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encouragement, patience and support.



iv

ABSTRACT

APPLICATION MAPPING AND OPTIMIZATION FOR

CMP BASED ARCHITECTURES

Chip Multiprocessors (CMPs) are becoming standard and primary building

blocks for personal computers as well as large scale parallel machines, including su-

percomputers. In this thesis, our main focus is on performance-aware mapping and

optimization of application threads onto multicore architectures. Specifically, we pro-

pose three different approaches, which are data-to-core mapping methodology, thread-

to-core mapping methodology, and cache-centric data assignment methodology that

includes data-to-thread mapping. For demonstrating data-to-core mapping methodol-

ogy, we propose two novel parallel formulations for the Barnes-Hut method on the Cell

Broadband Engine architecture by considering technical specifications and limitations

of the Cell architecture. Our experimental evaluation indicates that the Barnes-Hut

method performs much faster on the Cell architecture compared to the reference archi-

tecture, an Intel Xeon based system. To present thread-to-core mapping methodology,

we propose a framework that uses helper threads running in parallel with applica-

tion threads, which dynamically observe the behavior of application threads and their

data access patterns. These helper threads calculate data sharing among application

threads, cluster them to be mapped to available cores, use cache counters to calculate

the efficiency of a mapping, and make the mapping decision after considering the ex-

ecution needs. Our final methodology provides a locality-aware mapping algorithm,

which targets to assign computations with similar data access patterns of an appli-

cation to the same core. Our algorithm divides computations of the application into

chunks to provide load balancing, and a set of chunks with high similarity is grouped

into bins to provide data locality. We consider the sparse matrix-vector multiplication

as the reference application.
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ÖZET

YONGADA ÇOKLU-İŞLEMCİLİ MİMARİLER İÇİN

UYGULAMA HARİTALAMASI VE ENİYİLEME

Yongada Çoklu-İşlemciler (CMP), kişisel bilgisayarların yanı sıra büyük ölçekli

paralel makinaların ve süper bilgisayarların standart ve temel yapıtaşlarını oluşturmaya

başlamıştır. Bu tezdeki temel amacımız, performansı arttıran haritalama ve optimiza-

syon yöntemleri geliştirerek, uygulama izleklerini çok çekirdekli mimarilere atamaktır.

Bunu başarabilmek için üç farklı yöntem sunmaktayız, bunlar veri-çekirdek eşleme

metodu, izlek-çekirdek eşleme metodu ve önbellek merkezli veri-izlek eşleme meto-

dudur. Veri-çekirdek eşleme metodunda, Barnes-Hut algoritmasının bir CMP olan Cell

Broadband Engine Mimarisinin teknik özelliklerini ve limitlerini göz önünde bulun-

duran iki özgün paralel formulasyonunu önermekteyiz. Yapılan deneysel değerlendirme,

Barnes-Hut metodunun Cell mimarisi üzerindeki performansının karşılaştırma yapılan

referans mimarisi olan Intel Xeon tabanlı sisteme göre belirgin oranda daha hızlı

olduğunu göstermektedir. İzlek-çekirdek eşleme metodunu sunmak için, uygulama

izlekleri ile paralel çalışan yardımcı izlekler kullanan ve dinamik olarak uygulama izlek-

lerinin davranışlarını ve eriştikleri veri düzenini gözlemleyen bir sistem önerilmiştir.

Yardımcı izlekler uygulama izleklerinin veri paylaşım miktarını hesaplayarak, bunları

çekirdeklere eşlenmeleri için gruplara ayırır, eşlemelerin verimliliğini hesaplayabilmek

için ön bellek sayaçları kullanır, ve çalışma zamanı ihtiyaçlarına bağlı olarak eşleme

kararını alır. Önerilmiş olan son metodumuzda, benzer veri erişim şekline sahip olan

hesaplamaları aynı çekirdeğe atamayı hedefleyen, veri yerelliğini sağlayan bir eşleme

algoritması tasarlanmıştır. Önerilen algoritma verilen uygulamanın hesaplamalarını

yükün eşit dağılımını sağlayabilmek için parçalara ayırır ve veri yerelliliğini sağlamak

için yüksek benzerliğe sahip olan parçalar gruplandırılırlar. Metodun performansını

ölçmek için, referans uygulama olarak seyrek matris-vektör çarpımı kullanılmıştır.
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1. INTRODUCTION

As the chip manufacturing technology moves toward deep sub-micron ranges,

transistors become smaller, and operating frequencies keep getting faster. As a result,

chip components are becoming increasingly unreliable. An architectural response to

these critical challenges is the emerging Chip Multiprocessors (CMPs). A CMP con-

tains multiple Central processing units (CPUs), an interconnection fabric, and some

memory components, all packaged into a single chip. Almost all major chip manu-

facturers in the world are now considering CMP design and optimization, and CMPs

have become the standard and primary building blocks for personal computers as well

as large-scale parallel machines, including supercomputers. Nowadays, there are dual

core chips on the market from major manufactures (Intel Montecito [1] and AMD

Athlon [2]). Complex configurations with higher number of cores have also been de-

livered or prototyped, including Sun UltraSPARC T1 (formerly Niagara) [3], IBM’s

Cell [4], and Intel’s 80-core TeraFlop [6], RAW [7], TRIPS [8], WaveScalar [9], and

SmartMemories [10] in academia.

The focus of this thesis is to explore ways to map and adapt the execution of

an application to the underlying hardware in CMPs. The assignment of application

threads onto cores and the data they manipulate onto memory components is a chal-

lenging task. One option is to use static assignment of data and application threads

to CMPs and keep this assignment throughout the execution of the application. With

this static mapping, we are not able to capture data access patterns of application

threads that are dynamically changing.

The other option is to use dynamic mapping strategies that can detect changes

in data access patterns of application threads throughout the execution and can adjust

the application threads to adapt dynamic data sharing patterns. Dynamic mapping

strategies can be useful if their overheads can be kept low.
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1.1. Research Objectives and Contributions

Our goal is the efficient exploitation of emerging CMPs using application map-

ping and adaptation techniques. The aim of our approach is to reduce execution

latencies. To achieve this, we have designed mechanisms that take full advantage of

the resources, especially the memory components available in CMPs. Our proposed

work is demonstrated first using the IBM Cell chip multiprocessor, and then generic

multicore processors that are simulated using an enhanced version of SIMICS.

We started our work by studying various static application and data mapping

strategies for CMPs. We then decided on the mechanisms to collect runtime informa-

tion about the state of the architecture and the state of the application. Our approach

has both ”static” and ”dynamic” components for application mapping and optimiza-

tion, targeting CMP architectures. These approaches can be listed as thread-to-core

mapping and data-to-thread mapping. In our first approach, static thread-to-core

mapping and dynamic data-to-thread mapping are considered. The second approach

involves static data-to-thread mapping and dynamic thread-to-core mapping. In our

final approach, we consider a cache-centric mapping that includes dynamic data-to-

thread mapping.

Our first approach has three phases: code parallelization, thread-to-core map-

ping, and data-to-memory mapping. In the first phase, the behavior of the application

is analyzed in detail, and two parallel implementations that consider the characteris-

tics of the application are proposed. Additionally, both the CMP characteristics and

the unique features of the target HW are considered in the implementation. These

features include vector operations (most of the computations are SIMDized) and mem-

ory access operations that are overlapped with computation by using double buffering.

Branches are also eliminated by using select bits, loop unrolling, and nonrecursive im-

plementation. The second step maps threads to the available CPUs. In this phase,

the number of threads created is equal to the number of cores used. In the third step,

data is mapped to on-chip memory components. In this step, we exploit the affinity
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(data-computation relationship) as much as possible. Also, in this step, data is dy-

namically mapped to threads due to the size of the on-chip memory components and

the dynamic nature of the application used.

In our second approach, we focus on the development of a framework that in-

cludes a dynamic thread-to-core assignment that aims to maximize data reuse of on-

chip memory components. Because we use CMPs as our target architecture, effective

thread-to-core assignment at runtime requires several adjustments. First of all, not

every piece of information that could be collected through counters is valuable, so the

data is processed before we can make adaptation decisions based on it. Second, inex-

pensive but effective analysis and decision algorithms are designed and implemented.

An important question here is how to structure the decision mechanism. Perform-

ing effective adaptation decisions also requires predicting the application’s data access

pattern. Third, fast activation of optimizations at runtime is important. Costly opti-

mizations cannot be implemented, as their overhead can offset the potential benefits.

Major challenges that are investigated as part of our second approach include the

following: (i) given the runtime execution constraints and application characteristics,

deciding what type of statistics we need to collect (statically and dynamically), (ii)

determining mechanisms for collecting dynamic statistics during execution, and (iii)

selecting the set of optimizations to apply. Our approach employs four helper threads

to adapt the application execution to continuously changing runtime conditions. Dy-

namic mapping is triggered as a reaction to an interesting execution pattern, which

presents opportunities for optimization. The goal of our framework is to eliminate

performance bottlenecks of the given application by increasing the data reusability of

on-chip memory components.

In our framework, four helper threads that run parallel with the application

threads are used to achieve our goals. The responsibilities of the helper threads are

the following:
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• The clustering thread collects the data access pattern of all application threads

and calculates their data sharing. This thread constructs clusters of application

threads which have highest data sharing. These clusters are then assigned to

cores to maximize data reuse of on-chip memory components.

• The counter thread makes use of performance counters and calculates the overall

miss ratio of a specific interval. This helper thread uses the total hit and miss

number of data read and write of on-chip memory components of all cores used.

• The cost and benefit analysis thread decides whether dynamic thread mapping

is necessary, and if it is, this thread generates the next formation of threads.

While making this decision, it predicts the behavior of the application in the

near future based on the previous information collected through other helper

threads. The metrics used in the decision process are the application threads’

data sharing pattern, past execution history, and current counter data. The cost

and benefit analysis thread is the main decision mechanism of the framework, so

it coordinates all other helper threads.

• The mapping thread obtains the mapping decision from the cost and benefit

analysis thread and uses this information to dynamically migrate threads among

cores.

In our final approach, our aim is to obtain a general view of different parts of the

application by using a locality analysis, which provides details of the cache require-

ments and data access patterns of application threads. In this work, our objective is to

increase the probability of data reuse of on-chip memory components by assigning com-

putations with similar data access patterns to same cores. It is built on a hierarchically

data-to-thread and thread-to-core assignment methodology, which includes similarity

calculation, data-to-bin, bin-to-thread, and thread-to-core assignment phases.

In similarity calculation, the input data is divided into smaller computations,

and these computations are processed to find the total number of shared and distinct

elements that will be used by application threads. Then data elements are clustered

according to the highest data similarity into bins, which are dynamically assigned
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to threads. Similarity calculation and data-to-bin phases are completed before the

execution of the application threads starts. As soon as threads begin their execution,

bins are assigned to threads. This work improves the performance of the application

by balancing the load among threads and increasing the cache reuse of on-chip memory

components shared by application threads. To achieve load balance, data in bins are

mapped to threads dynamically. We increase cache reuse by assigning the bins with

maximum similarity to threads sharing the same on-chip memory component.

1.2. Outline of the Thesis

Chapter 2 provides a brief background of application scheduling and mapping

for multicore architectures. This chapter also surveys various scheduling algorithms

on parallel and distributed systems. Chapter 3 presents and evaluates our data-to-

core assignment methodology. This chapter describes the N-Body problem and the

Barnes-Hut Method, which is used as the base application for experimental evalua-

tion. It also gives the details of the Cell Broadband Engine Architecture. Chapter 4

presents a novel thread-to-core mapping framework that considers four helper threads.

It also discusses the methods used for cache optimization and gives details on three

benchmarks used, namely the Black-Scholes application, Jacobian Matrix Calculation,

and Sparse Matrix-Vector Multiplication. Chapter 5 focuses on a cache-centric data

assignment methodology based on a locality analysis of data computations of appli-

cations. Finally Chapter 6 summarizes the contributions of the application mapping

approaches proposed in this thesis.
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2. SURVEY ON APPLICATION MAPPING AND

SCHEDULING FOR MULTICORE ARCHITECTURES

In this chapter, we first give a brief overview of multicore architectures. This is

followed by a survey on application mapping and optimization on CMP architectures.

2.1. Overview of Multicore Architectures

The performance of microprocessors has increased exponentially for two main

reasons: the increased number of transistors available and increased parallelism ex-

ploited in software. The growing number of transistors has also increased the amount

of power used. The processor designs should utilize the number of transistors available

to enhance performance by minimizing design complexity and power usage.

By using the same number of transistors, we can obtain either a single high-

performance processor running a single, high-performance thread or a group of simpler

cores running multiple threads in parallel. If the same budget is used, multi-cores

obtain higher performance compared to a monolithic processor; in addition, multi-

core designs are simpler, and design and verification costs are lower. As a result, the

new processor designs target CMPs.

Individual CPUs in a CMP architecture can be simpler than a single CPU-based

system and can thus operate with lower frequencies and less aggressive supply voltages

(as we have multiples of them), thereby helping with both the power and the reliability

problem. Single-processor systems as shown in Figure 2.1 faced some major difficulties

in further increasing processor performance, and CMPs overcome these problems [11].

These difficulties can be listed as follows:

• Memory Stall Latency: The speed of processor is increasing faster than the main

memory (MM), and while data or instructions are fetched from memory, the
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CPU waits for the memory operation to finish; as a result, memory stall latency

determines a major part of total execution time. Previous designs proposed

two solutions to solve this problem: larger caches and exploitation of instruction

level parallelism (ILP). CMPs solve this problem by using thread level parallelism

(TLP). While one thread uses the CPU, the other fetches data or instructions

from memory, and for the entire core to be idle would mean that all threads have

overlapping memory stalls, which has a very low possibility.

• Branch Prediction: Long pipelines are used in single-core systems, and when a

branch miss-prediction occurs, the entire instruction is replaced with a new one,

so it has a high penalty. CMPs support one pipeline in each core shared by

multiple threads, so when a branch miss-prediction occurs during the execution

of a thread, another thread uses the pipeline; meanwhile, the other thread fetches

the new instruction from memory.

• Power Consumption: Power consumption increases exponentially as more tran-

sistors are used in core designs. CMP systems can yield the same performance by

decreasing the amount of power used. Individual CPUs in a CMP architecture

can be simpler than a single CPU-based system and thus can be operated with

low frequencies and supply voltages, thereby helping with the power problem.

• Die Size: CMP cores are simple and small, and adding a new core to the current

architecture results in minor increases in die size.

• Complexity: CMP cores are easy to design and verify, whereas single-core CPUs

are much more complex and difficult to design.

There are different ways of implementing CMPs, but all CMPs contain multiple

CPUs, an interconnection fabric, and some memory components, all packaged into a

single chip. CMP implementation can vary according to shared components in the

chip [12]. Some CMPs share only the system interface between cores as in Figure 2.2,

so each core has its own L1 and L2 cache; while others (an example architecture is

shown in Figure 2.3) may share an on-chip cache.
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Figure 2.2. A simple chip multiprocessor.
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To distribute threads over the cores less in number then the cores, each core

should support the execution of multiple threads, simultaneously. The CMP configu-

ration in Figure 2.4 employs cores with multiple register files to provide simultaneous

multithreading. ``````
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Figure 2.4. Multithreaded shared-cache chip multiprocessors.

The cores used in CMP architecture can be homogeneous or heterogeneous. Ho-

mogeneous CMPs are simple and easy to design, the same core is replicated several

times, but heterogeneous CMPs contain high and low complexity cores. The size and
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strength of a replicated core varies according to application needs. Server applica-

tions focus on throughput per cost and power, so using many small low-power cores is

attractive.In case applications require high performance, few large size cores may be

preferred.

In reality, application’s execution time requirements are not easily characterized;

an application may have different phases (phases that can be executed on a simple

core and phases that require a high-performance core), so different applications have

different requirements, and these requirements may vary over time. Another core

replication alternative is to use both high-performance and low-performance cores to-

gether to map application needs. Heterogeneous CMPs [13] may match the processor

and system resources to each application’s need efficiently. They may improve system

throughput and reduce processor power. Heterogeneous CMPs may outperform ho-

mogeneous CMPs if a heterogeneous CMP can map each application to the core best

suited to its performance demands and if it can answer to different workload demands,

ranging from low TLP to high TLP.

