10 20 30 40 50 60 70 80 90
40

60

80

100

120

140

160

180

200
Throughput Maximizing GA Scheduler

N
best

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

GA

(b) Average number of iterations

Figure 4.5. Average network throughput and average number of iterations for the GA

based throughput maximizing scheduling scheme with Case 3, N = 5, Npop=100,

µm=0.01, uniform crossover, and varying Nbest.

sarily large noise to the current solution; hence, the solution space can even get further

away from the good solution area while trying to get out of the local optimum, and

thereby yielding even worse performance than the MFS and ProbFS schedulers. The

results indicate that µm = 0.01 yields throughput very close to the optimal value with

a reasonable number of iterations.

Besides, the parameters Npop, Nbest, and µm influence the performance depending

on the number of cognitive nodes N . In Table 4.4, we have outlined the values for

these parameters that we empirically found to yield near optimal results for varying

values of N . We have used Case 3 and uniform crossover in the simulations of the

throughput maximizing GA based scheduling scheme in Table 4.4. We can see that

our GA based scheduling scheme yields much better performance than the MFS and

ProbFS schedulers, and very close performance to the optimal scheduler for all N =

5, 10, . . . , 30. Note that the parameters in this table are set so that the suboptimal

scheduler gives very close results to the optimal one. If less number of iterations are

desired at the expense of reduced throughput, then Npop, Nbest, and µm parameters can

be adjusted depending on the number of SUs (N), with Table 4.4 serving as a baseline.

44

Table 4.4. Parameter settings for throughput maximizing GA scheduler with varying

number of cognitive nodes.

N 5 10 15

Npop 100 150 200

Nbest 50 75 200

µm 0.01 0.01 0.01

Average throughput 26.48 26.87 25.61

Average number of iterations 127.20 330.99 885.22

Throughput optimal 27.41 27.55 26.29

MFS 14.33 15.16 16.06

ProbFS 13.74 14.50 15.97

N 20 25 30

Npop 300 400 500

Nbest 300 400 500

µm 0.001 0.001 0.001

Average throughput 25.89 26.12 25.99

Average number of iterations 1954.77 3076.82 5084.88

Throughput optimal 26.46 26.81 26.68

MFS 16.81 16.76 16.51

ProbFS 16.01 16.46 16.47

45

0 0.02 0.04 0.06 0.08 0.1
8

10

12

14

16

18

20

22

24

26

28
Throughput Maximizing GA Scheduler

Mutation Rate

T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

GA
Throughput Optimal
MFS
ProbFS

(a) Average network throughput

0 0.02 0.04 0.06 0.08 0.1
90

95

100

105

110

115

120

125

130
Throughput Maximizing GA Scheduler

Mutation Rate

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

GA

(b) Average number of iterations

Figure 4.6. Average network throughput and average number of iterations for the GA

based scheduling scheme with with N = 5, Npop = 100, Nbest = 50, and varying µm.

We have also evaluated the performance of the GA based suboptimal sched-

uler that minimizes the scheduling delay. Initially, we have evaluated the perfor-

mance of the parameter sets defined in Table 4.1. The resulting average scheduling

delay and average number of iterations of the delay minimizing GA scheduler for

N = 5, Npop = 100, Nbest = 75, µm = 0.01, and single-point crossover are shown in

Table 4.5. The results indicate that GA based schedulers yield much better scheduling

delay performance than the MFS and ProbFS schedulers, while at the same time pro-

viding close to optimal performance. Furthermore, the results also indicate that Case

3 conduces the least scheduling delay and the least number of iterations. Hence, we

employ Case 3 in the subsequent simulations.

Table 4.6 presents the average scheduling delay and average number of iterations

values for N = 5, Npop = 100, Nbest = 75, µm = 0.01 with Case 3 and single-point,

two-point, as well as uniform crossover. The results show that GA based schedulers

again have far better performance than the MFS and ProbFS schedulers, at the same

time having very close to optimal performance. The results also reveal that uniform

crossover outperforms the other two schemes both in terms of the average scheduling

delay and the average number of iterations. Therefore, in the sequel, we use Case 3

with uniform crossover.

46

Table 4.5. Results for delay minimizing GA scheduler for

N = 5, Npop = 100, Nbest = 75, µm = 0.01.

Case Average scheduling delay Average number of iterations

1 0.039 94.43

2 0.038 92.55

3 0.023 87.24

4 0.040 92.29

Delay optimal 0.00095 −
MFS 0.60 −

ProbFS 0.55 −

Table 4.6. Crossover type comparison for delay minimizing GA scheduler for

N = 5, Npop = 100, Nbest = 75, µm = 0.01 with Case 3.

Crossover Type Average delay Average number of iterations

Single Point 0.023 87.24

Two Point 0.022 86.68

Uniform 0.0099 82.38

Delay optimal 0.00095 −
MFS 0.60 −

ProbFS 0.55 −

47

Table 4.7. Average scheduling delay and average number of iterations for the GA

based scheme with Case 3, uniform crossover, N = 5, Nbest = 75, µm = 0.01, and

varying population size.

Scheduler type Average delay Average number of iterations

Delay Minimizing GA, Npop = 20 0.073 242.29

Delay Minimizing GA, Npop = 40 0.056 93.38

Delay Minimizing GA, Npop = 60 0.034 88.03

Delay Minimizing GA, Npop = 80 0.018 85.37

Delay Minimizing GA, Npop = 100 0.009 82.38

Delay Minimizing GA, Npop = 120 0.0009 81.51

Delay optimal 0.00095 −
MFS 0.6 −

ProbFS 0.55 −

Table 4.7 presents the average scheduling delay for the delay optimal, MFS, and

ProbFS schedulers as well as the delay minimizing GA based scheduling scheme with

Case 3, uniform crossover, N = 5, Nbest = 75, µm = 0.01, and varying Npop. The table

also shows the average number of iterations for the GA based schemes. The results

indicate that the GA based scheduling scheme results in much better performance

than the MFS and ProbFS schedulers, even with a low population size. Moreover,

the scheduling delay and the average number of iterations decrease as Npop increases;

however, the computational cost of a single generation also increases. Furthermore, the

rate of decrease in the average number of iterations decreases as Npop increases, whereas

the average scheduling delay values diminish almost linearly. The results point out that

setting Npop = 100 is a reasonable decision in terms of both performance criteria.

Table 4.8 shows the average scheduling delay for the delay optimal, MFS, and

ProbFS schedulers as well as the delay minimizing GA based scheduling scheme with

Case 3, uniform crossover, N = 5, Npop = 100, µm = 0.01, and varying Nbest. The

48

Table 4.8. Average scheduling delay and average number of iterations for the GA

based scheduling scheme with Case 3, uniform crossover, N = 5, Npop = 100,

µm = 0.01, and varying Nbest.

Scheduler type Average delay Average number of iterations

Delay Minimizing GA, Nbest = 15 0.0108 23.89

Delay Minimizing GA, Nbest = 30 0.0107 39.00

Delay Minimizing GA, Nbest = 45 0.0106 53.93

Delay Minimizing GA, Nbest = 60 0.0104 68.98

Delay Minimizing GA, Nbest = 75 0.0099 84.12

Delay Minimizing GA, Nbest = 90 0.0096 99.2

Delay optimal 0.00095 −
MFS 0.6 −

ProbFS 0.55 −

table also shows the average number of iterations for the GA based schemes. The

results reveal that the GA based scheduling scheme yields far better scheduling delay

performance than the MFS and ProbFS schedulers even with small values of Nbest. We

can also see that the scheduling delay decreases as Nbest increases. We can also see in

Table 4.8 that the average number of iterations increases as Nbest increases. As in the

throughput maximizing GA scheduler, the increase in the average number of iterations

is linear as Nbest increases. The results point out that setting Nbest = 75 is feasible

when we take both performance criteria into account.

Table 4.9 shows the average scheduling delay for the delay optimal, MFS, and

ProbFS schedulers as well as the delay minimizing GA based scheduling scheme with

Case 3, uniform crossover, N = 5, Npop = 100, Nbest = 75 and varying µm. Again, the

results show that the scheduling delay performance of the GA based scheme is much

better than the ones of MFS and ProbFS, while at the same time being close to the

optimal delay performance. Table 4.9 also shows the average number of iterations for

49

Table 4.9. Average scheduling delay and average number of iterations for the GA

based scheduling scheme with Case 3, uniform crossover, N = 5, Npop = 100,

Nbest = 75, and varying µm.

Scheduler type Average delay Average number of iterations

Delay Minimizing GA, µm = 0.001 0.019 89.82

Delay Minimizing GA, µm = 0.005 0.015 84.81

Delay Minimizing GA, µm = 0.01 0.009 84.12

Delay Minimizing GA, µm = 0.05 0.012 87.74

Delay Minimizing GA, µm = 0.1 0.02 94.87

Delay Minimizing GA, µm = 0.2 0.0345 98.24

Delay optimal 0.00095 −
MFS 0.6 −

ProbFS 0.55 −

the GA based scheme with the same parameters. We can see that both the average

scheduling delay and the average number of iterations initially decrease as µm increases;

nevertheless, they both increase after some point. The results indicate that µm = 0.01

yields reasonable performance in terms of both criteria when we compare it to the other

mutation rates.

Besides, as in the throughput maximizing GA based scheduler, the parameters

Npop, Nbest, and µm influence the performance depending on the number of cognitive

nodes N . In Table 4.10, we have outlined the values for these parameters that we have

empirically found to yield satisfactory results with reasonable number of iterations for

varying values of N . We have used Case 3 and uniform crossover in the simulations in

Table 4.10.

All in all, both of our proposed GA based schedulers achieve very close perfor-

mance to their optimal scheduler counterparts while at the same time operating with

50

Table 4.10. Parameter settings for delay minimizing GA scheduler with varying

number of cognitive nodes.

N 5 10 15

Npop 100 150 200

Nbest 75 100 150

µm 0.01 0.01 0.01

Average delay 0.0099 0.212 0.538

Average number of iterations 84.12 132.27 316.97

Delay optimal 0.00095 0.203 0.509

MFS 0.60 1.27 1.96

ProbFS 0.55 1.23 1.87

N 20 25 30

Npop 250 300 350

Nbest 200 250 300

µm 0.001 0.001 0.001

Average delay 1.11 1.60 2.11

Average number of iterations 613.34 987.14 1112.45

Delay optimal 1.01 1.51 2.01

MFS 2.66 3.41 4.09

ProbFS 2.55 3.21 3.94

51

much lower complexity. However, the average number of iterations in the simulation

results reveal that our GA based schedulers are computationally more costly than the

MFS and ProbFS schedulers explained in Chapter 3. Nevertheless, when they are com-

pared with respect to the throughput and delay performance, we can see that our GA

based schedulers are approximately twice better than the MFS and ProbFS schedulers.

Moreover, our GA based schedulers are computationally more efficient than the clas-

sical branch and bound algorithms that are used to solve binary integer programming

problems [70,71]. Therefore, our GA based schedulers present a very reasonable trade-

off between computational complexity and performance, hence addressing the open

research issue identified in Chapter 3. Hence, we can conclude that our GA based

schedulers are more suitable for slowly varying spectral environments, while MFS and

ProbFS schedulers are more suitable for very swiftly changing spectral environments.

Considering that IEEE 802.22 networks [68] operate on the TV broadcast bands which

are slowly varying, we can confidently conclude that our GA based schedulers can op-

erate in realistic network settings, and provide useful solutions to the open research

problem pinpointed in Chapter 3.

52

5. THROUGHPUT MAXIMIZING AND FAIR

SCHEDULERS

The work in Chapters 3 and 4 relies on the interference temperature (IT) model

proposed by FCC in [1]. Because the IT model requires the measurement of interference

temperature and setting of an upper interference limit on the entire frequency band,

it spurred a lot of debate since its inception and received both positive and negative

comments. Most of the negative comments were due to the complexity of its practical

implementation at the physical layer. Finally, FCC abandoned the IT concept [6].From

this chapter onwards, we distance ourselves from the IT debate and rely on a much

simpler physical layer model. Instead of measuring the interference temperature at

all the measurement points and setting an upper limit for each frequency band, the

CBS in our model only needs to determine whether PUs are actively using a particular

frequency or not. There is a maximum tolerable interference power for each active

PU as opposed to each frequency band in the IT model. This can be accomplished

using conventional physical and MAC layer spectrum sensing mechanisms in the CRN

literature [7, 8].

The major merit of our proposed scheduling scheme is that it is a very general

model accomplishing many tasks at the same time. Specifically, all schedulers proposed

in this chapter achieve the following:

(i) Frequency allocation

(ii) Time slot allocation

(iii) Data rate allocation

(iv) Power allocation

(v) Taking into account possibly multiple antennas for data transmission

(vi) Multi-user environment

(vii) Multi-channel environment

(viii) Considering channel heterogeneity, where not only the availability of the channels

53

(frequencies), but also the information about “how much available a particular

frequency is for a particular SU in terms of maximum allowed transmission power

and data rate” differ for each SU and channel (frequency) pair

(ix) Taking into account numerous physical layer information such as fading, path

loss, mobility, and time-varying channels

(x) Guaranteeing reliable communication of SUs with the CBS

(xi) Ensuring that PUs are not disturbed by SU transmissions

(xii) Ensuring that no collisions occur among SUs

(xiii) A temporal notion of fairness together with throughput fairness (in fair sched-

ulers)

(xiv) Taking into account the recently experienced throughput values during the cur-

rent scheduling decision and thereby providing flexibility to increase throughput

by sacrificing from fairness (in fair schedulers)

To the best of our knowledge, none of the previous work in the literature encom-

passes all of the above features. Contents of this chapter partially appeared in [79].

5.1. Problem Formulations and Proposed Solutions

We again focus on a time-slotted centralized CRN cell, as in Figure 3.1, where

the CBS is responsible for the overall coordination of the SUs. The scheduler resides

at the CBS and decides on how many packets and with which frequency each SU will

transmit in each time slot.

Figure 5.1 demonstrates our cognitive scheduling method. SU(f 1) and PU1(f
1)

show that SU and PU1 currently use frequency f 1, while PU2(f
2) illustrates that PU2

uses frequency f 2. That is to say, PU1 and PU2 will be disturbed if any SU transmits

using frequency f 1 and f 2, respectively, and the interference power received by each

PU is above its maximum tolerable interference power. We represent the maximum

tolerable interference power of PUj for frequency f by P fj
IFmax

, where IF stands for

“interference”. In other words, the SU in Figure 5.1 does not disrupt PU2 because

their operation frequency is different, while it is possible for PU1 to be disturbed by

54

CBS

SU(f
1
)

PU1(f
1
)

PU2(f
2
)

Figure 5.1. Framework for our cognitive scheduling mechanism.

the SU since they currently utilize the same frequency f 1. The goal in this work is

to determine the transmission power and consequently the data rate of every SU for

every frequency and time slot such that the PUs whose communication are active in

that particular frequency are not disrupted.

Let us represent by uit the number of packets transmitted by SU i in time slot t,

by xit the number of packets in the buffer of SU i at the beginning of time slot t, and

by fit the frequency used by SU i in time slot t. We denote the locations of SU i and

PU j in time slot t by Lit and Ljt, respectively, and the location of the CBS by LCBS .

Furthermore, we denote the fading coefficient of the channel between SU i and the CBS

in time slot t by hi0t and the fading coefficient of the channel between SU i and PU j

in time slot t by hijt. Consequently, the vector of buffer states for a total number of

N cognitive nodes is xt = [x1t, x2t, · · · , xNt], the vector of transmitted packets is ut =

[u1t, u2t, · · · , uNt], and the vector of frequencies used by SUs is ft = [f1t, f2t, · · · , fNt].

Additionally, the vector of SU locations is LSU
t = [L1t, L2t, · · · , LNt], and the vector

of PU locations is LPU
t = [L1t, L2t, · · · , LMt], where M is the total number of PUs

in the coverage area of the CBS. Moreover, the matrix of fading coefficients for the

channels between SUs and PUs is symbolized by hSU,PU

t
= [hijt], which is an N ×M

matrix. Similarly, the vector of fading coefficients for the channels between the SUs

and the CBS is hSU,CBS

t = [h10t, h20t, · · · , hN0t]. We presume that the CBS knows

LSU
t , LPU

t , LCBS, h
SU,PU

t
, and hSU,CBS

t
. As a consequence, the scheduler’s mapping is

γ(t) : [xt, L
SU
t , LPU

t , LCBS,h
SU,PU

t
,hSU,CBS

t
]→ [ft, ut].

55

FCC has required CR devices to use geolocation in conjunction with database

consultation in [80]. Hence, our assumption that the CBS knows LSU
t , LPU

t , and LCBS

is in line with this requirement. Authors in [81], for instance, also point out the

positive impact of location awareness in CRNs. The knowledge about other physical

layer parameters such as hSU,PU

t
, and hSU,CBS

t
is also the assumption of other works

in the literature [82, 83]. For instance, SUs can estimate channel gains between SUs

and PUs (hSU,PU

t
in our case) by employing sensors near all receiving points and make

them available at the central controller. Values for hSU,CBS

t
can also be estimated

in a similar way. The fact that our scheduling model is designed for a centralized

(infrastructure-based) CRN setting facilitates the implementation for the gathering of

such physical layer parameters.

5.1.1. Throughput Maximizing Scheduler (TMS)

We formulate in Equations 5.1-5 the scheduling problem that maximizes the

expected value of the total network throughput, while assuring that the PUs in the

service area of the CBS are not disrupted, and reliable communication between SUs

and the CBS is maintained:

max
ut,ft

E{
N
∑

i=1

uit} (5.1)

s.t.

P ft
rj
≤P fj

IFmax
; ∀j ∈ Φft

CBS, ∀f ∈ F (5.2)

uit =B × Ts

S
× ln(1 +

P ift
rCBS

ζ
); ∀i ∈ N (5.3)

fit 6=fi′t; ∀i, i′ ∈ N , i 6= i′ (5.4)

uit ≤xit; ∀i ∈ N (5.5)

where F = {1, 2, · · · , F} denotes the set of F frequencies, N = {1, 2, · · · , N} shows

the set of N SUs, P fj
IFmax

represents the maximum tolerable interference power of PU

j for frequency f , and P ft
rj

symbolizes the power received by PU j through frequency

f in time slot t. Moreover, Φft
CBS denotes the set of PUs that are actively utilizing

56

frequency f in the coverage area of the CBS in time slot t, and P ift
rCBS

is the power

received by the CBS owing to the possible transmission of SU i using frequency f

in time slot t. Besides, S is the packet size, B is the bandwidth, ζ is the sum of

interference power from the PUs to SU i and noise power, and Ts is the time slot

length. Interference power from the PUs to the SUs and to the CBS may depend

on many factors such as the spectrum occupancy of the PUs as well as the locations.

Even when this interference is modeled through different variables, an expression for

the maximum transmission rate Uif for each SU i and frequency f can be obtained.

Once the Uif values are obtained, our ILP formulations in the second stages of our

throughput maximizing, (weighted) max-min fair, and proportionally fair schedulers

remain the same. Therefore, for notational simplicity, we represent the interference

power from the PUs and the noise power by a single variable ζ . On the other hand,

units for parameters S, B, and Ts are bits/packet, bits/second, and seconds/time slot,

respectively.

In the formulation from Equation 5.1 to Equation 5.5, the objective in Equation

5.1 maximizes the expected value of the total number of packets transmitted by all the

cognitive users. Besides, constraint in Equation 5.2 guarantees that interference power

values received by PUs because of SU transmissions adhere to the tolerable limits.

Note here that constraint in Equation 5.2 imposes a restriction on the interference

power received by PUs. The primary goal of SUs is to communicate with the CBS. In

doing so, they may increase the interference received by PUs. Therefore, the maximum

tolerable interference requirement of the PUs translates to a maximum transmission

power constraint on the SUs because in order to ensure that the interference perceived

by the PUs is within the tolerable limits, SUs need to adjust their transmission powers

while communicating with the CBS. By considering the channel conditions between

SUs and PUs, we can impose a maximum transmission power constraint on SUs. We

can then convert this maximum transmission power constraint to a maximum data

rate constraint on SUs through Shannon’s capacity function for Gaussian channels.

Constraint in Equation 5.3 serves this purpose via ensuring that reliable communication

between SU i and the CBS is achieved by having the scheduler to choose the number of

packets transmitted, uit, equal to the Shannon capacity function for a Gaussian channel

57

[69]. Recent advances in coding (Turbo codes and LDPC) make it feasible to achieve

performance close to Shannon capacity using codes over finite block lengths. Besides,

the uncoded systems also follow the exponential relationship between transmission

rate and transmit power [84]. All the optimization problems we formulate in this work

take as input the maximum possible transmission rate of each SU for each frequency.

If the relationship between transmission rate and power is not exponential, then the

calculation of these maximum possible transmission rates will be different; however, our

formulated optimization problems in this work will remain the same. Therefore, even

in cases where the relationship between transmission rate and power is not exponential,

all of our optimization problems are still valid. Furthermore, Equation 5.4 ensures that

at most one SU can transmit using a certain time slot and frequency combination, and

Equation 5.5 represents the fact that an SU cannot transmit more than the number of

packets in its buffer at the beginning of the time slot.

In the initial step of our solution to the problem in Equations 5.1-5, we find the

maximum permissible transmission power for each SU i and frequency f in time slot t,

which is represented here by P ift
xmt. We use free space path loss and fading in modeling

the channels between SUs and PUs, as well as the ones between the CBS and SUs.

Therefore, the following relationship holds between P ift
xmt and P ft

rj :

P ft
rj =P ift

xmt × |Gift|2 (5.6)

Gift = max
j∈Φft

CBS

(
λf

4πdijt
× |hijt|) (5.7)

where dijt equals the distance between SU i and PU j in time slot t, λf is the wavelength

of frequency f , and Φft
CBS symbolizes the set of PUs that are in the coverage area of

the CBS and that are carrying out their communication using frequency f in time slot

t. Moreover, hijt denotes the fading coefficient of the channel between SU i and PU j

in time slot t. In particular, (
λf

4πdijt
)2 refers to the path loss of the channel between

SU i and PU j in time slot t as a result of the free space path loss formula. Hence, we

denote by |Gift| the maximum channel gain of SU i and the PU that has the highest

channel gain with this SU among all PUs which are actively using frequency f in time

58

slot t. Notice that we consider here the interference from SUs to PUs (not vice versa)

because the goal of the scheduler is to govern the transmission of SUs to the CBS

without causing any harmful interference to PUs (without disturbing PUs). Recall

that we have represented the interference from PUs to SUs and noise power by the

variable ζ .

Let us assume, without loss of generality (w.l.o.g), that P fj
IFmax

is constant for

all j. Hence, in the sequel, let us use P f
IFmax

in lieu of P fj
IFmax

. Moreover, assume for

simplicity, and yet w.l.o.g., that S = B × Ts. Recall that P ift
xmt denotes the maximum

permissible transmission power for SU i and frequency f in time slot t. Therefore, the

expressions from Equation 5.8 to Equation 5.12 in the following hold:

P ift
xmt =

P f
IFmax

|Gift|2
(5.8)

|Gi0t| ,
λf

4πdi0t × hi0t

(5.9)

P ift
rCBS

=P ift
xmt × |Gi0t|2 (5.10)

P ift
rCBS

=P f
IFmax

× (
Gi0t

Gift
)2 (5.11)

Uift =
⌊

ln(1 + P f
IFmax

× (
Gi0t

Gift × σ
)2)

⌋

(5.12)

where di0t is the distance between SU i and the CBS in time slot t, and Uift is the

maximum number of packets that can be transmitted by SU i using frequency f in

time slot t. Equation 5.8 converts the maximum tolerable interference power constraint

(P f
IFmax

) at PUs to maximum transmission power constraint (P ift
xmt) at SUs. Equation

5.9 defines the channel gain between SU i and the CBS in time slot t, denoted by

Gi0t. Equation 5.10 relates the power that would be received by the CBS due to the

transmission of SU i using frequency f in time slot t (P ift
rCBS

) if SU i uses its maximum

permissible transmission power for frequency f and time slot t (P ift
xmt). Equations 5.8-10

are valid since the maximum possible value for P ft
rj

is P f
IFmax

because of Equation 5.2.

