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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering
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ABSTRACT

BAYESIAN SOURCE MODELLING FOR

SINGLE-CHANNEL AUDIO SEPARATION

In many audio processing tasks, such as source separation, denoising or com-

pression, it is crucial to construct realistic and flexible models to capture the physical

properties of audio signals. This can be accomplished in the Bayesian framework

through the use of appropriate prior distributions. In this thesis, we describe two prior

models, Gamma Markov chains (GMCs) and Gamma Markov random fields (GMRFs)

to model the sparsity and the local dependency of the energies of time-frequency expan-

sion coefficients. We build two audio models where the variances of source coefficients

are modelled with GMCs and GMRFs, and the source coefficients are Gaussian con-

ditioned on the variances. The application area of these models are not limited to

variance modelling of audio sources. They can be used in other problems where there

is dependency between variables, such as the Poisson observation models. In single-

channel source separation using non-negative matrix factorisation (NMF), we make use

of GMCs to model the dependencies in frequency templates and excitation vectors.

A GMC model defines a prior distribution for the variance variables such that

they are correlated along the time or frequency axis, while a GMRF model describes

a non-normalised joint distribution in which each variance variable is dependent on all

the adjoining variance variables. In our audio models, the actual source coefficients

are independent conditional on the variances and distributed as zero-mean Gaussians.

Our construction ensures a positive coupling between the variance variables, so that

signal energy changes smoothly over both axes to capture the temporal and/or spectral

continuity. The coupling strength is controlled by a set of hyperparameters.

Inference on the overall model, i.e., GMC or GMRF coupled with a Gaussian or
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Poisson observation model, is convenient because of the conditional conjugacy of all of

the variables in the model, but automatic optimisation of hyperparameters is crucial

to obtain better fits. In GMCs, hyperparameter optimisation can be carried out using

the Expectation-Maximisation (EM) algorithm, with the E-step approximated with

the posterior distribution estimated by the inference algorithm. In this optimisation,

it is important for the inference algorithm to estimate the covariances between the

variables inferred, because the hyperparameters depend on them.

The marginal likelihood of the GMRF model is not available because of the in-

tractable normalising constant. Thus, the hyperparameters of a GMRF cannot be

optimised using maximum likelihood estimation. There are methods to estimate the

optimal hyperparameters in these cases, such as pseudolikelihood, contrastive diver-

gence and score matching. However, only contrastive divergence is readily applicable

to models with latent variables. We optimised the hyperparameters of our GMRF-

based audio model using contrastive divergence.

We tested our audio models that are based on GMC and GMRF models in denois-

ing and single-channel source separation problems where all the hyperparameters are

jointly estimated given only audio data. Both models provided promising results, but

the reconstructed signals by the GMRF model were slightly better and more natural

sounding.

Our third model makes use of Gamma and GMC prior distributions in an NMF

setting for single-channel source separation. The hyperparameters are again optimised

during the inference phase and the model needs almost no other design decisions. This

model performs substantially better than the previous two models. In addition, it is

less demanding in terms of computational power. However, it is designed only for

source separation, i.e., it is not a general audio model as the previous two models.
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ÖZET

SES SİNYALLERİNİN TEK KANALDAN

AYRIŞTIRILMASINDA BAYESÇİ MODELLER

Kaynak ayrıştırma veya gürültü temizleme gibi ses işleme problemlerinde ses

sinyallerinin fiziksel özelliklerini yansıtabilecek modellere ihtiyaç vardır. Bayesçi yaklaşımda,

bu, gerçekçi önsel dağılımlar tanımlamayarak gerçekleştirilebilir. Biz, bu tezde, ses

sinyallerinin zaman-frekans bölgesi gösterimlerindeki yerel ilintileri içerecek iki model

geliştirdik: Gamma Markov zincirleri (GMZ) ve Gamma Markov rasgele alanları (GMRA).

Önerdiğimiz ses modellerinde, zaman-frekans katsayılarının değişintileri bu yapılar kul-

lanılarak birbirlerine bağlı olarak modellenirken, katsayılar bu değişintilere koşullu

olarak, bağımsız Gauss dağılımlarından gelmektedir. GMZ ve GMRA modellerinin kul-

lanım alanı, ses kaynaklarının değişintilerinin modellenmesiyle sınırlı değildir. Değişkenler

arasında bağımlılık olan herhangi bir problemde, mesela Poisson serilerinde, de kul-

lanılabilirler. Bunu göstermek için, negatif olmayan matris ayrıştırma (NOMA) kul-

lanarak tek kanaldan kaynak ayrıştırma probleminde, frekans şablonları ve uyarma

vektörlerindeki bağımlılığı modellemek için GMZ’leri kullandık.

GMZ’ler ile değişinti değişkenlerinin sadece zaman ya da frekans ekseni boyunca

olan bağımlılıklarını modelleyebiliriz. GMRA’lar ise değişkenlerin tüm komşularına

bağımlı olduğu düzgelenmemiş bir dağılım tanımladıkları için iki yöndeki bağımlılıkları

da içerebilir. İki model de değişinti değişkenleri arasında pozitif ilinti olacak şekilde

tanımlanmıştır. Böylece, sinyalin enerjisi hem zaman hem de frekans ekseni boyunca

yavaşça değişmektedir. Değişkenler arasındaki ilintinin büyüklüğü ise modelin hiper

parametreleri ile belirlenmektedir.

Bu modelleri kullanan hem Gauss hem de Poisson gözlem modellerinde, değişkenler

koşullu eşlenik oldukları için kestirim kolay yapılabilmektedir. Ancak, daha başarılı
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sonuçlar elde etmek için, hiper parametrelerin eniyilenmesi de gerekmektedir. GMZ’lerin

hiper parametreleri beklenti-enbüyütme algoritmasıyla gerçekleştirilebilmektedir. Bu-

rada, olabilirlik, kestirim sırasında elde edilen istatistikler ile yakınsanmaktadır. Bu

yüzden, kestirim metodunun değişkenler arasındaki ilintiyi de yakınsayabilmesi önem

taşımaktadır.

GMRA’ların hiper parametreleri beklenti-enbüyütme ile yapılamamaktadır çünkü

bu modellerde marjinal olabilirlik hesaplanamamaktadır. Sözde olabilirlik, kkarşıtlık

ıraksayı, skor eşitleme gibi yöntemler, bu durumlarda eniyileme yapabilmeyi mümkün

kılmaktadır. Bu yöntemlerden sadece karşıtlık ıraksayı gizli değişkenlerin olduğu du-

rumlarda da çalışabilmektedir. Ses işleme uygulamalarında, GMRA’lar değişinti değişkenlerini,

yani doğrudan gözlemlenemeyen değişkenleri modeller. Bu yüzden, GMRA’ların hiper

parametrelerini karşıtlık ıraksayını kullanarak eniyiledik.

Bu tezde, GMZ ve GMRA temelli ses modellerimizi gürültü temizleme ve tek

kanaldan kaynak ayrıştırma problemlerinde kullandık. Ayrıca bir öğrenme kümesine

ihtiyaç duymadan, sadece gözlemlenen sinyalin varlığında, kestirim ve eniyileme içiçe

gerçekleştirilerek tonal ve vurmalı ses kaynakları birbirlerinden ayrılmaktadır. Bu iki

modelle, hem gürültü temizleme, hem de kaynak ayrıştırma problemlerinde başarılı

sonuçlar elde ettik. GMRA’lara dayalı olan modelle geri çatılan sinyaller hem biraz

daha başarılı, hem de daha doğaldır.

Önerdiğimiz üçüncü bir modelle de Gamma ve GMZ önsel dağılımları kullanarak,

NOMA ile tek kanaldan kaynak ayrıştırma yaptık. Burada da hiper parametreler ke-

stirim sırasında eniyilenmekte ve kullanıcının hemen hemen hiçbir kritik karar verme-

sine gerek kalmamaktadır. Bu modelle elde edilen sonuçlar önceki iki modelle elde

edilenlerden daha başarılıdır. Ayrıca, bu modelde kestirim ve eniyileme daha hızlı bir

şekilde yapılabilmektedir. Buna rağmen, bu model sadece kaynak ayrıştırma problemi

için önerildiğinden, önceki iki model gibi genel uygulanabilirliği yoktur.
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1. INTRODUCTION

Blind Source Separation (BSS) [1, 2, 3] is the problem of estimating source signals

from observed signals without using any information about the nature of the signals,

mixing properties and the noise. The most famous instance of this problem is the

cocktail party problem, in which people are talking simultaneously in a room and a

person is trying to follow one of the conversations. BSS has applicability to many prob-

lems in a wide range of disciplines such as electroencephalography (EEG) [4, 5], mag-

netoencephalography (MEG) [6, 7, 8, 9, 10], functional Magnetic Resonance Imaging

(fMRI) [11], seismic monitoring, surveillance, radar and acoustics [12, 13, 14, 15, 16, 17].

In this thesis, our interest is on audio source separation, which has important uses in

hearing aids, cocktail party problem and denoising of recordings. In addition, it may

be used as a preprocessing step for music transcription and enhancement.

1.1. The Source Separation Problem

In source separation, the goal is to extract the underlying sources from observa-

tions which are mixtures of these sources. When no information about the particular

sources or mixing conditions is used, the problem is referred to as blind source sepa-

ration. Mixing is generally assumed to be instantaneous, i.e., signals emanating from

the sources instantly arrive at the sensors via a single path. In this case, observations

are linear mixtures of the sources. When the number of sources is equal to the number

of observations (even-determined case), the source separation problem boils down to

estimating an unmixing matrix. The over-determined case, where there are more ob-

servations than the sources, can be solved using least-squares estimation. However, the

under-determined case is ill-defined with more parameters than that can be uniquely

estimated [2].

One of the earliest studies in the field is by Jutten and Herault [18]. They defined

the concept of independent component analysis (ICA) and proposed an algorithm to

solve the even-determined source separation problem with the assumption that the
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sources are independent and non-Gaussian. The algorithm was based on maximising

the non-Gaussianity of the sources. Comon [19] showed that minimising the mutual in-

formation was equivalent to maximising non-Gaussianity. Many fast and sophisticated

methods were proposed based on the above approaches [20, 21, 22] and also informa-

tion maximisation [23] and maximum likelihood estimation [24, 25], which were later

shown to be equivalent [26, 27].

The above methods deal with the even-determined and over-determined cases,

in which the problem is estimating the mixing matrix. Then, the sources can be

reconstructed by a linear transformation using the (pseudo) inverse of this matrix. For

the under-determined case, more information should be incorporated into the problem,

such as the sparsity of the source coefficients in the transform domain. If only one source

is assumed to be active at a particular time, the scatter plots of the observations contain

lines that are determined by the columns of the mixing matrix. A thread of research

has concentrated on clustering the observed coefficients in order to estimate the mixing

matrix. Various methods are used to cluster the coefficients, such as fuzzy C-means [28],

topographic maps [29, 30], modified k-means [31], and EM-based clustering [32, 33]

to extract the line orientations. Once the mixing matrix is estimated, the source

coefficients can be found by assigning the observations to the closest column of the

mixing matrix [34, 35, 36] or solving a linear optimisation problem to find the most

sparse sources that generate the observations [37, 38].

Another line of research is focused on source separation from one observation

signal using non-negative matrix factorisation (NMF) [39]. NMF is a technique for

decomposing a non-negative matrix into two non-negative components. In source sep-

aration domain, it is used to decompose the transform domain coefficients of a source

into a compact set of bases and their excitations in time. It is successfully applied to

the single-channel audio source separation problem with additional temporal continu-

ity [15, 14, 16] and sparsity [14] constraints. It is also incorporated into the ICA [40]

and sparse coding [41] frameworks.

The source separation problem can also be expressed in the Bayesian framework.
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After defining prior distributions for the sources and other parameters and an obser-

vation model that describes the generation process of the observations, the problem

becomes an inference problem. In the literature, various realistic source models were

proposed. These models generally make use of the sparsity of the sources [42, 43, 44,

45, 12, 46, 47, 48, 49]. In audio source modelling, temporal and spectral continuity of

the source coefficients are also incorporated into the models [48, 50, 51, 52, 53, 13, 54].

The Bayesian framework can also be used to define prior structures for ICA [55] and

NMF [56, 57].

Below, we will give the generative model for the audio source separation problem

and then we will explain some basic properties of audio signals. We will review ICA,

NMF and the Bayesian paradigm, detailing how these properties can be made use of.

1.2. Generative Model

In audio source separation, what we have in hand is the observed signals recorded

by m microphones, xi(t), where i denotes the microphone number and t is the time

index in samples. If the duration of the signal is T samples, t takes values between 1

and T . The observations are thought to be a mixture of n source signals with additive

noise, εi(t):

xi(t) = fi(s1(t), s2(t), . . . , sn(t)) + εi(t) (1.1)

where fi(·) denotes the mixing function associated with the ith microphone. The func-

tion mixes the source signals depending on their distances to the microphone, the

reverberation conditions of the room and whether the sources or the microphone are

in motion. εi(t) can be seen as sensor noise which is added by the microphone. It is

generally assumed to be white Gaussian. More structured, non-stationary noise may

be modelled as another source. Equation 1.1 can be expressed in a more compact way
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if we gather the row vectors representing the signals in matrices:

X = f(S) + ε (1.2)

where X, S and ε are matrices containing the observed, source and noise signals, of

sizes m × T , n × T and m × T , respectively. f(·) is the mixing function of the whole

system, from domain R
n×T to codomain R

m×T .

If we assume that the sources and the microphones are motionless and there is

no reverberation in the room, it is possible to consider f(·) as a linear function. So,

each observed signal becomes a linear combination of the source signals plus the noise

X = AS + ε (1.3)

where A is anm×nmixing matrix. This is a linear instantaneous model where observed

samples at time t depend on the source samples at time t, but no other samples

xi(t) =

n
∑

j=1

Ai,jsj(t) + εi(t) (1.4)

1.3. Time Frequency Representations

It is also possible to define the source separation problem in linear time-frequency

representations of signals. Such representations describe the behavior of the spectral

content of a signal in time, thus provide a more efficient means to analyse real world sig-

nals with time varying spectra. Modified discrete cosine transform (MDCT) [58], short

time Fourier transform (STFT) [59], Gabor transform [60] and wavelet transform [61]

are popular examples of such linear time-frequency representations. In these represen-

tations, a time series y(t) for t = 1, 2, . . . , T is represented as a linear combination of
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basis functions, φα,t:

y(t) =
∑

α

φα,tỹα, (1.5)

where the time-frequency indices are denoted by α. In this notation, each time-

frequency index is a tuple α = (τ, ν), where τ = 1 . . .N is a frame index and ν = 1 . . .W

a frequency index. The expansion coefficients are denoted by ỹα.

