
FPFM: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK

FOR SECURITY POLICIES IN MULTI-DOMAIN MOBILE NETWORKS

by

Devrim Ünal

B.S., Control and Computer Engineering, Istanbul Technical University, 1997

M.S., Computer Science, University of Sheffield, 1998

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2011

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my lovely wife Anna for her continuous and

unique support. I would like to thank my supervisor, Prof. Mehmet Ufuk Çağlayan,

for his patience through long years of my Ph.D. study and for his excellent skills in

directing my Ph.D. research. I would like to thank my examiners Assoc. Prof. Tuna

Tuğcu and Assoc. Prof. Albert Levi, for their useful ideas and comments throughout

my presentations and drafting of manuscripts. I acknowledge the ideas of my colleagues

in the department, specially Burak Gürdağ, Şerif Bahtiyar, Engin Deveci and Murat

Cihan for fruitful discussions in the areas of formal methods and security. I also

thank Ersin Evin, Aydın Kubilay, Alparslan Babaoğlu and Önder Yetiş, managers

and directors in TUBITAK UEKAE and TUBITAK BILGEM during my study, for

supporting Ph.D. studies of researchers. I appreciate the support of the State Planning

Organization of Turkey, TAM Project (2007K120610). Finally, I would like to thank

my family for supporting me through my entire student life.

iv

ABSTRACT

FPFM: A FORMAL SPECIFICATION AND VERIFICATION

FRAMEWORK FOR SECURITY POLICIES IN

MULTI-DOMAIN MOBILE NETWORKS

We present a framework called Formal Policy Framework for Mobility (FPFM)

for the specification and verification of domain and inter-domain security policies in

a multi-domain mobile network environment. FPFM supports the specification of

security policies with mobility and location constraints, role hierarchy mapping, inter-

domain services, inter-domain access rights and separation of duty. The specification

of security policies in FPFM is based on a formal security policy model, called FPM-

RBAC (Formal Policy Model for Mobility with Role Based Access Control) and a XML

based security policy specification language called XFPM-RBAC (XML Based Formal

Policy Language for Mobility with Role Based Access Control). Formal verification of

security policies ensure that the security policy is satisfied by the network elements in a

given network configuration. FPFM supports extraction of formal specifications from

defined network configurations, domain and inter-domain security policies. Another

novel aspect of FPFM is the support for formal information flow analysis related to

mobility within multiple security domains. Automated verification of formal specifica-

tions are carried out through model checking and theorem proving. A spatio-temporal

model checking algorithm has been proposed and a model checking tool has been de-

veloped for spatio-temporal model checking of location and mobility constraints in

security policy rules. Conflicts within security policy rules are resolved through theo-

rem proving with the help of the Coq interactive theorem prover.

v

ÖZET

FPFM: ÇOK ETKİ ALANLI GEZGİN AĞLARDA

GÜVENLİK POLİTİKALARI BETİMLEME VE

DOĞRULAMA ÇERÇEVESİ

Çok etki alanlı ağlarda gezgin bilgisayarların, kaynakların ve kullanıcıların hareket-

liliği güvenlik açısından zorluklar meydana getirmektedir. Güvenlik etki alanları arasında

hareketlilik içeren eylemler, etki alanında ve etki alanları arasında oluşturulmuş güven-

lik politikaları bağlamında betimlenmeli ve doğrulanmalıdır. Bu tez kapsamında,

FPFM (Gezginlik için Formal Güvenlik Politikası Çerçevesi) adında, çok etki alanlı gez-

gin ağlarda kullanıma yönelik, bir güvenlik politikası betimleme ve doğrulama çerçevesi

ortaya konulmaktadır. FPFM, gezginlik ve konum kısıtları, rol hiyerarşileri eşleştirme,

etki alanları arası servisler, etki alanları arası erişim hakları ve görevlerin ayrımı un-

surlarını içeren güvenlik politikalarının betimlenmesini desteklemektedir. Güvenlik

politikalarının betimlenmesi için FPM-RBAC adı verilen bir formal güvenlik poli-

tikası modeli ve XFPM-RBAC adı verilen XML tabanlı bir güvenlik politikası dili

önerilmektedir. Güvenlik politikalarının doğrulanması, belirli bir ağ yapılandırması

içerisinde, güvenlik politikalarının sağlandığının onaylanmasını sağlar. FPFM bu kap-

samda tanımlı ağ yapılandırması, etki alanı güvenlik politikası ve etki alanları arası

güvenlik politikasından formal betimlemelerin üretilmesini sağlamaktadır. FPFM’in

katkı sağladığı alanlardan bir başkası, birden fazla etki alanı içerisindeki gezginlik

kaynaklı bilgi akışlarının formal analizidir. Formal betimlemelerin otomatik doğrulan-

ması için model denetleme ve teorem ispatlama yöntemleri kullanılmaktadır. Güvenlik

politikaları içerisindeki konum ve hareketlilik kısıtlarının uzay-zaman tabanlı model

denetlemesi için bir uzay-zaman tabanlı algoritma önerilmiş ve bir model denetleme

aracı geliştirilmiştir. Coq etkileşimli teorem doğrulama aracı kullanılarak güvenlik

politikaları içerisindeki çelişkilerin çözümlenmesi sağlanmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . xii

LIST OF TABLES . xix

LIST OF SYMBOLS . xxi

LIST OF ACRONYMS/ABBREVIATIONS . xxiv

1. INTRODUCTION . 2

2. RELATED WORK . 8

2.1. Formal Methods for Specification and Verification of Security Properties

of Protocols and Systems . 8

2.2. Formal Languages and Methods for Specification and Verification of

Security Policies . 10

2.3. Formal Methods for Specification and Verification of Security Policies

in Mobile Systems . 11

2.4. Role Based Access Control Models with Spatio-Temporal Constraints . 12

2.5. Policy Languages and Access Control Frameworks 16

3. FPFM: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK

FOR SECURITY POLICIES IN MULTI-DOMAIN MOBILE NETWORKS 18

3.1. The Need and Requirements for a Formal Policy Framework for Mobile

Networks . 18

3.1.1. Security Policies in a Multi-Domain Environment 18

3.1.2. Security Vulnerabilities in Multi-Domain Mobile Networks . . . 19

3.1.3. Inter-domain Security Policy . 21

3.1.4. Applications of Security Policy Framework 22

3.1.4.1. On-line Courses . 23

3.1.4.2. Joint Research Projects 23

3.1.4.3. Military Networks with Multiple Security Classifications 24

3.2. Formal Policy Framework for Mobility (FPFM) Components 26

vii

3.3. Specification of Security Policies in FPFM 28

3.3.1. Specification of Domain Security Policies 28

3.3.2. Specification of Location and Mobility Constraints 30

3.3.3. Specification of Inter-Domain Security Policies 32

3.4. Formal Verification of Security Policies in FPFM 34

4. FPM-RBAC: A FORMAL ROLE BASED ACCESS CONTROL MODEL FOR

SECURITY POLICIES IN MULTI-DOMAIN MOBILE NETWORKS 37

4.1. Domain Security Policy Model . 38

4.1.1. Data sets . 39

4.1.2. Domains . 40

4.1.3. Services . 40

4.1.4. Actions . 41

4.1.5. Constraints . 42

4.1.6. Relations and System Functions 43

4.1.7. Role and Object Hierarchies . 44

4.1.8. Authorization Terms . 46

4.1.9. Domain Security Policy . 46

4.2. Inter-Domain Security Policy Model . 47

4.2.1. Inter-Domain Services . 48

4.2.2. Inter-Domain Roles . 50

4.2.3. Role Map . 50

4.2.4. Inter-Domain Relations and Authorization Terms 51

4.2.5. Inter-Domain Security Policy 52

4.3. Location and Mobility Model . 52

4.3.1. Ambient Calculus and Ambient Logic 53

4.3.2. Representation of Location and Mobility in FPM-RBAC 56

4.3.3. Location Configuration . 58

4.3.4. Location and mobility constraints in security policy rules 61

4.4. Formal Specification of Security Policy Rules 62

4.4.1. Generic Security Policy Rules 62

4.4.2. Formal Specification of Security Policy Rules with Location and

Mobility Constraints for Domain Security Policies 63

viii

4.4.3. Formal Specification of Security Policy Rules with Location and

Mobility Constraints for Inter-Domain Security Policies 64

4.5. Separation of Duty (SOD) Constraints in FPM-RBAC 65

4.5.1. Single Domain SOD . 66

4.5.1.1. Static Separation of Duty based on Roles 66

4.5.1.2. Static Separation of Duty based on Services 67

4.5.1.3. Static Separation of Duty based on Permissions 67

4.5.2. Inter-Domain SOD . 67

4.5.3. SOD for Location and Mobility Constraints 69

4.5.4. Dynamic SOD . 71

4.5.4.1. Dynamic Separation of Duty based on Roles 72

4.5.4.2. Dynamic Separation of Duty based on Services: 72

4.5.4.3. Dynamic Separation of Duty based on Locations and

Mobility . 72

4.6. Authorization of Access Requests According to FPM-RBAC Security

Policies . 73

4.6.1. Evaluation of Access Requests according to Services 74

4.6.2. Evaluation of Hierarchies . 75

4.6.3. Checking Satisfaction of Location and Mobility Constraints . . . 75

4.6.4. Checking Generic and SOD Constraints Specified by Conditions 76

4.6.5. Evaluation of the Access Control Function 76

4.7. Comparison of FPM-RBAC with Other RBAC Models 77

4.7.1. Comparison of FPM-RBAC with NIST RBAC Model 78

4.7.2. Comparison of FPM-RBAC with Existing Spatial and Temporal

RBAC Models . 79

5. XFPM-RBAC: XML BASED SPECIFICATION LANGUAGE FOR SECU-

RITY POLICIES IN MULTI-DOMAIN MOBILE NETWORKS 81

5.1. Domain Configurations in XFPM-RBAC 82

5.2. Inter-Domain Configurations in XFPM-RBAC 84

5.3. Multi-Domain Security Policies in XFPM-RBAC 87

5.4. Representation of Location and Mobility in XFPM-RBAC 89

5.5. Generation of Formal Specifications from Security Policy using XSLT . 93

ix

5.5.1. Translation of Location Formulas in Security Policy Rules to

Formal Specifications using XSLT 94

5.5.2. Generation of Location Configurations from Multiple Security

Policy Definitions using XSLT 96

5.6. Separation of Duty (SOD) Constraints in XFPM-RBAC 97

6. MODEL CHECKING OF SECURITY POLICIES WITH AMBIENT CALCU-

LUS . 103

6.1. Model Checking for Security Policies 103

6.1.1. State based representation of security policy 104

6.1.2. Finding compliance to security policy by model checking 105

6.2. Formal Semantics for Ambient Calculus and Ambient Logic 106

6.2.1. Formal Semantics of Ambient Calculus Specifications 106

6.2.2. Formal Semantics of Ambient Logic Formulas 107

6.3. Ambient Calculus Model Checker for Security Policies 108

6.3.1. Ambient Topology and Spatial Formula Graphs 110

6.3.2. Formula Reduction . 112

6.3.3. State Transition System Generation 113

6.3.4. Checking Spatial Modalities . 114

6.3.4.1. Heuristic Functions . 114

6.3.4.2. Matching of Spatial Formula 115

6.3.5. Generation of Kripke Structure 120

6.3.6. NuSMV Code Generation . 122

6.3.7. Examples for Spatial Model Checking Algorithm 122

6.3.8. Complexity and Performance Analysis 124

6.3.8.1. Time Complexity . 124

6.3.8.2. Space Complexity . 127

6.3.8.3. Performance Analysis based on Example Specifications 128

7. THEOREM PROVING FOR SECURITY POLICIES IN FPFM 132

7.1. The Coq Proof Assistant . 133

7.2. Data System Definitions for Security Policies 135

7.3. Formal Specification of Data System for Security Policies 136

7.4. Formal Specification of Authorization Policy 138

x

7.5. Formal Specification of Hierarchies in Security Policies 140

7.6. Conflict Checking of Authorization Policies with the Coq Theorem Prover143

7.6.1. Authorization Policy Model . 144

7.6.2. Equality Functions and Decidable Equality 147

7.6.3. Computation on Authorization Policy 147

7.6.4. Defining and Checking Conflict-Free Properties 149

7.6.5. Verification of Policy Functions 151

8. CASE STUDIES . 158

8.1. Case Study I: Joint Research Project 158

8.1.1. Inter-Domain Policies for Joint Research Project 160

8.1.2. Formal Specification of Security Policies for Joint Research Project

with FPM-RBAC . 161

8.1.2.1. Data Sets of Joint Research Project Case 161

8.1.2.2. Role Hierarchies of of Joint Research Project Case . . 162

8.1.2.3. Inter-Domain Access Rights for Joint Research Project 163

8.1.2.4. Role Maps and Separation of Duty Rules 164

8.1.3. Formal Specification of Inter-Domain Security Policy Rules with

FPM-RBAC . 165

8.1.4. Information Flow Analysis for Inter-Domain Security Policies . . 166

8.1.4.1. Information Flow Analysis between Two Domains . . . 166

8.1.4.2. Multi-Domain Information Flow Analysis for Inter-

Domain Security Policies 168

8.2. Case Study II: Online Library . 170

8.2.1. Domain and Inter-Domain Policies for Online Library 171

8.2.2. Domain Configuration, Inter-Domain Configuration and Multi-

Domain Security Policy for Online Library with XPFM-RBAC . 173

8.2.3. Location and Mobility Constraints for Online Library 174

8.2.4. Generation of Formal Specifications for Online Library with

XPFM-RBAC . 175

8.2.5. Separation of Duty Constraints for Online Library with XPFM-

RBAC . 176

9. CONCLUSIONS AND FUTURE WORK . 178

xi

APPENDIX A: XML SCHEMAS DEFINED IN XFPM-RBAC 182

APPENDIX B: AMBIENT CALCULUS SPECIFICATIONS AND AMBIENT LOGIC

FORMULAS FOR PERFORMANCE ANALYSIS OF THE MODEL CHECKING AL-

GORITHM . 206

APPENDIX C: XFPM-RBAC SPECIFICATIONS FOR THE ONLINE LIBRARY

CASE . 207

REFERENCES . 212

xii

LIST OF FIGURES

Figure 1.1. Example multi-domain mobile network environment. 3

Figure 3.1. Inter-domain operations governed by inter-domain security policies. 21

Figure 3.2. Multi-domain scenario with multiple classification levels in military

context. 25

Figure 3.3. Block diagram of Formal Policy Framework for Mobility. 26

Figure 3.4. Domain configuration with the Security Policy Management Inter-

face. 29

Figure 3.5. Definition of a new service. 30

Figure 3.6. Definition of location constraints. 31

Figure 3.7. Definition of inter-domain role hierarchies and role maps. 33

Figure 4.1. FPM-RBAC domain security policy model. 39

Figure 4.2. Access control policies in multi-domain environment. 48

Figure 4.3. FPM-RBAC inter-domain security policy model. 49

Figure 4.4. Example for home and foreign role maps among two domains. . . 51

Figure 4.5. Representation of a location configuration in the form of a location

hierarchy. 59

xiii

Figure 4.6. Example for change of location configuration with actions. 60

Figure 4.7. Classification of static separation of duty in FPM-RBAC. 66

Figure 4.8. Conflicting role sets for inter-domain hierarchies. 68

Figure 4.9. The NIST constrained RBAC model. 78

Figure 5.1. Outline of XML Schema of a Domain. 83

Figure 5.2. Outline of XML Schema for Inter-Domain Configurations. 85

Figure 5.3. XML Schema for Inter-Domain Role Hierarchies. 86

Figure 5.4. XML Schema for Role Maps. 86

Figure 5.5. Outline of XML Schema of a Security Policy. 88

Figure 5.6. BNF Grammar for Ambient Calculus Syntax in XFPM-RBAC. . . 90

Figure 5.7. BNF Grammar for Ambient Logic Syntax in XFPM-RBAC. 91

Figure 5.8. Outline of XML Schema of Ambient Calculus Specifications. . . . 92

Figure 5.9. Outline of XML Schema of Location Formulas. 92

Figure 5.10. An example XML specification for a Location Formula. 93

Figure 5.11. Outline of XSL Template for a Logical Expression in a Location

Formula. 95

xiv

Figure 5.12. Generation of formal location configuration specifications using

XSLT. 96

Figure 5.13. Pseudocode for XSLT to generate XML specification of the location

configuration for a service. 98

Figure 5.14. Definition of abstract element for SOD constraints. 99

Figure 5.15. Definition of role based SOD. 100

Figure 5.16. Definition of service based SOD. 100

Figure 5.17. Definition of inter-domain SOD. 101

Figure 5.18. Definition of location based SOD. 102

Figure 6.1. Events as a means to change the state of process specification. . . 104

Figure 6.2. Finding a trace T that leads to a final state from an initial state. . 105

Figure 6.3. Block diagram of the Ambient Calculus Model Checker. 109

Figure 6.4. Internal representation of state information. Graph (a) is ambient

topology of state and graph (b) is capability tree. 112

Figure 6.5. An example state transition system for an Ambient Calculus pro-

cess specification. 113

Figure 6.6. Pseudocode of wildcard heuristic function. 116

Figure 6.7. Pseudocode of guessExpectedAmbients heuristic function. 117

xv

Figure 6.8. Pseudocode of findSublocation heuristic function. 118

Figure 6.9. A match example for process P = n1[] | n3[] | n4[] | n7[n5[] | n6[]] | n8[]
and formula F = n1[] | {n2[] ∨ {n3[] | n4[]}} | �{n5[] | n6[]} | ¬n8[].
Graphs consisting of rectangle nodes are ambient topologies as-

signed to spatial formula graph nodes. Graphs consisting of circle

nodes is spatial formula graph.[1] 121

Figure 7.1. Inductive definitions for the types bool and nat. 134

Figure 7.2. The definition of a predicate in Coq. 134

Figure 7.3. Data system definitions for security policies. 136

Figure 7.4. The inductive type Entity. 137

Figure 7.5. Specification of Is Object predicate. 137

Figure 7.6. Specification of authorization subjects. 138

Figure 7.7. The mapping of user, user group and roles types to authorization

subject types. 139

Figure 7.8. Specification of authorization terms and authorization policy. . . . 140

Figure 7.9. An example authorization policy specification. 141

Figure 7.10. The specification of the ≤T relation. 142

Figure 7.11. The specification of the ≤R relation. 142

Figure 7.12. The specification of OTH and RH. 143

xvi

Figure 7.13. The specification of authorization policy model for conflict checking.145

Figure 7.14. The example authorization policy specification for conflict checking.146

Figure 7.15. Specification of equality functions and decidable equality. 148

Figure 7.16. Specification of functions for computation on authorization policy. 150

Figure 7.17. The predicates and theorems used for checking conflicts in policies. 152

Figure 7.18. Theorem for adding an authorization term to a security policy

without introducing conflicts. 153

Figure 7.19. The application of the functional induction tactic. 154

Figure 7.20. The proof of the theorem about adding authorization terms with-

out introducing conflicts. 155

Figure 7.21. The specification and proof of the theorem about the removal of

authorization terms from security policies without introducing con-

flicts. 157

Figure 8.1. Overview of joint research project case study for a university, a

commercial company and a government organization. 159

Figure 8.2. An example mobile user inter-domain access leading to an infor-

mation flow policy violation. 167

Figure 8.3. An online library with inter-domain access between two universities.170

Figure A.1. Domain Configuration XML Schema of FPM-RBAC. 182

xvii

Figure A.2. Domain Configuration XML Schema of FPM-RBAC (cont.). . . . 183

Figure A.3. Domain Configuration XML Schema of FPM-RBAC (cont.). . . . 184

Figure A.4. Domain Configuration XML Schema of FPM-RBAC (cont.). . . . 185

Figure A.5. Outline of XML Schema of an Inter-Domain Configuration. 186

Figure A.6. Outline of XML Schema of an Inter-Domain Configuration (cont.). 187

Figure A.7. XML Schema for a multi-domain security policy. 188

Figure A.8. XML Schema for a multi-domain security policy (cont.). 189

Figure A.9. XML Schema for a multi-domain security policy (cont.). 190

Figure A.10. XML Schema for policy rules. 191

Figure A.11. XML Schema for Services. 192

Figure A.12. Outline of XML Schema for SOD Constraints. 193

Figure A.13. Outline of XML Schema for SOD Constraints (cont.). 194

Figure A.14. Outline of XML Schema for SOD Constraints (cont.). 195

Figure A.15. XML Schema for Ambient Logic. 196

Figure A.16. XML Schema for Ambient Logic (cont.). 197

Figure A.17. XML Schema for Ambient Logic (cont.). 198

xviii

Figure A.18. XML Schema for Ambient Logic (cont.). 199

Figure A.19. XML Schema for Ambient Logic (cont.). 200

Figure A.20. XML Schema for Ambient Calculus. 201

Figure A.21. XML Schema for Ambient Calculus(cont.). 202

Figure A.22. XML Schema for Ambient Calculus(cont.). 203

Figure A.23. XML Schema for Ambient Calculus(cont.). 204

Figure A.24. XML Schema for Ambient Calculus(cont.). 205

Figure C.1. Part of the domain configuration for UniA. 207

Figure C.2. Part of the inter-domain configuration. 208

Figure C.3. Inter-domain security policy rule example. 208

Figure C.4. Part of the inter-domain security policy definition for Library service.209

Figure C.5. Part of the Ambient Calculus Specification for the Library Service. 210

Figure C.6. Example for SOD constraints specification. 211

Figure C.7. Result of SOD constraints evaluation. 211

xix

LIST OF TABLES

Table 3.1. Example security policy rules for on-line courses. 24

Table 3.2. Example security policy rules for joint research projects. 25

Table 3.3. Security policy rules for inter-connection of military networks to

Internet. 26

Table 3.4. Service Access Matrix. 30

Table 3.5. Part of the Permission Assignment Matrix. 31

Table 3.6. Part of the Authorization Terms Matrix. 32

Table 4.1. The data sets in FPM-RBAC. 40

Table 4.2. Relations in the FPM-RBAC model. 43

Table 4.3. System functions in the FPM-RBAC model. 45

Table 4.4. Fragment of Ambient Calculus used in this Thesis. 53

Table 4.5. Fragment of Ambient Logic used in this Thesis. 55

Table 4.6. Location and mobility constraints in the security policy rule. . . . 61

Table 6.1. Structural congruence for Ambient Calculus specifications. 106

Table 6.2. Reduction relation for Ambient Calculus specifications. 107

xx

Table 6.3. Part of output generated by the spatial model checker for the ex-

ample policy presented in 3.3. 123

Table 6.4. Properties of Ambient Calculus specifications. 128

Table 6.5. State transition system generation cost. 129

Table 6.6. Performance results for spatial model checking. 129

Table 6.7. Properties of formulas. 130

Table 6.8. Performance results for spatial model checking with brute force

search. 130

Table 6.9. Performance results of NuSMV with generated code. 131

Table 7.1. The concepts of interactive theorem proving based on type theory. 133

Table 8.1. Service access matrix for joint research project inter-domain access. 164

Table 8.2. A Part of Permission Assignment relation for joint project service

relating to object jrapp. 165

Table 8.3. Formal specification in Ambient Calculus for multi-domain sce-

nario. 169

xxi

LIST OF SYMBOLS

in M Ambient Calculus Enter M

n Ambient Calculus Name

x Ambient Calculus Variable

(x).P Ambient Calculus Input

open M Ambient Calculus Open M

out M Ambient Calculus Exit M

A ,B,C Ambient Logic Expressions

A |B Ambient Logic Composition

¬A Ambient Logic Negation

A ∨ B Ambient Logic Disjunction

n[A] Ambient Logic Location

A FPFM-RBAC Set of Actions

ACT FPFM-RBAC Set of Signed Actions

ADM FPFM-RBAC Administrator predicate

ADU FPFM-RBAC ActiveDomainUser predicate

AO FPFM-RBAC Set of Authorization Objects

AS FPFM-RBAC Set of Authorization Subjects

AT FPFM-RBAC Set of Authorization Terms

ATΓ FPFM-RBAC Set of Inter-Domain Authorization Terms

C FPFM-RBAC Set of Constraints

D FPFM-RBAC Security Domain

DR FPFM-RBAC DescendantRole predicate

EDH FPFM-RBAC EnrolledDomainHost predicate

EDR FPFM-RBAC EnrolledDomainUser predicate

H FPFM-RBAC Set of Hosts

HD FPFM-RBAC Relation to Map Hosts to Domains

IΓ FPFM-RBAC Set of Inter-Domain Services

M Ambient Calculus Capabilities

〈M〉 Ambient Calculus Asynchronous output

xxii

M.M Ambient Calculus Path

M [P] Ambient Calculus Ambient

M.P Ambient Calculus Capability

N FPFM-RBAC Set of Signs Representing Permission or Denial

O FPFM-RBAC Set of Objects

OIT FPFM-RBAC ObjectIsType predicate

OTH FPFM-RBAC Object Type Hierarchy

P,Q Ambient Calculus Processes

P |Q Ambient Calculus Composition

P FPFM-RBAC Security Policy

PA FPFM-RBAC Permission Assignment Relation

PAΓ FPFM-RBAC Inter-Domain Permission Assignment Relation

R FPFM-RBAC Set of Roles

RΓ FPFM-RBAC Set of Inter-Domain Roles

RAS FPFM-RBAC RoleAssumed predicate

REN FPFM-RBAC RoleEnabled predicate

RH FPFM-RBAC Role Hierarchy

RHΓ FPFM-RBAC Inter-Domain Role Hierarchy

RM FPFM-RBAC Role Map

RMh FPFM-RBAC Home Role Map

RMf FPFM-RBAC Foreign Role Map

RSG FPFM-RBAC RoleAssigned predicate

S FPFM-RBAC Service

Ŝ FPFM-RBAC Inter-Domain Service

SA FPFM-RBAC Service Access Relation

SAΓ FPFM-RBAC Inter-Domain Service Access Relation

T FPFM-RBAC Set of Object Types

U FPFM-RBAC Set of Users

UA FPFM-RBAC User Assignment Relation

UD FPFM-RBAC Relation to Map Users to their Home Domains

V FPFM-RBAC Set of services

WΓ FPFM-RBAC Inter-Domain Security Policy

xxiii

γ FPFM-RBAC Number of Inter-Domain Services

ε Ambient Calculus Null

ζ FPFM-RBAC Number of Object Types

η Ambient Logic name n

κ FPFM-RBAC Number of Hosts

ρ FPFM-RBAC Number of Roles

σ FPFM-RBAC Number of Services

	 FPFM-RBAC Number of Inter-Domain Roles

τ FPFM-RBAC Number of Objects

υ FPFM-RBAC Number of Users

Γ FPFM-RBAC Set of Security Domains

Ω FPFM-RBAC Set of Domain Security Policies

0 Ambient Logic Void, Ambient Calculus Inactivity

� Ambient Logic Logical True

→ Ambient Calculus Reduction relation

↓ Ambient Calculus Nesting relation

� Ambient Logic Somewhere

♦ Ambient Logic Sometime

� Ambient Logic Everytime

|= Ambient Logic Satisfaction relation

xxiv

LIST OF ACRONYMS/ABBREVIATIONS

BDD Binary Decision Diagram

BNF Backus-Noir Form

CCS Calculus of Communicating Systems

CIC Calculus of Inductive Constructions

CS Set of Conflicting Services

CR Set of Conflicting Roles

CP Set of Conflicting Permissions

CSP Communicating Sequential Processes

CTL Computational Tree Logic

DCR Dynamic Separation-of-Duty Based on Roles

DCS Dynamic Separation-of-Duty Based on Services

SLCR Dynamic Separation-of-Duty Based on Roles with Location

Constraints
SLCS Dynamic Separation-of-Duty Based on Services with Location

Constraints
FPFM Formal Policy Framework for Mobility

FPM-RBAC Formal Policy Model for Mobility with Role Based Access

Control
GUI Graphical User Interface

HCPN Hierarchical Coloured Petri Net

ISA Interconnection Security Agreement

LCONF Location Configuration

LTL Linear Temporal Logic

MT Mobile Terminal

PAM Permission Assignment Matrix

RBAC Role Based Access Control

SAM Service Access Matrix

SCR Static Separation-of-Duty Based on Roles

SCS Static Separation-of-Duty Based on Services

SICR Static Inter-Domain Separation-of-Duty

1

SLCP Static Separation-of-Duty Based on Permissions with Loca-

tion Constraints
SLCR Static Separation-of-Duty Based on Roles with Location Con-

straints
SLCS Static Separation-of-Duty Based on Services with Location

Constraints
SRM Static Inter-Domain Separation-of-Duty Based on Role Map-

ping
SOD Separation-of-Duty

SPMI Security Policy Management Interface

XACML Extensible Access Control Markup Language

XFPM-RBAC XML Based Formal Policy Language for Mobility with Role

Based Access Control
XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

VPN Virtual Private Network

2

1. INTRODUCTION

The provision of services in networks with multiple administrative domains re-

quires support for cross-domain security policy specification, enforcement, manage-

ment and verification. Next generation wireless networks will provide seamless mobility

for users to support ubiquitous computing. The proliferation of ubiquitous computing

enables users to remain connected to network resources irrespective of their location.

The multi-domain mobile network environment consists of multiple interconnected do-

mains and mobile users, hosts and objects as sketched in Figure 1.1. Interconnection

and mobility are the two main concepts that come into consideration where users are

allowed to use network connectivity of multiple domains. An interconnection is de-

fined as “the direct connection of two or more Information Technology systems for the

purpose of sharing data and other information resources” [2].

Interconnections of networks for most commercial, government and military or-

ganizations require strict security mechanisms defined by inter-domain security poli-

cies. Mobility of users between domains require that users are able to connect to the

networks of multiple administrative domains, possibly using a single identity. Inter-

domain policies in such an environment need to support concepts such as locations,

mobility, role mapping, inter-domain access rights and separation of duty between

domains.

Mobility of hosts, objects and users present challenges for security in multi-

domain mobile networks. The actions involving mobility across security domains need

to be specified and verified with respect to domain and inter-domain policies. We are

concerned with formal specification and verification of security policy in an environ-

ment where users roam between different administrative domains. This problem may

be abstracted by the following question: “Are the actions of mobile users compliant

with the security policy for the administrative domains that they move in, and the

inter-domain security policy between these domains?”

3

Multi-Domain Mobile
Network

User

Interconnection

Object

Host

Int
erc

on
ne

cti
on

Interconnection

Host

User Object

Object User

Host

Figure 1.1. Example multi-domain mobile network environment.

A security policy determines the actions that active entities are allowed to con-

duct on passive entities and defines the conditions. Active entities are also called

authorization subjects (or simply subjects) within security policy terminology. Sub-

jects can conduct operations on passive entities called authorization objects (or simply

objects). Subjects may be users, roles or hosts. Objects are network resources such

as applications, files, databases or messages. Domains and hosts may also behave like

passive entities and become authorization objects. Administrative domain defines sets

of entities. The actions determine the functions that may be conducted by a subject

in an administrative domain. There may be conditions for allowing an action to occur

such as time, identity, role membership, user group membership, location and mobil-

ity. The rules based on all of these elements constitute the security policies for the

administrative domains.

Following these definitions we may formalize our problem definition as follows:

“Given a model of a network that includes mobile users roaming different administrative

domains with their respective domain security policies and an inter-domain security

policy, how to determine formally whether the actions conducted by the users are

4

compliant with the domain and inter-domain security policies”. Our purpose is to

verify compliance formally in terms of a formal specification of a security policy with

respect to formal representation of location and mobility constraints.

The utilization of a formal security policy framework in a multi-domain mobile

network setting allows answering many questions which otherwise would require a

manual review process. First of all, we can query a policy base or could answer

questions like: Can an operation be conducted? From which location and under which

mobility constraints an operation can be conducted? Second, we can verify a situation

at any state of the dynamic mobile network model. We can check whether an operation

specified in a given network configuration can be safely executed. We can also check

that given the permissions in the security policy whether a security vulnerability arises

in the network. Third, we can check consistency of a policy specification. We can

answer questions such as: Is an action specified as both permitted and prohibited?

Are the rules in the domain policy consistent with rules in the inter-domain policy?

In the light of issues presented above, a Formal Policy Framework needs to be

able to answer the following questions:

(i) Enforcement:

• Is an action executable in accordance with inter-domain policy?

• Is an action allowed within location and mobility constraints?

(ii) Compliance:

• Is a set of actions compliant with domain and inter-domain policies under

a given network configuration?

• Is domain policy compliant with inter-domain policy, and vice versa?

(iii) Analysis and Verification:

• Do a set of policies prevent some known security breaches arising from cross-

domain actions and mobility?

• Is the policy set complete/consistent?

Most of the related work provides mechanisms to define security policies but

5

lack support for answering questions such as those above. Current state-of-the-art

in the area of multi-domain security policy specification and verification are mostly

related to federated systems [3]. The federated system approach requires a centralized

knowledge of all system resources and multi-domain users, which are assumed to be

static in the network. This approach is not suitable for multi-domain mobile networks

where different administrators exist for different domains and additionally users and

resources are mobile. Other studies in the area of role based access control policies with

location information is mostly targeted towards location based services in networks,

not providing a general model for security policies in a multi-domain mobile network.

In this thesis, we present the Formal Policy Framework for Mobile Networks

(FPFM) framework for specification of mobile network configurations and security

policies and verification of security policies. To the best of our knowledge, FPFM is

the first example of a security policy framework that includes location and mobility

constraints, role mapping, inter domain access rights and separation of duty policy

rules for multi-domain security policies. The FPFM framework provides integrated

support for verification built on a formal security policy model through integrated

verification tools. FPFM provides incremental and automated means of developing

formal specification of security policies, makes formal methods usable by security ad-

ministrators and applications, provides tools to specify and verify complex temporal

and locational constraints in policies and integrates various formal specification meth-

ods and tools in a single framework.

As the formal basis of the FPFM framework, we propose a formal security policy

model for the specification of domain and inter-domain security policies in a multi-

domain mobile network environment. The presented policy model uses Ambient Calcu-

lus, Ambient Logic and Predicate Logic for specification of security policies. Ambient

Logic [4] is used to specify dynamic mobility and location constraints in security pol-

icy rules. The Ambient Calculus [5] is used to specify the current state of a mobile

network and breach scenarios for testing of policies. The matching of mobility and lo-

cation constraints in policy rules is accomplished by checking the validity of Ambient

Logic formulas against Ambient Calculus specifications. Logical constructs based on

6

Predicate Logic are used for specification of static constraints such as separation of

duty.

We also propose a XML-based security policy language named XFPM-RBAC.

The XFPM-RBAC language builds upon the formal security policy model FPM-

RBAC. XFPM-RBAC provides means to access the formal reasoning environment

by system administrators, applications and network elements. A Security Policy Man-

agement Interface (SPMI) application is developed for authoring security policies with

XFPM-RBAC.

We apply theorem proving and model checking techniques for verification. Coq

theorem prover is used for specification of the formal policy model for a given network

and for the verification of policies. Each authorization policy is represented in the

Calculus of Inductive Constructions (CIC). A model checker for Ambient Calculus has

been developed as part of the framework which checks the validity of Ambient Logic

formulas against Ambient Calculus specifications.

The first contribution of our framework is the introduction of a formal inter-

domain policy model for mobile networks. Another contribution of our framework

is the inclusion of a formal mobility model, which is capable of representing mobile

network state as well as complex location and mobility constraints in security pol-

icy rules. Third contribution is the integration of formal verification tools for model

checking and theorem proving into the security policy framework, together with the

ability to generate formal specifications from security policies for the purpose of verifi-

cation. The administration model is distributed, where inter-domain rules are defined

for foreign roles acting on home domain resources. Therefore our framework does not

require the global knowledge of users and resources and does not introduce conflicts

between inter-domain rules of different domains.

With the Role Based Access Control (RBAC) model defined in our framework,

the current state-of-the-art in location and context based RBAC models are advanced

by introduction of an inter-domain model and mobility constraints in addition to

7

spatio-temporal constraints. In our work spatio-temporal access control model has

the following properties:

• Both subjects and objects are mobile

• Locations are mobile, hierarchical and are based on a formal model that supports

spatial model checking.

• Temporal model is based on CTL (Computational Tree Logic)

• The spatio-temporal environment is dynamic and can change with actions in the

formal model

Chapter 2 gives background information and summarizes the related work. In

Chapter 3, we introduce the concept of Inter-Domain Policies, investigate the need

and requirements for a formal policy framework for mobile networks and present the

Formal Policy Framework for Mobility (FPFM) components. In Chapter 4, we present

FPM-RBAC, the formal security policy model for multi-domain mobile networks. In

Chapter 5, we present XFPM-RBAC, XML-based specifications of domain and inter-

domain policies with the FPM-RBAC formal security policy model. The approach for

formal specification of security policies, formalization of policy rules and the spatio-

temporal Ambient Calculus model checker are presented in Chapter 6. Theorem prov-

ing approach with the Coq theorem prover is presented in Chapter 7. In Chapter 8 we

present two case studies for joint research project and online library inter-domain ser-

vices for mobile users. Finally, Chapter 9 summarizes our current and future research

work.

8

2. RELATED WORK

In this section, the related work in the area of formal methods for security is

covered, with respect to specific topics related to the work presented in this thesis.

In Section 2.1, we cover works which are general formal approaches for verification

of security of protocols and systems. In Section 2.2, we cover formal methods and

languages aimed at specification and verification of security policies. In Section 2.3,

we cover formal methods for security in mobile systems. In Section 2.4, we cover recent

Role-Based Access Control (RBAC) models which support spatio-temporal constraints.

Finally in Section 2.5, we cover general purpose policy languages and access control

frameworks.

2.1. Formal Methods for Specification and Verification of Security

Properties of Protocols and Systems

The first main group of formal methods are concerned with definition and ver-

ification of security properties of a protocol or system. Some of these methods are

focused on cryptographic protocols, while some with protection mechanisms such as a

firewall.

The Bell La Padula model is used for verifying confidentiality properties, while

BAN logic is a means to verify authentication protocols [6]. Integrity models are used

to describe what needs to be done to enforce the information integrity policies. The

Clark-Wilson model is an application level integrity model [7]. A class of methods

as exemplified by [8] uses functional modeling. This study defines a reference model

and formal model for firewalls based on this reference model. The reference model

focuses on functionality required by firewall systems to enforce network domain security

policies. The formalism is based on Hierarchical Colored Petri Nets (HCPN) that are

used to express the functionality of mechanisms, to combine them into a system, and

to simulate the system in a design tool environment.

9

Guttman [9] attacks the packet protection problem defined as “how to use the

security services provided by router-like services such as packet filtering and the IP

security protocols to achieve useful protection in complex networks”. Network repre-

sentation is a undirected bipartite graph,a formal definition of security objectives and

use boolean algebra to represent the constraints; the sets permitted at the various fil-

tering points and the consequents of security goals. Binary Decision Diagrams (BDDs)

are used to model packet filters, by implementing the boolean algebra of sets solving

the abstraction problem.

Many research efforts has focused on methods based on a concept called “strand

spaces” for solving the Dolev-Yao problem [10]. This methodology models crypto-

graphic protocols and their security goals, which is used to detect flaws in protocols.

These methods are based on simple mathematical modeling notions, such as directed

graphs, boolean algebras, and freely generated algebras. This approach has also been

extended to address verification of security guarantees of multiple interacting proto-

cols.

A class of methods can be distinguished as model and theory based formalism.

Cryptographic protocol verification using the FDR model checker [11], the interactive

theorem prover Isabelle [12], and the automatic theorem prover Athena [13] are based

on model and theory based formalism.

In [14] the approach of theory checking to analyzing and verifying properties of

security protocols is presented. In this approach they generate the entire finite theory

of a logic for reasoning about a security protocol. Determination of whether it satisfies

a property, is by a membership test. This approach relies on, modeling a finite instance

of a protocol in a natural an informal way and placing restrictions on logical inference

rules to guarantee that the algorithm terminates. This generates a “finite theory”. This

approach is implemented by a theory-checker generator.

Theory generation [15] is a new general-purpose technique for performing auto-

mated verification. Theory generation is based on automated theorem proving and

10

symbolic model checking. The basis of this approach is production of a finite rep-

resentation of a theory, which is all the facts derivable from a set of assumptions.

An automated analysis is possible to test for specific properties and make compari-

son of protocols. They declare to having applied theory generation to more than a

dozen security protocols using four different logics of belief confirming flaws discovered

earlier.

Hopper [16] reviews two relatively new tools for automated formal analyis of

security protocols. One applies the formal methods technique of model checking to

the task of protocol analysis, while the other utilizes the method of theory generation,

which builds on both model checking and automated theorem proving. For purposes

of comparison, the tools are both applied to a suite of sample protocols with known

flaws. A heuristic is suggested for combining the two approaches to provide a more

complete analysis than either approach can provide alone.

2.2. Formal Languages and Methods for Specification and Verification of

Security Policies

A class of works represent security policies as Datalog programs such as [17].

Dougherty [18] extends the Datalog approach by using a combination of relational rea-

soning and temporal reasoning to model both policies and their environments. They

handle two core problems, goal reachability and contextual policy containment. The

direction of this work is parallel to ours, for example the goal reachability problem

may be implemented using the model checking approach. However use of a first-order

relational language such as Datalog restricts the class of policies that can be modeled.

Instead of Datalog we utilize Calculus of Inductive Constructions for relational rea-

soning. Our proposed environment model based on process calculus is more suitable

for mobile networks than the state-based approach presented in this work.

We apply theorem proving to verification of security policies. In [19] we use

Coq for checking that an authorization security policy is conflict-free, initially and as

authorization rules are added and removed, while [20] uses first order linear temporal

11

logic embedded within Isabelle to formalize and verify RBAC authorization constraints.

A more recent study, [21] uses nontemporal and history-based authorization constraints

in the Object Constraint Language (OCL) and first-order linear temporal logic (LTL)

to verify role-based access control policies with the help of a theorem prover.

Logic-based security policy models provide a general framework for security pol-

icy specification. Becker et al.’s SECPAL [22] is a formal security policy language for

Grid environments. The Flexible Authorization Framework (FAF) is a logic program-

ming based method for definition, derivation and conflict resolution of authorization

policies [23, 24]. Another study based on logic that supports explicit denials, hierar-

chies, policy derivation and conflict resolution is [25]. Ponder [26] is a general purpose

formal security policy language. Woo and Lam [27] define a paraconsistent formal lan-

guage for authorizations based on logical constructs. In [28] deontic logic is used for

modeling the concepts of permission, obligation and prohibition with organizational

concepts such as responsibility, delegation and time constructs. A security policy

language based on the set-and-function formalism is presented in [29].

2.3. Formal Methods for Specification and Verification of Security Policies

in Mobile Systems

For specifying dynamic properties of a mobile network and modeling the spatial

and temporal effects of actions, we need to use an executable process calculus. Among

many types of calculi, Pi calculus [30, 31] and Ambient Calculus [5] are candidates

for modeling locations and mobility because they provide constructs for concurrency,

communication and names which are capable of representing locations and executable

processes. We use the Ambient Calculus because it provides natural means to model

location hierarchies and mobility. Ambient calculus, proposed by Cardelli and Gordon,

is a process calculus which is able to theorize about concurrent systems that include

mobility and locations. Ambient Logic [4, 32] is a modal logic for expressing spatial

and temporal properties of Ambient Calculus. Ambient Calculus has been used for

modeling and reasoning about security in mobile systems. For model checking of

Ambient Calculus specifications, our approach is similar to the work of Mardare et al.

12

[33, 34]. We use a modified version of Mardare algorithm and present an algorithm

based on use of capability trees that reduces complexity of state space generation

and matching of Ambient Logic formulas to states. Charatonik et al. [35] offers

exhaustive search for searching possible decompositions of processes and searching sub

locations when checking spatial modalities. We offer heuristics for searching possible

decompositions of processes and searching sub locations to reduce the search space.

Reasoning about spatial configurations for application level security policies in

ubiquitous environments is one of the issues investigated in Scott’s PhD thesis [36].

In this study a simplified version of Ambient Calculus and Ambient Logic is used in

policy rules of a security policy. BACIR [37] is a boxed Ambient Calculus with RBAC

mechanisms used to define access control policies for ambients. Model checking has

been applied for verification of security policies. ACPEG [38] is a tool for evaluating

and generating access control policies based on first-order logic. In the works [39, 40]

model checking is applied to mobile code, where mobile programs are modeled as

Labeled Kripke structures and a generic security policy specification language is used

to express rules and manipulate locations of the code. Similar to our approach, they

support both access control and information flow control specification. We present

in [41] a model checker for spatio-temporal model checking of location and mobility

related security policy specifications. In our approach, the Ambient Calculus and

Ambient Logic [4] are utilized. In contrast to BACIR which places policies inside

Ambient Calculus formulas, we use Ambient Calculus for specification of processes and

Ambient Logic for specification of policies and complement them with Predicate Logic

based relational model. In contrast to Scott’s approach, network level policies rather

than application level policies will be covered and locations will denote placement in

domains and hosts.

2.4. Role Based Access Control Models with Spatio-Temporal Constraints

There are various access control models that include temporal, location and other

context-based spatio-temporal constraints. TRBAC [42] and GTRBAC [43] which is

an extension of TRBAC are temporal RBAC models. Some of the examples of ac-

13

cess control models which include location and context-based constraints are, SRBAC

[44], LOT-RBAC [45], Spatio-Temporal RBAC [46], STRBAC [47], GEO-RBAC [48],

Context Aware RBAC [49] and STARBAC[50] later extended by ESTARBAC [51].

GTRBAC by Joshi et al. [43] is a temporal RBAC which extends TRBAC [42] by

Bertino et al. TRBAC includes role enabling constraints and periodic time statements

for temporal constraints. GTRBAC handles the concept of role activation separately

from role enabling and adds the concept of constraint enabling. In GTRBAC, temporal

constraints may be related to user-role assignment as well as role-permission assign-

ment. Temporal constraints in the GTRBAC model are capable of specifying both

peridocitiy and duration constraints, as well as the maximum number of activations

for a role during a time period. GTRBAC also includes mechanisms to handle conflicts

and SOD in the temporal domain as well as support for role hierarchies. GTRBAC

does not include the concept of multiple domains nor support for spatial constraints

such as location and mobility.

