
INCREMENTAL CONSTRUCTION OF COST-CONSCIOUS ENSEMBLES USING

MULTIPLE LEARNERS AND REPRESENTATIONS IN MACHINE LEARNING

by

Mehmet Aydın Ulaş

B.S., in Computer Engineering, Boğaziçi University, 1999

M.S., in Computer Engineering, Boğaziçi University, 2001

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2009

dedicated to my son Dağhan

“Hoş geldin oğlum”

iv

ACKNOWLEDGEMENTS

I want to thank Prof. Ethem Alpaydın for his invaluable guidance and support

in this thesis, and his contribution to my undergraduate and graduate education. I

want to thank Prof. Lale Akarun and Prof. Günhan Dündar for their comments and

feedback throughout the preparation of this thesis which greatly improved this work. I

want to thank Prof. Muhittin Gökmen and Prof. Fikret Gürgen for their participation

in my thesis jury and helpful comments; Mehmet Gönen, Murat Semerci and OT∗ for

their technical contributions to this thesis and Berk Gökberk for providing me the face

recognition data set. Without them, some part of this thesis would not be complete.

I am grateful to the inspiring atmosphere of our department and the joy of having

dear friends; with their spiritual support, I had the motivation to complete this thesis.

In particular, I want to thank Prof. Cem Ersoy, Oya Aran, Rabun Koşar, Burak

Gürdağ, Atay Özgövde, İlker Demirkol, Itır Karaç, Burak Turhan, Ali Salah, Berk

Gökberk, Gürkan Gür and Koray Balcı. I want to express my sincere gratitudes to

Gülçin Gürdağ and Gamze Esen for their support for my wife during hard times, which

is more difficult than completing this thesis.

I want to thank Jorge Cham for his excellent comics. I also want to thank the

director, script writer and the cast of TV show Scrubs; especially Dr. Cox, TheTodd,

Dr. Kelso, Jan Itor, Nervous Guy and Ted.

Finally, and most of all, I want to thank my parents Fadime and Nurettin, my

brothers Aytekin and Sedat, my grandfather Yusuf, and my dear wife Özlem. Without

their patience and support, this thesis would not be.

This work has been supported by Boğaziçi University Scientific Research Project

05HA101, Turkish Scientific Technical Research Council TÜBİTAK EEEAG 104E079

and the State Planning Organization of Turkey DPT/03K120250.

v

ABSTRACT

INCREMENTAL CONSTRUCTION OF COST-CONSCIOUS

ENSEMBLES USING MULTIPLE LEARNERS AND

REPRESENTATIONS IN MACHINE LEARNING

In this thesis, the main purpose is to combine multiple models to increase ac-

curacy, while at the same time keeping a check on complexity. Towards this aim, we

propose two methods, and these methods are tested by simulations using well-known

classification algorithms on standard uni- and multi-representation data sets.

In the literature, methods have been proposed to create diverse classifiers. These

methods change: (i) Algorithms used for training, (ii) Hyperparameters of the algo-

rithms, (iii) Training set samples, (iv) Input feature subsets, and (v) Input represen-

tations. In this thesis, we show that these methods are not enough to decrease the

correlations among base classifiers. Furthermore, we present the relation between error

and correlation for fixed combination rules and a linear combiner, using three different

cases. The cases are: (i) Independence, (ii) Equicorrelation, and (iii) Groups. We see

that, the sum rule and the trained combiner show the most robust behavior to changes

in correlation. Previous studies in the literature assume that the base classifiers are

independent, the analysis in the presence of correlation, as presented in this thesis, is

novel.

To remove the correlation between classifiers, we propose two algorithms to con-

struct ensembles of multiple classifiers: (i) An incremental algorithm, named Icon

which generates an ensemble of multiple models (representation/classifier pairs) to im-

prove performance, taking into account both accuracy and the concomitant increase in

cost, i.e., time and space complexity, and (ii) An algorithm which post-processes be-

fore fusing, using principal component analysis (Pca) and linear discriminant analysis

vi

(Lda) to form uncorrelated metaclassifiers from a set of correlated experts.

Icon chooses a subset among correlated base classifiers. The algorithm has three

dimensions: (i) Search direction (forward, backward, floating), (ii) Model evaluation

criterion (accuracy, diversity and complexity), and (iii) Combination rule (fixed rules

or a trained combiner). Our simulations using fourteen classifiers on thirty eight data

sets show that, accuracy is the best model selection criteria and sum rule is the best

combination rule. Other approaches create less preferred results compared to these

two. There has been studies of subset selection in the literature, but the work in this

thesis has a larger number of classifiers and data sets and its scope is wider. Using this

method, we create ensembles which are more accurate than the single best algorithm

and using all algorithms; and which are not worse than the optimal subset using smaller

number of base classifiers. When applied to multi-representation data sets, we see

that Icon automatically chooses classifiers which combine different representations

and generates a set of complementary classifiers.

Pca which uses principal component analysis, and Lda which uses linear dis-

criminant analysis create uncorrelated metaclassifiers from correlated base classifiers

and these metaclassifiers are combined using a linear classifier. This method is success-

ful with a small number of components and has the same accuracy as combining all

classifiers. The work in this thesis allows generalization to multiple classifiers, combines

multiple representations, allows knowledge extraction, and is novel in these respects. In

this method, principal component analysis is more successful than linear discriminant

analysis.

As the overall result, in comparing these two methods which get rid of correlation,

we see that if the aim is to decrease complexity, then subset selection is better; if the

aim is higher accuracy, we should prefer metaclassifiers which extract knowledge and

has redundancy.

vii

ÖZET

YAPAY ÖĞRENMEDE ÇOKLU ÖĞRENİCİ VE

GÖSTERİMLERİ KULLANARAK MALİYET BİLİNÇLİ

KÜMELERİN ARTIRIMLI OLUŞTURULMASI

Bu tezde, gözetimli öğrenmede birden çok modelin, sınıflandırma başarısını

artıracak ve karmaşıklığı denetim altında tutacak bir şekilde birleştirilmesi amaçlan-

mıştır. Bunun için iki yöntem önerilmiş ve bilinen tek ve çok gösterimli veri kümeleri

üzerinde, standart sınıflandırıcılar kullanılarak yapılan benzetimlerle bu yöntemler sı-

nanmıştır.

Literatürde, birbirinden farklı sınıflandırıcılar üretmek için birçok yöntem öner-

ilmiştir. Bunların arasında, (i) Farklı algoritmalar, (ii) Farklı üstparametreler,

(iii) Farklı girdi altkümeleri, (iv) Farklı girdi gösterimleri ve (v) Öğrenme kümesinin

farklı örneklemlerini sayabiliriz. Bu tezde, bu yöntemlerin sınıflandırıcılar arasındaki

ilintiyi azaltmakta etkili olmadığını gösteriyoruz. Bunun yanında, ilinti ve hata arasın-

daki bağıntıyı ortaya koyarak, ilintinin üç değişik durumu için, sabit ve eğitilmiş bir-

leştirme kurallarının hatalarının nasıl değiştiğini gösterdik. Bu durumlar: (i) Bağımsız

sınıflandırıcılar, (ii) Eşilintili sınıflandırıcılar ve (iii) İlintili sınıflandırıcı gruplarıdır.

Yapılan benzetimlerde, toplama kuralının ve eğitilmiş doğrusal birleştiricinin, ilintiye

karşı en gürbüz davranışı gösterdiğini gözlemledik. Bu konuda yapılan önceki çalış-

malarda sınıflandırıcıların bağımsız oldukları varsayılmıştır, ilintili olan durumdaki in-

celemeler bu çalışmaya özgündür.

Taban sınıflandırıcılar arasındaki ilintiyi kaldırmak için iki algoritma öneriyoruz.

Bunlar: (i) Başarıyı artırırken aynı zamanda maliyeti, yani zaman ve bellek karmaşık-

lığını da göz önünde tutan, Icon isimli, artırımlı bir birleşik sınıflandırıcı oluşturma

algoritması ve (ii) Birleştirmeden önce ana bileşenler analizi ya da doğrusal ayırtaç

viii

analizi yardımıyla ardıl işlem yaparak ilintisiz üstsınıflandırıcılar üreten bir algorit-

madır.

Icon algoritması ilintili sınıflandırıcılar arasından altküme seçmektedir. Algorit-

manın üç boyutu vardır: (i) Arama yönü (ileri, geri, kayan), (ii) Model değerlendirme

ölçütü (başarı, çeşitlilik ve model karmaşıklığı) ve (iii) Birleştirme kuralı (sabit kurallar,

eğitilmiş doğrusal birleştirici). Otuz sekiz veri kümesi üzerinde, on dört sınıflandırıcı

kullanılarak yapılan benzetimlerde, model seçme ölçütü olarak başarının ve birleştirme

kuralı olarak da toplama kuralının en iyi olduğu sonucuna varılmıştır. Diğer yak-

laşımlar bu iki seçeneğe göre daha az yeğlenir sonuçlar vermektedir. Bilimsel yazında

daha önce de altküme seçme çalışmaları yapılmıştır, ama bu tezdeki çalışma diğer

çalışmalara göre, kapsam, veri kümesi ve sınıflandırıcı sayısı açısından daha geniştir.

Bu yöntem kullanılarak, en iyi taban sınıflandırıcıdan ve tüm sınıflandırıcıları kullan-

maktan daha başarılı sonuçlara ulaşılmış, en iyi altkümeden ise daha kötü olmayan

fakat daha basit olan birleşik sınıflandırıcılar üretilmiştir. Çok gösterimli veri kümeler-

ine uygulandığında, Icon’un otomatik olarak farklı gösterimlerle eğitilmiş ve birbirini

tamamlayan sınıflandırıcılar seçtiğini gözlemledik.

İlintili sınıflandırıcıların çıktılarını ilintisiz hale getirmek için temel bileşenler

analizi kullanan Pca ve doğrusal ayırtaç analizi kullanan Lda algoritmaları ilintisiz

üstsınıflandırıcılar oluşturmakta ve bu üstsınıflandırıcılar, doğrusal sınıflandırıcı kul-

lanılarak birleştirilmektedirler. Az sayıda üstsınıflandırıcı, bu yöntemin başarılı olması

için yeterli olmaktadır. Bu tezde yapılan çalışma, çok sayıda sınıfa genelleştirilebildiği,

çok gösterimli veri kümelerine uygulanabildiği ve bilgi özütleyerek sonuçların yorum-

lanabilmesini sağladığı için yeni bir çalışmadır. Bu yöntemde, temel bileşenler analizi,

doğrusal ayırtaç analizine göre daha başarılı olmuştur.

Genel sonuç olarak, ilintiyi ortadan kaldırmak için kullanılan bu iki yöntemin

karşılaştırılmasında, eğer amaç karmaşıklığı azaltmak ise, altküme seçmenin daha

iyi olduğu, başarının daha önemli olduğu durumlar içinse öznitelik çıkaran üst-

sınıflandırıcıların kullanılmasının daha öne çıktığı görülmüştür.

ix

LIST OF SYMBOLS/ABBREVIATIONS

Ck kth class

d Number of free parameters

D Input dimension

e Error

E Ensemble

K Number of classes

l Log-likelihood

L Number of classifiers

Mi Classifier i

N Number of instances in the data set

P (Ck|x) Posterior probability of class Ck given input x

P (Ck|x,M) P (Ck|x) estimated by classifier M

Q Q-statistics

S Number of components of Pca

x Input vector

X Input data set

α Confidence value

κ A diversity measure

λ Coefficient of the cost term

µ Average error

ρ Correlation coefficient

Acc Icon variant using accuracy

AIC Akaike’s Information Criterion

Best Combination of the single classifiers having best accuracy

BIC Bayesian Information Criterion

Corr Icon variant using correlation coefficient

Cv Icon variant using cross-validation

FP False Positive

x

Icon Incremental Ensemble CONstruction

knn k-nearest neighbor

LDA Linear Discriminant Analysis

Lda Metaclassifier constructed using Linear Discriminant Analysis

LP Linear Perceptron

Max Max rule for classifier combination

MDL Minimum Description Length

Mdl Icon variant using minimum description length

MDT Meta Decision Tree

Med Median rule for classifier combination

Min Min rule for classifier combination

mlp Multilayer Perceptron

MLR Multiresponse Linear Regression

Opt Subset with optimum validation accuracy

PCA Principal Component Analysis

Pca Metaclassifier constructed using PCA

Pro Product rule for classifier combination

Qstat Icon variant using Q-statistic

Rnd Combination of classifiers selected randomly

Sum Sum rule for classifier combination

svm Support Vector Machine

TP True Positive

xi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vii

LIST OF SYMBOLS/ABBREVIATIONS . ix

LIST OF FIGURES . xiv

LIST OF TABLES . xviii

1. INTRODUCTION . 1

1.1. Classifier Combination . 4

1.1.1. Notation . 4

1.1.2. Combination Methods . 4

1.2. Stacking . 8

2. ANALYSIS OF CORRELATION BETWEEN EXPERTS IN AN ENSEMBLE 11

2.1. Analysis of Fusion Rules . 11

2.1.1. Fusion Rules on Equicorrelated Classifier Ensembles 14

2.1.2. Effect of Multiple Groups . 15

2.2. Experimental Details . 18

2.2.1. Data Sets . 18

2.2.2. Base Classifiers . 18

2.2.3. Division of Training, Validation, and Test Sets 20

2.2.4. Pen-Based Digit Recognition . 21

2.3. Correlation Analysis on Real Data Sets 21

2.3.1. Estimating the Correlations of Classifiers 22

2.3.1.1. Correlations due to Hyperparameters 22

2.3.1.2. Correlations due to Algorithms 23

2.3.1.3. Correlations due to Sampling 24

2.3.1.4. Correlations due to Shared Input Features 24

2.3.1.5. Correlations due to Different Representations of the

Same Input . 25

3. INCREMENTAL CONSTRUCTION OF CLASSIFIER ENSEMBLES . . . 28

xii

3.1. Search Direction . 30

3.2. Ensemble Evaluation in Icon . 31

3.2.1. Cross-Validation (Cv) . 32

3.2.2. Minimum Description Length (Mdl) 32

3.2.3. Accuracy (Acc) . 33

3.2.4. Q-Statistic (Qstat) . 33

3.2.5. Correlation Coefficient (Corr) 34

3.3. Model Combination . 34

3.4. Ensemble of Classifiers . 36

3.4.1. Compared Ensembles . 36

3.5. Experimental Results . 37

3.5.1. Comparison of Search Methods 37

3.5.2. Initial Results . 39

3.5.2.1. Optdigits Data Set . 39

3.5.2.2. Nursery Data Set . 43

3.5.3. General Results . 46

3.6. Related Work . 51

3.7. Conclusions . 58

4. COMBINING REPRESENTATIONS . 59

4.1. Pen-Based Digit Recognition . 59

4.2. Face Recognition . 59

4.3. Neural Network Classifiers . 60

4.3.1. Pendigits Data Set . 61

4.3.2. Face Data Set . 62

4.3.3. Conclusions . 66

4.4. Support Vector Classifiers . 67

4.4.1. Pendigits Data Set . 67

4.4.2. Face Data Set . 75

4.4.3. Conclusions . 81

5. EXTRACTING METACLASSIFIERS FOR AGGREGATE DECISIONS . . 84

5.1. Comparison of Combination Rules on Real Data Sets 84

5.2. Extracting Metaclassifiers for Aggregate Decisions 85

xiii

5.2.1. Case Studies . 89

5.2.1.1. Pageblock Data Set 89

5.2.1.2. Spambase Data Set . 91

5.2.2. Overall Results . 92

5.2.3. Multiple Representations . 93

5.2.4. Related Work . 96

5.3. Conclusions . 97

6. CONCLUSIONS . 100

6.1. Contributions of This Thesis . 100

6.2. Overall Comparison . 103

6.3. Future Work . 107

APPENDIX A: STATISTICAL TESTS . 109

A.1. Tests for Comparing Individual Classifiers 109

A.1.1. k-fold paired t-test . 109

A.1.2. 5× 2 cv t-test . 110

A.1.3. 5× 2 cv F -test . 110

A.2. Tests for Comparing Algorithms over Multiple Data Sets 111

A.2.1. Sign Test . 111

A.2.2. Friedman Test and Nemenyi Test 111

A.2.3. MultiTest Algorithm . 112

REFERENCES . 113

xiv

LIST OF FIGURES

Figure 1.1. Two class problem with mixtures of Gaussians 2

Figure 1.2. Discriminants found by the combination rules 5

Figure 1.3. Stacking. x is the input, M1,M2, . . . , ML are the base classifiers

and f is the combination function 9

Figure 2.1. Effect of correlation on different fusion rules as a function of (a) p0

(L = 9) and (b) L (p0 = 0.6), for the case of equicorrelated experts,

for ρ = 0, 0.25, 0.5, 0.75 and 1 . 15

Figure 2.2. Effect of correlation on different fusion rules as a function of p0 for

the case of equicorrelated experts, for ρ = −0.1, 0.0 and 0.1, with

L = 9, σ = 0.1 . 16

Figure 2.3. Effect of intragroup correlation on the fusion rules for the four cases

of R1, R2, R3, and R4 . 18

Figure 2.4. Pendigits representations for digit four 22

Figure 2.5. The boxplot of correlations between folds of the fourteen algorithms

averaged over test sets of all data sets 24

Figure 2.6. Average correlations (over folds) of two algorithms, lnp and sv2, on

the test set, as a function of training set size 25

Figure 2.7. The boxplot of correlations between random input feature subsets

of the fourteen algorithms averaged over test sets of all data sets . 26

xv

Figure 2.8. Average correlations (over different randomly chosen input subsets)

of two algorithms, 3nn and ml1, on the test set, as a function of

input dimensionality . 26

Figure 3.1. Pseudocode of the forward searching Icon algorithm 30

Figure 3.2. Accuracy vs the number of classifiers on optdigits test 41

Figure 3.3. The ensemble found by Cv changes as the confidence level changes

on optdigits . 42

Figure 3.4. One of the decision trees learned by Dt on optdigits 42

Figure 3.5. Comparison of fixed .Sum and trained .Lin on nursery test 45

Figure 3.6. One of the decision trees learned by Dt on nursery 45

Figure 3.7. Graphical representation of post-hoc Nemenyi test results of com-

pared methods . 47

Figure 4.1. Four main face representations . 60

Figure 4.2. Test accuracy vs. log free parameters of single models and Icon

results on pendigits . 61

Figure 4.3. Test accuracy vs. log free parameters of single models and Icon

results on face . 64

Figure 4.4. Test accuracy vs. log free parameters of single models and

Mdl.Sum.F results on pendigits 73

xvi

Figure 4.5. Test accuracy vs. log free parameters of single models and Icon

results on face . 80

Figure 5.1. Graphical representation of post-hoc Nemenyi test results for fusion

rules . 85

Figure 5.2. The first five eigenvectors of the correlation matrix of all fourteen

classifiers averaged over all data sets 87

Figure 5.3. First five eigenvectors of the correlation matrix on the pageblock

data set . 90

Figure 5.4. Classification errors of base classifiers, Pca, Lda, Opt and All

on pageblock . 90

Figure 5.5. First five eigenvectors of the correlation matrix on the spambase

data set . 91

Figure 5.6. Classification errors of base classifiers, Pca, Lda, Best.1, Opt

and All on spambase . 92

Figure 5.7. Graphical representation of post-hoc Nemenyi test for Pca, Lda,

Best.1, and Opt . 93

Figure 5.8. Histogram of the number of components used Pca on all 38 data

sets . 94

Figure 5.9. The eigenvectors of pendigits visualized 95

Figure 5.10. Classification errors of base classifiers and ensemble methods on

pendigits . 96

xvii

Figure 6.1. Graphical representation of post-hoc Nemenyi test results for over-

all comparison . 104

Figure 6.2. Graphical representation of post-hoc Nemenyi test results for Mul-

tiTest . 105

Figure 6.3. MultiTest graph using test complexity 106

Figure 6.4. MultiTest graph using train complexity 107

xviii

LIST OF TABLES

Table 1.1. Fixed rules and the trained linear rule in classifier combination . . 4

Table 2.1. Properties of the data sets . 19

Table 2.2. Average correlations over all data sets 23

Table 2.3. Average correlation matrix between classifiers trained with the four

representations calculated on the test set 27

Table 3.1. Contingency table used by the measures of diversity 34

Table 3.2. The number of statistically significant accuracy wins/losses of

.F, .B, and .L over 38 data sets according to the criterion used

by Icon . 38

Table 3.3. Average ± standard deviation of the number of classifiers in ensem-

bles found by each search direction and optimization criterion . . . 38

Table 3.4. Average ± standard deviation of the number of search steps visited

by each search direction and optimization criterion 39

Table 3.5. Results on optdigits . 40

Table 3.6. Results on nursery data set . 44

Table 3.7. Pairwise comparison of accuracies using 5× 2 cv F -test 46

Table 3.8. Average ranks of compared methods 46

xix

Table 3.9. Average number of base classifiers (/discriminants) contained in dif-

ferent ensembles . 47

Table 3.10. Average similarity of base classifiers (discriminants) between ensem-

bles found by different methods . 49

Table 3.11. Comparison of accuracies (wins/losses over 38) of .Sum vs .Lin . . 49

Table 3.12. Work similar to Icon analyzed in five dimensions: (1) Aim, (2)

Optimization criteria, (3) Base classifiers, (4) Optimization method,

(5) Number of data sets . 52

Table 4.1. Results of individual models and Icon variants on pendigits 63

Table 4.2. Mdl results on pendigits as a function of λ 64

Table 4.3. Results of individual models and Icon variants on face 65

Table 4.4. Mdl results on face as a function of λ 66

Table 4.5. Results of individual models on pendigits 68

Table 4.6. Results of Sum.F and Pro.F using different model selection criteria

on pendigits . 69

Table 4.7. Results of Cv.F and Acc.F variants on pendigits 70

Table 4.8. Comparison of forward and backward search on pendigits 71

Table 4.9. Mdl.Sum.F results on pendigits as a function of λ 72

Table 4.10. Results of comparing Acc with Opt and All on pendigits 74

xx

Table 4.11. Results of individual models on face 76

Table 4.12. Results of Sum.F and Pro.F on face 77

Table 4.13. Results of Cv.F and Acc.F variants on face 78

Table 4.14. Comparison of forward and backward search on face 79

Table 4.15. Acc.Sum.F results on face as a function of λ 81

Table 4.16. Results of comparing Acc with Opt and All on face 82

Table 5.1. Pairwise comparisons of fusion rules 84

Table 5.2. Average correlations on the pageblock data set 89

Table 5.3. Average correlations on the spambase data set 91

Table 5.4. Pairwise comparisons of Best.1, Pca, Opt and All 93

Table 5.5. The proportion of variance explained and the eigenvectors of the

average correlation matrix . 94

Table 6.1. Pairwise comparison of accuracies using 5× 2 cv F -test 103

Table 6.2. Average ranks of compared methods 104

Table 6.3. Ranks of compared algorithms on each data set 105

Table 6.4. Ranks of compared algorithms on each data set continued 106

Table 6.5. Average ranks of compared algorithms using MultiTest 106

1

1. INTRODUCTION

Given a D-dimensional input x, the purpose of a classification algorithm is to

assign this instance to one of K classes: C1, . . . , CK . A classification algorithm first

builds a classifier given N training instances, then tries to estimate the class of a newly

presented example using this classifier. We can divide classification into two basic

approaches: generative and discriminative. Generative models try to estimate posterior

probability densities, P (Ck|x), and the unknown class according to these probability

estimates, whereas discriminative models learn a discriminant function from the data.

A classification algorithm tries to find a decision function which minimizes the error

on new data [1].

An example of a classification problem with two classes can be seen in Figure 1.1.

This is a two class problem, and the classes are represented with three and two Gaus-

sians respectively. The dotted black line shows the Bayes optimal discriminant that

separates these classes. We show the discriminants of three example classifiers: (i)

Linear perceptron, (ii) Support vector machine with radial kernel, and (iii) k-nearest

neighbor with k = 5.

It is well-known that there is no single classification algorithm that is always the

most accurate and various methods have been proposed to combine classifiers based

on different learning algorithms [2]. Each algorithm has a different inductive bias, that

is, makes a different assumption about the data and errs on different instances and by

suitable combination, the overall error can be decreased. Hence, research has focused

on combining these algorithms for better classification performance. Model combina-

tion however is no panacea and models in the ensemble should be carefully chosen for

error to decrease. In particular, model combination through averaging reduces vari-

ance [3], and hence error, but only if bias does not increase in the process, or if the

concomitant increase in bias is small with respect to the decrease in variance. It is

therefore essential that only those models that contribute to accuracy are added and

the poorly performing ones are weeded out. Besides its effect on statistical accuracy,

2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

lnp

5nn

bayes

svr

Figure 1.1. Two class problem with mixtures of Gaussians. Dotted line is the Bayes

optimal discriminant. The other lines show the discriminants learned by a linear

perceptron (lnp), 5-nearest neighbor (5nn) and support vector machine with a

Gaussian kernel (svr)

3

each additional model increases the space and computational complexity. A new model

may also be sensing/extracting a costly representation which can be saved if the model

is considered redundant.

When one tries to fit a model on data, one should predict both the structure of the

model and the parameters of the model. Most machine learning algorithms can calcu-

late the parameters of a model given a structure, but selecting the model is carried out

by the user (system designer) and so is subjective. In this thesis our aim is to combine

multiple models to reach better accuracy, and at the same time, we consider the cost of

the ensemble. It is also known that different representations (from different sensors) of

the same object/event make different characteristics apparent and fusing these different

representations improve accuracy [4]. Though combining multiple models—we define a

model as a pair of representation and classifier induced by a learning algorithm—may

improve accuracy, there is also the additional cost of processing, i.e., the time and

space (memory) complexity of the classifier using the representation. Existing model

combination algorithms aim to improve accuracy without worrying about the cost of

using the ensemble.

In Multiexpert methods, learners work in parallel on some data and a model

combination method combines the outcomes of these algorithms to come up with the

final decision. Multistage methods use a serial approach, where each learner uses data

formed after the previous learner has been trained. The overall classifier is called an

ensemble classifier which is composed of component classifiers. It is possible to use

crisp (0/1) outputs of base classifiers, or use soft outputs (it is safe to assume that

these values are between 0 and 1) for classifier combination. In this thesis, we use the

posterior probabilities of base classifiers for combination and evaluation. Throughout

the thesis, the words “learner”, “classifier” and “expert” are used interchangeably. In

the following section, we first explore in brief the widely used combination strategies;

we then continue with a chronological examination of them in more detail.

