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ABSTRACT

ASSESSING AND ENHANCING MACHINE LEARNING

METHODS IN IVF PROCESS: PREDICTIVE MODELING

OF IMPLANTATION AND BLASTOCYST

DEVELOPMENT

In this thesis, we address the decision-making problems in in vitro fertilization

treatment from the machine learning perspective aiming to increase the clinical success

rates. Initially, we present a comprehensive and comparative analysis of the classifica-

tion techniques in embryo-based implantation prediction. In parallel, we evaluate the

predictor effects of input features in order to eliminate the redundant variables and

decide the optimum feature subset leading to the highest prediction performance. In

contrast to the limited relevant literature, our preliminary experiments demonstrate

the potential of machine learning classifiers as an automated decision support tool in

critical decisions affecting the success of the treatment. Later, we focus on improving

the classification performance either by algorithmic enhancements or by improving the

information content of the data. First, we handle the problem of imbalanced class dis-

tribution and show that decision threshold optimization and re-sampling the training

data produce similar results. Second, we propose a frequency based encoding technique

to efficiently transform categorical variables into continuous numeric values. And third,

in addition to the patient and embryo characteristics, we investigate the effect of in-

dividual physicians as a human factor on the pregnancy outcome. Finally, we apply

Bayesian Networks to model the embryo growth process with the objective of blasto-

cyst score prediction. We propose a novel approach to adjust the frequency estimates

for parameter learning in conditional probability tables. The results of the experiments

show that (i) the standard machine learning algorithms enable acceptable prediction of
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implantation and blastocyst score and ii) the prediction performance can be improved

by using the proposed techniques in this study. From the clinical perspective, our re-

sults have practical implications in reducing multiple pregnancies, preventing waste of

embryos and cancelation of transfers.
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ÖZET

TÜP BEBEK TEDAVİ SÜRECİNDE YAPAY ÖĞRENME

YÖNTEMLERİ: İMPLANTASYON VE BLASTOSİST

GELİŞİMİNİN KESTİRİMCİ MODELLENMESİ

Bu tezde tüp bebek tedavisinde klinik başarı oranlarının arttırılması için karar

verme problemleri yapay öğrenme bakış açısı ile ele alınmıtır. İlk olarak, embriyo bazlı

implantasyon tahmini için sınıflandırma tekniklerinin kapsamlı ve karşılaştırmalı bir

analizi sunulmuştur. Aynı zamanda, özniteliklerin belirleyici etkileri değerlendirilmiş

ve gereksiz değişkenler elenerek en iyi kestirim performansı oluşturan ideal öznitelik alt

kümesi belirlenmiştir. Literatürde yer alan az sayıdaki ilgili çalışmada ifade edilenlerin

aksine, başlangıç deneyleri sınıflandırıcı yöntemlerin tüp bebek tedavisinde potansiyel

karar destek araçları olabileceğini göstermektedir. Çalışmanın devamında, metodolo-

jik iyileştirmeler ya da verikümesinin bilgi içeriğinin genişletilmesi ile tahmin perfor-

mansının arttırılması üzerinde yoğunlaşılmıştır. İlk olarak, dengesiz sınıf dağılımı prob-

lemi ele alınmış ve karar eşik değerinin optimize edilmesi ile öğrenme kümesinin tekrar

örneklenmesi benzer sonuçlar oluşturmuştur. İkinci olarak, kategorik özniteliklerin

sürekli sayısal değerlere dönüştürülmesi için frekans tabanlı bir kodlama yöntemi öneril-

miştir. Üçüncü olarak, hasta ve embriyo özelliklerine ek olarak, doktorların deneyim-

lerinin tedavi sonucuna olan etkisi incelenmiştir. Son olarak, blastosist skoru tahmini

için Bayes Ağlar yöntemi kullanılarak embriyo gelişim süreci modellenmiştir. Koşullu

olasılık tablolarındaki parametrelerin daha iyi öğrenilebilmesi için yeni bir yöntem

önerilmiştir. Deneylerde i)standard yapay öğrenme yöntemlerinin implantasyon ve

blastosist skoru tahmininde kabul edilebilir başarı oranı elde ettiği ve ii)bu çalışmada

önerilen yöntemler kullanılarak tahmin performansının arttırılabileceği görülmektedir.

Bulgular klinik açıdan çoğul gebeliklerin azaltılmas, embriyo kayıplarının azaltılması
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ve transfer iptallerinin engellenmesini sağlayacaktır.
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1. INTRODUCTION

Infertility is defined as couple’s biological inability to get pregnant after at least

12 months of regular, well-timed sexual intercourse without any birth control. It is

reported that almost 10% of couples cannot have baby spontaneously. There may exist

many medical disorders underlying infertility. Once the infertility factor of a couple is

determined, an appropriate assisted reproduction treatment is used in order to conceive

a successful pregnancy.

In-vitro fertilization (IVF) has been the most common infertility treatment method

since 1978 [2]. IVF is a process which female germ cells (oocytes) are inseminated by

the sperm under laboratory conditions. Development of fertilized oocytes (embryos)

are observed for 2-6 days in laboratory and selected embryo(s) are transferred to the

woman’s womb at cleavage stage (day 2-3) or at blastocyst stage (day 5-6). Multiple

embryo transfers increase pregnancy probability but also increase possible complica-

tions of multiple pregnancies for both mother and babies. Many researchers have been

seeking various solutions to confidently implement single embryo transfers.

Approximately 40% of IVF treatment cycles result in successful pregnancies. The

factors affecting the success of individual treatment cycles are mostly related to pa-

tient’s response level and embryo viability. On the other hand, the overall success rates

of IVF clinics depend on the medical equipment technology, treatment methods and

personal experiences of clinicians and embryologists.

The complex structure of IVF process can be modeled using machine learning

methods providing automated decision support to clinicians when necessary. On the

contrary to the emergence and importance of decision support systems in IVF pro-

cess, the related literature is limited. Artificial Neural Networks (ANN), Case-Based

Reasoning System (CBR), Decision Trees (DT), Naive Bayes classifiers and logistic

regression models are used as prediction methods in IVF treatment. However, the

presented results are far from to be used in clinical practice as discussed in the pub-
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lished studies. Furthermore, these studies represent a wide variety in dataset features,

dataset size, outcome measures and performance criteria.

From the clinical perspective, the research on prediction systems in IVF treatment

mostly focus on cycle based models handling the embryos as a cohort and predicting

the outcome of the cycle as positive or negative. On the other hand, the most crit-

ical decisions such as transferring, further culturing and freezing are given for each

individual embryo separately and this requires embryo based predictions.

Consequently, constructing reliable and practical embryo based prediction mod-

els in IVF treatment is still an open question as an interdisciplinary research interest.

Non-automated analysis of various patient and embryo related parameters is difficult

for clinicians in IVF domain. A computer assisted decision support system can auto-

matically analyze large IVF databases, determine the relationships between predictor

variables and outcome; and provide future predictions. Such a system would speed

up the decision process, provide cost-efficiency preventing the waste of embryos and

possibly improve the success of the treatment.

The most challenging problems of machine learning studies in medical domain are

related to data retrieval. Unfortunately, there are no public IVF datasets to be used

in machine learning experiments. When constructing a new dataset from an existing

database, lack of necessary predictor variables in the database, missing or incorrect

data records and security and privacy issues complicate the initial step of the research.

As the next step, one needs to select the most appropriate machine learning methods

for pre-processing of the data, classification and post-processing of the results. This

step requires a good understanding of the underlying characteristics of the IVF domain

as well as comprehension application of machine learning algorithms.

1.1. Research Overview

During this thesis period, we mainly concentrated on predictive modeling of em-

bryo implantation and blastocyst development. After analyzing the limitations of ex-
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isting machine learning applications in IVF process, we performed experiments to build

up novel decision support systems as a benchmark study aiming to pave the way for

further studies.

Our first research interest, predicting embryo implantation outcome consists of

the following subtasks: construction of the dataset, application of state of the art

classifiers comparatively, handling the constraints of the standard methods in order

to improve the prediction performance and investigating the effect of the physicians

experience as a human factor in success of IVF treatment.

• Dataset construction and classifier selection: The initial step of this thesis is col-

lection of data and use of well known classification techniques for implantation

prediction problem. To the best of our knowledge, this is the first embryo based

dataset in IVF domain including both embryo morphological observations and

patient and cycle characteristics. Each row feature vector in the dataset repre-

sents an individual embryo and the class label 1 and -1 indicates implantation and

no-implantation, respectively. We have used the most popular representatives of

different classifier categories because comparative analysis of diverse classifiers

enables determination of the best fitting models in application domain. We have

used ROC analysis for comparison and evaluation of classification performance.

We have performed feature selection and feature extraction in order to reduce the

computational cost in the rest of the experiments.

• Handling the imbalanced class distribution: The dataset represents an imbalanced

distribution of class samples (11% positive class and 89% negative class). Sam-

pling methods such as over-sampling and under-sampling have been proposed to

balance the number of instances in the classes. On the other hand, we show that

optimizing the threshold of classification produce results similar to re-sampling

methods [3]. In addition, analysis of under-sampling experiments led to define

sufficient size of embryo samples for implantation prediction that would reduce

the effort spent for data collection in IVF domain.

• Transformation of categorical variables in mixed IVF dataset: The dataset we an-

alyzed includes both categorical (infertility factor, treatment protocol etc.) and
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continuous (e.g. age, hormone levels etc.) feature values. Transformation of cate-

gorical variables into numeric attributes is an important pre-processing stage for

distance based algorithms such as Support Vector Machines (SVM), k-Nearest

Neighbor (kNN) etc. affecting the performance of the classification. We have

proposed a frequency based encoding technique for transformation of categorical

variables [4]. Experimental results revealed that, the proposed technique signif-

icantly improved the performance of IVF implantation prediction compared to

common binary encoding and expert judgement based transformation methods .

• Analysis of effect of physician factor: We have analyzed the effect of the ex-

perience level of individual physicians in success of embryo transfer in terms

of pregnancy rate. We concluded that patient and embryo characteristics have

greater impact in pregnancy rates. When these characteristics are compromised

the level of physician experience may be a more determining factor [5].

The second research objective focuses on modeling embryo growth process from

the oocyte collection (day 0) to blastocyst stage (day 5-6). After the analysis of dif-

ferent candidate models, we decided that Bayesian Networks best fitted the process

characteristics. We have performed experiments for the two main subtasks:

• Bayesian Networks for predicting blastocysts score: Extended culture until the

blastocyst stage (day 5/6) enables self-selection of the most developmentally com-

petent embryos in IVF process since all the embryos cannot reach this stage. De-

laying the transfer increase the implantation probability but also increase the risk

of transfer cancelation if no blastocysts develops by day 5. We have used Bayesian

Networks for predicting the blastocyst score in an embryo based dataset aiming to

minimize waste of embryos due to developmental failure during extended culture

[6].

• Handling the problem of insufficient frequency estimates: Learning Bayesian Net-

works from data requires network structure learning and parameter learning. In

this part of the research, we have concentrated on parameter learning because

of the dataset characteristics. Parameter learning in Bayesian networks is often

based on Frequency Estimates which determines the conditional probabilities by
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computing the frequencies of instances from the data. The main drawback of

frequency estimate method in IVF dataset is related to the distribution of the

training instances over data points where specific data points are represented in-

frequently. We propose a weighted nearest neighbor based approach to handle

the problem of insufficient frequency estimates.

This research is mainly concentrated on predictive modeling of IVF treatment

procedure as a novel application domain in machine learning community. The pro-

posed modifications to standard machine learning algorithms produce enhanced pre-

diction performance in IVF domain as well as presenting potential of generalization to

other real world applications. We have used public datasets to validate our results ob-

tained by the proposed method for adjusting the conditional probabilities in Bayesian

Networks.

Since we obtained the dataset from a still growing and evolving database of

Bahceci IVF Center, the dataset features and the number of instances changed during

the experiments.

1.2. IVF Treatment Procedure and Success Criteria

The complete IVF procedure consists of controlling the follicular stimulation by

external administration of hormones, aspirating oocytes from woman’s ovaries (a.k.a.

oocyte pick up - OPU), inseminating the oocytes with sperm cells in vitro, culture of

embryos in the laboratory for 2-6 days and transferring the selected embryo(s) into the

womb. This procedure is called an IVF cycle.

After 1992 the IVF process is combined with intra-cytoplasmic sperm injection

(ICSI) method [7] which is the direct injection of a single sperm cell into the cytoplasm

of the oocyte. ICSI has been an effective treatment for male infertility problems such as

sperm defects or very few numbers of and/or immotile (motionless) sperms. Nowadays

in most clinics ICSI has been a routine technique in IVF process.
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Figure 1.1. ICSI insemination and embryo growth day by day

After the oocytes have been inseminated with sperm cells, the embryos need to

be continuously observed by embryologists. Gametes and embryos are kept in specially

designed equipment which mimic the body conditions called incubator whenever they

are exposed to laboratory conditions - outside the human body. The ICSI time is

assumed as origin and embryo morphological parameters are manually recorded within

certain intervals [8]. Figure 1.1 represents images to give emphasize on ICSI and embryo

morphology.

The next stage is embryo transfer which has been performed by a gynecologist. In

fresh IVF cycles, majority of embryo transfers are performed in day 2 or day 3 post ICSI.

Selected embryo(s) have been transferred to the woman’s uterus in IVF laboratories.

The conventional and most common way of selecting high quality embryos is to inspect

their morphologies. These morphological observations are evaluated by embryologists

according to some pre-defined embryo scoring schemes [9].

In each IVF cycle, it is possible to obtain more than sufficient number of high

quality germ cells or fertilized oocytes. In such cases patients are informed and offered

to freeze high quality oocytes, sperm cells and embryos considering potential lack

of patients’ germ cells in the future. Freezing germ cells and embryos is a rapidly
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developing technology allowing couples to have babies in advanced ages.

The main criteria for measuring IVF success rates are implantation rate and

pregnancy rate.

Implantation Rate: Implantation is attachment of the embryo to the inner wall

of the womb. A positive implantation is defined as visualization of the pregnancy sacs

under ultrasound after 12 weeks of the embryo transfer. Implantation rate is an embryo

based success measure:

Implantation Rate =
number of embryos implanted

number of embryos transferred
(1.1)

Pregnancy Rate: Pregnancy is a positive implantation outcome regardless of

number of embryos implanted. Pregnancy rate is a cycle-based success measure and

defined as:

Pregnancy Rate =
number of positive outcomes

number of transfer cycles
(1.2)

Multiple pregnancy and live birth rates are also important success criteria in IVF

treatment. The major objective of the researches in IVF is to increase the implanta-

tion, pregnancy and live birth rates while reducing the numbr of multiple pregnancies.

Increasing success rates depend on progress in treatment methods, medical equipment

technology and critical decisions during the treatment. The critical decisions and the

necessity of automated decision support in IVF process is discussed in the next section.
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1.3. Decision Support in IVF

At each stage of IVF treatment patients need to know something about the

outcome and physicians need to make decisions based on past experience or future

predictions. Requirement for outcome prediction arises immediately at the beginning

of the treatment. Prior to treatment, what patients want to know is “What is my

chance of getting pregnant”. This is one of the most difficult outcome prediction

problems in IVF, since only age of patients, infertility factor and number of previous

IVF attempts (if exists) is known at the beginning.

If a couple decides to start the treatment, helping physicians to select the most

appropriate treatment method, i.e. type, duration and doses of stimulating medicine,

may improve the success of outcome. While the treatment progresses, the number of

prognostic variables increase leading more accurate outcome prediction but compli-

cating the data analysis and inference, as well. After the oocyte collection, the most

critical decisions are related to transfer, freezing and extended culture of embryos in

the laboratory. Clinicians have to decide how many embryos, which ones and when to

transfer, which ones and when to freeze and which ones to further culture.

A schematic representation of the standard IVF laboratory process is given in

Fig. 1.2 [1]. This map demonstrates IVF treatment as a complex and costly process.

Clinicians need to make critical decisions under uncertainty conditions. These critical

decisions can be summarized as follows:

• Selection of the most appropriate treatment protocol for each individual patient.

• Decision of day of embryo transfer.

• Selection of embryos with highest implantation potential.

• Decision of number of embryos to be transferred.

• Identification of patients suitable for single embryo transfer.

• Decision of extended culture of embryos until the blastocyst stage.

• Determination of which embryos and when to freeze.
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Decision support for treatment selection is a gynecological issue and out of scope

of this study since we focus on the embryology side of IVF procedure. Decisions 2-

5 are all related to implantation prediction of embryos. Figure 1.a points out this

challenging decision process after day 2 and day 3 assessment of embryos. Figure

1.b represents the proposed machine learning based embryo implantation prediction

system considering the afore mentioned quality factors and requirements of the embryo

selection problem. Considering the decisions 6 and 7, we have analyzed the potential

of predicting blastocyst score as the second research objective of this thesis.

