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han, and Hatice Köse Bağcı. I have learned almost all I know about machine learning

and experiment design from Prof. Alpaydın. Our conversations with Prof. Denizhan

had always been very inspiring and sparkling with her broad knowledge, and her

unconventional way of tackling research problems. Starting from the beginning of my
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invaluable support. Extra credit goes to Başak for her enormous help with the for-
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ABSTRACT

MULTI-RESOLUTION MODEL PLUS CORRECTION

PARADIGM FOR TASK AND SKILL REFINEMENT ON

AUTONOMOUS ROBOTS

Robots need to be taught what type of tasks or skills they are expected to

perform, and how to perform those particular tasks or skills. However, there is no

universally accepted single approach for transferring the task and skill knowledge to

a robot. Among several popular approaches, the most widely adopted method for

transferring the task or skill knowledge to the robot is to develop an algorithm for

performing the task or skill in question. Such a development requires a model of

the system to be available. Moreover, despite that it usually is easier to develop a

simple algorithm to handle trivial cases, it becomes a time consuming process to keep

refining the algorithm by modifying the underlying model to handle more complex

situations.

Learning from Demonstration (LfD) is another popular approach for transfer-

ring the task and skill knowledge to the robot. Instead of explicit programming, a

teacher demonstrates the robot how to perform the task or skill and the robot records

the demonstrated action together with the perceived state of the system at the time

of demonstration. An execution policy is then derived out of the recorded demonstra-

tion data for reproducing the task or skill. Depending on the complexity of the task

or skill in question and the robotic platform to be used, providing sufficient number

of examples in order to be able to extract a generalized execution policy can be a

very time consuming process.
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This thesis contributes a novel complementary corrective demonstration pa-

radigm called Model Plus Correction (M+C) for task and skill refinement on au-

tonomous robots. The M+C approach strikes a balance between model-based and

data-driven methods by combining them in a complementary manner. We assume

the availability of an algorithm capable of performing the task or skill in question

with limited success in terms of performance. Our approach utilizes a human teacher

who observes the partially successful execution of the task, and corrects the action of

the robot when the default algorithm is unable to select an appropriate action to be

executed. The collected demonstration data stamped with the state of the system at

the time of demonstration is then used to augment the default algorithm by modify-

ing the action computed by the algorithm according to a correction reuse function,

and the state of the system.

This thesis also introduces an algorithm for using the same complementary cor-

rective demonstration approach at multiple detail resolutions. The Multi-Resolution

Model Plus Correction (MRM+C) algorithm assumes that a set of detail levels are de-

fined with different state and action representations together with a different model-

based controller for each detail level are available at hand. The teacher provides

demonstration for which detail resolution to use at a particular state of the system in

addition to delivering corrective demonstration for the controller associated with the

current detail resolution. Having multiple detail resolutions with different complexi-

ties allows the system to use more detailed state and action representations and more

complex model-based controllers only when needed. Using a less detailed state and

action representation with a simpler controller makes it possible to cover the solution

space at a lower computational cost and using fewer number of demonstrations. The

learned detail resolution selection policy favors the least detailed resolution by default

and switches to a more detailed resolution if commanded to do so in a similar state

before.

We present experiment results where the M+C approach is first applied to a

complex biped walk stability improvement problem as an example to the skill refine-
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ment, and to a ball dribbling problem in a robot soccer environment as an example

to the task refinement. We also present experiment results where the MRM+C ap-

proach is applied to a humanoid obstacle avoidance task on a robot soccer field.

Finally, we present an experimental analysis of the proposed algorithms in terms of

their robustness against uncertainty and the cost analysis of using multiple detail

resolutions over using a single detail resolution in a simulated version of the obstacle

avoidance task.
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ÖZET

ÖZERK ROBOTLAR ÜZERİNDE GÖREV VE BECERİ

İYİLEŞTİRME İÇİN ÇOKLU-ÇÖZÜNÜRLÜKLÜ MODEL

ARTI DÜZELTME PARADİGMASI

Robotlar kendilerinden hangi görev ve becerileri icra etmeleri beklendiği ve bu

görev ve becerileri nasıl gerçekleştirecekleri konusunda bilgilendirmeye ihtiyaç du-

yarlar. Bu bilgilendirmenin nasıl yapılacağı konusunda üzerinde anlaşılmış evrensel

bir metod henüz bulunmamakla birlikte popüler olarak kullanılan metodlar arasında

en yaygın olanı ilgili görev ya da beceriyi gerçekleştirebilecek bir algoritmanın geliştiril-

mesidir. Böyle bir algoritma geliştirmek, sistemin bir modelinin bulunmasını gerek-

tirir. Dahası, basit durumlar için görevi yerine getirecek bir algoritma geliştirmek

kolay olsa da, algoritmanın varsaydığı modeli daha karmaşık durumları da kapsaya-

bilecek şekilde güncellemeye devam etmek giderek daha çok zaman alan bir sürece

dönüşmektedir.

Gösterimden öğrenme (GÖ), robotu programlamadan görev ve beceri bilgisini

aktarmak için kullanılan bir yöntemdir. Bu yöntemde robotu programlamak yerine

bir öğretmen görev ya da becerinin nasıl icra edileceğini robota gösterir ve robot

bu gösterim-leri sistemin o anki durumu ile birlikte kaydeder. Bu işlemi takiben

gösterilen görev ya da beceriyi tekrarlayabilmek için kaydedilen veri üzerinden bir

icra politikası oluşturulur. Söz konusu görev ya da becerinin karmaşıklığına bağlı

olarak düzgün genelleştirilmiş bir icra politikası oluşturabilmek için gereken sayıda

gösterimi robota sunmak çok zaman alıcı bir süreç olabilir.
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Bu tez, yeni bir tamamlayıcı düzeltici gösterim anlayışı olan Model Artı Düzelt-

me (M+D) paradigmasını bir görev ve beceri başarım iyileştirme yöntemi olarak

sunmaktadır. M+D yöntemi model-tabanlı ve veri-güdümlü yaklaşımlar arasında bir

denge kurarak bu yöntemleri birbirlerini tamamlayacak şekilde birleştirmektedir. Bu

yöntemde, söz konusu görev ya da beceriyi sınırlı bir başarım ile gerçekleştirebilen

bir algoritmanın var olduğunu varsayıyoruz. Yaklaşımımız, söz konusu görevi mevcut

algoritma ile icra eden robotun eylemini algoritmanın yanlış bir karar alması halinde

devreye girerek düzeltecek bir insan öğretmen kullanmaktadır. Sistemin o anki du-

rumu ile damgalanarak saklanan gösterim bilgisi daha sonra bir düzeltim kullanımı

fonksiyonu ve sistem durumuna gore varsayılan algoritmanın hesapladığı eylemin uy-

gun bir şekilde değiştirilmesinde kullanılır.

Bu tez ayrıca aynı tamamlayıcı düzeltici gösterim yaklaşımının birden fazla

detay çözünürlüğünde kullanılabilmesi için de bir algoritma sunmaktadır. Çoklu-

Çözünürlüklü Model Artı Düzeltme (ÇÇM+D) algoritması her biri ayrı detayda du-

rum ve eylem tanımlarına ve değişik karmaşıklıkta varsayılan algoritmalara sahip bir

dizi detay çözünür-lüğü tanımlanmış olduğunu varsayar. Daha az detaylı bir durum

ve eylem tanımı ve daha az karmaşık bir algoritmanın kullanılması, durum uzayının

daha büyük bir kısmının daha az hesaplama maliyeti ile kapsanmasını sağlar. Gos-

terim sırasında öğretmen robota o anki detay çözünürlüğünde düzeltici gösterim yap-

masının yanında hangi durumda hangi detay çözünürlüğünün kullanılması gerektiği

konusunda da gösterimde bulunur. Farklı karmaşıklık seviyelerine sahip birden çok

detay çözünürlüğünün bulunması, sistemin daha detaylı durum ve eylem tanımları

ve daha karmaşık algoritmaları ancak gerektiğinde kullanabilmesini sağlar. Öğrenilen

detay seçim politikası ön tanımlı olarak en düşük detay çözünürlüğünü kullanmaya

çalışır ve daha yüksek bir detay çözünürlüğüne ancak daha önce benzer bir durumda

öğretmen tarafından detay çözünürlüğünü arttırma komutu verilmişse geçer.
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Sunduğumuz deney sonuçları M+D yönteminin önce beceri iyileştirmeye bir

örnek olarak karmaşık bir iki ayaklı yürüme eyleminin dengesini iyileştirme prob-

lemine uygulanmasının, sonra da görev iyileştirmeye bir örnek olarak robot fut-

bolu ortamında tanımlan-mış bir top sürme problemine uygulanmasının sonuçlarını

içeriyor. Bunlara ek olarak, ÇÇM+D yönteminin bir insansı robotun bir robot fut-

bolu sahasında engel savuşturması problemine uygulanması ile ilgili deney sonuçları

da sunuyoruz. Son olarak, önerilen algoritmaların ortamdaki belirsizlikten ne kadar

etkilendikleri ve birden çok detay çözünürlüğü kullanmanın tek bir çözünürlük kullan-

maya göre hesaplamasal maliyet karşılaştırmaları üzerine bir deneysel analizi insansı

robot engel savuşturması probleminin benzetim ortamında modellenmiş bir halini

kullanarak sunuyoruz.
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1. INTRODUCTION

Transferring the knowledge of how to perform a certain task or skill to a robotic

platform remains a challenging problem in robotics research with an increasing im-

portance as robots start emerging from research laboratories into everyday life and

interacting with ordinary people who are not robotics experts. Robots observe their

environments through a set of sensors, and perform actions using their actuators.

Performing a task or skill requires a mapping function from the observed state of the

robot to the proper actions according to the task or skill definition. This mapping is

called a policy.

A widely adopted method for transferring task knowledge to a robot for obtain-

ing a policy is to develop an algorithm using a model (a set of assumptions about the

system) for performing the task or skill, when such a model is available. Although

it is usually relatively easier to develop an algorithm that can handle the trivial

cases, handling more complex situations often requires substantial modifications on

the algorithm and these modifications require the credit for erroneous execution to

be assigned properly to the underlying model. Therefore, it becomes a tedious and

time consuming process to ameliorate the controller and the underlying model as

the complexity of the cases the robot is facing increases. Moreover, for some prob-

lems, the refined algorithm might still fail to cover all the cases no matter how many

refinement iterations have been performed.

The Learning from Demonstration (LfD) paradigm is a data-driven approach

that utilizes supervised learning for transferring task or skill knowledge to an au-

tonomous robot without explicitly programming it. Instead of developing an al-

gorithm for performing a task or skill, LfD methods make use of a teacher who

demonstrates the robot how to perform the task or skill while the robot observes the

demonstrations and synchronously records the demonstrated actions along with the

perceived state of the system. The robot then uses the stored state-action pairs to
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derive an execution policy for reproducing the demonstrated task or skill. Moreover,

since the LfD approaches do not require the robot to be programmed explicitly, they

are very suitable for cases where the task knowledge is available through a user who

is an expert in the task domain but not in robotics.

Providing a way for humans to transfer task and skill knowledge to robots

via natural interactions, the LfD approaches are also suitable for problems, where a

complete analytical model for the task or skill is not available but a human teacher

can tell which action to take in a particular situation. It is impractical to expect

the teacher to give demonstrations for each and every possible case; therefore, the

policy percolated from the gathered demonstration data should be able to generalize

the received demonstrations to cover the states of which an implicit demonstration

example has not been provided by the teacher. However, providing sufficient number

of examples for good generalization is a very time consuming process when working

with robots with highly complex body configurations; such as humanoids, and for

sophisticated tasks with very high dimensional state and action spaces.

This thesis presents a novel paradigm for task and skill performance improve-

ment by combining the algorithm-based methods and the learning from demonstra-

tion approach in a complementary manner to take advantage of the strong parts of

both sides. We assume an algorithm for performing the task or skill in question is

available but has limited success rate in terms of some domain dependent performance

metrics. The human demonstrator observes the robot as it performs the task or skill

using the available algorithm, and provides corrective feedback only when the robot

makes a mistake. The received feedback data are stored by the robot along with the

observed state of the system. During autonomous execution, the robot executes the

action computed by the default algorithm unless there is a corrective demonstration

example in the database which is given by the teacher in a similar situation. This

idea of keeping the default algorithm as the primary source of the action and using

the demonstration data only to make exceptions as needed reduces the number of

demonstration examples required, and leads to a rapid performance improvement.
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This thesis also introduces the concept of multiple detail resolutions for giving

demonstrations at different detail levels, depending on the complexity of the situation

the robot is facing. Assuming that:

• the underlying algorithms become more expensive in terms of computational

power as their complexity increases,

• the more detailed the state and action representations get, the more demonstra-

tion examples it requires to have a good generalization in covering the state-

action space, and

• not all of the cases for a task or skill require state and action representations

of the same detail resolution, and algorithms to perform the task of equal com-

plexities

our algorithm builds upon the complementary corrective demonstration approach

combining an available algorithm with human demonstration and uses multiple in-

stances of the complementary corrective demonstration system running at different

detail resolutions in terms of state representation, action definition, and the complex-

ity of the default controller. We introduce the concept of an arbitrator component to

select which detail level to use in a particular situation using a selection function that

maps the current observed state of the system to a certain detail resolution. In this

multi-resolution scenario, the teacher provides corrective demonstration examples for

the different detail resolutions, and he or she also provides demonstration for which

detail level to use in a particular state.

Finally, this thesis contributes a formalization for the introduced platform-

independent and domain-independent task and skill refinement frameworks for single

and multiple detail resolutions. We present detailed experiment results for all al-

gorithms. We present results from the application of the complementary corrective

demonstration approach to a complex biped walk stability improvement problem,

as an example to the skill refinement, application to a ball dribbling problem in a

robot soccer environment as an example to the task refinement, and application of
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the multi-resolution complementary corrective demonstration to a humanoid obsta-

cle avoidance task. We also present a thorough analysis of both the single-resolution

and multi-resolution complementary corrective demonstration approaches in terms

of their robustness against the uncertainty in perception and action, and in terms of

the execution cost.

1.1. Approach

This thesis seeks to answer the following questions:

• How can an existing algorithm for performing a task or a skill be augmented

with corrective human demonstration to improve the system performance?

• How can the combination of the algorithm and human demonstration be ex-

tended in such a way to allow the demonstrator to correct the actions of the

robot at multiple detail resolutions with different state and action representa-

tions and default algorithms or varying complexity?

We present our approach in answering the thesis questions by breaking them

into several sub-questions.

1.1.1. Augmenting an Algorithm with Corrective Human Demonstration

1.1.1.1. How Can We Collect Corrective Human Demonstration?. Differing from the

classical LfD methods, in our approach, the demonstrator does not start teaching the

task or skill from scratch. The demonstration process comprises of the robot per-

forming the task or skill using the default algorithm and the teacher observing the

execution and stepping in to correct the robot only when the default algorithm takes

a wrong action. We utilize the Learning from Experience method, where the teacher

makes the robot perform an action by providing a demonstration using the action

definitions of the robot via a custom interface. By doing so, it is guaranteed that

all demonstration data coming from the teacher maps properly to the action capa-
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bilities of the robot. Therefore, the so called correspondence problem does not hold

for our approach. The corrective demonstration can be in the form of modifications

over the action computed by the default algorithm, or substitutions for replacing the

computed action with the demonstrated action. A distinguishing property of our

approach over traditional LfD methods is interleaving execution and demonstration.

Instead of waiting the robot to perform a complete execution of the task, the teacher

gets involved at any time during the execution to correct the robot. We present exam-

ples for this execution-demonstration interleaving at its extreme in Chapter 4, where

the demonstration occurs in real-time while the robot is performing a very complex

biped walk motion, and in Chapter 5, where the demonstration is still interleaved

with the execution, but is required only when the robot is in a state where it needs

to compute the next action to be executed.

1.1.1.2. How Can the Robot Reuse the Corrections Together with the Algorithm?.

The demonstration process in our approach builds a demonstration database as in

most other LfD approaches. The database consists of demonstration examples in the

form of < state, action > pairs where the action is the corrective demonstration given

by the teacher, and state is the observed state of the system at the time of demonstra-

tion. The reuse of the collected demonstration data takes place during autonomous

execution and according to a correction reuse function. The correction reuse function

computes the final action to be executed by the robot using the actions coming from

the default algorithm and the correction database, and the current observed state of

the system. We present two types of correction reuse methods: modifying the default

action with using the corrective demonstration action (Chapter 4), and replacing the

default action with the demonstrated action (Chapter 5, Chapter 6). One of the

important properties of the general complementary corrective demonstration idea is

to use the action computed by the default algorithm as much as possible. Therefore,

the collected demonstration data is very sparse and does not extend to cover the

entire state-action space. In order to compute an action using the demonstration

database, one needs a generalization feature. The proposed framework does not im-

pose a constraint on the generalization method to be used. We present three different
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generalization methods: fitting multiple normal distributions on the demonstration

data and using the mean value of the distribution associated with the current state

as the correction value (Chapter 4), using Locally Weighted Regression (Chapter 4),

and through a domain dependent state similarity function to find the demonstration

example received in the most similar state to the current observed state, and then

using the found demonstration sample as the correction sample, is the similarity value

is above a certain threshold (Chapter 5, Chapter 6).

1.1.2. Multi-Resolution Complementary Corrective Demonstration

1.1.2.1. How Can We Reduce the Task Execution Cost?. Handling complex cases for

complicated tasks require sophisticated algorithms with complex underlying models

and very detailed state and action representations. Using the most detailed state and

action representations result in very high dimensional state-action spaces and run-

ning sophisticated algorithms for acting properly could be very expensive in terms

of required computational power. However, not all of the cases for a task or skill

require such detailed representation and complex algorithms. Moreover, it requires

the teacher to provide demonstration at this highest detail level, covering a small part

of the state-action space, and results in substantial increase in the required number

of demonstrations to cover the state-action space, hence the demand for teacher at-

tention. We introduce the concept of multiple detail resolutions in Chapter 6 for

tackling this problem by allowing multiple instantiations of the complementary cor-

rective demonstration system with state and action definitions at different detail

resolutions, and with default algorithms of varying complexity. Using the proposed

approach, the robot uses a less detailed state and action representation and simpler

default algorithms as much of the time as possible, and the teacher gets to provide

detailed demonstrations only when the lower detail resolutions fall short to compute

a proper action.

1.1.2.2. How Can We Provide Demonstration at Different Detail Resolutions?. Ob-

taining the demonstration data for multiple detail resolutions is done in the same way
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we collect the demonstration data for the single resolution since the multi-resolution

system is a combination of several single-resolution systems and only one of those sys-

tems can be active at a time. Therefore, practically the teacher interacts with only

a single detail resolution at a time. During the demonstration, the teacher either

provides a corrective action, or makes the robot switch to a higher detail resolution if

he or she thinks the current situation can not be handled at the current detail reso-

lution. The received correction actions for each detail resolution are stored in a sepa-

rate demonstration database, and the received detail resolution change commands so

called elaborate commands are also stored in a separate elaboration database. Each

detail resolution uses its own state representation for storing the received demonstra-

tion examples while the most detailed state representation is used for the elaboration

database. Chapter 6 covers the collection of demonstration data for multiple detail

resolutions in depth.