Besides ensemble construction methods, there is another type of ensemble forming

strategy, which we do not discuss further in this thesis. These are selection methods

4

which choose a classifier (or a few classifiers) from a larger set dynamically for each

input instance [5, 6]. These methods are akin to mixture of experts [7] and use a

neighborhood measure to divide the input space into regions of expertise of the different

base classifiers.

1.1. Classifier Combination

1.1.1. Notation

Let P (Ck|x) denote the true posterior probability of class Ck given instance x,

and P (Ck|x,M) denote the posterior probability of class Ck estimated by classifier M .

The Bayes optimal class is then calculated by argmaxk P (Ck|x) and the estimated class

for classifier M is calculated by argmaxk P (Ck|x,M).

1.1.2. Combination Methods

In the literature, there are several methods for calculating the overall output

from the outputs of learners in an ensemble (committee). The simple method is to use

voting [8] which corresponds to fixed rules. Suppose that the ensemble is denoted by

E and we have L base classifiers Mi, i = 1 . . . L. The fixed rules used in the literature

are given in Table 1.1 [8]:

Table 1.1. Fixed rules and the trained linear rule in classifier combination

Sum: P (Ck|x, E) =
∑L

i=1 P (Ck|x,Mi)

Max: P (Ck|x, E) = maxi P (Ck|x,Mi)

Min: P (Ck|x, E) = mini P (Ck|x,Mi)

Med: P (Ck|x, E) = median{P (Ck|x,M1), . . . , P (Ck|x,ML)}
Pro: P (Ck|x, E) =

∏L
i=1 P (Ck|x,Mi)

Lin: P (Ck|x, E) =
∑L

i=1 wiP (Ck|x,Mi) + w0

We can see the results of combination rules on our toy problem in Figure 1.2.

Since Max and Min rules are the same on two class data sets, one of them is shown.

5

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

bayes

MAX
LIN

SUM

MED

Figure 1.2. Discriminants found by the combination rules (Table 1.1) on the same

problem of Figure 1.1

Voting or sum rule takes an average over multiple models and can be used to

average over hyperparameters, for example, the initial weights of a multilayer percep-

tron (mlp). In stacking [9], the individual classifiers are combined using a second layer

classifier which estimates the real output from the outputs of individual classifiers. In

our notation, this corresponds to:

P (Ck|x, E) = f(P (Ck|M1,x), . . . , P (Ck|ML,x)),

where f denotes another classification algorithm which is called L1 in stacking (We use

a linear combiner for stacking purposes in this thesis).

Methods based on resampling from a single data set, such as bagging [3] and

AdaBoost [10] are not used to combine multiple representations. Bagging [3] is the

abbreviation of Bootstrap Aggregating. As can be deduced from the name, the basic

idea is to generate L data sets from a given data set by sampling with replacement.

Then a majority vote over the L learners is the final prediction. The vital element of the

6

algorithm is the instability of the learner. If perturbing the training set can change the

outcome of the learner significantly, then bagging can improve accuracy. The simple

idea of AdaBoost is to find instances that are incorrectly classified in one iteration

and give them a higher probability to be selected in the next iteration. Freund and

Schapire [10] compare performances of bagging and AdaBoost. A short introduction

to boosting and its relationship with support vector machines is given in [11]. In a

mixture of experts architecture, models are local and a separate gating network selects

one of the local experts based on the input [7].

Breiman constructs another method called arcing in [12]. The methods work over

unstable learners whose accuracy can change dramatically when perturbed. The basic

idea of arcing and bagging is to reduce variance. According to Breiman [12], arcing

is better than bagging; like bagging, arcing also constructs L classifiers but (L′ + 1)st

classifier depends on the previously trained L′ classifiers. In [13], Breiman defines a

prediction game and defines arcing algorithms as finding good game strategies.

The advantage of using multiple representations is shown in [4, 14] where for

handwritten digit recognition, combining two representations, leads to more accuracy

than any of the alone. Gökberk [15] et al. show that using inputs from different face

modalities achieves better accuracy. Alpaydın [16] presents methods for combining

multiple representations and learners. Uni-representation and Multi-Representation of

a data set has been considered. If uni-representation is used, different learners should

be used. If multi-representation is used, either the sensors are different or different

features have been extracted from the same data.

Cascade Generalization, a method for combining multiple classifiers is introduced

in [17]. It is an iterative composition of classifiers. At each stage a new classifier is

generated. The input space is extended by adding new attributes. The new attributes

are obtained by the generated base classifier. Suppose that there are K classes. The

second level training set is constructed using the original training set with K more

attributes which are the posterior probabilities of each class, P (Ci|x) according to the

first classifier. This is a two step procedure but it can be extended sequentially and

7

in parallel as stated in [17]. In [18], Gama extends this idea locally, in other words

applying the idea at each iteration of a divide and conquer algorithm. At each iteration

of the algorithm, the input space is reconstructed by adding new attributes.

Alpaydın [19] trains multiple condensed nearest neighbors and takes a vote over

them which has accuracy higher than running nearest neighbor algorithm on the whole,

uncondensed data [19].

Bay proposes to use voting over neural network classifiers who operate on different

subsets of features of data [20]. This method is similar to the random subspace method

[21].

Merz et al. [22] propose a new combining algorithm called SCANN based on

Correspondance analysis and stacking. The algorithm focuses on building a new repre-

sentation from the outputs of base classifiers and combining them. The new represen-

tation is captured in a space of uncorrelated dimensions. The nearest mean algorithm

is then used within the resulting representation.

Bauer and Kohavi [23] give an empirical comparison of ensemble algorithms (bag-

ging, boosting, and variants). The paper works on the question as to when and why

these algorithms, which use perturbation, reweighting and combination techniques af-

fect classification error.

A multistage learner, built as a cascade of multi-layer perceptron (mlp) and knn

(k-nearest neighbor) is proposed in [24]. mlp is a distributed algorithm which learns the

“rule” (globally) and knn is a local algorithm which catches and learns the “exceptions”

of mlp. In [25], Kaynak and Alpaydın present results with the cascading algorithm.

The main advantage of cascading algorithm over other methods is that not all of the

classifiers are trained with the whole data; this reduces complexity and cost. Since

complex learners are trained with the exceptions only, the amount of data for training

the next level learner decreases, which reduces complexity. In [26], the cascading algo-

rithm is carried one step further in constructing a new algorithm called REx (Standing

8

for Rules and EXceptions). In the cascading algorithm, voting is used to combine

learners. In REx, the combiner is also trained. Given any input x, if the maximum

posterior probability P (Ci|x) is greater than a certain threshold θ (0 < θ < 1) then

x is said to be covered by the rule, else x is called an exception. The relationship of

cascading with voting, stacking, mixture of experts and boosting is also discussed.

An experimental comparison for constructing ensembles of decision trees is given

in [27]. The methods inspected are bagging, boosting and randomization; see also [28]

for a review of ensemble methods for combining classifiers.

Grading [29] is an algorithm which tries to correct the incorrect predictions of

the base level classifiers. For each base level classifier, a meta level classifier is trained,

whose job is to detect when the base level classifier will make an error. The final pre-

diction is constructed by voting the results of base-level classifiers which are predicted

to be correct by the meta classifier. Ženko et al. [30] use Meta Decision Trees (MDT)

in a stacking framework. MDTs differ from ordinary decision trees in that the leaves

of MDT specify the base level classifier to be used instead of the classification result.

Rahman and Fairhurst’s paper [31] is an excellent review on classifier combination.

1.2. Stacking

Among all the combination techniques mentioned above, stacking (stacked gen-

eralization) [9] deserves a detailed consideration since most of the other algorithms

are based on constructing the ensemble, whereas stacking concentrates on combining

previously trained base classifiers (which is also our focus in this thesis). Stacked gen-

eralization can be used as a technique for combining classifiers but it is also useful when

you want to improve the accuracy of a single classifier. On the other hand, stacked

generalization can also be viewed as a means of collectively using the ouputs of all clas-

sifiers to estimate their own generalizing biases with respect to a particular learning

set, and then filter out those biases [9]. Figure 1.3 shows the structure of stacking.

9

X = (x1, ..., xt)

M1 M2 ML

f

Figure 1.3. Stacking. x is the input, M1,M2, . . . , ML are the base classifiers and f is

the combination function

Above methods either use too many base classifiers, or concentrate on forming

the ensemble, or use all base classifiers in the given ensemble. Furthermore, they do

not consider the cost of the ensemble, and most of them are not suitable for combining

multiple representations. It is infeasible to use bagging and boosting with complex

base classifiers, and if there are too many base classifiers, stacking may overlearn. So

research has focused on either selecting a subset of classifiers to reduce complexity

(and in the same time increase accuracy), or using other means of measures (such as

diversity) to select which classifiers should be included in the final ensemble. A detailed

discussion of such methods can be found in Section 3.6.

In this thesis, first, we analyze theoretically the accuracy of fixed fusion rules,

where we assume that L classifier outputs are being drawn from a L-variate Gaussian.

We see that when we have positive correlation between experts in the ensemble, the

overall ensemble accuracy decreases. Highest accuracy is achieved when the experts are

negatively correlated or there is a group of classifiers which are negatively correlated

with the others. We then investigate the effect of five factors on the correlation using

14 classifiers and 38 data sets, and we see that whatever we do, we still have positive

correlation.

To solve this problem, we first propose a new incremental algorithm that chooses

a subset of models from a large number of possible models (representation and classifier

10

pair), to maximize a combined performance measure of accuracy and complexity; we

therefore check for diversity and cost at the same time. This is therefore a model

selection problem where models are added to the ensemble only if their additional

complexity is justified by their contribution to accuracy. We investigate various versions

of the algorithm using different model selection criteria such as Cv, Acc, Corr,

Qstat, and Mdl [32].

Second, we use PCA and LDA on the outputs of the experts in the ensemble

to construct new aggregate dimensions that are linear combinations of the original

features, which we call metaclassifiers. Our subset selection algorithm Icon, on 38

uni-representation and 2 multi-representation data sets, show that combining a few

complementary base classifiers is better than the single best algorithm and using all

classifiers in the ensemble, and is not worse than the optimum subset. Also we see

that combining classifiers from different representations leads to better generalization

accuracy. Pca, which post-processes expert outputs is able to extract knowledge and

achieve accuracy as high as combining all using a small number of metaclassifiers.

The thesis is organized as follows: We analyze the correlations between experts

in Chapter 2, we introduce our proposed algorithm Icon in Chapter 3 and show our

experiments on 38 data sets using 14 classifiers. In Chapter 4, we present experiments

on two multi-representation data sets, and show the advantage of using base classifiers

from different representations. We show our results using Pca in Chapter 5. We

conclude and discuss future work in Chapter 6.

11

2. ANALYSIS OF CORRELATION BETWEEN EXPERTS

IN AN ENSEMBLE

In this chapter, we will analyse the error of fixed rules theoretically and show

how this analysis applies to real world data sets.

2.1. Analysis of Fusion Rules

Let us say that we have L experts (learners, base classifiers), with their outputs

dj, j = 1, . . . , L, estimating some unknown parameter θ, for example, the posterior

probability of a class for input x in a classification problem: P (Ci|x)1 . Let us also say

that our combined estimator d to θ is the simple average:

d =

∑L
j=1 dj

L

Most fusion methods are variants of simple averaging, for example, with unequal

weights, so the following derivation is general. It is known that the mean squared error

of d in estimating θ can be written as the sum of squared bias and variance:

E[(d− θ)2] = (E[d]− θ)2 + E[(d− E[d])2]

= Bias2(d) + Var(d)

In the case of a simple average, bias is just the average bias:

E[d]− θ =

∑L
j=1(E[dj]− θ)

L

1The work explained in this chapter is joint work with Murat Semerci.

12

In stacking [9], a second layer learner is trained to combine the outputs of the

given classifiers and therefore also corrects for their bias, but in ensemble methods, the

decrease in error is mostly due to the decrease in variance.

We can write the variance as:

Var(d) =
1

L2

∑
j

Var(dj) +
1

L2

∑
i

∑

j 6=i

Cov(di, dj) (2.1)

If dj are independent, then their correlation is 0 and the second, covariance term

in Equation 2.1 disappears. In such a case, variance decreases as L is increased. In-

deed, most combination methods aim to generate uncorrelated experts, and it has been

proposed [2] to use different (i) learning algorithms, (ii) hyperparameters, (iii) input

features, (iv) training sets, (v) different representations. For example, bagging [3] uses

bootstrapping to generate slightly different training sets and takes an average for fu-

sion. Random subspace method [21] trains different experts with different subsets of a

given feature set. Different representations of the same input make different character-

istics explicit and therefore accuracy may be improved by combination [4, 14]. Fusion

rules (i.e, average, vote, product, min, max, median) have mostly been analyzed under

the assumption that the expert decisions are independent [8, 33, 34].

Normally, when we have a number of experts trained on the same data, we expect

them to be positively correlated, i.e., they will be correct on the same instances and

fail on the same difficult (noisy) instances. Looking at Equation 2.1, we expect then

the variance (and hence the error) to increase as we increase the number of experts. It

is therefore critical that any positive correlation between the experts should be found

and taken care of.

Examining Equation 2.1, we see that in minimizing variance, even better than

the case of uncorrelated experts would be the case when we have negatively correlated

experts [35]. Note however that negative correlation may cause an increase in bias; for

example, for the case of mixture of experts, it has been shown that experts which are

13

localized in different parts of the input space are negatively correlated but biased [36].

Comparing AdaBoost [10] with bagging, we can say that experts trained on previous

expert’s errors help in constructing negatively correlated experts.

Given a set of positively correlated experts, one line of research is in the direction

of finding a minimal subset. To help us in finding those experts which are redundant,

“diversity” measures have been proposed [37, 38] and one possibility is to have an

incremental, forward search where we add a classifier to an ensemble if it is diverse or

adds to accuracy [39, 14, 40], or another possibility is to have a decremental, backward

search where a classifier is removed or pruned if it is not diverse enough or if its removal

does not increase error [41, 42].

The fusion rules can be seen as a function operating on a vector of L classifier

estimates: P̂1(x) = F(p̂)

where p = [p̂1, p̂2, . . . , p̂L]T and p̂i ≡ P̂ i
1(x). In this section, we are going to model the

L classifier outputs as being drawn from a L-variate Gaussian: p̂ ∼ N (µ,Σ) with

µ = [p0, p0, . . . , p0]
T

Σ =

σ2
1 σ12 . . . σ1L

σ21 σ2
2 . . . σ2L

...
...

σL1 σL2 . . . σ2
L

(2.2)

This corresponds to assuming that the classifier outputs are distorted versions of

the ideal posterior p0 where σ2
i is the variance of this distortion for classifier i and σij

is the covariance between classifiers i and j. The case of independent Gaussian errors

used in previous studies [33, 43] correspond to a special case where the off-diagonals

of Σ are 0 and the diagonals are equal: When the dimensions are independent, the

multivariate reduces to a product of univariates.

14

2.1.1. Fusion Rules on Equicorrelated Classifier Ensembles

Let us compare the error rates of fusion rules starting with the case of equicorre-

lated experts: Given the correlation matrix R, Rii = 1,∀i and Rij = ρ, ∀i 6= j. That

is, all experts are dependent in the same way. An example of this would be when we

train the same learning algorithm over bootstraps of a training set: p0 would be the

average accuracy and ρ would depend on the “stability” of the learning algorithm (see

Section 2.3.1.3).

We know that error increases as correlation increases. The reason is that the

classifiers tend to resemble each other more with increased correlation, and when the

correlation becomes 1, all the classifiers are the same and we converge to the average

error rate of a single classifier.

Figure 2.1(a) depicts the effect of the base posterior value p0. Of course, the

higher it is (away from 0.5), the less is the error. We see that at lower correlation,

average rule is the best, the median is the second and the minimum and maximum

rules perform the worst. We see that all the rules show the same error characteristic

curve when correlation is 1.

In Figure 2.1(b), we observe that as long as the correlation is below 1, adding

a new classifier to the ensemble improves the ensemble performance. If the classifiers

are almost independent (ρ ≈ 0), it is possible to have 0 error with a moderate size

ensemble. But the errors of the minimum and maximum rules do not converge to 0,

because their tails do not shrink much as new classifiers are added. It can be seen that

even with considerable correlation between classifiers, the average and median rules

perform better than the minimum and maximum rules. It can also be seen that the

error rate decreases and then levels off; given a certain amount of correlation, new

experts do not bring much new information.

In Figure 2.2, we see that using negatively correlated classifiers (if possible) im-

proves the ensemble accuracy further. It must be kept in mind that ρ must satisfy

15

0.6 0.8
0

0.1

0.2

0.3

0.4

p
0

E
rr

or
Min

0.6 0.8
0

0.1

0.2

0.3

0.4

p
0

Med

0.6 0.8
0

0.1

0.2

0.3

0.4

p
0

Max

0.6 0.8
0

0.1

0.2

0.3

0.4

p
0

Sum

0.6 0.8
0

0.1

0.2

0.3

0.4

p
0

Lin

ρ = 1
ρ = 0

10 30 50
0

0.04

0.08

0.12

0.16

L

E
rr

or

Min

10 30 50
0

0.04

0.08

0.12

0.16

L

Med

10 30 50
0

0.04

0.08

0.12

0.16

L

Max

10 30 50
0

0.04

0.08

0.12

0.16

L

Sum

10 30 50
0

0.04

0.08

0.12

0.16

L

Lin

ρ = 1

ρ = 0

(a) Base posterior p0 (b) Ensemble size L

Figure 2.1. Effect of correlation on different fusion rules as a function of (a) p0

(L = 9) and (b) L (p0 = 0.6), for the case of equicorrelated experts, for

ρ = 0, 0.25, 0.5, 0.75 and 1

ρ ≥ − 1
L−1

for semi-definiteness. The case of negative correlation (keeping the same

average error) means that the classifiers tend to give estimates opposite of each other,

err on distinct instances, which can be interpreted as a sign of diversity. Still, when-

ever one or more classifiers give inaccurate decisions, the remaining ones (if they are

in majority) can correct the ensemble decision.

2.1.2. Effect of Multiple Groups

We now consider how the performance of the ensemble is influenced if the classi-

fiers in the ensemble can be grouped into N separate groups. This is what one would

expect if in the ensemble we have variants of N algorithms which have certain intra-

group correlation and which also have some intergroup correlation with variants of

other algorithms. For example, one group can be support vector machine variants for

different kernels, one group may be multilayer perceptron variants for different number

of hidden units and we also expect to see some correlation between any support vector

machine and multilayer perceptron variant (see Table 2.2 in Section 2.3.1).

16

0.6 0.8
0

0.1

0.2

0.3

p
0

E
rr

or

Min

0.6 0.8
0

0.1

0.2

0.3

p
0

Med

0.6 0.8
0

0.1

0.2

0.3

p
0

Max

0.6 0.8
0

0.1

0.2

0.3

p
0

Sum

0.6 0.8
0

0.1

0.2

0.3

p
0

Lin

ρ=0.1ρ=−0.1

Figure 2.2. Effect of correlation on different fusion rules as a function of p0 for the

case of equicorrelated experts, for ρ = −0.1, 0.0 and 0.1, with L = 9, σ = 0.1

R =

R11 R12 . . . R1N

R21 R22 . . . R2N

...
...

RN1 RN2 . . . RNN

Suppose that we have N groups having Li (i = 1 . . . N) classifiers for each group

where Rii is the intragroup correlations matrix between elements of group i and Rij

is the intergroup correlation matrix between groups i and j. As a case study, we will

present our results for three groups on four example cases; for simplicity we assume a

single value for these matrices.

17

R1 =

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

 R2 =

0.5 0.2 0.3

0.2 0.2 0.2

0.3 0.2 0.5

R3 =

0.5 0 0.3

0 0.2 0

0.3 0 0.5

 R4 =

0.5 −0.2 0.3

−0.2 0.2 −0.2

0.3 −0.2 0.5

The first case, R1, consists of three groups with equal correlations; this is the

case of a single group of equicorrelated classifiers we discussed above, which we include

for comparison. For the remaining three cases, R2, R3, and R4, we have three groups

with different intergroup correlations between group 2 and the other groups as positive,

zero, and negative. In the first experiment, we have three classifiers from each group

(total of nine classifiers) and we change the base posterior probability p0 to see the

effect of the correlations between groups of classifiers. We see in Figure 2.3(a) that

when we have negative correlation among groups, the error rate is the smallest, and

it decreases rapidly. We have more error when there is no intergroup correlation and

even more error when this correlation is positive.

In this setup, we also test the effect of number of classifiers per group. We see in

Figure 2.3(b) the same behavior: R4 with negative intergroup correlation has the lowest

error with increasing ensemble size. We observe another interesting fact in this figure:

Though a trained linear combiner was no better than the fixed average or median rules

in the previous cases, for these cases of grouped ensembles with different intergroup

correlations, a linear combiner achieves lowest error using smaller ensembles.

18

0.6 0.8
0

0.1

0.2

0.3

p
0

E
rr

or

Min

0.6 0.8
0

0.1

0.2

0.3

p
0

Med

0.6 0.8
0

0.1

0.2

0.3

p
0

Max

0.6 0.8
0

0.1

0.2

0.3

p
0

Sum

0.6 0.8
0

0.1

0.2

0.3

p
0

Lin

R1

R2

R3

R4

10 20 30

0.01

0.03

0.05

0.07

0.09

L

E
rr

or

Min

10 20 30

0.01

0.03

0.05

0.07

0.09

L

Med

10 20 30

0.01

0.03

0.05

0.07

0.09

L

Max

10 20 30

0.01

0.03

0.05

0.07

0.09

L

Sum

10 20 30

0.01

0.03

0.05

0.07

0.09

L

Lin

R4

R3

R2

R1

(a) Base posterior p0 (b) Ensemble size L

Figure 2.3. Effect of intragroup correlation on the fusion rules for the four cases of

R1, R2, R3, and R4

2.2. Experimental Details

In this section, we define the experimental methodology; namely the classifiers

used, the data sets used and measures of significance used to compare ensemble methods

over multiple data sets.

2.2.1. Data Sets

We use 38 data sets from the UCI machine learning repository [44], Delve [45].

Table 2.1 shows the properties of data sets.

2.2.2. Base Classifiers

We use fourteen base classifiers which we have chosen to span as much as possible

the wide spectrum of possible machine learning algorithms2 :

• (1–3) knn: k-nearest neighbor with k = 1, 3, 5.

• (4–8) mlp: Multilayer perceptron where with D inputs and K classes, the number
2Base classifiers have been trained using ISELL machine learning toolbox by Olcay Taner Yıldız.

19

Table 2.1. Properties of the data sets

name instances inputs classes source

zoo 101 16 7 uci

iris 150 4 3 uci

tae 151 5 3 uci

hepatitis 155 19 2 uci

wine 178 13 3 uci

flags 194 26 8 uci

glass 214 9 6 uci

heart 270 13 2 uci

haberman 306 3 2 uci

flare 323 10 3 uci

ecoli 336 7 8 uci

bupa 345 6 2 uci

ionosphere 351 34 2 uci

dermatology 366 34 6 uci

horse 368 26 2 uci

monks 432 6 2 uci

vote 435 16 2 uci

cylinder 540 45 2 uci

balance 625 4 3 uci

australian 690 14 2 uci

credit 690 15 2 uci

breast 699 9 2 uci

pima 768 8 2 uci

tictactoe 958 9 2 uci

cmc 1473 9 3 uci

yeast 1484 8 10 uci

car 1728 6 4 uci

titanic 2201 3 2 delve

segment 2310 19 7 uci

thyroid 2800 27 4 uci

optdigits 3823 64 10 uci

spambase 4601 57 2 uci

pageblock 5473 10 5 uci

ringnorm 7400 20 2 delve

twonorm 7400 20 2 delve

pendigits 7494 16 10 uci

mushroom 8124 22 2 uci

nursery 12960 8 4 uci

20

of hidden units is taken as D (ml1), K (ml2), (D + K)/2 (ml3), D + K (ml4),

2(D + K) (ml5).

• (9) lnp: Linear perceptron with softmax outputs trained by gradient-descent to

minimize cross-entropy.

• (10) c45: The most widely-used C4.5 decision tree algorithm.

• (11) mdt: This is a multivariate tree where unlike C4.5 which uses univariate and

axis-orthogonal splits uses splits that are arbitrary hyperplanes using all inputs

[46].

• (12–14) svm: Support vector machines with a linear kernel (svl), polynomial

kernel of degree 2 (sv2), and a radial (Gaussian) kernel (svr). We use the LIBSVM

2.82 library that implements pairwise svms [47].

2.2.3. Division of Training, Validation, and Test Sets

Our methodology is as follows: A given data set is first divided into two parts,

with 1/3 as the test set, test, and 2/3 as the training set, train-all. The training set,

train-all, is then resampled using 5 × 2 cross-validation (cv) [48] where 2-fold cv is

done five times (with stratification) and the roles swapped at each fold to generate ten

training and validation folds, trai, vali, i = 1, . . . , 10. trai are used to train the base

classifiers. vali are divided into two randomly as val-Ai and val-Bi, where val-Ai are

used to train the combiner and val-Bi are used for model selection (in choosing the

optimal subset or to choose the size of generated subsets). These ten trained models

(base classifiers and combiner) are tested on the same test and we have ten testi accuracy

results. This processed data of base classifier outputs are publicly available [49].

To compare the accuracies of different ensemble construction methods for statis-

tically significant difference, we use two different methodologies. First, for each data

set, we use the 5 × 2 cv F test [50] (α = 0.05) which is a parametric test to compare

the methods for each data set; we then use the sign test to check if the numbers of

wins/losses over all 38 data sets is significant. Second, we use Friedman’s test which is

a nonparameteric test using the rankings, and if it rejects, we use the Nemenyi test as

a post-hoc test to check for significant difference between methods [51].

21

2.2.4. Pen-Based Digit Recognition

The pendigits data set [4, 14] is for pen-based handwritten digit recognition.

There are 7,494 training examples and 3,498 test examples (half of which were taken

from people not included in the training and validation sets) (kept in a “vault” and

never used during training or validation). There are two main representations:

• The dynamic (dyn) representation keeps track of the (x, y) coordinates of the pen

tip as the digit is written on a pressure-sensitive tablet and keeps the temporal

information.

• The static (s16) representation is the bitmap image formed after the digit is

written, which we create by connecting the points in the dynamic representation

by straight lines.

Note that because the same image can be written in different ways, or similar hand

movements may cause different images, it is useful to combine these two representations.