Equation 5.11 follows directly from Equations 5.8, 5.9, and 5.10. Finally, Equation 5.12

is due to Shannon’s capacity function for Gaussian channels, where P ift
rCBS

is replaced

by Equation 5.12. The floor operation ⌊.⌋ in Equation 5.12 is necessary since Uift can

59

naturally only take integer values.

Assume that the network conditions, i.e., PU spectrum occupancies, PU and SU

locations, and all the channel fading coefficients, are small enough not to have any

influence on the Uift values for a duration of T time slots in the considered central-

ized CRN cell. In other words, assume that the Uift value for SU i and frequency f

remain the same for a duration of T time slots, which is equal to the scheduling period

during which the network conditions are fairly stable. Due to the floor operation ⌊.⌋
in Equation 5.12, the scheduling period length T does not obligate the PU spectrum

occupancies as well as the PU and SU locations to remain constant in that time pe-

riod, but only requires that the change in their values does not alter Uift (related to

SU i and frequency f) for a period of T time slots. The value of T , in general, hinges

upon the characteristics of the spectral environment. For instance, a slowly varying

spectrum environment like the TV bands used by an IEEE 802.22 network, allows T

to have a fairly large value. Therefore, instead of Uift, let us use Uif , which represents

the maximum number of packets that can be transmitted by SU i using frequency f in

every time slot for a duration of T time slots. After Uif values are obtained through the

analysis in Equations 5.6-12, we execute the following binary integer linear program

(ILP) to solve our formulated throughput maximizing scheduling problem:

max(

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

T
) (5.13)

s.t.

F
∑

f=1

T
∑

t=1

Xift ≥ 1; ∀i ∈ N (5.14)

N
∑

i=1

Xift ≤ 1; ∀f ∈ F , ∀t ∈ T (5.15)

F
∑

f=1

Xift ≤ ai; ∀i ∈ N , ∀t ∈ T (5.16)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (5.17)

where T denotes the set of T time slots in a scheduling period; i.e., T = {1, 2, · · · , T}.

60

In addition, Xift is a binary decision variable such that Xift = 1 if SU i transmits

with frequency f in time slot t and 0 otherwise, and ai is the number of transceivers

(antennas) of SU i. In this formulation, Equation 5.14 guarantees that at least one

time slot is assigned to every SU and hence provides a temporal notion of fairness,

while Equation 5.15 ensures that at most one SU can transmit in a particular time

slot and frequency, and hence obviates collisions between SUs. Consider a situation

where two SUs transmit with a certain frequency f in a particular time slot t. This

implies that two SUs will contribute to the value of P ft
rj

in Equation 5.2. However,

when we calculate the maximum transmission power for an SU by considering the

interference that can occur at PUs, we consider the interference created by only that

SU. Therefore, having more than one SU transmit in the same frequency and time

slot may increase the aggregate interference experienced by PUs above the maximum

tolerable interference limit, which is P f
IFmax

. Hence, besides avoiding collisions among

SUs, Equation 5.15 serves the purpose of guaranteeing that the aggregate interference

at the PUs is within the tolerable threshold. Moreover, Equation 5.16 represents the

fact that an SU i cannot transmit at the same time using frequencies more than the

number of its transceivers (antennas), ai, because each transceiver can tune to at most

one frequency at a time. MIMO technology can be used to have multiple antennas at

the SUs. We assume that channel conditions of each antenna of a particular SU are

the same for a particular frequency. We make this assumption to isolate us from the

possible impacts of different channel conditions for different antennas and concentrate

on the performance impact of the number of antennas. Note here that our formulation

does not mandate the SUs to have multiple antennas; in other words, even when each

SU has a single antenna, our formulation in Equations 5.13-16 is still valid since ai = 1

∀i ∈ N . After the scheduling decisions about Uif and Xift values are made, an SU i for

which Xift = 1 transmits min(xit, Uif) number of packets using frequency f in time slot

t. As in Chapter 3, we consider traffic in which all flows are continuously backlogged

so that the resulting throughput is completely related to the scheduling process and

channel conditions without any variation because of the traffic fluctuation. That is

to say, in the simulations part of this work, it is always true that xit ≥ Uif , ∀i ∈ N ,

∀f ∈ F , ∀t ∈ T ; i.e., each SU always has sufficient number of packets waiting in its

61

buffer to be transmitted to the CBS. This situation is necessary in order to effectively

evaluate the performance of the scheduling process by avoiding the possible influence

of the traffic arrival process.

5.1.2. Max-Min Fair Scheduler (MMFS)

We formulate in Equations 5.18-19 the scheduling problem that maximizes the

throughput of the SU experiencing the minimum throughput among all SUs, while

ensuring that the communication of none of the PUs is disturbed, and reliable com-

munication between SUs and CBS is achieved:

max
ut,ft

min
i

E{uit} (5.18)

s.t.

(5.2), (5.3),(5.4), and (5.5) (5.19)

To solve the problem in Equations 5.18-19, we firstly implement the analysis in Equa-

tions 5.6-12 and obtain the Uif values. Secondly, we define Ri
ϕ, the aggregate average

throughput of SU i in the last ϕ scheduling periods. The unit for Ri
ϕ is “packets per

time slot”. All of the Ri
ϕ values are initialized to 0 for all SUs. Let us define Ri

ϕ, which

is based on an exponentially weighted low pass filter, as follows:

Ri
ϕ = (1− 1

min(k, ϕ)
)Ri

ϕ +
1

min(k, ϕ)

F
∑

f=1

T
∑

t=1

UifXift

T
(5.20)

Here,

F
∑

f=1

T
∑

t=1

UifXift

T
denotes the throughput of SU i in the current scheduling period

k and
1

min(k, ϕ)
is the weight given to it. On the other hand, (1 − 1

min(k, ϕ)
) is the

weight given to the value of Ri
ϕ, i.e. the aggregate average throughput of SU i at the

start of the current scheduling period. Using an exponentially weighted low pass filter

enables our scheduler to give more importance to the throughput experienced in the

62

more recent scheduling periods than the distant past. At the end of each scheduling

period k, the value of Ri
ϕ is updated as Ri

ϕ ← Ri
ϕ. Since both k and ϕ are constant in

a particular scheduling execution, w.l.o.g we use ϕ instead of min(k, ϕ) in the rest of

this work.

We then have the CBS execute the following mixed ILP in each scheduling period,

which consists of T time slots:

max Z (5.21)

s.t.

Z ≤ (1− 1

ϕ
)Ri

ϕ +
1

ϕ

F
∑

f=1

T
∑

t=1

UifXift

T
(5.22)

(5.14), (5.15), and (5.16) (5.23)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (5.24)

where Equations 5.21 and 5.22 together maximize mini∈N Ri
ϕ. Keeping track of and

using the aggregate throughput information Ri
ϕ in Equations 5.21-24 in lieu of maxi-

mizing the minimum throughput only in that scheduling period enables us to provide

fairness in a longer time scale. If an SU suffers from low throughput due to PU activity

in its vicinity, it can compensate for this loss in the subsequent scheduling periods due

to the historical throughput information accumulated in Ri
ϕ. Embedding the informa-

tion about the accrued throughput in the scheduling algorithm itself is a vital feature

of our schedulers. The variable ϕ can be regarded as the window size during which the

changes in the network conditions are considered to be important. If ϕ is too large,

the scheduler will be too responsive to small changes in the network conditions. If ϕ

is is too small, the scheduler will be inflexible in compensating for the temporary fluc-

tuations in the network conditions. For instance, having ϕ = 1 connotes that merely

the network conditions in the current scheduling period are taken into consideration

without paying any attention to what has happened in the recent past.

Theorem 5.1. Let ΩOPT
MaxMin be the optimal value for the minimum throughput found

63

by the max-min fair scheduler in Equations 5.21-24. Let ΩUB
MaxMin be the maximum

possible value for ΩOPT
MaxMin, and ΩOPT

ThrMax be the total throughput found by the throughput

maximizing scheduler in Equations 5.13-16. Then, ΩOPT
MaxMin ≤ ΩUB

MaxMin =
ΩOPT

ThrMax

N
.

Proof. Since ΩOPT
MaxMin is the throughput of the SU with minimum throughput, the

throughput of any other SU among the remaining N − 1 SUs is at least ΩOPT
MaxMin.

Let Ωtot
MaxMin denote the total throughput resulting from the max-min fair scheduler

execution. Then, Ωtot
MaxMin ≥ ΩOPT

MaxMin + (N − 1)ΩOPT
MaxMin = N × ΩOPT

MaxMin. Since

Ωtot
MaxMin ≤ ΩOPT

ThrMax, it follows that Ω
OPT
MaxMin ≤ ΩUB

MaxMin =
ΩOPT

ThrMax

N
.

5.1.3. Weighted Max-Min Fair Scheduler (Weighted MMFS)

Max-min fair scheduling problem in Equations 5.21-24 maximizes the average

throughput of the SU that has the minimum aggregate throughput; therefore, all SUs

operate at a similar throughput level. However, in some practical cases, CBS operator

may want to differentiate between different SUs and provide them with different levels

of service by giving them priorities. We can quantify these priorities by associating

a target weight with each SU such that the higher the target weight of an SU is, the

more it is favored by the CBS scheduler in the frequency and time slot allocation.

We formulate in Equations 5.25-26 the scheduling problem that makes the through-

put ratios of all SUs as close to their target weights as possible, while ensuring that the

communication of none of the PUs is disturbed, and reliable communication between

the SUs and the CBS is achieved:

max
ut,ft

min
i

E{uit}
ηi

(5.25)

s.t.

(5.2), (5.3),(5.4), and (5.5) (5.26)

where 0 ≤ ηi ≤ 1 is the target weight of SU i; i.e., the target ratio of the throughput

of SU i to the total throughput of all SUs in the CRN cell. Weights of all SUs in the

64

coverage area of the CBS sum up to 1; that is to say,
N
∑

i=1

ηi = 1. If it were theoretically

possible to assign all SUs their exact target weights, then their
E{uit}

ηi
values, which

we refer to here by normalized throughput values, would all be equal to each other.

Accordingly, the objective function in Equation 5.25 aims to maximize the normalized

throughput value of the SU that has the minimum normalized throughput value, and

thereby makes the throughput ratio of every SU as close to its target weight as possible.

To solve the problem in Equations 5.25-26, as in the max-min fair scheduler, we firstly

implement the analysis in Equations 5.6-12 and obtain the Uif values. Secondly, we

calculate Ri
ϕ ∀i ∈ N , and update them at the end of every scheduling period as in

Equation 5.20. Finally, we have the CBS execute the following mixed ILP in each

scheduling period, which consists of T time slots:

max Z ′ (5.27)

s.t.

Z ′ ≤
(1− 1

ϕ
)Ri

ϕ +
1

ϕ

F
∑

f=1

T
∑

t=1

UifXift

T

ηi
(5.28)

(5.14),(5.15), and (5.16) (5.29)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (5.30)

where the constraint in Equation 5.28 specifies Z ′, which is the normalized aggregate

throughput of the SU that has the minimum normalized aggregate throughput among

all SUs. The objective function in Equation 5.27 maximizes this minimum normalized

aggregate throughput (Z ′). In other words, Equations 5.27 and 5.28 together maxi-

mize mini∈N

Ri
ϕ

ηi
. As in the max-min fair scheduler, having ϕ = 1 implies that only

the current scheduling period is taken into consideration. Similarly, keeping track of

and using the aggregate throughput information Ri
ϕ in Equations 5.27-30 in lieu of

maximizing the minimum normalized aggregate throughput merely in that scheduling

period enables us to provide fairness in a longer time scale.

65

Notice here that in our formulations, max-min fair scheduler turns out to be a

special case of the weighted max-min fair scheduler where ηi =
1

N
∀i ∈ N ; i.e., all

target weights are equal to each other. This result intuitively makes sense since the

goal of the max-min fair scheduler is to essentially make the throughput of each SU as

close to each other as possible.

5.1.4. Proportionally Fair Scheduler (PFS)

The notion of proportional fairness aims to provide a tradeoff between users’

satisfaction and system revenue [85]. A data rate allocation is said to be proportionally

fair if for any other feasible rate allocation, the aggregate of the proportional changes

is not positive. Accordingly, proportional fairness is achieved by maximizing the sum

of the logarithms of the data rates, which is equivalent to maximizing the product of

the data rates [37].

We formulate in Equations 5.31-32 the scheduling problem that maximizes the

products the SU throughput values, while ensuring that the communication of none

of the PUs is disturbed, and reliable communication between SUs and the CBS is

achieved:

max
ut,ft

E{
N
∏

i=1

uit} (5.31)

s.t.

(5.2), (5.3),(5.4), and (5.5) (5.32)

To solve the problem in Equations 5.31-32, as in the max-min fair and weighted max-

min fair schedulers, we firstly implement the analysis in Equations 5.6-12 and obtain

the Uif values. Secondly, we calculate Ri
ϕ ∀i ∈ N and update them at the end of every

scheduling period using Equation 5.20. Finally, we have the CBS execute the following

66

mixed integer program for each scheduling period, which consists of T time slots:

max (
N
∑

i=1

log((1− 1

ϕ
)Ri

ϕ +
1

ϕ

F
∑

f=1

T
∑

t=1

UifXift

T
)) (5.33)

s.t.

(5.14),(5.15), and (5.16) (5.34)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (5.35)

where the objective function in Equation 5.33 maximizes the sum of logarithms of the

aggregate throughput values of each SU, which would be updated according to Equation

5.20 at the end of the considered scheduling period if those particular Xift values are

used. Constraints are the same as in the other schedulers. The integer program in

Equations 5.33-35 maximizes a nonlinear concave objective function subject to linear

constraints, where the concavity is due to the logarithm operation in the objective

function.

To put it in a nutshell, our proposed methods to solve the formulated scheduling

problems can be summarized as follows:

Step 1. Find the values for Uif ∀i ∈ N , ∀f ∈ F by doing the analysis in Equations

5.6-12.

Step 2. Given the values for N , F , T , ϕ, ηi, ai, and Uif , find the values for Xift

∀i ∈ N , ∀f ∈ F ,∀t ∈ T by executing either of the following binary/mixed integer

programs:

(i) For throughput maximizing scheduler, execute Equations 5.13-16

(ii) For max-min fair scheduler, execute Equations 5.21-24

(iii) For weighted max-min fair scheduler, execute Equations 5.27-30

(iv) For proportionally fair scheduler, execute Equations 5.33-35

67

All scheduling problems formulated in this chapter are integer programming prob-

lems, which may in general be NP-Hard. However, some certain special cases of integer

programming problems may be solvable in polynomial time. For instance, the inte-

ger programming formulations for maximum weighted matching and minimum span-

ning tree problems are solvable in polynomial time. In Chapter 6, we prove that the

throughput maximizing scheduling problem is solvable in polynomial time, whereas the

max-min fair, weighted max-min fair, and proportionally fair scheduling problems are

NP-Hard in the strong sense. In this chapter, we propose a computationally efficient

heuristic algorithm for the fair scheduling problems.

5.1.5. Our Proposed Heuristic Algorithm

In this section, we propose a heuristic algorithm for max-min, weighted max-min

and proportionally fair schedulers. We outline our proposed heuristic in Figure 5.2

(FAIRSCH).

Ωi indicates the summation of Uif values that have hitherto been assigned to

SU i during the execution of the algorithm. Step 1 initializes all Ωi values to 0.

availSUs[t] denotes the list of SUs that have an available (free) antenna for frequency

assignment in time slot t. Since antennas of all SUs are available for all time slots at

the beginning of the execution of the algorithm, availSUs[t] values are initialized to

N in Step 2. Steps 3-5 update the Uif values for the weighted max-min fair scheduler

since constraint in Equation 5.28 is equivalent to Equation 5.22 when Uif values are

scaled to
Uif

ηi
. FAIRSCH assigns each frequency and time slot pair sequentially to an

SU. For the max-min and weighted max-min fair schedulers, Steps 8-9 assign frequency

f and time slot t to the SU that has the minimum Ω value so far among the SUs that

have an available antenna for time slot t. For the proportionally fair scheduler, Steps

11-13 assign frequency f and time slot t to the SU that gives the maximum value

for the product of Ωi values if frequency f and time slot t are assigned. newObj[i]

indicates the new objective function value, i.e., product of Ωi values, if frequency f

and time slot t are assigned to SU i. In the case of proportionally fair scheduling, our

heuristic algorithm selects the SU that gives the maximum value for this new objective

68

Require: N , F , T , Ai, Uif , ηi.

Ensure: Xift values ∀i ∈ N , ∀f ∈ F , ∀t ∈ T .

1: Ωi ← 0, ∀i ∈ N
2: availSUs[t]← N ∀i ∈ N , ∀t ∈ T
3: if Weighted Max-Min then

4: Uif ←
Uif

ηi
, ∀i ∈ N , ∀f ∈ F

5: end if

6: for f = 1 to F do

7: for t = 1 to T do

8: if Max-Min or Weighted Max-Min then

9: i∗ ← arg min
i∈availSUs[t]

Ωi

10: else

11: if Prop-Fair then

12: newObj[i]← (Ωi + Uif)×
∏

j∈ N−{i}

Ωj , ∀i ∈ availSUs[t]

13: i∗ ← arg max
i∈availSUs[t]

newObj[i]

14: end if

15: end if

16: Xi∗ft ← 1

17: Ωi∗ ← Ωi∗ +
Ui∗f

T

18: if
F
∑

f=1

Xi∗ft = ai∗ then

19: availSUs[t]← availSUs[t]− {i∗}
20: end if

21: end for

22: end for

Figure 5.2. FAIRSCH (Our proposed heuristic algorithm).

69

function. Step 16 makes the assignment to the selected SU i∗. If all antennas of SU

i∗ are assigned some frequency for time slot t, then steps 17-18 remove this SU from

the list of available SUs for time slot t (availSUs[t]). The algorithm terminates after

all frequency and time slot pairs are assigned to some SU. Note here that FAIRSCH

is a greedy algorithm since it selects the SU that yields the best possible objective

function value in each iteration. In other words, it aims to increase the throughput of

the SU with minimum (normalized) throughput in (weighted) max-min fair scheduling,

whereas it aims to maximize the product of the throughput values in proportionally

fair scheduling.

Computational Complexity: In the case of (weighted) max-min fair scheduling,

FAIRSCH scans the list of SUs in availSUs[t], the size of which is at most N during

the assignment of frequency f and time slot t. Since there are F frequencies and T time

slots, the complexity of FAIRSCH in the case of (weighted) max-min fair scheduling

is O(NFT). In the case of proportionally fair scheduling, availSUs[t] is scanned in

the calculation of each value for i in Step 12. Therefore, the complexity of Step 12 is

O(N2). Hence, the complexity of FAIRSCH in the case of proportionally fair scheduling

is O(N2FT).

5.2. Numerical Evaluation

We focus on a CRN cell with 600 meters of radius and simulate it using Java.

We elicit the Uif values in each set of simulations for 5000 scheduling periods. We

then solve the optimization problems for throughput maximizing, max-min fair, and

weighted max-min fair schedulers using CPLEX [5] and proportionally fair scheduling

problem using KNITRO [86]. We compare the performance of these schedulers by

using the same set of Uif values in each comparison. Every scheduling period consists

of T = 10 time slots and each time slot lasts for Ts = 100 milliseconds. According

to the IEEE 802.22 standard [68], it is imperative that SUs vacate a spectrum band

within two seconds from the appearance of the licensed owner (PU) of that particular

band. Therefore, we take each scheduling period equal to one second (hence consisting

of 10 time slots) since it is sufficient for proper operation. Additionally, we examine

70

our methods for additive white gaussian noise (AWGN) channels; in other words, we

take hijt = hi0t = 1, ∀i ∈ I, ∀j ∈ Φft
CBS , and ∀t ∈ T . Furthermore, ζ = 10−6 and the

maximum tolerable interference power of active PUs is P f
IFmax

= 10 milliwatts ∀f ∈ F .

Initial locations of the SUs and the PUs in the CRN cell are uniformly randomly

distributed. We use random waypoint mobility model to simulate the movement of the

SUs and the PUs. In line with this model, each SU/PU selects a target location in

the cell in a uniformly random manner and moves towards this point with a constant

velocity. After reaching its target location, each node stays there for a certain amount

of time and then chooses another target point. This movement pattern continues in

this way for each SU/PU until the end of simulation. We set the staying duration

between movement periods as 10 seconds. We represent the velocity of the SUs by Vs

and the velocity of the PUs by Vp.

OFF

f
1

f
2

f
F

.

.

.

.

pS

pS

pS

pS

1-pS

1-pS

1-pS

(1-pS)/F

(1-pS)/F

(1-pS)/F

Figure 5.3. PU spectrum occupancy model.

We model the PU spectrum utilization pattern by the finite state model illustrated

in Figure 5.3. Each PU is either in the ON or in the OFF state. ON state is comprised

of one of the F substates, each of which corresponds to being active using a frequency

among a total of F frequencies. The probability of staying in the ON or OFF states

71

is pS. The probability of selecting each frequency during switching from OFF to the

ON state is equally likely; therefore, the probability of transition from OFF state to

any frequency equals (1− ps)/F . In a slowly varying spectral environment, ps value is

typically high; consequently, we selected ps as 0.9 in our simulations.

Table 5.1. Parameter names and low/high values for the 26 factorial design.

Parameter Name Low (-) value High (+) value

N (Number of SUs) 5 30

M (Number of PUs) 5 40

F (Number of frequencies) 3 30

Vp (Velocity of PUs) 1 m/s 25 m/s

Vs (Velocity of SUs) 1 m/s 25 m/s

a (Number of antennas of SUs) 1 5

We initially utilize experimental design methods to evaluate the impacts of six pa-

rameters on the throughput maximizing scheduler using analysis of variation (ANOVA)

method [87]. We adopt a “2k factorial” experimental design method, where k = 6 since

we evaluate six parameters. In other words, we set both low (-) and high (+) values

for the k = 6 parameters and run experiments for all the 26 = 64 possible parameter

settings. After implementing the ANOVA method, we determine the statistically sig-

nificant and insignificant terms. We then run detailed experiments with the statistically

significant terms. That is to say, we initially implement factor screening experiments,

and then evaluate the impact of the significant factors. The six parameters we consid-

ered together with their low and high values are outlined in Table 5.1. For the velocities

of the nodes, we consider the case where all SUs move with the same speed and all

PUs move with the same speed. This implies that the speed of the SUs (Vs) and the

PUs (Vp) can in general be different from each other; however, the speed of an SU is

the same as the speed of the other SUs. Likewise, the speed of a PU is the same as the

speed of the other PUs. For the low values of the velocities, we take 1 meter/second

as a representative of pedestrian speed, whereas we take 25 meters/second for the high

values representing vehicular speed. Additionally, we consider the case where all SUs

72

have the same number of antennas; i.e., ai = a, ∀i ∈ N .

The number of samples that we need to take in the experiments in order to obtain

a good estimate of the actual mean depends on the variance of the data. If the variance

of the data is little, there is no point in running the experiment with too many samples.

Especially considering the fact that we solve integer linear programming problems in

CPLEX one after another, it is vital to efficiently use the computational resources. In

a data set where the variance is known, the number of samples we need to take to

ensure that the sample mean is within ±E of the actual mean with a 100(1 − α)%

confidence level is as follows [88]:

n =

⌈

(
zα/2σdata

E
)2
⌉

(5.36)

Here, zα/2 denotes the upper
α

2
% percentile of the standard normal distribution, n

represents the sample size, and σdata symbolizes the standard deviation of the data.

The ceiling operator is necessary because n has to take integer values. Note here that

2E denotes the width of the confidence interval (CI). In our experiments, we take

α = 0.05 and E = 0.5; in other words, we can say with 95% confidence level that we

are within ±0.5 of the actual mean in our experiments. Note here that samples in our

case correspond to the number of scheduling periods that we run the simulations for.

In our case, however, we do not know the actual standard deviation of our data.

