
QUALITATIVE

SYSTEM IDENTIFICATION

by

Ahmet Celal Cern Say

B.S. in Computer Engineering, Bogazi~i University, 1987

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the req uiremen ts for the degree of

Doctor

of

Philosophy

Bogazici University Library

111I11111111111111111111111111111111111 ;!
39001100131542

Bogazi~i University

1992

iii

ACKNOWLEDGEMENTS

I would like to thank Prof. Selahattin Kuru who proposed the dissertation topic

and advised me in all stages of this work. Thanks are also due to Dr. Levent

Akm, Dr. Benjamin Kuipers, Arif Harova and Dr. Ethem Alpaydm who supplied

some of the references used in this dissertation. I am grateful to Dr. Levent

Akm, Dr. Yorgo Istefanopulos, Bulent Ozden, Arif Harova and Hakan <;ivi for the

valuable discussions, and to Dr. Serdar Biyiksiz, who gave the System

Identification course in our department. Fedon Kadifeli played a very

important role in the writing of this text. I also thank Prof. Selahattin Kuru,

Dr. Levent Akin, Prof. Yorgo Istefanopulos, Prof. Nadir YiiceI, and Dr. Taflan

Giindem for their careful reviews. Special thanks go to my parents and to my

country.

A. C. Cern Say

IV

QUALIT A TIVE SYSTEM IDENTIFICATION

The main contribution of this research in the qualitative reasoning area of

Artificial Intelligence is the development of the qualitative system

identification algorithm QSI. QSI's input is a description of the qualitative

behaviors of the system to be identified. Its output is a constraint model

(possibly containing "deep" parameters absent in the input) of that system, in

the format of Kuipers' qualitative simulation algorithm QSIM. The QSI approach

to qualitative modeling makes no assumptions and requires no knowledge about

the "meanings" of the system parameters. QSI is discussed in detail.

Other contributions are a new method of eliminating a class of spurious QSIM

predictions, and an algorithm for postdiction.

Unlike other approaches to spurious behavior reduction, the method presented!

here does not require restricting assumptions about the input model. A

particular kind of spurious behavior is shown to be caused by pure QSIM's

insistence on assigning only point values to "corresponding value tuples"

associated with model constraints. The solution put forward here preserves the

overall complexity of the algorithm, while producing fewer incorrect

predictions, as shown by the presented reports of the case runs and proofs.

Postdiction is the task of finding out the possible pasts of the system under

v

consideration, given the laws of change and the current state. For obtaining

the algorithm, a different scheme of interpreting the tree built by simulation

is imposed, as well as the handling of the "flow" of time. Issues of thig

reasoning task, which is promising for diagnosis applications, are discussed.

vi

NITEL StSTEM T ANILA1\1A

Yapay Zeka'nm nitel uslamlama alamndaki bu ara~tlfmanm temel katklsl, nilel

sistem tamlama algoritmasl QSl'm geIi~tiriImesidir. QSl'm girdisi, tamlanacak

sistemin nitel davram~lannm bir betimlemesidir. <;lkUSl bu davram~lan

g5steren sistemin Kuipers'in QSIM nitel benzetim algoritmasmm bir;eminde ve

sistemin girdide belirtilmemi§ "derin" parametrelerini de ir;erebilen bir klSlt

modelidir. Nitel modellemeye QSI yakla~lml sistem parametrelerinin

"anlamlan" hakkmda hi~ bir varsaYlm yapmaz ve bilgiye gereksinmez. QSI

geni§bir;imde tartl~Ilmakta ve 5rneklenmektedir.

Diger katkllar, bir grup "sahte" QSIM daVram§IDl elemek i~in yeni bir yontem

ve bir sonradan tahmin algoritmasldlf.

Sahte davram§lan azaItma konusuna ba~ka yakla§lmlann aksine, burada

sunulan y5ntem girdideki model hakkmda kIsItlaYlcl varsaYlmlar gerektirmez.

Belli bir ttir sahte davram§m saf QSIM'in model klsItlan ir;in kul1amlan

kar§lhk deger takImlannda sadece nokta degerlerin tutulmasl konusundaki

isran nedeniyle ortaya r;lktlgl saptanml~tlr. Sunulan r;ozlim, verilen i~letim

5rnekleri ve ispatlann da gosterdigi gibi, algoritmamn genel karma§lkhgml

k5tlile§tirmeden daha dogru r;lkttlann oIu§maslnt saglar.

Sonradan tahmin, degi§im yasalan ve ~imdiki durum verildiginde 01:UH

vii

ge~mi~leri bulma i~idir. AIgoritmaYI elde etmek i~in, zamanm "ge~i~i" iJe ilgili

degi~ikliklerin yamslra, benzetimce Uretilen durum agacml yorumlamanm

farkh bir y5ntemi getiri1mi~tir .. Tam .. uygulamalan i~in umut vaadeden bUl

uslamlama tUrUyle ilgili konular tartl~Ilml~tlT.

viii

TABLE OF CONTENTS

ACKNOw:LEDCJEMENTS .. j i i

ABSTRACf ... ooi v

OZET .. vi

LIST OF FIGURES ... xii

LIST OF TABLES .. xiii

1. INTRODUCTION ... 1

1.1. Contribution of This Work .. 3

1.2. Structure of the Dissertation .. 6

II. QUALITATIVE PHYSICAL REASONING .. 7

2.1. Temporal Representations .. 7

2.1.1. The Situation Calculus ... 7

2.1.2. Hayes' Work .. 9

2.1.3. Allen's Theory of Time ... 9

2.2. Qualitative Reasoning .. 10

2.2.1. Qualitative Process Theory ... 11

2.2.2. Qualitative Physics and Causality ... 13

2.2.3. Temporal Qualitative Analysis ... 15

2.2.4. Kuipers' Work .. 16

2.2.5. 'Veld's Work .. , ~ ... 11

2.2.6. Conc1uding Remarks on Literature Survey I91

2.3. Related Topics .. 191

III. QSIM AND ITS EXTENSIONS ... 21

3.1. QSIM ... 21

3.1.1. Parameters, Constraints and Value Transitions 21

3.1.2. The QSIM Algorithm .. 28

3.1.3. Complexity and Correctness .. .3:3

3.1.4. QSIM as Simulation .. 38

3.2. Extensions to QSIM .. 39

3.2.1. Time-Scale Abstraction ... 39

3.2.2. Ways of Producing Smaller Trees .. .40

3.2.3. Incorporation of Quantitative Knowledge into QSIM41

3.2.4. Qualitative Phase Space and Other Constraints41

3.2.5. Using QP Theory to Build QSIM Models 42

3.2.6. QSIM for Monitoring ... 43

IV. IMPROVED CONSISTENCY FILTERING FOR QUALITATIVE SIMULATION45

4.1. A Class of Spurious Behaviors .. 45

4.1.1. Example 1: The Elevator/Ball System046

4.1.2. Example 2: The Ball/Shadow System48

4.2. The Cause of Spurious Behaviors ... 50

4.3. Filtering Spurious Behaviors ... 51

4.4. Correctness and Complexity of Improved QSIM5 6

4.5. Concluding Remarks .. 59

V. POSTDICTION BY QUALITATIVE SIMULATION .. 61

x

5.1. Postdiction .. 61

5.2. QSIM for Postdiction ,. .. 62

5.3. Examples :· ... 65

5.3.1. The Ball Postdiction ... 65

5.3.2. Burst Tank Postdiction .. 6g

5.4. Discussion ... 70

5.5. Applications ... 72

VI. THE QUALITATIVE SYSTEM IDENTIFICATION ALGORITHM 74

6.1. QSI as CSI. .. 75

6.2. The QSI Algorithm .. 77

6.2.1. Input and Output .. 77

6.2.2. The Algorithm .. 80

6.2.3. An Example ... 82

6.2.4. Constraint Determination .. 86

6.2.5. Model Extension ... 89

6.2.6. Model Depth Testing .. 96

6.2.7. Dimension Consistency ... 99

6.3. Noise Filtering ... 101

VII. COMPLEXITY AND CORRECT~'ESS ANALYSIS OF QSI 1 06

7.1. Complexity .. 106

7.1.1. Analysis ... 106

7.1.2. Remarks ... 108

7.2. Correctness .. 110

7.3. Consequence Constraints .. 114

VIII. QSI: A DISCUSSION ... 117

8.1. QSI as Modeling ... 117

8.1.1. How to Prepare QSI's Input.. .. 118

xi

8.1.2. How to Interpret QSI's Output.. .. l19

8.1.3. QSI vs. Modeling by I:Iumans .. 121

8.1.4. QSI for Diagnosis ~ .. 122

8.1.5. QSI's Limitations .. 124

8.2. QSI as Leaming ... 125

IX. QSI AT WORK .. 129

9.1. Examples ... 129

9.1.1. U-tube with Full Postulation .. 129

9.1.2. Single Leaking Tank ... 132

9.1.3. Bathtub with Constant Inflow ... 133

9.1.4. Water Balance in Kidney .. 135

9.1.5. Heat Exchanger .. 137

9.1.6. The Upward Thrown Ball.. .. 139

9.2. Further Issues ... 140

X. CONCLUSION ... 145

10.1. Summary of Results .. 145

10.2. Suggestions for Future Work .. 148

APPENDIX A. IMPLEMENT A TION ... 151

BIBLIOGRAPHY " .. 153

REFERENCES NOT CITED ... 159

xii

LIST OF FIGURES

~

FIGURE 3.1.1 U-tube in operating region NORMAL. .. 26

FIGURE 3.1.2 State tree for U-tube simulation (time values shown) 33

FIGURE 3.1.3 A partial state tree .. 34

FIGURE 3.1.4 The spring/block system .. 36

FIGURE 4.1.1 The elevator/ball system at to '" .. .46

FIGURE 4.1.2 The ball/shadow system ... ;49

FIGURE 4.4.1 Geometric interpretation of M+ consistency check 57

FIGURE 5.3.1 Possible pasts for a ball hitting the ground 66

FIGURE 5.3.2 U-tube in operating region B_BlJRST ... 68

FIGURE 6.2.1 The QSI algorithm ... 81

FIGURE 6.3.1 Actual behavior of X .. 103

FIGURE 6.3.2 Noisy behavior of X .. 103

FIGURE 9.1.1 The heat exchanger ... 137

xiii

LIST OF TABLES

~

TABLE 3.1.1 The transitions .. 24

TABLE 3.1.2 Qualitative addition .. 26

TABLE 3.1.3 Parameters of the U-tube system .. 21

TABLE 3.1.4 U-tube constraints in region NORMAL .. 21

TABLE 3.1.5 U-tube constraints in region B_BURST .. 27

TABLE 3.1.6 Initial state of U-tube system ... 28

TABLE 3.1.7 Qualitative multiplication .. .30

TABLE 3.1.8 Behavior #1 of the U-tube .. 32

TABLE 3.1.9 Behavior #2 of the U-tube .. 32

TABLE 3.1.10 Behavior #3 of the U-tube .. 32

TABLE 3.1.11 QDE of spring/block system36

TABLE 3.1.12 Stable oscillatory behavior of spring/block system31

TABLE 3.1.13 A spurious behavior of spring/block system (first nine states) 31

TABLE 3.1.14 Another spurious behavior of spring/block system (first nine

states) .. 3~

TABLE 4.1.1 QDE of elevator/ball system4 7

TABLE 4.1.2 Spurious behavior of elevatorlball system41

TABLE 4.1.3 QDE of ball/shadow system48

TABLE 4.1.4 Spurious behavior of ball/shadow system 49

TABLE 4.3.1 CV triples used to test ADD(EL_H,REL_H,BALL_H) at t454

TABLE 4.3.2 CV tuples used to test M+(Y,X) at t4 .. 54

xiv

TABLE 4.3.3 A spurious prediction .. 55

TABLE 4.3.4 CV triples used to test ADD(~,B,C) at t5 .. 55

TABLE 4.4.1 Execution times of improved QSIM case runs 58

TABLE 5.2.1 The reverse transitions ... 64

TABLE 5.3.1 Output of ball postdiction .. 61

TABLE 5.3.2 Starting state of V-tube postdiction .. 68

TABLE 6.2.1 V-tube identification, input behavior #1.. 83

TABLE 6.2.2 V-tube identification, input behavior #2 .. 83

TABLE 6.2.3 V-tube identification, behaviors of two of the postulated

parameters ... 84

TABLE 6.2.4 Constraints found in the V-tube identification 85

TABLE 6.2.5 Final V-tube model after identification ... 86

TABLE 6.2.6 Behavior of amount_A ... 91

TABLE 6.2.7 Behavior of PX in [to ,t 1] .. 92

TABLE 6.2.8 Possible behavior for PX ... 92

TABLE 6.2.9 Another possible behavior for PX ... 92

TABLE 6.2.10 Yet another possible behavior for PX .. 93

TABLE 6.2.11 Possible system behavior for input of Table 6.2.1.. 93

TABLE 6.2.12 Input behavior of X-Y system .. 98

TABLE 6.2.13 Behaviors of X-Y-Z system .. 98

TABLE 7.1.1 Execution times of QSI case runs ... 1 09

TABLE 7.3.1 Possible directions of A, Band C .. 1 H

TABLE 8.1.1

TABLE 8.1.2

TABLE 8.1.3

TABLE 9.1.1

TABLE 9.1.2

TABLE 9.1.3

Healthy water balance mechanism .. 123

Water balance model with SIADH .. 124

Water balance model's parameters ... 124

Old and postulated parameters for V-tube identification 130

V-tube (NORMAL) constraints found after model extension 131

Input of bathtub identification ... 132

xv

TABLE 9.1.4 Old and postulated parameters for bathtub identification 132

TABLE 9.1.5 Output of bathtub identifica,tion .. 133

TABLE 9.1.6 Input for filling bathtub identification .. 134

TABLE 9.1. 7 Input of second constraint determination in filling bathtub

identification ... 134

TABLE 9.1.8 Sufficient QDE for filling bathtub identification 134

TABLE 9.1.9 Output of filling bathtub ideitification oo 135

TABLE 9.1.10 First input behavior for water balance identification 135

TABLE 9.1.11 Second input behavior for water balance identification 136

TABLE 9.1.12 Initial model in water balance identification 136

TABLE 9.1.13 Constraints added by second constraint determination 137

TABLE 9.1.14 Input behavior #1 for heat exchanger identification 138

TABLE 9.1.15 Input behavior #2 for heat exchanger identification 13 8

TABLE 9.1.16 Input behavior #3 for heat exchanger identification 138

TABLE 9.1.17 Initial constraints in heat exchanger identification 139

TABLE 9.1.18 Behavior of ball height.. ... oo139

TABLE 9.1.19 Input to second constraint determination in ball system

identification .. 140

TABLE 9.2.1 Input #1 for heat exchanger identification (temperature

version) .. 141

TABLE 9.2.2 Input #2 for heat exchanger identification (temperature

version) .. 14li

TABLE 9.2.3 Input #3 for heat exchanger identification (temperature

version) .. 141

TABLE 9.2.4 Behavior of X-Y subsystem ... 142

TABLE 9.2.5 Two choices for the behavior of X· ... 143

TABLE 9.2.6 Extended behavior of subsystem ... 143

1

I. INTRODUCTION

Artificial Intelligence (AI) has been defined as "the field of Computer Science

that concerns itself with the production of programs which accomplish tasks

which, when performed by a human, can be considered intelligent." [1] In the

35 years since the Dartmouth Conference, widely regarded as the start of AI,

considerable success has been achieved in the automation of some such tasks.

Programs which play chess (and some other board games) better than most

humans have been written [2]. Expert systems which· possess some of the

knowledge of a human expert in a specific domain are commercially available

and used in various areas [2,1].

However, some other mental tasks performed routinely by humans (so

easily, in fact, that they are not normally considered very intelligent,) have

proven to be very hard to program, against the early optimistic expectations of

some researchers.

Upon comparison of these "basic" tasks (like vision, understanding

natural language, or the possession of what may be called "commonsense"

knowledge of the world) to the more "advanced" ones mentioned in the first

paragraph, one sees that the knowledge representation required for tackling

the "simple" tasks is much more complicated. Most games have a simple,

standard and obvious representation, the board. Expert systems store their

knowledge in relatively simple representations (using, for example,

production rules or frames.) On the other hand, the internal representation of

things like languages or "the world" is certainly bound to be more complicated.

Actually, it is because of their simplistic representation schemes that expert

systems cannot solve problems that belong to their domain but are too simple

for the expertise level that they are "geared" to. They lack deep knowledge.

that is, a model of the underlying mechanism causing the observable features

in the domain. Some variables of this model may not even be directly visible.

Knowledge of such a model enables one to perform flexible reasoning,

answering a wide variety of questions, and providing causal explanations (e.g.

2

"the rise in the pressure in tank A led to an increase in the pressure

difference, which in turn caused a flow from tank A.") of system behaviors.

Most of today's expert systems work with shalIow knowledge; their conclusions

are based on empiric relationships with the observations. As Hobbs [3] says:

"An expert system in geology may know the characteristics of a good!
prospect site without knowing that a rock is a physical object and that a
geologist is a person."

Considering the importance of representation, McCarthy and Hayes [4]

have pointed out that intelligence has two parts: e pis t e mol 0 g i c a I

(representation of the world) and heuristic (the problem solving mechanism.)

In order to construct the epistemological part of an AI, they say:

"The first task is to define even a naive, common-sense view of the world
precisely enough to program a computer to act accordingly. This is a very
difficult task in itself."

In 1979, Hayes wrote "The Naive Physics Manifesto," [5] in which he

called for "a formalization of our knowledge of the everyday physical world: of

naive physics," and set out the guidelines for this project. This paper had a

great effect, and many researchers were actively involved in the various

branches of this endeavor [3].

Humans generally do not use numerical or exact information when

performing commonsense reasoning. Rather, the knowledge they utilize is

qualitative (and, sometimes, wrong.) For example, a human can tell what a ball

thrown upward will do, even though (usually) neither the value of its velocity,

nor the exact equations governing its flight are known to him. That is why the

reasoners and theories developed for automating the task of understanding the

behavior of physical systems have adopted a qualitative representation of

system models and parameter values, and the associated field of research [6] has

been given names like qualitative physics or qualitative reasoning.

Generally, these programs start with a qualitative model of the system

under consideration and reason about its time behavior. This model-based

reasoning capability is a candidate for solving the deep knowledge problem of

expert systems. It also provides for the generation of causal explanations of

device behaviors, with potential applications to design and diagnosis aids, and

tutoring systems, where capturing and making use of the user's intuition is of

great importance. The ability to express and reason with incomplete knowledge

is another desirable property of these reasoners. Early applications of this

3

technology have already appeared, in domains of expertise as diverse as

electrical circuits [7] and physiological systems [8,9]. (Also see [10].)

.'
Most of the research in the. field of qualitative reasoning has been in the

area of qualitative simuia,tion [11-14]. A qualitative simulator is a program

which takes as input the initial state of a physical system and a qualitative

model composed of constraints representing time-independent relations

between the system's parameters, and produces an account of all possible

future behaviors of the system, represented as sequences of qualitative states

(parameter value collections.) Because of the incomplete nature of the

information they deal with, qualitative simulators can produce s pur i 0 U S

behaviors, i.e. those which do not correspond to any actual physical behavioll

that the system can exhibit, for some inputs.

After pioneering work by researchers including de Kleer and Brown

[11], Forbus [12], and Williams [13] on this topic, Benjamin Kuipers developed

the QSIM [14,15] algorithm, which is distinguished from the others by its

implementation efficiency and its ability to discover qualitatively important

landmark values about the modeled system.

QSIM has been used as a tool in the development of other reasoners, and

the work in qualitative reasoning that will be explained in this dissertation has

also been performed in the context of QSIM, using its representation and

formalism, so that the compatibility of its products to this "standard" is

guaranteed.

1.1. Contribution of This \Vork

Where do the qualitative models used by the above-mentioned reasoners come

from? Surely, modeling the systems in the first place is a very important task,

if model-based reasoning is to be performed. Almost all presently available

qualitative physical reasoners get these models as input, leaving the whole

modeling task to the user. Some authors [11,14] even describe methods of hand

transforming ordinary differential equations governing the input system

4

(which are to be obtained from, say, textbooks on that domain,) to qualitative

form. Some (like Forbus [12]) provide methodologies where the user gives ~

description of the individuals, configurat,ion and quantities of a physical scene,

and the reasoner builds the model using this input, together with already

present information about a great variety of physical processes that may be

active and the relations on the system parameters imposed by tbese processes.

Although these are admirable approaches to using available knowledge and!

building correct models, the question remains: Can one automate the task of

finding out this information about the relations between the parameters of a

given system?

Humans can form a mental model of the dynamics of a newly seel!ll

physical system after observing its working for some time. This suggests that a

kind of learning process is going on, whose input consists of system behaviors

and whose output is a model of the system. There is also a well-established field

(quite unrelated to AI) of modeling dynamic systems from (numerical)

experimental data, known as system identification. In this study, it has been

decided to adopt such an approach to the problem, and a qualitative system

identification algorithm, QSI, which takes a set of system behaviors expressed

in the QSIM format as input, performs constraint generation and testing on

these data, and proposes a QSIM-style model of the system as output, has been

developed. QSI also has the capability of finding an "appropriately" deep model.

a feature that also exists in conventional system identification. Despite their

conceptual similarity, the methods have great internal differences, because of

the different natures of the data they handle.

Research in qualitative physical reasoning has mostly striven to

produce qualitative analogs of existing "standard" methods for performing

various analysis tasks. The already mentioned technique of qualitative

simulation, for instance, is the equivalent of numerical simulatiolil OIl

analytical solution of equations, in this domain. Similarly, Daniel Weld's

methods of comparative analysis [16,17] are qualitative analogs of the standard

task of perturbation analysis. As remarked above, QSI adds the system

identification task to the repertory of qualitative reasoning.

In addition to its suitability as a model generator for qualitative

simulators, the QSI method also suggests an approach to the model structure

determination problem of conventional system identification itself. Its abilhy

of preparing models for systems whose behaviors are observed, withoua

making any restrictive assumptions on the meaning or function of the

systems, also makes QSI a good candidate for diagnosis applications.

As mentioned above, QSI achieves learning; a topic of much AI work.

How it compares to established learning procedures has been investigated!.

Proofs of correctness and a performance evaluation which shows that its tim~

complexity is comparable to that of other qualitative reasoners have also beellll

given.

Prediction of future behavior is only one of a variety of temporal

reasoning tasks [12] which can be accomplished using qualitative models. One

such task, which has been little-explored because of some inherent difficulties.

is postdiction, inferring what happened in the past from the current state of

the system. Certain modifications on the "time-passing" module of QSIM have

been made and a new way of interpreting the state graph it produces during

simulation has been developed, resulting in an algorithm for postdiction by

qualitative simulation. Postdiction is promising in relation to diagnosis tasks,

where it can be used to enumerate the various ways in which "things may

have gone wrong," given a problematic system state.

As explained before, qualitative simulators may predict spurious

behaviors. Work has been going on [18,19] to decrease the number of such

spurious solutions produced by QSIM. In the course of this study, a shortcoming

in the corresponding value filters, which QSIM uses during simulation to

prevent states which do not satisfy the constraint model from being generated.

has been discovered. This anomaly causes a particular class of "illegal" states to

pass the filters, thereby producing spurious behaviors. Improved qualitative

arithmetic and corresponding value recording routines have been designed as

a solution to this problem. These modifications have been integrated into an

implementation of QSIM, and a provably improved program has been obtained].

The method requires no changes in the assumptions about the input

information, unlike the other approaches to spurious behavior reduction.

6

1.2. Structure of the Dissertation

The rest of this dissertation is structured as follows: Chapter 2 provides the

background and gives a technical overview of previous qualitative reasoners,

with an emphasis on their features relevant to this work. The qualitative

simulation algorithm QSIM is examined in a similar manner in Chapter 3. The

filtering problem of QSIM which leads to an avoidable class of spurious

behaviors and the solution for it are explained in Chapter 4. The work on

postdiction by qualitative simulation is detailed in Chapter 5. Chapter 6 starts

the coverage of qualitative system identification with a detailed presentation of

the algorithm. Complexity and correctness analyses of QSI are given in Chapter

7. Chapter 8 is a discussion of the various considerations that arise when

performing the QSI task, and the place of the algorithm in the wider reasoning

scene. Various QSI examples are presented in Chapter 9. Chapter 10 contains

recommendations for future work in the area and a conclusion. The appendix is

about the implemented programs.

7

II. QUALITATIVE PHYSICAL REASONING

The behavior of physical systems takes place in time, and reasoning about them

requires an adequate and efficient way of representing time and change. This

chapter of the dissertation will begin with an overview of the "classical" AI

approaches to temporal representation. Various qualitative reasoners will be

presented, with their features relevant to the present areas of interesR

highlighted. Finally. other AI topics with a relation to the presently

investigated ones will be briefly covered.

2.1. Temporal R epresenta tions

Temporal reasoning

summarized in this

needs

section

a specialized

have greatly

representation. The approaches

affected and shaped further AI

research in the area. As will be seen in the next section, qualitative physical

reasoning researchers have also adopted and specialized the methods that will

be mentioned here.

2.1.1. The Situation Calculus

The best-known temporal representation scheme is the situation calculus,

developed by McCarthy [20] and Hayes [4]. In this formalism. a situation is the

state of the whole universe at a given time. (Of course, the reasoner's

knowledge of "the whole universe" is very limited. What is meant here is "all

the fa c t s known to the reasoner.") A situation persists until some facts about

the world change. in which case a new situation begins. Facts can be changed

by actions (e.g. shooting somebody causes the facts about his health to be

changed, therefore leading to a new situation,) or events (the falling of a vase

changes its price.) Transitions between situations (i.e. the passing of time) are

shown by the result function:

new_s = result" (s, e) (2.1)

means that if event e occurs in situation s, the situation new s results. The

state of the world d uri n g the change is not modeled and therefore cannot be

reasoned about. Laws of change, which dictate how particular events cause

change are then represented as in the following example [21]:

v s, x, e: color(result(s, paint(x, e)), x) = e (2.2)

That is, in the situation that results when object x is painted to color e, the

color of x is e. Note how facts have situations as arguments. This is necessary

because one is performing temporal reasoning; the facts are time-dependent.

A famous drawback of the situation calculus is the frame problem.

Consider a reasoner which supports "color" facts about objects as in the above

example together with lots of other facts about other things, such as the name

of the prime minister, for instance. In situation s _1, many such facts are

known. Then, paint(object_1, blue) occurs, resulting in situation s _2. Now, if

the reasoner is asked about the name of the prime minister in situation s 2.

will it be able to answer the question? That fact is known in s 1, but how can

one deduce that it is still there in s 2? As this example illustrates, in classical

situation calculus, one has to include a huge number of frame axioms that

specify which aspects of the world do not change (i.e. are attached to the

"frame") when a particular event occurs, for each aspect and for each kind· of

event.

But the real problem with situation calculus from the point of view of

reasoning about physical systems is that it cannot deal with continuou~~

change in a healthy manner. As McCarthy [21] says, the situation calculus

"applies only when it is reasonable to reason about discrete events, each of

which results in a new total situation. Continuous events and concurrent

events are not covered."

9

2.1.2. Hayes' Work

In "The Naive Physics Manifesto" [5], Hayes introduced a new ontological

primitive, the history, as an alternative to situation calculus. The history of an

object or an event is the 4-dimensional piece of spacetime that it occupies,

bounded spatially and temporally by its "natural" boundaries. This scheme has

no frame problem, since only objects and events whose histories interact iDl

some manner can affect each other; all other things are isolated from them and

thus do not change.

In the same paper, while enumerating the general commonsense

concepts that humans have, Hayes gives a definition of quantities as qualities

that can be measured. He goes on to point out that the measuring scale involved

may not impose a strict linear order on the space of quantities being measured.

He adds that fuzzy values [22] may be used in this context. Interestingly, as will

be discussed later, a qualitative representation quite different from the fuzzy

setup has been adopted in the field.

2.1.3.. Allen's Theory of Time

Allen [23,24] proposed a model of naive temporal reasoning which is based

solely on time intervals. He argued that time "points," i.e., "instants" in the

representation produce some confusing interpretation problems and c1aimedl

that effective temporal reasoning can be achieved without them. His c1assic

example is as follows: Someone turns on the light. This means that two time

intervals exist: One during which the light was off, followed by another one

during which it is on. If these intervals are both open, there is a time point iDl

between "during" which the light is neither on nor off. This is

counterintuitive. If the intervals are both closed, then there is a time point

when the light is both on and off. This is even worse. And there is no good

reason for one interval being closed and the other being open. So one should

not use "the real line as a model of the time line" in naive physical reasoning.

Allen says that the commonsense notion of time point, sometimes used! by

humans, is actually an interval which is too small for the scale of the currelITlt

10

discussion, and can always be decomposed to smaller intervals at smaner

s c a I e s 1. (Consider the different time scales used by astrophysicists and!

politicians, for instance.)

In Allen's model, two intervals, one of which is immediately followed by

the other, like those in the light switch example, are said to meet. Twelve other

"primitive" relations that are possible between intervals are defined and! ~

constraint propagation algorithm for performing reasoning of the kind of

being able to answer queries like "Did evencl happen before or after

evenc8?" is developed. These sort of problems can arise in story

understanding.

Allen's theory caused some controversy. Galton [25] says that it is not

suitable for representing continuous change, and proposes that instants should

be included III the ontology as part of his solution. Williams, who has adopted

the real line representation for time in his qualitative physical reasoning

system, criticizes Allen's ontological decisions in [13]. His arguments will be

presented in Section 2.2.3.