These representations have been normalized to constant length; dynamic representation

contains a sequence of 8 (xt, yt) pairs and the static image is 16 × 16. We also form

downsampled 8× 8 and 4× 4 versions of the static representation (Fig. 2.4)3 .

The different representations of an example digit is shown in Figure 2.4. The

advantage of combining multiple representations on this data set is shown in [4] and

in [14], an incremental method that constructs a subset of classifiers using different

representations is discussed. This data set is again divided as explained in Section 2.2.3.

2.3. Correlation Analysis on Real Data Sets

In the next subsection, we check for the effect of five factors on the correlation

between the expert outputs:

3The multiple representations of pendigits is publicly available [49].

22

Dynamic (8x2): D Static (16x16): S16

Static
(4x4): S4

Static
(8x8): S8

Figure 2.4. Pendigits representations for digit four

• Learning algorithms used to train the experts,

• Hyperparameters of the learning algorithms,

• Resampling due to folding,

• Subset of input features,

• Input representations.

2.3.1. Estimating the Correlations of Classifiers

We train all fourteen algorithms on a training fold, generate their posterior prob-

abilities for the correct class on the test set and calculate correlations between classifier

outputs for the correct class; the reason we use only the output for the correct class

and not all classes is to (i) be able to average correlations over data sets with different

number of classes, and (ii) keep the analysis simpler. We do this ten times on the ten

training folds and calculate the average test correlation for a data set. We then do this

for all 38 data sets and take another average to give a general, data-independent view.

This overall correlation matrix is given in Table 2.2. We believe that a correlation

value over 0.6 indicates a strong correlation and such entries are shown in boldface.

2.3.1.1. Correlations due to Hyperparameters. Almost all learning algorithms have

hyperparameters which affect the model complexity and we check for the effect of

23

Table 2.2. Average correlations over all data sets

kn1 kn3 kn5 ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

kn1 1.00 0.71 0.64 0.37 0.37 0.37 0.38 0.37 0.38 0.35 0.30 0.39 0.34 0.44

kn3 0.71 1.00 0.88 0.51 0.50 0.51 0.51 0.51 0.51 0.45 0.41 0.53 0.45 0.58

kn5 0.64 0.88 1.00 0.57 0.56 0.57 0.57 0.57 0.55 0.49 0.45 0.59 0.49 0.64

ml1 0.37 0.51 0.57 1.00 0.79 0.81 0.81 0.79 0.67 0.59 0.52 0.75 0.53 0.69

ml2 0.37 0.50 0.56 0.79 1.00 0.81 0.79 0.77 0.66 0.62 0.54 0.76 0.52 0.69

ml3 0.37 0.51 0.57 0.81 0.81 1.00 0.81 0.81 0.67 0.61 0.53 0.75 0.53 0.70

ml4 0.38 0.51 0.57 0.81 0.79 0.81 1.00 0.80 0.67 0.61 0.53 0.75 0.52 0.69

ml5 0.37 0.51 0.57 0.79 0.77 0.81 0.80 1.00 0.67 0.60 0.52 0.75 0.53 0.69

lnp 0.38 0.51 0.55 0.67 0.66 0.67 0.67 0.67 1.00 0.57 0.48 0.71 0.45 0.63

mdt 0.35 0.45 0.49 0.59 0.62 0.61 0.61 0.60 0.57 1.00 0.50 0.64 0.45 0.60

c45 0.30 0.41 0.45 0.52 0.54 0.53 0.53 0.52 0.48 0.50 1.00 0.54 0.43 0.54

svl 0.39 0.53 0.59 0.75 0.76 0.75 0.75 0.75 0.71 0.64 0.54 1.00 0.57 0.74

sv2 0.34 0.45 0.49 0.53 0.52 0.53 0.52 0.53 0.45 0.45 0.43 0.57 1.00 0.65

svr 0.44 0.58 0.64 0.69 0.69 0.70 0.69 0.69 0.63 0.60 0.54 0.74 0.65 1.00

these on correlation. Looking at the top-left corner of Table 2.2, we see the overall

correlation matrix achieved by varying k of knn. We notice that varying k has a small

effect on removing this intragroup correlation. This indicates that if you already have

3nn in your ensemble, adding 5nn is not a good idea; because they are highly corre-

lated, addition would not increase accuracy significantly. As other examples, we see

a similar behavior when we vary the number of hidden units of mlp or the degree of

polynomial kernel of svm, though in this latter case, we see that the classifiers are less

correlated when compared with knn variants.

2.3.1.2. Correlations due to Algorithms. There is also correlation depending on how

similar the algorithms are: We see that the perceptron variants (lnp and mlp), linear

models (lnp, svl), and the svm variants (sv2, svl, svr) are correlated. We see a clear case

of grouping here: The variants of the same algorithm are grouped with high intragroup

correlation and we also see lower but still positive intergroup correlation. For example,

there is correlation between mlp and svm variants, both nonparametric estimators. The

correlation between classifier groups decrease as they are less similar in terms of the

models they use, the criteria they optimize, or the method they use for optimization.

24

2.3.1.3. Correlations due to Sampling. In order to figure out the correlations due to

resampling, we calculate the correlation of the fourteen classifiers on the test set, trained

on different training folds and average over them (over 10·9/2 fold pairs), and average

once more over 38 data sets. The boxplots of correlations for the fourteen algorithms

are given in Figure 2.5. We see that trees, c45 and mdt, have low correlations and mlp,

knn and svm variants have high correlations (except 1nn); this shows that it makes

sense to bag (fuse) trees but not knn, which is indeed actual practice. Breiman [3]

mentions this when he defines the concept of stable algorithms and he says that it

makes sense to bag unstable algorithms such as trees but not stable algorithms such

as knn4 . In general, the correlation seems to decrease with increasing training set size

(as training set gets larger, different folds become more similar), though not as much

as expected. Examples are given for lnp and sv2 in Figure 2.6.

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
ns

Algorithm

Figure 2.5. The boxplot of correlations between folds of the fourteen algorithms

averaged over test sets of all data sets

2.3.1.4. Correlations due to Shared Input Features. In order to figure out the correla-

tions due to input features used, we calculate the correlation of the fourteen classifiers

trained on randomly chosen half of the original features, but on the whole training

set (without folding). Doing this ten times each time choosing a different subset, we
4knn can be made unstable by condensing [19].

25

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
lnp

log # of examples

C
or

re
la

tio
n

−0.03x + 0.72

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
sv2

log # of examples

C
or

re
la

tio
n

−0.0042x + 0.74

(a) lnp (b) sv2

Figure 2.6. Average correlations (over folds) of two algorithms, lnp and sv2, on the

test set, as a function of training set size. Each point corresponds to one of 38 data

sets. Correlation seems to decrease with increasing training set size, though not as

much as one would expect

average over the 10·9/2 pairs on a data set, and average once more over 38 data sets.

The boxplots of correlations for the fourteen algorithms are given in Figure 2.7. We can

see that there is not much difference between the algorithms and that the correlation

can be anywhere between 0.0 and 1.0, mostly around 0.5. We cannot say much that

is general from these results; this random subspace method [21] can be an effective

method (more effective than resampling or varying the hyperparameter) for generating

less correlated experts but there is no guarantee. We have checked to see if the correla-

tion depends on the input dimensionality; it does not seem to decrease with increasing

input dimensionality, as would be expected. Examples are given for 3nn and ml1 in

Figure 2.8.

2.3.1.5. Correlations due to Different Representations of the Same Input. To exam-

ine the correlations due to using different input representations, we use the pendigits

data set [4, 14]:

We use the same methodology here as we do in other data sets, with 5× 2 cross-

validation and a separate test set. The base classifiers we use for this case are svr,

support vector machines with radial kernels. The average correlation matrix is given

in Table 2.3 where entries over 0.6 are shown in boldface.

26

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr
0

0.2

0.4

0.6

0.8

1

Algorithm

C
or

re
la

tio
ns

Figure 2.7. The boxplot of correlations between random input feature subsets of the

fourteen algorithms averaged over test sets of all data sets

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2
3nn

of features

C
or

re
la

tio
n

−0.00055x + 0.4

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ml1

of features

C
or

re
la

tio
n

−0.00044x + 0.57

(a) 3nn (b) ml1

Figure 2.8. Average correlations (over different randomly chosen input subsets) of two

algorithms, 3nn and ml1, on the test set, as a function of input dimensionality. Each

point corresponds to one of 38 data sets. Correlation does not decrease with

increasing dimensionality, as one would expect

27

Table 2.3. Average correlation matrix between classifiers trained with the four

representations calculated on the test set

dyn s4 s8 s16

dyn 1.00 0.32 0.41 0.38

s4 0.32 1.00 0.66 0.55

s8 0.41 0.66 1.00 0.82

s16 0.38 0.55 0.82 1.00

We see that different basic representations (s16 and dyn) have low correlation.

The downsampled versions of the same basic representation have high correlation if

the sizes are similar (i.e. s16 is highly correlated with s8, s8 is highly correlated with

s4). This shows us that it is better to use different basic representations to achieve

more diverse base classifiers, rather than preprocessing the same representation (e.g.,

by downsampling). Here, we would like to make a distinction between a representation

and a modality: In our case, we expect to have some correlation between the two

basic representations because one is calculated from the other; we would expect less

or no correlation if inputs come from different modalities; for example, we expect no

correlation between a person’s face image and his/her signature.

28

3. INCREMENTAL CONSTRUCTION OF CLASSIFIER

ENSEMBLES

Most of the algorithms we summarized in Chapter 1 are methods for forming

ensembles, or are not used with multiple representations. Instead of focusing on the

formation of an ensemble, or selecting what to include in an ensemble beforehand, what

we want to achieve is to select amongst a given set of classifiers, or post-process the

given classifiers to achieve better accuracy.

Methods have been proposed to choose a small subset from a large set of candidate

models. Since there are 2L-1 possible subsets of L models one cannot try for all possible

subsets unless L is small, and various methods have been proposed to get a reasonable

subset of size m < L in reasonable time.

Ensemble construction methods also differ in the criterion they optimize. Addi-

tional to methods which directly optimize ensemble accuracy, heuristics have also been

proposed as measures of “diversity” in pinpointing models which best complement each

other, to allow diverse ones to be added and similar ones to be deemed redundant and

pruned.

Ensemble construction can be viewed as an optimization problem and methods

proposed in the literature correspond to different search strategies in optimization:

There are greedy “forward” algorithms which are incremental and add one model at

a time if the addition improves the criterion to be optimized. There are “backward”

search methods which prune from a large set if the removal is not harmful. There

are also “floating” methods which do both, as well as ones that use genetic algorithms

whose operators allow both addition and deletion.

A chronological review of major ensemble construction methods in more detail

is deferred to Section 3.6. In this chapter, we discuss and evaluate two ensemble

construction approaches:

29

• We incrementally construct an ensemble of classifiers as in the methods discussed

above. On 38 data sets using 14 different base classifiers, we test the effect of

(i) The criterion to be optimized (accuracy, statistically significant improvement

and two diversity measures, correlation and Q statistics), (ii) The search direction

(forward, backward, floating), and (iii) The combiner (fixed voting, trained linear

combiner).

• We incrementally construct an ensemble of discriminants where a classifier may

be used for some of the classes but not for others [52, 40].

Let us say we have L possible models we can combine. If we take a vote over

all L without any selection, then among these, there will be models which do not

contribute to accuracy (and which may even decrease accuracy). There will also be

the cost of all the models. Our proposed algorithm Icon to choose m out of L base

classifiers is greedy in that it starts with the empty set and Incrementally CONstructs

an ensemble where at each iteration, it chooses among all possible classifiers the one

that best improves the performance when added to the current ensemble. Our approach

is to select a subset from L to optimize a combined performance criterion of accuracy

and cost. The performance is measured using the particular model selection method.

The algorithm stops when there is no further improvement. Of course, this does not

guarantee finding the best subset but this algorithm has polynomial complexity, O(L2),

whereas exhaustive searching all possible subsets, O(2L), is of exponential complexity.

The pseudocode of the algorithm is given in Figure 3.1. We start with E(0) = ∅. At

iteration t of the algorithm, we have ensemble E(t) containing t models (representation

and the classifier using that representation). Given the set of remaining L−t candidate

models, Mk 6∈ E(t), we have new candidate ensembles for iteration t + 1 as S
(t+1)
k ≡

E(t)∪Mk, k = 1, . . . , L− t. Among these, we choose the one that is preferred to all the

other candidates and is also preferred to the current ensemble:

E(t+1) ← S
(t+1)
j if S

(t+1)
j ≺ S

(t+1)
k ,∀k 6= j and S

(t+1)
j ≺ E(t)

30

1 function icon(P)

2 E0 ← ∅
3 for t = 0 to L− 1

4 S
(t+1)
k ← E(t) ∪Mk,∀Mk ∈ P where Mk 6∈ E(t)

5 if ∃S(t+1)
j such that S

(t+1)
j ≺ S

(t+1)
k ,∀k 6= j

and S
(t+1)
j ≺ E(t)

6 then E(t+1) ← S
(t+1)
j , t ← t + 1

7 else break

8 end for

9 return E(t)

Figure 3.1. Pseudocode of the forward searching Icon algorithm

Ei ≺ Ej denotes the binary relation of “preference” comparing two ensembles and holds

if Ei is preferred to Ej according to the model selection criterion used (which we will

discuss next). If none of the candidates is preferred to E(t), the algorithm stops and

E(t) is taken as the final ensemble.

3.1. Search Direction

The algorithm discussed above implements forward search. The backward version

of Icon begins with all the models in the ensemble and prunes them. The idea is the

same: If the complex ensemble is better than the simpler one (in terms of the model

selection criterion we use) then keep the complex ensemble and stop, else prune the

model from the ensemble and continue. Also it is possible to use a hybrid of both (a

floating algorithm), which deletes a classifier from the ensemble if possible, else tries

to add another classifier to the ensemble. In the forward version (.F), we choose the

simplest model to be added to the ensemble in terms of the model selection criterion

we use. In its backward version (.B), we delete the model which is the most complex.

The floating version (.L) does both.

31

3.2. Ensemble Evaluation in Icon

For input x, the posterior probability of class Ck calculated by ensemble Ei is

denoted as P (Ck|x, Ei). Given a data set X = {xt, rt}N
t=1 (where rt

k = 1 if xt ∈ Ck

and 0 otherwise), this can be used to calculate a misclassification error rate, e(Ei), or

log-likelihood, l(Ei), for ensemble Ei:

e(Ei) =
∑

t

1(argmax
k

P (Ck|x, Ei) 6= argmax
k

rt
k)

l(Ei) =
∑

t

log P (Cargmaxk rt
k
|x, Ei) . (3.1)

argmaxk P (Ck|x, Ei) returns the index of the class having the highest posterior,

argmaxk rt
k returns the index of the desired class and 1(a) is 1 if a is true and 0 if

a is false. In our algorithm, the decision of an ensemble is calculated by simple voting

(a fixed rule), or a linear combiner. If P (Ck|x,Mj) denotes the posterior probability

of class Ck by model Mj for input x, the overall probability for Ck is

P (Ck|x, E) =
1

|E|
∑

Mj∈E

P (Ck|x,Mj) ,

where |E| denotes the number of models in ensemble E. Voting is the simplest way to

combine the decisions of multiple models and it works quite well in practice. Though

a method like stacking [9] may have lower bias, in such a case, there would also be the

cost of the combiner model (called L1 model in stacking). There are different types

of costs in machine learning [53] such as the cost of sensing the features, the cost of

misclassification errors, and the cost of computation. This third is the cost we use in

this thesis and it corresponds to the cost of computation and space that is used by a

model during testing. The total number of free parameters in the ensemble, d(Ei), is

the sum of the free parameters of the models in the ensemble (if we use a trained learner

we add the cost of the learner also) because voting does not add any parameters:

d(Ei) =
∑

Mj∈Ei

d(Mj) .

32

Given two ensembles Ei and Ej, a model selection method prefers one based on their

accuracy and complexity.

3.2.1. Cross-Validation (Cv)

We use k-fold cross-validation and use the pairwise one-sided k-fold paired t-test

or 5 × 2 cross-validation with paired 5 × 2 cv t-test to compare the expected error

rates of the two ensembles and check whether the more costly ensemble is statistically

significantly more accurate than the simpler one [1]. If the test accepts, we prefer

the more costly ensemble (the additional cost is justified), otherwise we prefer the

simpler one (either because it is more accurate and cheaper, or they have the same

expected accuracy and we prefer the cheaper). For two ensembles Ei and Ej where

d(Ei) < d(Ej), we calculate their error rates on the k validation folds and test the null

hypothesis

H0 : µi ≤ µj vs. H1 : µi > µj

where µi is the average error of ensemble Ei. If the test accepts, we prefer Ei; if the

test rejects, we prefer Ej.

3.2.2. Minimum Description Length (Mdl)

Minimum Description Length (Mdl), takes a weighted sum and the cost penalty

term is interpreted as a suitable penalty term giving more probability to simpler models:

MDL(Ei) = −l(Ei) + λd(Ei)

Equivalently, this can be interpreted as an augmented utility measure combining model

accuracy on data and model complexity. By playing with λ, we can trade-off cost with

accuracy and see which models will be preferred [32].

33

Akaike’s Information Criterion (AIC) [54] and Bayesian Information Criterion

(BIC), also known as the Schwartz Criterion [55], both are special cases of MDL and

take a weighted sum of log-likelihood and cost (as measured by the number of free

parameters):

AIC(Ei) = −l(Ei) + d(Ei)

BIC(Ei) = −l(Ei) +
1

2
ln N · d(Ei)

Note that Mdl (and its variants), unlike cross-validation, do not require leaving out

part of the data for validation and need not be run many times.

3.2.3. Accuracy (Acc)

This is basically Mdl with λ = 0. We just check if the newly added classifier

leads to higher average accuracy.

3.2.4. Q-Statistic (Qstat)

As a diversity measure, we use the Q statistic [37]. First, we select the two

classifiers which form the most diverse ensemble, and at each iteration, we add another

classifier if diversity increases; else, we stop. The Q statistic for two classifiers is

calculated as:

Qi,j =
N11N00 −N10N01

N11N00 + N10N01

where N00, N01, N10, and N11 are defined as in Table 3.1. The average diversity for an

ensemble is calculated as

Qav =
2

m(m− 1)

m−1∑
i=1

m∑

k=i+1

Qi,k

34

3.2.5. Correlation Coefficient (Corr)

As another frequently used diversity measure, we use the average correlation

coefficient [37]:

ρi,j =
N11N00 −N10N01√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)

The average correlation for the ensemble is calculated by averaging over all pairs,

as done in Qstat.

Table 3.1. Contingency table used by the measures of diversity

Mj correct Mj wrong

Mi correct N11 N10

Mi wrong N01 N00

3.3. Model Combination

Given an ensemble of base classifiers, the easiest way to calculate the overall out-

put is by taking a sum, which corresponds to taking a vote. Our base classifiers generate

posterior probabilities so there is no need for scaling or other type of normalization or

transformation [56, 57].

There are other fixed rules, i.e., median, product, minimum, or maximum [8]

(which we will investigate in our experiments), but the sum rule we use is known to

work best in practice. Alkoot and Kittler [43] investigate fixed rules and see that the

sum and median rules are more robust to noise. Kuncheva [33] discusses six fixed rules

for classifier combination (minimum, maximum, sum, median, majority vote, and the

oracle) on two-class problems with Gaussian and uniform error, under the assumption

that the outputs are independent. She concludes that the min/max rule (they are the

35

same for two-class problems) find the best ensemble when uniform error is the case.

For Gaussian distributed errors, the combination rules behave similarly. Tax et al. [58]

show that in multi-class problems product rule may be superior to sum rule when the

independent data representation assumption is met. On the other hand, sum rule is

more robust to noise. Especially in the cases when one of the classifiers is an outlier,

product rule “acts as a veto” and this decreases the combination performance. In two

class problems, though, there is no difference between them. Cabrera [34] analyzes

average, median and maximum rules when the number of classifiers becomes large. He

finds that average is the best for normal error, maximum is the best for uniform error

and median is the best for Cauchy error. The analysis in these studies is under the

assumption that classifiers are independent, though in practice they are correlated [59].

The sum rule gives equal weight to all base classifiers. We also try a trained linear

combiner; this is called stacking [9, 60]. We do not constrain weights to be nonnegative

or sum to 1, and there is also a constant intercept. A data set separate from the one

used to train the base classifiers is used to train this linear combiner.

A trained rule may have lower bias, but fixed rules are generally favored for a

number of reasons: (i) There is not the extra cost of storing/processing for the cost of

the combiner model (called L1 model in stacking). (ii) We save from the time needed

to train the combiner model, and (iii) There is no need to leave out a part of the

training set to train the combiner, and all data can be used to train the base classifiers.

Duin and Tax [61] compare various trained and fixed combination rules. According to

their results there is no winning fixed combination rule; median, mean and majority

rules work best on correlated data while the product rule works better in the case of

independent errors.

If P (Ck|x,Mj) denotes the posterior probability of class Ck by model Mj ⊂ E

for input x, the fused probability for Ck by ensemble E is

P (Ck|x, E) = f(P (Ck|x,M1), P (Ck|x,M2), . . . , P (Ck|x,ML))

36

where f(P (Ck|x,M1), P (Ck|x,M2), . . . , P (Ck|x,ML)) denotes the rule used to fuse the

output of base models to calculate the posterior probability.

In our experiments we checked the effect of fixed rules given in Table 1.1 and a

trained combiner (linear perceptron .Lin).

Therefore, in choosing an Icon variant, there are three factors: (1) Model selec-

tion criterion: Mdl/Acc/Cv/QStat/Corr, (2) Rule type: Sum/Max/Min/

Med/Pro/Lin, and (3) Search direction: F/B/L. We use the following notation:

Acc.Min.F stands for the Icon variant using Acc criterion, rule Min, and doing a

forward search.

3.4. Ensemble of Classifiers

We investigate the effect of various factors in ensemble construction using a wide

variety of learning algorithms, data sets and evaluation criteria.

3.4.1. Compared Ensembles

The following ensembles are generated and compared:

• Best: We order the base classifiers in terms of accuracy and use the first 1, 3,

5, 7, 9 of them. This has two variants: Best.Sum uses the fixed sum rule and

Best.Lin uses the trained linear combiner.

• Rnd: We randomly choose 1, 3, 5, 7, 9 base classifiers, with Sum and Lin options.

• All: All the available base classifiers are combined without selection, with Sum

and Lin options.

• Opt: We try all possible subsets (there are 214−1) and choose the most accurate.

It has Sum and Lin options.

• Icon: The classifier ensembles generated by Icon variants (Acc, Cv, Qstat,

and Corr) are used. They all have Sum and Lin options.

37

• Fss: This is the discriminant ensemble which uses forward subset selection and

a linear combiner.

• Dt: This is the discriminant ensemble which uses a decision tree.

• Dt.Lin: This is the discriminant ensemble which uses a decision tree for feature

selection and a linear combiner.

Fss is an algorithm similar to Icon, but instead of adding base classifiers, the

algorithm incrementally adds a new discriminant and selects a subset of discriminants.

Dt creates a decision tree over the outputs of all base classifiers, and acts as discrim-

inant selector and L1 combiner. Dt.Lin is similar to Dt in it that, it constructs a

decision tree on all outputs of the base classifiers, this decision tree does not act as

the L1 classifier, but it selects the discriminants only, and a post-hoc linear classifier

is trained on the selected discriminants for the final classification. For details about

these three algorithms, see [52, 40].

3.5. Experimental Results

First, we check for the effect of search direction in Icon. In the next subsection,

we discuss and compare the results of our proposed methods on two data sets in detail,

before moving on to an overall comparison on all data sets.

3.5.1. Comparison of Search Methods

As we have mentioned in the introduction of this chapter, it is possible to search

in the forward direction adding one at a time, backward direction removing one at a

time, or a floating search where we try to remove a previously added base classifier

before adding another one. We can hence consider three Icon variants implementing

forward (.F), backward (.B) or floating (.L) search. The comparison of the accuracies

of the three search directions according to the four criteria used by Icon variants can

be seen in Table 3.2. These entries are the number of data sets on which there is

a statistically significant win/loss of the method in the row over the method in the

column (using 5× 2 cv F test); 38− wins− losses gives the number of ties; the entry

38

is bold if the number of wins/losses is significant in 38 trials (using Sign test). The

average and standard deviation of the number of base classifiers in the found ensemble

and the number of visited states during search are given in Tables 3.3 and 3.4.

Table 3.2. The number of statistically significant accuracy wins/losses of .F

(Forward), .B (Backward), and .L (Floating) over 38 data sets according to the

criterion used by Icon. The bold face entries show statistically significantly

difference using Sign test

Acc .F .B .L Cv .F .B .L

.F 0/0 1/0 1/0 .F 0/0 1/5 0/0

.B 0/1 0/0 0/1 .B 5/1 0/0 5/1

.L 0/1 1/0 0/0 .L 0/0 1/5 0/0

Qstat .F .B .L Corr .F .B .L

.F 0/0 2/5 2/0 .F 0/0 1/8 4/0

.B 5/2 0/0 8/2 .B 8/1 0/0 11/1

.L 0/2 2/8 0/0 .L 0/4 1/11 0/0

Table 3.3. Average ± standard deviation of the number of classifiers in ensembles

found by each search direction and optimization criterion

Acc Cv Qstat Corr

.F 2.39±1.5 1.05±0.2 8.16±4.9 5.74±5.1

.B 7.79±3.2 2.08±2.1 11.55±3.7 11.39±3.7

.L 2.26±1.3 1.05±0.2 6.29±4.4 3.32±2.3

We see that in all four criteria of Acc, Cv, Qstat, and Corr, .F and .L give

similar results; this is because most of the time small ensembles are enough and there is

not much to prune back after few additions. We also see that in terms of the ensemble

sizes and search time, .L and .F stand out as the best. With the diversity measure

Corr, backward search is significantly more accurate and faster because Corr needs

larger ensembles, and that is why with the diversity-based measures, forward and

floating search takes more steps.

39

Table 3.4. Average ± standard deviation of the number of search steps visited by

each search direction and optimization criterion

Acc Cv Qstat Corr

.F 42.37±15.1 27.63±2.7 143.05±28.6 125.84±30.6

.B 73.47±22.9 101.68±8.0 37.26±29.0 38.95±29.0

.L 712.47±345.4 415.58±40.6 172.13±61.2 131.68±40.6

We can see that .B and .L increase both the number of search steps and the

ensemble size for Acc and Cv. We believe that it is not beneficial to use floating

search because it finds the same ensembles as forward search does but takes more steps.