The SRBAC model proposed by Hansen and Oleschuk [44] adds to the standard

RBAC model the ability to specify spatial constraints on enabling and disabling of

roles. The set of permissions that a user may activate at a given location may be

limited by spatial constraints. SRBAC also includes a Role Hierarchy model which

is location dependent i.e. the permission inheritance relationship between roles may

also depend on the location of the user which assumes the role. Separation of Duty

constraints in SRBAC model are also location dependent such that two roles with

assigned permissions may be mutually exclusive for a given location while they are

authorized to be activated simultaneously for other locations. This work defines a

conceptual model but does not include an architecture for implementing the conceptual

model.

STARBAC [50] provides a spatio-temporal condition set, consisting of tuples

made by spatial and temporal conditions. Spatial conditions are based on locations and

location types, which are elements of simple sets. Temporal conditions are elements

of periodic expressions. An example of a spatio-temporal condition in STARBAC is

14

(XYZ Building, Monday). STARBAC also supports role enabling/disabling through

role control commands. An example role control command is <(Office, Officehour),

enable’CLERK’>. Space time reasoning in STARBAC is achieved through member-

ship of location mapping and location type mapping relations. The authors extended

this model with the name of ESTARBAC [51] and defined access control evaluation

algorithms as well as support for Separation-of-Duty (SOD) constraints. Mondal et

al. [52] present a XML representation of ESTARBAC.

The LoT-RBAC model [45] provides a fine-grained location model based on the

concept of logical and physical locations. It supports relations between locations such

as contains, overlaps, equals, meets or disjoint. Definition of location hierarchies as well

as location context based on user, role and permission location are possible. Location

expressions of the form lexpr = ([plocx,], LLOCy) can be used to define location con-

straints on user, role, permission assignment, role activation and enabling relations of

RBAC. Temporal expressions, role enabling/disabling/activation mechanisms as well

as the event and trigger constructs are borrowed from the GTRBAC model. There-

fore the Lot-RBAC model may be considered as an extension of GTRBAC model for

specification of location constraints.

The basic spatio-temporal constructs of the study of Ray et al. [46] are similar

with LoT-RBAC. This work introduces the notions of temporal and spatial inheritance

and activation in role hierarchies and considers the impact of time and location on

separation of duty. The model presented adds spatio-temporal constraints to role

assignment and permission assignment relations. With regards to the location model,

they speak only about a containment relationship. Additionally the location model

presented in this study is limited to a simple set of logical locations; location hierarchies

and expressions based on locations are not provided.

Kumar et al. [47] propose alternative approaches to specification of permissions

in the spatio-temporal context. In contrast to Joshi et al. [43] they do not use triggers.

Instead, the spatio-temporal constraints are attached to a RBAC Access Matrix and

are evaluated at run-time. The logical location model of Kumar et al. includes spatial

15

constraints which are combinations of logical locations combined with the operators

of {∩,∪, \}. However they do not present any algorithms to evaluate spatio-temporal

constraints. They also introduce the notion of visibility, which is defined as “specifica-

tion of whether a set of roles is allowed to know the location and identity of an object”.

The relation V isL(r, o) returns the spatial resolution to apply to request by a user

in role r for the position of the object o. However in their work no formal definition

of spatial resolution is given neither any algorithms to derive the visibility relation is

presented.

The GEO-RBAC model proposed by Damiani et al. [48] is a Spatial RBAC

model based on the concept of spatial role, which represents a geographically bounded

organizational function. Boundaries are defined as features, which are characteristics of

geometrical objects. The spatial model adopted in this work is in accordance with the

Open Geospatial Consortium (OGC) model. Similar to GTRBAC, role enabling and

activation are handled separately. A role is said to be enabled if the logical position of

a user is spatially contained in the extent of that role. The extent of a role defines the

boundaries in which the role may be assumed by a user. Role schemas are used to define

spatial roles, which depend on the extent of roles, logical positions for users contained

in the extent and a mapping function from physical locations to logical locations.

Concerning role hierarchies, a new concept of schema hierarchies is introduced and

the effect of spatial role extents to hierarchies are studied. Additionally Separation-

of-Duty constraints are extended to account for the spatial relationships between user

location and role extents. The access control decisions in GEO-RBAC are computed

through an access-control function which enumerates the set of all enabled roles in

a location. GEO-RBAC does not support mobility and multiple domain hierarchies.

Additionally the location constraints are limited to the location of users rather than

presenting the overall spatial environment.

The studies presented above are more suitable for environments in which the lo-

cation of users and objects are static in nature. Locations are defined with first-order

relations over a set of logical locations. Some formalism is provided to specify com-

plex spatial configurations; but no syntax or semantics are available for mobility of

16

users or objects. The impact of role assumption, enablement, activation and permis-

sion assignment due to mobility are not considered. The LoT-RBAC model includes

location hierarchies, however the formal link between the hierarchy model and the

location relations are missing. In all these formalisms the spatial model of a system

is static and does not represent neither the actions of users nor the mobility of users,

objects and locations. Additionally these models are based on a single domain without

consideration of inter-domain relations such as role-mapping.

2.5. Policy Languages and Access Control Frameworks

Policies are constraints on the behavior of a system. Policy languages provide

means for concrete representation of policies. Languages for expressing constraints

on the behavior of systems are declarative rather than procedural. In a declarative

language, the constraints are declared without the detail on how to enforce them.

Mathematical notations are used for precise representation of policies and reasoning

using automated means. First order logic, stratified logic and deontic logic are the

most commonly used mathematical notation techniques for policy representation.

Some policy languages are specifically designed for policy systems. Some of

the currently available policy languages include XACML (eXtensible Access Control

Markup Language) [53] from OASIS and Ponder from Imperial College [26]. This sort

of policy languages are generic and do not target multi-domain mobile networks. More

specifically, XACML does not have a formal model for role hierarchies, inter-domain

security policies, location and mobility constraints and separation of duty constraints.

Ponder is more suitable for network services management in an environment where

objects and users and their locations are previously known. However in multi-domain

mobile environments, objects and users and their locations are not known in advance.

Formal verification for general purpose policy languages are considered by various

researchers such as [21] and [38], however a formal model to support verification is not

part of the specifications of general purpose policy languages.

There are various access control models that extend the Role-Based Access Con-

17

trol (RBAC) [54, 55] model with temporal, location and other context-based spatio-

temporal constraints. GTRBAC [43] is a temporal RBAC model. The GTRBAC

model has been extended by several works for multiple domain environments. Pirom-

ruen and Joshi [56] present a preliminary work on extension on GTRBAC. In this

work some algorithms are presented to extend a local GTRBAC policy to facilitate

inter-domain access. For two domains to interoperate, a domain sends access require-

ments and a set of exported roles to another. The access requirements are fulfilled by

amendment of role hierarchy or addition of local roles in the domain which has ob-

jects to be accessed. This approach has some drawbacks. First, the role hierarchies in

the accessed domain should be modified each time there is a new access requirement.

Second, the accessing domain needs to know about the objects on the domain to be

accessed in order to create access permissions. If these objects were to be changed or

deleted, the accessing domain needs to be notified. Third, there is no shared mapping

of roles between domains and the local role hierarchies are exported to other domains.

These drawbacks seriously restrict satisfying the least priviledge and need-to-know

principles of security. There are other extensions of GTRBAC including [57]. Bhatti

et al. proposed X-FEDERATE [58], X-GTRBAC [59], X-GTRBAC Admin [60], which

are representations of GTRBAC model in XML language.

A XML based policy specification framework which supports location constraints

is presented in [61]. In this paper, the location model is based on the GEO-RBAC

model [48]. In GEO-RBAC, locations are defined with first-order relations over a

set of logical locations. GEO-RBAC model presents a formal relationship between

the RBAC and spatial concepts, but the relationship is based on enumeration of all

enabled roles in a specific user location. This approach is not suitable for dynamic

multi-domain environments. Furthermore, the location aspects focus on the subjects

rather than presenting a spatial configuration for the entire system. The limitations of

the GEO-RBAC model are discussed in [62]. For example, the authors speak about the

need for “the position as well as the policy to be continuously enforced”,“controlling

the mobility” and “the need for modification of spatial roles as the space evolves”,

which are concepts covered by the FPM-RBAC model which is the formal basis of

XFPM-RBAC policy language.

18

3. FPFM: A FORMAL SPECIFICATION AND

VERIFICATION FRAMEWORK FOR SECURITY

POLICIES IN MULTI-DOMAIN MOBILE NETWORKS

In this chapter, we present the Formal Policy Framework for Mobility (FPFM).

First, we discuss the need and requirements for a formal policy framework for mobile

networks. Second, we present the components of FPFM. Third, we explain how secu-

rity policies are specified in the FPFM framework. Finally, we discuss the methodology

in which security policies are verified in the FPFM framework.

3.1. The Need and Requirements for a Formal Policy Framework for

Mobile Networks

First, we provide definitions related to security policies in a multi-domain envi-

ronment. Second, we provide an overview of security vulnerabilities in multi-domain

mobile networks, which are introduced by communication and mobility among mul-

tiple domains. Third, we introduce the inter-domain security policy concept for the

purposes of this thesis. Finally, we discuss possible applications of a framework for

security policies in multi-domain mobile networks.

3.1.1. Security Policies in a Multi-Domain Environment

Security policies in a multi-domain environment require specification and ver-

ification of multiple policies. Additionally, in a mobile network environment, where

users, hosts and objects are mobile, policy rules may become increasingly complex.

The heterogeneous nature of mobile networks suggests a common formal policy model.

Security breaches in multi-domain mobile networks often arise from insufficient repre-

sentation and enforcement of multiple actions including mobility. Formal verification

of policies by use of a common formal policy model provides means to reduce se-

curity breaches arising from incomplete, inconsistent and ambiguous specification of

19

multi-domain policies.

For the purposes of this study, we use the following definitions for a domain, an

inter-domain policy and a service:

Definition 3.1. A security administrative domain, or a domain in short, is a logical

boundary for an information and communication system governed by a single admin-

istrative authority.

Definition 3.2. Inter-domain policy defines the access control rules, attributes and

mapping for entities and information in multiple domains to be able to securely access

or exchange information.

Definition 3.3. A service is a set of entities and attributes of entities upon which

operations are conducted.

3.1.2. Security Vulnerabilities in Multi-Domain Mobile Networks

The multi-domain mobile network environment presents many challenges to se-

curity. The first problem is unintended information flow between domains due to

mobility of users. Second, administrative rights for visiting mobile user resources de-

pend on visited domain policies and users and their home domains have no control on

these policies. Third, security threat from mobile users may change according to the

domains they come from. A mobile visiting user coming from a public network may

present more threat than one coming from a trusted network. Therefore a mobile user

needs to be given access due to location and mobility constraints.

The movement of hosts may conceal movement of objects. Consider an example

in which there are two domains, Domain A and Domain B and an information flow

security policy which states that Domain A files should not exist in Domain B. Domain

B users are allowed to move between domains and to read files from both domains.

This movement could breach the information flow security policy, since a user may

read a file in Domain A, move to Domain B and write the file to Domain B.

20

A method of tracing such movement is by keeping traces of events, but such

traces may be hard and time-consuming to analyze once a long time passes in the

system. A more optimal approach that is taken here is to keep the current state of

the system, that shows the location and movement of objects.

Administrative weakness is inherent in modern operating systems such as Win-

dows and Unix. The user with the root or domain administrator credentials can vir-

tually access any resource within a network or domain. While this may be acceptable

for a static world where all users and objects within a network or domain stays within

those network or domain, it may cause some serious security problems when inter-

domain collaboration and movement is in place. A user’s host may carry information

not normally open to access by other organizations, but by moving and logging onto

a domain, the user’s host and the objects on the mobile user’s host become accessible

to foreign administrators.

Multiple interconnections are also a source of vulnerability for networks. When

an organization (A) makes an interconnection with another, the connection mostly

conveys a bi-directional information flow. One of the organizations (B) could have an

interconnection with another (C); associated with permissions based on the require-

ments at the time of this interconnection. So-called “back-end interconnection” from

the point of view of A, the permissions arising from interconnection of B to C may

breach A’s security policy.

These examples show that security vulnerabilities may arise if inter-domain se-

curity policies are not checked and enforced. Another major problem is mismatch

between security policies of multiple organizations. The host and intra-domain se-

curity mechanisms are usually setup in a way that all objects and subjects within a

domain are known and trusted (employees of an organization, students of a university

etc. which have liabilities against their organization). However when inter-domain

mobility is allowed, users outside of an organization’s responsibility may conduct ac-

tions. Those users (and/or their hosts) are subject (or configured) to adhere to their

own organization’s security policy. This policy may not match the visited institution’s

21

policy. If there is no enforcement of inter-domain security policy within a domain, the

overall policy enforcement may be endangered.

3.1.3. Inter-domain Security Policy

An inter-domain security policy is based on a set of security agreements by

participating organizations. A basic inter-domain policy structure is given by NIST

with ”Interconnection Security Agreement (ISA)” document [2]. However the nature of

next generation networks require many other issues to be covered by an inter-domain

policy. The various components of an inter-domain policy is presented in Figure 3.1.

An inter-domain policy for mobile networks should cover the following concepts:

Domain A
Security policy

Domain A

User
(Home)

Inter-Domain
Security policy

Domain A-Domain B
(Inter-Domain)

Inter-Domain
Services

Domain B
Services

Domain B
Security policy

Domain B

Inter-domain
operations

Inter-domain
operations

Inter-domain
policy

mapping

Inter-domain
policy

mapping

Domain A
Services

Domain
operations

Domain
operations

Mobility

User
(Foreign)

User
(Home)Inter-domain

operations

Figure 3.1. Inter-domain operations governed by inter-domain security policies.

(i) Locations: Inter-domain services provided based on locations, such as location

based services require support for access control based on locations.

(ii) Mobility: The inter-domain mobility aspects relate to object, host and user mo-

bility across domains.

(iii) Role mapping: This maps the user roles in one domain to another. e.g. Lecturer

in one university may become Researcher in another.

(iv) Inter-domain access rights: These rights relate to inter-domain operations. They

determine access rights for roles from other domain, access rights for local roles

when accessing from another domain and access rights for public access.

(v) Separation of duty: The assignment and assumption of multiple roles to users

22

should be restricted based on inter-domain mappings and locations in addition

to conventional role based separation of duty.

Our study is the first example of a security policy framework to cover all of the

above concepts. Former studies do not cover locations, mobility, role mapping, inter-

domain access rights and separation of duty as a whole. In our study, we cover location

and mobility constraints, role mapping, inter domain access rights and separation of

duty policy rules for multi-domain security policies.

Another important difference from related work is our view of the multi-domain

environment based on a home domain, foreign domains and inter-domain policies be-

tween these domains. Inter-domain policy for each domain is defined by the security

administrator of the home domain based on foreign domain roles, eliminating the need

for global knowledge of the network users and resources.

An application domain for multiple-domain mobile security policies is roaming

between mobile networks of different organizations. As an example, consider a user

with a mobile internet subscription visiting a university with a higher speed wireless

local area connection. If the inter-domain agreements between the visited university

and the mobile internet provider permits, based on location the visiting user may have

access to some local resources, such as temporary access to the university library. It is

not practical to provide an account from the university domain for a temporary visiting

user. The user needs to be recognized by the home domain identity which is the mobile

subscriber identity. We assume that the cross-domain authentication mechanisms are

in place for identification. The system then needs to map the identity to an inter-

domain role. The system also needs to make sure that only intended resources are

accessed by the visiting user with an inter-domain role.

3.1.4. Applications of Security Policy Framework

The need for a framework for security policies in multi-domain mobile networks

is increasing due to advances in mobile telecommunications, smart mobile comput-

23

ing devices, service oriented computing and the increasing need for collaboration and

information sharing within this new environment.

The provision of mobile inter-domain information services require specification,

enforcement and verification of security policy rules which should support specification

of role mapping, location, mobility, inter-domain and information flow conditions and

constraints. The policy framework presented in this study supports the specification,

enforcement and verification of such policies, whereas previous works do not support

these concepts as a whole. Here present some scenarios in which the proposed security

policy framework may be utilized.

3.1.4.1. On-line Courses. As an example, consider an open university with on-line

courses in which various departments and universities are involved. Lecturers give

courses on multiple campuses as visiting lecturers, and students may follow these

courses from any campus with their mobile terminals. Examinations are only provided

within the department that offers the course. Multi-domain access is needed since the

lecturers should have access to materials, exam questions and grades for courses which

are provided by multiple departments and universities. Information flow should be

restricted since grades and exam questions should be available to the lecturer which

presents the course. The lecturer’s information on his/her own mobile terminal needs

to be protected from unauthorized access by foreign domains. The on-line course

is a mobile inter-domain service which spans multiple domains of departments and

universities, application servers and file servers which host the on-line education web

services as well as courses, mobile terminals of lecturers and students as well as the

information related to courses such as grades, exam questions and course material.

3.1.4.2. Joint Research Projects. Second, these universities may also be involved in

joint research projects with other government, industrial or academic partners. Uni-

versity members such as lecturers and research assistants may assume roles such as

research project member or research project coordinator. Roles in each individual

domain may be mapped to another through role mapping relations. For example, the

24

Table 3.1. Example security policy rules for on-line courses.

Rule Type Policy Rule

Role Mapping Lecturers from University A who are giving courses in on-line

university will become visiting lecturer in University B.

Mobility On-line students may access on-line university courses from any

university campus through mobile terminals.

Location On-line students may take course exams within the department

providing the course.

Inter-domain Lecturers in University A may write grades for on-line courses in

University B.

Information

Flow

Course grades of a student should not be available to other stu-

dents.

role of systems analyst in an industrial partner may be mapped to the role of research

project member in a university during the project. When the systems analyst visits

the university to conduct studies related the project with a mobile computing device,

the project files in the research laboratory should be available, while access to other

research projects should be restrained. Some information from government partners

will be shared to the partners however at the same time some of this information may

not be available within the university campus because of physical security concerns. In

this case university members may have access to this information through their mobile

terminals within government premises. The university members are not allowed to

move and copy information from within the government domain to their own domain.

3.1.4.3. Military Networks with Multiple Security Classifications. Third example is

inter-connection of military networks with security classification to public networks.

As presented in Figure 3.2, in this scenario there are restricted domains, a public

domain (such as Internet), mobile terminals (MTs) of users of the restricted domain

and public clients/servers that communicate with the restricted domain. MTs use the

public network to access restricted information over a virtual private network (VPN).

Restricted domains also form a VPN for communication of Restricted information over

25

Table 3.2. Example security policy rules for joint research projects.

Rule Type Policy Rule

Role Mapping System Analyst in Industrial Partner domain becomes Research

Project Member in Joint Project inter-domain service.

Mobility System Analyst may connect to University Research Lab with his

mobile terminal.

Location University research assistants may access research project files in

the government domain only from within government premises.

Inter-domain Users from Industrial domain should only access the joint research

project files in the University domain.

Information

Flow

Files in the government domain may not be written to the uni-

versity domain.

the Internet. In such a setting, information flows may carry two distinct classification

levels, Restricted for information for internal use and Unclassified for publicly available

information.

Figure 3.2. Multi-domain scenario with multiple classification levels in military

context.

The restricted information flows 1.a, 1.b and 1.c take place: a. between restricted

domains, b. from MT to Restricted domain or c. MT to MT, while the unclassified

information flows take place between clients of Restricted domain and clients/servers of

Public domain. The information flow 2.a represents the uni-directional release of public

information to Internet, while 2.b represents bi-directional communication of restricted

26

network users with public users (such as voice-over-IP). The separation of Unclassified

information from Restricted information and therefore preventing the leak of Restricted

information to Public domain is the main concern of such a scenario. We list sample

security policy rules for military networks with multiple security classifications in Table

3.3.

Table 3.3. Security policy rules for inter-connection of military networks to Internet.

Rule Type Policy Rule

Role Mapping Restricted network user becomes a Remote access user when

logged into a mobile terminal over the public network.

Mobility Access to restricted information from mobile terminals is permit-

ted only for ranks Captain and above.

Location For all ranks unclassified information may be transmitted over

the public network with mobile terminals.

Inter-domain Only unclassified information may be released from Restricted

domain to servers in the Public domain.

Information

Flow

Information flows carrying Restricted information may not termi-

nate on the servers and clients of the Public domain.

3.2. Formal Policy Framework for Mobility (FPFM) Components

Formal Policy Framework for Mobility

Formal Verification Tools
Model
Checker

Theorem
Prover

Security Policy
Management Interface

Authorization
Module

Logical
Configuration

Formal Specifications for
Security Policies

XML Specifications
for Security Policies

Verification
Results

User
Interface

Security
Administrator

Client
Applications

Authorization
Interface

Figure 3.3. Block diagram of Formal Policy Framework for Mobility.

The Formal Policy Framework for Mobility (FPFM) provides an integrated frame-

work for specification, enforcement and verification of security policies for multi-

27

domain mobile networks. FPFM is geared towards multi-domain, location and mobility

issues in multi-domain mobile networks. FPFM provides formal models, data struc-

tures and algorithms for construction of a policy system for a specific communication

or information system. The formal model of security policies within FPFM is called

FPM-RBAC, which is presented in Chapter 4. Data structures are defined by the

XML based specification called XFPM-RBAC, which is presented in Chapter 5.

The overall structure of FPFM is presented in Figure 3.3. FPFM consists of a

Security Policy Management Interface, Formal Verification Tools and an Authorization

Module. Prototype implementations of the Security Policy Management Interface

and the Formal Verification Tools are provided within the framework, whereas the

Authorization Module needs to be implemented according to the specific system that

will adopt FPFM.

The Security Policy Management Interface provides a Graphical User Interface

(GUI) which interfaces with a security administrator for definition of domain and inter-

domain security policies. The Front-End generates formal representations of security

policies as an input to the Formal Verification Tools and XML policy specifications as

an input to the Authorization Module. The Security Policy Management Interface is

presented in Section 3.3.

The Formal Verification Tools consist of a model checker and a theorem prover.

We provide a summary of the Formal Verification Tools in Section 3.4. The model

checker is used to model the location and mobility related aspects of security policies

and to check satisfaction of location and mobility constraints against the current state

of the network. We present algorithms and an implementation of a spatial model

checker in Chapter 6. The theorem prover is used for consistency checking of policy

rules. We utilize the Coq interactive theorem prover within FPFM. We present FPFM

formal specifications for theorem proving in Chapter 7. The Verification Back-End

generates formal proofs for the formal specifications as well as the logical configuration

of security policies as an input to the Authorization Module.

28

An Authorization Module is a module which gives authorization decisions for

access requests and needs to be implemented in devices or software services which

use FPM-RBAC policy specifications. The FPFM framework contains a XML-based

policy specification model which implements the formal FPM-RBAC model. An Au-

thorization Module inputs XML definitions for security policies for giving authoriza-

tion decisions. An Authorization Module may use the formal verification back-end for

checking validity of constraints within security policies. As part of this thesis, no pro-

totype implementation of an Authorization Module is provided. Algorithms for giving

access decisions are provided as part of the FPM-RBAC model. System-specific imple-

mentations of the presented algorithm may be done according to a specific system on

which FPFM is implemented (for example, a mobile network, a service based software

system or a specific security product).

3.3. Specification of Security Policies in FPFM

The Security Policy Management Interface (SPMI) is an application used for

defining home domain and inter-domain configurations and security policies. The

home domain is the domain which hosts domain and inter-domain services and is

managed by a security administrator. Domain configuration, inter-domain configura-

tion, home domain security policy, inter-domain security policy and their associated

location constraints are defined graphically in an user-friendly manner. The tool sup-

ports automatic derivation of formal specifications of security policies for the purpose

of model checking. The output of the tool are security policies specified on the basis

of XML schemas of the XFPM-RBAC security policy language.

3.3.1. Specification of Domain Security Policies

The configuration of a domain with the SPMI is shown in Figure 3.4. The

configuration of a domain conveys the following information:

• The logical topology of the overall network (domains)

• The users, hosts, objects and object types (networks, applications, databases,

29

Figure 3.4. Domain configuration with the Security Policy Management Interface.

files) within the domains

• Role hierarchies and object type hierarchies

Following the definition of domain configuration, the domain security policy is

defined in an iterative procedure. First, domain services are defined. Domain services

are a set of authorization objects that define the set of accessible resources within the

domain. The formal definition of a service is of the form Sj = {Di, H
j
i , O

j
i , T

j
i }. Thus,

when defining a new service, the user specifies the subset of Domains, Hosts, Objects

and Object Types associated with the service. The user also selects a subset of actions

which may be performed on the authorization subjects. These actions are associated

with the service definition. The interface for definition of a new service is depicted in

Figure 3.5.

The Service Access Matrix (SAM) defines the services that can be used by specific

roles. This is a high level view of the policy. If a specific role is not allowed to use a

specific service, prohibition is stated at this level without giving the details of which

30

Figure 3.5. Definition of a new service.

resources are involved in accessing the service. A part of an example SAM is presented

in Table 3.4.

Table 3.4. Service Access Matrix.

Role Services

Internet Joint Project Library

Project Manager Yes Yes Yes

Faculty Yes Yes Yes

Lab Admin Yes Yes No

Researcher No Yes No

Permissions are specified through Permission Assignment Matrices (PAMs). A

PAM is defined for each Authorization Object associated with each Service. An ex-

ample PAM is shown in Table 3.5.

3.3.2. Specification of Location and Mobility Constraints

The next step in defining security policy is specification of location and mobility

constraints. Location and mobility constraints for security policy rules define the spa-

tial and temporal conditions that need to be satisfied at a given network configuration.

31

Table 3.5. Part of the Permission Assignment Matrix.

Role Actions

login logout execute

Project Manager Yes Yes Yes

Faculty Yes Yes No

Lab Admin No No Yes

Researcher Yes No No

One can specify the location from which a permission may be invoked. Also, specific

mobility constraints may be added. As an example, graduate students can be banned

from accessing research project files while they visit another campus, however they

may access these files from their home domain. The location constraints are specified

using Ambient Logic. However, the security administrator does not need to know this

formal language since formal statements are constructed from within the user interface.

The specification of location constraints using the user interface is shown in Figure 3.6.

Figure 3.6. Definition of location constraints.

The Authorization Terms Matrix associates permissions with location constraints

as well as generic constraints. Each row of the Authorization Terms Matrix is an

32

authorization term. An authorization term is of the form at = (as, ao, sa, co, fo).

Here, as is an Authorization Subject (Roles or Users), ao is an Authorization Object

(Objects, Hosts, Domains), sa is a signed action, co is a Predicate Logic formula

representing generic constraints, and fo is an Ambient Logic formula representing

Location constraints. A part of an Authorization Terms matrix is shown in Table 3.6.

In the first term, a Student role is given login access to the Library Web Server, with

the constraints that the Student must be an Enrolled Domain User of UniversityA

domain and the location of the Student must be within the UniversityA domain. In

the second term, a Researcher role is given access right to write to Research Report,

provided that the Researcher has already logged into the UniversityA domain and the

Research Report is located within the Research Project Server.

Table 3.6. Part of the Authorization Terms Matrix.

A.Subject A.Object S.Action Condition Formula

Student Lib Web Server +login
EnrolledDomainUser

(Student, UniversityA)

World[UniversityA[Lib Web Server[]|
Student[]|T]|T]

Researcher Research Report +write
ActiveDomainUser

(Researcher, UniversityA)

�{Research Project Server

[Research Report]}

3.3.3. Specification of Inter-Domain Security Policies

Inter-domain security policy consists of Inter-Domain Role Hierarchy, Role Maps,

Inter-Domain Services, Inter-Domain Service Access Matrix, Inter-Domain Permission

Assignment Matrix, and Inter-Domain Authorization Terms. Foreign role hierarchies

are exported by domain configuration files of foreign domains. They are defined by

a foreign domain administrator. Subsequently, they are imported by home domain

administrator into the security policy specification interface of the home domain. This

way, a domain administrator only needs to share the role hierarchy with other domain

administrators and the autonomous administration is provided. The knowledge of

objects and user identities are not shared among domains and accessed are provided

by role mapping.

The role hierarchies of foreign and home domains are mapped to the Inter-

Domain Role Hierarchy using Role Maps. The interface for this operation is shown in

Figure 3.7. One or more home and foreign roles may be mapped onto one inter-domain

33

role using Role Maps. In the example specification presented in Figure 3.7, three roles

(Thesis Student, Project Student, Course Student) from the home domain Univer-

sityA and three roles (Grad Student, Undergrad Student, Student) from the foreign

domain are mapped onto the inter-domain role Guest Student.

Figure 3.7. Definition of inter-domain role hierarchies and role maps.

After mapping home and foreign domain roles to inter-domain roles, inter-domain

services and inter-domain permissions need to be specified. Inter-domain services

define a subset of home domain authorization objects which may be used by inter-

domain roles. Inter-Domain Permission Assignment Matrix maps inter-domain roles

to permissions. The Inter-Domain Service Access Matrix and Inter-Domain Permission

Assignment Matrix are specified in similar manner to their counterparts presented in

Section 3.3.1. However, inter-domain roles are used as authorization subjects instead

of domain roles.

The location and mobility constraints specification for inter-domain policies in-

cludes multiple domains and foreign users represented by inter-domain roles. Aside

34

from this difference, their specification is similar to Section 3.3.2. After this step, the

inter-domain location and mobility constraints and generic constraints are assigned to

permissions through the Inter-Domain Authorization Terms Matrix. This matrix is

similar to the Authorization Terms Matrix except the replacement of domain roles by

inter-domain roles.

3.4. Formal Verification of Security Policies in FPFM

Security policies in multi-domain environments are quite complex for verifica-

tion with any single available formal method. Specification and verification of such

a complex architecture requires formal methods that enable both static and dynamic

specification. An integrated formal environment suitable for our modeling approach

has been proposed. We make use of the following formal specification and verification

approaches:

• Behavioral, state based specification of mobile network model

• Logic and model based based specification for security policy specification

• Model checking and automated theorem proving to specify and prove security

properties for a specific security policy and network configuration

Now we will discuss alternatives for realization of such an approach and provide

rationale on the method utilized in this thesis.

For specifying the static aspects of security policies, model based specification

languages such as Z, B, or VDM are alternatives. Z is an established standard and has

been successfully applied to security policy languages. Schemas allow formal mapping

from grammar to a policy specification. Z allows representation of data structures as

well as hierarchical relations which are essential elements for policy rule bases. Another

alternative is to define a XML-based specification language. XML is an industry

standard which is well suited for the representation of data structures and hierarchical

relations. Compared to Z, B or VDM, XML does not have a formal basis. However,

it is possible to define a formal language on top of XML. Because of its versatility

35

and wide-spread use in networks and service based applications, we opt for the use

of XML as the basis of our security policy specification language. We define formal

specifications as XML schemas by making use of the support for schema definitions in

XML.

For specifying dynamic architectural properties such as actions in security policy

including mobility, we follow an approach based on process calculus. Among many

types of calculi, for concurrent computing, CCS and CSP are widely used. Another

class of calculi, nominal process calculi offers strong support for security and mobility.

Pi calculus, Security pi calculus and Ambient Calculus are good candidates for our

modeling approach. We choose to use the Ambient Calculus because it provides natural

means to model administrative domains, subjects, objects in our model. Different

variations of the Ambient Calculus, like boxed ambients, secure safe ambients provide

specification and verification for complex security properties of mobile systems. We

use the basic Ambient Calculus for simplicity and efficiency of the model checking

algorithm.

In order to be able to reason about a set of security policies within a given set of

network configurations, we need to translate security policy specifications and network

configurations to formal languages. There are two distinct approaches for combining

formal methods. The first approach, “shallow embedding”, incorporates specification in

one formal language into another. There is no formal basis for the resulting language

itself. Integration is based on common naming and logical relations, each language

and formal method carries its own properties. The second approach is to develop an

integrated formal method. This requires devising an integrated method that binds

together model-based specification and process calculi. Integration is under a formal

basis, the result produces a new formal specification language and method.

In this thesis we use the “shallow embedding” approach. Formal security policy

specifications contain specifications in Ambient Calculus as well as Predicate Logic.

Specifications in two different formal methods are verified using different formal tools.

Combination of specifications is achieved at a higher level of abstraction. For formal

36

verification, logical expressions are put forward to enable checking of satisfiability of

a security policy specification with respect to a network configuration specification.

These are accomplished by parallel use of theorem proving and model checking.

The Ambient Calculus and Ambient Logic are used to model mobility aspects

in security policies. A formal structure is proposed, named authorization term. Each

authorization term contains formal statements specified with Ambient Logic. The

satisfiability of formal statements within security policy rules with respect to network

configuration is achieved with spatio-temporal model checking. Spatio-temporal model

checking is based on satisfiability of Ambient Logic formulas with respect to Ambient

Calculus Specifications.

Conflicts within a security policy occur when a given security policy set results

in conflicting decisions for a given access requests. The Coq theorem prover is used

to specify the formal policy system and the security policy for verification of security

policies with respect to conflicts. For this purpose, security policies are specified in

the formal language of Calculus of Inductive Constructions (CIC).

37

4. FPM-RBAC: A FORMAL ROLE BASED ACCESS

CONTROL MODEL FOR SECURITY POLICIES IN

MULTI-DOMAIN MOBILE NETWORKS

The formal model that we present in this chapter represents static and dynamic

aspects of security policies in multi-domain mobile networks. The presented security

policy model supports the specification of Role-Based Access Control (RBAC) policies

with Role Hierarchy, Object Type Hierarchy and Role Mapping in a multi-domain

setting. We define a formal model for network state related to locations and provide

the mapping of actions to the formal model. Specification of location and mobility

constraints as well as Separation-of-Duty (SOD) constraints is supported.

FPM-RBAC components are, a domain security policy model, an inter-domain

security policy model, a location and mobility model and a separation of duty model.

The core FPM-RBAC model includes constructs for definition of a domain security

policy. We introduce the concepts of domain, service and Object Type Hierarchy to

the RBAC model. The domain security policy model is presented in Section 4.1.

An inter-domain security policy includes security requirements for mobility, role

mapping and inter-domain access rights among multiple domains. Inter-domain se-

curity policies facilitates the provision of services between domains by providing a

common set of security policies for cross-domain services. Use of inter-domain policies

adds a layer of abstraction to security management by enabling the security manage-

ment of cross-domain services independently from domain services. The inter-domain

security policy model is presented in Section 4.2.

The representation of location and mobility aspects for objects, users, host and

domains is necessary in a multi-domain mobile network. Location and mobility model

of FPM-RBAC is related with representation of location and mobility constraints in

the security policy rules as well as the representation of actions in the security policy

38

rules and the state of the network with respect to locations. The location and mobility

model of FPM-RBAC is presented in Section 4.3.

We present the formalization process of security policies through some examples

in Section 4.4. Generic, domain and inter-domain security policy rules are presented

with examples.

Separation of Duty (SOD) constraints are related to assignment and activation of

roles. Static SOD enforces constraints on the assignment of Users to Roles. If a user is

authorized as a member of one role, the user may be prohibited to become a member of

another (conflicting) role. Dynamic SOD enforces constraints on the activation of Roles

by Users. A user may be assigned to two or more conflicting roles but may activate

only one of them at any specific session. In FPM-RBAC, we introduce additional

classes of SOD constraints: (i) Service based SOD, (ii) Inter-Domain SOD and (iii)

Location and Mobility Based SOD. SOD constraints in FPM-RBAC are presented in

Section 4.5.

In Section 4.6, we present an algorithm for giving the permission or denial de-

cisions for requested actions against FPM-RBAC security policy specifications. In

Section 4.7 we compare FPM-RBAC to the original RBAC model and to extensions

of the RBAC model which cover spatial and temporal aspects.

4.1. Domain Security Policy Model

A domain is defined by the data sets and relations associated with an admin-

istrative boundary. A security policy is defined by a set of authorization terms. Au-

thorization terms include authorization subjects, authorization objects, actions and

constraints. Services provided by the domain to its internal and external users are

also included in the authorization model. Services are associated with a subset of au-

thorization objects. The set of enabled roles for a service is defined by the service access

relation. For each service, a permission assignment relation is specified for association

of enabled roles for the service with permissions. Constraints are specified by formal

39

Single Domain

U
Users

R
Roles

UA
User

Assignment

PA
Permission
Assignment

RH: Role
Hierarchy

P

ACT O

Services

Dynamic SOD

Static SOD

Location Constraints

Generic Constraints

OTH: Object Type
Hiearchy

T

ACT: Actions
O: Objects
T: Object Types
P: Permissions

AO: Authorization Objects

Figure 4.1. FPM-RBAC domain security policy model.

languages. Predicate calculus is used for the specification of generic constraints named

as conditions and Ambient Logic is used for the specification of location and mobility

constraints named as location formula, or formula in short. The single domain security

policy model of FPM-RBAC is depicted in Figure 4.1. In the following sections we

present data sets, domains, services, actions, constraints, relations, hierarchies of the

domain security policy model.

4.1.1. Data sets

The data sets in the FPM-RBAC access control model is specified using First

Order Set Theory. An Authorization Subject is an active entity that may conduct an

Action on an Authorization Object. Since the RBAC model is adopted, roles are au-

thorization subjects, however specification of users in this context are also supported.

An authorization object is an entity upon which an action is conducted. An autho-

rization object may be a domain, host, object or object type. Where the constants

κ, υ, ρ, τ, ζ, σ respectively denote the number of hosts, users, roles, objects, object types

and services, the data sets are defined in Table 4.1.

40

Table 4.1. The data sets in FPM-RBAC.

Elements of data set Name of data set

H = {h1, h2, ...hκ} Hosts

U = {u1, u2, ...uυ} Users

R = {r1, r2, ...rρ} Roles

O = {o1, o2, ..., oτ} Objects

T = {t1, t2, ...tζ} Object types

AS = U ∪R Authorization Subjects

AO = O ∪ T ∪ H ∪ Γ Authorization Objects

4.1.2. Domains

A domain is defined by a set of hosts, users, objects, roles and object types

associated with that particular domain. Each domain is associated with a domain

administrator. A Domain D is defined as D = {H,U,O,R, T}.

When there are multiple domains in the network, δ represents the number of do-

mains and Γ defines the set of all domains in the network. In this case, the set of hosts,

users, roles, objects, object types, authorization subjects and authorization objects as-

sociated with domain Di are represented respectively with Hi, Ui, Ri, Oi, Ti, ASi, AOi.

The set of all domains is defined as Γ = {D1,D2, ...Dδ}

4.1.3. Services

The W3C Web Service Glossary defines services as follows [63]: “A service is an

abstract resource that represents a capability of performing tasks that form a coherent

functionality from the point of view of providers entities and requesters entities”. The

FPM-RBAC model includes a specific construct for services. The Service construct

binds the dynamic user-role association to a subset of resources. In the context of

security policies for multi-domain mobile networks, we treat services as a set of autho-

rization objects that define the set of accessible resources for provision of a capability.

41

A service in the FPM-RBAC model is associated with a subset of authorization

objects, namely, Domains, Hosts, Objects and Object Types. The set of Services V
defines the services within a single domain. If there are multiple domains, the services

within a domain Di is represented as Vi. The subset of domains and hosts associated

with a service represents logical locations that a role may be enabled. The subset

of objects and object types associated with a service are included in the Permission

Assignment Matrix related with the service. A Service Sj within a domain Di and Vi,

the set of Domain Services within a domain Di are defined as follows.

Definition 4.1. A service is Sj = {Di, H
j
i , O

j
i , T

j
i } where Di is the domain that Sj

is associated, Hj
i = {hk, . . . , hl} are hosts associated with service Sj, H

j
i ⊂ Hi, O

j
i =

{om, . . . , on} are objects associated with service Sj, Oj
i ⊂ Oi, T j

i = {tx, . . . , ty} are

object types associated with service Sj, T j
i ⊂ Ti. The set of domain services is Vi =

{Sj , . . . ,Sk}, where 1 ≤ i ≤ δ, j, k : 1..σ.

Sessions in the NIST RBAC model is replaced by the Service Sessions in FPM-

RBAC. The service sessions in the FPM-RBAC model are defined when a user is

registered to a service, and activated when the user requests to use the service.

4.1.4. Actions

The set of actions defines the operations by subjects on objects. For this study

we assume a fixed set of actions A = {Enroll, Login, Logout, Execute, Read,Write,

Send,Receive,Delete, Create,Manage}. The action Manage is an administrative ac-

tion relating to the policy system. The set of permissions P = ACT × AO defines all

possible actions on authorization objects for a given system.

The actions may also be signed. Positive authorizations are considered default

and positive sign may be omitted within specifications. The following constructs are

used to specify signed actions:

• Signs: N = {+,−} represents permission or denial.

42

• Signed Actions: ACT = N × A represents permission or denial of an action.

(+,read) denotes that read action is permitted.

4.1.5. Constraints

A constraint determines the applicability of a security policy rule. The set of

constraints is of the form C = {(co, fo) : co ∈ PL, fo ∈ AL} where PL denotes the

language of predicate logic and AL denotes the language of Ambient Logic. There are

two types of constraints. Conditions (co) define the generic constraints for a rule to be

applicable. Location formula (fo) defines the location and mobility constraints of the

mobile network that must be satisfied by a security policy rule. Location and mobility

constraints are discussed in Section 4.3.

Generic constraints are logical pre-requisites for a rule to be applicable and are

defined using predicate logic. Generic constraints are specified by a predicate logic

formula that defines the constraints and relationships between entities specified in the

policy rules. In cases where roles are mentioned in a rule, generic constraints may

apply to user-role assignment.

We define the following pre-defined predicates for definition of generic constraints.

Additional predicates may be defined by the domain administrator.

(i) EnrolledDomainUser (Di, uj), where Di ∈ Γ, uj ∈ U , specifies whether a user uj

has been enrolled (registered) to domain Di. Abbreviated as EDR(Di, uj).

(ii) EnrolledDomainHost (Di, hk), where Di ∈ Γ, hk ∈ H , specifies whether a host hk

has been enrolled (registered) to domain Di. Abbreviated as EDH(Di, hk).

(iii) ActiveDomainUser (Di, uj), where Di ∈ Γ, uj ∈ U , specifies whether user uj has

been logged into domain Di. Abbreviated as ADU(Di, uj).

(iv) RoleAssigned (uj, rl), where uj ∈ U, rl ∈ R, specifies whether user uj has rights

to assume role rl. Abbreviated as RSG(uj, rl).

(v) RoleAssumed (uj, rl), where uj ∈ U, rl ∈ R, specifies whether user uj has actively

assumed role rl. Abbreviated as RAS(uj, rl).

43

(vi) RoleEnabled (rl,Sm), where Sm ∈ V, rl ∈ R, specifies whether role rl is enabled

for service Sm. Abbreviated as REN(rl,Sm).

(vii) DescendantRole (rl, rk), where rl, rk ∈ R specifies whether a given role is rl

descendant (or specialization) of another given role rk. Abbreviated as DR(rl, rk)

(viii) ObjectIsType (on, tm), specifies whether an object on ∈ O identified by its object

name is of a given object type tm ∈ T . Abbreviated as OIT (on, tm)

(ix) Administrator (uj,Di), where uj ∈ U,Di ∈ Γ specifies whether user uj has ad-

ministrative rights over domain Di. Abbreviated as ADM(j, i).

4.1.6. Relations and System Functions

Relations in the FPM-RBAC model are specified in Table 4.2. The HD relation

maps hosts to domains, whereas UD relation maps users to their home domains. The

UA relation specifies the assignment of users to roles. The PA relation specifies the

assignment of roles to permissions. Finally, the SA relation specifies the set of enabled

roles for services.

Table 4.2. Relations in the FPM-RBAC model.

Relation

Name

Relation Specification Meaning

HD H × Γ HD(hk,Di) hk is enrolled to Domain Di.

UD U × Γ UD(uj,Di) ur is enrolled to Domain Di.

OD O × Γ OD(on,Di) on is within Domain Di.

UA U ×R UA(uj , rl) Role rl assigned to the user uj.

PA R× ACT ×AO PA(rl, act, ao) rl has permission (act, ao).

SA R× V SA(rl,Sm) rl is enabled for service Sm.

The permission assignment and service assignment relations are specified in terms

of matrices. The dynamic binding of users to roles and permissions is achieved through

services. Permissions are assigned to roles based on permission assignment matrices

defined for each service and authorization object type.

Service Access Matrix binds roles to services. When a user logs into a service,

44

the roles associated with that service are enabled. Then the role may act only on the

subset of domains, hosts, objects and object types referred by the service. The SAM

matrix denotes whether role rl is allowed to use Service Sj .

Definition 4.2. The Service Access Matrix is SAM : R×V where SAM [i, j] = True |
False, 1 ≤ i ≤ ρ, 1 ≤ j ≤ σ. SAM [i, j] = True → SA(ri,Sj).

A Permission Assignment Matrix is defined for each service, which also includes

Location and Mobility constraints. This design decision simplifies the specification

of permissions for a network with multiple domains and different types of services.

Permission Assignment Matrix binds roles to permissions. Permissions are tuples of

the form (act, ao) where act ∈ ACT, ao ∈ AO. For each service there is an Permission

Assignment Matrix that includes permissions for that service. PAM [i, j, k] determines

whether Role ri is allowed to conduct Action actj on Authorization Object aok.

Definition 4.3. The Permission Assignment Matrix is PAM : R × ACT × AO

where PAM [i, j, k] = True | False, 1 ≤ i ≤ ρ, 1 ≤ j ≤ |ACT |, 1 ≤ k ≤ |AO|.
PAM [i, j, k] = True → PA(ri, actj, aok).

The system functions in the FPM-RBAC model are defined in line with the stan-

dard RBAC model [54, 55]. Additional functions are provided because of introduction

of services and object type hierarchies. The concept of sessions is enriched with intro-

duction of services and service sessions. The functions in FPM-RBAC are presented

in Table 4.3.