Let us denote the dictionary of basis functions with Φ, a W ×T matrix where W

is the number of waveforms and T is the length of the signals. The source separation

problem in Equation 1.3 can be written in the transform domain as

XΦ⊤ = ASΦ⊤ + εΦ⊤ ≡ X̃ = AS̃ + ε̃ (1.6)

The problems in time and transform domains are equivalent when the transformation

is orthogonal, i.e. Φ−1 = Φ⊤. To see this, let us assume the original sources are Ŝ and

ˆ̃S in time and transform domains, respectively. If the two problems are equivalent, ˆ̃SΦ

should also be equal to the sources in time domain. Similarly, ŜΦ⊤ should be equal

to the time-frequency domain sources. This requires Ŝ = ŜΦ⊤Φ, which is true only

when the transformation is orthogonal. Otherwise, when reconstructing signals from

time-frequency estimates, an additional effect will be added. MDCT and orthogonal

wavelets are examples of orthogonal transformations and we will be working on the

source separation problem in MDCT domain.

1.4. Sparsity and Structure of Audio Sources

In source separation problems, the number of sources is generally greater than

the number of observations. Even when they are equal, the system is underdetermined

unless the mixing matrix and the noise parameters are known. That means many

solutions that are compatible with the underlying model exist. In addition, some of

these solutions may not be physically meaningful and lead to reconstructions with
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artefacts. This problem may be overcome by imposing constraints onto the model

such as the independence of the sources or incorporating prior knowledge about the

variables in the model. Since time-frequency representations of audio signals include

more structure than time domain coefficients, it is appropriate to define such constraints

and prior knowledge upon them in this domain.

A typical property of time-frequency representations of natural audio signals is

that the coefficients are sparse, i.e. only a small number of the coefficients have high

magnitudes, the rest being close to zero [62, 63, 12]. In addition to this, the coeffi-

cients with high magnitudes are not independently distributed over the spectrogram

but they form clusters. This means that adjacent coefficients in the time-frequency

lattice have dependency among each other. More specifically, in audio signals with

tonal components such as the recordings of musical instruments, there is high amount

of dependency between the coefficients along the time axis at the harmonics of the

fundamental frequency [64]. The onset of the musical notes may include transients

or an adjustment period due to the properties of the instrument. Percussive sounds

are composed mainly of transients and fast decaying components. The time-frequency

representations of signals containing such transients have strong dependency along

the frequency axis because of the simultaneous activation of a range of frequencies.

Time-frequency coefficients of speech signals tend to have continuity along both axes,

having clusters of high magnitude around formant frequencies [65]. Figure 1.1 presents

spectrograms of some audio signals.

In order to ensure the sparsity of the source coefficients, solutions may be pe-

nalised according to their magnitudes. Similar constraints can be incorporated into

the objective function to enforce continuity along time and frequency axes, e.g. by

penalising high differences between adjacent coefficients. Defining the problem as a

generative model with an appropriate prior distribution for the source coefficients is

another way of solving this problem. However, these constraints and prior distributions

should be adaptive because the dependencies between the coefficients are not of the

same strength in both directions.
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Figure 1.1. Spectrograms of some audio signals. (a) and (b) are examples of

percussive sounds. Note that goat bells also have harmonic components. (c) and (d)

are tonal signals. The trumpet plays several notes, while the singing contains only

one note. (e) is an example of a speech signal. The owl whistle in (e) shares some

characteristics with the speech signal, which also has harmonic components.
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1.5. Independent Component Analysis

ICA is a widely used source separation approach. The research on ICA started in

1990s with very restricted models and built up to cover more realistic scenarios. More-

over, state-of-the-art ICA methods incorporate time and time-frequency structures in

their models.

The generative model of the basic ICA [18, 19] is given by

x = As (1.7)

where x = [x1 x2 . . . xn]⊤ and s = [s1 s2 . . . sn]⊤ are the observation and source vectors,

respectively. Here, each mixture, xi, and source, si, are scalar random variables, that

is, the values of signals xi(t) and si(t) constitute samples of these random variables.

The main idea of ICA is to estimate the mixing matrix with the assumption

that all sources are statistically independent. This assumption leads to the following

factorisation of the joint probability density

p(s) =
n
∏

i=1

p(si). (1.8)

In addition, all sources are required to be non-Gaussian. When the sources are Gaussian

ICA boils down to decorrelation (whitening) [2]. A decorrelated source vector, s,

is not unique because any orthogonal transformation is also decorrelated. Because

decorrelated Gaussians are also independent, the sources estimated will not be unique.

The basic ICA, in which the number of sources is equal to the number of obser-

vations and there is no noise, is a well-studied problem. Methods based on maximum

likelihood estimation [25, 23], maximising non-Gaussianity [20, 21, 22] or minimising

mutual information [19] were proposed for its solution.

The ICA problem becomes much more complicated in more realistic scenarios,
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such as in the presence of noise or where the number of sources is greater than the

number of observations (the overcomplete case). Methods tackling these problems

should make more assumptions about the nature of the sources. For example, in [66, 67]

time dependencies of the signals are made use of. These methods find the independent

source signals for which one-time-lagged covariances are zero [2].

An important extension of ICA is independent subspace analysis (ISA) [68]

in which multi-component subspaces (sets of basis vectors) of an input vector are

separated. Each source is assigned a subset of basis vectors by minimising their

cross entropies. ISA has been successfully used in single-channel audio source sep-

aration [69, 70].

1.6. Non-Negative Matrix Factorisation

NMF, proposed for decomposition of non-negative data [39], is a method for

multivariate data analysis. The goal is to approximate an W ×K non-negative matrix,

X, as the product of two non-negative matrices, T and V, of sizes W × I and I ×K,

respectively. This is done via minimising the dissimilarity between X and TV

T∗,V∗ = arg min
T,V

D(X‖TV) (1.9)

where the dissimilarity can be defined as the Kullback-Leibler (KL) divergence

D(A‖B) = −
W
∑

ν=1

K
∑

τ=1

(

Aν,τ log
Aν,τ

Bν,τ

+ Aν,τ − Bν,τ

)

(1.10)

KL divergence is always non-negative and is equal to zero when X = TV . The min-

imisation problem is effectively solved using variational bound optimisation in [39].

NMF can be seen as summarising the rows of X in the rows of V and columns

in the columns of T [71]. For example, non-negative factorisation of the magnitude

spectrogram of an audio signal provides a compact form of the spectrogram with re-
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dundancies removed. The rows of T again corresponds to the frequency bins, the

columns show the dominant spectral structures of the spectrogram. These columns

can be thought of as codebooks of spectra or basis vectors. The matrix V contains the

excitations of these basis vectors along the time frames.

Spectrogram decomposition using NMF is successfully applied to single-channel

audio source separation [72, 14]. In addition to the KL divergence between X and

TV, the objective function also contains terms such that temporal continuity and

sparseness of the excitations in V are satisfied. In [56, 57], the NMF model is defined

in the Bayesian framework and the temporal continuity is incorporated through Gamma

Markov chains [13]. The Bayesian extension was shown to be more successful than the

previous NMF methods [56].

We will describe the Bayesian approach to the source separation problem, next.

This methodology not only provides a consistent way to incorporate prior knowledge

about the solutions into the problem, but also enables us to generalise our approach

to other applications.

1.7. Bayesian Paradigm and the Approach of this Thesis

Bayesian paradigm provides a natural way to incorporate our prior beliefs into

the solution. In crude terms, we start with our prior belief and update our belief into

a posterior with the arrival of data. More formally, we infer the posterior distribution

of the sources p(s|x), which is, by Bayes theorem, given by

p(s|x) =
1

Zx(ψ)

∫

p(x|s, θm)p(s|θs)p(θm|ψm)p(θs|ψs) dθm dθs

The observation model, p(x|s, θm), describes how the observed data is generated given

the sources, s, and the model parameters, θm. The observation model also defines the

likelihood of the source coefficients and the model parameters. By maximising the

marginal likelihood (s∗ = arg maxs p(x|s, θm)) we find the most likely values of source

coefficients that might have generated the observed signals. But, as we discussed in
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the previous paragraph, the system is underdetermined and it is not possible to obtain

a unique solution by maximum likelihood since the observation model gives the same

likelihood value [52] for various coefficient values. Thus, we have to add what we know

or believe about the sources and parameters into the model: A prior distribution for

the sources, p(s|θs), with source parameters, θs and prior distributions for the model

and source parameters (p(θm|ψm) and p(θs|ψs)) with hyperparameters ψm and ψs.

The normalisation term Zx(ψ) is the marginal likelihood (evidence) of the observed

signals given the complete set of hyperparameters, ψ ≡ [ψm ψs]. Although evaluation

of the marginal likelihood can be avoided during the inference, it needs to be evaluated

or approximated when the optimisation of the hyperparameters will be accomplished

through maximum likelihood. In the audio source models we mentioned, the marginal

likelihood, Zx(ψ), is intractable but can be approximated by stochastic simulation or

analytic lower bounding methods.

In this thesis, we model the variances of audio source coefficients using Gamma

Markov chains (GMCs) and Gamma Markov random fields (GMRFs). These two

models ensure positive correlation between the variance variables, so the energy in the

time-frequency domain is slowly-changing. In addition, all the variables in the model

have full conditional conjugacy, i.e. their full conditional distributions belong to the

same probability distribution class as their priors. So, inference on the variables in

the model can be efficiently fulfilled using the Gibbs sampler [73] or variational Bayes

(VB) [74].

One problem with the source model based on GMRFs is that the hyperparameters

of the model, which determine the degree of coupling between the variables, cannot

be optimised using the standard maximum likelihood approach because the marginal

likelihood term contains an unknown normalising constant. This fact originates from

the unknown normalising constant of the source model which includes a Markov random

field. There are, however, optimisation methods designed for learning in models where

the normalising constant is not known: Namely, pseudolikelihood [75] and contrastive

divergence [76] both of which can be seen as approximate likelihood methods and score

matching [77]. These methods were all proposed for learning in fully-observed models.
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However the idea of contrastive divergence can be extended to cover latent variable

models. In our audio model, the variances of time-frequency coefficients are modelled

with GMRFs. We have no way of observing the variances in the source separation

applications we focus on, so the hyperparameter optimisation will be accomplished

through contrastive divergence. Pseudolikelihood and score matching are not directly

applicable to models with latent variables including our audio model, but they can be

effectively used in fully observed or marginalised GMRF models as we will show in the

experiments section. The hyperparameter optimisation in GMCs is less problematic

and can be carried out using the Monte Carlo EM method. However, variational EM

algorithm performs poorly in this problem because it ignores the correlation between

variables.

The organisation of this thesis is as follows: In Chapter 2, theoretical backround

on the inference and learning methods used throughout this thesis is given. We explain

the inference methods that can be used in the proposed methods in Section 2.1. These

are the Gibbs sampler, VB and sequential Monte Carlo (SMC) methods. Then, we

explain the optimisation methods which enable hyperparameter learning in normalised

and non-normalised models in Section 2.2. In Chapter 3, we review some audio source

models that are found in the literature. Then, we give the formal definitions and

some properties of GMCs and GMRFs. We present audio denoising and single-channel

source separation results in Section 4 along with experiments on some simple models

to compare the performances of different inference and learning methods. The ac-

complishments of this work are summarised and possible future work is explained in

Section 5.



13

2. THEORETICAL BACKGROUND

2.1. Inference

In this chapter, we explain the inference methods that are applicable to the

inference of the variables of the audio models based on GMCs and GMRFs. In both

models, full conditional distributions of the variables are standard distributions and

inference can be carried out using the Gibbs sampler and variational Bayes. GMCs

also have a sequential structure that enables us to use particle filter as well.

2.1.1. Variational Bayes

Variational Bayes (mean field) [74] methods make use of tractable distributions

to effectively approximate intractable integrals in Bayesian inference problems. They

also provide a lower bound on the marginal likelihood (evidence) which can be used in

model selection and hyperparameter optimization tasks.

The idea is to approximate the posterior distribution of the latent variables,

p(x|y, θ), with a variational distribution, q(x), that minimises the dissimilarity (KL

divergence) between the two distributions.

KL(q||p) =

∫

dx q(x) log
q(x)

p(x|y, θ)
(2.1)

=

∫

dx q(x) log
q(x)p(y|θ)

p(x,y|θ)
(2.2)

= log p(y|θ) +

∫

dx q(x) log
q(x)

p(x,y|θ)
(2.3)

= log p(y|θ) + KL(q||p(x,y|θ)) (2.4)

≡ log p(y|θ) + E(q, θ) (2.5)

Since the evidence, p(y|θ), is independent of the variational distribution, q(x), min-

imising the KL divergence between the posterior and the variational distributions is
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equal to minimising the variational free energy E(q, θ). KL divergence is always non-

negative due to Gibbs’ inequality [78], so Equation 2.5 defines a lower bound on the

evidence:

p(y|θ) ≥ −E(q, θ) (2.6)

= 〈 log p(x,y|θ)〉q − 〈 log q(x)〉q (2.7)

where 〈.〉π(X ) denotes expectation under probability distribution π(X ).

Having reduced the inference problem to the minimisation of the variational free

energy (or equally, maximisation of the lower bound), we can compute each independent

distribution q(xi) using the fixed point equation

log q(xi) =+ 〈 log p(x,y|θ)〉q(x
−i) (2.8)

where x−i refers to all variables xj except for xi itself.

2.1.2. Markov Chain Monte Carlo Methods

Monte Carlo methods are computational methods to approximate expectations in

which the integration (or summation) is not analytically tractable and classical grid-

based integration techniques perform poorly, e.g. due to high dimensionality. The

expectation of a test function, f(x), under a target distribution, p(x), is estimated

using a set of i.i.d. samples, {x(i)}N
i=1, drawn from this distribution:

E(f) = 〈f(x)〉p(x) =

∫

f(x)p(x)dx (2.9)

≈ 1

N

N
∑

i=1

f(x(i)) ≡ ÊN(f) (2.10)

This estimator is unbiased and almost surely converges to the true expectation E(f)

as a result of the strong law of large numbers. The variance of ÊN(f) is equal to σ2
f/N ,
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where σ2
f is the variance of the function f :

σ2
f =

∫

(f(x) −E(f))2p(x) dx. (2.11)

Intuitively, Monte Carlo methods perform better than numerical integration tech-

niques in high dimensions because they make a finer representation of the areas with

high probability. However, drawing independent samples from a multidimensional

probability distribution is often not straightforward.

Markov chain Monte Carlo (MCMC) approaches are used in cases where it is

very difficult to draw independent samples from the target distribution, p(x), but it

can be evaluated up to a normalising constant. If an ergodic (irreducible and aperiodic)

transition kernel is constructed, the Markov chain will converge to the target density

as its invariant distribution.

The Metropolis-Hastings (MH) algorithm uses a proposal density, q(x′|x(t)), to

generate a new sample that depends on the current state of the Markov chain. The

proposed sample is accepted with probability:

a(x′;x(t)) = min

{

p(x′)

p(x(t))

q(x(t)|x′)

q(x′|x(t))
, 1

}

. (2.12)

MH algorithm has an irreducible and aperiodic transition kernel and its invariant dis-

tribution is p(x). This algorithm allows us to draw samples from probability distribu-

tions, p(x) = φ(x)/Z where the normalising constant Z is not known, because Z is

independent of x and two normalising constants in Equation 2.12 are cancelled out.