In diversity-based measures, backward search is more accurate but this increases the

ensemble size and we have no benefit over using the whole ensemble. Aiming high

accuracy and small ensembles, we therefore adopt forward search in the rest of the

chapter.

3.5.2. Initial Results

We start by discussing in detail our results on two data sets, optdigits and nursery,

as two example cases. We present our overall results on all data sets in the next

subsection.

3.5.2.1. Optdigits Data Set. The accuracies of base classifiers (sorted in increasing

accuracy) and the ensembles on test data are given in Table 3.5, together with the

number of classifiers, the number of discriminants, and the chosen ensembles. The

plot of accuracies vs the number of base classifiers is shown in Figure 3.2. On this

data set (as many others), using a linear combiner .Lin does not increase the accuracy

significantly, and therefore only .Sum results are given to keep the table and figures

simpler.

40

Table 3.5. Results on optdigits

Alg test # cla # disc Chosen

c45 81.76±1.3 1 10 c45

mdt 92.98±1.0 1 10 mdt

lnp 94.28±0.8 1 10 lnp

ml2 94.86±0.5 1 10 ml2

ml4 96.03±0.9 1 10 ml4

ml5 96.21±0.4 1 10 ml5

ml1 96.02±0.6 1 10 ml1

3nn 95.99±0.4 1 10 3nn

1nn 96.67±0.4 1 10 1nn

5nn 95.86±0.3 1 10 5nn

ml3 96.34±0.3 1 10 ml3

svl 97.48±0.2 1 10 svl

svr 97.67±0.2 1 10 svr

sv2 97.49±0.3 1 10 sv2

Best.3.Sum 98.22±0.2 3 30 sv2 svr svl

Best.5.Sum 98.19±0.2 5 50 sv2 svr svl ml3 5nn

Best.7.Sum 97.90±0.2 7 70 sv2 svr svl ml3 5nn 1nn 3nn

Best.9.Sum 98.01±0.3 9 90 sv2 svr svl ml3 5nn 1nn 3nn ml1 ml5

Rnd.1.Sum 97.67±0.2 1 10 svr

Rnd.3.Sum 97.60±0.3 3 30 c45 svl 1nn

Rnd.5.Sum 97.67±0.2 5 50 ml3 ml1 ml5 sv2 1nn

Rnd.7.Sum 97.82±0.2 7 70 ml3 ml4 mdt ml5 svr svl 1nn

Rnd.9.Sum 97.61±0.2 9 90 ml2 c45 ml3 lnp mdt ml5 svr sv2 3nn

All.Sum 97.85±0.2 14 140

Opt.Sum 98.22±0.2 3 30 svr sv2 svl

Acc.Sum 98.22±0.2 3 30 sv2 svr svl

Cv.Sum 96.02±0.6 1 10 ml1

QStat.Sum 97.85±0.2 14 140 All

Corr.Sum 97.85±0.2 14 140 All

Fss 98.83±0.1 10 25 c45(1,4) 1nn(3) 3nn(3,5) 5nn(7) ml1(9) ml2(4)

ml3(1) svl(2,3,5,6,7) sv2(1,2,4,7,8,9) svr(0,3,4,6,8)

Dt 97.65±0.4 6.6 11.8 1nn(6) 5nn(5) lnp(0) svl(7) sv2(1,2,3,4) svr(8,9)

Dt.Lin 98.22±0.3 6.6 11.8 1nn(6) 5nn(5) lnp(0) svl(7) sv2(1,2,3,4) svr(8,9)

41

0 5 10 15
96

96.5

97

97.5

98

98.5

99
optdigits

ml4
ml5

1nn

ml3

svl

svr

sv2

BEST

RND

ALL

OPTACC

QSTAT

CORR

FSS

DT

DT.LIN

L

A
cc

ur
ac

y

3nn

5nn

ml2:95
lnp:95
mdt:87
c45:82

Figure 3.2. Accuracy vs the number of classifiers on optdigits test

We see that the optimal subset Opt chooses only three out of fourteen and is

significantly as accurate as All that uses all fourteen. Ordering base classifiers in terms

of accuracy and choosing the best m, Best, is also significantly better than All. Note

that the accuracy of Best starts to decrease when too many base classifiers are added;

in such a case the increase in bias is higher than the decrease in variance. Choosing a

random subset, Rnd, does not work as well and requires more base classifiers.

In terms of the ensembles of classifiers generated by Icon, we see that Acc also

finds the optimal subset. The optimal subset generally contains a few base classifiers

and searching in the forward direction, as Icon variant Acc does, greedily returns a

quite good subset in polynomial time.

The Icon variants that use diversity measures, Qstat and Corr, use too many

base classifiers, showing that it is best to use accuracy as the ensemble evaluation

criterion directly rather than an intermediate diversity measure; or that diversity should

not be used alone but in some combination with accuracy.

42

Cv uses only one base classifier as it finds that adding a second does not increase

accuracy significantly. The behavior of Cv depends on the statistical test and the con-

fidence level. We show in Figure 3.3 how the ensemble changes at different confidence

levels. When the confidence level is lower than 0.95, the test uses a smaller confidence

interval, is more likely to reject and generates larger ensembles: Cv tends to behave

similar to Acc as the confidence level decreases. As the confidence level increases, the

test gets more and more conservative and generates smaller ensembles, until it chooses

only one.

0.5 0.6 0.7 0.8 0.9 1

0.03

0.04

0.05

0.06

ml1−sv2−ml4
ml1−sv2−ml4

ml1

ml1

lnp

Confidence Level

E
rr

or

Figure 3.3. The ensemble found by Cv changes as the confidence level changes on

optdigits
svl(7) < 0.46

6

8

2

9

1

3

4

7

5

0

1

1nn(6) < 0.5

lnp(0) < 0.016

5nn(5) < 0.30

svr(8) < 0.25

sv2(2) < 0.30

svr(9) < 0.24

sv2(1) < 0.37

sv2(3) < 0.40

sv2(4) < 0.45

Figure 3.4. One of the decision trees learned by Dt on optdigits

43

As for the ensembles of discriminants, we see that Fss uses more discriminants

than Dt, but is significantly more accurate than all other methods. On the average,

Dt chooses 11.8 discriminants (the smallest possible with ten classes is 9) from 6.6

classifiers. Example tree (one of ten) learned by Dt is given in Figure 3.4 and its

discriminants are given in Table 3.5: It starts by looking at the output of svl for class

‘7’ and chooses ‘7’ if this value is higher than 0.46. Note that we only evaluate the dis-

criminants in our path; for example we see here that the complex 5nn is only evaluated

to distinguish ‘0’, ’1’ and ‘6’ from others. Dt.Lin improves over Dt, but not signifi-

cantly (p = 0.90). Most classes are identifiable by looking at a single discriminant; only

‘1’ requires two (sv2 and 1nn). The example tree Dt chooses only ten discriminants,

choosing discriminants from six base classifiers; this set includes the optimal subset

found by Opt (which has 3 ·10 = 30 discriminants), and uses three more discriminants

from three classifiers (5nn, 1nn and lnp).

3.5.2.2. Nursery Data Set. The results on nursery is similar except that .Lin improves

accuracy over .Sum, for some ensemble methods. The results for the single base clas-

sifiers and the combination methods are given in Table 3.6. In Figure 3.5, we compare

the .Sum and .Lin variants.

On this data set, the accuracies of the base classifiers range from 76.85 to 99.41

and we see that using .Sum (Fig. 3.5(a)), All has low accuracy and the accuracy

of Best decreases as more classifiers are added; we do not see this as strongly with

.Lin (Fig. 3.5(b)). That is, a trained combiner is more robust to addition of erroneous

classifiers. The trained combiner is able to weight the accurate ones more and effectively

ignores those that are not as accurate. We also see that Icon, as a subset selection

method shows the same robust behavior; that is, because it does not add and use the

inaccurate classifiers, its accuracy is not degraded. Note that this is valid even if .Sum

is used (Fig. 3.5(a)). We therefore see that in the presence of inaccurate base classifiers

in the ensemble, either one should use a trained combiner which learns to ignore them

or use a subset selection method which does not include them.

44

This is a data set with four classes and the tree learned by Dt for this fold

(Fig. 3.6) has only three decision nodes, is very simple, and has 100.00 test accuracy,

which is higher than what we get when we use all outputs of all base classifiers for that

fold (99.81). Fss uses more discriminants and is as accurate. On this data set, Acc,

Opt, Fss and Best are significantly more accurate than All and Rnd.

Table 3.6. Results on nursery data set

Alg test # cla # disc Chosen

1nn 76.86±0.5 1 4 1nn

3nn 85.18±0.5 1 4 3nn

5nn 89.93±0.4 1 4 5nn

lnp 90.86±0.7 1 4 lnp

svl 92.43±0.3 1 4 svl

mdt 92.74±0.4 1 4 mdt

c45 92.72±0.5 1 4 c45

ml2 94.97±0.9 1 4 ml2

svr 95.50±0.4 1 4 svr

sv2 98.70±0.6 1 4 sv2

ml3 99.13±0.4 1 4 ml3

ml5 99.38±0.3 1 4 ml5

ml4 99.42±0.3 1 4 ml4

ml1 99.41±0.2 1 4 ml1

Best.3.Lin 99.58±0.2 3 12 ml1 ml4 ml3

Best.5.Lin 99.81±0.1 5 20 ml1 ml4 ml3 ml5 sv2

Best.7.Lin 99.78±0.1 7 28 ml1 ml4 ml3 ml5 sv2 svr ml2

Best.9.Lin 99.77±0.1 9 36 ml1 ml4 ml3 ml5 sv2 svr ml2 c45 mdt

Rnd.1.Lin 91.48±0.3 1 4 5nn

Rnd.3.Lin 99.40±0.2 3 12 ml1 3nn svr

Rnd.5.Lin 99.51±0.3 5 20 lnp ml4 ml5 1nn svr

Rnd.7.Lin 99.60±0.2 7 28 ml2 ml3 ml1 ml4 mdt ml5 1nn

Rnd.9.Lin 99.75±0.1 9 36 ml2 ml3 lnp ml1 ml4 c45 5nn svl sv2

All.Lin 99.76±0.1 14 56

Opt.Lin 99.81±0.1 5 20 ml3 ml1 ml5 5nn sv2

Acc.Lin 99.82±0.1 4 16 ml1 sv2 ml4 3nn

Cv.Lin 99.83±0.1 2 8 ml1 sv2

QStat.Lin 93.13±0.5 2 8 c45 1nn

Corr.Lin 98.91±0.4 2 8 ml3 1nn

Fss 99.95±0.0 5 8 ml1(0) ml3(0) ml4(0,3) mdt(0) sv2(0,2,3)

Dt 99.95±0.1 2.7 3 c45(1) sv2(2,3)

Dt.Lin 98.85±1.1 2 3 c45(1) sv2(2,3)

45

0 5 10 15
97

98

99

100

(a) .SUM

sv2
ml3
ml5ml4

ml1

BEST

RND

ALL

OPTACC

CV
FSS

DT

L

A
cc

ur
ac

y

0 5 10 15
97

98

99

100

(b) .LIN

sv2

ml3
ml5

ml4
ml1

BEST

RND

ALL

OPT
ACCCV

CORR

FSS

DT.LIN

L

A
cc

ur
ac

y

Figure 3.5. Comparison of fixed .Sum and trained .Lin on nursery test

0

c45(1) < 0.62

1

3

2

sv2(3) < 0.97

sv2(2) < 0.43

Figure 3.6. One of the decision trees learned by Dt on nursery

46

3.5.3. General Results

We compare accuracies of all ensemble methods in a pairwise manner on test in

Table 3.7. These are the number of significant wins and losses of method in the row

over the method in the column. The sum of wins and losses subtracted from 38 gives

the number of ties. If the entry is bold, this means that the number of wins/losses

over 38 is statistically significant using the Sign test. We do further statistical analysis

with nonparametric tests using the average ranks of the six ensemble methods on 38

data sets (Table 3.8). Friedman’s test rejects the hypothesis that the six methods have

equal ranks. Doing Nemenyi’s post-hoc test for pairwise comparison, we get the results

in Figure 3.7.

Table 3.7. Pairwise comparison of accuracies (wins/losses over 38) of all methods

using 5× 2 cv F -test

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt Dt.Lin

Best 0/0 3/1 6/0 0/0 0/1 9/1 7/0 8/0 10/4 6/1 9/1

Rnd 1/3 0/0 4/2 0/7 1/7 9/1 8/2 10/1 7/6 7/3 10/4

All 0/6 2/4 0/0 0/6 0/6 9/3 5/2 8/2 6/9 6/3 8/6

Opt 0/0 7/0 6/0 0/0 0/0 12/0 9/0 9/0 9/6 6/0 9/2

Acc 1/0 7/1 6/0 0/0 0/0 14/2 10/1 9/1 10/3 6/0 10/1

Cv 1/9 1/9 3/9 0/12 2/14 0/0 6/7 6/7 3/9 4/1 5/6

Qstat 0/7 2/8 2/5 0/9 1/10 7/6 0/0 5/1 5/12 5/5 8/8

Corr 0/8 1/10 2/8 0/9 1/9 7/6 1/5 0/0 7/12 5/5 5/8

Fss 4/10 6/7 9/6 6/9 3/10 9/3 12/5 12/7 0/0 7/1 12/3

Dt 1/6 3/7 3/6 0/6 0/6 1/4 5/5 5/5 1/7 0/0 1/4

Dt.Lin 1/9 4/10 6/8 2/9 1/10 6/5 8/8 8/5 3/12 4/1 0/0

Table 3.8. Average ranks of compared methods

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt Dt.Lin

4.55 5.68 5.76 3.89 4.08 8.01 6.97 7.17 4.82 8.62 6.43

Table 3.9 shows the average number of base classifiers (/discriminants) that en-

sembles constructed using different methods contain. The discriminant values are nor-

malized by dividing with the number of classes.

47

DT.LIN
DT

FSS

CORR

QSTAT

CV

ACC
OPT

ALL
RND BEST

3.58.5 7.5 6.5 5.5 4.5

CD

Figure 3.7. Graphical representation of post-hoc Nemenyi test results of compared

methods with ranks given in Table 3.8, as proposed in [51]. The numbers on the line

represent the average ranks, CD is the critical difference for statistical significance,

and bold lines connect the methods which have no significant difference

Table 3.9. Average number of base classifiers (/discriminants) contained in different

ensembles

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt

Sum 2.79 4.89 14.00 4.53 2.39 1.05 8.16 5.74 4.58/1.83 5.60/2.76

Lin 5.84 6.58 14.00 6.08 3.95 1.08 8.16 5.74 5.60/2.76

48

Additional to their accuracies and complexities, we also check how similar are the

ensembles found by different methods. Given two ensembles Ei and Ej, we define the

similarity between them as the number of shared base classifiers (or discriminants):

Sim(Ei, Ej) =
|Ei ∩ Ej|
|Ei ∪ Ej|

If the two ensembles share the same base classifiers (discriminants), the similarity

is 1; if there is no intersection, the similarity is 0. The average similarity between

ensembles found by different methods is given in Table 3.10.

Analyzing these tables, our general results are as follows:

• Overall, using a trained linear combiner does not increase the ensemble accuracy

significantly. In Table 3.11, we report a comparison of accuracies using .Sum vs

.Lin; we see that except with Cv, there is no significant difference between them,

and on Cv, it is .Sum which is more accurate.

We believe this is because we have sufficiently well-trained, capable base classifiers

which are able to approximate posterior probabilities quite well so that no further

bias correction (which the linear combiner effectively is there for) is required. It

may also be the case that on small data sets, there are not enough data to train

the linear combiner sufficiently. It is possible to increase the number of folds and

for example use 20×1 cross-validation which will have the effect of increasing the

training set both for base classifiers and the combiner at the expense of doubling

the running time. In the extreme case, one can use leave-one-out (as proposed in

the original stacking paper of Wolpert [9]) but this cannot be afforded (nor is it

necessary) unless the data set is small.

Using a fixed rule decreases time/space complexity of training/testing, does not

require data to train the combiner allowing more data to train base classifiers,

and is simpler to interpret. Therefore throughout the rest of this section, we

consider .Sum results only.

49

Table 3.10. Average similarity of base classifiers (discriminants) between ensembles

found by different methods

Best All Opt Acc Cv Qstat Corr Fss Dt

Best 1.00 0.20 0.44 0.61 0.11 0.13 0.14 0.32 0.20

0.20 0.13

All 0.20 1.00 0.32 0.17 0.08 0.58 0.41 0.33 0.40

0.13 0.20

Opt 0.44 0.32 1.00 0.48 0.14 0.23 0.20 0.37 0.28

0.21 0.17

Acc 0.61 0.17 0.48 1.00 0.09 0.13 0.15 0.29 0.19

0.19 0.14

Cv 0.11 0.08 0.14 0.09 1.00 0.06 0.09 0.16 0.07

0.12 0.05

Qstat 0.13 0.58 0.23 0.13 0.06 1.00 0.66 0.23 0.32

0.11 0.17

Corr 0.14 0.41 0.20 0.15 0.09 0.66 1.00 0.24 0.24

0.14 0.14

Fss 0.32 0.33 0.37 0.29 0.16 0.23 0.24 1.00 0.26

0.20 0.13 0.21 0.19 0.12 0.11 0.14 1.00 0.12

Dt 0.20 0.40 0.28 0.19 0.07 0.32 0.24 0.26 1.00

0.13 0.20 0.17 0.14 0.05 0.17 0.14 0.12 1.00

Table 3.11. Comparison of accuracies (wins/losses over 38) of .Sum vs .Lin

Best Rnd All Opt Acc Cv Qstat Corr

test 2/1 2/3 0/5 0/0 1/0 6/0 3/6 5/5

50

• According to Nemenyi’s test given in Figure 3.7, there is no significant difference

in accuracy between Best, Opt, Rnd, Acc, Fss. Among those, as we see in

Table 3.9, Acc uses the least number of classifiers, and Fss uses the least number

of discriminants. These results show that our proposed methods for ensembles of

classifiers and discriminants construct ensembles which are simple and as accurate

as optimal subset or the whole.

• Among Icon variants, Acc is the most accurate. It is also more accurate than

All on six data sets out of 38 on test (which is significant using Sign test). Acc

does not lose to Opt on any data set. The similarity of the ensembles they

find is 0.48; this is the fourth highest value in the table—the highest similarity

is between Qstat and Corr with 0.66. This shows that a greedy, forward,

incremental accuracy-based ensemble construction method works quite well. Cv

rarely uses more than a single base classifier and the diversity based Icon variants

are significantly less accurate than Acc.

• Best is also as accurate as Opt but needs more base classifiers than Acc does.

The similarity between Acc and Best ensembles is 0.61 (which is the second

highest value in the table.), showing that the greedy algorithm selects from the

best m but sometimes it chooses differently. Acc ensembles contain fewer base

classifiers than those of Best, indicating that instead of choosing the first best

m classifiers it is better to do some choosing for those which complement each

other and then we can do with less.

• Even Rnd works quite well but needs a larger ensemble, requiring more than two

times more base classifiers than Acc does.

• According to the average number of base classifiers they choose to include in their

ensembles, we have the following ordering: Cv < Acc < Best < Opt < Fss <

Rnd < Dt < Corr < Qstat < All.

• Acc and Cv use different base classifiers because Acc selects the classifier with

the highest accuracy, whereas Cv also takes complexity into account and chooses

the classifier which is the least complex among the most accurate. Because Cv

ensembles contain a single base classifier, they are generally less accurate than

other ensembles.

51

• In 32 of the 38 data sets, Opt contains Best.1, which means that an incremental

algorithm beginning with the best individual algorithm has higher probability of

finding Opt than an incremental algorithm beginning with a random classifier.

On the remaining six data sets, Opt contains the second best algorithm (and

on five of them Opt contains the same algorithm as Best.1 with a different

hyperparameter.).

• Cv requires statistically significant difference for a classifier to be added and

rarely adds more than one classifier (average number of base classifiers found by

this method is 1.05), but Acc, which looks at accuracy only, may achieve statis-

tically significant improvement after more than one step of classifier addition.

• Diversity based methods, Qstat and Corr, do not work well. Most of the other

methods are significantly more accurate than them. The similarity between the

ensembles found by these two is 0.66, indicating that they tend to find similar

(but not very similar) ensembles, but their similarity toOpt is around 0.20−0.25,

showing that they do not choose good base classifiers. Their similarity to other

accuracy based methods (other than ALL) is also around 0.2. These results

indicate that rather than using such diversity measures alone, it is best to combine

them with accuracy in some general goodness measure.

• Although the classifier and discriminant ensembles seem to contain a comparable

number of base classifiers, in terms of the discriminants, the discriminant ensem-

bles tend to need around half as many base discriminants, cutting by half the

space and time complexity of training/testing. On some data sets, this can be as

low as one-fifth.

3.6. Related Work

Since choosing from a subset of classifiers is of exponential complexity, heuristic

methods have been developed which are similar to the ones we have evaluated in our

study. Below, we give a chronological survey of work on subset selection methods for

ensemble construction (Table 3.12 gives a summary) and also related work on variants

of stacking.

Ta
bl
e
3.
12

.
W
or
k
si
m
ila

r
to

Ic
o
n
an

al
yz
ed

in
fiv

e
di
m
en
si
on

s:
(1
)
A
im

:
SS

:s
ub

se
t
se
le
ct
io
n,

E
P
:e

ns
em

bl
e
pr
un

in
g,

E
C
:e

ns
em

bl
e

co
ns
tr
uc
ti
on

,O
W
C
:o

pt
im

al
w
ei
gh

t.
(2
)
O
pt
im

iz
at
io
n
cr
it
er
io
n:

A
:a

cc
ur
ac
y,

D
:d

iv
er
si
ty
,T

P
-F
P
:T

P
-F
P

sp
re
ad

,R
C
M
:r
ea
lis
ti
c

co
st
,T

C
:t
es
t
co
st
,A

H
R
:a

ve
ra
ge

hi
t
ra
te
.
(3
)
B
as
e
cl
as
si
fie
rs
.
(4
)
O
pt
im

iz
at
io
n
m
et
ho

d:
M
:b

es
t

m
,G

:g
en
et
ic

al
go

ri
th
m
,F

:

fo
rw

ar
d,

B
:b

ac
kw

ar
d,

R
:r

an
do

m
,L

:fl
oa

ti
ng

,t
ab

u
se
ar
ch
,X

:e
xh

au
st
iv
e,

E
:e

ar
ly

st
op

,O
:o

pt
im

iz
at
io
n
al
go

ri
th
m
s
(i
nt
eg
er

pr
og

ra
m
m
in
g
et
c.
),
R
LO

:r
an

do
m

lin
ea
r
or
ac
le
,C

:c
lu
st
er
in
g,

D
P
:t

re
e
pr
un

in
g,

B
C
:b

es
t
fo
r
cl
as
s,

M
SE

:s
qu

ar
ed

er
ro
r,

M
C
E
:

cl
as
si
fic
at
io
n
er
ro
r,
M
D
M
:m

ar
gi
n
m
in
im

iz
at
io
n,

C
M
:c

om
pl
em

en
ta
ri
ne
ss
,C

A
L:

ca
lib

ra
ti
on

R
ef
er
en

ce
A
im

C
ri
te
ri
a

B
as
e
C
la
ss
ifi
er
s

M
et
ho

d
#

of
da

ta
se
ts

P
ar
tr
id
ge

an
d
Y
at
es

(1
99

6)
SS

A
rb
f,
m
lp

M
,
G
,
L

3

M
ar
gi
ne

an
tu

an
d
D
ie
tt
er
ic
h
(1
99

7)
E
P

A
,
D

dt
L
,
F
,
E

10

T
am

on
an

d
X
ia
ng

(2
00

0)
E
P

A
dt

B
,
O

8

P
ro
dr
om

id
is

an
d
St
ol
fo

(2
00

1)
SS

A
,
T
P
-F
P
,
R
C
M

ba
ye
s,
ri
pp
er
,
dt
,

D
P
,
B

2

R
ol
i
et

al
.
(2
00

1)
SS

A
,
D

m
lp
,
rb
f,
pn

n,
kn
n

F
,
M
,
B
C
,
B
,
L
,
C

1

Z
ho

u
et

al
.
(2
00

2)
SS

A
an

n
G

20

K
im

et
al
.
(2
00

2)
E
C

A
,
D

an
n

G
17

B
ak

ke
r
an

d
H
es
ke
s
(2
00

3)
SS

A
an

n
C

2

C
ar
ua

na
et

al
.
(2
00

4)
SS

A
,
C
A
L

sv
m
,
an

n,
kn
n,

dt
F

7

G
oe
be

l
an

d
Y
an

(2
00

4)
SS

D
an

n
F

1

R
ut
a
an

d
G
ab

ry
s
(2
00

5)
SS

A
,
D

nm
c,

an
n,

kn
n,

pa
rz
en

,
lp
,
rb
f

F
,
B
,
G

27

D
em

ir
an

d
A
lp
ay

dı
n
(2
00

5)
SS

A
,
T
C

m
lp
,
lp

F
1

R
ok
ac
h
et

al
.
(2
00

6)
SS

A
H
R
,

Q
R
ec
al
l,

P
E
M

dt
M

1

Z
ha

ng
et

al
.
(2
00

6)
E
P

A
dt

O
16

K
un

ch
ev
a
an

d
R
od

ri
gu

ez
(2
00

7)
E
C

A
dt

R
L
O

42

M
ar
tí
ne

z-
M
uñ

oz
an

d
Su

ár
ez

(2
00

7)
SS

A
dt

M
,
E

18

Y
an

g
et

al
.
(2
00

7)
SS

,
E
C

A
,
T
C

SP
O
D
E

F
,
B
,
R

58

T
hi
s
w
or
k

SS
A
,
D

kn
n,

m
lp
,s
vm

,m
dt
,

dt

F
,
B
,
L

38

53

Partridge and Yates [41] use the concept of “methodological diversity” to come

up with diverse classifiers and use three different methods for combining rbf or mlp

neural networks. They use a subset selection technique which first trains multiple base

classifiers and chooses amongst them. The evaluations are carried out on three data

sets, and no cross-validation is mentioned.

Marginentau and Dietterich [42] use the idea that combining diverse classifiers

leads to better ensembles: They first use boosting to form an ensemble of 50 decision

trees from which they then prune (i.e., using backward search) non-diverse classifiers

using five different diversity criteria. They use decision trees as base classifiers and

they compare their results on ten data sets with 10-fold cross-validation.