4.1.7. Role and Object Hierarchies

Hierarchies in the FPM-RBAC model consist of Role Hierarchy (RH) and Object

Type Hierarchy (OTH). The precedence relationship of roles are defined in the Role

Hierarchy (RH) relation. The mapping of objects to object types are defined in the

Object Type Hierarchy (OTH) relation. The Object Type Hierarchy is compatible with

the Flexible Authorization Framework (FAF) [23] and the Role Hierarchy is compatible

with the Role-Based Access Control [54, 55] model. When there are multiple domains,

45

Table 4.3. System functions in the FPM-RBAC model.

Function

Name

Specification Meaning

services U → 2V Gives the services accessible by

a user.

service users V → 2U Maps each service to its users.

enabled roles V → 2R : {r ∈ R|(v, r) ∈
SA}

Maps each service to the set of

enabled roles.

enabled roles∗ V → 2R : {r ∈ R|r′ �
r, (v, r

′
) ∈ SA}

Maps each service to the set of

enabled roles in presence of a

role hierarchy.

assigned users R → 2U : {u ∈ U |(u, r) ∈
UA}

Maps a role to set of users.

authorized users R → 2U : {u ∈ U |r′ �
r, (u, r

′
) ∈ UA}

Maps a role to set of users in

presence of role hierarchy.

object type O → T Gives the type of an object.

roles U ∪ P ∪ V → 2R Maps users, permissions and

services to roles.

roles∗ U ∪ P ∪ V → 2R Maps users, permissions and

services to roles in presence of

role hierarchy.

permissions R → 2P Maps roles to permissions.

permissions∗ R → 2P Maps roles to permissions in

presence of role hierarchy.

the role and object type hierarchies for domain Di are represented as RHi and OTHi

respectively.

Definition 4.4. Hierarchy. A hierarchy is a triple (A, B, �) where

(i) A and B are disjoint sets;

(ii) � is a partial order on A∪B s.t. every element a∈A is said to be minimal in

46

A∪B. Minimal elements have no elements below themselves in the hierarchy, i.e.

a∈A and ∀b∈A∪B, b� a ⇒ b = a.

For the OTH relation, a� b means that object a is of object type b. For the RH,

a� b means that role a is a specialization of role b.

Definition 4.5. Object Type Hierarchy. A=O, B=T, a � b → (a, b) ∈ OTH where

a ∈ O, b ∈ T .

Definition 4.6. Role Hierarchy. A=R, B=R, a � b → (a, b) ∈ RH where a ∈ R, b ∈
R .

The types for Services may be defined as sub-types for Application object type in

the Object Type hierarchy. The use of services together with Object-Type Hierarchies

enable the use of FPM-RBAC model in specification of security policies for software,

network and security services.

4.1.8. Authorization Terms

An authorization term at is the basic formal construct used to specify security

policy rules. AT is the set of all authorization terms and ATi is the set of authorization

terms for Domain Di. The Permission Assignment relations together with Generic

Constraints and Location and Mobility Constraints are formalized by authorization

terms. Set of authorization terms AT is defined as: AT ⊂ PA × C where at ∈ AT ,

AT = {(as, ao, act, co, fo) : as ∈ AS, ao ∈ AO, act ∈ ACT, (co, fo) ∈ C}.

4.1.9. Domain Security Policy

The set of defined services, authorization terms and hierarchies that constitutes

the security policy for a domain Di is named Pi. The data sets that are referred by the

domain security policy are included in the specification of Di. The domain security

policy for a domain Di is defined as Pi = {Vi, ATi, RHi, OTHi}, 1 ≤ i ≤ δ.

47

Since the FPM-RBAC model is multi-domain, there may be multiple domain

security policy definitions. Each domain security policy defines its access rules for

local users to access local resources within the domain. The access rules for users

to access inter-domain resources are specified by an inter-domain security policy. As

a result of this administration method, the knowledge of local users and resources

remains within the administrative boundary of a domain. The set of Domain Security

Policies in a multi-domain environment is defined by the set Ω. The set of domain

security policies is defined as Ω = {P1, . . . ,Pδ}.

4.2. Inter-Domain Security Policy Model

The constructs specified in the Domain Security Policy Model presented in Sec-

tion 4.1 are also valid in the Inter-Domain Security Policy Model (hereafter referred as

inter-domain model). The inter-domain model adds constructs for inter-domain ser-

vices, inter-domain roles, inter-domain role hierarchy, role maps and the inter-domain

service access and inter-domain permission assignment relations. Inter-domain secu-

rity policy is defined over inter-domain authorization terms which are specified on the

basis of these constructs.

The inter-domain model introduces the concepts of Home Domain, Foreign Do-

main and Inter-Domain. Home Domain is the boundary of security administration

for a domain which provides services to other domains. Foreign domains are domains

whose users access inter-domain services through mapped roles. Inter-domain policy

includes rules for foreign users to access home domain objects through mapped roles,

as well as the mapping of home and foreign domain roles to inter-domain roles.

As far as domain security administration is concerned, home domain adminis-

trator is only informed about the inter-domain role hierarchy. The home domain ad-

ministrator defines rules for the foreign users to access home domain objects. In this

manner, the principle of autonomous administration is preserved without the need of

global distribution of knowledge of objects and users.

48

Home Domain
Security Policy
for Domain D1

Foreign Domain
Security Policy
for Domain D2Inter-Domain

Security Policy
among Domains

D1-D2-D3 Foreign Domain
Security Policy
for Domain D3

Figure 4.2. Access control policies in multi-domain environment.

The overall view for access control policies in a multi-domain environment is

depicted in Figure 4.2. The inter-domain access control model of FPM-RBAC is

detailed in Figure 4.3. Here, we introduce the concept of Inter-Domain Roles and

Inter-Domain Role Hierarchies. Roles are mapped to Inter-Domain Roles with a role

mapping function. An inter-domain service is accessible by home or foreign users

through inter-domain roles and includes objects from home domain. The access rules

for inter-domain services by foreign roles is achieved through the Inter-Domain Per-

mission Assignment relation.

4.2.1. Inter-Domain Services

Unlike domain services, which are associated with a single domain, inter-domain

services are services which are associated with a set of domains Γ. One of the elements

of Γ is named as home domain and the others are named as foreign domains. Inter-

domain services contain objects from the home domain. They are accessed by inter-

domain roles. An inter-domain service Ŝ is defined as follows.

Definition 4.7. Inter-Domain Service Ŝ is Ŝj = {Γ, Hj, Oj
a, T

j
a}

where Γ = {Da,Db,Dc, ...} is the set of domains in the multi-domain environment,

Da is the Home Domain, Db, Dc . . . are foreign domains,

Hj = {hk, . . . , hl} are hosts associated with Ŝj, Hj ⊂ Ha ∪Hb ∪Hc...,

Oj
a = {om, . . . , on} are objects associated with Ŝj, Oj

a ⊂ Oa,

T j
a = {tx, . . . , ty} are object types associated with Ŝj, T j

a ⊂ Ta

49

Home Domain D1

U1R1 UA1

RH1

Inter-Domain D1-2,3

R

Foreign Domain D2

U2 R2UA2

RH2

Location Constraints

Generic Constraints

Inter-
Domain
Services

P

ACT

O

OTH

T

OOT

PA
Inter-domain
Permission
Assignment

RMh: Role Map
Home

Foreign Domain D3

U3R3 UA3

RH3

RH :Inter-
Domain

Role
Hierarchy

I

RMf:Role Map
Foreign

Inter-
Domain
Roles

Authorization Objects

Figure 4.3. FPM-RBAC inter-domain security policy model.

50

The set of inter-domain services IΓ among a set of domains Γ, where Da is the

Home Domain and Db, Dc . . . are foreign domains, is specified as IΓ = {Ŝj : 1 ≤ j ≤ γ}
where γ is the number of inter-domain services.

4.2.2. Inter-Domain Roles

An inter-domain role is a role which does not apply to a particular domain and

is used for mapping of roles between domains. A direct map between roles of multi-

ple domains is avoided to provide more flexibility of administration and enforcement.

Inter-domain services can be directly specified according to the needs of information

sharing between organizations and enforced with respect to inter-domain roles. The

set of Inter-Domain Roles RΓ is defined as RΓ = {r1Γ, . . . , r�Γ} where 	 is the number

of inter-domain roles. The definition of inter-domain role hierarchy RHΓ in Definition

4.8 is similar to RH relation.

Definition 4.8. Inter-Domain Role Hierarchy RHΓ is defined as follows:

RHΓ � a � b → (a, b) ∈ RHΓ, a, b ∈ RΓ.

4.2.3. Role Map

A role map RM is a many-to-one relation from a set of roles R to inter-domain

roles RΓ. The choice of many-to-one relations for defining role maps eliminates conflicts

in role mapping. A home or foreign role may not map to multiple inter-domain roles

associated with a possibly conflicting set of permissions. Furthermore a direct map

between roles of multiple domains is avoided by introduction of home and foreign role

maps. This decision facilitates independent administration of inter-domain roles and

inter-domain role hierarchies. The role map from home roles to inter-domain roles

is represented as RMh and the role map from foreign roles to inter-domain roles is

represented as RMf .

Definition 4.9. Home and Foreign Role Maps, RMh and RMf , are defined as follows:

RMh = {(ri, rjΓ) : ri ∈ Ra, r
j
Γ ∈ RΓ}. ∃(rx, ry) ∈ RMh ∧ ∃(rx, rz) ∈ RMh → y = z

RMf = {(rk, rjΓ) : rk ∈ Rb, r
j
Γ ∈ RΓ}. ∃(rx, ry) ∈ RMf ∧ ∃(rx, rz) ∈ RMf → y = z,

51

where Da is the home domain and Db is a foreign domain.

Consider the example presented in Figure 4.4. In this example the role hierarchies

are assumed to be tree structures for the sake of simplicity.

r12

r11

r13 r14

r15 r16

r121

r122 r123

r124 r125

r21

r22 r23 r24

r25 r26

Legend: RMh RMf

RH1 RH2RH

Figure 4.4. Example for home and foreign role maps among two domains.

In this example, we assume the following:

R1 = {r11, r12, r13, r14, r15, r16},
R2 = {r21, r22, r23, r24, r25, r26},
RΓ = {r121, r122, r123, r124, r125},

RMh = {(r12, r125), (r13, r124), (r15, r124)},
RMf = {(r24, r124), (r26, r125)}.

4.2.4. Inter-Domain Relations and Authorization Terms

The relation PAΓ is the inter-domain permission assignment relation, used for

the assignment of inter-domain roles to permissions. SAΓ is the inter-domain service

assignment relation used for assignment of inter-domain roles to inter-domain services.

52

ATΓ is the set of inter-domain authorization terms specified as inter-domain permission

assignments associated with constraints. CΓ is the set of inter-domain constraints.

Inter-domain permission assignment, inter-domain service access relation and inter-

domain authorization terms are respectively specified as follows: PAΓ ⊂ RΓ ×ACT ×
AO , SAΓ ⊂ RΓ × IΓ, ATΓ ⊂ PAΓ × CΓ, ATΓ = {(as, ao, sa, co, fo) : as ∈ RΓ, ao ∈
AO, sa ∈ ACT, (co, fo) ∈ CΓ}.

4.2.5. Inter-Domain Security Policy

An inter-domain security policy WΓ is defined among a set of domains Γ, where

Da is the Home Domain and Db, Dc . . . are foreign domains. WΓ includes inter-domain

services IΓ, inter-domain role hierarchy RHΓ, home domain to inter-domain role-

mapping RMh, foreign domain to inter-domain role mapping RMf and inter-domain

authorization terms ATΓ. The formal representation of Inter-Domain Security Policy

is WΓ = {IΓ, RHΓ, ATΓ, RMh, RMf}.

4.3. Location and Mobility Model

Location and mobility model of FPM-RBAC is related with representation of

location and mobility constraints in the security policy rules as well as the representa-

tion of actions in the security policy rules and the location configuration of the system.

Because of the dynamic nature of mobility, in mobile networks the location (spatial)

configuration of the system changes with actions. This necessitates the use of time in

the policy model. These aspects are modeled in the security policy rule as location and

mobility constraints. We utilize Ambient Logic for specification of location and mobil-

ity constraints. Ambient Calculus is used for representation of actions in the security

policy rules and the location configuration of the system. The satisfaction of location

and mobility constraints within the current state of the system is achieved through

spatio-temporal model checking. The satisfiability relation of Ambient Logic formulas

against Ambient Calculus specifications is the basis for spatio-temporal model check-

ing [41]. We provide a very brief overview of Ambient Calculus and Ambient Logic in

the following section.

53

Table 4.4. Fragment of Ambient Calculus used in this Thesis.

Sym. Syntax Meaning Sym. Syntax Meaning

P,Q ::= processes M ::= capabilities

0 inactivity x variable

P |Q composition n name

M [P] ambient in M can enter M

M.P capability out M can exit M

(x).P input open M can open M

〈M〉 asynchronous output ε null

M.M path

4.3.1. Ambient Calculus and Ambient Logic

The proposed methodology uses Ambient Calculus for specifying multi-domain

mobile network location configurations. Fragment of Ambient Calculus used in this

study is presented in Table 4.4. The semantics of Ambient Calculus is based on

structural congruence relation.

Like all process algebras, Ambient Calculus relies on the notion of process. Prop-

erties of Ambient Calculus processes can be analyzed in two ways, spatial properties

and temporal properties. The notion of Ambient is the basic element of the spatial

properties of processes. Ambients are bounded places identified by a name where

processes reside inside or outside. Ambients can be nested in other ambients. This

provides an hierarchical organization of locations.

Process algebras have constructs which represent the change of processes over

time, called temporal constructs. Because the main aspect of Ambient Calculus is

modeling mobility of the systems, it provides temporal constructs related to mobility

in addition to communication primitives. There are three main temporal constructs

in Ambient Calculus for modeling entrance, exit and dissolution which are expressed

as in n, out n, open n respectively. Capabilities can be ordered as a sequence, called

a path, to represent sequential execution as well as parallel execution represented by

54

the symbol (|). A specification in the form of a[in n.out z.0] represents an ambient

a which will enter ambient n, exit ambient z and stop. While the ability to change

ambient hierarchy represents mobility, this can be used to represent any kind of com-

putation. Communication primitives enable processes within the same ambient to

exchange messages.

Names are not only used for identifying ambients but also used as access keys

for ambients; capabilities can effect or use ambients with name known by them. Two

distinct ambients can have the same name. But in the fragment of Ambient Calculus

used in this paper names are restricted to be unique. They become an identifier

in scope of this paper. This restriction reduces the implementation complexity by

eliminating renaming and bookkeeping tasks for ambients, which are not core model

checking tasks.

The inactive process, 0 specifies the empty process which does nothing. It is not

reducible. Parallel execution of the processes is represented by parallel composition

operator. It is a commutative and associative operator. In Ambient Calculus commu-

nication constructs are asynchronous and local to an ambient. Ambient calculus does

not support channel names for communication. While communication is used to ex-

change both names and capabilities in the full fragment, communication of capabilities

is excluded in this paper.

Variables are place holders for names when an input operation is included in a

capability path. When an output operation provides a name to an input operation,

every instance of variable in the scope of input capability is replaced with the incoming

name. The semantics of Ambient Calculus is based on structural congruence relation.

Structural congruence identifies processes up to elementary spatial rearrangements.

The dynamic properties of Ambient Calculus originate from capabilities and commu-

nication primitives. This set of constructs is called temporal constructs. The semantics

of these constructs are identified by reduction relations.

Modal logic is used for expressing properties of models which cannot be expressed

55

Table 4.5. Fragment of Ambient Logic used in this Thesis.

Expression Meaning of Expression

η a name n

A ,B,C ::=

T true

¬A negation

A ∨ B disjunction

0 void

A |B composition

n[A] location

♦A sometime

�A somewhere

by the constructs of calculi. Ambient Logic [4, 32] is very expressive modal logic

for expressing spatial and temporal properties of Ambient Calculus. All spatial and

temporal constructs of Ambient Calculus are reflected in Ambient Logic. The main

differences of Ambient Logic from latter logics are introduction of more expressive

space modalities and simpler temporal connectives [64, 65].

Ambient Logic has temporal and spatial modalities in addition to propositional

logic elements. Semantics of the connectives of the Ambient Logic are defined through

satisfaction relations. The definition of satisfaction is based on the structural congru-

ence relation. The satisfaction relation is denoted by |= symbol. P |= A denotes that

process P satisfies formula A .

The Ambient Logic provides two main spatial and temporal constructs. The

Somewhere connective, �, is used for specifying nesting properties of processes. The

formula �A is satisfied by processes which satisfies A in some inner location. The

Sometime connective, ♦, is used for specifying temporal behavior of the processes on

the basis of reduction relations (→). Fragment of Ambient Logic used in this paper is

shown in Table 4.5.

56

4.3.2. Representation of Location and Mobility in FPM-RBAC

The mobility model for a multiple domain mobile network consists of four basic

elements: administrative domains, hosts, users and objects. We assume that all the

elements reside in a system element called the World. In this model the locations and

mobility of hosts, users and objects are formalized as Ambient Calculus processes and

they have the following mobility capabilities:

• Hosts: Moving into a domain represents connecting a host to a domain. Moving

out represents disconnecting.

• Users: If users move into a host, this represents logging into a host. If a user

moves out of a host, the user is logged out. If the user moves into/out of a

domain, this represents enrolment, logging into a domain or movement between

domains depending on the context.

• Objects: Every object must reside in a host when not on the move. The move-

ment of objects from one host to another represents communication.

In the formal specification, domains, hosts, users and objects are modeled as

Ambients. The actions are modeled as Ambient Calculus capabilities. The in action

makes an ambient enter into another ambient. The result is that the moving ambient

becomes a child node for its sibling node. For example, the path in Host.F ile[]|Host[]

results in the location configuration Host[File[]]. The out action causes an ambient

to exit its parent ambient. The result is that an ambient moves up to the same level

with its parent in the location hierarchy. For example, Host[File[outHost.0]] results

in Host[]|File[]. The other two actions, mv in and mv out are similar to in and out

actions, except that they move other ambients instead of moving the ambient they

are contained. The acid action dissolves the boundary of the ambient in which the

action is contained. This represents deletion of an object in the network. For example,

acid F ile.F ile[] deletes the file from the formal specification. The open action dissolves

the boundary of another ambient. For example, User[open Message.Message[M]] re-

sults in the formal specification User[M], which represents an user opening a message.

The open capability is only used for messages. The reason for this restriction is that

57

“opening” other system elements such as hosts would violate the integrity of the model.

The translation of actions in the security policy rules to Ambient Calculus is

based on a formal mapping. The translations are encoded as a template and are based

on inference of specific subject and object names from the high-level specifications

of security policy. Here we present template encodings for translation of actions to

Ambient Calculus. The encoding is for a single domain. The presented encoding is

not exhaustive since alternative encodings for the same actions in different contexts

are possible.

Definition 4.10. Ambient Calculus encoding for actions in security policy rules are

specified as follows. In this encoding, αas,ao represents an action with authorization

subject as and authorization object ao. Where z, newz ∈ U ∪ H, u, u1, u2 ∈ U, d ∈
Γ, h, h1, h2 ∈ H, l ∈ H∪Γ, m, prog, file, f, data ∈ O, and M, P are process specifications,

Enrollz,d � newz[in d.z[]] | d[open newz].0

Loginu,l � u[in l] | l[]
Logoutu,l � l[u[out l]]

Sendu1,m � d[h1[u1[m[M |out u1.out h1.in h2.in u2.0]]]|[h2[u2[]]]]

Receiveu,m � u[open m.(m)|m[M]]

Executeu,prog � d[h[u[open prog] | prog [in u.P]]]

Readu,file � h[file[data[in u.0]] | u[in file.0]]

Writeu,file � h[file[T] | u[in file.data[out u.0]]]

Deleteu,file � h[file[in u] | u[open file.0]]]

Createu,file � h[u[open f.f [file[out f.0]]]]

Based on Definition 4.10, we present some examples of object, host and user

mobility specification of mobility as Ambient Calculus processes. Some known notation

conventions are utilized, for example n[] means n[0]. The symbol → represents the

reduction relation and →∗ represents a series of reductions.

• Object Mobility: File f1 is moved from directory dr1 in host h1 to directory dr2

in host h2.

58

d1[h1[dr1[out dr1.out h1.in h2.in dr2.f1[]]]|h2[dr2[]]] →∗ d1[h1[dr1[]]|h2[dr2[f1[]]]]

• Host Mobility: Portable host h1 moves from Domain d1 to Domain d2.

d1[h1[out d1.in d2.0]]|d2[] →∗ d1[]|d2[h1[]]

• User Mobility: User u1 logs into Host h1, which contains File f1.

u1[in h1.0]|h1[f1[]] → h1[u1[]|f1[]]

4.3.3. Location Configuration

The location configuration of the system LCONF holds the formal specification

for the current system. The initial state, LCONF0 is derived from the network con-

figuration and security policy specification. When an action is requested by an user,

the action is matched to its formal representation, and if it is allowed by the security

policy, the action is executed and the location configuration is updated.

In the formal specification, domains, hosts, users and objects are modeled as

Ambients. The actions in the security policy rules are modeled using Ambient Calculus

capabilities. A process specification shows a trace of a process in a certain mobile

network location configuration. Each location configuration may be modeled as a

process specification. This specification will then be checked against a location formula

for compliance. The process specification involves capabilities, objects and ambients.

A capability represents the potential to execute an action. As an example process

specification, in c.(R).T means that the ambient running the process will enter ambient

c, input the object R and continue execution as process T.

Figure 4.5 is a representation of the Ambient Calculus based mobile process

specification: a[b|c[< R > .W |R]|d[in c.(R).T]]. A snapshot of a mobile process is

represented with a tree. Each action execution results in the modification of a tree.

In the figure the execution of in action is shown. The locations are represented by

tree nodes. Each non-leaf node holds an ambient as a child node. Leaf nodes contain

process definitions and objects (resources). Resources may be input and output by the

ambients. The ambients may represent World, Domains, Hosts and Users.

59

a

b c d

in c.(R).T
R

<R>.W

a

b c

d

(R).T

R<R>.W

in c

State : S1 State : S2

Figure 4.5. Representation of a location configuration in the form of a location

hierarchy.

An example mobile network specification in Ambient Calculus is as follows:

d1[u1[in h1.0|out h1.0|in f1.0|out f1.0]|h1[f1[data1[in u1.0|out u1.0]]]]. In this example

there is one domain, d1, user u1 has permission to read data from file f1 by logging

into host h1. The actions in the security policy rules are formalized as Ambient Cal-

culus capabilities. Multiple actions are combined with the parallel (|) operator since

any of these actions may be exercised independently.

An example mobile network specification in Ambient Calculus which combines

multiple actions is presented below. In this example there are two domains, d1 and d2.

Mobile user u2 has the right to move into either of the two domains, login to h1 and

h2 and read files f1 and f2 . The formal representation of actions in multiple security

policy rules are combined with the parallel (|) operator since any of these actions may

be exercised independent from each other.

LCONF = d1[u1[]|h1[f1[data1[in u2.0|out u2.0]]]]|d2[h2[u2[out h2.0|out d2.0

|in d1.in h1.0|out h1.out d1.0|in d2.in h2.0|in f1.0|in f2.0|out f1.0|out f2.0]|f2[data2[]]]]

The location configuration changes with respect to the state changes in the sys-

60

0

1

1

1

1

1

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

2

2 2

Figure 4.6. Example for change of location configuration with actions.

tem. In the initial state, LCONF0 is derived from the network configuration and

security policy specification. The domains, users, hosts and objects in the system and

their locations are derived from defined data sets. The set of possible actions are de-

rived from the security policy. When an action is requested by a user, the action is

matched to its formal representation according to Definition 4.10, and if allowed by the

security policy, it is executed and the location configuration is updated accordingly.

The state change between different location configurations takes place with a sequence

of Ambient Calculus capabilities corresponding to actions. Here is an example for

modifying the location configuration with actions. The location configuration of the

system at time T0 and T1 are depicted in Figure 4.6. At the initial state the Ambient

Calculus specification is as follows:

LCONF0 = D1[u1[]|h1[f1[dt1[in u2.0|out u2.0]]]]|D2[h2[u2[out h2.0|out D2.0|
in D1.in h1.0|out h1.out D1.0|in D2.in h2.0|in f1.0|in f2.0|out f1.0|out f2.0]|f2[dt2[]]]]

In Step (1), User u2 logs out of Host h2 corresponding to Ambient Calculus

capability u2[out h2...]:

LCONF1 = D1[u1[]|h1[f1[dt1[in u2.0|out u2.0]]]]|D2[u2[out D2.0|in D1.in h1.0|

61

Table 4.6. Location and mobility constraints in the security policy rule.

Constraint Represents Represented by

Location Locations of objects, users,

hosts and domains

Somewhere (�) modality, parallel

(|) and ambient ([]) formalizations

of Ambient Logic

Mobility The change of locations with

time

Sometime (♦) and Everytime (�)

modalities in Ambient Logic

out h1.out D1.0|in D2.in h2.0|in f1.0|in f2.0|out f1.0|out f2.0]|h2[f2[dt2[]]]]

4.3.4. Location and mobility constraints in security policy rules

The location constraints in the security policy rules are specified using Ambient

Logic. Location formula (fo) which represents location and mobility constraints is a

modal logic formula with spatial and temporal constructs. It is a formula in spatial

logic that includes names of domains, authorization subjects and authorization objects.

Ambient Logic is used since it is possible to represent both time and location. We note

here that location in our model is a logical concept that shows the relative location of

objects and users to hosts and domains rather than their physical location. The use

of formula in the policy rule is explained in Table 4.6.

If the location formula contains the Somewhere (�), parallel (|) and ambient ([])

formalizations of Ambient Logic, it is referred as a location constraint. Additionally,

if it contains temporal constructs which are Sometime (♦) and Everytime (�) modal-

ities in ambient logic, it is referred as a mobility constraint. Location constraints are

evaluated by spatial model checking, whereas mobility constraints are evaluated by a

further step of temporal model checking.

As an example to location and mobility constraints, we present a location formula

as follows: fo = �{¬♦{�d2[� {data1[�]|data2[�]}]|�}}. This is an Ambient Logic

specification stating that Domain d2 should never contain data1 and data2 at the same

time. If combined with specification LCONF in the previous section which specifies

62

that data1 resides in d1 and data2 resides in h2 inside d2, the interpretation of this

mobility constraint is that domain d2 data should not be copied to domain d1.

4.4. Formal Specification of Security Policy Rules

The formal specification of security policy rules is based on predicate logic and

ambient modal logic within the authorization term structure presented in Section 4.1.8.

Here, we present the formalization process through realistic security policy examples.

The policy statement in verbal form is followed the corresponding formally specified

authorization term. There are three types of policy specification. The first one is

generic policy statements valid for all network models. The second one is domain

security policy statements defined by a system or security administrator specific to a

network. The third one is inter-domain security policy statements defined by a home

domain security administrator for interactions among home and foreign domains.

4.4.1. Generic Security Policy Rules

First, we list examples of generic policy statements that can be defined by fol-

lowing our method. In these generic statements, host ∈ H , object ∈ O, user ∈ U ,

domain ∈ Γ.

• “Users must be enrolled to a domain before they can login.”:

(as = user, ao = domain, sa = login, fo = �(domain[T]|user[T]|T), co =

∀user ∈ U, ∃domain ∈ Γ, EDR(domain, user))

• “Users must be logged into a host before any other action can be conducted by

a user in a domain.”:

(as = user, ao = domain, sa = A\{login}, fo = �(domain[host[user[T]]|T]|T),
co = ∀user ∈ U, ∃domain ∈ Γ, ∃host ∈ H)

• “Users can conduct an action on a host except login only if already logged into

that host.”:

(as = user, ao = host, sa = A\{login}, fo = �(host[user[T]|T]|T), co = ∀user ∈
U, ∃host ∈ H)

63

• “Users can not conduct any action on an object contained in a host if the user is

not logged into that host.”:

(as = user, ao = object, sa = ∅, fo = �(host[object[T]|T]|user[T]|T), co =

∀user ∈ U, ∃object ∈ O, ∃host ∈ H)

• “Hosts must be connected to a domain by a user of that domain before any other

action can be conducted by a host.”:

(as = user, ao = host, sa = A\{connect}, fo = �(domain[T]|host[T]|T), co =

EDH(domain, host) ∧ EDR(user, domain))

• “Hosts must be enrolled to a domain by an administrator before they can be

connected.”:

(as = user, ao = host, sa = connect, fo = �(domain[T]|host[T]|T), co = ∀host ∈
H, ∃domain ∈ Γ, EDH(domain, host) ∧ ADM(user, domain))

• “Enrolling any entity to a domain can be done by a user with administrative

rights.”:

(as = user, ao = domain, sa = enrol, fo =T, co = ∀domain ∈ Γ, ∃user ∈
U,ADM(user, domain))

4.4.2. Formal Specification of Security Policy Rules with Location and Mo-

bility Constraints for Domain Security Policies

Below are some examples for formal specification of domain security policy state-

ments with location and mobility constraints. In this specification example, we assume

the following: UniA ∈ Γ, {jfrantz, nmullis, cmiele} ⊂ U, {h11, h12, h15} ⊂ H,

{Portable,Message, F ile, P roject Folder} ⊂ T.

• “All users can read files in folder Project Folder, if they are in a location that

contains this folder”: (as = user, ao = Project Folder, sa = + read, fo = �(as [] |

ao[]), co = user ∈ U ∧OIT (ao, Project Folder))

• “Files in Host h11 can not be read by any user from portable hosts.”: (as = user,

ao = File, sa = (-) read, fo = �(host[user[T]|T]|h11[file[]]),

co = ∀user ∈ U, (OIT (file, F ile) ∧ OIT (host, Portable))

• “User nmullis may send messages to User jfrantz ”.: (as = nmullis, ao = Message,

64

sa = send, fo = �(nmullis[m[]|T])∧�(jfrantz[m[]]|T)), co = OIT (m,Message))

• “Portable host h15 can be connected to Domain UniA by users of UniA”.: (as =

user, ao = h15, sa = connect, fo = �(h15[T]|UniA[T]), co = ∃user ∈ U, ∃h15 ∈
H, ∃UniA ∈ Γ, EDR(user, UniA) ∧OIT (h15, P ortable))

• “User cmiele can login to Host h12” : (as = cmiele, ao = h12, sa = login, fo =

�(h12[T]|cmiele[T]), co = T)

4.4.3. Formal Specification of Security Policy Rules with Location and Mo-

bility Constraints for Inter-Domain Security Policies

In this section, we present examples for formal specification of inter-domain se-

curity policy rules. The formal specification includes the mobility and access control

aspects of the inter-domain policy. Example policy statements for mobility and inter-

domain access as a verbal form of policy rule are given followed by formal specification

of authorization terms and an interpretation of the location and mobility constraints.

For this specification we assume the following:

{UniA, UniB} ⊂ Γ, {Student, Lecturer, Researcher} ⊂ R, {portable, prj srv} ⊂
O,Portable ∈ T , RH = {(Member, Student), (Member, Lecturer)},
OTH = {(Object,Host), (Host, Portable)}.

• “Students of University B are allowed to connect their portables to University

A.”:

(as = Student, ao = portable, sa =connect,fo = World[UniB[T]|portable[as[T]
|T]|UniA[T]|T],co = (EDR(as, UniB) ∧RAS(as, Student) ∧ OIT (portable,

Portable))

• “Students of University B, once logged on to the University A domain, can not

login to the project server.”:

(as=Student, ao=prj srv, sa=(-)login, fo=World[UniA[�(as[T]|prj srv[T])

|T]|UniB[T]|T], co = (EDR(as, UniB) ∧ADU(as, UniA) ∧RAS(as, Student))

• “Lecturers of University B can not login to the project server in University A

domain from within University B domain.”:

65

(as = Lecturer, ao = prj srv, sa = (-) login, fo = World[UniA[prj srv[T]|T]|
UniB[�as[]]|T], co = EDR(as, UniB) ∧ADU(as, UniB) ∧RAS(as, Lecturer))

• “Researchers of University B can read data from files on the project server in

University A domain from within University A.”:

(as = Researcher, ao = prj srv, sa = read, fo = World[UniA[prj srv[file[data]

|T]|�as[]|T]|T], co = EDR(as, UniB)∧ADU(as, UniA)∧RAS(as, Researcher)

• “Lecturers of University B with a Portable host can not write files to the project

servers of University A.”:

(as = Lecturer,ao= prj srv, sa = (-) write,fo = World[UniA[portable[as[file[]]]

|project server[]|T]|T]|T], co = EDR(as, UniB) ∧ADU(as, UniA) ∧ RAS(as,

Lecturer) ∧ OIT (portable, Portable))

4.5. Separation of Duty (SOD) Constraints in FPM-RBAC

In FPM-RBAC, novel classes of SOD constraints are identified: (i) Service based

SOD, (ii) Inter-Domain SOD and (iii) Location and Mobility Based SOD. Service-based

SOD is defined on the basis of a set of conflicting services CS. CS is a set of services,

where two or more of its members may not be assigned to a single role. For example,

a role may not be assigned to services ”Secret” and ”Unclassified”. Inter-Domain SOD

may be based on inter-domain role assignment, home role mapping or foreign role

mapping. Location based SOD may be based on service location, role location or

permission location. The classification of SOD in FPM-RBAC is presented in Figure

4.7. Static or dynamic aspects are represented by time of evaluation. Static SOD is

evaluated statically against initial system state, while Dynamic SOD is evaluated at

runtime against current system state.

In [66], the SOD constraints are specified within the Role-Based Constraints

Language using the sets of conflicting roles, permissions and user sets in addition to

the standard RBAC model. Mutually disjoint roles are defined as conflicting roles

set CR. The concept of conflicting permissions defines conflict in terms of permissions

rather than roles. Two permissions may be considered in conflict independent from

66

Static Separation of Duty

Single Domain Inter-Domain

Service
SCS

Role
SCR

Permission
SCP

Inter-Domain
Role Assignment

SICR

Home Role
Mapping
SRMH

Foreign Role
Mapping
SRMF

Location and Mobility

Service
Location

SLCS

Role
Location
SLCR

Permission
Location

SLCP

Figure 4.7. Classification of static separation of duty in FPM-RBAC.

role assignment relation. For example, permissions to write grades to student files

and to approve grades of students may be declared as conflicting permissions. Role

and Permission based SOD are included as Single-Domain constraints (SCR and SCP)

in this classification. An interplay of the three classes of SOD constraints are also

possible however a detailed analysis is out of scope of this study.

4.5.1. Single Domain SOD

The Single Domain SOD is defined based on the static separation of duty defini-

tion in the standard RBAC model. We differentiate between role-based, permission-

based and service-based SOD in FPM-RBAC model. Service Based SOD is a novel

concept defined in the FPM-RBAC model. The sets of roles, permissions and services

which are the basis for mutual exclusion are defined as CR (conflicting roles), CP (con-

flicting permissions) and CS (conflicting services) respectively. The Static Separation

of Duty based on roles follows the standard RBAC model definitions [55]. Additionally

in FPM-RBAC, SCS (SOD based on Conflicting Services) and SCP (SOD based on

Conflicting Permissions) are defined as follows:

4.5.1.1. Static Separation of Duty based on Roles. SCR ⊆ (2R×N) is a collection of

pairs where CR = {rx, . . . , ry : rx, . . . , ry ∈ R} is a set of conflicting roles, t a subset of

roles in CR, and n a natural number n ≥ 2, s.t. no user is assigned to n or more roles

from the set CR in each (t, n) ∈ SCR. SCR is defined in Equation 4.1. In presence

of a hierarchy, the function assigned users (r) in Equation 4.1 is replaced with the

67

function authorized users (r) to yield Equation 4.2.

∀(t, n) ∈ SCR, ∀t ⊆ CR :| t |≥ n →
⋂

r∈t
assigned users(r) = ∅ (4.1)

∀(CR, n) ∈ SCR∗, ∀t ⊆ CR :| t |≥ n →
⋂

r∈t
authorized users(r) = ∅ (4.2)

4.5.1.2. Static Separation of Duty based on Services. SCS ⊆ (2V ×N) is a collection

of pairs where CS = {vx, . . . , vy : vx, . . . , vy ∈ V} is a set of conflicting services, s a

subset of services in CS, and n a natural number n ≥ 2, s.t. no role is assigned to n or

more services from the set CS in each (s, n) ∈ SCS. SCS is defined in Equation 4.3.

In presence of a hierarchy, the function enabled roles (v) in Equation 4.3 is replaced

with the function enabled roles∗(v) to yield Equation 4.4.

∀(s, n) ∈ SCS, ∀s ⊆ CS :| s |≥ n →
⋂

v∈s
enabled roles(v) = ∅ (4.3)

∀(CS, n) ∈ SCS∗, ∀s ⊆ CS :| s |≥ n →
⋂

v∈s
enabled roles∗(v) = ∅ (4.4)

4.5.1.3. Static Separation of Duty based on Permissions. Where CP = {cpi : cpi ∈
ACT ×AO} is a set of conflicting permissions, the set of conflicting inter-domain roles

is interpreted as CR = {rx : permissions∗(rx) ∩ cpi �= ∅}. Equation 4.1 is applicable

with the derived CR set.

4.5.2. Inter-Domain SOD

The introduction of role maps arise additional concerns about separation of duty.

Because of multiple sets of conflicting roles for home, foreign and inter-domain roles,

new types of SOD need to be defined. First we define the set of conflicting inter-domain

roles, CRΓ = {rxΓ, . . . , ryΓ : rxΓ, . . . , r
y
Γ ∈ RΓ}. We identify the following types of static

SOD related with inter-domain role mapping:

68

(i) SICR: No user can be assigned to a set of roles which map to n or more

conflicting inter-domain roles.

(ii) SRMh: No user can be assigned by mapping to n or more inter-domain roles

which are mapped by a set of conflicting home domain roles.

(iii) SRMf : No user can be assigned by mapping to n or more inter-domain roles

which are mapped by a set of conflicting foreign domain roles.

We introduce a function rmap(r) : R× RΓ which gives the set of mapped inter-

domain roles for a set of home or foreign domain roles. The formal definitions for the

newly introduced static SOD constraints SICR, SRMh, SRMf are defined in Equa-

tions 4.5, 4.6 and 4.7.

∀(α, n) ∈ SICR, ∀α ⊂ R, |rmap(α)| ≥ n, (4.5)
⋂

r∈α
assigned users(r) �= ∅ →rmap(α) � CRΓ

∀(α, n) ∈ SRMh, ∀α ⊂ R, |rmap(α)| ≥ n, (4.6)
⋂

r∈α
assigned users(rmap(r)) �= ∅ → α � CRh

∀(α, n) ∈ SRMf , ∀α ⊂ R, |rmap(α)| ≥ n, (4.7)
⋂

r∈α
assigned users(rmap(r)) �= ∅ → α � CRf

r12

r11

r13 r14

r15 r16

r121

r122 r123

r124 r125

r21

r22 r23 r24

r25 r26

Legend: RMh RMf

CRh

CR

CRf

RH1 RH RH2

Figure 4.8. Conflicting role sets for inter-domain hierarchies.

69

As an example of static SOD relations for inter-domain role mapping, consider the

example depicted in Figure 4.8. Let CRh = {r12, r13, r15}, CRΓ = {r124, r125}, CRf =

{r23, r24, r26}. The home domain mapping is RMh = {(r13, r124), (r15, r122)}. The for-

eign domain mapping is RMf = {(r25, r124), (r26, r125)}. The role assignment {(u, r122),
(u, r124)} is conflicting according to SRMh and the role assignment {(u, r25), (u, r26)}
is conflicting according to SICR.

SOD relations may be defined in an alternative way. One may define sets of

conflicting permissions instead of conflicting roles. In this case, the conflicting roles

can be interpreted as the roles that have conflicting permissions assigned to them.

In this case, the set of conflicting inter-domain permissions can be defined by the

administrator as CPΓ = {cpi : cpi ∈ ACT × AO} and the set of conflicting inter-

domain roles is interpreted by the system as CRΓ = {rxΓ : permissions∗(rxΓ)∩cpi �= ∅}.
The inter-domain SOD constraints presented in this section are then applicable with

the derived CRΓ set.

4.5.3. SOD for Location and Mobility Constraints

We identify new aspects about the specification of SOD constraints together with

location and mobility constraints. Two or more roles or permissions may be considered

in conflict if one of these permissions relates to an action which involves mobility. For

example, the Guest Lecturer role may be in conflict with the Lecturer role if the

person is visiting another university. As an example to permission conflicts arising

from mobility, consider a requests to send a student record file to another institution

and at the same time to change the records. In this case, the records which have been

sent would be in conflict with the ones changed.

In the FPM-RBAC model, Static and Dynamic SOD constraints may be used in

accordance with Location and Mobility Constraints. The generic form of location and

mobility based SOD constraints based on set C ∈ {CR,CP,CS} is (C, n, sfo) where n

is a natural number and sfo is a (set of) location constraint(s) for separation of duty.

Set C is specified depending on whether the constraint is role-based, permission-based

70

or service-based. We associate the SOD constraints with the Location and Mobility

constraints for conflicting roles and conflicting services as follows:

(i) Conflicting Roles with Location Constraints (SLCR): n or more roles may not

be assigned to a user if these roles are within the conflicting roles set CR and

if the Location constraint sfo is valid in the initial location configuration of the

system.

(ii) Conflicting Services with Location Constraints (SLCS): n or more services from

the set of conflicting services CS may not be assigned to a role if the location

constraint sfo is valid in the initial location configuration of the system.

Static location constraints are evaluated against the initial location configura-

tion (LCONF0), which depicts the state of the network before any action has been

executed. The formal definitions of SLCR, location and mobility SOD based on con-

flicting roles, and SLCS, location and mobility SOD based on conflicting services, are

defined in Equations 4.8, 4.9, 4.10 and 4.11. In the presence of hierarchies, SLCR∗ is

obtained by replacing the function assigned users in SLCR with the function autho-

rized users. Similarly, SLCS∗ in the presence of hierarchies is obtained by replacing

enabled roles(r) in SLCS∗ with enabled roles∗(r).

SLCR(n, sfo) = ∀(t, n) ∈ SLCR, ∀t ⊆ CR :| t |≥ n → (4.8)
⋂

r∈t
assigned users(r) = ∅ ∧ LCONF0 � sfo

SLCS(n, sfo) = ∀(s, n) ∈ SLCS, ∀s ⊆ CS :| s |≥ n → (4.9)
⋂

v∈s
enabled roles(v) = ∅ ∧ LCONF0 � sfo

SLCR∗(n, sfo) = ∀(CR, n) ∈ SLCR∗, ∀t ⊆ CR :| t |≥ n → (4.10)
⋂

r∈t
authorized users(r) = ∅ ∧ LCONF0 � sfo

SLCS∗(n, sfo) = ∀(CS, n) ∈ SLCS∗, ∀s ⊆ CS :| s |≥ n → (4.11)
⋂

v∈s
enabled roles∗(v) = ∅ ∧ LCONF0 � sfo

71

Location and mobility based SOD constraints based on conflicting permissions are

specified in a different way. The reason is that the authorization term associates

permissions with location constraints. A number n or more authorization terms are in

conflict if among all authorization terms assigned to the same authorization subject,

n or more permissions are within the conflicting permissions set CP = {cpi : cpi ∈
ACT × AO} and if the Location constraints associated with the permissions are all

valid in the initial location configuration of the system. In this case the location

formula for separation of duty is defined by the set {fo1, . . . fon} associated with

authorization terms {at1, . . . atn}. The formal definition for SLCP , SOD based on

Conflicting Permissions with Location Constraints, is given in Equation 4.12.

∀(p, n) ∈ SLCP, ∀α ⊆ AT, ∀p ⊆ CP :| p |≥ n, (4.12)

α = {(as, p1, fo1, co1), . . . (as, pn, fon, con)},
permissions(as) ⊆ p → LCONF0 � {fo1, . . . fon}

In presence of an hierarchy, the assignment of permissions to authorization subjects are

evaluated according to the role hierarchy. In this case, the function permissions(as)

in Equation 4.12 is replaced by the function permissions∗(as).

4.5.4. Dynamic SOD

Here we define the dynamic SOD constraints in the FPM-RBAC model. Similar

to static SOD constraints, dynamic SOD constraints also have three different types,

namely, role based, service based and location/mobility based dynamic SOD. The

main differentiation between Static and Dynamic SOD constraints are, (i) dynamic

constraints are based on activation of roles, which occurs when a user logs into a

service, rather than assignment or roles and (ii) dynamic constraints are evaluated at

run-time against the current state of the system, in which a set of actions has already

been executed. The spatial and temporal location and mobility constraints enable

the specification of complex temporal and spatial restrictions on separation of duty.

The concept of services, which binds a dynamic login session to a set of authorization

72

objects, replaces the concept of sessions in standard RBAC. Since the user may login

to one service at a time, the DSOD definition based on services is related to the set of

enabled roles within a service.

4.5.4.1. Dynamic Separation of Duty based on Roles. DCR ⊆ (2R × N) is a collec-

tion of pairs where CR = {rx, . . . , ry : rx, . . . , ry ∈ R} is a set of conflicting roles, t a

subset of roles in CR, and n a natural number n ≥ 2, s.t. no user has actively assumed

n or more roles from the set CR in each (t, n) ∈ DCR. The formal definition of DCR

is given in Equation 4.13.

∀(t, n) ∈ DCR, ∀u ∈ U, ∀t ⊆ CR :| t |≥ n →
∧

r∈t
RAS(u, r) = ⊥ (4.13)

4.5.4.2. Dynamic Separation of Duty based on Services:. DCS ⊆ (2R × N) is a col-

lection of pairs where CR = {rx, . . . , ry : rx, . . . , ry ∈ R} is a set of conflicting roles, t

a subset of roles in CR, and n a natural number n ≥ 2, s.t. no user, when logged into

a service v ∈ V, may activate n or more roles from the set CR in each (t, n) ∈ DCS.