1.1.2.3. How Can the Robot Reuse the Multi-Resolution Corrective Demonstration?.

The reuse of the collected demonstration data at different detail resolutions, and the

demonstration data for changing the detail levels are reused in a similar manner with

the reuse presented in Chapter 5. During the autonomous execution of the robot,

each time the robot needs to compute an action, it first looks for a demonstration

example for the current detail resolution. The robot always starts looking from the

lowest detail resolution with the least amount of detail. If a demonstration example

received in a state that has a similarity value between that state and the current state

of the system larger than a certain threshold, the corrective demonstration action is

executed by the robot. If no such demonstrations are found, the robot looks for a

demonstration example in the elaboration database for changing the detail level into

a higher resolution. A separate state similarity function is used for different state

representations of each detail resolution while the elaboration demonstration sharing

the same state similarity function with the highest detail resolution. We thoroughly

describe the reuse process in the multi-resolution corrective demonstration system in

Chapter 6.
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1.1.3. Evaluation

We used several real world and simulated domains for the experimental evalua-

tion of the algorithms presented in this thesis. The robot soccer domain, which is the

main application area that the evaluation domains have stemmed from is described

and an overview of the software components for playing soccer in Appendix A. We

give complete detailed definition of each evaluation domain in the relevant chapters.

1.2. Contributions

This thesis makes several major contributions to task and skill knowledge trans-

fer through human demonstration. The contributions of this thesis are as follows:

• Model Plus Correction (M+C), a platform and domain independent hybrid

paradigm combining an existing algorithm for performing a task or skill with

corrective human demonstration. The M+C paradigm has three components.

The Model component is an algorithm for performing the task or skill which is

developed based on a model, or a set of assumptions about the system. The

Correction component consists of corrective demonstration examples provided

by a teacher when the robot computes an erroneous action using the Model

component and the observed state of the system at demonstration time. The

Correction component also features a generalization method, usually a classi-

fier or a regressor trained on the collected demonstration data. The Correction

Reuse component (the “Plus” part) decides how to combine the actions com-

puted by the Model and the Correction components, or how to decide which

one of the actions to execute based on the similarity of the current state of the

system and the states associated with the received demonstration examples.

• Multi-Resolution Model Plus Correction (MRM+C), an extension to the M+C

paradigm comprising multiple M+C instances and an arbitrator for selecting

among those instances to become active. MRM+C paradigm that allows the

teacher to correct the actions of the robot at different detail resolutions and to
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teach the robot which detail resolution to use in a particular state.

• A formalization of the M+C and MRM+C approaches, describing how they

extend the traditional LfD approach.

• A thorough experimental analysis of both the M+C and MRM+C approaches

to evaluate their robustness against the uncertainty in the environment and

utility analysis of using multiple detail resolutions instead of using the highest

available detail resolution all the time.

1.3. Reader’s Guide to the Thesis

The thesis is organized as follows:

• Chapter 1 - Introduction: We provide an introduction to the thesis. We outline

the research questions that this thesis study seeks to answer. We summarize

our major contributions, and we provide a document outline for the thesis.

• Chapter 2 - Background: We present a description of the LfD approach along

with a formal model, and we outline some relevant work in the literature while

pointing out the similarities and differences of our approach with respect to the

existing work.

• Chapter 3 - Model Plus Correction (M+C) Paradigm: We introduce the key

contributions of the thesis: Model Plus Correction (M+C) and Multi-resolution

M+C (MRM+C) complementary corrective demonstration paradigms. We

present formal models for both the M+C and MRM+C paradigms, and we

describe each component of the M+C and MRM+C paradigms in detail.

• Chapter 4 - Skill Refinement Using M+C: We present a real world application

of the M+C on a complex biped walking domain to improve the stability of an

existing walk algorithm. We present a novel interface for providing real-time

corrective demonstration feedback to the robot without physical contact.

• Chapter 5 - Task Refinement Using M+C: We present an application of the

M+C to a complex ball dribbling task in robot soccer environment. We evaluate

the performance of the proposed approach using official RoboCup Standard
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Platform League rules.

• Chapter 6 - Task Refinement Using MRM+C: We present Multi-Resolution

Model Plus Correction (MRM+C), an extension over the M+C approach by

introducing the concept of multiple instances of M+C running at different de-

tail resolutions. We evaluate the performance of the MRM+C approach in a

humanoid obstacle avoidance domain and we demonstrate the effectiveness of

the MRM+C algorithm against the single detail resolution approach.

• Chapter 7 - Experimental Analysis: We present extensive experimental eval-

uation of the M+C and MRM+C algorithms in a simulated version of the

humanoid obstacle avoidance domain. We evaluate the robustness of both the

M+C and MRM+C approaches against the level of uncertainty in the envi-

ronment and we demonstrate the effectiveness of the MRM+C algorithm over

M+C algorithm in terms of execution cost.

• Chapter 8 - Conclusion and Future Work: We conclude the thesis with a sum-

mary of the major contributions and with a discussion of the possible promising

directions for future work.
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2. BACKGROUND

In this chapter, we first present a description of the Learning from Demonstra-

tion approach along with a formal model. We then describe Corrective Demonstra-

tion, a form of LfD that the contributions of this thesis are based on. We present

a brief description of the Advice Operators Policy Improvement (A-OPI) approach

that is used in some of the applications of the methods this thesis introduces. In the

last section of the chapter, we outline some relevant work in the literature, comparing

our approach to the existing work.

2.1. Learning from Demonstration

As briefly introduced in Chapter 1, the Learning from Demonstration (LfD)

paradigm is a supervised learning approach for transferring task or skill knowledge to

an autonomous robot by means of the demonstrations of the task or skill execution.

A human teacher provides the demonstrations for the task or skill. Depending on the

implementation, the demonstrations can occur in two main categories:

• Learning from observation: In this category, the teacher performs the task

or skill and the robot acquires the demonstration examples passively through

observing the teacher. This type of demonstration requires the robot to be able

to identify and map the teacher’s actions to its own action set. This problem

is also known as the correspondence problem.

• Learning from experience: In this category, the teacher makes the robot execute

the task or skill by means of either manipulating the body parts of the robot

or through instructing the robot using its own action set.

We define the learning from demonstration problem formally as a tuple <

S,A, πdemo >. The world consists of states S, and A is the set of actions the robot

can take. Transitions between states are defined with a probabilistic transition func-
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tion T (s′|s, a) : S × A × S → [0, 1]. The state is not fully observable; instead, the

robot has access to an observed state Z with the mapping M : S → Z. A policy

πdemo : Z → A is extracted from the demonstration dataset D consisting of teacher

demonstrations d ∈ D which are of the form d =< z, a >, z ∈ Z, a ∈ A. When

executing the task autonomously, the robot uses πdemo for selecting the next action a

based on the current observed state z. The execution model of generic learning from

demonstration system is given in Figure 2.1.

demonstration
data

z

z

ππdemodemo

Teacher

a
teacher

a
demo

sensory input

actuation

E
N

V
IR

O
N

M
E

N
T

Figure 2.1. The schematic representation of the generic LfD system.

2.2. Corrective Demonstration

Corrective demonstration is a form of teacher demonstration focusing on cor-

recting an action selected by the robot to be performed by proposing one of the

following types of feedback:

• An alternative action to be executed in that state

• A modification to the selected action
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The usual form of employing corrective demonstration is either through adding the

corrective demonstration example to the demonstration dataset or replacing an ex-

ample in the dataset with the corrective example, and re-deriving the action policy

using the updated demonstration dataset.

However, re-deriving the execution policy each time a correction is received can

be cumbersome if the total number of state-action pairs in the demonstration database

is large. On the other hand, accumulating a number of corrective demonstration

points and then re-deriving the execution policy may be misleading or inefficient

since the demonstrator will not be able to see the effect of the provided corrective

feedback immediately.

2.3. Advice Operators

Advice Operators Policy Improvement (A-OPI) is a corrective demonstration

method for improving the execution performance of the robot in a human-robot

learning from demonstration (LfD) setup [1]. Advice operators provide a language

between the human teacher and the robot student, allowing the teacher to give advice

as a mathematical function to be applied on the actions in the demonstration database

and/or the observations corresponding to those actions. The resulting data is then

used to re-derive the execution policy. More formally, for the defined advice operators

O = {o1, o2, . . . , oN}, there is a set of corresponding mathematical functions

F = {f1(X1), f2(X2), . . . , fN(XN)} (2.1)

where Xo =< x1, x2, . . . , xK > is the parameter vector for the advice operator o.

For each received advice o along with its parameter vector Xo, the corresponding

mathematical function fo(Xo) is applied on the observations Z and/or actions A
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such that Z ′ ← fo(Xo, Z) and/or A′ ← fo(Xo, A). Advice operators are especially

useful in domains with continuous state/action spaces where the correction must be

provided in continuous values.

2.4. Related Work

LfD based methods have been applied to many learning scenarios involving

high level task and low level skill learning on different robotic platforms varying from

wheeled and legged robots to autonomous helicopters. Here we present a few repre-

sentative studies and strongly encourage the reader to resort to [2] for a comprehensive

survey on LfD.

2.4.1. Task Learning

While learning to perform high level tasks, it is a common practice to assume

that the low level skills required to perform the task are available to the robot. Task

learning from demonstration have been studied in many different contexts.

Thomaz and Breazeal have proposed a method for utilizing human feedback

as the reward signal for the Reinforcement Learning (RL) system [3]. They used a

simulated kitchen environment modeled as a Markov Decision Process (MDP) where

a robot tries to learn how to bake a cake. The human teacher observes the robot

operating and provides a reward signal at any time without interrupting the opera-

tion. The authors have presented a user study. The notion of observing the robot

executing the task and intervening to provide feedback bears a resemblance with our

approach. However, they utilize the feedback as a reward signal to an action selected

by the robot whereas in our approach the teacher provides actions and/or action

corrections instead of quantitative evaluation of the action outcomes. The second

main difference is that our approach makes use of the received feedback to improve

the performance of an existing algorithm while their approach utilizes the received

feedback for training a RL system.
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Çakmak et al. investigated the issues arose when using active learning to speed

up the learning and to improve the learning accuracy [4]. They evaluated three

different ways of making queries where each of the methods differ in the conditions

of when to ask teacher for a demonstration using an upper-torso humanoid robot

in a concept learning task. They presented a user study where they evaluate the

performance of the different ways of asking for feedback against each other and against

a baseline supervised learning method.

Chernova and Veloso introduced an approach for learning behavior policies from

human demonstration called “Confidence Based Autonomy (CBA)” [5]. The CBA

approach utilizes a confidence calculation mechanism for assessing how confident the

robot is about the action selected by its execution policy. If the confidence value is

above a certain threshold, the robot proceeds with the execution of the selected action.

Otherwise, it asks for teacher demonstration. The system builds a statistical model of

the received demonstration examples and becomes more confident in situations where

it has received a higher number of demonstrations. The CBA approach reduces the

need for teacher attendance, hence it makes the teaching process less tedious and

time consuming for the teacher. The goal of reducing the need for teacher attention

is also shared by our approach in this thesis. However, instead of starting from

scratch, our approach utilizes an existing algorithm as the baseline controller and

needs teacher feedback only when the algorithm fails to compute a proper action

to execute. The CBA approach is applied to a set of behavior learning problems

for single robot such as humanoid obstacle avoidance [6], simulated car driving [7],

and for multi-robot systems such as a simulated furniture-moving problem [8], and a

humanoid ball sorting task [9].

2.4.2. Skill Learning

Several approaches to low level skill learning in the literature utilize LfD meth-

ods with different foci. Unlike task learning, most skill learning approaches deal with

continuous domains where the robot learns to execute a sequence of low level actions
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properly.

A recently populerized method for teaching low level skills that utilizes the

“Learning from Experience” approach is named “Kinesthetic Teaching”. In kines-

thetic teaching methods, the teacher makes the robot perform the skill through tac-

tile interaction. Hersch et al. proposed a method utilizing dynamic system control

and statistical learning theory for acquiring goal-directed gestures. The authors have

evaluated their approach using a humanoid robot in a reaching and grasping skill,

and a skill for putting an object in a box [10].

Tactile interaction has also been utilized for skill refinement through tactile

correction. Argall et al. have proposed a method for refining a demonstrated

skill execution policy using kinesthetic feedback from the teacher during the execu-

tion of the skill using the execution policy extracted from the demonstration exam-

ples [11, 12, 13, 14]. In the “Tactile Policy Correction” approach, if tactile feedback is

detected, the policy is modified according to the received corrective tactile feedback.

This approach shares a similarity with our approach as both systems utilize teacher

feedback interleaved with the skill execution. The main difference with the TPC

method and our approach is that while the TPC method uses the received tactile

feedback to modify the execution policy learned from demonstration, our approach

keeps the received feedback commands separately and learns a correction policy out

of the feedback commands to correct the actions of the underlying controller. A sim-

ilar incremental skill refinement method is proposed by Calinon and Billard where

they utilized different modalities like using motion sensors in addition to tactile cor-

rection for teaching a humanoid robot how to perform a bimanual grasping skill and

for learning the affordances and effectivities of objects [15].

Nakanishi et al. have proposed a method for learning biped walking from hu-

man demonstration using motion primitives [16]. Their method utilizes dynamical

motion primitives as a Central Pattern Generator (CPG) for generating cyclic walk-

ing patterns for a biped robot. The trajectories demonstrated by a human are learned
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through motion primitives using Locally Weighted Regression (LWR). Motion prim-

itives have also been utilized for skill learning by Bentivegna and Atkeson where the

robot learns how to play air hockey [17]. In their approach, the robot learns the

parameters of the motion primitives through the observation of other parties per-

forming the same skill. Similarly, Bentivegna et al. have proposed an approach for

learning how to select behavioral primitives and how to generate subgoals for the big

task at hand. They evaluated the proposed approach on a robotic platform playing

marble maze game as well as a simulated version of the system [18].

Several regression based approaches have been proposed for skill learning from

demonstration. Grollman and Jenkins have proposed a learning framework named

“Dogged Learning” to learn several low level skills for playing soccer [19, 20]. They

evaluated the efficiency of their problem and platform independent framework on

Sony AIBO robotic dogs and in robot soccer domain where the robot learns how to

seek for the ball and how to mirror the movement of its tail with its head. Calinon

et al. have proposed a probabilistic approach that utilizes Hidden Markov Mod-

els (HMM) along with regression for learning several low level skills with different

characteristics. They evaluated the generalization ability of the proposed approach

on several different skills to be learned such as a cyclic bimanual dancing motion

on a highly articulated iCub humanoid robotic platform, a spoon-feeding skill with

multiple simultaneous constraints on a HOAP-3 humanoid robot, and a ball hitting

skill that can be performed in multiple ways on a Barrett WAM redundant robotic

arm [21]. Gribovskaya et al. have proposed a method for being able to general-

ize non-linear multivariate motion dynamics of a certain low level skill from human

demonstrations of the skill. Their approach utilizes Mixture of Gaussians (MoG) to

estimate multivariate robot motions [22].

Interacting with the learner using high level abstract methods in low level skill

learning problems has been proposed in different forms. Breazeal et al. have proposed

a theoretical framework for human-robot collaboration using joint intention theory.

In their approach, the teacher can interact with a highly expressive learner robot
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using natural language and the robot communicates its inner state through a set of

gestures and expressions [23]. Rybski et al. have proposed a method for interactive

robot training through dialog using natural language. A set of behavior networks

are learned from verbal teacher feedback where a rule-based behavior specification is

dictated to the robot [24].

Another method for learning low level skills from human demonstration through

high level communication methods is the Advice Operator Policy Improvement (A-

OPI) approach proposed by Argall et al. [25, 1]. A set of defined verbal operators are

associated with functional transformations for low level robot motion. The teacher

provides feedback in the form of defined verbal operators and the corresponding

transformations are applied on the specified portion of the demonstration database.

A new execution policy is then re-derived out of the modified demonstration database.

The A-OPI approach is evaluated on a trajectory learning task using a Segway RMP

robot platform.

Several examples of learning from demonstration utilizing reinforcement learn-

ing methods have been proposed. Abbeel and Ng have proposed an inverse reinforce-

ment learning method for teaching a robotic helicopter to perform several complex low

level skills [26]. They assume a domain expert to be available for providing good ex-

amples of the skill execution. A proper reward function is then learned as to maximize

the reward signal for the action sequence provided by the human teacher. In another

reinforcement learning based approach, Atkeson and Schaal have proposed a method

for learning how to perform a complex skill from a single demonsration [27, 28].

They applied their proposed approach to a pole balancing skill performed by a SAR-

COS robotic arm. Guenter et al. have presented a system for imitating constrained

reaching tasks using reinforcement learning [29]. The proposed system is based on

a dynamical system generator in combination with a reinforcement learning compo-

nent for allowing the robot to adapt the trajectory learned through demonstration

to novel situations such as avoiding obstacles along the way which were not present

during the initial training [29]. Kolter et al. have proposed a hierarchical appren-
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ticeship learning approach for learning complex skills which are non-trivial even for

the domain experts [30]. They propose a method that allows the teacher to pro-

vide advice at different hierarchical levels as providing isolated advice for a smaller

part of the skill is often easier for the teacher. This approach shares similarities

with our multi-resolution task and skill refinement approach since one of the two

key advantages of our multi-resolution approach is the ability to cover a larger por-

tion of the state-action space with demonstration provided at a low detail resolution.

Our approach differs from the hierarchical apprenticeship learning approach with its

utilization of multiple algorithms having different computational complexities and

running at different detail levels.

2.4.3. Case-Based Reasoning

Case-Based Reasoning (CBR) is a method for solving problems based on the

solution of the similar problems encountered in the past [31]. CBR consists of four

steps:

• Retrieve: In this step, similar cases are retrieved from the memory for a given

case.

• Reuse: In this step, the retrieved solution for the most similar case is adapted

for the new case at hand.

• Revise: In an iterative process between the Reuse and this steps, the adapted

solution is tested against the new case and further revised as needed.

• Retain: Once the performance of the adapted solution to the new case is satis-

factory, the new solution is added to the database of solutions along with the

description of the new case.

The method of generalizing the received corrections over novel and unforeseen

situations in our approach is similar to the retrieve and reuse steps of CBR-based

systems. Using a domain-specific similarity measure, our approach also scans its

database of corrections and fetches the correction that is received in a state most
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similar to the current state of the system, if the similarity value is over a certain

threshold. The main difference between our approach and CBR-based systems is

that in CBR-based systems, it is not possible to employ a case-independent generic

algorithmic solution to the problem for covering for handling most simple cases.