Therefore, we make a statistical estimation of the standard deviation (σdata) as we

take the samples and use the formula in Equation 5.36 by plugging in our estimated

value for σdata. In other words, we employ an iterative method. We firstly take 50

samples because according to the central limit theorem at least 40 samples should be

taken in order for the formula in Equation 5.36 to be valid. Afterwards, we calculate

the standard deviation of these data with 50 samples and find the value for n using

Equation 5.36. Finally, we take the sample mean of these n+50 samples and conclude

that this estimate is our final estimate for the mean of the data. In order to verify the

validity of our method, we calculate the standard deviation of these n + 50 samples

73

and find another value for n, which we call nnew, by using Equation 5.36. If nnew is

greater than our actual sample size n+50, it implies that there is an undesired feature

associated with our data, like the samples not being independent of each other. We do

not observe this kind of problem in any of our experiments and hence the validity of

our estimation procedure for mean throughput is verified.

Table 5.2. ANOVA results.

Source Sum Squares Degrees of Mean Square F statistic P-value

Freedom Error

N 10627082.7 1 10627082.7 662798.03 0

M 115397.5 1 115397.5 7197.2 0

F 75508366.3 1 75508366.3 4709363.63 0

Vp 716.6 1 716.6 44.69 0

Vs 5363.4 1 5363.4 334.51 0

a 5654720.5 1 5654720.5 5654720.5 0

NM 6227.3 1 6227.3 388.39 0

NF 10769739.6 1 10769739.6 671695.37 0
...

...
...

...
...

...

MFVpVsa 1.4 1 1.4 0.09 0.7693

NMFVpVsa 4.6 1 4.6 0.29 0.5907

Error 296590.8 18498 16 - -

Total 250858751.9 18561 - - -

We implement multiway (n-way) ANOVA technique using MATLAB because we

have different sample sizes for each of the 64 experiments. We present in Table 5.2

some portion of the resulting ANOVA table. Using a significance level of α = 0.05, we

conclude that the terms with P-value > 0.05 are statistically insignificant.

Having eliminated some of the statistically insignificant terms using multi-way

ANOVA method, we then fit a linear regression model to the rest of the terms, the

total number of which is 37. For each term x of these 37 terms, the regression analysis

74

yields a regression coefficient rx and a 95% CI [rlx, r
h
x], where r

l
x and rhx denote the lower

and upper bounds, respectively, for the CI of rx. R2 statistic for our first regression

model is 0.986; i.e., the model explains 98.6% of the variability in the data. The rest

of the statistics are F-statistic: 52.6488, P-value: 0, and an estimate of error variance

of 182.6994. If the CI for a regression coefficient contains 0; i.e., rlx < 0 < rhx , we

conclude that this term is statistically insignificant since there is a good chance that

this regression coefficient might be equal to 0. Eliminating these terms, we obtain

another regression model with the rest of the terms, the total number of which is 14.

The statistics for our second regression model are R2 = 0.9675, F-statistic: 114.4727,

P-value: 0, and an error variance estimate of 228.3358. Note that the new model has

a significantly reduced number of terms with only a little decrease in the R2 value.

We then apply the same method of eliminating the terms with rlx < 0 < rhx and fit

a third regression model for the rest of the terms, the total number of which is 13.

We observe that none of the regression coefficients in this model contains 0 in its CI.

Moreover, 13 terms is a sufficiently simple model. The R2 statistic for this third model

equals 0.9649, which is adequate for explaining the variability in the data. Therefore,

we conclude that the terms indicated by this final regression model are the statistically

most significant ones. We present our final regression model in Table 5.3. The rest of

the statistics for this model are F-statistic: 116.8798, P-value: 0, and an error variance

estimate of 241.6234. The term β0 in the model refers to the constant term.

When we analyze this final regression model in Table 5.3, we observe that the

most significant 2-way interactions are NM,NF,NVp,MF, FVp, and Fa. Therefore,

in this chapter, we analyze the impact of NM,NF,MF, and Fa in more detail.

In analyzing each interaction, we run the experiments by setting the values of the

parameter pair of the interaction to numerous values between their (-) and (+) values,

which are indicated in Table 5.1. This way, we are able to examine in more detail how

the average total network throughput is influenced by these parameters. For instance,

for the NF interaction case we run the experiments for all possible combinations of

the N and F parameters indicated in the value range part of Table 5.4. For the rest of

the parameters, i.e., M,Vp, Vs, and a in the NF interaction case, we take their middle

75

Table 5.3. Final Regression Model.

Term Coefficient Lower limit of 95% CI Upper limit of 95% CI

β0 139.1349 135.2341 143.0357

N 63.2127 59.3119 67.1135

M 16.669 12.7682 20.5698

F 17.4247 13.5239 21.3255

Vp 6.1122 2.2114 10.013

NM -14.2436 -18.144 -10.3428

NF -13.1142 -17.015 -9.2134

NVp -4.698 -8.5988 -0.7972

MF 10.9865 7.0857 14.8873

FVp 9.9355 6.0347 13.8363

Fa 4.2739 0.3731 8.1747

NMF -4.9622 -8.863 -1.0614

NFVp -4.6089 -8.5097 -0.7081

Table 5.4. Parameter Values for Detailed Experiments.

Parameter Value Range Middle Value

N {5, 10, 15, · · · , 30} 15

M {5, 10, 15, · · · , 40} 20

F {3, 6, 9, · · · , 30} 15

Vp {1, 4, 7, · · · , 25} 13

Vs {1, 4, 7, · · · , 25} 13

a {1, 2, · · · , 5} 3

76

value, which is approximately equal to the average of their (-) and (+) values. We

outline the values of all the parameters in the detailed experiments in Table 5.4.

5 10 15 20 25 30
0

50

100

150

200

250

300

350

N (Number of SUs)

T
ot

al
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
tim

e−
sl

ot
)

F=3
F=18
F=30

Figure 5.4. Average total throughput for varying number of SUs (N) and frequencies

(F).

We present in Figure 5.4 the average total throughput results of the throughput

maximizing scheduler for only the low, middle, and high values of F . We can see in

this figure that the average total throughput is almost invariant for varying N when

F is small. This is because the number of resources in the system (F) is so little that

it does not make much difference to have an increasing number of SUs in the system

since almost all resources are already occupied by all SUs even when the number of SUs

is little. As F increases, increasing the number of SUs increases the average network

throughput. This increase continues until some point after which the average network

throughput saturates.

We present in Figure 5.5 the results for the NM interaction for the throughput

maximizing scheduler, i.e., how the average total network throughput is affected by

varying N and M . We can see that the total network throughput decreases as the

number of PUs in the CRN cell (M) increases. Increasing the number of PUs implies

a decrease in the transmission power of the SUs and consequently their data rate in

order not to disturb these PUs. The increase in the total network throughput as the

77

5 10 15 20 25 30
145

150

155

160

165

170

175

180

N (Number of SUs)

T
ot

al
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
tim

e−
sl

ot
)

M=5 PUs
M=10 PUs
M=15 PUs
M=20 PUs
M=25 PUs
M=30 PUs
M=35 PUs
M=40 PUs

Figure 5.5. Average total network throughput for throughput maximizing scheduler

for varying N and M .

number of SUs (N) increases, on the other hand, can be attributed to the opportunistic

nature of the throughput maximizing scheduler. A frequency and time slot pair can be

regarded as a resource that needs to be assigned to only one SU. Because this resource

is most of the time (except in order to comply with the time slot constraint in Equation

5.14 and antenna constraint in Equation 5.16) assigned to the SU that has the best

channel conditions (the maximum Uif value), the probability that an SU with better

channel conditions exists increases as the number of SUs increases.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

F (Number of frequencies)

T
ot

al
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
tim

e−
sl

ot
)

M=5 PUs
M=20 PUs
M=40 PUs

Figure 5.6. Average total network throughput for throughput maximizing scheduler

for varying N and F .

78

Figure 5.6 shows the results for the MF interaction for the throughput maximiz-

ing scheduler. Because of the same reasoning as in Figure 5.5, the total average network

throughput decreases also here as the number of PUs in the CRN cell increases. More-

over, we can observe that the total network throughput increases almost linearly with

the number of frequencies (F) in the CRN cell. This observation is intuitive because

the more frequencies there are in the CRN cell, the more resources there are for the

SUs to send their data through. Furthermore, we can observe that the number of

frequencies is a very important factor on the network throughput. In fact, it is even

more important than the number of PUs in the CRN cell since decreasing the number

of frequencies in the CRN cell has more impact on decreasing the network throughput

in comparison to increasing the number of PUs in the CRN cell.

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

F (Number of frequencies)

T
ot

al
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
tim

e−
sl

ot
)

a = 1 antenna
a = 2 antennas
a = 3 antennas
a = 4 antennas
a = 5 antennas

Figure 5.7. Average total network throughput for throughput maximizing scheduler

for varying F and a.

We show in Figure 5.7 the results for the Fa interaction for the throughput

maximizing scheduler. We see that increasing the number of antennas of the SUs

makes sense only when there is a certain number of frequencies in the system. For

instance, having one antenna has almost the same effect as having multiple antennas

when the number of frequencies is less than 15. On the other hand, when the number of

frequencies is between 15 and 30, increasing the number of antennas from 1 to 2 makes

a significant difference; nevertheless, having more than two antennas still does not

make sense. We see a similar behavior at F = 30; i.e., when each SU has 2 antennas,

79

having F > 30 does not increase the total throughput. The reason for this behavior is

constraint in Equation 5.14, which ensures that each SU is assigned at least one time

slot. In order to comply with this constraint, the scheduler tends to initially assign

some frequency to the first antenna of each SU and then continue assigning frequencies

to the other antennas. Recall that N = 15 in Figure 5.7. Until the point where N = F ,

the scheduler assigns the frequencies to the first antennas of each SU. Increasing the

number of antennas has a similar effect on total throughput as increasing the number of

SUs. Hence, between F = N and F = 2N , the scheduler tends to assign the frequencies

to the second antennas of each SU. Bear in mind that this is the average case behavior

of the scheduler. Taking this scheduler behavior into consideration, we conclude that

a centralized network entity responsible for assigning frequency bands to several CBSs

may opt not to assign more frequencies (F) than a×N to a particular CBS since it does

not bring any additional total throughput advantage to this CRN cell. Likewise, the

decision about how many antennas the SUs should have can be made by considering

the number of frequencies (F) in the CRN cell since having multiple antennas has an

additional hardware cost.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

SU ID

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e−

sl
ot

)

Window Size = 5

Thr−Max
Max−Min
Weighted Max−Min
Prop−Fair

Ω
MaxMin
UB

(Upper bound for minimum
 throughput in Max−Min)
↑

(a) Average throughput of all the SUs.

0

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 to
ta

l t
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

Window Size = 5

Thr−Max
Max−Min
Weighted Max−Min
Prop−Fair

(b) Average total throughput.

Figure 5.8. All schedulers for N = 5, window size (ϕ) = 5, and target weights:

η1 = 0.05, η2 = 0.1, η3 = 0.2, η4 = 0.25, η5 = 0.4.

Figure 5.8 displays the behavior of throughput maximizing scheduler (Thr-Max),

max-min fair scheduler (Max-Min), weighted max-min fair scheduler (Weighted Max-

Min), and proportionally fair scheduler (Prop-Fair) for N = 5 SUs, window size (ϕ)

80

= 5, where the other parameters (M , F , Vp, Vs, and a) are set to their middle values,

as shown in Table 5.4. Target weights for the weighted max-min fair scheduler are

η1 = 0.05, η2 = 0.1, η3 = 0.2, η4 = 0.25, η5 = 0.4. We can see here that when

compared with the throughput maximizing scheduler, max-min fair scheduler achieves

more uniform throughput among the SUs at the expense of a small decrease in the total

network throughput, hence achieving fairness. We also present the value for ΩUB
MaxMin

described and proved in Theorem 5.1, i.e., theoretical upper bound for the minimum

throughput in the max-min fair scheduler. We can see that the optimal minimum

throughput achieved by the max-min fair scheduler is close to its theoretical upper

bound. Throughput values achieved by the weighted max-min fair scheduler, on the

other hand, are in line with their target weights at the expense of less total network

throughput than the other two schedulers. Besides, proportionally fair scheduler also

results in similar throughput values among the SUs; however, the resulting throughput

values are not as close to each other as in the max-min fair scheduler. Throughput

values of each SU are closer to the throughput values in the throughput maximizing

scheduler. In other words, proportionally fair scheduler, as expected, exhibits a tradeoff

between users’ satisfaction and system revenue.

Table 5.5. Achieved and target throughput ratios for weighted max-min fair

scheduler.

SU ϕ = 1 ϕ = 5 ϕ = 10 ϕ = 15 ϕ = 20 ϕ = 25 ϕ = 30 ϕ = 35 ϕ = 40 ϕ = 45 ϕ = 50 Target

index Weight

(η)

SU-1 0.057 0.085 0.108 0.121 0.133 0.142 0.148 0.153 0.157 0.16 0.163 0.05

SU-2 0.105 0.141 0.162 0.174 0.179 0.184 0.186 0.188 0.189 0.191 0.192 0.1

SU-3 0.195 0.222 0.221 0.219 0.217 0.215 0.213 0.212 0.211 0.21 0.21 0.2

SU-4 0.249 0.248 0.238 0.231 0.226 0.222 0.22 0.218 0.216 0.215 0.213 0.25

SU-5 0.391 0.302 0.268 0.252 0.242 0.235 0.23 0.227 0.224 0.222 0.22 0.4

We run a similar experiment with window size (ϕ) = 10 and observe that the

total throughput achieved by the weighted max-min fair scheduler with ϕ = 10 is more

than the one achieved by the weighted max-min fair scheduler with ϕ = 5. We also

81

observe that this increase in total throughput is accomplished at the expense of a small

deviation from the target weights. In contrast, performances of max-min fair sched-

uler and proportionally fair scheduler do not change much with varying window size.

Therefore, we have decided to analyze the impact of window size on these schedulers

in more detail. We do not explicitly show the results of the experiment with ϕ = 10

in a separate figure since we show in the sequel the results of this experiment as part

of all the results in Figure 5.9 and Table 5.5.

In Table 5.5, we show the resulting throughput ratios of each SU for varying

window size. Apparently, the deviation from target weights increases as the window

size increases. When we compare the cases where ϕ = 1 and ϕ = 50, we can see that

the deviation from target weights can become quite large.

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

Window Size

A
ve

ra
ge

 to
ta

l t
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

Average Total Throughput for Varying Window Size

Thr−Max
Max−Min
Weighted Max−Min
Prop−Fair

(a) Average total throughput.

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Window Size

A
ve

ra
ge

 J
ai

n
F

ai
rn

es
s

In
de

x

Average Jain Fairness Index for Varying Window Size

Thr−Max
Max−Min
Weighted Max−Min
Prop−Fair

(b) Average Jain fairness index.

Figure 5.9. All schedulers for varying window size (ϕ), N = 5, and target weights:

η1 = 0.05, η2 = 0.1, η3 = 0.2, η4 = 0.25, η5 = 0.4.

Jain’s index is a commonly used fairness index in the literature [89]. It is calcu-

lated as
(
∑N

i=1Ωi)
2

N ×∑N
i=1Ω

2
i

, where Ωi is the throughput of SU i and N is the total number

of SUs. Jain’s index becomes closer to 1 as the throughput values of the SUs become

closer to each other. The minimum and maximum values that it can take are
1

N
and

1, respectively [89]. We present in Figure 5.9a the total average throughput values and

in Figure 5.9b the average Jain fairness index values for all schedulers with varying

window size (ϕ). The performance of throughput maximizing scheduler in terms of

82

both criteria naturally remains constant since window size is not a parameter of this

scheduler. The total throughput and Jain index performances of max-min fair and

proportionally fair schedulers, on the other hand, are almost invariant of the window

size. However, the performance of the weighted max-min fair scheduler is significantly

affected by the window size in terms of both performance criteria. The total through-

put increases as the window size increases until it saturates at some point and becomes

close to the total throughput of max-min fair scheduler. Hence, we observe that our

windowing mechanism provides our weighted max-min fair scheduler with the flexibil-

ity to provide a tradeoff between maximizing total throughput and adhering to the

target throughput proportions.

Throughput and fairness results in Figure 5.9 call for weighted max-min fair

schedulers that determine the optimal window size (ϕ) achieving a certain through-

put or fairness objective. First, in line with our observations in Figure 5.9a, we can

formulate the following scheduling problem:

max Z ′ (5.37)

s.t.

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

T
≥ Ω (5.38)

5.28, and 5.29 (5.39)

where Ω is the desired minimum total throughput value, which is fed as an input

variable to the optimization problem in Equations 5.37-39. Unlike in Equations 5.27-

30, the variable ϕ is a decision variable rather than an input variable.

Second, in line with our observations in Figure 5.9b, we can formulate the follow-

83

ing scheduling problem:

max Z ′ (5.40)

s.t.

(

N
∑

i=1

F
∑

f=1

T
∑

t=1

UifXift

T
)2

N ×
N
∑

i=1

(
F
∑

f=1

T
∑

t=1

UifXift

T
)2

≥ J (5.41)

5.28, and 5.29 (5.42)

where J is the desired Jain’s fairness index value, which is fed as an input variable

to the optimization problem in Equations 5.40-42. Again unlike in Equations 5.27-30,

the variable ϕ is a decision variable rather than an input variable. Both problems in

Equations 5.37-39 and Equations 5.40-42 are nonlinear integer programming problems;

therefore, they are computationally difficult. Finding efficient algorithms to address

these problems is a research challenge, which is left as future work.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Number of SUs (N)

A
ve

ra
ge

 to
ta

l t
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

Average Total Throughput for Varying Number of SUs

Thr−Max
Max−Min
Prop−Fair

(a) Average total throughput.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of SUs (N)

A
ve

ra
ge

 J
ai

n
F

ai
rn

es
s

In
de

x

Average Jain Fairness Index for Varying Number of SUs

Thr−Max
Max−Min
Prop−Fair

(b) Average Jain fairness index.

Figure 5.10. Throughput maximizing, max-min fair, and proportionally fair

schedulers for varying number of SUs, F = 15, and ϕ = 5.

We present in Figure 5.10 the average total throughput and average Jain index

values of throughput maximizing, max-min fair, and proportionally fair schedulers for

ϕ = 5 and varying number of secondary users, where the other parameters (M , F , Vp,

84

Vs, a) are set to their middle values. We do not present the values for the weighted

max-min fair scheduler here because the target weights of each SU have to change as

the number of SUs increases and these different simulation scenarios cannot be com-

pared when there are different target weights. Furthermore, target weights become

very small as the number of SUs increases and it becomes difficult to truly assess the

throughput and fairness performance of the weighted max-min fair scheduler. Recall

that the throughput maximizing scheduler assigns the resources (frequencies and time

slots) most of the time to the SU that has the best channel conditions and the prob-

ability that an SU with better channel conditions exists increases as the number of

SUs in the CRN cell increases. This multiuser diversity created by the opportunis-

tic behavior of the throughput maximizing scheduler increases the variation between

the SU throughput values and hence decreases Jain’s fairness index as the number

of SUs increases. Max-min fair scheduler exhibits the highest Jain’s fairness index

and the lowest total throughput since its objective is to make the throughput values

as close to each other as possible. Proportionally fair scheduler, on the other hand,

again displays a tradeoff between the overall system revenue (total throughput) and

individual throughput values. Its total throughput and Jain’s index are between the

corresponding values of the throughput maximizing scheduler and the max-min fair

scheduler.

5 10 15 20 25 30
0

5

10

15

20

25

30

Number of SUs (N)

A
ve

ra
ge

 m
in

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e−

sl
ot

)

Average Minimum Throughput for Varying Number of SUs

Max−Min
Heuristic−MMFS

(a) Performance of max-min fair scheduling

5 10 15 20 25 30
6

8

10

12

14

16

18

20

22

Number of SUs (N)

A
ve

ra
ge

 to
ta

l l
og

ar
ith

m
ic

 th
ro

ug
hp

ut

Average Total Logarithmic Throughput for Varying Number of SUs

Prop−Fair
Heuristic−PFS

(b) Performance of proportionally fair scheduling

Figure 5.11. Performance of our heuristic algorithm for varying number of SUs.

Figure 5.11a shows the average minimum throughput (objective function value)

85

of CPLEX results (Max-Min) and our heuristic algorithm (Heuristic-MMFS) for M =

20, F = 15, Vp = Vs = 13 m/s, ai = 3 ∀i ∈ N , ϕ = 5, and varying number of

SUs. Our proposed heuristic yields close performance to the values obtained from

CPLEX. Furthermore, we also observe that average minimum throughput decreases as

the number of SUs increases since the amount of resources that each SU can receive

decreases as there are more SUs competing for the same amount of resources. Figure

5.11b shows the sum of logarithms of SU throughput values (objective function value)

of KNITRO results (Prop-Fair) and our heuristic algorithm (Heuristic-PFS) for the

same parameters as in Figure 5.11a. Results demonstrate that our proposed heuristic

yields very close performance to the values obtained from KNITRO. Objective function

value increases as the number of SUs increases; however, they saturate at some point.

This behavior is due to the logarithm in the objective function value.

Figure 5.12a shows the average minimum throughput (objective function value) of

CPLEX results (Max-Min) and our heuristic algorithm (Heuristic-MMFS) for N = 5,

M = 20, Vp = Vs = 13 m/s, ai = 3 ∀i ∈ N , ϕ = 5, and varying number of SUs.

Our proposed heuristic yields close performance to the values obtained from CPLEX.

Furthermore, we also observe that average minimum throughput in general increases

as F increases since there are more resources to be shared by the same number of

SUs. Figure 5.12b shows the normalized average minimum throughput (objective

function value) of CPLEX results (Weighted Max-Min) and our heuristic algorithm

(Heuristic-Weighted-MMFS) for the same parameters, where normalized average min-

imum throughput indicates the minimum throughput obtained after the Uif values are

updated as
Uif

ηi
in Steps 3-5 of Algorithm FAIRSCH in Figure 5.2. Results demonstrate

that our heuristic algorithm achieves close results to the ones obtained from CPLEX.

Figure 5.12c shows the sum of logarithms of SU throughput values (objective function

value) of KNITRO results (Prop-Fair) and our heuristic algorithm (Heuristic-PFS) for

the same parameters. Results demonstrate that our proposed heuristic yields very close

performance to the values obtained from KNITRO. Objective function value increases

as the number of SUs increases; however, they saturate at some point. This behavior

is due to the logarithm in the objective function value.

86

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Number of Frequencies (F)

A
ve

ra
ge

 m
in

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e−

sl
ot

)

Average Minimum Throughput for Varying Number of Frequencies, N=5

Max−Min
Heuristic−MMFS

(a) Performance of max-min fair scheduling

0 5 10 15 20 25 30
20

30

40

50

60

70

80

Number of Frequencies (F)

A
ve

ra
ge

 n
or

m
al

iz
ed

 m
in

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e−

sl
ot

)Average Normalized Minimum Throughput for Varying Number of Frequencies, N=5

Weighted Max−Min
Heuristic−Weighted−MMFS

(b) Performance of weighted max-min fair schedul-

ing

0 5 10 15 20 25 30
3

4

5

6

7

8

9

Number of Frequencies (F)

A
ve

ra
ge

 to
ta

l l
og

ar
ith

m
ic

 th
ro

ug
hp

ut

Average Total Logarithmic Throughput for Varying Number of Frequencies, N=5

Prop−Fair
Heuristic−PFS

(c) Performance of proportionally fair scheduling

Figure 5.12. Performance of our heuristic algorithm for N=5 and varying number of

frequencies.

87

0 5 10 15 20 25 30
0

5

10

15

20

25

Number of Frequencies (F)

A
ve

ra
ge

 m
in

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e−

sl
ot

)
Average Minimum Throughput for Varying Number of Frequencies, N=15

Max−Min
Heuristic−MMFS

(a) Performance of max-min fair scheduling

0 5 10 15 20 25 30
0

5

10

15

20

25

Number of Frequencies (F)

A
ve

ra
ge

 to
ta

l l
og

ar
ith

m
ic

 th
ro

ug
hp

ut

Average Total Logarithmic Throughput for Varying Number of Frequencies, N=15

Prop−Fair
Heuristic−PFS

(b) Performance of proportionally fair scheduling

Figure 5.13. Performance of our heuristic algorithm for N=15 and varying number of

frequencies.