2.2. Qualitative Reasoning

The basic difference of the work to be explained here from that of the

researchers referenced above is that, while those researchers' aim was to

achieve generality in AI, (i.e. they were after a scheme which was up to

representing a wide range of the temporal reasoning tasks that humans

perform,) the aim of what has become known as the qualitative physical

reasoning field is to automate reasoning about the smaller domain of the

working of physical systems. Special emphasis on the relation of the structure "-

of these systems (or mechanisms, devices, etc.) to their behavior is made. A

model of the system, describing the relations between its various elements

1 Kuipers has used this notion of time scale in designing an abstraction method
for QSIM (Section 3.2.1.)

11

(parameters, quantities, etc.) is used to generate not only a description. but also

an explanation of various aspects of its behavior. Since this task domain is

much more specialized both representat"~onally and computationally than what.

say, the situation calculus set out to handle, more efficient representations and!

algorithms that deal with it can be, and have been, developed.

2.2.1. Qualitative Process Theory

Forbus' Qualitative Process (QP) Theory [12] is one of the foundations of

qualitative reasoning about physical systems. Many concepts and techniques

used in the field were firmly established in the context of that work.

QP theory is a model-building methodology based on the notion of

physical processes. All change is viewed to be caused by processes. The

reasoner is assumed to h ave a (big) library of model fragments [26]; knowledge

about various kinds of processes (under what conditions and in what

configurations they occur, what changes they impose on various quantities,)

and of relations that various states impose on the continuous parameters

involved in - them (e.g. the existence of water in a container necessitates a

relation between the amount of water and the pressure at the bottom.)

Forbus introduced the quantity space representation for the magnitudes

of parameters. The quantity space of a parameter is a partially ordered set of

landmarks, symbols representing qualitatively important real values (like O.

boilingyoint, or maximum_capacity) that this parameter can take. Magnitudes

are then represented as points or intervals in the quantity space. Each

parameter's value is composed of its magnitude and time derivative. In this

way, the directions of change of parameters are easily represented in their

values.

The reI ations between parameters can be either in the form of

arithmetic operations, as a parameter being the sum of two others, or in terms

of qualitative proportionalities, as in

pressure a Q+ amouncoCIiquid (2.3)

which means that, all other things held constant, pressure will increase if

amount is increased, and it will decrease if amount is decreased. No details about

the function except its monotonicity are known. ex Q_

inverse proportionality. Additional information about

12

similarly represents

the function can be

specified using corresponding values)n the quantity spaces of the related!

parameters that define points which the function crosses. For example, (0,0) i§

a corresponding value tuple for the above proportionality, since the pressure

is zero when the amount is zero.

Given a description of the individuals, configuration, and certain

parameter values, if one makes the Closed World Assumption (CWA) that an the

relevant knowledge about the part of the world in which one is interested is

available, QP theory can be used to determine the currently active processe§.

and therefore to assemble a model of the laws of motion driving the system. Thre

future behavior of the system is then predicted by qualitatively combining the

effects on the quantities to see which threshold values they will cross, possibly

leading to changes in the process structure. Because of the ambiguity inherent

in the representation of quantities and relations, usually many alternative

futures are predicted, each of them corresponding to an actual scenario that

satisfies the model.

The limit analysis technique used by Forbus to achieve the "passing" of

time, i.e. to find the "next" interval (Allen's model of time is adopted) in which

some aspects are qualitatively different from the current one, evolved to be a

standard method used by qualitative simulation programs. The idea is this: The

sign of the time derivative of each parameter indicates its direction of change.

So all changing parameters are nearing certain points in their quantity

spaces. When one of them arrives at such a point, a qualitative change occurs.

Barring some cases, in which corresponding value information may be used to

eliminate some such transitions, one generally has no way of knowing which

parameter will change qualitative value first, so the prediction branches to

consider all cases. For instance [12], suppose the existence of two containcJl'§

with fluids in them, and an open fluid path between them has been described

in the input. A fluid flow process is activated from the container with the

greater pressure to the other one. (Equation 2.3 is sUso part of the present

information.) Given all this, a reasoner employing QP theory is able to deduce

two alternative futures for the system with limit analysis. In one of them, the

pressures eventually become equal (since the flow process influences the

"target" amount positively, and the "source" amount negatively,) and the

process terminates as the pressure difference that triggered it vanishes. In the

13

other alternative, the source container runs out of fluid (i.e. that amount

reaches the landmark 0) and the process stops, since a flow needs the existence

of a source. Which of the alternative~_: actually occurs cannot be determined

without further (configurational) information about the system.

Forbus also introduces encapsulated histories to represent "destructive"

events, like breakings, collisions, and explosions, whose underlying

mechanism is hard to model. These are just accounts of what happens when

such an event occurs.

Since qualitative simulators are mostly outgrowths of one another. a

detailed example of their complete working will only be given for QSIM. in

Chapter 3.

Forbus argues that QP theory can be helpful for the generation of Hayes

style histories. He proposes ways of identifying components of physical scenes

that do not affect each other, and therefore can be reasoned about

independently.

The origin of the huge number of model fragments which contain

knowledge of dynamics that are an essential part of QP theory is not made dear.

In this study, it is claimed that such knowledge of structure can be obtained by

examining the behavior exhibited by the system, and observing the relations

between the parameter values. An algorithm based on this claim will be

presented in Chapter 6.

2.2.2. Qualitative Physics and Causality

de Kleer and Brown's ENVISION [11] program, based on their Qualitative

Physics, assumes a mechanistic world view. The input system models are formed

by connecting component models III the program's component library

according to the device topology of the system. Zero is (practically always) the

only landmark used. There are con d u i t laws which have to hold in the

connections between the components, representing physical conservation

rules, as well as the time-invariant confluences (qualitative differential

equations) of each component, governing its working. Furthermore, each

14

component may have various states 2 in which different confluences apply,

determined by the values of certain variables. The component confluences

have to have been previously written by a human, either employing

"commonsense," or directly transforming them from the conventional

physical equations (to be found in, say, a textbook,) to the qualitative form,

where only the signs of variables and their derivatives come into play.

Making the assumption that the system is always near or at equilibrium,

and starting with the initial values of some of the variables, ENVISION solves

the system of equations to obtain the intrastate behavior; that is, a complete

assignment of values to variables. Descriptions of the variable values and

directions in all different states that the system can enter can be calculated.

Since the directions indicate the "next" values that the variables may obtain, a

diagram showing all possible state transitions that the system can go through

can then be constructed. One must note that this cannot be considered a

simulation process like the scheme discussed in relation to QP theory; in

sinulation, if event A comes after event B in "real life," (his relation is

reflected in the order they are processed by the program. ENVISION, on the

other hand, "calculates" all states that the system can have, and then starts an

analysis of possible transitions between them.

de Kleer and Brown also developed a way of producing causal

explanations of intrastate behavior, trying to show how the change in the

value of a variable causes changes III the values of other variables in the same

confluence. Causality is very hard to formalize [27], and de Kleer and Brown

were not entirely successful. Consider the very simple equation

X=Y. (2.4)

ENVISION produces explanations like "X increased, and this caused Y to

increase," but this seems to imply that there was a time period during which

X;t: Y, which doesn't make sense. de Kleer and Brown had to introduce the

concept of mythical time, during which the laws may be temporarily violated.

No "normal" time passes during mythical time. When the confluences are

slightly more complicated than the form above, ambiguities result as to how

causality should be propagated among the variables. de Kleer and Brown use

2 Note that de Kleer and Brown's notion of state is somewhat different from the
one that will be used in most of this text.

15

canonicality heuristics which encompass the intuition "If you do not know that

something is changing, assume that it is not," to help decide in propagation in

such cases. Iwasaki and Simon [28,29] pointed out the weaknesses of mythical

causality and showed how the method of causal ordering, developed by Simon

in the 1950's for the field of econometrics, provides better solutions.

2.2.3. Temporal Qualitative Analysis

Brian Williams [13] developed the temporal qualitative (TQ) analysis technique

as the basis of a CAD tool for high-performance circuits. Specialized to this

domain, the model building and explanation-generation features of TQ analysis

are similar to those of de Kleer and Brown. However, the interstate transitions

are handled with transition analysis, in which the limit analysis task

introduced by Forbus is performed using a comprehensive set of rules. This

task is divided into the transition recognition (Which parameters are likely to

change qualitative value in the next instant?) and transition ordering (Which

of these transitions will occur first?) parts, guided by continuity considerations

and device laws. These make TQ analysis a major qualitative simulation

technique, and an important predecessor of QSIM. Since operation region

c han g e s, where the equations governing the device have to be replaced by

another set are common in this domain, they are handled in detail. Williams

adopts the real line representation of alternating points and open intervals for

both parameter values and time. A parameter which is positive and decreasing

(or negative and increasing) takes an instant (a time point) to cross zero, and

an interval of time to cross an interval, and since the device behavior is an

account of the ways in which the collection of parameters are changing, it has

to be presented as a sequence of alternating time points and intervals.

Countering Allen's light switch argument (see Section 2.1.3) against time

points, Williams points out that the intensity of the light is a continuous

parameter, and the notorious "point" in between the . two intervals actually

contains a (very short) interval during which the intensity is increasing from

o to its standard level. He puts forward the example of a ball thrown upwards (a

very popular "system" in commonsense reasoning research) and says that,

intuitively, the ball "stops" at the top of its trajectory for only an instant, i.e, a

time point between the two intervals of rising and falling, and therefore time

points have 3. place in intuition in domains where continuous change is

present.

16

2.2.4. Kuipers' Work

Early in his work on qualitative simulation of mechanisms, Benjamin Kuipers

developed the ENV [30] program. Unlike its predecessors, ENV does not have a

library of model fragments, and for each input, the user is expected to specify

the laws of the mechanism in terms of time-invariant constraints between the

parameters. The allowable constraint types include arithmetic, functional, and

derivative, which later formed QSIM's constraint vocabulary. Functional

constraints state that the two parameters linked by them have a functional

relationship which is either monotonically increasing (in the case of the M+

constraint) or monotonically

Since this definition is

decreasing (in the case of the M- constraint.)

different from that of Forbus' qualitative

proportionalities, (where other parameters may have opposing effects on the

parameters involved,) the sign of the time derivarive of a parameter in a

functional constraint can be immediately determined if th~ sign of the other

parameter's derivative is known.

ENV leaves the whole modeling task to the user, but its flexible

constraint vocabulary allows any system with continuous time-varying

parameters governed by differential equations to be described to it, making it a

most general-purpose qualitative simulator. Kuipers' interest in the medical

domain, [8,9] where most "component" laws are only very incompletely known,

may have influenced this decision.

Starting with a description of the system's initial state, ENV executes a

propagation/prediction cycle: Propagation completes information about the

current state, prediction uses a great number of rules, similar to Williams'

transition analysis rules, to determine the next state. If intractable branching

(i.e. too many alternative predictions) occurs, the system model is simplified to

avoid this situation and simulation continues. Cyclic. system behaviors and

equilibria can be recognized by the reasoner.

ENV allows the use of nonzero landmarks, and, as an improvement to all

its predecessors, is able to discover new landmarks of the parameters during

simulation.

17

Kuipers later developed QSIM [14] as a successor to ENV. QSIM adopts a

total-ordered, independent quantity space representation for parameters. It

contains many improvements (e.g, much clearer methods of transition analysis

and constraint filtering, which make the algorithm amenable to proofs of

correctness and lead to very acceptable execution times) over ENV. Work on

QSIM is continuing around the world to get rid of spurious behaviors (i.e. those

that do not correspond to any actual solution of the underlying differential

equations) that it can produce for some input systems, and to make it work

feasibly for large models.

A modification to the QSIM algorithm that leads to improved constraint

filtering, which in turn helps to eliminate some spurious behaviors, will be

presented in Chapter 4. Certain other modifications which enable the structure

of QSIM to be used for performing postdiction, or "predicting the past," will be

explained in Chapter 5.

As well as the many people from the expert systems, monitoring and

control, and simulation fields who were attracted to QSIM for its applications,

other qualitative reasoning researchers too have used it as a tool to build their

own reasoners (See the section on Weld's work) because of its simple

representation and powerful simulator. The same approach has been adopted in

the development of the qualitative system identification method, QSI. Since

QSIM plays such an integral role in this study, the basic algorithm and the

many improvements to it will be presented and discussed in detail in Chapter 3.

2.2.5. Weld's Work

Weld [31] introduced the technique of aggregation for qualitative simulators,

and developed the PEPTIDE program as a first attempt to implement it.

Aggregation involves simulating the behavior of a process (which may be

discrete or continuous) and trying to recognize cycles in this behavior. Unlike

the method used by QSIM, which identifies a cycle when a qualitative state is

identical to a previous one, aggregation recognizes cycles if the states are

similar to each other. The net effect of one "tum" of the cycle (e.g. reducing

the amount of a finite resource) IS determined, and this repeating cycle of

processes is replaced by a single continuous process summarizing their effect.

Since it is continuous, this higher-level abstraction of the system can be

18

simulated using transition analysis leading to faster and more powerful

reasoning. Some problems remain with the aggregation method, but the fact

that it provides insights about dealing with discrete processes in qualitative

simulation is interesting.

Weld has developed two different methods for comparative analysis, the

task of determining how small perturbations cause changes in the system

behavior. The QSIM format and algorithm are used in both of them. The input to

comparative analysis is a QSIM model of a system, its initial state, and a QSIM

produced behavior leading from this initial state, together with a perturbation

specifying the direction(s) of the perturbed parameter(s). The expected output

is an account of how and why the behavior changes in response to the

perturbation. The first method, differential qualitative (DQ) analysis [16],

involves the assumption that the "structure" of the behavior does not change,

and achieves its results by propagating the input changes through the

constraints. DQ analysis may fail to solve some problems, but gives correct

answers for all the ones that it solves.

The second method, exaggeration [17], approaches the comparative

analysis problem by considering extreme. perturbations in the direction

indicated in the input. For instance, when asked about the change in the period

of the oscillating block/spring system in response to increased block mass, a

system model where the block mass is infinite is simulated. A modified version

of QSIM that can deal with hyperreal values (infinity and infinitesimals) is

used for this process. Assuming that the system responds monotonically to the

perturbation, the set of deviations in the result obtained for the extreme case is

presented as output. Exaggeration may give wrong answers for some problems.

Weld points out [16,17] that QSIM's representation of behaviors as

sequences of statp.-s may force it to predict an unnecessarily large number of

behaviors that have no interesting difference. (This happens when the model

is large and the quantity spaces have relatively many landmarks in them.)

Hayes' development of histories was an attempt to avoid this problem, which is

also present in the situation calculus, where the smallest change in the facts

causes the whole world to enter a new situation. Williams [32] devised a

temporal constraint propagator which embodies these ideas to forgo a total

ordering on non-interacting events, and therefore to produce fewer behaviors.

19

2.2.60 Concluding Remarks on Literature Survey

This section has presented a brief overview of the qualitative physical

reasoning field. Emphasis was on the section of literature that bears a direct

relation to and can provide a background for the concepts and tools used in this

study. For this reason, a lot of important work (for instance, on spa t i a I

reasoning [33,34]) not immediately relevant to the undertaken research was

left out.

The power and efficiency that qualitative reasoners have achieved in

the past few years is evident in the various applications [35,1,36] they are being

integrated to. Comparisons are being made [37-39] of qualitative reasoning

methods, which originally set out to automate human commonsense, to the

well-established science of conventional dynamic systems theory. This

underlines the potential importaTIce of the new methods of qualitative

reasoning that will be introduced later in this dissertation.

2.3. Related Topics

This section is about certain AI topics that are related to, and sometimes

confused with, qualitative reasoning. Brief comparisons will be made between

these and the present subject, and the differences will be underlined. So in a

sense, what this dissertation is not about is explained here.

The fuzzy representation [22] for variable values and the relationships

among them is a well-established approach to dealIng with incompletely

known systems, and has an extensive literature of its own. The qualitative

reasoning methods' inherent property of representing parameter values and

functions incompletely may lead to an impression that a type of fuzzy

representation is employed. This is untrue. Although both approaches use the

technique of summarizing a whole range of real numbers to a single "value,"

the manner in which they accomplish this is fundamentally different. The

20

mapping of a real number to a fuzzy value is a "possibilistic" issue, depending

on the grade of membership of that number in the fuzzy subset describing the

fuzzy value. Furthermore, a single real number can be mapped to several fuzzy

values; it may be the case that a given temperature turns out to be both "hot"

and "cold," (with varying degrees.) This is never the case in the quantity space

representation. Each real number is mapped to exactly one qualitative

magnitude, (though one may not know which one, if the numerical values of

the landmarks are not known.) In the absence of further information, two real

numbers in the same interval in the quantity space are indistinguishable, the

idea being that if they did have an important difference, a landmark between

them, making ordinal comparison possible, would be provided. (A method that

makes use of program-generated history information to compare two instances

of the same interval is presented in Chapter 4.)

Suzuki et aL [40] have proposed a qualitative simulator using fuzzy logic.

Tht'jr program does not predict multiple behaviors, since this i~ not: desirable

in the particular application (plant control) that they have in mind.

As mentioned above, "temporal reasoning" in AI means much more than

this study's particular area of interest. Any program that answers some kind of

time-related query can be regarded as performing temporal reasoning. The

techniques in the field have been developed mainly to deal with two separate

issues [2, Ch. 7]: One "family" of programs specialize as "databases" and strive to

provide efficient organization and retrieval of large amounts of time-indexed

data. Methods of the second group focus on inference; Le. on how to deduce new

items of information from the already present ones. The inferred items usually

reflect later events which are results of the ones used as antecedents. It has

already been pointed out that qualitative physical reasoning is a quite

specialized subfield of this inference approach; the laws of change it employs

(e.g. "If

the near

case (like

a quantity is

future") are

"If you kick

increasing now, it either goes on increasing or stops in

much more basic compared to those used in the general

a dog, it will want to bite you.")

As to the relation of conventional simulation techniques with qualitative

simulation, see Section 3.1.4 for a discussion.

21

III. QSIM AND ITS EXTENSIONS

Since Kuipers' first presentation of QSIM in [14], many extensions, improving

the algorithm in a variety of ways, have been produced, mostly by Kuipers and

his team in the University of Texas at Austin. But the "core" of QSIM remained

intact, and other researchers using QSIM for their own purposes always started

out with the pur e version of the algorithm. Kuipers sends the code to

interested researchers. In the course of this study, the program was written

according to the specifications in [14] in Turbo PROLOG Version 2.0, and the

work reported in this dissertation was implemented upon that basis. (The

original QSIM is in LISP.) The next section contains an explanation of pure

QSIM. Design decisions that were made on points where [14] is not clear are

indicated. The terminology is slightly modified for purposes of clarity. Section

3.2 is about the various extensions to this algorithm that appeared in literature.

Most of these are relevant to the present work too.

3.1. QSIM

This section is a detailed description of QSIM: Its representation and algorithm

are explained in depth. Examples are given of the working of, and problems

with, the algorithm. The correctness and complexity issues are discussed, and a

comparison of QSIM with classical simulation methods is' presented.

3.1.1. Parameters, Constraints and Value Transitions

The parameters of the physical system under consideration are continuously

differentiable functions of time. Both the domains and the ranges of these

22

functions are closed intervals in the extended real number line R *, Le. [-00 ,00] .

QSIM requires the parameters to be reasonable functions, which means they

have to have only finitely many critical points in any interval.

Each parameter has a quantity space. This is a totally ordered set of

symbols, Le. landmarks, representing interesting real values that the function

can have, such as its values at its critical points. The three landmarks _00, 0, and

00, appear in all quantity spaces. All other landmarks are meaningful only in

their own quantity spaces. One cannot represent much of the numerical value

of a landmark in this setup. All one can say stems from its ordinal relations

with the other landmarks in its quantity space. At least, the sign of each

landmark is evident, since 0 is in every quantity space.

The qualitative magnitudes that a parameter can take are the points and

intervals between adjacent points in its quantity space. So, for instance, with

the basic quantity space {_oo, 0, oo}, the whole extended real numbers are mapped

t.o five qualitatively distinct qualitative magnitudes: -00, (-00,0),0, (0, (0), and 00 •

. This definition makes the rationale for including -00 and 00 in every quantity

space evident.

The qualitative direction of a parameter is the sign of its derivative at

that time. In that context, the symbols inc (increasing,) std (steady) and dec

(decreasing) are used for +, 0, and -, respectively.

The qualitative value of a parameter at a particular time is the pair

consisting of its qualitative magnitude and qualitative direction.

The time points in a parameter's domain, in

changes to or from a landmark are called its distinguished

which its magnitude

time-points. to, the

time at which the simulation begins, is the first distinguished time-point. The

qualitative behavior of a parameter is then the sequence of its qualitative

values in the alternating time points and open intervals to, (to, t]), t], (t], t2), ...

In the time intervals, the parameter is either increasing or decreasing in an

interval in its quantity space, or "sitting" at a landmark. At the time points, it

either arrives at (and maybe passes) a landmark, or leaves a landmark that it

has been sitting at. So only the changes are represented by the behavior.

Nothing is known about the numerical values of the time points, except their

ordering. The "length" of (i.e, the number of qualitative values in) the

behavior of a parameter is just a measure of the qualitative changes that occur,

23

not of the time that passes. The height of a rocket that is launched from the

Earth and continues in the same direction for a million years will have a

qualitative behavior consisting of only two values, those at to and (to, t1),

while the height of a bouncing ball thrown up will have a much longer

behavior.

The distinguished time-points of the system being simulated are the

union of the distinguished time-points of the parameters of the system. The

qualitative state of the system is the collection of the qualitative values of its

parameters at that time. The qualitative behavior of a system is then the

sequence of its qualitative states at its distinguished time-points and the

intervals between them. So the system changes state when one or more of its

parameters exhibit a qualitative value change.

At each step of the simulation, QSIM considers all the possible qualitative

values that each parameter may take on in the next qualitative state. Kuipers

has proven [14] that each l'ararr.eter is restricted to the qualitative value

transitions shown in Table 3 . .1.1. Tn that table, lj-1, lj, and Ij+1 are three

ordered landmarks of the parameter. P-transitions are transitions from

qualitative values at distinguished time-points to intervals, while I -transitions

are transitions from intervals to time-points. Table 3.1.1 (along with most of this

section) has been taken from [14], but transitions P4 and P5 have been

interchanged. This has no effect on pure QSIM, the reason for this change will

be explained in Chapter 5.

Transitions 18 and 19 give QSIM an ability nonexistent in other reasoners;

they discover new landmarks. The parameter "comes to a halt" in an interval in

its quantity space, its value at that point is inserted as a new landmark between

l j and lj + 1, preserving the total ordering.

The "laws" that the system has to obey are represented by qualitative

constraints between the parameters that have to be satisfied in each state.

These form a model of the system, reflecting the underlying structure behind

the behavior. QSIM assumes that there is·· an ordinary differential equation

(ODE) governing the system, and the constraint set is its qualitative

counterpart, that is, it is a qualitative differential equation (QDE.) The ODE need

not be actually known, it is just assumed to exist. A QDE may correspond to many

ODEs, as will be discussed below. Performing qualitative simulation on the QDE is

24

analogous to solving the ODE, they both find out the time behavior of the

system.

name

PI

P2

P3

P4

P5

P6

P7

name

II

12

13

14

15

16

I7

18

19

TABLE 3.1.1. The transitions

P-transitions

< lj, std>

<lj,std>

< lj, std>

< (lj, lj+l) , inc>

< lj, inc >

< lj, dec>

< (lj , lj + 1) , dec >

I-transitions

in (ti • ti+l)

< lj. std>

< (lj, lj+l) • inc>

< (lj , lj + 1) • inc >

< (lj • lj + 1) , inc >

< (lj. lj+l) , dec>

< (lj • lj + 1) , dec >

< (lj , lj + 1) , dec >

< (lj, lj+l) , inc>

< (lj, lj+l) , dec >

In (ti, ti+l)

< lj, std>

< (lj , lj+l) , inc >

< (lj-l , lj) , dec>

< (lj , lj+ 1) , inc >

< (lj , lj+l) , inc>

< (lj-l , lj) , dec>

< (lj • lj+l) • dec>

at ti+ 1

< lj, std>

< lj+l , std>

< lj+l • inc>

< (lj • lj+l) , inc>

< lj. std>

< lj, dec>

< (lj , lj+ 1) • dec>

< 1* , std >

< 1* , std >

For most realistic systems, one set of equations cannot cover the whole

range of operation of the system. QSIM acknowledges this with the notion of

operating regions. A set of constraints apply only in a specific operating

region. When one of the parameters exceeds its legal range, that is, a

previously specified interval in its quantity space, in an operating region, a

new set of constraints associated with the new operating region, specified by

the parameter that caused the change, become valid.

25

There are six types of constraints in pure QSIM: ADD, MULT, MINUS,

DERIV, M+, and M-.

The constraint DERIV(X,Y) indicates that the parameter Y is the time

derivative of parameter X. That is, the direction of X should always be equal to

the sign of the magnitude of Y.

MINUS(X,Y) means that the parameters X and Yare always the negatives

of each other.

ADD(X,Y,Z) means that the sum of X and Y is always Z.

MULT(X,Y,Z) means that the product of X and Y is always Z.

M+(X, Y) says that there is a monotonically increasing functional

relationship between X and Y, and M-(X,Y) means that the function is

monotonica.i.ly decreasing, (See [14] for the exact definitions.) If one h:cts

M+(X,Y), ,:the dire~tions of X and Yare always the same. If M-(X,Y) or

MINUS(X,Y), the directions are the negatives of each other. Note that the

functional constraints M+ and M- correspond to an infinite number of "actual"

functions, and therefore a QDE which contains them will be an abstraction of

many ODEs at once.

All constraints except DERIVs can have corresponding value (CV) tuples

of landmarks that define known points of the relation. The corresponding

values (0,0) of the constraint M+(amouncoCliquid, pressure) were mentioned

in Chapter 2. Some corresponding value tuples are "natural," e.g. every ADD

and MULT has a (0,0,0) triple associated with it. Others may be found during

simulation, when all parameters involved in the constraint are noticed to have

landmark magnitudes.

The constraints are used to filter proposed "next" states produced by the

transition rules, and corresponding value information plays an important role

in this process. For instance, if the magnitudes A *, (0 ,B *), and C * are proposed

for the parameters in ADD(A,B,C), and this constraint already has the CV triple

(A * ,B * ,C *) in its records, the proposed transition will be eliminated, since it is

contrary to the algorithm's knowledge of addition and known values. The exact

mechanism of this filtering will be detailed later.

"' .. -

26

This is a good place to reiterate that qualitative arithmetic is ambiguous:

An arithmetic operation can have more· than one result. Consider Table 3.1.2,

which QSIM uses when checking whether the directions of three proposed

values satisfy the ADD constraint. "any" in this table means any of inc, std, or

dec, and is necessary since the relative magnitudes are not known.

TABLE 3.1.2. Qualitative addition

y

dec std inc
dec dec dec any

X std dec std inc
inc any inc inc

Given any ODE defined only in terms of addition, multiplication, negation,

and functions with continuous and strictly nonzero derivative, a set of

parameters and constraints can be wrh:en, such that any reasonable function

that satisfies the ODE also satisfies the constraints [14]. All the models that will

be discussed in this study are subject to these restrictions.

Example

As a classic [15] example that will also be used later in the discussion, consider

how a simple V -tube (Figure 3.1.1) is modeled. The V -tube, in its "healthy" state,

is made of two tanks connected by a pipe. The QDEs for the cases where tank A or

tank B are burst will also be considered. So one has three operating regions to

model: NORMAL, A_BURST, and B_BURST.

Figure 3.1.1. V-tube in operating region NORMAL

After a lot of simplifying assumptions, the parameters of the system are

identified as in Table 3.1.3. There are also the invariants that the amount and

pressure parameters are never negative.

TABLE 3.1.3. Parameters of the U-tube system

P ARA.VIETER

amount_A
amount_B
flow_AB
flow_BA
pressure_A
pressure_B
p_difCAB

OUANTITYSPACE

{-oo, 0, AMAX, oo}
{-oo, 0, BMAX, oo}
{-oo, 0, oo}
{-oo, 0, oo}
{-oo, 0, oo}
{-oo, 0, oo}
{-oo, 0, oo}

REMARKS

AMAX is maximum capacity
BMAX is maximum capacity
flow from A to B
flow from B to A
pressure at bottom of A
pressure at bottom of B
pressure_A - pressure_B

27

The constraints for operating region NORMAL are listed in Table 3.1.4. In

this and the following tables describing QDEs, the "natural" CVs of the

arithmetic constraints (like (0,0) for MINUS) are not shown; note that the ones

that are shown need not appear for any M + constraint.

TABLE 3.1.4. U-tube constraints in region NORMAL

CONSTRAINTI' CV s

M+(amouncA, pressure_A)
M+(amouncB, pressure_B)
DERIV(amount_A, flow_BA)
DERIV(amouncB, flow_AB)
ADD(pressure_B, p_difCAB, pressure_A)
M+(p_difCAB, flow_AB)
MINUS (flow_AB, flow_BA)

(0,0) and (00, (0)
(0,0) and (00, (0)

(0,0) and (00, (0)

Suppose that when an amount parameter exceeds its maximum capacity,

the corresponding tank bursts. If B exceeds B M A X in region NORMAL, the

constraints for the ensuing operating region, B_BURST, are then as in Table

3.1.5. The changes are caused by the fact that amouncB is fixed at 0 in this

operating region. The QDE for A_BURST is similar.