Ting and Witten [62] propose the MLR (Multiresponse Linear Regression) al-

gorithm which combines the outputs of base learners linearly. For each class, there

is a linear model to separate it from all other classes, and they choose the maximum

for decision (We use a single model with softmax at the output). They use three

different base classifiers. They use the same classifiers also on the stacking level and

compare them with their proposed linear combiner and deduce that their proposed

MLR works the best. Note that there is no subset selection (at the level of classifiers

or discriminants) here.

Tamon and Xiang [63] use a method called “weight shifting” to prune ensembles of

decision trees constructed using AdaBoost. They evaluate this method by using 10-fold

cross-validation on eight data sets, but no statistical testing is mentioned. They also

show that subset selection problem is intractable and propose a solution using integer

programming.

Sharkey et al. [64] propose the “test and select” approach to ensemble construc-

tion. The focus is on selecting a subset from a larger set. If the number of classifiers is

small, they use exhaustive search; else they generate and test a number of candidates.

One method is to generate random subsets, especially when there are too many base

classifiers. They compare their results on two data sets and use neural networks for

54

the first data set and self organizing maps for the second data set. The data sets

are divided into training, validation and testing sets but statistical comparison is not

mentioned.

Ueda [65] combines multiple neural networks linearly to come up with an en-

semble, similar to the work of Ting and Witten [62]. The approach is to first find

best neural networks for each class and combine them linearly using optimal weights.

Only neural network classifiers are used in the study and weight decay regularization

is used. The method is compared with voting, bagging and majority voting. Leave-

one-out cross-validation is used for evaluating the results on one artificial and two real

data sets; no statistical testing is provided.

Prodromidis and Stolfo [66] form a meta decision tree for the classifiers in an

ensemble and use cost-complexity based pruning to prune the tree. They first model the

ensemble (constructed by any method) into a decision tree which mimics the behavior of

the original ensemble. They then prune this constructed tree, which results in deletion

of some of the classifiers in the original ensemble. The remaining classifiers are used

to construct the final ensemble with the same method used to construct the original

ensemble. The methods used for constructing the initial ensemble are weighted voting,

majority voting, SCANN [22], and stacking, and five base classifiers were used in the

study.

Roli et al. [67] define the “overproduce and choose” paradigm where they initially

construct a set of candidate classifiers and then select a subset amongst them. Their

forward and backward search is the same as ours, using accuracy and diversity criterion;

they also implement a forward version which does not start with the best classifier

but a random one. They use only one data set and compare their results with All

and Best.1, with three different sets of base classifiers. No statistical evaluation is

presented in the study and they combine using majority voting.

Zhou et al. [68] show that choosing a subset of classifiers may be more accurate

than combining all, and propose a genetic algorithm based method to find the subset

55

and evaluate their results on ten regression and ten classification data sets. Their base

classifiers are neural networks with one hidden layer. They compare their results with

bagging and AdaBoost and show that their method finds ensembles which are smaller

and which have better generalization ability. They use ten-fold cross validation in their

experiments and statistical tests are used to assess the performance.

Kim et al. [69] train multiple ensembles using genetic algorithms. They evaluate

their algorithm on 17 data sets using cross-validation and using neural networks as base

classifiers. The diversity of the ensembles is achieved using multiple feature subsets.

The difference of their method from most of the methods in the literature is that,

they build multiple ensembles at the same time. The genetic algorithm determines the

membership of classifiers for the ensembles and the selected feature subsets.

Bakker and Heskes [70] use clustering to reduce the size of bootstrap ensembles.

They use cluster centers as representatives of each cluster and use a measure of method-

ological diversity to make the cluster centers optimally diverse. Islam et al. [71] use

incremental algorithms based on negative correlation learning to come up with neural

network ensembles, taking into account both accuracy and diversity. They evaluate

their proposed method on eight data sets. The diversity measure is added to the error

function so that networks try to maximize diversity during training.

Caruana et al. [39] propose an incremental algorithm which adds classifiers to

the ensemble one at a time, as in Icon. The stopping conditions are different: They

stop after a predefined number of steps or when all of the classifiers are chosen. Their

work uses thousands of models trained with different hyperparameters using six base

algorithms, and they use seven data sets (which are binary or binarized) for evaluation

purposes using ten performance metrics which are normalized to [0, 1].

Goebel and Yan [72] use ρ-correlation based diversity measure with an incremen-

tal learning algorithm to find an ensemble. They claim that ρ-correlation is a better

indicator of contribution to overall accuracy than that of the individual accuracy of

the base classifier to be added. They use neural network classifiers as base classifiers

56

and they evaluate their results on one data set. No statistical testing is done.

Ruta and Gabrys [73] evaluate various methods for combining classifiers and

compare error-based and diversity-based selection criteria. They make experiments

on 27 data sets using 15 classifiers (different algorithms) using crisp (0/1) outputs.

They evaluate various search methodologies including forward and backward search,

single best and m-best, and evolutionary algorithms. They use 16 measures (based

on accuracy, diversity or both) to assess the performance of constructed systems and

their conclusion is the “inappropriateness of diversity measures used as selection criteria

in favor of the direct combiner error based search”. They also conclude that “greedy

algorithms are the best resistant to bad selection criteria”. After the selection process

they use majority voting for the combination of the classifiers. They divide the data set

into 100 different train/test splits (half of test set is used for validation and the other

half is used for evaluation). Their empirical results support our findings: It is best to

use accuracy as the search criteria; using diversity alone as the selection criteria gives

very bad results because it chooses most diverse but inaccurate classifiers. They use

crisp (0/1) outputs whereas using posterior probabilities as we do is more informative.

Perhaps the best way to form independent base classifiers is to have them use

different representations of the same object or event. Different representations make

different characteristics apparent and an object ambiguous in one representation may

be clearly recognizable in another [4]. Demir and Alpaydın [14] generate multiple

feature sets from different representations, feed them to separate base classifiers and

incrementally find the best subset of classifier/representation pairs; different represen-

tations may have different costs associated with them and the chosen “cost conscious”

ensemble yields the best trade-off between accuracy and cost. They perform their

experiments on a handwritten digit data set with multiple representations using mul-

tilayer perceptrons as base classifiers, and compare the accuracy with voting over all

and boosting.

Rokach et al. [74] propose the selective voting algorithm which orders base models

in terms of goodness and combine the best m. The diversity of the base classifiers is

57

achieved through using multiple input feature sets. In their work, they give results

on a two-class data set using 52 different representations, pointing out the advantage

of using data from multiple representations. They compare their proposed selective

voting algorithm with voting, stacking with decision trees, and weighted voting. They

also see that performance degrades when many classifiers are included in the ensemble.

Zhang et al. [75] define the problem of pruning an ensemble as a quadratic integer

programming problem and use semi-definite programming to get a better approximate

solution.

Kuncheva and Rodriguez [76] propose a hybrid selection-fusion approach to clas-

sifier combination. For each classifier, a random linear oracle is created as a hyperplane

and the data residing in each half are trained using the ensemble approach. They test

their method on 35 data sets from UCI and 7 other medical data sets. 10-fold cross

validation was carried out with decision trees used as base classifiers. They see that

all of the ensemble methods benefit from this approach, with bagging and the random

subspace methods having the highest benefits.

Martínez-Muñoz and Suárez [77] train L classifiers using bagging, and then use

AdaBoost to prune the ensemble (i.e. change the random order of bagging and early

stop). They use 18 data sets in their experiments and use decision trees as base

classifiers; they also check for statistical improvement. Their conclusion is that, by

selecting a subset of base classifiers, one can achieve better accuracy, with less complex

ensembles. Their method outperforms bagging and is comparable to Adaboost, though

when the noise level is high, their method outperforms Adaboost, which makes it a

better alternative ensemble method when the noise level is not known.

Sohn and Shin [78] compare bagging and combination using linear regression and

see that on large data sets, they work equally well and bagging is better on small data

sets (where probably a trained combiner overfits). They find that a trained combiner

is suitable when there is strong correlation between input variables.

58

Yang et al. [79] combine Bayesian network classifiers and compare subset selection

(in forward/backward direction using various criteria) vs trained weighted combiner.

They make their experiments on 58 benchmark data sets and use four different statis-

tical testing methods for comparison. They conclude that there is no clear winner and

that the choice between model selection and model weighing depends on the problem

at hand.

3.7. Conclusions

We discuss two ensemble construction methods. In an ensemble of classifiers, we

choose a subset from a larger set of base classifiers. In an ensemble of discriminants, we

choose a subset of base discriminants, where a discriminant output of a base classifier

by itself is assessed for inclusion in the ensemble.

A greedy, forward, incremental classifier ensemble finds ensembles that are small,

as accurate as the optimal ensemble, and does this in polynomial time. It is best to

maximize the final overall ensemble accuracy, rather than some intermediate diversity

criterion; one may also envisage some combination of accuracy and diversity to be able

to get the best of both worlds.

When the base classifiers are trained with enough data and are accurate, there is

no need for a trained linear combiner, and the fixed sum rule works as well, in a cheaper

manner. Our experience in this and other studies is that stacking works better than

voting when there is disparity between the accuracies of the base classifiers. When

all base classifiers are accurate and equally trustworthy, voting works fine; stacking is

needed when we need to weight some, those that are more accurate, higher and some,

the erroneous ones, less.

59

4. COMBINING REPRESENTATIONS

We will show two sets of experiments on two data sets from which we construct

multiple representations. The first set uses neural networks (linear perceptron and mul-

tilayer perceptrons) as base classifiers, and the second set uses support vector machines

as base classifiers. We will show that with base classifiers using different representa-

tions (even correlated representations) we have better accuracy than ones using a single

representation. First, we use the pendigits data set defined in Section 2.2.4, then we

use a processed version of the 3D RMA face data set [80]5 .

4.1. Pen-Based Digit Recognition

We use the data defined in Section 2.2.4, but this time using 10-fold cross-

validation. For example, sv3-s8 denotes the svm classifier with polynomial kernel of

degree 3 using s8 (static 8× 8) representation.

4.2. Face Recognition

For testing the strength of Icon for multiple representations, we also use a pre-

processed version of the 3D RMA data set for face recognition, which consists of five

or six images of each subject with 106 subjects (classes). One example of each repre-

sentation is used for test and the remaining four (or five) for training. We apply 4-fold

cross-validation where for each fold we have 318 examples for training and 193 exam-

ples for validation. The separate test set has 106 examples, one from each class. From

the three dimensional data, four representations are extracted [81, 82] (Figure 4.1):

• Profile Set (P): The depth values of seven profiles of the face (the center profile,

three right and three left profiles.

• Point Cloud (C): The (x, y, z) coordinates on a 3-dimensional face.

• Surface Normals (N): Surface normals of the face at each point.
5This processed version of the 3D RMA face data set is provided by Berk Gökberk.

60

• Depth Map (D): The depth values of the face image.

For these four representations, we also use principal components analysis to de-

crease dimensionality (to explain 90 per cent of variance) and get four new representa-

tions (with subscript R, standing for Reduced). For Point Cloud and Surface Normals,

we also use downsampling (with subscript S, standing for subsampled). We therefore

have a total of ten different representations.

Profile Set (P)

Point Cloud (C)

Depth Map (D)

Surface Normals (N)

Figure 4.1. Four main face representations

4.3. Neural Network Classifiers

In this section, we present our results on pendigits and 3D RMA data sets using

neural network base classifiers. We use linear and multi-layer perceptrons as base

classifiers and in them, the number of weights define both the space and computational

complexity. With D inputs and K classes, a linear model has d ≡ (D + 1)K weights

(free parameters) and similarly anmlp with H hidden units has d ≡ (D+1)H+(H+1)K

weights. We used H = 24, 30, 36, 42 in our experiments, and report the one with the

highest accuracy.

61

4.3.1. Pendigits Data Set

Note that when choosing the individual models, we do not need to optimize any

hyperparameter such as the number of hidden units. In ensemble construction, it is

not the accuracy of the models by themselves that should be optimized but how well

they complement each other. As we see next, a model which is not accurate by itself

may be included in the ensemble because it is accurate for the cases where another is

not.

1.5 2 2.5 3 3.5 4 4.5
55

60

65

70

75

80

85

90

95

100

Pendigits

log d

A
cc

ur
ac

y

lnp−s2

lnp−s4

lnp−dyn lnp−s8

ml24−s4

ml36−dyn ml30−s8
lnp−s16

ml30−s16

MDL λ=10−7
MDL λ=10−4

MDL λ=10−2

MDL λ=102

CV

Figure 4.2. Test accuracy vs. log free parameters of single models and Icon results

on pendigits. Dashed lines connect models with the same representation. Continuous

line connects the results of Mdl for various values of λ

Table 4.1 shows the results of individual models and variants of Icon. With Cv,

the chosen models are first ml30-dyn, and then lnp-s4. lnp-s4 is not very accurate

but it complements ml30-dyn and increases ensemble accuracy significantly. Note also

that these two models use different representations and the fact that their combination

is useful is automatically discovered by Icon. The accuracy of this combination is

significantly better than that of the single best model ml36-dyn with p = 0.98 and

also significantly better than All which combines all models with p = 0.998. There

is no significant difference between Cv and Acc. Although the single best classifier

62

is ml36-dyn since it is not significantly more accurate than ml30-dyn, Cv starts with

ml30-dyn which has less cost but statistically the same accuracy. This then yields

an ensemble which is not much costlier than the single best, but is statistically more

accurate. This is the advantage of Icon that, we improve accuracy while not paying

too much in terms of cost.

With Mdl, the selected models are given in Table 4.2 as a function of log λ.

As we can see, if we increase the importance of cost, the algorithm tends to choose

the simplest model. If we increase the importance of accuracy, the algorithm behaves

similar to Cv. We see that Acc, additional to the two models chosen by Cv, also uses

two more models, one of which uses a different representation. Figure 4.2 shows the

test accuracies for single models and Icon variants as a function of complexity, where

we see that Icon variants attain higher accuracy with less cost.

4.3.2. Face Data Set

Again with this data set, we do not optimize any of the models, we just train a

number of candidate models and let Icon do the picking. Note that with this data

set, because both the number of inputs and the number of classes is high, mlp models

have less free parameters than LP models. Again, we see that Cv improves accuracy

(Table 4.3): It chooses lnp-CS and lnp-NR. Cv is significantly better than the single

best with p = 0.96 and All with p = 0.99. There is no significant difference between

Cv and Acc. Mdl results are given in Table 4.4. Figure 4.3 shows accuracies for

Icon variants and single models as a function of log d.

Cv selects an ensemble which is costlier but is statistically significantly more

accurate. We again see that Cv and Acc add models using different representations.

Both Cv and Acc are statistically significantly more accurate than the single best

classifier and All.

63

Table 4.1. Results of individual models and Icon variants on pendigits

Model d Val Test

lnp-s4 170 91.8±0.8 88.6±0.1
lnp-dyn 170 96.3±0.8 91.7±0.2
lnp-s8 650 96.1±0.3 93.5±0.1
ml24-s4 675 93.8±0.8 89.8±0.6
ml30-dyn 837 99.2±0.5 96.5±0.2
ml36-dyn 999 99.2±0.4 96.8±0.2
ml36-s4 999 94.2±0.4 90.6±0.6
ml42-s4 1,161 94.7±0.5 90.6±0.4
ml42-dyn 1,161 99.2±0.3 96.7±0.2
ml30-s8 2,325 97.1±0.5 95.0±0.1
lnp-s16 2,570 95.2±0.6 92.4±0.2
ml36-s8 2,775 97.2±0.4 95.0±0.3
ml42-s8 3,225 97.3±0.5 95.3±0.2
ml30-s16 8,277 96.5±0.6 94.6±0.2
ml36-s16 9,879 96.8±0.5 94.8±0.3
ml42-s16 11,481 97.0±0.4 94.8±0.2
All 49,069 98.9±0.3 97.4±0.1
Acc 5,555 99.5±0.2 98.0±0.1

ml36-dyn lnp-s4 ml42-dyn ml42-s8

Cv 1,007 99.5±0.3 97.5±0.3
ml30-dyn lnp-s4

64

Table 4.2. Mdl results on pendigits as a function of λ

log λ Combination d Val Test

-6 ml36-dyn lnp-s4 ml42-dyn ml42-s8 5,555 99.5±0.2 98.0±0.1
-5 ml36-dyn lnp-s4 ml42-dyn ml42-s8 5,555 99.5±0.2 98.0±0.1
-4 ml30-dyn lnp-s4 1,007 99.4±0.3 97.5±0.3
-3 ml30-dyn lnp-s4 1,007 99.4±0.3 97.5±0.3
-2 lnp-dyn 170 96.2±0.8 91.7±0.1
-1 lnp-dyn 170 96.2±0.8 91.7±0.1
0 lnp-dyn 170 96.2±0.8 91.7±0.1
1 lnp-dyn 170 96.2±0.8 91.7±0.1

3 3.5 4 4.5 5 5.5 6 6.5
55

60

65

70

75

80

85

90

95

100

Face

log d

A
cc

ur
ac

y

lnp−P
R

lnp−D
R

ml36−P
R

ml36−D
R

ml36−N
R

lnp−N
R ml36−C

S

ml36−N
S

ml36−P

lnp−N
S

lnp−C
S

lnp−P

ml36−N

ml36−D

ml36−C

lnp−N

lnp−D
lnp−C

MDL λ=10−7

MDL λ=10−4

MDL λ=102
CV

Figure 4.3. Test accuracy vs. log free parameters of single models and Icon results

on face. Dashed lines connect models with the same representation. Continuous line

connects the results of Mdl for various values of λ

65

Table 4.3. Results of individual models and Icon variants on face

Model d Val Test

lnp-PR 2,756 90.7±2.0 89.4±4.0
lnp-DR 3,392 85.3±4.4 85.1±3.8
ml36-PR 4,884 90.8±1.0 91.7±3.2
ml36-DR 5,106 90.4±3.7 87.2±3.4
ml36-NR 7,881 85.7±3.6 87.9±4.7
lnp-NR 11,342 93.2±1.4 95.9±1.4
ml36-CR 16,206 27.7±5.2 25.4±3.2
lnp-CR 35,192 53.2±5.7 57.7±3.8
ml36-CS 40,256 93.5±2.1 93.6±3.6
ml36-NS 40,256 84.7±4.2 81.8±6.2
ml36-P 61,568 83.0±5.2 84.6±4.7
lnp-NS 104,092 91.7±2.7 92.4±1.5
lnp-CS 104,092 97.5±1.0 97.4±1.4
lnp-P 165,148 90.4±3.2 92.9±1.9
ml36-N 196,100 85.4±4.0 83.9±4.4
ml36-D 286,010 71.3±4.6 70.5±4.7
ml36-C 380,138 81.0±6.4 78.5±4.1
lnp-N 550,564 78.6±5.4 78.3±3.5
lnp-D 808,144 66.8±5.9 67.4±3.4
lnp-C 1× 106 67.4±5.6 65.5±7.4
All 3.9× 106 96.5±2.0 97.4±0.9
Acc 123,315 98.5±0.6 97.8±0.4

lnp-CS lnp-NR ml36-NR

Cv 115,434 98.2±1.3 97.6±0.9
lnp-CS lnp-NR

66

Table 4.4. Mdl results on face as a function of λ

log λ Combination d Val Test

-6 lnp-CS lnp-NR ml36-NR 123,315 98.5±0.6 97.8±0.4
-5 lnp-CS lnp-NR ml36-NR 123,315 98.5±0.6 97.8±0.4
-4 lnp-NR ml36-PR lnp-DR 19,618 96.5±1.4 96.2±2.0
-3 lnp-PR 2,756 90.6±1.9 89.3±4.0
-2 lnp-PR 2,756 90.6±1.9 89.3±4.0
-1 lnp-PR 2,756 90.6±1.9 89.3±4.0

4.3.3. Conclusions

We see that using a subset of possible models as chosen by Icon works better

than taking a vote over all models. With voting, we would use all of the candidate

models, which both increase complexity and is not guaranteed to improve accuracy;

but with Icon, we construct ensembles which are simple and accurate, because the

increase in complexity should be justified by a parallel increase in accuracy.

The strength of combining multiple representations is justified with Icon. The

models added to the ensemble use different representations. A model which is very

simple and which may never be used as a single model, may contribute to combined

accuracy and is added to the ensemble if it complements the models already in the

ensemble. For example on pendigits, the model lnp-s4 is a very simple model but is

selected by Cv; this creates an ensemble which is statistically more accurate than the

single best model, without an increase in cost. The algorithm operates in the “Low-cost

High-accurate” part of the search space to come up with accurate ensembles (Top left

in Figures 4.3 and 4.2).

On pendigits, Cv does not have a significant penalty for cost and selects a signif-

icantly more accurate model. On face, Cv selects a more accurate but costlier model.

Cv chooses a simple and accurate ensemble if one is obtainable; if not, Cv selects

accurate models at the risk of increasing cost.

67

The main advantage of Icon is that the models need not be optimized for best

performance. The user just prepares a palette of models (representation/classifier) and

Icon automatically chooses a subset from these for optimized performance. The subset

found is also automatically tailored for best accuracy-cost trade-off, depending on the

application.

In this section we use simple voting in our experiments. Any other algorithm

to combine the decisions of the models e.g., weighted voting, stacking [9], mixture of

experts [7] can be used with Icon (we will see in the following sections). Note that

voting does not use any parameters but a combiner will have an extra cost.

4.4. Support Vector Classifiers

In this section, we present our results using svm base classifiers. We also inspect

the effect of fixed rules, and forward/backward search on ensemble accuracy.

4.4.1. Pendigits Data Set

We do not need to optimize kernel type of the svm classifier or the type or dimen-

sionality of the input representation, we try all and generate a palette of candidates; it

is Icon that chooses the best subset from these, keeping what are most accurate and

complementary, ignoring the costly and the redundant.

Table 4.5 shows the results of the individual models where we see that the dynamic

representation gives the simplest models and that 4 × 4 images contain quite a bit of

information; we see overfitting as models get more complex.

Table 4.6 shows Sum.F and Pro.F results for Acc, and Cv results. In terms

of complexity, we have the following ordering: Cv < Acc. Acc.Sum is significantly

more accurate than Cv.Sum (p = 0.99), whereas Acc.Pro and Cv.Pro find the

same ensemble. This shows us that Acc finds more accurate (though more complex)

ensembles. Note that with Cv, at each step, we check for statistical significance,

68

Table 4.5. Results of individual models on pendigits

Model d Val Test

svl-dyn 7,600 98.4±0.5 95.3±0.3
sv2-dyn 7,696 99.5±0.3 97.6±0.1
sv3-dyn 8,400 99.6±0.3 97.6±0.1
sv4-dyn 8,432 99.6±0.2 97.6±0.2
svr-dyn 14,240 99.7±0.2 98.3±0.1
sv2-s4 19,312 96.0±0.6 92.3±0.2
sv3-s4 19,952 95.3±0.6 91.3±0.3
sv4-s4 20,752 94.7±0.6 90.5±0.3
svl-s4 20,960 93.7±0.9 90.3±0.1
svr-s4 49,856 96.5±0.5 93.5±0.2
svl-s8 70,720 97.2±0.3 94.8±0.2
sv2-s8 139,328 98.4±0.4 96.6±0.1
sv3-s8 145,344 98.2±0.3 96.3±0.1
sv4-s8 155,328 98.1±0.4 95.8±0.1
svr-s8 173,952 98.4±0.4 96.9±0.1
svl-s16 596,224 96.9±0.5 94.4±0.2
svr-s16 1,137,920 96.1±0.6 94.2±0.1
sv2-s16 1,870,850 87.6±1.1 84.2±0.7
sv4-s16 1,878,020 83.8±3.5 80.4±3.2
sv3-s16 1,918,460 71.9±6.4 67.4±4.7

69

whereas for Acc, it is enough that average accuracy increases. It may be the case

that a single model increases the accuracy but not significantly and a further second

model increases it significantly; Acc catches such ensembles though Cv stops early.

So in terms of accuracy, we have the ordering as: Acc > Cv. These results support

the findings of [73]: “The results clearly show that searching directly according to the

combiner error is optimal and returns well performing combinations”.

Table 4.6. Results of Sum.F and Pro.F using different model selection criteria on

pendigits

d VAL TEST

Icon ENSEMBLE FOUND

FO
RW

A
R
D

S
u
m

Acc 618K 99.8±0.1 98.5±0.1
svr-dyn svl-s16 sv4-dyn

Cv 22K 99.7±0.2 98.1±0.1
sv3-dyn svr-dyn

P
ro

Acc 618K 99.8±0.1 98.9±0.1
svr-dyn svl-s16 sv3-dyn

Cv 618K 99.8±0.1 98.9±0.1
sv3-dyn svr-dyn svl-s16

Table 4.7 shows the effect of fixed rules on Cv.F and Acc.F. With Cv, we

see that all fixed rule variants except Pro find the same ensemble sv3-dyn svr-dyn.

Cv.Pro adds another model (with a different representation) to this ensemble and

has higher accuracy (p ≥ 0.97) (Note that two fixed rule methods choosing the same

ensemble does not necessarily indicate that they have the same accuracy; that is why

Cv.Pro can add the third model, whereas the others cannot). With Acc though,

things change: All the fixed rule methods find different ensembles. All but Max are

significantly more accurate than Min (though Min finds a much simpler ensemble).

There is no significant difference between Pro, Max, Sum, Med, except that Med

is significantly more accurate than Max. For this data set, considering accuracy, we

have the ordering: Pro, Sum, Med > Max > Min. Pro, in this case outperforms

the others because the base classifiers do not create outlier posteriors [58].

70

Table 4.7. Results of Cv.F and Acc.F variants on pendigits

d VAL TEST

Icon ENSEMBLE FOUND

FO
RW

A
R
D

A
c
c

Sum 618K 99.8±0.1 98.6±0.1
svr-dyn svl-s16 sv4-dyn

Max 618K 99.8±0.1 98.6±0.1
svr-dyn svl-s16 sv3-dyn

Min 21K 99.8±0.2 98.0±0.1
svr-dyn sv2-dyn

Med 638K 99.8±0.1 98.7±0.1
svr-dyn svl-s16 sv4-dyn sv2-s4

Pro 618K 99.8±0.1 98.9±0.1
svr-dyn svl-s16 sv3-dyn

C
v

Sum 22K 99.7±0.2 98.1±0.1
sv3-dyn svr-dyn

Max 22K 99.7±0.2 98.1±0.1
sv3-dyn svr-dyn

Min 22K 99.8±0.2 98.0±0.1
sv3-dyn svr-dyn

Med 22K 99.7±0.2 98.1±0.1
sv3-dyn svr-dyn

Pro 618K 99.8±0.1 98.9±0.1
sv3-dyn svr-dyn svl-s16

71

Table 4.8 shows the effect of backward vs forward search with Acc using different

rules. With Sum and Max, backward finds ensembles that are more in number but

less in terms of parameters than forward (With Min the found ensemble is similar).