Therefore, for non-trivial tasks of certain complexity performed by highly articulated

robotic platforms, CBR-based systems require a high number of different cases in

order to be able to find similar cases for a given new case. From this perspective, CBR-

based systems suffer from the same scaling problem with the general LfD systems.
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3. MODEL PLUS CORRECTION (M+C) PARADIGM

This chapter introduces the two complementary corrective demonstration para-

digms which are the main contributions of this thesis. We start with our key contri-

bution, the Model Plus Correction (M+C) paradigm. We first present a formal model

of the M+C paradigm and then describe each of its components in detail. We then

present the generalized version of M+C with multiple detail resolutions called Multi

Resolution M+C (MRM+C). We present a formal model to the MRM+C paradigm

as an extension over M+C, and then we describe the components of MRM+C. In the

last part of this chapter, we describe how a system utilizing M+C and MRM+C is

trained and how a trained system executes the task or skill in question along with

algorithms for both training and autonomous execution.

3.1. Model Plus Correction

We define our complementary corrective demonstration approach by extending

the LfD model given in Chapter 2. Since the distinguishing property of comple-

mentary corrective demonstration approach is that it uses an available model-based

algorithm as the default controller and utilizes corrective human demonstration not to

learn the task or the skill from scratch, but to refine the performance of the available

controller algorithm, we name the approach as Model Plus Correction (M+C).

We define the M+C system as a tuple < S,A, πdemo, πmodel, freuse >. The LfD

definition given in Chapter 2 is extended with a model-based controller, which can

be considered as a hand-coded action policy πmodel : Z → A, and a correction reuse

function freuse(z, ademo, amodel) : Z ×A×A→ A, where ademo is the action computed

by πdemo, and amodel is the action computed by πmodel. The correction reuse function

computes the final action to be executed by the robot as a function of the current

observed state, and the actions computed by the model-based and the corrective

demonstration policies. The schematic representation of the M+C system is given in
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Figure 3.1.

Figure 3.1. The schematic representation of the M+C system.

In the remainder of this chapter, we will rephrase the individual components of

the M+C paradigm, and its generalized form, the MRM+C model.

3.2. The Model

The model part of the M+C paradigm aims to cover as much of the state space

as possible with a model as simple as possible, either a mathematical model or a

model derived out of some available data. More formally, the model is an action

policy πmodel : Z → A. Another strong motivation behind the model component

besides simplicity is to be able to use an available algorithm for the task or the

skill as black-box. The model-based algorithm is able to perform the task for some

simple cases; therefore, this makes it easier for the demonstrator and will require less

attention as the teacher would only need to get involved when the algorithm fails.
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3.3. The Correction

The correction part of the paradigm augments the model part with corrective

human demonstration to improve the performance of the system by providing substi-

tute actions for the states where the model is unable to compute a good action for that

state. Just like the model, the correction is also an action policy πcorrection : Z → A

which uses the collected corrective demonstration database D. Depending on the

application domain and the type of the task or skill, the policy can be extracted from

the demonstration data and represented with a model, or, the demonstration data

can be kept and used by the correction policy during the autonomous execution of

the task or the skill.

3.4. Correction Reuse

The correction reuse component constitutes the “plus” part of the M+C pa-

radigm. It functions as a glue between the model and the correction parts, and is

responsible from delivering the final action to be executed by the robot. The final

action is computed as a function of the actions provided by the model and the correc-

tion components, and the observed state of the system. Depending on the approach

and whether the actions are discrete or not, the correction reuse part does one of the

following:

(i) Decide which one of the model action and the correction action to be executed

as the next action.

(ii) Combine the model and correction actions together by considering the correc-

tion action as a modification on the model action

In (i), a binary classifier that takes the current state of the system as input,

and outputs a class label c ∈ {model, correction} is employed. The final action to be

executed is selected according to the output of the classified for the observed state of

the system. In (ii), a function that takes the current state, the model action, and the
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correction action as its input and outputs a corresponding action is employed. All

the applications in this thesis assume a fixed correction reuse policy. However, since

the correction reuse policy itself is also a function, how to select an action in case (i),

and how to combine the actions in case (ii) can be learned either autonomously, or

again from a human teacher through demonstration.

3.5. Multi-Resolution Model Plus Correction Approach

Most LfD approaches use a single fixed state and action representation and a

single action policy extracted from the demonstration data. Finding efficient state

representation and action definitions for complex tasks is considered a difficult prob-

lem without a widely accepted general solution. For complex tasks, using the most

detailed state representation and action definitions available often requires a large

number of demonstrations to be provided in order to be able to extract a sufficiently

generalized policy. Similarly, a hand-coded algorithm using the most detailed state

and action definitions might be computationally expensive and infeasible for being

used as the sole action policy. On the other hand, using a very abstract state and

action definition might fail to capture the complexity of the task. Depending on the

nature of the task, different portions of the state-action space can be covered at lower

detail resolutions, hence saving both computational power and space. A hand-coded

algorithm running at a lower detail resolution would also be easier to implement and

less demanding in terms of computational power requirements.

We use the introduced M+C model in the previous section and present a new

model to include multiple instances of M+C operating at a set of different detail

resolutions R. We define Multi-Resolution Model Plus Correction (MRM+C) as a

tuple < frefine, {r1, r2, ..., rN} >, where rk ∈ R is an instance of a modified version

of the M+C model defined for the detail resolution rk, and πarbitrator(z) : Z → R

is the detail resolution arbitration policy. The extended M+C model is a tuple

< Sr, Ar, fstate, faction, πdemo, πmodel, freuse > where fstate : S → Sr is the function

for mapping the global state to the state definition at the detail resolution r, and
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faction : Ar → A is the function for mapping the action computed at the detail

resolution r into an action representation at the finest detail level. The arbitrator

component decides which detail resolution to use for computing the next action to

be executed based on a the observed state of the system.

In addition to the M+C definitions for each detail resolution, there is also a

function for mapping the most detailed state definition to the state definition of each

detail resolution and a function for mapping the actions given at that detail resolution

to actions represented in most detailed action definition. A schematic diagram of the

Multi-Resolution M+C framework is given in Figure 3.2.

Figure 3.2. The schematic representation of the MRM+C framework.

3.5.1. State Definition

The state definition is a represented as a feature vector computed using the

most detailed sensory and proprioceptive information available. A separate state

mapping function is defined for each detail resolution to map the available sensory

information at the finest detail resolution to the state representation defined for the

current detail resolution. Defining a state representation at a lower detail level than

the state representation for the finest detail resolution helps keeping the state space

smaller. Having a smaller state space reduces the complexity of the computations

needed to select an action to be performed for a given state vector in case of the
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execution of the default algorithm, or leads the robot requiring smaller number of

demonstrations to learn the exceptions, or “patches” to the default algorithm. The

obvious downside of having a coarse state representation is the possibility of missing

an important detail that could be caught with a more detailed state definition, and

as a result, failing to take the proper action for that state of the system.

3.5.2. Action Definition

The action definition contains a set of actions that can be taken at that detail

resolution. As in the state definition case, a mapping function should be provided to

convert the actions expressed at a particular detail resolution to actions at the finest

detail resolution. Having a smaller set of less detailed actions leads to a smaller action

space. A natural result of this is in case of the demonstration, it becomes easier for

the teacher to provide demonstration examples as using the more abstract actions.

For the autonomous execution, similar to the state definition case, the actions can be

computed by less complex and therefore computationally inexpensive algorithms. The

possible major disadvantage of using more abstract action definitions is in a certain

state a complex instance of the task which requires delicate and accurate actuation,

the abstract action model might fail to match the required level of accuracy,

3.5.3. Default Controller

We use the default controller as the primary action policy to compute which

action to take in a particular state expressed in the state definition for the current de-

tail resolution of the system unless a demonstrated correction action states otherwise.

The default controller can be implemented as a hand-coded algorithm employing a

mathematical model for performing the task, or it can be in the form of an action

policy learned using a machine learning method, such as reinforcement learning or

genetic algorithm. Although there is not a restriction on the complexity of a default

algorithm, it is expected that the default algorithm for a coarse detail resolution to

be a simpler algorithm than the algorithm for a finer detail resolution. Similar to the
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state and action definition cases, simpler algorithms are easier to develop or obtain

and are often computationally inexpensive compared to their more complex counter-

parts. However, they share the same trade off with the state and action definition

resolutions: simpler algorithms carry the risk of falling short on making complex

decisions as needed in a particular state of the system. An unnecessarily complex al-

gorithm, on the other hand, consumes the processing power without producing added

value.

As we stated in the introduction part of this chapter, it is a non-trivial problem

to strike a good balance in computational burden and functional efficiency by choos-

ing the right complexity level for the algorithm. In fact, this is the very rationale

behind this multi-resolution approach, that is to have different controllers and human

correction databases for covering different parts of the state-action space for the task

with different complexities.

3.5.4. Correction Reuse Algorithm

For each defined detail resolution, we build a separate corrective demonstra-

tion database consisting of the correction actions delivered by the teacher at this

detail resolution of the system. We store the received demonstration actions in the

form of state-action pairs without extracting an action policy out of the demonstra-

tions. During the autonomous task execution, for a given state of the system repre-

sented at the current detail resolution, both the default algorithm and the corrective

demonstration parts can compute an action. Therefore, the complementary correc-

tive demonstration instance needs a mechanism to populate a single action out of

two actions generated by the default algorithm, and by the corrective demonstration

component. The mechanism can be a simple selection algorithm based on a criteria,

e.g., selecting the demonstration action if the state similarity computed for the state

that the system was in when the selected demonstration action was delivered by the

teacher, or the correction reuse algorithm can combine the two actions to compute

a third action (using demonstration action to modify the computed action by the
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default algorithm). Since the correction reuse algorithm is in fact, another action

selection policy which maps the current state of the system to an appropriate correc-

tion reuse action, it is possible to also learn this correction reuse policy either using

self-exploratory methods like reinforcement learning, or again from human demon-

stration. In this chapter, we assume hand-coded fixed correction reuse algorithms

and we leave the investigation of learning such reuse policy as a future work.

3.5.5. The Detail Resolution Arbitrator

The detail resolution arbitrator, or the arbitrator in short, is the outermost

component of the MRM+C algorithm and its main duty is to select the appropriate

detail resolution for a given state and executes the action computed by the M+C

instance associated with that particular detail resolution. Similar to the model and

the controller components, the arbitrator is also an action policy πarbitrator : Z → R

and can be implemented as a hand-coded algorithm, or can be learned. The detail

resolution arbitrator acts as an active proxy during the task execution and activates

the appropriate detail resolution depending on its policy and the current state of

the system. As with the correction reuse algorithm, it is possible to use a fixed

hand-coded policy or a learned policy for the detail resolution arbitrator component.

The employed policy can decide to switch the system into a finer detail level when

the system is at a more abstract detail resolution, or the policy can also decides

to switch to a more abstract detail resolution for the sake of using a simpler and

computationally inexpensive compared to the default algorithm defined at the current

detail resolution. In our application problem using MRM+C, we used an arbitrator

policy learned from human demonstration.

3.5.6. Correction Delivery: Training the System

The instantiated MRM+C system for performing a certain task is ready to per-

form the task but usually the task execution performance is sub-optimal. Various

components of the MRM+C system, namely, the individual corrective demonstration
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components for each of the defined state resolutions, and the detail resolution arbitra-

tor component need to be trained through a set of corrective human demonstration

sessions. The correction delivery and correction reuse stages can be configured to

work in an interleaved manner. In other words, since we keep the received correc-

tion actions as raw data without generalizing a policy, the robot can start using the

demonstration actions immediately. However, for the sake of simplicity, we explain

the training procedure assuming the correction reuse is disabled. In the real world ex-

perimentation, the correction reuse is used in conjunction with the correction delivery

to avoid redundant teacher corrections.

Along the course of a demonstration, the robot starts executing the task until it

reaches a decision state where an action needs to be computed to be able to proceed

with the task execution. At the beginning of each decision process, the MRM+C

system switches to the most abstract detail resolution. The state vector according to

the state definition for the most abstract detail resolution is computed and an action

is selected by the default algorithm associated with that detail resolution. The robot

then proceeds with the execution of the selected action. The teacher observes the

robot as it executes the task, and intervenes by providing a feedback to the robot, if

the action selected by the default algorithm is erroneous.

The teacher gives two types of feedback:

• The elaborate command to take the system to the next detail level with finer

resolution. A new action is computed using the specified hand-coded controller

associated with the new detail level.

• The correct command, issued with the specified replacement action to substitute

the current action with another action defined for the same detail resolution.

If an elaborate command is received, the system checks if there is a finer detail

resolution available. If such a resolution is found, the received elaborate command

is stored with the current state of the system represented with the state definition
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for the finest detail resolution available. The system then switches to that detail

resolution and goes back to the action computation step. If a correct command is

received, the provided substitute action is stored with the current state of the system

represented with the state definition for the current detail resolution and the action

to be executed by the robot is replaced with the received corrected action. The

algorithm for MRM+C training is given in Figure 3.3.

1: resolution← LOWEST
2: state← computeState(resolution)
3: action← computeAction(state)
4: executeAction(action)
5: if feedbackReceived() then
6: feedback ← readFeedback()
7: if feedback == ELABORATE then
8: if resolution < HIGHEST then
9: saveDetailDemonstration()

10: increaseResolution()
11: goto 2
12: end if
13: else if feedback == CORRECT then
14: action← readCorrection()
15: saveCorrectionDemonstration()
16: executeAction(action)
17: end if
18: end if

1

Figure 3.3. The algorithm for training the MRM+C system.

The demonstration continues as long as the teacher observes a room for improve-

ment in the system. Once the demonstration session is over, the MRM+C system

has the learned individual correction policies as well as a detail resolution policy. We

now present the algorithm for the autonomous task execution case where the robot

performs the task using the hand-coded algorithms at different detail resolutions and

augmented with complementary corrective demonstration.

3.5.7. Correction Reuse: Autonomous Execution

During the autonomous task execution using the MRM+C system, each time the

robot reaches a decision point during the autonomous task execution, the MRM+C al-

gorithm sets the system resolution to the most abstract detail resolution available and
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computes an action using the algorithm associated with that detail resolution. Then,

the system starts searching the correction and elaboration demonstration databases

for correction actions and detail resolution change commands, in that particular or-

der. In other words, the system tries to find:

• A correction sample in the corrective demonstration database for the current

detail resolution

• An elaborate command in the elaboration demonstration database for switching

to the next detail level with finer resolution.

If a correction sample is found in the corrective demonstration database for

the current detail resolution which is received when the robot was in a state that is

similar enough to the current state of the system, the action is selected as the next

action and the execution continues with the announcement of the selected action. If

no correction samples can be found in the corrective demonstration database for the

current level but an elaborate command received in a state similar to the current

state of the robot is found, the system changes its detail level to the level specified in

the elaborate command and recomputes an action using the hand-coded algorithm

specified for the new detail level. In both cases, a domain specific state similarity

measure is employed and during the search, the entry with the highest similarity

value for the current state of the system is found. If the similarity value for the

located demonstration point is higher than a specified threshold, the demonstration

point is executed instead of the default action. If the demonstration point is a correct

action, the next action to be executed by the robot is replaced with the demonstration

action. If the demonstration point is an elaborate action, the system switches to the

next detail level and goes back to the action selection step. The algorithm for the

autonomous MRM+C execution is given in Algorithm 3.4.
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1: resolution← LOWEST
2: currentState← computeState(resolution)
3: mostSimilar ← ∅
4: maxSimilarity ← 0
5: for each demonstration ∈ correctionDatabaseresolution do
6: similarity ← getSimilarity(currentState, demonstration(state)
7: if similarity > maxSimilarity then
8: maxSimilarity ← similarity
9: mostSimilar ← demonstration

10: end if
11: end for
12: threshold← getCorrectionThreshold(resolution)
13: if maxSimilarity > threshold then
14: action← demonstration(action)
15: else
16: mostSimilar ← ∅
17: maxSimilarity ← 0
18: for each demonstration ∈ elaborationDatabase do
19: similarity ← getSimilarity(currentState, demonstration(state)
20: if similarity > maxSimilarity then
21: maxSimilarity ← similarity
22: mostSimilar ← demonstration
23: end if
24: end for
25: threshold← getElaborationThreshold()
26: if maxSimilarity > threshold then
27: if resolution < HIGHEST then
28: increaseResolution()
29: goto 2
30: else
31: action← computeAction(currentState)
32: end if
33: else
34: action← computeAction(currentState)
35: end if
36: end if
37: executeAction(action)

1

Figure 3.4. The algorithm for the autonomous MRM+C execution.
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3.6. Discussion

In this chapter, we presented a unified view on the complementary corrective

demonstration approach. We introduced Model plus Correction (M+C) and Multi-

Resolution Model plus Correction (MRM+C) algorithms as parts of a general-purpose

paradigm for task and skill refinement using complementary corrective demonstration.

The M+C paradigm, and its generalized extension, the MRM+C algorithm

are both provide a solid framework for task and skill refinement by having compo-

nents with well defined input, output, and functionalities, hence making it easy to

model complex tasks and skills to be refined in terms of execution performance. It

is possible to use a plethora of learning algorithms of choice seamlessly within the

individual components that involve learning, since no part of the proposed algorithms

depend on any specific algorithm, hardware, application domain, or state and action

representations.
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4. SKILL REFINEMENT USING M+C

In this chapter, we present a multi-phase corrective demonstration approach for

improving the biped walk stability on the Aldebaran Nao humanoid robot platform

as an example application of the M+C paradigm. Being actively studied in humanoid

robot research, biped walking is a challenging problem due to the high dimensional

state and action space and the complex dynamics of the walking process. In our ap-

proach, we make use of an existing walk algorithm to obtain an initial open-loop walk

cycle, and then we improve the stability of the walk in two corrective demonstration

phases.

The phases of learning in our approach are as follows:

• An initial modeling of the walk motion by using the output of an existing walk

algorithm

• Offline improvement of the obtained walk model via high level human advice

• Acquisition of a closed-loop gait via real time corrective human demonstration

while the robot is walking using the open-loop walk obtained in the previous

phases

The demonstration signals given using a comercially available wireless game

controller are transmitted to the robot over a host computer via wireless network.

This setup allows the demonstrator to closely follow the robot and deliver the cor-

rective demonstration without tactilely interacting with it. The received correction

signals are recorded together with the state of the robot in the form of sensory read-

ings. A correction policy is then derived out of the recorded state-action pairs using

a learning algorithm of choice. Finally, the learned correction policy is used to mod-

ify the open loop walk cycle in such a way to keep the robot balanced as it walks

autonomously.
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We present different types of correction and different methods for state-action

association, policy derivation, and the application of the correction with different

complexities. In particular, we present two different correction types (applying cor-

rection in the joint space or in the task space), two different state-action association

methods (associating a single sensor to a correction value without taking the cur-

rent position in the walk cycle into account or associating multiple sensors with a

correction value while taking the current position in the walk cycle into account),

two different policy extraction methods (fitting normal distributions on the received

correction values in the discretized sensory reading space or using locally weighted

regression with Gaussian kernel), and two methods for deciding when to apply correc-

tion to the system (applying the correction at each N th timestep within the walk cycle

or applying the correction only if the sensory readings go beyond the normal values

according to a certain statistical definition of the normal). We present experiment

results evaluating the performances of the different combinations of the aforemen-

tioned methods compared to each other and compared to the initial open-loop walk.