Figure 5.13 shows the average minimum throughput (objective function value) of

CPLEX results (Max-Min) and our heuristic algorithm (Heuristic-MMFS) for N = 15,

M = 20, Vp = Vs = 13 m/s, ai = 3 ∀i ∈ N , ϕ = 5, and varying number of frequencies.

Our proposed heuristic yields close performance to the values obtained from CPLEX.

Figure 5.13b shows the sum of logarithms of SU throughput values (objective function

value) of KNITRO results (Prop-Fair) and our heuristic algorithm (Heuristic-PFS) for

the same parameters. Results demonstrate that our proposed heuristic yields very close

performance to the values obtained from KNITRO.

88

6. GRAPH THEORETIC APPROACH TO

THROUGHPUT MAXIMIZING AND FAIR SCHEDULERS

In Chapter 5, we have formulated throughput maximizing, max-min fair, weighted

max-min fair, and proportionally fair scheduling problems, which are referred to as

TMS, MMFS, weighted MMFS, and PFS, respectively. In this chapter, we present

a graph theoretic approach to these problems. Our contributions can be summarized

as follows:

(i) We propose a polynomial time algorithm for the TMS problem

(ii) We investigate the combinatorial properties of certain special cases of the TMS

problem and analyze their relations with various combinatorial optimization prob-

lems in the literature such as the multiple knapsack and terminal assignment

problems

(iii) We investigate the computational hardness of the MMFS problem and some of

its special cases in terms of NP-hardness and inapproximability

(iv) We propose an approximation algorithm for the MMFS problem with approx-

imation ratio depending on the maximum possible data rates of the secondary

users and evaluate its performance via simulations

(v) We prove that the PFS problem is NP-Hard in the strong sense

(vi) We propose more efficient integer programming formulations for all the three

problems

6.1. Proposed Solutions

6.1.1. Preliminaries

Approximation Algorithms: Let Π be a maximization problem and ρ ≥ 1. A

(feasible) solution s of an instance I of Π is a ρ-approximation if its objective function

value OΠ(s) is at least a factor ρ of the optimal objective function value O∗
Π(I) of I,

89

i.e., OΠ(s) ≥
O∗

Π(I)

ρ
. An algorithm ALG is said to be a ρ-approximation algorithm for

a maximization problem Π if ALG returns a ρ-approximation for every instance I of

Π supplied to it. A problem Π is said to be ρ-approximable if there is a polynomial-

time ρ-approximation algorithm for it. Π is said to be ρ-inapproximable if there is no

polynomial-time ρ-approximation algorithm for it unless P = NP . An approximation

ratio preserving (polynomial time) reduction from a maximization problem Π to a

maximization problem Π′ is a pair of algorithms (f, g) such that (a) f transforms

every instance I of Π to an instance I ′ = f(I) of Π′, and (b) g transforms every ρ-

approximation s′ of I ′ = f(I) to a ρ-approximation g(s′) of I. We denote this fact

by Π �APX Π′. Π and Π′ are said to be equivalent under approximation preserving

reductions if Π �APX Π′ and Π′ �APX Π. A polynomial time approximation scheme

(PTAS) for a problem Π is an algorithm ALG which takes as input both the instance

I and an error bound ǫ, runs in time polynomial in |I| and has approximation ratio

(1 + ǫ). In fact, such an algorithm ALG is a family of algorithms ALGǫ that has

approximation ratio (1+ ǫ) for any instance I. The running time of a PTAS is required

to be polynomial in |I| for every fixed ǫ but can be different for different ǫ.

Matchings: I-matching and I-factor are defined as follows [90]: Let G = (V,E)

be a (multi)graph with weight function w : E → R on its edges, and let I be a

function associating an interval of natural numbers with each vertex in V . We denote

by δG(v) the set of incident edges of V in G, i.e. δG(v) = {e ∈ E|v ∈ e}, and

dG(v) = |δG(v)| is the degree of v in G. An I-matching is a function m: E → N such

that for v ∈ V ,
∑

e∈δG(v)m(e) lies in the interval I(v). An I-factor is an I-matching

such that m: E → {0, 1}. A matching is an I-factor such that I(v) = {0, 1} for each
v ∈ V . In particular if I(v) = {1} for each v ∈ V it is called a perfect matching. A

maximum weighted I-factor is an I-factor m such that
∑

e∈Em(e).w(e) is maximized.

A maximum weighted I-factor can be found in polynomial time [91,92]. An I-factor m

corresponds to a sub(multi)graph M of G such that the multiplicity of the edges of G

in M is given by the function m. With slight abuse of notation, M will also be called

an I-factor.

90

Let G = (U, V, E) be an edge weighted bipartite (multi)graph. Let b(u) =
∑

e∈δG(u) m(e).w(e), ∀u ∈ U . A max-min weighted I-factor is an I-factor m such that

min
u∈U

b(u) is maximized. In the rest of this chapter, we use the terms maximum I-factor

and max-min I-factor to mean maximum weighted I-factor and max-min weighted

I-factor, respectively. Since our focus is on edge weighted graphs, the implication

to the weighted case is implicit.

The Santa Claus Problem: The Santa Claus problem is defined in [93]:

Santa Claus has a set of presents that she wants to distribute among a set of kids.

Each present has a different value for different kids. The happiness of a kid is the sum

of the values of the presents she gets. Santa’s goal is to distribute the presents in such

a way that the least happy kid is as happy as possible.

In the sequel, we propose equivalent simpler ILP formulations for the TMS,

MMFS, and PFS problems.

Lemma 6.1. Let Π be an optimization problem that involves the variables Xift only in

the form
T
∑

t=1

Xift in its objective function Oπ and also in all its constraints except con-

straints in Equations 5.15, 5.16 and 5.17. Let Π′ be the optimization problem obtained

from Π by substituting

Yif =

T
∑

t=1

Xift, ∀i ∈ N , ∀f ∈ F (6.1)

in OΠ and all the constraints except Equations 5.15, 5.16, 5.17 and by replacing the

constraints in Equations 5.15, 5.16 and 5.17 by the following constraints:

N
∑

i=1

Yif ≤ T ; ∀f ∈ F (6.2)

F
∑

f=1

Yif ≤ ai · T ; ∀i ∈ N (6.3)

Yif ∈ N; ∀i ∈ N , ∀f ∈ F . (6.4)

91

Then Π and Π′ are equivalent under approximation preserving reductions.

Proof. It is sufficient to show that any solution X of Π can be converted in polynomial

time to a solution Y of Π′ with OΠ′(Y) = OΠ(X), and vice versa. In particular this

holds also for an optimal solution X∗, thus both problems have the same optimum, and

a ρ-approximated solution for one problem corresponds to a ρ-approximated solution

for the other.

One direction is immediate. Indeed given a solution X of Π, the solution Y

defined by Equation 6.1 clearly satisfies all the constraints except Equations 6.2, 6.3

and 6.4 because these constraints were obtained by substituting Equation 6.1 in the

original constraints that are satisfied by our assumption. Moreover, OΠ′(Y) = OΠ(X)

for the same reason. On the other hand, note that the constraints in Equations 6.2,

6.3 and 6.4 are obtained by summing up T inequalities of type Equations 5.15, 5.16

and 5.17, respectively, each of which is satisfied by our assumption.

Now assume that we are given a solution Y of Π′. Any decomposition of Y into

Xift, ∀i ∈ N , ∀f ∈ F , ∀t ∈ T satisfying Equation 6.1, clearly satisfies all constraints

except Equations 5.15, 5.16 and 5.17 and also Oπ(X) = Oπ′(Y) for the same reason

as in the previous paragraph. In the sequel we give a polynomial-time algorithm that

finds such a decomposition and also satisfies the constraints in Equations 5.15, 5.16,

5.17. From the vector Y we build a bipartite multi-graph G = (U, V, E) such that

U = {u1, . . . , uN}, V = {v1, . . . , vF}, and there are Yif parallel edges connecting ui ∈ U

and vf ∈ V . The degree of a vertex vf ∈ V is at most T by constraint in Equation

6.2 and the degree of a vertex ui ∈ U is at most ai · T by constraint in Equation 6.3.

Consider the bipartite graph G′ = (U ′, V, E ′) obtained from G by replacing each vertex

ui ∈ U with ai vertices in U ′ and dividing the at most ai · T edges adjacent to ui

to these new vertices such that each vertex receives at most T edges. The degree of

each vertex of G′ is at most T . Let G′′ = (U ′′, V ′′, E ′′) be the graph obtained from

G′ by adding ||U ′| − |V || dummy vertices to either U ′ or V so that |U ′′| = |V ′′| and
adding dummy edges as long as there are vertices with degree less than T . G′′ is a T -

regular bipartite graph. A well-known classical result by the works of König, Hall and

92

Tutte [94–96] implies that such a graph contains a perfect matching and it can be found

in polynomial time using the Hungarian algorithm. Removing a perfect matching from

G′′ one remains with a (T −1)-regular bipartite graph. Applying this inductively, G′′ is

partitioned into T perfect matchings M ′′
1 , . . . ,M

′′
T . By removing all the dummy edges

and vertices of G′′ from these perfect matchings we obtain T matchings M ′
1, . . . ,M

′
T of

G′. In each matching M ′
t , ∀t ∈ T we contract back the ai vertices of U

′ to the node ui

for every i ∈ N , to get T bipartite graphs M1, . . . ,MT where each vertex ui ∈ U has

degree at most ai and each node vf ∈ V has degree at most 1. Let Xift = 1 if ui is

adjacent to vf in Mt and 0 otherwise. We conclude that X satisfies Equations 5.15,

5.16 and 5.17.

Note that the formulation of Π′ has less variables and constraints than the for-

mulation of Π; therefore, it is computationally more efficient if we are looking for exact

solutions or using optimization software such as CPLEX [5] to find nearly optimal

solutions.

Corollary 6.1. The TMS problem is equivalent to find the vector Y given by the

following ILP formulation.

max
N
∑

i=1

F
∑

f=1

UifYif (6.5)

s.t.

F
∑

f=1

Yif ≥ 1; ∀i ∈ N (6.6)

(6.2),(6.3) and (6.4)

Corollary 6.2. The MMFS problem is equivalent to find the vector Y given by the

93

following ILP formulation.

max Z (6.7)

s.t.

Z ≤(1− 1

ϕ
)Ri

ϕ +
1

ϕ

F
∑

f=1

UifYif

T
; ∀i ∈ N (6.8)

(6.6),(6.2), (6.3) and (6.4)

Corollary 6.3. The PFS problem is equivalent to find the vector Y given by the

following ILP formulation.

max

N
∏

i=1

(

(1− 1

ϕ
)Ri

ϕ +
1

ϕ

F
∑

f=1

UifYif

T

)

(6.9)

s.t.

(6.6),(6.2), (6.3) and (6.4)

6.1.2. Algorithms for the TMS Problem

6.1.2.1. A Polynomial-Time Algorithm.

Theorem 6.1. There exists a polynomial time algorithm for the TMS problem.

Proof. Algorithm THRMAX in Figure 6.1 is an optimal algorithm for the TMS prob-

lem. Notice here that the lower bound 1 of I(ui) in line 6 is equivalent to constraint in

Equation 6.6. Besides, the upper bound T of I(vf) in line 7 is equivalent to Equation

6.2, and the upper bound ai · T of I(ui) in line 6 is equivalent to Equation 6.3.

Clearly all the steps except line 8 of the algorithm can be performed in polyno-

mial time. Line 8 calculates a maximum weighted I-factor. This problem is solvable

in polynomial time for general graphs [91]. However, as G is a bipartite graph, its

94

Require: N , F , ai, ∀i ∈ N .

Ensure: Yif values ∀i ∈ N , ∀f ∈ F .

1: Build an edge weighted bipartite (multi)graph G = (U, V, E) as follows:

2: For each i ∈ N add a vertex ui to U .

3: For each f ∈ F add a vertex vf to V .

4: For each pair of vertices ui ∈ U and vf ∈ V , add

the edge {ui, vf} to E with weight Uif .

5: Define the following function I, which associates an interval of natural numbers

with each vertex in G:

6: I(ui) = [1, ai · T], ∀i ∈ N
7: I(vf) = [0, T], ∀f ∈ F
8: Find a maximum weighted I-factor M of G.

9: For all i ∈ N and f ∈ F , let Yif be equal to the number of edges between

vertices ui and vf in the I-factor M .

Figure 6.1. Algorithm THRMAX.

incidence matrix is totally unimodular. As such, the vertices of the polyhedron corre-

sponding to the linear constraints are integral; in particular, any optimal solution of it

is integral. We conclude that the integrality constraints in Equation 6.4 are redundant

and thus can be removed. The linear program relaxation obtained in this way can be

solved in polynomial time.

6.1.2.2. Special Cases.

Case 1: Ignore constraint in Equation 6.6 in the TMS formulation. Recall that this

constraint ensures that each SU is assigned at least one time slot and therefore achieves

temporal fairness. Without this temporal fairness constraint in the problem formula-

tion, some SUs with bad channel conditions may end up with being unable to send any

packets for a long time. Some transport layer protocols such as TCP close the connec-

tion if no packets are received for a certain amount of time. Constraint in Equation

6.6 gives each SU the opportunity to send at least something and therefore avoids this

undesired disconnection situation caused by transport layer protocols. A CBS oper-

95

ator may prefer to ignore constraint in Equation 6.6 if it does not have any concern

with this transport layer behavior or temporal fairness. Ignoring constraint in Equa-

tion 6.6 causes the TMS scheduler to behave more opportunistically and increases the

possibility to increase the total throughput at the expense of sacrificing from temporal

fairness.

In this case, we can solve the following ILP and apply its solution in every time

slot t ∈ T :

max

N
∑

i=1

F
∑

f=1

UifYif (6.10)

s.t.

N
∑

i=1

Yif ≤ 1; ∀f ∈ F (6.11)

F
∑

f=1

Yif ≤ ai; ∀i ∈ N (6.12)

Yif ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F (6.13)

where Yif is 1 if SU i is assigned to frequency f (in all time slots), and 0 otherwise.

Clearly, a method similar to the one in Algorithm THRMAX can be used. The function

I is defined as follows: I(ui) = [0, ai], ∀i ∈ N , and I(vf) = [0, 1], ∀f ∈ F . However,

there are other methods to solve this special case. In the following, we discuss about

these alternative ways and the relation of this special case with other combinatorial

optimization problems such as the multiple knapsack and terminal assignment prob-

lems.

Relation with Other Combinatorial Optimization Problems: This problem is a

variant of the knapsack problem, where the frequencies correspond to the items and the

SUs correspond to the knapsacks each with capacity ai. The general case of Equation

6.12 would be
F
∑

f=1

wifYif ≤ ai, where wif values correspond to the weights of the items.

Hence, constraint in Equation 6.12 is a special case where wif = 1, ∀i ∈ N , ∀f ∈ F .

96

In essence, the problem in Equations 6.10-12 is a multiple knapsack problem

(MKP) where the item profits (Uif) vary with knapsacks and all item sizes are identical.

The authors of [97] state that the special case of MKP where the item profits vary with

bins and all item sizes are identical is solvable in polynomial time. Besides, the work

in [98] presents the case with generalized wif as a variant of the generalized assignment

problem (GAP), called LEGAP. This problem is also referred to in the operations re-

search literature as the loading problem, where the items (frequencies) are loaded into

containers (SUs) of different capacities (antennas) such that container capacities are

not violated. In the centralized network design literature, this problem is also referred

to as the terminal assignment problem, where terminals (frequencies) are assigned to

the concentrators (SUs). Likewise, the case where all the terminal weights are identical

can be solved in polynomial time by alternating chain algorithms [99].

Case 2: Ignore constraints in Equations 6.6 and 6.3 in the TMS formulation.

Notice that ignoring constraint in Equation 6.3 is equivalent to having ai ≥ F, ∀i ∈ N .

Then, the optimal solution is to assign each frequency f in every time slot to the SU

that has the highest Uif value for frequency f , breaking ties arbitrarily. In other words,

Xift = 1 if i = argmax
i

Uif , and 0 otherwise, ∀f ∈ F , ∀t ∈ T .

Case 3: Ignore constraint in Equation 6.6 and assume that ai = 1 ∀i ∈ N . In this

case, a maximum weighted bipartite matching problem between the SUs (i ∈ N) and

the frequencies (f ∈ F) can be solved and the result of this matching can be applied in

every time slot t ∈ T . Hungarian algorithm [100] can be used to solve the maximum

weighted bipartite matching problem. This technique can be extended also to the case

where the ai values are small, by replacing each node ui corresponding to SU i with ai

nodes each of which corresponds to the antennas of SU i. In this case, the reason for

ai values to be necessarily small is to obtain a polynomial reduction.

6.1.3. Algorithms for the MMFS Problem and its Complexity

We present in this section a graph theoretic approach to the MMFS problem.

Recall that we have also formulated the weighted MMFS problem in Chapter 5 in ad-

97

dition to the MMFS problem. Weighted MMFS is essentially the same computational

problem as the MMFS problem, where Uif values are replaced by
Uif

ηi
and Ri

ϕ values

are replaced by
Ri

ϕ

ηi
. All the variables except Z ′ and Yif are again input variables. The

only difference is that Uif values in MMFS are integers, whereas the
Uif

ηi
values in the

weighted MMFS are not necessarily integers. Since they appear only in the objective

function, they do not affect the computational hardness of the problem. In the rest of

this section, we mainly refer to the unweighted MMFS problem; however the entire

analysis is valid for the weighted MMFS problem as well.

6.1.3.1. Hardness Results.

Lemma 6.2. Santa Claus �APX MMFS.

Proof. Consider a special case of the MMFS problem where T = 1, ϕ = 1, and ai ≥
F , ∀i ∈ N . The optimization in this case corresponds to distributing the frequencies

to the SUs in such a way that the SU having the least throughput receives as much

throughput as possible. Because ai ≥ F ∀i ∈ N , there is practically no upper bound

on the number of frequencies that an SU can receive. This special case is exactly the

Santa Claus problem where kids are replaced by SUs and presents are replaced by

frequencies.

The Restricted Santa Claus Problem (R-Santa Claus): Due to the difficulty of

the Santa Claus problem, the attention in the theoretical computer science commu-

nity has shifted towards more special cases. One special case is the so-called restricted

Santa Claus problem (R-Santa Claus), where every present f has the same value

Uf for every kid interested in that present, i.e. Uif ∈ {Uf , 0}. The authors in [101]

have shown that it is NP-Hard to approximate the R-Santa Claus problem within

any constant factor better than 2. The result of [101] is actually implied by the work

of Lenstra et. al. [102], which proves that the problem of minimum makespan schedul-

ing in unrelated parallel machines cannot be approximated within any constant factor

better than 3/2 unless P = NP .

98

The Degree Two and Symmetric Degree Two Santa Claus Problems (D2-

Santa Claus , SD2-Santa Claus):

D2-Santa Claus is the variant of Santa Claus problem when each present has a

nonzero value for at most two kids. SD2-Santa Claus is a special case of D2-Santa

Claus where every present has the same value for both kids interested in that present.

In other words, SD2-Santa Claus is a special case of the R-Santa Claus problem

where each present has a nonzero value for at most two kids. Clearly,

Observation 6.1. SD2-Santa Claus �APX D2-Santa Claus �APX Santa Claus.

Observation 6.2. SD2-Santa Claus �APX R-Santa Claus �APX Santa Claus.

Definition 6.1. For a graph G = (V,E) with non-negative edge weights U , α(G)

is the ratio of the maximum edge weight to the minimum non-zero edge weight, i.e.

α(G) =
maxe∈E{Ue}

min{Ue|e ∈ E,Ue > 0} .

Lemma 6.3. For any ǫ > 0, the MMFS problem is (α(G)− ǫ)-inapproximable, even

when T = 1, ϕ = 1, ai ≥ F , Uif ∈ {Uf , 0} and each frequency f is usable by at most

two SUs.

Proof. This case corresponds to the SD2-Santa Claus problem. The authors in

[103] show that SD2-Santa Claus is (2 − ǫ)-inapproximable for any ǫ > 0. The

graphs used in their reduction satisfy α(G) = 2. Therefore, the lemma holds.

Note that having ϕ = 1 as in Lemma 6.3 implies that the scheduler does not

give any importance to what has happened in the recent past and focuses only in the

current scheduling period. In other words, ϕ = 1 implies that the scheduler does not

consider the historical throughput information in its current scheduling decision.

Lemma 6.4. The MMFS problem remains NP-Hard in the strong sense even when

T = 1, ϕ = 1, ai = 3, and Uif = Ujf ∀i 6= j and i, j ∈ N .

Proof. Recall that the 3-Partition problem is the problem of deciding whether a

given set of integers can be partitioned into triplets all of which have the same sum.

More precisely, given a multiset S of 3m positive integers n1, n2, . . . , n3m such that

99

∑3m
i=1 ni = m · B, can S be partitioned into m subsets S1, S2, . . . , Sm such that the

sum of the integers in each subset is B? This problem is well-known to be NP-Hard

in the strong sense. Given such an instance of the 3-Partition problem, we can

build a complete bipartite graph G = (U, V, E), where U = {S1, S2, . . . , Sm}, V =

{b1, b2, . . . , b3m}, and each edge {Si, bj} has a weight equal to nj, and ai = 3, ∀i ∈
N . Every 3-partition corresponds to a feasible solution of this new instance and vice

versa. The value of the minimum SU i is equal to B if and only if the answer to the

3-Partition problem is YES.

Lemma 6.5. The MMFS problem remains NP-Hard even when N = 2, T = 1, ϕ = 1,

Uif = Ujf , and ai ≥ F , ∀i 6= j and i, j ∈ N .

Proof. Note that this special case corresponds to the Partition problem, i.e. the

problem of deciding whether a given set of integers can be partitioned into two subsets

that have the same sum. Since the Partition problem is NP-Hard in the weak sense,

this special case is also NP-Hard in the weak sense.

6.1.3.2. Algorithms.

Lemma 6.6. MMFS �APX max-min I-factor.

Proof. Since ϕ and T are both constants, by multiplying both sides of Equation 6.8 by

ϕ ·T and substituting Ki = T (ϕ−1)Ri
ϕ and Z ′ = ZϕT we get the following constraint:

Z ′ ≤ Ki +

F
∑

f=1

UifXif ; ∀i ∈ N (6.14)

Build a bipartite (multi)graph G = (U, V, E) as follows:

(i) For each SU i ∈ N , add a vertex ui to U .

(ii) For each frequency f ∈ F , add a vertex vf to V .

(iii) Add a dummy vertex v to V .

(iv) For each pair of vertices ui ∈ U and vf ∈ V , add Yif edges {ui, vf} to E each

with weight Uif .

100

(v) For each vertex vi ∈ U , add the edge {vi, v} to E with weight Ki.

We claim that the MMFS problem is equivalent to the max-min I-factor problem

on the (multi)graph G, where the function I is as follows: I(ui) = [2, ai ·T +1] ∀vi ∈ X ,

I(vf) = [0, T] ∀vf ∈ Y , and I(v) = [N,N]. For an I-factor H of G, let Yif = 1 if and

only if the edge {ui, vf} is in H . I(v) implies that dH(v) = N . On the other hand

dG(v) = N by the construction. Therefore all the incident edges δG(v) of v are also in

H . Each node ui ∈ U has exactly one incident edge from δG(v) of utility Ki, and this

edge is in H . Therefore b(ui) = Ki+
∑F

f=1 Uif ·Yif , ∀i ∈ N . In particular this equality

holds for the minimum value, thus mini b(ui) = mini(Ki+
∑F

f=1 Uif ·Yif). We conclude

that the value of the objective function is equal to the value of the I-factor. It remains

to show that an I-factor H corresponds to a feasible solution Y and vice versa. Recall

that a node ui ∈ U has one incident edge from δG(v), thus dH(ui) − 1 incident edges

connecting it to nodes vf , ∀f ∈ F . I(ui) implies that 2 ≤ dH(ui) ≤ ai · T + 1, thus

1 ≤ dH(ui) − 1 ≤ ai · T . We conclude that constraints in Equations 6.6 and 6.2 are

satisfied by Y . On the other hand, I(vf) implies that constraint in Equation 6.3 is

satisfied. The opposite direction is shown similarly.

Theorem 6.2. There is an α(G)-approximation algorithm for the max-min I-factor

problem.