Kumar et al. proposed a CMP architecture [14] that reduces processor power

dissipation by using heterogeneous cores and mapping a given application to the most

appropriate core to meet performance and power requirements. In this study, dynamic

switch between cores is allowed, and the core selection depends on two metrics for

power minimization: energy metric and energy-delay metric. In energy metric, the

core that has the lowest energy consumption is chosen with the constraint that the

performance should be within 10% of the fastest core in the chip. But for energy-delay

metric, energy and response time have equal importance. Another study [15] examines

policies for heterogeneous CMP architectures with and without multithreading cores.

In an efficient CMP design, the die size area and computational efficiency are two

important factors. If topologically feasible resources can be shared, then the die area

can be reduced, and overall computational efficiency can be improved as described in

Kumar et al.’s study [16]. This work investigates the possible sharing of floating-point
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units, crossbar parts, instruction caches, and data caches between adjacent pairs of

processors. The sharing of resources results in area savings if the resources shared are

large enough that additional wiring overhead does not outweigh the area benefits.

2.2. Application Mapping and Scheduling

Efficient task scheduling and mapping is critical for achieving high performance

in heterogeneous parallel and distributed systems. This problem has been shown to

be NP-complete in general cases as well as in several restricted cases. Due to its

key importance, the scheduling and mapping problem has been extensively studied,

and various algorithms have been proposed in the literature. On the other hand,

thread-level granularity is important for emerging architectures, including multicore

systems, and efficient thread-to-core mapping mechanisms are crucial to improve the

performance of multithreaded applications in multicore systems.

There are many scheduling algorithms for parallel and distributed systems in lit-

erature, and these algorithms are divided into two groups according to when scheduling

action will be taken. In static scheduling, decision and mapping of tasks to processors

is taken at compile time, whereas in dynamic scheduling, this decision is taken at

runtime. Both static and dynamic assignment techniques will be considered in this

work. Mapping of the algorithms in the literature directly, as they are to the CMP

architecture is not suitable, because the communication cost in CMPs is much lower

than that of conventional systems. Therefore, new scheduling algorithms considering

CMP characteristics are proposed in the thesis.

Static scheduling techniques do not consider the runtime behavior of threads

that vary throughout execution [17] and [18], so it is beneficial to use dynamic thread

assignment techniques. Becchi et al. calculates the instructions per cycle (IPC) values

on heterogeneous cores for each thread and uses the ratio of the IPC values to assign

the application threads to cores at runtime [19].
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Additionally, to efficiently utilize the underlying systems, it is important to ob-

serve the runtime behaviors of the running threads and to provide a dynamic thread-

to-core mapping by exploiting thread migration between the cores. In Anderson et

al.’s study [20] and Sondag et al.’s study [21], instead of using an applications exe-

cution trace, the similarity between programs’ phases are used to make the thread

assignment decision. This work contains two phases; the first phase uses a static anal-

ysis technique to group similar sections in a program, and the second phase deals with

scheduling. Another dynamic scheduling method is given in Tam et al.’s study [22],

which clusters the application threads that share the same cache access pattern to

the same core. Cache access patterns are collected with performance monitoring units

and are stored in a summary vector called shMap; and the similarity among threads’

access patterns are measured using a similarity metric. If the similarity between two

shMap vectors is greater than a given threshold, these two threads are assigned to the

same cluster. After clusters are formed, each cluster is assigned to a core.

Process variation aware thread mapping algorithm is proposed in Hong et al.’s

study [23]. This work focuses in the latency variations of identical processor cores and

proposes a dynamic thread remapping algorithm which allows all processors to operate

at their individual peak frequency. This algorithm has two phases, detection phase

and stable phase. In detection phase the variations of execution latencies between

application threads are detected. Based on the variations encountered, the application

threads are remapped. As long as the variations of execution latencies stay the same,

the algorithm remains in the stable phase. These two phases are repeated as long as

the execution of the application continues. There are other studies that considers the

effect of process variation on performance [24, 25].

For efficient use of heterogeneous multicore systems, runtime systems such as

StarPU [26] are also developed. StarPU distributes parallel tasks to heterogeneous

multicore architectures, and it provides an execution model that uses scheduling strate-

gies to balance load and improve data locality among tasks.
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Machine learning based approaches are also used for predicting the best thread-

to-core mapping. A compiler based approach that maps a parallel program to a

multi-core processor by predicting the number of threads and the scheduling policy, is

proposed in Wang et al.’s study [27].

Data and computation mapping for multiprocessors are also widely studied.

These algorithms propose data partitioning approaches applicable to a given multicore

architecture. In Balasundaram et al.’s study [28] data partioning decisions are guided

with a static performance estimator. Static and dynamic algorithms to partition the

on-chip memory components are proposed in Kim et al.’s study [29]. Dynamic thread

and data mapping approaches on CMP-based network-on-chip (NOC) architectures

are also presented. One of these works [30] aims to reduce the distance between the

location of the requested data and the core whose local memory contains it. In this

study, a helper thread is used to make the thread-to-core assignment.

Cache performance is an important issue regarding the performance of CMPs and

shared cache contention degrades performance of the application, so studies including

cache behavior of the application parts have been introduced. One of these works

introduces a locality model [31] which predicts the behavior of jobs and schedules them

accordingly by using concurrent reuse distance [32]. To improve the management of

the L2 Cache, CASC [33] schedules threads with low L2 miss rate and gives priority

to threads that has low L2 space requirements.

Chen et al.’s study [34] analyze the performance of different thread schedulers to

increase the hit ratio of off-chip memory components. In Chandra et al.’s study [35]

several performance models are proposed to predict the effect of L2 cache sharing

with multiprogram workloads. Pichel et al. [36] proposed a technique for increasing

the locality of sparse matrix-vector multiplication (SpMV) application on multicore

platforms.
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3. DATA-TO-CORE ASSIGNMENT METHODOLOGY: A

DEMONSTRATION ON IBM CELL ARCHITECTURE

IBM Cell Architecture [4,37,38] is an example of heterogeneous multi-core archi-

tectures, jointly designed by IBM, Toshiba, and Sony. The IBM Cell engine contains

a traditional microprocessor called the power processing element (PPE), which deals

with the orchestration and the coordination of the synergistic processing elements

(SPEs). The tasks are performed by eight SPEs that work in parallel, and all compo-

nents on the chip are connected via an element interconnect bus. IBM Cell is suitable

for applications demanding high performance since it offers high computational power.

N-body is an important problem that can be applied to extensive applications

from various domains in engineering and science, and it is one of the computation-

intensive problems in the 13 dwarfs [46]. This problem simulates the motion of particles

under pairwise interaction among n bodies for a predefined time period. At each time

step, pairwise forces are calculated for all particles; this requires O(n2) computations,

which are not feasible when millions of particles are considered. Therefore, in order to

reduce the complexity of the problem, many approximation algorithms are proposed.

The Barnes-Hut method [47] is one of the most popular approximation algorithms,

which reduces the computational complexity of the N-body problem to O(n logn). It

is widely used due to its simplicity and easily programmable nature without requiring

complicated data structures.

Many algorithms from a variety of domains have been parallelized and developed

on the Cell architecture to take advantage of the performance and power utilization of

the Cell processor. The potential of the Cell processor for several scientific computing

kernels and the performance and power efficiency of the Cell architecture for these

kernels have been presented [39]. The parallel implementation of fast fourier transform

(FFT) on the Cell processor is also shown in the literature [40–42]. Additionally, a

complexity model for algorithm designs on the Cell with an implementation of the list
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ranking problem is given in Bader et al.’s study [43] . The performance and design

choices of the breadth-first search algorithm is explored in Villa et al.’s study [44]. Bio-

informatics applications [45] also have been tested on the Cell processor. These studies

highlight the performance and the architectural restrictions of the Cell processor for

various applications.

N-body is an important problem that can be applied to extensive applications

from various domains in engineering and science, and it is one of the computation

intensive problems in the 13 dwarfs [46]. This problem simulates the motion of particles

under pairwise interaction among n bodies for a predefined time period. At each time

step, pairwise forces are calculated for all particles; this requires O(n2) computations,

which is not feasible when millions of particles are considered. Therefore, to reduce

the complexity of the problem, many approximation algorithms are proposed. The

Barnes-Hut method [47] is one of the most popular approximation algorithms, which

reduces the computational complexity of the N-body problem to O(n logn). It is

widely used due to its simplicity and easily programmable nature without requiring

complicated data structures.

This work presents the dynamic data-to-core assignment methodology by map-

ping our parallel implementations of the Barnes-Hut algorithm onto the Cell BE Archi-

tecture [48]. Although Cell Architecture is suitable for computation-intensive parallel

applications such as Barnes Hut algorithm, programming the Cell Architecture is quite

difficult due to its architecture-specific limitations and empirical optimization schemes.

While designing our parallel methods, these limitations are considered.

3.1. N-body Problem and Barnes-Hut Method

The N-body problem is used to simulate the evolution of n particles in a space by

calculating the pairwise forces among them. Due to the interactions among particles,

a net force is exerted on each particle, which causes them to move within a specified

time. In each time step, with the movement of the particles, the forces are recalculated,
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because the force is dependent on the distance between particles. Some application

areas of the problem are astrophysics, molecular dynamics, plasma physics, embedded

SAR data processing, and protein folding.

At each time step, the N-body problem requires n2 interactions; it calculates all

pairwise forces, so the exact formulation of this problem requires O(n2) computations.

To reduce the complexity of the problem, many methods have been proposed. The

Barnes-Hut method [47,49], which has a computational complexity of O(n logn), is a

popular algorithm due to its simplicity. Another approximation algorithm is the Fast

Multipole Method [50] with a complexity of O(n), which has working principals similar

to those of the Barnes-Hut method except that it uses complex data structures.

The Barnes-Hut method uses a hierarchical tree representation of space and re-

duces the number of interactions among particles by grouping relatively close particles

under a single tree node. The sequential implementation of this method has two

phases: tree construction phase and force computation phase. In the tree construc-

tion phase, the domain is represented with a tree in which the leaves are the particles

themselves, and internal nodes are the clusters grouping nearby bodies (i.e., particles).

This phase starts with an empty space, and particles are added to the domain one by

one. For a 2D space, the domain is recursively divided into four equal sub-domains if

the domain contains more than one particle. This process is repeated until each sub-

domain contains a single particle at each time step. The force acting on particles is

calculated in the force computation phase. Instead of calculating pairwise interactions

among the particles, the force between the nodes of the tree and particles is calculated

using the distance between the particle and the center of mass of the node.

To cluster particles and represent the clusters with internal nodes, the center

of mass and the total mass of the particles in the cluster are calculated, and this

information is stored in each internal node. The net force on each particle is calculated

by traversing all nodes of the tree, starting from the root. If the center of mass of an

internal node is sufficiently far away from the particle, the particles contained in the
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internal node are approximated as a single particle, and the net force acting on the

particle is calculated using internal nodes’ mass and center of mass information. If the

center of mass of an internal node is not sufficiently far away from the particle, then

each of the sub-nodes of the internal node is explored and traversed recursively.

The multipole acceptance criteria (MAC) [47] determines whether a node is at a

sufficient distance from a particle, and it is equal to the ratio of the dimension of the

domain to the distance of the particle from the center of mass of the domain. If this

ratio is less than the predefined constant λ, the node is at a sufficient distance from

the particle and an interaction can be computed; otherwise, the node is expanded to

its sub-nodes, and the force between the particle and center of mass of the sub-nodes

is computed recursively. The speed and accuracy of the simulation is determined by

setting a proper value for λ. The value of λ is in the given range 0 ≤ λ ≤ 1.0; and

if it is equal to 0, the Barnes-Hut application is turned into the N-Body problem in

which all nodes are explored and the pairwise force among all particles is calculated.

The increase in λ value decreases the number of nodes explored and also decreases the

accuracy of the calculations performed.

Although there are various parallel implementations of the Barnes-Hut method in

the literature [49,51], which are either for message-passing architectures [52] or shared-

memory architectures [53], they can not be directly mapped to the Cell architecture.

The sequential non-recursive Barnes-Hut algorithm given in Figure 3.1 is the basis of

our parallel implementation running on the Cell architecture.

3.2. IBM Cell Broadband Engine Architecture

The Cell Broadband Engine (the Cell B./E.) [37, 38] is a high-performance ar-

chitecture designed by Sony, Toshiba, and IBM that targets multimedia and gaming

applications. The Cell is used in Sony’s Play Station 3 gaming console, Mercury Com-

puter System’s dual Cell-based blade servers, IBM’s QS20 - QS21 - QS22 Cell Blades,

and Roadrunner, which has a speed of 1.06 Petaflops. The Cell is designed to increase
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1. for time=0 to endTime do

2. for i=0 to particleNumber do

3. Insert particle i to the tree

4. Update center of mass and total mass of each internal node on the way

5. end for

6. for i=0 to particleNumber do

7. Add root node to visitList

8. while visitList is not empty do

9. Calculate distance between particle i and center of mass of node

10. if center of mass of the node and particle i are distantthen

11. Calculate force acting on particle i

12. else

13. Add children of node to visitList

14. end if

15. end while

16. end for

17. for i=0 to particleNumber do

18. Update position and velocity of particle i

19. end for

20. end for

Figure 3.1. Sequential version of Barnes-Hut algorithm.
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microprocessor efficiency in terms of both power and performance. The clock speed of

the Cell processor is 3.2 GHz and it has a single-precision peak performance of 204.8

Gflops/s and double-precision peak performance of 14.6 Gflops/s.

Figure 3.2. Cell Broadband Engine Architecture [37].

The Cell B./E. consists of a traditional microprocessor (power processing element-

PPE), 8 smaller and simpler processors (SPEs) and an element interconnect bus (EIB)

which connects the processors and provides access to main memory and I/O devices.

General overview of the Cell Broadband Engine Architecture can be seen in Figure 3.2.

The PPE is a dual-issue processor so it supports two-way simultaneous multithread-

ing. Each SPE consists of a Synergistic Processor Unit (SPU), a Local Store (LS) and

a Memory Flow Controller Unit (MFC). The instruction set of SPEs is designed to

take advantage of 128-bit registers, and most of the instructions are single instruction

multiple data (SIMD) instructions. Memory operations access 128-bits at a time even

if the request data is 8-bits, so for an efficient implementation, the programmer should

request 128-bits in each memory operation. SPEs are in-order processors with two in-

struction pipelines, namely the even pipeline and the odd pipeline. The even pipeline

is responsible for arithmetic operations, and the odd pipeline deals with memory and

branch instructions.

In a single clock cycle, SPEs can dispatch two instructions if these instructions

have no data dependency. SPEs do not have a cache, but they have a 256 Kbyte LS
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which can be called private memory. Both the program and the data should be in LS

to be executed. SPEs have no direct access to main memory and a direct memory

access (DMA) controller is used to perform high bandwidth data transfers among the

local store, main memory and other local stores. EIB connects all components of the

Cell processor including the PPE, the SPEs, the main memory, and I/O. It supports a

peak bandwidth of 204.8 Gbytes/s [56]. EIB is build of 16-byte wide four unidirectional

rings, two in each direction.

The details of the Cell B.E. Architecture and Cell programming models are given

in Appendix A.

3.3. Parallelization of Barnes-Hut Algorithm on the Cell Processor

This section presents common characteristics of our two parallel implementations

of the sequential Barnes-Hut Algorithm (given in Figure 3.1) for the Cell Architecture.

As part of parallelization, we aim to distribute data across SPEs. Since our workspace

contains large number of particles and each SPE contains a 256KB Local Store, it is

not possible to hold all data and the tree on each SPE. Therefore, the tree representing

a part of the domain is gradually constructed in the SPEs and the force calculation

is replicated for each local tree of the SPEs. In our initial parallelization, the number

of particles in the domain is distributed equally among all SPEs to overcome both

the limited size of the local stores and the time wasted on the synchronization barrier

due to load imbalances among SPEs. The total number of nodes in the global tree is

distributed among the SPEs in our enhanced parallelization.