The formal definition of DCS is given in Equation 4.14.

∀(t, n) ∈ DCS,CR ⊂ 2R, ∀t ⊆ CR, ∀v ∈ V, (4.14)

t ⊂ enabled roles(v)∧ | t |≥ n →
∧

r∈t
REN(v, r) = ⊥

4.5.4.3. Dynamic Separation of Duty based on Locations and Mobility. Location and

mobility based dynamic SOD constraints are evaluated against the location configu-

ration of the system at time τ (LCONFτ), after a set of actions has already been

executed by users. The dynamic constraints take hierarchies into account since the

predicates RAS and REN take into account the effect of descendant roles. Where

CR = {rx, . . . , ry : rx, . . . , ry ∈ R} is a set of conflicting roles, the formal definitions of

dynamic location and mobility SOD constraints based on conflicting roles DLCR and

73

conflicting services DLCS are given in Equations 4.15 and 4.16.

∀(t, n, τ, sfo) ∈ DLCR, ∀u ∈ U, ∀t ⊆ CR, (4.15)

| t |≥ n →
∧

r∈t
RAS(u, r) = ⊥ ∧ LCONFτ � sfo

∀(t, n, τ, sfo) ∈ DLCS,CR ⊂ 2R, ∀t ⊆ CR, ∀v ∈ V, (4.16)

t ⊂ enabled roles(v)∧ | t |≥ n →
∧

r∈t
REN(v, r) = ⊥ ∧ LCONFτ � sfo

4.6. Authorization of Access Requests According to FPM-RBAC Security

Policies

The algorithm presented in this section is utilized for making the permission

or denial decisions for requested actions against security policy specifications. Deter-

mination of whether the actions in the multi-domain mobile network are permitted

requires a formal linkage of access requests to the security policy model. Checking

the satisfaction of current state of the system to constraints in the security policy is

essential to match rules to policies. The location configuration of the system LCONF

holds the Ambient Calculus process specification for the current system. With each

action this configuration is updated. The location constraints which are enabled in the

current location configuration of the system is determined by spatial model checking.

This computation is decidable when using the fragments of Ambient Calculus and logic

presented in this paper. The set of functions and predicates in domain policies and

the inter-domain policies are defined respectively by the set of security policies Ω and

W. The state of the logical functions and predicates are tracked by the system. The

Generic constraints as well as SOD constraints are evaluated according to the current

state of the logical functions and predicates.

Matching actions to policy rules requires the following steps:

(i) Determine the applicable authorization terms based on the service activated by

the user,

74

(ii) Map the authorization subjects in the policy rule to roles in the access request

through role hierarchy definitions,

(iii) Map the authorization objects in the policy rule to the object on which an access

is requested, through object hierarchy definitions,

(iv) Determine whether the location and mobility constraints are satisfied by the

location configuration.

(v) Determine whether the Generic constraints and SOD constraints are satisfied.

(vi) Determine whether the action is permitted or denied through the Access Control

Function.

The steps for checking the satisfaction of Location constraints and Generic con-

straints may be computed off-line during state changes. The evaluation of the Access

Control function needs to be computed at the time of the request. In the following

paragraphs, we investigate the functions and algorithms necessary for the execution of

the steps mentioned above.

4.6.1. Evaluation of Access Requests according to Services

An access request ar is specified as ar = 〈u, serv, ru, lr, act, obj〉 where serv ∈
V ∪IΓ, ru ∈ R, lr ∈ H ∪Γ, act ∈ A, obj ∈ O. Here, serv denotes the active service that

the user has activated including inter-domain services, ru is the role assumed by the

user, lr is the location of the user (a host or domain), act is the requested action and

obj is the object upon which an action is requested.

The subset of domain security policy for domain i pertaining to the service

activated by the user,P ′
i , is specified as P

′
i ⊂ Pi : {∀v ∈ Vi, serv = v}. Given

an authorization term in of the form at = (as, ao, sa, co, fo), the set of available

authorization terms to a role within a service AT
′
i ⊂ ATi is specified in Equation 4.17.

AT
′
i =

⋃

at∈AT

RAS(as, ru) ∧REN(ru, serv) (4.17)

The calculation is straightforward since the permission assignment matrix already

75

defines permissions for each service. The authorization terms are the rules in the

permission access matrix for the service which relate to the enabled roles.

4.6.2. Evaluation of Hierarchies

First, the system checks whether the requested role in the access request may be

assumed by the user. This is equivalent to RAS(u, ru) = �. Second, the set of autho-

rization terms which apply to the role and object hierarchies defined in the security

policy needs to be calculated. This takes four steps, to find the set of authorization

terms at = (as, ao, sa, co, fo), at ∈ AT
′
i , where:

(i) the user specified in the authorization term (if any) is equal to the user requesting

the service, AT u
i = {at| at ∈ AT

′
i , as = u}

(ii) the role specified in the authorization term is equal or a descendant role of the

role specified in the access request, AT r
i = {at| at ∈ AT

′
i , as = ru ∨ as ≺ ru}

(iii) the object specified in the authorization term is equal to the object upon which

the access is requested,AT o
i = {at| at ∈ AT

′
i , ao = obj}

(iv) the object specified in the access request is of object type specified in the au-

thorization term, or the object type of the object is a descendant of the object

type specified in the authorization term, AT ot
i = {at| at ∈ AT

′
i , OIT (obj, ao) ∨

object type(obj) ≺ ao}

The set of derived authorization terms in presence of role and object type hier-

archies AT
′′ is AT

′′
= AT u

i ∪ AT r
i ∪ AT o

i ∪ AT ot
i .

4.6.3. Checking Satisfaction of Location and Mobility Constraints

To check location constraints in security policy, we apply model checking of Am-

bient Calculus specifications against Ambient Logic formulas. In our works [41] and

[67], we present a spatial and temporal model checking algorithm for checking satis-

faction of location and mobility constraints. The calculation of satisfaction relation

for location configuration against location and mobility constraints is formalized as

76

follows: for each authorization term (as, ao, sa, co, fo) ∈ AT
′′, where LCONF is an

ambient process specification for the current location configuration and fo is an Ambi-

ent Logic formula within the authorization term, determine whether LCONF |= fo.

The details of the algorithm for model checking of Ambient Calculus specifications are

in Chapter 6.

The set of authorization terms applicable for the current access request is further

reduced according to the satisfaction of location constraints by the current location

configuration of the system. The set of derived authorization terms which satisfy

location constraints is AT loc = {(as, ao, sa, co, fo) ∈ AT
′′ | LCONF |= fo}.

4.6.4. Checking Generic and SOD Constraints Specified by Conditions

The method for checking conditions in the security policy rules is as follows:

Where PRED is the set of satisfied predicates in the current state of the system and

co is a condition, for each authorization term (as, ao, sa, co, fo) ∈ AT
′′, determine

whether PRED |= co.

Since Predicate Calculus is utilized for specification of predicates and conditions

in the security policy rule, the satisfaction relation is a logical entailment problem. We

utilize an automated theorem prover for specification and verification of conditions.

A detailed description of theorem prover support is presented in Chapter 7. The

calculation of SOD relations are presented in detail in Section 4.5.

The set of authorization terms applicable for the current access request, which

satisfy conditions is specified as AT co = {(as, ao, sa, co, fo) ∈ AT
′′ |PRED |= co}.

4.6.5. Evaluation of the Access Control Function

The access control function (ACF) matches a requested permission against the

set of permissions assigned to roles in a certain location. The set permissions∗(ru),

denoting permissions for a role, derived from the set of authorization terms at =

77

(as, ao, sa, co, fo), at ∈ AT
′′ evaluated against hierarchies, can be calculated as speci-

fied in (4.18).

permissions∗(ru) = (obj, act) ∈
⋃

(ao,sa)∈P
at ∈ AT

′′
(4.18)

When an access request ar by a user u with role ru in a specific location lr to conduct

action act on object obj is received, ACF (ar) may return two values, allowed or denied.

The definitions of the access control function is as follows.

Definition 4.11. Access Control Function ACF is:

ACF (ar) = allowed if: (lr ∈ serv) ∧ (AT
′′ �= ∅) ∧ (AT co ∪ AT loc �= ∅) →

∃(+, act) ∈ permissions∗(ru)

ACF(ar) = denied if: (lr /∈ serv) ∨ (AT
′′
= ∅) ∨ ∃(−, act) ∈ permissions∗(ru)

The interpretation of the access control function is, if the location of the user is

within locations associated with the service, if there is any derived authorization terms

according to evaluation of user name, role, role hierarchy, object or object hierarchy,

if the location and separation-of-duty constraints are applicable to the set of derived

authorization terms, then there is at least one rule with a permission that has the

same object and action as those within the access request. The denial takes place

if the request is placed from a location outside the scope of the service, there is no

derived rule for the request, or there is at least one derived rule with a specific denial

(negative sign). The order of evaluation of denials versus allowed accesses may depend

on precedence of signs (denials take precedence, allowances take precedence).

4.7. Comparison of FPM-RBAC with Other RBAC Models

In this section we compare FPM-RBAC to other RBAC models. First we make a

comparison between FPM-RBAC and the original RBAC model, which is a standard

proposed by NIST. Second, we compare FPM-RBAC to extensions of the RBAC model

78

which cover spatial and temporal aspects.

4.7.1. Comparison of FPM-RBAC with NIST RBAC Model

The NIST Role-Based Access Control model proposed by [55] consists of five

basic elements, Users, Roles, Operations and Objects. The NIST RBAC model is a

single-domain model, where the concepts of domain and inter-domain policies are not

differentiated. Roles are assigned to users with the UA (User Assignment) relation.

Permissions are assigned to roles with the PA (Permission Assignment) relation. The

activation of roles is based on the concept of Sessions. We use the constrained RBAC

model that supports role hierarchies and separation of duty (SOD) relations as a basis

for our policy model. The constrained RBAC model is depicted in Figure 4.9.

U
Users

R
Roles

UA
User

Assignment

PA:
Permission
Assignment

RH: Role
Hierarchy

P: Permissions

OPS OBS

Sessions

Dynamic SOD

Static SOD

Figure 4.9. The NIST constrained RBAC model.

In contrast to NIST RBAC model, FPM-RBAC is a multi-domain access control

model based on the concepts of domain and inter-domain policies. The domain policy

model of FPM-RBAC introduces Location Constraints, Services and Object Type

Hierarchy. The activation of roles in FPM-RBAC Access Control Model is achieved

through the use of Services instead of Sessions. Each service is bound to a set of

Authorization Objects, namely, Domains, Hosts, Object Types and Objects. The

decision to introduce Services arises from the service-oriented nature of multi-domain

networks with heterogeneous and interconnected services such as web services and

79

network services. The concept of session, which represents a dynamic binding of users

to a set of roles, is not sufficient to express the use of services. A service restricts the

user-role mapping to a set of authorization objects bound to the related service.

Another difference is the use of Object Type Hierarchy (OTH) in FPM-RBAC.

Object-Type Hierarchies were introduced by Jajodia et al. [23] in the Flexible Autho-

rization Framework (FAF). In a multi-domain setting, the knowledge of objects across

domains is not desirable because of distributed administration. Through the use of

Object Types the permissions may be mapped across multiple domains without the

need of global knowledge of individual objects.

We also introduce SOD relations based on services, inter-domain role mapping,

locations and mobility. The introduced SOD relation types in FPM-RBAC support

specification of SOD relations for service-based multi-domain mobile networks.

4.7.2. Comparison of FPM-RBAC with Existing Spatial and Temporal RBAC

Models

The recent studies on spatial and temporal RBAC models are more suitable for

environments in which the location of users and objects are static in nature. The

LoT-RBAC model does not include a formal link between the hierarchy model and

the location relations. STARBAC does not have a formal spatial model, but rather

uses a set of physical points in two dimensional space to define locations. The map-

ping relations supports determination of logical entailment for a spatial and temporal

condition. However this model does not support more detailed analysis such as spatial

model checking where a spatial condition needs to be matched to the spatial configu-

ration of the environment. Locations in STARBAC are not hierarchical or mobile, the

relationships between them should be defined explicitly. Using fixed locations is not

ideal for mobile network environments.

In contrast with GEO-RBAC, FPM-RBAC model location formulas are used

instead of extents, which are logical formulas based on the concept of ambients that

80

define logical locations. Role enabling is achieved through Service Access Matrix,

where roles are given access to services. Role schemas are used in GEO-RBAC to

define logical location boundaries for roles, whereas in FPM-RBAC they are defined

as location constraints for User-Role assignment relation. Because of this decision,

there is no need for a separate role schema hierarchy in FPM-RBAC. The allowed set

of authorization terms for a given spatial configuration of the system is determined by

spatial model checking. In GEO-RBAC this decision is computed by an access control

function which determines the most specific roles that do not contain any other extent

of enabled roles. The computation of this not very efficient since the relation that

defines the enabled roles in a location changes with each movement of a user or a

change in spatial configuration of the environment. For dynamic environments like

mobile networks the use of relational model for definition of spatial configuration is

not very efficient. In the FPM-RBAC model the multi-domain mobile network and the

associated security policies are formalized with Ambient Calculus and Ambient Logic

which are dynamic and mobility-oriented formalisms.

81

5. XFPM-RBAC: XML BASED SPECIFICATION

LANGUAGE FOR SECURITY POLICIES IN

MULTI-DOMAIN MOBILE NETWORKS

XFPM-RBAC is a XML based security policy specification language based on

the FPM-RBAC policy model. The structure of XFPM-RBAC is in the form of XML

schemas and XSLT transformations. XML schemas present a formal way to express the

mathematical model in plain text and exchange data structures with the applications

utilizing XFPM-RBAC. Another advantage is support for the XSLT language, which

is used in XFPM-RBAC to produce formal specifications from XML descriptions of

multi-domain security policies.

In the following sections, we present the constructs of XFPM-RBAC. In Section

5.1, we present XML representation of data sets which make up the configuration of a

domain. XML schemas for inter-domain role hierarchies and inter-domain role maps

are explained in Section 5.2. The XML schema for security policies, presented in Sec-

tion 5.3, is the basis for defining domain and inter-domain security policies. Location

Formulas within the XML schema are XML representations of formal Ambient Logic

formulas. The Location Formulas are presented in Section 5.4. In this chapter, we

give the outlines of the XML schemas. The full specification of the XML schemas are

presented in Appendix A.

The XML specifications of XFPM-RBAC policies are translated to formal spec-

ifications using transformations defined in XSLT language. In Section 5.5 we explore

how the XSLT language is utilized for generating formal Ambient Calculus and Am-

bient Logic specifications from security policies. By the help of this translation, the

security administrator does not need to be involved in the specifics of formal languages.

The formal specifications are input to the Ambient Calculus Model Checker presented

in Chapter 6, for the purpose of automated verification. Separation-of-duty (SOD)

constraints are discussed in Section 5.6.

82

5.1. Domain Configurations in XFPM-RBAC

A Domain in XFPM-RBAC is a collection of sets containing set of Hosts, Users,

Objects, as well as an Object Type Hierarchy, a Role Hierarchy, and attributes defining

the name and the identifier (ID) of the domain. A separate administration interface

for individual domains are used. Not all information belonging to domains is shared

between multiple domains, due to the principle of distributed administration. The

outline of XML schema of a Domain is presented in Figure 5.1. For sake of readability,

the closing tags for schema elements and types are omitted from the listings and their

order may be inferred from the tabular format.

In this XML schema, a Domain is defined by the following sequence: A set of

Hosts, a set of Users, a Role Hierarchy, an Object Type Hierarchy (O T H) and a set

of Objects. A Domain has the attributes Domain ID, which is the unique ID of the

domain in the network, and Domain Name, which is the name of the domain. The type

User Def defines a member of Users, Host Def defines a member of Hosts, Role Def

defines a Role, Object Def defines a member of Objects. The element Object Type is

the object type associated with a member of Objects.

An user definition User Def includes a Name, Surname, an User ID, and the

Home Domain ID of the user. The definition also includes a sequence of Assigned Role

elements which specify the set of roles that the User may be assigned. The As-

signed Role element is of XML complex type Role Assignment. Role Assignment

includes the ID of the assigned role and a Constraint. A Constraint may include a

location constraint and a generic constraint. This way, constraints may be applied to

the user assignment relation.

The role hierarchies and object type hierarchies (O T H) in the Domain configu-

rations are defined as follows. A Role Hierarchy is a sequence of Role elements. A Role

element which is of XML complex type Role Def includes the ID of the parent role, a

role ID and a role name. The O T H definition consists of a sequence of O T H Node

elements. Each O T H Node elements includes a reference to a parent object type

83

<xs:schema ... id="Domain">

<xs:element name="Domain_Def">

<xs:complexType>

<xs:sequence>

<xs:element name="Hosts">

<xs:element name="Users">

<xs:element name="Role_Hierarchy">

<xs:element name="O_T_H">

<xs:element name="Objects ">

<xs:attribute name="Domain_ID " type="xs:ID"

use="required ">

<xs:attribute name="Domain_Name" type="xs:string "

use="required ">

<xs:complexType name="User_Def ">

<xs:complexType name="Host_Def ">

<xs:complexType name="Role_Def ">

<xs:complexType name="Constraint_Def">

<xs:complexType name="Object_Def">

<xs:complexType name="Object_Type_Def">

<xs:element name="Role_Hierarchy">

<xs:element name="O_T_H">

<xs:complexType name="Role_Assignment">

<xs:complexType name="O_T_H_Node">

<xs:element name="Object_Type">

Figure 5.1. Outline of XML Schema of a Domain.

84

and an object type, both of which have XML complex types of Object Type Def.

5.2. Inter-Domain Configurations in XFPM-RBAC

Inter-domain configurations are used for exporting role hierarchies and mappings

to other domains as well as defining role maps for the home domain. Inter-domain con-

figurations in XFPM-RBAC consists of the following information: The home domain

role hierarchy RHh, a foreign domain role hierarchy RHf , an inter-domain role hierar-

chy RHΓ, a home role map RMh and a foreign role map RMf . RHh is defined by the

home administrator in the user interface (SPMI) of the home domain. This informa-

tion is not exported to other domains, therefore it may be empty in an exported XML

file for inter-domain configuration. RHf is the role hierarchy for a foreign domain.

RHf is defined by a foreign domain administrator in the administration interface of a

foreign domain. It is imported to the home domain administration interface with the

inter-domain configuration. RHΓ defines the inter-domain roles and their inheritance

relations.

A role map is a one-to-many relationship that associates an inter-domain role

to a set of home or foreign roles. A foreign role map RMf provides a mapping from

foreign roles to the inter-domain roles. This information may be defined by home or

foreign administrators. A home role map RMh defines the mapping from home domain

roles to inter-domain roles and is defined by the home domain administrator.

The outline of XML schema for inter-domain configurations is presented in Fig-

ure 5.2. There are some identity constraints for inter-domain configurations to ensure

consistency among multiple role hierarchy definitions. The Role ID unique constraint

ensures unique role IDs (IDs) among multiple domains. The Home Role ID key con-

straint defines the key for RHh. Home Role Map keyref constraint restricts the

mapped role ID values of RMh to the role IDs for RHh. Home Role ID keyref

restricts the parent role ID values of RHh to the role IDs in RHh. The Interdo-

main Role ID keyref constraint restricts the interdomain role IDs to the values of

the role IDs for RHΓ. Finally, ForeignRoleID keyref restricts the mapped role ID

85

<xs:element name="Interdomain_Def">

<xs:complexType>

<xs:sequence>

<xs:element ref="Role_Hierarchy" minOccurs ="0">

<xs:element name="Foreign_Role_Hierarchy">

<xs:element name="Interdomain_Role_Hierarchy ">

<xs:element name="Role_Map_Home">

<xs:element name="Role_Map_Foreign">

<xs:keyref name="Interdomain_Role_ID_keyref"

refer="Interdomain_Role_ID_key">

<xs:keyref name="ForeignRoleID_keyref"

refer="ForeignRoleID_key">

<xs:unique name="Role_ID_unique">

<xs:key name="Home_Role_ID_key">

<xs:keyref name="Home_Role_Map_keyref"

refer="Home_Role_ID_key">

<xs:keyref name="Home_Role_ID_keyref"

refer="Home_Role_ID_key">

Figure 5.2. Outline of XML Schema for Inter-Domain Configurations.

values for RMf to the role IDs of RHf .

RHΓ defines the inheritance relations between inter-domain roles. An inter-

domain role is a role for inter-domain access. It is defined by the structure Role Def

which is the same for other type of roles. Identity constraints for inter-domain role

definitions are as follows: Interdomain Role ID key constraints defines Role ID as a

key for RHΓ and Interdomain keyref constraint restricts Parent Role field to values of

Interdomain Role ID key in RHΓ. The XML Schema for inter-domain role hierarchies

is given in Figure 5.3.

A home or foreign role map associates one inter-domain role to a set of home

or foreign roles. Role Map Home is the home role map RMh and Role Map Foreign

is the foreign role map RMf . Home and foreign role maps are defined by a sequence

86

<xs:element name="Interdomain_Role_Hierarchy">

<xs:complexType>

<xs:sequence>

<xs:element name="Interdomain_Role" type="Role_Def "

maxOccurs ="unbounded ">

<xs:key name="Interdomain_Role_ID_key">

<xs:selector xpath="Interdomain_Role">

<xs:field xpath="Role_ID">

<xs:keyref name="Interdomain_keyref"

refer="Interdomain_Role_ID_key">

<xs:selector xpath="Interdomain_Role">

<xs:field xpath="Parent_Role">

Figure 5.3. XML Schema for Inter-Domain Role Hierarchies.

of Role Map elements, which are of XML complex type Role MapT. Each Role Map

element includes an inter-domain role defined by Interdomain Role ID and a set of

mapped roles (Mapped Role). Mapped roles are defined by role IDs of home or foreign

role hierarchies, depending on whether a home or foreign role map is specified. The

XML Schema for role maps is provided in Figure 5.4.

<xs:complexType name="Role_MapT ">

<xs:sequence>

<xs:element name="Interdomain_Role_ID" type="xs:IDREF ">

<xs:sequence>

<xs:element name="Mapped_Role"

maxOccurs ="unbounded ">

<xs:complexType>

<xs:sequence>

<xs:element name="Mapped_Role_ID"

type="xs:IDREF ">

<xs:element name="Role_Map " type="Role_MapT ">

Figure 5.4. XML Schema for Role Maps.

87

5.3. Multi-Domain Security Policies in XFPM-RBAC

Security policy definitions in XFPM-RBAC are multi-domain, i.e. they define

both domain and inter-domain security policies. A security policy definition consists

of services, policy rules and location constraints. Services define the subset of autho-

rization objects which may be included in the policy rules. The policy rules define the

authorization terms which include permissions associated with location, mobility and

generic constraints. Both the permission assignment matrix (PAM) and the authoriza-

tion terms specified by the Security Administrator in the SPMI are represented with

policy rules. The outline of XML schema of a security policy is presented in Figure

5.5.

The Services element consists of a sequence of elements of type Service. The

ServiceIDUnique constraint enforces the Service ID to be unique within the security

policy. Policy Rules consists of a (possibly empty) sequence of Policy Rule elements.

The is interdomain attribute of the Policy Rules element indicates whether the rule

is an inter-domain security policy rule. Location and mobility constraints are for-

malized using Location Formulas. The Location Formulas element is made up of a

(possibly empty) sequence of elements of type Location Formula. The location and

mobility constraints are presented in Section 5.4.

A Service element in XFPM-RBAC includes an attribute is interdomain which

indicates whether the service is an inter-domain service. Service Name specifies the

name of the service and Service ID gives a unique ID to the service. A Service in-

cludes a possibly empty set of Service Host elements. Service Host specifies a host

(of type Host Def) associated with the service, in addition to a group of actions (of

type Service Member Action Group) which may be executed on the host. The at-

tribute srv m id gives an identity to membership of a service. In a similar fashion,

Service Domain, Service Object Type and Service Object elements represent a set of

domains, object types and objects as well as a set of actions associated with the

service. For domain services, the service is associated only with the home domain,

whereas inter-domain services may be associated with multiple domains. The Mem-

88

<xs:element name="Security_Policy">

<xs:complexType>

<xs:sequence>

<xs:element name="Services ">

<xs:complexType>

<xs:sequence>

<xs:element ref="Service "

maxOccurs ="unbounded ">

<xs:unique name="ServiceIDUnique">

<xs:selector xpath="Service ">

<xs:field xpath="Service_ID">

<xs:element name="Policy_Rules">

<xs:complexType>

<xs:sequence>

<xs:element ref="Policy_Rule"

minOccurs ="0" maxOccurs ="unbounded ">

<xs:attribute name="is_interdomain"

type="xs:boolean">

<xs:element name="Location_Formulas">

<xs:complexType>

<xs:sequence>

<xs:element ref="Location_Formula"

minOccurs ="0" maxOccurs ="unbounded ">

Figure 5.5. Outline of XML Schema of a Security Policy.

89

berIDUnique constraint ensures that each association of an authorization to a service

is given a unique identifier.

A Policy Rule element in XFPM-RBAC includes attributes auth obj type and

service member ref, which are the object type and service associated with the au-

thorization object referred in the policy rule, and the attribute role ref, which is the

identifier of the assigned role of the authorization subject. The 5-tuple authorization

term is represented with the sequence of elements consisting of Authorization Subject,

Authorization Object, Rule Action, Location Formula Name and Conditions. The

first three elements in the sequence are mandatory, whereas the final two are optional,

since some rules may not be associated with constraints.

5.4. Representation of Location and Mobility in XFPM-RBAC

The location and mobility model in XFPM-RBAC is utilized for two purposes:

First, a formal location and mobility model of the network, called a location configu-

ration, models the state of the network. Second, the location and mobility constraints

in the security policy rules represented as location formulas model spatio-temporal

constraints to be satisfied by the network. Location configuration is represented with

Ambient Calculus and location formulas are represented with Ambient Logic.

In this model, locations are represented with Ambients. Location hierarchies

are represented with ambients which are contained within each other. The XML

representations of Ambient Calculus and Ambient Logic are based on syntax defined

in BNF notation. The BNF notations have been developed using the ANTLR lexer-

parser tool.

The BNF Grammar for Ambient Calculus Syntax definition in XFPM-RBAC is

presented in Figure 5.6. An Ambient Calculus specification consists of a Composi-

tion term, which is a combination of Sequence terms separated with the Parallel (|)
operator. The parallel operator defines locations in the same level of the location con-

figuration. For example, the specification Host1[File1[]|File2[]] defines a host with

90

CompilationUnit ::= Specification ";"

Specification ::= <ID> "::=" Composition

Composition ::= Sequence ("|" Sequence)*

Sequence ::= Path BasicExpresion

BasicExpresion ::= "0" | <ID> "[" Composition "]" | <ID> "["

"]" | "{" Composition "}"

Path ::= (Action ".")*

Action ::= ("in" <ID >|" out" <ID> | "mv_in" <ID> | "mv_out"

<ID> | "acid" <ID> | "open" <ID> | "(" <ID> ")" | "<" <ID>

">")

Figure 5.6. BNF Grammar for Ambient Calculus Syntax in XFPM-RBAC.

two files. A Sequence consists of a Path followed by a BasicExpression. A Path is a

sequence of Ambient Calculus actions (capabilities) which are separated with ".".

The BNF Grammar for Ambient Logic Syntax definition in XFPM-RBAC is

presented in Figure 5.7. Here, a Formula is made up of logical sentences (LogicalS)

connected with the logical Or operator (∨). Each of these may be a set of Unary

terms connected with the Parallel (|) operator. Parallel operator defines two locations

in parallel, which are in the same level in location configuration. For example the term

Student[]|PC Lab Client[] states that Student and PC Lab Client are in the same

location. A Unary term may consist of a BasicFormula or another Unary term which

may be associated with a Temporal, Spatial or Negation operator. A Temporal operator

defines temporal logic operators of "AG" (Always) and "EF" (Eventually). These

operators are defined in CTL temporal logic. A Spatial operator defines Ambient Logic

spatial operators of "�" (Somewhere) and "EW" (Everywhere). A BasicFormula may

include the Inactivity operator (0) which represents a location which does no action,

the True operator which represents any location, an empty location (e.g. File[]) or a

location definition which includes other logical sentences (e.g. Server[User[T]]).

An example location formula defined with the grammar presented above is as

follows: The formula "f ::= AG − SW{file2[SW{data1[T]|T}]|T};" states that, it

91

CompilationUnit ::= Formula ";"

Formula ::= <ID> "::=" LogicalS

LogicalS ::= Or ("==" Or)*

Or ::= Composition ("+" Composition)*

Composition ::= Unary (("|") Unary)*

Unary ::= BasicFormula |

((Negation |TemporalUnary|SpatialUnary)Unary)

Negation ::= ("-")

TemporalUnary ::= (("AG"|"EF"))

SpatialUnary ::= ("SW"|"EW")

BasicFormula ::= "0" | "T" | <ID> "[" LogicalS "]" |

<ID >"[""]"

Figure 5.7. BNF Grammar for Ambient Logic Syntax in XFPM-RBAC.

should never be valid that, somewhere in the location configuration, there is a location

called file2 which contains data1 somewhere within itself. It may contain anything else,

and there may be anything else together with file2 in the same location. This formula

would match to a location configuration of the network (LCONF) which contains file2

which contains data1. The negation in the beginning of the formula is necessary for

model checking since model checker only finds counter-examples (as opposed to proofs

in theorem provers).

The XML schemas for the Ambient Calculus and Ambient Logic specifications

reflect the structure of BNF grammar. Because these specifications are lengthy, we

do not provide the details. An Ambient Calculus specification consists of a formal

specification referred as Compilation Unit, which is the top element corresponding

to the BNF grammar, and a section Variables, which is a mapping from names of

locations in the network to identifiers used in the formal specification. The variable

identifiers are defined with XML keys and referred with XML keyref definitions.

A location formula is in the form of "Formula Name ::= Logical Expr;", where

Logical Expr is an XSD element corresponding to an Ambient Logic logical sentence

92

<xs:element name="Ambient_Calculus_Spec">

<xs:complexType>

<xs:sequence>

<xs:element ref="Compilation_Unit">

<xs:element name="Variables ">

<xs:attribute name="Ambient_Calculus_Spec"

type="xs:string " use="required ">

<xs:keyref name="Id_Ref_Amb" refer="Id_Key">

<xs:keyref name="Id_Ref" refer="Id_Key">

<xs:key name="Id_Key">

Figure 5.8. Outline of XML Schema of Ambient Calculus Specifications.

LogicalS referred in Figure 5.7. The structure of the XSD schemas presented in Figure

5.8 and Figure 5.9 reflect the BNF notations of Ambient Calculus and Ambient Logic.

A XML specification for an example formula spec1 ::= AG−SW{file2[]};, which

states that "it should never become true that: an empty file called file2 is somewhere

<xs:element name="Location_Formula">

<xs:complexType>

<xs:sequence>

<xs:element name="Formal_Expr" type="xs:string "

minOccurs ="0"/>

<xs:element name="Formula_Name" type="xs:ID"/>

<xs:element name="Congruence" fixed="::=">

<xs:simpleType>

<xs:restriction base="Location_Tokens">

<xs:enumeration value="::="/>

<xs:element ref="Logical_Expr"/>

<xs:element name="Formula_End"

type="Location_Tokens" fixed=";"/>

Figure 5.9. Outline of XML Schema of Location Formulas.

93

<Congruence>::=</Congruence>

<Logical_Expr><Or><Composition><Everytime token ="AG">

<Not_Expr token="-"><Somewhere token = "SW"><Basic_Formula_Expr>

<Bracket ><Logical_Expr><Or><Composition><Basic_Formula_Expr>

<Ambient ><AmbientName>file2</AmbientName></Ambient >

</Basic_Formula_Expr></Composition></Or></Logical_Expr>

</Bracket ></Basic_Formula_Expr></Somewhere >

</Not_Expr ></Everytime ></Composition></Or>

</Logical_Expr><Formula_End>;</Formula_End>

Figure 5.10. An example XML specification for a Location Formula.

in the network", is given in Figure 5.10. The negation phrase in the beginning is

necessary for finding counter-examples in the model checker. The second part of the

formula specification is the phrase formalizing the location and mobility constraint.

Although a XML specification for a location and mobility constraint is lengthy

and complex, the user is not concerned with this issue since these specifications are

defined and generated via the Security Policy Management Interface.

5.5. Generation of Formal Specifications from Security Policy using XSLT

The XFPM-RBAC policy specification language makes use of the XSLT lan-

guage. XSLT is a language for transforming the structure and content of a XML

document. In the context of security policies, XFPM-RBAC uses XSLT for generation

of formal specifications in Ambient Logic and Ambient Calculus from security policy

specifications and domain configurations in XML format. The generation of formal

specifications takes place in two steps. First, location and mobility constraints in the

security policy rules are converted to formal Ambient Logic formulas. We present this

step in Section 5.5.1. Second, domain configurations and allowed actions within the se-

curity policy specifications are converted into Ambient Calculus process specifications.

We present this step in Section 5.5.2. The generated files are used as output to the

Ambient Calculus Model Checker presented in [41], for the purpose of checking satis-

94

faction of Ambient Logic formulas against Ambient Calculus process specifications.

5.5.1. Translation of Location Formulas in Security Policy Rules to Formal

Specifications using XSLT

The XSLT transformation for translation of location formula specifications in

XML to formal Ambient Logic specifications takes place as follows: For each construct

in the language, there is a XML element that defines the construct in the formal

language. These constructs are based on the BNF notation of Ambient Logic reflected

to a XML schema structure. In order to translate from a XML specification to a formal

specification, XSL templates are utilized. There is a XSL template for each construct

in the XML schema that will be translated to formal language. As an example, the XSL

template for the logical expressions, namely the template for Logical Expr element, is

shown in Figure 5.11. A logical expression may include an Or expression which consists

of Composition expressions combined with +. Each Composition sub-expression may

consist of further sub-expressions combined with the parallel operator |. These sub-

expressions may be in the form of a Basic Formula, may contain temporal operators

Everytime (AG) and Sometime (EF), or may contain spatial operators Somewhere (�)
and Everywhere (EW), or may contain a negation operator (¬). Each of these sub-

expressions are handled with a separate template match operation in XSLT. Because

of lack of space we include an outline of one of the templates in this paper.

When the XSLT transformation for Location Formulas is applied to a Security

Policy, a set of formal specifications are generated for each location formula in the

security policy rules. For the example in Figure 5.10, the application of XSLT results

with the formula spec1 ::= AG − SW{file2[]};. The location formulas are defined

through the SPMI application therefore the formal specifications for locations formulas

are defined in an automated fashion without the need for formal methods knowledge

of the security administrator.

95

<xsl:template match="Logical_Expr">

<xsl:for -each select="Or">

<xsl:if test= "exists(preceding -sibling::element())">

<xsl:if test= "parent::Logical_Expr/@token">

<xsl:value -of

select="parent::Logical_Expr/@token">

</xsl:value -of>

</xsl:if >

</xsl:if >

<xsl:for -each select="Composition">

<xsl:if test="exists␣

((preceding -sibling::element()))">

<xsl:if test="parent::Or/@token">

<xsl:value -of

select="parent::Or/@token"></xsl:value -of>

</xsl:if >

</xsl:if >

<xsl:apply -templates select="Basic_Formula_Expr"/>

<xsl:apply -templates select="Everytime "/>

<xsl:apply -templates select="Everywhere"/>

<xsl:apply -templates select="Sometime "/>

<xsl:apply -templates select="Somewhere "/>

<xsl:apply -templates select="Not_Expr "/>

</xsl:for -each>

</xsl:for -each>

</xsl:template>

Figure 5.11. Outline of XSL Template for a Logical Expression in a Location

Formula.

96

Security Policy
Specification

Policy.xml

Domain 1 Configuration

Domain 2 Configuration

Domain 3 Configuration
Domain-3.xml

XSLT
Transformation

For
Selected
Service

Ambient
Calculus

Specification
for Selected
Service in

XML
Ambient-

Service.xml

XSLT
for

Ambient
Calculus

Formal
Ambient
Calculus

Specification
(LCONF)

for Selected
Service

Selected
Service

Figure 5.12. Generation of formal location configuration specifications using XSLT.

5.5.2. Generation of Location Configurations from Multiple Security Policy

Definitions using XSLT

Before generation of formal specifications, the security policies and the domain

configurations are specified according to XFPM-RBAC schemas. A domain configura-

tion consists of the data sets and relations specified for a certain domain as presented

in Section 4.1. In the first step, XML Schema Translation (XSLT) is utilized for

translation of security policies and domain configurations to Ambient Calculus specifi-

cations. The resulting Ambient Calculus specification is called Location Configuration

(LCONF).

The Location Configuration (LCONF) for a network reflects the current state of

the security policy in terms of location hierarchies and actions allowed by entities in

the security policy. LCONF is a formal specification in Ambient Calculus. In order to

generate LCONF, information from multiple XML files are used. A service is selected

for generating formal specifications pertaining to a specific service. The domain con-

figuration, inter domain configuration as well as security policy definitions are brewed

together and transformed using XSLT to generate a XML specification compliant to

the XSD for Ambient Calculus presented in Figure 5.8. A second XSLT transforma-

tion is applied to the XML specification for generation of LCONF in formal language,

based on the BNF notation presented in Figure 5.6. This process is summarized in

Figure 5.12.

97

Due to the length and complexity of the XSLT transformation to generate XML

specifications of the location configuration for a service, we hereby present the pseu-

docode of the transformation in Figure 5.13. In this transformation, each Service

corresponds to a different Ambient Calculus Specification. Each Domain definition

in the domain configuration files corresponds to an Ambient Expression. Within the

domain ambient, a Host and a User is added as ambients if they are enrolled in the

domain. Within Host ambients, Object ambients are added if they are registered with

the host. The Service definition contains member elements for Service Domain, Ser-

vice Host and Service Object corresponding to domains, hosts and objects associated

with the service. These elements are used to filter domains, hosts and objects to be

included in the formal specification. A separate section for Variables is added to the

XML specification. The Variables section contains Identifier elements for ambients

to provide a mapping of authorization object identifiers to their names. This section

is used by the SPMI and the client applications to map the identifiers in the formal

specifications to the names in domain configuration, inter domain configuration and

security policy definitions.

5.6. Separation of Duty (SOD) Constraints in XFPM-RBAC

XFPM-RBAC includes XML based constructs for the specification of separation

of duty constraints based on the FPM-RBAC model. A SOD constraint is specified

by the abstract element SOD Constraint which is of type SOD Constraint Def. An

abstract element does not take place in a XML document, it defines a class which

needs to be instantiated with another element. Each type of SOD constraints in-

herit SOD Constraint, and, if necessary, extend SOD Constraint with additional con-

straints. A SOD constraint is identified by constraint id. Depending on the type of

SOD constraint, it includes a reference to a conflicting set of roles or services with

(conflicting set id). The parameter n conflicting specifies the maximum number of

elements from a conflicting set of roles or services, that may be assigned to an user or

role. The attribute is dynamic is specified if the SOD constraint is a dynamic SOD

constraint. The specifications are outlined in Figure 5.14.

98

for -each Service select

where Service_Name = sname

for each Service/Service_Domain

for -each Domain_Def select

where Service_Domain/srv_m_id =Domain_Def/Domain_ID

Add an Identifier for the Domain

Add an Ambient_Expr for the Domain

for -each Domain_Def/Host select where

Enrolled_Domain_ID = Domain_ID

for -each Service/Service_Host where

srv_m_id =Host_ID

Add an Identifier for the Host

Add an Ambient_Expr for the Host

Compose Host ’s with "|" operator

for -each Domain_Def/Object select where

Host/Host_Object_ID = Object_ID

for -each Service/Service_Object where

srv_m_id =Object_ID

Add an Identifier for the Object

Add an Ambient_Expr for the Object

Compose Object ’s with "|" operator

for -each Domain_Def/User select where Home_Domain_ID =

Domain_ID

for -each Service/Service_Host where srv_m_id =User_ID

Add an Identifier for the User

Add an Ambient_Expr for the User

Compose User ’s with "|" operator

Compose Domain ’s with "|" operator

Figure 5.13. Pseudocode for XSLT to generate XML specification of the location

configuration for a service.

99

<xs:element name=" SOD_Constraint" type=" SOD_Constraint_Def"

abstract ="1"/>

<xs:complexType name=" SOD_Constraint_Def">

<xs:attribute name=" constraint_id" type="xs:ID"

use=" required "/>

<xs:attribute name=" conflicting_set_id" type="xs:IDREF"

use=" required "/>

<xs:attribute name=" n_conflicting" type="xs:integer"

use=" optional "/>

<xs:attribute name=" is_dynamic" type="xs:boolean"

use=" optional "/>

</xs:complexType >

Figure 5.14. Definition of abstract element for SOD constraints.

Role-based SOD (SOD CR) is defined with respect to a set of conflicting roles

CR. According to SOD CR, n or more members of the role set CR may not be assigned

to a single user. SOD CR is a constraint on the user assignment (UA) relation.

SOD CR is an instance of the abstract element SOD Constraint. The definition of

a conflicting role set CR is given in Figure 5.15. A Conflicting Role Set includes

a sequence of Conflicting Role’s, a set identifier (set id) and num roles, which is

the number of conflicting roles within the conflicting role set. A Conflicting Role is

identified by the ID of the role which is designated as a conflicting role (cr id).

Service-based SOD (SOD CS) is defined with respect to a set of conflicting ser-

vices CS. According to SOD CS, n or more of the members of CS may not be assigned

to a single role. SOD CS is a constraint on the service access matrix (SAM). SOD CS

is also an instance of the abstract element SOD Constraint. The definition of a con-

flicting service set CS is given in Figure 5.16. A Conflicting Service Set includes a

sequence of Conflicting Service’s, a set identifier (set id) and num services, which

is the number of conflicting services within the conflicting service set. A Conflict-

ing Service is identified by the ID of the service which is designated as a conflicting

service (cs id).

100

<xs:element name="SOD_CR" type="SOD_Constraint_Def"

substitutionGroup="SOD_Constraint"/>

<xs:element name="Conflicting_Role_Set" minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType>

<xs:sequence>

<xs:element name="Conflicting_Role"

maxOccurs ="unbounded ">

<xs:complexType>

<xs:attribute name="cr_id" type="xs:string "

use="required "/>

<xs:attribute name="set_id" type="xs:ID"

use="required "/>

<xs:attribute name="num_roles " type="xs:integer"

use="optional "/>

Figure 5.15. Definition of role based SOD.

<xs:element name=" SOD_CS" type=" SOD_Constraint_Def"

substitutionGroup=" SOD_Constraint"/>

<xs:element name=" Conflicting_Service_Set" minOccurs ="0"

maxOccurs =" unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name=" Conflicting_Service"

maxOccurs =" unbounded ">

<xs:complexType >

<xs:attribute name=" cs_id" type="xs:string"

use=" required "/>

<xs:attribute name=" set_id" type="xs:ID" use=" required "/>

<xs:attribute name=" num_services"/>

Figure 5.16. Definition of service based SOD.

101

<xs:element name=" SOD_ICR"

substitutionGroup=" SOD_Constraint">

<xs:complexType >

<xs:complexContent >

<xs:extension base=" SOD_Constraint_Def">

<xs:attribute name=" mapped_conflicting_set"

type="xs:IDREF" use=" required "/>

<xs:attribute name=" home_foreign" use=" optional "

default ="HOME">

<xs:simpleType >

<xs:restriction base="xs:string">

<xs:enumeration value="HOME"/>

<xs:enumeration value=" FOREIGN "/>

Figure 5.17. Definition of inter-domain SOD.

Inter-domain SOD (SOD ICR) is related with inter-domain role mapping. Ac-

cording to SOD ICR, no user can be assigned to a set of roles which map to n

or more conflicting inter-domain roles. SOD ICR is a constraint on the role map

(RM) relation. The definition of SOD ICR is an extension of the abstract ele-

ment SOD Constraint. The SOD ICR element which is presented in Figure 5.17

includes additional attributes of mapped conflicting set and home foreign. The at-

tribute mapped conflicting set specifies the home or foreign conflicting role set for

mapping to assigned roles. The home foreign attribute may take two values: HOME

and FOREIGN based on whether the role map relation RM is a home role map or a

foreign role map.

Location based SOD constraint (SOD LCR) introduces a location and mobility

aspect to the SOD constraint. Two or more roles or permissions may be considered

in conflict if one of these permissions relates to an action which involves locations and

mobility. According to the location based SOD constraint (SOD LCR), n or more

roles may not be assigned to an user if these roles are within the conflicting roles set

CR and if the Location constraint sfo is valid in the initial location configuration of

102

<xs:element name="SOD_LCR"

substitutionGroup="SOD_Constraint">

<xs:complexType>

<xs:complexContent>

<xs:extension base="SOD_Constraint_Def">

<xs:attribute name="sfo" type="xs:IDREF "

use="required "/>

Figure 5.18. Definition of location based SOD.

the system, i.e. LCONF0 � sfo. The SOD LCR element which is presented in Figure

5.18 is also an extension of SOD Constraint. The additional attribute is a location

constraint sfo that is identified by the reference ID of a previously specified location

formula.

Dynamic SOD constraints are based on activation of roles, which occurs when

an user logs into a service, rather than assignment or roles, and they are evaluated

at run-time against the current state of the system, in which a set of actions has

already been executed. Dynamic SOD constraints have the same types as their static

counterparts and differ only on the time of evaluation. The evaluation of constraints

takes place in the enforcement logic of application that implements XFPM-RBAC.

For this reason, XFPM-RBAC does not provide separate definitions for dynamic SOD

constraints; their specification is the same as static SOD constraints. The distinction

is the specification of is dynamic attribute for dynamic constraints.

XFPM-RBAC includes support for evaluation of static SOD constraints for ap-

plications. This takes place through XSLT transformations which evaluate conflicts

for a given set of SOD constraint definitions, user and service assignments in the multi-

domain security policies. We give the result of evaluation of a SOD constraint as part

of the case study in Section 8.2.5.