Experiment results demonstrate an improvement in walk stability in all of the pre-

sented methods with an increase in the overall performance as the used method gets

more complex.

The organization of the rest of the chapter is as follows. Section 4.2 presents a

formal definition of biped walking, and covers how an open-loop walking behavior can

be acquired from an existing walk algorithm and how the acquired walking behavior

can be improved using human advice. We explain our real-time corrective demonstra-

tion approach thoroughly in Section 4.3. Section 4.4 describes how we combine the

corrective demonstration with the state of the robot to obtain a closed-loop walk. We

present experiment results and evaluate the performances of the proposed methods

in Section 4.5.
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4.1. Modeling as a M+C Instance

4.1.1. State and Action Definitions

For the biped walk problem we use two different correction methods:

• Applying the correction in the joint space

• Applying the correction in the task space

In the joint space case, we represent the state of the system as a vector contain-

ing the accelerometer readings:
−→
S =< AccX , AccY > where AccX and AccY are the

accelerometer readings along the X axis and the Y axis, respectively. We define the

action as a vector of real numbers, each member representing the target angle for a

joint of the robot. More formally, A = {−→a1 ,
−→a2 , ...} and −→a =< j1, j2, ...jN >.

In the task space case, we represent the state of the system as a vector containing

the current position in the walk cycle in additon to the accelerometer readings:
−→
S =<

t,AccX , AccY >. We define the action for the task space correction as a vector

containing relative offsets of the feet on ground plane and with respect to the hip of

the robot. Formally, A = {a1, a2, ....} and −→a =< xleft, yleft, xright, yright >

4.1.2. The Model

As the underlying algorithm, we use an open-loop walk algorithm which obtains

a walk behavior through playing back a single walk cycle extracted out of a ZMP-

based walk algorithm in a loop. The walk cycle is defined as wcj(t) = µ(
−→
Dj), j ∈

Joints, t ∈ [0, T ).

4.1.3. The Correction

In the joint space correction case, we use corrections for four hip joints (pitch

and roll joints for left and right legs) therefore the action definition for the joint
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space correction is −→a = {C left
roll , C

left
pitch, C

right
roll , C

right
pitch }. Even though the original walk

cycle wc contains joint commands for all the joints of the robot, the correction action

addresses only a subset of those joints. For the correction policy, we associate a single

sensor with a single joint. In other words, we learn multiple correction policies for

each joint to be corrected, and we use a single sensor reading, either the accelerometer

reading along the X axis or the reading along the Y axis as the state representation

for that correction policy.

In the task space correction case, the corrections are delivered in the same

form with the actions. For this case, we define the correction action as
−→
C =<

C left
X , C left

Y , Cright
X , Cright

Y >. Similar to the joint space correction case, we learn

multiple correction policies for the correction offsets along each direction and for

both feet. The state representation, however, remains the same and defined as
−→
S =< t,AccX , AccY >.

4.1.4. Correction Reuse

For the joint space correction case, we apply the correction at fixed frequency

(at each N th timestep) regardless of the system state so the state representation for

the correction policy is
−→
S = ∅.

For the task space correction case, we use a sensor model obtained by fitting a

normal distribution over the recorded sensory data gathered from many examples of

the robot walking without any balance loss. We fit a separate distribution for each

timestep within the walk cycle over all sensory readings recorded at that particular

timestep. During the autonomous execution, we apply the computed correction values

whenever the current sensor values are not in the range µt ± Kσt for the current

timestep t in the walk cycle. We define the state representation for the correction

reuse policy of the task space correction as
−→
S =< t,AccX , AccY >.
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In both correction cases, we compute the final action to be executed by the

robot through adding the actions computed by the model and the correction parts

as −→a final = −→a model +−→a correction

4.2. Open-loop Biped Walking

Biped walking is a periodic phenomenon consisting of consecutive walk cycles. A

walk cycle (wc) is a motion segment that starts and ends with the same configuration

of the joints. Each walk cycle consists of four phases:

• First single support phase (left)

• First double support phase

• Second single support phase (right)

• Second double support phase

Figure 4.1. Walk cycle phases: a) first single support, b) first double support, c)

second single support, and d) second double support.

During the first single support phase, the robot stands on its left foot, and

swings the right leg forward. During the double support phases, both feet are on the

ground, differing in the offsets along the X axis from the first double support phase

to the second. During the second single support phase, the robot stands on its right

foot to lift and swing the left leg forward as shown in Figure 4.1. The walk cycle has

a duration of T timesteps, where wcj(t), t ∈ [0, T ), j ∈ Joints is the command to the
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joint j provided at timestep t.

In principle, if we could generate the correct joint command sequence for a walk

cycle, it would then be possible to make the robot walk indefinitely by executing this

cycle repeatedly in an open loop fashion. However, in reality, various sources of

uncertainty associated with sensing, planning, and actuation affect biped walking.

• In sensing, the main source of uncertainty is the noise in the sensor readings

due to the lack of precision/accuracy (e.g., high noise rate on the gyroscopes

and the accelerometers and imprecise position sensing on the joints), or the

environmental effects (e.g., electromagnetic fields affect compasses negatively).

The Nao robot does not have a compass, therefore the environmental effects do

not constitute a problem for us.

• In planning, the simplifications and assumptions that have been made while

building the mathematical model of the system prevent the developed model

from capturing all physical aspects of the real world.

• In actuation, several factors such as friction inside the gearboxes, the backlash

in the gears, and unmodeled payload effects constitute the main sources of

uncertainty.

As a result, the actual movement of the robot differs from the desired one as

seen in Figure 4.2. Here, the plot with circles illustrates the joint commands, i.e., the

desired trajectory, and the plot with triangles shows the actual trajectory followed by

the joint. The section towards the end where the actual joint position significantly

diverges from the desired trajectory corresponds to a moment where the robot is

standing on its left foot in the first single support phase and the movement of the

ankle joint is affected by the weight of the whole body.

Failing to follow the desired trajectory of the joint causes the robot to act

differently than expected and this difference affects the balance negatively. This kind

of unforeseen or poorly modeled sources of uncertainty are the typical drawback of
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Figure 4.2. An example to the actuation error.

an open-loop controller, which is a type of controller that solely uses its model of

the system to compute the next action and does not take any feedback from the

environment into account to determine whether the desired state is achieved. A

closed-loop controller, on the other hand, uses both its model of the system and

the feedback received from the system to determine the next action. Similarly, an

open-loop walk algorithm generates a set of joint angle commands at each execution

timestep to form a walk pattern without taking the actual state of the robot (i.e.,

sensory readings) into account while a closed-loop walk algorithm incorporates the

sensory feedback into the joint command generation process in such a way that the

resulting walk motion keeps the robot balanced.

In the remainder of this section, we first present how an open-loop walk cycle can

be captured by observing the output of an existing walk algorithm. We then present

how the obtained open-loop walk can be further improved offline using the Advice

Operators Policy Improvement method [1]. In the following sections, we present how

a closed-loop walk can be built on top of the obtained open-loop walk.



41

4.2.1. Obtaining an Open-loop Walk

If a walk algorithm is readily available at hand, one way of obtaining a walking

behavior without directly employing the algorithm is to observe the output of the

algorithm and generate a single walk cycle out of those observations to be played

back in a loop. To accomplish this, we use the existing walk algorithm as a black-box

and record a number of walk sequences where the robot walks forwards for a fixed

distance at a constant speed using the selected algorithm. We record the sequences

in which the robot was able to travel the predetermined distance while maintaining

its balance.

A set of examples of the robot walking without falling provide data D for each

t, t ∈ [0, T ), in the form of the commands received by each joint
−→
Dj(t) and the

corresponding sensory readings S(t) provided by the set of sensors Sensors. We

obtain a single walk cycle wc using D as wcj(t) = µ(
−→
Dj), j ∈ Joints, t ∈ [0, T ). In

addition, we fit a normal distribution N(
−−→
µ(t),

−−→
σ(t)) to the readings of each sensor at

each t, where µs(t) is the mean, and σs(t) is the standard deviation for the readings

of the sensor s ∈ Sensors at time t in the walk cycle (Figure 4.3). In the figure, the

middle line denotes the mean and the vertical lines denote +/- 3σ variance. The X

axis is timesteps, and the Y axis is the sensor value.

Figure 4.3. Distribution of the sensor values over the complete walk cycle for a

stable walk sequence.

Sending the joint commands in the obtained walk cycle to the robot repetitively,

hence playing back the captured walk cycle in a loop yields an open-loop walk be-
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havior that performs similar to the original walking algorithm without employing the

algorithm itself. Although the Nao robot has a total of 21 joints, for our experiments

we utilize only 12 of them, which are all the leg joints except the shared hip yaw-pitch

joint and the shoulder roll joints for the arms, constituting the set Joints.

4.2.2. Corrective Demonstration Using Advice Operators for Offline Im-

provement

We use A-OPI for correcting the obtained walk cycle in its open-loop form

based on human observations of the executed walk behavior. We define three advice

operators O = {ScaleSwing, ChangeFeetDistance, ChangeArms} that are applied

on the walk cycle:

• ScaleSwing(k): Scales the joint commands of the hip roll joints (along the X

axis) in the walk cycle by a factor of k where k ∈ [0, 1]. The hip roll joints

generate the lateral swinging motion while walking.

• ChangeFeetDistance(d): Applies an offset of d millimeters to the distance be-

tween the feet along the Y axis.

• ChangeArms(angle): Raises or lowers the arms by angle radians along the

Y − Z plane.

The algorithm for A-OPI is given in Figure 4.4. After a set of iterations con-

sisting of the execution of the walk behavior, receiving advice from the teacher, and

revising the walk cycle accordingly, an improvement is achieved. The initial and im-

proved versions of hip roll joint values to generate lateral swinging motion are shown

in Figure 4.5 as an example. Here, decreasing the amplitude of the hip roll joint

signal causes the robot to swing less, which contributes to preservation of balance

positively.
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1: while the teacher sees room for improvement do
2: executeWalk(wc)
3: o, Xo ← getAdviceFromTeacher()
4: wc′ ← fo(Xo, wc)
5: end while

1

Figure 4.4. Advice Operator Improvement (A-OPI) algorithm.

Figure 4.5. Initial and improved joint commands for hip roll joints generating

swinging motion while walking.
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4.3. Real-Time Corrective Demonstration

Without any corrections, an open-loop playback mechanism by itself is usually

not enough to maintain the robot’s balance while walking. Therefore, the next step

after obtaining an open-loop playback walk and improving it offline using A-OPI

method is to close the loop by adding a mechanism to modify the open-loop walk cycle

during autonomous execution according to the feedback received from the system.

The changes in sensor readings when the robot is about to lose its balance (Figure 4.6)

are used to derive a correction policy by mapping these changes to corrective feedback

signals. The right plot in the figure depicts an unstable walk sequence where the

robot starts losing its balance after around 200th timestep. We use real-time human

corrective demonstration to learn a correction policy, which is a function that maps

the sensory readings of the robot to the proper correction signals as it walks using

the initial or the improved open-loop walk cycle.

Figure 4.6. Sample torso orientation and accelerometer readings: a) a stable walk

sequence, and b) an unstable walk sequence.

Due to the noisy nature of the sensors, fluctuations may occur in the sensor

readings and that may result in jerky motions that lead to loss of balance when the

correction values calculated as a function of the sensor readings are applied to the
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joints directly. Therefore, the readings need to be filtered. Running mean and median

smoothers are widely used methods for filtering noisy data. In running smoothers,

the data point in the middle of a running window of size N is replaced with the mean

or the median of the data points lying within that window. The filtered signal gets

smoother as the window size increases. The delicate trade-off in filtering lies in the

selection of an appropriate window size for smoothing the data just enough to filter

out the noise without rendering the patterns in the data hard to detect.

We evaluated the running mean and median smoothers with window sizes 5

and 10 (Figure 4.7), and decided to use a running mean filter with window size 5

since it filters out the noise reasonably well and is computationally cheaper than the

running median filter. Also, considering our sensor sampling rate is 50 Hz, we can still

detect a significant change in the sensor readings in at most 1/10th of a second. In the

figure, a), b), c), d), and e) are the raw data, the output of the median smoother with

window size 5, the output of the median smoother with window size 10, the output

of the mean smoother with window size 5, and the output of the mean smoother with

window size 10.

Figure 4.7. Results of applying various smoothers on an example accelerometer

data.
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In the remainder of this section, we first present our corrective demonstration

setup, elaborating on the implementation details. We then present two different

correction methods for forward walking along with a simplified inverse kinematics

model for the Nao.

Figure 4.8. The diagram for the real-time demonstration framework for policy

extraction.

4.3.1. Corrective Demonstration Setup

A major challenge in providing corrective demonstration for the biped walking

process is to find a proper way of delivering the demonstration as fast as possible

without physically contacting the robot. Fast delivery is needed because biped walk

is such a delicate dynamic process that it might be too late to recover from a balance

loss if the robot receives the provided correction signal with a significant delay. An-

other problem with late delivery is that in such a case the received demonstration is

associated with the wrong set of sensory data; hence, it results in an erroneous associ-

ation of the demonstration points with the state information in the policy generation

process. The necessity of delivering the demonstration without touching the robot

also stems from the delicate dynamics of the biped walking process since interfering

with those dynamics of the robot affects the learned policy negatively.
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We utilize a wireless control interface using the commercially available Nin-

tendo Wiimote game controller (http://www.nintendo.com/wii/what/controllers) to

deliver corrective demonstration to the robot. Both the Wiimote controller and its

Nunchuk extension are equipped with accelerometers measuring the acceleration of

the controllers as well as allowing their absolute roll and pitch orientations to be com-

puted. Therefore, the Wiimote with its extension has four measurable axes allowing

four different correction signals to be delivered simultaneously. The computed roll

and the pitch angles are in radians and they use the right-hand frame of reference.

We use a custom developed software framework for delivering the correction

signal received from the Wiimote by the host computer to the robot over wireless

Ethernet connection as fast as possible (Figure 4.8). The custom software also pro-

vides the demonstrator an interface to define scaling and shifting operators on the

received signals from the Wiimote before transmission to the robot, allowing the

demonstration signal to be scaled up or down. By scaling down the demonstration

signals, it is possible to reduce the undesirable noise factors like trembling hands

of the demonstrator. The position of the Wiimote which is connected to the host

computer over a Bluetooth connection is sampled and the processed demonstration

signals are transmitted to the robot over a UDP connection via wireless network at

a frequency of 1KHz; therefore, even if some of the UDP packets are dropped due

to the network conditions, we can still deliver the demonstration signal packets at

around 50Hz, which is the update frequency for the sensors and the actuators of the

robot. A snapshot of the custom software is given in Figure 4.9.

The custom user interface allows a joint-wise or the defined correction signal

wise definition of scaling coefficients and fixed offsets to make the demonstration

process easier for the teacher. The teacher can associate a correction source for

each correction signal. In this study, we only used Wiimote signals as the correction

sources but the interface supports all generic joysticks and game pads to be used as

the correction source. Defining a scaling coefficient smaller than 1.0 allows the user to

reduce the noise injected by the shaking hands or the changes in the Wiimote handles
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Figure 4.9. A snapshot from the software developed for delivering real-time

corrective demonstration to the robot.

due to the teacher walking while chasing the robot. All coefficient and correction

source associations are stored in a config file and the software supports multiple

config files to make it possible for the teacher to try and evaluate different correction

configurations easily.

We define two different methods for converting the Wiimote signals into the

correction signals to be applied on the robot:

• Applying correction signals in the joint space by means of direct modifications

to the joint commands.

• Applying correction signals in the task space by means of feet position displace-

ments.

The demonstrator delivers the corrective demonstration signals to the robot by

changing the orientations of the Wiimote and the Nunchuk controllers in real time

while the robot is walking using the open-loop walk cycle. We record the received

correction signals during the demonstrations synchronously with the rest of the sensor

readings at 50Hz. The Nunchuk extension and the Wiimote control the left and the



49

right side corrections on the robot, respectively (Figure 4.10). A loose baby harness

is used to prevent possible hardware damage in case of a fall. The harness neither

affects the motions of the robot nor lifts it as long as the robot is in an upright

position.

Figure 4.10. A snapshot from a demonstration session.

4.3.2. Applying Correction in the Joint Space

In this correction method, we associate the four correction signals received from

the demonstrator to the four individual joints on the hip. Namely, we use the hip roll

and the hip pitch joints to apply the correction signals. To provide a finer control

ability to the demonstrator, a scaling factor γ is applied on the Wiimote readings

using the interface described above for scaling the demonstration signals before they

are transmitted to the robot. We used γ = 0.1 in our implementation. The received

roll corrections are applied on the hip roll joints and the received pitch corrections are

applied on the hip pitch joints. To keep the feet parallel to the ground, the following

correction values are applied on the ankle roll and the ankle pitch joints:

CAnkleRoll = −CHipRoll (4.1)

CAnkleP itch = −CHipP itch (4.2)
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At each timestep, we compute the correction values for all joints j ∈ Joints

using the defined correction functions. We then add the calculated values to the

joint command values in the walk cycle for that timestep before sending the joint

commands to the robot. The correction is applied to the system at each mth timestep

where 1 ≤ m ≤ T where T is the length of the walk cycle in timesteps.

Figure 4.11. Applying correction in the joint space.

In Figure 4.11, rolling the Wiimote to the right transitions the robot from its

neutral posture (1) to a posture bent along the Y axis (2). Similarly, tilting the

Wiimote forward transitions the robot from its neutral posture (3) to a posture bent

along the X axis (4).

4.3.3. Applying Correction in the Task Space

In this correction method, we modify the feet positions in the 3D space with

respect to the torso center by mapping the received correction values to the offsets

along the X-Y plane instead of applying the correction signals directly to the joints.

At each timestep of playback, the vector of joint command angles for that timestep

is used to calculate relative positions of the feet in 3D task space with respect to

the torso using forward kinematics. The calculated corrections (in the autonomous

mode), or the received corrections (during the demonstration) are applied on the feet

positions in 3D space and the resulting feet positions are converted back into a vector

of joint command angles using inverse kinematics and sent to the robot (Figure 4.12).

Here, rolling the Wiimote to the right takes the right leg of the robot from its neutral

posture (a) to a modified posture along the Y axis (b). Similarly, tilting the Wiimote
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forward brings the right leg of the robot from its neutral posture (c) to a modified

posture along the X axis (d).