To exploit the unique features of the Cell Architecture, a set of issues such

as avoiding branches, vectorizing the corresponding code, and overlapping memory

access with computation should be considered [61]. Since the Cell Engine has no

branch prediction mechanism, we consider the non-recursive version of the Barnes-

Hut algorithm as the starting point. Some of the if-then-else statements in the code

are replaced with select bits instruction for eliminating branches. Additionally, the
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loops in the code are unrolled partially by decreasing the number of iterations and

replicating the instructions in the loops. To reduce memory access latencies, DMA

transfers and computations are overlapped through double buffering. The Barnes-Hut

method performs the same computations on a large amount of 3D data repeating in

each direction. In the force calculation phase (which is common in our two parallel

implementations, as explained below), pairwise computations between particles and

tree nodes are performed, where each computation is between a particle and the center

of mass of a tree node. Each particle and the tree node is represented with a vector,

and all operations performed are SIMDized. All data transferred between memory and

the local store are stored contiguously in memory. Double-buffering usage is efficient

for this type of implementation. After both the force calculation and the position and

velocity updates are performed, the SPEs are synchronized using mailboxes that send

and receive 32 bit messages.

1. Initialize data structures

2. Create SPEs

3. DMA: Initiate transfers to put blocks of particle coordinates to LS

4. Synchronization using mailbox

5. for time=0 to endTime do

6. Arrange all particles in the sub-domains

7. Use load information of the sub-domains and distribute load between SPEs

8. Map sub-domains to SPEs

9. Wait for SPEs to finish tree construction and force calculation

10. Synchronization using mailbox

11. Wait for SPEs to finish position and velocity updates

12. Synchronization using mailbox

13. end for

Figure 3.3. View within PPE for the initial parallelization.
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1. DMA: Initiate transfers to get blocks of particle coordinates

2. for i=0 to particleNumber do

3. Determine which sub-domain particle i belongs to

4. end for

5. DMA: Put the data with its sub-domain information from LS back to MM

6. Synchronization using mailbox

7. for time=0 to endTime do

8. while more sub-domains to visit

9. while more blocks to process

10. DMA: Load mass and coordinates of particles in the sub-domain from MM into LS

11. for i=0 to subParticles do

12. Insert particle i to the tree

13. Update center of mass and total mass of each internal node on the way

14. end for

15. end while

16. while more blocks to process

17. DMA: Load mass and coordinates of all particles in the space

18. DMA: Load force of all particles in the space

19. for i=0 to allParticles do

20. Add root node to visitList

21. while visitList is not empty

22. Calculate distance between particle i and the center of mass of the node

23. if center of mass of the node and particle i are distant then

24. Calculate force acting on particle i

25. else

26. Add children of the node to visitList

27. end if

28. end while

29. end for

30. DMA: Put force of all particles in the space to MM

31. end while

32. DMA: Put load information of sub-domain into MM

33. end while

34. Synchronization using mailbox

35. while more blocks to process

36. for i=0 to particleNumber do

37. DMA: Get force exerted by other SPEs on particle i

38. Calculate total force acting on particle i

39. Update position and velocity of particle i

40. Determine which sub-domain particle i belongs to

41. end for

42. DMA:Put new position, sub-domain and velocity of particles from LS to MM

43. end while

44. Synchronization using mailbox

45. end for

Figure 3.4. View within SPE for the initial parallelization.
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3.3.1. Initial Parallelization of the Barnes-Hut Method

Our initial parallelization has three phases: the domain decomposition phase, the

tree construction and the force calculation phase, and the position and velocity updates

phase. The following subsections explain these phases in detail. The related pseudo-

codes for the PPE-specific and SPE-specific parts are given in Figure 3.3 and Figure

3.4, respectively.

3.3.1.1. Domain Decomposition. The domain is decomposed into smaller parts (called

sub− domains) in which each part contains a limited number of particles that can fit

in the LS of each SPE. Initially, the PPE fetches the positions, velocities, and masses

of particles, and it distributes the position of particles equally to the SPEs to obtain

their sub-domain information. After the PPE obtains this information from the SPEs,

it constructs sub-domains and uses the load information of sub-domains to give equal

workload to each SPE. In the first iteration, the workload is divided into w equal units

of data, where total number of particles in the workload is equal to w ∗ p, and p is

the number of SPEs used in execution. When the first iteration ends, the number of

nodes explored by the local tree representing a sub-domain during force calculation in

the previous iteration is used as the workload metric of the sub-domain for the current

iteration. After the PPE completes sub-domain allocation, it sends the sub-domains to

the SPEs on which they will operate. Finally, each SPE fetches its data from memory

and starts its local tree construction.

3.3.1.2. Tree Construction and Force Calculation. In this phase, an octree represent-

ing the particles in a sub-domain is constructed by each SPE. Then, the force acting

on all particles in the workload is calculated on all SPEs using their own local trees.

Since the SPEs have local stores of limited size, they operate on many sub-domains

by obtaining each sub-domain one by one. When the local tree representation of the

sub-domain is finished, it starts the force calculation among the particles and the

sub-nodes by traversing the tree starting from the root.
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Interactions with the top nodes of the tree are calculated first, and then the

sub-nodes are explored, if necessary. If the center of mass of an internal node is

sufficiently far away from the particle, the particles contained in the internal node are

approximated as a single particle, and the net force acting on the particle is calculated

using the internal nodes’ mass and center of mass information. To determine whether

a node is sufficiently far away from a particle, MAC [47] is computed, which is the

ratio of the dimension of the sub-domain to the distance of the particle from the center

of mass of the given sub-domain. If a particle is too distant from a cluster of particles

(where MAC is less than a predefined λ value), the particles contained in the cluster

are represented with a single particle.

Each SPE is responsible for different sub-domains, and there will be more in-

teractions between particles and nodes that are close to each other in the domain.

As soon as the force calculation ends, each SPE writes back the calculated force val-

ues of all particles in its local tree to the memory and obtains the data of the new

sub-domain. The tree construction and force calculation phase continues until all

sub-domains assigned to the SPEs are processed.

Figure 3.5 shows the local trees that are constructed by each SPE for the given

domain ((a) in Figure 3.5). There are 14 particles in this domain, which are processed

by 4 SPEs. In the first phase, the domain information of particles is obtained by using

their x and y coordinates, and each SPE is assigned an equal number of particles to

work on. Therefore, SPE1, SPE2 and SPE3 receive 4 particles each, and SPE4 receives

the remaining 2 particles. In the second phase, sub-domains are distributed among

SPEs. There are 4 sub-domains, so each SPE handles one sub-domain. According to

the number of particles in the sub-domains, SPE1 and SPE2 receive 3 particles, SPE3

and SPE4 receive 4 particles. Although SPE1 and SPE2 have the same number of

particles, their tree construction times differ, as the depths of their trees are not the

same.
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Figure 3.5. A typical step of the first parallel version with 14 particles using 4 SPEs.

(a) Domain decomposition (b) Local tree construction in SPEs (c) Force calculation

and position updates in SPEs.
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When the number of the nodes used to construct the local trees ((b) in Figure 3.5)

are compared, SPE1 and SPE3 have 5 nodes, SPE2 has 4 nodes, and SPE4 has 6 nodes.

Therefore, SPE2 has the lowest running time for tree construction, and SPE4 has the

highest running time. It should be noted that SPE1 and SPE2 differ in terms of the

running times for tree construction, although they have an equal number of particles

in their sub-domains. In the force calculation phase, the local tree is explored for each

particle ((c) in Figure 3.5). The running time of this phase is much longer than that

of the tree construction phase. Additionally, the running time of this phase may vary

among the SPEs due to the different number of nodes to be explored by themselves,

which results in an unbalanced load among SPEs.

3.3.1.3. Position and Velocity Updates. After the force calculation phase is completed,

the net force acting on each particle is calculated using all force values calculated on all

local trees. Then, the particle’s velocity and position values are updated accordingly.

This process is repeated for a predefined number of iterations, and at the end of the

simulation, each particle has a new position and velocity value.

3.3.2. Enhanced Parallelization of the Barnes-Hut Method

In our initial parallelization, implementation of the tree construction phase by

using only the particles in the sub-domains causes loss of clusters of the domain. The

tree construction phase is the heart of the Barnes-Hut algorithm. A good clustering

of particles results in less computation for the force calculation phase. Therefore, our

second parallel implementation is built on the idea of obtaining better clustering of the

particles in the domain. Although the global tree is required in order to achieve this

goal, it cannot be stored in the LS of the SPEs due to memory limitations. Therefore,

the first phase of our enhanced parallelization is the sequential tree construction phase,

where PPE constructs the global tree by using all particles in the domain, dividing

global tree into sub-trees. The second phase of the enhanced parallelization is the local

tree construction and force calculation phase, where SPEs use sub-trees to construct

their local trees. The last phase, the position and velocity updates phase, is the same as
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the previous parallelization; therefore, it is not repeated in the following subsections.

The related pseudo-codes are given in Figure 3.6 and Figure 3.7.

1. Initialize data structures

2. Generate global tree

3. Create sub-trees and store node information to tree array

4. Map sub-trees to SPEs

5. Create SPEs

6. for time=0 to endTime do

7. Wait for SPEs to finish tree construction and force calculation

8. Synchronization using mailbox

9. Wait for SPEs to finish position and velocity updates

10. Generate global tree

11. Create sub-trees and store node information to tree array

12. Map sub-trees to SPEs

13. Synchronization using mailbox

14. end for

Figure 3.6. View within PPE for the enhanced parallelization.

3.3.2.1. Global Tree Construction. In this phase, PPE constructs a global tree that

contains all the particles in the domain, and then it divides the global tree into sub-

trees by using depth first search. The number of sub-trees depends on the total

number of nodes generated in the global tree and the number of SPEs in use. In

this parallelization, the total number of nodes are distributed equally among SPEs to

have better load balancing. These sub-trees are stored as contiguous data in order

to have a predictable memory access pattern. Each element in the array represents a

node in the tree and contains the center, the total mass, the total number of children

nodes, and the dimensions of the domain represented by the node. After PPE com-

pletes the generation of sub-trees, SPEs fetch their data from memory and start local

calculations.
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1. for time=0 to endTime do

2. while more trees to generate

3. while more blocks to process

4. DMA: Load tree nodes information from MM into LS

5. for i=0 to nodeNumber do

6. Insert node i to the tree

7. end for

8. end while

9. while more blocks to process

10. DMA: Load mass and coordinates of all particles in the space

11. DMA: Load force of all particles in the space

12. for i=0 to particleNumber do

13. Add root node to visitList

14. while visitList is not empty

15. Calculate distance between particle i and the center of mass of the node

16. if center of mass of the node and particle i are distant then

17. Calculate force acting on particle i

18. else

19. Add children of the node to visitList

20. end if

21. end while

22. end for

23. DMA: Put force of all particles in the space to MM

24. end while

25. end while

26. Synchronization using mailbox

27. while more blocks to process

28. for i=0 to particleNumber do

29. DMA: Get force exerted by other SPEs on particle i

30. Calculate total force acting on particle i

31. Update position and velocity of particle i

32. end for

33. DMA:Put new position and velocity of particles from LS to MM

34. end while

35. Synchronization using mailbox

36. end for

Figure 3.7. View within SPE for the enhanced parallelization.
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3.3.2.2. Tree Construction and Force Calculation. In this phase of the algorithm, each

SPE obtains the number of sub-trees assigned to it and loads the nodes of the trees

from memory to its local store one by one. The tree construction phase is simpler in

this parallel implementation because the positions of the nodes are not searched in

the whole local tree. Instead, this information is calculated by the PPE and is stored

in the tree array. One disadvantage of this method is that additional variables are

needed to store upper levels of the tree nodes, and this reduces the available space

reserved for keeping local trees. On the other hand, this method has two advantages.

It decreases the number of comparisons in finding the position of the particles in the

trees thus reduces tree construction time. In addition, the upper levels of the local

trees that contain the clustering information of the domain are included in the local

trees generated. This reduces the total execution time of the force calculation phase by

decreasing the number of comparisons in this phase. After local trees are constructed,

the tree is traversed starting from the root, and the force acting on each particle in the

domain is calculated. It should be noted that force calculation phase implementation

is the same as described in Section 3.3.1.2. This phase continues until all local trees

assigned to the SPEs are processed.

Figure 3.8 shows the global tree that is sequentially constructed by the PPE for

the same domain used in initial parallelization ((a) in Figure 3.5). The global tree

contains 20 nodes (excluding the root node), and the root node is replicated in all

local trees assigned to 4 SPEs. The number of nodes distributed is 24, and each SPE

should obtain approximately 6 nodes. While constructing the local trees, the PPE

first considers keeping the clusters together; then, it takes the number of nodes into

account. In this enhanced parallelization, the number of nodes is considered, which is

different than the initial parallelization in which the number of particles is considered

instead. This change aims to balance load among SPEs.

Figure 3.8 shows the local trees constructed by SPEs and the particles used in

force calculation, as well as position and velocity update phases. The local tree includes

upper level tree information ((b) in Figure 3.8). For a higher number of particles, this
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information is very valuable, because it decreases the number of nodes explored.
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Figure 3.8. A typical step of the second parallel version with 14 particles using 4

SPEs. (a) Global tree construction (b) Local tree construction, force calculation and

position updates in SPEs.

3.3.3. Experimental Work and Analysis of Results

The performance results presented in this section are from actual runs on an IBM

Blade Center QS20 with two 3.2GHz Cell BE processors, 512 KB Level 2 cache per

processor and 1 GB memory. Our code is compiled using gcc compiler in the Cell SDK
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3.1 with -O3 optimization flag for performance analysis. As mentioned before, loop

unrolling, double-buffering, and vectorization are used to decrease execution time on

the SPEs. The code running on the PPE is also optimized by loop unrolling, branch

elimination, and vectorization. In all experiments performed, the number of particles

used varies from 1024 to 32768, the number of buffers used is 2, λ is 0.5, and the

number of iterations is 50, unless otherwise stated.
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Figure 3.9. Speedup with respect to different number of SPEs and PPE - initial

parallelization.

In the first set of tests, the performance of our algorithm is measured by varying

the number of the SPEs used for different particle sizes. Figure 3.9 and Figure 3.10

show the speedup values that are normalized to a single SPE for the initial and en-

hanced parallelizations, respectively. The running time of the PPE is also included

in the experiments. Considering that the Barnes-Hut algorithm is branchy, the PPE

runs the code faster than a single SPE does. When 1024 particles are considered, 2

SPEs run 1.61, 4 SPEs run 2.2, and 8 SPEs run 3.98 times faster than 1 SPE in the

initial parallelization. Similarly, in the enhanced parallelization, 2 SPEs run 1.93, 4

SPEs run 3.4, and 8 SPEs run 6.17 times faster than 1 SPE.

For the case of 32768 particles, 2 SPEs complete 1.95, 4 SPEs complete 4.18, and

8 SPEs complete 8.45 times faster in our initial parallelization. A speedup of 1.98 for 2

SPEs, 3.86 for 4 SPEs, and 7.32 for 8 SPEs is achieved in the enhanced parallelization.

This shows that the application scales well as the number of the SPEs increases in

both implementations, and load balancing is better in the enhanced parallelization.
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Figure 3.10. Speedup with respect to different number of SPEs and PPE - enhanced

parallelization.

The performance of the SPEs with respect to cycle per Instruction (CPI) values is also

measured using the IBM Cell Simulator. For the initial implementation of the method,

the CPI values of the tree construction phase range between 1.99 and 2.03, and in the

force calculation phase, they are between 1.72 and 1.79. When the second enhanced

parallelization is considered, the CPI values of tree calculation and force calculation

phases are 1.97 and 1.69, respectively. The percentage of total cycles stalled due to

branch miss is equal to 25.7% for tree construction, and it is equal to 9.8% for force

calculation. The CPI values are higher than the theoretical CPI value of 0.5 due to

the branchy nature of the algorithm because in both phases the tree is traversed for

each particle.