We see that there is no significant difference between the accuracies of forward and

backward results.

Table 4.8. Comparison of forward and backward search on pendigits

d VAL TEST

Icon ENSEMBLE FOUND

A
c
c

FO
RW

A
R
D

Sum 618K 99.8±0.1 98.5±0.1
svr-dyn svl-s16 sv4-dyn

Max 618K 99.8±0.1 98.5±0.1
svr-dyn svl-s16 sv3-dyn

Min 21K 99.8±0.2 98.0±0.1
svr-dyn sv2-dyn

Med 638K 99.8±0.1 98.7±0.1
svr-dyn svl-s16 sv4-dyn sv2-s4

Pro 618K 99.8±0.1 98.9±0.1
svr-dyn svl-s16 sv3-dyn

B
A
C
K
W
A
R
D

Sum 216K 99.8±0.1 98.5±0.1
svl-dyn sv2-dyn svr-dyn sv3-s4 sv3-s8

Max 161K 99.8±0.1 98.6±0.1
sv3-dyn svr-dyn sv2-s8

Min 22K 99.8±0.2 98.0±0.1
sv3-dyn svr-dyn

Med 695K 99.8±0.1 98.3±0.1
svl-dyn sv3-dyn sv4-dyn svr-dyn sv2-s4 sv3-s4 svl-s16

Pro 637K 99.8±0.1 98.9±0.1
sv2-dyn svr-dyn sv2-s4 svl-s16

Overall, we see that the fixed rule and search direction changes the results of Cv

and Acc. Acc.F and Cv.F tend to find models with different representations.

72

We also present Mdl.Sum.F results with different λ in Table 4.9. As we increase

λ, complexity is penalized more and we get simpler, but less accurate ensembles. Fig-

ure 4.4 shows all individual models and the path Mdl.F follows as λ varies.

Table 4.9. Mdl.Sum.F results on pendigits as a function of λ

log λ Combination d Val Test

-9 svr-dyn svl-s16 sv4-dyn 618K 99.8±0.1 98.5±0.1
-8 svr-dyn svl-s16 sv4-dyn 618K 99.8±0.1 98.5±0.1
-7 svr-dyn sv2-dyn sv2-s4 41K 99.8±0.2 98.5±0.1
-6 svr-dyn sv2-dyn sv2-s4 41K 99.8±0.2 98.5±0.1
-5 svr-dyn 14K 99.5±0.2 98.2±0.1
-4 sv4-dyn 8K 98.7±0.2 96.7±0.2
-3 sv2-dyn 7.7K 91.8±0.3 89.9±0.1
-2 sv2-dyn 7.7K 91.8±0.3 89.9±0.1
-1 svl-dyn 7.6K 98.4±0.5 95.3±0.3
0 svl-dyn 7.6K 98.4±0.5 95.3±0.3
1 svl-dyn 7.6K 98.4±0.5 95.3±0.3
2 svl-dyn 7.6K 98.4±0.5 95.3±0.3

Table 4.10 compares Acc.F results with three cases: Best.1, All, and Opt

(Instead of all 20, we did an exhaustive search over 12 of the 20, choosing the most

accurate three models from each representation). Here we also see the effect of com-

bination rule. We expect that Min rule gives very bad results (as we will see in face)

but since the individual base classifiers are strong even the Min rule using all of the

classifiers finds good ensembles. Still all of the Acc.F variants are statistically more

accurate than using all models. There is no significant difference between the accura-

cies of Opt and Acc.F results. With Max and Pro, Acc and Opt find the same

ensemble. With the remaining three fixed rule combinations Acc has same accuracy

with comparable complexity as in [73]. “Virtually all the search algorithms work well

with this (combiner error) criterion and the combinations of classifiers they return are

very similar or identical to the optimal combinations found by exhaustive search”.

73

3.5 4 4.5 5 5.5 6 6.5
70

75

80

85

90

95

100

Pendigits

log d

A
cc

ur
ac

y

svl−dyn
sv2−dyn

sv3−dyn
sv4−dyn

svr−dyn
sv2−s4

sv3−s4
sv4−s4

svl−s4

svr−s4svl−s8

sv2−s8 sv3−s8

sv4−s8
svr−s8 svl−s16

svr−s16

sv2−s16

sv4−s16

sv3−s16

MDL λ=10−8MDL λ=10−7
MDL λ=10−5

MDL λ=10−4

MDL λ=10−3

MDL λ=102
CV

Figure 4.4. Test accuracy vs. log free parameters of single models and Mdl.Sum.F

results on pendigits. Dashed lines connect models with the same representation.

Continuous line connects the results of Mdl.Sum.F for various values of λ

74

Table 4.10. Results of comparing Acc with Opt and All on pendigits

d VAL TEST

Icon ENSEMBLE FOUND

Best.1 8K 99.55±0.3 97.60±0.1
sv3-dyn

FO
RW

A
R
D

A
ll

Sum 8M 99.2±0.2 97.9±0.1
Max 8M 99.2±0.2 97.6±0.1
Min 8M 99.0±0.4 97.4±0.1
Med 8M 99.0±0.2 97.5±0.1
Pro 8M 99.3±0.2 98.2±0.1

A
c
c

Sum 647K 99.8±0.1 98.5±0.1
svl-s16 sv3-s4 svr-dyn sv4-dyn sv3-dyn

Max 618K 99.8±0.1 98.5±0.1
svl-s16 svr-dyn sv3-dyn

Min 22K 99.8±0.2 98.0±0.1
svr-dyn sv3-dyn

Med 1M 99.8±0.1 98.8±0.1
sv2-s16 sv2-s4 svr-dyn sv3-dyn

Pro 618K 99.8±0.1 98.9±0.1
svl-s16 svr-dyn sv3-dyn

O
pt

Sum 618K 99.8±0.1 98.5±0.1
svr-dyn svl-s16 sv4-dyn

Max 618K 99.8±0.1 98.5±0.1
svr-dyn svl-s16 sv3-dyn

Min 21K 99.8±0.2 98.0±0.1
svr-dyn sv2-dyn

Med 638K 99.8±0.1 98.7±0.1
svr-dyn svl-s16 sv4-dyn sv2-s4

Pro 618K 99.8±0.1 98.9±0.1
svr-dyn svl-s16 sv3-dyn

75

4.4.2. Face Data Set

Table 4.11 shows the single model results, where we see that models have a wide

range of complexities from 103 to 106 with high accuracies early on and clearly overfit

with complex models (representations).

Table 4.12 shows Sum.F and Pro.F results for Acc and Cv. We can again

see that in terms of complexity, the ordering is: Cv < Acc. Cv.Sum finds only

one model which is the single best, but with other fixed rules Cv finds ensembles

consisting of multiple models. Acc finds ensembles which are more complex, but have

high accuracy. Acc.Sum is significantly more accurate than Cv.Sum (p = 0.95) and

Acc.Pro is significantly more accurate than Cv.Pro (p = 0.96), but note that Acc

ensembles are ten times more complex. We see that an Acc ensemble contains models

from different representations to best complement each other.

Table 4.13 shows the effect of fixed rules on Cv.F and Acc.F. With Cv, we

see that all fixed rule variants are significantly more accurate than Sum. The other

fixed rules do not have any significant difference between them. With Acc though,

things are different. All are significantly more accurate than Min. Pro is significantly

more accurate than all, except Sum. Sum is better than Max; Med and Max are

comparable. For this data set, considering accuracy, we have: Pro, Sum > Med,

Max > Min.

Table 4.14 shows the effect of backward vs forward search withAcc using different

fixed rules. Except with Min, forward finds simpler ensembles than backward, with

the exception of Max where the found ensemble is the same. We also see that Sum.F

finds a significantly more accurate ensemble than Sum.B. We therefore conclude that

it is better to use forward search. This is also true with respect to time when there

are many models; if small ensembles are good, backward search will iterate more than

forward search. Most of the time F and B find ensembles which have similar accuracies,

but backward stops early and finds more complex ensembles.

76

Table 4.11. Results of individual models on face

Model d Val Test

svr-PR 10600 80.2±5.7 81.6±5.3
svl-PR 10600 77.9±6.7 78.3±7.7
svl-NR 44944 81.7±5.7 85.4±6.2
svr-NR 44944 78.0±4.4 80.4±5.6
svl-CR 140344 85.1±5.3 86.1±4.0
svr-CR 140344 82.0±4.9 85.9±3.4
sv4-CS 405153 90.9±7.1 93.4±5.7
sv3-CS 407115 92.8±5.2 93.2±4.3
sv2-CS 413001 92.6±5.1 93.2±4.3
sv4-NS 413982 81.5±9.5 85.9±8.9
sv3-NS 414963 85.8±6.1 87.0±3.6
svl-CS 415944 92.4±5.3 92.9±4.3
svr-NS 415944 86.3±6.1 88.4±3.7
sv2-NS 415944 85.8±6.1 87.0±3.6
svl-NS 415944 85.5±6.0 86.8±4.1
svl-P 660168 74.6±5.3 80.2±7.1
svr-N 2.46E+06 79.4±4.8 84.2±2.7
sv3-N 2.46E+06 77.9±4.9 82.3±4.8
svl-N 2.46E+06 77.7±5.5 82.8±4.0
sv2-N 2.46E+06 77.7±4.5 82.8±4.0
sv2-C 4.31E+06 88.0±5.1 86.6±5.0
sv3-C 4.31E+06 88.0±5.1 86.3±4.8
svl-C 4.31E+06 87.8±5.4 86.8±4.6
sv4-C 4.31E+06 85.5±8.0 88.4±7.6
svr-C 4.31E+06 84.2±5.1 86.3±4.4

77

Table 4.12. Results of Sum.F and Pro.F using different model selection criteria on

face

d VAL TEST

Icon ENSEMBLE FOUND
FO

RW
A
R
D

S
u
m

Acc 4M 95.0±4.3 94.3±2.6
sv3-CS sv4-CS sv2-NR svr-CR svr-D svl-PR

Cv 405K 90.9±7.1 93.4±5.7
sv4-CS

P
ro

Acc 5M 95.5±4.4 94.1±2.5
sv3-CS sv4-CS svl-NR svr-CR sv3-D sv4-NR ..

Cv 812K 93.5±5.4 93.4±4.4
sv4-CS sv3-CS

On the other hand, Cv.F variants select ensembles which are costlier but are

statistically significantly more accurate. We again see that Cv.F and Acc.F add

models using different representations. Only Cv.Sum.F finds an ensemble with one

classifier which is the same as the single best.

We also present Acc.Sum.F results with different λ in Table 4.15. As expected,

as we increase λ, complexity is penalized more and we get simpler but inaccurate

ensembles. Figure 4.5 shows all individual models and the path Mdl.Sum.F follows

as λ varies.

Table 4.16 compares Acc.F results against Best.1, combining All models, and

Opt (Instead of all 47 we used 20 of the individual models, choosing the most accurate

two models from each representation). All.Min gives very inaccurate results, because

of the nature of the rule. But with Icon, since we are selecting the best to insert

next, the inaccurate models are not included in the final ensemble unless they are

complementing another strong model. That’s why a subset selection strategy is better,

and Icon finds a good subset of all the models in the given palette. All of the Acc.F

variants are statistically better than using All. There is no significant difference

between Opt and Acc.F results and ensembles found by Acc.F are simpler.

78

Table 4.13. Results of Cv.F and Acc.F variants on face

d VAL TEST

Icon ENSEMBLE FOUND

FO
RW

A
R
D

A
c
c

Sum 4M 95.0±4.3 94.3±2.6
sv3-CS sv4-CS sv2-NR svr-CR svr-D svl-PR

Max 8M 93.8±4.6 93.2±3.1
sv3-CS sv3-NR svr-C svr-D sv4-CS

Min 4M 93.1±4.8 92.0±4.1
sv3-CS svl-C

Med 7M 94.0±4.7 93.0±4.1
sv3-CS sv3-NR svl-C sv4-N

Pro 5M 95.5±4.4 94.1±2.5
sv3-CS sv4-CS svl-NR svr-CR sv3-D sv4-NR ..

C
v

Sum 405K 90.9±7.1 93.4±5.7
sv4-CS

Max 4M 92.6±6.2 93.4±4.4
sv4-CS svr-C

Min 5M 92.8±6.6 92.7±5.8
sv4-CS sv2-CS svl-C

Med 4M 92.6±6.2 93.4±4.4
sv4-CS svr-C

Pro 812M 93.5±5.4 93.4±4.4
sv4-CS sv3-CS

79

Table 4.14. Comparison of forward and backward search on face

d VAL TEST

Icon ENSEMBLE FOUND

A
c
c

FO
RW

A
R
D

Sum 4M 95.0±4.3 94.3±2.6
sv3-CS sv4-CS sv2-NR svr-CR svr-D svl-PR

Max 8M 93.8±4.6 93.2±3.1
sv3-CS sv3-NR svr-C svr-D sv4-CS

Min 4M 93.1±4.8 91.0±4.1
sv3-CS svl-C

Med 7M 94.0±4.7 92.9±4.1
sv3-CS sv3-NR svl-C sv4-N

Pro 5M 95.5±4.4 94.1±2.5
sv3-CS sv4-CS svl-NR svr-CR sv3-D sv4-NR ..

B
A
C
K
W
A
R
D

Sum 26M 94.3±4.5 93.6±2.1
sv4-PR sv3-PR sv2-PR svl-PR sv2-DR svl-DR ..

Max 8M 93.8±4.6 93.1±3.1
sv3-NR sv4-CS sv3-CS svr-D svr-C

Min 877K 91.8±3.7 92.5±2.0
svl-PR svl-NR sv3-CS sv3-NS

Med 34M 94.2±3.4 93.9±2.2
sv4-PR sv2-PR svl-PR svr-PR svl-DR svl-NR ..

Pro 24M 95.0±4.7 93.2±2.4
svl-PR sv3-DR svl-NR sv2-NR svl-CR sv2-CR ..

80

3.5 4 4.5 5 5.5 6 6.5 7

30

40

50

60

70

80

90

100

110
Face

log d

A
cc

ur
ac

y

sv4−P
R

sv3−P
R

sv2−P
R

svr−P
Rsvl−P

R

sv4−D
R

sv3−D
R

sv2−D
R

svr−D
Rsvl−D
R

svl−N
R

svr−N
R

sv2−N
R

sv3−N
R

sv4−N
R

svl−C
R

svr−C
R

sv2−C
R

sv3−C
R

sv4−C
R

sv4−C
Ssv3−C

S

sv2−C
S

sv4−N
S

sv3−N
S

svl−C
S

svr−N
S

sv2−N
Ssvl−N

S

svr−C
S

svl−P
svr−P sv4−N

svr−N
sv3−Nsvl−N

sv2−N

sv3−D

svl−D
sv2−D

sv4−D
svr−D

sv2−C
sv3−C

svl−C
sv4−C
svr−C

MDL λ=10−8
MDL λ=10−7

MDL λ=10−5

MDL λ=10−4

MDL λ=102

CV

Figure 4.5. Test accuracy vs. log free parameters of single models and Icon results

on face. Dashed lines connect models with the same representation. Continuous line

connects the results of Acc.Sum.F for various values of λ

81

Table 4.15. Acc.Sum.F results on face as a function of λ

log λ Combination d Val Test

-10 svl-CS svr-CR svr-N svr-D svl-PR 6M 94.4±4.0 94.1±2.4
-9 svl-CS svr-CR svr-N svr-D svl-PR 6M 94.4±4.0 94.1±2.4
-8 svl-CS svr-CR svr-N svr-D svl-PR 6M 94.4±4.0 94.1±2.4
-7 svl-CS svr-CR svl-NR svr-PR 611K 94.0±4.3 93.1±3.1
-6 svl-CS svr-CR svl-NR svr-PR 611K 94.0±4.3 93.1±3.1
-5 svl-CS 415K 88.2±5.3 88.8±4.3
-4 svr-PR svl-NR 55K 83.6±4.4 83.6±2.9
-3 svr-PR 10K 69.6±5.7 71.0±5.3
-2 svr-PR 10K 69.6±5.7 71.0±5.3
-1 svr-PR 10K 69.6±5.7 71.0±5.3
0 svr-PR 10K 69.6±5.7 71.0±5.3
1 svr-PR 10K 69.6±5.7 71.0±5.3
2 svr-PR 10K 69.6±5.7 71.0±5.3

4.4.3. Conclusions

We use two data sets with multiple representations to test our algorithm Icon,

with backward and forward search, with different model selection techniques such as

Acc, Cv, and using different fixed rule combination techniques such as Sum, Max,

Min, Med, Pro. We see that combining models using different representations can

affect ensemble accuracies significantly.

We again see that the advantage of combining multiple representations is justified

with Icon. The models added to the ensemble use different representations. A model

which is very simple may contribute to combined accuracy and is added to the ensemble

if it complements the models already in the ensemble. For example on pendigits, the

model sv2-s4 is a very simple model (uses a 4×4 image) but is selected by Acc.Med.F;

this creates an ensemble which is statistically more accurate than the single best model,

without a significant increase in cost.

82

Table 4.16. Results of comparing Acc with Opt and All on face

d VAL TEST

Icon ENSEMBLE FOUND

Best.1 8K 99.55±0.3 97.60±0.1
sv4-CS

FO
RW

A
R
D

A
ll

Sum 56M 92.6±3.8 92.9±2.2
Max 56M 84.6±4.5 89.2±3.7
Min 56M 41.8±2.8 46.9±3.6
Med 56M 92.4±4.0 92.7±2.6
Pro 56M 91.3±4.4 92.7±2.7

A
c
c

Sum 3M 95.0±3.3 92.9±2.9
svr-N sv3-NS sv2-CS sv3-CS svr-CR

Max 407K 92.8±5.2 93.2±4.3
sv3-CS

Min 4M 92.9±4.6 91.8±4.6
sv3-C sv3-CS

Med 13M 94.6±3.7 93.6±2.1
svl-C svr-D svl-D svr-N svl-CS svr-CR

Pro 4M 94.7±3.5 92.7±2.7
svr-N svr-NS sv3-NS sv2-CS sv3-CS svr-CR svl-NR

O
pt

Sum 4M 95.0±4.3 94.3±2.6
sv3-CS sv4-CS sv2-NR svr-CR svr-D svl-PR

Max 8M 93.8±4.6 93.2±3.1
sv3-CS sv3-NR svr-C svr-D sv4-CS

Min 4M 93.1±4.8 92.0±4.1
sv3-CS svl-C

Med 16M 92.0±3.3 92.0±4.2
sv2-C sv3-C sv3-N svr-N svl-P svr-P ...

Pro 5M 95.5±4.4 94.1±2.5
sv3-CS sv4-CS svl-NR svr-CR sv3-D sv4-NR ..

83

In general Pro, Sum and Med rules find more accurate ensembles, whereas Max

and Min rules are most of the time significantly worse than the other three.

Icon finds ensembles which are statistically significantly not worse than Opt,

and most of the time Icon finds simpler ensembles.

Forward and backward Icon tend to find ensembles with similar accuracies. But

if the number of base models is high, it is better to use forward (backward may stop

early). If the number of models is not so high, backward Icon may find ensembles

which have same accuracy but are simpler.

We can also see from our experiments that with Icon, we do not need to de-

fine an explicit diversity measure. The diversity between the classifiers is detected

automatically using Icon according to the model selection methodology used.

In this section we use fixed combination rules in our experiments. Any other

algorithm to combine the decisions of the models e.g., weighted voting, stacking [9] can

be used with Icon.

Because of the high dimensionality of the pendigits and face applications which

increase the number of free parameters, Cv.F and Acc.F are able to find ensembles

that are more accurate than the single best model without significantly increasing cost.

We believe that this has the potential to improve performance in data sets like face

where training set is small with respect to the number of weights. It would also be

interesting to apply Icon in other sensor fusion applications, for example speech or

other biometric applications.

84

5. EXTRACTING METACLASSIFIERS FOR AGGREGATE

DECISIONS

5.1. Comparison of Combination Rules on Real Data Sets

We compare the accuracies of all fusion methods, namely, the fixed rules, Sum,

Min, Max, Med, and the trained linear combiner Lin, on the test sets of all 38 data

sets. The pairwise comparison results are given in Table 5.1 where entry (i, j) shows

the number of wins, that is, the number of data sets on which method i is significantly

more accurate than j using the 5× 2 cv F test: 38− (i, j)− (j, i) gives the ties. The

entries in boldface show statistically significant difference between the methods using

sign test on 38 trials with 0.95 confidence.

Table 5.1. Pairwise comparisons of fusion rules

Sum Min Max Med Lin

Sum 0 22 20 2 0

Min 0 0 1 1 0

Max 0 6 0 1 1

Med 0 20 18 0 0

Lin 5 24 23 4 0

We see that Lin seems to be better than the fixed rules, though it is not signif-

icantly more accurate than Sum and Med. As we have seen in Section 2.1.2, when

there are groups of classifiers with different intergroup correlations, a trained linear

combiner is more accurate than a fixed rule. Then, next, there is no statistically signif-

icant difference between Sum and Med methods, and these methods are significantly

more accurate than Min and Max methods. We do further statistical analysis with

nonparametric tests. Friedman’s test rejects the hypothesis that the five have equal

ranks. Doing Nemenyi’s post-hoc test, we get the results in Figure 5.1 [51]. We see

that Med, Lin and Sum construct a group and they are statistically significantly more

accurate than the other group which consists of Min and Max.

85

5 4 2CD

MAX

LIN

MIN

SUM

MED

3 1

Figure 5.1. Graphical representation of post-hoc Nemenyi test results for fusion rules.

The numbers on the line represent the average ranks, CD is the critical difference for

statistical significance, and bold lines connect the methods which have no significant

difference

5.2. Extracting Metaclassifiers for Aggregate Decisions

Given a set of positively correlated base classifiers, the usual approach is to keep

a subset, pruning those that are correlated with those in the subset. However, unless

there is perfect correlation (of 1.0), this causes a loss of information as those base clas-

sifiers which can potentially help in new cases are removed, decreasing fault tolerance.

The approach we propose is to keep all the base classifiers even if there is correlation

between them but combine their predictions taking into account the fact that they are

not independent.

We consider the outputs of base classifiers as dimensions of a new feature space

in which a new classification problem is defined and we view the problem of combining

base classifier outputs as the problem of choosing input features. With this view in

mind, when we are interested in extracting the best features (that is, choose the most

informative base classifier values), one way is to do feature selection, where we keep

some of the features and discard the rest. Actually, this is the idea that underlies

methods which choose a subset of base classifiers from a large ensemble of candidates

[42, 67, 39, 73, 14, 40].

In this section, we advocate the other approach of combining the base classifier

outputs to define new metaclassifiers. This is similar to feature extraction in pattern

recognition where we define new features that are combinations of the original features.

In particular, we use Principal Component Analysis (PCA) which defines new aggregate

86

dimensions that are linear combinations of the original features, which in our case

correspond to outputs of the base classifiers.

We use Pca as follows: Given the 14 classifiers trained on the training fold trai,

we calculate their outputs for the correct class as a 14-dimensional vector on val-Ai and

their correlation matrix, which is a 14× 14 matrix. The leading M eigenvectors of this

matrix are the new metaclassifier directions. We map the original input to this space by

first calculating classifier outputs and then multiplying all the K outputs of a classifier

by the corresponding value of these eigenvector. The output is then used to train a

linear classifier in this new space, using again val-Ai. The input to the linear combiner

(which is a linear perceptron in our case) has M · K dimensions where we decide on

M , the number of eigenvectors (components, metaclassifiers), based on the average

accuracy on val-Bi, the other half of the validation fold (unused during training of the

base classifiers or the linear combiner). We report and check for significant difference

on the accuracies of the ten folds on the test.

In using Lda, we use the full 14 · K dimensional output of the base classifiers,

where K is the number of classes, and not the 14-dimensional outputs for the correct

class as we do with Pca. This is because Lda uses the class information and for it

to work, instances of different classes need to look different. When we use the full

vector, instances belonging to different classes have different representations and Lda

can work. The disadvantage is that now the eigenvectors are 14 ·K dimensional and

we need more calculation and they are not as easily interpretable6 . One problem with

Lda is that with K classes, one can have up to K−1 new aggregate dimensions which

makes Lda not accurate on data sets with few classes.

One advantage of a linear combiner is that there is no need for scaling or any other

normalization [56, 57]. As we have shown in Section 2.1.2, when there is a number of

groups with different intragroup and intergroup correlations, a trained linear combiner

works better than any fixed rule in decreasing error. The superiority of the linear
6Doing the same, that is using the full 14 · K vector with PCA, does not increase or decrease

accuracy.

87

perceptron over other (linear) combiners has been shown by Raudys [83].

The eigenvectors of the correlation matrix can also be analyzed for information

extraction. In Figure 5.2, we show the first five eigenvectors of the correlation matrix

averaged over all data sets (Table 2.2) (These are not the eigenvectors used; actually,

for each data set, in each fold, there is a different correlation matrix and a different set

of eigenvectors). The numbers in the top right corner of the figure is the proportion of

variance explained by the components up until then.

−0.5
0

0.5 0.62

−0.5
0

0.5 0.72

−0.5
0

0.5 0.77

−0.5
0

0.5 0.81

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

−0.5
0

0.5 0.84

Figure 5.2. The first five eigenvectors of the correlation matrix of all fourteen

classifiers averaged over all data sets, shown in Table 2.2. The gray boxes show

positive dimensions, and the white boxes show negative dimensions. The numbers on

the top-right of each subfigure represents the proportion of variance explained upto

and including that eigenvector

In all data sets, we always see that the first eigenvector is a vector of roughly

equal positive values; doing a dot product with it is almost like a simple averaging. It

is known [84] that if we have a covariance matrix where all variances are equal and all

correlations are also of similar magnitude, the first principal component is proportional

to the mean of the input variables. In our case, the proportion of variance explained by

the first eigenvector is 0.62 on the average and this value is higher as the base classifiers

become more correlated. We interpret this as follows: Even when the classifiers are

88

correlated, the best aggregate decision is to have a simple average and this gives us more

than half of the information provided by the classifiers, as measured by the proportion

of variance explained. A similar conclusion has also been reached at by Fumera and

Roli [85], where they say that “simple averaging is the optimal linear combining rule

only if the individual classifiers exhibit identical error rates and identical correlations

between estimation errors.” This also implies that in cases when this is not true, taking

only an average corresponds to discarding the variance carrying dimensions that the

other components represent.