103

6. MODEL CHECKING OF SECURITY POLICIES WITH

AMBIENT CALCULUS

The main idea in model checking is to define an automated mechanism which

explores all possible states of a system and test these states with respect to a set of

desired properties. The set of the possible states of a system must be finite for such

an exploration to be performed. Model checking can be divided into three processes

as modeling, specification and verification. The abstract system description, which

is called a model, represents the system with an acceptable size of state space. The

specification process of model checking consists of describing the model and the prop-

erties by a formal language. Verification process of model checking can be defined as

exploring all states in a model and checking whether a certain set of properties is valid

for these states. The process is an exhaustive search, where all reachable states must

be visited.

The details of the approach presented in this chapter may be found in [67]. In

Section 6.1, we cover the concept of model checking for security policies. In Section 6.2,

we provide an overview of formal semantics for Ambient Calculus and Ambient Logic.

In Section 6.3, a model checking algorithm is proposed for model checking of systems

modeled as Ambient Calculus specifications with respect to properties specified as

Ambient Logic formulas. The model checking algorithm is the result of joint work, as

part of M.S. thesis of Ozan Akar [1].

6.1. Model Checking for Security Policies

We apply model checking for verification of security policies. This methodology

involves representation of the network state as process calculus specifications. The rep-

resentation includes the future evolution of the network state in terms of events. The

specification is called the location configuration (LCONF). The location and mobility

constraints in the security policy rules are formalized as modal logic statements, which

are expressed as location formulas. Model checking of process calculus specifications

104

with respect to the modal logic statements is used to determine whether the location

and mobility constraints in the security policy rules are satisfied by the network state.

6.1.1. State based representation of security policy

Events are the means of changing the process state by use of actions in the

process specifications associated by ambients. In Figure 6.1, ambient c does an in and

ambient b does an out action. The state of the system changes in reaction to these

actions. Each of them is called an event. In our model, an event represents an action

in Ambient Calculus, which is formally mapped to actions in the security policy.

S0 S2S1
b

a

b

c

c

a b

c

a

c[out b] b[out a]

Figure 6.1. Events as a means to change the state of process specification.

An Ambient Calculus specification such as d[inc.(R).P] is represented as a se-

quence of events called a Trace: inc, (R), P . A Trace is a set of statements T where

{P}T{Q} consists of Precondition P, which holds in the initial state and Postcondition

Q, which holds in the final state.

A Security Policy Rule can be represented as a set of Preconditions and Post-

conditions. For example, for the rule "Project files in Serverc can not be read by

the students", the precondition is P = �Serverc[data1] and the postcondition is

Q = �Student[data1]. If the model checker finds a sequence of events T such that

{P}S{Q} then the policy rule is applicable. Since the rule indicates denial of access,

the access request for a student to read project files in Serverc should be denied in

this state.

105

6.1.2. Finding compliance to security policy by model checking

The formal specification of compliance of a system configuration to security policy

is as follows: Find T such that {P}T{Q}. For this purpose, a trace is to be found such

that when P holds, trace T is executed and Q holds. Model checker can generate a

counter-example T that satisfies {P}T{Q}. This will result in a trace that represents

a match of a location and mobility constraint in a security policy rule.

Si Sf

u f

A B

W

Trace T

u f

A B

W

Intermediate
States

Figure 6.2. Finding a trace T that leads to a final state from an initial state.

An initial state shows the current execution state of a mobile process specifica-

tion. After a sequence of events, if a final state is reached where a security policy rule

is matched, the security policy rule is applicable in that state. For example, the rule

in Figure 6.2 can be such that "Files in Domain B can not be copied to Domain A".

As a result of the trace T, the file is copied to Domain A. In this case, the security

policy rule is applicable and the system should deny the access request. The problem

now is to find such a trace T which can be accomplished by model checking.

Ambient Calculus model checking can be decomposed into two major search

problems. The first problem is to search future evolutions of a given model. A logic

formula can include constructs quantify rest of formula over future states. When eval-

uating truth of a formula with respect to an Ambient Calculus specification, analysis of

reachable future states is needed. The second problem is to search spatial congruence

of model and the logic formula. Both Ambient Calculus specification and Ambient

Logic formulas have spatial patterns. The model checker must match these patterns

in the calculus specifications in order to evaluate the satisfaction relation.

106

Table 6.1. Structural congruence for Ambient Calculus specifications.

Structural Congruence Rule Structural Congruence Rule

P ≡ P P ≡ Q ⇒ Q ≡ P

P ≡ Q,Q ≡ R ⇒ P ≡ R P ≡ Q ⇒ (νn)P ≡ (νn)Q

P ≡ Q ⇒ P |R ≡ Q|R P ≡ Q ⇒ n[P] ≡ n[Q]

P ≡ Q ⇒ M.P ≡ M.Q P ≡ Q ⇒ (n).P ≡ (n).Q

ε.P ≡ P (M.M ′).P ≡ M.M ′.P

(νn)(νm)P ≡ (νm)(νn)P (νn)0 ≡ 0

(νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P) (νn)m[P] ≡ m[(νn)P] if n �= m

P |0 ≡ P P |Q ≡ Q|P
P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

6.2. Formal Semantics for Ambient Calculus and Ambient Logic

The formal semantics of Ambient Calculus specifications and Ambient Logic

formulas constitute the basis of the presented model checking algorithm. The semantics

are defined in [4] and [5]. The formal semantics of Ambient Calculus specifications are

outlined in Section 6.2.1. The formal semantics of Ambient Logic formulas are outlined

in Section 6.2.2.

6.2.1. Formal Semantics of Ambient Calculus Specifications

Structural congurence relation preserves equivalence of processes up to trivial

syntactic restructuring. Structural congruence is the basis for definition of reduction

relation. The reduction relation, describes the dynamic behavior of ambients. A

reduction relation P → Q describes the evolution of a process P into a new process

Q. Structural congruence and reduction relations of Ambient Calculus are defined in

[5]. In Table 6.2.1 we provide definitions of structural congruence and in Table 6.2.1

we provide definitions of reduction relation. Since we use a replication-free fragment

of Ambient Calculus in the thesis in order to achieve a decidable model checking

algorithm, the definitions related to replication are excluded from these definitions.

107

Table 6.2. Reduction relation for Ambient Calculus specifications.

Reduction Rule Name of Reduction Rule

n[in m.P |Q]|m[R] → m[n[P |Q]|R] Red In

m[n[out m.P |Q]|R] → n[P |Q]|m[R] Red Out

open n.P |n[Q] → P |Q Red Open

P → Q ⇒ (νn)P → (νn)Q Red Res

P → Q ⇒ n[P] → n[Q] Red Amb

P → Q ⇒ P |R → Q|R Red Par

P ′ ≡ Q,P → Q,Q ≡ Q′ ⇒ P ′ → Q′ Red ≡
→∗ Reflexive and transitive closure of →

6.2.2. Formal Semantics of Ambient Logic Formulas

Modal logic is used for expressing properties of models which cannot be expressed

by the constructs of calculi. The Ambient Logic is a modal logic for expressing spatial

and temporal properties of Ambient Calculus. Ambient Logic is strictly based on

Ambient Calculus; all the spatial and temporal constructs are reflected in the logic.

The main differences of Ambient Logic from latter logics are more expressive space

modalities and simpler temporal connectives.

The satisfaction relation P |= A means that the process P satisfies the closed

formula A. In Definition 6.1 we give the formal semantic definitions for Ambient Logic

formulas defined in [4]. Here, Π is the sort of processes, Φ is the sort of formulas, ϑ is

the sort of variables, and Λ is the sort of names.

Definition 6.1. The satisfaction relation for Ambient Logic formulas are defined as

follows.

(i) The atomic formula T of Ambient Logic is satisfied by all processes of Ambient

Calculus. ∀P ∈ Π.P |= T

(ii) Negation of a formula is satisfied by any process which does not satisfy original

formula. ∀P ∈ Π,A ∈ Φ.P |= ¬A
�
= ¬P |= A

(iii) A process satisfies the formula A ∨ B if it satisfies either A or B. ∀P ∈

108

Π,A ,B ∈ Φ.P |= A ∨ B
�
= P |= A ∨ P |= B

(iv) The formula 0 is satisfied by only processes structurally congruent to inactivity

process. ∀P ∈ Π.P |= 0
�
= P ≡ 0

(v) The formula n[A] is satisfied by processes which are structurally congruent to

n[P ′] for any P’ where A is satisfied by P ′. ∀P ∈ Π, n ∈ Λ,A ∈ Φ.P |= n[A]
�
=

∃P ′ ∈ Π. P ′ |= A ∧ P ≡ n[P ′]

(vi) The formula A |B is satisfied by any process that can be decomposable into two

processes as P ′|P ′′ where P ′ satisfies A and P ′′ satisfies B. ∀P ∈ Π,A ,B ∈
Φ.P |= A |B �

= ∃P ′, P ′′ ∈ Π. P ≡ P ′|P ′′ ∧ P ′ |= A ∧ P ′′ |= B

(vii) The nesting relation, denoted by ↓, is defined over two processes as P ↓ Q and

indicates that Q is nested one level down in any ambient which exists at the top

of the topology of P. P ↓ P ′ iff ∃ n, P ′′.P ≡ n[P ′]|P ′′

(viii) Relation ↓∗ is reflexive transitive closure of ↓. P ↓∗ Q indicates that P contains

Q in somewhere of its topology. ↓∗ is the reflexive and transitive closure of ↓
(ix) Somewhere connective, �, is used for specifying nesting properties of processes

on the basis provided by the nesting relation defined above. The formula �A is

satisfied by processes which satisfies A in some inner location. ∀P ∈ Π,A ∈
Φ.P |= �A �

= ∃P ′ ∈ Π. P ′ |= A ∧ P ↓∗ P ′

(x) Sometime connective, ♦, is used for specifying temporal behavior of the processes

on the basis provided by reduction relations (→). The relation →∗ is reflexive

transitive closure of reduction relation. ♦A is satisfied by processes which can

evolve into a future process holding A . ∀P ∈ Π,A ∈ Φ.P |= ♦A
�
= ∃P ′ ∈

Π. P ′ |= A ∧ P →∗ P ′

6.3. Ambient Calculus Model Checker for Security Policies

The general structure of the Ambient Calculus model checker is given in Figure

6.3. To benefit from existing methodologies we divide our problem into two sub prob-

lems as temporal model checking and spatial model checking. The temporal model

checker is used for carrying out satisfaction process for the Sometime and Everytime

connectives of Ambient Logic. The proposed model checking method generates all

possible future states and build a state transition system based on the Ambient Cal-

109

culus process specification. After evaluation of Ambient Logic formula in each state,

this state transition system is processed into a Kripke Structure (Definition 6.5) which

is then given to temporal model checker. NuSMV [68] is used as a temporal model

checker. Outline of the proposed algorithm for the model checking problem is pre-

sented below with respect to the components, inputs and outputs within the block

diagram in Figure 6.3.

Ambient
Logic

Formula

Ambient
Calculus

Specification

Ambient Calculus Model Checker

Ambient Calculus
Parser

Ambient Logic
Parser

State Generator State Transition
System

Atomic Propositions
with Spatial
Formulas

Spatial Model
Checker

Kripke Structure
Temporal Model

CheckerCTL Formula

Results
and

Counter
Examples

a

b

c

d

e

f

g

A

B

C

D

E

Figure 6.3. Block diagram of the Ambient Calculus Model Checker.

(i) The Ambient Calculus Parser (A) inputs Ambient Calculus Specification (a) and

outputs the parsed specification to the State Generator (C).

(ii) The Ambient Logic Parser (B) inputs Ambient Logic Formula (b), defines atomic

propositions with respect to spatial properties of Ambient Logic formula and

generates the Atomic Propositions with Spatial Formulas (d) which includes the

(atomic proposition-spatial modality) couples.

(iii) The Ambient Logic Parser (B) reduces Ambient Logic formula to CTL temporal

logic formula (c) by replacing spatial modalities with atomic propositions.

(iv) The State Generator (C) generates State Transition System (f) of the Ambient

Calculus Specification (a) with respect to reduction relations. This involves

generation of initial state from given Ambient Calculus specification, generation

of new states by applying available capabilities with respect to Ambient Calculus

reduction relations and addition of new states to state transition system with

110

transition relation.

(v) The Spatial Model Checker (D) generates Kripke Structure (e) from State Tran-

sition System (f) and Atomic Propositions with Spatial Formula (d). This step

involves the assignment of the values of the atomic propositions for each state of

state transition system (labeling) by applying model checking for spatial modal-

ities on ambient topology of the related state and the addition of a new state

with its label (values of atomic propositions) to the Kripke Structure.

(vi) The Temporal Model Checker (E) generates NuSMV code from Kripke Structure

(e) and CTL Formula (c). Then NuSMV is executed and Results and Counter

Examples (g) are generated.

6.3.1. Ambient Topology and Spatial Formula Graphs

In [34], state information is represented with sets. In [35], calculus and logic

information is represented as strings and algorithms are based on string operations.

In the method proposed, Ambient Calculus specifications and logic formulas are rep-

resented as graphs. State information associated with a process specified in Ambient

Calculus consists of static and dynamic properties. Static properties of state, called

ambient topology, are the ambients and their hierarchical organization. The dynamic

properties of the state are the capabilities and their dependencies on each other. Static

and dynamic properties of an Ambient Calculus specification are kept in separate data

structures.

Definition 6.2. Ambient Topology, GAT = (NAT , AAT), is an acyclic digraph where

elements of set of nodes v ∈ NAT denotes ambients within the Ambient Calculus specifi-

cation (elements of Λ) and arcs a ∈ AAT , a = {xy | x, y ∈ NAT} denotes parent-child

relation among ambients. The indegree of nodes deg−(v) = 1 for any node (vertex) v

whereas the outdegree of nodes deg+(v) ∈ N.

The following defines capability tree which is a novel data structure used in our

algorithm.

Definition 6.3. Capability Tree, GCT = (NCT , ACT), is an acyclic digraph where

111

set of nodes v ∈ NCT denotes capabilities and arcs a ∈ ACT , a = {xy | x, y ∈
NCT} denotes priority relation among capabilities. Nodes contain the information

about which ambient the capability is attached and which ambient the capability effects.

deg−(v) = 1 for any node v, whereas deg+(v) ∈ N.

Graphs representing formulas are acyclic digraphs where nodes denote connec-

tives and locations whereas arcs denote the operator-operand relation. There are

multiple types of nodes and arcs in formula graphs because of the different structure

of the Ambient Logic connectives.

Definition 6.4. An Ambient Logic formula, GF = (NF , AF), is an acyclic digraph

where

• The set of nodes: NF = (NL ∪ NBinary ∪ NUnary ∪ NPC). NL is the set of nodes

representing ambients. Elements of NL are labeled with elements of Λ. NUnary

is the set of nodes representing unary connectives (¬, �, ♦) at formulas. NBinary

is the set of nodes representing binary connectives, (∨) at formulas. NPC is the

set of nodes representing parallel compositions at formulas.

• The set of arcs: AF = (APC ∪ ABinary ∪ AUnary), where elements of APC rep-

resents parallel compositions, ABinary represents binary connectives and AUnary

represents unary connectives of Ambient Logic formulas.

• apc ∈ APC = x, y|x ∈ NPC , y ∈ (NL ∪ NBinary ∪ NUnary), au ∈ AUnary =

(x, y | x ∈ (NL ∪ NUnary), y ∈ NPC) , ab ∈ ABinary = (x, y|x ∈ NBinary, y ∈
NPC)

• for v ∈ NF , deg
−(v) = 1, for v ∈ NPC , deg

+(v) ∈ N, for v ∈ NUnary, and v ∈ NL,

deg+(v) =1, for v ∈ NBinary, deg+(v) =2..

• Elements of NPC can have a special attribute to represent the � construct of

the logic. If � attribute of a NPC node is set to true, this means the parallel

composition of process that the NPC node stands for, includes the constant �.

In Figure 6.4, an example for an ambient topology and a capability tree is pre-

sented. These structures make up the state information.

112

m

j

l

r

kn

n | in k

n | open l j | in k

r | out m

r | in j

j | in m

(a) (b)

Figure 6.4. Internal representation of state information. Graph (a) is ambient

topology of state and graph (b) is capability tree.

6.3.2. Formula Reduction

To be able to use an existing temporal model checker, the Ambient Logic formulas

have to be reduced to temporal logic formulas. Temporal operators of Ambient Logic

are Sometime (♦) and Everytime (�) connectives. These operators are equivalent to

EF and AG operators of CTL respectively. For reducing Ambient Logic formulas into

a CTL equivalent form, the spatial modalities of Ambient Logic formulas are converted

to atomic propositions.

Since we utilize an existing temporal model checker, some of the Ambient Logic

formulas should be restricted, such as :n[♦A], n[�A] , ♦A |♦B, �A |�B, ��A ,�♦A .

Such Ambient Logic formulas are not reducible to CTL formulas because they have

temporal operators as sub-formulas of spatial operators. In the proposed algorithm

Ambient Logic formulas must be restricted to temporal operators in higher levels com-

pared to spatial operators. The restriction also brings an advantage. This restriction

of Ambient Logic formulas provides the use of other CTL operators like AF or EG in

a more straightforward way.

113

6.3.3. State Transition System Generation

In the proposed model checking algorithm the state transition system is generated

from the initial model specification by executing capabilities in the Ambient Calculus

specification. Since replication is excluded from specifications, the state transition

system can be represented by an acyclic digraph where nodes represent states and

edges represent the execution of a capability. For selection of the next capability to

execute, some condition checks are carried out. These conditions are the location

of the object ambient and the availability of the subject ambient. A capability can

not be executed if the location of the object ambient for the capability is not the

current location, if it is prefixed by another capability path, or the parent ambient of

the subject ambient is prefixed by a capability path. In the proposed method, these

conditions are checked each time a capability is to be executed.

In Figure 6.5, an example state transition system is presented for the Ambient

Calculus process specification P = m[in k.open l.n[]|k[out m.in j.r[]]]|l[in m.in k.j[]].

In this figure, the edges represent Ambient Calculus capabilities which cause a transi-

tion.

S0

S1 S6

r | out m j | in m

S2 S10

S4

S5

S11

S12

S3 S7

n | in k j | in kj | in m r | out m

n | in k r | out m

n | in kn | open l

S8

S9

n | open l

n | in k

Figure 6.5. An example state transition system for an Ambient Calculus process

specification.

114

We propose a new data structure to represent temporal behaviors. The use of this

data structure, called capability tree, eliminates the need to check the availability of

a subject ambient. Capability paths which are sequences of capabilities are organized

as an acyclic digraph that represent the interdependencies of capabilities. Capability

trees are built at parsing stage so no pre-processing is needed. The selection of the

next capability to execute starts from the root of this graph. Our method guarantees

that the capabilities of the parent processes are executed before the capabilities of

child processes.

6.3.4. Checking Spatial Modalities

The basic element for building an Ambient Calculus model checker for Ambient

Logic is to express and implement the satisfaction relation. In the proposed method,

all the generated states must be checked with respect to the spatial formulas. Ambient

Logic formulas are decomposed into a CTL formula and a set of spatial formulas by

formula reduction. The ambient topology and the spatial formula graphs are inputs to

the spatial model checker. The spatial model checking takes place before the generation

of Kripke Structures.

Matching of an ambient topology and a spatial formula is a recursive procedure in

which ambient topology nodes are assigned to formula nodes. Matching process starts

by assigning the root of the ambient topology to the root of the spatial formula graph.

Spatial formula nodes can forward the assigned ambient topology node to its children

partially or completely in a recursive manner. Match process is successful when all

nodes at ambient topology is matched to a spatial formula node. Match processes

at different type of spatial formula nodes are different. Different match processes are

introduced after auxiliary heuristic functions, which are explained below.

6.3.4.1. Heuristic Functions. Heuristic functions are used at matching the Parallel

Composition (|) and Somewhere (�) connectives. Former studies try to match every

alternative while searching a match for these connectives. In our method, the number

of these trials are reduced by the help of auxiliary heuristic functions. Some connectives

115

of Ambient Logic called wildcard connectives match different kinds of ambient topol-

ogy. These connectives are used for matching ambients of ambient topology which are

not expressed in formulas. The constant � of the logic matches any ambient topology

assigned to it. Negation connective of the logic can be seen as another kind of wild-

card connective. Negation matches any ambient topology unless the sub formula of the

negation matches this ambient topology. Another wildcard property is the Somewhere

connective. The parallel process of the parent ambient are neglected when searching

sublocations. If the sublocation search is obtained by consecutive application of ↓
one or more times , the associated Somewhere connective gains a wildcard property.

Function wildcard is a recursive function used for determining if a node of the formula

graph has a wildcard property. The pseudocode of the wildcard function is given in

Figure 6.6.

The ambients expected at sub-formulas of Disjunction and Somewhere connec-

tives is not directly derivable. The guessExpectedAmbients function is a recursive

function which returns a set of expected ambient combinations for a formula graph

node. The returned set includes all possible ambient combinations expected by chil-

dren of that node. The returned value is a set instead of a single ambient combination.

The pseudocode of the guessExpectedAmbients function is given in Figure 6.7.

Function findSublocation is a recursive function used to find parent of an ambient

at an ambient topology. The pseducode of the findSublocation function is shown in

Figure 6.8.

6.3.4.2. Matching of Spatial Formula. In a match between an ambient topology and

spatial formula graph, all nodes of ambient topology must be matched with a node

of spatial formula graph. Some nodes of spatial formula graphs can forward the am-

bient topology nodes assigned to them to their children, while others match assigned

ambient topology nodes directly. The proposed spatial model checking algorithm tries

alternative assignments of a given ambient topology nodes over a given spatial formula

graph. The proposed spatial model checking algorithm is recursive where matching

process starts from the roots of a graph and continues to underlying levels. If a suitable

116

Procedure wildcard

Input: NODE is a formula graph node

Output: boolean constant

if NODE is a location then

return false

end if

if NODE is a disjunction then

return wildcard(node.first child) ∨ wildcard(node.first child)

end if

if NODE is a somewhere then

return true

end if

if NODE is a negation then

return true

end if

if NODE is a parallel composition then

if NODE has a � property then

return true

else

for all child of NODE do

if wildcard(child) = true then

return true

end if

end for

end if

end if

return false

end procedure

Figure 6.6. Pseudocode of wildcard heuristic function.

117

Procedure guessExpectedAmbients

Input: NODE is spatial formula node

Output: set of string

if NODE is a location then

return NODE.name

end if

if NODE is a disjunction then

return guessExpectedAmbients(node.first child)

end if

if NODE is a somewhere then

return guessExpectedAmbients(node.child)

end if

if NODE is a negation then

return ∅
end if

if NODE is a parallel composition then

for all child of NODE do

cart = cart× guessExpectedAmbients(child)

end for

return cart {the cartesian product of the elements of the returned values of

guessExpectedAmbients for each child}

end if

end procedure

Figure 6.7. Pseudocode of guessExpectedAmbients heuristic function.

118

Procedure findSublocation

Input: WANTED is string, ROOT is ambient topology node

Output: RESPONSE is ambient topology node

for all child of ROOT do

if child.name == WANTED then

return ROOT

end if

end for

for all child of ROOT do

RESPONSE = findSublocation(WANTED,child)

if RESPONSE not == null then

return RESPONSE

end if

end for

return null

end procedure

Figure 6.8. Pseudocode of findSublocation heuristic function.

match is found at the upper level then matching process continues to find matches in

lower levels. The match process is regulated by the semantics of spatial formula graph

nodes.

Matching process at nodes representing locations is according to Definition 6.1.5.

The location nodes can be assigned only one ambient topology node. If the ambient

topology node does not have the same name with the location node, match process

for the location node fails. If the ambient topology node has the same name with

the location node, location node assigns the children of ambient topology node to

its parallel composition child. The result of the match is successful if the parallel

composition child of location node succeeds to find a match between its children and

the children of the assigned ambient topology node.

Matching process at the nodes representing negation connective is according to

119

Definition 6.1.2. These nodes can be assigned to a collection of ambient topology

nodes. Negation assigns the whole set of the assigned ambient topology nodes directly

to its child parallel composition node. If the parallel composition child of the negation

node succeeds to find a match, match process for negation node fails. If no match

between ambient topology nodes and children of the parallel composition is found,

match process for negation node is successful.

Matching process at the nodes representing disjunction connective is according to

Definition 6.1.3. These nodes can be assigned to a collection of ambient topology nodes.

Nodes of type disjunction have two parallel composition children. Disjunction assigns

the whole set of the ambient topology nodes directly to its child parallel composition

nodes. If at least one of the parallel composition nodes succeeds to find to a match,

match process for disjunction node is successful.

Matching process at the nodes representing somewhere connective is according to

Definition 6.1.9. These nodes can be assigned to a collection of ambient topology nodes.

A node of Somewhere connective can start matching its parallel composition node from

any level of assigned ambient topology node collection. Match process of nodes for

somewhere connectives try all possible levels of the ambient topology nodes until there

is a successful match. We have presented a heuristic to expedite the matching of

nodes for somewhere connectives. Searching a single node in the ambient topology is

cheaper than trying a full match at every level. The findSublocation function finds the

level of ambient topology for which the match process should start for the somewhere

connective. This technique eliminates the searches of the levels which do not have any

possibility to match.

Matching process at the nodes representing parallel composition connective is

according to Definition 6.1.6. These nodes can be assigned to a collection of ambient

nodes. Match process for parallel composition decomposes assigned ambient topology

node collection into subsets which will be forwarded to the children of the parallel

composition node. While there are exponentially many alternative decompositions,

the number of these alternatives is reduced by the help of the guessExpectedAmbients

120

and wildcard functions.

Decompositions are carried out in two phases. In first phase, the expected am-

bient topology nodes are assigned to child nodes of the node for parallel composition

connective. By the help of guessExpectedAmbients function, the sets of expected am-

bient topology nodes, called guess sets, are found for each child of the node for parallel

composition connective. Then, every expected ambient topology node, in the collection

assigned to the node for parallel composition, is forwarded to related child.

Because there are ambient topology nodes which are not expected by any child

node, these nodes must be assigned to one of the children of the node for parallel

composition with wildcard property or neglected if the node for parallel composition

has T (true) property. In the second phase, children of the parallel composition is

evaluated for the wildcard property by the wildcard function. After determining the

set of children with wildcard property, unexpected nodes of the ambient topology

collection are assigned to elements of this set.

After assignment of all ambient topology nodes, new matching processes are

started for all assigned children. If one of the children fails, the match process for the

parallel composition node tries to find another decomposition. Match process succeeds

if match processes of all children succeeds for a decomposition. In Figure 6.9, matching

of an ambient topology and a spatial graph for a successful match are shown.

6.3.5. Generation of Kripke Structure

A Kripke Structure is a state transition system where states are labeled by the set

of atomic propositions which hold in that state. Atomic propositions can be considered

as the marking of system properties.

Definition 6.5. Let AP be a non-empty set of atomic propositions. A Kripke Structure

is a four-tuple; M = (S, S0, R, L) where S is a finite set of states, S0 ⊆ S is the set

of initial states, R ⊆ S× S is a transition relation, and L: S → 2AP is a function that

labels each state with the set of atomic propositions that are true in this state.

121

Figure 6.9. A match example for process P = n1[] | n3[] | n4[] | n7[n5[] | n6[]] | n8[]
and formula F = n1[] | {n2[] ∨ {n3[] | n4[]}} | � {n5[] | n6[]} | ¬n8[]. Graphs

consisting of rectangle nodes are ambient topologies assigned to spatial formula

graph nodes. Graphs consisting of circle nodes is spatial formula graph.[1]

122

The state transition data structure provides sets S, S0 and relation R of a Kripke

Structure. The elements of the set of atomic propositions result from formula reduc-

tion. In formula reduction, spatial formulas are replaced with atomic propositions.

The function L is generated by applying spatial model checking for each state in state

transition data structure with respect to each spatial formula. Kripke Structure is

obtained by attaching the values, resulting from spatial model checking, into the state

transition system graph.

6.3.6. NuSMV Code Generation

The model checking algorithm explained above provides CTL formulas and a

Kripke Structure. The next step is the generation of NuSMV code which is equivalent

to the Kripke Structure and temporal logic formula. In the NuSMV specification, a

variable state is used for specifying states in the Kripke Structure. Other variables

used in NuSMV code generation is Boolean variables for representing atomic propo-

sitions. CTL formulas provided by the formula reduction step are then converted to

NuSMV code according to CTL formula graph provided by formula reduction, where

the Sometime (♦) connective is represented as EF and Everytime (�) connective is

represented as AG. The atomic propositions are converted into strings by their names.

6.3.7. Examples for Spatial Model Checking Algorithm

Let’s consider the scenario and policy example presented in Section 3.3. When

the Ambient Calculus specification is input to the model checker, a total of 53 states

are generated. One Atomic Proposition (AP) is generated, where AP=� { � Host2 [�
{Data1 [T]|Data2 [T]}] | T}. A part of the execution of the algorithm is presented in

Table 6.3. Only the initial and the last two states are shown. For each state an action

is executed to produce a new spatial state. For state 53 the spatial model checking

algorithm matches the spatial formula AP to the current state of World.

For the purpose of evaluation of the performance of the algorithm, we have

checked three Ambient Calculus specifications with respect to two Ambient Logic for-

123

Table 6.3. Part of output generated by the spatial model checker for the example

policy presented in 3.3.

State Spatial state of World AP Action

0 Domain1[User1[]|Host1[File1[Data1[]]]]|

Domain2[Host2[User2[]|File2[Data2[]]]]

F User2[out Host2]

52 Domain1 [User1 [Host1 [File1[]]]| Domain2

[Host2 [File2 [User2[]|Data2 []|Data1 []]]

F User2[out File2]

53 Domain1 [User1 [Host1 [File1[]]]| Domain2

[Host2 [File2 [Data2 []|Data1 []]|User2[]]

T -

mulas. Ambient Calculus specifications and Ambient Logic specifications are presented

in Appendix B. Each Ambient Calculus specification models a multi domain network

where domains, host, user, and files are modeled as ambients. Ambient Logic formulas

represent different properties of these models.

The given specifications represents a scenario involving mobility among multiple

domains. The case study includes three domains Domain A, Domain B, Domain C,

four hosts Host 1, Host 2, Host 3, Host 4, three users User 1, User 2, User 4 and four

files File 1, File 2, File 3 and File 4. This scenario has been captured as Ambient

Calculus specifications Spec1,Spec2, and Spec3. In Spec1, User 1 does not conduct

any action. In Spec2, User 1 has the rights to login to/logout from Domain A and

Domain B, and read File 1. In Spec3, User 1 has the rights to logout from Host 1,

logout from Domain A and login to Domain B. In all the specifications, User 2 has

the rights to read and write the files File 1, File 2, File 3 and File 4. User 4 has the

rights to login to/logout from Domain B and Domain C, login to/logout from Host

3, read File 3 and File 4. The hosts Host 2 and Host 3 are accessible and readable

by users of Domain C. Host 1 in Domain A is accessible by DomainB hosts. Initially,

Host 1 contains File 1, Host 2 contains File 2, Host 3 contains File 3 and Host 4

contains File 4. Initially, User 1 is logged in Host 1, User 2 is logged in Host 2 and

User 4 is logged in Host 4.

According to security policy rules in this example, Domain A objects should

124

not be read by Domain C subjects. The security policy rule has been formalized as

Formula1 and Formula2 according to detail of specification. Formula1 states that

"The World contains Domain A, Domain B and Domain C. In Domain A, Host 1

is connected with any other host, in Domain B, Host 2 and Host 3 are connected

with any other host, in Domain C, Host 4 is connected with any other host and after

some time, Host 4 contains Data 1 somewhere inside the host". Formula2 states

"After some time, Host 4 contains Data 1 somewhere inside the host". Both of the

formalizations state the result of an unintended information flow where Data 1 which

was originally in Domain A within Host 1, ends up in Host 4 which is in Domain C. If

one of these formulas is shown to be satisfied by the Ambient Calculus specifications

by the model checker, the meaning is that the unintended information flow takes place

and the security policy rule is not satisfied.

The following sequence of actions lead to an unintended information flow: User

2 can read File 1, copy or write File 1 to Host 2 or Host 3. This information can be

read by User 4 of Domain C by movement into Domain B and reading from Host 2 or

Host 3. For all the specifications and formulas the model checker successfully finds the

corresponding action sequences where the security policy rule is not satisfied. However

the time and memory cost of the model checking process depends on the properties of

alternative formal specifications, which will be discussed in the next section.

6.3.8. Complexity and Performance Analysis

6.3.8.1. Time Complexity. Time complexity of state transition system generation is

dependent on the number of capabilities. The execution of a capability results in a

single future state. In the worst case, all capabilities are independent. Independence

of capabilities implies that capabilities are in a sequence or they operate on different

ambients. In this case, the execution order of the capabilities does not change the

set of applicable capabilities. If there are n capabilities, then n capabilities may be

executed independently in the first step, (n − 1) capabilities may be executed in the

second step, and so on, until the last capability will be executed in the nth step. As

a result, where n is the number of capabilities in the Ambient Calculus specification,

125

the time complexity of generating state transition system in worst case is O(n!) and

more specifically

n∑

k=0

n!

k!
(6.1)

The time complexity of checking spatial modalities are dependent on the type and

number of the connectives of the spatial formulas. There is a different cost of matching

processes for different types of spatial connectives. For the Location, Disjunction,

Negation and Inactivity connectives, the search for satisfaction is completed with at

most two comparisons, while for the Parallel Composition (|) and Somewhere (�)
connectives, the search requires an arbitrary number of alternatives.

The overall time cost of � connectives, which has child | connectives, is linear

with the cost of the match process of | connectives, which is calculated as follows.

Let ane be the number of topmost ambients of the ambient topology which are not

expected by the heuristic functions, dw the number of disjunctions which have wildcard

property in the | connective, not the number of negations in the | connective, sww the

number of � connectives which have wildcard property in the | connective, G the cost

of calculating guessExpectedAmbients function and W the cost of calculating wildcard

function.

The match process for | connective consists of two phases. First phase is assign-

ment of expected nodes and second phase is assignment of unexpected nodes. The

cost of first phase is dependent on the number of disjunction connectives, because

each disjunction may cause two different expected node combinations. The number of

different assignments of expected nodes is given by the formula

2dw+d (6.2)

Unexpected nodes of ambient topology can be assigned only to the formula nodes

which has a wildcard property. The number of different assignments of unexpected

126

nodes are

a(sww+not+dw)
ne (6.3)

The overall time cost of the match process is given in Formula 6.4, which is the product

of Formula 6.2 and Formula 6.3 with addition of the costs of the auxiliary functions:

2dw+d × a(sww+not+dw)
ne +G+W (6.4)

The time complexity of the match process, corresponding to the calculated time cost in

Formula 6.4, is given according to the O notation in Formula 6.5. The time complexity

is exponential with the number of ambients.

O(a(sww+not+dw)
ne) (6.5)

In contrast, when the brute force search is used for decomposing Ambient Calculus

specifications, the time complexity is calculated as in Formula 6.6, where a = ane+ae is

the total number of topmost ambients in the ambient topology, including (ae), number

of ambients expected by the heuristic functions, l is the number of locations in the |
connective, sw is the number of � connectives which do not have wildcard property in

a | connective and d is the number of disjunctions which do not have wildcard property

in | connectives:

O((a)(sww+sw+l+not+d+dw)) (6.6)

Time cost of guessExpectedAmbients and wildcard functions are linear with the number

of connectives in the spatial formula because they are called recursively for each con-

nective in the formula. Time cost of finding a match for the � connective is the sum of

cost of the function findSublocation and cost of the match process for | connective. Let

PC be the cost of match process of | connective child for the � connective,F the cost of

findSublocation function, a the number of the ambients of the ambient topology. The

127

overall time cost of the match process for � connective is given with Formula 6.7:

F + PC (6.7)

Time cost of brute force search for finding a matching for � connective is given with

Formula 6.8:

a× PC (6.8)

In this case the complexity of the match process and the brute force search is O(n).

The time cost of findSublocation function is linear with a because it only looks for an

ambient with a specific name in an ambient topology.

The match processes for | and � connectives are dominant for the time complex-

ity of the spatial model checking process. The cost of the overall match process is

reduced by the proposed algorithm. The proposed algorithm and brute force search

for match process for | connective both have exponential complexity, given respectively

in Formula 6.5 and Formula 6.6. Since (ane + ae)
(sww+sw+l+not+d+dw) > a

(sww+not+dw)
ne ,

the cost of the match process is significantly reduced by use of heuristics. The com-

plexity of the match process for the � connective for both the proposed algorithm and

brute force search are linear. However the actual cost is reduced from Formula 6.8 to

Formula 6.7.

6.3.8.2. Space Complexity. Proposed algorithm builds a state transition system in a

depth-first manner. The maximum depth of the state transition system is equal to

the number of capabilities. Therefore, the space complexity of the space generation is

O(n), where n is the number of capabilities. When checking spatial modalities, the

space needed is equal to the size of the formula, which is dependent on the number

of connectives of the formula. Therefore, the space complexity of checking spatial

modalities is O(c), where c is the number of the connectives in the formula.

128

Table 6.4. Properties of Ambient Calculus specifications.

Specification Num. Ambients Num. Capabilities Num. States

Spec 1 16 32 560

Spec 2 16 39 33123

Spec 3 16 37 628527

6.3.8.3. Performance Analysis based on Example Specifications. The proposed model

checking algorithm has been implemented in the Java language. In this section, the

implementation is tested with example formal specifications which is presented in Ap-

pendix B and explained in Section 6.3.7. The example specifications include three

Ambient Calculus specifications and two formulas. Each Ambient Calculus specifica-

tion models a multi domain network where domains, host, user and files are modeled

as ambients. Formulas represent different properties of these models.

Tests are carried out on one of the nodes of a cluster. The cluster itself has 8

nodes with 2.93 GHz CPU and 9.76 GB memory. Only one node of the cluster has been

utilized since the current version of NuSMV does not support parallel and distributed

computations. The model checker application has been deployed as a .jar file and Java

1.6 64 bit edition on Linux operating system has been used to run the model checker

application. NuSMV version 2.5.0 has been used as a temporal model checker.

The properties of Ambient Calculus specifications are shown in Table 6.4. All

the specifications consist of the same set of ambients where their starting ambient

topology is the same. The main difference between them is the type and the number

of the capabilities. Because of this property, the future evolution of the models vary

dramatically.

Three Ambient Calculus specifications are evaluated with respect to two Ambient

Logic formulas. The time and memory cost for state transition system is shown in

Table 6.5, for 8 MB and 1GB heapsizes of the Java Virtual Machine. Since memory

management of the Java Virtual Machine (JVM) includes a garbage collector, the

heapsize effects performance of Java applications. For this reason the model checker

129

Table 6.5. State transition system generation cost.

Specifications Heap Size Time (sec) Memory (KB)

Spec 1 1 GB 1.039 246478

8 MB 1.234 6228

Spec 2 1 GB 12.453 350504

8 MB 18.120 7734

Spec 3 1 GB 154.897 362384

8 MB 241.592 7911

process has been executed with various heapsizes. The default heapsize of Java VM on

the cluster was 8MB. The heapsize has been increased to evaluate the effect of increase

in heapsize to performance. The best performance has been achieved at 1GB. For the

case study, the heap sizes over 1GB did not result in an increase in performance.

Table 6.6. Performance results for spatial model checking.

Formulas

Formula 1 Formula 2

Specifications Time (sec) Memory (KB) Time (sec) Memory (KB)

Spec 1 1.265 262208 1.520 262208

Spec 2 15.474 350872 17.134 351080

Spec 3 172.289 362304 199.815 375352

In Table 6.6, the performance results are shown for spatial model checking with

a 1 GB heapsize of the Java Virtual Machine. The time cost of NuSMV temporal

model checking is shown in Table 6.9. The cost of state transition system generation

outweighs spatial model checking for both time and space cost. A significant result

of these case studies is that the proposed algorithm provides more significant perfor-

mance gain for formulas as the number of logical operators increase. In relation to our

case study, the proposed model checker was capable of handling a specification with

628527 states with memory consumption under 8 MB. Time cost of NuSMV model

checking significantly increases as the number of states increases. Size of the generated

NuSMV code grows linearly as the number of states increases. However NuSMV can

130

not process the generated code for the specification with 628527 states; it terminates

with segmentation fault because of the size of the generated NuSMV code.

We take the following approach for assessing the performance of the proposed

algorithm for spatial model checking and comparison to existing work. In order to

compare the performance for checking specifications against formulas with different

properties, we measure the properties of the two given formulas in the case study. The

branching factor property is related with the number of connectives in the formula. It

gives the average number of branches in the syntax tree which represents a formula.

The depth property gives the maximum depth of the syntax tree which represents

a formula. The properties of given Ambient Logic formulas in the case study are

presented in Table 6.7.

Table 6.7. Properties of formulas.

Formula Branching factor Depth

Formula 1 1 4

Formula 2 2.6 3

We compare the use of heuristics against brute force search for exploration of

spatial modalities. Since former studies which use brute force search [69, 35] do not

include an implementation and detailed definitions for procedures, we implemented a

variant of our algorithm which employs brute force search. The results are presented

in Table 6.8. As seen from these results, the proposed algorithm produces better

performance results when the branching factor of the formula increases.

Table 6.8. Performance results for spatial model checking with brute force search.

Formulas

Formula 1 Formula 2

Specifications Time (sec) Memory (KB) Time (sec) Memory (KB)

Spec 1 1.634 262208 1.829 262208

Spec 2 15.334 350672 18.405 353392

Spec 3 171.812 364696 201.765 375160

131

Time cost of NuSMV model checking significantly increases as the number of

states increases. Size of the generated NuSMV code grows linearly as the number

of states increases. However NuSMV can not process the generated code for the

specification with 628527 states; it terminates with segmentation fault because of the

size of the generated NuSMV code.

Table 6.9. Performance results of NuSMV with generated code.

Specifications Formulas

Time for Formula 1 (sec) Time for Formula 2 (sec)

Spec 1 0.126 0.135

Spec 2 463.918 615.361

Spec 3 N/A N/A

132

7. THEOREM PROVING FOR SECURITY POLICIES IN

FPFM

Theorem provers are automated procedures that can be used to check whether a

given formula F, which is named the goal, is a logical consequence of a set of formulas

N, which is called the theory. Proof checking consists of the automated verification

of theories by full formalization of the primitive notions of definitions, axioms and

the proofs. The definitions are checked for their well-formedness and the proofs are

checked for their correctness according to a given logic. For theorem proving, one needs

to choose a logic, which is the basis of all formalization. Logics such as classical logic,

intuitionistic logic, first, second, higher order logic may be used for formalization.

In this thesis, we use the Calculus of Inductive Constructions (CIC) for the

basis of theorem proving approach for security policies. CIC is a kind of higher-order,

intuitionistic logic which is implemented by the Coq Proof Assistant. CIC is based

on type theory, which is another name for higher-order logic. Type theory presents

a powerful formalism which covers both computation and proof. Furthermore, CIC

makes use of the "proofs as programs" paradigm which is known as the Curry-Howard

Isomorphism. In this paradigm, a proposition is a type and a proof is a computation of

a function. Extraction of programs from proofs is possible thanks to the Curry-Howard

Isomorphism.

In type theory, the formalization of the proof checking for a statement A is

Γ �T p : A, which is equivalent to checking whether TypeΓ(p) = A. When using

an interactive proof assistant based on type theory such as Coq, the proof terms are

generated by the proof development system by interacting with the user. The proof

term is type checked by the proof checker and compared with the original goal. If the

type checking is successful then p is a proof of A. Otherwise, proof term p does not

have the type of A and the type checker returns false. The equality = in this context is

decidable. Therefore the concepts of interactive theorem proving based on type theory

may be summarized in Table 7.1.

133

Table 7.1. The concepts of interactive theorem proving based on type theory.

Concept in theorem proving Concept in type theory

provability of formula A inhabitation of type A

proof checking type checking

interactive theorem proving construction of a term of a given type

Proof assistants, synonymously interactive theorem provers, are slightly different

than automated theorem provers, since the proof of the theorems are generated by

the guidance of the user. A proof assistant is a combination of proof development

system and a proof checker. The proof development system aids the user by providing

language constructs for specification and algorithms for verification of theorems. The

user controls the theorem development process and may define data structures and

executable functions. Theorems about the data structures and the functions may be

proved with the help of the proof assistant.

We introduce the Coq Proof Assistant in Section 7.1. In the remaining sections,

we present formal specification of security policies in FPFM with the Calculus of

Inductive Constructions. Through Sections 7.2 to 7.5, we present formal specifications

related to data sets, authorization terms and hierarchies related to security policies in

FPFM. In Section 7.6 we present conflict checking of security policies with the Coq

theorem prover, based on a subset of the security policy model in FPFM.

7.1. The Coq Proof Assistant

Coq is a proof assistant for expressing specifications and developing programs

that fulfil these specifications. It belongs to a family of interactive theorem provers

such as Mizar, Isabelle, Lego and HOL. It is based on a variation of typed Λ-calculus,

the Calculus of Inductive Constructions (CIC in short). CIC includes the ordinary

logical operators ∧,∨,¬,→. Quantifications are typed in the form ∀x : T P x, where

x is a quantifier (variable), T is a type and P is a proposition. Due to the Curry-

Howard isomorphism, P → Q means both P implies Q and a total function which

computes a proof of Q from a proof of P. Propositions have the type Prop. P → Q

134

also defines a type expression. An expression A1 → A2 → . . . An → B denotes the

type of a function which has n arguments of types A1 . . . An and which returns a result

of type B. Data types such as the type for integers, nat, are members of the Set

type. This allows building polymorphic functions whose type depends on the input

arguments. For example the identity function is defined as Id x = x, whose type is

∀X : Set X → X.

Inductive types provide means to define data types from constructors. The gen-

eral form of an inductive type is {x : S|P x}, which defines a set of elements x from

S which satisfy the predicate P x. An inductive definition consists of an exhaustive

enumeration of constructors of the type to be defined together with their respective

signatures. For example, the types bool and nat are defined in Figure 7.1.