The second set of experiments presents a performance comparison of our imple-

mentations with that of the Intel Xeon 3.0 GHz processor running the Linux operating

system. The Barnes-Hut code on Intel Xeon processor is compiled with gcc version

3.4.6 and -O5 optimization flag. The optimizations on the application code (except

Cell specific optimizations including parallelization and vectorization) are applied to

both architectures for a fair comparison. Additionally, the SPEs can construct trees

with a limited number of particles since they have LS limitations, and this increases

the number of nodes explored in the force calculation phase, whereas Intel Xeon has

no such memory limitations, so all particles are considered simultaneously in the tree

construction phase.



33

Due to the 256 KB LS size, each SPE constructs a tree consisting of at most 370

nodes, and a single sub-domain used for tree generation contains at most 208 particles

in each LS in the initial parallelization. To ease workload distribution and load bal-

ancing, the workspace is initially divided into 512 sub-domains in each tree generation

step. Then, the SPEs are assigned N sub-domains, where the total number of particles

in each sub-domain is less than or equal to 208. As the number of particles increases,

all nearby bodies may not be clustered in a single tree because of space limitations,

and this increases the number of nodes explored in the force calculation step. As ex-

plained in Section 3.3.2, the bottleneck of this method is solved by distributing tree

nodes containing cluster information in the enhanced parallelization. This approach

decreases the number of nodes explored in the force calculation phase and improves

the most compute-intensive phase of the algorithm, resulting in a speedup of 1.4 for

32768 particles.
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Figure 3.11. Speedup of 8 SPEs relative to the Intel Xeon with respect to different

number of particles.

Figure 3.11 compares the speedup of the initial and enhanced parallelizations

running on 8 SPEs with respect to Intel Xeon by varying the number of particles

considered. When 4096 particles are considered, the Cell outperforms Intel Xeon with

a speedup of 6.22 for our initial parallelization of the Barnes-Hut method, and it is

equal to 7.4 for the enhanced parallelization. As the number of particles increases,

we can no longer achieve an ideal speedup as there is an increase in the total number

of local trees generated in a single step due to LS size restriction. The number of

trees generated for 1024, 8192, and 32768 particles are 8, 64, and 200 respectively. As

a result, all of the clusters of the domain cannot be stored in the LS; consequently,
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the number of clusters used in the force calculation phase decreases. When a lower

number of clusters is considered, the number of nodes explored and the number of

comparisons made increases, which decreases the performance of the system.
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Figure 3.12. Performance comparison with respect to number of particles given in

the range [1024-4096].
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Figure 3.13. Performance comparison with respect to number of particles given in

the range [8192-32768].

Figure 3.12 and Figure 3.13 compare the running time of parallel implementations

on the Cell processor for 1 SPE, 8 SPEs, PPE only, and Intel Xeon cases by varying the

number of particles in the domain. In Figure 3.12, the best performance is obtained

when 8 SPEs of the enhanced parallelization are used. For 1024 and 2048 particles,

Intel Xeon shows the worst performance. For the case of 4096 particles, 1 SPE shows

the worst performance and the PPE only case outperforms both Intel Xeon and 1

SPE. As the number of particles increases, the performance of Intel Xeon increases,

and it outperforms both PPE only and 1 SPE cases.
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Table 3.1. Communication and computation times (in msecs.) for various phases of

the enhanced parallelization of the Barnes-Hut method.

Number of Particles

Phase Considered 1024 2048 4096 8192 16384 32768

Tree Construction (SPE)
Computation 1.3 3.2 7.8 22.1 43.5 75.5

DMA 0.04 0.1 0.2 0.6 1.1 2.1

Force Calculation (SPE)
Computation 18.3 68.1 198.3 953.6 3851.5 11573.9

DMA 0.3 1.2 3.9 22.1 94.4 2854.7

Update Position (SPE)
Computation 1.1 2.2 5.4 7.3 20.3 41.6

DMA 0.05 0.1 0.2 0.3 1.2 25.5

PPE-Specific Computation 2.1 5.2 10.0 21.4 46.1 116.8

Synchronization (SPE)
Force 4.4 13.8 9.7 210.0 435.8 2052.7

Update 1.7 2.2 3.2 5.1 9.7 26.2

Whole Application
Computation 22.8 78.8 221.5 1004.5 3961.6 11807.9

Communication 6.5 17.5 17.4 238.3 542.2 2369.0

The average execution time of different phases of our enhanced parallelization

for 8 SPEs is shown in Table 3.1, where the last two rows are for the overall compu-

tation and communication times. In this table, the ”PPE-Specific” row denotes the

time spent on global tree construction. As the number of particles in the workspace

increases, the overhead of this phase compared to the total execution time decreases.

Specifically, it takes 7.2% and 0.84% of the total execution time when 1024 and 32768

particles are considered. Similar behavior can be observed in the tree construction

phase handled by SPEs; 4.4% and 0.54% of the total execution time is spent in this

phase for 1024 and 32768 particles.

The update positions and velocities phase takes the least amount of time, as

this phase includes SIMDized calculations and is straightforward. This phase provides

good load balancing, so the synchronization barrier at the end of this phase takes only

0.1% of the total execution time for 32768 particles. The synchronization barrier at

the end of the force calculation phase puts a higher overhead in running time, since

loads are distributed to SPEs dynamically and it is harder to balance load in this

phase. Specifically, 1.27% of the total execution time for 32768 particles is spent in

this barrier. As the number of particles increases, nearly the whole computation of

the algorithm is for the force calculation phase; namely this phase takes 88.3% to
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98.9% of the total computation time of the method. The average communication to

computation ratio for the given number of particles is equal to 0.19. Based on these

results, the load balancing and communication of the application are acceptable.

As explained in Section 3.3.1.2, the MAC criteria calculates the ratio of the

distance between the center of mass of the node and a particle to the dimension of

the sub-domain. The term λ is used to decide whether to expand the corresponding

node or to represent all particles that belong to the node with the center of mass of

the node. The value of λ is in the given range 0 ≤ λ ≤ 1.0; and if it is equal to

0, the Barnes-Hut application is turned into the N-Body problem in which all nodes

are explored and the pairwise force among all particles is calculated. The increase in

λ value decreases the number of nodes explored and also decreases the accuracy of

the calculations performed. Since the application spends most of its time doing force

calculation, the execution time decreases as the number of nodes explored decreases.
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Figure 3.14. Speedup of 8 SPEs relative to the Intel Xeon with respect to different λ

values - initial parallelization.

Figure 3.14 and Figure 3.15 compare the performance of the Cell processor of 8

SPEs with that of the Intel Xeon for different λ values. When λ value is close to 1, the

algorithm does not consider the individual positions and mass values of the particles

in the force calculation phase; rather, it uses cluster information regarding the upper

level nodes. When the SPEs do not contain the upper level cluster information due

to space limitations, they consider lower level cluster information, which increases the

number of comparisons made. As a result, the speedup decreases when λ is 0.7 and
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Table 3.2. Execution time (in seconds) of the enhanced parallelization of Barnes-Hut

method with compiler optimization flags for different number of SPEs and particles.

Number of Number of Compiler Optimization Flag

SPEs Particles None O1 O2 O3

1024 6.70 4.34 4.18 4.18

2048 17.36 11.15 10.74 10.73

1 4096 42.96 27.47 26.51 26,49

8192 119.03 73.30 71.44 71.41

16384 347.22 206.64 203.05 202.99

32768 925.33 539.51 533.34 533.18

1024 2.04 1.27 1.23 1.23

2048 5.01 3.12 3.01 3.01

4 4096 12.00 7.45 7.20 7.18

8192 32.03 19.35 18.89 18.85

16384 91.62 53.68 52.79 52.71

32768 242.61 139.65 138.22 138.06

1024 1.18 0.70 0.69 0.68

2048 2.86 1.72 1.66 1.65

8 4096 6.69 4.02 3.90 3.88

8192 17.19 10.14 9.89 9.86

16384 49.01 28.26 27.82 27.71

32768 129.28 73.71 72.96 72.76
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0.9. When the λ value is close to 0, cluster information of the lower level nodes is more

frequently used, which is mostly available in the local trees of the SPEs. Therefore,

the performance of the application increases. A test of 4096 particles with a value of

0.3 for λ outperforms other alternatives by providing a speedup of 7.83 for the initial

parallelization and a speedup of 8.85 for the enhanced parallelization.
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Figure 3.15. Speedup of 8 SPEs relative to the Intel Xeon with respect to different λ

values - enhanced parallelization.

In the last set of experiments, the effect of compiler optimization is measured

for 1, 4, and 8 SPEs for a variable number of particles, as shown in Table 3.2. Here,

compiler flag -O1 is used to reduce the code size and execution time. The compiler

increases code performance without compromising on code size by applying the -02

compilation flag. Additionally, the highest level of optimization is achieved using the

-03 compiler flag, which is our standard choice in the previous experiments. The

Barnes-Hut algorithm is branchy and with the usage of the -O1 flag, the compiler

tries to optimize loops and if statements. It rearranges program code and minimizes

branches. The Cell architecture has no branch mechanism, so the best performance

improvement is achieved with this compiler flag. When compiler flag -O1 is used,

a speedup of 1.75 is obtained; for compiler flags -O2 and -O3, a speedup of 1.77 is

achieved, when 8 SPEs and 32768 particles are considered.
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4. THREAD-TO-CORE ASSIGNMENT METHODOLOGY:

A DEMONSTRATION ON GENERIC MULTICORE

ARCHITECTURES

In our framework, we propose a dynamic thread-to-core mapping strategy based

on the runtime characteristics of the threads. The policy focuses on the effective

usage of caches by assigning threads that commonly share data to the same core. We

also prevent thread migration unless it is highly beneficial for the performance of the

system. In our thread-to-core mapping framework, four helper threads are used to

monitor data access pattern of application threads and map threads with highest data

sharing to the same core. Specifically, the first helper thread tracks data accesses of

application threads and groups threads that share common data. The second helper

thread collects cache statistics and calculates cache miss ratio between two consecutive

mappings to see which mapping is more beneficial. The responsibility of the third

helper thread is to migrate threads between cores. The final helper thread makes

the dynamic mapping decision after considering cluster information, and the cache

statistics gathered from other helper threads. Our simulation environment contains

CMPs with 8 and 16 cores, each of which have a private L1 cache and L2 cache.

For testing the performance of the dynamic thread-to-core mapping policy, the Black-

Scholes application from the Parsec Benchmark Suite, Jacobian Matrix Calculation,

and Sparse Matrix-Vector Multiplication are considered with 16, 32, 64, 128, and 256

threads.

4.1. Proposed Framework for Dynamic Thread-to-Core Mapping

Thread-to-core mapping is a challenging issue to effectively utilize multicore ar-

chitectures for multithreaded applications. Additionally, the scheduling decisions of

applications may change from one application to another. If the threads of an applica-

tion share only a small amount of data except at certain communication points, they

can be considered independent threads; so these threads can be distributed among dif-
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ferent CPUs (or cores). On the other hand, if the threads of an application share data

heavily, mapping these two threads to the same core (or nearby cores with common

caches) improves the performance of the given application. Therefore, data sharing

capabilities of threads can be considered for the task-to-core mapping of applications.

Theoretically, thread-to-core mapping can be considered as a clustering problem.

If we have n threads and p cores, the aim is to construct p clusters (each of which

contains ⌈n/p⌉ threads). After these clusters are constructed, the second phase is to

assign each cluster to a core (which core does not matter, but cluster-to-core mapping

should be 1-to-1). As a static compiler point of view, a data sharing graph can be

constructed as follows:

Given a graph G(V,E), in which each vertex v in V corresponds to a thread

and every edge e in EÂ indicates that the threads connected shares data, the sharing

amount can be shown with a weight attached to each edge. After this graph is gener-

ated, any clustering algorithm can construct p clusters. The main problem is whether

amount of data sharing between two nodes (threads) can be determined correctly at

compile time, and in the most general way, this is a very hard problem. A method

to ease the compiler’s work is to profile the application program beforehand (by using

sample input data), and calculate edge weights. If profile input is the same or very

similar to the real input, this method can be highly effective.

On the other hand, it is important to observe the runtime behaviors of the

running threads and provide a dynamic thread-to-core mapping by exploiting thread

migration between the cores. We propose a dynamic thread-to-core mapping frame-

work that is provided by the usage of helper threads. The strategy here is running

helper threads parallel with the application threads, so that as soon as the program

starts, the helper threads are spawned and can start working with the application

threads.
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These helper threads construct clusters that provides best data sharing by using

the data sharing information of the application threads, and then by using the perfor-

mance of the clusters, they map the application threads to cores. The helper threads

can also change the thread-to-core mapping dynamically during program execution if

it is beneficial to the application in terms of cache performance. While a program is

in execution, it passes through different phases, and the ideal thread-to-core mapping

may change. Helper threads intercept these changing points immediately and change

current mapping to the desired thread-to-core mapping.

We consider four helper threads, which are the clustering thread, the cost and

benefit analysis thread, the counter thread, and the mapping thread. The relationship

among the helper threads is given in Figure 4.1. In the following subsections, the

helper threads are explained in more detail.
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Thread-to-core 
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Figure 4.1. The relationship among the four helper threads considered in our

framework.
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4.1.1. Clustering Thread

The main job of the clustering threads is to group threads that will be mapped to

each core by using the data sharing information that is collected throughout execution

time among thread pairs and to construct clusters of threads. This thread calculates

the weight among thread pairs by using the data sharing information among applica-

tion threads as given in the following equation

W (i, j) =
Sharing(i, j)

Access(i) + Access(j)
, (4.1)

where Sharing(i, j) is the total number of accesses to the common shared data among

thread i and thread j, Access(i) is the total number of accesses done by thread i, and

Access(j) is the total number of accesses done by thread j. It should be noted that

application threads with high number of data sharing, have higher weight values.

After the weights between threads are calculated, these weights are binned and

represented with an integer number in the range [1..5]. If the weight is represented

with 5, the thread pair is accessing common data extensively; conversely, a value of 1

for a weight value shows that the data sharing between thread pairs is very low. By

using the binning information, data sharing graph is generated. Figure 4.2 shows an

example of a data-sharing graph with 2 and 4 clusters (i.e., cores).

The data sharing graph is considered by both the clustering thread and the cost

and benefit analysis thread. The clustering algorithm first selects the thread pairs

that have a sharing weight of 5 and puts them in the same cluster. When the threads

that have a weight information of 5 are all placed in a cluster, the binning value is

decreased, and a suitable cluster is found for the threads that have not been assigned

to a cluster. The cluster construction algorithm continues until all threads are assigned

to a cluster.
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Figure 4.2. An example thread sharing and thread mapping scenario. (a) Weight

sharing graph (b) Thread mapping for 2 cores (c) Thread mapping for 4 cores.
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After the clusters are formed, the helper thread starts to collect new data sharing

information and starts constructing the cluster that will be used in the next step, and

this thread continues its execution until the end of the application.

4.1.2. Cost and Benefit Analysis Thread

The cost and benefit analysis thread makes the main decision for changing thread

to core mapping dynamically. It uses the data sharing graph and the new cluster

constructed by the clustering thread, and the mapping table formed by the counter

thread. When it decides on the new thread-core mapping, it sends this information to

the mapping thread.

This thread starts execution by using the new cluster information. If the new

cluster information is different from that of the current one, the helper thread searches

for the < CM,NM > pair, where CM represents the current mapping and NM

represents the new mapping in the mapping table. If it cannot find the <CM, NM>

pair, the new mapping information is generated by using the new cluster information.

If it is able to find the < CM,NM > pair, the mapping has changed from current

mapping to new mapping previously throughout execution, so the helper thread looks

up for the benefit obtained from this change in the mapping table. If the benefit

is greater than a given threshold value δ, changing the current mapping to the new

mapping is beneficial, so the new mapping information is generated by using the

new cluster information. If the variation between the two mappings is less than δ,

changing the current mapping to the new mapping is disadvantageous, so the helper

thread constructs a new mapping as shown in Figure 4.3.