We can extract more information by looking at the eigenvectors that follow (see

Figure 5.2): In the second one, we have all knn variants with positive weights, percep-

trons with negative weights, and all others are close to zero; we interpret this as the

nearest neighbor dimension. In the third, svms and the two trees (c45 and mdt) have

positive weights, perceptrons have negative weights and the others have small negative

weights; this is the svm-tree dimension. The fourth separates trees from svms. Once

we make a distinction between the major groups (and having explained 81 percent

of the variance), the fifth separates lnp from other perceptrons, and univariate and

multivariate trees.

We compare our results using Pca with three other methods:

• Best.1 is the accuracy of the most accurate single base classifier.

• All is the accuracy when all fourteen base classifiers are combined.

• Opt is the accuracy of the optimum subset, that is, the one found by exhaustive

search over all 214 − 1 possible subsets.

Note that as with Pca and Lda, there are linear perceptrons trained to combine

the outputs of the base classifiers also with Best.1, Opt and All, and they are also

trained on val-A folds.

89

5.2.1. Case Studies

Before proceeding to our complete results on all 38 data sets, we start by pre-

senting our results on two data sets, pageblock, and spambase, in more detail, to get an

initial feel.

5.2.1.1. Pageblock Data Set. The correlation matrix is given in Table 5.2 and the

first five eigenvectors of the correlation matrix is given in Figure 5.3. This is a data

set where the base classifiers are strongly correlated and the first component explains

79 per cent of the variance. The second separates knn variants from all others and

the third separates c45 from mlp variants. The fourth one makes a distinction between

single-layer and multilayer perceptrons and svm with polynomial and Gaussian kernels.

The fifth one separates univariate and multivariate trees.

Table 5.2. Average correlations on the pageblock data set

kn1 kn3 kn5 ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

kn1 1.00 0.80 0.74 0.59 0.57 0.57 0.57 0.59 0.55 0.53 0.50 0.56 0.52 0.59

kn3 0.80 1.00 0.95 0.76 0.74 0.75 0.74 0.77 0.71 0.69 0.61 0.73 0.68 0.77

kn5 0.74 0.95 1.00 0.81 0.79 0.79 0.78 0.81 0.74 0.74 0.65 0.77 0.73 0.83

ml1 0.59 0.76 0.81 1.00 0.93 0.94 0.92 0.92 0.82 0.79 0.68 0.89 0.78 0.86

ml2 0.57 0.74 0.79 0.93 1.00 0.95 0.93 0.91 0.79 0.81 0.70 0.89 0.78 0.85

ml3 0.57 0.75 0.79 0.94 0.95 1.00 0.94 0.93 0.81 0.79 0.69 0.88 0.76 0.86

ml4 0.57 0.74 0.78 0.92 0.93 0.94 1.00 0.92 0.82 0.79 0.67 0.88 0.77 0.85

ml5 0.59 0.77 0.81 0.92 0.91 0.93 0.92 1.00 0.84 0.80 0.67 0.88 0.77 0.87

lnp 0.55 0.71 0.74 0.82 0.79 0.81 0.82 0.84 1.00 0.73 0.59 0.85 0.76 0.80

mdt 0.53 0.69 0.74 0.79 0.81 0.79 0.79 0.80 0.73 1.00 0.60 0.81 0.78 0.83

c45 0.50 0.61 0.65 0.68 0.70 0.69 0.67 0.67 0.59 0.60 1.00 0.68 0.63 0.66

svl 0.56 0.73 0.77 0.89 0.89 0.88 0.88 0.88 0.85 0.81 0.68 1.00 0.90 0.88

sv2 0.52 0.68 0.73 0.78 0.78 0.76 0.77 0.77 0.76 0.78 0.63 0.90 1.00 0.82

svr 0.59 0.77 0.83 0.86 0.85 0.86 0.85 0.87 0.80 0.83 0.66 0.88 0.82 1.00

We see the error of the Pca method compared to those of Best.1, Opt and All

in Figure 5.4, where we see that accuracy increases by including more components. On

this data set, Pca, Lda, Opt and All are significantly more accurate than Best.1.

Pca with four metaclassifiers is as accurate as All.

90

−1
−0.5

0
0.5 0.79

−1
−0.5

0
0.5 0.85

−1
−0.5

0
0.5 0.88

−1
−0.5

0
0.5 0.91

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr
−1

−0.5
0

0.5 0.93

Figure 5.3. First five eigenvectors of the correlation matrix on the pageblock data set

0 5 10 15

0.04

0.05

0.06

0.07

pageblock

1nn

3nn

5nn

ml1
ml2ml3

ml4

ml5
c45

svl

sv2

svr

BEST

PCA

ALLOPT

LDA

L

E
rr

or

lnp
mdt

Single
BEST
PCA
ALL
OPT
LDA

Figure 5.4. Classification errors of base classifiers, Pca, Lda, Opt and All on

pageblock

91

5.2.1.2. Spambase Data Set. We can see the correlation matrix in Table 5.3 and the

first five eigenvectors of the correlation matrix in Figure 5.5. The first eigenvector is

again approximately the simple average. The second one separates knn variants from

the others. The third one separates knns, mlps and the univariate tree from multivariate

tree and svms with polynomial kernel. The eigenvectors that follow can similarly be

interpreted.

Table 5.3. Average correlations on the spambase data set

kn1 kn3 kn5 ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

kn1 1.00 0.74 0.65 0.45 0.43 0.46 0.45 0.44 0.35 0.38 0.23 0.45 0.31 0.44

kn3 0.74 1.00 0.90 0.61 0.60 0.61 0.60 0.60 0.49 0.54 0.31 0.63 0.46 0.61

kn5 0.65 0.90 1.00 0.66 0.65 0.65 0.64 0.64 0.54 0.59 0.33 0.70 0.52 0.65

ml1 0.45 0.61 0.66 1.00 0.84 0.88 0.87 0.87 0.76 0.67 0.43 0.79 0.50 0.74

ml2 0.43 0.60 0.65 0.84 1.00 0.84 0.84 0.83 0.75 0.68 0.42 0.80 0.49 0.75

ml3 0.46 0.61 0.65 0.88 0.84 1.00 0.91 0.87 0.76 0.66 0.44 0.79 0.49 0.75

ml4 0.45 0.60 0.64 0.87 0.84 0.91 1.00 0.87 0.76 0.67 0.43 0.78 0.49 0.73

ml5 0.44 0.60 0.64 0.87 0.83 0.87 0.87 1.00 0.75 0.65 0.42 0.79 0.48 0.74

lnp 0.35 0.49 0.54 0.76 0.75 0.76 0.76 0.75 1.00 0.61 0.36 0.72 0.44 0.65

mdt 0.38 0.54 0.59 0.67 0.68 0.66 0.67 0.65 0.61 1.00 0.32 0.77 0.52 0.68

c45 0.23 0.31 0.33 0.43 0.42 0.44 0.43 0.42 0.36 0.32 1.00 0.40 0.23 0.43

svl 0.45 0.63 0.70 0.79 0.80 0.79 0.78 0.79 0.72 0.77 0.40 1.00 0.68 0.78

sv2 0.31 0.46 0.52 0.50 0.49 0.49 0.49 0.48 0.44 0.52 0.23 0.68 1.00 0.37

svr 0.44 0.61 0.65 0.74 0.75 0.75 0.73 0.74 0.65 0.68 0.43 0.78 0.37 1.00

−0.5
0

0.5 0.63

−0.5
0

0.5 0.72

−0.5
0

0.5 0.78

−0.5
0

0.5 0.83

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr
−0.5

0
0.5 0.87

Figure 5.5. First five eigenvectors of the correlation matrix on the spambase data set

The classification errors of the proposed Pca, Best.1, Opt and All are given in

Figure 5.6. On this data set, there is no statistically significant difference between the

92

accuracy of the combination algorithms. Note that Pca even with a single eigenvector

is quite accurate; this is an example of a data set where the fixed fusion rules, average

or median, would be expected to work well.

0 5 10 15
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

spambase

1nn

3nn
5nn

ml1
ml2

ml3ml4
mdt

lnp

mul

c45

svl

sv2

svr
PCA

ALL

OPT

LDA

L

E
rr

or

Single
BEST
PCA
ALL
OPT
LDA

Figure 5.6. Classification errors of base classifiers, Pca, Lda, Best.1, Opt and All

on spambase

5.2.2. Overall Results

Comparing our Pca method with Best.1, All and Opt on all 38 data sets, we

get the pairwise comparison results in Table 5.4. We see that there is no significant

difference between Pca, All andOpt but all three are significantly more accurate than

Best.1. All is not more accurate than Pca, or the other way around. Friedman’s

test rejects the hypothesis that the four methods have equal ranks. Doing Nemenyi’s

post-hoc test for pairwise comparison, we get the results in Figure 5.7. The test finds

that Pca, Opt and All belong to one group, and this group is significantly more

accurate than Best.1. We see that Pca and All have the same accuracy, where

generally a few components is enough with Pca; see Figure 5.8 for the histogram of

number of components used by Pca on 38 data sets.

93

Table 5.4. Pairwise comparisons of Best.1, Pca, Opt and All

Best.1 Pca All Opt Lda

Best.1 0 1 1 1 1

Pca 8 0 0 0 4

All 8 0 0 0 5

Opt 13 4 2 0 5

Lda 5 0 0 0 0

It can be said that the major advantage of a subset selection method over Pca is

that once a subset is chosen during training, afterwards during test, not all, but only

those in the subset need be evaluated, whereas Pca needs to calculate all base classifier

outputs before doing the dot product and calculating the metaclassifier outputs. Note

that if the aim is feature selection, there are methods which use PCA for this purpose

[86]: We can decrease the ensemble size before doing Pca; for example, given that c45

and mdt are both in the tree dimension, or, members of the tree “family,” we can get

rid of one, increasing the weight of the other.

2.5
CD

PCA

BEST

3.03.5

ALL

4.5 4.0

OPT

2.0

LDA

Figure 5.7. Graphical representation of post-hoc Nemenyi test for Pca, Lda,

Best.1, and Opt

5.2.3. Multiple Representations

On the pendigits data set with multiple representations, which we have discussed

in Section 2.3.1.5, the same approach can also be used, this time to combine classifiers

using different representations, and the eigenvectors of the correlation matrix can be

analyzed for information extraction. In Table 5.5, we show the eigenvectors of the

average correlation matrix given in Table 2.3; see also Figure 5.9.

94

1 2 3 4 5 6 7 8 9 1011121314
0

2

4

6

8

10
PCA

L

co
m

po
ne

nt
s

Figure 5.8. Histogram of the number of components used Pca on all 38 data sets

Table 5.5. The proportion of variance explained and the eigenvectors of the average

correlation matrix given in Table 2.3

Comp Var dyn s4 s8 s16

1 0.65 0.37 0.49 0.57 0.54

2 0.84 0.92 -0.28 -0.18 -0.19

3 0.96 -0.09 -0.81 0.24 0.54

4 1.00 -0.03 -0.18 0.76 -0.62

95

−0.5
0

0.5
1

−0.5
0

0.5
1

−0.5
0

0.5
1

dyn s4 s8 s16
−0.5

0
0.5

1

0.65

0.94

0.84

1.00

Figure 5.9. The eigenvectors of Table 5.5 visualized. The gray boxes show positive

dimensions, and the white boxes show negative dimensions. The numbers on the

right of each subfigure represents the proportion of variance explained upto and

including that eigenvector

We again see that the first component is nearly the average of all classifiers

explaining 65 percent of the variance. The second has a positive dyn dimension and

all static dimensions are negative. If we want to go further than 84 percent variance,

the third component has a negative s4 dimension and positive s16 and s8 dimensions.

The last distinguishes between s16 and s8.

Figure 5.10 shows the errors of the methods on this data set. We see that Opt

choosing dyn and s8 is significantly more accurate than other methods. Next, there

are All and Pca which are comparable and significantly more accurate than Best.1

and Lda. Best.1 and Lda are not significantly different. So according to accuracy,

we have the following ordering: Opt > Pca, All > Lda, Best.1. Because the two,

temporal and image-based, representations, namely dyn and s8, have low correlation

between them, fusing them (as Pca does) is not better than taking both (as Opt

does); this would be even more true for the case of different modalities.

96

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L

E
rr

or

Pendigits

s16

s8

s4

dyn

OPT

ALL

BEST

PCALDA

Single
Best
Opt
All
PCA
LDA

Figure 5.10. Classification errors of base classifiers and ensemble methods on pendigits

5.2.4. Related Work

All methods which consider the outputs of previously trained base learners as

inputs to a new learner are variants of stacking [9, 62] and so are the methods we discuss

above. Merz [22], [87] discuss work that are most similar to ours. Merz [22] proposes

the SCANN algorithm which uses correspondence analysis on the crisp outputs of base

classifiers and combines them using the nearest mean classifier. This corresponds to

doing Pca on the 0/1 outputs of the base classifiers and one can show that the nearest

mean classifier is also a linear classifier. In his work, Merz uses neural networks, rule

lists, decision trees and nearest neighbor classifiers as base classifiers. The combination

results are compared with voting, and using naive Bayes and multilayer perceptron

as stackers. In theory, numeric outputs give more information and are preferred [62],

but in our experiments, we have found no difference between using 0/1 or continuous

outputs; this probably is because our outputs are posterior probabilities (normalized

using softmax) and are close to 0/1 anyway. Note however that because we use a

97

trained linear combiner and not a fixed rule (e.g., sum, max, etc.), there is no need

that the base classifier outputs be normalized. Note also that Merz works on the full

14 ·K dimensions instead of 14.

Merz and Pazzani [87] propose the PCR∗ algorithm which uses Pca on the out-

puts of base regressors. They show that the algorithm is able to cope with the inher-

ent correlations amongst the base regressors, which is what we try to achieve. They

compare their proposed method with other regression combination algorithms in the

literature. After the reduction of the output dimensionality using Pca, they also use

a linear combiner for the final decision. Since theirs is a regression problem, there is

only one output in their study. As future work, they write that their algorithm can be

used in classification problems using a separate model for each class. The method we

propose pools all class information and learns a single set of metaclassifiers; we believe

that this is better than learning a separate set of metaclassifiers for each class because,

(i) it is a simpler solution, has less parameters, pools data, and therefore has less risk

of overfitting, and (ii) we expect correlations between two classifiers to be similar for

different classes: Let us say A and B are two algorithms each with its own inductive

bias (assumption about the data); the way the two are correlated on examples from

class 1 will be the same, or very similar, to the way they will be correlated on examples

from class 2.

5.3. Conclusions

The fact that experts trained on the same (or slightly different versions of the

same) task are positively correlated is well-known but has largely been swept under the

rug. In this work, we (i) study the effect of this correlation on fusion rules, (ii) investi-

gate how such correlation manifests itself on real-world data using well-known training

algorithms on frequently used data sets, and (iii) how such correlated experts can be

combined to define new dimensions that are uncorrelated so as to allow representing

the same information succinctly for high accuracy and knowledge extraction.

98

As our first contribution, we analyze in detail the error using different fusion rules

under the condition of correlation between experts. We investigate how the ensemble

performs as dependency between classifiers, posterior value, and ensemble size change.

We show that, as expected, the accuracy goes down as (positive) correlation between

the classifiers increases. This is because as correlation increases, the classifiers begin to

resemble each other, diversity decreases, and the correcting effect of the ensemble de-

grades. Instead of using similar classifiers, it is more reasonable to use diverse classifiers

to improve accuracy, which implies that negative correlation is desirable.

As our second contribution, we test the effect of five factors on the correlation be-

tween classifiers, which are similarity in the algorithms, hyperparameters, overlapping

folds, shared input features, and input representations. We see that no matter how we

may vary algorithms, hyperparameters, folds, or input features, we still get positively

correlated classifiers, and post-processing is needed to make them uncorrelated.

This correlation analysis allows us to see how ensembles should be formed so

that combination is useful. For example, we see that bagging trees is a good idea

but bagging support vector machines is not good; with the latter, it is better to play

with the kernel or inputs. With knn, neither resampling nor varying k suffices to get

uncorrelated versions, one should vary some other factor, for example, input features, or

one should combine knn with some other algorithm, a linear perceptron for example. In

general, it seems to be better to combine different algorithms or different inputs, rather

than different training subsets or hyperparamaters. In case we have many classifiers

from different families, we should prefer to use classifiers from different families instead

of same family because then the correlation between groups is less than the correlation

between variants of the same family; this is a fact also supported by our results in the

first part.

Our third contribution is in the investigation of methods where we construct

new uncorrelated metaclassifiers from a set of correlated classifiers. Our experimental

results show that our PCA-based method is as accurate as using the whole ensemble or

the optimum subset, and also allows knowledge extraction. We define metaclassifiers,

99

that is, linear combinations of existing base classifiers which are uncorrelated. Note

that using a feature extraction method such as PCA instead of a feature selection

method such as subset selection may be costlier to use but a subset keeps some and

discards the rest and has the potential to remove information that may be useful on

some instances; keeping and combining all allows redundancy and promises to be more

fault tolerant.

The PCA-based method as we implement it, also allows knowledge extraction:

We see that the first principal component corresponds to simple averaging which shows

us the strength of simple voting. Looking at the other components, we can find new

aggregate dimensions in terms of families of algorithms that best complement simple

voting. Such families then allow us to decide how best to design an ensemble: I.e., it

is better to have one from each family, rather than multiple algorithms from the same

family.

We have also tried using linear discriminant analysis (LDA) instead of PCA; LDA

is sometimes advantageous in that it uses class information but in practice, it does not

work as well as PCA because the number of components should be less than K, the

number of classes, which makes the approach based on LDA unsuccessful in cases where

K is small. One can also use nonlinear dimensionality reduction methods, though in

such a case we might lose from interpretability of the new metaclassifiers.

It is also possible to combine multiple representations of the same input by train-

ing experts on, for example, different representations of the same handwritten digit [4].

Here, we would like to make a distinction between a representation and a modality:

Representations are differently preprocessed versions of the same signal and therefore

we expect to have some correlation between them; we would expect less or no corre-

lation if inputs come from different modalities; for example, we expect no correlation

between a person’s face image and his/her signature. The analysis we do in this work

can also be carried out for the case of multiple representations, that is, checking how

much correlation there is and how experts using different representations can be fused

using PCA.

100

6. CONCLUSIONS

In this chapter, we will first begin with the contribution of this thesis, we will

continue with an overall comparison of the proposed methods, and finish with future

work.

6.1. Contributions of This Thesis

We present a greedy algorithm Icon for selecting a subset of classifiers, given

a previously trained base classifier set. The algorithm has three dimensions: (i) The

search direction, (ii) Ensemble evaluation method, and (iii) Combination method. We

see that using backward search creates larger ensembles and has no advantage over

forward search, and floating search is no different than forward search but visits more

steps. As ensemble evaluation criteria, we used two diversity measures (Corr and

Qstat), two accuracy based measures (Cv and Acc), and a measure which combines

cost and accuracy (Mdl). We see that the criterion based on diversity alone is not

good for best combination performance; we conclude that it is best to use the accuracy

as the model selection criteria. We also see that when the cost of the combination is

important, Mdl with a suitable λ trades-off complexity and accuracy, to come up with

simple and accurate classifiers. Of the combination methods, amongst fixed rules, we

see that Sum usually works the best and is robust to noisy base classifiers. Pro also is

good, but when one of the base classifiers is inaccurate, the accuracy of the combined

ensemble diminishes rapidly. Med rule works well and is robust, but Min and Max

rules have low accuracy. The linear combiner is useful when we try to combine all

classifiers, because it weeds out the inaccurate classifiers by assigning small weights,

but a subset selection algorithm also has the same power with less cost. Also there is

the need to have separate data to train the linear combiner. If the number of classes

and number of base classifiers is high, the linear combiner overfits. So if one has a

small number of classes and classifiers, or if one has inaccurate base classifiers, it may

be useful to use a linear combiner, otherwise a fixed rule run over a selected subset is

simple, and sometimes is even more accurate.

101

We see that using a subset of given base classifiers as chosen by Icon is better

than the single best classifier and taking a vote over all the classifiers, and is not worse

than using the optimum subset. Using all the candidate models increases complexity

and is not guaranteed to improve accuracy; but when we use Icon, we have to justify

an increase in complexity with an increase in accuracy.

We see that combining base classifiers using different representations increases

accuracy significantly. We see on two multi-representation data sets that, the ensem-

bles created by Icon contain base classifiers from different representations and are

significantly more accurate than the single best classifier and using all classifiers. We

also see that a base classifier which is inaccurate and would not be chosen on its own

may be complementary to other base classifiers and increases accuracy significantly.

For example on pendigits, the model lnp-s4 is a very simple model but is selected by

Cv; this creates an ensemble which is statistically more accurate than the single best

model, without an increase in cost.

The main advantage of Icon is that, we do not need to optimize the base classi-

fiers, we just let Icon do the picking. The subset is selected according to the accuracy-

cost trade-off depending on the application.

In general Pro, Sum and Med rules find more accurate ensembles, whereas Max

and Min rules are most of the time significantly worse than the other three. Icon finds

ensembles which are not statistically significantly worse than Opt, and most of the

time Icon finds simpler ensembles. Forward and backward Icon tend to find ensembles

with similar accuracies. But if the number of base models is high, it is better to use

forward (backward may stop early). If the number of models is not so high, backward

Icon may find ensembles which have the same accuracy and are simpler.

A greedy, forward, incremental method finds ensembles that are small, as accurate

as the optimal ensemble, and does this in polynomial time. It is best to maximize the

final overall ensemble accuracy, rather than some intermediate diversity criterion, or

some combination of accuracy and diversity to be able to get the best of both worlds.

102

When the base classifiers are trained with enough data and are accurate, there

is no need for a trained linear combiner, and the fixed sum rule works as well, in a

cheaper manner. Our experience in this study is that stacking works better than voting

when there is disparity between the accuracies of the base classifiers. When all base

classifiers are accurate and equally trustworthy, voting works fine; stacking is needed

when we need to weight some, those that are more accurate, higher and some, the

erroneous ones, less.

By analyzing correlations between experts in an ensemble, we see that, what-

ever factor we play with (algorithms, hyperparameters, training set samples, features

subsets, or representations), we still have positive correlation. We have also analyzed

theoretically that, if we have positive correlation, ensemble accuracy decreases. Our

proposed method Pca first gets rid of this correlation and constructs uncorrelated

metaclassifiers, and is as accurate as the optimum classifier, with less cost.

By using a correlation analysis as we propose in this thesis, we see how to form

ensembles for combination to be useful. For example, bagging trees is a good idea,

but bagging support vector machines is not. With support vector machines, it is

better to change inputs or kernels. For algorithms like knn, resampling and changing

k does no good, so we need a different methodology, for example combining it with

other algorithms. Combining different inputs and different algorithms seems to be

better than combining sampled data and different hyperparameters. On the other

hand, using different algorithms has the obvious disadvantage of coding and optimizing.

Using algorithms with the same data set, but with half of the features is good for local

algorithms such as knn and svr.

We also construct new, uncorrelated metaclassifiers from a set of correlated clas-

sifiers. We see in our experiments that Pca method is as accurate as using the whole

ensemble or the optimal subset. This means that this method is as accurate as any

subset selection algorithm. A subset selection algorithm (like Acc) has the potential

to remove classifiers, which may contribute to accuracy, but our post-processing ap-

proach considers all the classifiers. Pca algorithm also allows us to extract knowledge

103

from the ensemble. We see that, most of the time, the first component corresponds to

simple voting, which shows us the strength of simple voting. The other components

allow us to find new aggregate dimensions in terms of families of algorithms.

6.2. Overall Comparison

We have seen that Acc obtains ensembles which are as accurate as All and

Opt, but simpler. Also we have seen that Pca constructs ensembles which have the

same accuracy as All with a few components. As further comparison, we compare

the two proposed methods with Opt, All and Best.1. For the sake of fairness of

comparison, we use the .Lin versions of Opt, All, Acc and Best.1. We compare

accuracies of the five ensemble methods in a pairwise manner in Table 6.1. These are

the number of significant wins and losses of method in the row over the method in

the column over the test sets. The sum of wins and losses subtracted from 38 gives

the number of ties. If the entry is bold, this means that the number of wins/losses

over 38 is statistically significant using the Sign test. We do further statistical analysis

with nonparametric tests using the average ranks of the six ensemble methods on 38

data sets (Table 6.2). Friedman’s test rejects the hypothesis that the five methods

have equal ranks. Doing Nemenyi’s post-hoc test for pairwise comparison, we get the

results in Figure 6.1. We see that there is no difference between Acc, Opt, All and

Pca, which are significantly more accurate than Best.1.

Table 6.1. Pairwise comparison of accuracies (wins/losses over 38) of all methods

using 5× 2 cv F -test

Best.1 Pca All Opt Acc

Best.1 0 1 1 1 1

Pca 8 0 0 0 3

All 8 0 0 0 2

Opt 13 4 2 0 2

Acc 16 4 2 1 0

104

Table 6.2. Average ranks of compared methods

Best.1 Pca All Opt Acc

4.32 3.07 2.70 2.45 2.47

2.5
CD

PCA

BEST

3.03.5

ALL

4.5 4.0

OPT

2.0

ACC

Figure 6.1. Graphical representation of post-hoc Nemenyi test results of compared

methods with ranks given in Table 6.2

We propose another method to compare multiple algorithms over multiple data

sets which is based on MultiTest algorithm [88]. Friedman’s test takes into account

only the average accuracy, but in our proposed method, we first rank the algorithms

using MultiTest which checks for statistically significant difference in accuracy and

also uses the complexity of base classifiers; we then use Friedman’s test and its post-

hoc test Nemenyi’s test (if needed) on the results of MultiTest to get the final re-

sult. We see the ranks for each data set in Tables 6.3 and 6.4, average ranks in

Table 6.5, and results of the post-hoc Nemenyi test in Figure 6.2. Our prior infor-

mation about the complexity of the methods affect the outcome of this proposed test,

we see that Pca and All, both being complex algorithms, are worse than the other

three. In this experiment, we used a prior ordering of methods based on test complexity

(Best.1<Acc<Opt<All<Pca) but it is possible to use other measures of complex-

ity (training complexity) based on the application. If we want to create a final ordering

of algorithms, we can apply the MultiTest algorithm on the results of Nemenyi’s test.