Inductive bool:Set:=true:bool | false:bool

Inductive nat:Set:=0:nat | S:nat→nat

Figure 7.1. Inductive definitions for the types bool and nat.

A predicate may also be defined in an inductive form, similar to Prolog. To

define an predicate, one enumerates clauses that define sufficient conditions for the

predicate to be satisfied. For example, to define a predicate "to be a sorted list", one

needs to consider three clauses. This predicate is defined in Coq as in Figure 7.2.

(i) the empty list is sorted

(ii) every list with only one element is sorted

(iii) if a list n::l obtained by concatenation of n to l is sorted, a list p::n::l is sorted

if p ≤ n.

Inductive sorted :list Z→Prop:=

sorted0:sorted(nil)

sorted1:∀z : Z, sorted (z :: nil)

sorted2:∀z1, z2 : Z, ∀l : list Z, z1 ≤ z2 ⇒ sorted(z2 :: l) ⇒ sorted(z1 :: z2 :: l)

Figure 7.2. The definition of a predicate in Coq.

Pattern matching is used in Coq to describe functions that perform a case analysis

135

on the value of an expression whose type is an inductive type. Where t is an expression

with constructors c1, c2, . . ., the general form of a pattern matching construct is of the

form match t with c1 ⇒ e1 | c2 ⇒ e2 . . . | ct ⇒ et end. The value of this expression is

e1 if the value of t is c1, and so on, finally et if the value of t is ct.

For the proof of a proposition, the user constructs a function which computes

a proof. A proposition may be a hypothesis, axiom, lemma or theorem, which are

declared by keywords Hypothesis, Lemma, Axiom or Theorem. All propositions have

the type Prop. A goal is the pairing of the local context Γ and a type t which is well

formed in this context. A goal is of the form "E,Γ
?

� P", which expresses that a proof

of P that should be well-formed term t in the environment E and context Γ should

be provided. The proof of propositions are handled in Coq using tactics. Tactics are

commands that can be applied to a goal. If g is a goal that needs to be proved and

g1, . . . gk are the available goals, a tactic is associated with a function that constructs

a solution of g from the solutions of g1, . . . gk.

7.2. Data System Definitions for Security Policies

In the following sections we present a formalization of FPFM security policy

model in Calculus of Inductive Constructions. This security policy models excludes

location formulas, which are modelled within the spatio-temporal model checking ap-

proach. The object types in FPFM are defined using an inductive type. The set of

object types is fixed and includes file, directory, application, database, portable, server,

client and message types. File, directory, application and database types represent ap-

plication objects. In contrast, portable, server, client and message types represent

network objects.

The object names are finite set defined by the user specific to a data system.

They are the names of resources in a data system. Object Type Hierarchy (OTH)

relation is then defined by mapping each object name to an object type. This is

essentially a relation implemented as a list that defines the elements of the relation in

the style R={(a,b), (c,d), (a,e)}.

136

The next step in specifying a Data System is Role Hierarchy. In order to define

the RH, one first needs to define the users. The user names are finite sets whose

elements are user-definable and in CIC they are specified as inductive types. In the

Coq specification of Role Hierarchies, The Roles are defined similar to Users, as an

Inductive type with pre-defined elements. The members of the Role hierarchy is defined

through a relation whose elements belong to the Cartesian product of the set Role with

itself. The set of actions is defined by the inductive type Actions.

Membership for the relations defined for this data system are specified as pred-

icates as follows. Descendant Role predicate is true if a given role is descendant (or

specialization) of another given role. And Object is Type predicate is true if an object

identified by its object name is of a given object type. The data set definitions are

given in Figure 7.3.

Inductive Object Type : Set :=

| File | Directory | Application | Database | Port | Server | Client | Message.

Inductive Object Name : Set

Definition Object Name Object Type (o: Object Name) : Object Type

Inductive User Name : Set Inductive Role : Set Inductive Actions : Set:=

| read | write | execute | send | receive | enrol | login | logout.

Figure 7.3. Data system definitions for security policies.

7.3. Formal Specification of Data System for Security Policies

All of the elements of the data system are a member of the inductive type En-

tity. This type is like a placeholder for all data system element types. An object is

specified as “object object name”, e.g. “object research project db”. Similarly, a user

is specified as “user user name”, an object type as “object type type”, and a role as

“role role name”. The set of entities is specified using the Ensemble type in Coq.

Entity Set is a set that includes all members of the type Entity i.e. all the elements

of the data system. The definition of Entity is given in Figure 7.4.

Next we define some predicates to check the element type of a specific data system

137

Inductive Entity : Set :=

object : Object Name→ Entity

| object type: Object Type → Entity

| user : User Name → Entity

| role : Role→ Entity.

Definition ENTITY SET := Ensemble Entity.

Definition Entity Set : ENTITY SET := Full set Entity.

Figure 7.4. The inductive type Entity.

entity. These predicates would tell whether a given entity is an object, user, object

type, user group or role. In Figure 7.5, we give the specification of the predicate

Is Object that becomes true if the given entity is an object. Other predicates are

defined in a similar fashion.

In order to be able to map objects, users, user groups and roles to entities, a

mapping between the types that define these system elements is needed. This mapping

is provided through Coercion feature of Coq. Coercion implements the inheritance

mechanism for types in Coq. The following lines of Coq specification in Figure 7.5

enables an object name to be handled as an entity. An object name on becomes an

entity with the mapping object on. The other types belonging to user, object type,

user group and role are similarly mapped to entities by defining coercions.

Definition Is Object (e: Entity) : Prop :=

match e with

object ⇒ True

| ⇒ False

end.

Definition O E (on: Object Name) : Entity := object on.

Coercion O E : Object Name >-> Entity.

Figure 7.5. Specification of Is Object predicate.

138

7.4. Formal Specification of Authorization Policy

According to the authorization framework, authorization subjects may be users,

user roles or roles. In order to define a user, user group or a role as an authorization

subject, an inductive type is used with the constructors that take a user name, user

group or a role and return an authorization subject. The set union of the set of roles,

set of user names and set of user groups make up the set of authorization subjects

(Authorisation Subject Set). The specification of authorization subjects is given in

Figure 7.6.

Inductive AuthorisationSubject : Set :=

| user as : User Name → AuthorisationSubject

| user group as : User Group → AuthorisationSubject

| role as : Role → AuthorisationSubject.

Definition Authorisation Subjects := ENTITY SET.

Definition Authorisation Subject Set := Union Entity Role Set

(Union Entity User Name Set)

Figure 7.6. Specification of authorization subjects.

The next step is mapping user, user group and roles types to authorization subject

types. This is achieved through coercions that take a user, user group or role as input

and convert it to the type AuthorisationSubject by use of its constructors. Every

authorization subject is also a system entity, therefore there is a type coercion that

maps an authorization subject to a system entity is also necessary. The function

AS E which is defined as coercion takes an authorization subject and returns the

corresponding entity. Coercions for authorization objects are similarly defined. The

specification is given in Figure 7.7.

The authorizations are specified as given in Figure 7.8. First authorization signs

are specified as a set that contains the signs plus and minus. Second, the authorization

signs together with actions define a record type for signed actions. An authorization

term is a record that contains an authorization object, an authorization subject and

a signed action. An authorization term is defined as “authorisation ao as sa” where

139

Definition U AS (un: User Name): AuthorisationSubject := user as un.

Coercion U AS : User Name >-> AuthorisationSubject.

Definition R AS (r : Role) : AuthorisationSubject := role as r.

Coercion R AS : Role >-> AuthorisationSubject.

Definition AS E (aus : AuthorisationSubject) : Entity :=

match aus with

user as u ⇒ user u

|role as r ⇒ role r

end.

Coercion AS E : AuthorisationSubject >-> Entity.

Figure 7.7. The mapping of user, user group and roles types to authorization subject

types.

ao:Authorisation Object, as: AuthorisationSubject and sa: SignedAction. An example

authorization term is “authorisation research project 1 db johnd (Signed Action plus

read)”.

The function Negative Sign returns the negative of a given sign. The function

utilizes the pattern matching construct match in Coq to determine the value of the

input sign. It returns minus if plus is input and returns plus when minus is input. The

function Negative Signed Action returns the negatively signed action for a given signed

action (e.g. returns Signed Action plus read when Signed Action minus read is given).

It simply returns the equivalent action with a negative sign using the Negative Sign

function. The pattern-matching construct with a single case deconstructs a record

type for reading its fields. The specification of these functions are given in Figure 7.8.

The Negative Signed Authorization function returns the negatively signed au-

thorization term for a given term, i.e. (si, oj, (-/+)at) is returned for a given term (si,

oj, (+/-)at).

An authorization policy is specified as a set whose elements are authorization

terms. This specification uses the set type in Coq, which implements sets as lists. The

140

Inductive Authorisation Signs : Set :=

| plus | minus.

Record SignedAction : Set := Signed Action

{Sign: Authorisation Signs;

Action: Actions}.

Definition Negative Sign (sign: Authorisation Signs) : Authorisation Signs :=

match sign with

| plus ⇒ minus

| minus ⇒ plus

end.

Definition Negative Signed Action (sa: SignedAction): SignedAction :=

match sa with Signed Action sign action ⇒ Signed Action (Negative Sign sign)

action end.

Definition Signed Actions := set SignedAction.

Parameter SA : Signed Actions.

Record Authorisation Term :Set := authorisation

{o: AuthorisationObject ;

s : AuthorisationSubject ;

sa: SignedAction}.

Definition Authorisation Policy := set Authorisation Term.

Definition AUTH : Authorisation Policy

Figure 7.8. Specification of authorization terms and authorization policy.

append operator (::) concatenates an element or a list to another list. The definition

of authorization policy ends with the special list constructor nil. The definition for an

authorization policy is provided in Figure 7.9.

7.5. Formal Specification of Hierarchies in Security Policies

This section presents the generic formal definition of hierarchies. Data system

specific membership relations had been defined previously. Here, we present the generic

141

Definition AUTH : Authorisation Policy :=

(authorisation project 1 db alib (Signed Action plus read)) ::

(authorisation project 1 db alib (Signed Action minus write)) ::

(authorisation project 1 db grad student (Signed Action plus write)) ::

(authorisation mail server uni user (Signed Action plus read)) ::

(authorisation mail server uni user (Signed Action plus write)) ::

(authorisation mail server non uni user (Signed Action plus read)) ::

(authorisation email Member (Signed Action plus send)) ::

(authorisation email Member (Signed Action plus receive)) ::

(authorisation report Project member (Signed Action plus write)) ::

(authorisation Server Admin staff (Signed Action plus administrate)) ::

nil.

Figure 7.9. An example authorization policy specification.

formal specification for hierarchies.

The Object-Type Hierarchy (OTH) depends on the relation ≤T (specified by

Lt eq object rel) which specifies that a given object is a member of an object type.

This is determined by membership to the relation Object is Type in the data model.

The predicate Lt eq object type is true if two supplied entites are a member of the

Object is Type relation. Two entities are a member of the ≤T relation if the first entity

is an object, the second entity is an object type and they satisfy the Lt eq object type

predicate. The specification of the ≤T relation is given in Figure 7.10.

The Role Hierarchy (RH) is based on the relation ≤R. The predicate Lt eq role

is true if two roles are member of domain specific relation Descendant Role. Since

this hierarchy consists only of roles, the inverse of this relationship is specified by

the predicate Lt eq role inv. The relation ≤R is specified by Lt eq role rel which

states that two roles are a member of ≤R if they satisfy the Lt eq role predicate. The

specification of the ≤R relation is given in Figure 7.11.

After the specification of ≤ relations the next step is specifying hierarchies for-

142

Definition Lt eq object type (o: Object Name) (ot : Object Type) :Prop :=

In Object Prod Object Type Map (o, ot).

Definition Lt eq object rel (o a: Entity) (o b: Entity) : Prop :=

match o a with

object o ⇒
match o b with

object type ot ⇒ Lt eq object type o ot

| ⇒ False

end

| ⇒ False

end.

Figure 7.10. The specification of the ≤T relation.

Definition Lt eq role rel (r a : Entity) (r b : Entity) : Prop :=

match r a with

role ra ⇒
match r b with

role rb ⇒ Lt eq role ra rb

| ⇒ False

end

| ⇒ False

end.

Figure 7.11. The specification of the ≤R relation.

143

mally. There are 5 types of hierarchies which are defined with the inductive type

Hierarchy Types. An hierarchy is defined by an hierarchy type, a primitive set of

entities upon which hierarchy is constructed, a secondary set of entities which defines

the relations with the primitive set, and the ≤ relation between entities the type of

which changes according to the primitive and secondary sets.

From this definition, OTH is a hierarchy whose type is O T H, whose primary

set is the set of objects, whose secondary set is the set of object types, and which is

based on ≤T relation. RH hierarchy which is of type R H, has the role set as both

primary and secondary set and is based on the ≤R relation. The specification of OTH

and RH are given in Figure 7.12.

Inductive Hierarchy Types : Set := | O T H | R H.

Record Hierarchy : Type := hierarchy

{HierarchyType: Hierarchy Types;

PrimitiveSet : Set;

AggregateSet : Set;

Lt eq : Relation Entity}.

Definition OTH : Hierarchy :=

hierarchy O T H Object Name Object Type Lt eq object rel.

Definition RH : Hierarchy := hierarchy R H Role Role Lt eq role rel.

Figure 7.12. The specification of OTH and RH.

7.6. Conflict Checking of Authorization Policies with the Coq Theorem

Prover

Conflict checking of security policy rules determines modal conflicts in security

policies. A modal conflict is a conflict where a subject is given both a permission and a

denial for a given object. In this section, for the purpose of conflict checking of security

policy rules, we use a simple model for authorization policy rules. Instead of using the

identifiers of subjects and objects, we use integers for identification. Additionally, we

assume that there is no role hierarchy. We also omit conditions and location formulas

144

from this analysis.

7.6.1. Authorization Policy Model

The specification of authorization policy model for conflict checking is given in

Figure 7.13. Authorization subjects and objects are specified with the types Autho-

rizationSubject and AuthorizationObject as “subject i ” and “object j ” where i,j are

natural numbers. We omit the names of subjects and objects since they are irrelevant

for specification and verification purposes. The set of actions is extendible, yet a min-

imal set used here includes the read, write and execute actions. This is a finite set

with known elements specified using the inductive type Actions.

Authorization signs specified with the type Authorization Signs define permis-

sions for an action. Plus (+) denotes explicit permission and minus (-) denotes ex-

plicit denial. A signed action is an action associated with a sign and is of the form

Signed Action sign action (such as Signed Action plus read). This utilizes the Record

type in Coq, which is similar to the “struct” construct in C language, with the differ-

ence that all instances must be well-typed and values must be determined at the time

of declaration. The Sign field corresponds to an authorization sign, whereas Action

field is a member of the inductive type Actions.

The function Negative Sign returns the negative of a given sign. The function

utilizes the pattern matching construct match in Coq to determine the value of the

input sign. It returns minus if plus is input and returns plus when minus is input. The

function Negative Signed Action returns the negatively signed action for a given signed

action (e.g. returns Signed Action plus read when Signed Action minus read is given).

It simply returns the equivalent action with a negative sign using the Negative Sign

function. The pattern- matching construct with a single case deconstructs a record

type for reading its fields.

An authorization term is the basis of an authorization rule. This is a triplet of the

form (si, oj, sa) where si : AuthorizationSubject, oj : AuthorizationObject and sa :

145

Inductive Entity : Set := | subject e : nat → Entity | object e : nat → Entity.

Inductive AuthorisationSubject : Set := | subject : nat → AuthorisationSubject.

Definition AS E (aus : AuthorisationSubject) : Entity :=

match aus with subject u ⇒ subject e u end.

Coercion AS E : AuthorisationSubject >-> Entity.

Inductive AuthorisationObject : Set := | object : nat → AuthorisationObject.

Definition AO E (auo: AuthorisationObject) : Entity :=

match auo with object u ⇒ object e u end.

Coercion AO E : AuthorisationObject >-> Entity.

Inductive Actions : Set := | read | write | execute.

Inductive Authorisation Signs : Set := | plus | minus.

Record SignedAction : Set := Signed Action

{Sign: Authorisation Signs; Action: Actions}.

Record Authorisation Term : Set := authorisation s : AuthorisationSubject ; o :

AuthorisationObject ; sa : SignedAction}.

Definition signedaction (a: Authorisation Term) : SignedAction :=

match a with authorisation s o sa ⇒ sa end.

Definition Negative Sign (sign: Authorisation Signs) : Authorisation Signs :=

match sign with | plus ⇒ minus | minus ⇒ plus end.

Definition Negative Signed Action (sa: SignedAction): SignedAction :=

match sa with

Signed Action sign action ⇒ Signed Action (Negative Sign sign) action end.

Definition Negative Signed Authorisation (a u: Authorisation Term) :

Authorisation Term :=

match a u with

authorisation a s a o s a ⇒ (authorisation a s a o (Negative Signed Action

s a))

end.

Definition Signed Actions := set SignedAction.

Parameter SA : Signed Actions.

Figure 7.13. The specification of authorization policy model for conflict checking.

146

SignedAction. An authorization term determines whether policy explicitly allows or

denies an action on an object by a subject. An authorization term is specified as autho-

rization s o sa. For example, an authorization term (s1, o2,+read) is specified as autho-

rization (subject 1) (object 2) (Signed Action plus read). The authorization term is de-

fined with the record Authorization Term. The Negative Signed Authorization func-

tion returns the negatively signed authorization term for a given term. (si, oj, (−/+)a)

is returned for a given term (si, oj, (+/−)a).

An authorization policy is a set of authorization terms. This definition uses the

set type in Coq, which implements sets using lists. The :: infix operator on lists is

appends an element to the head of the list. A list is then specified as a::b::c::nil where

nil marks the end of a list. The set AUTH defines a security policy. The Coq code for

the example authorization policy for conflict checking is given in Figure 7.14. This def-

inition corresponds to the policy {(s5, o3,+read), (s5, o3,−execute), (s2, o3,+write),

(s1, o1,+write), (s1, o1,−execute), (s3, o2,+read), (s2, o5,+execute)}. We assume that

the reader has basic knowledge of Coq syntax and concepts for the upcoming specifi-

cation fragments.

Definition Authorisation Policy := set Authorisation Term.

Definition AUTH : Authorisation Policy :=

(authorisation (subject 5) (object 3) (Signed Action plus read)) ::

(authorisation (subject 5) (object 3) (Signed Action minus execute)) ::

(authorisation (subject 2) (object 3) (Signed Action plus write)) ::

(authorisation (subject 1) (object 1) (Signed Action plus write)) ::

(authorisation (subject 1) (object 1) (Signed Action minus execute))::

(authorisation (subject 3) (object 2) (Signed Action plus read)) ::

(authorisation (subject 2) (object 5) (Signed Action plus execute)) ::

nil.

Figure 7.14. The example authorization policy specification for conflict checking.

147

7.6.2. Equality Functions and Decidable Equality

Function definitions on types require Boolean equality functions, whereas proof

definitions require equality lemmas. Coq has a well-defined basis for equality of basic

pre-defined types such as nat, bool etc. but the proof author needs to define basic lem-

mas for defining and checking equality of new types. Checking the equality of subjects

and objects is based on equality of natural numbers. The beq nat function to check

equality of natural numbers is defined in Coq standard library. The Boolean equality

functions return true if two given terms are equal and false otherwise. The eq as bool

function checks if two subjects si and sj are equal. Naturally, si = sj if i = j. For every

boolean equality functions some lemmas should be proved. The lemma beq eq true

defined in the Coq standard library specifies that when a boolean equality function re-

turns true, the input parameters are equal. For authorization terms, the corresponding

lemma is eq aterm beq eq. The converse of this lemma, eq aterm bool shows equal,

states that whenever two authorization terms are equal, boolean equality function re-

turns true. When two terms are different the boolean equality function should return

false. This is specified with the lemma eq aterm bool shows diff. Boolean equal-

ity functions also need to satisfy the identity equality a = a specified as the lemma

eq aterm bool id. Since an authorization term contains a subject, an object and a

signed action, we have also proved all the lemmas for these types with the same pat-

tern prior to proof of equality lemmas for authorization terms. Decidable equality

lemmas are needed for set operations in the standard Coq library on user-defined

types. The type eqdec defines a decidable equality type. For each user defined type

that requires set operations a theorem that matches this pattern must be proved. For

authorization terms the theorem auth eq dec has been proved. Once again proving

this theorem requires that decidable equality lemmas be proven on subjects, objects

and signed actions. The Coq code is presented in Figure 7.15.

7.6.3. Computation on Authorization Policy

An authorization policy may be specified as a pre-defined set or an empty set.

In both cases, add and remove operations should be supported and both operations

148

Definition eq as bool (as1 as2 : AuthorisationSubject) : bool :=

match as1 with subject n1⇒
match as2 with subject n2 ⇒ eq nat bool n1 n2 end

end.

Definition beq eq true: ∀ x y :A, x =y true = beq x y.

Lemma eq aterm beq eq :

∀ x y : Authorisation Term, eq aterm bool x y = true → x = y.

Lemma eq aterm bool shows equal :

∀ aterm1 aterm2 : Authorisation Term,

aterm1= aterm2 → eq aterm bool aterm1 aterm2 = true.

Lemma eq aterm bool shows diff :

∀ aterm1 aterm2 : Authorisation Term,

aterm1 �= aterm2 → eq aterm bool aterm1 aterm2 = false.

Lemma eq aterm bool id :

∀ aterm : Authorisation Term, eq aterm bool aterm aterm = true.

Definition eqdec (A:Set) := ∀ a b : A, {a = b}+{a �= b}.

Theorem auth eq dec: eqdec Authorisation Term.

Figure 7.15. Specification of equality functions and decidable equality.

must not introduce modal conflicts. The function Add Authorization adds an autho-

rization term to an existing authorization policy. The function find negative or same

checks if the given authorization term already exists, and if a negatively signed au-

thorization term for the given term exists in the policy. If not, the given term is

appended to the head of the policy list. Otherwise the policy is returned as is. The

find negative or same function does this check for every given pair of authorization

terms and policy. This function is a partial and recursive function. Partial functions

return the type option A, where A is of sort Set. In this case A = Authorization Term.

For values that the function is defined, Some a:A is returned; None is returned when

the function is undefined. Some a is returned when the head of the list corresponds to

the same or a negatively signed term and None is returned when the list is empty, i.e.

no term with these properties has been found. The searching continues by recursively

calling the function with the remaining part of the policy list.

149

The remove function Remove Authorization finds and removes an authorization

term from the policy and returns the remaining policy. This recursive function works

by comparing the head of the policy list with the term to be removed. If the two

terms are the same (checked with eq aterm bool) then the search continues with the

head element removed, otherwise, the function searches the remaining list and keeps

the head element. The function terminates if there is no more term left to search. The

Coq specification of the functions for computation on authorization policy is given in

Figure 7.16.

7.6.4. Defining and Checking Conflict-Free Properties

The predicates presented in Figure 7.17 are used for checking conflicts in policies.

The first predicate, No Conflict asserts that a given policy is modal conflict-free.

Contains No Conflicting predicate asserts that a new term that is intended to be

added to a policy does not cause a modal conflict. These predicates are “inductive

predicates”. Inductive predicates in Coq are similar to predicates in Prolog, but have

higher expressive power. They are defined using constructors, just like an inductive

data type, with the difference that they are in the sort Prop rather than Set. The

constructors define the propositions similar to Peano induction P (0), P (n) → P (n +

1), where P is a predicate. The inductive predicates defined below are recursive in

the sense that they refer to their own names. The No Conflict predicate states the

following:

(i) Any empty policy is conflict free,

(ii) Any policy with only one term is conflict free,

(iii) If two given terms x and y are not mutually negatively signed, and adding x and

y separately does not introduce a conflict, then adding both elements does not

introduce a conflict.

The predicate Not Negative Sign asserts that two authorization terms x and y are

not mutually negatively signed. This predicate states that the negatively signed form

of x should be different from y.

150

Definition Add Authorisation (new at : Authorisation Term)

(auth policy : Authorisation Policy) : Authorisation Policy :=

match find negative or same auth policy new at with

| None ⇒ new at :: auth policy

| Some y ⇒ auth policy

end.

Fixpoint find negative or same (l :Authorisation Policy)

(elem:Authorisation Term){struct l}:option Authorisation Term :=

match l with

nil ⇒ None

| a::tl ⇒ match negative or same a elem with

true ⇒ Some a

| false ⇒ find negative or same tl elem

end

end.

Fixpoint Remove Authorisation (rem at : Authorisation Term)

(auth policy : Authorisation Policy) {struct auth policy} : Authorisation Policy

:=

match auth policy with

| nil ⇒ auth policy | a::x ⇒
match eq aterm bool rem at a with

| true ⇒ x

| false ⇒ a :: Remove Authorisation rem at x

end

end.

Figure 7.16. Specification of functions for computation on authorization policy.

151

In order to verify that a given policy AP is conflict free, a theorem of the

form No Conflict AP needs to be proven. This requires successive application of

cons no conflict until the goal reduces to a policy with a single element or no el-

ements, which is then proved by single no conflict or empty no conflict. Theorem

AUTH Conflict Free proves that the pre-defined policy AUTH is conflict-free. Non-

NegativeAuth is a custom tactic that unfolds definitions of auxillary functions and

applies the discriminate tactic of Coq on equalities of the form (x = y) where x and y

are two distinct constructors of the same type. Checking whether a new term would

introduce a conflict is achieved as follows:

(i) A new term does not introduce a conflict to an empty policy,

(ii) If the policy contains only one term, the new term should not be mutually neg-

atively signed with the existing one,

(iii) If a new term is not mutually negatively signed with the term at the head of the

policy (x), and the remaining policy (l) itself would not conflict with the addition

of the new term, then the new term would not conflict with the complete policy

(x::l).

Verifying that a new element does not introduce a conflict into a policy is achieved in

a similar fashion to verifying that a policy is conflict free. The inductive constructors

of Contains No Conflicting are applied until the policy is empty. As an example, the

authorization term (s4, o4,+read) is checked in the theorem new add. These theorems

are presented in Figure 7.17. They are re-usable for verification of other policies and

terms.

7.6.5. Verification of Policy Functions

The policy should remain consistent when new authorization terms are added

and removed. To ensure consistency, theorems about preservation of the conflict-free

property should be proved for the fuctions to add and remove authorization terms. We

list the proof scripts for the functions for adding and removing authorization terms,

together with the sub-goals generated and the explanation on how they are solved.

152

Inductive No Conflict : Authorisation Policy → Prop :=

| empty no conflict : No Conflict nil

| single no conflict : ∀ a t : Authorisation Term, No Conflict (a t ::nil)

| cons no conflict : ∀ (x y :Authorisation Term) (l : Authorisation Policy) ,

Not Negative Sign x y → No Conflict (cons y l) → No Conflict (cons x l) →
No Conflict (cons x (cons y l)).

Definition Not Negative Sign (x : Authorisation Term) (y :Authorisation Term):

Prop:= ¬ (Negative Signed Authorisation x = y).

Theorem AUTH Conflict Free : No Conflict AUTH.

Proof.

unfold AUTH. repeat apply cons no conflict ; try NonNegativeAuth;

apply single no conflict.

Qed.

Ltac NonNegativeAuth :=

unfold Not Negative Sign; unfold Negative Signed Authorisation;

unfold Negative Signed Action; unfold Negative Sign; discriminate.

Inductive Contains No Conflicting (aterm: Authorisation Term) :

Authorisation Policy → Prop :=

| empty not contain: Contains No Conflicting aterm nil

| single not contain: ∀ x : Authorisation Term,

Not Negative Sign x aterm → Contains No Conflicting aterm (x ::nil)

| cons not contain : ∀ (x :Authorisation Term) (l : Authorisation Policy) ,

Not Negative Sign aterm x → Contains No Conflicting aterm l →
Contains No Conflicting aterm (cons x l).

Lemma new add : Contains No Conflicting

(authorisation (subject 4) (object 4) (Signed Action plus read)) AUTH.

unfold AUTH.

repeat apply cons not contain; try NonNegativeAuth.

apply empty not contain.

Qed.

Figure 7.17. The predicates and theorems used for checking conflicts in policies.

153

We will not show the proof of the lemmas. The lines beginning with the > sign

present the proof script and the remaining lines are the output of the Coq theorem

prover. The first theorem, presented in Figure 7.18, is about the operation for adding

an authorization term to a security policy. If a security policy is conflict-free, then

adding an element using the Add Authorization function also produces a conflict free

policy. The “unfold” tactic replaces the name of the Add Authorization function with

its definition. The Coq output to this tactic lists the hypotheses and new generated

sub-goals.

Theorem Add Conflict Free :

∀ (aterm: Authorisation Term) (policy : Authorisation Policy), No Conflict policy

→ No Conflict (Add Authorisation aterm policy).

> intros aterm policy.

> unfold Add Authorisation.

aterm : Authorization Term

policy : Authorization Policy

No Conflict policy →
No Conflict

match find negative or same policy aterm with

|Some => policy

|None => aterm :: policy

end (1/1)

Figure 7.18. Theorem for adding an authorization term to a security policy without

introducing conflicts.

The “functional induction” tactic derives the proof terms for structurally recursive

functions, defines relevant hypothesis for each branch of the function and automatically

performs rewriting steps using the equalities generated by the tactic. The application

of the functional induction tactic is presented in Figure 7.19. First sub-goal (1/3) is

solved by simplification and application of the assumption that a policy with a single

term does not have a modal conflict. Second sub-goal (2/3) is solved automatically.

The application of the tactic generalize, presented in Figure 7.20, on the third

154

> functional induction first in policy negative or same policy aterm.

l : Authorization Policy

elem : Authorization Term

H eq : l = nil

No Conflict nil → No Conflict (elem :: nil) (1/3)

> intros; simpl; apply single no conflict.

No Conflict (a :: tl) → No Conflict (a :: tl) (2/3)

> auto.

No Conflict (a :: tl) →
No Conflict

match find negative or same tl elem with

|Some ⇒ a :: tl

|None ⇒ elem :: a :: tl

end (3/3)

Figure 7.19. The application of the functional induction tactic.

sub-goal (3/3) in Figure 7.19 generates 2 new sub-goals. The first sub-goal is readily

solvable with the information contained in the goal. The second sub goal requires

longer work. We first use the lemma that states removing an element from the head

of the policy does not violate the No Conflict property. This changes our goal to 3

new sub-goals.

This sub-goal states that elem and a are not mutually negatively signed au-

thorizations. We have this information in hypothesis H eq 0 but the symmetrical

property of Not Negative Sign needs to be used and the goal needs to be converted

from propositional predicate to boolean predicate. We then unfold the definition of

the boolean predicate negative or same and use the logical rule P → P ∨ Q (or left

in Coq).

The sub-goal (2/3) is already in the hypothesis Hb. To prove the sub-goal (3/3),

we make use of hypotheses Ha and Hb to get No Conflict(a :: tl) → No Conflict(tl)

which is solvable by a separate lemma named No Conflict Remove of the same form.

155

> generalize H ; case first in policy negative or same.

a : Authorization Term

tl : list Authorization Term

H eq : l = a :: tl

H eq 0 : negative or same a elem = false

H : No Conflict tl → No Conflict

match find negative or same tl elem with

|Some ⇒ tl

|None ⇒ elem :: tl

end

Authorization Term → (No Conflict tl No Conflict tl) →
No Conflict (a :: tl) → No Conflict (a :: tl) (1/2)

> intros; assumption.

(No Conflict tl → No Conflict (elem :: tl)) → No Conflict (a :: tl) → No Conflict

(elem :: a :: tl) (2/2)

> intros; apply cons no conflict.

Ha : No Conflict tl → No Conflict (elem :: tl)

Hb : No Conflict (a :: tl)

Not Negative Sign elem a (1/3)

> apply Not Negative Is Reflexive; apply not negative bool prop.

> unfold negative or same in H eq 0.

> apply or left with (b:=eq aterm bool a elem); assumption.

No Conflict (a :: tl) (2/3)

> assumption.

No Conflict (elem :: tl) (3/3)

> apply H0.

> generalize H1 ; apply No Conflict Remove.

Figure 7.20. The proof of the theorem about adding authorization terms without

introducing conflicts.

156

This completes the proof of the first theorem.

The second theorem is about the operation for removing an authorization term.

The Coq specification of this theorem, together with its proof, is presented in Figure

7.21. For the remove operation, some lemmas will be introduced. These lemmas are

based on the Coq function incl, which defines set inclusion on lists. The definition incl

x y states that the list x is included in the list y. The first lemma states that, if a list x

is included in another list y, adding the same element z to both lists does not violate

this property.

The second lemma states that, if a list (policy) t is included in a list x and x

is conflict-free then t is also conflict free. The third lemma states that, a policy from

which an authorization term is removed, is always included in the original policy. The

second theorem states that if a policy is conflict-free, removing an element using the

Remove Authorization function produces a conflict-free policy.

The first sub-goal is solvable by the auto tactic. The second sub-goal is di-

rectly provable with the No Conflict Remove lemma. For solving the third sub-goal,

the inclusion hypotheses presented before are applied in succession, and the proof is

completed.

157

Lemma incl same add : ∀ (z : Authorisation Term) (x y : Authorisation Policy),

incl x y → incl (z ::x) (z ::y).

Hypothesis incl no conflict : ∀ (x t : Authorisation Policy),

incl t x → No Conflict x → No Conflict t.

Lemma incl remove: ∀ (r : Authorisation Term) (x : Authorisation Policy),

incl (Remove Authorisation r x) x.

Theorem Remove Conflict Free :

∀ (aterm: Authorisation Term) (policy : Authorisation Policy),

No Conflict (policy) → No Conflict (Remove Authorisation aterm policy).

> intros aterm policy.

> functional induction Remove Authorisation aterm policy.

rem at : Authorization Term

auth policy : Authorization Policy

H eq : auth policy = nil

No Conflict nil → No Conflict nil (1/3)

> auto.

No Conflict (a :: x) → No Conflict x (2/3)

> apply No Conflict Remove.

No Conflict (a :: x) →
No Conflict (a :: Remove Authorization rem at x) (3/3)

> apply incl no conflict with (x := a::x) (t := a :: Remove Authorisation rem at

x); (t:= a :: Remove Authorization rem at x);

apply incl same add ;

apply incl remove.

> Qed.

Figure 7.21. The specification and proof of the theorem about the removal of

authorization terms from security policies without introducing conflicts.

158

8. CASE STUDIES

In this section, two case studies will be presented. The first case study is about a

joint research project between a university, a commercial company and a government

organization. Within the first case study, we present inter-domain security policies

and their formal specifications in the FPFM-RBAC model. We also present an infor-

mation flow analysis with spatio-temporal model checking using the Ambient Calculus

model checker. Information flow analysis includes different kinds of security breach

scenarios in multi-domain mobile networks. The focus is on information leakages be-

cause of mobility and inter-domain actions. Second, we present an Online Library

case study. Online Library case study includes security policy specifications with the

XFPM-RBAC policy language.

8.1. Case Study I: Joint Research Project

A university, a commercial company and a government organization are con-

nected via the Internet. The interconnection between the domains are used to ex-

change information and use specified information resources from each domain to other

domains. The overview of the case study is depicted in Figure 8.1.

The university technology development center will be used for inter-domain ac-

cess by commercial and government organizations. The technology development center

hosts joint projects whereby students and researchers from either institution partici-

pate as project members. The project members need to access and share information

both locally and remotely from different locations. The members of each organization

will also be allowed to access the resources and applications through mobile commu-

nication and computing devices.

In this section, an inter-domain case study will be presented. The case includes a

sample inter-domain security policy with location and mobility constraints. Examples

for information flow analysis based on spatial and temporal model checking will be

159

Commercial
domain

Government
Domain

University
Domain

Internet

University Mobile
user

Government
Mobile user

Inter-domain
policy

Inter-domain
policy Commercial

Mobile user

Commercial
services

Government
Services

Research
services

Inter-domain access

Mobility

R
ol

e&
R

es
ou

rc
e

m
ap

Unversity Domain
Policy

Government Domain
Policy

Commercial
Domain Policy

Figure 8.1. Overview of joint research project case study for a university, a

commercial company and a government organization.

presented. The analysis focuses on information leakages because of mobility and inter-

domain actions.

Our case study scenario is as follows. Three organizations are working on a

joint e-health research project. Norman Mullis, who is a professor in Computer Sci-

ence department, works in the project with Josephine Frantz, who is a researcher in

University A, and Cecilia Miele, who is the system administrator for University A.

University A hosts a web application server for the project. Commercial company B

members Maxine Rundell is the project manager of the consortium and Daniel Men-

diola is a software engineer in the project. Florence Mc. Bride, who is a researcher

and doctor from the Hospital C, is responsible for assessment of e-health project to

medical research. Anthony Weathers, who is a social security expert is responsible for

providing research data for social security patients and has the supervisor role in the

project.

160

8.1.1. Inter-Domain Policies for Joint Research Project

The project members have a need to access and share information both locally

and remotely from different locations. The members of each organization will also be

allowed to access the resources and applications through mobile communication and

computing devices.

The main roles and their functions for joint project access are as follows:

• Lecturers: Specific lecturers that work in a joint project as declared and au-

thorised by their respective universities will have access to the joint projects.

Clearance level for lecturers is assumed to be “Confidential” i.e. equal to the

highest level of classification for shared information. A lecturer from either uni-

versity will be designated as the project manager for the joint project.

• Research Assistants: Specific research assistants may take responsibility for a

joint project. The identities and responsibility of research assistants that are

joint project users will be declared and authorised by their respective universities.

The access rights will be according to their responsibilities.

• Graduate Students: Graduate students may take part in a joint research project

for a specified duration. This time period is during their graduation thesis. A

graduate student must be supervised by a lecturer.

The access rights for these roles in the joint project scenario are,

• For lecturers assuming the responsibility of “project manager”:

(i) Add/remove (manage) project users,

(ii) Add/remove/change (manage) responsibilities,

(iii) Approve project files,

• For lecturers assuming the responsibility of “supervisor”:

(i) Manage sub-projects, (e.g. for source-code)

(ii) Create/Read-Write (Edit) files,

(iii) Create/Edit progress reports,

161

(iv) Create/Edit Project plans,

(v) Approve sub-project documents.

• For research assistants assuming the responsibility of “system administrator”

(i) Perform maintenance (e.g) backups,

(ii) View project users, sub-projects, responsibilities,

(iii) Perform operations assigned by project manager or supervisor based on

delegated access rights. This excludes approval of project and sub-project

documents.

• For research assistants/graduate students assuming the responsibility of “re-

searcher”

(i) Create / Edit files except progress reports and project plans,

(ii) Read progress reports

(iii) Read project plans

8.1.2. Formal Specification of Security Policies for Joint Research Project

with FPM-RBAC

In this section, we present a case study for the formal specification of security

policies with FPFM-RBAC. This case study is based on the Joint Research Project

which has been outlined in the previous section. The data sets, role hierarchies, inter-

domain access rights, role maps, separation of duty rules, and formalization of inter-

domain security policy rules regarding the case study are given.

8.1.2.1. Data Sets of Joint Research Project Case. The mathematical definitions for

data sets of University A (UniA), Commercial Company B (CorpB), and Hospital C

(HosC) related to the joint project case are given in the specification 8.1 below.

Γ = {UniA,CorpB,HosC}, (8.1)

HUniA = {h11, h12, h13}, HCorpB = {h21, h22}, HHosC = {h31, h32},
H = HUniA ∪HCorpB ∪HHosC ,

UUniA = {nmullis, jfrantz, cmiele},

162

UCorpB = {dmendiola,mrundell},
UHosC = {fmcbride, aweathers},

U = UUniA ∪ UCorpB ∪ UHosC ,

O = {jrapp, unif, jrep, prd}
T = {Obj, App, F ile,Db, Portable, Server}

OTH = {(jrapp, App), (unif, F ile), (jrep, F ile), (prd,Db)}

The elements of the set of hosts represent the following in our scenario: h11: Research

lab client of jfrantz, h12: Application server used for joint research project of University

A, h13: The portable PC of nmullis, h21: The portable PC of mrundell, h22: The file

server of CorpB, which holds joint project reports, h31: File server of Hospital C

containing patient records, h32: The portable PC of fmcbride. The elements of the set

of objects represent the following in our scenario: jrapp: Joint research project web

application, unif : Joint research project work file, jrep: Joint research project project

report file, prd : Patient health records database.

The definitions for inter-domain services are given in the specification 8.2. Here,

Ŝ1 represents the Joint Research Project inter-domain service of UniA and Ŝ2 repre-

sents the Patient Health Records inter-domain service of HosC.

IGamma ={Ŝ1, Ŝ2} (8.2)

Ŝ1 ={{UniA,CorpB,HosC}, {jrapp, unif, jrep}, {App, F ile},
{h11, h12, h13, h21, h22, h31, h32}},

Ŝ2 ={{UniA,HosC}, {prd}, {App,Db, F ile}, {h12, h31}}

8.1.2.2. Role Hierarchies of of Joint Research Project Case. In this section we present

example role hierarchies for the three domains and the inter-domain role hierarchy re-

lated to the joint project scenario. For this purpose the domain role sets and the set

163

of inter-domain roles are assumed to be as given in the specification 8.3:

R = RUniA ={Member, T eaching, Research, Admin, Lecturer, Faculty, RAssist,

SysAdmin},
RCorpB ={Member, Engineer, Research,Mgr, RnDEng, SwEng, PrjMgr},
RHosC ={Member,Medical,Doctor, SocialSec},

RΓ ={JointRes, ResPrj, Admin,ResPrjMgr, ResGrpMgr,Researcher,

Supervisor, SysAdmin} (8.3)

Note that the structure of role hierarchies is not restricted to a tree, but a tree structure

is chosen here for sake of simplicity. The mathematical representations of the role

hierarchies for University A RHUniA, B Corporation RHCorpB, Hospital C RHHosC

and the inter-domain role hierarchy RHΓ are presented in the specification 8.4.

RHUniA ={Member ≺ Teaching,Member ≺ Research,Member ≺ Admin,

Teaching ≺ Lecturer, Research ≺ Faculty, Research ≺ ResAssist,

Admin ≺ SysAdmin}
RHCorpB ={Member ≺ Engineer,Member ≺ Research,Member ≺ Mgr,

Engineer ≺ SwEng,Research ≺ RnDEng,Mgr ≺ PrjMgr}
RHHosC ={Member ≺ Medical,Medical ≺ Doctor,Member ≺ SocialSec}

RHΓ ={JointResearch ≺ ResPrj, JointResearch ≺ Admin,

ResPrj ≺ ResPrjMgr, ResPrj ≺ ResGrpMgr,ResPrj ≺ Researcher,

Admin ≺ Supervisor, Admin ≺ SysAdmin} (8.4)

8.1.2.3. Inter-Domain Access Rights for Joint Research Project. In this section we

present inter-domain access policy examples for the joint research project case. The

“project manager” (ResPrjMgr) may use the Joint Project service, but may not access

patient health records. In contrast “Supervisor”(Supervisor) may access health records

but not Joint Project resources. “System administrator” (SysAdmin) may perform

164

administrative duties on Joint Project service, for example to manage and upgrade

the joint project web application. A service access matrix for the joint project inter-

domain access is given in Table 8.1.

Table 8.1. Service access matrix for joint research project inter-domain access.

Inter-Domain Role Inter-Domain Service

Joint Project Health Records

ResPrjMgr Yes No

ResGrpMgr Yes Yes

SysAdmin Yes No

Researcher Yes Yes

Supervisor No Yes

Detailed access permissions may be granted to these roles based on the services.

An excerpt of a permission assignment relation related to the object jrapp is given in

Table 8.2.

8.1.2.4. Role Maps and Separation of Duty Rules. Here we present some examples

for role mapping and separation of duty rules for our case study. We assume the role

mapping in the specification 8.5 exists.

RMh ={(Lecturer, ResGrpMgr), (RAssist, Researcher), (8.5)

(Faculty, Researcher)}
RMf ={(SwEng,Researcher), (RnDEng,Researcher), (Mgr,ResPrjMgr),

(SocialSec, Supervisor), (Medical, Researcher)}
CRh ={RAssist, Faculty}
CRf ={SocialSec,Medical}
CRΓ ={Researcher, ResGrpMgr}

In this case, the role assignments {(nmullis, Lecturer), (nmullis, Faculty)} would

cause a SOD conflict according to SICR since they map to conflicting inter-domain

roles. Assignments {(fmcbride, Supervisor), (fmcbride, Researcher)} cause a SOD

165

Table 8.2. A Part of Permission Assignment relation for joint project service relating

to object jrapp.

Inter-Domain Role Permission

Object Action

ResPrjMgr jrapp +execute

ResGrpMgr jrapp +execute

SysAdmin jrapp +manage, +write

Researcher jrapp +execute

Supervisor jrapp -execute

conflict according to SRMf since they are mapped by conflicting foreign roles.

8.1.3. Formal Specification of Inter-Domain Security Policy Rules with

FPM-RBAC

Now we present examples for formal specification of inter-domain security policy

rules. The formal specification includes the mobility and access control aspects of

the inter-domain policy. Example policy statements for mobility and inter-domain

access as a verbal form of policy rule are given followed by formal specification of

authorization terms and an interpretation of the location and mobility constraints.

(i) ”Users with Research Project Manager role from Corporation B are allowed to

login with portables to University A.”:

(as = ResPrjMgr, ao = Portable, sa =login,

fo = World[CorpB[T]|p[user[T]|T]|UniA[T]|T],
co = ∃user ∈ U,EDR(user, UniB)∧RAS(user, ResPrjMgr)∧OIT (p, Portable))

Interpretation of the constraints: There is a user, who has assumed the role of

a Research Project Manager, which is logged into a host of object type Portable

and is not yet connected to either UniA or CorpB, in a location that can be

connected to either of the domains UniA and CorpB.