The first step in a machine learning application is determination of the input

predictor variables that affect the output. Medical literature represents various stud-

ies investigating the statistical relation between prognostic factors and IVF outcome.

Physicians make the decisions considering these relationships and their prior experi-

ence. Increasing number of prognostic input variables complicates the data analysis

process prior to critical decisions. Machine learning methods can be used as advanced

prediction systems by analyzing large amount of data and providing reliable future

predictions. However, there are very few studies handling the predictive models as a

multidisciplinary research interest involving IVF and machine learning.

1.4. Literature Review

The relationships between embryo and patient characteristics and IVF treatment

success rate have been investigated over the years and still attracting academicians as

an emerging research field. Existing studies heavily focus on statistical relationships

between clinical variables and pregnancy outcome [10, 11]. These studies provide valu-

able information for improving pregnancy rate. However, because of the difficulty faced

in manual observation of multiple variables and examination of nonlinear correlations

between features, IVF process requires more advanced data analysis and prediction

models. On the contrary to the emergence and importance of intelligent decision sup-

port systems in IVF process, the related literature is limited.

Recent studies present applications of machine learning methods in IVF process
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Figure 1.2. A map of the standard IVF laboratory process (from [1])
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for different objectives. The majority of studies deal with prediction of implantation or

pregnancy outcome which can be summarized in two groups. The first group of studies

consider features related to characteristics of patients and embryo batches such as

age, hormone levels, number of eggs, fertilization rate, number of embryos transferred

etc. [12–15]. These studies presented contradictory results about the sufficiency of

prediction performances.

Initially, Kaufmann et. al. constructed ANNs in cycle based prediction of preg-

nancy outcome using the variables of age, number of eggs recovered, number of embryos

transferred and whether there was embryo freezing [12]. They have achieved a predic-

tion accuracy of 59% and concluded that “...the input information was not sufficient

to characterize the outcome”.

Trimarchi et. al. utilized C5.0 DT algorithm to retrospectively investigate the

predictive power of the 100 parameters related to patient demographics, stimulation

regime, response properties, oocyte and embryo characteristics [13]. They have col-

lected records for each IVF cycle and predicted pregnancy outcome with 75% accuracy.

Jurisica et. al. propose a CBR system for two distinct purposes, first suggesting

possible modifications to an IVF treatment plan in order to improve overall success

rates, and second predicting pregnancy outcome [14]. The accuracy of outcome pre-

diction is reported as 71% with input patient and cycle characteristics.

The most recent study on pregnancy outcome prediction presented that IVF

cycle outcomes were predicted at 70% by four embryo cohort-specific variables which

are total number of embryos, number of 8-cell embryos, percentage of cleavage arrest

in the cohort and day 3 follicle stimulating hormone (FSH) level [15]. They were

concluded that these cohort specific parameters were remarkably more informative

than any measures of individual, transferred embryos.

The second group of studies predicting IVF outcome mostly concentrate on char-

acteristics of individual embryos such as cell number, embryo grade etc. However, both
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studies mentioned below consider cycles in which three embryos transferred, and either

average the feature values over three embryos or include the features of all the three

embryos in the same record.

Saith et. al. applied C4.5 class probability tree model in order to express rela-

tionships as simple rules of features characterizing as “take home baby” and “no take

home baby” classes of embryo batches [16]. Fifty-three embryo, oocyte and follicu-

lar features were averaged over the three embryos in the batch and the relationship

between features and outcome of transfer was analyzed. Only four of the 53 features

(embryo grade, cell number, follicle size and follicular fluid volume) were identified as

predictive. They have obtained 74% test accuracy and concluded that the results were

satisfactory.

Morales et. al. propose a Bayesian classification system for embryo selection and

reported an accuracy of 71% [17]. They consider transfer of embryo batches including 3

embryos and predict implantation outcome of the batch rather than individual embryos.

Characteristics of the three embryos are included sequentially in the same data feature

vector. In this case it is not possible to know which embryo of the batch is implanted

and such an ambiguity challenges the reliability of the embryo selection mechanism.

Since there are no public IVF databases, all of the studies mentioned above per-

form experiments on different proprietary datasets. A direct comparison of reported

results is not possible due to the varieties of outcome measure, data features, dataset

sizes, methodologies and performance criteria. On the other hand, we conjecture that

cycle level IVF outcome prediction does not exceed an upper limit of accuracy. Also,

triple embryo batch based prediction mechanisms can not be applied to embryo selec-

tion problem because of the ambiguity of individual embryo implantation outcomes.

1.5. Thesis Outline

This dissertation is organized as follows:
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Chapter 1 is the introductory part presenting research overview, explanation of

the entire IVF process together with the requirements for automated decision support

from clinical perspective and a literature review on machine learning applications in

IVF domain.

We present the problem statement and relevant research questions in Chapter 2.

We propose solutions for each research question in Chapter 3.

Chapter 4 presents the brief definitions of the machine learning algorithms as the

methodology of our study. The experiments and results are given in Chapter 5.

Finally in Chapter 6, we provide an overall conclusion and discussion of the future

research directions.
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2. PROBLEM STATEMENT: BACKGROUND AND

RESEARCH QUESTIONS

In this chapter we discuss our research questions with related problem statement

and background. We mainly state five research questions with additional considerations

and sub-questions.

2.1. Multiple Pregnancies and eSET

At each cycle of IVF treatment it is possible to obtain many embryos, but gener-

ally at most 3 highest quality embryos are transferred to the woman’s uterus. Multiple

embryo transfers increase pregnancy probability but also increase possible complica-

tions of multiple pregnancies [18–21].

Elective single embryo transfer (eSET) has been favored as a solution to IVF

multiple pregnancy problem. However, applicability of eSET is limited due to the

challenging tradeoff between increasing implantation rate and reducing multiple preg-

nancy rate. Reported success rates provide reasonable explanation for this tradeoff.

2.1.1. IVF Success Rates

National IVF success rates are reported by Society for Assisted Reproductive

Technologies (SART) in USA [22] and by Human Fertility and Embryology Authority

(HFEA) in UK [23] annually. Unfortunately, such a report is not provided in Turkey

either by Ministry of Health or by any other organizations.

IVF success rates are evaluated for different age groups since age of the woman

is an important factor on the outcome where increasing age reduces the potential of

positive outcomes. Multiple embryo transfers are allowed in USA while the number of

transfer embryos are restricted in UK and throughout the Europe. Reported success

rates for the year 2008 in USA and in UK are summarized in Table 2.1. The presented
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Table 2.1. Reported national success rates in USA and UK

Age of woman

<35 35-37 38-40

Success Criterion USA UK USA UK USA UK

Live births per cycle 41.3 33.3 31.1 27.3 22.2 19.4

Single live births 64.8 71.0 69.9 77.5 74.8 82.6

Live births with twins 33.3 28.7 281. 22.1 23.5 17.1

Live births with triplets 1.9 0.4 2.9 0.4 1.7 0.3

Pregnancy rate 47.6 - 38.0 - 30.3 -

Implantation rate 34.1 - 24.8 - 16.7 -

eSET rate 5.2 - 3.2 - 1.0 -

Avg. number of embryos transferred 2.2 - 2.4 - 2.7 -

success rates show the effect of number of embryos transferred in IVF outcome. Live

births per cycle are higher in USA as well as multiple birth rates due to multiple embryo

transfers.

In Turkey multiple embryo transfers has been a common procedure in IVF treat-

ment until March 2010. Transfer of maximum of three embryos were allowed but in

some conditions (more than two failed cycles, advanced maternal age (>38 years), PGD

cases) four to five embryos could be transferred. Consequently, in a study investigating

the global variations in the uptake of single embryo transfers between 2003-2005, the

percentage of single embryo transfers in Turkey is reported as <10 which is one of the

lowest rates over 31 countries [24].

2.1.2. IVF Legislation in Turkey

The previous legislation in Turkey provided higher pregnancy rates but higher

multiple pregnancy rates as well. Ministry of Health published a new legislation in

March 2010 [25]. The new regulations limit the number of transfer embryos to one in

the first two cycles in women <35 years of age. A maximum two embryos is allowed

to transfer in the third and subsequent cycles of women <35 years old and in all cycles
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of women at 35 or older. These regulation is expected to reduce the complications of

multiple pregnancies.

We conduct this research in collaboration with Bahceci IVF Center which is the

largest IVF clinic in Turkey with the highest success rates. However, the number of

single embryo transfers is still too low and hence improving the reliability of the eSET

is crucial in Turkey and especially in Bahceci clinic.

2.1.3. Limitations of eSET

Despite the legislations, single embryo transfer is still accepted as a risk because

of various domain related technical or economical reasons. Recently, van Peperstraten

et. al. published a survey on perceived barriers to eSET among IVF professionals [26].

They have reported that, 47% of the IVF professionals refuse use of eSET associated

with uncertainty about eSET technique or lack of prognostic factors and models to

determine eSET candidates. Consequently, lack of a reliable eSET criteria is shown to

be an important factor preventing clinical applicability of eSET.

Within the limits of available legislations, the decision for number of embryos

to be transferred and selection of embryos depends on immediate analysis of available

clinical records. This critical decision in IVF practice is usually based on a combination

of clinical patient and embryo characteristics and embryologist’s knowledge and expe-

rience. With increasing experience, such decisions become almost intuitive for most

clinicians. However, the reliability of this intuitive approach is controversial because

of the uncertainty in decision making process. Therefore, IVF experts need automated

decision support tools in making the right decision on the number of embryos to trans-

fer.

2.1.4. Implantation Prediction

In order to overcome the limitations of eSET, clinicians need reliable eSET criteria

depending on two main issues: selection of the most viable embryos and identification of
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patients suitable for eSET. These two issues should be processed as a single problem:

predicting implantation outcome of individual embryos depending on both embryo

morphological observations and patient and cycle characteristics.

2.2. Characteristics of IVF Data

We need to analyze the predictor factors characterizing the outcome of IVF treat-

ment in order to provide a reliable prediction model.

2.2.1. Predictive Factors

Embryo morphological observations and patient related data have been widely

investigated as predictor factors characterizing the IVF outcome as discussed in Section

1.4. The studies reporting lower prediction performance either question the sufficiency

of information content of their datasets [12] or point out investigation of new predictor

features as future work [17] since improving the information content of datasets provides

better recognition performance in machine learning applications.

2.2.2. Imbalanced Class Distribution

As shown in Table 2.1, the implantation rate is in the range of [16.7, 34.1] for

different age groups. This can be interpreted as the proportion of negative implanta-

tion outcomes dominate positive ones in IVF treatment. Therefore, any embryo based

dataset would represent an imbalanced distribution of positive and negative class sam-

ples. In such cases, the problem of imbalance should be handled to overcome possible

bias towards the majority class in the learning and prediction tasks.

2.2.3. Mixed Data Type

The prognostic factors in IVF procedure include both continuous (e.g. age) and

categorical variables (e.g. infertility factor) [27]. Transformation of categorical vari-

ables into numeric values or discretization of continuous variables is crucial for the
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specific classification algorithms. Defining the most proper method for transformation

produce better prediction results. The mixed data type characteristics of the dataset

has been another important challenge in our research.

2.2.4. On the Effect of Pre- or Post-Processing

Each real world application of standard machine learning algorithms require care-

ful pre-processing of input data, necessary modifications to learning algorithms and

post-processing of the results if necessary.

2.3. From Day 3 To Day 5 In The Laboratory: Blastocyst Stage Transfer

Embryo transfers can be performed at cleavage stage (Day 2-3) or at blastocyst

stage (Day 5/6) after ICSI. We considered cleavage stage embryo transfers in the prob-

lem of implantation prediction. In the rest of the research, we focus on predicting the

reproductive potentials of blastocyst stage embryos.

Extended culture until the blastocyst stage enables self-selection of the most

developmentally competent embryos in IVF process since all the embryos cannot reach

this stage. Delaying the transfer increase the implantation probability but also increase

the risk of transfer cancelation if no blastocyst develops by Day 5. Consequently,

prediction of blastocyst development is an important research question in IVF domain.

2.3.1. Prediction of Blastocyst Score

Transfer of blastocyst stage embryos at day 5 is thought to result in embryos

with high implantation potential increasing implantation and pregnancy rates in IVF

treatment. When equal number of embryos are transferred, it is suggested that the

probability of live birth is significantly higher after blastocyst-stage embryo transfer

at Day 5 as compared to cleavage-stage embryo transfer at Day 2 or Day 3 [28]. It

is also recommended that in patients with a top-scoring blastocyst, transfer of a sin-

gle blastocyst should be considered [29] preventing possible complications of multiple
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pregnancies.

However, extended culture of IVF embryos may result in transfer cancelation if

no blastocysts develops. Considering further culture of embryos until day 5 with the

expectation of good quality blastocyst development, there is a tradeoff between the

higher probability of implantation success and the risk of transfer cancelation. If one

can predict whether blastocysts will develop or not, the risk of transfer cancelation can

be minimized.

Recently, a cycle based model has been applied to predict blastocyst transfer

cancelation [30]. In a cohort of at least 5 good quality embryos, the authors propose a

model to predict if any blastocyst will develop or not. This model is useful in the sense

of preventing transfer cancelation, but there are limitations related to requirements of

the model since it can be applied to only specific cycles.

Considering the tradeoff between increasing pregnancy rate and possibility of

transfer cancelation, clinicians need reliable models to predict blastocyst development

for individual embryos. It is necessary to model the entire embryo growth process in

order to determine relationships between daily morphological variations of embryos.

2.3.2. Embryo Growth Process

Figure 2.1 represents the developmental stages of IVF embryos day by day. The

initial state is considered to be the ICSI insemination process. Fertilization check is

performed at 16-18 hours after ICSI. Early cleavage morphology is observed at Day

1. Number of cells, nucleus characteristics, fragmentation rate, equality of blastomeres

and appearance of cytoplasm is graded at Day 2 and Day 3. Finally, if the embryo is

decided to be cultured until Day 5, the morphology of the blastocyst is evaluated using

Gardner scoring system [31].
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2.3.3. Blastocyst Morphology and Scoring System

Briefly, according to the Gardner’s score blastocysts were graded based on the

size:

• 1: early blastocyst, the blastocoel is less than half the volume of the embryo;

• 2: blastocyst, the blastocoel is greater than or equal to half of the volume of the

embryo;

• 3: full blastocyst, the blastocoel completely fills the embryo;

• 4: expanded blastocyst, the blastocoel volume is larger than that of the early

embryo and the zona is thinning;

• 5: hatching blastocyst, the trophectoderm has started to herniate through the

zona; and

• 6: hatched blastocyst, the blastocyst has completely escaped from the zona.

For blastocysts graded as 3 to 6 (i.e., full blastocysts onward) the development

of the inner cell mass (ICM) and trophectoderm can be assessed. The ICM grading is

as follows:

• A: tightly packed, many cells;

• B: loosely grouped, several cells;

• C: very few cells.

The trophectoderm grading is as follows

• A: many cells forming a tightly knit epithelium;

• B: few cells;

• C: very few cells forming a loose epithelium.

A blastocyst with good morphology (usable for transfer) was defined as having

a Gardners score ≥3AA. In order to predict the morphology of embryos at blastocyst

stage, we need to specify the factors affecting the blastocyst development.
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2.4. Research Questions

In this section we define our research questions based on the stated problems and

relevant background presented in the previous section.

2.4.1. Research Question I: How can we construct an efficient embryo-based

implantation prediction model?

Implantation prediction is a typical problem of decision making under uncertainty

conditions because of the various factors affecting the outcome. We have stated the im-

plantation prediction problem based on clinical requirements considering contributions

and shortcomings of existing approaches. Rather than a comparison to previous stud-

ies, our objective is to build a novel applicable decision support system for all stages of

IVF process by using advances in machine learning methods. Predicting implantation

potential of individual embryos is the preliminary study of this research.

Any model on embryo selection is expected to provide a unique implantation

outcome for each individual embryo. Because, the ideal case for eSET is transferring

only one embryo with highest implantation potential and achieving positive pregnancy

outcome. Considering the stated problem and relevant prior work in the literature, we

performed experiments to construct an efficient embryo-based implantation prediction

problem.

2.4.2. Research Question II: How can we enhance the methodologies to

improve the prediction performance?

Our goal is to decide the best pre- and post-processing techniques to handle the

imbalanced class distributions and mixed data type. We analyze the assumptions of the

standard machine learning algorithms, compare the common pre- and post-processing

techniques and propose modifications to improve the prediction performance in IVF

domain.
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2.4.3. Research Question III: How can we improve the information content

of the IVF data?

In the first two research questions we deal with methodological convenience and

algorithmic enhancements. Another aspect of our research is examining the predictor

potentials of novel variables in IVF treatment.

In order to achieve improved information content, we analyze the association

between available new features and IVF outcome. Specifically, we perform experiments

to investigate the effect of human factor in success of IVF treatment.