Figure 4.12. Applying correction in the task space as feet position displacement.

Due to the physically coupled hip-yaw joints of the Nao, inverse kinematics for

feet positions cannot be calculated independently for each foot. Graf et al. propose an

analytical solution to inverse kinematics of the Nao, presenting a practical workaround

for the coupled hip-yaw pitch joints constraint [32]. We used a simplified version of

this approach by assuming the hip-yaw joints to be fixed at 0 degrees for the straight

walk. The desired position Pos of the foot with respect to the hip joints is given in

the form of a homogeneous transformation matrix.

We assume a stick figure model for the feet as shown in Figure 4.13. The thigh

and the tibia (upper and lower leg parts) form a triangle with the imaginary edge

dfoot which represents the distance of the foot from the hip. This distance equals the

magnitude of translation vector t and can easily be calculated as dfoot = |t|. The

angle β between the upper and lower leg parts can be calculated using the law of

cosines.

d2
foot = l2thigh + l2tibia + 2lthighltibia cos β (4.3)

β = arccos
l2thigh + l2tibia − d2

foot

2lthighltibia
(4.4)
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Figure 4.13. Kinematic configurations for the legs of the Nao robot.

where lthigh and ltibia are the length of the thigh and the tibia, respectively. When

the leg is fully extended, the knee pitch joint angle αKneeP itch = 0; therefore, the

resulting angle for knee pitch is calculated as αKneeP itch = π− β. The angle between

lower leg and foot plane constitutes the first part of the final ankle pitch angle and

can be computed by the law of cosines.

γ = arccos
l2tibia + d2

foot − l2thigh

2ltibiadfoot

(4.5)

The second part of the ankle pitch angle is calculated using the components of the

translation vector

θ = atan2(tx,
√
t2y + t2z) (4.6)

where, atan2(y, x) calculates the angle between the X axis, and the point (x, y).
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The final ankle pitch angle value is the sum of its two components; that is,

αAnkleP itch = γ + θ. The hip roll angle value is also calculated using the translation

vector. Similar to the hip pitch joint, its final angle value is equal to the exterior

angle value; that is, αHipRoll = π − atan2(ty, tz). The value of the ankle roll angle is

the difference between the desired absolute orientation of the foot along the X axis

(calculated using the rotation matrix part of Pos), and the calculated hip roll joint

angle value

αAnkleRoll = arcsin(p32)− αHipRoll (4.7)

where p32 is the third row and the second column of Pos. Finally, the hip pitch angle

value is calculated as

αHipP itch = −(αKneeP itch + αAnkleP itch) (4.8)

Any given valid joint command vector satisfying the assumptions stated at the

beginning of this subsection can be converted into the relative positions of the feet

in the 3D task space using the method described above.

4.4. Closed-Loop Walking Using Playback And Corrective

Demonstration

With the correction methods described in the previous section, we can col-

lect demonstration data consisting of the sensory readings representing the state of

the system as it is perceived by the robot, and the correction values provided by
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the demonstrator based on his/her observation of the state of the robot. To ob-

tain a closed-loop gait, we need a function that maps the sensory readings to the

corresponding demonstration values so that we can use that mapping to infer the

appropriate correction values to be applied for a given sensory reading. We present

two different association methods:

• Associating a single sensor with joint space correction

• Associating multiple sensors with task space correction

4.4.1. Associating a Single Sensor with Joint Space Correction

In this method, we apply the correction on individual joints, and we define

the correction value for a joint as a function of a single sensor reading. We use the

accelerometer readings along the X and Y axes as the sensory input. Each point in the

resulting demonstration dataset is a tuple <
−→
S ,
−→
C > where

−→
S = {AccX , AccY } is the

vector of accelerometer readings, and
−→
C = {C left

roll , C
left
pitch, C

right
roll , C

right
pitch } is the vector of

received correction values for the left hip roll, the left hip pitch, the right hip roll, and

the right hip pitch joints, respectively. The accelerometers on the Nao can measure

accelerations in the range [−2g, 2g] where g is the standard gravity and their readings

are integer values in the interval [−128, 127]. To model the noise associated with

the demonstration data, we fit a normal distribution on the correction data points

received for all 256 values of the accelerometer. The resulting distributions versus the

accelerometer readings populated using approximately 6000 correction points out of

about 30000 points recorded in a single demonstration session of roughly 10 minutes

are given in Figure 4.14. In the figure, a), b), c), and d) shows Acc. X vs. left side

roll, Acc. X vs. right side roll, Acc. Y vs. left side pitch, and Acc. Y vs. right side

pitch, respectively. In each subfigure, the bold points in the middle denote the mean,

and vertical lines denote the variance of the normal distribution fit on that sensor

value interval.
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(a) (b)

(c) (d)

Figure 4.14. The normal distributions fit on the received correction data versus the

accelerometer readings for the single sensor - joint space correction association.
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Any discontinuity or a sudden change in the correction signal causes a jerky

movement of the robot and further contributes to the loss of balance. To deal with

it, the correction is modified to be a mapping from the sensory reading to the mean

of each joint command to be corrected, namely, the left hip roll, the left hip pitch, the

right pitch, and the right hip roll. During autonomous execution, given the perceived

sensory data, the corresponding mean value is added to the walk cycle commands.

The computed correction values are applied to the walk cycle commands at each N th

timestep, where N is a predefined value that does not change during the execution.

The pseudo-code of that process is given in Figure 4.15.

1: t← 0
2: loop
3: ~S ← readSensors()
4: ~S ← smoothen(~S)
5: for all j ∈ Joints do
6: if timestep MOD correctioninterval = 0 then
7: Cj = Correction(~S, j)
8: else
9: Cj = 0

10: end if
11: NextActionj ← wcj(t) + Cj

12: end for
13: t← t + 1 (mod T )
14: end loop

1

Figure 4.15. Algorithm for closed-loop walking using single sensor-joint space

correction association.

In addition, we defined a hand-tuned simple linear function to be used as a

benchmark closed-loop gait in our experiments. We use the roll and the pitch angles

of the torso, calculated by the inertial measurement unit as the sensor readings and

associate them with the hip roll and the hip pitch joints. The inertial measurement

unit returns the roll and pitch orientations of the torso in radians with respect to the

ground. The used linear coupling functions are of the form C = AX + B where A

is a gain value, B is an offset value, X is the sensor reading, and C is the calculated

correction value. For the four hip joints to be corrected, we have four functions

with individually set A and B values. We hand-tuned the parameters of these four

functions using expert knowledge and visual observation of the robot walking. The

resulting hand-tuned policy provided an improvement over the initial open-loop walk.
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Details of the results are given in Section 4.5.

4.4.2. Associating Multiple Sensors with Task Space Correction

In this method, the correction values received during the demonstration are

recorded synchronously with the sensory readings, tagged with the current position

in the walk cycle. Each point in the resulting demonstration dataset is a tuple

<
−→
S ,
−→
C >, where

−→
S =< t,AccX , AccY >

is the state vector of consisting of the position in the walk cycle at the time when

this correction is received, and accelerometer readings, and

−→
C =< C left

X , C left
Y , Cright

X , Cright
Y >

is the vector of received correction values for the left foot along the X axis, the left

foot along the Y axis, the right foot along the X axis, and the right foot along the

Y axis, respectively.

We utilize locally weighted regression with a Gaussian kernel [33] for generaliz-

ing a policy using the recorded correction and sensor values. For each received sensor

reading vector
−→
S , we calculate the correction vector

−→
C as follows:

di = e−
√

(
−→
S−
−→
Si(t))T Σ−1(

−→
S−
−→
Si(t)) (4.9)

−→
C =

∑
i

di

−→
Ci(t)∑

i

di

(4.10)
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where Σ is the covariance matrix of the sensory readings in the demonstration set,
−→
Ci(t) is the ith received correction signal for the walk cycle position t,

−→
Si(t) is the ith

sensory reading for the walk cycle position t,
−→
S (t) is the current sensory reading,

−→
C

is the calculated correction value to be applied, and t is the current position in the

walk cycle.

The calculated correction values are applied only if any of the sensor values

are not in the range µt ± Kσt (i.e., if an abnormal value is read from that sensor,

meaning that the robot is losing its balance) where K is a coefficient, and t is the

current position in the walk cycle. In our implementation, we chose K = 3 so the

correction values are applied only if the current sensory readings are outside the

range µs(t) ∓ 3σs(t), corresponding to the %99 of the variance of the initial sensory

model given in Section 4.2.1. The pseudo-code for multiple sensors - feet position

displacement association is given in Figure 4.16. Here, Posleft and Posright are the

positions of the feet in 3D space.

1: t← 0
2: loop
3:

−−→
S(t)← readSensors()

4:
−−→
S(t)← smoothen(

−−→
S(t))

5: Posleft, Posright ← forwardKine(wc(t))
6: if (µs(t)−Kσs(t) ≤ Ss(t) ≤ µs(t) +Kσs(t)) then
7: Cleft, Cright ← 0
8: else
9: Cleft, Cright ← correction(

−−→
S(t))

10: end if
11: Posleft ← Posleft + Cleft

12: Posright ← Posright + Cright

13: NextAction← inverseKine(Posleft, Posright)
14: t← t+ 1 (mod T )
15: end loop

1

Figure 4.16. Algorithm for closed-loop walking using multiple sensors-task space

correction association.

4.5. Experimental Evaluation

To evaluate the performance of the proposed methods, we conducted a set of

walking experiments on a flat surface covered with carpet. We used the walking
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algorithm proposed by Liu and Veloso as the black-box algorithm [34]. The duration

of the extracted walk cycle is 52 individual timesteps, approximately corresponding

to one second.

We evaluated different combinations of the proposed correction, sensory asso-

ciation, and policy derivation methods as follows:

• Case (a) : Initial open-loop playback walk (OL).

• Case (b) : Closed-loop playback walk with the joint space correction policy

(JS) using hand-tuned (HT) single sensor-correction association (SS) on top of

the original open loop walk cycle (OL), and the fixed frequency application of

the correction (FC) twice a walk cycle (N = 26).

• Case (c) : Closed-loop playback walk with the joint space correction policy (JS)

using single sensor-correction association (SS), normal distribution fit (NF) on

top of the original open loop walk cycle (OL), and the fixed frequency applica-

tion of the correction (FC) twice a walk cycle (N = 26).

• Case (d) : Open-loop playback walk cycle (OL) after offline improvement using

advice operators (AO).

• Case (e) : Closed-loop playback walk with the task space correction policy (TS)

using multiple sensors - correction association (MS), locally weighted regression

(LWR) as the policy extraction method on top of the advice improved walk

cycle (OL+AO), and the application of the correction under state anomaly

(AC), in other words, when the sensory readings go beyond the ±3σ of the

normal sensory readings (Figure 4.3).

We used two benchmark combinations (Case (a) and Case (b)), the former

being the base case and the latter being a simple closed-loop method with hand

tuned parameters as described in Section 4.4.1. For each combination, we performed

10 runs and measured the distance traveled before falling. The results are given in

Figure 4.17 as boxplots, where the lines within the boxes mark the mean, the marks

at both ends of boxes indicate minimum and maximum distances, and the left and
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right edges of boxes mark 25th and 75th percentiles, respectively.

100 200 300 400 500 600 700 800 900 1000 1100

e)

d)

c)

b)

a)

Figure 4.17. Performance evaluation results for the biped walk improvement

problem.

During three demonstration sessions of 28 minutes, a total of about 83000

demonstration points are recorded for both joint space and task space corrections,

and 25428 of them corresponding to about 489 walk cycles are selected as good exam-

ples of corrective demonstration by visually inspecting the demonstration data based

on the changes in the sensory readings towards the recovery of balance.

The mean and maximum distances that the robot could travel using the initial

open loop benchmark walk (Case (a)) were 203 and 327 centimeters, respectively,

while the mean and the maximum distances the robot was able to travel using the

closed loop benchmark walk (Case (b)) were 432 and 689 centimeters, respectively.

The performance difference between the two benchmark cases stems from the funda-

mental difference between the open-loop and the closed-loop control paradigms under

the presence of uncertainty and noise in the environment.
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All of the combinations involving proposed methods outperformed the bench-

mark cases Case (a) and Case (b). Case (c), which is directly comparable to Case (b)

demonstrated considerable improvement over the latter, reaching a maximum trav-

eled distance of 956 centimeters with a mean traveled distance of 539 centimeters1 .

The improvement in the performance could be accounted for the non-linear relation-

ship between the computed means for the received correction and the accelerometer

readings (as seen in Figure 4.14) of which the assumed linear relation function in the

hand tuned case was unable to capture appropriately.

The open-loop walk improved with advice operators (Case (d)) performed sur-

prisingly well and outperformed the closed-loop Case (c), reaching a maximum trav-

eled distance of 1127 centimeters with a mean traveled distance of 692 centimeters.

During the advice operator improvement, the teacher continuously observes the robot

and gives high level advice which corresponds to a systematic correction to the walk

cycle. Taking a closer look at the mean correction values in Figure 4.14, we see that

the mean values are off from the zero position by a fixed offset in addition to the

nonlinear relation of the sensory readings to the received correction value. These

offsets are results of the implicit high level correction of the same systematic error by

the demonstrator. An explanation for why the improved open loop walk did better

compared to Case (c) could be that it is easier to focus on the “big picture” and

hence to spot the systematic error when the teacher is solely observing the robot

rather than being actively involved in delivering real-time correction to the robot.

Despite the fact that the application of the advice operators on the walk cy-

cle resulted in a considerably improved walk performance with the maximum and

mean traveled distances of 1137 and 834 centimeters, respectively, the last case (Case

(e)) shows that there is still room for improvement with the real-time corrective

demonstration over the improved open-loop walk. The maximum distance of 1137

centimeters was the length of the available experimentation area and the Case (d)

combination was able to reach this limit three times out of 10 runs.

1The open-loop walk performance was comparable to the performance of the original ZMP-based
walk, which was not available to be accounted for in this empirical comparison.
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4.6. Discussion

In this chapter, we presented an approach for learning a correction policy for

improving the walk stability of the Nao humanoid robot using corrective human

demonstration. We analyzed the Nao robot in terms of the variations of joint com-

mands and sensor readings. The key question we tried to answer was whether it

would be possible to improve the performance of an existing controller for perform-

ing a complex skill on a complex robotic platform without knowing the underlying

technical details of the existing controller. We tackled the problem by making use

of a human teacher who is able to externally observe the robot performing the skill

using the existing controller. We utilized corrective human demonstration given in

two phases (first offline and then in real-time) to learn a policy for modifying the joint

commands in the open-loop walk cycle during the autonomous execution in such a

way to keep the robot balanced.

Although the results suggest that more complex options for the correction type

(task space correction instead of joint space correction), sensor-correction association

(multiple sensors - task space correction association instead of single sensor - joint

space correction association), policy derivation method (locally weighted regression

for the individual timesteps within the walk cycle instead of fitting normal distri-

butions for the whole walk cycle), and the application of the correction (applying

correction only if the current perceived state differs from the normal values instead of

applying correction at each N th timestep regardless of the sensory readings) yielded

better performance, we do not possess enough experimental evidence to claim such

superiority.
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5. TASK REFINEMENT USING M+C

In this chapter, we present an application of the M+C approach for task execu-

tion refinement where a hand-coded algorithm for performing the task exists but is

inadequate in handling complex cases. The human demonstrator observes the robot

carry out the task by executing the hand-coded algorithm and provides corrective

feedback when the hand-coded controller computes a wrong action. The received

demonstration actions are stored along with the state of the robot at the time of

correction as complements (or “patches”) to the base hand-coded algorithm. Dur-

ing autonomous execution, the robot substitutes the action computed by the hand-

coded algorithm with the demonstrated action if the corrective demonstration history

database contains a demonstration provided in a similar state. The key idea is to

keep the base controller algorithm as the primary source of the action policy, and

use the demonstration data as exceptions only when needed instead of deriving the

entire policy out of the demonstrations and the output of the controller algorithm.

We applied this approach to a complex ball dribbling task in the humanoid robot

soccer domain.

5.1. Problem Definition

Technical challenges are held as a complementary part of the RoboCup SPL

competitions with the aim of creating a research incentive on complex soccer playing

skills that will help leverage the quality of the games and enable the league to grad-

ually approach the level of real soccer games both in terms of the field setup and the

game rules. Each year, the technical challenges are determined accordingly by the

Technical Committee of RoboCup SPL.

Our application and evaluation domain, the “Dribbling Challenge”, was one of

the three technical challenges of the 2010 SPL competitions. In that challenge, an

attacker robot is expected to score a goal in three minutes without having itself or the
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ball touching any of the three stationary defender robots that are placed on the field

in such a way to block the direct shot paths. The positions of the obstacle robots are

not known beforehand; therefore, the robot has to detect the opponent robots, model

the free space on the field, and plan its actions accordingly. An sample scenario is

illustrated in Figure 5.1.

Figure 5.1. An example scenario for the dribbling challenge.

5.2. Modeling as a M+C Instance

5.2.1. State and Action Definitions

In the ball dribbling task, we use the free-space model built by processing a

number of consecutive camera images taken during the robot scanning the field with

a pan motion. We condense the perceived free-space information about the immediate

surroundings of the 180o area in front of the robot into 15 slots, each covering 12o.

We represent the state as a vector of 15 integers, each representing the distance

to the nearest obstacle detected along that free-space slot, or the maximum free

distance if no obstacle is detected. We also keep a boolean flag indicating whether it

is facing towards the opponent goal or not. As a result, we define the state vector as
−→
S =< dist1, dist2, ..., dist15, goal1, goal2, ..., goal15 >.
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The action definition has two stages. First, we define the first level actions as

Afirst = {Shoot,Dribble}. For the dribble action, we have a second set of actions for

representing the dribble direction. We define the second level actions as Asecond =

{dir1, dir2, ..., dir15}. We assume a fixed dribble distance of 100 cm.

5.2.2. The Model

For the model component, we employ two simple algorithms. The first algorithm

is for deciding whether to take a direct shot on goal, or to dribble the ball to a

location on the field more suitable for a direct shot. This algorithm simply calculates

the differences between the distances of the slots facing towards the opponent goal

and that of the robot to the goal. If the average distance is below a certain threshold,

A = Shoot is selected. If the distance is above that threshold, or none of the free-space

slots face the opponent goal, A = Dribble is selected.

The second algorithm is utilized whenever A = Dribble is selected. For dribble

direction selection, we go over each slot and we compute a weighted average distance

for each. If none of the free-space slots face towards the goal, the slot with the closest

direction difference from the goal is selected regardless of the occupancy status of

that slot.