The Gibbs sampler [73] can be seen as a special case of the MH algorithm where

the proposal distribution for the variables are their full conditionals, p(xi|x−i). First a

variable (xi, i
th dimension of x) is chosen uniformly, and then a sample for that dimen-

sion is drawn from its full conditional density. This way we obtain a sample that differs

from the previous one, only in one dimension. In this case the acceptance probability
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of a newly generated sample becomes one. When the full conditional distributions of

the model are distributions from which efficient methods exist for sampling, it is highly

convenient to use the Gibbs sampler.

2.1.3. Particle Filtering

Sequential Monte Carlo (SMC) methods are point-mass approximations to time

evolving target distributions in dynamic systems, such as state-space models. A state-

space model is represented by a state transition equation, xt ∼ f(.|xt−1, θx), i.e. prior

of the hidden Markov process, and a observation equation yt ∼ g(.|xt, θy), i.e. the

likelihood of the observed data. At time t, the target distribution for inference is

the posterior p(x1:t|y1:t) = p(x1, ...,xt|y1, ...,yt) or particularly the marginal posterior

p(xt|y1:t) (also called the filtering distribution).

It is impossible to evaluate these posterior distributions analytically except in hid-

den Markov models with finite states and linear Gaussian state-space models (Kalman

filters). Monte Carlo methods can be employed to infer about the hidden variables

in the general case. However, MCMC methods are not completely suitable for on-

line update of a dynamic system because of their ”batch” nature. When the system

moves into a new time slice, t+ 1, an MCMC algorithm has to repeat the iterations to

approximate p(x1:t+1|y1:t+1) because the previous samples are discarded.

SMC methods enable a way to reuse the previous samples, {x(i)
t }N

i=1, in drawing

the new generation of samples over the next time slice, t + 1. Our target distribution

in the state-space models, i.e. the posterior distribution, can be defined recursively as:

p(x1:t+1|y1:t+1) = p(x1:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
. (2.13)

At time t+1, if we assume we already have an approximation for p(x1:t|y1:t) and samples

{x(i)
t }N

i=1, we can draw new samples from p(xt+1|xt) depending on the previous ones

and evaluate p(yt+1|xt+1) and p(xt+1|xt) on these new samples. But, the denominator

p(yt+1|y1:t) is not easy to evaluate analytically. This issue can be resolved making use
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of importance sampling (IS).

IS lets us draw samples from a proposal (sampling) distribution and assign im-

portance to these samples, indicating how likely it was for these samples to have been

drawn from the actual target distribution. Then, the expectations under the target

distribution, p(x) = φ(x)/Z where Z is the generally unknown normalising constant,

can be estimated as:

〈f(x)〉p(x) =

∫

f(x)p(x)dx (2.14)

=
1

Z

∫

f(x)φ(x)dx (2.15)

=

∫

f(x)φ(x)dx
∫

φ(x)dx
(2.16)

=

∫

f(x)W (x)q(x)dx
∫

W (x)q(x)dx
(2.17)

≈
∑N

i=1 f(x(i))W (i)

∑N

i=1W
(i)

(2.18)

=

N
∑

i=1

f(x(i))w(i) (2.19)

where W (i) and w(i) = W (i)/
∑N

i=1W
(i) are the unnormalised and normalised impor-

tance weights of the ith sample, respectively.

Performing the IS method recursively on the arrival of new observations, we ob-

tain the sequential importance sampling (SIS) algorithm. At each step we draw N

samples from the proposal distribution q(xt+1) and update and normalise the impor-

tance weights:

W
(i)
t+1 = W

(i)
t

p(yt+1|x(i)
t+1)p(xt+1|x(i)

t )

q(xt+1)
(2.20)

w
(i)
t+1 =

W
(i)
t+1

∑N

j=1W
(j)
t+1

(2.21)

One of the most important design choices in the SIS algorithm is the proposal
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distribution, q(x). A poor choice of the proposal degrades the performance of the

algorithm, but at the same time the proposal should be easy to sample from. The best

possible proposal would be the posterior itself, if was possible to draw samples from it.

Using the prior, p(xt+1|xt), may be the simplest choice (Bootstrap filter, condensation

algorithm), but it causes to explore the state space without any information about the

observations.

A problem of the SIS algorithm in general is degeneracy, i.e. the unconditional

variance of the importance weights increases over time [79]. This is because all but

one of the weights tend to go to zero after a few steps and their contribution there-

after becomes negligible. Using the optimal proposal distribution, which minimises the

variance of the importance weights conditional on x
(i)
1:t and y1:t, can be shown to be

p(xt+1|x(i)
t ,yt+1). But it may not be possible to draw samples from this distribution or

evaluate p(yt+1|x(i)
t ), which is used to update the weights. Besides, optimal proposal

distribution decreases the degeneracy, but cannot solve the problem completely.

Another method to reduce degeneracy is to perform resampling whenever needed.

Resampling is to sample current set with replacement from p(xt|y1:t) =
∑N

i=1w
(i)δ(xt−

x
(i)
t ) to generate a new set of samples in which unimportant samples of the original

set are discarded and the important ones are stressed. The new set induces the same

probability p(xt|y1:t) = 1
N

∑N

i=1 δ(xt−x
(i)
t ) with equal weights. The resulting algorithm

is called sequential importance sampling with resampling (SIS/R).
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2.2. Hyperparameter Optimisation

GMCs and GMRFs are constructed to model the dependencies between source

coefficients through coupling their variances. They are flexible so that different de-

grees of dependency can be modelled. Finding the best model is accomplished via

optimising the values of the coupling hyperparameters. Hyperparameter optimisation

in GMCs can be carried out through the EM algorithm. In GMRFs, maximum like-

lihood estimation is problematic because of the intractable normalising constant. In

this chapter, we will review three methods (contrastive divergence, pseudolikelihood

and score matching) that deal with such cases.

2.2.1. Expectation-Maximisation (EM) Algorithm

The EM algorithm [80] is a classic algorithm for maximum likelihood (ML) (or

maximum a posteriori (MAP)) estimation of parameters in the presence of latent vari-

ables. It consists of two iteratively applied steps to find a local maximum of the

likelihood p(y|θ):

• Expectation (E) step: Compute the expectation of the complete log likelihood

under the posterior distribution of the latent variables, p(x|y, θt):

Q(θ) =

∫

log p(x,y|θ)p(x|y, θt) dx (2.22)

where θt represents the current values of the parameters.

• Maximisation (M) step: Find the values of the parameters that maximise the

above expectation:

θt+1 = arg maxθQ(θ) (2.23)
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We can define a lower bound on the likelihood, L(θ), using any distribution q(x):

L(θ) = log p(y|θ) = log

∫

p(x,y|θ) dx (2.24)

= log

∫

q(x)
p(x,y|θ)

q(x)
dx (2.25)

≥
∫

q(x)log
p(x,y|θ)

q(x)
dx (2.26)

=

∫

q(x)log p(x,y|θ) dx −
∫

q(x)log q(x) dx (2.27)

= F(q, θ) (2.28)

making use of Jensen’s inequality, which says that the value of a concave function of

a weighted sum is greater than or equal to the weighted summation of the function

values, in Equation 2.26. This lower bound is equal to the likelihood, L(θ), when q(x)

is selected to be the posterior, p(x|y, θ). Since we do not have the exact posterior

distribution in most of the problems, we may use estimates of the posterior to evaluate

the lower bound. The expectation in Equation 2.22 is one constituent of the lower

bound that is a function of the hyperparameters.

The variational inference algorithm explained in Section 2.1.1 can be seen as the

approximate E-step, in which the expected complete log likelihood is estimated using

the tractable distribution, of a variational EM algorithm:

Q̂V B(θ) =

∫

log p(x,y|θ)q(x) dx (2.29)

The M-step of this EM-algorithm is the same as that of the exact EM-algorithm,

except that it performs the parameter optimisation on an approximate expectation.
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Likewise, in Monte Carlo EM the lower bound is evaluated using Monte Carlo

estimate of the posterior of the latent variables:

Q̂MC(θ) =
1

Ni

Ni
∑

j=1

log p(x(j),y|θ) (2.30)

where Ni denotes the number of samples.

At each iteration, one (stochastic EM) or more (Monte Carlo EM) samples can

be used to approximate the expectation.

In Markov random fields or any non-normalised model in general, the EM al-

gorithm or its variants cannot be directly applied for hyperparameter optimisation

because of the intractable normalising constant of the full joint distribution. Sev-

eral methods such as the maximum pseudolikelihood [75], contrastive divergence [76]

and score matching [77] were proposed for the estimation and optimisation in non-

normalised densities. These methods are mainly proposed for fully observed models.

In the presence of latent variables they may be incorporated within the EM fixed point

iterations. Below, we will review these methods in detail.

2.2.2. Contrastive Divergence

Contrastive divergence [76] is an approximate maximum likelihood method based

on estimating the gradient of the logarithm of the normalising constant, Zθ, using

MCMC samples. The gradient of the log likelihood, L(θ;x), is

∂L(θ;x)

∂θ
=

1

T

T
∑

t=1

∂ log π(x(t); θ)

∂θ
− ∂ logZθ

∂θ
(2.31)
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where T is the number of observation vectors. The gradient of Zθ can be expressed as:

∂ logZθ

∂θ
=

1

Zθ

∂Zθ

∂θ
(2.32)

=
1

Zθ

∂

∂θ

∫

π(x; θ) dx (2.33)

=
1

Zθ

∫

∂π(x; θ)

∂θ
dx (2.34)

=
1

Zθ

∫

π(x; θ)
∂ log π(x; θ)

∂θ
dx (2.35)

=

∫

π(x; θ)

Zθ

∂ log π(x; θ)

∂θ
dx (2.36)

=

∫

p(x|θ)∂ log π(x; θ)

∂θ
dx (2.37)

=

〈

∂ log π(x; θ)

∂θ

〉

p(x|θ)

(2.38)

Although still intractable, this gradient can be estimated using samples drawn from

p(x|θk) as it would be done in the expectation step of an EM algorithm, θk denoting

the value of θ at kth iteration:

∂ logZθ

∂θ
≈ 1

Ni

Ni
∑

j=1

∂ log π(x(j)(θk); θ)

∂θ
(2.39)

and the maximum likelihood solution can be sought iteratively. Here, the samples are

written as x(j)(θk) to show that they depend on the current value θk. The computational

complexity of estimating the gradient this way is too high because the evaluation of

each gradient requires an MCMC, of which stationary distribution is p(x|θ, to reach

equilibrium.

Empirical study of Hinton [76] showed that only a few MCMC steps (even one) is

sufficient to estimate the direction of the gradient if the Markov chain is initialised at

the observed values. This approach corresponds to minimising the following objective

function

CDn = KL(px(x)‖p(x|θ)) − KL(pxn(x)‖p(x|θ)) (2.40)



23

which is called the contrastive divergence. In this expression, pxn(x) is the recon-

structed data distribution after running the MCMC for n steps. Note that, ML min-

imises KL(px(x)‖p(x|θ)) so that the data distribution, px(x), and the model distribu-

tion, p(x|θ), get as similar as possible. The idea behind the contrastive divergence is

to move towards the stationary distribution without getting far away from the data

distribution, so that the variance is kept small. This leads to an approximate ML es-

timator, being equal to it if the MCMC is run for infinite steps. The terms containing

the normalising constant, Zθ, in the objective function cancel out:

CDn = − 1

T

T
∑

t=1

log p(x(t)|θ) +
1

T

T
∑

t=1

log p(xn(t)|θ)

= − 1

T

T
∑

t=1

log π(x(t); θ) +
1

T

T
∑

t=1

log π(xn(t); θ)

There are mixed results about the convergence of CD. It has been shown to

be unbiased in the optimisation of bivariate Gaussian distributions [81] and Gaussian

Boltzmann machines [82]. In [81], empirical and theoretical evidences were given to

show that CD has a small bias in learning Boltzmann machines. However, the work

by Hyvärinen [83] showed that pseudolikelihood and CD were equivalent for Boltz-

mann machines and pseudolikelihood was a consistent estimator, which implies the

consistency of CD in these models. This may be due to the difference between the

definitions of bias and consistency they used. Yuille [84] expressed CD as a stochastic

approximation algorithm in which convergence is guaranteed under certain conditions.

Contrastive divergence is also applicable to latent variable models. In a model

p(x,y|θ) = π(x,y; θ)/Zθ with observed variables y and latent variables x, we can define
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the contrastive divergence as

CDn = −
∫

dx dy log π(y,x; θ)py(y)p(x|y, θk)

+

∫

dx dy log π(y,x; θ)pyn(y)pxn(x)

= − 1

T

T
∑

t=1

〈log π(y(t),x; θ)〉p(x|y(t),θk)

+
1

T

T
∑

t=1

log π(yn(t),xn(t); θ)

where yn(t) and xn(t) are the n-step reconstructions of the visible and latent vari-

ables, respectively. The expectation can be approximated using samples drawn from

p(x|y(t), θk).

2.2.3. Pseudolikelihood

Pseudolikelihood [75] is an approximate likelihood function based on a pseudo

joint density function of the random variables. The pseudo joint density is defined as

the product of the full conditional distributions of each variable in the model:

L̃(θ;x) = log p̃(x|θ) =
∑

i

log p(xi|x−i, θ) . (2.41)

Pseudolikelihood makes the learning problem in Markov random fields tractable, be-

cause the full conditionals do not contain the unknown normalising constant, Zθ. Still,

these conditional densities should be normalised:

p(xi|x−i, θ) =
p(x|θ)

∫

dxip(x|θ)
. (2.42)

But this normalisation is over one variable and numerical integration techniques, as

well as MCMC methods, can be applied to calculate this one-dimensional integral.

Besides, in many Markov random fields the integral has an analytical solution and the

variables have standard full conditional densities.
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Although it is an approximation to the likelihood, pseudolikelihood preserves the

dependencies between variables, to some degree, through the full conditional distribu-

tions. For some special Markov random fields [85, 86, 83], pseudolikelihood was shown

to be consistent, i.e. maximised by the true parameter values when the size of the

sample is infinite. But, a general consistency proof is not yet available.

2.2.4. Score Matching

Another method to estimate non-normalised densities is score matching [77],

which is based on the idea that the score functions of the data and the model densities

should be equal. The score function here is the gradient of the log-density with respect

to the input variable:

ψ(x; θ) = ∇x log p(x|θ) = ∇x log π(x; θ) (2.43)

This score function is analogous to the negative of the Fisher score function with respect

to a location parameter, µ, evaluated at µ = 0.

The objective of the method is accomplished through minimising the expected

squared distance between the score functions of the data and the model densities:

J(θ) =
1

2

∫

dx px(x)‖ψ(x; θ) − ψx(x)‖2 (2.44)

where ψx(x) = ∇x log px(x) is the score function of the observed data distribution

px(x). This quantity does not contain the normalising constant Za but still requires

a non-parametric estimator for the observed data. However, when the integrand in

Equation 2.44 is expanded, it can be seen that the score function of the data is not

actually needed.