Proof. We show in the following that Algorithm MAXMINEQ in Figure 6.2 is an

α(G)-approximation algorithm for the max-min I-factor problem. Consider an optimal

max-min I-matching H∗ and the vertex ui ∈ U with minimum degree in H∗. Then

dH∗(ui) ≤ D, because otherwise all the nodes ui ∈ U have dH∗(ui) ≥ D + 1. Then H∗

constitutes an I-factor for I(ui) = [D + 1, ai · T], ∀ui ∈ U and I(vf) = [0, T], ∀vf ∈ V

contradicting the fact that D is the maximum possible value leading to a feasible

solution for the steps (7)-(9). Therefore b(ui) =
∑

e∈δH∗(ui)
Ue ≤ dH∗(ui)·maxe∈E{Ue} ≤

D ·maxe∈E{Ue}. Then

O(H∗) = min
i∈N

b(ui) ≤ D ·max
e∈E
{Ue} (6.15)

On the other hand, our algorithm MAXMINEQ returns an I-factor H such that

101

Require: N , F , ai, ∀i ∈ N .

Ensure: Yif values ∀i ∈ N , ∀f ∈ F .

1: Build an edge weighted bipartite (multi)graph G = (U, V, E) as follows:

2: For each SU i ∈ N , add a vertex ui to U .

3: For each frequency f ∈ F , add a vertex vf to V .

4: For each pair of vertices ui ∈ U and vf ∈ V , add

the edge {ui, vf} to E with weight Uif .

5: D ← mini{ai} · T .
6: Execute lines (7)-(9) iteratively by employing a binary search on D to find the

maximum possible value of D for which the below steps (7)-(9) return a feasible

solution:

7: Find an I-factor for:

8: I(ui) = [D, ai · T], ∀ui ∈ U .

9: I(vf) = [0, T], ∀vf ∈ V .

Figure 6.2. Algorithm MAXMINEQ.

dH(ui) ≥ D, ∀i ∈ N . Therefore for every ui ∈ U , b(ui) =
∑

e∈δH (ui)
Ue ≥ min{Ue|Ue >

0, e ∈ E} · dH(ui) ≥ min{Ue|Ue > 0, e ∈ E} ·D. We conclude that our solution H has

value at least O(H) = mini∈N b(ui) ≥ min{Ue|Ue > 0, e ∈ E} · D. Combining with

inequality in Equation 6.15 we conclude that
O(H)

O(H∗)
≥ α(G).

Corollary 6.4. If α(G) = 1, i.e., all nonzero Uif values are equal to each other, then

max-min I-matching is solvable in polynomial time.

Therefore we have shown the following:

Theorem 6.3. α(G) is a tight bound for the approximability of all the problems men-

tioned in this section, i.e. the max-min I-factor, MMFS, Santa Claus, R-Santa

Claus , D2-Santa Claus and SD2-Santa Claus problems.

We proceed with a few observations about special cases.

Lemma 6.7. There is a 4-approximation algorithm for the special case of the MMFS

102

problem with T = 1, Ki = 0, ai ≥ F ∀i ∈ N and each frequency f ∈ F has nonzero

Uif value for at most two SUs i ∈ N .

Proof. This special case corresponds to D2-Santa Claus, for which there exists a

4-approximation algorithm [103]. Therefore, the lemma holds.

Lemma 6.8. There exists a polynomial time approximation scheme (PTAS) for the

special case of the MMFS problem with T = 1, Ki = 0, Uif = Ujf , and ai ≥ F , ∀i 6= j

and i, j ∈ N .

Proof. The frequencies and SUs can be regarded as jobs and machines, respectively,

and this special case of the problem becomes the problem of maximizing the minimum

machine completion time on identical machines [104], which is the dual problem to the

well-known problem of makespan minimization. There exists a PTAS for the problem

of maximizing the minimum machine completion time [104] and hence the lemma

holds.

6.1.3.3. Related work on the Santa Claus Problem. Bansal and Sviridenko have shown

in [93] that the natural LP formulation of the Santa Claus problem has a big inte-

grality gap. Therefore, instead of the natural LP formulation, Bansal and Sviridenko

have considered the so-called configuration LP and showed how to round it so that the

resulting value is at least OPT/N , where N is the number of kids (SUs). They also

showed that the integrality gap is in the order of 1/
√
N . Asadpour and Saberi have

shown in [105] that it is possible to round the configuration LP such that the objective

function value is at least OPT/
√
N log3N .

The work of Bansal and Sviridenko [93] proposes a method of rounding the

configuration LP for the R-Santa Claus problem such that a factor of at most

log logN/ log log logN is lost. Afterwards, Asadpour, Feige and Saberi [106] have

shown an integrality gap of 5 for the R-Santa Claus problem, which was later im-

proved to 4 by the same authors [107]. Note here that this is an estimation ratio rather

than an approximation ratio. In other words, they have proved that the gap can be

at most 4; however, they failed to provide a polynomial time 4-approximation algo-

103

rithm. They provided a local search heuristic that returns a solution of value at least

OPT/4; nevertheless, their method is not known to run in polynomial time. Recently,

Haeupler, Saha and Srinivasan demonstrated in [108] the first constant factor approx-

imation algorithm for the R-Santa Claus problem and hence solved an important

question. Their result returns a c-approximation algorithm for some constant c; how-

ever, an explicit value for c is not provided. Therefore, there is still a gap between the

2-inapproximability result of [101] and this constant c-approximability result of [108].

Recall that the α(G)-approximation algorithm that we propose in this chapter

works for the max-min I-factor problem, which is a much more generalized version

of the general (not restricted) Santa Claus problem. Therefore, our algorithm also

works for the general Santa Claus problem, for which very few approximation results

have been found [93], [105]. The additive approximation ratio of maxif Uif in [101] can

be arbitrarily bad since it gives a very bad guarantee even when a single Uif value

is large and the others are small. The
√
N(log3N) approximation ratio of [105] can

still be bad when the number of kids (SUs) is large. On the other hand, our α(G)-

approximation algorithm gives a good approximation guarantee when the Uif values

are close to each other; i.e., it works well in a fairly uniform spectral environment where

the availabilities of all frequencies are similar for every SU. Even if the number of SUs

is very large, our algorithm gives a good approximation ratio as long as the nonzero

Uif values are close to each other; i.e., α(G) value is small. In other words, it gives a

better result than the one in [105] when there are many SUs but a uniform spectral

environment. However, it fails to provide a good approximation guarantee for highly

non-uniform spectral environments. On the other hand, when the number of kids (SUs)

is small and the values of the presents to the kids (spectral environment) are highly

non-uniform, the algorithm in [105] gives a better approximation ratio. To sum up,

our algorithm is strong in terms of two different criteria: Firstly, unlike [93] and [105],

our algorithm works for a much more general case than the Santa Claus problem.

Secondly, it gives a better approximation guarantee than the previous work when there

are a large number of SUs and the spectral environment is fairly uniform. In other

words, it provides an alternative solution so that whichever algorithm provides a better

approximation guarantee (either ours or the ones in [93] and [105]) can be chosen in a

104

practical implementation.

Authors in [101] have shown a method that gives an approximation guarantee

of OPT − maxif Uif for the general Santa Claus problem. Although their method

performs badly for high values of Uif , its performance guarantee is good for low values

of Uif . Therefore, the approximation algorithm in [93] gives good results for the special

case of the MMFS problem where Uif values are small, T = 1, Ki = 0, and ai ≥ F

∀i ∈ N .

6.1.3.4. Special Cases.

Case 1: Assume that ai = 1 ∀i ∈ N and T = 1. In this case, the problem is equivalent

to the max-min version of the linear bottleneck assignment problem (LBAP), where the

workers (frequencies) are assigned to the workstations (SUs) such that the completion

time of the job with the latest completion time is minimized. The authors in [109]

develop threshold algorithms, a dual method, and a shortest augmenting path method

for solving LBAP in polynomial time. The work in [100] also develops thresholding

methods. In particular, min-max version of LBAP is equivalent to its max-min ver-

sion [100, 109]. Note that having Ki = 0 ∀i ∈ N is not necessary here. Even when

∃i ∈ N such that Ki 6= 0, thresholding method in [100] can still be applied. However,

as in the proof of Lemma 6.6, we need a dummy vertex called v and dummy edges be-

tween each SU i and v with weight Ki, and then we need to implement the thresholding

method in this new graph.

Case 2: Recall that if we decide to neglect the past performance, then Ki =

0, ∀i ∈ N . In this case constraint in Equation 6.6 can be eliminated. The reason

for this is that the objective function already aims to assign every SU at least one

time slot because it tries to make the throughput of every SU as high as possible. If

it is possible to assign each SU at least one time slot, objective function will do it

anyway. If it is not possible, then the only difference is that the case with constraint in

Equation 6.6 declares that no feasible solution can be found, whereas the case without

105

constraint in Equation 6.6 declares that a feasible solution has been found but the

resulting objective function value is zero. Therefore, both cases are essentially the

same and hence constraint in Equation 6.6 can safely be eliminated in this special

case. This elimination reduces the number of constraints in the problem formulation

hence enables more efficient running time if optimization software such as CPLEX [5]

is used to find close to optimal solutions.

Remark 6.1. Assume that ai = 1, ∀i ∈ N and ignore constraint in Equation 6.6. In

this special case, the method of solving the problem for one time slot and applying the

same solution for all time slots (akin to the method used in special case 3 of the TMS

problem in Section 6.1.2.2) does not work. To see this, consider the following example:

There are 2 SUs and 2 frequencies. Let U11 = U21 = 3 and U21 = U22 = 0. If we

solve the problem in one time slot and apply the same solution to the other time slots,

then the result equals zero. However, we can achieve a nonzero result by assigning

different frequencies to an SU in different time slots. Assigning frequency 1 to SU 1

and frequency 2 to SU 2 in the first time slot, and assigning frequency 1 to SU 2 and

frequency 2 to SU 1 in the second time slot achieves a nonzero throughput value for

the minimum throughput.

6.1.4. Results about the PFS Problem

Theorem 6.4. The PFS problem remains NP-Hard in the strong sense even when

T = 1, ϕ = 1, ai = 3, and Uif = Ujf ∀i, j ∈ N .

Proof. Recall that the 3-Partition problem is to decide whether a given set of

integers can be partitioned into triplets that all have the same sum. Assume that

there is a polynomial time algorithm for the PFS problem. Then we can use this

algorithm to solve the 3-Partition problem as follows: Consider the special case of

the PFS problem where there are m SUs, 3m frequencies, T = 1 time slot, Uif = Ujf

∀i, j ∈ N and ai = 3 ∀i ∈ N . Every 3-partition corresponds to a feasible solution

of this special case and vice versa. Then, Si equals the sum of all the Uif values

assigned to this SU i. The values of each Si are equal to each other if and only if

the answer to the 3-Partition problem is YES. Notice that maximizing the sum of

106

logarithms of a set of numbers is equivalent to maximizing their product. Furthermore,

this product is maximized when all numbers are equal to each other. In other words,

if it is theoretically possible to make the sum of integers in each group equal to each

other (if the answer to the 3-Partition problem is YES), then the polynomial time

algorithm for the PFS problem will yield a solution where the sum of integers in each

group (the sum of Uif values assigned to each SU i) is equal to each other. If the

answer is NO, then as a result of the PFS execution, the sum of integers in each group

will not all be equal to each other; i.e., the sum in at least one group will differ from

another sum (in another group). Since the 3-Partition problem is NP-Hard in the

strong sense, PFS problem is also NP-Hard in the strong sense even when T = 1,

ϕ = 1, ai = 3, and Uif = Ujf ∀i, j ∈ N .

The Max-Log Santa Claus Problem (Max-Log-Santa Claus): This problem

is the same as the Santa Claus problem except that the goal of Santa Claus is to

maximize the sum of logarithms of the happiness of each kid.

Lemma 6.9. Max-Log-Santa Claus �APX PFS.

Proof. Consider a special case of the PFS problem where T = 1, ϕ = 1, and ai ≥ F ,

∀i ∈ N . The optimization in this case corresponds to distributing the frequencies to

the SUs in such a way that the sum of logarithms of the throughput values of each SU

is as high as possible. Because ai ≥ F ∀i ∈ N , there is practically no upper bound

on the number of frequencies that an SU can receive. This special case is exactly the

Max-Log-Santa Claus problem where kids are replaced by SUs and presents are

replaced by frequencies.

Theorem 6.5. The Max-Log-Santa Claus problem cannot have an approximation

algorithm with absolute approximation ratio better than log(
4

3
).

Proof. This result is implied by the work of Lenstra et. al. [102], which proves that the

problem of minimum makespan scheduling in unrelated parallel machines cannot be

approximated within any constant factor better than 3/2 unless P = NP . In particular,

the work in [102] proves that for the minimum makespan problem on unrelated parallel

107

machines, the question of deciding if there exists a schedule with makespan at most 2

is NP-complete. Let us consider the version of the Santa Claus problem where the

goal is to maximize the product of the happiness values of the kids. The work in [102]

implies that this version of Santa Claus cannot be approximated within any constant

factor better than 4/3 because if an assignment where each kid has a happiness value

of 2 cannot exist, then at least one kid has to have a happiness value of 3 and another

kid with happiness 1. This result implies that Max-Log-Santa Claus cannot have

an approximation algorithm with absolute approximation ratio better than log(
4

3
).

Corollary 6.5. Due to Lemma 6.9 and Theorem 6.5, PFS problem cannot have an ap-

proximation algorithm with absolute approximation ratio better than log(
4

3
) even when

T = 1, ϕ = 1, and ai ≥ F , ∀i ∈ N .

6.2. Practical Implications

Our findings in this chapter indicate that the MMFS problem has high com-

putational complexity even in very special cases. Therefore, this chapter shows that

providing throughput fairness to the SUs is a computationally challenging task for

CBS operators. To better observe the conceptual computational difficulty of providing

throughput fairness, consider the following scheduling problem:

max

N
∑

i=1

F
∑

f=1

UifYif (6.16)

s.t.

F
∑

f=1

UifYif ≥ Ω, ∀i ∈ N (6.17)

(6.6),(6.2), (6.3) and (6.4) (6.18)

where Ω is a prespecified throughput value. In this problem, the goal is to maximize

the total throughput such that each SU is guaranteed a prespecified throughput value

of Ω. If we had a polynomial time solution to this problem, we would be able to use

this solution iteratively by updating the value of Ω in each iteration and therefore find

108

the maximum value of Ω for which the above problem has a feasible solution; in other

words, we would be able to solve the MMFS problem in polynomial time. Hence,

the problem in Equations 6.16-18 is also NP-Hard in the strong sense. That is to

say, even checking whether each SU can be guaranteed a certain throughput value is a

computationally hard problem.

In contrast, the TMS problem, which maximizes total throughput while at the

same time providing temporal fairness, is solvable in polynomial time. Taking into

account the fact that scheduling decisions have to be made in real time, a CBS operator

may opt to provide temporal fairness (by executing the TMS formulation) instead of

throughput fairness. If the CBS operator prefers to use theMMFS formulation in spite

of its computational difficulties, it may check whether the special cases we have outlined

in this chapter are valid in that particular scheduling period and use the relatively

efficient methods we discussed. For instance, we have shown in this chapter that the

special case of Case-1 in Section 6.1.3.4 is solvable in polynomial time. Otherwise, the

CBS operator can check the α(G) value in that particular scheduling period. If α(G)

is low enough; i.e., if the spectral conditions are fairly uniform, the CBS operator can

use our α(G)-approximation algorithm, with a performance guarantee of
OPT

α(G)
even

when there are a large number of SUs and frequencies.

6.3. Numerical Evaluation

In Section 6.1.3 we have analytically investigated the worst case behavior of our

algorithm (MAXMINEQ) for the MMFS problem. In this section, we evaluate the

average case behavior of our α(G)-approximation algorithm (MAXMINEQ) through

simulations. We have used the same simulation conditions as in Chapter 5. The

simulated centralized CRN cell has 600 meters of radius. Moreover, ζ = 10−6, PIFmax
=

10 milliwatts for each frequency, T = 10 time slots, and Ts = 100 ms. Furthermore,

AWGN channels and the same random waypoint mobility model as in Chapter 5 are

used.

We take M = 20, F = 15, Vp = Vs = 13 m/s, and ai = 3 ∀i ∈ N . We compare the

109

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Number of SUs (N)

A
ve

ra
ge

 M
in

im
um

 T
hr

ou
gh

pu
t (

pa
ck

et
s/

tim
e−

sl
ot

)

Average Minimum Throughput for Varying Number of SUs

CPLEX
MAXMINEQ

Figure 6.3. Average minimum throughput for varying number of SUs (N).

Table 6.1. Average minimum throughput and CPLEX gap values for varying number

of SUs (N).

Number of SUs (N) 5 10 15 20 25 30

MAXMINEQ result 25.36 10.14 6.09 3.71 2.99 2.95

CPLEX result 29.89 14.42 9.52 6.86 5.43 4.44

CPLEX gap value 0.01%

(default)

0.58% 0.6% 1.5% 1.5% 1.5%

α(G) value 2.55 4.06 4.3 4.92 5.42 6.62

average minimum throughput performance of MAXMINEQ with the results obtained

from CPLEX. Recall that a statistical method is used in Chapter 5 to calculate the

number of samples to take (the number of scheduling periods to run the simulations

for) so that the sample mean of all the samples are ±0.5 of the actual mean with a

95% confidence level. We use the same statistical method to determine the number of

scheduling periods for each CPLEX experiment. The number of samples we take for

MAXMINEQ in all the experiments is the same as the corresponding ones obtained

via CPLEX.

Figure 6.3 shows the average minimum throughput of CPLEX and MAXMINEQ

110

where the number of SUs varies between 5 and 30. As the number of SUs increases, the

minimum throughput value resulting from both algorithms decreases. This behavior is

natural since the resources assigned per user decrease when more users share the same

amount of resources. Table 6.1 provides the numerical minimum throughput values

obtained from CPLEX and MAXMINEQ, which are essentially the same as the values

shown in Figure 6.3. The minimum throughput performance of MAXMINEQ is close

to the one of CPLEX. While obtaining the CPLEX values, we have experimentally

determined the appropriate gap value in order to obtain the results in a reasonable

amount of time. The default gap value used by CPLEX is 0.01%. As the number

of SUs increases, simulations take much longer time. Therefore, we have increased

the value of the gap parameter (epgap) to obtain satisfactory results in a reasonable

amount of time. The gap values for each experiment are shown in Table 6.1. The table

also shows the average α(G) values resulting from each experiment. As the number of

SUs increases, the average α(G) values also increase due to the increasing diversity in

the network; i.e., the probability that there exists an SU with better/worse Uif values

increases as the number of SUs increases. However, experimental results show that

α(G) values do not increase too much in practice. Furthermore, recall that α(G) is the

worst case bound of the algorithm MAXMINEQ. Experimental results show that the

average case behavior of MAXMINEQ in practice is much better than its worst case

guarantee. Although the α(G) value increases as the number of SUs (N) increases,

we do not observe an increase in the average performance difference of MAXMINEQ

and CPLEX; in other words, the average case performance of MAXMINEQ does not

deteriorate.

111

7. THROUGHPUT SATISFACTION BASED SCHEDULER

7.1. Problem Formulation

The throughput maximizing scheduler formulation in Equations 5.13-17 of the

work in Chapter 5 maximizes the total throughput of all SUs in the CRN cell regardless

of the minimum throughput requirements of the SUs. However, in a specific time

period, each SU may be executing different applications with various requirements and

priorities. For instance, a real-time application may require a relatively high minimum

data rate (throughput) for proper operation. Unless the resources are allocated to this

SU such that its minimum throughput requirement is met, the allocated resources may

be useless for this SU. For example, an SU may require at least 1 Mbps data rate;

that is to say, data rates between 10 Kbps and 100 Kbps may be indifferent from each

other and may both be useless for this SU. If it is theoretically impossible to allocate

its required minimum data rate to a particular SU, it makes more sense not to allocate

any resources to this SU at all and allocate the resources instead to other SUs whose

minimum data rate requirements can be met. On the other hand, an SU with a non-

real-time application may be satisfied with a lower minimum data rate requirement.

An SU with an audio or video application may need a particular data rate in a specific

time period. In contrast, an SU with an e-mail application may be satisfied with a lower

data rate in that same time period. Furthermore, allocation of data rate higher than

the minimum requirement of the SU may not make that SU happier. For instance, a

data rate more than 100 Mbps may not have an additional advantage for that SU; i.e.,

101 Mbps and 200 Mbps may be equally good. Therefore, instead of allocating these

excess resources to this SU, it makes more sense to allocate some of these resources to

another SU which actually needs them. Hence, in a real centralized CRN system, the

major goal of the CBS operator is to maximize the number of SUs which are satisfied

in terms of throughput.

We formulate in Equations 7.1-4 the scheduling problem that maximizes the num-

ber of SUs which are satisfied in terms of throughput while at the same time assuring

112

that the PUs in the service area of the CBS are not disrupted, reliable communication

between the SUs and the CBS is maintained, and no collisions occur between the SUs:

max(

N
∑

i=1

g(Ωi − Ωmin
i)) (7.1)

s.t.

Ωi =

F
∑

f=1

T
∑

t=1

UifXift

T
(7.2)

(5.14),(5.15), and (5.16) (7.3)

Xift ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (7.4)

where Ωi in constraint in Equation 7.2 denotes the throughput of SU i in this scheduling

period and Ωmin
i denotes the minimum throughput requirement of SU i. Besides, g(·) in

Equation 7.1 is the step function that indicates the utility of SU i; i.e., the satisfaction

of SU i from the throughput Ωi equals 1 if and only if Ωi ≥ Ωmin
i and 0 otherwise.

These types of utility functions are referred to in the literature as inelastic utility

functions since the users have hard QoS requirements; i.e., utility equals zero when the

QoS (throughput in our case) is lower than a prespecified threshold [110]. In the rest

of this chapter, we refer to our formulated problem in Equations 7.1-3 as the MNSU

(Maximum Number of Satisfied Users) problem.

Remark 7.1. We can convert the MNSU problem to a binary ILP as follows: Since

the utility function g((Ωi − Ωmin
i)) in Equation 7.1 produces either 1 or 0, we can

introduce a variable si which equals 1 if SU i is satisfied in terms of throughput and 0

otherwise. Therefore, solution of MNSU formulated in Equations 7.1-3 is equivalent

to the solution of the following binary ILP:

113

max(
N
∑

i=1

si) (7.5)

s.t.

F
∑

f=1

T
∑

t=1

UifXift

T
≥ Ωmin

i × si; ∀i ∈ N (7.6)

(5.14),(5.15), (5.16), and (7.4) (7.7)

Constraint in Equation 7.6 models the behavior of the function g(Ωi − Ωmin
i)).

More precisely, if an SU i is satisfied; i.e., if si = 1, then its throughput (Ωi) is greater

than or equal to its minimum throughput requirement (Ωmin
i).

7.2. Computational Complexity

The Bin Covering Problem: Bin Covering problem is basically the cover-

ing version of the bin packing problem: Given n items with sizes c1, · · · , cn ∈ (0, 1],

maximize the number of bins opened so that each bin has items summing to at least

1 [111]. Bin Covering problem cannot be approximated within any constant fac-

tor better than 2 unless P = NP . This result is based on the observation that a

2-approximation algorithm for the Bin Covering problem applied to instances in

which the total size of the items is 2 would solve the Partition problem [112].

Theorem 7.1. Bin Covering �APX MNSU .

Proof. We can show that Bin Covering is a special case of MNSU as follows:

Let Uif ′ = Uif ′′ , ∀f ′ 6= f ′′ and f ′, f ′′ ∈ F ; i.e., let Uif values be the same for all f

corresponding to a particular i. In other words, let us use Ui in lieu of Uif . Let us

set ci =
Ui

Ωi
≤ 1. Moreover, let us set T = 1 and ai ≥ F, ∀i ∈ N . This special case

corresponds to Bin Covering where ci values correspond to the item sizes and the

SUs corresponds to the bins.

Corollary 7.1. Since Bin Covering is NP-Hard in the strong sense [111], MNSU

114

is also NP-Hard in the strong sense.

Corollary 7.2. Since Bin Covering is 2-inapproximable [112], MNSU also cannot

be approximated within any constant factor better than 2 unless P = NP .