TABLE 3.1.5. U-tube constraints in region B_BURST

CONSTRATI\li CVs

~f+(amoum_A, pressure_A)
~I+(amouncB, pressure_B)
DERIV(amount_A, flow _BA)
ADD(pressure_B, p_difCAB, pressure_A)
~f+(p_difCA.B. flow _AB)
:.lINUS(flow_AB, rlow_BA)

(0,0) and (00, (0)
(0,0) and (00, (0)

(0,0) and (00, (0)

28

Consider the state where some water has been instantly poured to tank A,

and tank B is empty. This point state, which can be completed by propagation of

values from this initial information using QSIM's knowledge of constraints, is

shown in Table 3.1.6.

TABLE 3.1.6. Initial state of U-tube system

PARAMETER

amount A
amount_B
flow_AB
flow_BA
pressure_A
pressure_B
p_difCAB

VALUE

«O,AMAX), dec>
< 0, inc>
«0, (0), dec>
« -00, 0), inc>
«0, (0), dec>
< 0, inc>
«0, (0), dec>

Now consider, for example, amounCA. Only transition P7 (which does not

change the parameter' s value) from Table 3.1.1 is suitable. for it, so amouncA' s

value has to be again «0 ,A MAX), dec> in the next state. This example will be

concluded in Section 3.1.2.

3.1.2. The QSIM Algorithm

The input to QSIM is the following: The names, quantity spaces, and legal ranges

of the system's parameters, invariant assertions that some parameters may

have to satisfy, (like "being constant,") one or more operating region

descriptions with their associated constraint sets, and a complete description of

all the parameter values and the operating region at to, (that is, the initial

state.)

Since more than one behavior can be predicted, QSIM builds a tree of

qualitative states, whose root is the initial state, and every path from the root to

a leaf is a distinct system behavior which is output.

The algorithm starts by putting the initial state in a list which always

contains the states whose successors have not been created yet. Then the

following is repeated until the list is empty, or one has to stop for external

reasons (the tree may be infinite):

1. Take a state from the list.

2. "Open" it, (i.e, generate all its successors,) doing the following:
2.1. For each parameter, find its possible transitions to the next state using

Table 3.1.1.

29

2.2. For each constraint, eliminate all tuples of transitions of its parameters
that do not satisfy the constraint in the next state.

2.3. Check that each proposed transition of every parameter P in a
constraint also appears in other constraints involving P. Otherwise,
eliminate that transition tuple.

2.4. Construct all the possible next states by using the join of the
remammg transition tuples. If all the parameters have made
transitions in the set {II, 14, I7}, that state is identical to its predecessor,
so do not consider it a "next" state. If, in a next state, all magnitudes of a
non-DERIV constraint are landmarks, add that tuple of magnitudes to
the CV list of that constraint in that branch. If, for any parameter, a
new landmark has been found, augment that parameter's quantity
space in that branch.

3. Put all the new states created in Step 2 to the list, except when:
a) A new state is identical to a state S that appears in the path from the root

to it; a cycle has been detected, put a pointer from the new state to S, you
do not have to continue in this branch anymore.

b) Any parameter has ar.. iafinite value in the new state.

Heuristics that assume that the system has achieved quiescence and stop

simulation when all qualitative directions are s t d, and do not allow any

transitions to infinite values, are also used ..

In the constraint filtering phase (Step 2.2 above,) the newly proposed

values are checked for consistency of both their directions and their

magnitudes with the constraints they participate in. Apart from the well

known rules that MINUS, ADD and MULT impose on the signs of parameter

magnitudes, the CV lists are also a valuable source of information for filtering.

As always, the ordinal relations among landmarks are the only guide. For the

two-place constraints, consistency with previous CV information is easy to

check. In all such constraints, for each CV tuple (p ,q), the magnitudes of the

two parameters should either be both a t those landmarks, or both away from

them. This simply follows from the nature of being corresponding values. For

the ADD and MULT constraints, Kuipers presents [14] the following rules, which

greatly simplify the filtering process:

- When a triple of magnitudes (m A, m B, me) is proposed for parameters A, B, C,

and the constraint ADD(A,B,C) exists, the following has to hold for each CV triple

(p, q, r) of that constraint:

(mA - p) + (mB - q) = (me - r) (3.1)

30

Proof. It is known that p + q = r and also mA + mB = me should be true.

Since p, q, and r are point values, each term in (3.1) has an unambiguous

value (either +, 0, or -,) and this sign addition's correctness is checked by using

Table 3.1.2. (Remember that dec, std, and inc are just names for signs.) The

rule for MULT is similar:

- When a triple of magnitudes (m A, m B , me) is proposed for parameter~ A, B, C,

and the constraint MUL T(A,B, C) exists, the following has to hold for each

nonzero CV triple (p ,q ,r) of that constraint:

(3.2)

The logic is the same. Qualitative division m. yielding one of the symbols Ito

«1), one, or gto (>1), can be applied when X and Y have the same (nonzero)

sign. The multiplication table (Table 3.1.7) then facilitates the, con:;i3tency

check.

TABLE 3.1.7. Qualitative multiplication

Y

Ito one to
lto Ito Ito any

X one Ito one gto
gto any gto gto

How QSIM handles operating region changes is not made clear in [14]. In

later work, (Section 3.2.5) QSIM is explicitly restricted to run in a single

operating region, another program taking over when a region transition

occurs. Using [34] as a guide, this version of QSIM was implemented such that it

does the following:

If a state in which a parameter is about to exceed its legal range is

obtained, the next operating region's name is found by looking at the

appropriaie input record of this parameter, and another state, which is the

direct descendant of this state, is created. Since the newly created state is the

first one of the new operating region, it has to be given special treatment.

Usually, the new constraint set has only a few differences from the old one.

Constraints which "survive" the operating region change are identified from

31

the region description and their CV lists are retained. Similarly, surviving

parameters retain their quantity spaces. Operating region changes are very

similar to Forbus' encapsulated histories (Section 2.2.1) in that they are an easy

way of representing "jumps" in the values of some parameters. For example,

the level of liquid in a burst container starts from zero (and stays so!) and this is

facilitated by including an input fact specifying that this parameter obtains the

value zero at the start of this region, disregarding continuity. Parameters

which "inheri t" their values from the previous region are also indicated in the

input. If there are still unknown parameter values, this version of QSIM

generates all completions of the state obeying the constraints, leading to a new

branching in the tree. Contrary to intra-region transitions, an inter-region

transition is from a time-point to a time-point, with the interval in between not

being modeled. Or, alternatively, the change may be viewed as instantaneous

and discontinuous. Simulation within the new operating region then continues

as usual.

Example (continued)

The three behaviors that QSIM predicts for the input of Section 3.1.1, (Tank A

contains liquid, tank B is empty,) seen in Tables 3.1.8 thru 3.1.10, are:

- Behavior #1: The amounts stabilize at landmarks below the maximum

capacities.

Behavior #2: amouncB stabilizes just at B MAX, narrowly avoiding a burst.

- Behavior #3: Tank B bursts, the liquid in tank A drains away from the "hole."

The quantity spaces of parameters for which new landmarks have been

discovered have been shown after the behavior in the tables.

During the region transition from NORMAL to B_BVRST, amouncB is set

to zero. Discontinuous changes are also seen in the. values of pressure_B,

p_difCAB, and the flows, which are linked to amount_B and each other by

constraints. For this run of QSIM, the state tree produced has the shape shown

in Figure 3.1.2. The point states are shown as circles in that figure, and the time

value corresponding to each level is indicated. The reason why all behaviors

have the same first two states is obvious from the figure.

TABLE 3.1.8. Behavior #1 of the U-tube

time
amount A
amount B
flow AB
flow BA
pressure A
pressure B
p diff AB

Quantity space
Quantity space
Quantity space
Quantity space

to
«O,AMAX), dec>
<0, inc>
«0, (0), dec>
« -00, 0), inc>
«0, (0), dec>
<0, inc>
«0, (0), dec>

of amouncA:
of amouncB:
of pressure_A:
of pressure_B:

(~,~) ~
«O,AMAX), dec> <NewA, std>
«O,BMAX),inc> <NewB, std>
«0,00), dec> <0, std>
«-00,0), inc> <0, std>
«0,00), dec> <FA, std>
«0,00), inc> <FB, std>
«0, 00), dec> <0, std>

{-oo, 0, NewA, AMAX, oo}
{-oo, 0, NewB, BMAX, oo}
{-oo,O,PA,oo}
{-oo, 0, PB, oo}

TABLE 3.1.9. Behavior #2 of the U-tube

time
amount A
amount B
flow AB
flow BA
pressure A
12ressure B

12 diff AB

Quantity space
Quantity space
Quantity space

to
«O,AMAX), dec>
<0, inc>
«0, (0), dec>
« -00, 0), inc>
«0, (0), dec>
<0, inc>
«0, ""), dec>

of amouncA:
of pressure_A:
of pressure_B:

(to,t]) t]
«O,AMAX), dec> <NewA, std>
«O,BMAX),inc> <BMAX, std>
«0, 00), dec> <0, std>
« -00, 0), inc> <0, std>
«0,00), dec> <FA, std>
«0,00), inc> <FB, std>
«0, 00), dec> <0, std>

{-oo, O,NewA,AMAX, oo}
{-oo,O,PA,oo}
{-oo, 0, PB, oo}

32

TABLE 3.1.10.a Behavior #3 of the V-tube (in operating region NORMAL)

time to (to,t]) t] Operating
amount A «O,AMAX), dec> «O,AMAX), dec> <NewA, dec> region
amount B <0, inc> «O,BMAX),inc> <BMAX, inc> change
flow AB «0, 00), dec> «0, 00), dec> <NewF, dec> from
flow BA «-00,0), inc> «-00,0), inc> <NewR, inc> NORMAL
12 re ssure A «0, 00), dec> «0, 00), dec> <FA, dec:> to
12 re ssure B <0, inc> «0, 00), inc> <FB, inc> B_BURST
12 diff AB «0, 00), dec> «0,00), dec> <NewD, dec> occurs now

Quantity space of amount_A:
Quantity space of flow _AB:
Quantity space of flow_BA:
Quantity space of pressure_A:
Quantity space of pressure_B:
Quantity space of p_difCAB:

{-oo, 0, NewA, AMAX, oo}
{-oo, 0, NewF, oo}
{-oo, NewR, 0, oo}
{-oo, 0, PA, oo}
{-oo, 0, PB, oo}
{-oo, 0, NewD, oo}

33

TABLE 3.1.10.b Behavior #3 of the U-tube (in operating region B_BURST)

time t1 (t1 ,t2) t2 (t2,t3) t3
amount A <NewA, dec> «O,NewA), dec> «O,NewA), dec> «O,NewA), dec> <0, std>
amount B <0, std> <0, std> <0, std> <0, std> <0, std>
flow AB <NewF2, dec> «NewF,NewF2),dec> <NewF, dec> «O,NewF),dec> <0, std>
DQl\!: BA <N ewR2, inc> «NewR2,NewR),inc> <NewR, inc> «NewR,O) ,inc> <0, std>
11 ressure A <FA, dec> «0, PA), dec> «0, PA), dec> «0, PA), dec> <0, std>
11 r es::;ure B <0, std> <0, std> <0, std> <0, std> <0, std>
11 diff AB <NewD2, dec> «NewD,NewD2),dec> <NewD, dec> «O,NewD),dec> <0, std>

Quantity space of amounCA: {-oo, 0, NewA, AMAX, oo}
Quantity space of flow_AB: {-oo, 0, NewF, NewF2, oo}
Quantity space of flow_BA: {-oo, NewR2, NewR, O,oo}
Quantity space of pressure_A: {-oo, 0, PA, oo}
Quantity space of pressure_B: {-oo, 0, PB, oo}
Quantity space of p_difCAB: {-oo, 0,NewD,NewD2, oo}

to

(b ,t1)

t
1

t1

(7 ,t
2

)

t
2

(t2 ,(3)

t3

Figure 3.1.2. State tree for U-tube simulation (time values shown)

3.1.3. Complexity and Correctness

Complexitv

Considering the time QSIM requires to generate all successors of a given state,

Kuipers shows that there are cases where one state yields 2P successors, where

34

p is the number of parameters. So one has an algorithm where opening one

node is exponential in p, and this in a tree where nodes can have up to 2P

successors! Fortunately, these pathological cases are rare, and in practice (14],

opening one node seems to be O(c s), where c is the number of constraints,

(which is O(p),) and s is the current length of the behavior being generated. s

enters the consideration in two places: The CV lists grow as one goes down the

tree, and all the previous states in the behavior have to be checked for cycle

detection in Step 3.a.

Let us propose an "improvement" to QSIM and then try to see whether it

really is an improvement or not. Consider the tree of Figure 3.1.3, which has

been produced by QSIM after running for some time. The nodes (states) marked

X are identical. (Actual parameter values and constraints that yield such a

situation can easily be written.) The subtrees having these nodes as roots will,

of course, be identical, and, depending on the specifics of the situation, these

subtrees may be huge in size. Clearly, there is no need to open both of these_

nodes, only a pointer need be set from the "second" to the "first" one; this wilL

save a lot of time. However, QSIM does not realize this situation, since each new

state is only compared with the states on the path to the root. One can change

the algorithm such that it checks for identical states all over the tree, when a

new state is produced. What will be the complexity of this new algorithm?

Figure 3.1.3. A partial state tree

Previously, identicalness detection took O(p s) time. If one checks all the

states, instead of those on a single path, the time required will be exponential

in s, since this is the relation between the number of nodes III a tree and its

depth. Furthermore, this amount of time will be required III all successor

35

generations, not just in pathological cases. Since worst-case complexity is being

considered, one must assume that no reduction in the overall number of states is

obtained, (which may well be the case most of the time,) and one is left with a

worse algorithm. Obtaining the average-case complexity is much harder. How

the number of states varies with p and c cannot be determined with this

information alone.

As part of this study, a simple "extension" to QSIM, where a (possibly

incomplete) "target" state description may be included in the input, has been

implemented. QSIM runs as usual, but only behavior(s) which are paths from

the initial to the target state (if any) are output. All that is required is that each

new state be compared with the target description, which is O(P).

Many researchers are working towards improving QSIM's performance,

in order to apply it to large-scale systems.

Correctness

Kuipers has proven that QSIM's inference is sound, but incomplete. That is, all

the actual behaviors of a real system modeled by the QDE are predicted by QSIM,

but there may be some spurious output behaviors which do not correspond to

any actual behaviors.

Soundness is proven as follows: QSIM starts with a correct description of

the system state. At each next state generation, all the possible transitions of

each parameter are generated, and only the combinations that do not satisfy the

constraints (the system's laws) are filtered out. So there is no way that a real

state can be absent from the output. Note that this proof is valid within a single

operating region.

Incompleteness is proven by exhibiting a constraint set which causes

QSIM to produce some spurious behaviors. The example Kuipers gives in [14] is

particularly interesting: In the spring/block system of Figure 3.1.4, X is the

horizontal position of the block, (0 when the spring is "at ease,") V and A are

veloci ty and acceleration, respectively.

This system, defined by the constraints of Table 3.1.11, and initial state

X= <0, inc>,
V = <V*, std>,
A=<O, dec>,

36

where V * is a positive landmark, is periodic, i.e. has a single actual behavior,

that shown in Table 3.1.12. But QSIM computes an infinite number of behaviors,

the first branching occurring at t4, as shown in Tables 3.1.13 and 3.1.14. The

algorithm has no way of knowing that the values a and V * of the parameters X

and V "belong" together, (they are not corresponding values) and mistakenly

tries out all transitions for V. Ways of eliminating spurious behaviors are active

topics of research. A way of eliminating some spurious predictions of pure QSIM

will be introduced in Chapter 4. For the spring system, Kuipers says [14J

"By changing the problem to take into account of conservation of total
energy, an expanded view of the spring mechanism allows QSIM to determine
that there is a single, periodic behavior. A physicist can look at [the spring QDEJ
and recognize or derive the fact that it represents an energy conserving
system, and therefore that the behavior must be periodic. Part of this
knowledge is the ability to recognize the physical system described by a set of
constraints, and to know that there is a better structural description for it; one
which adds parameters and constraints (e.g. energy) that illuminate the actual
behavior. This approach takes us outside the realm of qualitative simulation,
and into the realm of problem formulation. [... J

Returning to the larger problem of qualitative causal reasoning about
mechanisms, an important problem is to formulate a suitable set of constraints
given a physical situation, using the device-topology approach of de Kleer,
Brown and Bobrow, the process-based approach of Forbus, or some approach yet
to be discovered."

Such an approach is presented in Chapter 6.

Figure 3.1.4. The spring/block system

TABLE 3.1.11. QDE of spring/block system

CONSTRAINT

DERIV(X, V)
DERIV(V, A)
M-(A, X) (0,0)

37

TABLE 3.1.12. Stable oscillatory behavior of spring/block system

x V A time
<0, inc> <V*,std> <O,dec> to
«0, (0), inc> «O,V*),dec> « -00,0), dec> (to,t])
<Xl, std> <0, dec> <A1, std> t]
«0,)(1), dec> « -00,0), dec> «A1,0), inc> (t],t2)
<0, dec> <V1, std> <0, inc> t2
«-00,0), dec> «V1,0), inc> «0,00), inc> (t2 ,t3)
<X2, std> <0, inc> <A2, std> t3
«X2,0), inc> «0, V*), inc> «0,A2), dec> (t3,t4)
<O,inc> <V*,std> <O,dec> t4

Cycle detected: States at to and t4 are identical.

Quantity space of X: {-00,X2. 0,X1, oo}
Quantity space of V: {-oo, V1, 0, V*, oo}
Quantity space of A: f -0<.. A1 ;:; A2 oo} c. ,. ,.., ,.

TABLE 3.1.13. A spurious behavior of spring/block system (first nine states)

X V A time
<0, inc> <V*,std> <0, dec> to
«0,00), inc> «O,v*),dec> « -00,0), dec> (to,t])
<Xl, std> <O,dec> <A1, std> t]
«0,)(1), dec> «-00,0), dec> «A1,0), inc> (t],t2)
<0, dec> <V1, std> <0, inc> t2
«-00,0), dec> «V 1,0), inc> «0,00), inc> (t2 ,t3)
<X2, std> <0, inc> <A2, std> t3
«X2,0), inc> «O,v*), inc> «0,A2), dec> (t3,t4)
<O,inc> <V2, std> <0, dec> t4

Quantity space of X: {-00,X2, 0, Xl, oo}
Quantity space of V: {-oo, V1, 0, V2, V*, oo}
Quantity space of A: { -00, A1 , 0, A2, 00 }

38

TABLE 3.1.14. Another spurious behavior of spring/block system (first nine

states)

x V A time
<0, inc> <V*,std> <O,dec> to
«0,00), inc> «O,v*),dec> «-00,0), dec> (to,t1)
<Xl, std> <0, dec> <Al, std> t1
«O,xl), dec> «-00,0), dec> «Al,O), inc> (t1,t2)
<0, dec> <Vl, std> <0, inc> t2
«-00,0), dec> «V l,O), inc> «0,00), inc> (t2 ,t3)
<X2, std> <0, inc> <A2, std> t3
«X2,0), inc> «O,V*), inc> «0,A2), dec> (t3,t4)
«X2,0), inc> <V*, inc> «0,A2), dec> t4

Quantity space of X: {-00,X2, O,Xl, oo}
Quantity space of V: { -00, V 1 , 0, V*, 00 }

Quantity space of A: { -00, Al , 0, A2, 00 }

3.1.4. QSIM as Simulation

Qualitative simulation is interesting when viewed from the classical

simulationist's perspective. Numerical simulation can be divided into two

different kinds: Continuous and discrete. Continuous simulation is suitable for

systems whose values are changing at all time points, and which have been

formulated as differential equations. Typically, these are fluid, mechanical,

thermal, or electrical circuit systems. Discrete simulation, on the other hand,

deals with event-driven systems, described by discrete event models, whose

states change discretely and are constant at intermediate points. Various

queueing and "traffic" problems are suitable for this kind of simulation, in

which stochastic processes are employed to model the random influences on the

system. Because of these differences, the algorithms used for continuous and

discrete simulation are markedly different. While continuous simulation

algorithms focus on more efficient ways of computing the next set of values

that satisfy the equations, discrete simulation's main concern is to schedule thl~

"next" event that will occur within the system.

The QSIM method, although its area of application is almost exactly that of

continuous simulation as described above, involves an algorithm that resembles

the discrete-event kind of numerical simulation algorithms. In QSIM, just as in

discrete numerical simulation, time is "advanced" between distinguished time-

39

points in which what can be called an "event" (a qualitative value change)

occurs. The qualitative representation allows the algorithm to treat time

intervals in which the parameters are changing between landmark values as

single states. QSIM's transition rules may be viewed as analogues of discrete

event state-change rules. On the other hand, QSIM inputs have no "unknown"

or stochastic component in the sense of discrete simulation. Unlike any kind of

numerical simulation, a QSIM run may in general produce more than one

future behaviors, when the algorithm cannot decide which of a number of

transitions will occur earliest. This is desirable in certain applications for

which qualitative reasoners may be used; for example, in tutoring systems,

where explaining the changes in the behavior of the system in response to a

parameter value exceeding or staying below a given threshold is important.

3.2. Extensions to QSIM

Kuipers and his colleagues have developed many extensions to the pure QSIM

algorithm. Several of these will be briefly summarized in this section. Some

parts of the present work (see Chapters 4 and 5) is also comprised of

improvements or extensions to QSIM; a comparison with the research described

here will be possible.

3.2.1. Time-Scale Abstraction

One way to deal with the execution time problem that QSIM faces when the input

system is big, (Le. has many parameters,) is to decompose it to many small

systems. This can be achieved when it is known that. certain subsets of the

constraint set representing various "mechanisms" in the system operate at

widely different time-scales. Kuipers [41] has proposed a method of time-scale

abstraction of systems, based on this idea. In this setup, mechanisms identified

as "fast" view "slower" ones as constant, whereas the slow ones view faster ones

as instantaneous. The whole collections of constraints representing the fast

mechanisms are abstracted to single M+ or M- constraints in the slower ones.

40

Simulation begins with the fastest mechanism. That mechanism is simulated

until equilibrium. Parameters of this mechanism shared with the next fastest

mechanism pass their values to that one, and so the whole system can be

simulated as a composite of manageable subsystems in this manner.

3.2.2. Ways of Producing Smaller Trees

Kuipers and Chiu ([42]; also see [18]) present two different methods to eliminate

a situation that sometimes arises: QSIM may produce an intractably large tree,

in which most behaviors of the system are practically the same, the only

difference between them being the behavior of one (or a few) parameters,

which are "chattering." A parameter chatters (i.e. it may increase, then stop,

then decrease, stop again, decrease again, etc.) if the constraints are satisfied

for all the qualitative directions that it may take. For example, if ADD(X,Y,Z), and

X=«O, 00), dec> and Y=«-oo,O), im>,

and there are no other constraints involving Z, it chatt~r.<;. (Actually, it does

more than that, since it can take any qualitative mag nit u d e as well, because of

the magnitudes of X and Y in the example, and the ambiguity of qualitative

addition.) This, in itself, is not a spurious prediction, there may be real systems

which correspond to each behavior. The trouble is, chattering causes QSIM to

produce such large trees that the size of the output reduces its usefulness.

The first method of handling this problem is simple: The user specifies

that he does not care about the directions that certain parameters (those likely

to chatter) may take on. QSIM then uses only the symbol i gn (standing for

"ignore") to represent these parameters' directions. So changes in their

directions do not cause branchings in the tree, and simulation ends in a

reasonable time. Additional care is taken to ensure that unreal behaviors for

these parameters are not predicted, i.e. that a continuous assignment of inc, std

or decs for all the igns exists.

The second method requires making the sign-equality assumption about

the system being simulated. This practically means that all the M constraints in

the QDE reflect linear functional relationships. Once this assumption is made,

automatic calculation of the higher-order derivatives of the system parameters

is possible, and this information is used to eliminate branchings in the tree

resulting from qualitative direction ambiguities. The directions are derivatives,

41

and knowledge of their derivatives restricts the possible values they can take

on. Application of this method thus involves a round of preprocessing in which

the QDE is checked for parameters likely to chatter, and a qualitative algebraic

manipulator is employed to derive expressions for the signs of the higher order

derivatives. During QSIM's execution, the HOD (H igher Q..rder De ri vat i v e)

constraint has to be satisfied, as well as the "classical" types of constraints.

Since, in general, M constraints may not obey the sign-equality assumption,

higher-order derivative filtering is not cons e TV a tiv e, Le., it may eliminate

consistent transitions. The method for spurious behavior reduction that will be

presented in Chapter 4 entails conservative filters.

3.2.3. Incorporation of Quantitative Knowledge into QSIM

Kuipers and Berleant [43,44] introduced a way for including available

quantitative infornatioD into QSIM's reasoning, and produced the Q2 program.

Two kinds of quantitativeness are allowed: 1) Numerical values of the possible

lower and upper bounds of the ranges that landmarks lie in, and, 2) Bounds on

the "shapes" of the functions represented by the M constraints. One can specify

upper and lower en vel 0 pes (numerically computable partial functions) for

each monotonic constraint, meaning that the value of its function is to remain

between the two envelopes. Bounds on the first and second derivatives of these

functions can also be specified.

Q2 does the following: QSIM runs as usual. The behaviors produced are

examined, making use of the quantitative information. This information can be

propagated across the algebraic equations implied by the relations between the

landmarks. Some enhanced quantitative knowledge about the landmarks (and

even the time points) can be obtained from this propagation. In some cases,

contradictions result, which mean that that behavior is impossible to occur,

given the quantitative knowledge available. This results in that behavior being

pruned off, leading to a less ambiguous output.

3.2.4. Qualitative Phase Space and Other Constraints

The phase space representation is well-known in mathematics, and can be used

practically in relation to differential equations. In the phase space, there is an

42

axis for each independent parameter of the system. Each state (tuple of

parameter values) of the system corresponds to a point in phase space. Various

time behaviors of the system can then be represented as trajectories in the

space. There is a theorem which states that trajectories in phase space cannot

cross themselves, unless they are closed curves [45,46].

This knowledge, if adequately represented, can enable QSIM to rule out

some spurious predictions. Lee and Kuipers [19] report on an extension to QSIM

which does just that. They use the above-mentioned theorem as an additional

type of constraint, named the non - in t e r sec t ion constraint. Their

implementation of it is limited to second-order systems. Interesting

considerations arise because the "points" in this qualitative phase space can be

points, line segments, or even rectangles, because of the nature of qualitative

magnitudes.

Other proposals for reducing the number of spurious behaviors are also

mentioned in [19]. These involve adding yet other constraints to the QDE,

making comparisons of the energy and phase properties of an oscillatory

system at different extreme points possible [15]. Note that these are system

s p e ci/i c features, not generally applicable to an arbitrary model.

3.2.5. Using QP Theory to Build QSIM Models

Recognizing the importance of the task of building the qualitative models in

the first place, Crawford et al. [26] present QPC; a compiler which can assemble

model fragments into QDEs. Knowledge about the current situation in the

physical scene of interest is input; this information is used to identify the model

fragments relevant to the currently active processes~ (Section 2.2.1) Use of QP

theory and the Closed World Assumption is made to obtain the constraint set.

QSIM then runs on those constraints Until an operating -region transition

occurs. In that case, control returns to QPC, and the new processes and

quantities are identified to obtain a new constraint set that will describe the

new operating region. QSIM is employed with this new QDE, and' this model

building/simulation cycle continues until the system reaches quiescence.

The difference between this form of model building and the QSI method

that will be presented in Chapter 6 is fundamental: Here, the relations that

apply in various p~ysical situations are stored in a library, and the model

43

builder's task is to find the relevant constraints and bring them together to

form the QDE, given a description of the configuration of the system at a single

(the "current") state. QSI, on the other hand, has no such library; the

constraints are i nf err e d from accounts of the behavior of the system over a

time period.

3.2.6. QSIM for Monitoring

Dvorak and Kuipers [35] have reported on MIMIC, a method of monitoring

dynamic systems. Monitoring, in this context, is a form of diagnosis (i.e, the task

of understanding that something is wrong and identifying the problem,) that

has to be performed while the system is operating, since it may be too expensive

or impossible to shut down. Another issue with monitoring is that only a few of

the parameters can be observed.

, fhe basic idea of MIMIC is as follows: The system's (visibh,) parameters

are observed over time. All the while, QSIM (with incomplete quantitative

reasoning capability, see Section 3.2.3.) is parallelly run with the "normal" and

a number of "faulty" models of the system. According to the observations, some

of these models can be discarded if their predictions are not being satisfied, and

new "suspected" fault models can be activated. The currently "active" models

(i.e., the ones whose simulations are producing results that match the

observations) are reported to the system operators.

This approach requires somebody to write down the normal and (all

kinds of) faulty models of all types of components in the system. A great

number (but still, only a fraction of all the possibilities) of system models with

various kinds of faults are then built from these component models. QSIM is run

on all these models and from each possible initial state, to produce a complete

state tree for each case. Now that the "states" (collections of visible values) that

can be created at some time by each kind of fault under consideration are

known, they are stored in a decision tree that MIMIC will use during its

operation to see which faults may be producing the observed behavior. So all

the procedure described in this paragraph has to be completed before

monitoring by MIMIC even starts.

44

A simpler approach to the monitoring problem is seen to be desirable.

QSI's (Chapter 6) capability of finding the constraints that hold in a sequence of

states may provide an answer.