In order to construct a new mapping, the new cluster formed by the clustering

thread, current mapping and data sharing graph are used. While constructing new

mapping, the criteria that should be considered is mapping threads that are extensively

sharing data to the same core and decreasing extra overhead of thread migration. This

algorithm starts with removing the thread pairs with the lowest data sharing from the
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1. counter = 5

2. while (counter > 5) do

3. Hash < CM,NM > into table.

4. if (< CM,NM >) entry does not exist then

5. Put NM into table.

6. Use NM for new thread-to-core assignment.

7. Return NM.

8. else

9. Get variation percentage for entry < CM,NM >.

10. if (variation >δ)then

11. Use NM for new thread-to-core mapping.

12. Return NM.

13. else

14. Reconstruct new cluster.

15. counter = counter − 1

16. endif

17. endif

18. endwhile

Figure 4.3. New mapping construction by the cost and benefit analysis thread.



46

newly generated cluster, and maps these thread pairs to available cores by looking at

the current mapping so that the new cluster resembles the current mapping as much

as possible. This algorithm ensures that thread pairs with low data sharing are not

migrated and thread pairs with high data sharing are mapped to the same core.

4.1.3. Counter Thread

The counter thread uses the thread-core mapping information generated by the

cost and benefit analysis thread and cache statistics between the two mappings. The

responsibility of this thread is to generate a mapping table by using the cache statistics

between the two mappings. This mapping table has three rows, which are represented

as previous mapping, current mapping, the variation in cache miss rate. This helper

thread calculates the variation ∆ between cache miss rates by using the following

formula:

∆miss ratio = 100 ∗
MRp−MRc

MRp
(4.2)

where MRp and MRc are the (cache miss / total cache access) ratios for the previous

and current mapping, respectively. This ratio is used when the decision of moving from

one mapping to the other is made. Today’s modern computer architectures contain

various performance counters, but accessing them from the software (by using an OS

command) is not permitted. The counter thread fulfills its function given above by

using these performance counter values.

In order to access the cache statistics, the application should communicate with

the Simics simulation environment. The application sets the o0 register on Serengeti

architecture and ebx register on Intel x86 architecture, and calls a special NOP com-

mand, which is termed magic instruction by the simulator. As soon as the magic

instruction is called, the application stops and the simulator is invoked by a hap call-

back. The simulator calculates the cache hits and misses of all caches defined and

calculates overall miss ratio. The miss ratio is sent to the application by using either
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the o0 register or the ebx register, and the application continues its execution.

The inline assembly code called by the application for Serengeti architecture

running Solaris operating system is given in Figure 4.4. On Intel x86 architecture,

we used gcc inline assembly code as shown in Figure 4.5. Data passing to the Simics

simulation environment by using the ebx register is shown on line 3. To stop the

execution of the application and start cache statistics calculations, a special NOP

command (xchg) given in line 4 is used. After Simics completes the cache statistics

collection, it sends the miss ratio to the application through ebx register, and the miss

ratio is accessed by the application using the val variable as in line 5.

1. Inline Function:

2. .inline magic break,0

3. .volatile

4. sethi 0x40000, %g0

5. .nonvolatile

6. .end

Figure 4.4. Inline assembly code for Solaris running on serengeti architecture.

1. static inline unsigned int myMagic(unsigned int n)

2. val = n

3. asm volatile (”movl %0, %%ebx” : : ”g” (val) : ”ebx”)

4. asm volatile (”xchg %bx,%bx”)

5. asm volatile (”movl %%ebx, %0” : ”=g” (val) : )

6. return (unsigned int) val

Figure 4.5. Gcc inline assembly code for Linux running on x86 Intel architecture.
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4.1.4. Mapping Thread

The mapping thread uses the thread-core mapping generated by cost and benefit

analysis thread and maps threads to cores. Before mapping threads to cores, it in-

terrupts the counter thread to stop performance counters and restarts counter thread

to collect cache statistics after the mapping of threads to cores is completed. For

mapping threads to cores, we have used the processor bind command on Solaris and

pthread setaffinity np command on Linux.

4.2. Enhancements on Our Framework for Decreasing Overheads

The main idea behind the proposed framework is to increase performance of

application threads by increasing data usage in the L1 and L2 cache. In order to achieve

our goal, four helper threads that run parallel with application threads are introduced.

Since four more threads that are much more complicated than the application threads

are added to the system, the performance of the overall system decreases even though

this framework is able to increase cache hit rate on both L1 and L2 caches. We

have used three applications with numerous inputs and tested the performance of our

framework with different core, L1 and L2 cache configurations. In this section, the

overheads of our framework are given, and the solutions to decrease the overheads are

proposed.

4.2.1. Overhead of Thread Migration

The most time-consuming overhead of our framework is the overhead of thread

migration. In our initial implementation, we let the framework migrate threads even

with small changes in data access patterns. Throughout execution, the order that

threads will use CPU is known only at runtime, and as the threads’ data access pattern

is collected, some threads access more data than others. As a result, data sharing of

threads varies throughout execution, and at some points of execution, we may take

unnecessary mapping decisions. This increases the number of mappings done and thus
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increases the thread migration overheads. So the following constraints are added to

the framework:

• We do not migrate threads unless it is necessary. If a number of mappings

generated consecutively are the same, then it is beneficial to use that mapping.

This helps to eliminate those mappings that are not really beneficial but are

taken due to missing sharing information.

• The workload of cores changes throughout execution. Even though load is dis-

tributed equally among threads, the execution time of threads varies, so when

one thread finishes its execution, other threads assigned to the same core can

get more CPU cycles than threads running on other cores and this increases

the probability of finishing their execution. So as soon as threads finish their

execution, we migrate threads to balance load among cores.

• We perform a computational study to compare the performance of our framework

and the Linux scheduler, and for a fair comparison, we have changed our initial

mapping. We have proposed our initial mapping to be random and changed it

to the exact mapping that Linux scheduler has performed.

• We have used different L2 sharing schemes among cores. Simics does not support

simultaneous multithreading so each time a context switch occurs, the L1 cache is

flushed; therefore only the data that resides in L2 cache is shared among threads.

If each core has its private L2 cache, then this cache is used by only the threads

assigned to that core. But if L2 cache is shared by a number of cores, then the

data is also shared by all the threads assigned to those cores. So it is much more

logical to construct L2 cache number of cluster of threads. For instance, if two

cores share L2 caches, then it is much more beneficial to construct coreNum/2

clusters. This approach has two advantages. It presents effective usage of data by

increasing data sharing among threads. It also decreases the overhead of thread

migrations. Threads are only migrated between cores sharing the same L2 cache

unless another core becomes idle.
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4.2.2. Overhead of Helper Threads

In order to dynamically monitor data accesses of application threads, we have to

use additional threads and this normally adds an overhead to the application. We have

revised our helper threads and implemented them as simple as possible to decrease

their overheads. We have also changed some features of our framework based on the

characteristics of the applications used.

The clustering thread should work very fast to detect changes in data access

patterns and to reflect these changes to the system. If this thread is not quick enough,

then clusters generated can no longer be beneficial and we cannot achieve improve-

ments in execution time. The clustering thread starts by calculating sharing among

threads. Initially, we have used a data structure to store data accesses of threads

and processed it to calculate the number of shared data accessed by thread pairs. To

simplify this process, we have defined bit vectors for each thread. Each bit in the bit

vectors represents data that can be accessed by more than one thread. Initially all bit

vectors are filled with zeros. If data j is accessed by thread i, then bitVector(i,j) is set

to 1. With the help of this representation, we have simplified computations by using

simple bitwise operations. For instance, we have calculated the number of shared data

among thread i and thread j by using AND operation on bitVector(i) and bitVector(j).

By counting the number of 1’s in the resulting vector, we obtained the total amount

of shared data accessed by thread i and thread j. Similarly, the number of total data

accessed by application threads is calculated by counting 1’s in their bit vector.

The benchmark applications considered are working on loop operations and the

data that application threads access in one iteration is repeated in all other iterations,

so the data access pattern obtained in the first iteration is repeated throughout exe-

cution. So we have clustered threads according to the initial data sharing values, and

this cluster does not change until some threads finish their execution. As some threads

are completed, new clusters are constructed with the available application threads in

the system for load balancing purposes. The cost and benefit analysis thread is the
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main decision mechanism and it changes the given mapping if necessary by resem-

bling the given cluster with the current cluster. Since the most useful mapping is

our initial mapping, we no longer need to resemble the given cluster, so we omit this

part. Also the mappings are done to balance load except the initial mapping, so we

do not need to collect cache statistics, so we can omit counter thread. Therefore, the

responsibility of the cost and benefit analysis thread is to get the cluster information

from the cluster thread and make the mapping thread migrate threads between cores;

as a result it acts as a bridge between two helper threads. These two helper threads

can communicate directly, so we can omit the cost and benefit analysis thread, too.

Our enhanced framework contains two helper threads, the clustering thread and the

mapping thread. Even with these modifications, we could not outperform the Linux

scheduler. The details of the results are given in Section 4.4.4.

4.3. Setup and Experimental Evaluation

In this section, we first give a brief background on the multicore simulation plat-

form Simics that is used in our experimental study. This is followed by the description

of the applications used to test the performance of our framework.

4.3.1. Simulation Platform Simics

Simics [62] is a full system simulation platform from Virtutech [63], it supports

the design, development, and testing of computer hardware and software. It achieves

balance between accuracy and performance; it is accurate enough to run commercial

workloads and is fast enough to run real workloads, interactive desktop applications

and games. It can also model embedded systems, multiprocessor systems, clusters and

networks.

Simics simulates processors at the instruction-set level, currently it supports

models for UltraSparc, Alpha, x86, x86-64, PowerPC, IPF, MIPS and ARM. The

hosts Simics supports are Linux, Windows and Solaris. Multiple instances of Simics
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can simulate different processor architectures running different operating systems on

a single machine.

Simics is scalable, it can support single board, multi board, multi core, multi

processor, heterogeneous, distributed, networked, system-on-chip systems, and it uses

device modeling language (DML), Python and C/C++ as the modeling languages

for various architectures. Simics models targets with objects. Processors, devices

or virtual objects like disk images and memory mappings, are all modeled by using

objects.

There are several debug tools in Simics, breakpoints can be added on a device

access or read from memory components to monitor the system. The simulation can

be run in reverse order, so that we can go over errors and see the problems occurred

during the simulation.

Virtutech has a tool called SimGen that generates an interpreter for the instruc-

tion set of the target processor. To do this, first the high level description of the

instruction set should be written. Patterns for instruction decoding are given to Sim-

Gen; it takes the description and generates the interpreter. SimGen can be used if a

target processor which has not been implemented in Simics, should be used.

Simics is used as our simulation platform, since our purpose is to design and

implement multicore systems with different attributes. These attributes are varying

core types and numbers, varying on-chip memory components and variable sharing of

these memory components among cores.

4.3.2. Applications

For testing the performance of the thread-to-core mapping algorithm, the follow-

ing applications are used.
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• Black-Scholes application is from PARSEC Benchmark Suite [64]. We used

OpenMP version of this algorithm. This application [65] uses Black-Scholes

partial differential equation to calculate the prices for a portfolio of European

options. The program is parallelized by dividing the number of portfolios into

a number of work units and assigning work units to application threads dynam-

ically. Each thread iteratively calculates the price of the given portfolio for a

predefined time interval.

• Jacobian Matrix Calculation performs addition operations on the elements of a

given matrix A and stores the result in another matrix B. For the calculation

of each data element of matrix B, row-wise and column-wise neighbors data

elements are accessed in matrix A.

• Sparse matrix-vector multiplication (SpMV) is an important kernel in scientific

computing which has irregular data access patterns due to matrix sparsity. SpMV

works on a sparse matrix A and a vector X and calculates AX=B.

4.4. Results and Discussion

For performing our experiments, a multiprocessor simulation environment, Sim-

ics toolset is used. For Serengeti Architecture, each configuration in the experiments

runs Solaris 10 operating system and Sun Studio [66] compilers are installed for

OpenMP support. For Intel x86 Architecture, experiments are conducted on Linux

operating system using gcc compiler. We have first started to conduct our experiments

on Serengeti Clusters running Solaris operating system. After threads are migrated,

the cache read and write accesses are inconsistent with non-helper version and the

values we have obtained were 20% - 30% higher than they should be. This increase in

the number of cache accesses is due to the OS disturbance. So we have switched to

Linux operating system for much reliable results on pthreads implementations. The

simulation parameters for the CMP architectures used is given in Table 4.1.

In order to represent the assignment of helper threads to cores, <x, y, z> repre-

sentation is used, where x shows the number of cores used only for application threads,
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Table 4.1. Simulation parameters for performing experiments.

Parameter V alue

Numberofcores(n) 8, 16

Numberofthreads(p) 16, 32, 64, 128, 256

CPUFrequency 1 GHz

L1Cache 4K, 8K, 16K, 64K, 2-way

L2Cache 64K, 128K, 256K, 4-way

y shows the number of cores that are used by both helper and application threads and

z represents the number of cores that are only used by the helper threads.

4.4.1. Scalability Results

In this part of the experiments, the speedup curves of the applications are given.

These curves are very important for our framework, since we are working with mul-

ticores, the applications may not take full advantage of all the cores in the system.

For instance, using n cores and n + 1 cores may have the same performance, so us-

ing this additional core would be inessential for the application. Instead of reserving

this additional core/cores to application threads, these cores can be used by the helper

threads. Allocating these cores to helper threads would not reflect application threads’

performance and the overhead of the helper threads would no longer effect the overall

system. Additionally some cores would be reserved to helper threads and these threads

would not share caches with application threads, thus they would not invalidate the

shared data among application threads.

In order to achieve these goals, we need speedup curves that are not increasing

linearly, instead after a certain core number, these curves should bend and should end

up with minor speedup values. But unfortunately, the desired scalability results can

not be obtained, instead all applications’ speedup curves continue to increase linearly

as more cores are added to the system.
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The speedup of Black-Scholes application and Jacobian Matrix Multiplication for

16, 32 and 64 threads running on 1 to 16 cores are given in Figure 4.6 and Figure 4.7

respectively. Both applications are data parallel and they obtain full advantage of all

resources in the system.
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Figure 4.6. Scalibility of Black-Scholes application with 16, 32 and 64 threads.

PQRSTUPUQURUSUT U Q V R W S X T Y UP UU UQ UV UR UW USZ[\\]̂[ _`abcdef gedch
ijklmnjo p qr stuvjwx

yz{|}~y~z~{~| ~ z � { � | � } � ~y ~~ ~z ~� ~{ ~� ~|������� �������� �����
�������� � �� ����� ¡

¢£¤¥¦§¢§£§¤§¥ § £ ¨ ¤ © ¥ ª ¦ « §¢ §§ §£ §¨ §¤ §© §¥¬­®®̄°­ ±²³´µ¶·¸ ¹·¶µº
»¼½¾¿À¼Á Â ÃÄ ÅÆÇÈ¼ÉÊ

Figure 4.7. Scalibility of Jacobian application with 16, 32 and 64 threads.

We conducted the same experiments on SpMV with three different inputs namely,

Boddy4, Boddy5 and Boddy6; and obtained the same results. So we extended the tests
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by using 64, 128 and 256 application threads running on 1 to 32 cores and obtained

the results given in Figure 4.8. This application also uses all available resources in

the system. One interesting behavior of these scalability tests is to obtain a speedup

of 32.88, 33.53 and 32.92 for Boddy4, Boddy5 and Boddy6 inputs respectively, for 32

cores when 256 threads are in use. Normally, we can achieve a maximum speedup of

32 but the additional resources such as L1 and L2 caches increases the speedup values.

The scalability tests showed that reserving cores to helper threads and decreasing
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Figure 4.8. Scalibility of SpMV application with 4 threads per core.

the number of cores application threads use, is not beneficial and would yield to

performance degradations. So we should run both application threads and helper

threads on the same cores.