2.4.4. Research Question IV: How can we model the embryo growth pro-

cess?

In this part of our research, we investigate the time dependent development of

IVF embryos and we apply Bayesian networks for predicting blastocyst score at Day 5

by modeling morphological evolution of IVF embryos.

2.4.5. Research Question V: How can we adjust the model parameters for

prediction of blastocyst score when learning from data?

The IVF dataset that we used in experiments include thousands of embryo records

and hence can be considered as a sufficiently large database. However, it is necessary

to analyze if the observed frequencies are optimal.
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3. PROPOSED SOLUTION

We outline our proposed solutions for each research question to be a base for the

methodology and experiments.

3.1. Implantation Prediction as a Supervised Binary Classification

Problem: Research Question I

A learning based predictor model that makes use of artificial intelligence (AI)

notion can automatically analyze large medical databases to train predictor models

and provide future implications. Specifically for the implantation prediction problem,

these models can be used to predict the implantation outcome of embryos when relevant

prognostic features are supplied as model inputs.

Quality of an intelligent learning based system depends on three main factors.

First, construction of a comprehensive dataset that represents the underlying charac-

teristics of the application domain enables accurately learning the relations between

input and output. Second factor is, selection of best fitting model(s) for the specific do-

main together with unbiased training and testing strategies that avoid the sampling and

learning bias. Third factor is careful application of the model specific pre-processing

techniques and necessary algorithmic modifications to enhance the prediction perfor-

mance.

Initially, we have constructed a dataset from an existing IVF database that forms

a base for application of predictor models. We consider embryo-based prediction which

is sufficient for reliable embryo selection. Each embryo is represented as a data feature

vector including 18 clinical variables and a class label: +1 for implantation and -1 for

no-implantation respectively.

Dataset construction is followed by data pre-processing and classification stages.

Data pre-processing includes eliminating samples with missing values and classifier
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specific data normalization schemes.

3.2. Handling the Imbalance Problem and Mixed Data Type in IVF

Dataset: Research Question II

The results of initial experiments on implantation prediction motivated us to

improve the performance of classification. There are two ways to improve the perfor-

mance of a classification task: to improve the algorithms to better fit the problem or to

improve the information content of the data. Regarding our second research question,

we performed experiments to improve the algorithms to better handle the imbalance

and mixed data type problems.

Learning from imbalanced datasets has been an important research interest in the

last decade [32, 33]. Various sampling strategies have been proposed to deal with the

problem of imbalance [34–36]. On the other hand, recent studies show that adjusting

the decision threshold of classifiers produce similar results with artificially changing

the distribution of the instances in the training set [37, 38]. We apply under- and

over-sampling strategies to re-balance the dataset and adjust the decision threshold to

improve the classification results.

Analysis and pre-processing of mixed datasets including a combination of con-

tinuous and categorical variables is investigated widely [39–42]. In this research, we

analyze the performance of implantation prediction on mixed IVF dataset using SVM

method. We propose a frequency based encoding technique for transformation of cat-

egorical variables.

3.3. Investigating the Effect of Physician Factor in Success of Treatment:

Research Question III

Our dataset includes only patient and embryo related variables. However, the

manipulations associated with embryo transfer are also critical. The degree of diffi-

culty during the transfer and the influence of the manipulating physician can also be



26

investigated as predictor factors affecting the outcome [43–47].

The former has been characterized by the type of catheter [45] as well as the

presence of blood or mucus [46], and also the time spent for the procedure [47]. It

has been shown that difficult transfers are associated with a reduced implantation rate

[43, 44].

The latter, the physicians’ impact on the success of treatment, is less certain as

conflicting results have been reported [48–51]. One probability for such uncertainty may

be due to the variation of the prior experience of physicians performing the transfer.

Accordingly, the number of transfers varies to a great extent between the performers in

the studies claiming difference among physicians [49, 50]. When the pregnancy rates

have been shown as not dependent on individual performers [51], the physicians had

been observed to have prior experience.

In the related experiments, we aim to analyze whether the prior experience levels

of the physicians performing the embryo transfer influenced the outcome of the cycle.

In order to analyze the differences between pregnancy rates of individual physicians, the

statistical tests have been conducted to compare the pregnancy rate of each physician

to the highest pregnancy rate.

3.4. Bayesian Networks for Modeling the Developmental Stages of IVF

Embryos: Research Question IV

In this research, we apply Bayesian networks for modeling morphological evolu-

tion of IVF embryos and predicting blastocyst development. Bayesian network classi-

fiers have been popular tools for medical decision support systems in the last decade

[52, 53]. Specific applications include bypass surgery survival prediction [54], ovar-

ian cancer diagnosis [55], diagnosis of female urinary incontinence [56], diagnosis and

treatment of ventilator-associated pneumonia [57] etc.

The visualization of statistical cause-effect relationships in a network structure
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makes the Bayesian networks easy to understand and apply in medical applications.

The components of the Bayesian networks, i.e. nodes, arcs and conditional probabilities

correspond to prognostic variables, dependencies and statistical inference, respectively.

Such a model is useful especially when we need to know the underlying reason for the

prediction outcome rather than a black-box model in which the explanation for the

prediction is difficult to understand.

In our case, we have considered prediction of blastocyst score as a binary classi-

fication problem to discriminate blastocysts into two classes as potential high quality

or low quality ones.

3.5. Clustering the Infrequent Combinations of Embryo Features in CPTs:

Research Question V

In practice, generally the components of the Bayesian networks are unknown

and must be inferred from the data. Learning a Bayesian network form data involves

two subtasks, structure learning, which is necessary to identify the topology of the

network, and parameter learning, that identifies the statistical parameters (conditional

probability table (CPT)) for a given network topology.

Most studies concentrate on structure learning which is a complex procedure.

Learning the parameters in conditional probability tables is recognized as a trivial task

based on frequency counts of data points when the observed frequencies are optimal in

a sufficiently large database [58].

The morphological embryo variables are categorical values including too many

categories (and thus the conditional probability table is large) and there are few data

samples to represent certain combinations of feature values. In such cases, the learning

may be less than optimal, and it may be necessary to find another way of estimating

the probability tables.

We consider the problem of limited number of samples to represent real condi-
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tional probabilities as partially insufficient frequency estimates. We propose a weighted

Nearest Neighbor approach to optimize the conditional probabilities to handle the in-

sufficiency of parameter learning in Bayesian Networks.



29

4. METHODOLOGY

In this chapter, we provide the theoretical background of the statistical and ma-

chine learning techniques that we used in our experiments. We also discuss the rele-

vance of the selected methods to our research questions regarding the characteristics

of the IVF domain.

4.1. Experimental Design

The clinical studies can be categorized as retrospective and prospective according

to data collection method and occurrence of events of interest. The definitions of the

terms ‘retrospective’ and ‘prospective’ are given [59] as:

Retrospective: “All events of interest have already occurred and data are gener-

ated from historical records and from recall.”

Prospective: “Data collection and the events of interest occur after individuals

are enrolled (e.g. clinical trials and cohort studies).”

In our research, we mainly use retrospective data consisting of the completed

cycles that we know the pregnancy outcome. Retrospective design provides cost and

time efficiency because we use the available information. However, one major drawback

of retrospective data collection is missing or erroneous variables in the database.

Prospective studies provide more robust, consistent and reliable results avoiding

the potential biases in the historical data. Prospective validation of a prediction model

in medical domain is necessary. However, considering the implantation prediction, yet

it is not feasible for the clinicians to perform embryo transfers according to the decision

of a machine learning system. Therefore, we used a semi-prospective approach [60] for

validation of our retrospective results.
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In the semi-prospective study we asked embryologists to predict the implantation

outcome of embryos that were going to be transferred soon. We took the majority

decision as the ’expert judgement’. We also simultaneously used our model to make

future predictions. After 12 weeks of embryo transfer we compared expert judgement,

and model predictions with the actual outcomes.

4.2. Data Collection

Because of social, ethical and financial reasons some legislative rules have been

defined for assisted reproduction process in every country. Usually, the restrictions

apply for donation, embryo manipulation, number of embryos to be transferred in each

cycle etc.

Besides the legal procedures in countries, every IVF clinic apply different tech-

nologies and methodologies in practice even if they are in the same country. Because

of this variety, each clinic has distinctive IVF databases. In this research, we will ana-

lyze the IVF procedure and related database of Bahceci Women Health Care and IVF

Center at Istanbul.

Bahceci Women Health Care and IVF Center is the largest IVF center in Turkey

with approximately 3000 patients’ for each year. The overall patient-based pregnancy

success rate is reported as more than 75%. Since some of the patients cannot be

pregnant in first cycle, cycle-based pregnancy success varies between 45% and 55%.

Since 2004, patient, cycle and embryo related data is recorded and stored in

Bahceci clinic. The resulting database presents an opportunity for machine learning

studies. Before 2007, an excel based database existed with 9294 IVF cycles. This

database includes both patient and embryo related data. Since beginning of 2007, an

SQL-based relational database is used for recording relevant data of more than 3000

cycles. There are some differences between these two databases such as embryo grading

strategy and IVF process time records.
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4.2.1. Dataset

The dataset we used in this research has been constructed from a database which

contained information on cycles that has been performed at the Bahceci Clinic in Istan-

bul from January 2007 through August 2008. Since the beginning of 2007, embryology

laboratory of the hospital utilized a well-designed (Structured Query Language) SQL-

based relational database for recording patient and embryo related data. The embryo

based dataset used in the present study was obtained by performing SQL queries on

this database.

The limited number of single embryo transfers performed in the Bahceci Clinic

entail investigation of multiple embryo transfers for individual embryo implantation.

In that case, it is necessary to consider arguments about the dependency of embryo im-

plantations when transferring more than one embryo in an IVF cycle. In a recent study,

Matorras et al. used a collaborative model for predicting the pregnancy rate and con-

cluded that the implantation of one embryo is facilitated by the implantation of other

embryo(s) [61]. In contrast, in another study no evidence was found for dependency

of embryo implantations [62] and this fact was confirmed by [63]. Therefore, based on

the assumption that embryos implant independent of each other, in addition to single

embryo transfers, each embryo in the multiple embryo transfers was also represented

as an individual record when the exact implantation outcomes were known.

Similar to existing studies in the literature [11, 64], implantation outcome of

individual embryos was determined by assessing cycles with 100% implantation (i.e.

number of sacs visualized was equal to the number of embryos transferred) and cycles

with 0% implantation (i.e. negative implantation outcome). A total of 3898 embryo

records were collected in this manner. Cycles with monozygotic twin pregnancies and

samples with missing feature values were excluded from the experiments. The final

dataset comprised 2453 embryos in which 273 embryos had proven positive implantation

and 1870 embryos had proven negative implantation.

The overall implantation rate during the study period is reported as 25.8%
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Bahceci Clinic. However, the implantation rate in the assessed dataset is 11% be-

cause of exclusion of pregnancies where some but not all the embryos implanted.

Dataset features and data types are given in Table 4.1. The features have been

selected depending on experiences of senior embryologists in [47] and related studies in

the literature [17]. The IVF dataset includes 2453 fresh, non-donor in-vitro human em-

bryos transferred in day 2 or day 3 after Intra-Cytoplasmic Sperm Injection (ICSI) and

each embryo data vector is represented by 12 feature values. There are two classes of

embryos labeled as 1 and -1 indicating implantation and no-implantation, respectively.

4.3. Feature Selection

In dataset construction stage, we have included potential predictor features ex-

isting in the database. Each embryo was initially described with a vector of 18 feature

values. However, all features may not be necessarily relevant to implantation outcome.

In some cases, a reduced feature subset would better represent the information content

of the underlying dataset and overcome ”curse of dimensionality” in learning phase.

The aim of the feature selection is to find the k of the d dimensions [65]. Reducing

the number of input features by eliminating the redundant variables is expected to:

• Improve the performance of prediction,

• Reduce the computational complexity of the learning algorithms,

• Prevent storage of unnecessary medical data,

• Provide better understanding of the underlying process, and

• Simplifies the utilization of the model in the clinical routine.

In our dataset, there are 218 possible subsets of 18 input features. Testing all the

subsets is not feasible computationally. In order to reduce the search space we need to

apply some heuristics such as Information Gain feature weighting approach.
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Table 4.1. Selected dataset features for each embryo feature vector

Dataset Features Data Type

Patient Characteristics

Woman age Numerical

Primary or secondary infertility Categorical

Clinical Diagnosis and Treatment Protocol

Infertility factor Categorical

Treatment protocol Categorical

Duration of stimulation Numerical

Follicular stimulating hormone dosage Numerical

Peak Estradiol level Numerical

Endometrium thickness Numerical

Sperm quality Categorical

Embryo Related Data

Early cleavage morphology Categorical

Early cleavage time Numerical

Transfer day Categorical

Number of cells Numerical

Nucleus characteristics Categorical

Fragmentation Categorical

Blastomeres Categorical

Cytoplasm Categorical

Thickness zona pellucida Categorical
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4.3.1. Information Gain Feature Weighting

Information Gain represents the average amount of information about the class

value C contained in the feature value F [66]. Information Gain is also known as

mutual information between F and C.

InfoGain(F ) = I(C,F ) = H(C)−H(C|F ) (4.1)

where

H(C) = ΣiP (Ci)log2P (Ci) (4.2)

is the Shannon’s entropy and

H(C|F ) = −ΣjP (Fj)Σi(Ci|Fj)log2P (Ci|Fj) (4.3)

Higher Information Gain means higher predictor effect of the feature individually.

The Information Gain values of features provide reasonable knowledge to reduce the

search space for feature subset selection.

4.3.2. Forward Subset Selection

The predictive value of each input variable in classification has been examined by

using the forward feature selection approach. In forward selection, classification starts

with the single feature F1 that has the highest rank. Then, other features are added

one by one according to decreasing order of estimated ranks. The subset leading to

best performance was selected and utilized in the rest of the experiments.

Let S be the selected subset of features and E(S) be the error of classification

using the features in S. For each feature Fi, E(S ∪Fi) is calculated and Fi is added to

the subset if it decrease the error.
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add Fi to S if E(S ∪ Fi) < E(S)

4.3.3. Filter Approach

The features are filtered according to the estimated Information Gain rankings.

The features with an Information Gain value less than a pre-defined threshold are

selected as the input parameters. For example, the threshold can be defined as the

average of the Information Gain of all of the features, µIG(F ). Then,

add Fi to S if InfoGain(Fi) < µIG(F )

4.4. Feature Extraction

Feature extraction transforms the data in the D-dimensional space onto a space

of d-dimensions, (d ≤ D), by linear or non-linear projection. The main linear approach

for feature extraction is Principal Component Analysis (PCA) [67]. PCA performs a

linear mapping of the original data to a new feature space where the derived features

are uncorrelated.

In our case, the aim of feature extraction is to obtain uncorrelated features.

Therefore, it is necessary to analyze the correlations of the input features prior to

feature extraction. This will provide an understanding of the dependency structure of

the dataset.

4.4.1. Dependency and Correlation Analysis for Features

The most common measure of the relationship between the random variables is

the correlation coefficient which is derived from the covariance and variances of the

random variables. Correlation analysis is useful for identifying the pairwise feature

inter-correlations within a dataset.

The dependency structure of the data will be specified in terms of correlation ma-
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trix which is a square symmetric matrix containing the correlation coefficients between

each pair of input features.

4.4.2. Principal Component Analysis

PCA transforms a number of possibly correlated variables into a smaller number

of uncorrelated variables called principal components. The principal components are

linear combinations of original features. Each attribute is multiplied by a coefficient,

where these coefficients correspond to the elements of the principal eigenvectors.

The mathematical technique used in PCA is called eigen analysis. A solution for

the eigenvalues and eigenvectors of a square symmetric matrix with sums of squares and

cross products is carried out. The eigenvector associated with the largest eigenvalue

has the same direction as the first principal component.

4.5. Classification

We have used Naive Bayes classifier (NB), k-Nearest Neighbor (kNN), Decision

Tree (DT), Support Vector Machines (SVM) and Artificial Neural Networks (ANN)

as predictor models [65]. Comparative analysis of diverse classifiers enables determi-

nation of the best fitting models in IVF domain. We have chosen these classifiers

because, we believe that the most popular representatives of diverse algorithms (sta-

tistical classifiers, decision tree approaches, neural networks, support vector machines

and nearest neighbor methods) are included [68, 69]. We do not repeat the formu-

lations of the selected classifiers here since they are well-known methods to machine

learning community and we have performed only comparison experiments initially. On

the other hand, Naive Bayes and SVM classifiers are further investigated, therefore a

brief definition for these classifiers is presented.

Furthermore, we have exhaustively investigated and used Bayesian Networks for

modeling embryo growth process. The formulation of Bayesian Networks is also sum-

marized.
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4.5.1. Naive Bayes

The aim of the classification in implantation prediction is to discriminate the

embryo samples as ‘implants’ and ‘not-implants’. Positive class (C+1) and negative

class (C−1) denote implantation and no-implantation, respectively.