(ii) “Software Engineers of Corporation B can read data from files on the project

server in University A domain from within University A.”:

166

(as = SwEng, ao = h12, sa = read,

fo = World[UniA[h12[file[data]|T]| � user[]|T]|CorpB[T]|T],
co = EDR(user, CorpB) ∧ ADU(user, UniA) ∧ RAS(user, SwEng))

Interpretation of the constraints: UniA contains a project server including a file

with data and the user who has assumed the role Software Engineer, is an active

domain user of UniA and an enrolled domain user of CorpB, is located somewhere

inside UniA.

(iii) “Researchers of University A with a Portable host within Hospital C can not

write files to the patient records database in servers of Hospital C.”:

(as = Researcher,ao= Server, sa = (-) write,

fo = World[HosC[p[user[f []]]|h31[prd[]|T]|T]|T],
co = EDR(user, UniA) ∧ADU(user,HosC) ∧RAS(user, Researcher)

∧ OIT (p, Portable) ∧OIT (prd,Db) ∧ OIT (f, F ile) ∧ OIT (h31, Server))

Interpretation of the constraints: The user who has assumed the role Researcher,

is an enrolled domain user of UniA, and an active domain user of HosC, who is

logged onto a Portable host with a file, is within UniA domain which contains a

Server h31 with a Database prd.

8.1.4. Information Flow Analysis for Inter-Domain Security Policies

Use of the FPM-RBAC policy model enables specification and analysis of infor-

mation flow policies. The Ambient Calculus model checker presented in our previous

work [41] is utilized for this purpose. A novel aspect of FPM-RBAC is that location

and mobility of users, objects and hosts may be included in information flow anal-

ysis and mobility within multiple domains may be addressed. Here we present two

examples, first concerning two domains and the second concerning multiple domains.

8.1.4.1. Information Flow Analysis between Two Domains. In the first example there

are two domains, UniA and HosC. Users may roam between domains, but may be

logged onto one domain. Assume that a security policy rule related to information

flow states that data related to other research projects of University A should not be

167

World

Service 1
Patient
Health

Records

Service 2
Joint

Research
Project

UniA DomainHosC Domain

prd

h31

h11

prec

prec
u2

u2

move/login/logout read/writeLegend:

prec

u2
(1)

(2)
(3)

(4)

(5)
(6)

u2

Figure 8.2. An example mobile user inter-domain access leading to an information

flow policy violation.

in the same location with patient health records. This is formalized with the mobility

constraint (ILFormula). Joint researchers are allowed to login to servers and read files

and databases within UniA and HosC.

In Figure 8.2, an information leakage breach in this setting is shown. The set

of possible actions allowed by the security policy is modeled as an Ambient Calculus

specification (ILSpec1) and the information flow policy rule is modeled as an Ambient

Logic formula (ILFormula) in Equation 8.6. In order to find security breaches, the

specification includes all possible actions of the user and possible movements of the

patient health record, encoded as pdata within the database prec. Here the users

fmcbride and jfrantz with mobile devices have been encoded respectively as u1 and u2.

ILSpec1 ::=HosC[u1[]|h31[prec[pdata[in u2.0|out u2.0]]]]|UniA[h11[u2[out h11.0|
out UniA.0|in HosC.in h31.0|out h31.out HosC.0|in UniA.in h11.0|
in unif.0|in prec.0|out prec.0|out unif.0]|unif [udata[]]]] (8.6)

ILFormula ::=�{¬♦{�{pdata[T]|udata[T]|T}} (8.7)

The model checker finds the sequence of actions that violate the security policy rule

168

ILFormula. The action sequence in specification 8.8 formalized by Ambient Calculus

capabilities leads to a violation of information flow policy:

LCONF0

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
u2[out h11.out UniA.in HosC.in h31]

−−−−−−−−→
pdata[in u2]

−−−−−−−−−−−−−−−−−−−→
u2[out h31.in UniA.in h11]

−−−−−−−−−→
pdata[out u2] LCONF1 (8.8)

The interpretation of these actions is, the university researcher u2 (jfrantz) moves from

UniA domain to HosC domain with a mobile device, reads patient health records from

HosC file server to his mobile device, moves it to the university domain and instead

of writing it to the joint research application server, writes it to the research lab

client where it can be read by other UniA users. Although all of the actions in the

specification are allowed individually by the security policy, a particular sequence of

actions may lead to a security breach as shown in this example.

8.1.4.2. Multi-Domain Information Flow Analysis for Inter-Domain Security Policies.

Assume that the there are security policy rules stating that patient records database

prd may be read directly by users of UniA and HosC but not by CorpB users. The joint

project users in UniA may also write records to joint project web application jrapp of

UniA. Assume that the security policy allows jrapp in Host h12, to be accessible and

readable by Software Engineers in CorpB (dmendiola is encoded as u4). Also assume

that patient records server Host h31 in Domain HosC is accessible by Domain UniA

user nmullis (encoded as u2). These policy rules result in the formalization of security

policy LCONF and the mapping of permissions to the formal specification as detailed

in Table 8.3.

Now we specify an information flow security policy rule that patient records in

HosC domain should not ever occur within CorpB file server h22. This results in a

security policy rule with spatial and temporal formula specified as in specification 8.9.

fo = �{¬♦{�{h22[�{prec[T]|T}]}}} (8.9)

169

Table 8.3. Formal specification in Ambient Calculus for multi-domain scenario.

Subject Permission Formal Specification LCONF in Ambient Calculus

World[HosC[h31[

u2 (read, prd) prd[out h31.out HosC.in UniA.in h11.in u2.0|
u2 (write, prec) prec[in jrapp.0]]]]|
u4 (login, jrapp) UniA[h12[jrapp[out h12.out UniA.in CorpB.in h22.in u4.0

u2 (login, jrapp) |out h12.in h11.in u2.0

u2 (write, jrapp) |out u2.out h11.in h12.0]]

u2 (read, prd) |h11[u2[open prd.0]]]|
u4 (read, jrapp) DomainC[h22[u4[open jrapp.0]]]]

The specifications are given to the model checker to find a counter-example which

satisfies LCONF |= fo.

The model checker generates a total of 81782 states for this scenario. The flow

of states leading to a state in which fo is invalidated denotes the sequence of actions

leading to the unintended information flow. The sequence of actions, corresponding

to the states leading to a counterexample discovered by the model checker is outlined

in specification 8.10.

LCONF0

−−−−−−−−−→
u2(read, prd) LCONF1

−−−−−−−−−−−→
u2(login, jrapp)

−−−−−−−−−−→
u2(write, prec) LCONF2

−−−−−−−−−−−→
u4(login, jrapp) LCONF3

−−−−−−−−−−→
u4(read, jrapp) LCONF4 (8.10)

According to this sequence of actions, User nmullis (u2), who is logged into

h11 in UniA, reads patient records prec from patient records database prd in h31

(LCONF0 →∗ LCONF1). u2 logs into application jrapp and writes prec to appli-

cation jrapp in h12 (LCONF1 →∗ LCONF2). Then software engineer dmendiola (u4)

of CorpB logs into jrapp (LCONF2 →∗ LCONF3). Then u4 reads and discloses the

database records from within file server h22 in CorpB (LCONF3 →∗ LCONF4). The

state LCONF4 violates the policy rule for information flow.

170

UniA
Security policy

UniA

Mobile Terminal
(UniA)

Student

Online Library
Security policy

UniA-UniB
(Inter-Domain)

UniB
Security policy

UniB

Library
Web Server

UniA - UniB
Joint Library

Service

Inter-domain
operations

(Search, Lend,
Access Lib.
Web.App.) Inter-domain

operations

Home Role
Map

Foreign Role
Map

Mobility

Inter-
Domain

Role

Mobile Terminal
(UniB)

LecturerInter-domain
operations

Lecturer

Res.
Assist.

Librarian

Sys.
Admin

Student

Res.
Assist.

Librarian

Sys.
Admin

Figure 8.3. An online library with inter-domain access between two universities.

8.2. Case Study II: Online Library

As a case study for policy specification in XFPM-RBAC, we assume that two

universities UniA and UniB provide common information services for the students,

research assistants and lecturers. The users are mobile and can roam in the network

between domains, access resources in another domain or the Internet. As a specific

inter-domain service, two universities provide on-line library access for on-line and

mobile users. The libraries allow lending books and periodicals to users of both insti-

tutions. The libraries have an online information system for the borrowers to search,

reserve publications and get information on their borrowing status, as well as access

online publications subscribed by that library. The overview of inter-domain security

policy elements of the online library are depicted in Figure 8.3.

Library information consists of periodicals and online publications of other uni-

versities that are accessible by online subscription, information about hard-copy pub-

lications that reside in the library and user specific information (such as borrowing

status).

Users access the online library from within each university campus, from within

each library or by remote access from the Internet. The location of an access has an

171

effect on the available set of permissions. Library services are provided through a web

application. The web application uses a database in the background.

We present XML specifications and results of example XSLT translations defined

according to XFPM-RBAC security policy language for the online library case. Since

the full specification for the Online Library is quite comprehensive, only the main

structure of the specification including some specific examples are presented.

8.2.1. Domain and Inter-Domain Policies for Online Library

The main roles and their access rights for multi-domain access to library are as

follows:

• Lecturers will be able to connect to online library system from Internet and

use local library computers for browsing. They will be able to use the lending

facilities of the library information system.

• Research Assistants will be able to connect to online library system from Internet

and use local library computers for catalogue browsing. The restriction access to

the lending interface outside the university is not allowed.

• Students will be able to access the electronic information resources but will not

be able to use local services from the library of another university.

• Librarians enter information such as online subscriptions, hard-copy publication

information and user specific information.

• System administrators define security policy and services for the system.

The mathematical definitions for data sets of UniA and UniB are given in the

specification 8.11.

Γ = {UniA, UniB} (8.11)

HUniA = {H11, H12, H13, H14, H15}, HUniB = {H21, H22, H23, H24, H25}
H = HUniA ∪HUniB

172

UUniA = {nmullis, jfrantz, cmiele}, UUniB = {mrundell, dmendiola, fmcbride}
U = UUniA ∪ UUniB

RUniA = {Member, Student, Research, ResAssist, Lecturer, Librarian, Admin,

SysAdmin}
RUniB = RUniA

The elements of the set of hosts represent the following in our scenario:

• H11/H21: Library web server of University A/B, for accessing the Library Infor-

mation System.

• H12/H22: A mobile terminal of a student of University A/B.

• H13/H23: A mobile terminal of a lecturer of University A/B.

• H14/H24: A mobile terminal of a research assistant of University A/B.

• H15/H25: A fixed terminal within the library of University A/B.

As an example service definition, the Library service of UniA for our example

case consists of the specification 8.12.

SLibrary = {D1, H
Library
1 , OLibrary

1 , TLibrary
1 }, (8.12)

D1 = {UniA}, HLibrary
1 = {H11, H15}

OLibrary
1 = {Books, Periodicals, Lib Web App, Lib Search, Lib Lend, Lib DB}

TLibrary
1 = {App, F iles,Web App,Database}

Here, Lib App represents an electronic information resources service access for

the library, Lib Lend represents a hard copy lending service access for the library,

Lib Search represents a catalogue browsing service access for the library and Lib DB

represents a library database. A part of Object Type Hierarchy (OTH) relation con-

cerning the Library service is given in the specification 8.13.

OTH ⊂{(App,Web App), (Files, Books), (Files, Periodicals), (8.13)

173

(Web App, Lib App), (Web App, Lib Search), (Web App, Lib Lend),

(Database, Lib DB)}

A tree structure is chosen here for the role hierarchies. As an example, the role

hierarchy for UniA, RHUniA, is given in specification 8.14. For the sake of simplicity

we assume the symmetric role hierarchy also exists in UniB.

RHUniA ={Member ≺ Research,Member ≺ Student,Member ≺ Admin, (8.14)

Research ≺ Lecturer, Research ≺ ResAssist, Admin ≺ Librarian,

Admin ≺ SysAdmin}

In the specification 8.15, we assume the following inter-domain roles RΓ, the inter-

domain hierarchy RHΓ and the home role mapping RMh. Since we have previously

assumed RHUniA = RHUniB for the sake of simplicity, we have RMh = RMf .

RΓ = {Guest, Guest Student, Guest Researcher, Guest Lecturer} (8.15)

RHΓ = {Guest ≺ Guest Student, Guest ≺ Guest Researcher,

Guest Researcher ≺ Guest Lecturer}
RMh = {(Lecturer, Guest Lecturer), (Lecturer, Guest Researcher),

(ResAssist, Guest Researcher), (Student, Guest Student)}

8.2.2. Domain Configuration, Inter-Domain Configuration and Multi-Domain

Security Policy for Online Library with XPFM-RBAC

The XFPM-RBAC specifications for the online library case are given in Appendix

C. In Figure C.1, we present a part of the XML file which defines a domain configu-

ration. The domain configuration includes hosts, users, roles, objects, role hierarchy

and object type hierarchy for the UniA domain.

A part of the inter-domain configuration is presented in Figure C.2. This con-

174

figuration corresponds to the RHf and RMf defined by the foreign domain, and RΓ,

RHΓ and RMh defined by the home domain.

A security policy specification includes the Services, Policy Rules and Loca-

tion Formulas elements. An example security policy rule is presented in Figure C.3.

Here, the policy rule specifies an authorization term (Lecturer, Lib App, execute, lf1,

EDR(Lecturer, UniA)) where lf1 is a location formula and EDR specifies the "En-

rolled Domain User" predicate which means that an user is registered with a domain.

ED(Lecturer, UniA) has the meaning "Lecturer is an enrolled domain user of UniA".

Location formulas are specified under the element Location Formulas and are referred

within the security policy rules with their identifiers.

The Services element includes the service definitions within a security policy. An

example service definition for Lib Service is shown in Figure C.4. The service spec-

ification includes Service Name, the name of the service and Service ID, the service

identifier. It also includes authorization objects, namely the hosts, domains, objects

and object types associated with the service by the Service Host, Service Domain,

Service Object Type and Service Object elements. In the example, the host Host21 is

associated with the actions login and enrol, which constitute the action group named

a. Association of a set of authorization objects with a set of actions restricts the set

of permissions which may be defined in the permission assignment relation related to

the service.

8.2.3. Location and Mobility Constraints for Online Library

Based on the case study, we give some example multi-domain security policy

rules with location and mobility constraints that may be specified using XFPM-RBAC.

Specification 8.16 states that, “Lecturers can use the library services from within either

university or from the Internet”. Specification 8.17 states that, “Research assistants

of University B can access library lending access interface in University A library web

server (host H11) only from within University A”. Specification 8.18 states that, “Guest

175

students can not use the library application of UniA from within UniB”.

(as = Lecturer, ao = Lib App, sa = +execute, (8.16)

fo = UniA[� as[]] ∨ UniB[� as[]] ∨ Internet[� as]),

co = ADU(as, UniA) ∨ADU(as, UniB))

(as = Res Assist, ao = Lib Lend, sa = +execute, (8.17)

fo = UniA[� as[]]| � H11[ao[]]), co = EDR(as, UniB) ∧ ADU(as, UniA))

(as = Guest Student, ao = Lib App, sa = −execute, (8.18)

fo = UniA[� ao]|UniB[� as]), co = ADU(as, UniA) ∨ADU(as, UniB))

Here, ADU(user, domain) specifies the "Active Domain User" predicate which

means that the user has activated a login session to the domain. The location formula

in specification 8.18 is specified in XML format similarly to the example in Figure 5.9

therefore we omit the XML specification in this section. The XSLT transformation for

location formulas discussed in Section 5.5.1 is applied to the XML representation of the

rule in specification 8.18. An input to this transformation is the active user which is

involved in the action. Assuming the rule is applied for the user mrundell, the Ambient

Logic formal specification 8.19 is obtained. This formal specification is presented to

the Ambient Calculus model checker as a satisfaction condition for spatio-temporal

model checking.

lf1 ::= AG− {UniA[SW{Lib App[T]|T}]|UniB[SW{mrundell[T]|T}]}; (8.19)

8.2.4. Generation of Formal Specifications for Online Library with XPFM-

RBAC

The formal specification for a service produces an Ambient Calculus specification

which is checked against the satisfaction condition explained in the previous section.

The formal specifications of the Library Service are obtained by application of the

XSLT transformations presented in Section 5.5.2 for the selected service Lib Service.

176

The inputs to this transformation are the the domain configurations and the security

policy definitions presented above. The result is the XML specification for an Ambient

Calculus process corresponding to the service Lib Service. A part of this specification

is presented in Figure C.5 in Appendix C. We omit the syntactic elements of the cal-

culus and include some of the definitions for the ambients that constitute the location

configuration.

When the Ambient Calculus XSLT transformation is applied to an Ambient

Calculus specification such as the one shown above, the formal specification in (8.20)

is obtained.

ID1 ::= UniA[Host11[Lib App[]]|nmullis[]]|UniB[Host21[Books[]]|mrundell[]];

(8.20)

The Ambient Calculus model checker checks the satisfaction of the Ambient

Calculus specification against the Ambient Logic formal specification presented in the

previous section. In this case, the formula is satisfied by the location configuration.

The satisfaction of the location formula implies that the rule in specification 8.18 is

applicable in the current location configuration and user mrundell is denied access to

execute Lib App.

8.2.5. Separation of Duty Constraints for Online Library with XPFM-

RBAC

Here we present some examples for separation of duty rules for our case study.

We assume the following set of conflicting roles and conflicting services: CRh =

{ResAssist, Lecturer}, CRΓ = {Guest Student, Guest Lecturer}. In this case, the

role assignments {(nmullis, Student), (nmullis, Lecturer)} would cause a SOD con-

flict according to SICR since they map to conflicting inter-domain roles. The assign-

ments {(fmcbride, Guest Researcher), (fmcbride, Guest Lecturer)} would cause a

SOD conflict according to SRMh since they are mapped by conflicting home roles.

177

As an example for constraints evaluation, consider the role-based SOD con-

straints specification in Figure C.6 in Appendix C. Assume that the user mrundell

is assigned to roles {ResAssist, Lecturer, Sys Admin,Admin}. According the fol-

lowing constraints specification, conflicting role set CRID 10 = {ResAssist, Lecturer}
and CRID 11 = {Librarian, Sys Admin,Admin}. For CRID 10, the minimum num-

ber of conflicting roles which will result in a conflict is n conflicting = 2, whereas for

ID 11, n conflicting = 3.

The role assignments of mrundell results in a SOD conflict for the conflicting

role set CRID 10. The evaluation of the SOD constraints specification using XSLT

produces the XML file containing static SOD conflicts in Figure C.7 in Appendix C.

178

9. CONCLUSIONS AND FUTURE WORK

Multi-domain mobile network environments consist of multiple interconnected

domains. Each domain includes mobile users, hosts and objects. Moreover, inter-

domain policies in the multi-domain mobile network environment need to support

concepts such as locations, mobility, role mapping, inter-domain access rights and sep-

aration of duty between domains. We are concerned with formal specification and

verification of security policy in an environment where users roam between different

administrative domains. The problem here is the formal determination of whether

the actions conducted by the users are compliant with the domain and inter-domain

security policies, given a model of a network that includes mobile users roaming dif-

ferent administrative domains with their respective domain security policies and an

inter-domain security policy.

In this thesis, we have presented the Formal Policy Framework for Mobile Net-

works (FPFM). The FPFM framework includes methods and tools for specification of

mobile network configurations, with their respective security policies and verification

of security policies. FPFM is the first security policy framework that includes location

and mobility constraints, role mapping, inter domain access rights and separation of

duty policy rules for multi-domain security policies. FPFM provides integrated sup-

port for verification. This is achieved through a formal security policy model and

integrated verification tools. FPFM provides an incremental and automated means of

developing formal specification of security policies, makes formal methods usable by

security administrators and applications, provides tools to specify and verify complex

temporal and locational constraints in policies and integrates various formal specifica-

tion methods and tools in a single framework.

As the formal basis of the FPFM framework, we have proposed a formal secu-

rity policy model for multi-domain mobile networks named FPM-RBAC. FPM-RBAC

makes use of Ambient Calculus, Ambient Logic and Predicate Logic for specification

of security policies. Ambient Logic is used for the specification of dynamic mobility

179

and location constraints in security policy rules. Ambient Calculus is used for the

specification of the current state of a mobile network and breach scenarios for testing

of policies. The mobility and location constraints in policy rules are matched to the

current state of the mobile network by checking the validity of Ambient Logic formu-

las against Ambient Calculus specifications. Predicate Logic is used for specification

of static constraints within security policy rules, such as domain membership, role

assignments or separation of duty.

We have also proposed a XML-based security policy language named XFPM-

RBAC. The XFPM-RBAC language builds upon the formal security policy model

FPM-RBAC. XFPM-RBAC provides means to access the formal reasoning environ-

ment by system administrators, applications and network elements. A Security Policy

Management Interface (SPMI) application has been developed for authoring security

policies with XFPM-RBAC.

Theorem proving and model checking techniques are used for verification. The

Coq proof assistant tool is used for specification of the formal policy model for a given

network and for the verification of policies. Each authorization policy is represented in

the Calculus of Inductive Constructions (CIC), which is a formal language implemented

by the Coq proof assistant. A model checker for Ambient Calculus has been developed

as part of the framework which checks the validity of Ambient Logic formulas against

Ambient Calculus specifications.

The first contribution of the presented security policy framework is the intro-

duction of a formal inter-domain policy model for mobile networks. Previous studies

address the inter-domain policy aspects for stationary environments where the subjects

and objects are considered to be known in advance, and within fixed locations. Our

inter-domain policy model addresses location and mobility aspects of multi-domain mo-

bile networks. The FPFM framework introduces a distributed administration model,

in which inter-domain rules are defined for foreign roles acting on home domain re-

sources. With the help of this administration model, the FPFM framework does not

require the global knowledge of users and resources and does not introduce conflicts

180

between inter-domain rules of different domains.

Another contribution of our framework is the inclusion of a formal mobility model

in process calculus within security policy. This model is capable of representing mobile

network state as well as complex location and mobility constraints in security policy

rules. To the best of our knowledge, our framework is the first example of a security

policy framework which includes a formal mobility model. Existing studies which

address formal specification of security policy rules with location constraints do not

include a formal mobility model. By incorporating a formal process calculus model,

we enable formal compliance checking of security policy rules with respect to the

state of the mobile network. A novel aspect of the presented model is the support

for formal information flow analysis of security policies related to mobility within

multiple security domains. To support formal analyses on security policies, we have

devised a novel spatio-temporal model checking algorithm for Ambient Calculus with

an improved complexity over existing algorithms.

Third contribution is the integration of formal verification tools for model check-

ing and theorem proving into the security policy framework, together with the ability

to generate formal specifications from security policies for the purpose of verification.

Existing studies on the integration of model checking and theorem proving concentrate

on integration based on the tools or the formal languages. We address the integration

issue based on the model, where we propose a XML based language that encompasses

all the model elements, and generates formal specifications. The approach for genera-

tion of formal specifications from XML based specifications can be applied in different

settings.

The first area for possible improvement is the enforcement of FPFM security

policies. Regarding security policy enforcement, model checking techniques need to be

improved, possibly by using on-the-fly model checking approach. Formal methods in

the framework should be adopted to efficiently handle incremental changes in security

policy and network configuration. An more efficient algorithm for the computation of

the authorization function could be provided on this basis. Another interesting area

181

for further research is support for parallel and distributed computations for model

checking. The current version of the NuSMV temporal model checker does not support

parallelism. Utilization of a temporal model checker which supports parallel model

checking could provide an increase in performance.

Regarding model checking of security policies, the proposed algorithm has proven

to be efficient for off-line verification of security policies with rules of reasonable com-

plexity, which is determined by the number of logical connectives. For very complex

policies which have rules with many logical connectives the analysis will take a long

time, which will not be efficient for real-time analysis of actions in the network. The

number of generated states by the spatial model checker increases exponentially with

the number of active ambients. Methods for reducing the size of the state transition

system need to be investigated. The size of the state transition system is the most

significant element for the time and spatial cost of model checking. Partial order re-

duction techniques decrease the number of the states of the state transition system,

and therefore reduce time consumption and size of generated NuSMV code. The aim

of partial order reduction is to reduce the number of possible orderings that should be

analyzed for checking formula stated in a temporal logic. In partial order reduction,

parallel interleavings of action sequences are replaced by a single path fragment which

respects the orderings in these sequences. To the best of our knowledge, a partial

order reduction for model checking Ambient Calculus specifications does not yet exist.

Therefore, a study in this direction could provide an important contribution. Regard-

ing integration approaches for integrating model checking with theorem proving, a

study to compare and contrast different approaches could be valuable. In this area

there are two different approaches, integration based on the formalism and integra-

tion based on the tool. The first approach is to define an integrated formal method,

based on process calculus, which follows the deep embedding approach. In this formal

language, security policy rules and predicates should be part of the formal language

itself. The second approach is to investigate and possibly develop a verification tool

which provides integrated model checking and theorem proving. Existing verification

tools such as Coq may be utilized for this purpose. The integration of the Ambient

Calculus Model Checker with the Coq theorem prover could be investigated.

182

APPENDIX A: XML SCHEMAS DEFINED IN

XFPM-RBAC

<xs:complexType name=" User_Def ">
<xs:sequence >

<xs:element name=" Assigned_Role"
type=" Role_Assignment" maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" User_ID" type="xs:string"

use=" required "/>
<xs:attribute name=" Surname" type="xs:string"

use=" required "/>
<xs:attribute name="Name" type="xs:string"

use=" required "/>
<xs:attribute name=" Home_Domain_ID" type="xs:IDREF"

use=" required "/>
</xs:complexType >
<xs:complexType name=" Host_Def ">

<xs:sequence >
<xs:element name=" Host_Object_ID" type="xs:IDREF"

maxOccurs =" unbounded "/></xs:sequence >
<xs:attribute name="Type" type="xs:string"

use=" optional "/>
<xs:attribute name="Name" type="xs:string"/>
<xs:attribute name=" Host_ID" type="xs:ID" use=" required "/>
<xs:attribute name=" Enrolled_Domain_ID" type="xs:IDREF"

use=" required "/></xs:complexType >
<xs:complexType name=" Role_Def ">

<xs:sequence >
<xs:element name=" Parent_Role" type="xs:IDREF"

minOccurs ="0"/>
<xs:element name="Role_ID" type="xs:ID"/>
<xs:element name=" Role_Name " type="xs:string"/>

</xs:sequence ></xs:complexType >
<xs:complexType name=" Constraint_Def">

<xs:sequence >
<xs:element name=" Condition " type="xs:string"/>
<xs:element name="Formula" type="xs:string"/>

</xs:sequence ></xs:complexType >
<xs:element name=" Domain_Def">

<xs:annotation >
<xs:documentation >Definition of a Domain in

FPFM </xs:documentation >
</xs:annotation >

Figure A.1. Domain Configuration XML Schema of FPM-RBAC.

183

<xs:complexType >
<xs:sequence >

<xs:element name="Hosts">
<xs:complexType >

<xs:sequence >
<xs:element name="Host" type=" Host_Def "

maxOccurs =" unbounded "/>
</xs:sequence ></xs:complexType ></xs:element >

<xs:element name="Users">
<xs:complexType ><xs:sequence >

<xs:element name="User" type=" User_Def "
maxOccurs =" unbounded "/>

</xs:sequence ></xs:complexType ></xs:element >
<xs:element name="Roles" nillable ="1">

<xs:complexType >
<xs:sequence >

<xs:element name="Role" type=" Role_Def "
maxOccurs =" unbounded "/>

</xs:sequence ></xs:complexType >
<xs:key name=" Role_Key ">

<xs:selector xpath="Role"/>
<xs:field xpath=" Role_ID "/>

</xs:key >
<xs:keyref name=" Parent_Role_Key" refer=" Role_Key ">

<xs:selector xpath="Role"/>
<xs:field xpath=" Parent_Role"/>

</xs:keyref >
<xs:unique name=" Role_Key_Unique">

<xs:selector xpath="Role"/>
<xs:field xpath=" Role_ID "/>

</xs:unique >
</xs:element >
<xs:element name=" Object_Type_Hierarchy">

<xs:complexType >
<xs:sequence >

<xs:element name=" Object_Type"
type=" Object_Type_Def" maxOccurs =" unbounded "/>

</xs:sequence ></xs:complexType >
</xs:element >
<xs:element name="Objects">

<xs:complexType >
<xs:sequence >

<xs:element name=" Object" type=" Object_Def"
maxOccurs =" unbounded "/>

</xs:sequence >
</xs:complexType >

</xs:element >

Figure A.2. Domain Configuration XML Schema of FPM-RBAC (cont.).

184

<xs:element ref=" Role_Hierarchy"/>
</xs:sequence >

<xs:attribute name=" Domain_ID " type="xs:ID"
use=" required "/>

<xs:attribute name=" Domain_Name" type="xs:string"
use=" required "/>

</xs:complexType >
</xs:element >
<xs:complexType name=" Object_Def">

<xs:sequence >
<xs:element name=" Type_of_Object">

<xs:complexType >
<xs:attribute name=" object_type" type="xs:IDREF"

use=" required "/>
</xs:complexType >

</xs:element >
<xs:element name=" Object_Name" type="xs:string"/>
<xs:element name=" Object_ID " type="xs:ID"/>

</xs:sequence >
</xs:complexType >
<xs:complexType name=" Object_Type_Def">

<xs:sequence >
<xs:element name=" Object_Type_Name" type="xs:string"/>
<xs:element name=" Object_Type_ID" type="xs:ID"/>

</xs:sequence >
<xs:attribute name=" Parent_Object_Type" type="xs:IDREF"/>

</xs:complexType >
<xs:element name=" Role_Hierarchy" nillable ="1">

<xs:complexType >
<xs:sequence >

<xs:element ref=" RH_Node "/>
</xs:sequence >

</xs:complexType >
</xs:element >
<xs:complexType name=" Subordinate_Role">

<xs:attribute name=" Parent_Role_ID" type="xs:integer"
use=" required "/>

</xs:complexType >
<xs:element name=" Object_Type_Hierarchy">

<xs:complexType >
<xs:sequence >

<xs:element name=" Object_Type_Hierarchy_Node "
type=" Object_Type_Hierarchy_Node"
maxOccurs =" unbounded "/>

</xs:sequence >
</xs:complexType >

</xs:element >

Figure A.3. Domain Configuration XML Schema of FPM-RBAC (cont.).

185

<xs:complexType name=" Subordinate_Object_Type">
<xs:attribute name=" Parent_Object_Type_ID" type="xs:int"/>

</xs:complexType >
<xs:complexType name=" Role_Assignment">

<xs:sequence >
<xs:element name=" Constraint" type=" Constraint_Def"/>
<xs:element name=" Assigned_Role_ID" type="xs:IDREF"/>

</xs:sequence >
</xs:complexType >

<xs:complexType name=" Object_Type_Hierarchy_Node">
<xs:sequence >

<xs:element name=" Parent_Object_Type"
type=" Object_Type_Def"/>

<xs:element ref=" Object_Type"/>
</xs:sequence >

</xs:complexType >
<xs:element name=" Object_Type" type=" Object_Type_Def"/>
<xs:element name=" RH_Node">

<xs:complexType >
<xs:sequence >

<xs:element ref=" RH_Node" minOccurs ="0"
maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" role_id" type="xs:IDREF"

use=" required "/>
</xs:complexType >

</xs:element >

Figure A.4. Domain Configuration XML Schema of FPM-RBAC (cont.).

186

<xs:element name=" Interdomain_Def">
<xs:annotation >

<xs:documentation >Describes inter -domain hierarchies
and role maps </xs:documentation ></xs:annotation >

<xs:complexType >
<xs:sequence >

<xs:element ref=" Role_Hierarchy" minOccurs ="0"/>
<xs:element name=" Foreign_Role_Hierarchy">

<xs:complexType >
<xs:sequence >

<xs:element name=" Foreign_Role"
type=" Role_Def " maxOccurs ="unbounded "/>

</xs:sequence >
</xs:complexType >
<xs:key name=" ForeignRoleID_key">

<xs:selector xpath=" Foreign_Role"/>
<xs:field xpath="Role_ID "/>

</xs:key >
<xs:keyref name=" ForeignParentRole_keyref"

refer=" ForeignRoleID_key">
<xs:selector xpath=" Foreign_Role"/>
<xs:field xpath=" Parent_Role"/>

</xs:keyref >
</xs:element >
<xs:element name=" Interdomain_Role_Hierarchy ">

<xs:complexType >
<xs:sequence >

<xs:element name=" Interdomain_Role"
type=" Role_Def " maxOccurs ="unbounded "/>

</xs:sequence ></xs:complexType >
<xs:key name=" Interdomain_Role_ID_key">

<xs:selector xpath=" Interdomain_Role"/>
<xs:field xpath="Role_ID "/>

</xs:key >
<xs:keyref name=" Interdomain_keyref"

refer=" Interdomain_Role_ID_key">
<xs:selector xpath=" Interdomain_Role"/>
<xs:field xpath=" Parent_Role"/>

</xs:keyref >
</xs:element >
<xs:element name=" Role_Map_Home">

<xs:complexType >
<xs:sequence >

<xs:element ref=" Role_Map "
maxOccurs ="unbounded "/>

</xs:sequence > </xs:complexType >
</xs:element >

Figure A.5. Outline of XML Schema of an Inter-Domain Configuration.

187

<xs:element name=" Role_Map_Foreign">
<xs:complexType >

<xs:sequence >
<xs:element ref=" Role_Map "

maxOccurs ="unbounded "/>
</xs:sequence ></xs:complexType ></xs:element >

</xs:sequence ></xs:complexType >
<xs:keyref name=" Interdomain_Role_ID_keyref"

refer=" Interdomain_Role_ID_key">
<xs:selector xpath=" Role_Map_Home/Role_Map "/>
<xs:field xpath=" Interdomain_Role_ID"/> </xs:keyref >

<xs:keyref name=" ForeignRoleID_keyref"
refer=" ForeignRoleID_key">
<xs:selector

xpath=" Role_Map_Foreign/Role_Map /Mapped_Role"/>
<xs:field xpath=" Mapped_Role_ID"/> </xs:keyref >

<xs:unique name=" Role_ID_unique">
<xs:selector xpath ="*/*"/ >
<xs:field xpath=" Role_ID "/> </xs:unique >

<xs:key name=" Home_Role_ID_key">
<xs:selector xpath=" Role_Hierarchy/RH_Node "/>
<xs:field xpath=" @role_id "/> </xs:key >

<xs:keyref name=" Home_Role_Map_keyref"
refer=" Home_Role_ID_key">
<xs:selector

xpath=" Role_Map_Home/Role_Map /Mapped_Role"/>
<xs:field xpath=" Mapped_Role_ID"/> </xs:keyref >

<xs:keyref name=" Home_Role_ID_keyref"
refer=" Home_Role_ID_key">
<xs:selector xpath=" Role_Hierarchy/RH_Node "/>
<xs:field xpath=" @role_id "/> </xs:keyref > </xs:element >

<xs:complexType name=" Role_MapType">
<xs:sequence >

<xs:element name=" Interdomain_Role_ID"
type="xs:IDREF"/>

<xs:sequence >
<xs:element name=" Mapped_Role"

maxOccurs =" unbounded ">
<xs:complexType ><xs:sequence >

<xs:element name=" Mapped_Role_ID"
type="xs:IDREF"/>

</xs:sequence ></xs:complexType ></xs:element >
</xs:sequence ></xs:sequence ></xs:complexType >

<xs:element name=" Role_Map " type=" Role_MapType">
<xs:annotation ><xs:documentation >Describes a mapping of

inter -domain role to a set of roles </xs:documentation >
</xs:annotation ></xs:element ></xs:schema >

Figure A.6. Outline of XML Schema of an Inter-Domain Configuration (cont.).

188

<xs:element name=" Security_Policy">
<xs:annotation >

<xs:documentation >Describes a multi -domain security
policy with location and mobility
constraints.</xs:documentation >

</xs:annotation >
<xs:complexType >

<xs:sequence >
<xs:element name=" Services ">

<xs:complexType >
<xs:sequence >

<xs:element ref="Service "
maxOccurs ="unbounded "/>

</xs:sequence >
</xs:complexType >
<xs:unique name=" ServiceIDUnique">

<xs:selector xpath="Service "/>
<xs:field xpath=" Service_ID"/>

</xs:unique >
</xs:element >
<xs:element name=" Policy_Rules">

<xs:complexType >
<xs:sequence >

<xs:element ref=" Policy_Rule"
minOccurs ="0" maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" is_interdomain"

type="xs:boolean "/>
</xs:complexType >

</xs:element >
<xs:element name=" Location_Formulas">

<xs:complexType >
<xs:sequence >

<xs:element ref=" Location_Formula"
minOccurs ="0" maxOccurs =" unbounded "/>

</xs:sequence >
</xs:complexType >

</xs:element >
<xs:element name=" SOD_Constraints">

<xs:annotation >
<xs:documentation >Specifies SOD constraints

for a policy </xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:sequence >
<xs:element ref=" SOD_Constraint"

minOccurs ="0" maxOccurs =" unbounded "/>

Figure A.7. XML Schema for a multi-domain security policy.

189

<xs:element name=" Conflicting_Sets">
<xs:complexType >

<xs:sequence >
<xs:element name=" Conflicting_Role_Set"

minOccurs ="0" maxOccurs =" unbounded ">
<xs:complexType >

<xs:sequence >
<xs:element

name=" Conflicting_Role"
type="xs:IDREF"
maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" set_id"

type="xs:ID" use="required "/>
<xs:attribute name=" num_roles "

type="xs:integer"
use="optional "/>

</xs:complexType >
</xs:element >
<xs:element

name=" Conflicting_Service_Set"
minOccurs ="0" maxOccurs =" unbounded ">
<xs:complexType >

<xs:sequence >
<xs:element

name=" Conflicting_Service"
maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" set_id"

type="xs:ID" use="required "/>
<xs:attribute

name=" num_services"/>
</xs:complexType >

</xs:element >
</xs:sequence >

</xs:complexType >
</xs:element >

</xs:sequence >
</xs:complexType >
<xs:keyref name=" crset_cr_keyref" refer=" crset_key ">

<xs:selector xpath=" SOD_CR"/>
<xs:field xpath=" @conflicting_set_id"/>

</xs:keyref >
<xs:keyref name=" crset_keyref" refer=" crset_key ">

<xs:selector xpath=" SOD_Constraint"/>
<xs:field xpath=" @conflicting_set_id"/>

</xs:keyref >

Figure A.8. XML Schema for a multi-domain security policy (cont.).
.

190

<xs:key name=" crset_key ">
<xs:selector

xpath=" Conflicting_Sets/Conflicting_Role_Set"/>
<xs:field xpath=" @set_id "/>

</xs:key ></xs:element >
</xs:sequence >

</xs:complexType >
</xs:element >
<xs:element name=" SOD_Constraint" type=" SOD_Constraint_Def"

abstract ="1"/>
<xs:complexType name=" SOD_Constraint_Def">

<xs:attribute name=" constraint_id" type="xs:ID"
use=" required "/>

<xs:attribute name=" conflicting_set_id" type="xs:IDREF"
use=" required "/>

<xs:attribute name=" n_conflicting" use=" optional "/>
</xs:complexType >
<xs:element name=" SOD_CR" type=" SOD_Constraint_Def"

substitutionGroup=" SOD_Constraint"/>
<xs:element name=" SOD_CS" type=" SOD_Constraint_Def"

substitutionGroup=" SOD_Constraint"/>

Figure A.9. XML Schema for a multi-domain security policy (cont.).
.

191

<xs:element name=" Policy_Rule">
<xs:complexType >

<xs:sequence >
<xs:element name=" Authorization_Subject"

type="xs:string"/>
<xs:element name=" Authorization_Object"

type="xs:string"/>
<xs:element name=" Rule_Action" type=" Action_Def"/>
<xs:element name=" Location_Formula_Name"

type="xs:IDREF" minOccurs ="0"/>
<xs:element name=" Conditions" type="xs:string"

minOccurs ="0"/>
</xs:sequence >
<xs:attribute name=" auth_obj_type"

type=" Authorization_Object_Type "/>
<xs:attribute name=" service_member_ref" type="xs:IDREF"/>
<xs:attribute name=" role_ref " type="xs:string"

use=" required "/>
</xs:complexType ></xs:element >

<xs:simpleType name=" Authorization_Object_Type">
<xs:restriction base="xs:string">

<xs:enumeration value="HOST"/>
<xs:enumeration value=" DOMAIN"/>
<xs:enumeration value=" OBJECT"/>
<xs:enumeration value=" OBJECTTYPE"/>

</xs:restriction ></xs:simpleType >
<xs:complexType name=" Action_Def">

<xs:sequence >
<xs:element name=" Action_Type" type=" Action_Type"/>

</xs:sequence >
<xs:attribute name=" action_name" type="xs:string"

use="required "/>
<xs:attribute name="sign" type=" Action_Sign"/>

</xs:complexType >
<xs:simpleType name=" Action_Sign">

<xs:restriction base="xs:string">
<xs:enumeration value="plus"/>
<xs:enumeration value=" minus"/>

</xs:restriction ></xs:simpleType >
<xs:complexType name=" Action_Group_Def">

<xs:sequence >
<xs:element name=" Action_Group_Name" type="xs:string"/>
<xs:sequence >

<xs:element name="Action" type=" Action_Def"
maxOccurs ="10"/ >

</xs:sequence ></xs:sequence ></xs:complexType >
<xs:element name=" Action_Group" type=" Action_Group_Def"/>

Figure A.10. XML Schema for policy rules.

192

<xs:element name=" Service">
<xs:complexType >

<xs:sequence >
<xs:element name=" Service_Name"/>
<xs:element name=" Service_ID" type="xs:ID"/>
<xs:element name=" Service_Host"

type=" Service_Member_Type" minOccurs ="0"
maxOccurs =" unbounded "/>

<xs:element name=" Service_Domain"
type=" Service_Member_Type" minOccurs ="0"
maxOccurs =" unbounded "/>

<xs:element name=" Service_Object_Type"
type=" Service_Member_Type" minOccurs ="0"
maxOccurs =" unbounded "/>

<xs:element name=" Service_Object"
type=" Service_Member_Type" minOccurs ="0"
maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" is_interdomain" type="xs:boolean"

use=" required ">
<xs:annotation >

<xs:documentation >true if service is an
interdomain service </xs:documentation >

</xs:annotation >
</xs:attribute >

</xs:complexType >
<xs:unique name=" MemberIDUnique">

<xs:selector xpath="*"/>
<xs:field xpath=" @service_member_id"/>

</xs:unique >
</xs:element >
<xs:complexType name=" Service_Host_Type">

<xs:attribute name=" service_host_id" type="xs:IDREF"
use=" required "/>

</xs:complexType >
<xs:complexType name=" Service_Member_Type">

<xs:sequence >
<xs:element name=" Service_Member_Action_Group "

type=" Action_Group_Def">
<xs:unique name=" ActionTypeUnique">

<xs:selector xpath="Action"/>
<xs:field xpath=" Action_Type"/>

</xs:unique ></xs:element >
</xs:sequence >
<xs:attribute name=" service_member_id" type="xs:ID"

use=" required "/>
</xs:complexType >

Figure A.11. XML Schema for Services.

193

<xs:element name=" Constraints">
<xs:complexType >

<xs:sequence >
<xs:element name=" SOD_Constraints">

<xs:annotation >
<xs:documentation >Specifies SOD constraints for

a policy </xs:documentation >
</xs:annotation >

<xs:complexType >
<xs:sequence >

<xs:element ref=" SOD_Constraint"
minOccurs ="0" maxOccurs =" unbounded "/>

<xs:element name=" Conflicting_Sets">
<xs:complexType >

<xs:sequence >
<xs:element

name=" Conflicting_Role_Set"
minOccurs ="0"
maxOccurs =" unbounded ">
<xs:complexType >

<xs:sequence >
<xs:element

name=" Conflicting_Role"
maxOccurs =" unbounded ">
<xs:complexType >

<xs:attribute
name="cr_id"
type="xs:string"
use=" required "/>

</xs:complexType >
</xs:element >

</xs:sequence >
<xs:attribute name=" set_id"

type="xs:ID"
use=" required "/>

<xs:attribute name=" num_roles "
type="xs:integer"
use=" optional "/>

</xs:complexType >
</xs:element >
<xs:element

name=" Conflicting_Service_Set"
minOccurs ="0"
maxOccurs =" unbounded ">
<xs:complexType >

<xs:sequence >

Figure A.12. Outline of XML Schema for SOD Constraints.

194

<xs:element name=" Conflicting_Service"
maxOccurs =" unbounded ">

<xs:complexType >
<xs:attribute

name=" cs_id"
type="xs:string"
use=" required "/>

</xs:complexType >
</xs:element >
</xs:sequence >
<xs:attribute name=" set_id"

type="xs:ID"
use=" required "/>

<xs:attribute
name=" num_services"/>

</xs:complexType ></xs:element >
</xs:sequence ></xs:complexType >

</xs:element ></xs:sequence >
</xs:complexType >

<xs:keyref name=" crset_cr_keyref" refer=" crset_key ">
<xs:selector xpath="SOD_CR"/>
<xs:field xpath=" @conflicting_set_id"/>

</xs:keyref >
<xs:keyref name=" crset_keyref" refer=" crset_key ">

<xs:selector xpath=" SOD_Constraint"/>
<xs:field xpath=" @conflicting_set_id"/>

</xs:keyref >
<xs:key name=" crset_key ">

<xs:selector
xpath=" Conflicting_Sets/Conflicting_Role_Set"/>

<xs:field xpath=" @set_id "/>
</xs:key ></xs:element >

</xs:sequence >
</xs:complexType >

</xs:element >
<xs:element name=" SOD_Constraint" type=" SOD_Constraint_Def"

abstract ="1"/>
<xs:complexType name=" SOD_Constraint_Def">

<xs:attribute name=" constraint_id" type="xs:ID"
use=" required "/>

<xs:attribute name=" conflicting_set_id" type="xs:IDREF"
use=" required "/>

<xs:attribute name=" n_conflicting" type="xs:integer"
use=" optional "/>

<xs:attribute name=" is_dynamic" type="xs:boolean"
use=" optional "/>

</xs:complexType >

Figure A.13. Outline of XML Schema for SOD Constraints (cont.).