45

IV. IMPROVED CONSISTENCY FILTERING FOR QUALITATIVE

SIMULATION

As demonstrated in the previous chapter, qualitative simulation programs may

occasionally predict spurious behaviors. Among the reasons for this are the

local nature of simulation (i.e, states are determined by their predecessors, and

the farther past of the system is generally not considered,) and the inherent

incompleteness of the information being dealt with. Methods for reducing the

number of spurious predictions of pure QSIM have been proposed; these

require restrictions on the possible relationships between the system's

parameters, like the dgn-equality assumption (Section 3.2.2,) or are system

specific [19] and not generally applicable. They generally necessitate major

additions to the algorithm. In this chapter, a modification to the algorithm

which allows it to detect and eliminate a class of spurious behaviors is

introduced. This method has none of the above-mentioned requirements, since

it makes use of information already possessed but not used by pure QSIM.

4.1. A Class of Spurious Behaviors

This section contains examples showing the kind of spurious behavior that will

be dealt with in this chapter. Two systems, in both of. which little balls are

thrown upwards at the beginning, will be considered.

46

4.1.1. Example 1: The Elevator/Ball System

Consider a system consisting of a ball thrown upward in a descending elevator

(Figure 4.1.1.) The elevator is going down with constant speed in an

underground shaft. The parameter representing the elevator's upward

velocity, EL_ V, is therefore fixed at a negative landmark value. The elevator

floor's height, EL_H. is at the negative landmark e 1 ha at the beginning of the

simulation, ta. Ground level corresponds to zero in EL_H's quantity space. One is

interested in the ball's height relative to the elevator floor; the parameter

REL_H represents this quantity. Two positive landmarks of REL_H are known;

relha is the relative height of the ball at to , and win_h is the height of the

elevator's window (relha < win h). The parameter BALL_H is the height of the

ball relative to the Earth; zero is ground level. Note that, as a result of these

definitions,

at all times. BALL_H has two negative landmarks; b lha is its magnitude at ta

(therefore, elha + relha = blha) and blh] is another landmark, such that blha

< blhj. The ball's flight is governed by gravity. The upward acceleration of all

falling bodies, including the ball, is the parameter ACC, which has the constant

magnitude g (a negative landmark.) The velocities of the ball relative to the

elevator, REL_ V, and relative to the Earth, BALL_V, are also parameters.

EL_H

0 o
REL_H

win h -

relho • elf(; 0

Figure 4.1.1. The elevator/ball system at to

This system is described by the constraints shown in Table 4.1.1.

TABLE 4.1.1. QDE of elevatorlball system

CONSTRAINT CVs

DERIVCEL_H, EL_ V)
DERIV(REL_H, REL_ V)
DERIV(BALL_H, BALL_V)
DERIV(REL_ V, ACC)
DERIV(BALL_ V, ACC)
ADDCEL_H, REL_H, BALL_H)
ADD (EL_ V, REL_ V, BALL_V)

(elho, relhO, blhO)

47

Note that various "realities" which would violate these constraints and

are not relevant to the present discussion have not been modeled. So the shaft

is infinitely deep, the elevator has no ceiling which might interrupt the ball's

flight, and one does not care what happens after the hall hits the elevator floor.

Now consider Table 4.1.2. This is part of one of the behaviors that pure

QSIM predicts when started on this system with the initial state described above.

Only the values and quantity spaces of the height parameters have been shown

in the table. This behavior is actually "longer," i.e, there is more to come after

t4. however, the sequence in the table is enough for the present discussion.

(QSIM can be made not to generate the successors of nodes which are "deeper"

in the tree than a specified level, by the inclusion of a simple control.)

TABLE 4.1.2. Spurious behavior of elevatorlball system

EL H REL H BALL H tim~

<elho, dec> <relho, inc> <blhO, inc> to
« -00, elhO), dec> «relho,win _h) ,inc> «blhO, blhl), inc> (to,tl)
« -00, elho), dec> <win_h, inc> <blhl, inc> tl
« -00, elho), dec> «win h, (0), inc> «blhl, 0), inc> (tl ,t2)
« -00, elhO), dec> «win_h, (0), inc> . <NewB, std> t2
« _00, elho), dec> «win_h, (0), inc> «blhl, NewB), dec> (t2 ,t3)
« -00, elhO), dec> <NewR, std> «blhz, NewB), dec> t3
« -00, elho), dec> «win_h,NewR),dec> «blhl, NewB), dec> (t3 ,t4)
« -00, elho), dec> <win_h, dec> «blhl, NewB), dec> t4

Quantity space of EL_H: {-oo, elho, 0, oo}

Quantity space of REL H: {-oo, 0, relho, win _h, N ewR, oo}

Quantity space of BALL_H: {-oo, blhO, blh1, NewB, 0, A2, oo}

48

To see that this is indeed a spurious behavior, inspect the parameter

values at t j and t4. At t j, the ball is passing the level of the elevator's window in

its upward journey, and at that moment, its "absolute" height is known to be

blhj. As expected, the ball rises for a while, and then starts descending, passing

by the window for a second time at t4. QSIM predicts that at that time, the ball's

(and so the window's) absolute height is in the interval (blhj, NewB), in other

words, higher than blhj. But this does not make sense, since the elevator is

known to be descending all along, its window cannot be higher at t4 than at t j .

So the behavior of Table 4.1.2. is a spurious prediction; this sequence of events

will never occur.

4.1.2. Example 2: The Ball/Shadow System

As a second example, the behavior of a little ball thrown ~,lpward from the

ground, and the position of its shadow on the ground will be examined. (See

Figure 4.1.2.) A small and powerful light source is fixed at a location of a certain

height to the left of the point of takeoff of the ball. It is assumed that the ball

can never reach the height of the light source. The height, velocity, and

acceleration of the ball are parameters Y, V, and A, respectively. A is fixed at a

negative landmark, like in the previous example. One is also interested in the

position of the ball's shadow on the ground, represented by parameter X. 0

(zero) is the point of takeoff of the ball in both X and Y's quantity spaces. The

ground is level (Le. has no "bumps") so that X is a reasonable function. The

highest altitude that the ball has ever reached before is the landmark a I t r e c

in Y's quantity space. There is a dead bug lying at a point to the right of the

ball's takeoff point. X has the positive landmark bugyt when the shadow is on

the bug. Light tmvels infinitely fast (for the commonsense time scale at which

the system is being viewed, of course.) The set of constraints is that of Table

4.1.3.

TABLE 4.1.3. QDE of ball/shadow system

CONSTRAINT CVs

DERIV(V, A)
DERIV(Y, V)
M+(X,Y) (0,0)

49

o Light source

o Ball

o bug shadow

Figure 4.1.2. The ball/shadow system

The ball is shot up with initial velocity v 0 at to. Table 4.1.4 contains part

of one of the spurious behaviors that QSIM predicts.

What is wrong with this behavior? The ball IS shet up at to. At t1, it

breaks the old altitude record and goes on climbing. At t2, when the ball is at a

point above alt_ree, its shadow falls on the bug. At t3, both the ball and its

shadow stop for an instant, and their magnitudes at that point are recorded as

CVs. After that, the ball starts going down, crossing alt_ree at t4. But the shadow

has still not reached the bug for a second time. This is inconsistent with the

available knowledge about the function from Y to X at t1, so Table 4.1.4 contains

a spurious behavior.

TABLE 4.1.4. Spurious

Y V
<0, inc> <vo, dec>
«0, alt_ree), inc> «0, VO), dec>
<aft_ree, inc> «0, VO), dec>
«altJee, 00), inc> «0, VO), dec>
«alt_ree, 00), inc> «0, VO), dec>
«alt_ree, 00), inc> «0, VO), dec>
<NewY, std> <0, dec>
«alt_ree, Newy),inc> «-00, 0), dec>
<aft_ree, dec> « _00, 0), dec>

Quantity space of X:
Quantity space of Y:

behavior of ball/shadow system

A X
<g, std> <O,inc>
<g, std> «0, bugyt), inc>
<g, std> «0, bugyt), inc>
<g, std> «0, bugyt), inc>
<g, std> <bugyt, inc>
<g, std> «bugyt, 00), inc>
<g, std> <NewX, std>
<g, std> «bugyt, NewX), dec>
<g, std> «bugyt, NewX), dec>

{-oo, 0, bugyt, NewX, oo}
{-oo, 0, alt_ree, NewY, oo}

time
to
(to,t1)
t1
(t1,t2)
t2
(t2 ,t3)
t3
(t3,t4)
t4

50

4.2. The Cause of Spurious Behaviors

The spurious behaviors of the previous section are not results of the

"weakness" of the sets of constraints, or a fundamental shortcoming of

qualitative simulation. All the information required for identifying that the

qualitative states at t4 (in both examples) are inconsistent with the past

behaviors of the systems is available to the algorithm: The constraints between

the parameters are given as input, and the states up to t4 are created by the

algorithm itself. The problem is the inability of the algorithm to utilize this

information.

QSIM uses corresponding value information to check the consistency of

newly proposed parameter magnitudes with previous knowledge about the

arithmetic and functional relationships in the system. However, the tuple of

magnitudes at t 1 in Section 4.1.1, and those at t2 in Section 4.1.2, which allows

one to recognize that something is wrong, are not recorded as CV s of the

constraints by the algorithm. The reason for this is that only landmarks are

allowed in CV tuples, and in both cases under discussion, there are parameters

which have interval magnitudes at the times of interest. In fact, EL_H of the

elevator example has an interval magnitude in each state after to in all

behaviors of the system, so no CV tuples will be recorded for any constraint

involving it.

Moreover, it would not be of much use in the elevator example, even if

pure QSIM recorded such CV tuples. Equation 3.1 is used as the ADD CV

consistency check, which would, when comparing the values at t4 and t I ,

require that

« -00, elho) - (-00, elho» + (win _h - win _h) = «blh 1 ,N ewB) - blh 1) (4.1)

be satisfied. This would reduce to

?+O=+

51

where "?" can be anyone of +, 0, or -, so the consistency check would be

satisfied, the state at t4 would be generated, and the same spurious behavior

would still be produced.

The reason for pure QSIM's insistence on landmarks as CVs may be the

fact that neither qualitative subtraction nor (provided the signs are the same)

qualitative division are ambiguous when one of the values participating m

them is guaranteed to be a landmark. When both operands are allowed to be

intervals, one may be faced with a situation where one has to compare an

interval with itself, as in Equation 4.1, which leads to the condition being

satisfied trivially.

However, it was demonstrated that the use of only-landmark CVs causes

the generation of spurious behaviors. What is needed is a way of recording

interval CVs (ICVs), and an extension of the consistency filtering and

qualitative arithmetic rules to handle this generalization.

4.3. Filtering Spurious Behaviors

To enable it to use more of the available information about the system's

arithmetic and functional relationships, the following changes have been

made to pure QSIM, (Section 3.1.2) resulting in the improved QSIM algorithm, as

it will be called in the rest of this text:

1) Whenever a new landmark is discovered for parameter P, augment the CV
lists of constraints in which P participates to reflect this new information.

2) In Step 2.4 of the original algorithm, for every newly created state, add the
parameter magnitudes appearing in all non-DERIV constraints as tuples to the
CV lists of these constraints, regardless of whether any of the magnitudes are
landmarks or not.

3) During the CV consistency filtering phase (in Step
proposed magnitudes will be eliminated unless they
relationships with all of their constraints' CV tuples:

2.2,) the tuples of
have the following

52

i. For MINUS and M- constraints, if the proposed magnitude tuple is (mA.
m B) and the CV tuple is (p, q), the signs of (m A - p) and (m B - q) should be the
opposites of each other.

ii. For M+ constraints, if the proposed magnitude tuple is (m A, m B) and the
CV tuple is (p, q), the signs of (m A - p) and (m B - q) should be the same.

iii. For ADD and MULT constraints, equations 3.1 and 3.2 should be satisfied,
respectively.

iv. When a subtraction, or, (in the case of MULT,) division operation
required for the above controls has an ambiguous result, the predicate in
question will be automatically satisfied for that CV tuple.

4) Qualitative subtraction will yield one of +, 0, or -, according to the ordinal
relation of its operands. However, when this relation cannot be determined
from the operands, (m A - p) will yield:

+, if both its operands are the same interval magnitude, the parameter has
had this same magnitude since the recording of p, and its direction is inc,

-, if both its operands are the same interval magnitude, the parameter has
had this same magnitude since the recording of p, and its direction is dec,

?, (the ambiguous value,) otherwise.

5) Qualitative division will yield one of Ito, one, or gto, according to the signs
and ordinal relation of its operands. However, when this relation cannot be

determined from the operands, (~A) will yield:

gto. if both its operands are the same positive interval magnitude, the
parameter has had this same magnitude since the recording of p, and its
direction is inc,

g to, if both its operands are the same negative interval magnitude, the
parameter has had this same magnitude since the recording of p, and its
direction is dec,

I to, if both its operands are the same positive interval magnitude, the
parameter has had this same magnitude since the recording of p, and its
direction is dec,

Ito, if both its operands are the same negative interval magnitude, the
parameter has had this same magnitude since the recording of p, and its
direction is inc,

?, (the ambiguous value.) otherwise.

As an example to (1), consider the behavior of BALL_H in Table 4.1.2. In

(t1,t2). the ball is in the interval (blh1. 0). This fact is recorded in the CV list of

the ADD. as modification (2) requires. At t2 , BALL_H stops at its new landmark,

New B. This tells one that the pre v i 0 us magnitude of BALL_H can be more

53

correctly described as (b l h] , New B), and the related CV tuple is changed to

contain the new information. (Actually, this application of (1) does not

contribute to the elimination of the spurious behavior in this example. A

"system" where (1) is necessary to prune the spurious prediction will be

presented at the end of this section.)

The rationales for (3.i) and (3.ii) stem from the nature of inverse and

direct proportionality, respectively. If M-(A,B), then for every CV tuple

(A _ mag, B _ mag) of this constraint, A and B' s magnitudes should always be at

opposing sides of A_mag and B _mag, (unless they are both exactly "on" them,)

because they always "go" in opposing directions. (When A_mag and B _mag are

both landmarks, this is very easy to see, the rules of (4) and (5) allow it to be

generalized to interval CVs.) For the same reason, parameters linked by M+s

should always be at the same sides of their CVs.

The justification for the rules of (4) and (5) is as follows: For any

reasonable function f, if f' (t) > 0 for all t E [tb e g , te nd)' lhen f(t 1) < f(t2) for

all ,I;] ,t2 E [tbeg, tend) such that t] < t2· (An analogous proposition holds

when f'(t) < 0; thenf(t]) >f(t2).) That is, if a quantity is continuously

increasing (decreasing) in an interval, its value at a later time III that interval

will be greater (less) than its value at an earlier time in the same interval.

Whether the parameter has had the same magnitude at all times since the

recording of the CV to the proposal of the new values can be checked using

information in the CV list or the state tree.

Table 4.3.1 shows the calculations made by the improved algorithm when

the spurious state at t4 is proposed in the elevator simulation. Each new CV

triple is added to the beginning of the list, so older values are used later in the

check. As can be seen in the table, Equation 3.1 fails to be satisfied when the

proposed tuple is checked against the CV of t] As a result of this, a state

containing that combination of magnitudes will not be created, and the

spurious behavior of Table 4.1.2 will not be predicted.

Table 4.3.2 similarly shows how the spurious state (and behavior) of

Table 4.l.4 is eliminated. Every CV tuple's Y magnitude is subtracted from the

proposed Y magnitude to obtain the sign of the Y difference. The same thing is

done for X. According to (3.ii), the signs should agree. When the CV triple of t2

is considered, they definitely do not, so the proposed magnitudes are wrong.

TABLE 4.3.1. CV triples used to test ADD(EL_H,REL_H,BALL_H) at t4

proposed triple: «-00, elho),win_h, (blhl, N ewB»

CV triple Equation 3.1

«-00, elho), (win_h, NewR), (blhl, NewB» (-) + (-) = (-)
«-00, elho), NewR, (blhl, NewB» (-) + (-) = (-)
«-00, elho), (win h, NewR), (blhl, NewB» (-) + (-) = (-)
« -00, elho), (win_h, N ewR), N ewB) (-) + (-) = (-)
«-00, elhO), (win_h, NewR), (blhl, NewB» (-) + (-) = (?)

«-00, elho), win_h, blhl) (-) + (0) = (+)

TABLE 4.3.2. CV tuples used to test M+(Y,X) at t4

proposed tuple: (alt_ree, (bugyt, N ei.!IX))

O.K.?

Yes

Yes

Yes

Yes

Yes

54

CV tuple Sign of Y diff. Sign of X diff. Signs equal?

«alt_ree, NewY), (bugyt, NewX»

(NewY, NewX)

«alt_ree, NewY), (bugyt, NewX»

«alt ree, NewY), bugyt)

?

+

Yes

Yes

Yes

A spurious prediction which cannot be eliminated without modification

(1) is presented here. Consider a (decidedly very simple) model, consisting of

three parameters A, B, and C, with a single constraint among them: ADD(A,B,C).

Table 4.3.3 is a spurious prediction of QSIM about this system.

Like in the previous examples, the last state (the one at t5) is spurious. To

detect this, the information at t1 must be considered together with that of t5. At

t5, the A magnitude is less than at t1. The C m~gnitudes are the same. So B at t5

has to be greater than B at t1 for the ADD to hold. At first sight, it seems one

cannot decide on the relative ordering of (bI, NewB) and (bI, b2), and the CV

check will be satisfied as it is in ambiguous situations, but the fact that B stops

at NewB at time point t2 after decreasing in (bI, b2) in the interval (to,t2) tells

one that B was actually in (N ewB, b2) in that time period. Now it is clear that

the tuple of t5 is inconsistent. Without modification (1), the algorithm cannot

55

detect this inconsistency. Table 4.3.4 shows the invocations of Equation 3.1

performed in the CV filtering of this state.

TABLE 4.3.3. A spurious prediction

initial quantity space of A: {-00,O,al,a2,a3,00}
initial quantity space of B: {-oo, 0, bl, b2, oo}
initial quantity space of C: {-oo, 0, el, e2, c3, oo}

A
<a3,dec>
«a2, a3), dec>
<a2, dec>
«aI, a2), dec>
«aI, a2), dec>
«aI, a2), dec>
<aI, std>
«aI, a2), inc>
«aI, a2), inc>
«aI, a2), inc>
«aI, a2), inc>

B
<b2, dec>
«bl, b2), dec>
«bl, b2), dec>
«bl, b2), dec>
<NewB, std>
«bl, N ewB), dec>
«bl, NewB), dec>
«bl, N ewB), dec>
«bl, N ewB), dec>
«bl, NewB), dec>
«bl, N ewB), dec>

C
<e3, dec>
«e2, c3), dec>
<e2, dec>
«el, e2), dec>
«el, e2), dec>
«el, e2), dec>
«el, e2), dec>
«el, e2), dec>
<ci, std>
«el, e2), inc>
<e2, inc>

final quantity space of B: {-<X>, 0, bl , N ewB, b2, <X>}

time
to
(to,t1)
t1
(t1 ,t2)
t2
(t2 ,t3)
t3
(t3.t4)
t4
(t4,t5)
t5

TABLE 4.3.4. CV triples used to test ADD(A, B, C) at t5

proposed triple: «aI, a2), (bl, N ewB), e2)

CV triple Equation 3.1 O.K.?

«aI, a2), (bl, NewB), (el, e2» (+) + (-) = (+) Yes

«aI, a2), (bl, N ewB), el) (+) + (-) = (+) Yes

«aI, a2), (bl, NewB), (el, e2» (+) + (-) = (+) Yes

(aI, (bl, NewB), (el, e2» (+) + (-) = (+) Yes

«aI, a2), (bl, NewB), (el, e2» (?) + (-) = (+) Yes

«aI, a2), NewB, (el, e2» (?) + (-) = (+) Yes

«aI, a2), (NewB, b2), (el, e2» (?) + (-) = (+) Yes

(a2, (NewB, b2), e2) (-) + (-) = (0) N)

56

4.4. Correctness and Complexity of Improved QSIM

To prove that improved QSIM is actually better and not worse than pure QSIM,

one has to show that:

1) Improved QSIM does not predict some of the spurious behaviors that pure

QSIM predicts,

2) Improved QSIM does not predict any spurious behaviors that pure QSIM does

not predict, and,

3) Improved QSIM is sound, i.e., it does not fail to predict any actual behavior.

(1) has alre~!dy been proven by demOJistration in the previous section. It

IS also easy to show (2), i.e., improved QSIM causes no extra spurious behaviors:

Consider the changes that were made to the algorithm. They cause it to record

and check more CVs than before. CV tuples which contain only landmark

values (Le., the only kind present in the pure version,) are handled in the same

way as before, so all the spurious behaviors to whose eliminations they

contribute in pure QSIM are also eliminated in improved QSIM. The only

difference that improved QSIM has is that it checks proposed states against

interval corresponding values; a control totally absent in pure QSIM. If no

inconsistencies are detected in this extra checking, improved QSIM will give

the same output as pure QSIM. Otherwise, it will predict less behaviors. In no

case can it predict some behavior that pure QSIM does not predict. So (2) has

been proven.

To prove (3), one has to show that the filtering criteria given III the

previous section eliminate only those tuples which do not satisfy their

constraints, i.e., that the improved filters are conservativ'e (Section 3.2.2.)

For the ADD and MULT constraints, this is already proven, since Kuipers'

equations 3.1 and 3.2 (Section 3.1.2) are used.

For the M+, M-, and MINUS constraints, the filtering criteria presented

here subsume those of Kuipers, and are still conservative. Consider M+(A,B),

the arguments for M- and MINUS are similar. A geometric interpretation of the

57

rules will be given. When intervals are allowed in CV tuples, each tuple defines

either a point, a segment, or a rectangle in the plot of the two parameters

against each other. It is known that the plot of A vs. B passes through these CV

areas. Each proposed magnitude tuple also defines such an area, call it P A. For

M+ to hold, some point in PA has to be "higher" than some other points in all

the CV areas to the "left" of P A, and "lower" than some points in all the CV

areas to the "right" of PA. That is because it is known that the plot will be

"rising" as one goes from left to right in the graph (whichever way you look at

it; A vs. B or B vs. A.) The requirement that both proposed magnitudes should be

"on the same sides" of the values in all CVs embodies this necessity: Both

coordinates of each point in the graph of an M+ function are either less or

greater than the coordinates of other points. The filter eliminates tuples only

when it is certain that they do not fulfill this condition. So no magnitudes

which truly satisfy the M+ are eliminated. Consider the consistency check

between the CV tuple ((alt_ree, NewY), bug_pt) and the proposed magnitude

tuple (alt_ree, (bugyt, NewX)) (Section 4.3) which leads to the eliminatic'f.1 (·f

the spurious ,behavior of the ball/shadow system. Figure 4.4.1 is the geonl':!t;-ic

interpretation of that check. In the figure, the horizontal segment is the

proposed magnitude area, and the vertical segment is the CV area. Clearly, no

monotonically increasing function can cross both these segments. Therefore,

the proposed tuple cannot be accepted. For M- and MINUS, the reasoning is

similar, with the slope of the curve now negative. In all cases, only values

which violate the constraints are filtered out, so the filters are conservative.

y

00

NewY

aicrec

o NewX x
00

Figure 4.4.1. Geometric interpretation of M+ consistency check

58

Now, the complexity of the resulting algorithm will be considered. If c is

the number of constraints and s is the current length of the behavior being

generated, constraint filtering takes 0 (c s) time in pure QSIM [14]. In the

improved version, the task of determining whether there is an unbroken

string consisting of the same magnitude between a proposed magnitude and its

recorded counterpart can be done in parallel with the already present

scanning of the CV list. This means that, although the improved version is

using more CV s, the time required for using them is still on the order of c s.

Updating the CVs after landmark discovery takes time linear in c. The worst

case time requirement of the algorithm is, again, caused by successor

generation, and is exponential in the number of parameters.

TABLE 4.4.1. Execution times of improved QSIM case runs

Problem number of number of number of number number of pure improved
constraints parameters operating of states states in aSIM QSIM
in input in inp'Jt region in final final tree execution execution

transitions tree (improved) time (s) time (s)
(pure)

Single 2 3 0 5 5 0.16 0.17
Ball

Kidney 8 10 0 3 3 5.78 5.85

Kidney 8 10 0 3 3 4.50 4.71

U-tube 18 7 1 8 8 2.24 2.30

Spring 6 6 0 9 9 6.79 6.93
Balli
Shadow 3 4 0 79 63 8.37 6.78

Heat
Exchanger 3 5 0 7 7 0.78 0.79

The fact that improved QSIM's additional space and time requirements

are not significant has also been shown by case runs of both versions of the

algorithm on various input systems, as can be seen in Table 4.4.1. In the table,

the section numbers indicate the location in this text where the relevant QDE is

described; some of these are famous examples from literature. The second and

third problems are runs of the same model with different initial states. In cases

where it is able to prune additional behaviors, improved QSIM also shows

(naturally) a clear time and space advantage. As indicated in the table, the

improved version eliminates 16 states when running on the ball/shadow

problem. These states cause four spurious behaviors to be predicted by pure

QSIM. in addition to the 11 "actual" behaviors. The "un-improved" version

59

creates such a huge output when confronted with the elevator problem that

our pe implementation of QSIM (Appendix A) has to be modified to handle it;

that is why that item is absent in the table. When restricted to produce the tree

only until t4, pure QSIM predicts 147 behaviors of the elevatorlball system,

again four of which are spurious ones that are eliminated by the improved

algorithm.

4.5. Concluding Remarks

In this chapter, it was shown how interval corresponding values can be used to

strengthen existing qualitative simulation methods, and the exact list of

modifications to QSIM which enable it to support and make use of IeVs were

given. One must emphasize that improved· QSIM does not detect and eliminate

all spurious behaviors; Those of the spring system of Section 3.1.3 are still

predicted, for instance. Kuipers and his colleagues have concentrated on this

problem, and the non-intersection, energy, and system property constraints

mentioned in Section 3.2.4 handle that system and many of its variants. This

suggests that these constraints, the interval corresponding value modification,

and also the HOD constraint of Section 3.2.2 can be used in conjunction to

produce simulations tighter than anyone of them can provide individually. In

the following paragraphs, a justification for this claim is presented.

Such a unification of methods would not cause a harmful "interference"

where the implementation of one idea hinders another, since each involves

separate constraints. IeVs are to be applied only on the "classical" constraints,

so the other ones are not affected. (The algorithm applies each constraint

independently of the others. Even a single unsatisfied constraint causes a

proposed state to be rejected, which is what one expects from the. use of

constraints. The addition or removal of one type of constraint does not affect

the filtering properties or applicability of the other types.) Lee and Kuipers

[19] state that all the additional constraint types can be used profitably

together.

60

To show that the addition of the ICV modification will make simulation by

the unified algorithm even tighter, it is sufficient to demonstrate a single

spurious behavior which can only be detected by improved QSIM and not by the

additional constraints. The ball/shadow system of Section 4.1.2 provides a good

example. Derivatives of all necessary orders of the system parameters are

included in that model, so the HOD constraint will not be used. The system is not

oscillatory, so the energy and system property constraints will not be derived.

No choice of independent variables produces a phase space with a self

intersecting trajectory, so the non-intersection constraint does not eliminate

the spurious behavior either. Therefore, the claim about the utility of the

proposed unified algorithm is justified.

Improved QSIM's input and output interfaces are exactly those of pure

QSIM, so one can easily replace pure QSIM with it; in the applications

mentioned in Section 2.2.5, Section 3.2, or the reasoners that will be described

in the rest of this dissertation, leading to better performance of the final

product.

61

V. POSTDICTION BY QUALITATIVE SIMULATION

5.1. Postdiction

Postdiction is the task of "inferring how a particular state of affairs might

have come about." [12] This task has also b~en named abductive projection [2]

and retrodiction [47] in the literature. The basic idea is to utilize the existing

laws of change of the domain in the "reverse" of their normal direction; i.e. to

obtain the causes from the results. If a law of change of the form "A results in

B ,. exists, and B is a current fact, A may be inferred as a cause of B. This kind of

inference is called abduction. Abduction is not a "legal" form of inference, i.e.,

it does not always produce correct results. (To put this more formally, it allows

false conclusions from true axioms.) That is because there may be a lot of other

things besides A that can result in B, and just knowing B does not necessitate

that its cause was A.

Reasoners using a situation

performing abductive projection (in

have to deal with this problem. There

calculus representation of change for

story understanding [2], for instance)

are simply too many laws of change that

may lead to a given fact being true, (Suppose you see some blood on the street.

Try to enumerate the possible courses of events that may have led to this.) and

although, realistically, most of the laws will not even be "written down," (i.e.,

known to the reasoner,) the program still has to "go back" on all the laws that

it does have, and to use other kinds of information to decide which "road" back

is the most sensible one. When to stop generating causes that are further and

further in the past is another important issue for these reasoners.

62

In this chapter, it is suggested to use a QSIM-like reasoner (actually, a

modified version of QSIM itself) to perfonn postdiction. This will have the same

advantages that pure QSIM has over a situation calculus-based reasoner in the

prediction task: It will be able to handle continuously changing values, and the

fact that its domain is much more specialized will lead to more efficient and

elegant results. The problems mentioned above for the abductive projection

managers will have natural solutions.

Some straightforward but important changes need to be made in the

QSIM algorithm to make it perfonn postdiction; these are the subject of the next

section.

5.2. QSIM for Postdiction

Most of the "mechanism" of QSIM used to construct the state tree (e.g. the

constraint filtering phase) is independent of the direction in which time is

"running" as new states are created. By restricting the changes to the

algorithm to the modules which deal with the "passing" of time, the continued

validity of the already present correctness proofs and complexity analyses of

the remaining parts of QSIM will be ensured.