Nave Bayes classifier computes the class posterior probabilities, P (Ci|x) of input

embryo data (x) for both negative and positive implantation classes.

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
(4.4)

In case of binary classification, the default decision threshold was 0.5 and the

embryo was decided to belong to the class with the highest posterior probability.

choose





C+1 if P (C+1|x) ≥ 0.5;

C−1 otherwise.

4.5.2. Support Vector Machines

Given a set of training data pairs (xi, yi), yi ∈ {+1,−1}, the aim of the SVM

classifier is to estimate a decision function by constructing the optimal separating

hyperplane in the feature space [70]. The key idea of SVM is to map the original input

space into a higher dimensional feature space using kernel functions. Final decision

function is in the form:

f(x) =

(∑
i

αiyiK(xi · x) + b

)
(4.5)
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where K(xi · x) is the Kernel transformation. The most popular kernel functions

are:

Linear: K(xi · x) = xT
i x

Polynomial of degree p: K(xi · x) = (1 + xT
i x)p

Radial Basis Function: K(xi · x) =
[
−‖(xi−x)‖2

σ2

]

The optimum Kernel function and related parameters should be selected in the

training phase when using SVM classification.

A penalty term C is defined as an upperbound on the Lagrange multipliers αi

trading off the complexity of the algorithm and misclassification.

0 ≤ αi ≤ C, ∀i (4.6)

A higher C minimize the misclassification but may also lead overfitting of the

model. Therefore the value of C and needs to be tuned in the training phase in

addition to Kernel parameters.

Finally, the class of an instance is decided according to the sign of the decision

function:

choose





C+1 if f(x) ≥ 0;

C−1 otherwise.

SVM computes the distances of instances to the separating hyperplane in the

new input space. This computation is based on assumption of continuous numerical

variables. However, the dataset may include categorical features as in our IVF dataset.
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In that case it is crucial to transform the categorical variables to continuous numerical

values. Transformation methods that we use in our experiments are summarized in

Section 4.6 as a pre-processing step.

4.5.3. Model Selection for Embryo Growth Process

Initially we have investigated Hidden Markov Models (HMM) [71] as a candidate

model for modeling blastocyst development. In a stochastic process with the Markov

property, given the present state of the system, its future and past are independent.

More precisely, the observation in any state depends only on previous state, not on any

other past states (Equation 4.7).

P [qt = Sj|qt−1 = Si, qt−2 = Sk, ...] = P [qt = Sj|qt−1 = Si] (4.7)

Assuming the time instants are the days associated with morphological states of

embryos, we concluded that the characteristics of the embryo growth process does not

meet the basic stochastic assumption of the Markov process. Because, in published

studies it is reported that the blastocyst morphology at day 5 depends not only on day

3 but on day 1 and day 2 morphology [72].

Actually, the researchers are still investigating the statistical properties of embryo

morphological evolution and dependencies between embryo development and patient

characteristics. Literature presents conflicting results about predictor factors and their

correlations. Therefore, as a starting point, we need to construct a model to analyze

all available features and their statistical relations to blastocyst morphology.

We decided to investigate the potential of Bayesian networks in analyzing the

statistical relationships between sequential observations of embryo morphology.
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4.5.4. Bayesian Networks

A Bayesian network is a directed acyclic graphical model that encodes probabilis-

tic relationships among variables of interest [73].

A brief definition of Bayesian networks and Bayesian network classifiers [74] is

given below:

Bayesian networks allow efficient representation of the joint probability distribu-

tion over a set of random variables. The network structure is used to characterize a

probability distribution for each node depending on its parents. And then, posterior

probabilities are computed in the form of local conditional distributions.

A Bayesian network is represented by B = 〈G, Θ〉, where G is a directed acyclic

graph. The nodes of the graph correspond to the random variables X1, ...Xn which are

the dataset features and edges represent direct dependencies between the associated

variables. The graph G encodes the independence assumption where each variable Xi is

independent of its nondescendants given its parents ΠXi
in G. The second component

Θ represent the conditional probability distribution that quantifies the dependency

between the nodes.

A Bayesian network defines a unique joint probability distribution over the set of

random variables Xi in the network given by:

P (X1, ..., Xn) =
n∏

i=1

P (Xi|ΠXi
) (4.8)

where ΠXi
denotes the set of parents of Xi in the network.

In practice, generally the components of the Bayesian networks are unknown
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and must be inferred from the data. Learning a Bayesian network from data involves

two subtasks, structure learning, which is necessary to identify the topology of the

network, and parameter learning, that identifies the statistical parameters (conditional

probabilities) for a given network topology.

Most studies concentrate on structure learning which is a complex procedure when

there are lots of inputs feature [54, 58, 75]. Learning the parameters in conditional

probability tables is recognized as a trivial task based on frequency counts of data

points when the observed frequencies are optimal in a sufficiently large database [58].

Here, we review the main approaches for construction of the network structure and

estimation of parameters when learning Bayesian networks from data.

4.5.4.1. Structure Learning. Structure learning is a search for encoding appropriate

dependencies between the features of a given a dataset. It has been argued that

Bayesian network structure learners are computationally expensive requiring an expo-

nential number of conditional independence tests [58]. There are two main approaches

to learn the network structure from data efficiently reducing the search space: con-

straint based methods and methods that maximize a selected score.

Simple learning algorithm (SLA) [58] and three-phase dependency analysis (TPDA)

[58] are examples of constraint based methods that make use of information theory con-

cept in order to reduce the computational complexity of the structure learning proce-

dure. Reiz and Csato also propose a mutual information based approach where direct

causal relations encoded by the BN are interpreted as the maximum of conditional

mutual information between nodes [54].

The algorithms based on a scoring function attempt to find a graph that maxi-

mizes the selected score, which evaluates how well a given network matches the data.

Different learning algorithms can be obtained depending on the definitions of the scor-

ing function and on the search procedure used. Meloni et al. propose a variation of

standard search-and-score approach that computes a square matrix containing the mu-
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tual information among all pairs of variables [75]. The matrix is binarized to find what

relationships must be prevented. This approach prevents the inference of too many

connections.

Furthermore, there are well-known simple Bayesian network classifiers with highly

constrained dependency structures: Naive Bayesian network assuming mutual indepen-

dence of the feature variables given the class variable and Tree Augmented Network

(TAN) representing a tree-like dependency structure over the feature variables [76].

In our experiments, we construct a constraint based Naive Bayesian network

structure using mutual information between nodes.

4.5.4.2. Parameter Learning. Parameter learning in Bayesian networks is often based

on Frequency Estimates (FE) which determines the conditional probabilities by com-

puting the frequencies of instances from the data. The FE method is efficient since it

counts each data point in the training set only once. The parameters estimated using

FE method maximize the likelihood of the model given the data and thus FE is known

as a generative learning method [77].

The relative frequencies in the CPT are obtained as follows:

P̂ (Xi = x|ΠXi
= ~u) =

count(Xi = x, ΠXi
= ~u)

count(ΠXi
= ~u)

(4.9)

In our case, Xi denotes the class label as the child node that is the blastocyst

score and ~u denotes a vector of parent nodes ΠXi
representing the predictor factors

affecting the blastocyst score.

The classification capability of FE method is argued because of the generative

property. Grainer and Zhou proposed a gradient descent based discriminative param-

eter learning method, ELR, that significantly outperforms FE method with a high
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computational cost [78].

A Discriminative Frequency Estimate (DFE) is proposed to maximize the gener-

alization accuracy of classification rather than likelihood [77]. The authors compared

the DFE and FE methods based on Naive Bayesian network structure and showed

that DFE significantly improve the performance of classification in terms of accuracy.

However, it has been widely accepted that accuracy is not an appropriate performance

measure especially for imbalanced datasets. On the other hand, the training time of

DFE method is significantly higher than FE method. Consequently, an efficient and

effective method for parameter learning in Bayesian networks is still an open question.

We propose a method for parameter learning from data taking advantage of

efficient FE method and handling the insufficiencies in the data.

4.5.5. Parameter Optimization

The performance of classification is influenced by selection of the classifier specific

model parameters. We have applied a grid search approach to find the optimum param-

eters for the classifiers. Basically, we tested possible combinations of parameters using

cross validation in the training phase and decided the values with best performance to

be the model parameters in the testing phase.

Concerning the classifiers we used in our experiments, the model parameters

include: number of neighbors (k) in k-NN; cost and kernel parameters in SVM; standard

deviation and number of clusters in RBF; number of hidden layers, number of hidden

units in each hidden layer, learning rate, momentum and number of epochs in MLP

classification.
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4.6. Pre-processing

4.6.1. Sampling Imbalanced Data

A common approach to overcome the problem of imbalance is to re-balance the

datasets artificially. Two main sampling strategies are over-sampling that replicates

instances from the minority class [35] and under-sampling where some of the instances

in the majority class is removed [34].

4.6.2. Transformation of Categorical Variables

Performance of distance based classifiers, such as SVM, depends on accurate

transformation of categorical variables into numeric data. SVM requires each data

sample to be represented as a feature vector of real numbers [79]. Therefore, cate-

gorical features should be converted into numeric values prior to classification. After

transformation of categorical variables, the input data were normalized to 0 mean and

standard deviation of 1.

The aim of data type transformation is to preserve the information content of

the original dataset while adapting the input data to a particular analysis tool. We

use binary encoding in the initial experiments of SVM classification and propose a

frequency based encoding technique for better transformation.

4.6.2.1. Binary Encoding. Binary encoding maps categorical variables to higher di-

mensional features representing equal Euclidean distances between categories and has

been applied as a common pre-processing stage for SVM applications [79, 80].

For a particular categorical variable including N categories, each category is rep-

resented by a sequence of N bits. The ith bit corresponding to original category is

set to 1 and the others are set to 0. For example, the treatment protocol feature in

IVF dataset includes eight categories. When binary encoding is applied, the categories
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1,2...8 correspond to 00000001, 00000010... 10000000 respectively. In this case the Eu-

clidean distance between each category is equal, however, this may not be the actual

case. Also, the input dimensionality is increased by adding dummy variables that may

yield to “curse of dimensionality” in learning phase [65, 81].

4.6.2.2. Proposed Frequency Based Encoding Technique. The literature present vari-

ances of binary encoding, frequency based and expert judgement approaches for trans-

formation of categorical variables. However, comparative analysis of these methods is

limited and also, to the best of our knowledge, there is not a generalized frequency

based encoding scheme.

Johannson, et al., deal with visualization of mixed datasets and propose interac-

tive quantization of categorical variables that incorporates information about relation-

ships among continuous variables as well as makes use of the domain knowledge of the

data analyst [82]. A Simple Correspondence Analysis (SCA) has been applied based

on the frequencies of categories in the dataset.

A frequency based encoding scheme has previously been proposed as a data trans-

formation technique for car injury prediction [83]. In this research, we propose a new

frequency based transformation method for continuous numerical representation of cat-

egorical variables in mixed IVF data. The new numerical values are derived from the

relative frequencies of categorical codes among both positive and negative implantation

classes as defined below:

xik = P (Cp)ik − P (Cn)ik

where,
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• kik is the new numerical value of categorical code xi originally in code k;

• P (Cp)ik is the frequency of categorical code k in positive implantation class Cp,

and

• P (Cn)ik is the frequency of categorical code k in negative implantation class Cn.

The basic idea behind this transformation is to reflect the effect of categorical

code on implantation outcome. The frequency of any categorical code in positive class

is assumed to have positive effect while the occurrence in negative class is considered

as negative effect. Hence, the new numerical value of a categorical code is defined as

the difference between frequencies in positive and negative classes in the range of [-1,1].

4.7. Training and Testing Strategies

4.7.1. Two-third One-Third Split

Two-thirds of the dataset was randomly selected for establishing a predictor

model and the remaining one-third was utilized for testing. This random splitting

was performed considering stratification principle in order to ensure that the propor-

tions of implanted and not-implanted embryos were the same in both training and test

sets as in the original dataset. For each classifier, the model parameters were optimized

on the 2/3 dataset using 10 fold cross validation strategy.

After selecting the best parameters, the trained model was assessed on the sep-

arate 1/3 dataset to predict the class labels of the previously unseen data samples.

Finally, the predictions were compared to the actual implantation outcomes in order

to evaluate the performance of the classification model. The random train set and test

set partitioning was also repeated 10 times in order to avoid the sampling bias. The

reported results were the mean values of these 10 experiments.
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4.7.2. 10-fold Cross Validation

We have used 10-fold cross-validation for parameter optimization on the training

set. In 10-fold cross-validation, dataset is divided into 10 equal subsets, 9 subsets were

used for training and 1 subset was used for testing. This task has been repeated 10

folds to ensure that each data sample is used for training and testing.

4.8. Performance Evaluation

Reliable evaluation of prediction results is crucial for clinical practice in medical

decision support systems. The most common evaluation measure is accuracy that is the

percentage of correctly predicted samples. However, in case of prediction on imbalanced

datasets, accuracy is not a sufficient measure for evaluating classifier’s performance. For

example if the majority class in a dataset constitute 85% of total samples, predicting

all the samples as belonging to majority class inherently yields an accuracy of 85%.

Although such an accuracy level seems high, the predictor system does not provide any

information about the minority class. Therefore, additional performance metrics are

required to evaluate predictions for each class separately.

4.8.1. Performance Measures

In medical machine learning applications, sensitivity and specificity measures are

also widely used besides the common accuracy measure [84–86]. Formal definitions for

these performance criteria are given in Equations 4.10, 4.11 and 4.12 respectively and

they are derived from the confusion matrix given in Table 4.2.

Accuracy =
(TP + TN)

(TP + FN + TN + FP )
(4.10)

• Sensitivity is a measure of accuracy for correctly detecting the embryos that will

implant and is equal to the ratio of number of true positives (TP) to the sum of
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Table 4.2. Confusion matrix TP:True Positives, FN:False Negatives, FP:False

Positives, TN:True Negatives

Predicted

Actual Case Implanted Not-implanted

Implanted TP FN

Not-implanted FP TN

true positives and false negatives (FN).

Sensitivity =
(TP )

(TP + FN)
(4.11)

• Specificity represents the number of true negatives (TN) over the sum of true

negative and false positives (FP) and means correctly detecting the embryos that

will not implant.

Specificity =
(TN)

(TN + FP )
(4.12)

Sensitivity and TPR have been used interchangeably in this thesis report as well

as false alarm rate and FPR.

4.8.2. ROC Analysis

In the machine learning community, after realization of the weakness of simple

accuracy rate as a performance measure, the use of ROC curves [87] have gained an

increasing attention.

The ROC curve plots the sensitivity (i.e. a measure of accuracy for correctly

detecting the embryos that will implant) versus (1-specificity), (i.e. erroneous posi-
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Figure 4.1. An artificial ROC curve illustrating two classifiers: Classifier 1 has larger

AUC than classifier 2

tive implantation prediction) by adjusting the decision threshold of classification and

enables comparison of classifiers using a single performance measure that is the area

under the curve (AUC) [88].

Higher sensitivity and lower false alarm (1-specificity) rates were targeted in

embryo implantation prediction; therefore the classifier with the largest AUC dominates

the others. Figure 4.1 shows an example ROC curve where classifier 1 performs better

than classifier 2 in terms of AUC.

It has been shown that, the AUC represents the most informative and objec-

tive performance measure within a benchmarking context [68] especially in case of

imbalanced class distributions [37]. The dataset used in this research represents an im-

balanced nature consisting of 89% not-implanted and 11% implanted embryos. Hence,

classifier comparison and feature subset selection have been performed according to

AUC measure.
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Figure 4.2. An ROC curve illustrating the effect of threshold optimization: Default

threshold (t0) and optimum threshold (topt)

4.9. Post-processing

4.9.1. Decision Threshold Optimization

Nave Bayes classifier computes the class posterior probabilities, P (Ci|x) of input

embryo data (x) for both negative and positive implantation classes. In case of binary

classification, the default decision threshold was 0.5 and the embryo was decided to

belong to the class with the highest posterior probability.

The TPR and FPR have been calculated for a single threshold (default 0.5) that

maps to a single point on the ROC curve. However, Provost clearly defined that, ”when

studying problems with imbalanced data, using the classifiers produced by standard

machine learning algorithms without adjusting the output threshold may well be a

critical mistake” [38]. Since, the datasets that we have utilized in this study repre-

sent imbalanced class distributions of positive (89%) and negative (11%) implantation

classes of embryos, it is necessary to evaluate the performance of classification for dif-

ferent thresholds. We need to determine the optimum probability threshold considering

both sensitivity and false alarm rates.
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It is necessary to mention critical points on the 2D ROC curve. The lower left

point (0,0) represents assigning all instances to negative class. Hence, there are no

positive predictions yielding TPR and FPR to be 0. Conversely, upper right corner

(1,1) indicates positive prediction for all instances. The upper left point (0,1) represents

perfect classification. Therefore, the threshold value that gives the nearest point to

(0,1) is accepted as the optimum decision threshold (topt) 4.2. Choosing a point on

the left-hand side of the topt reduce false alarms but often have lower TP rates as well.