195

<xs:element name=" SOD_CR" type=" SOD_Constraint_Def"
substitutionGroup=" SOD_Constraint"/>

<xs:element name=" SOD_CS" type=" SOD_Constraint_Def"
substitutionGroup=" SOD_Constraint"/>

<xs:element name=" SOD_ICR"
substitutionGroup=" SOD_Constraint">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" SOD_Constraint_Def">

<xs:attribute name=" mapped_conflicting_set"
type="xs:IDREF" use=" required "/>

<xs:attribute name=" home_foreign" use=" optional "
default ="HOME">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value="HOME"/>
<xs:enumeration value=" FOREIGN "/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:extension >

</xs:complexContent >
</xs:complexType >

</xs:element >
<xs:element name=" SOD_LCR"

substitutionGroup=" SOD_Constraint">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" SOD_Constraint_Def">

<xs:attribute name="sfo" type="xs:IDREF"
use=" required "/>

</xs:extension >
</xs:complexContent >

</xs:complexType >
</xs:element >

Figure A.14. Outline of XML Schema for SOD Constraints (cont.).

196

<xs:element name="Or">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Or_Expr_Def">

<xs:attribute name="token"
type=" Location_Tokens" use="optional "
fixed="+"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Logical_Expr">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Logical_Expr_Def">

<xs:attribute name="token"
type=" Location_Tokens" use="optional "
fixed="=>"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Unary" type=" Unary_Expr_Def"
abstract ="true"/>

<xs:element name=" Composition">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Composition_Expr_Def">

<xs:attribute name="token"
type=" Location_Tokens" use="optional "
fixed="|"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Basic_Formula"
type=" Basic_Formula_Expr_Def" abstract ="true"/>

<xs:element name=" Location_Formula">
<xs:complexType >

<xs:sequence >
<xs:element name=" Formal_Expr" type="xs:string"

minOccurs ="0"/>
<xs:element name=" Formula_Name" type="xs:ID"/>
<xs:element name=" Congruence" fixed="::=" >

<xs:simpleType >
<xs:restriction base=" Location_Tokens">

<xs:enumeration value="::="/ >
</xs:restriction >

</xs:simpleType ></xs:element >
<xs:element ref=" Logical_Expr"/>
<xs:element name=" Formula_End"

type=" Location_Tokens" fixed=";"/>
</xs:sequence ></xs:complexType ></xs:element >

Figure A.15. XML Schema for Ambient Logic.

197

<xs:simpleType name=" Location_Tokens">
<xs:restriction base="xs:string">

<xs:enumeration value="EF"/>
<xs:enumeration value="EX"/>
<xs:enumeration value="EG"/>
<xs:enumeration value="EU"/>
<xs:enumeration value="AF"/>
<xs:enumeration value="AX"/>
<xs:enumeration value="AG"/>
<xs:enumeration value="AU"/>
<xs:enumeration value=" FORALL"/>
<xs:enumeration value=" EXISTS"/>
<xs:enumeration value="+"/>
<xs:enumeration value="*"/>
<xs:enumeration value="-"/>
<xs:enumeration value ="=>"/>
<xs:enumeration value ="=="/ >
<xs:enumeration value="SW"/>
<xs:enumeration value="EW"/>
<xs:enumeration value="|"/>
<xs:enumeration value="0"/>
<xs:enumeration value="["/>
<xs:enumeration value="]"/>
<xs:enumeration value="T"/>
<xs:enumeration value="F"/>
<xs:enumeration value ="::="/ >
<xs:enumeration value="{"/>
<xs:enumeration value="}"/>
<xs:enumeration value=";"/>

</xs:restriction >
</xs:simpleType >
<xs:complexType name=" Logical_Expr_Def">

<xs:sequence maxOccurs =" unbounded ">
<xs:element ref="Or"/>

</xs:sequence >
</xs:complexType >
<xs:complexType name=" Or_Expr_Def">

<xs:sequence maxOccurs =" unbounded ">
<xs:element ref=" Composition"/>

</xs:sequence >
</xs:complexType >
<xs:complexType name=" Composition_Expr_Def">

<xs:sequence maxOccurs =" unbounded ">
<xs:element ref=" Unary"/>

</xs:sequence ></xs:complexType >
<xs:complexType name=" Unary_Expr_Def"/>
<xs:complexType name=" Basic_Formula_Expr_Def"/>

Figure A.16. XML Schema for Ambient Logic (cont.).

198

<xs:element name=" Somewhere " substitutionGroup="Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref="Unary"/>

</xs:sequence >
<xs:attribute name="token"

type=" Location_Tokens" use="required "
fixed="SW"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Sometime " substitutionGroup=" Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref="Unary"/>

</xs:sequence >
<xs:attribute name="token"

type=" Location_Tokens" use="required "
fixed="EF"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Everywhere" substitutionGroup="Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref="Unary"/>

</xs:sequence >
<xs:attribute name="token"

type=" Location_Tokens" use="required "
fixed="EW"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Everytime " substitutionGroup="Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref="Unary"/></xs:sequence >

<xs:attribute name="token"
type=" Location_Tokens" use="required "
fixed="AG"/>

</xs:extension ></xs:complexContent >
</xs:complexType ></xs:element >

Figure A.17. XML Schema for Ambient Logic (cont.).

199

<xs:element name=" Not_Expr " substitutionGroup="Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref="Unary"/>

</xs:sequence >
<xs:attribute name="token"

type=" Location_Tokens" use="required "
fixed="-"/>

</xs:extension > </xs:complexContent >
</xs:complexType ></xs:element >

<xs:element name=" Basic_Formula_Expr"
substitutionGroup="Unary">
<xs:complexType >

<xs:complexContent >
<xs:extension base=" Unary_Expr_Def">

<xs:sequence >
<xs:element ref=" Basic_Formula"/>

</xs:sequence ></xs:extension >
</xs:complexContent >/xs:complexType ></xs:element >

<xs:element name=" Ambient" type=" Ambient_Expr_Def"
substitutionGroup=" Basic_Formula"/>

<xs:complexType name=" Ambient_Expr_Def">
<xs:complexContent >

<xs:extension base=" Basic_Formula_Expr_Def">
<xs:sequence >

<xs:element name=" AmbientName" type="xs:string"/>
<xs:element name=" AmbientStart" fixed="[">

<xs:simpleType >
<xs:restriction base=" Location_Tokens">

<xs:enumeration value="["/>
</xs:restriction > </xs:simpleType >

</xs:element >
<xs:element ref=" Logical_Expr" minOccurs ="0"/>
<xs:element name=" AmbientEnd" fixed="]">

<xs:simpleType >
<xs:restriction base=" Location_Tokens">

<xs:enumeration value="]"/>
</xs:restriction ></xs:simpleType >

</xs:element ></xs:sequence >
<xs:attribute name=" Ambient_Location_Type"

type=" Location_Type"/>
</xs:extension ></xs:complexContent ></xs:complexType >
<xs:element name="Bracket" type=" Bracket_Expr_Def"

substitutionGroup=" Basic_Formula"/>
<xs:complexType name=" Bracket_Expr_Def">

Figure A.18. XML Schema for Ambient Logic (cont.).

200

<xs:complexContent >
<xs:extension base=" Basic_Formula_Expr_Def">
<xs:sequence >

<xs:element name=" BracketStart" fixed="{">
<xs:simpleType >

<xs:restriction base=" Location_Tokens">
<xs:enumeration value="{"/></xs:restriction >

</xs:simpleType ></xs:element >
<xs:element ref=" Logical_Expr"/>
<xs:element name=" BracketEnd" fixed="}">

<xs:simpleType >
<xs:restriction base=" Location_Tokens">

<xs:enumeration value ="}"/>
</xs:restriction ></xs:simpleType ></xs:element >

</xs:sequence ></xs:extension ></xs:complexContent >
</xs:complexType >
<xs:element name=" Nil_Expr " type=" Nil_Expr_Def"

substitutionGroup=" Basic_Formula"/>
<xs:complexType name=" Nil_Expr_Def">

<xs:complexContent >
<xs:extension base=" Basic_Formula_Expr_Def">

<xs:sequence ><xs:element name="Nil" fixed="0">
<xs:simpleType ><xs:restriction

base=" Location_Tokens"><xs:enumeration
value="0"/></xs:restriction ></xs:simpleType >
</xs:element ></xs:sequence ></xs:extension >

</xs:complexContent ></xs:complexType >
<xs:element name=" True_Expr " type=" True_Expr_Def"

substitutionGroup=" Basic_Formula"/>
<xs:complexType name=" True_Expr_Def">

<xs:complexContent >
<xs:extension base=" Basic_Formula_Expr_Def">

<xs:sequence ><xs:element name="True" fixed="T">
<xs:simpleType >

<xs:restriction base=" Location_Tokens">
<xs:enumeration value="T"/>

</xs:restriction ></xs:simpleType >
</xs:element ></xs:sequence ></xs:extension >
</xs:complexContent ></xs:complexType >

<xs:simpleType name=" Location_Type">
<xs:restriction base="xs:string">

<xs:enumeration value=" DOMAIN"/>
<xs:enumeration value="HOST"/>
<xs:enumeration value=" OBJECT"/>
<xs:enumeration value="USER"/>
<xs:enumeration value=" WORLD"/>

</xs:restriction ></xs:simpleType >

Figure A.19. XML Schema for Ambient Logic (cont.).

201

<xs:element name=" Ambient_Calculus_Spec">
<xs:annotation >

<xs:documentation >Ambient Calculus Specification in
FPFM </xs:documentation >

</xs:annotation >
<xs:complexType >

<xs:sequence >
<xs:element ref=" Compilation_Unit"/>
<xs:element name="Variables ">

<xs:complexType ><xs:sequence >
<xs:element ref=" Identifier" maxOccurs =" unbounded "/>
</xs:sequence ></xs:complexType >

</xs:element ></xs:sequence >
<xs:attribute name=" Ambient_Calculus_Spec_Name"

type="xs:string" use=" required "/>
</xs:complexType >
<xs:keyref name=" Id_Ref_Ambient" refer=" Id_Key">

<xs:selector xpath=" Compilation_Unit / Specification /
Composition / Sequence / Ambient_Expr"/>

<xs:field xpath=" Ambient_Name"/></xs:keyref >
<xs:keyref name="Id_Ref" refer=" Id_Key">

<xs:selector xpath=" Compilation_Unit / Specification /
Composition / Sequence / Path / Action"/>

<xs:field xpath=" Action_Target"/></xs:keyref >
<xs:key name="Id_Key">

<xs:selector xpath=" Variables /Identifier"/>
<xs:field xpath="@id"/></xs:key ></xs:element >

<xs:element name=" Compilation_Unit">
<xs:complexType >

<xs:sequence >
<xs:element ref=" Specification"/>
<xs:element name=" End_of_Spec" type=" ENDOFSPEC "/>

</xs:sequence >
<xs:attribute name=" Compilation_Unit_Name" type="xs:string"

use="required "/></xs:complexType ></xs:element >
<xs:restriction base="xs:string">

<xs:enumeration value=";"/><xs:enumeration value="0"/>
<xs:enumeration value="::="/><xs:enumeration value="|"/>
<xs:enumeration value="["/><xs:enumeration value="]"/>
<xs:enumeration value="."/><xs:enumeration value="in"/>
<xs:enumeration value="out"/><xs:enumeration value="open"/>
<xs:enumeration value="acid"/><xs:enumeration value=" mv_in"/>
<xs:enumeration value=" mv_out"/><xs:enumeration value="new"/>
<xs:enumeration value="("/><xs:enumeration value=")"/>
<xs:enumeration value="<"/><xs:enumeration value=">"/>
<xs:enumeration value="{"/><xs:enumeration value="}"/>

</xs:restriction >

Figure A.20. XML Schema for Ambient Calculus.

202

<xs:simpleType name=" Ambient_Tokens">
</xs:simpleType >
<xs:simpleType name=" ENDOFSPEC ">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value=";"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" INACTIVITY">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="0"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" CONGRUENCE">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value ="::="/ >

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" COMPOSITION">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="|"/>
</xs:restriction ></xs:simpleType >

<xs:simpleType name=" AMBIENTSTART">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="["/>
</xs:restriction ></xs:simpleType >

<xs:simpleType name=" AMBIENTEND">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="]"/>
</xs:restriction ></xs:simpleType >

<xs:simpleType name=" ACTION">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="."/>
</xs:restriction ></xs:simpleType >

<xs:simpleType name=" ENTRANCE ">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="in"/>
</xs:restriction ></xs:simpleType >

<xs:simpleType name="EXIT">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="out"/>
</xs:restriction >

</xs:simpleType >
<xs:simpleType name=" OBJECTIVE_ENTRANCE">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value=" mv_in"/>

</xs:restriction >
</xs:simpleType >

Figure A.21. XML Schema for Ambient Calculus(cont.).

203

<xs:simpleType name=" OBJECTIVE_EXIT">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value=" mv_out"/>
</xs:restriction >

</xs:simpleType >
<xs:simpleType name="ACID">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="acid"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" DISSOLUTION">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="open"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" INPUTSTART">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="("/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name="INPUTEND ">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value=")"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" OUTPUTSTART">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="<"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name="OUTPUTEND ">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value=">"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" BLOCKSTART">

<xs:restriction base=" Ambient_Tokens">
<xs:enumeration value="{"/>

</xs:restriction >
</xs:simpleType >

<xs:simpleType name=" BLOCKEND ">
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value="}"/>
</xs:restriction >

</xs:simpleType >

<xs:complexType name=" Specification_Type"/>

Figure A.22. XML Schema for Ambient Calculus(cont.).

204

<xs:element name=" Specification">
<xs:complexType ><xs:sequence >

<xs:element name=" Specification_Name"
type="xs:string"/>

<xs:element name=" Congruence" type=" CONGRUENCE"/>
<xs:element ref=" Composition"/>

</xs:sequence ></xs:complexType ></xs:element >
<xs:element name=" Composition">

<xs:complexType ><xs:sequence >
<xs:element ref=" Sequence " maxOccurs =" unbounded "/>

</xs:sequence >
<xs:attribute name=" token" type=" COMPOSITION"

use=" required "/>
</xs:complexType ></xs:element >

<xs:element name=" Sequence ">
<xs:complexType ><xs:sequence >

<xs:element ref="Path"/>
<xs:element ref=" Basic_Expr"/>

</xs:sequence ></xs:complexType ></xs:element >
<xs:element name="Path">

<xs:complexType >
<xs:sequence minOccurs ="0" maxOccurs =" unbounded ">

<xs:element ref=" Action"/>
</xs:sequence >
<xs:attribute name=" token" use=" optional ">

<xs:simpleType >
<xs:restriction base=" Ambient_Tokens">

<xs:enumeration value ="."/>
</xs:restriction ></xs:simpleType >

</xs:attribute ></xs:complexType ></xs:element >
<xs:element name=" Inactivity_Expr"

substitutionGroup=" Basic_Expr">
<xs:complexType ><xs:sequence >

<xs:element name=" Inactivity" type=" INACTIVITY"/>
</xs:sequence ></xs:complexType ></xs:element >

<xs:element name=" Ambient_Expr"
substitutionGroup=" Basic_Expr">
<xs:complexType ><xs:sequence >

<xs:element name=" Ambient_Name" type="xs:string"/>
<xs:element name=" Ambient_Start"

type=" AMBIENTSTART"/>
<xs:element ref=" Composition" minOccurs ="0"/>
<xs:element name=" Ambient_End" type=" AMBIENTEND"/>

</xs:sequence >
<xs:attribute name=" Ambient_Type"

type=" Ambient_Types"/></xs:complexType >
</xs:element >

Figure A.23. XML Schema for Ambient Calculus(cont.).

205

<xs:element name=" Basic_Expr" abstract ="true"/>
<xs:element name=" Block_Expr" substitutionGroup=" Basic_Expr">

<xs:complexType ><xs:sequence >
<xs:element name=" Block_Start" type=" BLOCKSTART"/>
<xs:element ref=" Composition"/>
<xs:element name=" Block_End " type=" BLOCKEND "/>

</xs:sequence ></xs:complexType ></xs:element >
<xs:element name=" Action" type=" Action_Type"

abstract =" false"/>
<xs:element name=" Identifier"><xs:complexType >

<xs:attribute name="name" type="xs:string"
use=" optional "/>

<xs:attribute name=" id_type" type=" Identifier_Types"
use=" required "/>

<xs:attribute name="id" type="xs:ID" use="required "/>
</xs:complexType ></xs:element >

<xs:simpleType name=" Ambient_Types">
<xs:restriction base="xs:string">

<xs:enumeration value=" DOMAIN"/>
<xs:enumeration value="USER"/>
<xs:enumeration value=" OBJECT"/>
<xs:enumeration value="HOST"/>

</xs:restriction ></xs:simpleType >
<xs:complexType name=" Action_Type" abstract =" false">

<xs:sequence ><xs:element name=" Action_Target"
type="xs:IDREF"/>

</xs:sequence ><xs:attribute name=" action" type="Actions"
use=" required "/></xs:complexType >

<xs:simpleType name="Actions">
<xs:restriction base="xs:string">

<xs:enumeration value="in"/>
<xs:enumeration value="out"/>
<xs:enumeration value=" mv_in"/>
<xs:enumeration value=" mv_out"/>
<xs:enumeration value="acid"/>
<xs:enumeration value="open"/>
<xs:enumeration value=" input"/>
<xs:enumeration value=" output"/>

</xs:restriction ></xs:simpleType >
<xs:simpleType name=" Identifier_Types">

<xs:restriction base="xs:string">
<xs:enumeration value=" DOMAIN"/>
<xs:enumeration value="HOST"/>
<xs:enumeration value="USER"/>
<xs:enumeration value=" OBJECT"/>
<xs:enumeration value=" VARIABLE "/>

</xs:restriction ></xs:simpleType >

Figure A.24. XML Schema for Ambient Calculus(cont.).

206

APPENDIX B: AMBIENT CALCULUS SPECIFICATIONS
AND AMBIENT LOGIC FORMULAS FOR

PERFORMANCE ANALYSIS OF THE MODEL CHECKING
ALGORITHM

Spec1::= World[DomainA[Host1[User1[] |File1[data1[out File1.0|out
Host1.0|out DomainA.0| in DomainB.0|in DomainC.0|in
Host4.0 | in Host2.0|out Host2.0|in File3.0|in
User2.0|out User2.0|in User4.0|out User4.0|in Host3.0
]]]] | DomainB[Host3[File3[]]|Host2[User2[in File1.0|in
File2.0|out File1.0|out File2.0|in File3.0|in File4.0|out
File3.0|out File4.0]|File2[]]]|DomainC[Host4 [User4[out
DomainC.0|in DomainB.0| in Host3.0| in File3.0|out
File3.0|out Host3.0|out DomainB.0|in DomainC.in Host4.
in File4.0]|File4[]]]]

Spec2::= World[DomainA[Host1[User1[out DomainA.0 | in
DomainA.0|in DomainB.0|out DomainB.0|in File1.0|out
File1.0]|File1[data1[out File1.0|out Host1.0|out
DomainA.0| in DomainB.0|in DomainC.0|in Host4.0 | in
Host2.0|out Host2.0|in File3.0|in User1.0|in User2.0|out
User2.0|in User4.0|out User4.0|in Host3.0]]]] | DomainB
[Host3[File3[]]|Host2[User2[in File1.0|in File2.0|out
File1.0|out File2.0|in File3.0|in File4.0|out File3.0|out
File4.0]|File2[]]]|DomainC[Host4 [User4[out DomainC.0|in
DomainB.0| in Host3.0| in File3.0|out File3.0|out
Host3.0|out DomainB.0|in DomainC.in Host4. in
File4.0]|File4[]]]]

Spec3::= World[DomainA[Host1[User1[out Host1.0|out DomainA.0|in
DomainB.0]|File1[data1[out File1.0|out Host1.0|out
DomainA.0| in DomainB.0|in DomainC.0|in Host4.0 | in
Host2.0|out Host2.0|in File3.0|in User1.0|out User1.0|in
User2.0|out User2.0|in User4.0|out User4.0|in Host3.0]]]]
| DomainB[Host3[File3[]]|Host2[User2[in File1.0|in
File2.0 | out File1.0|out File2.0|in File3.0|in
File4.0|out File3.0|out File4.0]|File2[]]]|DomainC[Host4
[User4[out DomainC.0|in DomainB.0| in Host3.0| in
File3.0|out File3.0|out Host3.0|out DomainB.0|in
DomainC.in Host4. in File4.0]|File4[]]]]

Formula1::= � { ¬ ♦ { � { Host4[� { data1[T] | T}] } } }
Formula2::= � { World [DomainA [Host1 [T] | T] | DomainB[Host2 [T]

| Host3 [T] | T] | DomainC[Host4 [T] | T]] }
∨ ♦{�{Host4[�{data1[T]}] | T}}

207

APPENDIX C: XFPM-RBAC SPECIFICATIONS FOR THE
ONLINE LIBRARY CASE

<Domain_Def Domain_ID =" Domain1" Domain_Name="UniA"...>
<Hosts >

<Host Enrolled_Domain_ID=" Domain1"
Host_ID ="Host11" Name=" Library_Web_Server">
<Host_Object_ID >Lib_App </ Host_Object_ID > % Other

objects
</Host > % Other hosts

</Hosts >
<Users >

<User Home_Domain_ID=" Domain1" Name="Norman"
Surname ="Mullis" User_ID =" nmullis">

<Assigned_Role >
<Constraint >

<Condition >EDR(nmullis ,UniA)</Condition >
<Formula >locspec2 </Formula ></Constraint >

<Assigned_Role_ID >Role2 </ Assigned_Role_ID >
</User > % Other users

</Users >
<Role_Hierarchy >

<Role >
<Parent_Role >Role1 </ Parent_Role >
<Role_ID >Role1 </Role_ID >
<Role_Name >Member </Role_Name ></Role >

<Role >
<Parent_Role >Role1 </ Parent_Role >
<Role_ID >Role2 </Role_ID >
<Role_Name >Lecturer </Role_Name >

</Role > % Other roles
</Role_Hierarchy >
<Object_Type_Hierarchy >

<Object_Type Parent_Object_Type=" Object">
<Object_Type_Name >Applications </ Object_Type_Name >
<Object_Type_ID >App
</Object_Type_ID >

</Object_Type > % Other object types
</Object_Type_Hierarchy >
<Objects >

<Object >
<Type_of_Object object_type=" Application"/>
<Object_Name >Lib_App </ Object_Name >
<Object_ID >Lib_App </ Object_ID >

</Object > % Other objects
</Objects >

Figure C.1. Part of the domain configuration for UniA.

208

<Interdomain_Def ...>
<Foreign_Role_Hierarchy >

<Foreign_Role >
<Parent_Role >FRole4 </Parent_Role >
<Role_ID >FRole5 </Role_ID >
<Role_Name >ResAssist </Role_Name >

</Foreign_Role > % other foreign roles
</Foreign_Role_Hierarchy >
<Interdomain_Role_Hierarchy >

<Interdomain_Role >
<Parent_Role >IDRole1 </Parent_Role >
<Role_ID >IDRole2 </Role_ID >
<Role_Name >Guest_Researcher </Role_Name >

</Interdomain_Role >% other interdomain roles
</Interdomain_Role_Hierarchy >
<Role_Map_Home >

<Role_Map >
<Interdomain_Role_ID >IDRole2 </ Interdomain_Role_ID >
<Mapped_Role >

<Mapped_Role_ID >Role2 </ Mapped_Role_ID >
</Mapped_Role > % other mapped roles

</Role_Map > % other role maps
</Role_Map_Home >
<Role_Map_Foreign >

<Role_Map >
<Interdomain_Role_ID >IDRole2 </ Interdomain_Role_ID >
<Mapped_Role >

<Mapped_Role_ID >FRole5 </ Mapped_Role_ID >
</Mapped_Role > % other mapped roles

</Role_Map > % other role maps
</Role_Map_Foreign ></Interdomain_Def >

Figure C.2. Part of the inter-domain configuration.

<Policy_Rules >
<Policy_Rule role_ref =" Role2">

<Authorization_Subject >Lecturer </ Authorization_Subject >
<Authorization_Object >Lib_App </ Authorization_Object >
<Rule_Action action_name=" execute">

<Action_Type >execute </ Action_Type >
</Rule_Action >
<Location_Formula_Name >lf1 </ Location_Formula_Name >
<Conditions >EDR(Lecturer ,UniA)</Conditions >
</Policy_Rule ></Policy_Rules >

Figure C.3. Inter-domain security policy rule example.

209

<Services >
<Service is_interdomain="true">

<Service_Name >Lib_Service </ Service_Name >
<Service_ID >Service1 </Service_ID >
<Service_Host srv_m_id ="Host21">

<Service_Member_Action_Group >
<Action_Group_Name >a</ Action_Group_Name >
<Action action_name="login">

<Action_Type >login </Action_Type >
</Action >
<Action action_name=" enroll">

<Action_Type >enrol </Action_Type >
</Action ></Service_Member_Action_Group >

</Service_Host > % other service hosts
<Service_Domain srv_m_id ="UniA">

<Service_Member_Action_Group >
<Action_Group_Name >b</ Action_Group_Name >
<Action action_name="enrol">

<Action_Type >enrol </Action_Type >
</Action ></Service_Member_Action_Group >

</Service_Domain > % other service domains
<Service_Object_Type srv_m_id =" Web_App">

<Service_Member_Action_Group >
<Action_Group_Name >c</ Action_Group_Name >
<Action action_name=" execute">

<Action_Type >execute </ Action_Type >
</Action ></Service_Member_Action_Group >

</Service_Object_Type > % serv. obj. types
<Service_Object srv_m_id ="Lib_App">

<Service_Member_Action_Group >
<Action_Group_Name >d</ Action_Group_Name >
<Action action_name=" execute">

<Action_Type >read </ Action_Type >
</Action >
<Action action_name="read">

<Action_Type >read </ Action_Type >
</Action ></Service_Member_Action_Group >

</Service_Object > % other service objects
</Service ></Services >

Figure C.4. Part of the inter-domain security policy definition for Library service.

210

<Ambient_Calculus_Spec ...>
<Compilation_Unit
Compilation_Unit_Name=" Lib_Service">

<Specification >
<Specification_Name >AC_Lib_Service
</Specification_Name >
<Composition token="|">

<Ambient_Expr Ambient_Type="DOMAIN">
<Ambient_Name >UniA </Ambient_Name >

<Ambient_Expr Ambient_Type="HOST">
<Ambient_Name >Host11 </ Ambient_Name >

<Ambient_Expr Ambient_Type="OBJECT">
<Ambient_Name >Lib_App </ Ambient_Name >
</Ambient_Expr >

</Ambient_Expr >
<Ambient_Expr Ambient_Type="USER">
<Ambient_Name >nmullis </Ambient_Name >
</Ambient_Expr >

</Ambient_Expr >
... % other parts of specification
<Ambient_Expr Ambient_Type="DOMAIN">
<Ambient_Name >UniB </Ambient_Name >

<Ambient_Expr Ambient_Type="HOST">
<Ambient_Name >Host21 </ Ambient_Name >

<Ambient_Expr Ambient_Type="OBJECT">
<Ambient_Name >Books </ Ambient_Name >
</Ambient_Expr >

</Ambient_Expr >
<Ambient_Expr Ambient_Type="USER">
<Ambient_Name >mrundell </ Ambient_Name >
</Ambient_Expr ></Ambient_Expr >

</Composition >
</Specification >

</Compilation_Unit >
<Variables >

<Identifier name=" Library_Web_Server" id_type ="HOST"
id=" Host21"/>

<Identifier name=" University_B" id_type =" DOMAIN"
id="UniB"/>

<Identifier id_type ="OBJECT" id=" Lib_App "/>
<Identifier id_type ="USER" id=" nmullis "/>

</Variables ></Ambient_Calculus_Spec >

Figure C.5. Part of the Ambient Calculus Specification for the Library Service.

211

<Constraints >
<SOD_Constraints >

<SOD_CR conflicting_set_id=" ID_10"
constraint_id=" ID_20" n_conflicting="2"/>
<SOD_CR conflicting_set_id=" ID_11"
constraint_id=" ID_21" n_conflicting="3"/>
<Conflicting_Sets >

<Conflicting_Role_Set set_id="ID_10">
<Conflicting_Role cr_id =" ResAssist "/>
<Conflicting_Role cr_id =" Lecturer "/>

</Conflicting_Role_Set >
<Conflicting_Role_Set set_id="ID_11">

<Conflicting_Role cr_id =" Librarian "/>
<Conflicting_Role cr_id ="Sys_Admin"/>
<Conflicting_Role cr_id ="Admin"/>

</Conflicting_Role_Set >
</Conflicting_Sets >

</SOD_Constraints >
</Constraints >

Figure C.6. Example for SOD constraints specification.

<SOD_Conflicts >
<SOD_Conflict constraint_id=" ID_20">

<Conflicting_User user_id =" mrundell ">
<Conflicting_Role role_id ="Role1"/>
<Conflicting_Role role_id ="Role2"/>

</Conflicting_User >
</SOD_Conflict >

</SOD_Conflicts >

Figure C.7. Result of SOD constraints evaluation.

212

REFERENCES

1. Akar, O., Model Checking of Ambient Calculus Specifications against Ambient
Logic, M.S. Thesis, Bogazici University, 2009.

2. Grance, T., J. Hash, S. Peck, J. Smith and K. Korow-Diks, Security Guide for
Interconnecting Information Systems, Technical Report SP 800-47, NIST, 2002.

3. De Capitani di Vimercati, S. and P. Samarati, “Access control in federated sys-
tems”, Proceedings of the 1996 workshop on New security paradigms, ACM, New
York, NY, USA, pp. 87–99, 1996.

4. Cardelli, L. and A. D. Gordon, “Ambient Logic”, Mathematical Structures in Com-
puter Science, 2006.

5. Cardelli, L. and A. D. Gordon, “Mobile ambients”, Theoretical Computer Science,
Vol. 240, No. 1, pp. 177–213, 2000.

6. Burrows, M., M. Abadi and R. Needham, “A logic of authentication”, ACM Trans-
actions on Computer Systems, Vol. 8, No. 1, pp. 18–36, 1990.

7. Clark, D. D. and D. R. Wilson, “A Comparison of Commercial and Military Com-
puter Security Policies”, Proceedings of the 1987 IEEE Symposium on Research in
Security and Privacy , Oakland, California, USA, IEEE Press, pp. 184–193, 1987.

8. Schuba, C. L., On The Modeling, Design, And Implementation Of Firewall Tech-
nology , Ph.D. Thesis, Purdue University, 1997.

9. Guttman, J. D., “Filtering Postures: Local Enforcement for Global Policies”, Pro-
ceedings of the 1997 IEEE Symposium on Security and Privacy , Oakland, CA,
USA, IEEE Computer Society, Los Alamitos, CA, USA, pp. 120–129, 1997.

10. Fábrega, F. J. T., “Strand spaces: proving security protocols correct”, Journal of
Computer Security , Vol. 7, pp. 191–230, 1999.

11. Lowe, G., “Breaking and Fixing the Needham-Schroeder Public-Key Protocol Us-
ing FDR”, Proceedings of the Second International Workshop on Tools and Algo-
rithms for Construction and Analysis of Systems, Springer-Verlag, London, UK,
pp. 147–166, 1996.

12. Paulson, L. C., “Proving Properties of Security Protocols by Induction”, Proceed-
ings of the 1997 IEEE Computer Security Foundations Workshop, Rockport, Mas-
sachusetts, USA, IEEE Computer Society, Los Alamitos, CA, USA, pp. 70–83,
1997.

213

13. Song, D. X., “Athena: a new efficient automatic checker for security protocol anal-
ysis”, Proceedings of the 12th Computer Security Foundations Workshop, Mordano,
Italy, IEEE Computer Society, Los Alamitos, CA, USA, 1999.

14. Kindred, D. and J. M. Wing, “Fast, Automatic Checking of Security Protocols”,
Proceedings of the 2nd conference on Proceedings of the Second USENIX Workshop
on Electronic Commerce , Vol. 2, p.5, Oakland, California, USENIX Association,
1996.

15. Kindred, D., Theory generation for security protocols, Ph.D. Thesis, Carnegie
Mellon University, 1999.

16. Hopper, N. J., S. A. Seshia and J. M. Wing, “A comparison and combination of
theory generation and model checking for security protocol analysis”, Proceedings
of the Workshop on Formal Methods in Computer Security, Chigago, Illinois, USA,
pp. 100–107, 2000.

17. Becker, M. Y. and P. Sewell, “Cassandra: Flexible trust management, applied
to electronic health records”, Proceedings of the 17th IEEE Computer Security
Foundations Workshop, Pacific Grove, CA, USA, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 139–154, 2004.

18. Dougherty, D. J., K. Fisler and S. Krishnamurthi, “Specifying and reasoning about
dynamic access-control policies”, Proceedings of the Third International Joint Con-
ference on Automated Reasoning , Seattle, WA, USA, Springer, Berlin, Heidelberg,
pp. 632–646, 2006.

19. Unal, D. and M. U. Caglayan, “Theorem proving for Modeling and Conflict Check-
ing of Authorization Policies”, Proceedings of the International Symposium on
Computer Networks , Istanbul, Turkey, IEEE, 2006.

20. Drouineaud, M., M. Bortin, P. Torrini and K. Sohr, “A First Step Towards Formal
Verification of Security Policy Properties for RBAC”, Proceedings of the Fourth In-
ternational Conference on Quality Software, Braunschweig, Germany, IEEE Com-
puter Society, Los Alamitos, CA, USA, pp. 60–69, 2004.

21. Sohr, K., M. Drouineaud, G. Ahn and M. Gogolla, “Analyzing and Managing Role-
Based Access Control Policies”, Knowledge and Data Engineering, IEEE Transac-
tions on, Vol. 20, No. 7, pp. 924–939, 2008.

22. Becker, M., C. Fournet and A. Gordon, “Design and Semantics of a Decentralized
Authorization Language”, Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium, Venice, Italy, IEEE Computer Society, Los Alamitos, CA,
USA, pp. 3–15, 2007.

23. Jajodia, S., P. Samarati, M. L. Sapino and V. S. Subrahmanian, “Flexible sup-

214

port for multiple access control policies”, ACM Transactions on Database Systems,
Vol. 26, No. 2, pp. 214–260, 2001.

24. Jajodia, S., P. Samarati and V. S. Subrahmanian, “A logical language for express-
ing authorizations”, Proceedings of the IEEE Symposium on Security and Privacy ,
Oakland, CA, USA, IEEE Computer Society, Los Alamitos, CA, USA, pp. 31–42,
1997.

25. Bertino, E., F. Buccafurri, E. Ferrari and P. Rullo, “A logical framework for rea-
soning on data access control policies”, Proceedings of the 12th IEEE Computer
Security Foundations Workshop, Mordano, Italy, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 175–189, 1999.

26. Damianou, N., N. Dulay, E. Lupu and M. Sloman, “The Ponder Policy Specification
Language”, Proceedings of the International Workshop on Policies for Distributed
Systems and Networks, London, UK, Springer-Verlag, Berlin, Heidelberg, pp. 18–
38, 2001.

27. Woo, T. Y. C. and S. S. Lam, “Authorizations in distributed systems: A new
approach”, Journal of Computer Security , Vol. 2, pp. 107–136, 1993.

28. Cuppens, F. and C. Saurel, “Specifying a security policy: a case study”, Proceedings
of the 9th IEEE Computer Security Foundations Workshop, Dromquinna Manor,
Kenmare, County Kerry, Ireland, IEEE Computer Society, Los Alamitos, CA,
USA, pp. 123–134, 1996.

29. Ryutov, T. and C. Neuman, “Representation and Evaluation of Security Policies
for Distributed System Services”, Proceedings of DARPA Information Survivability
Conference and Exposition, Hilton Head, SC , USA, IEEE, pp. 172–183, 2000.

30. Milner, R., J. Parrow and D. Walker, “A Calculus of Mobile Processes, I”, Infor-
mation and Computation, Vol. 100, No. 1, pp. 1–40, 1992.

31. Milner, R., J. Parrow and D. Walker, “A Calculus of Mobile Processes, II”, Infor-
mation and Computation, Vol. 100, No. 1, pp. 41–77, 1992.

32. Cardelli, L. and A. D. Gordon, “Anytime, anywhere: modal logics for mobile ambi-
ents”, Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, Boston, Massachusetts, USA, ACM Press, pp. 365–377,
2000

33. Mardare, R. and C. Priami, “A Logical Approach to Security in the Context of
Ambient Calculus”, Electronic Notes in Theoretical Computer Science, Vol. 99,
No. 1, pp. 3–29, 2004.

215

34. Mardare, R., C. Priami, P. Quaglia and A. Vagin, “Model checking biological sys-
tems described using ambient calculus”, Proceedings of the 2004 International Con-
ference on Computational Methods in Systems Biology, Paris, France, Springer,
Berlin, Heidelberg, pp. 85–103, 2005.

35. Charatonik, W., S. D. Zilio, A. D. Gordon, S. Mukhopadhyay and J. Talbot,
“Model checking mobile ambients”, Theoretical Computer Science, Vol. 308, No. 3,
pp. 277–331, 2003.

36. Scott, D., Abstracting application-level security policy for ubiquitous computing,
Ph.D. Thesis, University of Cambridge, 2005.

37. Compagnoni, A. and P. Bidinger, “Role-based access control for boxed ambients”,
Theoretical Computer Science, Vol. 398, No. 3, pp. 203–216, 2008.

38. Zhang, N., M. Ryan and D. P. Guelev, “Synthesising verified access control systems
through model checking”, Journal of Computer Security , Vol. 16, No. 1, pp. 1–61,
2008.

39. Braghin, C., N. Sharygina and K. Barone-Adesi, “Automated Verification of Secu-
rity Policies in Mobile Code”, Proceedings of the 6th International Conference on
Integrated Formal Methods, Oxford, UK, Springer-Verlag, Berlin, Heidelberg, pp.
37–53, 2007.

40. Braghin, C., N. Sharygina and K. Barone-Adesi, “A model checking-based ap-
proach for security policy verification of mobile systems”, Formal Aspects of Com-
puting , Vol. 23, No. 5, pp. 627–648, 2010.

41. Unal, D., O. Akar and M. Ufuk Caglayan, “Model Checking of Location and Mobil-
ity Related Security Policy Specifications in Ambient Calculus”, In: I. Kotenko and
V. Skormin (Editors), Proceedings of the 5th International Conference on Math-
ematical Methods, Models and Architectures for Computer Network Security , St.
Petersburg, Russia, Springer-Verlag, Berlin, Heidelberg, pp. 155–168, 2010.

42. Bertino, E., P. Bonatti and E. Ferrari, “TRBAC: A Temporal Role-Based Access
Control Model”, ACM Transactions on Information and System Security , Vol. 4,
No. 3, pp. 191–223, 2001.

43. Joshi, J. B. D., E. Bertino, U. Latif and A. Ghafoor, “A Generalized Temporal
Role-Based Access Control Model”, IEEE Transactions on Knowledge and Data
Engineering , Vol. 17, No. 1, pp. 4–23, 2005.

44. Hansen, F. and V. Oleschuk, “Spatial Role-Based Access Control Model for Wire-
less Networks”, Proceedings of the 58th IEEE Vehicular Technology Conference,
Orlando, Florida, USA, IEEE, pp. 2093–2097, 2003.

216

45. Chandran, S. M. and J. B. D. Joshi, “LoT-RBAC: A Location and Time-Based
RBAC Model”, Proceedings of the 6th international conference on Web Information
Systems Engineering , New York, NY, Springer, Berlin, Heidelberg, pp. 361–375,
2005.

46. Ray, I. and M. Toahchoodee, “A Spatio-temporal Role-Based Access Control
Model”, In: S. Barker and G.-J. Ahn (Editors), Proceedings of the 21st Annual
IFIP WG 11.3 Working Conference on Data and Applications Security, Redondo
Beach, CA, USA, Springer, Berlin, Heidelberg, pp. 211–226, 2007.

47. Kumar, M. and R. E. Newman, “STRBAC - An approach towards spatio-temporal
role-based access control”, In: S. Rajasekaran (Editor), Proceedings of the Third
IASTED International Conference on Communication, Network, and Information
Security , Cambridge, MA, USA, IASTED/ACTA Press, pp. 150–155, 2006.

48. Damiani, M., E. Bertino, B. Catania and P. Perlasca, “GEO-RBAC: A Spatially
Aware RBAC”, ACM Transactions on Information and System Security , Vol. 10,
No. 1, 2007.

49. Kulkarni, D. and A. Tripathi, “Context-aware role-based access control in pervasive
computing systems”, Proceedings of the 13th ACM symposium on Access control
models and technologies, Estes Park, CO, USA, ACM, New York, NY, USA, pp.
113–122, 2008.

50. Aich, S., S. Sural and A. K. Majumdar, “STARBAC: spatiotemporal role based
access control”, Proceedings of the 2007 OTM confederated international conference
on On the move to meaningful internet systems, Vilamoura, Portugal, Springer-
Verlag, Berlin, Heidelberg, pp. 1567–1582, 2007.

51. Aich, S., S. Mondal, S. Sural and A. K. Majumdar, “Role Based Access Control
with Spatiotemporal Context for Mobile Applications”, Transactions on Compu-
tational Science IV, Lecture Notes in Computer Science, Vol. 5430, pp. 177–199,
Springer-Verlag, Berlin, Heidelberg, 2009.

52. Mondal, S. and S. Sural, “XML-based policy specification framework for spatiotem-
poral access control”, Proceedings of the 2nd international conference on Security
of information and networks, Sydney, Australia, ACM, New York, NY, USA, pp.
98–103, 2009.

53. Lorch, M., S. Proctor, R. Lepro, D. Kafura and S. Shah, “First experiences using
XACML for access control in distributed systems”, Proceedings of the 2003 ACM
workshop on XML security , Fairfax, Virginia, ACM, New York, NY, USA, pp.
25–37, 2003.

54. Sandhu, R. S., E. J. Coyne, H. L. Feinstein and C. E. Youman, “Role-based Access
Control Models”, IEEE Computer , Vol. 29, No. 2, pp. 38–47, 1996.

217

55. Ferraiolo, D. F., R. Sandhu, S. Gavrila, D. R. Kuhn and R. Chandramouli, “Pro-
posed NIST standard for role-based access control”, ACM Transactions on Infor-
mation and System Security , Vol. 4, No. 3, pp. 224–274, 2001.

56. Piromruen, S. and J. Joshi, “An RBAC framework for time constrained secure
interoperation in multi-domain environments”, Proceedings of the 10th IEEE In-
ternational Workshop on Object-Oriented Real-Time Dependable Systems, Sedona,
Arizona, USA, pp. 36 – 45, IEEE Computer Society, Los Alamitos, CA, USA, 2005.

57. Shafiq, B., J. B. Joshi, E. Bertino and A. Ghafoor, “Secure Interoperation in
a Multidomain Environment Employing RBAC Policies”, IEEE Transactions on
Knowledge and Data Engineering , Vol. 17, No. 11, pp. 1557–1577, 2005.

58. Bhatti, R., E. Bertino and A. Ghafoor, “X-FEDERATE: A Policy Engineering
Framework for Federated Access Management”, IEEE Transactions on Software
Engineering , Vol. 32, No. 5, pp. 330–346, 2006.

59. Bhatti, R., A. Ghafoor, E. Bertino and J. B. D. Joshi, “X-GTRBAC: An XML-
Based Policy Specification Framework and Architecture for Enterprise-Wide Ac-
cess Control”, ACM Transactions on Information and System Security , Vol. 8,
No. 2, pp. 187–227, 2005.

60. Bhatti, R., B. Shafiq, E. Bertino, A. Ghafoor and J. B. D. Joshi, “X-GTRBAC
admin: A decentralized administration model for enterprise-wide access control”,
ACM Transactions on Information and System Security , Vol. 8, pp. 388–423,
November 2005.

61. Bhatti, R., M. L. Damiani, D. W. Bettis and E. Bertino, “Policy Mapper: Ad-
ministering Location-Based Access-Control Policies”, IEEE Internet Computing ,
Vol. 12, No. 2, pp. 38–45, 2008.

62. Damiani, M. L. and C. Silvestri, “Towards movement-aware access control: Posi-
tion paper”, Proceedings of the SIGSPATIAL ACM GIS 2008 International Work-
shop on Security and Privacy in GIS and LBS , Irvine, California, USA, ACM,
New York, NY, USA, pp. 39–45, 2008.

63. “W3C Web Services Glossary”, http://www.w3.org/TR/ws-gloss/, 2004. ac-
cessed at February 2011.

64. Hirschkoff, D., E. Lozes and D. Sangiorgi, “Separability, Expressiveness, and De-
cidability in the Ambient Logic”, Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science, Copenhagen, Denmark, IEEE Computer Society,
Los Alamitos, California, USA, pp. 423–432, 2002.

65. Hirschkoff, D., E. Lozes and D. Sangiorgi, “On the expressiveness of the Ambient
Logic”, Logical Methods in Computer Science, Vol. 2, No. 2, 2006.

218

66. Ahn, G.-J. and R. Sandhu, “Role-based Authorization Constraints Specification”,
ACM Transactions on Information and System Security., Vol. 3, pp. 207–226,
2000.

67. Unal, D. and M. U. Caglayan, “Spatio-Temporal Model Checking of Location and
Mobility Related Security Policy Specifications”, Turk. J. Elec. Eng. & Comp. Sci ,
accepted, to appear.

68. Giunchiglia, C. C., A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NUSMV:
a new symbolic model checker”, International Journal on Software Tools for Tech-
nology Transfer , Vol. 2, No. 4, pp. 410–425, 2000.

69. Charatonik, W., A. Gordon and J. Talbot, “Finite-Control Mobile Ambients”,
Proceedings of the 11th European Symposium on Programming Languages and Sys-
tems, Grenoble, France, Springer-Verlag, London, UK, pp. 295–313, 2002.