4.4.2. Quantifying Overheads

In this part of the experimental study, the overhead of helper threads is mea-

sured by running them parallel with application threads. The cluster, the cost and

benefit analysis and the counter thread’s code remain as they are, whereas the map-

ping thread makes the decision of mapping application threads to cores but does not

actually map threads to cores. For all applications, the overhead values we obtained

are similar. The helper threads’ overhead increase when they are mapped to only one
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core because the cache usage of the helper threads increases and they steal more CPU

cycles from application threads, and this increases the execution time of application

threads running on the same core with helper threads. Additionally when each helper

thread is mapped to a different core, the helper thread load is distributed among cores

and as a result, the overhead of the framework decreases. The overhead values for

the SpMV application running with three inputs is given in Figure 4.9. For all inputs

considered, the helper threads adds an overhead of 5% to 15% to overall execution

time.
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Figure 4.9. Overhead of running helper threads with 64 application threads on 16

cores for SpMV application.

4.4.3. Performance of Helper Threads

The performance of helper threads is measured either by assigning them to a core

with an application thread or by assigning them to a dedicated core. When 8 cores are

considered, helper threads are either assigned to 1 individual core and 7 remaining cores

are used for running application threads or helper threads and application threads run

parallel on one core and 7 cores are reserved for application threads. The comparison
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of running times for Black-Scholes application is given in Figure 4.10. ¡¢£¤ ¡¥¢¥£ ¡¦¢ ¡ ¡§¢¤̈
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Figure 4.10. Performance of helper threads running with application threads on 8

Cores for Black-Scholes application.

When 16 cores are considered, 1 to 4 cores are assigned to helper threads, and

remaining cores are used to run application threads. The comparison of execution

times is given in Figure 4.11. We achieved an improvement of 15% when 12 cores and

an improvement of 1% when 13 cores are considered for running 64 application threads.

When 32 application threads are considered, we achieved a speedup of 19% with 12

cores running application threads. But when application threads use all available

resources, we are not able to obtain improvement in execution time.àáâáá àãâáä àáâåá àáâæç àáâãä àáâèå àéâåê àéâæä àéâãæ àéâèé
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Figure 4.11. Performance of helper threads running with application threads on 16

cores for Black-Scholes application.
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The same performance tests are repeated for Jacobian Matrix Multiplication

on 8 cores with 32 threads and 16 cores with 64 threads given in Figure 4.12, and

SpMV application on 16 cores with 64 threads given in Figure 4.13. When individual

cores are reserved for helper threads, they do not disturb the shared data used by

application threads on caches, so the overall system performance increases. Even

with this performance improvement, we are not able to outperform the application-

only version which is using all available cores. The execution times of the enhanced

framework using two helper threads running parallel with 32 and 64 application threads

for the SpMV application is given in Figure 4.14. The results are similar with our initial

framework due to the overhead of the thread migration.!"#$ !%#& !'#( !%#) !!#& !'#) !*#" !%#& !+#+ !(#' !)#' !$#(,*!-$-$. ,*!-$-'. ,*%-$-$. ,*%-$-%. ,*'-$-$. ,*'-$-!. ,*)-$-$. ,*)-$-*. ,*(-'-$. ,*(-!-$. ,*(-*-$. ,*(-$-$.
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Figure 4.12. Performance of helper threads running with application threads for

Jacobian Matrix Multiplication.

4.4.4. Sensitivity Analysis

This section gives detailed analysis on how the size of on-chip memory compo-

nents affect performance. Then the performance of the best mapping is presented by

statically using it as the initial mapping. The overhead of thread migration is also

explained in detail. Finally to clarify the importance of load balancing, execution time

diversity of application threads and the idleness of cores are measured.
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Figure 4.13. Performance of helper threads running with application threads for

SpMV.
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Figure 4.14. Performance of enhanced helper threads running with application

threads for SpMV.
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In the first part, the performance of the helper threads is measured by varying

the L1 cache and L2 cache sizes. The effect of L1 cache size is measured by using Black-

Scholes application and the results are shown in Figure 4.15. When L1 cache size is

decreased to 32K, the performance is decreased by 3% when 8 cores and 16 application

threads are considered. When 16 cores are used, the performance is decreased by 5%

for 32 application threads and 3% for 64 application threads.
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Figure 4.15. Performance of helper threads for different L1 cache configurations for

Black-Scholes application.

We have measured the effect of both L1 cache and L2 cache size on the per-

formance of SpMV application. In these tests, for all input matrices, the application

threads are mapped statically to cores by using the best thread mapping scheme that

maximize data sharing. In this test, helper threads are not included to see the pure

benefit that can be obtained by using the best thread-to-core mapping. The migra-

tion overhead of application threads is also neglected. The results show that we gain

a performance improvement of at most 7% when the cache sizes are 4K for L1 cache

and 256K for L2 cache for Boddy4 input. As L2 cache size is increased, the number

of data elements in the cache increases and this increases the possibility of a thread

reusing the data fetched by another thread, and this increases the performance of the

static mapping. When the overhead of thread migrations for the same static mapping

is included, for 64 and 128 threads, the performance gain is equal to the overhead

of thread migrations and as a result, we no longer can obtain performance improve-

ments. When the number of threads in use is increased to 256, the overhead of thread
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migrations also increases, which degrades performance of the static mapping.

Migration overhead for only the initial mapping is equal to or greater than the

performance gain obtained by data sharing, and when the helper thread overhead

is added to the system, the total overheads are much greater than the performance

improvements. We tried to find additional methods to improve these performance

gains and investigated the performance gains that can be obtained if load balancing is

added to the system. Two dynamic tests are used to see the effect of load balancing in

detail. The first test includes the load distribution of cores for 64, 128 and 256 threads

for the SpMV application as shown in Figure 4.16.
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Figure 4.16. Load distribution among cores for 64, 128, 256 application threads on

16 cores for SpMV application.

The second test explores the differentiation among execution times of threads

for 8 cores and 16 cores using 32 and 64 application threads. Figure 4.17 shows the

normalized execution time of threads running on 8 cores. The normalized execution

times of application threads on 16 cores is given in Figure 4.18

Finally, a case study on Boddy4 input running with 32 application threads on

8 cores is given in Figure 4.19. This study includes eight dynamic mappings. The

first mapping taken at the beginning of the program is the initial mapping which is
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Figure 4.17. Normalized execution time of application threads on 8 cores for SpMV.
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Figure 4.18. Normalized execution time of application threads on 16 cores for SpMV.

identical to that of Linux scheduler. After the initial mapping, the thread-to-core

mapping based on the best data sharing pattern is performed. In this step, 23 out of

32 threads are migrated. As the first thread finishes its execution in the 19th second,

the framework starts to balance load. The following mappings include one or two

migrations, and they all aim to balance load.
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Figure 4.19. Dynamic distribution of 32 application threads to 8 cores for SpMV.
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In spite of optimizations on data sharing and load balancing, due to the overheads

of thread migration and helper threads, we are not able to gain performance improve-

ments on this study. We have changed architectural resources and their connections,

benchmark applications and their inputs but in no case, we are able to outperform the

Linux scheduler.
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5. A CACHE-CENTRIC DATA ASSIGNMENT

METHODOLOGY ON GENERIC MULTICORE

ARCHITECTURES

In this part of the thesis, we propose a locality-aware mapping algorithm which

uses a cache-centric data mapping methodology for data-to-thread assignment. To

demonstrate the performance of our locality-aware mapping algorithm, sparse matrix-

vector multiplication is used. SpMV effects the performance of numerous applications

in economic modeling, scientific and engineering computing. Sparse kernels suffer from

irregular and indirect memory access patterns. The properties of the sparse matrices

can only be known at runtime so code transformations as well as dynamic optimiza-

tions and tuning are needed for higher performance. Some optimization techniques

including column-reordering, row-reordering and pipelining, are proposed to increase

the performance of the algorithm [67–70]. There are many studies on optimization

and tuning on SpMV in the literature [71, 72]. The performance of SpMV is also

studied on multicore architectures [73] and graphics processing units (GPUs) [74, 75].

In Strout et al.’s study [76] rescheduling of computation for increasing data locality

in sparse matrices is explored and Gauss-Seidel is used for testing the performance of

their algorithm which is called serial sparse tiling.

The management of the shared on-chip space is a critical issue on CMPs. A data

element on the cache may be replaced by a data access of one core. When the dis-

placed data element is requested again, a cache miss occurs. The overall performance

is significantly affected by the conflicts on the shared cache. In order to obtain high

performance from CMPs, the reuse of data elements on the cache should be increased.

Shared cache conflicts can occur by threads of different applications, and these con-

flicts are more frequent when threads of the same application are mapped to different

cores [77].
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The same data element may be accessed through different parts of the program

more than once. In the ideal case, the data element is brought to the shared cache

space in its initial access, and during all other accesses, the data element resides in the

cache and is reused. This ideal case may not be achieved due to the limited capacity

of the shared cache space and the access patterns of different threads. Our goal is to

reduce the number of conflict misses on the shared cache by dynamically considering

the runtime behavior of threads and their data usage.

In this work, a locality-aware mapping policy that observes the runtime charac-

teristics of an application is proposed. The application (i.e., the input of the given

application) is partitioned into chunks based on computations with similar access pat-

terns and the chunks with similar data access patterns are grouped into bins. Similarity

calculations among chunks consider both the shared and distinct data. This policy

focuses on effective usage of caches by assigning data that will be reused to the same

cores. In this method, we make the following contributions:

• The locality-aware dynamic mapping algorithm proposed in this study considers

the data access patterns of chunks and determines both the shared and distinct

data used by different chunks in order to calculate the similarities among them.

Using only shared data for similarity calculation would neglect the amount of

distinct data, which would decrease the data reuse probability on the cache. The

locality-aware mapping algorithm can be applied to any multithreaded applica-

tion and would yield high performance improvements, especially for those with

irregular data access patterns.

• In order to validate the effectiveness of our proposed algorithm, we consider

the sparse matrix-vector multiplication by using the classical blocked version of

the compressed sparse row (CSR) format. SpMV is a critical application that

effects the performance of numerous applications in different domains, includ-

ing economy, science, and engineering. Unlike other scientific kernels, such as

dense linear algebra kernel, SpMV requires many indirect and irregular mem-

ory accesses; therefore efficient data distribution is crucial for SpMV [73]. The
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properties of the sparse matrices can only be known at runtime, so code trans-

formations as well as dynamic optimizations and tuning are needed for higher

performance.

• We perform a simulation study by considering various inputs with different

shapes and characteristics in order to evaluate our proposed locality-aware map-

ping algorithm. Our algorithm increases data reuse on the shared cache for all

cases, and our proposed mapping strategy outperforms the Linux scheduler for

different distributions of nonzero data elements.

• Our simulation environment contains CMPs with 16 cores, each of which have

a private L1 and private L2 cache. The input matrices used by SpMV differ

in nonzero element distribution, as well as in size and in the number of nonzero

elements. The size of the matrices takes up to 1.5 GB, and the maximum number

of nonzero elements used in the matrices is 77057.

5.1. Proposed Algorithm for Locality-aware Dynamic Mapping

Data reuse for multithreaded applications is a critical issue, as it increases the

probability of requested data elements to be located in the cache, which improves

performance by decreasing the number of data misses. Especially if the application’s

data distribution is obtained in runtime, data-to-thread distribution should be done

dynamically. Therefore, locality-aware dynamic mapping can be considered to increase

data reuse on the shared cache. Data-intensive, multithreaded applications operating

on any type of data could be the target application domain for locality-aware dynamic

mapping.

The main idea underlying this algorithm is to assign computations with similar

data access patterns to same cores. An application program may access different

data and access pattern may vary throughout execution. In the ideal case, a data

element is accessed consecutively; therefore, it can be found on the shared cache. On

the other hand, data element accesses are unordered in the worst case. In most of

the applications, we do not observe the ideal case; therefore, the probability of data
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element reuse on the shared cache is low.

����������� ����
��� �������� ����� ¡� �����¢�£ �����¤�£ �����¥�£ �����¦�£ �����§�£ ��������� �� ������¨¨�©�ª«�� ��� ¬����� ¬�� ¡� ¬��¢�£ ¬������� �� ¬���¨¨�©�ª«�������¨

Figure 5.1. The layout of our framework including chunk and bin representations.

Many applications obtain their program data at runtime. In order to find the

similarities between data elements, a dynamic strategy should be considered. As soon

as the application acquires its input data, our approach begins with the similarity

calculations and forms groups of data elements that have the maximum amount of

sharing. These groups are then assigned to application threads, and these threads

start their execution. Thus our proposed algorithm starts execution after the input

data is read, and then it divides the program into computations with similar data

access patterns, called chunks. By using the data elements accessed in each chunk, the

locality-aware mapping algorithm groups chunks using similar data elements together

to bins, and it finishes its execution. Chunk and bin representations in our framework

are given in Figure 5.1.

Figure 5.2 shows how similarity calculations are performed in our algorithm.

While calculating similarities in our scheme, we try to find two chunks with the max-

imum number of shared data and minimum number of distinct data. Each chunk is

represented with a bit vector to store the data that is accessed by the computation it is
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Input: Number of bins (binNumber), Number of chunks per bin(chunkPerBin), Total

data elements to be used by all threads (TDE)

Output: Pairwise similarity values of chunks

1. totalChunks = binNumber ∗ chunkPerBin

2. for i=0 to totalChunks do

3. for j=0 to TDE do

4. if TDEj is accessed by Chunki then bitV ectori,j = 1.

5. end for

6. end for

7. for i=0 to totalChunks do

8. for j=i+1 to totalChunks do

9. shared = bitV ectori AND bitV ectorj

10. distinct = bitV ectori XOR bitV ectorj

11. mask=1

12. while shared > 1 do

13. totalSharedi,j = totalSharedi,j + shared AND mask

14. shared = shared >> 1

15. end while

16. mask=1

17. while distinct > 1 do

18. totalDistincti,j = totalDistincti,j + distinct AND mask

19. distinct = distinct >> 1

20. end while

21. end for

22. end for

23. for i=0 to totalChunks do

24. for j=i+1 to totalChunks do

25. similarityi,j = totalSharedi,j/(totalDistincti,j+ totalSharedi,j)

26. end for

27. end for

Figure 5.2. The algorithm for calculating similarities among chunks.
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representing as given in Figure 5.2, lines 2-6. The bit vector of each chunk, considering

data accesses, is defined as follows:

chunk(i, j) =







1, if data(j) is accessed by chunki

0, otherwise.

If two bit vectors are the same, this shows that data accesses of these two chunks

are the same; if the resulting vector obtained by using AND operation on two bit

vectors is 0, two chunks share no common data at all. In general, to maximize cache

hit ratio and improve performance, we should group chunks that can reuse the highest

amount of data.

The similarity between two chunks is computed by performing AND and XOR

operations on two-bit vectors as shown in Figure 5.2, lines 7-22. AND operation on

two bit vectors calculates the total number of shared data between two chunks; whereas

XOR operation calculates the total number of distinct data between two chunks. The

similarity between two chunks is calculated by the following formula:

similarity(i, j) =
totalShared(i, j)

totalDistinct(i, j) + totalShared(i, j)
, (5.1)

where totalSharedi,j represents the total number of shared data points, and totalDistincti,j

is the total number of distinct data accessed by both chunks. It is obvious that two

chunks with high data sharing and low data difference have higher similarity, so there

is a high data reuse between them. We want to show that simply using data sharing

or data differences would not capture the most similar chunk pair. If only the number

of shared data points is used as the similarity metric, we would be neglecting the data

differences, which could be high enough to destroy the sharing pattern. The number

of data points used by different chunks can vary; therefore, the ratio of data sharing
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and total accessed data would be more appropriate to capture both of the constraints.

Then, similarities between bit vectors are sorted, and chunks with highest simi-

larity values are grouped as shown in Figure 5.3. These groups are represented with

bins. The number of chunks in each bin may vary according to the size of the data

elements used in the application. Each bin contains equal number of chunks for a fair

distribution of data elements. Our aim is to maximize data reuse on cache, so we

group all chunks with high similarity into one bin. When assigning chunks to bins, we

take into account both pairwise similarity between chunks and the similarity obtained

from the chunks that are already assigned to bins to find the best bin for the given

chunk pair.