Theorem 7.2. MMFS reduces to MNSU in polynomial time.

Proof. Assume that we have a polynomial-time algorithm A for MNSU. We can use

algorithm A to solve MMFS in polynomial time as follows: Let ΩUB
MMFS be an upper

bound for the result of MMFS. We can set our initial guess equal to this upper bound;

i.e., we set Ωi = ΩUB
MMFS ∀i ∈ N and execute algorithm A. If the result equals N , then

it means that the result for MMFS equals ΩUB
MMFS. Otherwise, we can do a binary

search between 0 and ΩUB
MMFS, and execute algorithm A to check whether our guess

was true or not. This way, we can find the optimum value for MMFS in polynomial

time using algorithm A.

Corollary 7.3. MNSU is at least as hard as MMFS.

Corollaries 7.1, 7.2, and 7.3 corroborate that MNSU is a computationally very

difficult problem. Therefore, designing heuristic algorithms for MNSU is of paramount

importance. To this end, heuristic algorithms for the MNSU problem have been

developed in [9].

115

8. SPECTRUM SWITCHING DELAY AWARE

SCHEDULER

8.1. Motivation

Switching the frequency of a wireless transceiver requires changing the input

voltage of the voltage-controlled oscillator (VCO), which operates in a phase locked loop

(PLL), to achieve the desired output frequency. Frequency switching speed is regarded

as a critical performance parameter in many modern communication systems [113]. It

is an important factor since it reduces the time available for data transmission. The

frequency switching delay depends on the relative positions of the two channels on

the radio spectrum [58,59,63,113,114] because as the difference between the reference

and the final frequency is high, any small frequency drift in the reference oscillator

is significantly magnified in the final synthesized frequency [113]. To alleviate this

limitation, devices make this conversion in a step by step manner, which increases the

time to switch to far away frequencies.

Hardware switching delay is a device dependent parameter. For instance, the

TCI Model 7234 wideband SHF tuner has a tuning speed of 1 ms for each 500 MHz

step [115], whereas the tuning speed of TCI 715 is 1 ms for each 10 MHz step [116]. As it

was also pointed out by [117], some device specifications such as [118] do not explicitly

report the dependence of the switching delay on the separation distance between the

frequencies. This is because the operational frequency ranges of these devices are

narrower, and hence the difference depending on the frequency separation distance is

negligible. For instance, TCI 735 has two operation modes, one between 20 and 3000

MHz and the other between 3000 and 8000 MHz. In both cases, the typical switching

delay is 1 ms and the maximum delay is 5 ms, which still implies that the switching

delay is not constant. Both of these operational modes are narrower compared to

0.5-40 GHz range of the TCI 7234. The CRs of the future are envisioned to operate

at a wide range of frequencies; therefore, frequency separation distance is inevitably

116

an important factor for the spectrum switching delay of the future CRs. Even if the

CR device operates in a narrower frequency band and the spectrum switching delay

is assumed to be constant, the entire mathematical analysis in this chapter remains

valid except for a few modifications about how the switching delay is calculated. In

essence, our proposed algorithm can be used with any switching delay model; the only

difference is the part where the switching delay is calculated. We explain this fact in

detail in Section 8.3.

Besides the requirement that CRs of the future have to operate in a wide range

of frequencies, there are numerous other factors that render our spectrum switching

delay aware scheduler vital:

(i) Smaller hardware spectrum switching delay means more expensive CR equipment.

Our proposed scheduler obviates the need to have smaller hardware switching

delay, and hence plays a role in decreasing the cost of the CR devices. Since

cost will be an important factor when CRs appear in the market, having a more

intelligent scheduling algorithm such as our proposed algorithm in this chapter

allows us to utilize less expensive devices. This way, CR equipment manufacturers

can increase their profits. Since a cheaper CR device will enable more people

to start using CR devices, our proposed algorithm will also have an impact on

increasing the market penetration of CRs when they first appear in the market.

(ii) Smaller spectrum switching delay means heavier CR equipment because more

filters are needed in the hardware to achieve smaller delay. For instance, the

spectrum processor of TCI 745 [119] is 30 kg, whereas the one of TCI 7234 [115]

is 6 kg. These weights are impractical for future CRs since they cannot be,

for instance, a mobile handset. Achieving small spectrum switching delay with

reasonable equipment weights remains a challenge. Since the performance of

our proposed algorithm is robust to changes in the spectrum switching delay, it

obviates the need to have small spectrum switching delay. Therefore, by using

our proposed algorithm in the software, equipment manufacturers can use less

number of filters in the hardware and still achieve high throughput performance.

Therefore, our algorithm also helps decrease CR device weights by obviating the

117

need to accomplish smaller spectrum switching delay and hence enabling the

usage of less number of filters in the hardware.

(iii) Smaller spectrum switching delay means larger device dimensions because filters

occupy space. For instance, the latest TCI 745 [119] has dimensions of 8U high,

rack mount (14”Hx19”Wx22”D), which is far from being a handheld CR device.

Hence, our proposed spectrum switching delay aware scheduling algorithm in this

chapter helps achieve more reasonable device sizes for the future CRs by obviating

the need to use large number of filters for less switching delay.

(iv) In wireless networks, scheduling decisions are typically made for a duration where

the network conditions are fairly stable. In CRNs, this duration also depends on

PU activities since SUs are obliged not to disturb PUs. A swiftly changing PU

activity and spectral environment makes the scheduling periods shorter since the

CR devices have to adapt their transmission parameters such as rate and power

more quickly in order not to disturb PUs. In the time-slotted scheduling model in

this thesis, we take a time slot length as 100 ms, which is appropriate for slowly

varying spectral environments like the TV bands. For instance, TCI 7234 [115]

has a switching delay of 1 ms per 500 MHz. Switching the operation frequency

from 0.5 GHz to 40 GHz requires 79 ms delay. Considering that the time slot

length is 100 ms, 79 ms of switching delay implies that only 21% of the time

slot can actually be utilized for data transmission. In other words, the impact of

switching delay can be significant even in a slowly varying spectral environment

where a 100 ms of time slot length is sufficient. As the spectral environment

varies more frequently, time slot lengths have to decrease and hence, the impact

of the spectrum switching delay intensifies.

(v) Different CR users may opt for CR devices with different spectrum switching

delay. The entity that is responsible for executing the scheduling algorithm usu-

ally cannot mandate the CR users to use a specific device. For instance, in a

centralized CRN where the cognitive base station (CBS) is responsible for the

management of the SUs in its service area, the scheduler resides at the CBS. If

some CR users have less expensive devices with larger spectrum switching delay

and if the CBS operator does not consider switching delay in its scheduling algo-

118

rithm, it may unwittingly end up with providing coarse QoS to these CR users,

which are the customers of the CBS operator. Some customers may even starve

in terms of throughput without the CBS operator having intended to do so.

(vi) Our simulation results indicate that high throughput savings are achieved even

when the number of CR users is as small as 10. Furthermore, the throughput

savings of our proposed algorithm increase as the number of frequencies increases.

The increased impact of switching delay on the throughput performance as the

number of frequencies increases indicates that our proposed algorithm will become

increasingly useful as the CR paradigm proliferates in real applications.

(vii) The range of frequencies that a centralized CBS cell operates in is not static. A

central entity called “spectrum broker” or “spectrum policy server” coordinates

the spectrum usage of several base stations by periodically (usually in a medium

term) allocating frequency pools to the base stations [3,16,120–123]. To this end,

auction theoretic or game theoretic techniques are usually employed [121–123].

Therefore, it is not feasible for the hardware providers of the mobile terminals to

design the cognitive radio hardware customized for the frequency range of each

and every CBS cell. Furthermore, CR devices may need to handover from one

CBS cell to another. Having a CR device specifically designed for operating in a

narrow range of frequencies hinders the handover mechanisms between different

CBS cells. Moreover, the ultimate goal of the CR technology is to provide an

interoperable “universal wireless device” that can seamlessly handle a wide range

of frequencies [124]. To this end, CR devices should be able to operate in a wide

range of frequencies.

8.2. Problem Formulation

The throughput maximizing scheduler formulation in Equations 5.13-17 of the

work in Chapter 5 assumes that no delay occurs when an SU switches from a frequency

to another frequency. However, in reality, some portion of the subsequent time slot is

inevitably wasted to tune to the new frequency; therefore, only the remaining portion

of the next time slot can be used for actual data transmission. It may even be the

119

case that the time it takes to switch to the new frequency is greater than or equal to

the time slot length, which means that no packets can actually be sent using the new

frequency. Since the scheduling decisions are known in advance by SUs, they should

not waste time and energy in vain to switch to the new frequency; they should instead

stay in the same frequency. On the other hand, the new frequency band might be

more advantageous in terms of throughput by having a higher Uif value. The question

is whether the delay incurred while switching to the new frequency band offsets this

throughput advantage or not. If the throughput advantage of the new frequency band

outweighs the disadvantage of throughput losses due to switching delay, then the SU

may still prefer switching to the new frequency. Therefore, there is a tradeoff here;

i.e., switching to the new frequency band may or may not be advantageous depending

on the circumstances (switching delay and the channel conditions (Uif values) of the

old and new frequencies). Furthermore, we also need to keep track of the information

about which interface is assigned to which frequency since each interface experiences

different switching delays depending on the frequency that it was assigned to in the

previous time slot. In this chapter, we extend the work in Chapter 5 to account for the

spectrum switching delay, which depends on the distance between the used frequencies.

Let us denote by Ciat the frequency that interface a of SU i is assigned to in

time slot t. Then, Ciat =

F
∑

f=1

f Xiaft, where Xiaft is a binary variable that equals 1

if frequency f is assigned to the interface a of SU i in time slot t, and 0 otherwise.

Let us denote by ∆iaft the absolute difference in terms of the number of frequencies

that interface a of SU i has to step to use frequency f in time slot t. Note that the

interfaces do not have to be assigned some frequency in every time slot; in other words,

it is possible for an interface not to be assigned any frequency in some time slot. If

interface a of SU i has not been assigned some frequency for time slot t, then we say

that t is a silent time slot for the interface a of SU i. Otherwise, we say that t is a busy

time slot for the interface a of SU i. A time slot t may be a silent time slot for some

interface but a busy time slot for another interface. Let us denote by miat the index of

the busy time slot before time slot t. If t is the first busy time slot in the scheduling

period, then miat = 0. In other words, miat = max∃fs.t.Xiafj=1
j<t

{j, 0}. Then the number

120

of silent time slots between the current time slot t and the previous busy time slot

for interface a of SU i equals t −miat − 1. If miat = 0, i.e., if t is the first busy time

slot for interface a of SU i in the scheduling period, then in this case, as in [125], we

assume that ∆iaft = 0. In other words, we assume for simplicity that the interfaces are

pretuned to the firstly used frequency. In practice, this delay in the firstly used time

slot may depend on various other factors such as MAC protocol. If a single interface

is used for both data transmission and control traffic, the interface may have to tune

to the frequency band of the common control channel (CCC) during the time between

consecutive scheduling periods. How frequently the tuning to the CCC is performed

and which frequency the CCC uses depends on the protocol implementation. To isolate

us from the possible influence of these factors, as in [125], we assume that the interfaces

are pretuned to the firstly used frequency.

On the other hand, if a frequency f is not the firstly used frequency for interface

a of SU i and there are silent time slots preceding time slot t, i.e., 0 < miat < t−1, then
interface a uses these silent time slots to switch to the new frequency f . Scheduling

decisions are made by the CBS for the duration of a scheduling period, which consists

of T time slots. This scheduling information is then sent to the SUs through the CCC.

Therefore, SUs know the scheduling decisions (which frequencies are assigned to them

in which time slots) before the beginning of the first time slot of the scheduling period.

Because the scheduling decisions are known by SUs in advance, they can use these

silent time slots to switch to the new frequency. If the number of silent time slots are

enough to achieve the entire frequency switching, SU becomes ready to use the new

frequency in the upcoming busy time slot. In this case, SU does not waste any portion

of the busy time slot for frequency switching and hence it can use the entire busy

time slot for data transmission. Otherwise, SU utilizes the silent time slots to achieve

some portion of the frequency switching. The remaining switching is completed at the

beginning of the next busy time slot. If the silent time slots and portions of the busy

time slot are still not enough to achieve the frequency switching and no available time

remains in the busy time slot for data transmission, then it means that no packets can

be sent by the SU using the new frequency in the busy time slot.

121

Let us denote by β the switching delay in terms of milliseconds for each unit step

in the frequency range. The value for β is hardware dependent, for instance the delay is

taken as 1 ms/10 MHz in [116]. In this case, if the frequencies are separated with a 10

MHz difference (for instance f = 1 corresponds to 800 MHz, f = 2 corresponds to 810

MHz etc.), then β = 1ms. If miat 6= 0, then
∣

∣f −Ciamiat

∣

∣ is the number of frequencies

that SU i needs to sweep to tune to the new frequency f in time slot t. Since there

are (t − miat − 1) number of silent time slots, each one of which has a length of Ts

milliseconds, then
(t−miat − 1)Ts

β
portion of the frequency band is switched to during

the silent time slots. The remaining portion that needs to be switched during the busy

time slot t is equal to (
∣

∣f − Ciamiat

∣

∣ − (t−miat − 1)Ts

β
)+, where (x)+ = max(0, x).

Recall that ∆iaft denotes the absolute difference in terms of the number of frequencies

that interface a of SU i has to step to use frequency f in time slot t. Then, ∆iaft = 0

if miat = 0. Otherwise, ∆iaft = (
∣

∣f − Ciamiat

∣

∣ − (t−miat − 1)Ts

β
)+. Similar to the

works in [58, 59], we use in the calculation of ∆iaft a linear relationship between the

switching delay and the wideness of the difference in the assigned frequencies. In

essence, any switching delay model is applicable to our proposed algorithm with a

slight modification. For instance, if it is assumed that the switching delay is constant,

then ∆iaft = 0 if miat = 0 or f = Ciamiat
, and ∆iaft =

(

1 − (t−miat − 1)Ts

β

)+

otherwise. The rest of the analysis remains the same. We elaborate on this in detail in

Section 8.3. In the rest of this work, we consider the case where the spectrum switching

delay is not constant and depends on the frequency separation distance. Finally, if we

denote by Biaft the maximum number of packets that can be sent by interface a of SU

i if it is tuned to frequency f in time slot t, then Biaft =

⌊

(

1− β ×∆iaft

Ts

)+
Vif

⌋

.

We then extend the throughput maximizing scheduler formulation in Chapter 5

to account for the spectrum switching delay and formulate the following binary integer

122

program:

max(
N
∑

i=1

ai
∑

a=1

F
∑

f=1

T
∑

t=1

BiaftXiaft

T
) (8.1)

s.t.

ai
∑

a=1

F
∑

f=1

T
∑

t=1

Xiaft ≥ 1; ∀i ∈ N (8.2)

N
∑

i=1

ai
∑

a=1

Xiaft ≤ 1; ∀f ∈ F , ∀t ∈ T (8.3)

F
∑

f=1

Xiaft ≤ 1; ∀a ∈ Ai, ∀i ∈ N , ∀t ∈ T (8.4)

Ciat =

F
∑

f=1

f Xiaft; ∀i ∈ N , ∀a ∈ Ai, ∀t ∈ T (8.5)

miat = max
∃fs.t.Xiafj=1

j<t

{j, 0} (8.6)

∆iaft =

{

0, if miat = 0

(
∣

∣f − Ciamiat

∣

∣− (t−miat − 1)Ts

β
)+, o.w.

(8.7)

Biaft =

⌊

(

1− β ×∆iaft

Ts

)+
Vif

⌋

(8.8)

Xiaft ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (8.9)

where N , Ai, ai, F and T are as defined previously. The objective function in Equa-

tion 8.1 maximizes the total average throughput of all SUs in the CRN cell, whereas

constraint in Equation 8.2 guarantees that each SU is assigned at least one time slot.

Moreover, Equation 8.3 represents the constraint that at most one interface can use a

frequency in a specific time slot, and Equation 8.4 denotes that each interface can tune

to at most one frequency in a time slot. In other words, purposes of the constraints in

Equations 8.2, 8.3, and 8.4 are the same as purposes of the constraints in Equations

5.14, 5.15, and 5.16, respectively. The reason for having the same constraints is because

our goal is to evaluate the impact of the spectrum switching delay awareness more effec-

tively by comparing our spectrum switching delay aware scheduler with the scheduler

in Equations 5.13-17 of Chapter 5. In order to be able to make an effective comparison,

123

all other features of both schedulers except switching delay awareness have to be the

same. Therefore, we have constraints in Equations 8.2, 8.3, and 8.4. Furthermore, the

constraints in Equations 8.5, 8.6, 8.7, and 8.8 are as explained previously. Note here

that because Biaft values depend on the frequency assignments in the previous time

slots, the objective function in Equation 8.1 is nonlinear. Nonlinear binary integer

programming is in general known to be computationally hard in the literature [126].

8.3. Proposed Algorithm

In this section, we propose a polynomial time heuristic algorithm to address the

problem in Equations 8.1-9. In the rest of this chapter, we refer to our proposed

algorithm by S2DASA (Spectrum Switching Delay Aware Scheduling Algorithm).

We outline the main steps of S2DASA in Figure 8.1. The set Φ ⊆ N symbolizes

the set of SUs which have not yet been assigned any time slot during the execution of

the algorithm. B′
iaf represents the benefit (in terms of the maximum number of packets

that can be transmitted) that interface a of SU i receives for using frequency f in that

particular time slot. In Step 1, S2DASA initializes the set Φ to N since none of the

SUs have been assigned a time slot at the beginning of the algorithm. Moreover, Step 1

initializes the benefit values B′
iaf for the first time slot to ⌊Vif⌋ since no switching delay

occurs in the first time slot. S2DASA makes the frequency assignment sequentially for

each time slot. At the beginning of each time slot, the algorithm chooses the set

Ψ, which is the set of SUs that have to be assigned at least one frequency for that

particular time slot. B
′

iaf indicates the maximum number of packets that can be sent

by interface a of SU i if it is tuned to frequency f in that particular time slot. To

determine the set Ψ, we introduce a metric called Γi to select the SUs with relatively

good B
′

iaf values averaged over all of their interfaces. Step 3 of S2DASA assigns the Γi

value by determining the average benefit value per interface for each SU in the set Φ.

In each time slot, the set Ψ ⊆ Φ with relatively high Γi values is selected, and every

SU in this set Ψ is guaranteed to be assigned with a frequency in that time slot. Steps

4 and 5 of S2DASA assign all the SUs in the set Φ to the set Ψ if the number of SUs in

the set Φ is less than or equal to
⌈

N
T

⌉

. Otherwise, in Step 7,
⌈

N
T

⌉

number of SUs that

124

have the largest Γi values are selected and added to the set Ψ. In Step 9, S2DASA

runs the following ILP:

max(

N
∑

i=1

ai
∑

a=1

F
∑

f=1

B′
iafX

′
iaf) (8.10)

s.t.

ai
∑

a=1

F
∑

f=1

X ′
iaf ≥ 1; ∀i ∈ Ψ (8.11)

N
∑

i=1

ai
∑

a=1

X ′
iaf ≤ 1; ∀f ∈ F (8.12)

F
∑

f=1

X ′
iaf ≤ 1; ∀a ∈ Ai, ∀i ∈ N (8.13)

X ′
iaf ∈ {0, 1}; ∀i ∈ N , ∀f ∈ F , ∀t ∈ T (8.14)

where X ′
iaf is a binary decision variable that equals 1 if interface a of SU i transmits

using frequency f , and 0 otherwise. At the end of the decision for every time slot,

B′
iaf values are calculated and updated (in Steps 15-17) for the subsequent time slot.

Notice here that B′
iaf values are input variables rather than decision variables in the

optimization problem in Equations 8.10-13. Constraint in Equation 8.11 ensures that

the SUs in the set Ψ ⊆ Φ are assigned at least one frequency, which meets the constraint

in Equation 8.2 for the SUs in Ψ. As in Equations 8.3 and 8.4, constraints in Equations

8.12 and 8.13 ensure that at most one interface can use a frequency, and each interface

can tune to at most one frequency (in that time slot).

Lemma 8.1. If the problem in Equations 8.1-9 has a feasible solution, then S2DASA

gives a feasible solution.

Proof. For all the SUs in the set Φ, Step 11 of S2DASA checks if the ILP execution

in Step 9 has assigned at least one frequency to that SU. If yes, then Step 12 removes

this particular SU i from the set Φ since it is no longer an SU that is not assigned any

time slot. Note here that not only the SUs in the set Ψ, but also the other SUs that

are assigned some frequency by the ILP execution in Step 9 are removed from the set

Φ. In the worst case, it happens that S2DASA assigns some frequency to only the SUs

in Ψ in every time slot. If N is a multiple of T , then N/T number of SUs are assigned

125

Require: N , F , T , Ai, Vif .

Ensure: Xiaft values ∀i ∈ N , ∀a ∈ Ai, ∀f ∈ F , ∀t ∈ T .

1: Φ← N , B
′

iaf ← ⌊Vif⌋, ∀i ∈ N , ∀a ∈ Ai, ∀f ∈ F
2: for t = 1 to T do

3: Γi ←
ai
∑

a=1

F
∑

f=1

B
′

iaf/ai, ∀i ∈ Φ

4: if |Φ| ≤
⌈

N
T

⌉

then

5: Ψ← Φ

6: else

7: Sort all i ∈ Φ wrt. Γi. Add
⌈

N
T

⌉

number of i’s that have the largest Γi

values to Ψ; i.e., |Ψ| = ⌈N
T

⌉

8: end if

9: Run ILP in Equations 8.10-13 with Ψ, B
′

iaf ,N ,F ,Ai, and obtain X ′
iaf , ∀i ∈

N , ∀a ∈ Ai, ∀f ∈ F
10: for all i ∈ Φ do

11: if

ai
∑

a=1

F
∑

f=1

X ′
iaf ≥ 1 then

12: Φ← Φ− {i}
13: end if

14: end for

15: Xiaft ← X ′
iaf , ∀i ∈ N , ∀a ∈ Ai, ∀f ∈ F

16: Calculate Biaf(t+1) by using Xiaft

17: B′
iaf ← Biaf(t+1),Ψ← ∅

18: end for

19: return Xiaft, ∀i ∈ N , ∀a ∈ Ai, ∀f ∈ F , ∀t ∈ T

Figure 8.1. S2DASA (Algorithm for the problem in Equations 8.1-9).

126

a frequency in every time slot, and clearly all the N number of SUs are guaranteed to

satisfy constraint in Equation 8.2 at the end of the algorithm. If N is not a multiple

of T , then |Ψ| =
⌈

N
T

⌉

in the first

⌊

N
⌈

N
T

⌉

⌋

time slots, and condition in line 4 of the

algorithm holds true in the next time slot. Therefore, constraint in Equation 8.2 is

met for all SUs after

⌊

N
⌈

N
T

⌉

⌋

+ 1 =

⌈

N
⌈

N
T

⌉

⌉

number of time slots. Since

⌈

N
⌈

N
T

⌉

⌉

≤ T ,

S2DASA returns a feasible solution to the problem in Equations 8.1-9 as long as the

original problem has a feasible solution. Notice here that the problem in Equations

8.1-9 has a feasible solution as long as F × T ≥ N because otherwise it is impossible

to assign every SU at least one time slot. Hence, S2DASA returns a feasible solution

as long as F × T ≥ N . In other words, S2DASA guarantees that each SU is assigned

at least one time slot.

Steps 15-17 serve the purpose of calculation and update of the B′
iaf values for

the next time slot. More precisely, Step 15 of S2DASA sets the Xiaft values for that

particular time slot t according to the values of X ′
iaf as a result of the ILP execution in

Step 9. Step 16 calculates Biaf(t+1) values for the subsequent time slot (t+1) according

to the Xiaft values of the current time slot t and possibly the previous time slots by

using the formulas specified in Equations 8.5-8. Step 17 updates the values for B′
iaf to

be used in the iteration of the subsequent time slot.