What is wanted is an algorithm which takes a "current state" of the

system at to, together with the QDEs describing the system in all its operating

regions, as input. The output of this algorithm will again be a state tree; with

the state at to as the root. Each node in this tree will be a possible temporal

predecessor of its father, rather than a successor, as in the case of pure QSIM.

The interpretation of this tree will also be different than ,that of pure QSIM.

There are two ways in which a state change can occur in QSIM: Either all

the parameters obey the transitions of Table 3.1.1 and obtain new values, or a

parameter exceeds its legal range and a new operating region is activated.

"Reversing" the first kind of change to perform backward simulation is

especially easy, while the second kind is more involved; as explained below, the

63

parts of the algorithm dealing with operating region changes have to be

completely rewritten.

The modifications that will be made to QSIM algorithm, as given in

Section 3.1.2, for performing postdiction are the following:

1) In Step 2.1, use Table 5.2.1 (instead of Table 3.1.1) to generate each

parameter's possible transitions to the previous state.

2) For each newly created state, check whether this state can be the first state

of the current operating region, i.e., whether this is a state that the system can

have immediately after an operating region change. If this is possible, create

the I as t state of the previous operating region as a possible predecessor of this

state, and continue with the new region's QDE down that branch.

3) In Step 3, do not put a state in the list of states to be opened if any parameter

in it is about to exceed its legal range (by the transitions of Table 52.1.)

4) In the resultiilg :s!ate tree, every path from a (leaf or non-leaf) node to the

root is a distinct possible past of the system.

As can be seen, Table 5.2.1 is simply the reversed version of Table 3.1.1;

all the possible transitions to previous values are obtained by reversing the

arrow of time. Also note that the P-transitions have become I-transitions, and

vice versa; this follows from their definitions in Section 3.1.1. The two "new

landmark discovering" transitions have been moved to the new I-list, so the

new algorithm has QSIM's ability to detect previously unknown and interesting

parameter magnitudes, this time in the system's past. The reason for swapping

Kuipers' original transitions P4 and P5 also becomes clear now; the part of the

algorithm in Step 2.4, which checks the "no change" transitions {II, 14, I7} can

work correctly without being modified, since that set contains the same

elements in both Table 3.1.1 and Table 5.2.1.

Whether an operating region change may have 'preceded the state at

hand (say, S) or not can be checked as follows: All parameters which are

designated (in the input) to have specific values at the start of the current

operating region must have those values in S. Furthermore, there has to be

another operating region description, Pr_OR, in the input; and a parameter III

Pr_OR, which causes a transition into the current operating region when it

exceeds its legal range. If these conditions are satisfied, a new state in Pr_OR

64

where that parameter is just exceeding its range is created. Parameters

designated not to change values in this transition keep their values at S in the

new state, while the remaining ones receive their values by completion

according to the new constraints. See the next section for an example to this

process.

TABLE 5.2.1. The reverse transitions

I-transitions

name in (ti,ti+l) at ti

I1 < Ij' std> < lj, std>

12 < (lj , lj + 1) , inc > < lj, std>

13 < (lj-l , lj) , dec> < Ij, std>

14 < (lj, Ij+l) , inc> < (lj , lj+l) , inc>

15 < (lj' Ij+ 1) , inc> < ~i, inc>

16 < (lj-l , lj) , dec> < lj, dec >

17 < (lj, lj+l) , dec> < (lj , lj + 1) , dec >

18 < (lj' lj+l) , inc> < 1* , std >

19 < (lj , Ij + 1) , dec > < 1* , std >

P-transitions

name at ti + 1 in (ti,ti+l)

PI <lj,std> < lj, std>

P2 < Ij+l , std> < (lj, Ij+l) , inc >

P3 < Ij+l , inc> < (lj , Ij+l) , inc >

P4 <(lj,lj+l) ,inc> < (lj , Ij+ 1) , inc>

P5 < Ij, std> < (lj , Ij+l) , dec>

P6 < lj, dec> < (lj , Ij+l) , dec>

P7 < (lj' Ij+l) , dec> < (lj , lj+l) , dec>

The intuition behind the rule of (3), which prevents the opening of a

state in which a parameter is backing out of its legal range can be illustrated

by the following example: If one sees a descending elevator, one may think that

it was on the upper floor a short time ago. However, if one sees a descending

elevator at the top floor, no such conclusion about the past can be made.

65

The definition of possible pasts reflects a fundamental difference

between postdiction and prediction: One has no way of knowing when the

system was "started up" during postdiction. The examples in the next section

will help illustrate this issue.

5.3. Examples

This section will illustrate the working of the postdiction algorithm on tW(\

very familiar systems. Although very simple, these systems are able to reflect

important features of the algorithm.

5.3.1. The Ball Postdiction

Once again, a ball thrown upwards from ground level will be considered. There

is a single operating region, which is exited when the ball's height is about to

become negative, (i.e., when it hits the ground.) The constraints are, as usual,

DERIV(Y,V)

and

DERIV(V,A),

where Y is the height, V is upward velocity, and A is the (fixed) acceleration.

(Note that this particular set of constraints models a large family of actual

systems; objects thrown at any angle, and balls on frictionless inclined planes

being included. A vertically flying ball is the easiest of these to visualize. The

concepts illustrated here are, of course, applicable to any QDE.)

Let the current state be

Y= <0, dec>,

V = «-00, 0), dec>,

A = <g, std>,

66

i.e., the ball is hitting the ground. The postdiction algorithm produces a single

branched tree of five states when run with this input. That branch is: (values

of Y shown only)

<0, dec> <-- «0, (0), dec> <-- <NewY, std> <-- «0, NewY), inc> <-- <0, inc>

where the root is at the left end and the arrows show the well-known direction

of time.

If possible pasts were paths between leaves and the root, the only one

found in this example would be the following:

"The ball has been shot up from the ground, risen a while, then fallen back."

But intuition tells one that this is not the only possibility, given the

current state and this QDE. The ball may have been dropped from an initial

position above the ground, for instance; this would again result in the input

state. The other possibilities are the ones where the ball is s hot (i.e., given

some initial nonzerc velocity) upwards or downwards from a point abovt; the

ground.

Note that the state tree contains all these different possible pasts,

according to the definition given in the previous section. As a result, the

algorithm presents the information m Table 5.3.1 as the output in this case.

(Again, only Y is shown.) Figure 5.3.1 shows the paths taken by the ball in each

of the possible pasts (P Ps.)

PPI PP2 PP3 PP4

o t

t
Figure 5.3.1. Possible pasts for a ball hitting the ground

TABLE 5.3.1. Output of ball postdiction

Possible Past #1

Y
<New Y2, dec>
«0, 00), dec>
<0, dec>

time
/-]

(t-] ,to)
to

Quantity space of Y: {-oo, 0, New Y2, oo}

Possible Past #2

Y
<NewY, std>
«0, 00), dec>
<0, dec>

time
/-]

(t-],tO)
to

Quantity space of Y: {-oo, 0, NewY, oo}

Possible Past #3

Y
<New Y3, inc>
«0, NewY), inc>
<NewY, std>
«0, 00), dec>
<0, dec>

time
t_ 2

(t-2,t-])
/-]

(t-],tO)
to

Quantity space of Y: {-oo, 0, NewY3, NewY, oo}

Possible Past #4

Y
<0, inc>
«0, NewY), inc>
<NewY, std>
«0, 00), dec>
<0, dec>

time
t_ 2

(t-2,t-])
t_]
(t-],tO)
to

Quantity space of Y: {-DO, 0, NewY, oo}

67

Table 5.3.1 shows how the algorithm "pads" a point state with all

magnitudes at newly designated landmarks to the beginning of possible pasts

starting with interval states, to keep to the custom that QSIM behaviors start

with point states. The values in times (L 1 ,to) do not contain the new landmarks

68

which appear III previous states; this is a result of the fact that the previous

states are actually computed later by the algorithm, and can be modified easily,

by the same method used to update the CV lists to reflect the new landmark

information in Chapter 4.

5.3.2. Burst Tank Postdiction

As a second example, consider the U-tube system of Section 3.1.1. If the system

is currently in the operating region B_BVRST, (Figure 5.3.2) what could have

happened in the past? In the input state, a description of the system, where the

liquid in tank A is just flowing out of the pipe between tank A and the now

nonexistent tank B, is given (Table 5.3.2.) The "current" value of amounCA is

Anow, a landmark in (O,AMAX). This postdiction will clearly involve a backward

operating region change.

\ water spilling out

Figure 5.3.2. U-tube in operating region B_BURST

TABLE 5.3.2. Starting state of U-tube postdiction

PARAMETER

amount_A
amount_B
flow_AB
flow_BA
pressure_A
pressure_B
p_difLAB

VALUE

<Anow, dec>
< 0, std>
«0, 00), dec>
« -00, 0), inc>
«0, 00), dec>
< 0, std>
«0,00), dec>'

Since the program's output is too large to reproduce here in a concise

manner (the tree contains many branchings caused by ambiguities about the

value of the pressure difference,) verbal descriptions of the families of

possible pasts found are given below:

69

1: The system starts in region B_BVRST, with amouncA in (Anow, AMAX), and

moves to the input state.

2: The system starts in region B_BVRST, with amount_A at AMAX, and moves to

the input state.

3: The system starts in region NORMAL, with the V-tube completely full (Le.,

amouncA at AMAX and amouncB at BMAX.) Tank B explodes immediately.

Liquid in tank A drains for a while, and the input state is obtained.

4: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and

amount_B at B M A X and increasing. This is immediately followed by the

explosion of tank B. Liquid in tank A drains for a while, and the input state is

obtained.

5: The system starts III region NORMAL, with amounCA in (Anow,AMAX), and

amouncB in (0,BM,1.X) and increasing. After a while, tank B explodes. Liquid in

tank A drains for a while, and the input state is obtained.

6: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and

amouncB 0 and increasing. After a while, tank B explodes. Liquid in tank A

drains for a while, and the input state is obtained.

7: The system starts in region NORMAL, with amouncA at AMAX and amouncB

in (0 ,B MAX) and increasing. After a while, tank B explodes. Liquid in tank A

drains for a while, and the input state is obtained.

8: The system starts in region NORMAL, with amount_A at AMAX and amouncB

o and increasing. After a while, tank B explodes. Liquid in tank A drains for a

while, and the input state is obtained.

9: The system starts in region NORMAL, with amouncA at its value in the input

state, and amouncB at B MAX and increasing. This is iIJ.lmediately followed by

the explosion of tank B, which results in the input state.

10: The system starts in region NORMAL, with amouncA in (Anow,AMAX), and

amounCB in (O,BMAX) and increasing. After a while, tank B explodes, and at

that moment, the input state is obtained.

70

11: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and

amouncB 0 and increasing. After a while, tank B explodes, and at that moment,

the input state is obtained.

12: The system starts in region NORMAL, with amouncA at AMAX and amouncB

in (O,BMAX) and increasing. After a while, tank B explodes, and at that moment,

the input state is obtained.

13: The system starts in region NORMAL, with amouncA at AMAX and amouncB

o and increasing. After a while, tank B explodes, and at that moment, the input

state is obtained.

Note that all the qualitatively distinct possibilities involving various

combinations of amounCA and amouncB values are listed. This ability of

exhaustive postdiction is a desirable feature, as will be discussed later.

5.4. Discussion

When QSIM is used for postdiction, some important issues of this reasoning task

are resolved naturally. One does not have to worry about the possibility of

overlooking some laws of change, because, (within a single operating region,)

all the laws are already known; they are the transitions of Table 5.2.1. Kuipers

has proven that the rules of Table 3.1.1 cover all possible transitions from

"this" state to the "next" state, and here they are used to retrieve the sam e

information, albeit in the other direction, so the proof stands. The fact that the

same laws of change apply to each input problem is another advantage of this

algorithm, stemming from the definition of the domain.

There is also no problem of choosing the most "sensible" law of change

among many alternatives, since the level of description of the rules makes

them all of equal caliber, so all possibilities are generated by the algorithm.

There is a well-defined rule about when to stop postdiction on a branch:

The algorithm does not try to find the predecessors of a leaf, if no other

71

operating region can have a state which would cause an immediate transition

to this one, and: 1) The transition rules do not lead to any different state

satisfying the constraints, or 2) The end of a legal range has been reached, or

3) An "all-steady" state (Le. one in which all the qualitative directions are std)

III the system's past has been reached, (note that some of the higher order

derivatives, which are not represented as parameters, must have been nonzero

at that point; this is contrary to the quiescence heuristic used during forward

simulation. which assumes that all higher order derivatives are also zero when

the represented ones are,) or 4) A cycle in the path to the root has been

detected.

Condition (4) above is interesting: What does a cycle in the state tree

signify in postdiction? Consider the spring/block system of Section 3.1.3. One

branch of the tree produced for that input contains an eight-state cycle

(corresponding to stable oscillation) of which the input state is a member. (This

is the backward-generated equivalent of Table 3.1.12.) The existence of an

infinite number of distinct possible pasts is concluded from that branch,

because the system may have started just one state ago, or two states ago..... or

222 states ago,.... and so on. Once again. the fact that the initialization time of

the system is not known leads one to consider all the alternatives.

All qualitative model-based reasoners make the Closed World Assumption

(Section 2.2.) The CWA is the reason why paths from the state tree's root to its

leaves are defined as possible futures (behaviors) in QSIM: It is known that no

"external" influence (Le.. one not mentioned in the input) will affect the

system and interrupt its behavior. The balls in the previous examples will not

be hit by ("anti-ball") missiles, for example. So the system will "run" until the

end of the branch representing its behavior is reached.

The CW A is also made in postdiction during the generation of the

predecessor states: All the entities and relationships that may come about at any

relevant situation are known; so all possible predecessors. can be computed. But

the very notion of an initial state defies the CWA: There has to be "someone"

(whose mode of operation is unknown or unmodeled) who "initializes" the

system. In the presented examples. this is the "person" who throws the ball. or

pours the water into the tank. or stretches the spring. Since the models do not

know about this entity, which can "set" the system to any state (which satisfies

the QDE) that it wishes, the algorithm has no way of deciding whether a state in

the past is the initial state or not, so it presents both these possibilities in its

72

output. (This also corresponds to human intuition. People, when they see a non

quiescent physical system, seem to postulate the existence of a "creator" which

set the system going and then left the scene.)

The correctness considerations of the postdiction algorithm are the same

as those of pure QSIM. Soundness (Le., that all possible pasts are found) follows

from the fact that QSIM is sound, and the above discussion. The incompleteness

property (Le., the possibility of generating spurious answers) is also inherited

from QSIM, since this does not have anything to do with the direction in which

the transition rules are being used.

The computational complexities of the two algorithms are again the

same. The possible past which starts with the newly created state can be printed

out immediately after each state creation, this takes 0 (ps) time and does not

affect the overall worst-case complexity. Case runs also show that the QSIM and

postdiction algorithms have the same time requirements when run with inputs

leading them to produce trees of similar size. An implemented PROLOG program

embodying the postdiction algorithm is described in Appendix A.

5.5. Applications

Postdiction has an important place in the qualitative reasoning repertory.

Diagnosis of malfunctioning physical systems is a natural area of application

for postdiction. In diagnosis, there is a conceptual "going back" In time, from

the occurrence of "something wrong" to its cause, so postdiction immediately

suggests itself as a method. A fault can manifest itself either as an unexpected

parameter value, or a change in the QDE. In the first case, postdiction from the

current state gives an exhaustive list of all possible value combinations that the

parameters may have possessed, which can be examined by a human expert.

The fact that the algorithm enumerates all the qualitatively distinct pasts, some

of which may escape the notice of a human, is an advantage in this task. The

more "exotic" and less obvious causes of faults are not missed, thanks to this

feature. In the burst U-tubeproblem, the possibilities in which the system

starts out as a one-tank system are overlooked by a sizable proportion of

73

humans invited to "postdict" it, for instance, maybe because destructive events

are psychologically dominant. When faults cause changes in the QDE, several

constraint sets, representing various "faulty models" (like in Section 3.2.6) can

be used to perform postdiction from the current state. The ones that have the

system's (known) initial state in their possible pasts are candidate causes of the

problem.

Since the algorithm has only very local differences from QSIM, (the

syntaxes of their input sets are the same,) all the extensions to QSIM explained

in the previous chapters can also be applied to the postdiction algorithm,

resulting in corresponding improvements in performance.

74

VI. THE QUALITATIVE SYSTEM IDENTIFICATION

ALGORITHM

Before performing any kind of model-based reasoning, one has to have a model

of the system which will be reasoned about. The modeling methods used by

current reasoners, which require possession of large amounts of information

about physical laws and the various kinds of components or mechanisms that

can be used to build systems, are fundamentally inadequate for general

purpose reasoning. When faced with a novel situation, or a new mechanism

whose description is not available in the library, these reasoners cannot

achieve modeling, even though it is in these cases that the modeling task is the

most important and interesting. Leaving the preparation of the models

completely to the "user," on the other hand, is clearly not a way out, from the

point of view of artificial intelligence, which aims to automate human

behavior.

When one examines what humans do III similar situations, it is seen that

a "mental" model of the "laws" of the system under consideration can be

formed, after a period of observation of the system's behavior, which suggests

an "algorithm" whose input is the behavior of the system, and whose output is

the system model. This is essentially the reverse of what simulation, qualitative

or quantitative, does.

This task of data-based model construction is the subject of an already

mature field, named system identification. Extensive research has been made

and widespread applications of efficient algorithms which perform system

identification in the numerical domain have been produced. In this chapter,

QSI, an algorithmic method of performing Q..ualitative S,sstem Identification,

using the qualitative representation, is presented. In the following,

"conventional" system identification will be called CSI to distinguish it from

QSI.

75

6.1. QSI as CSI

First of all, a potentially confusing difference in terminology will be clarified.

What has been called parameters in this text are generally called variables in

CSI. In CSI, the parameters are constants which appear III the equations

(models) describing the system, and the main concern is to identify their

values precisely. In the qualitative representation, a constant can be described,

if necessary, as a parameter "stuck" at a landmark. For example, consider the

acceleration of the balls in Chapters 4 and 5.

Generally, there are two kinds of variables in CSI: inp1i.t and output

. variables. The input variables can be controlled by "us," ~nc changing their

values to "excite" the system properly is an important task. A CSI experiment

consists of this excitation and the recording of the variable values for some

time. Almost always, the measurements are real-valued and are made at (usually

equidistant) discrete time points. As a complicating factor, noise, which may

corrupt these values, is usually present, and has to be taken into account. Once

the data are collected, the first thing to do is to determine the for m of the

equation that is being searched. This model structure determination problem is

still an important issue of CSI, [48] which involves the following questions:

What should the equation "look like," Le., how should it "link" the variables

together so that it is an acceptable description of the physical system? What

should be its basic parameterization?

Once a model structure has been decided, the parameters in that equation

are estimated, using statistics-based algorithms. The aim is to find the

parameter values which, when "inserted" to their places in the model, will

predict the variable values seen in the experiment.

The model which emerges as a result of this procedure is then tested, and

accepted only if it seems to describe the system at hand appropriately.

Otherwise, one has to go back to the parameter estimation, structure

76

determination, or even the experiment stages, to try it with new decisions all

over again.

The most extensively researched and accomplished part of CSI is the

parameter estimation step. Elaborate numerical algorithms for this task have

been developed.

There has been some work [49] on performing CSI with fuzzy values and

models, aimed at handling cases where the available information is incomplete.

QSI's input is a set of QSIM behaviors of the system to be identified, and

its output is a QSIM-style QDE describing the system. Apart from its ability to

handle incomplete information, the adoption of the QSIM representation also

has the advantage that QSI fits naturally to the "modeling" gap, discussed

above, in the qualitative reasoning repertory.

QSI does not cover the experiment design and execution stages of CSI: It

starts with ready (qualitative) data about the behaviors. It treats input and

output 3 parameters in the same manner, (actually, it has no distinction of

them,) note that, in the QSIM representation, all parameters are "equal" in this

sense. Various issues that arise about QSI's input will be discussed later.

The QSI algorithm may be viewed as a way of finding better and better

model structures, as will be explained shortly. QSI has the ability of postulating

deep variables of the system, which are not visible in its input. The model

testing stage is also a part of QSI, but the "testing" here has a different

meaning than that of CSI: QSI tests its models to see whether they are "deep"

enough; it does not need to test whether they really describe the input

behaviors, because the models are created in such a way that they are provably

correct, see Section 7.2.

Although the qualitative representation itself is resilient to noise,

qualitative noise filters, based on simple observations about the nature of noise,

have also been designed for incorporation to QSI.

QSI's relation to CSI is similar to those of other qualitative reasoning

methods to their quantitative counterparts: The qualitative methods suppress

3 In some applications, such as signal processing, CSI may be performed
without any input (i.e. directly controllable) variables, as well.

77

irrelevant (or unknown) information, keep the qualitatively important

distinctions, and arrive at useful results through much simpler computation.

The actual algorithm that QSI uses to generate the models is

fundamentally different than anything that CSI uses. This underlines the

traditional difference of AI programs, which make symbolic computation, from

"non-AI" programs, which perform numeric computation. QSI performs a

search in the space of models; since the building blocks of the equation that

describes the system are already known and are finite, (the "operands" are the

parameters and the "operators" are the constraints,) a well-defined method of

trying out all the combinations until the correct one is found can be developed.

6.2. The QSI Algorithm

This section includes a comprehensive presentation of the basic QSI algorithm;

the requirements on the input, the syntaxes of input and output, examples, and

detailed discussions of the algorithm's individual stages.

6.2.1. Input and Output

The input to QSI consists of one or more behaviors of the system to be identified,

and the quantity spaces of the parameters seen in these behaviors. As

mentioned before, it may be the case that only some of the parameters that

would appear in a deep model of the system are easily observable, and therefore

"at first sight," one may think that the system consists only of these

parameters. For this reason, QSI allows the possibility that its input does not

contain all the system parameters, and tries to find the deeper parameters by

itself. On the other hand, the input should contain as many qualitatively

distinct system behaviors as possible, if QSI is expected to find an appropriately

deep model.

Since a QSIM model that produces it will be looked for, the input should

be generable by QSIM, i.e., there should be a QSIM input set (unknown, of

78

course, at this stage,) that would cause QSIM to produce it as output. This means

that the input behaviors cannot be just any sequence of qualitative states:

Definition 6.2.1. A behavior is T -I ega I if all the parameters in it obey the

transition rules of Table 3.1.1 throughout the behavior.

The QSIM transition rules embody all kinds of change that a continuous

valued quantity can undergo. Barring operating region changes, all quantities

that are dealt with in this domain obey these rules. All "real" systems behave

like this, (at least, at the commonsense scale in which one is viewing them.) All

QSIM outputs which do not contain operating region changes are, by

construction, T -legal.

QSI requires that its input behaviors are T-Iegal, so in a single run, it

should only be "shown" a single operating region of a system. In consecutive

runs, by feeding QSI by the system behaviors at different operating regions,

the QDEs of all the operating regions can be obtained.

Apart from operating region changes, another source of T - i li ega I

behaviors is the following: Suppose one is monitoring a system, as in Section

3.2.6. Because of one's measurement intervals, one may "jump" over some states

(especially time-point states) that appear in the actual qualitative behavior of

the parameter being measured. This may lead to discontinuous changes in the

"behavior" constructed as a result of the measurement.

Actually, the constraint determination stage (Section 6.2.4) of QSI works

equally well for T -illegal and T -legal behaviors, i.e., it finds all constraints

valid on the parameters in the input behaviors, but the nature of the model

depth test and extension stages requires the T -legality assumption, as will be

seen.

To represent some properties of behaviors that QSIM is able to indicate in

its output, the QSI input marker symbols, EQU and CYC, are defined. These

markers may appear after each input behavior. Their meanings are as follows:

-EQU requires that in the last state of the behavior it precedes, all qualitative

directions are s t d, and means that the system is quiescent from that time on.

(This conclusion is heuristic, of course, see Section 3.1.2.)

79

-CYC requires that the last state of the behavior it precedes has appeared before

III that behavior, and means that the rest of the behavior is cyclic.

The landmarks discovered during simulation can be distinguished from

the other ones in QSIM's output, and QSI also requires that such landmarks be

specified in the input quantity spaces, by preceding their names by the string

"d iscl m" (standing for "discovered landmark.")

Note that none of these requirements about the input violates the

"spirit" of system identification and let the algorithm know more than it is

"allowed" to: Equilibrium and cyclic behavior are generally easily observable

things, and a simple method of understanding which landmarks are discovered

during the observed behavior is to designate all nonzero values at which the

parameter becomes std for some time as that parameter's discovered landmarks

III that behavior.

Actually, 'QSI starts execution with much Ie s s information that it .is

"entitled" to: It has no idea at all about w hat the parameters are; unit (or even,

dimension) information on the parameters, which goes without saying in CSI,

is nonexistent, and even the most natural invariant knowledge (like "amounts

are never negative") cannot be used. The fact that QSI is still able to find the

models, as will be demonstrated, shows the algorithm's potential strength.

QSI's input may also contain an integer representing the maximum

number of allowed iterations for the algorithm. When this item is absent, the

number is assumed to be infinite. The allowable number of excess behaviors III

depth testing is also an input item. (See Section 6.2.6 for explanations.)

Finally, if he wishes, the user may include postulation and search mode

selectors in the inrut; these specify certain restrictions on the model search

that will be performed, and can be utilized for efficiency reasons, especially

when additional information ("hints") about the sought model is available, as

will be explained.

QSI's output consists of one or more constraint sets, which are models of

the system exhibiting the input behaviors. Each QDE in this sequence is deeper

(Le. has more constraints and invisible parameters) than its predecessors, with

the last one being an appropriate description of the system.

80

6.2.2. The Algorithm

To avoid conceptual cluttering, the preprocessors, which are used for

converting the possibly numerical input to qualitative form and qualitative

noise filtering, will not be explained until a later section. This section will be

devoted to the "core" of QSI, the basic algorithm which constructs system

models from their behaviors.

The algorithm (Figure 6.2.1) starts with a stage of constraint

determination on the input behaviors. The QDE obtained as a result of this stage

is tested to see whether it is appropriately deep or not. If it passes the test, the

model has been found. Otherwise, the model (and, therefore, the behaviors,) are

extended to contain new parameters, and constraint determination is made on

this set, followed by a new test. This loop is exited when a "good" model is found.

The model is enhanced by making use of dimension information inherent in

the arithmetic constraints, and the algorithm terminates. Htie is the algorithm

in a pseudo-high-Ievel language:

BS := set of system behaviors from input
perform Constraint Determination on BS, resulting in system QDE

loop: print the QDE
if the QDE passes the Depth Test

then
blockbegin

impose Dimension Consistency on the QDE, resulting in final model
print final model
terminate

blockend
Depth Test not passed

postulate new parameters; EBS := BS u [the new parameter behaviors
perform Constraint Determination on EBS, resulting in the extended

system QDE
BS := set of system behaviors involving parameters that appear in the QDE
g{L,!Q loop

The constraint determination stage finds all the constraints valid in the

behaviors given to it, using a simple method. It considers all possible

constraints on the given set of parameters, and controls each of them to see

whether it holds throughout the sequence of input states. However, not every

constraint found in this manner is included in the resulting QDE; only the

81

"useful" constraints that are not algebraic consequences of already existing

ones are added to the model.

constraint
determination

model depth test

simulate
ODE

model extension

parameter
postulation

constraint
determination

YES
dimension

consistency

Figure 6.2.1. The QSI algorithm

The model depth test stage uses a slightly modified version of the QSIM

algorithm to make its decision. The QDE produced by the previous stage is

simulated by QSIM for each distinct initial state appearing in QSI's input. The

output of QSIM is then examined. Since the constraint determination stage

performs correct system identification on its input, QSIM's output in this stage

is bound to contain all of QSI's input behaviors. (This is proven in Section 7.2.)

What is really checked in this stage of the algorithm is the number of QSIM

82

behaviors that do not appear in the QSI input. If these are above an

"acceptable" level, (see discussion in Section 6.2.6) the QDE is deemed "loose,"

and model extension is performed. Otherwise, the QDE is accepted and the

algorithm terminates after the dimension consistency stage.

The model extension stage involves adding new variables into the

equation of the system. These new parameters are obtained from the old ones;

they are the derivatives, sums, squares, etc. of the old parameters. If

interesting relationships which may tighten QSIM simulation in this extended

set of parameters are found by constraint determination, the involved

parameters are permanently added to the model; i.e. they are "discovered" by

QSI.

The dimension consistency stage converts the obtained model to a "real"

one where the discovered relationships among the quantities still hold, but the

simple dimension rules imposed by the constraints on their parameters (such

as the ADD and MINUS constraints' requirement that their parameters have the

same units) have been satisfied by the postulation of possible "buffer"

parameters and M constraints.

After an example which illustrates these concepts, each stage will be

discussed in detail.

6.2.3. An Example

As an example to the operation of QSI, the U-tube (in operating region

NORMAL) of Section 3.1 will be considered again. Since the QDE of this system

has already been seen, one has an idea of what the underlying model is. Of

course, QSI has no such information when it starts. Suppose that only the

amount parameters appear in the input. (It is very likely that only these two

would be recognized as parameters of this system after a "shallow"

observation.) Two behaviors of this system are input: One of them starts with

amount_A decreasing and amounCB zero and increasing; the other describes

the opposite case. (To keep the example as simple as possible, the maximum

capacity limits of the tanks are not considered at all. The algorithm would work

equally correctly in the case where they are included, and the following

discussion would still apply. The number of input behaviors would rise in that

case, to cover the various ordinal relations that the amounts could have with

83

their maximum landmarks at the end of the behavior III this operating region.)