5.2.3. The Correction

During the demonstration session, corrective demonstration examples in the

form of state-action pairs are collected and stored in a database individually. We do

not learn a model for the gathered demonstration data. The teacher can correct the

actions at both the first level and the second level. In case of correcting an erroneous

Shoot action with a Dribble action, the teacher can either provide a dribble direction

as well, or can leave it to the dribble direction selection algorithm in the model

component.
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5.2.4. Correction Reuse

The correction reuse component determines the next action to be performed

by selecting an action among the actions computed by the model and the correction

components. During the autonomous execution of the task, the robot looks for a

replacement action whenever it reaches a decision state and computes an action using

the algorithms of the model component. To find a proper replacement action, we

search through the demonstration database to see if there is a demonstration in the

database that is received when the system was in a state similar to the current state

of the system. We use a domain specific, hand-coded state similarity measure that

computes the similarity by overlapping the goal slots and then computes an average of

absolute distances. We then apply a Gaussian kernel to the computed raw distance

measure to compute the state similarity value. The state representation for the

correction reuse component is the same representation used in the other components

of the system.

5.3. Free Space Modeling using Vision

Instead of trying to detect the defender robots and avoid them, our attacker

robot detects the free space in front of it and builds a free space model of its sur-

roundings to decide which direction is the best to dribble the ball towards. The soccer

field is a green carpet with white field lines on it. The robots are also white and gray,

and they wear pink or blue waist bands as uniforms (Figure A.1(b), Figure 5.1).

Therefore, anything that is non-green and lying on the field can be considered as an

obstacle, except for the detected field lines. We utilize a simplified version of the

Visual Sonar algorithm by Lenser and Veloso [35] and the algorithm by Hoffmann

et al. [36]. We scan the pixels on the image along evenly spaced vertical lines called

scanlines, starting from the bottom end and continue until we encounter a certain

number of non-green pixels. Although the exact distance of a certain pixel from the

robot is a function of the position of the camera, in general the distance to a pixel in-

creases as we ascend from the bottom of the image to the top, assuming all the pixels
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lie on the ground plane. If we do not encounter any green pixels along a scanline, we

consider that scanline as fully occupied. Otherwise, the point where the non-green

block starts is marked as the end of the free space towards that direction. To further

save some computation time, we do not process every vertical line on the image.

Instead, we process the lines along every fifth pixel and every other pixel along those

lines. As a result, we effectively process only 1/10th of the image (Figure 5.2(b)).

The pixels denoting the end of the free space are then projected onto the ground to

have a rough estimate of the distance of the corresponding obstacle in the direction

of the scanned line. In order to cover the entire 180o space in front of it, the robot

pans its head from side to side. As the head moves, the computed free space end

points are combined and divided into 15 slots, each covering an arc of 12o in front

of the robot. In the mean time, each free space slot is tagged with a flag indicating

whether that slot points towards the opponent goal or not based on the location of

the opponent goal in the world model, or the estimated location and orientation of

the robot on the field (Figure 5.2(c)). Here, the dark triangles indicate the free space

slots pointing towards the opponent goal.

5.4. Ball Dribbling Behavior

We use a Finite State Machine (FSM) based behavior system for developing the

ball dribbling behavior. The FSM structure of the ball dribbling behavior is depicted

in Figure 5.3. The robot starts with “searching for the ball” by panning its head from

side to side several times using both cameras. If it cannot find the ball at the end

of this initial scan, it starts turning in place while tilting its head up and down, and

this cycle continues until the ball is detected. Once the ball is located on the field,

“approach the ball” behavior gets activated and the robot starts walking towards the

ball. Utilizing the omni-directional walk, it is guaranteed that the robot faces the ball

when the “approach the ball” behavior is executed and completed successfully. After

reaching the ball, the robot pans its head one more time to gather information about

the free space around it, calculates its current state, selects an action that matches

its state, and finally kicks the ball towards a target point computed according to the
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(a) (b)

(c)

Figure 5.2. The environment as perceived by the robot: a) the color segmented

image, b) the computed perceived free space segments, and c) the resulting free

space model.

selected action. If the robot loses the ball at any instant of this process, it goes back

to the “search for the ball” state.

Except for the lightly colored select action and select dribble direction states

shown on the state diagram in Figure 5.3, each state in the given FSM corresponds

to a low level skill. We use the existing low level skills in our robot soccer system

without any modifications; namely, looking for the ball, approaching the ball, lining

up for a kick, and kicking the ball to a specified point relative to the robot by selecting

an appropriate kick from the portfolio of available kicks.
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Figure 5.3. The state diagram of the ball dribbling behavior.

5.5. Action and Dribble Direction Selection

The select action and the select dribble direction states constitute the main

decision points of the system we aim to improve using corrective demonstrations.

The hand-coded algorithms for both the action and the dribble direction selection

parts utilize the free space model in front of the robot. After lining up with the ball

properly, the robot selects one of the following two actions:

• The shoot action corresponds to kicking the ball directly towards the opponent

goal using a powerful and long range kick.

• The dribble corresponds to dribbling the ball towards a more convenient location

on the field using a weaker and shorter range kick.

When the robot reaches the decision point; that is, after it aligns itself with

the ball and scans the environment for free space modeling, the action selection

algorithm checks if any of the free space slots pointing towards the opponent goal

has a distance less than a certain fraction of the distance to the goal. If so, the

path to the opponent goal is considered “occupied” and the dribble action is selected

in that situation. Otherwise, the path is considered “clear” and the shoot action

targeting the center of the opponent goal is selected. The pseudo-code of the action

selection algorithm is given in Figure 5.4. In the algorithm, Γ ∈ [0, 1] is a coefficient
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for specifying the maximum distance to be considered as free space in terms of the

distance of the goal. In our implementation, we use Γ = 0.5.

1: goalDist← getGoalDist()
2: goalAngle← getGoalAngle()
3: if goalAngle < −π2 or goalAngle > π

2 then
4: return dribble
5: else
6: for all i ∈ getGoalSlots() do
7: distDiff ← |goalDist− disti|
8: if distDiff > ΓgoalDist then
9: return dribble

10: end if
11: end for
12: end if
13: return shoot

1

Figure 5.4. Action selection algorithm for the ball dribbling task.

If the action selection algorithm deduces that the path to the opponent goal

is blocked and subsequently selects the dribbling action, a second algorithm steps

in to determine the best way to dribble the ball. All slots in the free space model

are examined and assigned a score computed as the weighted sum of the distance

values of the slot itself and its left and right neighbors. The free space slot with

the maximum score is selected as the dribble direction. The algorithm for dribble

direction selection is given in Figure 5.5. In the algorithm, N denotes the number of

free space slots.

Using the two algorithms explained above for the two action selection states in

the behavior FSM, the robot is able to perform the ball dribbling task and score a

goal with limited success. We define the success metric for this task to be the time

it takes for the robot to score a goal. The performance evaluation results for the

hand-coded action selection algorithms are provided in Section 5.7. In the following

section, we present the corrective demonstration system developed as a complement

to the hand-coded action selection algorithms for refining the task performance.



71

1: goalAngle← getGoalAngle()
2: if goalAngle < −π2 or goalAngle > π

2 then
3: if |angle0 − goalAngle| < |angleN−1 − goalAngle| then
4: dribbleAngle← angle0

5: else
6: dribbleAngle← angleN−1

7: end if
8: else
9: maxDist← 0

10: for slot← 1; slot < N − 1; slot← slot + 1 do
11: distance← 0.25distslot−1 + 0.5distslot + 0.25distslot+1

12: if distance > maxDist then
13: maxDist← distance
14: maxSlot← slot
15: end if
16: end for
17: dribbleAngle← anglemaxSlot
18: end if
19: return dribbleAngle

1

Figure 5.5. Dribble direction selection algorithm for the ball dribbling task.

5.6. Corrective Demonstration

In our approach, we store the collected corrective demonstration points sepa-

rately from the hand-coded controller, and utilize a reuse algorithm to decide when

to use correction. In the following subsections, we first describe how the corrective

demonstration is delivered to the robot, and then we explain how the stored correc-

tions are used during autonomous execution.

5.6.1. Correction Delivery

The teacher uses a custom developed software to provide corrective feedback

to the robot. The user interface visualizes the state of the system as it is observed

through the sensors of the robot. The teacher observes the robot both physically

and on the visualized state observation while executing the task, and intervenes the

execution if the robot miscalculates the next action to be executed. The teacher

generates a corrective feedback signal by pressing appropriate buttons on the user

interface. The generated feedback signal is then transmitted to the robot over wireless

Ethernet connection. The robot replaces the next action to be executed with the



72

corrected action received from the demonstration interface and stores the corrective

feedback signal stamped with the observed state of the system.

5.6.2. Correction Reuse

By the end of the demonstration session, the robot has built a demonstration

database of state-action pairs denoting what action is provided by the teacher as a

replacement of the action computed by the hand-coded algorithms and what was the

robot’s state when that correction is received. During autonomous execution, the

decision of when to execute the action selected by the hand-coded algorithms and

when to use corrective demonstration samples is made by a correction reuse system

based on the similarity of the current state of the robot to the states in which the

demonstration samples were collected.

We define the observed state of the robot as

Z =< slotDist0, ..., slotDistN−1, goal0, ..., goalN−1 >

where slotDisti is the distance to the nearest obstacle inside slot i, and goali ∈

{true, false} is a Boolean flag which is set to true if the slot i intersects with the

goal, and set to false otherwise.

Since the robot is expected to kick/dribble the ball into the opponent goal,

rather than only the position of the robot on the field, the distribution of the free

space with respect to the direction towards the goal needs to be taken into account.

Therefore, we calculate the sum of the absolute differences of the free space slots

using the slot pointing towards the center of the goal as the origin if the goal is in

sight. If the goal is not somewhere within the 180o in front of the robot, we calculate

the sum of absolute differences of the free space slots using the rightmost slot as the

origin. The similarity value in the range [0, 1] is then calculated as
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similarity = e−Kdiff 2

(5.1)

where K is a coefficient for shaping the similarity function, and diff is the calculated

sum of absolute differences of the slot distances. In our implementation, we selected

K = 5. The algorithm for similarity calculation is given in Figure 5.6.

1: distcurr ← getSlotDist(Zcurr)
2: distdemo ← getSlotDist(Zdemo)
3: diff ← 0
4: if goalAngle < −π2 or goalAngle > π

2 then
5: for slot← 0; slot < N ; slot← slot + 1 do
6: diff ← diff + |distcurr(slot)− distdemo(slot)|
7: end for
8: diff ← diff /N
9: else

10: goalSlotcurr ← getGoalSlot(Zcurr)
11: goalSlotdemo ← getGoalSlot(Zdemo)
12: num← 0
13: s1 ← goalSlotcurr, s2 ← goalSlotdemo
14: while s1 < N and s2 < N do
15: diff ← diff + |distcurr(s1)− distdemo(s2)|
16: num← num + 1, s1 ← s1 + 1, s2 ← s2 + 1
17: end while
18: s1 ← goalSlotcurr, s2 ← goalSlotdemo
19: while s1 >= 0 and s2 >= 0 do
20: diff ← diff + |distcurr(s1)− distdemo(s2)|
21: num← num + 1, s1 ← s1 − 1, s2 ← s2 − 1
22: end while
23: diff ← diff /num
24: end if
25: similarity ← e−Kdiff 2

26: return similarity

1

Figure 5.6. The algorithm for computing the similarity of two given state vectors.

During autonomous execution, when the robot reaches the action selection or

dribble direction selection states, it first checks its demonstration database and fetches

the demonstration sample with the highest similarity to the current state. If the sim-

ilarity value is higher than a threshold value τ , the robot executes the demonstrated

action instead of the action computed by the hand-coded algorithm. In our imple-

mentation, we use τ = 0.9. The algorithm for autonomous execution using corrective
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demonstration is given in Figure 5.7.

1: currentState← computeState(resolution)
2: mostSimilar ← ∅
3: maxSimilarity ← 0
4: for each demonstration ∈ correctionDatabaseresolution do
5: similarity ← getSimilarity(currentState, demonstration(state)
6: if similarity > maxSimilarity then
7: maxSimilarity ← similarity
8: mostSimilar ← demonstration
9: end if

10: end for
11: threshold← getCorrectionThreshold(resolution)
12: if maxSimilarity > threshold then
13: action← demonstration(action)
14: else
15: action← computeAction(currentState)
16: end if
17: executeAction(action)

1

Figure 5.7. The algorithm for autonomous task execution using corrective

demonstration.

5.7. Experimental Evaluation

We evaluated the efficiency of the complementary corrective demonstration us-

ing three instances of the ball dribbling task with different opponent robot placements

in each of them. The test cases were designed in such a way that the robot using the

hand-coded action selection algorithm would be able to complete the task, but not

through following an optimal sequence of actions (Figure 5.8). The following criteria

were kept in mind while designing the test cases:

• Case 1: In this scenario, we place two robots on the periphery of the center circle,

leaving a narrow, but passable corridor. The third robot is placed on the virtual

intersection of the opponent penalty mark and the left corner of the opponent

penalty box. The hand-coded behavior computes the corridor between the two

center robots to be too narrow to pass. Therefore, the robot tries to avoid the

two robots at the center and mostly chooses a right dribbling direction to avoid

the third robot as well. During the demonstration, we advised the robot to take

a direct shot between the two robots at the center (Figure 5.9(b)). This scenario
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(a)

(b)

(c)

Figure 5.8. Three different configurations used in the experimental evaluation of the

M+C system on the ball dribbling task. a) Case 1, b) Case 2, and c) Case 3.

was a good showcase for illustrating how to refine the otherwise imprecise output

of a very simple algorithm; no additional complexity were introduced to the

algorithm and a limited number of demonstrations were provided only when

the robot tried dribbling the ball whereas it could take a direct shot.

• Case 2: In this case, a direct shot is not possible from the initial position, and

the robots are placed asymmetrically on the field in such a way that dribbling

the ball towards the robot placed further away is advantageous. During the
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demonstration, the given advice was to first dribble the ball to the left, and then

take a direct shot towards the goal (Figure 5.9(e)). The hand-coded algorithms

tend to choose the right action by dribbling the ball to the left, but then the

robot decides to advance the ball through a series of dribbles before kicking it

into the goal instead of taking a direct shot.

• Case 3: This case was also designed to emphasize the ability of the proposed

algorithm to reshape the behavioral response in addition to correcting mistakes.

Similar to Case 2, a direct shot is not possible from the initial position, and the

robots are placed symmetrically so no clear advantage of choosing one initial

dribbling direction over another exists. During the demonstration, we gave a

very similar advice to the one we gave in Case 2 to investigate whether we can

create a bias towards a specific action in certain cases (Figure 5.9(h)).

We gathered corrective demonstration data from all three cases and formed a

common database. A total of 42 action selection and 21 dribble direction selection

demonstration points were collected in a roughly 30 minutes long demonstration

session. The time required to score a goal being the success measurement metric,

we then evaluated the performance of the system with and without the use of the

corrective demonstration database.

We ran 10 trials for each case, 5 with the hand-coded action and dribble direc-

tion selection algorithms (Model), and another 5 trials with the corrective demon-

stration data (Correction) in addition to the Model (M+C). The sequence of actions

taken by the robot at each trial are depicted in Figure 5.9, and the timing information

is presented in Table 5.1. In the figures, a dashed line indicates dribble action, a solid

line indicates a shoot action, and a thin line indicates the replacement of the ball to

the initial position after committing a foul. In the table, “out” means that the robot

kicked the ball out of bounds from the sides, “missed” means that the robot chose

the right actions but the ball did not roll into the goal due to imperfect actuation,

and “own goal” means that the robot accidentally kicked the ball into its own goal.

The failed attempts are excluded from the given mean and standard deviation values.
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The failures were mostly due to the imperfection of the lower level skills like aligning

with the ball, and the high variance in both the kick distance and the kick direction.

In the figure, the rows represents (from top) Case 1, Case 2, and Case 3, respec-

tively. The columns represent the Model, the Correction, and the Model+Correction,

respectively, where Model stands for hand-coded algorithm and Correction stands for

corrective demonstration. Model+Correction shows the cases where the robot is in

autonomous mode using both hand-coded algorithm and the corrective demonstra-

tion database. In each subfigure, different colors denote different runs. For each run,

a dashed line represents a dribble and a solid line represents a kick.

Table 5.1. Elapsed times during trials for the Ball Dribbling Task.

Case 1 Case 2 Case 3

Trial M M+C M M+C M M+C

1 158 95 Ball Out 102 130 Ball Out

2 147 109 211 107 151 117

3 108 92 122 128 144 63

4 156 87 232 Ball Out Own Goal 113

5 237 91 176 Missed Goal 114 172

mean 161 94 185 112 134 116

The decrease in the timings in all three test cases when using (M+C) compared

to the system using the hand coded action selection algorithms (Model) alone shows

an improvement in the overall performance since according to the problem definition,

the shorter completion times are considered more successful. In Case 1, where the

average completion time is reduced by around one minute, the improvement in the

task performance was mostly due to the bias created by the corrective demonstration

which favors taking direct shots as opposed to the dribbling action computed by

the hand-coded algorithm as given in Figure 5.9(c). In Case 2, the complementary

corrective demonstration was able to correct the wrong decision made by the hand-

coded algorithm on taking a second dribble action instead of a direct shot after

dribbling the ball to the left. As a result, the average task completion time was
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9. The illustrations of the performance evaluation runs for the ball

dribbling task using M+C approach.
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reduced almost to the half of the time it took on average when only the hand-coded

algorithm (Model) was used. The effectiveness of corrective demonstration in Case 2 is

presented in Figure 5.9(f). In Case 3, the corrective demonstration was again proven

to be effective in creating a bias in situations where it is not analytically possible

to prefer an action over another. Presenting a preference for dribbling to the left

(Figure 5.9(h)), the corrective demonstration was able to change the initial response

of the hand-coded algorithm from dribbling the ball to the right (Figure 5.9(g)) to

dribbling the ball to the left (Figure 5.9(i)).
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6. TASK REFINEMENT USING MRM+C

In this chapter, we present an application of the Multi-Resolution Model Plus

Correction (MRM+C) framework to a humanoid obstacle avoidance problem. The

MRM+C algorithm allows the teacher to deliver corrective demonstration at different

detail resolution levels with each resolution level having its own state representation,

action definition, and a default hand-coded algorithm for providing a state-action

mapping policy at that detail level. Over the course of a demonstration period, the

system builds up individual corrective demonstration databases for each detail level

in addition to a system-wide correction reuse database for deciding which resolution

level to use in a particular state. During the autonomous execution of the task, the

robot chooses the right detail resolution level and the action to be performed in a

given state of the robot at the current level. We present performance evaluation

for the proposed approach on an obstacle avoidance task performed by a humanoid

robot on a robot soccer field where the robot starts from its own goal area and tries to

reach the opponent goal area as fast as possible without bumping into the unknown

obstacles placed on the field at unknown locations.