J(θ) =

∫

dx px(x)

[

1

2
‖ψx(x)‖2 +

1

2
‖ψ(x; θ)‖2

− ψx(x)Tψ(x; θ)

]

(2.45)
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The first term in the brackets is independent of θ, so it can be ignored during the

minimisation of J(θ) w.r.t. θ. The second term does not contain the data score

function, ψx(x), and is equal to

∫

dx px(x)
1

2
‖ψ(x; θ)‖2 =

∫

dx px(x)

N
∑

i=1

1

2
ψi(x(t); θ)2

And finally, the following set of equations show that ψx(x) does not need to be known

in order to calculate the third term

−
∫

dx px(x) ψx(x)Tψ(x; θ)

= −
∫

dx px(x)
N
∑

i=1

ψx,i(x)ψi(x; θ)

= −
N
∑

i=1

∫

dx px(x)ψx,i(x)ψi(x; θ)

= −
N
∑

i=1

∫

dx px(x)
∂ log px(x)

∂xi

ψi(x; θ)

= −
N
∑

i=1

∫

dx
px(x)

px(x)

∂px(x)

∂xi

ψi(x; θ)

= −
N
∑

i=1

∫

dx
∂px(x)

∂xi

ψi(x; θ)

=
N
∑

i=1

∫

dx px(x)
∂ψi(x; θ)

∂xi

The last equation is derived using the partial integration rule with the assumption that

px(x)ψ(x; θ) goes to zero as ‖x‖ → ∞. Thus, J(θ) can be expressed in the following

form

J(θ) =

∫

dx px(x)

N
∑

i=1

[

∂iψi(x(t); θ) +
1

2
ψi(x(t); θ)2

]

+ const. (2.46)

This expression is an expectation with respect to the data density, px(x), and can be
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approximated by Monte Carlo integration using the observed samples from px(x):

J̃(θ) =
1

T

T
∑

t=1

N
∑

i=1

[

∂iψi(x(t); θ) +
1

2
ψi(x(t); θ)2

]

+ const. (2.47)

where x(t) denotes tth observation vector, T is the number of observations and N is

the size of x. As T goes to infinity, J̃(θ) converges to J(θ).

In basic score matching, the probability density functions are assumed to be

differentiable in (−∞,∞). For distributions from other domains, the above derivations

should be adapted. The expected squared distance for non-negative distributions (e.g.

GMRFs) is approximated as [87]:

J̃NN(θ) =
1

T

T
∑

t=1

N
∑

i=1

[

xi(t)
2∂iψi(x(t); θ)

+
1

2
ψi(x(t); θ)2xi(t)

2 + 2ψi(x(t); θ)xi(t)

]

+ const. (2.48)

When the data are assumed to come from the model p(x|θtrue) (i.e. this is the

optimal model for the data) and there is no degeneracy in the model, score matching

estimator, θ∗ = arg minθ J(θ), is equal to θtrue. As the sample size goes to infinity, J̃(θ)

converges to J(θ), so the estimator that minimises J̃(θ) is consistent. However, this

consistency requires an optimisation method that can find the global minimum. If it

is liable to get stuck in local minima, the overall estimator becomes locally consistent,

i.e. consistent for the subspace around the global minimum.
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3. GAMMA MARKOV CHAINS AND RANDOM FIELDS

In this chapter, GMCs and GMRFs are explained. These models are used to

define dependency structures on the variances of audio source coefficients. With GMCs,

positive correlation between the variance variables along one axis (time or frequency)

is ensured. GMRFs ensure correlation on both axes, thus provide more general means

to model dependency of source coefficients. First, we will review some audio source

models that incorporate basic properties of audio signals.

3.1. Audio Source Modelling in Bayesian Framework

In audio processing tasks, such as source separation and denoising, it is impor-

tant to construct realistic and flexible models to capture the physical properties of

audio signals. In a Bayesian framework, this requires development of appropriate prior

distributions. Once a probabilistic model is constructed, many audio processing tasks

can be solved, at least in principle, as inference problems. However, constructing phys-

ically realistic and flexible models is not very easy. In this section, we will review

the models that reflect two physical properties of audio signals in the time-frequency

representation: sparseness and dependency along time and frequency axes.

3.1.1. Sparse Priors

When assumed to be a priori independent, time-frequency domain coefficients of

audio sources are shown to be better modelled with heavy-tailed distributions [62, 63,

12]. In source separation literature, specific proposals include mixture of Gaussians [42,

43], Laplace [44, 45], alpha-stable distributions [88] and Student-t distribution [12,

46]. These distributions can be defined in a hierarchical manner as a scale mixture

of Gaussians (SMoG): p(st) =
∫

p(st|vt)p(vt) dvt. p(st|vt) has a fairly simple form:

a zero mean Gaussian with variance vt which has its own prior distribution, p(vt).

SMoG distributions are a large family of heavy tailed distributions, with every prior

distribution p(vt) leading to a different instantiation: e.g. inverse gamma (Student-t),
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exponential (Laplace) [89, 90, 47].

The prior distribution of time-frequency coefficients of a source signal is factorised

as

p(s|θs) =

W
∏

ν=1

N
∏

τ=1

p(sν,τ |θs) (3.1)

when the coefficients are assumed to be independent and identically distributed. A

heavy-tailed prior can be defined for each p(sν,τ |θs) using mixture of Gaussians as

p(sν,τ) =

I
∑

i=1

p(sν,τ |γν,τ = i)p(γν,τ = i) (3.2)

where γν,τ is an indicator variable to select from I Gaussians

p(sν,τ |γν,τ = i) = N (sν,τ ;µi, σ
2
i ) (3.3)

A heavy tailed distribution can simply be constructed with two Gaussians, one with a

low variance around zero and another with high variance. Other mixtures can also be

defined with different means and variances and different state priors.

The probability density function (pdf) of the prior of a source coefficient, sν,τ ,

when modelled with a Student-t distribution, is given by

p(sν,τ |k) =
Γ(k+1

2
)√

kπ Γ(k
2
)

(

1 +
s2

ν,τ

k

)−(k+1

2
)

(3.4)

where k is the degrees of freedom and Γ(·) is the Gamma (generalised factorial) func-

tion. Student-t is a heavy-tailed distribution and is equal to the Gaussian distribution

as k goes to infinity. Figure 3.1 presents pdf’s of Student-t distributions with different

degrees of freedom (k). As k gets bigger, the distribution gets closer to the standard

Gaussian distribution (N (0, 1)).
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Figure 3.1. Probability density functions of Student-t distributions with different

degrees of freedom (k). Note that when k = ∞, the distribution is equal to standard

Gaussian distribution.

The Student-t source prior can also be defined in an hierarchical manner:

p(sν,τ |vν,τ) = N (sν,τ ; 0, vν,τ)

p(vν,τ |k) = IG(vν,τ ; k/2, k/2)

where IG represents the inverse Gamma distribution of which details are given in
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Appendix A. The marginal source prior in this model is derived by

p(sν,τ |k) =

∫ ∞

0

p(sν,τ |vν,τ )p(vν,τ |k) dvν,τ

=

∫ ∞

0

exp

(

−1

2
log(2πvν,τ ) −

s2
ν,τ

2vν,τ

−(k/2 + 1) log vν,τ −
k

2vν,τ

+ (k/2) log(k/2) − log Γ(k/2)

)

dvν,τ

= exp

(

−1

2
log(2π) + (k/2) log(k/2) − log Γ(k/2)

)

∫ ∞

0

exp

(

−
(

k + 3

2

)

log vν,τ −
s2

ν,τ + k

2vν,τ

)

dvν,τ

= exp

(

−1

2
log(2π) + (k/2) log(k/2) − log Γ(k/2)

−
(

k + 1

2

)

log

(

s2
ν,τ + k

2

)

+ log Γ

(

k + 1

2

))

=
Γ(k+1

2
)√

kπ Γ(k
2
)

(

1 +
s2

ν,τ

k

)−(k+1

2
)

This representation is the scale mixture of Gaussians (SMoG), where the prior is a

weighted sum of infinite number of Gaussians. Here, the weights are inverse Gamma

densities associated with the variances, vν,τ . Laplace distribution can be defined sim-

ilarly, using an exponential distribution for vν,τ . Student-t and Laplace distributions

show similar characteristics in terms of shape and scale, but the hierarchical definition

of Student-t provides one more advantage: inverse Gamma distribution is the conju-

gate prior for the variances, vν,τ , in this model, i.e. in the presence of a Gaussian

observation model, N (sν,τ ; 0, vν,τ), the prior and posterior distributions of vν,τ are from

the same probability family, namely inverse Gamma. This fact can be taken advantage

of during the inference of the variables, as we have seen in Section 2.1.

Another hierarchical model which introduces the flexibility to have more sparse

values was proposed in [48]:

p(sν,τ |vν,τ , γν,τ) = (1 − γν,τ)δ0(sν,τ ) + γν,τN (sν,τ ; 0, vν,τ) (3.5)

p(vν,τ |α, β) = IG(vν,τ ;α, β)
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where δ0(·) is the Dirac delta function and γν,τ is a Bernoulli distributed indicator

variable. When γν,τ = 0, sν,τ is equal to zero, otherwise, it is distributed as Student-t.

By increasing p(γν,τ = 0), a more sparse model for sν,τ is obtained.

3.1.2. Priors with Dependency Structures

It is possible to define more realistic prior distributions by introducing depen-

dencies between source coefficients. The magnitudes of source coefficients in a time-

frequency representation is slowly-changing. The majority of the coefficients are close

to zero and there are some local clusters of coefficients that have high values. The de-

pendency structure placed upon the source coefficients should prevent sudden changes

in the magnitudes.

In [48, 50, 51, 52], discrete Markov chains and Markov random fields are used to

put a dependency structure on indicator variables which are used for the selection of

source variables. Selected variables have a Student-t distribution, while the rest are

set to zero as explained in the model associated with Equation 3.5. The distribution

of the indicators are defined conditional on the other indicators of the model.

A Markov chain structure to provide continuity between the indicators along the

time axis is defined as [48, 50]

p(γν,τ |γν,τ−1, θ
ν) = θν(γν,τ−1, γν,τ) (3.6)

where θν is a transition matrix for the frequency bin ν. θν is a 2 × 2 matrix where

the entries on the diagonal, θν(0, 0) and θν(1, 1), have beta prior distributions and the

remaining values are set to θν(0, 1) = 1 − θν(0, 0) and θν(1, 0) = 1 − θν(1, 1). In this

model, dependency between the coefficients along the time axis is satisfied by using

the same transition matrix for the indicators of those coefficients.

In order to capture the dependencies on both axes, an Ising model, which is a

type of Markov random field, with fixed parameters is used in [48]. An Ising model is
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originally defined for the spins (of atoms) that are coupled to each other. Each variable

takes a binary value, xi ∈ {−1,+1} and the energy of a state, x, is defined as

E(x;J,H) = −
[

∑

i,j

Ji,jxixj +
∑

i

Hixi

]

where Ji,j is the coupling between variables xi and xj ; Hi is the applied field for each

variable xi. The probability of a state, x, is then

p(x|θ) =
exp[−βE(x;J,H)]

Z(θ)

Z(θ) =
∑

x

exp[−βE(x;J,H)]

where β is a hyperparameter inversely proportional to the Boltzmann’s constant and

Z(θ) is the normalising constant of the distribution.

In an Ising model, states, in which coupled variables have the same value, have

high probability. By coupling the adjacent indicator variables, it is possible to define

a dependency structure on the source coefficients. In [48], the hyperparameters of

the model were fixed. Normally, the calculation of the normalising constant, Z(θ)

is intractable for large Ising models, so the maximum likelihood estimation of the

hyperparameters is not possible. Inference of the indicator variables can be carried out

using the Gibbs sampling, which is explained in Section 2.1.

Another way to construct the dependency structure is by coupling the prior vari-

ances. In this thesis, variances of the source coefficients are directly coupled through

GMCs and GMRFs. These models are explained in Chapter 3.
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3.2. Gamma Markov Chains

A first-order Markov chain is a sequence of random variables, x1, x2, . . . ,xT ,

where the distribution of each variable, xt, conditional on the previous variable, xt−1

is independent from all the other preceding variables [91, 92]

p(xt|x1,x2, . . . ,xt−1) = p(xt|xt−1).

A GMC is a Markov chain in which the variables have alternatingly Gamma and

inverse Gamma1 prior distributions conditional on the preceding variable. That is,

if a variable is Gamma distributed conditional on the previous variable, the previous

variable is inverse Gamma distributed and vice versa. The formal definition is given as

p(v1|a) = IG(v1; aw, awb)

p(vt|zt−1, a) = IG(vt; aw, awzt−1), t = 2..N

p(zt|vt, a) = G(zt; ae, vt/ae), t = 1..N − 1.

where a = [aw ae b] is the hyperparameter vector. b is used to define the distribution

of the first variable, v1. It may be thought of as z0 without a prior distribution, thus

a hyperparameter. aw and ae are the coupling hyperparameters that determine the

strength of the dependency between the variables. The graphical model associated

with this GMC distribution is presented in Figure 3.2.

b
v1

b b
z1 v2

ae aw ae aw
b

vN
b

z2

aw
b b bb

aw

b

Figure 3.2. A Gamma Markov chain.

A GMC constitutes a chain of strictly positive variables with positive correlation

between consecutive vt’s and consecutive zt’s. This naming convention is chosen for

the variables such that the ones with Gamma and inverse Gamma prior distributions

are separated. In addition, throughout this thesis, we will be modelling the variances

of the source coefficients and v variables will denote these variance variables. GMCs

1The details of these distributions can be found in Appendix A
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can be used to model the slowly-varying variances of a non-stationary audio signal as

follows: The variances of source signal values, st, are associated with vt’s of the chain.

The sources are then modelled with zero-mean Gaussians, N (st; 0, vt). An example of

a source signal generated from this model is presented in Figure 3.3. In this model,

zt’s are auxiliary variables that are not associated with physical entities. In this thesis,

we used this model in time-frequency representations of audio signals, to include the

spectral dependencies across time frames or the dependencies between frequency bins.

GMCs can also be used to model the intensities of a Poisson observation model [13, 56].

In this case, zt variables, of which prior distributions are Gamma, are the intensity

variables and vt are auxiliary variables. Sources are Poisson distributed conditional on

the intensities modelled by the GMC.

0 200 400 600 800 1000
0

1000

2000

t

v t

0 200 400 600 800 1000
−100

0

100

t

s t

Figure 3.3. A signal generated using a GMC and Gaussian observation model. The

hyperparameters used for the generation of the signal are aw = 50, ae = 50 and b = 1.

There are two important properties of GMCs: positive correlation between con-

secutive v variables, which also holds for z variables, and conditional conjugacy of the

variables which is advantageous during the inference of the variables. Figure 3.4 shows

the distribution of vt conditional on vt−1 for various values of aw and ae. The positive

correlation between consecutive variance variables can be seen in the figure. The ra-

tio ae/aw is a measure of the skewness of correlation and it can lead to positive and

negative drifts. When ae = aw, correlation is not skewed and larger values result in

higher coupling between the variables. The probability of a variance variable condi-
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tional on the previous one (transition kernel of the GMC) is found by integrating out

the auxiliary variables zt−1:

p(vt|vt−1) =

∫

dzt−1p(vt|zt−1)p(zt−1|vt−1)

=

∫

dzt−1IG(vt; aw, awzt−1)G(zt−1; ae, vt−1/ae)

=
Γ(aw + ae)

Γ(ae)Γ(aw)

(aev
−1
t−1)

ae(awv
−1
t )ae

(aev
−1
t−1 + awv

−1
t )(aw+ae)

v−1
t (3.7)
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Figure 3.4. Correlation between vt and vt−1 for various values of aw and ae. Figures

(a) and (b) show that when the parameters, aw and ae, are equal, there is no

skewness and the value determines the strength of the coupling. Figures (c) and (d)

correspond to transition kernels where typical realisations have positive and negative

drifts, respectively.