Thresholds on the right hand-side increase both FP and TP rates. The tradeoff between

TP and FP rates depends on the requirements of the specific application domains.

Minimum distance optimization method assumes equal misclassification costs.

Embryo selection process is expected to produce higher sensitivity rates, because

we do not want to miss the embryos that will implant. However, increasing sensitivity

also increase false alarms that is incorrectly detecting not-implanted embryos. Proba-

bility of false alarms corresponds to (1 - specificity) and desired to have low values.
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5. EXPERIMENTS AND RESULTS

5.1. Experiment I : Benchmarking Classifiers for Implantation Prediction

(Research Question I)

The experiments presented in this section corresponds to the first research ques-

tion: How can we construct an efficient embryo-based implantation prediction model?

5.1.1. Implantation Prediction as a Supervised Classification Problem

For each embryo, a data feature vector including 18 patient and embryo charac-

teristics are labeled as either “implanted” (C+1) or “not-implanted” (C−1). Then, a

classification algorithm is applied to learn a model from the training data vectors. The

output of the classifier is a prediction on implantation outcome of embryos.

The algorithm for training and testing of classifiers on IVF dataset is given in

Figure 5.1.

5.1.2. Results

5.1.2.1. Retrospective Analysis. All the values of TPR and FPR have been calculated

by varying the decision thresholds in the range of [0:0.05:1]. The resulting set of (TPR,

FPR) pairs are plotted as a 2D ROC curve that takes into account all possible solutions

of the threshold variation. Among six methods, Naive Bayes and RBF were significantly

better while kNN and DT were significantly worse (P < 0.05). The results (excluding

kNN and DT) were plotted as ROC curves, which appear in Figure 5.2 demonstrating

the effect of threshold optimization on the variation of TPR and FPR.

Naive Bayes classifier is used in the implantation prediction experiments due to

the superior performance. Maximum sensitivity and minimum false alarm rates are

desired in implantation prediction which corresponds to upper left corner (0,1) on the
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1: D = [IVF Data]

2: C = [Naive Bayes, DT, kNN, SVM, MLP, RBF]

3: % generate 10 random 2/3-1/3 split of dataset

4: for all i in [1:1:10] do

5: train[i] = random 2/3 of D

6: test[i] = D - train[i]

7: end for

8: % pre-processing, parameter optimization and classification

9: for all c in C do

10: for all i in [1:1:10] do

11: train = train[i]

12: test = test[i]

13: [trainp, testp] = preprocess(train,test)

14: param∗ = arg maxparam AUC(10 fold CV on trainp)

15: model = learn(trainp, c, param∗)

16: AUC[i] = classify(testp, model)

17: end for

18: output [mean(AUC), std(AUC)]

19: end for

Figure 5.1. Pseudocode for evaluation of classifiers on IVF dataset
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(a) ROC curve for Naive Bayes classification.

AUC is 0.739 ± 0.036

(b) ROC curve for RBF classification. AUC

is 0.712 ± 0.036

(c) ROC curve for MLP classification. AUC

is0.675 ± 0.039

(d) ROC curve for SVM classification. AUC

is 0.657 ± 0.020

Figure 5.2. ROC analysis representation for IVF dataset

ROC curve. The threshold value that maps to the point nearest the (0,1) point was

estimated as 0.2 and decided to be the optimum threshold for classification.

The selected classifier specific model parameters were:

• k = 9 for k-NN method,

• cost, C = 30 and γ = 10−4 in Gaussian Kernel for SVM method,

• number of clusters B = 2 and minimum standard deviation of clusters w = 0.1

for RBF method, and

• 1 hidden layer, 10 hidden units, 20 epochs with a learning rate, η = 0.3 and

momentum, µ = 0.2 for MLP method.
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Figure 5.3. Relative weights of dataset features in decreasing order (bar graph

associated with left axis) and variation of AUC depending on feature subset selection

(line graph associated with right axis)

5.1.2.2. Weighted Features and Reduced Subset. Relative Information Gain weights

of dataset features are given in Figure 5.3. According to feature weights, duration

of stimulation, sperm motility, thickness of the zona pellucida and gravidity variables

have very little predictor value on the implantation outcome. The predictive value

of each data feature has been investigated using forward subset selection. Figure 4

represents the variation of prediction performance in terms of AUC displaying age of

the woman as the most predictor variable.

The results show that prediction with the subset including the first 11 features

produce the highest mean AUC score; 0.754, while the mean AUC with the complete

feature set was 0.739. Therefore, remaining features have been discarded from the

dataset in the rest of the experiments. Using these 11 features and with a decision

threshold of 0.2, Nave Bayes classifier predicted the outcomes of individual embryos at

80.4% accuracy, 63.7% sensitivity and 17.6% false alarm rate. The model also predicts

occurrence of triple pregnancies at 62.9% (39/62) sensitivity level and twin pregnancies

at 65.6% (21/32) sensitivity level. Hence, multiple pregnancies can also be avoided by

using our proposed model.
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Figure 5.4. Dependency pattern of features indicating statistically significant

correlations as black squares

All experiments were performed in WEKA machine learning tool [89].

5.1.2.3. Correlation Matrix and PCA. We have used correlation matrix to define the

dependency structure of the dataset. We transformed the categorical variables into

numerical values using our proposed frequency based transformation technique as de-

scribed in Section 4.6.2.2. The resulting dataset was normalized to zero mean and unit

variance. The correlation coefficients are computed on the transformed dataset.

In order to test the hypothesis of no correlation, the p-values are computed by

transforming the correlation to create a t statistic having n-2 degrees of freedom, where

n is the number of rows of correlation matrix.
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Figure 5.5. Scree Plot of PCA eigenvalues: The percent of variability explained by

each principal components (vertical bar graph associated with left axis) and the

cumulative percent of variability (line graph associated with right axis)

Statistically significant correlations between features are given in Figure 5.4. The

19th row and column corresponds to class variable and the feature-class correlations are

also evaluated. Black squares indicate pairs with significant correlations (p < 0.05); the

squares on the diagonal are colored gray as reference and all other squares are white.

Figure 5.4 demonstrates the highly dependent structure of the IVF data.

Feature subset obtained using correlation analysis include additional two features:

Fragmentation rate and appearance of cytoplasm of embryos at Day 2. The remaining

11 out of 18 features are the same in both subsets although the ranking of features

according to relative predictive effects are different. Results indicate that both methods

produce similar results in terms of feature selection in IVF data.

The results of feature inter-correlation analysis showed that the features are

strongly dependent. Since Naive Bayes assumes independence of features, we applied

PCA to extract uncorrelated features. The percent of variability explained by each

principal component is shown as a scree plot in Figure 5.5.
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The analysis of feature-class correlations led us to compare the predictive features

selected using two different approaches: correlations analysis and Information Gain

heuristics. Table 5.2 represents the list selected features in decreasing order according

to estimated Information Gain values and correlation coefficients.

We have repeated the Naive Bayes classification of implantation using only those

principal components which contribute more than 2% of the total variation in the trans-

formed dataset. In that case, all the principal components retained in the dataset. The

classification using 18 principal components resulted in an AUC value of 0.673± 0.023

where the result of classification using the 18 original input features was 0.739± 0.036.

The classification using PCA produced significantly worse performance compared to

raw IVF data.

The relatively poor performance of PCA in IVF data may also be perceived from

the scree plot where the first three principal components explain only roughly one third

of the total variability.

5.1.2.4. Semi-Prospective Experiments. In a semi-prospective study we asked five em-

bryologists in Bahceci Clinic to predict the implantation outcome of embryos that were

going to be transferred from May 2009 within two months. We took the majority deci-

sion of five of them as the ‘expert judgement’. We also simultaneously used our model

to make future predictions. After 12 weeks of embryo transfer we compared expert

judgement, and model predictions with the actual outcomes. Again, for exact trace-

ability of individual embryo implantations, we have only analyzed the cycles where

all of the transferred embryos implanted or not implanted. We looked at in total of

173 embryos taken from 64 cycles including 1 single pregnancy, 6 twin pregnancies, 10

triple pregnancies and 47 negative pregnancies.

The predictions of the proposed model on 173 embryos have been presented in

Table 5.3 as a confusion matrix indicating 75.7% accuracy, 55.8% sensitivity and 17.7%

false alarm rate. These results are very close to retrospective analysis that validates
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Table 5.2. List of selected features using Information Gain heuristic and correlation

analysis

Information Gain Correlation Analysis

1. Age 1. Age

2. E2 level 2. EC Morphology

3. EC Morphology 3. FSH amount

4. FSH amount 4. Treatment Protocol

5. Treatment Protocol 5. Transfer Day

6. Infertility Factor 6. Nucleus Characteristics

7. Nucleus Characteristics 7. E2 level

8. Number of cells 8. Equality of blastomeres

9. Transfer Day 9. Infertility Factor

10. EC Inspection Time 10. Fragmentation Rate

11. Equality of blastomeres 11. Number of cells

12. EC Inspection Time

13. Appearance of cytoplasm

Table 5.3. Confusion matrix for semi-prospective analysis

Predicted

Actual Case # Embryos Positive Negative

Positive 43 24 19

Negative 130 23 107

Total 173 47 126
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the predictive power of the proposed model.

Table 5.4. Summary of retrospective and semi-prospective experiments

Dataset # features Threshold Accuracy Sensitivity Specificity

(%) (%) (%)

Original dataset 18 0.5 77.0 58.9 79.3

(default threshold)

Reduced subset 11 0.5 77.2 53.7 80.1

(default threshold)

Reduced subset 11 0.2 80.4 63.7 82.4

(optimized threshold)

Semi-prospective prediction 11 0.2 75.7 55.8 82.3

All of the five embryologists had a common implantation prediction on only 28.9%

of 173 embryos. This diversity indicates the influence of human bias in critical decisions

that would affect the success of the IVF treatment. Our results showed that experts

failed to correctly predict the implantation potential of embryos by 39.9%, however,

our learning based proposed model only failed by 24.3%. Moreover, the false alarm

(false positive) rate of experts is 40.8%, whereas, the false alarm rate of the proposed

model is 17.7%. We would like to achieve a low false alarm rate in a prediction model

since we do not want to misclassify a poor quality embryo and or poor respondent as a

successful implantation. Such a misclassification has severe cost and moral implications

on the patients as well as on the clinics.

The results of retrospective and semi-prospective experiments are summarized in

Table 5.4.

5.1.2.5. Predictions on Random Cases. Table 5.5 represents samples of random cases

in semi-prospective predictions including both the prediction of the model and expert

judgement. The proposed model can predict the outcome accurately when given a

good responder young patient and high quality embryos (embryo1) or poor responder

older patients and low quality embryos (embryo2) as expected. These results are the

predictions of the embryologists as well. However, there are some odd cases where both
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experts and the proposed model failed to predict the outcome (embryos 3&4). These

cases should be further investigated in order to understand the underlying reason for

false predictions.

On the other hand, it is difficult to predict the outcomes of more complex cases

since decision making depends on analysis of correlations between various input fea-

tures. Embryos 5 and 6 are samples of such complex cases where our proposed model

correctly predicts the outcome in contrast to expert judgement. These embryos rep-

resent almost similar embryo morphology with different maternal ages and infertility

factors. For example, embryo 5 belonging to woman aged 33 with poor responses is

classified as no-implant by the experts. However, they went ahead and transferred the

embryo. On the other hand, our model predicted as an implant. The other case is

embryo 6 which was transferred to a younger woman as clearly marked an implant by

the experts. Our model correctly classified it as no-implant. These examples indicate

that a learning based model can aid embryologists in making the right decisions in such

complex cases. Such a model can learn from past experiences (i.e. thousands of embryo

and patient characteristics) and makes inferences among these attributes correctly.
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5.2. Experiment II: Sampling vs. Threshold Optimization (Research

Question 2)

The IVF dataset we analyzed contain fewer samples with positive outcomes. Any

classifier built on these dataset has much more information to identify unsuccessful IVF

treatments compared to successful ones. Therefore, implantation prediction is handled

as a typical case of learning from imbalanced data problem. In the experiment I, we

adjusted the classification threshold to avoid the learning bias to the majority class.

Alternatively, the effects of sampling methods in prediction performance have been

investigated in machine learning based medical decision making applications in case of

imbalanced or skewed class distribution[90–92].

We analyze the effects of re-sampling the training data and decision threshold

optimization on imbalanced IVF dataset using Naive Bayes classifier. We perform over-

and under-sampling in different scales and examined the classification performance on

the re-balanced IVF data with the default threshold of 0.5. Analysis of under-sampling

experiments also leaded to define sufficient size of embryo samples for implantation

prediction that would reduce the effort spent for data collection in IVF domain.We

also search for the optimum classification threshold as a post-processing stage.

Re-sampling the training data can be performed in an unsupervised manner be-

fore the classification experiments. However, the optimum threshold is determined after

the classification and can not be generalized as a model parameter since the decision

threshold is too sensitive to the data.

5.2.1. Data and Design

Two main sampling strategies are over-sampling that replicates instances from

the minority class [35] and under-sampling where some of the instances in the majority

class is removed [34].

In Experiment I, we have compared various classifiers for implantation prediction
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of IVF embryos and shown that Naive Bayes produce significantly better predictive per-

formance [93]. Therefore, we apply Naive Bayes algorithm to imbalanced IVF dataset

in order to investigate the effect of sampling strategies and threshold optimization.

For over sampling, we have constructed ten training sets by replicating the pos-

itive instances while keeping the number of negative instances constant. For the first

over sampling, we have created one more copy of positive instances, for the second we

created two copies and so on. When constructing under sampled datasets, we have in-

cluded all of the positive instances and randomly selected 1/10, 2/10... of the negative

instances for each fold.

The dataset includes 2275 fresh, non-donor in-vitro human embryos transferred

in Day 2 or Day 3 after ICSI. The dataset used in this study represented an imbal-

anced nature consisting of 1944 (85.4%) negative implantation and 331 (14.6%) positive

implantation outcomes (The size of the dataset changed due to missing variables in

additional features such as difficulty of embryo transfer). The random two-thirds,

one-third partitioning is used for training and testing.

5.2.2. Results

Table 5.6 and Table 5.7 represent the distribution of the training set and predic-

tion results in terms of TPR and FPR for over sampling and under sampling, respec-

tively. Results show that both TPR and FPR increase at each fold of resampling. This

can be interpreted as increasing the number of positive embryo samples and reducing

the number of negative embryo samples raise the number of positive predictions.

The tradeoff between the TPR and FPR can be adjusted by changing the ratio

of classes. Optimum (TPR, FPR) pair can also be obtained as explained in Section

4.9.1. These corresponds to (66.5%, 33.6%) and (65.3%, 32.1%) for over sampling and

under sampling, respectively.

The TPR and FPR values have also been calculated by varying the decision
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Table 5.6. Distribution of class samples and prediction results after over sampling the

training data

Dataset No 1 2 3 4 5 6 7 8 9 10

# of Positive Samples 218 436 654 872 1090 1308 1526 1744 1962 2180

# of Negative Samples 1295 1295 1295 1295 1295 1295 1295 1295 1295 1295

True Positive Rate 50.8 63.0 66.5 69.2 70.5 72.3 74.1 74.9 76.0 76.8

False Positive Rate 18.0 28.7 33.6 37.2 40.4 42.9 44.9 46.1 47.3 48.8

Table 5.7. Distribution of class samples and prediction results after under sampling

the training data

Dataset No 1 2 3 4 5 6 7 8 9 10

# of Positive Sample 218 218 218 218 218 218 218 218 218 218

# of Negative Samples 1295 1165 1036 906 777 647 518 388 259 129

True Positive Rate 50.8 54.2 55.4 58.1 61.1 63.7 65.3 68.2 72.6 79.1

False Positive Rate 18.0 20.2 22.0 24.5 26.2 29.8 32.1 36.0 41.4 51.3

thresholds in the range of [0:0.1:1]. The resulting set of (TPR, FPR) pairs are given

in Table 5.8.

The results of over-sampling, under-sampling and threshold variation have been

plotted as a single 2D ROC curve (Figure 5.6). Both sampling methods and adjustment

of the decision threshold produce almost the same ROC curves demonstrating the

similarity of the effects of these methods on prediction performance.