6.1. Humanoid Obstacle Avoidance using MRM+C

We define the obstacle avoidance task for a humanoid soccer robot as the prob-

lem of walking to a specified point on the field without bumping into the various

obstacles placed on the field. The robot starts in its own goal area and the aim of

the task is to reach within 1 meter distance of the opponent goal. The numbers,

shapes, and locations of the obstacles on the field are not known to the robot so

the robot has to detect the obstacles, position itself on the field, and follow a safe

trajectory towards the opponent goal that will both prevent the robot from hitting

the obstacles and keep the total time to reach the target as short as possible. In our

evaluation study, we use the regular field of the RoboCup Standard Platform League

as the experiment field, and Aldebaran Nao robot as the humanoid robot platform.
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Figure 6.1 presents a sample instance of the humanoid obstacle avoidance task with

three obstacles. The dashed lines represent an example traversal of the course by the

robot with the yellow circles denoting the destination points selected by the robot.

Figure 6.1. An example instance of the humanoid obstacle avoidance task with an

example solution in a configuration where two box-shaped obstacles and another

humanoid robot placed on the field.

Following the same Visual Sonar approach explained in detail in Section 5.3,

instead of recognizing obstacles, we process the visual information gathered using the

color cameras of the robot, and we build a free-space model of the area in front of

the robot. We represent the state of the system at different detail resolutions using

variations of the free-space information, and the position of the opponent goal with

respect to the robot.

The most detailed state definition represents the free-space model as a vector

of size 15, with each member of the vector being an integer number representing the

distance in centimeters to the nearest perceived obstacle along the direction of that

free-space slot. At the highest detail resolution, the action of the robot is represented

as the (X, Y ) coordinates on the field in centimeters with the center of the field being

(0, 0), the positive X axis pointing towards the opponent goal from the center point,

and the positive Y axis pointing towards the left direction of the X axis (Figure 6.2).

We define three detail resolutions for the humanoid obstacle avoidance task: low,
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Figure 6.2. The coordinate system used in representing destination point on the

field.

medium, and high. In the remainder of this section, we explain the state and action

definitions, and the destination point selection algorithms for each detail resolution

as well as the corrective demonstration setup for delivering the teacher feedback to

the robot during the training sessions.

6.1.1. Low Detail Resolution Case

In the case of low detail resolution, the 180o space in front of the robot is divided

into five equal arcs of 36o each. The existence of an obstacle along a free space slot

is represented with a boolean value in the state vector where true indicates the slot

is occupied with an obstacle. If the average distance of the most detailed free space

representation slots that falls within a free space slot at this level is less than a certain

threshold, that slot is marked as occupied. In our implementation, the threshold for

considering a free-space slot as occluded is 120 centimeters, if the slot does not point

towards the opponent goal, and is min(120, 0.7×distgoal), if the slot is facing towards

the opponent goal. The visualization of the state for the low detail resolution case

is given in Figure 6.3(a). Here, for the low and medium level resolutions, a green

slot means no obstacle towards that direction, and a red slot means this direction is

occluded by an obstacle.
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(a) (b) (c)

Figure 6.3. The example visualizations of the state representations. a) low detail

resolution, b) medium detail resolution, and c) high detail resolution.

At this detail resolution, the destination point can be selected from among the

five free space slot directions with a distance of 120 centimeters. However, the hand-

coded algorithm for this resolution only selects from the three dribbling directions:

forward, left, or right. If the middle slot (slot number 2) is free, the algorithm selects

the forward direction, otherwise it checks the right and left slots to decide. The

algorithm also favors the left direction over the right direction, if the leftmost free-

space slot (the slot number 4) is free. The destination point selection algorithm for

the first detail level is given in Figure 6.4.

6.1.2. Medium Detail Resolution Case

The state representation for the medium detail resolution case uses the same

principles as the low detail resolution state representation with the exception of using

nine slots instead of five. An example visualization of a medium detail resolution state

representation is given in Figure 6.3(b).

The hand-coded algorithm for this resolution goes over each free-space slot and

selects the direction of the closest available slot to the opponent goal as the destination
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1: slot← −1
2: booleanState← getBooleanState(LOW )
3: if ¬ booleanState(2) then
4: slot← 2
5: else
6: if ¬ booleanState(0) then
7: slot← 0
8: else
9: slot← 4

10: end if
11: end if
12: destAngle← calculateDirection(slot)
13: destDistance← 120
14: return calculateGlobalPoint(destAngle, destDistance)

1

Figure 6.4. Destination point selection algorithm for the low detail resolution.

direction, again using a fixed walking distance of 120 centimeters. The destination

point selection algorithm for the medium detail resolution is given in Figure 6.5.

1: booleanState← getBooleanState(MEDIUM)
2: goal← getGoalSlot()
3: closestSlot← 0
4: minDistance← 9
5: for slot← 0; slot < 9; i← slot + 1 do
6: if |goal − slot| ≤ minDistance and ¬ booleanState(slot) then
7: minDistance← |goal − slot|
8: closestSlot← slot
9: end if

10: end for
11: destAngle← calculateDirection(closestSlot)
12: destDistance← 120
13: return calculateGlobalPoint(destAngle, destDistance)

1

Figure 6.5. Destination point selection algorithm for the medium detail resolution.

6.1.3. High Detail Resolution Case

At the finest detail resolution, the free space is represented with the distance

values for 15 equally divided slots in centimeters and represented as integer values.

The distance value of a slot denotes the distance of the nearest detected obstacle

lying within the coverage of that particular free-space slot. The Figure 6.3(c) shows

an example visualization of the state representation for the high detail resolution.
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Contrary to the algorithms for the lower detail resolutions, the destination dis-

tance is also selected by the algorithm in addition to the destination direction. We

go over each free-space slot and for each slot we compute a weighted distance value

using a sliding window of size three with the weights 0.25 at both ends and 0.5 for

the center. Finally, the direction of the free-space slot with highest weighted distance

is selected as the dribble direction and the computed weighted distance is assigned

as the dribble distance. The destination point selection algorithm for the high detail

resolution is given in Figure 6.5.

1: goalAngle← getGoalAngle()
2: if goalAngle < −π2 or goalAngle > π

2 then
3: if |angle0 − goalAngle| < |angleN−1 − goalAngle| then
4: destAngle← angle0

5: else
6: destAngle← angleN−1

7: end if
8: destDistance← 120
9: else

10: maxDist← 0
11: for i← 1; i < N − 1; i← i + 1 do
12: distance← 0.25disti−1 + 0.5disti + 0.25disti+1

13: if distance > maxDist then
14: maxDist← distance
15: maxSlot← i
16: end if
17: end for
18: destAngle← anglemaxSlot
19: destDistance← maxDist
20: end if
21: return calculateGlobalPoint(destAngle, destDistance)

1

Figure 6.6. Destination point selection algorithm for the high detail resolution.

6.1.4. Corrective Demonstration Setup

During the demonstration sessions, the teacher uses a custom developed soft-

ware running on a host computer to access the current detail level as well as the in-

ternal state of the robot. The same user interface is also used for delivering the action

corrections and issuing detail resolution refinement commands. The host computer

communicates with the robot over wireless Ethernet connection. The robot broad-

casts its computed state, the current detail resolution, and the current destination

point back to the host computer at each step. The robot also uses a text-to-speech
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software system to announce the inferred state of the system and the action selected

to be executed (Figure 6.8). The received state information of the robot is then

visualized on the display. This visualization includes the perceived free-space infor-

mation, the position of the robot on the field, and the current selected destination

point that the robot walks to. A snapshot from the developed software is given in

Figure 6.7.

Figure 6.7. The user interface for delivering corrective demonstration to the robot.

The teacher uses the Elaborate button to issue a detail resolution refinement

command. The current detail resolution is also displayed on the screen. If the current

detail resolution is either Low or Medium, the teacher uses the radio buttons located

on the bottom-right part of the interface. At the High detail resolution, the user

specifies the destination point by clicking on the field visualization on the interface.

There are 9 radio buttons placed on an arc, each representing a free space slot. For

the Medium detail resolution, all radio buttons are enabled. For the Low detail

resolution, every other button is enabled, reducing the number of enabled buttons to

5. At the High detail resolution, all radio buttons are disabled as the system expects

a correction in the form of a global point on the field. Similarly, at the Medium and
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Low detail resolutions, it is not possible to specify a destination point by clicking on

the visualized field.

Figure 6.8. The corrective demonstration setup for the obstacle avoidance task.

6.2. Experimental Evaluation

We evaluated the performance of MRM+C approach against the hand-coded

controllers at the lowest and the highest detail resolutions on the obstacle avoidance

task using two different obstacle configurations, and an empty field as the base case

(Figure 6.9).

We used the task completion time as the performance measure for the cases

the robot was able to complete the task. The results are given in Table 6.1. We ran

5 trials per method for each configuration. The Rate column presents the success

rate. The Time shows the average time it took the robot to complete the task for the

successful trials. The units for the rate and the average time columns are percentages

and seconds, respectively.

An examination of the results yields that the success rate drops as the average

time increases as the number of obstacles increase which is an expected result. For the
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(a)

(b)

(c)

Figure 6.9. The obstacle configurations used in the experimental evaluation. a)

empty field, b) a single obstacle placed on the center of the field, and c) three

obstacles placed around the center circle.
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empty field configuration, all algorithms performed well in terms of success rate, while

the hand coded algorithm for the high detail resolution outperformed the others. The

main reason behind this result is since the high resolution algorithm uses free space

slot distances to compute the destination point, it selects a destination point very

close to the opponent goal and the task ends once the robot reach the destination

so the robot does not lose any time in localizing itself and scanning the field for

free space modeling. The performance of MRM+C was better than the low detail

resolution algorithm but was worse than high detail resolution algorithm mainly due

to the number of field scans it has executed.

For the single obstacle case, the performance of the low detail resolution algo-

rithm degraded considerably but the high detail resolution algorithm and MRM+C

were able to achieve high success rates. The high detail resolution algorithm outper-

formed the MRM+C since it uses the most detailed state representation and computes

long distance destination points, yielding a smaller number of field scans.

For the three obstacles case, the low detail resolution algorithm was too simple

to handle the case, and the high detail resolution algorithm was not able to compute

the propoer actions in most of the times. Combining the use of simpler algorithms

when the current obstacle model does not yield the need for very detailed actions,

and the corrective demonstration actions provided by the teacher, the MRM+C algo-

rithm outperformed both hand-coded algorithms despite a considerable performance

degradation compared to the previous configurations.

In 8 out of 15 failed trials, the failure was mostly due to the poor self localization

data. The destination points computed by the algorithms are in global world coordi-

nates; therefore, the performance gets heavily affected by the error in the estimated

position.
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Table 6.1. Performance evaluation results for the MRM+C approach in Humanoid

Obstacle Avoidance domain.

Empty Field 1 Obstacle 3 Obstacles

Method Rate (%) Time (sec.) Rate Time Rate Time

Low Detail Resolution 80 115 60 195 0 N/A

High Detail Resolution 100 59 80 94 40 133

MRM+C 80 96 100 103 60 182
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7. EXPERIMENTAL ANALYSIS

In this chapter, we present an experimental analysis of the M+C and MRM+C

algorithms in terms of robustness against uncertainty in both perception and action,

and in terms of execution cost imposed by the computational complexities of the de-

fault algorithms used. We use a simulated version of the humanoid obstacle avoidance

problem as our experimental test bed.

7.1. Simulation Environment

We modeled a simulated version of the humanoid obstacle avoidance task as the

experimental testbed. We use the Player/Stage framework [37] to model the envi-

ronment in 2D. We model the Nao humanoid robot with an omnidirectional wheeled

robot base, and we use a laser range finder to emulate the vision-based free space

perception used on the real Nao robots. The laser range finder readings are processed

and converted into the same format as the free-space detection module on the real

Nao provides. The omnidirectional walk of Nao is modeled as a holonomic motion

on 2D ground plane and the speed of the wheeled robot is limited to 10 cm/s, which

is roughly the speed of a real Nao robot. We use a Monte-Carlo Localization based

method for self-localization on the real Naos. We imitate the self-localization infor-

mation in the simulation with a global positioning system distorted with a specified

amount of white noise. By imitating the perceptual and action abilities of the robot

accordingly, we are able to run the same software for the M+C and MRM+C we used

in Chapter 6. A snapshot from the simulator is given in Figure 7.1.

Both for delivering the corrective demonstration and performing other auto-

mated experiments, the teacher uses a modified version of the user interface presented

in Chapter 6 which provides the visualization of the true positions of the obstacles

in the environment, the waypoints computed by the robot along the course of its

execution, and the final path the robot traversed. The user interface also allows the
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(a) (b)

Figure 7.1. A snapshot from the Stage simulator for the humanoid obstacle

avoidance task: a) 2D view, and b) 3D view. The leftmost rectangular prism

represents the Nao robot where the small cube on top of the robot is the laser range

finder imitating the visual system of the robot.

teacher to modify a set of simulation parameters. A snapshot of the user interface is

given in Figure 7.2.

7.2. Robustness Against Uncertainty

7.2.1. Uncertainty in Perception

The perceptual subsystem of the robot uses color cameras to process the visual

information around the robot for inferring the system state. As in most real world

sensing devices, the cameras of the robot are error-prone due to their sensitivity to

even the slightest change in the lighting characteristics of the environment. The

cameras are mounted on the head of the robot, which is the end effector of a highly

complex manipulator chain, formed by the skeleton of the robot. The position sensing

devices on the joints of the robot are also error-prone and small errors in the position

readings of the joints accumulates through the kinematic chain of the robot. We

consider two different uncertainty problems in the perception system:

• Uncertainty in free-space detection

• Uncertainty in self-localization
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Figure 7.2. The modified user interface for delivering corrective demonstration to

the simulated robot and managing the simulation
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7.2.1.1. Uncertainty in Free-space Detection. As we described in detail in Chapter 5,

we use our closed-world assumption about the colorized robot soccer world and we

treat any non-green object on the field as an obstacle. We use the current posture

information of the robot to calculate the position of the camera in 3D and then we

use the camera position information to project recognized obstacle regions on the

image onto the ground plane to have a relative position and distance estimation for

that obstacle.

There are two sources of uncertainty in the calculation of the free-space model

around the robot:

• Confusing the field lines with obstacles

• Erroneous ground projection due to imperfect joint position sensing

The field lines are marked with white tape and have the same shade of white

color with the robots. We use a set of sanity checks including the size constraints of

the ground-projected region but due to the changes in the lighting, the perception of

lines and obstacle information get distorted and this results in an erroneous free-space

model.

We calculate the position of the camera in 3D space using forward kinematics

and the kinematic chain information of the robot. Every link in the kinematic chain

is a servo motor with gears and both the imperfect sensing abilities of the position

sensor, and the backlash caused by the gears, each joint has a slight error in position

sensing and actuation (as previously presented in Figure 4.2).

The laser range finder readings provided by the simulation are impeccant; there-

fore, we apply an artificial noise to approximate the sensing error for the free-space

detection in the real world, which has fairly complicated characteristics. For the

sake of simplicity, we approximate the sensor noise with uniform random distribution

of varying magnitude to test the robustness of the system against various levels of
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uncertainty in the sensing.

7.2.1.2. Uncertainty in Self-localization. Knowing its position in its environment is

of utmost importance for a mobile robot. We use a variant of Monte Carlo Localiza-

tion called Sensor Resetting Localization [38] in our robot soccer setup. We combine

the visual information extracted from camera images with the odometry estimation

of the robot to form a belief on the robot’s whereabouts. Both the visual landmark

extraction and odometry estimation parts are imperfect and constitute the main

sources of uncertainty with the position estimation.

We use the distance and orientation information of the goal posts, and line in-

tersections. The robot starts with an initial randomly distributed belief distribution,

encoded as a set of particles each representing a candidate position on the field. We

compare the actual distance and orientation information for the perceived landmarks

to the distance and orientation information for each particle that would have been

perceived if the robot was on the position represented by that particle. A weight is

calculated for each particle based on the similarity of the actual final pose estimation

is computed using this weighted particle set.

Color classification, which is the process of assigning a pixel to a small set of col-

ors (i.e., blue and yellow for goals, green and white for the field, red for the ball, etc.)

is very sensitive to the changes in the lighting conditions. Due to the misclassification

of the colors, the shapes of the lines and the goal posts might not be perceived as

accurately as needed and this leads to either a wrong set of distance and orientation

estimations, or incomplete information. In either case, the self-localization module

gets negatively affected as this erroneous/incomplete information causes inaccurate

similarity values to be computed for the particle set.

The robot uses the reported posture of the robot and a set of other pieces of

information like the number of steps executed by the walking algorithm to compute

an estimated displacement with respect to the starting position. In addition to the



96

imperfect sensing on the joint positions, external factors like a slippery floor or uneven

carpet surface have an adverse effect on the accuracy of the odometry estimation. As

a consequence, the resulting pose estimation of the robot on the field contains the

uncertainty coming both from the odometry calculation and the visual perception.

Similar to the sensing error in the free-space detection, we model the error in

the pose estimation with a uniform distribution.

7.2.2. Uncertainty in Action

Uncertainty in action is mainly due to the imperfect mechanical construction

and imprecise and erroneous position sensing. In addition to these issues, the walking

dynamics of the robot also affects the resulting motion. Although the action error

is considerably small in Aldebaran Nao robots, we ran simulated experiments with

high amount of action noise for testing purposes.

7.3. Experiment Results

We used two different obstacle configurations with three obstacles placed at

different positions in each of them. We defined five uncertainty levels with different

amounts of uniform noise applied on the free space model, the estimated position of

the robot on the field, and the motion of the robot as follows:

• No Uncertainty: No noise on the free space model, self position, or motion.

• Low Uncertainty: 10 percent noise on the free space model, 2 percent noise on

the self position, 3 percent noise on the motion.

• Medium Uncertainty: 20 percent noise on the free space model, 4 percent noise

on the self position, 6 percent noise on the motion.

• Moderate Uncertainty: 30 percent noise on the free space model, 6 percent noise

on the self position, 9 percent noise on the motion.

• Heavy Uncertainty: 40 percent noise on the free space model, 8 percent noise
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on the self position, 12 percent noise on the motion.

The obstacle configurations used in the experiments are given in Figure 7.3.

(a) (b)

Figure 7.3. The obstacle configurations used in the performance evaluation

experiments of the simulated obstacle avoidance system under uncertainty.
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We evaluated the following algorithms:

• Low detail resolution algorithm

• Low detail M+C

• Medium detail resolution algorithm

• Medium detail M+C

• High detail resolution algorithm

• High detail M+C

• Multi-resolution task execution (MRTE) using only the hand coded algorithms

• MRM+C

During the training session, 23 low level, 8 medium level, and 14 high level

demonstrations have been collected for the corrective demonstration part, and 22

demonstrations have been recorded for the detail resolution arbitrator component.

For each algorithm and uncertainty configuration, we performed 10 trials with each

obstacle configuration, 5 with fixed obstacles and 5 with randomly distorted obstacles.