The other important feature of GMCs is that the prior distributions are condition-

ally conjugate. A model with variables y (observed) and x (latent) exhibits conditional
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conjugacy [93], if the full conditional prior distribution of each variable xi, p(xi|x−i),

is in the same class with its full conditional posterior distribution p(xi|x−i,y). That

means it is as easy to draw samples from the posterior distribution, p(x|y), with the

Gibbs sampler if the full conditionals of the prior, p(x), are in the form of standard

distributions. Moreover, such models are suitable for hierarchical expansion, e.g. by

making the current observation model a part of the prior and defining a new observa-

tion model which preserves the conditional conjugacy. In GMCs, the full conditional

distributions of the variables are Gamma and inverse Gamma, as their priors

p(v1|z1, a) = IG(v1; aw + ae, awb+ aez1)

p(vi|zi−1, zi, a) = IG(vi; aw + ae, awzi−1 + aezi), i = 2..N − 1

p(vN |zN−1a) = IG(vN ; aw, awzN−1),

p(zi|vi, vi+1, a) = G(zi; aw + ae, 1/(ae/vi + aw/vi+1)), i = 1..N − 1.

3.3. Gamma Markov Random Fields

A Markov random field defines the joint probability distribution of a set of random

variables, x, based on the dependencies encoded in an undirected graph [94]. The joint

distribution is written in terms of a set of potential functions, ψC(xC), which map the

possible assignments of the variables in a clique, xC , to a non-negative real value:

p(x|θ) =
1

Zθ

∏

C

ψC(xC ; θ). (3.8)

Here θ denotes the hyperparameters of the model and Zθ is the normalisation constant

to ensure p(x|θ) is a pdf:

Zθ =

∫

dx
∏

C

ψC(xC ; θ). (3.9)

Zθ is generally analytically unavailable because the integration over the whole set of

x is intractable. Even in the discrete case, the summation is over a number of values
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which is exponential in the size of x. In the evaluation of conditional probabilities, the

normalising constant is cancelled out, so it does not have an effect on the inference of

the variables, x. However, in the optimisation of the hyperparameters, θ, of the model,

we have to evaluate Zθ because it depends on θ.

A GMRF models a joint probability distribution, p(v, z), using a bipartite undi-

rected graph which consists of a vertex set V = Vv ∪ Vz, where partitions Vv and Vz

denotes the collection of variables v and z that are conditionally distributed Gamma

and inverse Gamma respectively. The edge set, E , consists of pairs (i, j) representing

the connection between the variables vi and zj which is associated with the coupling

parameter aij . Examples of two GMRFs are given in Figure 3.5.
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Figure 3.5. Two examples of GMRFs. In the GMRF on the left, all variables are

dependent on the other variables, whereas, the one on the right has partitions

independent from each other.

Since a GMRF is associated with a bipartite undirected graph, it contains max-

imal cliques of size two. The joint probability, p(v, z), is defined in terms of pairwise

and singleton potentials:

p(v, z|a) =
1

Za

∏

i :vi∈Vv

φv



vi,
∑

(vi,zj)∈E

aij





∏

j :zj∈Vz

φz



zj ,
∑

(vi,zj)∈E

aij





∏

i,j: (vi,zj)∈E

φe

(

v−1
i , aijzj

)
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where the pairwise and singleton potentials are defined as follows:

φv(ξ;α) = exp(−(α + 1) log ξ) (3.10)

φz(ξ;α) = exp((α− 1) log ξ) (3.11)

φe(ξ, η) = exp((−ξη)) (3.12)

It is easy to see that the GMC in Figure 3.2 is equivalent to a GMRF with the

joint density

p(v, z|a) =
1

Za

(

N
∏

i=1

φv (vi, aw + ae)

)(

N
∏

i=1

φz(zi, aw + ae)

)

φe(v
−1
1 , awz0)

(

N−1
∏

i=1

φe(v
−1
i , aezi)φe(zi, awv

−1
i+1)

)

where the normalising constant Za can be evaluated analytically.

In GMRFs, the full conditional distribution of each vi variable in the field is

inverse Gamma:

p(vi|M(vi)) =
p(vi,M(vi)|v−i)

p(M(vi)|v−i)

= φv



vi,
∑

j: zj∈M(vi)

aij





∏

j: zj∈M(vi)
φe(v

−1
i , aijzj)

Z ′

= IG



vi;
∑

j: zj∈M(vi)

aij ,
∑

j: zj∈M(vi)

aijzj



 (3.13)

where M(vi) is the set of zj variables in the Markov blanket of vi, the summations

are over these variables and v−i represents all the variables in Vv except vi. Z ′ is

the normalising constant of the density function in the numerator. Similarly, zj ’s are
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conditionally Gamma distributed

p(zj |M(zj)) = G



zj ;
∑

i: vi∈M(zj)

aij ,





∑

i: vi∈M(zj)

aij/vi





−1

 (3.14)

GMRFs are proposed to model the variances of the time-frequency coefficients

of audio signals so that the dependency between adjoining coefficients is captured.

Although we know that there can be correlation between any pair or set of coefficients,

it is difficult to find a generic model for the full joint density. Rather, we make use of

the fact that the coefficients show a degree of persistence to change, i.e. they change

slowly. GMRFs ensure a positive correlation between the coefficient variances to satisfy

this property.

To see the conditional conjugacy of the audio source model based on GMRFs,

let us consider the denoising scenario. Here, the aim is to extract the original source

from the observed signal which is thought of as the original source plus white Gaussian

noise

xν,τ ∼ N (sν,τ , r), τ = 1..T, ν = 1..N (3.15)

Our audio model assumes a GMRF prior distribution for the variances of the time-

frequency coefficients, sν,τ , as shown in Figure 3.5a. Conditioned on the variances, vν,τ ,

each coefficient is a zero-mean Gaussian

sν,τ |vν,τ ∼ N (sν,τ ; 0, vν,τ), τ = 1..T, ν = 1..N

Then, full conditional distribution of a source coefficient becomes

p(sν,τ |vν,τ , xν,τ , r) = N (sν,τ ;µν,τ ,Σν,τ )

Σν,τ =

(

1

r
+

1

vν,τ

)−1

, µν,τ =
xν,τΣν,τ

r
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This observation model is conditionally conjugate for the GMRF. So, the full condi-

tional distribution of each variance variable, vν,τ , is again inverse Gamma

p(vν,τ |M(vν,τ )) = IG(vν,τ ;αν,τ , βν,τ) (3.16)

αν,τ =
1

2
+

∑

j: zj∈M(vν,τ )

aij, βν,τ =
s2

ν,τ

2
+

∑

j: zj∈M(vν,τ )

aijzj (3.17)

The z variables, which do not correspond to physical entities but are just auxiliary

variables to construct the GMRF, are not coupled to any new variables, so they preserve

Gamma full conditional distributions.

In this denoising scenario, we also assume an inverse Gamma prior distribution

for the variance of observation noise, r

r ∼ IG(r; ar, br)

The full conditional distribution of r is also inverse Gamma

p(r|s1:N,1:T , x1:N,1:T ) = IG(r;αr, βr)

αr = ar +
NT

2
, βr =

(

N
∑

ν=1

T
∑

τ=1

(

1

2
x2

ν,τ − xν,τsν,τ +
1

2
sν,τ

2

)

+
1

br

)−1

The Gibbs sampler and variational Bayes, which are suitable methods to perform

inference on GMRFs, are explained in Section 2.1.
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3.4. NMF Using GMCs

The statistical interpretation of NMF can be derived by seeking a maximum

likelihood solution to the following model

sν,i,τ ∼ PO(sν,i,τ ; tν,ivi,τ ) (3.18)

xν,τ =

I
∑

i

sν,i,τ (3.19)

where Si = {sν,i,τ} are latent sources and PO(·) denotes the Poisson distribution. In

the presence of these latent variables, the solution can be obtained using the EM algo-

rithm. This approach leads to the same update rules as the original NMF minimising

the information divergence between X and TV [57].

In order to obtain template and excitation matrices satisfying some properties,

we can define prior distributions on T and V, such as

T ∼ p(T|Θt)

V ∼ p(V|Θv)

where Θt and Θv are the parameters of these distributions. Then, T and V can be

estimated by the maximum a posteriori solution or Bayesian inference.

The topology of our model is designed to separate the underlying tonal and per-

cussive sources from an audio signal. This is accomplished through assigning different

prior structures to different parts of the template and excitation matrices, T and V.

Spectral templates of tonal signals have high values for the fundamental frequency and

the harmonics of the notes that are being played. The other values are close to zero.

These templates are excited for the duration that the notes are audible. However, a

percussive hit excites a band of frequencies at the same time. These excitations are

generally for short time intervals, except for the bass drum hits.
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Figure 3.6. T and V matrices for one tonal and one percussive components.

Our model makes use of GMC priors for columns of T or rows of V to enable

continuity along those vectors and independent Gamma priors to have sparse values

with occasional peaks. So, the tonal vectors of T are modelled with independent

Gamma distributions for sparsity, whereas the vectors for percussions are modelled

with GMCs. In contrast, excitation vectors for tonal components are modelled with

GMCs to enforce continuity in time. Excitation vectors of percussive sources have

independent Gamma priors which are suitable for short-time excitations. T and V

matrices for one tonal and one percussive component are presented in Figure 3.6.

The choice of Gamma and Gamma Markov chains as priors is mainly for the sake

of simplicity. Gamma distribution is the conjugate prior for the Poisson observation

model and this enables us to use faster and more convenient inference methods such

as the Gibbs sampler or variational Bayes. In addition, we can incorporate the above

mentioned requirements of tonal and percussive sources into the model using these

prior distributions.

The density of a Gamma distributed random variable, x ∈ ℜ+, with shape and

scale parameters, a and b, is given by G(x; a, b) = exp((a− 1) log x− x/b− log Γ(a) −
a log b). The mean of this distribution is ab and the variance is ab2. With small ab and
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a larger b, the distribution will be sparse, i.e. mainly close to zero but with a heavy

tail.

A Gamma Markov chain (Section 3.2) is a prior structure for a chain of positive

variables, where the correlation between consecutive variables is positive. In addition,

each variable is conditionally conjugate, i.e. their prior and full conditional distribu-

tions are Gamma. In the Poisson observation model, this conjugacy is preserved. A

GMC of v1:K can be defined as

v1 ∼ G(v1; av, b/av)

zi|vi ∼ IG(zi; az, azvi), i = 1..K − 1

vi+1|zi ∼ G(vi+1; av, zi/av), i = 1..K − 1

where av, az, and b are the hyperparameters of the chain and z1:K−1 are auxiliary vari-

ables introduced to have positive correlation and conjugacy properties simultaneously.

av and az are the coupling hyperparameters and they determine the degree of corre-

lation between variables. Prior and full conditional distributions of z1:K−1 are inverse

Gamma and consecutive z variables have positive correlation between them.

Denoting the number of tonal components with Iton and percussive components

with Iperc = I − Iton, the overall NMF model can be written as

tν,i ∼ G(tν,i; a
i
t, b

i
t/a

i
t), i = 1..Iton, ν = 1..W

t1:W,i ∼ GMC(t1:K,i; a
i
tv, a

i
tz, b

i
t), i = Iton + 1..I

vi,1:K ∼ GMC(vi,1:K ; ai
vv, a

i
vz , b

i
v), i = 1..Iton

vi,τ ∼ G(vi,τ ; a
i
v, b

i
v/a

i
v), i = Iton + 1..I, τ = 1..K

The observation model is again given as in Equations 3.18 and 3.19.

Because of the conditional conjugacy, the full conditional distribution of each

variable in the model is a standard distribution: Gamma for tν,i and vi,τ , multinomial
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for the latent sources sν,i,τ and inverse Gamma for the auxiliary variables of the GMCs.

This makes it feasible to use the Gibbs sampler or variational Bayes to infer about the

variables.

The optimisation of the hyperparameters of the model can be performed using

an EM algorithm, which makes use of the posterior distribution estimated during the

inference: samples drawn by the Gibbs sampler or the sufficient statistics estimated

by variational Bayes. In this thesis, we assume a uniform distribution for the hyperpa-

rameters and estimate them by sampling from their full conditional distributions using

the Metropolis algorithm.

3.4.1. An Extension To The Model

As mentioned before, bass drums have a hybrid behaviour: they excite a band

of frequencies as the other percussive sources but the duration is longer. This causes

the bass drum and tonal instrument components to get mixed. As a remedy, we added

another partition of size Ibass to the T and V matrices. A template vector in this

partition has high values until a change point λi and very low values afterwards.

t1:W,i ∼
λi
∏

ν=1

G(tν,i; a
i
B, b

i
B/a

i
B)

W
∏

ν=λi+1

G(tν,i; a
i
b, b

i
b/a

i
b)

vi,1:K ∼ GMC(vi,1:K ; ai
vv, a

i
vz, b

i
v), i = Iton + Iperc + 1..I

where ai
B and biB are selected such that the mean of distribution is high and variance

low, in contrast, ai
b and bib ensure that the distribution is highly sparse. Here, tν,i and

vi,τ variables again have Gamma full conditional distributions. λi is discrete and its

full conditional distribution can be evaluated at each W . So, this extended model can

again be inferred using the Gibbs sampler. The pseudocode of the overall method is

given in Appendix D.
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4. EXPERIMENTS & DISCUSSIONS

In Chapter 3, we defined two models, GMC and GMRF, which are appropriate to

model the variances of audio source coefficients in time-frequency representations such

that the temporal and spectral dependencies of the coefficients are captured. The GMC

model couples the variances either across the time axis or the frequency axis, while the

GMRF model can capture dependencies along both directions. The strengths of the

couplings are determined by the hyperparameters of the models which results in flexible

models able to model different dependency structures. This makes the optimisation of

the hyperparameters of the models important during the inference.

GMCs and GMRFs share some basic ideas such as conditional conjugacy which

enables the inference of the variables to be carried out through the Gibbs sampler and

variational Bayes. However, the hyperparameter optimisation schemes of the two meth-

ods are highly different. GMCs can be optimised by using an appropriate EM method

during the inference, while this cannot be done in GMRFs due to the intractable nor-

malising constant and approximate optimisation methods are needed. This chapter is

divided into two sections dedicated to these two methods. Each section contains exper-

iments with synthetic data to assess the most suitable inference-optimisation scheme

and then presents results of denoising and single-channel source separation results using

this scheme.

4.1. Gamma Markov Chains

The main goal of this section is to optimise the hyperparameters of dynamic

systems offline (given a fixed sequence of observations, y1:T ), particularly the GMCs.