So the input behaviors are as in Tables 6.2.1 and 6.2.2.

TABLE 6.2.1. U-tube identification, input behavior #1

amount A amount B time
«0,00), dec> <0, inc> to
«0, 00), dec> «0, 00), inc> (to ,t])
<disclmA, std> <disclmB, std> t]

EQU

TABLE 6.2.2. U-tube identification, input behavior #2

amount A amount B time
<0, inc> «0, 00), dec> to
«0,00), inc> «0, 00), dec> (to ,t])
<disclmA, std> <disclmB, std> t]

EQU

The constraint determination stage tries out all constraints syntactically

possible on amounCA and amouncB. For example, DERIV(amount_A, amouncB)

is tried, but it fails in the very first state in the input, so it is discarded. The

only constraint that is satisfied throughout the input is M-(amouncA,

amount_B), so it forms the initial QDE on its own.

Note that no such constraint appears in the U-tube model of Section 3.1.1.

However, simple reflection about the system confirms that the amounts in the

tanks are indeed inversely proportional in the operating region NORMAL. The

human who wrote the QDE of Section 3.1.1. chose not to include the M-. (That

model still adequately describes the system.) On the other hand, QSI, which is

designed not to miss any significant constraints on the known parameters, has

found it. (The "human" aspects of modeling vs. QSI will be discussed further in

Section 8.1.)

This single-constraint model is simulated in the depth-test stage from

both initial states in the input. As expected, the model cannot pass the test; it is

too shallow. The single constraint cannot represent the inner mechanism

which causes the system to arrive at equilibrium. Among the behaviors

generated by QSIM at this stage are those where one amount starts increasing

84

from zero, while the other one arrives at, and even goes below, zero. So a model

extension is necessary.

The model extension stage begins with the computation of the behaviors

of the newly postulated parameters. (The extent of postulation can be modified.

For certain problems, more efficient solutions with less postulation are

possible; see Chapter 9 for a complete list of new behaviors for this example III

full postulation mode.) Since the new parameters are linked by constraints to

the old ones, whose values are already known, their values at each state can be

calculated. Possible ambiguities are resolved using certain heuristics. (See

Section 6.2.5.) For example, consider two new parameters, say, PX and PY, which

are defined to be the time derivative of amouncA, and the sum of the two

amounts, respectively. The defining constraints of these parameters are

therefore

DERIV(amouncA, PX) and ADD (amount_A, amounCB, PY).

By the use of the heuristics, which basically say that "things change as

infrequently as possible," the new parameter behaviors are calculated, and the

system behaviors are augmented to include them, as shown in Table 6.2.3.

Already, another important relationship has been discovered: The sum of the

amounts is fixed, i.e. mass is conserved.

TABLE 6.2.3. U-tube identification, behaviors of two of the postulated

parameters

System Behavior

amount A amount B PX
«0, 00), dec> <0, inc> « -oo,O),inc>
«0,00), dec> «0, 00), inc> « -oo,O),inc>

<disclmA, std> <disclmB, std> < 0, std>
EQU

S~litem Behavior

amount A amount B PX

<0, inc> «0, 00), dec> «0, 00), dec>

«0,00), inc> «0, 00), dec> «0, 00), dec>

<disclmA, std> <disclmB, std> < 0, std>
EQU

Quantity space of PY: {_oo, 0, nlm, oo}

#1

#2

PY
<nlm, std>
<nlm, std>
<nlm, std>

PY
<nlm, std>
<nlm, std>
<nlm, std>

.... time
to
(to ,t1)
t1

time
to
(to ,t])
t1

85

Constraint determination on these larger behaviors is more involved.

Parameters which appear in two or more constraints which do not

algebraically imply each other are added to the model, and the constraints

involving them are made part of the QDE. A lot of constraints which are implied

by others are not even checked, which is good for efficiency. The QDE found

after one iteration of model extension in derivative postulation/half search

mode and fed to the depth· test module is presented in Table 6.2.4. The simulation

of this model from the initial states predicts only the input behaviors, so an

acceptable model has been obtained.

TABLE 6.2.4. Constraints found III the U-tube identification

CONSTRAINT

M-(amount_A,amounCB)
DERIV (amount_A,P 1)
DERIV(amouncB,P2)
ADD(amounCA,Pl,amounCB)
ADD(amount~B,P2,amount_A)

The ADD constraints in this model involve the addition of a quantity with

its time derivative, which is arithmetically not legal. To legalize the situation,

while keeping the valuable ADD relation, three buffer parameters for the

arguments of each ADD are postulated. The buffer parameters are linked by M+

constraints to the ADD arguments, and each has the same quantity space

structure as the corresponding ADD argument. The resulting model of the U

tube in operating region NORMAL is the one shown in Table 6.2.5, which is,

although slightly different than the model of Section 3.1.1, a correct and deep

description of the system. The newly postulated parameters are seen to

correspond to the following actual quantities:

PI: Flow into tank A
P2: Flow into tank B
P3, P8: Pressure at the bottom of tank A
P5, P6: Pressure at the bottom of tank B
P4: The pressure difference between tank B and tank A
P7: The pressure difference between tank A and tank B

The method's power of hinting

demonstrated. (See Section 8.1 for

meaningful, and an interpretation for

at meaningful deep parameters is thus

deep parameters which are not so

them.)

TABLE 6.2.5. Final U-tube model after identification

CONSTRAINT CVs

M-(amouncA,amount_B)
DERIV (amount_A,P 1)
DERIV(amouncB,P2)
M+(amouncA,P3)
M+(PI,P4)
M+(amouncB,P5)
ADD(P3,P4,P5)
M+(amouncB,P6)
M+(P2,P7)
M+(amouncA,P8)
ADD(P6,P7,P8)

(0,0), (00,00), (-00, -00)
(0,0), (00,00), (-00, -00)
(0,0), (00,00), (-00, -00)

(0,0), (00, 00), (-00, -00)
(0,0), (00,00), (-00, -00)
(0,0), (00,00), (-00, -00)

86

Various more detailed features and some problems will be discussed in

further examples in the text. An in-depth discussion of each of the individual

stages follows now.

6.2.4. Constraint Determination

The constraint determination process is summarized in the pseudo-high-Ievel

language algorithm below. Remember that the input is a set of system

behaviors, and the output is a set of constraints. In this sense, this stage is the

part of QSI where system identification itself is performed, the others deal with

improving the model in some way or another.

for each constraint type CT do
for each tuple ARG of parameters that can be arguments to CT do

if existing constraints do not overrule CT(ARG)
then
if CT(ARG) is a consequence of existing constraints
then

write(CT(ARG»
else

blockbegin
for each qualitative state in the input d.Q

if CT(ARG) does not hold
then

break out and gQJQ. blockend
{At this point, CT(ARG) is a novel constraint valid throughout the input}
write(CT(ARG»
add CT(ARG) to the QDE of the system

blockend

87

In the algorithm above, an accumulation and control of possible CVs of

the CT is also part of the check about whether it "holds" or not. When CT(ARG)

is added to the QDE, any discovered CVs go with it.

How many different qualitative constraints can be written on p

parameters? There are six constraint types, and all of them have to be

considered for every combination of parameters.

M+ has to be checked on all pairs of parameters. However, since M+ is

commutative, M+(Y,X) need not be checked if M+(X,Y) has already been

checked. The same applies for M- and MINUS. (MINUS is a special case of M

anyway.) For each of these types, the number of constraints that will be

checked is thus

(6.1)

DERIV is not commutative, so t\vice as many of those has to be considered

as anyone of the above-discussed ones, that is:

2.(i) =p2 - p (6.2)

DERIV s will be checked.

ADD and MULT are commutative, so that their first two arguments can be

interchanged. (Not all "additive" or "multiplicative" relationships among the

parameters are noticed at this stage: Note that any addition or multiplication of

more than two operands can be expressed as a set of three-argument ADD or

MUL T constraints as defined in Chapter 3. If one's initial set of parameters is

{A,B,C,D} and the relationship A + B + C=D holds among these, the first

constraint determination does not add the constraints representing this

equation to the QDE, since an additional parameter is required to write them in

the QSIM format: ADD(A,B,P), ADD(P,C,D). Such "cascades" of constraints are

discovered later in the model extension stage; see Section 6.2.5.) The formula for

the number of controls of ADD and MULT constraints on three different

parameters is thus

(P) p.(p-l).(p-2)_p3_3p2+2p
3. 3 = 3. 6 - 2 (6.3)

88

since this is a matter of choosing three parameters, and deciding which of this

will be third argument.

Have all the possibilities been exhausted? There is still one more

meaningful relationship which can exist between parameters, and which IS

expressible in the present vocabulary. The parameter X can be the s qua r e of

parameter Y, that is, MULT(Y,Y,X) may be valid. Since this is a noncommutative

binary relationship like DERIY, the number of MULTs that will be tried in this

manner is again p 2 - p. (The reader may note that there is also a "twice"

relationship which can be expressed as ADD(Y, Y,X). Since this is qualitatively

equivalent to M+(Y,X), and also not very common in practice, this combination

is not checked.)

The total number of possible constraints on p parameters is therefore

the sum of the above, Le.

(6.4)

for p ~ 3, and only 7 for p =2.

But the actual number of constraints that get checked against the input

states is usually much less than that, since the semantics of the constraints can

be used to decide on most of them without checking any values. Consider the

following scenario: Constraint generation and testing has been going on for

some time. The constraint M+(A,B) has been found to be valid. Now, the

constraint MINUS(A,B) is considered. The algorithm can decide to skip this

possibility immediately, since the MINUS has no hope of being satisfied, given

the M+.

The M constraints' defining properties can be used extensively to detect

constraints which are logical consequences of already discovered constraints,

as well. For example, if M+(A,B) and M+(B,C) are alrea~y known, there is no

need to check M+(A,C) against the input behaviors; it is valid. There are

interestingly many rules like this one; the ones QSI uses, together with their

proofs, are listed in Chapter 7, which is about such "technical" issues.

Consequence constraints like the one mentioned above, are written out,

but not included in the QDE that is fed to QSIM for the model depth test. The

reason for this is twofold: First, consequence constraints do not change

89

anything in the QSIM output if their antecedents are already in the input, (This

is a result of their being consequences,) second, QSIM's time requirements are

linear in the number of constraints, so their inclusion slows down execution

considerably, without contributing anything.

The consequence detection check, which has just been explained, speeds

up the algorithm especially in later constraint determinations, made after

model extension, when p is relatively great, and the number of values to be

checked can be big. (See Sections 6.2.5 and 7.1.)

6.2.5. Model Extension

After constraint determination has been performed on a particular set of

behaviors, no new constraints, other than those already found, can be written

on the set of parameters appearing in these behaviors, since constraint

determination is exhaustive. So if the model at hand is found to be too loose by

the depth test stage (Section 6.2.6) and has to be extended by the addition of new

constraints, one has to introduce new system parameters to the model, so that

constraints involving them can be searched for. Since the set of behaviors is

all that QSI knows about the system, it is used in the postulation of the new

parameters. Each newly postulated parameter is a "neighbor" of an existing

parameter. Two parameters are n e i g h b 0 r s if they appear in the same

constraint. Parameter postulation is then seen to be composed of two steps:

1) Postulation of a new constraint which links one or two "old" (i.e. known)

parameters to a new one; this will be called the defining constraint of the new

parameter,

2) Calculation of the behavior of this parameter from its defining constraint

and the values of its neighbors.

Both of these steps give rise to important issueS, which will now be

described.

To make QSI search as wide an area of the "space" of models mentioned

before as possible, virtually all neighbors of the known parameters have to be

postulated. If some neighbors are left out,and the "real" equation describing

the system contains them, one is faced with the possibility of failing to find a

90

good model. On the other hand, parameter postulation is an expensive process

(Section 7.1) and a number of QSI problems, where the solution can be obtained

efficiently with the postulation of only some neighbors, exist. (Examples to this

are presented in Chapter 9.) Because of this, QSI has been made flexible about

the extent of postulation, and can be run in anyone of a number of

"postulation modes." The following analysis is about the full postufation mode,

where, in response to the lack of any "hints" about the actual model,virtually

all the neighbors are created, i.e. the worst case.

Full postulation mode involves the generation of the following neighbors:

-The derivative of every non-constant parameter
-The sum and differences of every pair of parameters
-The product and, if possible, ratios of every pair of parameters
-The negative of every parameter
-The square of every parameter

As can be seen, all types of constraints, except the Ms, are utilized as

.. defining constraints. The reason for the fact that not all syntactically possible

neighbors are created will be clear when the second step of parameter

postulation, that is, the behavior calculation procedure, is discussed.

QSI decides that a parameter is constant when all its values are seen, or

can be assumed, to have the direction std, and all its magnitudes are the same

landmark. The discovery of such constants is desirable, since they greatly limit

the proliferation of QSIM outputs, and are conceptually helpful in modeling, as

will be further discussed. Derivatives of constants need, of course, not be

postulated, since values fixed at zero can be eliminated from equations. (A

"lonely" zero on one side of an equation can always be handled by using ADD

and/or MINUS constraints.)

Neighbors whose defining constraints are already in the QDE, (found by

previous constraint determinations,) will also not be postulated.

How many neighbors of p parameters are there? Assuming that none of

the reducing conditions above apply, one has

* p derivatives,

* p negatives,

* p squares,

* (i) sums,

* 2. (~) differences,

* (~) products, and

* 2.(~) ratios.

91

Therefore, the worst-case number for the full postulation mode is the sum

of these, that is, 3p 2 new parameters will be created, provided all old

parameters are nonzero throughout the input (which is unlikely.) If a

parameter X does have the magnitude zero even once, no ratios of the form i
(where Y is another old parameter) are postulated, so the above number is

usually not reached. In cases where limited postulation is acceptable, for

example, in the "derivative postulation mode," where only the derivatives of

the existing parameters are created, the number of neighbors, and the time

required, are of course accordingly less.

To perform extended constraint determination on the new set of

parametem, QSI must assign behaviors to each of the newly PN'tuJ ated

parameters. The values of the old parameters at each state and the defining

constraint are known, value sequences of the new parameter which satisfy

both the constraint and the transition rules can be found. The problem is that,

in most cases, there is an i nfi nit e number of legal behaviors that may be

assigned to the new parameter.

To see this, one behavior of the parameter amouncA from Section 6.2.3

will be examined more closely. (Table 6.2.6.) If the derivative of amouncA, that

is, PX. where DERIV(amouncA,PX), is being postulated, knowledge of the

constraint alone yields the information III Table 6.2.7 about PX' s behavior in

[to ,t 1]. It is also known that PX will have magnitude zero after t 1.

TABLE 6.2.6. Behavior of amouncA

amount A
«0, 00), dec>
«0, 00), dec>
<disclmA, std>

EQU

time
to
(to ,t1)
t1

Knowledge of the transition rules lets one· conclude that PX's direction

should be inc just before t], and it should be std at t] and after it.

92

TABLE 6.2.7. Behavior of PX in [to ,til

PX time
<A negative landmark or interval, ?> to
<A negative landmark or interval, ?> (to ,t])
<I), ?> t]

But this still leaves an infinite number of possibilities for the behavior of

PX, the ones depicted in Tables 6.2.8 thru 6.2.10 being among them. There is

nothing wrong about the "length" of the behavior in Table 6.2.10; remember

that the number of states in a behavior is just a measure of the changes that

occur, so by adding new parameters to a system, one always faces the possibility

that the description of its behavior may get longer to reflect the changes in the

new parameters. If PX indeed has that behavior, the behavior of the system

with this parameter included will be as shown in Table 6.2.11, with the period

designated [to ,t]] in the "PXless" fomi of the behavior now being described by

five states from to to t2.

TABLE 6.2.8. Possible behavior for PX

PX time
« -00, 0), inc>
« -00, 0), inc>
<0, std>

EQU

to
(to ,t])
t]

TABLE 6.2.9. Another possible behavior for PX

PX time
<lmi, std>
<(lmi, 0), inc>
<0, std>

EQU

to
(to ,t])
t]

Quantity space of PX: {-oo, lmi, 0, oo}

All three behaviors of PX shown in these tables, and, actually, all the

infinitely many qualitatively distinct behaviors where PX "wanders" III

various ways in negative magnitudes before settling at zero, are physically

93

possible for the input of Table 6.2.1. The defining constraint's restrictions are

simply unable to help one decide at one of them. ADD and MULT constraints are

often faced with the same situation.

TABLE 6.2.10. Yet another possible behavior for PX

PX time

<(lml,O), dec>
<(lml, 0), dec>
<Iml, std>
< (1m 1 , 0), inc>
<0, std>

EQU

to
(to ,t])
t]

(t] ,t2)
t2

Quantity space of PX: {-oo, Iml, 0, oo}

TABLE 6.2.11. Possible system behavior for input of Table

amount A a.P1oun! B PX time
«0, 00), dec> <0, inc> <(lml, 0), dec> to
«0, 00), dec> «0, 00), inc> < (1m 1 ,0), dec> (to,t])
«0, 00), dec> «0, 00), inc> <Iml, std> t]
«0, 00), dec> «0, 00), inc> <(lml,O), inc> (t] ,(2)
<disc/rnA, std> <disc/mE, std> <0, std> t2

EQU

6.2.1

One might be tempted to design the algorithm to explore each

qualitatively distinct possibility, as qualitative reasoners often do, but the

previous discussion showing that there can be an infinite number of

possibilities overrules that approach. One has to use rules of heuristic nature to

assign the most "reasonable" of its possible behaviors to each new parameter.

The heuristics that have been adopted after thorough experimentation

are:

"Prefer behaviors in which the qualitative direction' changes the fewest
times. "

and

"If the parameter can be constant (i.e. std throughout at the same landmark)
prefer that behavior and designate the parameter as constant."

94

These rules have many desirable features. They are easy to implement.

They correspond to commonsense and scientific intuition in more than one

way. When there are many alternative explanations for a given event, the most

reasonable thing to do is to choose the simplest. It is simpler to assume that

something ("thing" meaning derivatives as well as values) is not changing,

when one does not know whether it is changing or not4 .

The more times the direction of a parameter changes, the stronger is the

suggestion that the derivative of that parameter is driven by an even deeper

mechanism, leading to a presumably unnecessarily complicated model.

Especially constant parameters are important in QSIM models, and contribute to

the production of smaller trees. (See the examples in Chapters 4 and 5.) They

also usually correspond to important "natural" quantities. The impressive

number of examples in which they actually work is another important factor

III the justification of the heuristics .

. QSI does the following when postulating a new parameter: It determines

the shortest length that the new parameter's behavior can have, (short

behaviors can contain fewer changes than longer ones, by definition) and

produces all behaviors of that length that the parameter can exhibit, obeying

the defining constraint and T-Iegality. The heuristics are then employed to

choose one of these behaviors and assign it to the parameter. If two or more

behaviors are indicated to be equally preferable by the heuristics, one is

picked randomly. Since sys te m behaviors are the input of constraint

determination, the input behaviors are lengthened if necessary (i.e. if the new

parameters require more values in their behaviors) as well as being "widened"

by the behaviors of the new parameters. For more details of the behavior

calculation process, see the discussion in Chapter 9.

In the U-tube example, application of the heuristics results in the

behavior of Table 6.2.8 being selected for the derivative of amouncA, the

enlarged system behaviors in this case would indeed look like those in Table

6.2.3.

It now becomes clear why it was decided not to postulate, for example, the

parameter IX, with the defining constraint DERIV(IX,X) from any old parameter

4 Note the parallels to Newton's first law and de Kleer and Brown's canonicality
heuristics (Section 2.2.2.)

95

X, or the square roots of existing (necessarily nonnegative) parameters. In the

former case, absolutely nothing about the new parameter's magnitude is

known, while in the latter case, there are generally two alternative

possibilities for the new parameter's values, and no hint about which one to

choose. The procedure described above can be applied to find behaviors for

such neighbors just as easily, but it will always come to a random selection,

with no particularly good reason that the behavior selected is the most sensible

one.

The "bigger" behaviors obtained as a result of parameter postulation

have a tentative nature. Not all of the neighbors of the input parameters have

to be important parts of the model, therefore their permanent addition into the

system description is deferred until they are seen to be "significant" in some

manner. QSI's criterion for significance of a model component is the following:

Its addition to a QSIM input should contribute to the elimination of some

additional behaviors. This is reasonable, since the whole aim of the model

extension stage is to eliminate as many behaviors that do not appear in the

input of QSI as possible from the output of QSIM. Immediately after behavior

calculation, only the defining constraints of new parameters which are seen to

be constant throughout their behaviors are permanently added to the system

QDE, with invariant information indicating their fixedness being included in

the QSIM input set. Fixed parameters are significant by the above criterion,

since they eliminate two transitions at each point state. (See Table 3.1.1.)

The constraint determination procedure is called to find the significant

constraints on the new and wider set of system behaviors. For efficiency

reasons, the number of tuples that get considered in this process can be

modified by specifying one of various "search modes," similar to the already

mentioned postulation modes, in the input. Full search· mode tries all

combinations, just as initial constraint determination does when acting on the

original input. Half search mode requires at least one old parameter t<;> appear

in each considered tuple.

As mentioned above, constraint determination at this point also involves

an insignificance check, which is similar to the consequence detection check.

Not every constraint that holds on the behaviors is included in the QDE.

Insignificant constraints are the ones that can be proven to hold without being

tested on all the states, using present information. Defining constraints by

themselves have this property; the computer "knows" that they hold. because it

96

postulated them, and then calculated the new parameter values so that they

hold. Constraints of the form ADD(X,Y,Z), where Z is any parameter, and

MINUS(X,Y) is asserted or can be derived, are also insignificant. Since the

qualitative addition of values of opposing sign is ambiguous, such constraints

can be satisfied for lots ofZs, without reflecting any actual relationship; their

generation is just a by-product of QSI's policy of testing every combination.

Significant constraints found by this stage will generally contribute to

the elimination of QSIM behaviors, since the old parameters in them now have

to satisfy more constraints. This usually implies a smaller number of

transitions, and therefore, less behaviors. (See proof in Section 7.2.)

When a significant constraint is found, it, and the defining constraint(s)

of the new parameter(s) appearing in it are added to the QDE permanently, and

the new parameters' behaviors are permanently "pasted" to the system's input

behaviors. Postulated parameters and their behaviors which are still out of the

permanent model at the end of constraint determination are dropped, and the

extended model, (now with a greater number of "old" parameters,) is again fed

to the· model depth test stage, to see whether it will produce only the input

behaviors or not.

If no significant additions can be made to the model by this stage, the

derivatives of all parameters are appended all the same, in the hope of finding

a better QDE in a later iteration.

Model Depth Testing

The model extension procedure is a well-defined way of deepening models by

adding (presumahly) directly unobservable but important entities and

relationships. Whether the new version of the model is satisfactory for

simulation modeling purposes or not is determined by the model depth test

stage. It must be emphasized that the purpose is to obtain a model which
,

produces all, and only, the input behaviors. That the QSI-produced models yield

all the input behaviors is guaranteed. (See proof in Section 7.2.) To make them

produce as few of other behaviors as possible, the obvious thing to do is to add

more constraints to them. To check the intermediate models to see whether they

meet the requirements, the obvious approach is to simulate them using QSIM.

97

The model depth test stage starts by preparing the QSIM inputs necessary

for the simulation. The QDE is already formed by the previous constraint

determinations. Recall that QSI assumes that its input originates in a single

operating region. Initial quantity spaces are prepared by stripping the

discovered landmarks from QSI's input, and the quantity spaces of postulated

parameters (if any.) Invariant information, specifying which parameters are

constant, is discovered earlier, as discussed, and incorporated here. Each

different initial state that appears in the input of QSI is entered into QSIM's

input separately; QSIM will run from each of them.

Pure QSIM creates (at least, tries to create) the complete state tree for each

initial state. In this application, one only wants to see that the model predicts

the given behaviors correctly, so one only needs simulate for the length of

these behaviors. Levels of the tree corresponding to events occurring after the

end of the input behaviors are not created. (This level limiting feature was

first mentioned in Section 4.1.1.)

Since QSIM can predict spurious behaviors, and one has no way of

knowing whether spurious predictions will appear (or even, have appeared) III

a particular simulation or not, the ideal aim of finding a model which will

generate only the input behaviors is not generally reachable. So the model

depth test stage must not strictly require that the number of QSIM outputs and

QSI inputs be equal; an "acceptable" number of "excess" output behaviors have

to be allowed. In view of the fact that this number changes widely from

problem to problem, it has been decided to let the user specify it in the input. If

no allowable excess number is specified, it is set to zero.

A shortcut is possible during the simulation. If the number of pre~icted

behaviors exceed the allowed limit before the generation of the state tree

arrives the specified level, simulation is cut off, and the current model is

deemed unsatisfactory. This method is very easy to implement in the very first

model testing, just after the initial constraint determination. One can always

find the minimum number of behaviors implied by an incomplete state tree by

simply counting its present leafs. In further iterations things are complicated

by the fact that postulated parameters may cause a proliferation of system

behaviors. In the following example, assume that X and Yare input (old)

parameters, and Z is a new parameter with defining constraint ADD(X,Z, Y).

(Obviously, these would normally be part of a bigger, meaningful system.

98

Attention is focused on this part of it, for the sake of the discussion.) Suppose

that X and Y's input behavior is as in Table 6.2.12.

TABLE 6.2.12. Input behavior of X-Y system

X Y
«0, (0), inc> «0, (0), dec>
«0, (0), inc> «0, (0), dec>
<disclmX, std> <disclmY, std>

EQU

In the model depth test stage, the parameters have the initial values

X=«O, (0), inc>,

Y=«O, (0), dec>,

Z=«O, 00), dec>,

and QSIM creates the behaviors in Table 6.2.13, which differ only in the final

magnitude of Z, for the X-Y-Z system.

TABLE 6.2.13. Behaviors of X-Y-Z

x
«0, (0), inc>
«0, 00), inc>
<newX, std>

system

Y
«0, (0), dec>
«0, (0), dec>
<newY, std>

EQU

Z
«0, 00), dec>
«0, 00), dec>
<newZ, std>

Quantity space of Z: {-oo, 0, newZ, oo}

x
«0, 00), inc>
«0, (0), inc>
<newX, std>

x
«0,00), inc>
«0,00), inc>
«0, (0), inc>
«0,00), inc>
<newX, std>

Y
«0,00), dec>
«0, (0), dec>
<newY, std>

EQU

Y
«0, 00), dec>
«0, 00), dec>
«0, 00), dec>
«0, 00), dec>
<newY, std>

EQU

Z
«0,00), dec>
«0, 00), dec>
<0, std>

Z
«0, 00), dec>
«0,00), dec>
<0, dec>
«-00, 0), dec>
<newZ2, std>

Quantity space of Z: {-oo, newZ2, 0, oo}

99

Should the model test fail, since three behaviors were obtained when one

was wanted? Clearly not, because a closer examination of the QSIM output shows

that it actually contains only the single input behavior, when one restricts

attention to the parameters in the input. So the current model in this example

(whatever it is) is acceptable.

If a subsystem is defined to be a subset of the set of parameters, the

specification, of the model depth test stage may be worded as follows: The model

will be labeled satisfactory if the number of the input subsystem's behaviors in

the QSIM output is acceptably close to the number of QSI input behaviors. The

simulation cutoff mechanism should check this number, and the level limiting

mechanism should keep the "elasticity" of the behaviors in mind when making

its decision.

Note that the above-mentioned features mean that this stage will

generally take less time than a similar number of pure QSIM simulations with

the same input model would require.

If the "QDE" to be tested is empty, then model testing automatically fails

without any simulation performed; model extension is clearly necessary. This

trivial case may occur only immediately after initial constraint determination.

If any non-constant parameter which appears in the input is missing from all

of the constraints in the QDE, the depth test again fails without simulation,

since an unconstrained parameter would lead to an infinite simulation. (For

examples, see Chapter 9.)

Model testing is automatically satisfied if the number of iterations has

exceeded the specification in the input. This guarantees that the algorithm

terminates even for pathologically unrelated parameters in the inpur.

6.2.7. Dimension Consistency

The final stage of QSI is a procedure of model rationalization, where the

previously discovered relations are made to fit into arithmetically sensible

constraints. QSI is totally ignorant about the nature of the input quantities in

the beginning. But when the constraints are found, simple rules of

mathematics imply certain relations among the dimensions of the parameters

100

in the constraints. If these relations are contradictory, the model can be

rationalized by the use of buffer M+ constraints and parameters.

If a DERIV(X,Y) exists, for example, this implies that X and Y's dimensions

are not the same, (Y has X's dimension divided by time) so they can not appear

in additive constraints together, since ADD and MINUS obviously require all

their arguments to have the same dimensions. So if, for instance, ADD(X,Y,Z)

also appears in the QDE, it is not acceptable, and is removed from the model. But

one does not want to lose the addition relation whose existence in the system

has been discovered. Therefore, the M+ constraint type, which can be viewed as

a "dimension converter," is used. Three new (buffer) parameters B I, B2, and B3,

whose quantity space structures are identical to those of X, y, and Z, are added

to the model, together with the constraints M+(X,B I), M+(Y,B2), and M+(Z,B3),

which have CVs linking each of BI, B2 and B3's landmarks to (respectively) X, Y

and Z's landmarks. Since B I, B2 and B3 will have exactly the same behaviors as

X, Y and Z, the constraint discovered among X.. Y and Z will exist between them

too, so ADD(B I,B2,B3) is also added. One now has the same model, (from a

simulation point of view,) but without the inconsistency.