Every switching delay model will produce a switching delay value, which may

depend on the frequency assignments in the previous time slot. If a switching delay

model different from the linear model (either constant switching delay or some other

model) needs to be used, the only part that needs to be modified in our algorithm is

Step 16. In other words, when another switching delay model is used, only the resulting

switching delay value used by the calculation of Biaf(t+1) in Step 16 changes; the rest of

the algorithm remains the same. In the rest of this chapter, when we mention S2DASA,

we implicitly refer to the varying switching delay case with linear model. If a constant

delay or some other delay model is used, we explicitly state the name of the switching

delay model.

127

Moreover, Step 17 sets the value of Ψ to the empty set since the SUs in the

current Ψ have already been assigned at least one time slot and the Ψ values need to

be reconstructed in the next time slot. The algorithm terminates after assignments are

made for all time slots.

Theorem 8.1. ILP in Equations 8.10-14 is solvable in polynomial time.

Proof. Build an edge weighted bipartite (multi)graph G = (N ,F , E) as follows:

Add a vertex vi to N , ∀i ∈ N . Add a vertex vf to F , ∀f ∈ F . For each B′
iaf 6= 0,

add an edge {vi, vf} to E with weight B′
iaf , ∀i ∈ N , ∀a ∈ Ai, ∀f ∈ F . Let I be

the following function associating an interval of natural numbers with each vertex in

G: I(vi)=[1,ai] ∀i ∈ Ψ, I(vi)=[0,ai] ∀i 6∈ Ψ, I(vf)=[0,1] ∀f ∈ F . The problem of

finding a sub(multi)graph that maximizes the total edge weights while respecting the

constraints about the interval of allowed degrees for each vertex is known to be solvable

for any (multi)graph in polynomial time [91, 92]. In particular, if the (multi)graph

is bipartite, then the solution for the ILP representing this problem is equal to the

solution of its linear program (LP) because the incidence matrix of a bipartite graph

is totally unimodular [91]. If an edge with weight B′
iaf is selected in the resulting

sub(multi)graph, then X ′
iaf is set to 1; otherwise, it is set to 0. Hence, the theorem

holds.

Since the other steps of S2DASA are clearly solvable in polynomial time, Theo-

rem 8.1 implies that our proposed heuristic (S2DASA) is solvable in polynomial time.

Furthermore, S2DASA is based on running an LP for each time slot. Ellipsoid algo-

rithm [127] can be used to solve LP in polynomial time. In practice, simplex algo-

rithm [127] is widely known to be an efficient algorithm to solve LPs in spite of its

exponential complexity.

8.4. Simulation Results

We employ the same simulation conditions as in Chapter 5. The dynamicity of

the spectral environment stems from two factors: Physical mobility of the SUs and

128

PUs and the changing spectrum occupancy behavior of the PUs. Uif values for each

scheduling period are possibly different due to the changes in the physical mobility

and PU spectrum occupancies. If an SU becomes closer to another PU due to physical

mobility, it may need to change its operation frequency in order not to disturb the PU.

Likewise, if a PU in the vicinity of the SU starts using a frequency that SU was using,

the SU needs to switch to another band.

As in Chapter 5, we select the pS value in the PU spectrum occupancy model as

0.9. Hence, our simulation results demonstrate that switching delay is an important

factor even in a slowly varying spectral environment.

The original simulation results in Chapter 5 for the throughput maximizing sched-

uler, which we refer to here by upper bound THR MAX, do not consider the spectrum

switching delay. If we calculate the throughput values of the resulting frequency and

time slot assignments in Chapter 5 according to the spectrum switching delay model

outlined in Section 8.2, which depends on the difference between the current and the

previously assigned frequency, we obtain the actual throughput values of the results in

Chapter 5, which we refer to here by conventional THR MAX.

As in Chapter 5, we assume that all the PUs and SUs move with a constant

velocity of Vp and Vs, respectively. We denote the number of PUs in the cell by M .

In all experiments in this chapter, we take M = 20, Vp = Vs = 13 m/s, and ai = 3

∀i ∈ N . In Chapter 5, a statistical method is used to calculate the number of samples

to be taken so that the sample mean of all the samples are ±0.5 of the actual mean

with a 95% confidence level. The number of samples we take for S2DASA in all the

experiments is the same as the corresponding ones in upper bound THR MAX, as

calculated in Chapter 5.

We evaluate the impact of F and β in two different sets of experiments. In the

first one, we vary the value of β and plot the results for F=18 and F=30. We set

N=30 and compare the results of upper bound THR MAX, conventional THR MAX,

and S2DASA in Figure 8.2. The results show that for both F=18 and F=30, S2DASA

129

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

β (Switching delay for a unit frequency difference) in milliseconds

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX, F=30

S2DASA, F=30
Conventional THR_MAX, F=30
Upper bound THR_MAX, F=18

S2DASA, F=18
Conventional THR_MAX, F=18

Figure 8.2. Average total throughput of all schedulers for varying β.

yields very close performance to upper bound THR MAX, which can be regarded as an

upper bound to the optimization problem in Equations 8.1-8. Since the results are very

close, they look like almost the same in the figure; however, there are subtle differences

in reality. For instance, for F=30, the throughput that upper bound THR MAX yields

is 3376.6 packets/time slot, whereas the throughput that S2DASA yields for β = 50 is

3375.6 packets/time slot. In all of the simulation results presented in this paper, the

throughput performance of S2DASA is only slightly less than the one of upper bound

THR MAX; therefore, they cannot be visually differentiated in the figures. We also

observe in Figure 8.2 that the decrease in conventional THR MAX as β increases for

F=30 is larger than the decrease for F=18. This implies that S2DASA results in higher

savings from throughput as F and β increase. Furthermore, we can also observe that

the performance difference between S2DASA and upper bound THR MAX remains

very little as β increases. These results demonstrate that the performance of our

proposed algorithm S2DASA is not only very close to its upper bound, but also robust

to changes in the hardware switching delay.

In the second set of experiments, we set N=30 and vary the value of F . We

then plot the results in Figure 8.3 for β = 1, β = 5, and β = 10 ms. We again

observe that the performance of S2DASA is very close to upper bound THR MAX,

in addition to being robust to changes in the switching delay. As in Figure 8.2, the

130

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

F (Total number of frequencies in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms
Conventional THR_MAX, β=1 ms

S2DASA, β=5 ms
Conventional THR_MAX, β=5 ms

S2DASA, β=10 ms
Conventional THR_MAX, β=10 ms

Figure 8.3. Average total throughput of all schedulers for varying number of

frequencies (F).

throughput difference between S2DASA and upper bound THR MAX is so small that

the two results cannot be visually differentiated in Figure 8.3. We see in Figure 8.3

that throughput increases linearly with the number of frequencies in all cases. Fur-

thermore, the performance difference between S2DASA and conventional THR MAX

widens as the number of frequencies increases; hence, throughput savings achieved by

our proposed algorithm S2DASA increase as the number of frequencies increases. This

result demonstrates that switching delay becomes an even more important factor as the

CRNs proliferate by operating in a wider range of frequencies. Therefore, our proposed

algorithm S2DASA is promising to be even more useful in the CRNs of the future.

In the third set of experiments, we evaluate the impact of varying number of

SUs (N). Figure 8.4 shows the total average throughput for different values of F .

Figures 8.4a, 8.4b, 8.4c, and 8.4d show the results for F=20, F=25, F=30, and F=35,

respectively. We observe in these figures that the throughput savings achieved by our

algorithm are significant even when N=10 and they remain significant as N increases.

We also observe that there is a ripple effect in conventional THR MAX at the point

where N = F ; i.e., the real throughput at N = F is higher than the real throughput at

N = F −5 and N = F +5. The ripple is more evident for the β = 10 case. Recall that

in all the simulations, ai = 3 ∀i ∈ N and there is a constraint that each SU has to be

131

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500
F=20

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms
Conventional THR_MAX, β=1 ms

S2DASA, β=5 ms
Conventional THR_MAX, β=5 ms

S2DASA, β=10 ms
Conventional THR_MAX, β=10 ms

(a) F = 20

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000
F=25

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms
Conventional THR_MAX, β=1 ms

S2DASA, β=5 ms
Conventional THR_MAX, β=5 ms

S2DASA, β=10 ms
Conventional THR_MAX, β=10 ms

(b) F = 25

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

F=30

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms
Conventional THR_MAX, β=1 ms

S2DASA, β=5 ms
Conventional THR_MAX, β=5 ms

S2DASA, β=10 ms
Conventional THR_MAX, β=10 ms

(c) F = 30

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

F=35

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms
Conventional THR_MAX, β=1 ms

S2DASA, β=5 ms
Conventional THR_MAX, β=5 ms

S2DASA, β=10 ms
Conventional THR_MAX, β=10 ms

(d) F = 35

Figure 8.4. Average total throughput of all schedulers for varying number of

secondary users (N).

assigned at least one time slot. Until the point where N = F , it gets more difficult to

assign each SU at least one time slot as the number of SUs increases and the scheduler

mostly uses more than one interface. It happens most of the time that an SU is assigned

a frequency for a particular time slot but not assigned any frequency in the subsequent

time slot because the other SUs need to be assigned some frequency in order to satisfy

the constraint that each SU is assigned at least one time slot. Notice here that the

scheduler does not mandate each SU to be assigned a frequency in each time slot, but

only mandates that each SU is assigned at least one time slot during the course of the

entire scheduling period. When an SU is not assigned a frequency in a particular time

slot but assigned a frequency in the subsequent time slot, the hardware switching delay

has less impact on the throughput performance since there is more time available to

achieve the frequency switching, which is represented by our formulation for ∆iaft in

132

Equation 8.7. Since this situation occurs more frequently as N value approaches F , we

see an increase in the throughput values of conventional THR MAX. When N > F ,

less number of interfaces are used and the impact of switching delay increases. Let

us call an interface active if it is used at least once for data transmission during the

entire scheduling period. Recall that time slot t is called a silent time slot for an active

interface a of SU i if it is not assigned any frequency in time slot t. Recall also that

time slot t is otherwise called a busy time slot for interface a of SU i. Note here that

this time slot might be in use by some other interface of this SU or of another SU.

When we divide the total number of silent time slots in a scheduling period by the

number of active interfaces, we find the “average number of silent time slots per active

interface”. Then we find the sample mean of this “average number of silent time slots

per active interface” over all iterations (all samples). The average number of silent

time slots for F = 20 are 4.51%, 10.39%, 11.62%, 10.5%, and 10.28% and the average

number of active interfaces are 2.48, 2.34, 1.6, 1.5, and 10.28 for N = 10, N = 15,

N = 20, N = 25, and N = 30, respectively. The ripple effect at F = N can also

be observed for the average number of silent time slots per active interface. We have

observed the same situation for F = 25, F = 30, and F = 35. The similarity of this

behavior to the throughput performance corroborates our explanation for the ripple

effect observed at the real throughput performance at F = N .

In the fourth set of experiments in Figure 8.5, we compare our algorithm S2DASA

with upper bound THR MAX, conventional THR MAX and S2DASA with the constant

delay scenario. Figures 8.5a, 8.5b, and 8.5c show the results for β = 1, β = 5, and

β = 10 cases, respectively. We can see that S2DASA (varying delay) performs better

than S2DASA with constant delay case in all scenarios. Furthermore, its performance

is close to upper bound THR MAX. The results corroborate that the assumption of

constant switching delay in a CRN setting can lead to poor throughput performance.

In some cases, assuming that the switching delay is constant can lead to even lower

throughput than conventional THR MAX. The superiority of S2DASA with varying

switching delay over S2DASA with constant switching delay becomes more evident as

β (hardware switching delay) increases. To sum up, Figure 8.5 demonstrates that the

gist of our paper, which is to take into account in the scheduling algorithm for CRNs

133

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

F=30

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=1 ms

S2DASA with constant delay β=1 ms
Conventional THR_MAX, β=1 ms

(a)

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

F=30

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=5 ms

S2DASA with constant delay β=5 ms
Conventional THR_MAX, β=5 ms

(b)

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

F=30

N (Total number of SUs in the CRN cell)

T
ot

al
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (
pa

ck
et

s/
se

co
nd

)

Upper bound THR_MAX

S2DASA, β=10 ms

S2DASA with constant delay β=10 ms
Conventional THR_MAX, β=10 ms

(c)

Figure 8.5. Average total throughput comparison with constant switching delay.

the increasing spectrum switching delay due to switching to further away frequencies,

is vital in CRNs.

134

9. CONCLUSIONS AND FUTURE WORK

9.1. Summary of Contributions

In this thesis, we propose a scheduling model for centralized CRNs managed by

a CBS. Our model consists of a set of schedulers with different features. All scheduling

problems in this thesis concentrate on the data transmission of SUs to the CBS and

make the frequency, time slot, and data rate assignments to the SUs. All schedulers

ensure that PUs in the service area of the CBS are not disturbed, no collisions occur

among the SUs, and reliable communication of the SUs with the CBS is maintained.

We formulate in Chapter 3 throughput and delay optimal scheduling problems for

centralized CRNs under interference temperature constraints. We also propose heuris-

tic algorithms called MFS and ProbFS for these problems. We evaluate the throughput

and delay performance of the optimal as well as the suboptimal schedulers through sim-

ulations. We use optimization software CPLEX [5] to solve the optimization problems.

While the performance results of the optimal schedulers serve as a baseline, suboptimal

schedulers have significantly less computational complexity at the expense of reduced

throughput and increased delay performance.

Although the computational simplicity of MFS and ProbFS makes them attrac-

tive, better performing suboptimal schedulers are needed. To this end, we propose

GA based schedulers in Chapter 4. Our proposed GA based schedulers alleviate the

computational complexity drawback of the throughput and delay optimal schedulers

in Chapter 3. Specifically, we formulate GA-based algorithms and chromosome encod-

ing methods as well as fitness function evaluation and comparison techniques for both

throughput and delay optimal scheduling problems. We compare the performance of

different selections, crossovers, encodings, and initial population creation techniques.

Simulation results show that our GA based throughput maximizing and delay min-

imizing schedulers work best with uniformly random generation of each bit of the

chromosomes during initial population creation, tournament selection, and uniform

135

crossover. Furthermore, our proposed GA-based suboptimal schedulers yield close to

optimal performance with a reasonable number of iterations, while at the same time

resulting in much better performance than MFS and ProbFS.

Since IT concept spurred a lot of debate since its inception due to its practical

implementation complexity, FCC abandoned this concept. From Chapter 5 onwards,

we distance ourselves from the IT debate and rely on conventional physical layer sens-

ing mechanisms. We formulate in Chapter 5 throughput maximizing, max-min fair,

weighted max-min fair, and proportionally fair scheduling problems, referred to as

TMS, MMFS, weighted MMFS, and PFS problems. Our proposed scheduling

scheme is a very general model jointly accomplishing numerous goals such as making

the frequency, time slot, data rate, and power allocation to the SUs, which possi-

bly have multiple antennas, in a heterogenous multi-channel and multi-user scenario.

One of the distinctive features of our fair schedulers is that they take into account the

throughput performance of the SUs in the recent past through a windowing mechanism

and utilize this information to make the scheduling decision in the current scheduling

period. This mechanism provides our schedulers with the ability to compensate for

the possible temporary throughput losses of the SUs in the subsequent scheduling pe-

riods. Moreover, our fair schedulers also have the property of providing joint temporal

and throughput fairness. Furthermore, we propose an efficient heuristic algorithm for

(weighted) MMFS and PFS problems. We assess the performance of the TMS sched-

uler with respect to various parameters such as the number of SUs, PUs, frequencies,

and antennas. In addition, we make a comparative evaluation of all schedulers in terms

of average total throughput and Jain’s fairness index for varying window size and vary-

ing number of SUs. We observe that increasing the window size does not change the

performance of our MMFS and PFS schedulers; however, it increases the average to-

tal throughput in the weighted MMFS at the expense of an increase in the deviation

from target weights. We demonstrate through simulations that our proposed heuristic

yields close performance to the solutions obtained from optimization softwares CPLEX

and KNITRO.

In Chapter 6 we present a graph theoretic approach to TMS, MMFS, and PFS

136

problems formulated in Chapter 5. We propose a polynomial time algorithm for the

TMS problem and discuss some of its special cases. We then prove that the MMFS

problem is NP-Hard in the strong sense and inapproximable within any constant factor

better than 2 unless P = NP . We also present an approximation algorithm for this

problem with approximation ratio depending on the maximum possible data rates of

the secondary users. We evaluate the average case behavior of our approximation algo-

rithm and demonstrate that it provides reasonable average case minimum throughput

performance. Moreover, we discuss some of the special cases of the MMFS problem

and elaborate on their combinatorial properties. Then, we prove that the PFS problem

is also NP-Hard in the strong sense. Furthermore, we propose more efficient integer

programming formulations for all the three problems. Our graph theoretic study indi-

cates that the MMFS problem is computationally very hard. We demonstrate that

even very special cases of this problem cannot be approximated within any constant

factor better than 2 unless P = NP . Moreover, the theoretical computer science com-

munity has still been unable to find efficient approximation algorithms for these special

cases. The computational complexity of this problem together with its practical im-

portance in cognitive radio networks call for heuristic techniques that provide efficient

suboptimal solutions. On the other hand, we prove that PFS problem is also NP-Hard

in the strong sense.

In Chapter 7, we formulate a throughput satisfaction based scheduling problem,

in which the objective is to maximize the number of SUs that are satisfied in terms of

throughput. We prove that the problem is NP-Hard in the strong sense and cannot be

approximated within any constant factor better than 2 unless P = NP . We also prove

that this problem is at least as hard as the MMFS problem. Heuristic algorithms for

this problem as part of her MS thesis have been developed in [9].

We formulate in Chapter 8 a scheduling problem that considers different hard-

ware delays that occur during switching to different frequency bands. We propose

a polynomial time heuristic algorithm called S2DASA to solve our formulated prob-

lem. The simulation results show that the throughput S2DASA yields is very close to

its upper bound. Moreover, S2DASA is robust to changes in the hardware spectrum

137

switching delay. Furthermore, throughput savings it achieves increase as the number

of frequencies in the CRN cell and the hardware switching delay for a unit frequency

difference increases. Furthermore, throughput savings of our algorithm are significant

even when there are a small number of SUs, and the savings remain significant as the

number of SUs increases. Simulation results demonstrate that our idea of taking into

account different hardware delays that occur during switching to different frequency

bands is essential for CRNs since the assumption of constant switching delay can lead

to low throughput performance.

9.2. Practical Implications of the Foundations of the Thesis

Proliferation and widespread use of CRNs in the future is inevitable due to the

increased need for spectrum. When we attempt to enter CR/DSA business as a CBS

operator, we need a set of scheduling algorithms that meet the unique needs and

challenges of CRN environment. The set of scheduling algorithms we propose in this

thesis can be readily used by the CBS operator in a dynamic and adaptive manner.

Hence, our proposed algorithms can be regarded as part of a scheduling model for

a CBS operator. Our findings indicate that each of our schedulers work better under

different conditions. Scheduling model at the CBS can dynamically change the executed

scheduler according to the network conditions. In particular, the scheduling model can

implement the following:

• If the number of SUs is small, the model can execute TMS because the simulation

results indicate that the fairness index of TMS is only slightly lower than the

ones of fair schedulers. Therefore, it does not make sense to sacrifice from total

throughput when there is a small number of SUs

• If the number of SUs is large, the CBS operator gives importance to fairness, there

is no priority difference between SUs, and the spectrum and channel conditions

between SUs is fairly uniform, then the model can execute MMFS. In order to

deal with the computational difficulty associated with the MMFS scheduler, the

scheduling model can follow the guidelines outlined in Section 6.2

• If the number of SUs is large, the CBS operator gives importance to fairness, there

138

is no priority difference between SUs, and the spectrum and channel conditions

between SUs is highly heterogeneous, then the scheduling model can execute

PFS. The reason for this decision is that if MMFS is executed, an SU with

very bad channel conditions can drive the total throughput of all SUs to very

low values. PFS scheduler provides a good tradeoff between maximizing total

throughput and achieving fairness. In order to deal with the computational diffi-

culty associated with the MMFS scheduler, the scheduling model can follow the

guidelines outlined in Section 6.2

• If the number of SUs is large, the CBS operator gives importance to fairness, and

there is priority difference between SUs, then the scheduling model can execute

weighted MMFS scheduler in order to provide service differentiation capability

to the SUs

• If the SUs execute different applications (real time/non-real time) with differ-

ent minimum throughput requirements, then the scheduling model can execute

MNSU scheduler in order to maximize the number of SUs that are satisfied in

terms of throughput

• If the CBS cell uses a wide range of frequencies, then the scheduling model can

execute the spectrum switching delay aware scheduler

9.3. Future Work

As a future work, an analytical study on the impact of mobility in centralized

cognitive radio networks may be investigated. Whether mobility increases the capacity

of cognitive radio networks and its relation to the spectrum occupancy behavior of PUs

is an unexplored topic in the literature.

In a practical scenario, the number of SUs or frequencies in a CRN cell can change

dynamically. SUs can roam between different CBS cells or a centralized entity like a

spectrum broker can change the set of frequencies assigned to a CBS cell. Instead of

calculating the new solution from scratch, reoptimization/rescheduling approaches may

be utilized, where the previous solution is updated in response to the change in the

number of SUs or frequencies. That is to say, reoptimization/rescheduling techniques

139

use prior knowledge about the previous solution and therefore they can lead to more

efficient solutions.

We assumed in this thesis that physical layer information such as channel condi-

tions and PU spectrum occupancy process is fed to the scheduling model. In practice,

this information consists of estimated values. Sensing error occurs and the decisions re-

garding the PU activity may be erroneous. Likewise, information regarding SU and PU

locations may also be erroneous. Instead of treating our proposed optimization sched-

ulers as deterministic optimization problems, another approach might be to model

them as stochastic optimization problems and hence provide a cross layer scheduling

formulation.

140

REFERENCES

1. FCC, 03-222 Notice of proposed rule making and order , Technical Report, 2003.

2. Mitola, J., Cognitive Radio: An Integrated Agent Architecture for Software De-

fined Radio, Ph.D. Thesis, Royal Institute of Technology (KTH), 2000.

3. Akyildiz, I., W. Lee, M. Vuran and S. Mohanty, “NeXt Generation/Dynamic

Spectrum Access/Cognitive Radio Wireless Networks: A Survey”, Computer Net-

works , Vol. 50, No. 13, pp. 2127–2159, 2006.

4. FCC, 03-289 Notice of Inquiry and Proposed Rulemaking , Technical Report, 2003.

5. CPLEX, http://www.ilog.com/products/cplex, accessed at May 2012.

6. FCC, 07-78A1 Notice of Inquiry and Proposed Rulemaking , Technical Report,

2007.

7. Quan, Z., S. Cui and A. Sayed, “Optimal Linear Cooperation for Spectrum Sens-

ing in Cognitive Radio Networks”, IEEE Journal on Selected Topics in Signal

Processing , Vol. 2, No. 1, pp. 28–40, 2008.

8. Jiang, H., L. Lai, R. Fan and H. Poor, “Optimal Selection of Channel Sensing

Order in Cognitive Radio”, IEEE Transactions on Wireless Communications ,

Vol. 8, No. 1, pp. 297–307, 2009.

9. Eraslan, B., Heuristic Algorithms for Scheduling in Centralized Cognitive Radio

Networks , M.S. Thesis, Computer Engineering, Bogazici University, 2011.

10. Knopp, R. and P. Humblet, “Information Capacity and Power Control in Single-

Cell Multiuser Communications”, IEEE International Conference on Communi-

cations (ICC), 1995.

141

11. Viswanath, P., D. Tse and R. Laroia, “Opportunistic Beamforming Using Dumb

Antennas”, IEEE Transactions on Information Theory , Vol. 48, No. 6, pp. 1277–

1294, 2002.

12. Andrews, M., K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting and R. Vi-

jayakumar, “Providing Quality of Service over a Shared Wireless Link”, IEEE

Communications Magazine, Vol. 39, No. 2, pp. 150–154, 2001.

13. Zhou, C. and G. Wunder, “A Novel Low Delay Scheduling Algorithm for OFDM

Broadcast Channel”, IEEE Global Telecommunications Conference (GLOBE-

COM), pp. 3709–3713, 2007.