The variants of the EM algorithm explained in Section 2.2.1 maximise approximate

likelihoods and accuracy of these approximations are crucial to the maximum likelihood

optimisation. In the remainder of this section we will demonstrate how accurate and

efficient the methods are in estimating likelihoods on different problems.
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We start with the linear Gaussian state-space model, in which the likelihood,

p(y|θ), and the posterior filtering distributions, p(xt|y1:t, θ), can be calculated exactly

by the Kalman filter[95, 96]. This model is very similar to the GMC based audio source

model. In both of the models observations are Gaussian and hyperparameters deter-

mine the coupling between the state variables. Since we can calculate the likelihood of

the linear Gaussian state-space model exactly, we will have the chance to compare the

inference methods explained in Section 2.1 with the ground truth.

Our GMC-based audio source model is a similar state-space model where the

states are the variances and the observations are the source coefficients. The state

transitions are modelled with GMCs. There is no exact analytical solution in this

problem, so we will compare the methods among themselves. Then we will use these

source priors in denoising and single channel source separation problems. We will

demonstrate the relation between the objective source separation evaluation criteria

and the approximate likelihoods and how the results are affected by hyperparameter

optimisation.

4.1.1. Linear Gaussian State Space Model

Linear Gaussian state-space model is given by the following state transition and

observation models

x1 ∼ N (x1; 0, P ) (4.1)

xk ∼ N (xk;Axk−1, Q), k ≥ 2 (4.2)

yk ∼ N (yk;Cxk−1, R) (4.3)

where P,Q and R are the variances of Gaussian perturbations, A and C are linear

operators. Optimal filtering can be performed on this model with the Kalman filter [95,

96], so this model provides a platform to compare the algorithms in terms of the

accuracy of their likelihood estimates and time complexity.
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Figure 4.1. Log-likelihood approximations on a linear Gaussian state-space model of

length 100 by different methods (Kalman filter (exact), bootstrap filter (PF), SIS/R

with optimal proposal distribution (PFopt), Gibbs sampler (gibbs) and VB). More

complex particle filters and Gibbs samplers are obtained by increasing the number of

samples while in VB total number of iterations is increased.

Figure 4.1 presents log-likelihood attained by the algorithms (Kalman filter, boot-

strap filter, SIS/R with optimal proposal distribution, Gibbs sampler and VB) in a

certain amount of CPU cycles (flops). In this model Kalman filter finds the exact

likelihood p(y|θ) making use of the fact that the convolution of two Gaussians is an

unnormalised Gaussian. The likelihood estimates of the particle filters and the Gibbs

samplers converge to the exact likelihood as the number of samples is increased. We

have to note that Gibbs sampler does not output the likelihood as a by-product. We

estimated the Gibbs likelihood using Chib’s method [97], which needs extra sampling

for this model. VB is quick to converge but the lower bound of the likelihood estimated

by VB cannot reach the exact likelihood due to the factorised approximation of the

model. Figure 4.2 shows how the Gibbs sampler and VB estimates consecutive vari-

ables, xt and xt+1. It is certain that the correlations between the variables are lost in
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the variational estimation which in turn results in a loose lower bound. However, the

mean estimates (minimum mean square error (MMSE) estimates) of the two methods

overlap as depicted in Figure 4.3.

Figure 4.2. Samples drawn by a Gibbs sampler and variational estimates for

consecutive variables in a chain of length 5. Variational distributions are represented

with horizontal or vertical ellipses up to three standard deviations whereas samples

are shown as dots.

In Figure 4.4, the likelihood surfaces estimated by the Kalman filter, SIS/R with

optimal proposal distribution, Gibbs sampler and VB are presented. The methods are

run with a grid of different values of hyperparameters Q and R while the others are

fixed. Likelihood estimates of SIS/R with optimal proposal distribution and Gibbs

sampler converge to the exact likelihood, while VB suffers from loose lower bound and
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Figure 4.3. Actual state sequence and state estimates by VB and Gibbs sampler. The

estimates by the two methods overlap.

estimates an incorrect surface. The EM variants, which use the posterior distributions

approximated by these algorithms, converge to their respective maximum shown in this

figure.

4.1.2. Gamma Markov Chains

We define a state-space model with transitions modelled with an GMC and ob-

servations with Gaussians:

z1 ∼ G(z1; az, b/az) (4.4)

vt|zt ∼ IG(vt; av, avzt) (4.5)

zt+1|vt ∼ G(zt+1; az, vt/az) (4.6)

st ∼ N (st; 0, vt) (4.7)

which is a simplified version of the audio source model explained in Section 3.2.
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Figure 4.4. Likelihood versus model parameters (Q and R) for an observation

sequence of length 100. The surfaces are almost the same for the Kalman filter

(exact), SIS/R with optimal proposal distribution (PFopt) and the Gibbs sampler

(Gibbs). In particular, the Q and R pair that maximises the likelihood and the

maximum value are the same.The VB lower bound has completely different

characteristics. In the experiment, the hyperparameters A, C and P are fixed

(A = C = 1, P=2).

As in the linear Gaussian case, the lower bound on the log-likelihood estimated

by the VB algorithm is not a tight bound (Figure 4.5). Likelihood estimates of all the

sampling based methods converge to a fixed value. While we do not know the relation

between this value and the exact likelihood as there is no known analytical solution

for it, the experiments in the previous section proved these estimates to be consistent

with the exact likelihood.
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Figure 4.5. Log-likelihood approximations on an Gamma state-space model of length

100 by different methods (bootstrap filter (PF), SIS/R with optimal proposal

distribution (PFopt), Gibbs sampler (Gibbs) and VB). More complex particle filters

and Gibbs samplers are obtained by increasing the number of samples while in VB

total number of iterations is increased.

The most important reason for the difference between the likelihood estimated by

the sampling methods and the variational lower bound is that variational Bayes method

discards the correlations between the variables. As we can see in Figure 4.6, the Gibbs

samples representing the distributions of consecutive variables in a chain have high

correlations between them, whereas VB estimates these variables independently.

Figure 4.7 shows the hyperparameter (av and az) values that maximise the like-

lihood estimates of the SIS/R algorithm with optimal proposal distribution and VB.

Indeed, the EM methods based on estimates from these methods converge to these

maxima, respectively. Although not presented here, the likelihood surface for the

Gibbs sampler is similar to that of the optimal SIS/R and the same hyperparameter

set maximises the likelihood.
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Figure 4.6. Samples drawn by a Gibbs sampler and variational estimates for

consecutive variables in a chain of length 5. Variational distributions are represented

with horizontal or vertical ellipses up to three standard deviations whereas samples

are shown as dots.

4.1.3. Audio Experiments

4.1.3.1. Denoising. Denoising is a special case of source separation with one source

and one observation (M = N = 1). Estimating the source signal is equivalent to

denoising the observation.

We modelled dependencies of the time-frequency coefficients of sources obtained

by MDCT with GMCs. This can be done in two ways: either tying coefficients of each

frequency bin across time frames (horizontal) or tying frequency coefficients in each
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Figure 4.7. Likelihood versus hyperparameters (av and az) for an observation

sequence of length 10. The likelihood functions attained by the SIS/R algorithm with

optimal proposal distribution (on the left) and the VB lower bound (on the right)

have very different characteristics and maxima.

frame (vertical).

The horizontal model can be summarised as:

zν,1 ∼ G(zν,1; az, b/az) (4.8)

zν,τ |vν,τ−1 ∼ G(zν,τ ; az, vν,τ−1/az), τ > 1 (4.9)

vν,τ |zν,τ ∼ IG(vν,τ ; av, avzν,τ ) (4.10)

sν,τ |vν,τ ∼ N (sν,τ ; 0, vν,τ) (4.11)

xν,τ |sν,τ , r ∼ N (xν,τ ; sν,τ , r) (4.12)

r ∼ IG(r; ar, br) (4.13)

where the indices ν and τ are for the frequency bins and time frames, respectively. The

observed signal, x, is the sum of the source signal, s, and independent white Gaussian

noise with variance r.

In order to be able to have an objective measure of success we added noise to

the original signals and obtained noisy observation signals. To assess the quality of the
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reconstructions, we used the signal-to-noise ratio (SNR) between the original signal

and the reconstructed signal:

SNR(sorg, srec) = 10 log10

( ‖sorg‖2

‖sorg − srec‖2

)

Figure 4.8 presents the log likelihoods and reconstruction SNRs attained by the

SIS/R with the optimal proposal distribution using different values for hyperparam-

eters av and az. The two surfaces are very similar and they have their peaks at the

same point. This correlation between the log likelihood and the SNR encourages hy-

perparameter optimisation using maximum likelihood.

Figure 4.8. Log likelihood and reconstruction SNR values obtained by the SIS/R

algorithm using the optimal proposal distribution. The surfaces are evaluated using a

fixed value of b (b = 10−4).

On the other hand, in the case of VB, there is no correlation between the lower

bound of the log likelihood and the SNR (Figure 4.9). Although this method can obtain

higher SNR values than the SIS/R algorithm, the SNR surface is neither like the bound

surface nor the surfaces obtained by the SIS/R. So, the values of hyperparameters that

maximise the SNR cannot be found by optimising an available function.

In these denoising simulations we obtained the noisy signal by adding around 0

dB white noise to a noise-free audio clip. We modelled the source coefficients in the
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Figure 4.9. Lower bound and SNR values obtained by the variational Bayes method.

The surfaces are evaluated using a fixed value of b (b = 10−4).

transfer domain, after transforming the signals using MDCT with 512 frequency bins.

In Figure 4.10 spectrograms and SNRs of the estimated sources by the three methods

are presented. This audio signal is a piano recording and its MDCT coefficients are

modelled with horizontal GMCs. In this example, results obtained by variational EM

are poor because the hyperparameters optimised by this method did not lead to better

results. There are hyperparameter values that result in better reconstructions, but

these do not correspond to a local maxima of the lower bound.

4.1.3.2. Single-Channel Source Separation. In single-channel source separation, we try

to estimate the N sources that comprise a single observation signal. We again approach

the problem in the time-frequency representation and model the variances of the sources

with GMCs to ensure dependency along time or frequency axis. The source coefficients

are then Gaussian distributed with zero mean: sν,τ ∼ N (sν,τ ; 0, vν,τ ). The observed

signal is the sum of N sources: xν,τ =
∑N

j=1 s
j
ν,τ .

In this problem, full conditional distributions of the source coefficients, p(si,k|xk, vi,k)

(of ith source and kth index), are in Gaussian form and their sufficient statistics can be
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Figure 4.10. Denoising results of a piano recording of which coefficients are modelled

with a GMC. The figures on top are the spectrograms of the original and the noisy

signals. The others are the estimations of the three inference methods.
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evaluated in closed form:

Σi,k = vi,k (1 − κi,k) (4.14)

mi,k = κi,kxk (4.15)

where κi,k = vi,k/
∑N

j vj,k represents what portion of the observation can be attributed

to the ith source. κ’s are called responsibilities in [13] and also known as Wiener filter

factors.

Modelling the variances of a source using horizontal GMCs and another with ver-

tical GMCs, we can separate the harmonic components and transients of an observed

signal. We mixed tonal audio signals with percussive ones and performed single-channel

source separation using VB and Gibbs sampler. Since we have two directions of propa-

gation in this model, we cannot apply classical particle filter methods directly. Tables

4.1 and 4.2 show the results of two single-channel source separation experiments. Here,

the performance criteria are the source to distortion ratio (SDR), the source to inter-

ference ratio (SIR) and the source to artefacts ratio (SAR), defined as follows [98]

SDR ≡ 10 log10

‖starget‖2

‖einterf + eartif‖2
(4.16)

SIR ≡ 10 log10

‖starget‖2

‖einterf‖2
(4.17)

SAR ≡ 10 log10

‖starget + einterf‖2

‖eartif‖2
(4.18)

where an estimate of a source is decomposed into an allowed deformation of the target

source, starget, interferences from the other sources, einterf and the artefacts due to the

separation algorithm, eartif .
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Table 4.1. Single-channel source separation results on a mixture of guitar (“Matte

Kudasai”) and drums (“Territory”)

ŝ1 ŝ2

SDR SIR SAR SDR SIR SAR

VB -4.74 -3.28 5.67 -1.58 15.46 -1.37

Gibbs -4.5 -2.62 4.57 1.05 12.46 1.61

Gibbs+MCEM -4.23 -2.42 4.82 1.34 13.13 1.85

Table 4.2. Single-channel source separation results on a mixture of flute (“Vandringar

I Vilsenhet”) and drums (“Moby Dick”)

ŝ1 ŝ2

SDR SIR SAR SDR SIR SAR

VB -7.8 -6.22 4.53 -2.35 18.4 -2.25

Gibbs -8.46 -7.53 6.93 -4.04 14.59 -3.83

Gibbs+MCEM -7.74 -6.19 4.62 -1.14 16.62 -0.97

In the experiments, we applied VB (with 3000 iterations) and Gibbs sampler

(with 5000 samples) using the same set of parameters (av = 3, az = 3 and b = 10−4).

This random choice of the hyperparameters seems suitable due to the good quality

of the results. We obtained slightly better results using a Gibbs sampler of which

hyperparameters are optimised with MCEM. The initial hyperparameter values are

the same as the above. The values converge within 150 iterations of the EM algorithm

which makes use of 5000 samples for the E-step. We present the spectrograms of the

sources estimated by the Gibbs+MCEM algorithm in Figure 4.11. As expected, the

variational EM algorithm converges to a set of hyperparameters that lead to a worse

performance, so those results are omitted.
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Figure 4.11. The spectrograms of the original sources (top) and the sources estimated

by the Gibbs+MCEM algorithm (bottom) in the second single-channel source

separation experiment.

4.2. Gamma Markov Random Fields

This section focuses on the optimisation of hyperparameters in GMRFs. As ex-

plained before, the probability distribution encoded by a GMRF contains an intractable

normalising constant which makes ML estimation difficult. In this section, we will com-

pare three methods that deal with optimisation in non-normalised models: CD, PL,

and SM. It turns out that only CD is directly applicable to models containing latent

variables, whereas PL and SM are originally proposed for fully-observed models. This

is important because our ultimate aim is to optimise the hyperparameters of a (latent)

GMRF model directly from data. In an audio processing application where the vari-



61

ances of source coefficients are modelled with a GMRF, the variables that constitute

the GMRF are not observable. In this section, first, we will conduct some experiments

on synthetic data in order to investigate the consistency of CD in simpler models and

compare its performance to ML, PL, and SM, where applicable. Then, we present

results with real data.

The setup of our synthetic data experiments is summarised in Table 4.3, where we

test each algorithm for the particular scenarios. We include GMCs, as those are special

cases of GMRFs, whose normalising constants can be calculated analytically. The

experiments featuring GMCs enable us to compare the estimates of the approximate

optimisation methods with the maximum likelihood estimates. In the general case

where the maximum likelihood is intractable, we will compare the results to the true

hyperparameters that were used to generate the data. We will consider three cases of

these models: Fully-observed (FO) models can be optimised using all three approximate

optimisation methods so we can compare the performances of these methods. The

partially-observed (PO) case is suitable to judge on the performance of contrastive

divergence in case of latent variables. Partially-observed GMCs and GMRFs can be

marginalised over the observed variables and the resulting model can be optimised

using score matching (and maximum likelihood in case of GMCs). But, contrastive

divergence is not applicable on this marginalised model. This enables us to observe

whether the performance of CD degrades in the presence of latent variables or not.