The actual mechanism of this stage is a little more complicated than the

one just described, since some inconsistencies can be discovered only by

considering (possibly long) chains of constraints. Suppose, in the above case,

one did not have DERIV(X, Y), but the two constraints DERIV(X,P) and

DERIV(P,Y). Understanding that something is wrong with ADD(X,Y,Z) would

then require traveling along this chain of DERIVs. As another facet of the

dimension consistency imposing problem, consider that the arithmetic

constraints may form such chains too. Suppose one has

DERIV(A,E),

ADD(A,B,C),

ADD(C,D,E).

The fact that ADDs and MINUSes which share parameters in this manner form

equivalence classes of parameters of the same dimension has to be recognized

and handled by the buffering algorithm.

Since dimension consistency always applies in the real world, the buffer

parameters and constraints created in this stage usually hint at actual deep

model components, as the example of Section 6.2.3 showed. As extra constraints

101

which do not contribute to any behavior pruning, the buffer M+s would

certainly slow down a QSIM simulation of the model, but this is not a problem,

since QSI does not make any simulation after their creation.

The interpretation of what QSI's output actually means is quite involved,

and will be the subject of a later section.

6.3. Noise Filtering

Depending on the specifics of the application, two preprocessors may be

involved in the preparation of the QSI input. If the robot is obtaining the

knowledge about the behavior of the system from actual numerical

measurements, what it originally has is a group of parallel sequences of visible

parameter values; with a real number for each parameter value at each

discrete point of measurement. This (possibly long) input can be converted to a

(usually much shorter) qualitative behavior by a preprocessor. Whole

sequences of measurement points in which each parameter value changes in

only one direction are collapsed to single qualitative states. This operation can

be accomplished in time linear III the number of measurements. Each

qualitative behavior in the input is obtained by a separate run of this simple

algorithm. Other qualitative reasoners which have to perform this quantitative

to qualitative behavior conversion (e.g. for tracking monitored systems) also

employ similar methods. For a detailed (and much more advanced) discussion of

the issues about this conversion, see [50].

QSI's input has to be a correct description of the system's behaviors if it is

expected to perform successfully. If the input is stemming from measurements

of the real world, it may be corrupted by noise. No is e 'will be defined as the

differences between the measurements and the actual parameter values, caused

by any conceivable reason. Note that the qualitative representation is

particularly suitable (in fact, it was designed) for abstracting away

unimportant value fluctuations. Therefore, the noise may well have been

eliminated if the input has been prepared by a human, maybe even

inadvertently. In some cases, noise has no effect on the qualitative description.

102

Consider a parameter increasing in (0 ,00), with no known positive landmarks.

The measurement of this parameter is being continuously corrupted by noise

so that, at each reading, say, five units more than the actual value is presented.

The resulting qualitative behavior will again contain the value «0,00), inc> for

this parameter, and the noise will have been "in vain."

Despite these resilient features of the representation, a qualitative noise

filter has been developed. The filter is aimed at individual parameters, specified

in its input. (Because of the particular configuration of the experiment, it may

be the case that only some parameters are subject to noise, and others are not.)

If QSI (without running this preprocessor) fails to find a good model within the

allowed iteration limit, this can lead one to suspect the existence of noise.

Possibly noisy parameters can be identified as the ones with an unusually great

number of distinguished time-points in their behaviors.

The filter's input is the set of system behaviors, its desired sensitivity (see

below,) rnd the names of parameters to be filtered. Its output is a short'.;r (less

noisy) set of system behaviors, and smaller quantity spaces for the filtered

parameters. The following is an explanation of its working.

Many kinds of noise exist, but attention in this study will be restricted to

white noise, which can be modeled as a sequence of independent and

identically distributed random variables of zero mean. It is also assumed that,

when it exists at all, the variance of the noise is not very big, so it causes the

measurements to read values "slightly" greater or less than they normally

would, with equal probability. For example, if the plot of the magnitude of

parameter X is "really" as shown in Figure 6.3.1, one intuitively expects its

noisy version to be as in Figure 6.3.2. By the same reasoning, if one sees Figure

6.3.2 and is told that noise is present, then one would propose something like

Figure 6.3.1 as the noiseless (filtered) version. This is the qualitative analog of

the convolution technique, used in, for example, the early processing phase of

the vision process [2], to "smooth" the lines that will be obtained. As with all

filters, there is an inherent tradeoff involved in this technique: If you go too

far with the smoothing, real features of the behavior may get wiped out too, if

you are too cautious to avoid this, however, you run the risk of leaving actual

noise unfiltered. There is no perfect solution to this problem, and this kind of

noise filters are "heuristic" by their nature.

103

x

t

Figure 6.3.1. Actual behavior of X

x

t

Figure 6.3.2. Noisy behavior of X

The implementation of the qualitative noise filter is quite different from

its quantitative analog. This IS to be expected, since the qualitative noise filter

takes qualitative behaviors as input, and the averaging process of convolution

cannot be applied in this format, since there are no ordinary "numbers" to be

averaged. The qualitative filter again uses the ordinal relationships among

landmarks to achieve its aim.

An examination of Figure 6.3.2 reveals the undesirable features of the

noisy behavior, in addition to its being incorrect. A huge number of landmarks

have to be kept in its quantity space to describe this behavior. Note that Figure

6.3.1 requires only two landmarks outside the basic set. The noise landmarks

cause the behavior to have an unacceptably great number of distinguished

time-points and states. Even worse, they decrease the intelligibility of the

behavior and make it lose the advantages of qualitativeness.

104

A sequence of values in which the parameter's direction starts as inc (or

dec) in the first one or more values, becomes std once, and then is dec (or

inc) for one or more steps is called a tooth, because of the way it looks in a plot

of the parameter, like Figure 6.3.2. The basic idea of the filter is to replace long

sequences of teeth during which there is a general increasing (or decreasing)

of magnitude with single values with direction inc (or dec.)

The sensitivity of the filter is an integer specifying a lower limit for the

length of tooth sequences to be smoothed. After all, the behavior of Figure 6.3.1

is a (short) sequence of teeth itself, and one does not want such things to be

smoothed.

A tooth sequence to be filtered in a given parameter behavior IS

determined as follows: Sequences (as long as possible) of values where a ziczac

of directions (like {inc ... , std, dec ... , std, inc... }, where the ellipsis (...) means

"zero or more 01 the preceding,") exists are identified. Filtering can be

accomplished if: a) The number of stds are above the filter's sensitivity, b) The

parameter never has the value <1m, std> outside this sequence for any landmark

I m for which it has such a value in this sequence, c) The value <0, std> does not

appear in the sequence, and d) The odd-numbered (Le. 1st , 3rd , 5th , ...)

landmarks on which the parameter becomes s t d in this sequence are in

increasing (decreasing) order, and the same applies for the even-numbered

landmarks.

If all these conditions hold, this sequence of values is replaced by the

value <Mag, Dir> where Mag is the interval in the quantity space of the

parameter which is formed after deleting all the landmarks on which it became

s t d during the sequence, and Dir is the direction of the ordering determined in

condition (d) above.

Conditions (b) and (c) are required to prevent the filter from destroying

useful landmarks by mistaking them for products of noise.

Condition (d) is the check for the "general increasing (or decreasing) of

magnitude" mentioned before.

Here is an example showing how a noisy sequence is smoothed by the

fil ter.

«B 1,B2),inc>
<B2,inc>
«B2,Tl),inc>
<Tl,stci>
«B2,Tl),dec>
<B2,stci>
«B2,Tl),inc>
<Tl,inc>
«Tl,B3),inc>
<B3,inc>
«B3,T2),inc>
<T2,stci>
«B3,T2),dec>
<B3,stci>
«B3,T2),inc>
<T2,inc>
«T2,T3),inc>

-------->

105

«Bl,T3),inc>

The system behaviors have to .be renewed after parameter filterings are

complete. Since successful filtering shortens parameter behaviors, i.e. reduces

the number of the parameter's distinguished time-points, the system composed

of these parameters will have much shorter behav).ors, too. This reduction in

the size of the QSI input (keeping in mind that the quantity spaces are also

smaller now) is naturally an improvement from the point of view of the time

requirement. (See Chapter 7.)

Noise filtering of a single parameter can be accomplished in a single

pass, i.e. linear time. The same applies for the global behavior shortening.

106

VII. COMPLEXITY AND CORRECTNESS ANALYSIS OF QSI

This and the following two chapters will focus on various aspects of the QSI

algorithm presented in Chapter 6. Section 7.1 examines the time complexity

issue, while formal derivations of various claims made without proof in Section

6.2 will be presented in Section 7.2. The final section contains the rules that QSI

uses in order to detect consequence and insignificant constraints

6.2.5 and 6.2.6,) together with their proofs.

7.1. Complexity

(Sections

The computational complexity of QSI will now be determined stage by stage.

Most of the required analysis has already been done in the Section 6.2. In the

following, SO is the number of states in the input, PO is the number of input

parameters, Si and Pi are these numbers in the i th iteration.

7.1.1. Analysis

Constraint Determination

Since worst-case complexity is being considered, assume none of the conditions

(Section 6.2.4) which let the algorithm skip testing a constraint are fulfilled.

Also assume that each constraint is satisfied for the first S i-I states, so no

shortcut is obtained. The constraint determination after the i th iteration then

requires O(Pl s7) time for large Pi· In further iterations, Pi, and, generally, Si

will increase. Always, Si+l = O(Si), since all new parameter behaviors can be

expressed simply by replacing (in the worst case) each interval state III the

107

system behavior by three-state sequences of interval-point-interval states. If

constraint determination has to be perfonned for a second time, and if full

postulation mode is active, PI, the total number of parameters on which the

algorithm will work, will be O(p B), so the second determination will take

O(P~s7;) time. Experience shows that only a small fraction of the new

parameters are actually added to the model after determination (especially in

half-search mode,) so Pi+l = O(Pi) for i ~ 1, and constraint determinations III

later iterations also require O(pg s~) time. If one considers a (very) pathological

case in which a II neighbors get added to the model at each iteration, this
3 6 12 24 .

stage's time requirement would be on the order of PO, PO, PO ,PO , etc. III

successi ve iterations, i.e. it would

number.

Model Depth Testing

be exponential in the current iteration

Again assuming that no shortcuts are possible,. this stage consists of a number

of QSIM runs with level limiting. QSIM's worst-case complexity is exponential

in the number of parameters. As mentioned above, the number of QSIM input

parameters is usually linear in the QSI input parameters, but the worst-case

analysis about the parameter number stated in the above paragraph still

stands. Note that this stage is exponential in s, because of QSIM's nature.

Model Extension

The points made above about the growing number of parameters apply here,

too. The time requirement is linear in the number of postulated parameters,
2 I 11' . b . 2 4 8 which is O(p 0) in normal y a IteratIons, ut can rIse as PO, PO, PO,... in the

worst case. Note that this problem can only occur in postulation modes which

involve sums, differences, products, or ratios, since only the numbers of these

kinds of neighbors involve squared tenns. In all other postulation modes, the

number of neighbors is linear in the number of the old parameters, so the

"explosion" does not occur even if all the new parameters are added to the

model, which is itself a very rare situation.

The behavior calculation procedure, which is performed for every

parameter that is postulated, is generally linear in the number of states, (note

that the quantitative version of this task is linear in the length of the input,)

but unfortunately, the fact that one calculates all possible behaviors of the

108

minimum length and the ambiguity of qualitative arithmetic mean that

pathological cases (involving ADD or MULT as the defining constraint) in

which the time requirement is exponential in s can occur. Consider the two

parameters X and Y, which have the following values throughout the (long)

system behavior:

X=«O, 00), inc>

Y=«-oo, 0), dec>

Now consider the new parameter Z, whose defining constraint is ADD(X,Y,Z).

Clearly, Z can have any value at any time, only restricted by T-Iegality. To see

that the calculation of all of Z' s behaviors is exponential in s, note that this

procedure is equivalent to the production of several trees whose depths are

equal to s. Each possible value that Z may take at to is a root. Each transition

that it may undergo is a link between nodes.

The application of the behavior selection heuristics is linear in both s

and the number of alternative behaviors, which can be exponential in s, by the

reasoning of the above paragraph. This is another factor which suggests the

use of specific postulation modes for greatly improved efficiency.

The complexity of constraint determination, which is also part of the

model extension stage, was discussed earlier.

Dimension Consistency

The last stage of QSI is also the fastest. Since it simply involves scanning the

constraints in the QDE to find dimension relations among the parameters, it can

be completed in time polynomial in Ci, the current number of constraints. Note

that Ci itself is linear in the current number of parameters in the model.

7.1.2. Remarks

The "good news" about the complexity of QSI is that most of the analysis just

performed entailed very pessimistic assumptions. In practice, the consequence

and insignificance detection checks omit a lot of constraints III constraint

determination. Constraints that do get checked against states are usually "shot

down" very early in this process. Full postulation mode is not necessary for a

109

wide class of problems, similarly for full search mode. A lot of problems have

been solved elegantly using the derivative postulation mode, see Chapter 9. PO

and SO are usually quite small, so the grim expectations suggested by the

determined time requirements are not realized. The input sizes generally used

in this text are typical in the qualitative reasoning literature; also keep in mind

the basic assumption that QSI "sees" only some of the system parameters, which

reduces the number of parameters in its input compared to other reasoners. If

the algorithm will be used to find QDEs for individual model fragments, as

currently envisioned, the input sizes will rarely tum out to be problematically

big. As explained in Sections 3.1.3 and 3.2, active research is going on [1] to

improve QSIM's performance on medium and large-scale systems. The results of

such research will certainly be useful for QSI as well, since it uses QSIM as a

subroutine.

Although clearly very high when compared to algorithms dealing with

simpler forms of data processing, the complexity of QSI is similar to those of

other qualitative reasoners, and is quite acceptable, considering the nature of

the task performed. For an idea about the actual performance, see Table 7.1.1,

which lists the execution times of some of the problems in Chapter 9 in the

current PC implementation (Appendix A.) The section numbers indicate where

each problem has been presented. Details can be found in Chapter 9.

TABLE 7.1.1. Execution times of QSI case runs

* number of number of number of number of number of execution Problem
states in parameters model constraints constraints time (s)
input in input extensions in final in final

QSIM input model

U-tube 6 2 1 7 11 3.25

9.1.2 3 1 1 5 9 1.18

9.1.3 3 2 1 3 6 0.72

9.1.4 4 2 1 17 41 42.51

9.1.5 5 3 1 6 13 19.14

9.1.6 5 1 2 2 2 1.01

*The derivative postulation and half search modes have been selected in all of the above.

110

7.2. Correctness

The discussion will begin with the "heart" of the QSI process, namely, the

constraint determination algorithm. The following assumes that full search

mode has been selected in the input.

Definition 7.2.1. A constraint is significant if: a) it cannot be proven using

already known constraints as axioms, and b) it is not of the form ADD(A,B,C)

where MINUS (A ,B) is already known.

The reasons for such a distinction between constraints were already discussed;

the formal definition is given here so that it can be invoked in the following

propositions.

Proposition 7.2.1. All significant constraints valid in the behaviors that

constraint determination obtains as input appear in its output.

Proof. Assume for the moment that the contradiction, consequence and

insignificance checks are absent, and one has a "pure" constraint

determination algorithm, as seen below. The proposition will first be proven

for this algorithm. (Note that the omitted checks were there to improve the

efficiency. They will later be incorporated again to show that the proof stands.)

for each constraint type CT d..Q
for each tuple ARG of parameters that can be arguments to CT do
blockbegin

for each qualitative state in the input do
if CT(ARG) does not hold
then
break out and gQJQ. blockend

{At this point, CT(ARG) is a novel constraint valid throughout the input}
write(CT(ARG))
add CT(ARG) to the QDE of the system

blockend

Assume that the above algorithm has terminated without a constraint C

that is valid throughout the input being written out. C must have been

111

generated at the "top" of the algorithm by the for statements, since all possible

constraints are generated there (by construction.) This means that the check

in ~he innermost for failed, that is, there is an input state in which C does not

hold. But this contradicts the assumption that C is valid in the input, so pure

constraint determination has been proven to find all valid constraints.

The consequence and insignificance checks result in certain constraints

being written out without being tested; therefore their inclusion cannot cause

any valid constraints to be missed.

The contradiction check causes constraints rendered impossible by

present information to be skipped. The rules that may be used are:

M+(A,B) --- --> MINUS (A,B) is impossible.

M+(A,B) -----> M-(A,B) is impossible.

MINUS(A,B) -----> M+(A,B) IS impossible.

M-(A,B) -----> M+(A,B) is impossible.

NOT(M -(A,B» -----> MINUS (A,B) is impossible.

These are easily seen to hold, except in the case where both A and Bare

fixed, which makes it possible for both M+(A,B) and M-(A,B) to be trivially

satisfied at the same time. However, the special treatment given to fixed

parameters by the algorithm means such constraints will not be necessary for

simulation, and it is not sensible to talk about such relations between constants

anyway. So the contradiction check will eliminate no significant and valid

constraints, and the proof is complete.

Proposition 7.2.2. No constraint that is not valid throughout the constraint

determination stage's input appears in its output.

Proof. Consider the "pure" constraint determination algorithm again. For any

constraint C to be written out, the innermost for statement has to be completed;

that is, C has to hold in each input state. Therefore, the proposition holds for

the pure version.

The contradiction check does not change the output, in particular, it does

not add anything to it, (see discussion above,) so the proof stands.

Insignificant constraints which do not satisfy the requirement of

Definition 7.2.l(b) are not written out by the algorithm. All other constraints

112

which satisfy the consequence or insignificance tests are valid; see discussion

in Sections 6.2.4, 6.2.5 and proofs in Section 7.3. This means the incorporation of

the checks does not cause the inclusion of any invalid constraint in the output;

the proof is complete.

The previous two propositions can be combined to form the following

statement of the correctness of the constraint determination procedure:

Proposition 7.2.3. The constraint determination stage finds all, and only, the

valid constraints that hold among the parameters in its input.

Although there is already strong intuitive evidence for it, the fact that

QSI really achieves correct system identification, i.e. the QDEs that it finds

really produce the input behaviors when simulated, will now be formally

established. It is first shown that there is an (admittedly easy) solution to any

system identification problem.

Proposition 7.2.4. For any T-Iegal behavior, a constraint set which will

produce it when simulated from its initial state can be found.

Proof. The empty set (0) has this property for any T-Iegal behavior. When

started by the initial state of the behavior, QSIM will produce an infinite tree,

each branch of which corresponds to a qualitatively distinct account of the

manner the parameters change value, constrained only by continuity. (Part

of) one of the branches will be the given behavior.

Of course, this is the trivial case. One is really interested in bigger constraint

sets. Note that, by the same reasoning as above, a "model" can be found, given

any number of behaviors of a system. One should also point out that, given

QSI's lack of knowledge of where its input comes from, there is always the

possibility that the "parameters" in the input are really unrelated to each

other, in which case the empty model is the correct solution.

Proposition 7.2.5. When the constraint set found by the constraint

determination procedure is used as the QSIM input together with the initial

states of the input behaviors, all the input behaviors appear in the QSIM output;

that is, correct system identification is performed.

Proof. The model 0 does produce the input behaviors when simulated from

their initial states, as already discussed. The addition of constraints to this model

113

will cause the infinite trees it would produce to get smaller. More specifically,

the addition of any constraint C will prune all, and only, the states in which C

does not hold, together with their descendants, from each tree. (See QSIM

description in Chapter 3.) However, every constraint found by constraint

determination holds in every state of the input behaviors, (by Proposition

7.2.2) which means they will not be pruned, and all these behaviors will appear

III the simulation output.

Note that by "the input behaviors," the data on which the constraint

determination procedure operates are meant; these will be larger than QSI's

initial input in later iterations. So the above proofs stand for each model found

III successive iterations of the algorithm.

In the previous chapter, it was established that a heuristic method is

necessary for behavior assignment to neighbor parameters, since there are

cases where an infinite number of alternative behaviors for a single

parameter exist. This inevitably means that QSI outputs may lack some possible

relationships among the deep model parameters, if model extension has been

performed. The choice of the heuristics was made with this fact in mind,

aiming to minimize the number of overlooked relationships.

Finally, it will be proven that model extension never produces

"shallower" models according to QSI's criterion of model depth, that is, fewness

of QSIM behaviors predicted by the model. Note that this is not obvious; in model

extension, both the number of constraints and parameters increase, more

constraints tend to decrease the number of behaviors, but more parameters

generally mean more behaviors. The following shows that, after model

extension, one never obtains more QSIM behaviors than those obtained before

extension:

Definition 7.2.2. The number of behaviors of the input subsystem that would

be predicted at the i th execution of the model depth test stage if the behavior

count cutoff and empty model controls were absent is' called the i th input

subsystem behavior count, or ISBCi.

If the result of initial constraint determination is the empty model, then

ISBCl =00 , as already mentioned.

Proposition 7.2.6. For any QSI run in which the model depth test stage IS

executed more than once, say, n times, ISBCi ~ ISBCi+l , for all i, where i < n.

114

Proof. Assume that an input subsystem behavior predicted at a later execution

of depth testing was not predicted at an earlier execution. This means that there

was at least one constraint in the model which caused that behavior to be

filtered out during the earlier testing, and this constraint was not present in

the later one. However, this is impossible, since constraints added to the model

at the end of model extension are never removed, Le. the QDE can never get

smaller. Therefore, all behaviors of the later stage must also be present in the

earlier stage, that is, ISBCi < ISBCi+l is never the case.

The reason why an integer representing the maximum number of

allowed iterations was included in the input also becomes clear now. We have

no proof that ISBCi is strictly greater than ISBCi+ 1 for all L Without this, one

cannot prove that the algorithm will terminate for all cases (although the

examples show that it does for a lot of useful ones,) so an iteration cutoff is

necessary, to be on the safe side.

7.3. Consequence Constraints

In Chapter 6, the consequence and insignificance checks, which are parts of

the constraint determination algorithm, were mentioned. Both these checks

are used to see whether a particular constraint is already implied by the

current knowledge of constraints or not. If it is implied, the process of

checking the constraint against each input state is unnecessary and is skipped.

It is a nontrivial task to impart the total knowledge of qualitative algebra

required to identify all consequence constraints to the program, and it is not

claimed that the following list is complete. Recall that the existence or absence

of consequence constraints in the constraint determination stage's output

affects only the efficiency of the algorithm, not its correctness.

In the following, the left hand side of the arrow contains conjunctions

of "known" constraints; these are either in the QDE, or previously discovered

consequences of those in the QDE. The right hand sides are the consequences.

:\f+(A, B), :\1+(B, C) --------> M+(A, C)

115

Proof. Recall that A, B, and C are functions of time. Furthermore, the M+s

mean that there exist functions F and G such that A(t) = F(B(t» and B(t) =
G(C(t» (with the proper domains and ranges,) and both F' and G' are positive

everywhere in their domains [14]. But this means that

A(t) = F(G(C(t»)

and since the derivative of the composite function FoG ;: H is the product of F'

and G', H' > 0 throughout its domain; A(t) = H(C(t» is the very definition of

M+(A, C), and the proof is complete.

A more "qualitative" proof for the same rule is as follows: Consider all

the qualitative directions that the parameters may take on. Given the

antecedents, the possible direction tuples are those of Table 7.3.1. Obviously,

M+(A,C) "holds" in each possibility. (CV information of the consequence

constraint is also handled by the CVs of the two antecedent constraints, using

parameter .B as a sort of "bridge.")

TABLE 7.3.1. Possible directions of A, B and C

A ~ C

inc inc inc
dec dec dec
std std std

The first two of the following rules have similar proofs as the one above.

M+(A, B), M-(B, C) --------> M-(A, C)

M-(A, B), M-(B, C) --------> M+(A, C)

ADD (A, B, C), M-(A, C) --------> M-(A, B)

The proof is again very simple. The antecedents say that .

A(t) + B(t) = F(A(t»

where F' is negative. Rearranging, one gets

B(t) = -A(t) + F(A(t»

116

Clearly, there exists a function G such that

B(t) = G(A(t»

and G' is negative in its domain. This means that M-(B, A).

Similarly.

ADD(A. B. C), M+(A. B) --------> M+(A, C).

The fact that the derivative of a constant is zero implies the following

rules, where K is a parameter already known to be fixed at a landmark:

ADD(A. B. K) --------> M-(A. B)

ADD(A, K, B) --------> M+(A, B)

Other rules make use of the properties of MINUS and tIle fact that

rear:ran ged equations still "say" the same thing:

MlNUS(A. B) --------> M-(A. B)

ADD(A.B,C). MINVS(A.D) --------> ADD(C.D.B)

ADD(A,B,C). ADD(C,D,A) --------> MINUS(B, D)

Since all constraints except DERIY are commutative, the left hand sides of

the above rules may be changed to reflect this fact; they will still apply.

117

VIII. QSI: A DISCUSSION

This chapter aims to put QSI in perspective: Its relation with existing

techniques of modeling, aspects of its utilization, and ideas about using it for

different applications, such as diagnosis, are discussed. QSI and the method of

inductive learning are compared.

8.1. QSI as Modeling

As well as being a natural counterpart to QSIM, (i.e. system identification vs.

system simulation,) QSI also provides a new approach to the qualitative model

formulation problem. Its ability of finding significant deep relationships

among the system's quantities can be used to write the "best" model, given a

system. A striking example where QSI can propose a better model than the

obvious one is the spring/block system of Section 3.1.3. Recall that the three-

parameter, three -c onstrain t model of Table 3.1.11, which, although

mathematically adequate· to produce only a single periodic behavior, (Table

3.1.12) leads to a simulation with infinite spurious solutions, because of

inherent representation problems. It was mentioned in the same section that a

more comprehensive model containing . energy laws applying in that situation

does produce the single behavior output, but it is not obvious for the user how

the model should be formulated. in the beginning. Now suppose that the

behavior of Table 3.1.12 has been presented to QSI as input. The initial

constraint determination finds the constraint set of Table 3.1.11, as expected,

plus the constraint MINUS(X,A). (Remember that dimension consistency is not

imposed until QSI terminates.) The model is found to be unsatisfactory by the

depth test stage, since three behaviors (those of Tables 3.1.12 thru 3.1.14) are

predicted by QSIM, so model extension is performed. Among the new

118

components added to the model by this stage are the parameters P9 and PIO,

defined by the constraints

MULT(X,X,P9) and MULT(V,V,PlO),

and the constraint "

M-(P9,PIO)

The bigger model is satisfactory, and QSI ends.

P9 and PIO correspond to the potential and kinetic energies,

respectively. The M- constraint among them represents the fact that the sum of

these two energies, i.e. the total energy, is constant. The relevant "real-world"

equation [51] is

1 1 2 mv2 + 2 kx2 = E (8.1)

Note how constants like m, the mass of theblcck, k, the spring constant, and

the total energy are "buried" in the constraints QSI finds; this will be taken up

in Section 8.1.2. QSI's usefulness as a modeling tool has thus been demonstrated.

The rest of this section is comprised of further discussions of some aspects of

QSI's utilization.

8.1.1. How to Prepare QSI's Input

As pointed out in Section 6.1, the procedures of observation (and possibly,

excitation) of the system to obtain the accounts of its behaviors are outside QSI's

specification. The algorithm operates with the assumption that the input has

been obtained so that: a) Each qualitative behavior correctly describes the

corresponding family of actually exhibited (or, in design applications,

expected) behaviors, and, b) As many distinct qualitative behaviors that the

system can exhibit as possible have been included. Both of these conditions may

be difficult to meet in practice in some cases (see the section on qualitative

noise filtering in relation to condition (a),) and automation of the data

collection task has to be an imponant target for future research.

But before the considerations mentioned above can even arise, one has

to decide (even roughly) w hat the system is, that is, which observable

119

quantities to include in a single QSI input as shallow parameters. In all the

examples in this text, and probably in the QSI modeling applications III the

foreseeable future, the problem will be clearly defined by the user, who knows

it is about a tank system, spring, etc. An independent intelligent robot would

have to perform this problem definition by itself. Suppose such a robot enters a

big room in, say, a chemical plant, which it is "seeing" for the first time. The

room contains many tanks with fluids in them; some of them are connected by

pipes, some are not. Most probably, all observable quantities in the room would

not be parameters of the same system. Rather, it would be more suitable to

partition them to a number of independent systems. This allocation task

involves many perception and modeling issues, some of which are related to QP

theory, some others outside the scope of the qualitative reasoning area itself,

let alone this study.

Another feature which has already been mentioned is QSI's total

disregard of possibly useful information about the "natures" of the parameters,

including' their dimensions. Thus, QSI views its input simply as accounts of the

changing of some collection of quantities over time. The output that it produces

then reflects various mathematically possible relations on these nameless

quantities. Humans clearly do not "act" like this when performing modeling, as

will soon be discussed.

In this regard, the work of Bhaskar and Nigam [52] in which the

dimensional representations of the relevant variables of the system are

presented as input to the qualitative reasoner, without explicitly stating the

physical laws, can be seen as an interesting opposite of the approach taken by

QSI.

8.1.2. How to Interpret QSl's Output

The constraints in QSI's output provably hold on the, set of parameters, as

already seen. But the interpretation of these constraints to obtain a "real

world," e.g. verbal, model involves some issues arising from the natures of the

representation and the algorithm.