Classification with the default decision threshold, i.e. 0.5, produce 50.8% TPR

and 18.0% FPR, whereas with topt = 0.3 TPR increased to 64.4% and FPR also

increased to 30.6%. Choosing a point on the left-hand side of the topt on the ROC

Table 5.8. Prediction results depending on variation of the decision threshold

Decision Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Positive Rate 1 77.1 69.4 64.4 58.4 50.8 41.3 28.0 13.1 3.6 0

False Positive Rate 1 48.2 37.6 30.6 23.8 18.0 13.1 8.6 4.6 0.6 0
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Figure 5.6. ROC curves demonstrating the effect of sampling and threshold variation

of Naive Bayes based IVF implantation prediction

curve reduce FPR, but often have lower TPR as well. Thresholds on the right hand-

side increase both TPR and FPR.

5.3. Experiment III: Transformation of Categorical Variables (Research

Question II)

Performance of distance based classifiers, such as SVM, depends on accurate

transformation of categorical variables into numeric data. In Experiment I, we used

common binary encoding approach for the data type transformation. Due to the rela-

tively poor performance of SVM classifier we examine the efficiency of binary encoding

in this experiment and we propose a frequency based encoding technique for better

transformation of categorical variables.

5.3.1. Data and Design

The dataset includes three categorical variables: infertility factor, treatment pro-

tocol and early cleavage morphology with 14, 8 and 11 categories, respectively. Figure
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(a) Treatment Protocol (b) Early Cleavage Morphology

(c) Infertility Factor

Figure 5.7. Distribution of categories for each categorical variable among both

positive and negative implantation classes

5.7 represents the distribution of the categorical variables among both positive and

negative implantation classes.

We converted categorical features into numeric values using binary encoding,

expert judgement and our proposed frequency based transformation technique. After

each transformation, the input data were normalized to 0 mean and standard deviation

of 1. Kernel and parameter selection is performed using cross validation on the training

set.
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Table 5.9. Example transformation of ‘treatment protocol’ feature including 8

categories

Original category code Binary encoding Frequency based encoding Expert judgement

1 00000001 0.123 3

2 00000010 0.024 3

3 00000100 -0.16 3

4 00001000 -0.006 2

5 00010000 0.0094 1

6 00100000 0 1

7 01000000 -0.0031 4

8 10000000 0.0086 2

5.3.2. Results

For the treatment protocols, the categories 1,2,3...8 correspond to 0.123, 0.024,

-0.16...0.0086 as a result of frequency transformation as shown in Table 5.9. The

frequency based encoding has the advantage of self-learning from the training set and

therefore supposed to minimize the bias of transformation. This method also has the

advantage of preserving the original number of features [41] since the input dimension

of our dataset is increased to 42 from initial 12 features after binary encoding.

Expert judgement can be used as an alternative transformation method. This

approach transforms the categories manually, making use of the domain knowledge

and experience of medical specialists. The senior embryologists in Bahceci Clinic were

asked to assign a numerical value to each category representing the relative predictor

effect of that category on implantation outcome. They have assigned numerical values

from the set of 1,2,3,4, where the greater numbers represent more predictor effect. For

the treatment protocols, the manually assigned values are shown in Table 5.9. The

same strategy has also been applied to early cleavage morphology and infertility factor

variables. This approach may be useful for reflecting user control, however may also

insert bias to the original data distribution.

The average ROC curves of SVM classification of embryos using three different
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Table 5.10. Comparison of transformation methods for categorical variables

Transformation Method AUC TP Rate (%) FP Rate (%) Accuracy (%)

Binary encoding 0.676 ± 0.033 67.9 ± 4.0 37.8 ± 4.3 62.7 ± 3.7

Frequency based encoding 0.712 ± 0.032 65.6 ± 4.9 32.5 ± 7.9 67.3 ± 6.8

Expert judgement 0.696 ± 0.024 69.8 ± 8.2 36.9 ± 6.8 63.7 ± 5.5
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Figure 5.8. Demonstration of mean ROC curves for transformation methods

transformation schemes have been represented in Figure 5.8. For clarity, the results

have also been shown in Table 5.10 in terms of AUC, TPR, FPR and accuracy. Statis-

tical tests on the results reveal that, the proposed frequency based encoding technique

significantly improves the performance of classification in AUC measure compared to

binary encoding scheme (0.712±0.032 and 0.676±0.033 respectively). The values in Ta-

ble 5.10 show that, proposed method increase accuracy and reduce FPR while slightly

decreasing the TPR. However, these differences are not significant.

An interesting result is that, each of the three transformation methods utilized

in the experiments dominates in different parts of the ROC area. This may yield to

further analysis to combine the three methods for better classification performance in

IVF domain.
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5.4. Experiment IV: The Effect of Physicians Experience as a Human

Factor (Research Question III)

We performed experiments to investigate the effect of physicians as a predictor

factor other than patient and embryo characteristics in IVF treatment.

The data related to the impact of individual physicians performing embryo trans-

fers on the PRs are conflicting [48–51]. Significant differences were observed in the

studies by Hearns-Stokes et al. [49] and Karande et al. [50]. Yet, the number of em-

bryo transfers among the physicians varied between 6 to 551 in [49] and 12 to 374 in

[50]. van Weering et al. [51] analyzed the PRs from transfers performed by six physi-

cians with similar cycle characteristics and reported that the probability of success in

IVF was not dependent on the physician. The authors reported that each physician

had at least 2 years of experience. However, the PRs in their study are lower than the

ones in our study (19.1% to 29.0% versus 38.7% to 49.2%) and it may be more difficult

to observe the differences in outcome when overall pregnancy rates are lower.

Angelini et al. citeAngelini2006 also suggested that the physician factor may

be an important variable in the outcome. In contrast to studies representing a great

variation of cycle distribution among the physicians, two physicians were assessed as

performing 233 and 252 transfers.

5.4.1. Data and Design

Cleavage stage embryo transfer cycles that were carried out at the Bahceci IVF

Centre between January 2007 and August 2009 were retrospectively analyzed. Thaw

embryo transfers and PGD cycles were not included in the study.

Angelini et al. have reported that the presence of blood and mucus on the tip

of the catheter was significantly more in the less experienced group of physicians al-

though the cycle characteristics remained similar between the groups. Hence, transfers

performed by this physician group yielded a lower PR. Conversely, Hearns-Stokes et
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al. [49] found no evidence concerning the association of the presence of blood and the

lower PRs achieved by individual physicians. The authors have also considered the

type of the catheter as a confounding variable while investigating the impact of the

physician on the clinical PRs and included in their study only the transfers that were

performed by a single catheter type.

Because of the conflicting definitions and conclusions related to difficult transfers

in the literature, we excluded the difficult transfer cycles from our study and we an-

alyzed the embryo transfers that have been regarded as ’easy’; i.e., those which were

performed by one type of catheter and those in which no blood or mucus was present

on the catheter after the procedure.

Physicians performing transfers work on a rotating weekly schedule; therefore,

patients were randomly assigned to each physician.

The cycle and patient demographics assessed in the experiments were the age

of women, the administered FSH amount, the peak estradiol level, and the number

and mean grade of the embryos transferred. The embryo quality was evaluated in

relation to the number of cells, the fragmentation rate, nucleation, the equality and

symmetry of blastomeres, and the appearance of the cytoplasm [94]. In short, lower

scores corresponded to higher quality. All transfers were performed under ultrasound

guidance to patients with full bladder using a ’soft’ Wallace catheter (1816). The

transfer procedure has been described in detail by Ciray et al. [47].

The clinical pregnancy rate (PR) was considered as the outcome measure. Clinical

pregnancy is defined as the visualization of intrauterine gestational sac on ultrasound

at 12 weeks after transfer. The differences between the PRs of individual physicians

were conducted using pair wise chi-square tests. A P value of ¡.05 was considered as

statistically significant. The mean age of women, mean FSH and E2 values, and the

mean number and grade of embryos per cycle were compared with a one-way analysis

of variance (ANOVA) followed by Tukey’s multiple comparison test.
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5.4.2. Results

942 clinical pregnancies were obtained from 2212 transfer cycles (42.0%). The dis-

tribution of the PRs of individual physicians’ including cycle and patient demographics

is given in Table 5.11. During the study period, six physicians two of whom were be-

ginners performed the transfers (physicians 4 and 5). Four experienced physicians with

similar cycle and embryo characteristics displayed similar PRs, along with one begin-

ner (physician 4) whose transfer cycles displayed better demographics. When cycle,

patient and embryo demographics were similar, the ’experienced physician’ (physician

6) displayed a significantly higher PR than the ’beginner’ (physician 5).

The results of the experiments show that the PR varies between the individual

physicians performing the embryo transfer. A similar PR was observed in the com-

parison of a beginner and an experienced group when the cycles of the former were

composed of high responder patients, and higher embryo qualities indicated the im-

portance of patient characteristics and embryo quality over and above the physician

factor.

If the level of experience of physicians had more impact on the outcome, the

PR of beginner physicians would be significantly lower than the PRs of experienced

physicians. However, physician 4 displayed similar success to experienced physicians

because of the better patient and embryo characteristics. Accordingly, the patient and

cycle characteristics are shown to be strong determinants in PRs.

If physician 4 is excluded, the mean age of women, mean E2 values and mean

grade of embryos per cycle were similar among the patient groups of physicians. This

can be interpreted as, response level of patients and quality of transfer embryos were

similar among the experienced physicians (physicians 1,2,3,6) and one beginner physi-

cian (physician 5).
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The experience level of physicians 1,2,3 and 6 were also varied from 2 to 15

years. Since these physicians had similar PRs, we can conclude that the increased

experience does not dramatically affect the treatment outcome after a minimum level

of experience (e.g. 2 years in our clinic). The duration of sufficient training time would

change according to personal skills of physicians and to the transfer procedure of the

clinics.

When the response level of patients and embryo quality were similar, the PR of

a beginner physician is significantly lower the highest PR. Therefore, we can conclude

that if the patient and embryo characteristics are compromised, the level of physician

experience may have a more determining impact on the outcome.

5.5. Experiment V: Modeling Blastocyst Development (Research Question

IV)

In experiment V we aim to answer the fourth research question: How can we

model the embryo growth process? And one step further, we deal with prediction of

blastocyst score.

5.5.1. Prediction of Blastocyst Score as a Supervised Classification Problem

In this research, we deal with the problem of prediction of IVF blastocyst score

using Bayesian Networks as a supervised classification technique. Initially, we need

to identify the possible predictor variables affecting the blastocyst score. These pre-

dictor variables are represented as a multivariate input feature vector in the form of

x = (x1, ...xn). In clinical routine, embryologists observe and record morphological

characteristics of embryos for the first three days of embryo growth process mentioned

in Figure 2.1. Recorded morphological observations and other patient and cycle char-

acteristics such as age of women, hormone levels etc. constitute the database for the

classification problem.

The critical decision regarding the extended culture of embryos until the blasto-
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cyst stage should be given at day 3. To the best of our knowledge, there is no predefined

rules for the decision of extended culture. Such a critical decision is based mostly on

experience of embryologists and may be assumed as random from a statistical point of

view.

Finally, if the embryo is cultured until day 5, a blastocyst score is assigned using

Gardner’s score described in Section 2.3.3. This score is transformed to class labels in

classification problem where,

• class 1 indicates a blastocyst with a Gardner’s score ≥3AA (i.e. high quality

blastocyst and positive class in binary classification)

• class 2 indicates a blastocyst with a Gardner’s score <3AA (i.e. low quality

blastocyst and negative class in binary classification).

For each instance in the dataset, Bayesian Network classifier computes P (Ci|x1, ...xn)

for both classes and assigns the instance to the class with the highest a posteriori prob-

ability.

We have constructed a dataset of 7735 blastocysts including morphological ob-

servations at day 1, day 2, day 3 and day 5 after ICSI. Initially, we have constructed

the Bayesian Network topology based on Information Gain feature ranking between

the input features and the blastocyst score. We have observed that, there are very few

samples for some feature vectors in the conditional probability tables yielding causal

insufficiency in the training phase. Therefore, we have applied a weighted nearest

neighbor based approach to handle the problem of poorly learned conditional prob-

abilities associated to the decision node. The experimental results showed that, the

accuracy is increased and the false positive rate is reduced significantly while the true

positive rate remained similar compared to initial Bayesian Network in prediction of

blastocysts score.

In order to test the generalization ability of the proposed model, we have re-

peated the experiments on common datasets from UCI ML repository. The results
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Figure 5.9. Distribution of transferred, frozen and discarded embryos in IVF cycles

showed that, the proposed method do not improve the classification performance when

standard frequency estimate method already learns the conditional probabilities suffi-

ciently. On the other hand, if insufficient frequency estimates are observed in training

phase, adjusting conditional probabilities may enhance the prediction results.

5.5.2. Data and Design

There are two main advantages of Bayesian network in modeling IVF embryo

growth: first, a Bayesian network can be used to learn cause-effect relationships, and

hence can be used to gain understanding about the problem domain and second, be-

cause the model has both a causal and probabilistic semantics, it is an ideal represen-

tation for combining prior knowledge and data.

We have analyzed the data of IVF cycles performed in Bahceci IVF Center from

January 2007 to November 2009. Raw dataset includes a total of 81371 oocytes. Among

62800 fertilized oocytes, 12185 embryos have been transferred and 9858 embryos have

been freezed (Figure 5.9). Remaining 40757 embryos have been discarded due to de-

velopmental failure that constitute 64.9% of the fertilized oocytes. This rate can be

reduced by using accurate prediction models supporting the decision about extended

culture of embryos although the degeneration of the embryos can not be prevented

totally.
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A total of 9043 embryos have been cultured until the blastocyst stage. We have

eliminated the records including missing values. Finally, a total of 7735 blastocysts

have been analyzed where 1779 blastocysts have been developed with a Gardners score

≥3AA (23.0%).

We have included the available features based on the literature and the expert

judgement. The list of features is given in Table 5.12:

5.5.3. Results

5.5.3.1. Initial Bayesian Network based on Expert Judgement. In order to evaluate

the performance of the Bayesian network in IVF domain, initially we have constructed

the network manually based on domain knowledge to predict blastocyst score of em-

bryos depending on morphological observations at day 3. Hence, we have a class

variable as the root node that is the blastocyst score at day 5. The number of cells,

nucleus characteristics and equality of blastomeres at day 3 considered as parents of

root node.

The blastocyst score has originally 7 categories described in Section 2.3.3. How-

ever, the distribution of these categories is very unfair where some of the categories

include only a few samples. In addition, it is more crucial to predict if blastocyst will

develop (scores 2,3,4,5,6) and or will fail to develop (categories CM and 1). Therefore,

in the initial experiments, the prediction of blastocyst morphology is reduced to binary

classification problem.

Data is pre-processed using Matlab; visual network construction, learning the

conditional probability tables from the training data and predictions on the test data

have been performed using Netica software [95].

Initially, three networks have been constructed manually:

• Network 1: day 5 blastocyst score depends only on day 3 morphological variables.
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Table 5.12. Selected dataset features for each blastocyst feature vector

Dataset Features Value

Patient and Cycle Characteristics

Woman age Continuous

Gravidity Primary, Secondary

Infertility factor DOR, Endometriozis, PCOS - HPRL,

Vaginismus, Hipo-Hipo, Uterine, Tubal,

Azoospermi, OAT, SSS, Combined, Unexplained

Treatment protocol Long, Low-Long, Antagonist,

Natural, Femera

Duration of stimulation Continuous

Follicular stimulating hormone dosage Continuous

Peak Estradiol level Continuous

Endometrium thickness Continuous

Sperm quality Motile, Immotile

Embryo Related Data

Early cleavage morphology 1, 2, 3A, 3B, 3C, 3D, FRAG, 3H, BOL

Early cleavage time Continuous

Number of cells at day 2 NC, 2, 3, ... 10, COMP, PCOMP

Nucleus characteristics at day 2 Mono, Nomono, Multinucleus, Binuclues

Fragmentation at day 3 0, 0-20%, 20-50%, ¿50%

Blastomeres at day 2 Even, Uneven

Appearance of cytoplasm at day 2 Clear, Intermediate, Granular

Number of cells at day 3 NC, 2, 3, ... 10, ≥11, COMP, PCOMP

Nucleus characteristics at day 3 Mono, Nomono, Multinucleus, Binuclues

Fragmentation at day 3 0, 0-20%, 20-50%, ¿50%

Blastomeres at day 3 Even, Uneven

Appearance of cytoplasm at day 3 Clear, Intermediate, Granular
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Table 5.13. Comparison of prediction performance using different network structures

Network Accuracy (%) TP Rate (%) FP Rate (%)

Network 1 64.9 ± 2.0 63.5 ± 5.6 33.8 ± 4.9

Network 2 58.2 ± 2.6 35.7 ± 4.2 22.6 ± 5.1

Network 3 62.7 ± 2.3 52.5 ± 4.9 29.2 ± 3.5

Network 4 65.2 ± 2.8 64.9 ± 6.7 36.1 ± 5.3

The resulting network is represented in Figure 5.10.;

• Network 2: includes additional links between patient characteristics and day 5

blastocyst score;

• Network 3: day 1, day 2 and day 3 observations are all connected to day 5 score.