Figure 7.4 shows the success rates of the algorithms. The blue bar in the Multi

Resolution group is the success rate for the MRTE algorithm, and the red bar in the

same group is the success rate for the MRM+C algorithm. As expected, the success

rate of the algorithms increase as the algorithm gets more complex and runs at a

higher detail resolution. In all four configurations (three detail resolutions, and the

multi-resolution execution), the M+C instances outbested the algorithms alone, and

the MRM+C algorithm outperformed the MRTE algorithm. The performances of

the multi-resolution algorithms are close to the algorithm for the high detail level

(73% vs. 72% for algorithm only, and 78% vs. 76% for M+C) despite that the robot

was not executing the high detail resolution algorithm in all cases. The composition

of executed actions per evaluated algorithm is given in Table 7.1 and visualized in

Figure 7.5. In both MRTE and MRM+C evaluations, the majority of the executed

actions were computed by the low detail resolution algorithm with and low detail

resolution demonstration database, yet, the success rates for the MRTE and MRM+C
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algorithms are better than the low and medium level algorithms, and close to the

high level algorithm. The results show that the MRM+C approach uses less detailed

actions for most of the time yet it demonstrates a performance level comparable to

the highest detail resolution M+C instance.

Table 7.1. The average number of actions executed in the succeeded runs.

Low Res. Medium Res. High Res.

Action M M+C M M+C M M+C MRM+C

Low Model 9.47 4.33 0 0 0 0 3.37

Low Correction 0 3.44 0 0 0 0 2.32

Med. Model 0 0 6.11 4.89 0 0 0.95

Med. Correction 0 0 0 1.26 0 0 0.16

High Model 0 0 0 0 3.47 2.89 0.18

High Corrections 0 0 0 0 0 1.58 0.04
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Figure 7.4. The overall performance results for the individual algorithms and M+C

instances for each detail resolution, along with the multi resolution performances

without (MRTE) and with (MRM+C) corrective demonstration.
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8. CONCLUSION AND FUTURE WORK

This chapter summarizes the scientific contributions of this thesis and presents

several promising future research directions that build up on this dissertation.

8.1. Contributions

This dissertation makes the following scientific contributions:

• Model Plus Correction (M+C) Paradigm: This is a hybrid approach to skill

and task refinement on autonomous robots. The M+C paradigm makes use

of the advantageous properties of the traditional algorithm-based controllers

for task and skill execution and the human demonstration to provide a rapid

performance improvement using a small number of demonstrations and hence,

demanding less attention from the demonstrator. The M+C paradigm has

three components. The Model component is an algorithm implementation for

performing the task or skill. This algorithm uses a model of the system or

a set of assumptions about the system. The Correction component contains

the corrective demonstration database consisting of corrective actions delivered

by the teacher when the Model component computes an erroneous action, and

a generalization method for being able to compute the correction action for

any given system state out of the collected sparse demonstration data. The

Correction Reuse component for using the actions computed by the Model and

the Correction components to compute the final action to be executed by the

robot.

• Multi-Resolution Model Plus Correction (MRM+C): This is a framework con-

sisting of a set of components running at different detail granularities to be

used in situations with different complexities during the execution. Founded

on M+C paradigm, the MRM+C approach extends it to allow the teacher to

deliver corrective feedback at different detail resolutions, as required by the
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complexity of the situation the robot is facing. The MRM+C approach consists

of multiple M+C instances, each using state and action representations at vary-

ing detail levels, and associated with default algorithms of various complexities.

The M+C approach features an arbitrator component to decide which M+C

instance becomes active at a particular state. Using the MRM+C approach,

the teacher does not have to provide corrections at the most detailed level if

the correction requirement for the current situation can be handled at a less de-

tail resolution, and the system does not have to run the most complex default

default algorithm to cope with simple situations. Assuming an algorithm gets

computationally more expensive as it gets more complex, using simpler algo-

rithms whenever possible reduces the total execution cost. Moreover, allowing

the teacher to provide corrections at lower detail resolutions reduces the number

of demonstrations needed to cover parts of the state-action space corresponding

to simpler situations, and reduces the demand for constant teacher attention.

• Formal models for the M+C and MRM+C approaches: This thesis presents a

formalization for the proposed M+C and MRM+C approaches, describing each

component of the approaches, and how these two approaches are related with

each other, and with the classical learning from demonstration approach.

• Experimental analysis of the M+C and MRM+C approaches: A detailed ex-

perimental analysis of the M+C and MRM+C approaches to evaluate their

robustness against the uncertainty in the environment is presented. A util-

ity analysis of using multiple detail resolutions against using the defined detail

resolutions individually is also presented.

• Extensive Evaluation of M+C and MRM+C approaches: This thesis presents

detailed evaluations of both M+C and MRM+C approaches in several real world

and simulated domains using a complex humanoid robot as the test platform.

8.2. Future Directions

• Teacher and Demonstration Quality Evaluation: The real-time corrective demon-

stration in Chapter 4 showed us that especially in the skill refinement case, if the
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execution of a complex task occurs so fast to leave little time for the teacher to

decide on a correction, the quality of the demonstration data decreases drasti-

cally. One approach to tackle this problem would be to try to develop a method

for examining the demonstration data as it is being received from the teacher

and try to identify the portions of the data not complying with the rest and

mark those portions as noise to exclude them from the correction calculations.

• Adding Self-Exploration: The demonstration database collected for M+C ap-

proach is sparse, as the teacher only provides demonstration when the underly-

ing default algorithm falls short on acting properly. The sparsity of the database

necessitates a need for a good generalization in order to be able to use the cor-

rection during the autonomous execution. By adding a self-exploration feature

for the robot to experiment with self-generated corrections based on the correc-

tions given by the teacher and to evaluate the performance of the synthesized

corrections, the robot can gain the ability to grow the correction database with

the synthesized corrections.

• Open-Ended Learning: The M+C idea stores all the corrective demonstration

samples without deriving a policy and dismissing the demonstration data after-

wards. This leads to a very large amount of correction data to be accumulated

over long periods of time and hence will affect the correction reuse computa-

tions negatively as most of the correction reuse methods presented in this thesis

makes use of the demonstration data itself. One possible approach would be to

examine portions of the demonstration data continuously and replace the data

with a model if the model is able to represent the data accurately enough. This

approach would make it possible to keep the correction database small enough

to be processed efficiently during the task execution.
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APPENDIX A: ROBOT SOCCER DOMAIN

The RoboCup Standard Platform League robot soccer is used as the appli-

cation domain for task refinement using complementary corrective demonstration

(Chapter 5) and multi-resolution complementary corrective demonstration (Chap-

ter 6) evaluations.

RoboCup is an international research initiative that aims to foster research

in the fields of artificial intelligence and robotics by providing standard problems

to be tackled from different points of view; such as, software development, hard-

ware design, and systems integration (http://www.robocup.org). Soccer was selected

by the RoboCup Federation as the primary standard problem due to its inherently

complex and dynamic nature, allowing scientists to conduct research on many dif-

ferent sub-problems ranging from multi-robot task allocation to image processing,

and from biped walking to self-localization. With its various categories focusing on

different challenges in the soccer domain; such as, playing soccer in simulated en-

vironments (the 2D and 3D Simulation Leagues) and physical environments using

wheeled platforms (the Small Size League and the Middle Size League), humanoid

robots of different sizes and capabilities (the Humanoid League), and a standard

hardware platform (the Standard Platform League), the ultimate goal of RoboCup is

to develop, by 2050, a team of 11 fully autonomous humanoid robots that can beat

the human world champion soccer team in a game that will be played on a regular

soccer field complying with the official FIFA rules.

In the Standard Platform League (SPL) of RoboCup (http://www.tzi.de/spl),

teams of 3 autonomous humanoid robots play soccer on a 6 meters by 4 meters green

carpeted field (Figure A.1(a)). The league started in 1998 as an embodied software

competition with a common and standard hardware platform, hence the name. Sony

AIBO robot dogs had been used as the standard robot platform of the league until

2008, and the Aldebaran Nao humanoid robot was decided to be the new standard



105

platform thereafter. A snapshot showing the Nao robots playing soccer is given in

Figure A.1(b).

(a) (b)

Figure A.1. a) The field setup for the RoboCup Standard Platform League (SPL),

and b) a snapshot from an SPL game showing the Nao robots playing soccer.

A.1. Hardware Platform

The Aldebaran Nao humanoid robot is used across all real world evaluations.

The Nao (Figure A.2(a)), is a 4.5 Kg heavy, 58 cm tall humanoid robot with 21

degrees of freedom (http://www.aldebaran-robotics.com/). It is equipped with an

on-board processor running at 500MHz, and a variety of sensors including a 3-axis

accelerometer, a 2-axis (Roll-Pitch) gyroscope, and a special circuitry for computing

the absolute torso (upper body of the robot) orientation using the accelerometer and

gyroscope data. The torso angle estimator, the accelerometer, and the gyroscope

sensors use a right-hand frame of reference (FigureA.2(b)). As opposed to most

other humanoid robot designs, Nao does not have separate hip yaw joints for each

leg [39], instead, the two legs have mechanically coupled hip yaw-pitch joints that

are perpendicular to each other along the Y − Z plane and driven by a single motor

(Figure 4.13).

Nao runs a Linux-based operating system and has a software framework called

NaoQi, which allows users to develop their own controller software and access the

sensors and actuators of the robot. The internal controller software of the robot
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(a) (b)

Figure A.2. a) The Nao robot. b) The frame of reference for sensors.

runs at 50Hz; therefore, it is possible to read new sensor values and send actuator

commands every 20ms2 .

A.2. Software Overview

Being able to play soccer requires several complex software modules (i.e., image

processing, self localization, motion generation, planning, communication, etc.) to

be designed, implemented, and seamlessly integrated with each other. In this section

of the paper, we present a brief overview of the software infrastructure developed for

the RoboCup SPL competitions and also used in this study.

A.2.1. Image Processing

The Nao humanoid robots perceive their environment via their sensors, namely

the two color cameras, the ultrasound distance sensors, the gyroscope, and the ac-

celerometer. All the important objects in the game environment (i.e., the field, the

goals, the ball, and the robots) are color coded to facilitate object recognition. How-

ever, perception of the environment remains the most challenging problem primarily

due to the extremely limited on-board processing power that prevents the use of in-

2The mentioned frequency is for the Nao V2 model which was the platform used in this study.
The internal control software on the more recent V3 model runs at 100Hz.
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tensive and sophisticated computer vision algorithms. The very narrow fields of view

(FoV) of the robot’s cameras (≈ 58o diagonal) and their sensitivity to changes in

light characteristics like the temperature and luminance levels are among the other

contributing factors to the perception problem.

The job of the image processing module is to extract the relative distances and

bearings of the objects detected in the camera image. In addition to the position

information, the image processing module also reports confidence scores indicating

the likelihood of those objects being actually present in the camera image. The image

processing module consists of two main stages: the low level vision processing, and the

high level object detection. The first stage uses the CMVision [40] library to perform

color segmentation, i.e., labelling each pixel on the image with one of the following

color codes: green, white, pink, blue, yellow, orange, or none (Figure 5.2(a)). After

the color segmentation, a connected component analysis is performed on the image to

extract colored reqions in the form of the bounding box and centroid of each region.

A set of object-specific detectors are then fed with the list of extracted regions and

they report the relative position of the detected objects using the position of region

on the image, and the position of the robot’s camera.

A.2.2. Self Localization and World Modeling

These modules are responsible for determining the location of the robot as well

as the locations of the other important objects (e.g. the ball) on the field. Our

system uses a variation of Monte Carlo Localization (MCL) called Sensor Resetting

Localization [38] for estimating the position of the robot on the field. For calculating

and tracking the global positions of the other objects, we employ a modeling approach

which treats objects based on their individual motion models defined in terms of their

dynamics [41, 42].
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A.2.3. Planning and Behavior Control

Our planning and behavior generation module is built using a hierarchical Finite

State Machine (FSM) based multi-robot control formalism called Skills, Tactics, and

Plays (STP) [43]. Plays are multi-robot formations where each robot is executing a

tactic consisting of several skills. Skills can be stand-alone or formed via a hierarchical

combination of other skills.

A.2.4. Motion Generation

The motion generation module is responsible for all types of movement on

the field including biped walking, ball manipulation (e.g., kicking), and some other

motions such as getting back upright after a fall. For the biped walking, we use the

omni-directional walk algorithm provided by Aldebaran. For kicking the ball and the

other motions, we use predefined actions in the form of sequences of keyframes, each

of which define a vector of joint angles and a duration value for the interpolation

between the previous pose and the current one. Two variations (strong and weak) of

three types of kick (side kick to the left, side kick to the right, and forward kick) are

implemented to be used in the games.



109

REFERENCES

1. Argall, B., B. Browning and M. Veloso, “Learning Robot Motion Control with

Demonstration and Advice-Operators”, Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems , 2008.

2. Argall, B. D., S. Chernova, M. Veloso and B. Browning, “A Survey of Robot

Learning from Demonstration”, Robotics and Automation Systems , Vol. 57, No. 5,

pp. 469–483, 2009.

3. Thomaz, A. L. and C. Breazeal, “Reinforcement Learning with Human Teach-

ers: Evidence of Feedback and Guidance with Implications for Learning Perfor-

mance”, Proceedings of the 21st National Conference on Artificial Intelligence,

2006.

4. Cakmak, M., C. Chao and A. Thomaz, “Designing Interactions for Robot Ac-

tive Learners”, Autonomous Mental Development, IEEE Transactions on, Vol. 2,

No. 2, pp. 108 –118, 2010.

5. Chernova, S. and M. Veloso, “Confidence-Based Policy Learning from Demonstra-

tion using Gaussian Mixture Models”, In Proceedings of the Sixth International

Joint Conference on Autonomous Agents and Multi-Agent Systems , 2007.

6. Chernova, S. and M. Veloso, “Learning Equivalent Action Choices from Demon-

stration”, In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems , 2008.

7. Chernova, S. and M. Veloso, “Interactive Policy Learning through Confidence-

Based Autonomy”, Journal of Artificial Intelligence Research, Vol. 34, 2009.

8. Chernova, S. and M. Veloso, “Multiagent Collaborative Task Learning through

Imitation”, In Proceedings of the 4th International Symposium on Imitation in



110

Animals and Artifacts , 2007.

9. Chernova, S. and M. Veloso, “Teaching Collaborative Multirobot Tasks through

Demonstration”, In Proceedings of the Seventh International Joint Conference

on Autonomous Agents and Multi-Agent Systems , 2008.

10. Hersch, M., F. Guenter, S. Calinon and A. Billard, “Dynamical System Modu-

lation for Robot Learning via Kinesthetic Demonstrations”, IEEE Transactions

on Robotics , Vol. 24, No. 6, pp. 1463–1467, 2008.

11. Argall, B., E. Sauser and A. Billard, “Tactile Feedback for Policy Refinement and

Reuse”, In Proceedings of the 9th IEEE International Conference on Development

and Learning , 2010.

12. Argall, B., E. Sauser and A. Billard, “Policy Adaptation through Tactile Correc-

tion”, In Proceedings of the 36th Annual Convention of the Society for the Study

of Artificial Intelligence and Simulation of Behaviour , 2010.

13. Argall, B., E. Sauser and A. Billard, “Tactile Correction and Multiple Training

Data Sources for Robot Motion Control”, In NIPS 2009 Workshop on Learning

from Multiple Sources with Application to Robotics , 2010.

14. Argall, B. D., E. Sauser and A. Billard, “Tactile Guidance for Policy Adaptation”,

Foundations and Trends in Robotics , Vol. 1(2), pp. 79–133, 2010.

15. Calinon, S. and A. Billard, “What is the Teacher’s Role in Robot Programming

by Demonstration? - Toward Benchmarks for Improved Learning”, Interaction

Studies. Special Issue on Psychological Benchmarks in Human-Robot Interaction,

Vol. 8, No. 3, 2007.

16. Nakanishi, J., J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato,

“Learning from Demonstration and Adaptation of Biped Locomotion”, Robotics

and Autonomous Systems , Vol. 47, No. 2-3, pp. 79 – 91, 2004.



111

17. Bentivegna, D. and C. G. Atkeson, “Using primitives in learning from observa-

tion”, First IEEE-RAS International Conference on Humanoid Robots , 2000.

18. Bentivegna, D. C., C. G. Atkeson and G. Cheng, “Learning Similar Tasks from

Observation and Practice”, in Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems , 2006.

19. Grollman, D. and O. Jenkins, “Dogged Learning for Robots”, International Con-

ference on Robotics and Automation, 2007.

20. Grollman, D. and O. Jenkins, “Learning Elements of Robot Soccer from Demon-

stration”, International Conference on Development and Learning , 2007.

21. Calinon, S., F. D’halluin, E. Sauser, D. Caldwell and A. Billard, “Learning and

Reproduction of Gestures by Imitation: An approach based on Hidden Markov

Model and Gaussian Mixture Regression”, IEEE Robotics and Automation Mag-

azine, Vol. 17, No. 2, pp. 44–54, 2010.

22. Gribovskaya, E., K. Zadeh, S. Mohammad and A. Billard, “Learning Nonlin-

ear Multivariate Dynamics of Motion in Robotic Manipulators”, International

Journal of Robotics Research, 2010.

23. Breazeal, C., G. Hoffman and A. Lockerd, “Teaching and Working with Robots

as a Collaboration”, Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems , 2004.

24. Rybski, P. E., K. Yoon, J. Stolarz and M. M. Veloso, “Interactive robot task train-

ing through dialog and demonstration”, In Proceedings of the 2007 ACM/IEEE

International Conference on Human-Robot Interaction, 2007.

25. Argall, B., B. Browning and M. Veloso, “Learning from Demonstration with

the Critique of a Human Teacher”, Second Annual Conference on Human-Robot

Interactions , 2007.



112

26. Abbeel, P. and A. Y. Ng, “Apprenticeship Learning via Inverse Reinforcement

Learning”, In Proceedings of the Twenty-first International Conference on Ma-

chine Learning , 2004.

27. Atkeson, C. G. and S. Schaal, “Robot Learning from Demonstration”, Proceedings

of the Fourteenth International Conference on Machine Learning , 1997.

28. Atkeson, C. G. and S. Schaal, “Learning Tasks from a Single Demonstration”,

IEEE International Conference on Robotics and Automation, 1997.

29. Guenter, F., M. Hersch, S. Calinon and A. Billard, “Reinforcement Learning for

Imitating Constrained Reaching Movements”, RSJ Advanced Robotics, Special

Issue on Imitative Robots , Vol. 21, No. 13, pp. 1521–1544, 2007.

30. Kolter, J. Z., P. Abbeel and A. Y. Ng, “Hierarchical Apprenticeship Learning

with Application to Quadruped Locomotion”, Advances in Neural Information

Processing Systems 20, Proceedings of the Twenty-First Annual Conference on

Neural Information Processing Systems , 2007.

31. Aamodt, A. and E. Plaza, “Case-Based Reasoning; Foundational Issues, Method-

ological Variations, and System Approaches”, AI Communications , Vol. 7, No. 1,

pp. 39–59, 1994.
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