In general, CMPs may have different cache structures, i.e. each core can have its

private L1 and private L2 cache, or cores may have their private L1 cache and share L2

cache. Since we aim to increase data reuse on caches for multithreaded applications,

the number of bins used is directly related to the number of caches used. Assuming

the application has N shared caches, the locality-aware mapping algorithm should

construct at least N bins. As a result, each bin should be assigned to threads working

on cores accessing the same shared cache space.

To explain similarity calculation between chunks and our chunk assignment pol-

icy, an example application running 2 threads on 2 cores accessing different shared

caches is given in Figure 5.4. In this example, we consider 2 bins. Assuming that

the application consists of 8 computations, (a) in Figure 5.4 shows the data elements

accessed in each computation. Consider that 4 chunks are used, 2 contiguous applica-

tion parts are assigned to a chunk, and the bit vectors of the chunks will be formed as

shown in (b) in Figure 5.4. If we take a closer look at the first chunk, all application

data accessed in the first and second parts of the program should be included in this

chunk, so we can obtain the bit vector of the first chunk by using the OR operation

on the data accessed in the first and second parts of the application.
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Input: Similarity values of (chunks),

Number of chunks(totalChunks)

Output: Chunk assignments to bins

1. Sort similarity

2. chunksAssigned = 0

3. while chunksAssigned < totalChunks do

4. Get next similarityx,y

5. if chunksBinx and chunksBiny not assigned then

6. Assign chunksBinx and chunksBiny to availableBin

7. chunksAssigned+ = 2

8. else if chunksBinx is not assigned to a bin then

9. Assign chunksBinx to chunksBiny

10. chunksAssigned+ = 1

11. else if chunksBiny is not assigned to a chunk then

12. Assign chunksBiny to chunksBinx

13. chunksAssigned+ = 1

14. end if

15. end while

Figure 5.3. Chunk-to-bin assignment.
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Figure 5.4. Calculating similarity values for the case of 4 chunks with 2 bins.



74

After generating all the other bit vectors in the same way, we calculate similarities

between chunk pairs and assign the most similar chunks to the same bin. (c) in

Figure 5.4 shows the similarity calculations between chunk pairs by using shared and

distinct data between chunks. In order the calculate the number of shared and distinct

data points, AND and XOR operations are used, respectively. When the similarities

between chunks are considered, chunk 1 and chunk 4 have the highest similarity value

of 0.88 with 8 shared data points and 1 distinct data point, so chunk 1 and chunk 4

are assigned to the same bin. As for chunk 2 and chunk 3, similarity value of 0.75

is obtained with 6 shared and 2 distinct data points, so these chunks are assigned to

the second bin. If the application uses 4 threads running on different cores accessing

distinct shared caches on the target architecture, the number of bins used should be at

least 4, and the number of chunks used should be at least 8 in order to have pairwise

chunk groups. In this case, each computation will be considered as a chunk, and will

be represented with a bit vector.

5.2. Setup and Experimental Evaluation

For performing our experiments, multicore simulation platform Simics is used.

Each configuration in the experiments runs Fedora 5 operating system. We modeled

our target hardware with 16 cores, and each core has a private L1 cache and a private

L2 cache. Also the number of application threads used is equal to the number of cores

in the target architecture, and each application thread is assigned to a single core.

Our main configuration parameters and their default values are listed in Table 5.1.

After presenting the primary results, we change the L1 cache and L2 cache sizes for

sensitivity analysis.

To validate the applicability of our locality-aware dynamic mapping algorithm,

we consider the sparse matrix-vector multiplication (whose code is given in Figure 5.5)

as our benchmark. SpMV is an important kernel in scientific computing which has

irregular data access patterns due to matrix sparsity. The data that SpMV application

will use is not known at compile time, so to obtain a sharing-aware data distribution to
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Table 5.1. Simulated architecture parameters of experimental study.

Parameter V alue

Number of cores (n) 16

Number of threads (p) 16

System PCI Based X86 System

Processor Type Pentium 4

CPU Frequency 3.5 GiB

Main Memory 1 GB

Private L1 Instruction Cache 8K, 2-way

Private L1 Data Cache 8K, 2-way

Private L2 Cache 32K, 4-way

threads, data should either be preprocessed or dynamically mapped to threads. So this

application is suitable for measuring the performance of our algorithm. SpMV works

on a sparse matrix A and a vector X and calculates AX=B. SpMV loads and stores the

values of sparse matrix A and B only once; however, vector X is accessed indirectly

many times. Our algorithm uses the access pattern of vector X and calculates the

number of shared elements on this vector.

Five selected inputs of SpMV application from the University of Florida Sparse

Matrix Collection [78] are considered for computational experiments. The properties

and the shapes of those inputs are given in Table 5.2 and Figure 5.6, respectively.

5.3. Results and Discussion

In this section, the performance of our dynamic locality-aware mapping is eval-

uated and compared with standard Linux scheduler for various test cases considered.



76

Input: Bins assigned to each thread (myBin),

Chunk indexes of bins(globalIndex),

First data element of each chunk (startChunk),

Last data element of each chunk (endChunk)

1. chunkIndex=globalIndexmyBin

2. globalIndexmyBin++

3. while chunkIndex < maxChunkmyBin do

4. startPoint = startChunkchunkIndex

5. endPoint = endChunkchunkIndex

6. while startPoint < endPoint do

7. for j = startstartPoint to startstartPoint+1 do

8. total += valj ∗ xcolsj

9. end for

10. bstartPoint = total

11. total = 0

12. startPoint++

13. end while

14. chunkIndex=globalIndexmyBin

15. globalIndexmyBin++

16. end while

Figure 5.5. Sparse matrix-vector multiplication algorithm with CSR storage.
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Table 5.2. Input matrices of SpMV application.

Input Name Number of rows Number of columns Number of nonzeros

Boddy4 17546 17546 69742

Boddy5 18589 18589 73935

Boddy6 19366 19366 77057

Illc1033 1033 320 4732

Ncvxqp9 16554 16554 31547

Figure 5.6. The shapes of input matrices used by SpVM application [78] (a)Boddy4,

(b)Boddy5, (c)Boddy6, (d)Ncvxqp9, (e)Illc1033.
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5.3.1. Performance of Dynamic Locality-aware Mapping

In our algorithm, the main thread obtains the input data and calculates sim-

ilarities of the data elements accessed in different parts of the program. It groups

chunks accessing similar data elements to bins and then begins computation as all

other application threads do. In all of the tests reported in this part, the number of

application threads is equal to the number of cores in the target architecture, whereas

the number of chunks per core are 2, 5, 10, 20, and 50.

The performance of our algorithm is compared with that of standard Linux

scheduler. The code running on standard Linux scheduler assigns consecutive blocks

of chunks to bins, and each application thread accesses the same amount of data. The

standard Linux scheduler places threads in the least loaded processor and performs

reactive and proactive dynamic load balancing. When a core becomes idle, a thread

from a remote processor is migrated to the idle core in reactive load balancing; in

addition, the processor times used by threads are balanced in proactive load balancing.

During thread scheduling and migration, data sharing is not considered by the Linux

scheduler [22].

The execution times of locality-aware mapping and Linux scheduler for 5 different

inputs are given in Figure 5.7. When the number of chunks per bin is equal to 2, data

used is divided into 32 parts and all chunks include large amount of program data.

Even if 2 chunks have some sharing, the distinct data between them is higher so

the similarity between chunks are close to each other. Therefore, we are not able to

obtain high similarity between chunks. As a result, both our algorithm and the Linux

scheduler have the same performance for all inputs used in this case.

Based on the characteristics of the input data used, different trends between

the performance and chunk per bin number are observed. For inputs Boddy4 and

Ncvxqp9, we observe the best performance when the chunk number is 50; whereas

Boddy5, Boddy6, and Illc1033 inputs have the lowest execution time when 10 chunks
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are used. When chunk per bin number is changed, the data included in the chunks

change, and the similarity between chunks is revised. For inputs Boddy4 and Ncvxqp9,

we can obtain the highest similarity among chunks when 50 chunks are considered,

but for other inputs 10 chunks are necessary to obtain the highest similarity. As a

result, both the performance of our algorithm and Linux scheduler is affected by the

varying number of chunks in use.

If we examine Figure 5.7, we see that both the Linux scheduler and our algorithm

show similar performance trends for varying number of chunks. For all of the inputs,

our algorithm outperforms the Linux scheduler, and this is due to increasing data

reuse in the cache as shown in Table 5.3.

Table 5.3. L1 and L2 cache counts (in millions) for Boddy5 and Illc1033 input

matrices.

L1 Cache L2 Cache

Method Input Chunk # Miss # Access # Hit % Miss # Access # Hit %

Locality-aware Mapping

Boddy5

2 69.7 2516 97.2 53.3 487 89.1

5 70.4 2514 97.2 94.6 487 80.6

10 70.3 2519 97.2 111.9 488 77.1

20 72.8 2528 97.1 78.7 493 84.0

50 77.9 2551 97.0 85.4 503 83.1

Illc1033

2 13.4 789 98.3 26.1 144 81.9

5 13.8 803 98.3 33.0 148 77.8

10 15.8 822 98.1 17.4 154 88.8

20 24.5 867 97.2 20.9 174 88.0

50 50.9 1040 95.1 28.1 242 88.4

Linux Scheduler

Boddy5

2 69.6 2517 97.2 89.2 487 81.6

5 70.1 2520 97.2 104.2 488 78.6

10 70.1 2523 97.2 154.2 489 68.4

20 70.1 2532 97.2 154.4 491 68.5

50 70.3 2554 97.2 95.1 497 80.8

Illc1033

2 13.1 789 98.3 32.3 144 77.6

5 16.2 991 98.4 35.7 162 77.9

10 16.3 1016 98.4 36.8 188 80.4

20 16.9 1070 98.4 44.8 201 77.8

50 19.2 1288 98.5 46.8 257 81.8
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Figure 5.7. Performance of locality-aware dynamic mapping method and Linux

scheduler for various input files.
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Figure 5.8 shows the speedup values of our algorithm in comparison to the Linux

scheduler with respect to different number of chunks for different inputs. The speedup

values obtained when Boddy4 input used vary between 3.3% and 6.6%, whereas the

average speedup value is 5.6%. For Boddy5 input, the speedup values range between

6.8% and 9.9%, and the average speedup value is 8.3%. The minimum, maximum,

and average speedup values for Boddy6 input are 1.4%, 7.9%, and 5.3%. The data

elements of Ncvxqp9 and Illc1033 inputs have irregular access pattern and as a result,

these inputs show the best performance with average speedup values of 18.3% and

24.5%, respectively. The minimum and maximum speedup values for input Ncvxqp9

are 16.4% and 22.4%, meanwhile the values are 19.8% and 26.8% for Illc1033 input.

According to these values, our algorithm shows an average speedup of 12.44% for

inputs with different characteristics.
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Figure 5.8. Speedup values for different number of chunks.

5.3.2. Sensitivity Analysis

In this section, we conduct sensitivity analysis by changing the default values

of cache sizes and chunk numbers. In each experiment below, the value of only one

parameter is changed and its effect is observed.

In the first set of tests, to observe the effect of L1 and L2 cache sizes on the

algorithm, three tests are conducted. In the first one, L1 and L2 cache sizes are

decreased to 4K and 16K, respectively. Both L1 and L2 cache sizes are increased to
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16K and 32K in the second test, and to 64K and 128K in the last test. The speedup

values obtained are given in Figure 5.9, Figure 5.10, and Figure 5.11. Our algorithm is

built on the idea of reusing data on the cache, so when the cache sizes are decreased,

the probability of finding the requested data on the cache decreases, which negatively

affects the performance. Specifically, the average speedup value when all inputs are

considered is 11.94%; whereas when the cache sizes are increased, 12.16% and 12.56%

are obtained as the average speedup values. Increasing the cache size decreases the

number of cache misses on the cache for both our algorithm and the Linux scheduler.
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Figure 5.9. Speedup values when 4K L1 cache / 16K L2 cache combination is

considered.
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Figure 5.10. Speedup values when 16K L1 cache / 64K L2 cache combination is

considered.

In order to observe the performance of our algorithm for an extreme number of

chunks, each input row is represented with a chunk and equal number of chunks are

distributed to bins. In this case, the chunks contain limited number of data elements
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Figure 5.11. Speedup values when 32K L1 cache / 128K L2 cache combination is

considered.

and the sharing among them is limited. The similarities between chunks have the

highest values where they share all of the data and do not include a single distinct

data. As a result, the cache hit ratio and performance decrease in both locality-aware

mapping and the Linux scheduler, as shown in Figure 5.12. The cache characteristics

of these tests are given in Table 5.4.
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Figure 5.12. Performance of locality-aware dynamic mapping method and Linux

scheduler when maximum number of chunks are considered.
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Table 5.4. L1 and L2 cache counts (in millions) for the case of maximum number of

chunks.

L1 Cache L2 Cache

Method Input Miss # Access # Hit % Miss # Access # Hit %

Locality-aware Mapping

Boddy4 78.9 2431 96.8 67.0 486 86.2

Boddy5 83.6 2574 96.8 132.4 514 74.3

Boddy6 86.6 2679 96.8 111.4 487 79.2

Ncvxqp9 63.5 1395 95.5 69.0 487 77.6

Illc1033 50.9 1040 95.1 28.1 242 88.4

Linux Scheduler

Boddy4 66.5 2433 97.3 96.2 474 79.7

Boddy5 70.5 2577 97.3 163.4 502 67.5

Boddy6 73.9 2684 97.2 143.3 524 72.6

Ncvxqp9 56.6 1404 96.0 98.2 304 67.7

Illc1033 19.2 1288 98.5 46.8 257 81.8
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6. CONCLUSIONS AND FUTURE WORK

The focus of this thesis is to explore the ways to adapt the execution of an appli-

cation to the underlying hardware to improve the performance of applications running

on CMPs. To do this, we consider three steps for application mapping namely (i)

analyze application behavior and partition application code into multiple threads for

execution; (ii) assign threads onto parallel processors on the chip and the data they

manipulate onto memory components; and (iii) re-adjust thread and data mapping, as

necessary, at runtime to reduce application execution latency. Thus, the thesis work

considers both static data and thread mapping at compile time as well as dynamic

data and thread re-mapping at runtime to satisfy the goals. By incorporating both

static and dynamic components, our approach aims to collect the benefits of code anal-

ysis (which provides critical information about the behavior of the entire application)

and runtime adaptation (which can exploit execution time information about resource

availability and application behavior).

We have proposed and evaluated three application mapping approaches in this

thesis. In our first approach, we present and evaluate two parallel implementations

of the Barnes-Hut method on the Cell BE architecture. The memory requirement of

this application is very high, as both the local tree representing the domain and the

positions and masses of the particles should be simultaneously stored in the Local

Stores of the SPEs. Consequently, an efficient workload distribution on the SPEs is

needed. In our first parallel version, the domain is divided into sub-domains, and

the sub-domains are assigned to SPEs to overcome memory needs and to achieve

load balance. The method contains three phases. In the first phase, the domain is

decomposed into smaller sub-domains and the sub-domains are assigned to the SPEs.

In the second phase, tree construction and force calculation in each sub-domain are

performed for sub-domains. Finally in the third phase, the velocities and positions

of the particles are updated. In this approach only the particles in the assigned sub-

domains are used in the local tree construction phase, so they do not contain many of
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the important clusters that are stored in the higher levels of the tree.

In our enhanced version of parallelization and mapping, a global tree representing

the whole workspace is constructed by the PPE, and nodes including all clusters of

the workspace are assigned to SPEs. This increases the effort in the tree construction

phase, but decreases the execution time of the most time-consuming phase (namely

force calculation) significantly. After the tree construction phase is completed, the

algorithm follows the same steps as in the first parallel version. Although programming

the Cell architecture is more difficult than programming the Intel Xeon (due to explicit

on-chip memory management), our results show that the required extra effort pays off.