The results of prediction over 10 fold cross validation is given in Table 5.13 in

terms of accuracy, true positive rate (sensitivity) and false positive rate.

Paired t-tests indicate that the networks produce significantly different results

in terms of accuracy, TP rate and FP rate. Network 1 performs better in predicting

adequate blastocyst development while Network 2 with patient variables reduce the

false positive predictions. These results reveal that, two networks perform better in

different parts of the data. As the next step, different network structures may be

learned from data or by a combination of prior knowledge and learning from data. The

preliminary results can be enhanced by altering the network topology.

The initial networks based on prior domain knowledge represented a fairly low

prediction of blastocyst development. However, the results are promising in the sense

of embryo based prediction which is a more challenging issue compared to cycle based

prediction.
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5.5.3.2. Structure Learning Based on Correlation Analysis. We have analyzed the de-

pendency of available input features as an initial step for learning the structure of the

Bayesian network from data. Correlation analysis revealed that embryo morpholog-

ical variables are correlated but they are substantially independent from the patient

characteristics.

The resulting network is shown in Figure 5.10. In the network, the parents of

Day 5 Score include the morphological variables at day 1, day 2 and day 3. Due to

the significant inter-correlations of features, there are also links between the nodes

representing the daily morphological observations.

The accuracy, TPR and FPR of predictions of Day 5 score using this network

(Network 4) is presented in Table 5.13. Network 4 increase accuracy and TPR rate

but also increase FPR compared to Network 1. However, these differences are not

significant.

The structure of the Network 4 is more complex than the other three networks

because of the additional links between features. In Bayesian Networks, the size of the

CPT increases depending on the complexity of the network structure. Since the pa-

rameters of the network are learnt from the data, larger CPT may result in insufficient

learning and the performance of the prediction may not improve.

Therefore, we need to search for a simple network structure which encodes only

necessary and sufficient relationships in IVF data and further concentrate on parameter

learning.

5.5.3.3. Naive Bayesian Network and Frequency Estimate. After learning the struc-

ture of the BN, a conditional probability table (CPT) is assigned to child nodes while

prior probabilities are assigned to root nodes. If n links are directed to the child node

then this node has
n∑

i=1

(Ni) rows in its CPT where Ni is the number of states in ith root

node.
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In our case, we have applied Naive Bayesian network structure as a binary clas-

sifier. Bayesian networks are often used for classification problems, in which a learner

attempts to construct a classifier from a given set of training instances with class labels.

In learning Bayesian network classifiers, parameter learning often uses FE method, de-

scribed in Section 4.5.4.2, which determines parameters by computing the appropriate

frequencies from data.

In some situations there are many parents or there are many categories (and thus

the conditional probability table is large) and there are few data samples to represent

certain combinations of feature values. In such cases, the learning is less than optimal,

and it may be necessary to find another way of estimating the probability tables.

5.6. Experiment VI: Adjusting CPT Entries for Improved Parameter

Learning (Research Question V)

We consider the problem of limited samples to represent real conditional proba-

bilities as ’partially insufficient frequency estimates’. We propose a weighted Nearest

Neighbor approach to optimize the conditional probabilities to handle the insufficiency

of parameter learning in Bayesian Networks.

5.6.1. Proposed Approach for Adjusting Conditional Probabilities

When the frequencies of each possible combination of feature values is computed,

we can identify the samples that occur less than a predefined threshold of sample size.

Then, finding the nearest neighbors of that samples constitute a cluster in the neigh-

borhood of the infrequent sample. In this case, rather than computing the conditional

probabilities for each feature vector we can compute a common conditional probability

entry for the cluster of feature value combinations.

The idea behind this approach is that: Any combination of feature values may

be represented insufficiently in the training data. This fact may shadow the real statis-

tical properties of the nodes in the Bayesian Network. By clustering the less frequent



84

samples up to a certain level, it may be possible to obtain more accurate conditional

probabilities. However, it is crucial to avoid the uniformity of conditional probabilities

that would lead to information loss. Therefore, there are two critical hyper-parameters

in the proposed approach:

Threshold 1 : that represents the level of insufficiency in terms of frequency of feature

vectors, and

Threshold 2 : that represents the sufficient number of samples in the neighborhood of

less frequent samples.

The thresholds should be determined in training phase using a grid search method

that uses a pre-defined set of values for each threshold parameter. The search space

depend on the entries in the conditional probability tables.

Nearest Neighbor approaches are generally used for classification tasks where

each time a new instance needs to be classified, its similarity to the training instances

is measured and the new instance inherits the class of its closest instance(s). When

computing the distance between two instances, all the features may not have equal

impact on the similarity measure. Therefore, identification of relative effects of the

features on the distance can improve a nearest neighbor learning process [96, 97].

Feature ranking algorithms are used to identify the relevance of features in a

dataset and can be used with many different distance measures. We use InfoGain

feature weighting algorithm to rank the features of the dataset, and the ranked list

of features is then used to define a feature weighting vector to be embedded in the

Euclidean distance metric.

In this research, Nearest Neighbor approach is used for finding the most similar

cases to samples which were represented less frequently in the training dataset. The

weighted Euclidean distance between the instances xi and xj, dw(i, j) is:
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dw(i, j) = sqrt(
n∑

k=1

(1/wk) ∗ (xjk − xik)
2) (5.1)

where, n is the number of features and wk is the pre-evaluated InfoGain ranking

of the kth feature.

When the cluster of nearest neighbors including sufficient size of samples is ob-

tained, the conditional probabilities are computed that average the probabilities of the

samples in the cluster.

The pseudocode given in Figure 5.11 outlines the structure learning strategy that

we used in network construction and our proposed approach for the parameter learning.

5.6.2. Results

5.6.2.1. Tests on IVF Dataset. Data is pre-processed using Matlab; visual network

construction, learning the conditional probability tables from the training data and

predictions on the test data have been performed using Netica software. The weighted

nearest neighbor based post-processing of the conditional probabilities is implemented

using Matlab.

Initially we have applied InfoGain feature ranking algorithm to define the network

structure 5.12.

According to the structure in Figure 5.13, blastocyst score has a CPT while all

other nodes have prior probabilities. There are five links directed to blastocyst score

corresponding to 4*5*4*4*10 = 3200 rows in the CPT. Since there are ∼ 7000 samples

in the trainset, certain rows have not been observed or have been occurred infrequently

in the training set.
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1: F = [Set of input features]

2: C = class variable

3: %Subset selection for Naive Bayesian network structure.

4: S = ∅
5: for all f in F do

6: compute IG(f) = InfoGain(f, C)

7: if IG(f) ≥ µIG(F ) then

8: S = S ∪ f

9: end if

10: end for

11: %Frequency estimates n(ΠC = ~u) and adjusted frequency estimates n̂(ΠC = ~u)

12: %tu upper bound for insufficient frequency and tl lower bound for sufficient number

of data points in clustered neighborhood

13: for all ~u in S do

14: if n(ΠC = ~u) < tu then

15: n̂(ΠC = ~u) = n(ΠC = ~u)

16: while n̂(ΠC = ~u) < tl do

17: n̂(ΠC = ~u) = n̂(ΠC = ~u) + n(WeightedNearestNeighbors(~u))

18: end while

19: end if

20: end for

Figure 5.11. Pseudocode for adjusted CPT entries
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Figure 5.12. Relative Information Gain weights of features in predicting blastocyst

score

Figure 5.13. The initial Naive Bayesian network
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Reducing the number of categories for some nodes may reduce the number of rows

in the CPT thus may reduce the number of infrequent samples. In the initial network,

number of cells at day 2 and day 3 have 5 and 10 categories, respectively. By using

Netica’a auto discretization method, the numbers of categories have been reduced to 3

and 5 resulting in 4*3*4*4*5 = 960 rows in the CPT. The reduced network structure

is given in Figure 5.14 where class 2 represents the high-quality blastocysts.

Figure 5.14. Network with reduced categories

Figure 5.15. Conditional probability table (CPT) for the blastocyst score node

Figure 5.15 shows a part of the CPT for blastocyst score node obtained from
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Table 5.14. Initial probabilities in the CPT and the updated probabilities

ECMorp D2Cell D2Nuc D3Nuc D3Cell Freq. C1 C2 Prob. UProb

1 1 1 1 1 98 98 0 99 99

1 1 1 1 2 8 8 0 90 92.1

1 1 1 1 3 3 3 0 80 75.9

1 1 1 1 4 7 6 1 77.778 73.8

1 1 1 1 5 3 3 0 80 70.5

1 1 1 2 1 39 38 1 95.1 94.7

1 1 1 2 2 48 47 1 96 92.4

1 1 1 2 3 13 12 1 86.6 87.0

1 1 1 2 4 2 2 0 75 79.2

1 1 1 2 5 2 2 0 75 77.4

1 1 1 3 1 1 1 0 66.6 91.9

1 1 1 3 2 1 1 0 66.6 89.0

1 1 1 3 3 0 0 0 50 86.6

1 1 1 3 4 0 0 0 50 78.9

1 1 1 3 5 0 0 0 50 76.7

1 1 1 4 1 4 4 0 83.333 79.8

1 1 1 4 2 1 1 0 66.667 79.6

1 1 1 4 3 2 2 0 75 77.7

1 1 1 4 4 0 0 0 50 76.5

1 1 1 4 5 0 0 0 50 75.8

1 1 2 1 1 51 51 0 98.113 98.1

1 1 2 1 2 46 45 1 95.833 92.4

Netica software. The probability percentages represented as 50%-50% accounts for

missing observations. Hence, the CPT present the problem of insufficient statistics.

In the experiments, the CPT entry of the feature vectors that has less than 50

samples (threshold1) in the trainset have been accepted as insufficient statistics. The

proposed nearest neighbor based approach has been applied to cluster the insufficiently

represented CPT feature vectors to constitute a cluster of at least 200 samples (thresh-

old2) in the trainset.

Resulting probabilities are shown in Table 5.14.
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Table 5.15. Comparison of the initial network (Network1) and the network with

updated CPT (Network2)

Network Accuracy (%) TP Rate (%) FP Rate (%)

Network 1 69.1 ± 2.9 59.4 ± 7.5 29.4 ± 6.6

Network 2 72.6 ± 1.7 58.7 ± 4.8 22.7 ± 1.4

The results of prediction over stratified 10 fold cross validation is given in Table

5.15 in terms of accuracy, true positive rate (sensitivity) and false positive rate. Since

the dataset represents an imbalanced distribution of the two classes of blastocysts, the

decision threshold is optimized to handle the imbalance problem and decided as 0.7

mapping to the point closest to the upper left corner.

Paired t-tests indicate that the networks produce significantly different results

in terms of accuracy and FP rate (p < 0.05). Network 2 with updated CPT reduce

the false positive predictions as required in clinical procedure that would reduce the

number of degenerated embryos at blastocyst stage.

5.6.2.2. Tests on UCI Datasets. Since there are no publicly available IVF datasets,

we have repeated the experiments on 7 benchmark datasets from UCI ML Repository

[98] to test if our model can be generalized or not.

Datasets represent a variety of data characteristics related to number of instances,

number of features, number of classes, data types (continuous, discrete or mixed) and

existence of missing values. Continuous variables have been discretized using the unsu-

pervised 5-bin discretization method. Instances including missing variables have been

excluded from the analysis. The multi-class datasets have been transformed to binary

case by taking the two largest classes.

Information Gain feature ranking is used on the input features for each dataset

and the features with the weights above the mean weight have been selected to construct

the Naive Bayesian network structure.
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Table 5.16. Comparison of the FE and proposed method

FE Proposed Method

Dataset AUC TPR FPR AUC TPR FPR

Mammograph 0.82±0.04 86.5±5.4 23.3±7.6 0.83±0.04 84.5±7.1 23.8±8.2

Contraceptive 0.56±0.04 58.8±7.7 49.1±11.8 0.58±0.04 56.5±11.7 43.1±13.9

SpectHeart 0.75±0.03 68.8±3.3 19.5±6.2 0.80±0.02 77.9±3.4 24.0±4.8

Car 0.93±0.06 87.4±9.3 6.4±10.7 0.94±0.06 82.9±15.6 1.3±4.3

Voting 0.94±0.06 93.6±8.6 6.2±5.8 0.94±0.06 83.6±15.9 9.3±11.4

AustralianCredit 0.90±0.04 87.2±6.4 12.6±5.4 0.89±0.04 84.6±6.5 20.2±9.6

PimaDiabetes 0.79±0.04 73.0±7.6 26.8±4.7 0.77±0.05 69.9±7.8 26.2±4.5

The results are shown in Table 5.16.

Significance tests on the results reveal that, proposed method does not change

any of the performance measures in the selected 7 datasets.

The Car, Voting and AustralianCredit datasets already represent perfect discrim-

ination (0.9<AUC<1). We can conclude that, the problems that we have encountered

in our dataset do not exist in these datasets. Therefore, the proposed method do not

change the classification performance for these three datasets.

The Pima, Mammograph and Contraceptive datasets are large enough and the

distribution of training instances over data points is fair that overcomes the problem

of infrequent conditional probability entries.

The significant improvement is observed in SpectHeart dataset since the dataset

characteristics and problems in frequency estimates are similar to the IVF dataset.

SpectHeart dataset include 22 binary categorical variables but only 267 instances in

the dataset. The number of instances in the training set is not enough to represent all

the data points sufficiently in the conditional probability table as in our dataset. The

proposed method increased AUC and TPR values significantly while the FPR remained

the same in the SpectHeart dataset.
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We can suggest that, our proposed model works well in adjusting CPT entries if

the dataset characteristics satisfy our assumptions.

5.7. Discussion

The results of the Experiment I showed that a reliable implantation prediction

was possible with adequate retrospective embryo-based dataset that included sufficient

number of samples to train a model, prognostic data features and powerful machine

learning prediction methods. The proposed model provides an implantation proba-

bility for each embryo considering both patient and embryo characteristics. Hence,

unequal implantation probabilities may be assigned to any two embryos having similar

cleavage morphologies but have been transferred to different patients. To the best of

our knowledge, this kind of implantation prediction is novel probabilistic model in the

clinical embryology literature.

The prediction performance has been improved by applying feature subset se-

lection and classification threshold optimization. Consequently, Nave Bayes with op-

timized decision threshold correctly predicted the outcome with 80.4% accuracy and

63.7% sensitivity by utilizing a reduced feature set.

On the other hand, experimental results revealed the relatively lower performance

of PCA in IVF data. Shlen et al. provide a clear representation of assumptions and

limitations of PCA [67] that can be associated to implantation prediction problem

where PCA performs poorly. Janecek et al. also concluded that the classification

performance based on PCA is highly sensitive to the type of data [99].

The main assumptions of PCA are the linear correlation between the features

and univariate normality which may not hold for all the features in our dataset. In

addition, PCA works on continuous data where there are a number of categorical

variables representing high predictive effect in our dataset. We have transformed the

categorical features into numerical values using an efficient method. However, any

transformation method can not preserve the whole information content of the data.
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Possible information loss during the transformation together with the limitations of

PCA in our data resulted in poor performance of PCA as a feature extraction method.

The model has been validated in a semi-prospective manner and the results sup-

ported the predictive power of the proposed system. It is expected that the presented

implantation prediction model will provide useful information for decision-making on

the number of embryos to be transferred. In situations presenting increased pregnancy

probability, when the classification system predicts high implantation capacity for more

than one embryo, it may be recommended to limit the number of transfer embryos.

However, it should be remembered that this model may only guide the embryologist to

determine the number of embryos transferred, but as there is not any confidence level

it does not guarantee their selection.

Experiments II, III and IV were designed with the aim of improving the perfor-

mance of implantation prediction since each real world application of standard machine

learning algorithms require careful analysis of the input data and utilized methods.

Selecting the most appropriate pre-processing or post-processing tasks provides bet-

ter recognition performance. This is crucial for providing reliable decision support to

domain experts especially in medical decision making applications.

Most of the medical datasets represent an imbalanced distribution of positive and

negative samples. We examined the effects of sampling and threshold optimization in

Naive Bayes classification of imbalanced datasets and presented a comparative analysis

of these methods for implantation prediction of IVF embryos.

Experiment II revealed that both over sampling the minority class, under sam-

pling the majority class and varying the decision threshold of Naive Bayes classifier

produce similar prediction performance. Therefore, we suggest that, it is not necessary

to artificially re-balancing the distribution of class samples in IVF dataset. The easier

and effective way is to find the optimum decision threshold that produce required TPR

and FPR values depending on cost of misclassifications. However, the decision thresh-

old can not be optimized before the classification where re-sampling methods can be
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performed before conducting experiments.

Under sampling experiments also show that, a training set including 218 positive

and 518 negative embryo records is sufficient to characterize the implantation outcome.

This result is important in the sense of reducing the time and cost of data collection

in clinical practice.

Most of the medical datasets include mixed categorical and numerical attributes.