The graph can be seen in Figure 6.3; we see that since no complex algorithm is signifi-

cantly more accurate than a simpler algorithm, the graph has no edges, and the ordering

is Best.1>Acc>Opt>All>Pca. If we apply another prior ordering for these ranks

(train complexity: Best.1<All<Acc<Pca<Opt), the graph in Figure 6.4 is formed.

Using this graph, we find the following ordering: Best.1>Acc>Opt >All>Pca.

105

Table 6.3. Ranks of compared algorithms on each data set

Best Acc Opt All Pca

segment 3 1 2 4 5

spambase 2 1 3 4 5

pageblock 5 1 2 3 4

iris 1 2 3 4 5

pendigits 1 2 3 4 5

optdigits 3 1 2 4 5

wine 1 2 3 4 5

monks 1 2 3 4 5

zoo 5 1 2 3 4

tae 1 2 3 4 5

hepatitis 2 1 3 4 5

flags 1 4 2 3 5

glass 5 1 2 3 4

heart 1 2 3 4 5

haberman 1 5 2 3 4

flare 3 1 2 4 5

ecoli 5 1 2 3 4

bupa 3 1 2 4 5

ionosphere 1 2 3 4 5

5 4 2CD

ALL

ACC

PCA

OPT

BEST

3 1

Figure 6.2. Graphical representation of post-hoc Nemenyi test results of compared

methods with ranks given in Table 6.5

106

Table 6.4. Ranks of compared algorithms on each data set continued

Best Acc Opt All Pca

dermatology 1 2 3 4 5

horse 5 1 2 3 4

vote 3 1 2 4 5

cylinder 1 2 3 4 5

balance 1 2 3 4 5

australian 1 2 3 4 5

credit 1 2 3 4 5

breast 1 5 2 3 4

pima 1 2 3 4 5

tictactoe 1 2 3 4 5

cmc 1 2 3 4 5

yeast 5 2 1 3 4

car 5 1 2 3 4

titanic 2 1 3 4 5

thyroid 5 4 1 2 3

ringnorm 1 2 3 4 5

twonorm 1 2 3 4 5

mushroom 1 2 3 4 5

nursery 3 1 2 4 5

Table 6.5. Average ranks of compared algorithms using MultiTest

Best.1 Pca All Opt Acc

2.24 4.71 3.68 2.50 1.87

BEST.1 PCAALLOPTACC

Figure 6.3. MultiTest graph using the average ranks given in Table 6.5 and test

complexity

107

BEST.1 OPTPCAACCALL

Figure 6.4. MultiTest graph using the average ranks given in Table 6.5 and train

complexity

As an overall conclusion, we suggest using Acc with classifiers from different

families of algorithms or using slightly correlated representations. Doing this, one has

an ensemble, which is accurate (not worse than the ensemble combining the optimum

subset), and cheap, i.e. the classifiers which were not selected need not be evaluated,

even the features need not be extracted. However, if we have a large number of corre-

lated classifiers, it is better to use Pca first to remove correlation and then combine

the new, uncorrelated metaclassifiers.

6.3. Future Work

Knowing that diversity itself is not sufficient, one future research direction would

be to construct a joint measure of diversity and accuracy, and use that measure as the

ensemble evaluation criteria in Icon.

Since our aim is better accuracy with low cost, it would be beneficial to use our

methods on data sets with huge amount of data. Two examples of these are text mining

and bioinformatics. In these applications, real processing power is needed in the test

phase, so a method which decreases the cost of testing would be beneficial. In bioin-

formatics applications, we believe that, our methods would construct cost-conscious

ensembles using multiple representations, which would lead to better accuracy and less

cost. Another application area where we believe that our methods would be interest-

ing is in biometrics applications. These applications use multiple representations or

modalities (e.g. face image, fingerprint, signature), and combining these modalities

would lead to better ensemble accuracy. Also, keeping the cost of these modalities in

mind, we would select those which are simple, discarding those which are redundant

and complex, gaining both from accuracy and cost.

108

Our Pca and Lda algorithms use a linear transformation; a further research

topic would be to use nonlinear transformations like ISOMAP [89], and see how we

can improve in terms of accuracy and knowledge extraction.

The results we present here in using MultiTest on multiple data sets are new and

can be extended. The methods which consider accuracy do not take into account the

complexity of the algorithms, whereas methods using statistical significance are some-

times too conservative. We are working on a method to compare multiple algorithms

over multiple data sets, which takes into account both accuracy and the complexity,

using whichever complexity measure is more critical in the application.

109

APPENDIX A: STATISTICAL TESTS

In this appendix, we review the statistical tests used in evaluating the algorithms

given α, the confidence value.

A.1. Tests for Comparing Individual Classifiers

We use the pairwise one-sided k-fold paired t-test [1] or 5×2 cv t-test to compare

the expected error rates of the two ensembles to check whether the more costly ensemble

is statistically significantly more accurate than the simpler one. We use 5×2 cv F test

[50] to compare accuracies of different ensembles for statistically significant difference,

and we used Sign test to check if the wins, ties, losses calculated by the 5× 2 cv F test

is significant over all the data sets. We also used non-parametric Friedman test for the

same purpose.

A.1.1. k-fold paired t-test

Let e1 denote the error of the first classifier, and e2 denote the error of the second

classifier on the k-folds. Then, µ1 is the average error of classifier 1, and µ2 is the average

error of the second classifier. This test is used to test hypotheses: H0 : µ1 − µ2 = 0

versus H0 : µ1 − µ2 6= 0. Let pi = e1
i − e2

i be the difference of errors on folds. Under

the null hypotheses, paired differences are t distributed with k− 1 degrees of freedom.

So, we calculate the estimates of the mean and the variance:

m =

∑k
i=1 pi

k
, S2 =

∑k
i=1(pi −m)2

k − 1

We then calculate the t-statitics as t′ = m
√

k
S

. If t′ ∈ (−tα/2,k−1, tα/2,k−1), then the

test accepts, else the test rejects. This is the two-sided test. When we check for

statistical improvement, we use the one-sided version. In this case, the test accepts if

t′ ∈ (−∞, tα,k−1).

110

A.1.2. 5× 2 cv t-test

Let e1
i denote the error of the first classifier, and e2

i denote the error of the second

classifier on the ith replication of 2 folds. Let pi = e1
i −e2

i be the difference of errors on

each replication. Let p̄i = (pi1 + pi2)/2 be the estimated average on replication i and

s2
i = (pi1 − p̄i)

2 + (p21 − p̄i)
2 be the estimated variance on replication i. So, we have:

M =

∑5
i=1 s2

i

σ2
and t′ =

p11√
M/5

=
p11√∑5
i=1 s2

i /5

and t′ is t-distributed with 5 degrees of freedom. If t′ ∈ (−tα/2,5, tα/2,5), then the

test accepts, else the test rejects. This is the two-sided test. When we check for

statistical improvement, we use the one-sided version. In this case, the test accepts if

t′ ∈ (−∞, tα,5).

A.1.3. 5× 2 cv F -test

Since the numerator of the t′, used for 5 × 2 cv t-test, is chosen randomly, it is

possible to use all the ten values in the numerator. Alpaydın [50] introduced the robust

F test which overcomes this issue. Let pi, p̄i, s
2
i ,M be defined the same way as in t-test.

Let

N =

∑5
i=1

∑2
j=1 p2

ij

σ2
.

It has been shown that

f ′ =
N/10

M/5
=

∑5
i=1

∑2
j=1 p2

ij

2
∑5

i=1 s2
i

is F distributed with ten and five degrees of freedom. The algorithms have the same

error rate if f ′ < Fα,10,5. This is a two-sided test, so if the test accepts, it means we

have a tie, otherwise one of the algorithms is better. If the test rejects, we choose the

algorithm which has a lower error rate as the winner.

111

A.2. Tests for Comparing Algorithms over Multiple Data Sets

We use these tests to compare the performance of algorithms over multiple data

sets.

A.2.1. Sign Test

Given S data sets, let the number of wins of one classifier over the other be F ,

and let the number of losses be G (we ignore the ties), and number of wins + number of

loses be S ′. Sign test assumes that the wins/losses are binomially distributed, tests the

null hypotheses that F = G. We calculate p′ = B(F, S ′) of the binomial distribution.

If p′ < α, we accept the hypothesis. Otherwise we reject it (one of them is better). For

large values of S ′, we can use an approximation for p′ = F−0.5S′√
0.25S′

. We accept the test if

p′ ∈ (Zα/2, Z1−α/2).

A.2.2. Friedman Test and Nemenyi Test

Friedman test is the non-parametric equivalent of ANOVA. First, all algorithms

are ranked on each data set, giving the best algorithm rank 1. If there are ties, average

values are given. If the algorithms have no difference, then their ranks should not be

different, which is what Friedman test tests. Let rij be the rank of jth algorithm on

ith data set. The Friedman test statistic is calculated as:

χ2
F =

12S

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]

where S is the number of data sets, k is the number of compared algorithms and

Rj = 1
N

∑
i rij is the average rank of algorithms. This statistic is χ2

F distributed with

k − 1 degrees of freedom. If the test accepts, we say that the algorithms are not

different, if the test rejects, we use the post-hoc Nemenyi test for pairwise comparison.

Two classifiers are different if their average ranks differ by at least CD = qα

√
k(k+1)

6S
,

where values for qα are based on the Studentized range statistic divided by
√

2.

112

A.2.3. MultiTest Algorithm

MultiTest algorithm [88] orders methods according to their accuracies and their

complexities. Various time/space complexity measures can be used, and the algorithm

is independent of these measures. The only assumption is that we have a prior or-

dering of algorithms in terms of the chosen complexity measure. Thus, given any two

algorithms with the same expected error, the simple one is favored. The more complex

algorithm is chosen only if it is significantly more accurate. Let us assume that we have

a prior ordering of algorithms 1, 2 . . . S. A graph is formed as follows: ∀i, j, i < j, if Mj

is significantly more accurate than Mi in terms of the statistical test used, a directed

edge is placed from i to j. The in-degree of node i shows the number of algorithms

that algorithm Mi is significantly more accurate and more complex. The out-degree

of node i shows the number of algorithms which are more complex and significantly

more accurate than Mi. Once this graph is constructed, the topological order is the

resulting order of the selected algorithms.

113

REFERENCES

1. Alpaydın, E., Introduction to machine learning , The MIT Press, 2004.

2. Kuncheva, L. I., Combining pattern classifiers: methods and algorithms , Wiley-

Interscience, 2004.

3. Breiman, L., “Bagging predictors”, Machine Learning , Vol. 24, No. 2, pp. 123–140,

1996.

4. Alimoğlu, F. and E. Alpaydın, “Combining multiple representations and classifiers

for pen-based handwritten digit recognition”, Proceedings of the International Con-

ference on Document Analysis and Recognition, ICDAR ’97 , pp. 637–641, 1997.

5. Woods, K., J. W. Philip Kegelmeyer, and K. Bowyer, “Combination of Multiple

Classifiers Using Local Accuracy Estimates”, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, Vol. 19, No. 4, pp. 405–410, 1997.

6. Kılıç, E., Selecting from an Ensemble of Experts for Machine Learning , Master’s

thesis, Boğaziçi University, 2006.

7. Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures

of local experts”, Neural Computation, Vol. 3, pp. 79–87, 1991.

8. Kittler, J., M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 3, pp.

226–239, 1998.

9. Wolpert, D. H., “Stacked generalization”, Neural Networks , Vol. 5, pp. 241–259,

1992.

114

10. Freund, Y. and R. E. Schapire, “Experiments with a new boosting algorithm”,

Proceedings of the International Conference on Machine Learning, ICML ’96 , pp.

148–156, 1996.

11. Freund, Y. and R. E. Schapire, “A short introduction to boosting”, Journal of

Japanese Society for Artificial Intelligence, Vol. 14, No. 5, pp. 771–780, 1999.

12. Breiman, L., “Arcing classifiers”, The Annals of Statistics , Vol. 26, No. 3, pp. 801–

849, 1998.

13. Breiman, L., “Prediction games and arcing algorithms”, Neural Computation,

Vol. 11, No. 7, pp. 1493–1517, 1999.

14. Demir, C. and E. Alpaydın, “Cost-conscious classifier ensembles”, Pattern Recog-

nition Letters , Vol. 26(14), pp. 2206–2214, 2005.

15. Gökberk, B., H. Dutağacı, A. Ulaş, L. Akarun, and B. Sankur, “Representation

Plurality and Fusion for 3D Face Recognition”, IEEE Transactions on Systems,

Man, and Cybernetics–Part B: Cybernetics , Vol. 38, No. 1, pp. 155–173, 2008.

16. Alpaydın, E., “Techniques for combining multiple learners”, Proceedings of the En-

gineering of Intelligent Systems, EIS ’98 , Vol. 2, pp. 6–12, 1998.

17. Gama, J., “Combining classifiers by constructive induction”, Proceedings of the

European Conference on Machine Learning, ECML ’98 , pp. 178–189, 1998.

18. Gama, J., “Local cascade generalization”, Proceedings of the International Confer-

ence on Machine Learning, ICML ’98 , pp. 206–214, 1998.

19. Alpaydın, E., “Voting over Multiple Condensed Nearest Neighbors”, Artificial In-

telligence Review , Vol. 11, No. 1-5, pp. 115–132, 1997.

20. Bay, S. D., “Nearest neighbor classification from multiple feature subsets”, Intelli-

gent Data Analysis , Vol. 3, No. 3, pp. 191–209, 1999.

115

21. Ho, T. K., “The Random Subspace Method for Constructing Decision Forests”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8,

pp. 832–844, 1998.

22. Merz, C. J., “Using correspondence analysis to combine classifiers”, Machine Learn-

ing , Vol. 36, No. 1-2, pp. 33–58, 1999.

23. Bauer, E. and R. Kohavi, “An empirical comparison of voting classification algo-

rithms: bagging, boosting, and variants”, Machine Learning , Vol. 36, No. 1-2, pp.

105–139, 1999.

24. Alpaydın, E. and C. Kaynak, “Cascading classifiers”, Kybernetika, Vol. 34, No. 4,

pp. 369–374, 1998.

25. Kaynak, C. and E. Alpaydın, “MultiStage cascading of multiple classifiers: one

man’s noise is another man’s data”, Proceedings of the International Conference on

Machine Learning, ICML ’00 , pp. 455–462, 2000.

26. Alpaydın, E., “REx: learning a rule and exceptions”, Technical Report TR-97-040,

International Computer Science Institute, Berkeley, CA, 1997.

27. Dietterich, T. G., “An experimental comparison of three methods for construct-

ing ensembles of decision trees: bagging, boosting, and randomization”, Machine

Learning , Vol. 40, No. 2, pp. 139–157, 2000.

28. Dietterich, T. G., “Ensemble methods in machine learning”, Proceedings of the

International Workshop on Multiple Classifier Systems, MCS ’00 , Vol. 1857, pp.

1–15, 2000.

29. Seewald, A. K. and J. Fürnkranz, “An evaluation of grading classifiers”, Proceedings

of the International Conference on Advances in Intelligent Data Analysis, IDA ’01 ,

pp. 115–124, 2001.

30. Ženko, B., L. Todorovski, and S. Džeroski, “A comparison of stacking with meta

116

decision trees to other combining methods”, Proceedings of the International Multi-

Conference Information Society, ICDM’01 , pp. 144–147, 2001.

31. Rahman, A. F. R. and M. C. Fairhurst, “Multiple classifier decision combination

strategies for character recognition: a review”, International Journal on Document

Analysis and Recognition, Vol. 5, No. 4, pp. 166–194, 2003.

32. Hastie, T., R. Tibshirani, and J. Friedman, The elements of statistical learning ,

Springer-Verlag, 2001.

33. Kuncheva, L. I., “A theoretical study on six classifier fusion strategies”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 2, pp.

281–286, 2002.

34. Cabrera, J. B. D., “On the impact of fusion strategies on classification errors for

large ensembles of classifiers”, Pattern Recognition, Vol. 39, pp. 1963–1978, 2006.

35. Kuncheva, L. I., C. J. Whitaker, C. A. Ship, and R. P. Duin, “Is Independence Good

For Combining Classifiers?”, Proceedings of the 15th International Conference on

Pattern Recognition, ICPR ’00 , pp. 168–171, 2000.

36. Jacobs, R. A., “Bias/variance analysis of mixtures-of-experts architectures”, Neural

Computation, Vol. 9, No. 2, pp. 369–383, 1997.

37. Kuncheva, L. I. and C. J. Whitaker, “Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy”, Machine Learning , Vol. 51,

No. 2, pp. 181–207, 2003.

38. Kuncheva, L. I., “Special issue on diversity in multiple classifier systems.”, Infor-

mation Fusion, Vol. 6, No. 1, pp. 1–115, 2005.

39. Caruana, R., A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble selection

from libraries of models”, Proceedings of the International Conference on Machine

Learning, ICML ’04 , pp. 137–144, 2004.

117

40. Ulaş, A., M. Semerci, O. T. Yıldız, and E. Alpaydın, “Incremental Construction of

Classifier and Discriminant Ensembles”, 2008, accepted to Information Sciences.

41. Partridge, D. and W. B. Yates, “Engineering multiversion neural-net systems”,

Neural Computation, Vol. 8, No. 4, pp. 869–893, 1996.

42. Margineantu, D. D. and T. G. Dietterich, “Pruning adaptive boosting”, Proceedings

of the International Conference on Machine Learning, ICML ’97 , pp. 211–218,

1997.

43. Alkoot, F. M. and J. Kittler, “Experimental evaluation of expert fusion strategies”,

Pattern Recognition Letters , Vol. 20, No. 11-13, pp. 1361–1369, 1999.

44. Asuncion, A. and D. J. Newman, “UCI Machine Learning Repository”, 2007,

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

45. Rasmussen, C. E., R. M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahra-

mani, R. Kustra, and R. Tibshirani, “Delve Data for Evaluating Learning in Valid

Experiments”, 1995-1996, http://www.cs.toronto.edu/∼delve/.

46. Yıldız, O. T. and E. Alpaydın, “Linear discriminant trees”, Proceedings of the In-

ternational Conference on Machine Learning, ICML ’00 , pp. 1175–1182, 2000.

47. Chang, C. C. and C. J. Lin, LIBSVM: a library for support vector machines , 2001,

http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

48. Dietterich, T. G., “Approximate statistical tests for comparing supervised classifi-

cation learning algorithms”, Neural Computation, Vol. 10, No. 7, pp. 1895–1923,

1998.

49. Yıldız, O. T., A. Ulaş, M. Semerci, and E. Alpaydın, “AYSU:

Machine Learning Data Sets for Model Combination”, 2007,

http://www.cmpe.boun.edu.tr/∼ulas/aysu.

118

50. Alpaydın, E., “Combined 5 × 2 cv F test for comparing supervised classification

learning algorithms”, Neural Computation, Vol. 11, No. 8, pp. 1885–1892, 1999.

51. Demsar, J., “Statistical Comparisons of Classifiers over Multiple Data Sets”, Jour-

nal of Machine Learning Research, Vol. 7, pp. 1–30, 2006.

52. Semerci, M., Discriminant Ensembles and Error Analysis of Classifier Fusion

Rules , Master’s thesis, Boğaziçi University, 2007.

53. Turney, P. D., “Types of cost in inductive concept learning”, Proceedings of the

Workshop on Cost-Sensitive Learning, ICML ’00 , pp. 15–21, 2000.

54. Akaike, H., “A new look at the statistical model identification”, IEEE Transactions

on Automatic Control , Vol. 19, pp. 716–723, 1974.

55. Schwarz, G., “Estimating the dimension of a model”, Annals of Statistics , Vol. 6,

pp. 461–464, 1979.

56. Liu, C.-L., “Classifier combination based on confidence transformation”, Pattern

Recognition, Vol. 38, pp. 11–28, 2005.

57. Jain, A., K. Nandakumar, and A. Ross, “Score normalization in multimodal bio-

metric systems”, Pattern Recognition, Vol. 38, pp. 2270–2285, 2005.

58. Tax, D. M. J., M. van Breukelen, R. P. Duin, and J. Kittler, “Combining multiple

classifiers by averaging or multiplying?”, Pattern Recognition, Vol. 33, No. 9, pp.

1475–1485, September 2000.

59. Ulaş, A., M. Semerci, O. T. Yıldız, and E. Alpaydın, “The Effect of Correlation Be-

tween Experts in an Ensemble”, 2007, submitted to IEEE Transactions on Pattern

Analysis and Machine Intelligence.

60. Duin, R. P., “The combining classifier: to train or not to train?”, Proceedings of the

International Conference on Pattern Recognition, ICPR ’02 , pp. 765–770, 2002.

119

61. Duin, R. P. W. and D. M. J. Tax, “Experiments with classifier combining rules”,

Proceedings of the International Workshop on Multiple Classifier Systems, MCS

’00 , pp. 16–29, 2000.

62. Ting, K. M. and I. H. Witten, “Issues in Stacked Generalization”, Journal of Arti-

ficial Intelligence Research, Vol. 10, pp. 271–289, 1999.

63. Tamon, C. and J. Xiang, “On the boosting pruning problem”, Proceedings of the

European Conference on Machine Learning, ECML ’00 , pp. 404–412, 2000.

64. Sharkey, A. J. C., N. E. Sharkey, U. Gerecke, and G. O. Chandroth, “The “Test

and Select” approach to ensemble combination”, Proceedings of the International

Workshop on Multiple Classifier Systems, MCS ’00 , Vol. 1857, pp. 30–44, 2000.

65. Ueda, N., “Optimal linear combination of neural networks for improving classifi-

cation performance”, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, Vol. 22, No. 2, pp. 207–215, 2000.

66. Prodromidis, A. L. and S. J. Stolfo, “Cost complexity-based pruning of ensemble

classifiers”, Knowledge and Information Systems , Vol. 3, No. 4, pp. 449–469, 2001.

67. Roli, F., G. Giacinto, and G. Vernazza, “Methods for designing multiple classifier

systems”, Proceedings of the International Workshop on Multiple Classifier Sys-

tems, MCS ’01 , pp. 78–87, 2001.

68. Zhou, Z.-H., J. Wu, and W. Tang, “Ensembling neural networks: many could be

better than all”, Artificial Intelligence, Vol. 137, pp. 239–263, 2002.

69. Kim, Y., W. N. Street, and F. Menczer, “Meta-evolutionary ensembles”, Proceedings

of the International Joint Conference on Neural Networks, IJCNN ’02 , Vol. 3, pp.

2791–2796, 2002.

70. Bakker, B. and T. Heskes, “Clustering ensembles of neural network models”, Neural

Networks , Vol. 16, No. 2, pp. 261–269, 2003.

120

71. Islam, M., X. Yao, and K. Murase, “A constructive algorithm for training cooper-

ative neural network ensembles”, IEEE Transactions on Neural Networks , Vol. 14,

pp. 820–834, 2003.

72. Goebel, K. F. and W. Yan, “Choosing classifiers for decision fusion”, Svensson, P.

and J. Schubert (editors), Proceedings of the International Conference on Infor-

mation Fusion, Fusion ’04 , Vol. I, pp. 563–568, Jun 2004.

73. Ruta, D. and B. Gabrys, “Classifier selection for majority voting”, Information

Fusion, Vol. 6, No. 1, pp. 63–81, 2005.

74. Rokach, L., O. Maimon, and R. Arbel, “Selective voting: getting more for less in

sensor fusion”, International Journal of Pattern Recognition and Artificial Intelli-

gence, Vol. 20, No. 3, pp. 329–350, 2006.

75. Zhang, Y., S. Burer, and W. N. Street, “Ensemble pruning via semi-definite pro-

gramming”, Journal of Machine Learning Research, Vol. 7, pp. 1315–1338, 2006.

76. Kuncheva, L. I. and J. J. Rodriguez, “Classifier Ensembles with a Random Linear

Oracle”, IEEE Transactions on Knowledge and Data Engineering , Vol. 19, No. 4,

pp. 500–508, 2007.

77. Martínez-Munoz, G. and A. Suárez, “Using boosting to prune bagging ensembles”,

Pattern Recognition Letters , Vol. 28, No. 1, pp. 156–165, 2007.

78. Sohn, S. Y. and H. W. Shin, “Experimental study for the comparison of classifier

combination methods”, Pattern Recognition, Vol. 40, pp. 33–40, 2007.

79. Yang, Y., G. I. Webb, J. Cerquides, K. B. Korb, J. Boughton, and K. M. Ting,

“To Select or To Weigh: A Comparative Study of Linear Combination Schemes for

SuperParent-One-Dependence Estimators”, IEEE Transactions on Knowledge and

Data Engineering , Vol. 19, No. 12, pp. 1652–1665, 2007.

121

80. Beumier, C. and M. Acheroy, “Automatic 3d face authentication”, Image and Vision

Computing , Vol. 18, No. 4, pp. 315–321, 2000.

81. İrfanoğlu, O., B. Gökberk, and L. Akarun, “3D shape-based face recognition using

automatically registered facialsurfaces”, Proceedings of the International Confer-

ence on Pattern Recognition, ICPR ’04 , pp. 183–186, 2004.

82. Gökberk, B., M. O. İrfanoğlu, and L. Akarun, “3D shape-based face representation

and feature extraction for face recognition”, Image and Vision Computing , Vol. 24,

No. 8, pp. 857–869, August 2006.

83. Raudys, S., “Trainable fusion rules. I. Large sample size case”, Neural Networks ,

Vol. 19, pp. 1506–1516, 2006.

84. Rencher, A. C., “Interpretation of canonical discriminant functions, canonical vari-

ates, and principal components”, The American Statistician, Vol. 46, No. 3, pp.

217–225, 1992.

85. Fumera, G. and F. Roli, “A Theoretical and Experimental Analysis of Linear Com-

biners for Multiple Classifier Systems”, IEEE Transactions on Pattern Analysis

Machine Intelligence, Vol. 27, No. 6, pp. 942–956, 2005.

86. Jolliffe, I. T., “Discarding variables in a principal component analysis. II:Real data”,

Applied Statistics , Vol. 22, No. 1, pp. 21–31, 1973.

87. Merz, C. J. and M. J. Pazzani, “A principal components approach to combining

regression estimates”, Machine Learning , Vol. 36, No. 1-2, pp. 9–32, 1999.

88. Yıldız, O. T. and E. Alpaydın, “Ordering and Finding the Best of K > 2 Su-

pervised Learning Algorithms”, IEEE Transactions on Pattern Analysis Machine

Intelligence, Vol. 28, No. 3, pp. 392–402, 2006.

89. Tenenbaum, J. B., V. de Silva, and J. C. Langford, “A Global Geometric Framework

for Nonlinear Dimensionality Reduction”, Science, Vol. 290, pp. 2319–2323, 2000.