As part of the experimental study, the performances of the two proposed versions are

measured by using different number of SPEs, different λ values, and different number

of particles. Our experimental evaluation indicates that this application performs

much faster on the Cell BE compared to the Intel Xeon based system. Specifically,

our first and second methods on the Cell BE outperform Intel Xeon by a factor of 5.8

and 7.1 for 8192 particles, respectively.

In our thread-to-core mapping methodology, we proposed a framework that uses

hardware and software counters to dynamically tune the execution of the application.

HW counters are collected through our simulation environment Simics; whereas SW

counters are implemented as four helper threads running parallel with an application

code. We have developed an effective and inexpensive framework and increased the

data reuse of on-chip memory components. Despite of optimizations on data sharing

and load balancing, due to the overheads of thread migration and helper threads,

we were not able to gain performance improvements in this study. We have changed

architectural resources and their connections as well as benchmark applications and the

input data, but in none of the cases, we could manage to outperform Linux scheduler.

If need of resources change dynamically during execution, then this approach may pay

off.
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In the third application mapping approach, we present a cache-centric mapping

which dynamically assigns data to threads. The objective of this is to assign data

with similar access patterns to the same on-chip memory components. Our algorithm

partitions data of a given application into chunks in order to provide better load

balancing; and a set of chunks with similar access patterns is grouped into bins and

mapped to caches to provide data locality. Our goal is to decrease cache contention

by increasing data reuse in the L2 cache. We validate applicability of our algorithm

via Sparse matrix-vector multiplication and validation is performed by considering five

input matrices with different shapes and characteristics. Our experimental evaluation

indicates that our algorithm outperforms the Linux scheduler by an average of 12.5%

on the basis of execution time.

There will be three directions for the future work of our hierarchical data and

thread assignment methodology. We can use our methodology to map other multi-

threaded applications with irregular data access patterns such as Lattice-Boltzmann

application to further validate the approach. We use the ratio of total number of

shared data elements to the total number of accessed data elements as the similarity

metric in this approach. This metric can be replaced with the total number of shared

elements between chunks. Finally, we can use different architectural structures for

evaluating the proposed method. In our initial work, we have used private L1 and L2

caches connected to each core; thus only the application threads running on the same

core can use the advantage of locality analysis. If the L2 caches are shared among

multiple cores, then the impact of data sharing among multiple threads running on

different cores can also be measured. For a multicore architecture containing 16 cores,

L2 caches can be shared by 2 or 4 cores and the number of application threads can be

increased to 32, 64 or 128.
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APPENDIX A: IBM CELL BROADBAND ENGINE

Cell B./E. processor is different compared to traditional architectures, it contains

many smaller processors that work in parallel rather than having a single large pro-

cessor. The architecture is designed to exploit parallelism. The individual processing

elements are also much simpler than most modern CPUs. They don’t have many prop-

erties most processors have, such as cache management, and branch prediction. The

clock speed of Cell processor is 3.2 GHz and it has a single-precision peak performance

of 204.8 Gflops/s and double-precision peak performance of 14.6 Gflops/s.

A.1. IBM Cell Broadband Engine Architecture

The Cell B./E. consists of a traditional microprocessor (PPE), 8 smaller, sim-

pler processors (SPEs) and an element interconnect bus (EIB) which connects the

processors and provides access to main memory and I/O devices.

A.1.1. Power Processing Element

PPE is the main processor in the Cell B./E.. It is a 64-bit multithreaded Pow-

erPC core with two levels of on-chip cache, 32 Kbyte L1 instruction and 32 Kbyte L1

data cache, 512 Kbyte L2 cache. The PPE is a dual issue processor so it supports

two way simultaneous multithreading. SMP feature of the PPE is similar to Intel’s

Hyper-Threading technology. PPE seems to provide two independent execution units

to the software layer. PPE uses IBM’s VMX feature for SIMD instructions [54]. PPE

is responsible for running the operating system and applications, distributing work-

load among SPEs and coordinating them. The design of the PPE is very simple, it

does not have advanced scheduling capabilities because it is not designed for running

applications but for coordinating SPEs, so it works in low frequencies as compared to

traditional processors.
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A.1.2. Synergistic Processor Elements

The real power of the CELL processor lies in eight synergistic processing units.

Each SIMD co-processing unit deals with computation. Each SPE consists of a Syn-

ergistic Processor Unit (SPU) and a Memory Flow Controller (MFC). Each MFC has

a DMA controller, a Memory Management Unit (MMU), a bus interface unit and an

atomic synchronization unit. Figure A.1 summarizes the contents of a single SPE.

Figure A.1. SPE block diagram [55].

SPE’s architectural design is simple like the PPE, they don’t support out of order

execution, branch prediction. SPEs contain 128 128-bit registers, 4 floating point units

and 4 integer units. The SPEs instruction set is designed to take advantage of 128-

bit registers, and most of the instructions are SIMD instructions. SIMD instructions

can operate on 2-way 64-bit double precision floating point numbers, 4-way 32-bit

integers or single precision floating point numbers, 8-way 16-bit integers or 16-way
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8-bit integers. The programmer decides how to use these 128-bit registers. Memory

operations access 128-bits at a time even if the request data is 8-bits, so for an efficient

implementation, the programmer should request 128-bits in each memory operation.

SPEs are in-order processors with two instruction pipelines, even pipeline and

the odd pipeline, the even pipeline is responsible for arithmetic operations, while the

odd pipeline deals with memory and branch instructions. In a single clock cycle, SPEs

can dispatch two instructions if these instructions have no data dependency in between

them, otherwise it executes one instruction in one clock cycle. The organization of

these two pipelines can be seen in Figure A.2.

Figure A.2. SPE Architecture [55].

SPEs do not have a cache, but they have a 256 Kbyte Local Store which can be

called private memory. Both the program and the data should be in LS to be executed,

SPEs have no direct access to main memory. Unlike traditional architectures data is

not moved between the main memory and the LS by the processor itself, but the

programmer decides what to put in the local store, so the efficient usage and the

management of the LS is left to the programmer or the compiler. This reduces the

complexity of the architecture, but increases the complexity of programming.

SPEs can perform only one memory operation at a time, there is no separate

instruction and data cache, so in one cycle, either an instruction or data can be fetched
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from memory. For this purpose, there is an instruction fetch buffer which fetches a

bunch of pending 32-bit instructions as a block, but this buffer can only be filled when

it is empty or when the programmer tells it to do so. The SPU is a statically scheduled

architecture therefore it does not support dynamic branch prediction; the processor

assumes that branches are not taken and fills the instruction fetch buffer according

to this assumption. The penalty of a branch miss prediction is 18 cycles, which is

costly. To overcome this penalty, software branch prediction (branch hint) is used.

SPE fetches the instructions at the branch target address so that there will be no

penalty for the branches. Traditional processors handles branches, but Cell forces the

programmer or the compiler to handle branches.

SPU has no direct access to main memory, so it has DMA controller which

performs high bandwidth data transfers between the local store, main memory and

other local stores. If the data needed resides in other SPE’s LS, then fetching the data

from the other LS has two advantages, it is faster to go to another LS than to the

memory, and by this way we can avoid data inconsistencies. In order to read or write

data, SPE sends DMA commands to MFC and MFC brings data from memory to local

store, or writes results back to main memory. DMA commands are queued in the MFC,

either polling or blocking interfaces are used to check whether the transfer is completed

or not. DMA is non-blocking, SPU is not interrupted while DMA transactions are

performed, so this supports the scheduling of two SIMD instructions, compute and

memory instruction, per cycle.

MFC runs at the EIB’s frequency and supports aligned transfers of 1, 2, 4, 8

bytes, or a multiple of 16-bytes up to 16 KB and it consists of several DMA engines

that are used to transfer data between memory and LS. The data requested from either

the memory or other LS is written in a DMA-list by specifying the source/destination

addresses and the length of the requested data. DMA list commands can request a

list of up to 2048 DMA transfers using a single MFC. Peak performance is achieved

when the size of a data transfer is multiples of 128-bits. Each DMA command can be

assigned a tag identifier and this identifier can be used to enforce in-order execution
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of two or more commands with a common tag identifier. This identifier can also be

used to monitor the commands status. SPUs can also use signals or mailboxes for

performing simple, low-latency communication between the PPE and the SPEs.

A.1.3. Element Interconnect Bus

The Element Interconnection Bus connects all components of the CELL processor

including the PPE’s, the SPE’S, the main memory and I/O as shown in Figure A.3. It

supports a peak bandwidth of 204.8 Gbytes/s [56]. EIB is build of 16-byte wide four

unidirectional rings, two in each direction. Each ring can allow three concurrent data

transfers if their paths do not overlap. For a data transfer request, the EIB decides

on which ring to take to travel in the direction of the shortest transfer and makes

sure that no request travels more than halfway around the ring. Figure A.4 shows an

example of eight concurrent data transfers by using four rings. This shows that even

if there are four rings available, each ring can support more than one data transfer at

the same time if the paths of the transfers do not overlap.

Figure A.3. Internal structure of Cell B./E. [57].

A.2. Application Development on IBM Cell Broadband Engine

Cell processor has many parallel and distributed computational and communi-

cational resources. The resources give Cell processor a large performance advantage

over traditional single core processors, but large amount of heterogeneous resources
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Figure A.4. Example of eight concurrent data transfers [58].

increases the complexity of programming [42, 59].

From the instruction architecture point of view, PPE and SPE cores are exe-

cuted over different address spaces. PPE instructions execute over the system memory

mapped to the effective address space, whereas the SPE instructions execute directly

over their own local store. Both the data and code of the SPE program must reside in

the local store to be executed. Each core has their own memory access controller to

transfer data to and from the system memory or I/O devices. There is a latency asso-

ciated with each data transfer. The latency comes from both the time needed to setup

a DMA operation and the time needed to actually transfer the data. Experimental

studies showed that the main latency of data transfer is not the actual time needed to

transfer data, but the time needed to set up a DMA operation, so the amount of data

requested per DMA operation should be at least 128 bytes, or even higher (512 bytes).

This latency is an important performance consideration, and we need to make sure

that any memory transfer does not become a bottleneck to a program’s execution.

While programming on Cell B./E., one must keep in mind both the architectural

properties and heterogeneous resources of the architecture. Heterogeneous resources

of the processor provides two levels of parallelism, and if one can combine two levels
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of parallelism in the implementation of an application, the performance improvement

can be two orders of magnitude over single-core scalar processors.

A.2.1. Levels of Parallelism

Resources available on the Cell processor, computational and communicational

resources, provide two levels of parallelism. One is at the instruction level, and the

other is at the task level.

• Instruction Level Parallelism: Depending on the size of the data, performance

improvement can be 2 times to 16 times as compared to single instruction sin-

gle data type of operation. To achieve instruction level parallelism, SPE SIMD

engine and PPE VMX engine are used. SPU has 128 128-bit registers and in-

structions are SIMD instructions. An instruction operates on all elements in

SIMD register at once. So the data should be vectorized to take full advan-

tage of SIMD instructions. SIMDizing code can be done either by the compiler

(Auto SIMDization) or by the programmer by using instrincts. Instrincts can be

treated as high level assembly instructions, and low level C functions.

• Task Level Parallelism: PPE can distribute 8 independent tasks on the 8 in-

dependent cores and execute them at the same time. Task distribution among

SPEs changes according to the dependencies between tasks and the amount of

space needed for both the code and data of the task. For this purpose, four

different programming models are introduced and according to the properties of

the applications, the most suitable programming model should be chosen for an

efficient implementation.

A.2.2. Cell Programming Models

To deal with the endless possibilities in mapping an algorithm to instruction and

task level parallelism and the distribute resources among SPEs, Cell Programming

Models are introduced. The possible programming models for a single Cell environ-
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ment are PPE programming models and SPE programming models which are described

in detail below.

• PPE Programming Models: The traditional programming model on the PPE is

the simplest programming model where it does no computation but coordinates

the SPEs so it serves as a controller and establishes a runtime environment for

SPE programs for memory mapping, exception handling and SPE run control.

It allocates and manages Cell system resources, such as SPE scheduling and it

provides OS services to SPE programs and threads. PPE acts as an operat-

ing system service mechanism to the SPE to perform printf, file I/O, memory

management without programmer interruption.

• SPE Programming Models: SPE programming models mainly differ according

to the amount of data needed. The working area of an SPE is a relatively small

memory so we may not be able to put the whole data and instructions into LS.

(i) Small Single-SPE Model: This is the first and most simple SPE program-

ming model, it is a single task environment. It contains a simple SPE pro-

gram that fits in the 256 KB Local Store. Data is brought in using DMA

transactions, addresses can be brought in using mailbox transactions. SPE

side system calls that are handled by the PPE, are controlled using explicit

input and output from the SPE program.

(ii) Large Single-SPE Programming Model: This programming model is used

when the SPE program does not fit in the 256 KB Local Store and DMA

transactions are used to pull in the data into the local store and push the

results back to the main memory.For large size input data, the streaming

model is used where the data is streamed in and out of the system memory.

The data is first brought into the local store, then processed and it is pushed

back to the secondary memory. Both instructions and data are stored in

Local Store so instructions can be streamed in and out of the system memory

as well. If the application’s code segment is larger than 256 KB LS, we can

split that code segment into multiple plug-ins and use a manual overlay

framework (manual plug-in framework) to bring in data associated with
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code segment into the local store, execute that data and then overwrite

that data with an other plug-in as necessary. Part of this SW managed

cache is also an automatic SW managed code overlay. Another model for

Large single-SPE programming model is the Job Queue where we have a

very small SPE kernel that is running within the LS and simply using the

system memory to pull in jobs that are being queued up by either the PPE

or some other external force within the system. Code and data packaged

together as inputs to an SPE kernel program and the SPE kernel program

executes this code and data as needed.

(iii) Parallel Programming Models: The Cell processor has traditional paral-

lel programming models applicable. It is based on interacting single-SPE

programs. Parallel SPE program have several methods for synchronization

including cache line-based MFC atomic update commands (similar to the

PowerPC lwarx, ldarx, stwcx, and stdcx instructions), SPE input and out-

put mailboxes with PPE, SPE signal notification register, SPE events and

interrupts and SPE busy poll of shared memory location. Parallel program-

ming models are shared memory, job queue, message passing and pipeline

(streaming).

In shared memory programming model, the data is accessed by its address.

With proper locking mechanism, large SPE programs may access shared

memory objects located in the effective-address space. There is also com-

piler OpenMP support to allow shared memory type of operation.

Another parallel programming method is job queue model. Large set of

jobs are fed through a group of SPE programs and SPEs do not care which

job they are assigned in job queue model. Streaming is a special case of

job queue with regular and sequential data. Each SPE program locks on

the shared job queue to obtain next job. It locks onto this job queue using

synchronization and atomic locking mechanisms that are available to it. For

uneven jobs, workloads are self-balanced among available SPEs because the

SPEs do not interact with each other so it does not matter how long one job

takes compared to the other as long as the shared memory area is locked
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whenever it is accessed. The entire workload should be self-balanced.

Message passing methodology is based on data access by connection so it

is sequential in nature. This type of programming is applicable to SPE

programs where addressable data space only spans over local store so the

amount of interaction with the system memory and/or other SPEs is not

very high.

Pipeline programming is much more flexible since it uses the bandwidth

between SPEs and not the system memory bandwidth which can become a

significant bottleneck. The biggest problem with this type of operation is

that the load-balance is difficult, so the execution time of each SPE should

be close to each other.

(iv) Multi-tasking SPEs Programming Model: In Multi-tasking SPEs model,

the LS contains several tasks that can be executed in parallel. There is no

memory protection running among tasks, however there is a co-operative,

non-preemptive, event-driven scheduling mechanism, where multiple tasks

are performed. If there are large number of small operations that a single

SPE is responsible for, the PPE can schedule up a series of events and then

in the PPE’s dispatch order, the SPE performs the operations. For this

case, another alternative is to use software-managed threads, where each

SPE has multiple threads dedicated to each of the small jobs. If the tasks,

the codes and the data for these jobs do not fit in the LS, then SPEs can

context switch out of the LS and schedule back later any job within the

system, as in self-managed multi tasking model.
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