14. Tang, J., S. Misra and G. Xue, “Joint Spectrum Allocation and Scheduling for Fair

Spectrum Sharing in Cognitive Radio Wireless Networks”, Computer Networks ,

Vol. 52, No. 11, pp. 2148–2158, 2008.

15. Lee, W. and I. Akyildiz, “A Spectrum Decision Framework for Cognitive Radio

Networks”, IEEE Transactions on Mobile Computing , Vol. 10, No. 2, pp. 161–174,

2010.

16. Lee, W. and I. Akyildiz, “Joint Spectrum and Power Allocation for Inter-cell

Spectrum Sharing in Cognitive Radio Networks”, IEEE International Symposium

on Dynamic Spectrum Acceess Networks (DySPAN), 2008.

17. Thoppian, M., S. Venkatesan, R. Prakash and R. Chandrasekaran, “MAC-Layer

Scheduling in Cognitive Radio Based Multi-Hop Wireless Networks”, IEEE Inter-

national Symposium on on World of Wireless, Mobile and Multimedia Networks ,

pp. 191–202, 2006.

18. Ma, M. and D. Tsang, “Impact of Channel Heterogeneity on Spectrum Sharing in

Cognitive Radio Networks”, IEEE International Conference on Communications

(ICC), pp. 2377–2382, 2008.

142

19. Li, J., B. Xu, Z. Xu, S. Li and Y. Liu, “Adaptive Packet Scheduling Algorithm

for Cognitive Radio System”, International Conference on Communication Tech-

nology (ICCT), pp. 1–5, 2006.

20. Hamdi, K., W. Zhang and K. Ben Letaief, “Uplink Scheduling with QoS Provi-

sioning for Cognitive Radio Systems”, IEEE Wireless Communications and Net-

working Conference (WCNC), pp. 2592–2596, 2007.

21. Wang, W. and X. Liu, “List-Coloring Based Channel Allocation for Open-

Spectrum Wireless Networks”, IEEE Vehicular Technology Conference (VTC),

Vol. 1, 2005.

22. Urgaonkar, R. and M. Neely, “Opportunistic Scheduling with Reliability Guaran-

tees in Cognitive Radio Networks”, IEEE International Conference on Computer

Communications (INFOCOM), pp. 1301–1309, 2008.

23. Clancy, T., “Achievable Capacity under the Interference Temperature Model”,

IEEE International Conference on Computer Communications (INFOCOM),

2007.

24. Xing, Y., C. Mathur, M. Haleem, R. Chandramouli and K. Subbalakshmi, “Dy-

namic Spectrum Access with QoS and Interference Temperature Constraints”,

IEEE Transactions on Mobile Computing , Vol. 6, No. 4, pp. 423–433, 2007.

25. Wang, W., T. Peng and W. Wang, “Optimal Power Control under Interference

Temperature Constraints in Cognitive Radio Network”, IEEE Wireless Commu-

nications and Networking Conference (WCNC), pp. 116–120, 2007.

26. Bater, J., H. Tan, K. Brown and L. Doyle, “Modelling Interference Temperature

Constraints for Spectrum Access in Cognitive Radio Networks”, IEEE Interna-

tional Conference on Communications (ICC), pp. 6493–6498, 2007.

27. Habib, I., M. Sherif, M. Naghshineh and P. Kermani, “An Adaptive Quality of

143

Service Channel Borrowing Algorithm for Cellular Networks”, Wiley’s Interna-

tional Journal of Communication Systems (IJCS), Vol. 16, No. 8, pp. 759–777,

2003.

28. Sandalidis, H., P. Stavroulakis and J. Rodriguez-Tellez, “Comparison of Two

Novel Heuristic Dynamic Channel Allocation Techniques in Cellular Systems”,

Wiley’s International Journal of Communication Systems (IJCS), Vol. 11, No. 6,

pp. 379–386, 1998.

29. Rondeau, T., B. Le, C. Rieser and C. Bostian, “Cognitive Radios with Genetic Al-

gorithms: Intelligent Control of Software Defined Radios”, SDR Forum Technical

Conference, 2006.

30. Kim, J., S. Sohn, N. Han, G. Zheng, Y. Kim and J. Lee, “Cognitive Radio

Software Testbed using Dual Optimization in Genetic Algorithm”, International

Conference on Cognitive Radio Oriented Wireless Networks and Communications

(CROWNCOM), pp. 1–6, 2008.

31. Friend, D., M. Elnainay, Y. Shi and A. Mackenzie, “Architecture and Perfor-

mance of an Island Genetic Algorithm-based Cognitive Networks”, IEEE Con-

sumer Communications and Networking Conference (CCNC), pp. 993–997, 2008.

32. Newman, T., R. Rajbanshi, A. Wyglinski, J. Evans and G. Minden, “Population

Adaptation for Genetic Algorithm-based Cognitive Radios”, Mobile Networks and

Applications , Vol. 13, No. 5, pp. 442–451, 2008.

33. Liu, X., E. Chong and N. Shroff, “Opportunistic Transmission Scheduling with

Resource-Sharing Constraints in Wireless Networks”, IEEE Journal on Selected

Areas in Communications , Vol. 19, No. 10, pp. 2053–2064, 2001.

34. Liu, X., E. Chong and N. Shroff, “A Framework for Opportunistic Scheduling in

Wireless Networks”, Computer Networks , Vol. 41, No. 4, pp. 451–474, 2003.

144

35. Huang, X. and B. Bensaou, “OnMax-Min Fairness and Scheduling in Wireless Ad-

hoc networks: Analytical Framework and Implementation”, ACM International

Symposium on Mobile Ad Hoc Networking & Computing , pp. 221–231, 2001.

36. Liu, Y. and E. Knightly, “Opportunistic Fair Scheduling over Multiple Wireless

Channels”, IEEE International Conference on Computer Communications (IN-

FOCOM), Vol. 2, pp. 1106–1115, 2003.

37. Nandagopal, T., T. Kim, X. Gao and V. Bharghavan, “Achieving MAC Layer

Fairness in Wireless Packet Networks”, ACM International Conference on Mobile

Computing and Networking (MOBICOM), pp. 87–98, 2000.

38. Nguyen, M. and H. Lee, “Effective Scheduling in Infrastructure-based Cognitive

Radio Network”, IEEE Transactions on Mobile Computing , Vol. 10, No. 6, pp.

853–867, 2011.

39. Shi, Y., Y. Hou, S. Kompella and H. Sherali, “Maximizing Capacity in Multihop

Cognitive Radio Networks under the SINR Model”, IEEE Transactions on Mobile

Computing , Vol. 10, No. 7, pp. 954–967, 2010.

40. Peng, C., H. Zheng and B. Zhao, “Utilization and Fairness in Spectrum Assign-

ment for Opportunistic Spectrum Access”, Mobile Networks and Applications ,

Vol. 11, No. 4, pp. 555–576, 2006.

41. Urgaonkar, R. and M. Neely, “Opportunistic Scheduling with Reliability Guar-

antees in Cognitive Radio Networks”, IEEE Transactions on Mobile Computing ,

Vol. 8, No. 6, pp. 766–777, 2009.

42. Loguinov, D., J. Casas and X. Wang, “Graph-Theoretic Analysis of Structured

Peer-to-Peer Systems: Routing Distances and Fault Resilience”, IEEE/ACM

Transactions on Networking , Vol. 13, No. 5, pp. 1107–1120, 2005.

43. Shalom, M. and S. Zaks, “A 10/7+ ε Approximation for Minimizing the Number

145

of ADMs in SONET Rings”, IEEE/ACM Transactions on Networking , Vol. 15,

No. 6, pp. 1593–1602, 2007.

44. Blough, D., G. Resta and P. Santi, “Approximation Algorithms for Wireless Link

Scheduling with SINR-based Interference”, IEEE/ACM Transactions on Net-

working , Vol. 18, No. 6, pp. 1701–1712, 2010.

45. Djukic, P. and S. Valaee, “Delay Aware Link Scheduling for Multi-hop TDMA

Wireless Networks”, IEEE/ACM Transactions on Networking , Vol. 17, No. 3, pp.

870–883, 2009.

46. Wang, W. and X. Liu, “List-Coloring Based Channel Allocation for Open-

Spectrum Wireless Networks”, IEEE Vehicular Technology Conference (VTC),

Vol. 62, 2005.

47. Khozeimeh, F. and S. Haykin, “Dynamic Spectrum Management for Cognitive

Radio: An Overview”, Wireless Communications and Mobile Computing , Vol. 9,

No. 11, pp. 1447–1459, 2009.

48. Yuan, Y., P. Bahl, R. Chandra, T. Moscibroda and Y. Wu, “Allocating Dynamic

Time-Spectrum Blocks in Cognitive Radio Networks”, ACM International Sym-

posium on Mobile Ad Hoc Networking and Computing , pp. 130–139, 2007.

49. Santos, R., F. Lima, W. Freitas and F. Cavalcanti, “QoS-based Radio Re-

source Allocation and Scheduling with Different User Data Rate Requirements

for OFDMA Systems”, IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC), 2007.

50. Rodrigues, E. and F. Casadevall, “Adaptive Radio Resource Allocation Frame-

work for Multi-User OFDM”, IEEE Vehicular Technology Conference (VTC),

2009.

51. Pal, S., S. Kundu, M. Chatterjee and S. Das, “Combinatorial Reverse Auction

146

Based Scheduling in Multi-Rate Wireless Systems”, IEEE Transactions on Com-

puters , Vol. 56, No. 10, pp. 1329–1341, 2007.

52. Aristomenopoulos, G., T. Kastrinogiannis, V. Kaldanis, G. Karantonis and S. Pa-

pavassiliou, “A Novel Framework for Dynamic Utility-based QoE Provisioning in

Wireless Networks”, IEEE Global Communications Conference (GLOBECOM),

2010.

53. Kastrinogiannis, T. and S. Papavassiliou, “Utility Based Short-Term Throughput

Driven Scheduling Approach for Efficient Resource Allocation in CDMA Wireless

Networks”, Wireless Personal Communications , Vol. 52, No. 3, pp. 517–535, 2010.

54. Raman, C., J. Singh, R. Yates and N. Mandayam, “Scheduling Variable Rate

Links–Centralized and Decentralized Approaches”, Cognitive Wireless Networks:

Concepts, Methodologies and Visions Inspiring the Age of Enlightenment of Wire-

less Communications , p. 285, Springer, 2007.

55. Zhang, Z., Y. He and E. Chong, “Opportunistic Scheduling for OFDM Systems

with Fairness Constraints”, EURASIP Journal on Wireless Communications and

Networking , Vol. 2008, pp. 1–12, 2008.

56. Khalil, K., M. Karaca, O. Erçetin and E. Ekici, “Optimal Scheduling in

Cooperate-to-Join Cognitive Radio Networks”, IEEE International Conference

on Computer Communications (INFOCOM), 2011.

57. Kim, H. and K. Shin, “Efficient Discovery of Spectrum Opportunities with MAC-

Layer Sensing in Cognitive Radio Networks”, IEEE Transactions on Mobile Com-

puting , Vol. 7, No. 5, pp. 533–545, 2007.

58. Cheng, G., W. Liu, Y. Li and W. Cheng, “Spectrum Aware On-Demand Rout-

ing in Cognitive Radio Networks”, IEEE International Symposium on Dynamic

Spectrum Access Networks (DySPAN), 2007.

147

59. Cheng, G., W. Liu, Y. Li and W. Cheng, “Joint On-Demand Routing and Spec-

trum Assignment in Cognitive Radio Networks”, IEEE International Conference

on Communications (ICC), 2007.

60. Filippini, I., E. Ekici and M. Cesana, “Minimum Maintenance Cost Routing in

Cognitive Radio Networks”, IEEE International Conference on Mobile Ad hoc

and Sensor Systems (MASS), 2009.

61. Chowdhury, K. and M. Felice, “SEARCH: A Routing Protocol for Mobile Cogni-

tive Radio Ad-hoc Networks”, Computer Communications , Vol. 32, No. 18, pp.

1983–1997, 2009.

62. Chen, J., H. Li, J. Wu and R. Zhang, “STARP: A Novel Routing Protocol for

Multi-hop Dynamic Spectrum Access Networks”, ACM Workshop on Mobile In-

ternet Through Cellular Networks , 2009.

63. Krishnamurthy, S., M. Thoppian, S. Venkatesan and R. Prakash, “Control Chan-

nel Based MAC-Layer Configuration, Routing and Situation Awareness for Cog-

nitive Radio Networks”, IEEE Military Communications Conference (MILCOM),

2005.

64. Mitran, P., “Interference Reduction in Cognitive Networks via Scheduling”, IEEE

Transactions on Wireless Communications , Vol. 8, No. 7, pp. 3430–3434, 2009.

65. Zhao, Z., Z. Peng, S. Zheng and J. Shang, “Cognitive Radio Spectrum Allocation

using Evolutionary Algorithms”, IEEE Transactions on Wireless Communica-

tions , Vol. 8, No. 9, pp. 4421–4425, 2009.

66. Gözüpek, D. and F. Alagöz, “Throughput and Delay Optimal Scheduling in Cog-

nitive Radio Networks under Interference Temperature Constraints”, Journal of

Communications and Networks (JCN), Vol. 11, No. 2, pp. 147–155, 2009.

67. Clancy, T., “Formalizing the Interference Temperature Model”, Wireless Com-

148

munications and Mobile Computing , Vol. 7, No. 9, pp. 1077–1086, 2007.

68. IEEE, 802.22 Standard , http://www.ieee802.org/22/, accessed at May 2012.

69. Cover, T., J. Thomas, J. Wiley and W. InterScience, Elements of Information

Theory , Wiley-Interscience, New York, 2006.

70. Land, A. and A. Doig, “An Automatic Method for Solving Discrete Programming

Problems”, Econometrica, Vol. 28, No. 3, pp. 497–520, 1960.

71. Sherali, H. and D. Myers, “The Design of Branch and Bound Algorithms for a

Class of Nonlinear Integer Programs”, Annals of Operations Research, Vol. 5, No.

1-4, pp. 463–484, 1986.

72. OPNET, http://www.opnet.com, accessed at May 2012.

73. Clancy, T., “Interference Temperature Multiple Access”, , 2006.

74. Gözüpek, D. and F. Alagöz, “Genetic Algorithm-based Scheduling in Cognitive

Radio Networks under Interference Temperature Constraints”, Wiley’s Interna-

tional Journal of Communication Systems (IJCS), Vol. 24, No. 2, 2011.

75. Holland, J., Adaptation in Natural and Artificial Systems , University of Michigan

Press, Ann Arbor, Michigan, 1975.

76. Haupt, R. and S. Haupt, Practical Genetic Algorithms , Second Edition, John

Wiley & Sons Inc., Hoboken, NJ, 2004.

77. Fonseca, C. and P. Fleming, “Multiobjective Optimization and Multiple Con-

straint Handling with Evolutionary Algorithms. I. A Unified Formulation”, IEEE

Transactions on Systems, Man and Cybernetics, Part A, Vol. 28, No. 1, pp. 26–37,

1998.

78. Montgomery, D., Design and Analysis of Experiments , John Wiley & Sons, New

149

York, 2006.

79. Gözüpek, D. and F. Alagöz, “An Interference Aware Throughput Maximizing

Scheduler for Centralized Cognitive Radio Networks”, IEEE International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.

1–6, 2010.

80. FCC, 08-260 Notice of Inquiry and Proposed Rulemaking , Technical Report, 2008.

81. Wang, L. and A. Chen, “Effects of Location Awareness on Concurrent Transmis-

sions for Cognitive Ad hoc Networks Overlaying Infrastructure-based Systems”,

IEEE Transactions on Mobile Computing , Vol. 8, No. 5, pp. 577–589, 2009.

82. Wang, H., J. Ren and T. Li, “Resource Allocation with Load Balancing for Cogn-

tive Radio Networks”, IEEE Global Communications Conference (GLOBECOM),

2010.

83. Digham, F., “Joint Power and Channel Allocation for Cognitive Radios”, IEEE

Wireless Communications and Networking Conference (WCNC), pp. 882–887,

2008.

84. Rajan, D., A. Sabharwal and B. Aazhang, “Delay-Bounded Packet Scheduling

of Bursty Traffic over Wireless Channels”, IEEE Transactions on Information

Theory , Vol. 50, No. 1, pp. 125–144, 2004.

85. Li, L., M. Pal and Y. Yang, “Proportional Fairness in Multi-Rate Wireless LANs”,

IEEE International Conference on Computer Communications (INFOCOM), pp.

1004–1012, 2008.

86. KNITRO, http://www.ziena.com/knitro.htm, accessed at May 2012.

87. Montgomery, D., Design and Analysis of Experiments , John Wiley & Sons, 2006.

88. Montgomery, D. and G. Runger, Applied Statistics and Probability for Engineers ,

150

John Wiley & Sons, New York, 2007.

89. Jain, R., A. Durresi and G. Babic, “Throughput Fairness Index: An Explanation”,

ATM Forum Contribution, Vol. 45, 1999.

90. Lovász, L. and M. Plummer, Matching Theory , AMS Chelsea Publishing, Provi-

dence, R.I., 2009.

91. Pulleyblank, R., Faces of Matching Polyhedra, Ph.D. Thesis, Univ. of Waterloo,

Dept. Combinatorics and Optimization, 1973.

92. Schrijver, A., Combinatorial Optimization: Polyhedra and Efficiency , Springer,

New York, 2003.

93. Bansal, N. and M. Sviridenko, “The Santa Claus Problem”, ACM Symposium on

Theory of Computing (STOC), p. 40, 2006.

94. König, D., “Graphok Es Alkalmazasuk A Determinansok Es A Halmazok

Elmeletere [Hungarian]”, Mathematikai es Termeszettudomanyi Ertesito, Vol. 34,

pp. 104–119, 1916.

95. Hall, P., “On Representatives of Subsets”, Journal of the London Mathematical

Society , Vol. 10, pp. 26–30, 1934.

96. Tutte, W., “The Factorization of Linear Graphs”, Journal of the London Mathe-

matical Society , Vol. 22, pp. 107–111, 1947.

97. Chekuri, C. and S. Khanna, “A Polynomial Time Approximation Scheme for the

Multiple Knapsack Problem”, SIAM Journal on Computing , Vol. 35, No. 3, pp.

713–728, 2005.

98. Martello, S. and P. Toth, Knapsack Problems Algorithms and Computer Imple-

mentations , John Wiley& Sons, Chichester, New York, 1990.

151

99. Kershenbaum, A., Telecommunications Network Design Algorithms , McGraw-

Hill, New York, 1993.

100. Lawler, E., Combinatorial Optimization: Networks and Matroids , Dover Publica-

tions, Mineola, N.Y., 2001.

101. Bezáková, I. and V. Dani, “Nobody Left Behind: Fair Allocation of Indivisible

Goods”, ACM SIGecom Exchanges , Vol. 5, 2005.

102. Lenstra, J., D. Shmoys and E. Tardos, “Approximation Algorithms for Scheduling

Unrelated Parallel Machines”, Mathematical Programming , Vol. 46, No. 1, pp.

259–271, 1990.

103. Bateni, M., M. Charikar and V. Guruswami, “Max-Min Allocation via De-

gree Lower-Bounded Arborescences”, ACM Symposium on Theory of Computing

(STOC), pp. 543–552, 2009.

104. Woeginger, G., “A Polynomial-Time Approximation Scheme for Maximizing the

Minimum Machine Completion Time”, Operations Research Letters , Vol. 20,

No. 4, pp. 149–154, 1997.

105. Asadpour, A. and A. Saberi, “An Approximation Algorithm for Max-Min Fair

Allocation of Indivisible Goods”, ACM Symposium on Theory of Computing

(STOC), pp. 114–121, 2007.

106. Asadpour, A., U. Feige and A. Saberi, “Santa Claus Meets Hypergraph Match-

ings”, Approximation, Randomization and Combinatorial Optimization Algo-

rithms and Techniques (APPROX), pp. 10–20, 2008.

107. Asadpour, A., U. Feige and A. Saberi, “Santa Claus meets hypergraph match-

ings”, to appear in ACM Transactions on Algorithms , http://www.stanford.

edu/~asadpour/papers/santa.pdf, 2009.

152

108. Haeupler, B., B. Saha and A. Srinivasan, “New Constructive Aspects of the Lovasz

Local Lemma”, IEEE Symposium on Foundations of Computer Science (FOCS),

Arxiv preprint arXiv:1001.1231 , 2010.

109. Burkard, R., M. Dell’Amico and S. Martello, Assignment Problems , Society for

Industrial Mathematics, Philadelphia, 2009.

110. Hou, J., J. Yang and S. Papavassiliou, “Integration of Pricing with Call Admission

Control to Meet QoS Requirements in Cellular Networks”, IEEE Transactions on

Parallel and Distributed Systems , Vol. 13, No. 9, pp. 898–910, 2002.

111. Assmann, S., D. Johnson, D. Kleitman and J. Leung, “On a Dual Version of the

One-Dimensional Bin Packing Problem”, Journal of Algorithms , Vol. 5, No. 4,

pp. 502–525, 1984.

112. Jansen, K. and R. Solis-Oba, “An Asymptotic Fully Polynomial Time Approxi-

mation Scheme for Bin Covering”, Theoretical Computer Science (TCS), Vol. 306,

No. 1-3, pp. 543–551, 2003.

113. Maroug, S., “Frequency-Switching Speed and Post-Tuning Drift Measurement of

Fast-Switching Microwave-Frequency Synthesisers”, IET Science, Measurement

& Technology , Vol. 1, No. 2, pp. 82–86, 2007.

114. Ma, H., L. Zheng and X. Ma, “Spectrum Aware Routing for Multi-hop Cognitive

Radio Networks with a Single Transceiver”, International Conference on Cognitive

Radio Oriented Wireless Networks (CROWNCOM), 2008.

115. “TCI 7234 Wideband SHF Tuner Data Specification”, http://www.tcibr.com/

ufiles/Library/7234_webp.pdf, accessed at May 2012.

116. “TCI 715 Data Specification”, http://www.tcibr.com/ufiles/Library/715_

webp.pdf, accessed at May 2012.

153

117. Cesana, M., F. Cuomo and E. Ekici, “Routing in Cognitive Radio Networks:

Challenges and Solutions”, Ad Hoc Networks , Vol. 9, No. 3, pp. 228–248, 2011.

118. “TCI 735 Data Specification”, http://www.tcibr.com/ufiles/Library/735_

webp.pdf, accessed at May 2012.

119. “TCI 745 Data Specification”, http://www.tcibr.com/ufiles/Library/745_

webp.pdf, accessed at May 2012.

120. Wang, B. and K. Liu, “Advances in Cognitive Radio Networks: A Survey”, IEEE

Journal of Selected Topics in Signal Processing , Vol. 5, No. 1, pp. 5–23, 2011.

121. Ileri, O., D. Samardzija and N. Mandayam, “Demand Responsive Pricing and

Competitive Spectrum Allocation via a Spectrum Server”, IEEE International

Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 194–202,

2005.

122. Kamal, H., M. Coupechoux and P. Godlewski, “Inter-Operator Spectrum Shar-

ing for Cellular Networks using Game Theory”, IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 425–429,

2009.

123. Yamada, T., D. Burgkhardt, I. Cosovic and F. Jondral, “Resource Distribution

Approaches in Spectrum Sharing Systems”, EURASIP Journal on Wireless Com-

munications and Networking , Vol. 2008, p. 8, 2008.

124. Koch, P. and R. Prasad, “The Universal Handset”, IEEE Spectrum, Vol. 46,

No. 4, pp. 36–41, 2009.

125. Yun, M., Y. Zhou, A. Arora and H. Choi, “Channel-Assignment and Scheduling in

Wireless Mesh Networks Considering Switching Overhead”, IEEE International

Conference on Communications (ICC), pp. 1–6, 2009.

154

126. Hemmecke, R., M. Köppe, J. Lee and R. Weismantel, “Nonlinear Integer Pro-

gramming”, 50 Years of Integer Programming 1958-2008 , pp. 561–618, 2010.

127. Schrijver, A., Theory of Linear and Integer Programming , Wiley-Interscience,

New York, 1999.

	Page1-DidemGozupek_PhD_Thesis.pdf
	ApprovalPage-Thesis-DidemGözüpek.PDF
	DidemGozupek_PhD_Thesis.pdf