Table 4.3. Setup for synthetic data experiments. In the experiments two models

(Gamma Markov chains (GMC) and Gamma Markov random fields (GMRF)) are

considered in three scenarios: fully-observed (FO), partially-observed (PO) and

fully-latent (FL). The entries in the table show the optimisation methods applicable

for the particular cases.

GMC GMRF

FO ML, PL, SM, CD PL, SM, CD

PO ML, SM, CD SM, CD

FL ML, CD CD
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The case which we call fully-latent (FL) is a more realistic scenario where all

the variables of the GMRF are latent and there are observations conditional on the

v variables. At present, only contrastive divergence can be applied to this case, we

compare its estimates to the maximum likelihood estimates in GMCs and to the true

parameters in GMRFs. Then, we present results of denoising and single-channel source

separation experiments where we performed the inference using the Gibbs sampler and

optimised the hyperparameters using CD.

4.2.1. Synthetic Data Results

4.2.1.1. Fully-Observed Models. The model in Figure 4.12 is a GMC with 2N−1 vari-

ables. The hyperparameters a = [aw ae] determine the coupling between the variables

and b is just a constant.

b
v1

b b
z1 v2

ae aw ae aw
b

vN
b

z2

aw
b b bb

aw

b

Figure 4.12. A fully observed Gamma chain.

This model can also be interpreted as a chain-structured GMRF with 2N − 1

variables, Vv = {v1, v2, . . . , vN} and Vz = {z1, z2, . . . , zN−1}. It is a special GMRF

yet the normalising constant, Za, can be analytically calculated. However, throughout

these experiments Za will be treated as unknown in order to investigate the accuracy

of the approximation methods explained in Section 2.2.

ML estimation of the hyperparameters of a Gamma chain is straightforward. The

likelihood surface of a particular chain as a function of the hyperparameters, aw and ae,

is given in Figure 4.13a. The maximum of this function, depicted by a plus sign (+),

can be easily found using Newton’s method. Figure 4.13b and 4.13c present the PL and

negative score distance2 surfaces, respectively. The hyperparameters that maximise the

pseudolikelihood of this model can again be found using Newton’s method, whereas

the gradient of the negative score distance has a more complicated form because the

2Since this model constitutes a non-negative distribution, the score distance is calculated as ex-
plained in [87].
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Figure 4.13. Optimal hyperparameter values for a fully observed Gamma chain of

length 1000. The original hyperparameter values used to generate the chain are

aw = 2 and ae = 4. b is fixed at 1.

distance already contains gradients with respect to the observed variables. In this

simple model, the hyperparameters can be optimised using gradient ascent, but in more

complicated models, surrogate-based optimisation such as response surface methods

(RSM) [99] can be used. In Figure 4.13d, we present the optimal hyperparameter values

attained by the CD algorithm initialised with different values (paths are presented as

dashed lines and optimal values are dots). We used one-step reconstructions of the

data and a slowly-decaying gain parameter, ηt = 1/t, where t is the iteration number.

In this experiment, we see that all three approximation methods converge to the true

optimum. CD has the simplest optimisation criterion but it needs to generate data

and evaluate the gradient for each hyperparameter setting. Moreover, the stopping
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criterion and the gain parameter affects the convergence rate.

In Figure 4.14, we present a more general GMRF. Here, we do not know Za; that

means the ML estimates are not available. The algorithmic details of hyperparameter

optimisation is similar to the previous case. Figure 4.15 shows that the estimates of the

approximation methods are consistent with each other and the hyperparameter values

used to generate the data.
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Figure 4.14. A fully observed GMRF. a = [aw ae an as] are the hyperparameters.

We repeated these experiments with data generated with random hyperparam-

eter values and compared the estimates with the true values. In GMCs, maximum

likelihood estimates are used as the true values and in general GMRFs where Za is

not available, the values used to generate the data are treated as the true parameters.

The average of mean squared errors (MSE) of the estimates in 10 replications of 10

different experiments are presented in Table 4.4.

In the fully-observed models, all three approximation methods are successful.

However, CD has an important disadvantage: it needs its gain parameter and stopping

criterion to be adjusted. A general setting for these criteria may lead to early stopping

in some of the experiments, which is the cause of the high standard deviations of CD

in Table 4.4.
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Figure 4.15. Optimal hyperparameter values for a fully-observed GMRF of size

50 × 50. Here, we decrease the number of hyperparameters to two by setting

aw = ae ≡ ah and an = as ≡ av. The original hyperparameter values used to generate

data are av = 2 and ah = 6.

4.2.1.2. Partially-Observed Models. Now, we consider the case where z are latent

variables. The joint distribution, p(v, z|a), is the same as in the previous case and

again we treat it as if we do not know the normalising constant.

Two of the approximate optimisation techniques, namely, maximum PL and SM

are not designed for models with latent variables. However, this is not a problem for

this particular model because the latent variables can be integrated out. The marginal

model is not suitable for sampling; so, CD is not applied on the marginal model but the

original one. This model constitutes a suitable platform to compare the performance
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Table 4.4. MSEs of the estimates averaged over 10 experiments. In each experiment

data are generated using random hyperparameter values and each method is run for

10 times with different initial values. Variances of the estimates within the

experiment are higher in contrastive divergence (CD) because of its stochastic nature.

In pseudolikelihood (PL) and score matching (SM), this is not the case because they

are deterministic and the surfaces are smooth. The table summarises averages of 10

such experiments.

GMC GMRF

PL 0.16 ± 0.09 0.20 ± 0.07

SM 0.24 ± 0.13 0.21 ± 0.10

CD 0.18 ± 0.15 0.26 ± 0.16
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Figure 4.16. A partially observed Gamma chain. Black and white circles denote

observed and latent variables, respectively.

of the latent variable version of CD with the other methods which run on a marginal

(so, fully-observed) model.

In Figure 4.17a, the marginal likelihood surface is depicted to set the ground truth

for the case in which we suppose the normalising constant is not known and optimise

the hyperparameters with approximation techniques. The PL of this partially visible

model is difficult to calculate. The full conditionals of the marginal model cannot be

evaluated analytically

p(vi|v−i, a) =
p(v|a)
p(v−i|a)

=
p(v|a)

∫

dvi p(v|a)
=

π(v|a)
∫

dvi π(v|a) (4.19)

It is possible to approximate the integral in the denominator using numerical quadra-

ture methods. However, the optimal hyperparameter values found this way diverge

from the true values as can be seen in Figure 4.17b. This may be because of inconsis-

tency of PL for this model. A less likely cause may be the approximation error. Apart



67

from having slightly complicated terms, score matching remains consistent for this

model. The surface of negative of the distance values versus the hyperparameter val-

ues are depicted in Figure 4.17c. Contrastive divergence suffers from early convergence

in some instantiations as can be seen in Figure 4.17d, which shows the optimisation

trajectories obtained from different initialisations.
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Figure 4.17. Optimal hyperparameter values for a partially-observed Gamma chain of

length 1000. The original hyperparameter values used to generate the chain are

aw = 2 and ae = 4. b is fixed at 1.

We performed the same experiment on the partially-observed GMRF, which is

based on the model in Figure 4.14 with the difference that z variables are latent. As

we can see in Figure 4.18, score matching and contrastive divergence estimates are

consistent with each other and with the true hyperparameter values that are used to

generate data. However, in general, contrastive divergence may stop before converging
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to the true values. Therefore, its parameters should be adjusted well. The average

mean squared errors obtained from batch simulations are presented in Table 4.5. Note

that PL was not applicable to this scenario.
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Figure 4.18. Optimal hyperparameter values for a partially-observed GMRF of size

50 × 50. Here we decrease the number of hyperparameters to two by setting

aw = ae ≡ ah and an = as ≡ av. The original hyperparameter values used to generate

data are av = 2 and ah = 6.

Table 4.5. MSEs of the estimates averaged over 10 experiments. Each experiment is

repeated 10 times with different initial values and MSEs are calculated. The entries

in the table are averages of these MSEs.

GMC GMRF

SM 0.92 ± 0.40 1.39 ± 0.68

CD 0.80 ± 0.62 2.31 ± 1.63

4.2.1.3. Fully-Latent Models With Gaussian Observations. The model in Figure 4.19

introduces new variables si to the previous model. Each si is conditionally Gaussian

with zero mean and variance, vi. We only observe si’s and all the variables that

constitute the GMC are latent.

In this model, we cannot marginalise p(s), so, do not have a way to optimise the

hyperparameters, a, using score matching or maximum pseudolikelihood. However,
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Figure 4.19. A Gamma chain with Gaussian observations.

contrastive divergence is applicable to this case as explained in Section 2.2.2. The

expression for the gradient is given as

CDn = − 〈log π(s,v, z; a)〉p(v,z|s,ak) + 〈log π(s,v, z; a)〉pn(s,v,z|ak)

where ak denotes the current value of the hyperparameters, pn(v, z|s, ak) is the distri-

bution of n-step reconstructions. The expectation in the first term is approximated

using samples drawn from p(v, z|s, ak).

In Figure 4.20, we compare ML and CD estimations of hyperparameters of a

chain with N = 1000. We used MCEM with 500 samples to obtain the ML solutions.

Similarly, CD uses 500 samples and 1-step reconstructions. Although both methods

are stochastic, we observe that CD follows more distorted paths; but, the results are

close to those of ML. Again, the gain parameter and the stopping criterion should

be adjusted. Table 4.6 shows the average of mean squared errors obtained from 10

simulations. The fully-latent GMRF here is again based on the model in Figure 4.14.

All the variables in the GMRF are latent and we have observations, sν,τ , which are

conditionally Gaussian, N (sν,τ ; 0, vν,τ). Only CD can be applied to this case.

Table 4.6. MSEs of the estimates averaged over 10 experiments. In each experiment,

data are generated from the model with random hyperparameter values. Experiments

are repeated 10 times with different initial values and MSEs are calculated. the

average of these MSEs are presented in the table.

GMC GMRF

CD 0.86 ± 0.81 2.11 ± 1.26
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Figure 4.20. ML and CD estimates for a Gamma chain of length 1000. The chain was

generated using the hyperparameter values aw = 2 and ae = 4. b is fixed at 1.

4.2.2. Audio Experiments

We performed two types of audio experiments as in Section 4.1: denoising (with

stationary and non-stationary noise) and single-channel source separation. In these

experiments, we modelled the prior distributions of time-frequency coefficients of au-

dio sources with GMRFs. Inference is carried out using the Gibbs sampler and the

hyperparameters of the model are optimised using contrastive divergence. The audio

model does not make any assumptions about the structure of the dependencies (e.g.,

vertical or horizontal) and is fully adaptive.

Throughout these audio experiments, we used audio recordings of 6-10 seconds

duration and transferred them into MDCT domain with 512 frequency bins. MDCT

is an orthogonal transformation, so, denoising and source separation problems are

equivalent in time and transfer domains.

The first experiment is denoising where the noise is white Gaussian. The vari-

ances of source coefficients are modelled with a GMRF, the coefficients are zero mean

Gaussians conditional on these variances and we have the noisy observations of these
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coefficients

sν,τ ∼ N (sν,τ ; 0, vν,τ) (4.20)

xν,τ ∼ N (xν,τ ; sν,τ , r) (4.21)

where r is the noise variance, ν and τ denotes frequency and time indices, respectively.

During the inference using the Gibbs sampler, we run an optimisation step at

every Ni iterations. The objective function that CD minimises becomes

CDn = − 〈log π(x, s,v, z, r; a)〉p(s,v,z,r|x,ak) (4.22)

+ 〈log π(x, s,v, z, r; a)〉pn(x,s,v,z,r|ak) (4.23)

in this problem. The Ni samples drawn by the Gibbs sampler are used to approximate

the expectation in the CD gradient. Then, 1-step reconstructions for both observed

and latent variables are generated to evaluate the second term. The pseudocode of the

overall algorithm is given in Appendix C.

In Figure 4.21, we present the result of a denoising experiment. On the left, we

see the spectrogram of the observed signal, which is obtained by adding noise onto a

clean speech recording in order to be able to judge the denoising performance. The

spectrogram of the reconstruction, i.e., the mean of p(s|x, a) that we infer, is depicted

on the right. The reconstructed signal (by inverse MDCT) is clean and sounds natural,

i.e., no artefacts exist. Another thing to mention is that, the optimal hyperparameters

that were found by CD have high vertical and low horizontal values as one would expect

looking at the spectrogram.

In Table 4.7, we present the results of three denoising experiments including the

one above. Here, we compare the performance of two models based on GMRFs and

GMCs according to the reconstruction SNRs, the ratio of the power of the original

signal to that of the estimation error, of their reconstructions. Two audio models can
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(b) Reconstructed audio clip

Figure 4.21. Result of denoising a speech recording with white Gaussian noise. The

original source is the first 8 seconds of “The Gift” by “The Velvet Underground”

sampled at 8kHz.

be obtained using GMCs: a horizontal model to couple the variance variables along the

time frames and a vertical model to tie them along the frequency axis. Table 4.7 shows

that slightly better results are obtained by GMCs in terms of SNR. But we are indecisive

about the significance of these numbers, especially after listening to the results. On the

contrary, the reconstructions by GMCs contain some artefacts, at higher frequencies in

general, that are not found in the reconstructions by GMRFs. Considering that GMC

results are the best of two models (vertical (V) and horizontal (H)) and hyperparameter

optimisation in these methods can be successfully performed using MCEM, we can say

that the optimisation of hyperparameters of a GMRF corresponds to model selection

between horizontal and vertical models. Of course, the audio model with GMRFs is

more general than these two models; it can define a loose dependency along one axis

while stressing the dependencies along the other.

We also performed denoising in the existence of non-stationary noise. We mod-

elled the noise parameters with a horizontal GMC. We generated noise using this model

and added onto the original signal:

xν,τ ∼ N (xν,τ ; sν,τ , rν,τ ) (4.24)
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Table 4.7. Reconstruction SNRs assessed in the denoising of three artificially noised

audio signals. The second column shows the amount of noise added. Third and

fourth columns contain the reconstruction SNRs of the GMC and GMRF models,

respectively. The letters in the parentheses denote the type of the GMC used: v for

vertical, h for horizontal.

SNR GMC SNR GMRF SNR

Speech 17.5 20.79 (V) 20.77

Piano 3 8.92 (H) 8.79

Guitar 3.9 8.66 (H) 8.53

The result of this experiment is presented in Figure 4.22. Here, the hyperparameters

of the source model are optimised using CD. The Gamma chain that constitutes the

noise model is a normalised model and its optimisation is carried out using MCEM as

was done in Section 4.1.
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(b) Reconstructed audio clip

Figure 4.22. Denoising a speech recording with non-stationary noise (1.4dB SNR).

The reconstruction SNR is 6.4dB.