We examined the effect of categorical variables in SVM classification and presented a

comparative analysis of three methods for transformation of categorical variables into

numeric values in mixed IVF data. We aimed to question the efficiency of traditional

binary encoding method. The results of the Experiment III have shown that classifica-

tion after proposed frequency transformation significantly improved the performance

of SVM based implantation prediction.

According to the results obtained in Experiment IV, we concluded that patient

and cycle characteristics strong determinants in success of IVF treatment. When the

patient and embryo characteristics are compromised, the level of physician experience

may have a more determining impact on the outcome. The PRs of experienced physi-

cians were similar regardless of the level of experience. This can be interpreted as each

physician would display average success rate in embryo transfer after a trainee period.

Therefore, we can suggest that the clinical effort should concentrate on improving the

response level of patients and quality of embryos.

In Experiments V we modeled the embryo growth process using Bayesian Net-

works with the aim of predicting blastocyst score. The initial results were relatively

lower that motivated us to analyze the data and the methods. We recognized that

although we have a sufficiently large dataset the observed frequency estimates are not

optimal and we proposed a nearest neighbor approach to cluster the insufficient data

points in Experiment VI.

There are two hyper-parameters of the proposed model: threshold1 indicating



95

the lower bound for insufficient frequencies and threshold2 indicating the upper bound

for the sufficient number of training instances in the neighborhood of the infrequently

represented data points. The optimum values of these two parameters depend on the

distribution of training instances in the conditional probability table and the size of

the dataset. Adjustment of the thresholds is critical for the success of the proposed

model.

The main assumption under our proposed model is that: Infrequent or missing

data points in training set can be clustered in a neighborhood to produce a more ac-

curate collective frequency estimate for all of the instances in the associated cluster.

The proposed model works well if this assumption holds. Unless, the prediction perfor-

mance of frequency estimate would not change significantly. The superior performance

of the proposed method adjusting the CPT entries is validated on public SpectHeart

dataset.

Presented results in this research demonstrate efficacy of the prediction in terms of

AUC measure. This can be interpreted as, input features were sufficient to characterize

the implantation outcome providing acceptable discrimination of embryos. On the

other hand, the predictive power of the presented model may be improved by increasing

the information content of the input data. For instance, clinical parameters obtained

from metabolomic profiling [100, 101] and pre-implantation genetic screening [102]

have also shown to be effective on implantation outcomes of embryos. Moreover, it

has been shown that progression to the blastocyst stage can be successfully predicted

with dynamic non-invasive imaging parameters such as the time between sequential

cytokinesis and mitosis [103]. Although the authors provide an approach for early

diagnosis of embryo potential, we can foresee that the features obtained from time-lapse

image analysis may also be used as prognostic factors on the implantation outcome.

These studies assess embryo viability with novel prognostic markers providing more

reliable embryo selection mechanisms.

Considering the implantation prediction problem, it is necessary to investigate

both patient and embryo related variables complicating the data analysis procedure.
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Our model successfully processes all the inputs together and provides acceptable dis-

crimination of implantation outcome. The replication of our model including such

chemical, genetic and time-dependent parameters in addition to clinical embryo and

patient data is expected to result in higher accuracy rates compared to present study.

Accordingly, the estimated predictor effects of embryo related parameters are expected

to increase by applying more sophisticated embryo assessment techniques.

The proposed learning based model provides a corporate history for embryologists

of a specific IVF clinic. This model integrates the experiences of all experts into a

single mathematical tool since it learns from the entire dataset. It is not possible

for any human expert to analyze thousands of embryo and patient records prior to

each embryo transfer. However, our proposed model can perform predictions just in

milliseconds and with higher accuracy than the expert judgement. Therefore, human

bias and the time spent on data analysis can be minimized by using such an intelligent

oracle.

This model may also be used as a self-improvement trainee tool for especially

junior embryologists. In this study, we have conducted a semi-prospective study design

in order to validate our model before a full-prospective automated prediction. We have

compared the predictions of learning based model to the decision of embryologists and

showed that we can obtain higher prediction performance by the automated predictor

system.

It is important to note that dataset related pre-processing needs local tuning

since the model learns from a specific dataset. For example, feature subset selection is

a useful and necessary stage however the relative predictive effects of features depend

on the IVF treatment process and the distribution of the dataset. In our dataset, the

distributions of some of the attributes are much skewed and this situation results is

lower predictive effects of those features. However, this may not be the case for other

datasets.
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5.8. Threats to Validity

In machine learning, it is crucial to deal with biases arising from sampling pro-

cedure and training-testing strategies. In the experiments, we used stratified cross

validation in order to overcome the sampling bias. We have formed train/test sets to

preserve the class distribution so that each fold can be considered as a replication of

the experiments on a new dataset.

Another source of bias could arise from selection of machine learning methods.

Among various classification algorithms, six models from important representatives

of diverse algorithms (statistical classifiers, decision tree approaches, neural networks,

support vector machines and nearest neighbor methods) have been used in this re-

search. The prospective analysis with close prediction performance to retrospective

experimental results supports the internal validity of the proposed model. Since the

data used in this research comes from a single source, it is crucial to consider the exter-

nal validity of the presented results. The experiment VI is validated on UCI datasets

and however all the experiments need to be replicated on different IVF datasets that

has no ties with the current IVF laboratory. Public dataset construction and data

sharing has been a major research challenge in this domain.

The literature on application of machine learning methods in IVF domain presents

conflicting results. Because there is no consensus on optimum set of input features,

training and testing strategies and performance evaluation criteria. Due to imbalanced

nature of IVF datasets, we have used ROC analysis and AUC, sensitivity and specificity

measures. These measures are clear and widely accepted by researchers for imbalanced

datasets. Finally, statistical validity is established by conducting t-tests.
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6. CONCLUSIONS

6.1. Overall Summary

In this research, we present the machine learning approach as a solution to the

problem of taking critical decisions under uncertainty in IVF process aiming to increase

the success rates. First, we needed to understand the fundamentals of IVF treatment,

the difficulty faced in decision making and the effects of these decisions on the preg-

nancy outcome. Then, we designed experiments in an iterative manner to match the

clinical requirements to machine learning problems.

We have concentrated on two main prediction problems in IVF: predicting the

implantation outcome of individual embryos and predicting whether an embryo at Day

3 will result in a high quality blastocyst at Day 5. The former problem is associated

to the decision of number of embryos to be transferred and hence affects the number

of multiple pregnancies. The accurate prediction for the latter problem can prevent

waste of embryos and transfer cancelations arising from the developmental failure of

embryos at the blastocyst stage.

The experimental design was mainly retrospective, looking back at IVF data that

our collaborator clinic had been collecting for the past 4 years. We had the advantage

of having a database including thousands of patient and embryo records which is a

great opportunity in a machine learning study. On the other hand, there were missing

or incorrect values in the database and we had to use pre-processing techniques prior to

each experiment. Moreover, since we performed experiments on a dynamic database,

we have reconstructed the dataset each time and therefore the dataset size and features

changed during the research period as we conducted various experiments.

The clinical problems were formalized as supervised binary classifications in this

research. From a machine learning perspective, the imbalanced class ratio of positive

and negative samples entailed the investigation of prediction performance in terms
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of TPR and FPR rather than single accuracy measure. Also, sensitivity (TPR) and

specificity (1-FPR) are the common performance measures in the medical literature.

Therefore, the performance criteria was based on the ROC analysis in our experiments.

Concerning the embryo based implantation prediction problem as the first re-

search direction, we started with model selection. The forward feature selection is

used to eliminate the redundant variables and hence to increase the prediction per-

formance. The search for the optimum feature subset is based on Information Gain

feature ranking rather than a random search. We dealt with two main problems of the

dataset characteristics: the imbalanced class ratio and the mixed data type including

both continuous numerical and categorical features. We have analyzed the effect of

physicians’ factor on the success of the treatment in order to improve the information

content of the dataset.

After a comparative analysis of the diverse classifiers, we decided the Naive Bayes

to be the best fitting algorithm for the implantation prediction problem. Naive Bayes

classifier provided acceptable discrimination of the implantation outcome with a sig-

nificantly higher prediction performance in terms of AUC measure.

We have designed two main experiments to improve the prediction performance

by using methodological enhancements to standard machine learning algorithms. First,

we compared the re-sampling methods and decision threshold optimization in order to

handle the imbalance problem. Experiments showed that adjusting the classification

threshold and re-sampling the training data provides similar results. Second, we pro-

posed a frequency based encoding technique for transformation of categorical variables

as a pre-processing stage to SVM classification. The prediction performance increased

significantly compared to standard binary encoding technique.

With the aim of improving the information content of the data, the analysis of the

physician factor indicated that patient and embryo characteristics are strong determi-

nants in pregnancy rates. When these characteristics are compromised, the experience

level of physicians performing embryo transfers may have a more determining impact
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on the outcome.

The next research direction was to predict the developmental potential of the

blastocysts by modeling the entire embryo growth process. We have used Bayesian

Networks to predict the blastocyst score for three reasons: First, it was necessary to

determine the cause-effect relationships between the daily morphological observations

for an overall modeling. Bayesian Networks encode the statistical relationship between

the variables of interest. Second, our dataset includes many categorical variables and

Bayesian Networks provide efficient processing of categorical inputs directly. And third,

Bayesian Networks enable visual representation of the underlying model which makes

it more understandable for the clinicians.

The initial networks based on prior domain knowledge represented relatively low

prediction performance. However, the results have been improved by enhanced struc-

ture and parameter learning. The dataset was large enough that we could learn the

parameters of the CPT from the data. However, the distribution of the training data

over the CPT entries was not fair that degraded the prediction capability of Bayesian

Network. We proposed a nearest neighbor based approach to adjust the values in the

CPT resulting in significantly higher prediction performance.

To conclude, this research presented the potential of machine learning algorithms

in increasing the success rates in IVF treatment. As a preliminary comprehensive re-

search, our results are promising in the sense of embryo based prediction. Based on our

findings, we can advise using Naive Bayes for implantation prediction of IVF embryos

and using Bayesian Networks for modeling developmental stages of IVF embryos. Both

models need local tuning in each IVF clinic since we have performed experiments on

a single IVF database. However, if the experiments are repeated on a database of a

clinic with similar treatment procedures and dataset characteristics, we do not expect

the results to change dramatically.
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6.2. Theoretical and Methodological Contributions

The literature on using machine learning algorithms in IVF domain is very scarce

probably due to the lack of public IVF datasets and poor predictive performance ob-

tained in earlier studies. Especially there are very few studies concerning embryo based

prediction. Therefore, the framework of this research was utilization of machine learn-

ing algorithms for embryo based predictions. This is an important contribution for

both machine learning and IVF communities.

The preliminary experiments were application of well known classification proce-

dures in implantation prediction problem. On the other hand, representation of the

implantation prediction as a machine learning problem, unbiased stratified and cross

validated training and testing strategy and evaluation of several classifiers in a com-

parative manner using ROC analysis was a novel approach to prediction problems in

IVF treatment.

Further theoretical and methodological contributions of this research can be sum-

marized as follows:

• Handling the imbalance problem: Imbalanced class distributions occur frequently

in medical datasets where negative samples generally dominate positive ones.

Re-sampling the training data is a common approach to balance the classes ei-

ther by over-sampling the minority class or by under-sampling the majority class.

However, both methods have some deficiencies and require additional computa-

tional effort as a pre-processing stage. Rather, we showed that simply finding the

optimum classification threshold using ROC analysis produce similar results to re-

sampling methods in implantation prediction problem. Under-sampling methods

also figured out the minimum number of required positive and negative embryo

records which is sufficient to characterize the implantation outcome. This result is

important in the sense of reducing the time and cost of data collection in clinical

practice.

• Frequency based encoding for transformation of categorical variables: Selecting
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the best predictor model that efficiently handles both continuous and categorical

variables is a challenge in machine learning applications. Some models are based

on processing continuous numerical variables such as SVM and kNN while some

others like Decision Trees and Bayesian Networks works better with categorical

features. Data type transformation is a necessary pre-processing step in datasets

consisting of mixed data types. Binary encoding is the most common approach

for transformation of categorical variables into numeric values. However, it has

some limitations and assumptions that can not be generalized. We proposed

a frequency based encoding technique to efficiently handle categorical inputs in

SVM classification. We showed that the proposed model significantly improves

the prediction performance compared to binary encoding.

• Bayesian Network modeling of blastocyst development: Model selection is a crit-

ical and time-consuming step in machine learning studies. After evaluating the

assumptions of the candidate algorithms in relation to the characteristics of the

embryo growth, we presented a Bayesian Network approach for modeling the de-

velopmental stages of the embryos. The ultimate objective of this modeling was

to predict the blastocyst score for individual embryos which is an open question

in IVF literature. We have demonstrated the potential of Bayesian Networks in

embryo based prediction of blastocyst development.

• Adjusting the frequency estimates in CPT: Frequency Estimate is a simple but

efficient method for computing CPT parameters in Bayesian Networks. The

accuracy of the frequency estimates depend on the size of the training data,

size of the CPT table and distribution of the training samples. We proposed a

nearest neighbor based method to adjust the frequency estimates in prediction of

IVF blastocyst score. The superior performance of the proposed model has been

validated on external data.

6.3. The Clinical Perspective

We suggest that the best way to construct an embryo-based prediction model is to

investigate SET cycles for better identification of predictor effects of embryo variables.

However, multiple embryo transfer was a routine procedure in Turkey until March 2010,
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therefore our dataset includes too many multiple embryos transfers. At the beginning

of 2010, the Ministry of Health published new regulations in IVF treatment allowing

only SET for woman under 35 in the first or second IVF cycles.

The proposed learning based model provides a corporate history for embryologists

of a specific IVF clinic. This model integrates the experiences of all experts into a

single mathematical tool since it learns from the entire dataset. It is not possible

for any human expert to analyze thousands of embryo and patient records prior to

each embryo transfer. Therefore, the human bias and the time spent on data analysis

can be minimized by using such an intelligent oracle. We believe that, such decision

support systems will be common tools in IVF process due to difficulty in the analysis

of increasing number of prognostic factors. This model may also be used as a self-

improvement trainee tool for especially junior embryologists.

It is important to note that dataset related pre-processing needs local tuning

since the model learns from a specific dataset. For example, feature subset selection is

a useful and necessary stage however the relative predictive effects of features depend

on the IVF treatment process and the distribution of the dataset features. In our

dataset, the distributions of some of the attributes are much skewed and this situation

results is lower predictive effects of those features. However, this may not be the case

for other datasets. In addition, the physicians’ impact on the success of embryo transfer

should also be considered when constructing such prediction models.

Accurate prediction of multiple pregnancies is definitely an important contribu-

tion of the proposed model to the IVF domain. It is expected that the presented

model will provide useful information for decision-making on the number of embryos

to be transferred. In situations presenting increased pregnancy probability, when the

classification system predicts high implantation capacity for more than one embryo, it

may be recommended to limit the number of transfer embryos. At the far end, we aim

to use our model to reduce multiple embryo transfers in case of multiple pregnancy

risks. Such a model can provide a reliable eSET criterion to be applicable in clinical

practice. This model can also be used to safely cancel embryo transfer process if the
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implantation outcome is predicted as negative. In that case, high quality embryos may

be frozen to be transferred in another cycle representing better response to treatment

(hormone levels and endometrium, etc.).

6.4. Future Research Directions

The recent regulations forbidding multiple embryo transfers for most of the cycles

in Turkey (and in the world as well since most countries have such regulations) will

provide the desired SET datasets to be a base for further machine learning studies in

implantation prediction. As one of the main future research directions, the experiments

presented in this research should be repeated on a dataset including only SET cycles.

This would better determine the predictor effects of the patient and embryo related

variables by preventing the replication of patient characteristics for the embryos trans-

ferred in the same cycle and by removing the confusion about dependency of embryo

implantations in case of multiple embryo transfers.

The metabolomics and pre-implantation genetic diagnosis (PGD) are becoming

routine embryo assessment techniques as well as morphological observations. The fea-

tures obtained from the metabolomics and genetic analysis would increase the infor-

mation content of the input data both for prediction of implantation and blastocyst

score. Therefore, the machine learning models should be re-trained using the extended

datasets.

Automated tracking of cell divisions and automated extraction of the morpholog-

ical features from continuous time-lapse embryo images is an important future research

direction. After feature extraction, Hidden Markov Models or Sequential Monte Carlo

methods can be used to model the embryo growth process. Automated tracking of cell

divisions would better identify the potential high quality blastocysts where automated

feature extraction would minimize the human bias in morphological observation.

We have mostly concentrated on parameter learning in Bayesian Networks. How-

ever, as the number of dataset features increase the structure learning becomes much
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more complicated. Finding the optimum network structure that represents the embryo

growth process can be further investigated.

Finally, all the results obtained in retrospective experiments may be validated

prospectively as a future work.
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