With the same source and noise models, we separated drill noise from speech. The

two signals are artificially mixed, and the spectrogram of this mixed signal is given in

Figure 4.23a. The horizontal noise model is not sufficient for the drill noise, because it

has both horizontal and vertical dependency in its spectrogram. The reconstruction in

Figure 4.23b shows that at least the horizontal components of the noise are removed.
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(b) Reconstructed audio clip

Figure 4.23. Denoising a speech recording with drill noise (0dB SNR). The

reconstruction SNR is 3.2dB.

We performed some single-channel source separation experiments on music signals

to separate tonal and percussive components. We used a GMRF based audio model

for the tonal source and a vertical GMC model for the percussion. The overall model

is similar to the one above. The hyperparameters of the GMRF are estimated using

CD. Starting from random values, the GMRF ended up with prominent horizontal

hyperparameters, which is expected in a tonal source. GMC optimisation is carried

out using MCEM. In Tables 4.83 and 4.94 , we compared the results with those in

Section 4.1.3.2 where the sources are modelled with one horizontal and one vertical

GMCs.

Table 4.8. Single-channel source separation results on a mixture of guitar and drums

ŝ1 ŝ2

SDR SIR SAR SDR SIR SAR

GMC -4.23 -2.42 4.82 1.34 13.13 1.85

GMRF -0.85 3.5 2.74 7.67 10.61 11.11

The reconstructions of the tonal sources (denoted as ŝ1) with GMRFs are higher

3A mixture of 6-second excerpts from “Matte Kudasai” by King Crimson and “Territory” by
Sepultura sampled at 16kHz.

4A mixture of 8-second excerpts from “Vandringar I Vilsenhet” by Änglag̊ard and “Moby Dick”
by Led Zeppelin sampled at 16kHz.
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Table 4.9. Single-channel source separation results on a mixture of flute and drums

ŝ1 ŝ2

SDR SIR SAR SDR SIR SAR

GMC -7.74 -6.19 4.62 -1.14 16.62 -0.97

GMRF -4.27 -1.61 3.0 5.59 19.82 5.8

than the GMCs in terms of SDR and SIR. Actually, the reconstructions are not very

different from each other perceptually, but the GMRF results sound more natural and

without artefacts.

4.3. NMF Using GMCs

In our experiments regarding NMF, we used the recordings from the previous

sections. Magnitude spectrograms are obtained using STFT, with non-overlapping

windows of length 1024. Consequently, we work on spectrograms with 513 frequency

bins and roughly 120-140 time frames. Phases of the original signal are stored and

added to each estimated source before reconstruction.

The unsupervised NMF method infers the posterior distributions of the T, V

and Si, i = 1 : I matrices using the Gibbs sampler. The hyperparameters of the model

are also estimated during the inference, using the Metropolis algorithm with Gaussian

proposal distributions. The only input to the model, apart from X, are the number

of components for each source: Iton, Iperc and Ibass. The model is based on Poisson

observations and needs integer-valued X matrices. Magnitude spectrograms of audio

signals have a large number of elements between zero and one. In order to decrease

the effect of round-off error, we multiply the X matrix with a constant C and round.

Estimated components are divided to C accordingly.

We made use of both manually mixed percussive and tonal signals and original

recordings where we do not have the individual sources. First type of examples enables

us to assess the performance using objective criteria such as signal to distortion ratio



76

X
ton

 

 

20 40 60 80 100 120

50

100

150

200

250

300

350

400

450

500

−6

−5

−4

−3

−2

−1

0

1

2

3

4

(a) Tonal Signal

X
tran

 

 

20 40 60 80 100 120

50

100

150

200

250

300

350

400

450

500

−6

−5

−4

−3

−2

−1

0

1

2

3

4
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(d) Percussive Estimate

Figure 4.24. Sources estimated from a mixture of flute and drums recording.

(SDR), signal to interference ratio (SIR) or signal to artefacts ratio (SAR) [98]. For

the latter type, we judged on the performance perceptually.

In Figure 4.24, we present the spectrograms of the separated sources from a mixed

signal of flute and drums. On the top row, spectrograms of the original sources are

given. Below them are the corresponding estimation obtained by our extended NMF

model. In this experiment we used ten components for the tonal source (Iton = 10),

six components for the percussive sources (Ibass = Iperc = 3).

We compared the performances of our two models with the previous two models

in Tables 4.10 and 4.11. The results show that our extended model (UNMF-e) performs

better separation than the other models. GMRF results are also successful and has the
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highest SAR values in one of the experiments. According to the objective performance

criteria, our simpler model (UNMF) performs very poorly. However, by listening to

the reconstructed signals, we see that the problem mainly lies in assigning the bass

drum to the wrong source.

Table 4.10. Single-channel source separation results on a mixture of guitar and drums.

ŝton ŝtran

SDR SIR SAR SDR SIR SAR

GMC -4.23 -2.42 4.82 1.34 13.13 1.85

GMRF -0.85 3.5 2.74 7.67 10.61 11.11

UNMF -5.02 -4.40 9.44 -1.58 13.67 -1.26

UNMF-e -0.32 5.84 1.88 7.46 13.53 8.89

Table 4.11. Single-channel source separation results on a mixture of flute and drums.

ŝton ŝtran

SDR SIR SAR SDR SIR SAR

GMC -7.74 -6.19 4.62 -1.14 16.62 -0.97

GMRF -4.27 -1.61 3.0 5.59 19.82 5.8

UNMF -13.82 -13.48 11.11 -7.26 -2.69 -0.84

UNMF-e 6.03 15.50 6.67 15.72 24.15 16.41
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5. CONCLUSIONS

In this thesis, we have introduced GMCs and GMRFs, which are generic and flex-

ible models to define prior structures that capture general properties of audio signals.

We modelled the variances of time-frequency coefficients of audio signals with these

models to ensure positive correlation between consecutive coefficients. By this way,

temporal and/or spectral smoothness of time-frequency representations is conserved.

We also used GMCs to model the dependencies in excitation and template vectors in

source separation using NMF.

GMCs couple the variances in one direction of the spectrogram. In tonal audio

signals there is a high correlation between the variances along the time axis, whereas

in percussive signals the correlation is higher along the frequency axis. It is suitable to

model these signals with horizontal and vertical GMCs, respectively. But, in general,

adjacent coefficients are correlated across both time and frequency axes. Since GMRFs

couple the variance variables in both directions, they are suitable to model general audio

sources.

Both GMCs and GMRFs are conditionally conjugate when they are used to model

the variances of an audio signal along with a Gaussian generative model for the source

coefficients. As a result, inference of the latent variables in this model is very easy

using variational Bayes and the Gibbs sampler. For GMCs, it is also possible to regard

the model as a dynamic system and apply Sequential Monte Carlo methods for the

inference.

While the dependency is existent along both axes, the strength of this dependency

is not a priori known. This fact makes the optimisation of the coupling parameters of

the models crucial during the inference.

In GMCs, the optimal model can be obtained using the Monte Carlo EM algo-

rithm. The run time of the algorithm is generally several hours. Sequential Monte



79

Carlo performs as well as the Gibbs sampler, but with fewer samples. One problem

with SMC methods is to adapt a propagation scheme due to the offline nature of the

problem as we handle. Optimisation with variational Bayes is not consistent. Although

VB works very well and fast when it runs on the “correct” parameters, the optimised

hyperparameters are not guaranteed to increase the performance, because the optimi-

sation of the variational lower bound does not correspond to the optimisation of the

true likelihood.

GMRFs encode non-normalised probability distributions; so, optimisation of their

hyperparameters cannot be directly carried out using a straightforward maximum like-

lihood estimation. We have reviewed three methods that deal with such cases: pseu-

dolikelihood, score matching and contrastive divergence. Except for contrastive diver-

gence, these former methods are not designed for models containing latent variables.

We performed several source separation experiments where the variances of source

coefficients are modelled with GMRFs and sources are assumed conditionally Gaussian.

During the inference, the hyperparameters are optimised using CD. The results show

that CD estimates are consistent with our expectations and lead to successful recon-

structions. However, there are some disadvantages of CD, as well. For example in

the case of latent variables, at each gradient evaluation we have to run full MCMC

iterations to approximate an expectation. This makes the overall method too costly.

In addition, selection of the gain parameter and the stopping criterion is important

in the success of the optimisation. It would be better to find current optimal values

at the end of each iteration rather than evaluating the gradient. For this reason, we

will further investigate pseudolikelihood and score matching methods to adapt them

to latent variable models.

Our audio model based on GMRFs captures the spectral dependency of the source

coefficients and is flexible such that it can emphasise the prominent dependency struc-

tures of different audio sources. Without any information about the nature of the

audio source, we can find the appropriate dependency model for that source. With

the audio models that define more specific dependency structures, such as GMCs with
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vertical and horizontal structure, a model selection step is needed. However, GMRFs

are flexible so that model selection is not needed.

We also proposed a model based on GMCs to separate percussive and tonal

sources from single-channel audio signals via partitioning the spectrogram using NMF.

The model makes use of some basic properties of the spectral behaviour of musical

instruments. The separation process is totally unsupervised, i.e. there is no need to

learn the template vectors from training data or manual assignment of each component

to sources. The only parameters that should be set are the number of components each

source will have. However, this is not a critical decision. Setting a higher number of

components to a source than that is actually needed does not change the performance

very much.

The inference of the parameters of the model is carried out using the Gibbs

sampler. Good results can be obtained even using 100 MCMC steps. Since the hy-

perparameters are estimated using Metropolis algorithm, it is better to use more steps

if the rejection rate is high. Our method does not include model selection, e.g., for

the number of components. Estimation of marginal likelihood can be costly with the

Gibbs sampler. Variational Bayes can be used for faster inference. In that case, model

selection can be carried out using the variational lower bound of the marginal likeli-

hood.

To summarise, in this thesis, we introduced two models, GMCs and GMRFs, in

order to define prior distributions for non-negative and locally dependent variables. We

built two audio source models in which the dependencies among the time-frequency

coefficients are captured at the variance level, by modelling the variances using GMCs

and GMRFs. We obtained successful results in denoising and single-channel source

separation problems. With GMRFs, it is possible to get slightly better results according

to both objective and subjective criteria. For single-channel source separation, we

proposed another model which makes use of Gamma and GMC prior distributions in

an NMF setting. With this model, we got even better quality reconstructions. In

addition, the computational complexity of inference on this model is much less than
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the other two models. But, still, the first two models are general audio source models

and their applicability is not limited to source separation.

The optimisation in GMRFs is an important problem. In this thesis, it is carried

out using CD, since it is the only method that can be used in models containing latent

variables. It would be very profitable to extend SM for such cases, because it is a

locally consistent estimator. For CD, consistency cannot be taken for granted.

GMRFs are very general models. The topology we used in this thesis captures

local dependencies. Other topologies which introduce other dependencies, e.g., between

the harmonics, can also be considered for audio modelling. GMRFs can also be used

to model interdependent template vectors in source separation using NMF.
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APPENDIX A: Standard Distributions

The probability density functions, sufficient statistics, and entropies of the stan-

dard distributions used in this thesis are given below.

Gaussian.

N (x; µ,Σ) ≡ exp

(

−1

2
xTΣ−1x + µTΣ−1x − 1

2
µTΣ−1µ − 1

2
log |2πΣ|

)

〈x〉N = µ

〈xxT 〉N = Σ + µµT

H [N ] ≡ −〈logN〉N =
1

2
log |2πeΣ|

Gamma.

G(x; a, b) ≡ exp

(

(a− 1)logx− 1

b
x− log Γ(a) − a log b

)

〈x〉G = ab

〈logx〉G = Ψ(a) + log b

H [G] ≡ −〈logG〉G = −(a− 1)Ψ(a) + log b+ a+ logΓ(a)

Inverse Gamma.

IG(x; a, b) ≡ exp

(

−(a + 1)logx− b

x
− log Γ(a) + a log b

)

〈1/x〉IG =
a

b

〈logx〉IG = −(Ψ(a) − log b)

H [IG] ≡ −〈logIG〉IG = −(a + 1)Ψ(a) + log b+ a + logΓ(a)
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APPENDIX B: Denoising with GMCs

Algorithm 1 GMC DENOISE GIBBS EM(x, Nsamples)

Initialise a, v(0), r(0)

Set Nburn in

repeat

for i = 1 : Nsamples do

Draw z(i) from p(z|v(i−1), a)

Draw s(i) from p(s|x, r(i−1),v(i−1))

Draw v(i) from p(v|z(i), s(i), a)

Draw r(i) from p(r|x, s(i))

end for

repeat

Set ∂logL =
Nsamples
∑

i=Nburn in

∂ log π(x, s(i),v(i), z(i), r(i); a)

∂a

Set ∂2logL =
Nsamples
∑

i=Nburn in

∂2 log π(x, s(i),v(i), z(i), r(i); a)

∂a2

a = a − ∂logL/∂2logL

until Change in a is small

until Overall change in a is small
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APPENDIX C: Denoising with GMRFs

Algorithm 2 GMRF DENOISE GIBBS CD(x, Nsamples)

Initialise η, a, v(0), r(0)

Set Nburn in

repeat

for i = 1 : Nsamples do

Draw z(i) from p(z|v(i−1), a)

Draw s(i) from p(s|x, r(i−1),v(i−1))

Draw v(i) from p(v|z(i), s(i), a)

Draw r(i) from p(r|x, s(i))

end for

Set ∂CD = −
Nsamples
∑

i=Nburn in

∂ log π(x, s(i),v(i), z(i), r(i); a)

∂a
Draw x′ from p(x|s, r)
Set v(0) = v(Nsamples) and r(0) = r(Nsamples)

for i = 1 : Nsamples do

Draw z(i) from p(z|v(i−1), a)

Draw s(i) from p(s|x′, r(i−1),v(i−1))

Draw v(i) from p(v|z(i), s(i), a)

Draw r(i) from p(r|x′, s(i))

end for

Set ∂CD = ∂CD +
∂ log π(x′, s(Nsamples),v(Nsamples), z(Nsamples), r(Nsamples); a)

∂a
a = a − η ∂CD

Update η

until Change in a is small
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APPENDIX D: NMF Using GMCs

Below we give the pseudocode of single-channel source separation method which

uses GMCs as prior distributions in NMF. Θ denotes the vector of all hyperparameters

of the model, TZ and VZ represents the auxiliary variables of the GMCs in the template

and excitation models. Ston and Stran are the estimated magnitude spectrograms of

the tonal and percussive sources.

Algorithm 3 UNMF-e (X, Iton, Ibass, Iperc, Nsamples)

I = Iton + Ibass + Iperc

Set Nburn in

Initialise T, TZ , V, VZ and hyperparameters, Θ

for n = 1:Nsamples do

Draw Sn, Tn, Tn
Z , Vn and Vn

Z from full conditionals

for each hyperparameter Θ do

Propose Θ′, calculate acceptance probability aΘ

Accept Θ′ with probability aΘ

end for

end for

for i = 1:I do

Ŝi =
∑

Nsamples
i=Nburn in+1 Sn

i /(Nsamples −Nburn in)

end for

Ston =
∑Iton

i=1 Ŝi

Stran =
∑I

i=Iton+1 Ŝi
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