The qualitative representation tends to "look over" constants, since

systems can usually be modeled just as tightly without them. The monotonic

120

constraints are especially useful for this purpose. Take the spring/block

example again. The well-known formulae for the force on the block are

F=ma (8.2)

and

F= -kx (8.3)

which can, if wished, be translated into the qualitative representation directly

by defining parameters for all the quantities in the equations, and two MUL T

constraints. But one generally does not do this, and uses instead M-(X,A) with

CVs (0,0) as in [14], since it is more sensible from a simulation point of view to

choose the smaller of two equally strong models.

So the M constraints presented by QSI can "hide" other relationships in

them, which may be interesting to examine if even deeper modeling is desired.

Only two ver;l simple examples will be considered. Each M may bl! the

abstraction of an arbitrarily long chain of Ms, for instance, M+(A,B) can mean

M+(A,P1), M+(P1,P2), M-(P2,P3), M-(P3,P4), M+(P4,B). (For an example to such

chains of Ms in real models, see the water balance mechanism in the human

kidney, modeled in [8,9], and also Section 8.1.4.) M-(X,Y) may have been derived

from, say, an equation of the form XY =K (K >0) among many others. Since the

input can be an abstraction of not one, but a family of systems, the output also

reflects all of these possibilities. The user can choose the most suitable one

from among the alternatives implicit in the output of QSI, in the role of a

modeling aid.

Another issue that may come up is the "discovery" of some deep

parameters that do not seem meaningful when considered in a real-world

context, given their defining constraints, and the meanings humans give to

their defining neighbors, something QSI is unable to do. For example, in the U

tube problem of Section 6.2.3, if full postulation is used, the following new

constraints and parameters are among the ones added to the model by the

extension stage, in addition to those already discussed:

MULT(amounCA,amounCB,PlO)

ADD(PIO,Pll,amouncA)

MULT(amount_A,amount_A,P11)

121

Even after dimension consistency is imposed, this relationship does not reflect

any intuitively obvious feature of the U-tube. The very idea of multiplying the

amounts in the tanks by each other, or squaring them, does not make sense.

The answer is, of course, this nee d not be part of a model of the U-tube. The

relationship has been discovered, because it is mathematically implied by the

input behaviors. The existence of this co i nc i de n ta l constraint is the proof of

existence of a "system" (which would probably be much harder to physically

visualize, compared to the U-tube,) in which the parameters A and B behave as

specified in the input, and whose QDE includes the squares and products of A

and B and links them in a "meaningful" way. Again, the user, with his

knowledge of the natures of the quantities, can choose the meaningful

constraints from among the ones QSI presents. Note that, even if no such

selection is made, the QSI output is still guaranteed to produce the input when

simulated, i.e. even the unintuitive components cannot filter out the input

behaviors.

8.1.3. QSI vs. Modeling by Humans

Modeling is a tremendously important mental activity, which is very hard to

automate. QSI must be viewed as an early step in this direction. It is not known

which processes go on in the human mind when one attempts to solve problems

of the kind discussed in these chapters, but most probably, the approach taken

by the brain is not QSI's method of trying out all the possibilities. Many very

"human" capabilities, among them, the use of analogies [2], and pure "insight"

may come into play. In this regard, QSI is taking what Rothenberg [53] calls the

"engineering" approach to AI: Exploiting the computer's abilities to come up

with methods for solving the problems, without caring whether humans solve

them in the same way.

Having said this about QSI's relation to the naive modeling activity, let us

briefly compare it with what can be called "expert modeling," i.e. the task of

writing down the algebraic or differential equations describing a system. This

task is normally performed by scientifically oriented people, so one might

expect there is a more formal way in which it can be described. However, this

does not seem to be the case. The modelers use their previous knowledge of laws

that may apply in the current situation, and again seem to employ "insight" to

122

recognize the particular law instances that do apply. A QSI-style search is

absent. Iwasaki and Simon [28] say that "good" models should contain each

different law in a different structural equation, like equations 8.2 and 8.3,

rather than combining them, like writing

rnA = -kx (8.4)

for the spring/block syste'm. In this manner, modifications in the physical

situation which cause different laws to apply can be handled nicely. Note that

QSI does not (and can not) impose such a form on the output models; this would

again be the responsibility of the model user, using the guidelines of Section

6.4.2. As Iwasaki and Simon point out in [28], "Establishing the structural

equations for a system is as much an empirical as a formal matter, and

certainly not a syntactical exercise."

8.1.4. QSI for· Diagnosis

Kuipers [8,9] has proposed a medical diagnosis expert system based on a

"hypothesize-and-match" architecture which combines a first generation

expert system with QSIM. Clinical findings are fed to the first-generation

system to obtain a set of "candidate" diseases. Previously prepared QDEs

describing each of the diseased mechanisms are simulated one by one, and the

QSIM predictions are compared with the clinical observations, completing the

cycle. Diagnosis is achieved when the observations match the predictions.

When behavior data about a reasonably big subset of the parameters are

available for both the healthy mechanism and the present state of the

mechanism, QSI offers an alternative approach to the diagnosis p,roblem.

Identifications of both sets of behaviors can be performed. By this method, the

disease QDE can be found immediately, without going to the trouble of

simulating a lot of non-answers. The first generation expert system is rendered

unnecessary. If the "QDE-base" of possible diseases mentioned in the above

paragraph is present, matching its entries with the QSI output leads to,

diagnosis. Even if such a disease dictionary is not available, comparison and

contrasting of the models of the healthy and diseased mechanisms may give

useful hints to a human expert of the domain about the nature of the problem.

123

For example, Tables 8.1.1 and 8.1.2 contain healthy and diseased models

[8,9,41] of the water balance mechanism (Table 8.1.3) of the human kidney,

respectively. This mechanism governs the relationship between the ingestion

and excretion (in the urine) of water in the body. The disease of Table 8.1.2 is

called SIADH (Syndrome of Inappropriate Antidiuretic Hormone Secretion.) A

detailed discussion of what goes on in the kidney in the normal and abnormal

cases, together with explanations of the parameters, can be found in the

references. Assume that QSI has been shown the behaviors (including most of

the parameters; see below) of both the normal and post-SIADH periods in two

separate runs. (These behaviors are also presented in [8], they are quite simple

accounts of the variables nearing and settling at the equilibrium values in

each case.) As has been proven, the QDEs of Tables 8.1.1 and 8.1.2 will be

presented as outputs. An expert physician will notice that the differences of

the diseased model from the healthy one (the loss of the direct proportionality

of the sodium concentration to the ADH concentration, and the fixed higher-

than-normal value for the ADH concentration) are signs of SIADH, and

concentrate on the problem more quickly, since the many other measured

parameters do not appear in the difference set of the two

presumably do not contribute to the trouble.

TABLE 8.1.1. Healthy water balance mechanism

CONSTRAINT

MUL T(amt(water,P),c(Na,P),amt(N a,P»
M +(amt(water ,P) ,c(natri uretic hormones ,P»
M+(c(Na,P),c(ADH,P»
M+(c(natriuretic hormones,P),flow(water,P->U»
M +(c(ADH,P) ,reabsorbed flow(water, U -> P»

models, and

ADD(reabsorbed flow(water,U->P),netflow(water,P->U),flow(water,P->U»
ADD(net flow(water,P->U), netflow(water,out->P), netflow(water,ingest->P»
DERIV(amt(water,P),netflow(water,out->P»

{amt(Na,P) and netflow(water,ingest->P) are fixed at positive landmarks.

All constraints have CVs at the "equilibrium" values.}'

Of course, the above discussion entailed the basic assumption that all the

deep parameters were already identified and could be measured; this is a little

bit too optimistic, as has been stressed before. But QSI can also be employed to

hint at a deeper structure. Chapter 9 contains a modest-sized problem about the

124

kidney system in which only the most easily observable parameters are in the

input. and the QSI solution to it in the derivative postulation mode.

TABLE 8.1.2. Water balance model with SIADH

CONSTRAINT

MULT(amt(water,P),c(Na,P),amt(Na,P»
M+(amt(water,P),c(natriuretic hormones,P»
M+(c(natriuretic hormones,P),flow(water,P->U»
M+(c(ADH,P),reabsorbed flow(water, U->P»
ADD(reabsorbed flow(water,U->P),netflow(water,P->U),flow(water,P->U»
ADD(net flow(water,P->U), netflow(water,out->P), netflow(water,ingest->P»
DERIV(amt(water,P),netflow(water,out->P»

{amt(Na,P) and netflow(water,ingest->P) are fixed at positive landmarks.

c(ADH,P) = fixed at a landmark higher than its equilibrium value in Table 8.1.1.

All constraints have CVs at the "equilibrium" values.}

PARAMETER

amt(water ,P)
amt(Na,P)
c(Na,P)

TABLE 8.1.3.

c(natriuretic hormones,P)
c(ADH,P)
flow(water,P->U)
reabsorbed flow(water,U->P)
netflow(water ,P-> U)
netflow(water ,ingest-> P)
netflow(water ,out->P)

Water balance model's parameters

MEANING

amount of water in plasma
amount of sodium in plasma
concentration of sodium in plasma
concentration of natriuretic hormones in plasma
concentration of antidiuretic hormone in plasma
rate of water filtration from plasma into the tubules
rate of water reabsorption from tubules back into plasma
net rate of water excretion from the blood via the tubules
rate of water ingestion
net rate of change of water in plasma

8.1.5. QSl's Limitations

In addition to the issues already discussed in this section, some other limitations

of the QSI algorithm, and possible ways out, will be briefly repeated here.

QSI is very sensitive to possible errors in its input. A single "wrong" state

may cause it to fail to find the correct system model, even if all the rest of the

input behaviors are described correctly, since the algorithm insists that all

output constraints should be satisfied on all the input states. Noise filtering

(Section 6.3) may be useful in eliminating such problematic states.

125

The considerable worst-case computational complexity of the algorithm

III the full modes is another limitation, (at least, for the current PC

implementation,) practically restricting its application to relatively small-scale

systems. (Note that even within a limit of a few parameters, a huge number of

different systems can be considered, because of the versatility of the

representation.) Still, as the examples in Chapter 9 illustrate, a sizeable class of

QSI problems can be solved using the limited postulation and search modes,

which reduces the time requirements significantly. As a general remark, one

should point out that deep (Le. invisible) parameters seem usually to be linked

by the derivative relation to the visible ones, which explains the success of the

derivative postulation mode in finding relevant models. For instance, hard-to

visualize things as acceleration and variable rate of flow are derivatives of

more easily-seen things like displacement and amount of liquid in a container.

8.2. QSI as Learning

QSI's relation to well-known machine learning approaches will be examined in

this section. Ways of modifying QSI so that it fits the classical inductive

learning framework will be explained. Related methods will be briefly

discussed.

Induction is the best known method used in machine learning. Here is a

simplified definition [2] of the inductive concept learning problem: One is

trying to learn a con c e p t, satisfied by a particular set of p a tt ern s , and not

satisfied by patterns outside that set. From time to time, one observes different

patterns, and is told (by the "teacher") whether each pattern one observes is in

the set or not. Using this (ever-increasing) knowledge, the learner is expected

to infer age n era 1 description of the patterns satisfying the concept, which

will enable him to classify a given pattern by himself. This description can be

too general, that is, it may lead one to believe that a pattern which is actually

not in the set is an element. In this case, it has to be specialized to exclude the

problematic pattern and its likes. On the other hand, one may go too far in this

specialization and exclude some genuine patterns which satisfy the concept

126

from the description; when this is noticed, again a generalization is necessary.

So the description undergoes a kind of "diminishing oscillation" as more

information keeps coming in, being generalized and specialized again and

again, becoming more correct after each such update.

An obvious way of specializing a logical formula (Le. letting it be satisfied

for less cases) is to add a conjunct to it, while one can remove a conjunct, or add

a disjunct, to perform generalization. (There are many other ways of doing

these.)

Now consider the following interpretation of QSI as a form of inductive

learning: The observed qualitative states of the system are the patterns. The

description QSI is trying to learn is the system model. Each QDE is a conjunction

of constraints; adding a conjunct (a new constraint) to a model specializes it, i.e.

causes it to produce tighter simulations. Removing a constraint would have the

opposite effect.

View QSI as starting with the assumption that all possible. constraints do

hold, implying a description with a great number of conjuncts. That is, QSI

overspecializes in the beginning. Considering the . input states causes the

unsatisfied conjuncts to be dropped from the model, i.e. generalization. The

depth test "tells" the algorithm whether it has 0 v erg en era Ii zed (0 btained a

model that would predict unwarranted behaviors) or not. If so, the complete set

of constraints involving the neighbor parameters is assumed to hold,

(overspecialization again,) followed by the checking and probable elimination

of the constraints against the extended states (generalization again) and a new

depth test. This goes on until the algorithm terminates.

As can be seen, this is quite a special case of the general learning

algorithm presented above. There are no "negative instances" (Le. patterns

that do not satisfy the concept) in QSI's input. It takes all of its input in one

batch, and works and reworks it until it finds a satisfying modeL A general

purpose learning "algorithm" would generally "run" for a very long time

(ideally, the lifetime of the "processor" that is running it,) and would accept its

input items piece by piece, with sometimes considerable periods between them.

Qsr s reason for requiring all distinct behaviors of the system to appear in the

input is clearer now: The completeness of this information ensures the

"health" of the induction, in the sense that it helps the "teacher" (the model

depth test stage) to know the correct answers.

127

This suggests a natural way to convert QSI to an interactive algorithm,

using a human (the modeler) as the teacher in the depth test stage. All that is

needed is a small modification (actually, a simplification) to that stage. The idea

is as follows: The model depth test stage simply simulates the proposed QDE from

each initial state without counting the number of behaviors, presents each

behavior that does not appear in the QSI input to the user, and asks whether

this is a genuine behavior of the system or not. Behaviors identified as genuine

are incorporated to the QSI input. The number of the remaining ones is used to

decide for or against a new iteration. This modified algorithm, as well as fitting

more nicely to the concept learning outline by having a distinct teacher, is

also very suitable for the prospective modeler, since it informs the user of

possibly unexpected behaviors of the system in an on-line manner, allowing

him to form decisions during the modeling session. Thus, user-friendliness is

gained at the cost of independence.

Anowing the user to actually specify parts of the system model before the

search to QSI, which normally starts with no idea at all about the sought model,

would be a simple instance of learning by being told, another important

learning approach.

As work related to the presently explained one in this regard, the fact

that inductive algorithms have been used to generate model fragments in

discrete-event simulation must be mentioned. Quinlan's inductive learning

algorithmS ID3 has

EASE [54], where it

statements in which

"previous" state, and

been

can

the

the

incorporated, for instance, in the package EXPERT

produce simulation rules, in the form of nested if

conditional expressions depend on aspects of the

statements in the then and ~ parts indicate the

activities to be started in the "next" state. ID3 requires a table completely

describing all the previous-next combinations as input, and is not able to

handle uncertainty. In addition to the fundamental dissimilarity of their

domains, ID3 and QSI are also different in the sense that the "rules"

(constraints) found by the latter are much more general; they do not contain

explicitly specified values in them as those of ID3, and describe conceptually

more basic relations.

S A similar algorithm is used to produce the decision trees for MIMIC (Section
3.2.6.)

128

As Forbus notes in a survey [55] of the qualitative physical reasoning

field, different aspects of the problem of the machine learning of physical

models [36,56] have been studied. QSI is distinguishable among these as a

method which starts out with no model (instead of refining an existing one)

and produces a qualitative constraint model ready for simulation, given only

the qualitative behaviors of the system.

129

IX. QSI AT WORK

This chapter is comprised of two sections. First, several additional examples

which further illustrate the working of the QSI algorithm are presented. The

common small scale of the inputs is a result of the insistence that these be

actually tested on the computer, and the fact that Turbo PROLOG imposes a

maximum memory limit of 640 K (See Appendix A.) Also keep in mind that all

the "semantical" comments about the systems and their models have been

added by a human for the benefit of the readers; the actual input and output of

QSI are free of that. The second section discusses some detailed features and

W;l¥S of handling certain remaining difficulties with the' method_

9.1. Examples

9.1.1. U-tube with Full Postulation

As shown in Chapter 6, most QSI problems, including that of the U-tube in

region NORMAL, can be solved easily in the derivative postulation mode. For

completeness' sake, however, an account of the algorithm's execution in the

full postulation mode is presented here.

The input is again that of Tables 6.2.1 and 6.2.2. Since the postulation and

search modes do not affect the initial constraint determination, the initial

model is again found to be

M-(amouncA, amouncB),

130

and depth testing fails because of the great number of QSIM behaviors which

are predicted. Now, all neighbors of the two visible parameters are postulated

and their behaviors are calculated; this results in an equivalent of Table 9.1.1

being constructed by the program. In that table, the names of the new

parameters (which are shown in the leftmost column) are chosen so that the

reader can understand their defining constraints, for example, A' is the

parameter which is defined to be amounCA's derivative. The assigned

behaviors can be seen to be "sensible" enough, though (A-B) and (B-A) can

raise a few thoughts, see Section 9.2 for a discussion on this.

TABLE 9.1.1. Old and postulated parameters for U-tube identification

BEHAVTOR#l ~B=E=H=A~VT~O~R~#~2~ ______________ ~

time ~to~ ______ ~(~t~a~t.~U~ ____ ~t~7 __________ ~tQ~ ________ (ut~a~t~7~) ____ ~t~1 ________ ~

«0, 00), dec> «0, 00), dec> <disc/mA, std> <0, inc> «0, 00), inc> <disclmA, std>

<0, inc> «0, 00), inc> <disc/mB, std> «0, OQ), dec> «0, 00), dec> <disclmB, std>

A' « -OQ, 0), inc> «-00, 0), inc> <0, std>

B' «0, 00), dec> «0,00), dec> <0, std>

- A « -00, 0), inc> «-00, 0), inc> <lml, std>

-B <0, dec> « -00, 0), dec> <1m2, std>

A+B <1m3, std> <1m3, std> <1m3, std>

A-B «0,00), dec> «0,00), dec> <0, std>

B-A «-00,0), inc> «-00,0), inc> <0, std>

A*B <0, inc> «0,00), inc> <lm4, std>

A 2 «0, 00), dec> «0, 00), dec> <lm5, std>

B2 <0, inc> «0, 00), dec> <lm6, std>

«0, 00), dec> «0, 00), dec> <0, std>

« -00, 0), inc> « -OQ, 0), inc> <0, std>

<0, dec> « -OQ, 0), dec> <lml, std>

« -00, 0), inc> « -OQ, 0), inc> <1m2, std>

<1m3, std> <1m3, std> <1m3, std>

« -OQ, 0), inc> « -OQ, 0), inc> <0, std>

«0, 00), dec> «0, 00), dec> <0, std>

<0, inc>

<0, inc>

«0, OQ), inc> <lm4, std>

«0, 00), dec> <1m5, std>

«0, OQ), dec> «0, OQ), dec> <lm6, std>

If half search mode (which is more efficient than full search mode,

especially in full postulation, where the number of old parameters is only a

little fraction of the new ones,) is active, the constraints listed in Table 9.1.2 are

found to hold. The constraints marked as "consequence" or "insignificant" in

the table are not checked against the values of Table 9.1.1, and they are not

added to the QSIM input. New parameters that appear in the remaining entries

of Table 9.1.2 are made permanent. The .fact that (A+B) is fixed is also marked in

the QSIM invariants. Simulation with the extended model produces only the

input behaviors, the dimension consistency stage adds the required buffer

parameters and constraints, and QSI terminates successfully. Since this

131

system's model has already been discussed, let us concentrate on the additional

constraints that were found in this section.

The last two ADDs, relating the products of amouncA and amounCB with

their squares, are coincidental; they do not reflect any fundamental property

of the U-tube, but may be the components of another system with similarly

behaving quantities, as explained in Section 8.1.2. Another such coincidence

has caused the four ADD constraints involving (A+B). In fact, these constraints

do not make any arithmetic sense; they survive the contradiction check since

there exist trivial cases where the equations they imply can be satisfied,

though not with the particular values here. They happen to hold throughout

the behaviors, and will not cause any negative effects (except cluttering the

output and slowing simulation,) so they have been allowed to stay. By enabling

the contradiction check to examine old parameter values, this sort of

constraints can be totally eliminated.

TABLE 9.1.2. U-tube (NORMAL) constraints found after model extension

CQNSTRAINT REMARK

ADD(A,A',B)
M-(A,A') consequence
M+(B,A') consequence
ADD(B,B',A)
M+(A,B') consequence
M-(B,B') consequence
M+(B,(-A» consequence
ADD(B,(-A),A') consequence
M+(A,(-B» consequence
ADD(A,(-B),B ') consequence
M+(A,(A-B» consequence
M-(B,(A-B» consequence
DERIV(B,(A-B» see 9.2
ADD((A+B),(A-B),A)
ADD(B,(A-B),(A+B»
M+(B,(B-A» consequence
M-(A,(B-A» consequence
DERIV(A,(B-A» see 9.2
ADD((A+B),(B-A),B)
ADD(A,(B-A),(A+B»
ADD((A-B),(B-A),A) insignificant
ADD((A-B),(B-A),B) insignificant
ADD(A,(-A),(A *B» insignificant
ADD(B,(-B),(A*B» insignificant
ADD(A,(-A),A 2) insignificant
ADD((A*B),A2,A)
ADD(B,(-B),B2) insignificant
ADD((A *B),B2,B)

132

As illustrated here, full postulation tends to produce a big output,

increasing the user's (already important) responsibility of retrieving the

relevant model constraints from among the ones in it. For this reason, it is

suggested that full postulation should be used in the last resort, if an initial

approach using the derivative postulation mode proves to be unsuccessful.

9.1.2. Single Leaking Tank

In Chapter 6, it was pointed out that the QDEs of different operating regions of

the same system can be obtained by different runs of QSI. (Actually, QSI has no

distinction of two operating regions of the "same" system and two different

systems.) Here is an account of a V-tube half of which has burst (or,

equivalently, a bathtub whose plug has been pulled off after the bath) is

identified by QSI: (Figure 5.3.2)

Assume the only initially recognizable parameter is the amount of water

in the tank, and this decreases and stops at zero. (Table 9.1.3.)

TABLE 9.1.3. Input of bathtub identification

amount
<init, dec>

«0, init), dec>
<0, std>

EQV

No constraints can be defined on a single parameter, which means the

initial model is empty. Depth testing fails automatically, and the model

extension stage (with derivative postulation mode) is activated, with the single

parameter amount' being postulated. (See Table 9.1.4.)

TABLE 9.1.4. Old and postulated parameters for bathtub identification

amount
<init, dec>
«0, init), dec>
<0. std>

EQV

amount'
« -00, 0), inc>
« -00, 0), inc>
<0, std>

133

The constraints determined on this "bigger" behavior are again quite

limited:

M-(amount,amount') with CVs (0,0),
MINUS(amount,amount'), .
MULT(amount' ,amount' ,amount),
DERIV(amount' ,amount),

and, of course, the defining constraint

DERIV(amount,amount').

Simulation produces the. single input behavior, dimension consistency

requires the MINUS constraint to be dropped and buffers to be created, so the

output is as shown in Table 9.1.5.

TABLE 9.1.5. Output of bathtub identification

CONSTRAINT CVs

M+(amount,Pl)
DERIV(Pl,P2)
M+(P2,P3)
M+(amount,P4)
DERIV(P3,P4)
M-(amount,P2)
M+(P2,P5)
M+(amount,P6)
MULT(P5,P5,P6)

(0,0),(00,00),(-00,-00)

(0,0),(00,00),(-00,-00)
(0,0),(00,00),(-00,-00)

(0,0)
(0,0),(00,00),(-00,-00)
(0,0),(00,00),(-00,-00)

As for an interpretation, the square relation is again a coincidental one.

The second DERIV is also coincidental. The remaining relationships correctly

describe a leaking tank with no inward flow. The rate of increase of the

amount (its derivative) is inversely proportional to it, and the flow ceases

when the amount vanishes. The deep parameter. "flow" has been hinted at by

the algorithm. The derivative postulation mode's utility has once again been

demonstrated; the following examples will further underline this.

9.1.3. Bathtub with Constant Inflow

Now suppose that a tap exists on top of the bathtub (as is often the case,) and

water pours out of it at a constant rate. Assuming that the constant inflow is

recognizable as a parameter (although this is not necessary,) the input

134

behavior (Table 9.1.6) will be one in which the amount in the tub (starting

from zero) arrives at equilibrium at some positive landmark. (Again, the

possibility of overflow has been overlooked; see discussion in Section 6.2.3.) No

constraints are found by the initial determination, and model extension is

required. Since inFlow is constant, its derivative is not postulated, and extended

constraint determination will be performed on the behavior shown in Table

9.1.7.

TABLE 9.1.6. Input for filling bathtub identification

inFlow
<inF, std>
<inF, std>
<inF, std>

FQU

amount
<0, inc>
«0, 00), inc>
<disclrnA, std>

TABLE 9.1.7. Input of second constraint determination III filling bathtub

identification

inFlow
<inF, std>
<inF, std>
<inF, std>

amount
<0, inc>
«0,00), inc>
<disclrnA, std>

FQU

amount'
«0, 00), dec>
«0, 00), dec>
<O,std>

The QDE found (and accepted by the simulation) can be seen in Table

9.1. 8. The dimension consistency stage results in the final model of Table 9.1.9.

TABLE 9.1.8. Sufficient QDE for filling bathtub identification

CONSTRAINT

M-(amount,amount')
ADD(amount,amount' ,inFlow)
DERIV(amount,amount')

The ADD in the final model represents the fundamental relation

Net Flow = I n Flow - Out Flow. As well as the "discovered" parameter outFlow,

the direct proportionality between it and the amount is again established.

9.1.4.

TABLE 9.1.9. Output of filling bathtub identification

CONSTRAINT

DERIV(amount,Pl)
M-(amount,Pl)
M+(amount,P2)
M+(Pl,P3)
M +(inFlow ,P4)
ADD(P2,P3 ,P4)

Water Balance in Kidney

(0,0),(00,00),(-00,-00)
(0,0),(00,00),(-00,-00)
(0,0),(00,00),(-00,-00)

135

Consider the situation in which only the two (supposedly) most easily

observable parameters of Table 8.1.3, namely, the amount of water in plasma,

and the net rate of water excretion, are used to form the input behaviors. One

can say right away that QSI simply can not be expected to find the complicated

model of Table 8.1.1 from these data; the input is inadequate to uncover the

features of the complete system. Still, it will be demonstrated that the algorithm

comes up with a model that does predict only the specified behaviors (which is

about all what a human novice can do "at first sight,") and gives some hints

about possible deep parameters.

Of the two input behaviors, one (Table 9.1.10) has been obtained by

observing the "normal" state of things for some time. Both parameters are at

their eqUilibrium values.

TABLE 9.1.10. First input behavior for water balance identification

amt(water,P)
<.4*, std>

net flow(water. P->U)
<NF,std>

EQU

The second behavior (Table 9.1.11) is a result of observing what happens

when the amount is rapidly increased by an outside intervention, i.e. a sudden

large drink. This has caused an immediate increase in the excretion rate, with

both quantities gradually returning to their normal values.

Initial constraint determination results in the model of Table 9.1.12, but,

as expected, simulation shows that this model is not deep enough. Again having

136

selected the derivative postulation mode, two new parameters with defining

constraints

DERIV(amt(water,P), PI)

and

DERIV(netflow(water, P->U) , P2)

are created, both starting at negative and increasing, and settling at zero as the

same instant when their defining neighbors arrive equilibrium. Extended

constraint determination adds the constraints of Table 9.1.13 to the QDE.

(Various consequences of the Ms which are found but not included in the

simulation model, and which can be also useful for interpretation, are not

presented here because of space considerations.) This model predicts only the

two inputs, and is accepted. For the conditions presented in the input, a "robot

physician" can use this as the basis of a model of the human water balance

system. For a human physician, it would at least provide some pointers to start

with in an attempt to form a deeper model. (Not for this particular system, of

course; its model is already known.) For example, :the existence of a parameter

which is the derivative of amt(water,P) is implied. There really is such a

parameter in Table 8.1.1. Furthermore, that quantity really is inversely

proportional to netflow(water, P -> U) if netflow(water, ingest->P) is constant,

which is the case in the table. The direct proportionality of amt(water,P) and

netflow(water, P->U) also follows from Table 8.1.1. All the discovered MULTs are

coincidental. For a more specific identification, more parameters, more

behaviors, the full postulation and search modes, and a user with some idea of

what to expect in the model would be required.

TABLE 9.1.11. Second input behavior for water balance identification

amt(water,P)
«A*, 00), dec>
«A*, 00), dec>
<A*, std>

FQU

net flow(water, P->U)
«NF, 00), dec>
«NF, (0), dec>
<NF, std>

TABLE 9.1.12. Initial model III water balance identification

CONSTRAINT

M+(amt(water,P), netflow(water, P->U»
MULT(amt(water,P), amt(water,P), netflow(water, P->U»
MULT(netflow(water, P->U), netflow(water, P->U), amt(water,P»

9.1.5.

TABLE 9.1.13. Constraints added by second constraint

determination

CONS1RAINT

DERIV(amt(water,P),P2)
DERIV(netflow(water, P->U),Pl)
ADD(amt(water,P),P1,netflow(water, P->U»
ADD(amt(water,P),P2,netflow(water, P-> U»
ADD(P1,amt(water,P),netflow(water, P->U»
ADD(P2,amt(water,P),netflow(water, P-> U»
M-(netflow(water, P->U),P1)
M-(netflow(water, P->U),P2)
MULT(netflow(water, P->U),P1,P2)
MULT(netflow(water, P->U),P2,Pl)
MULT(amt(water,P),Pl,P2)
MULT(amt(water,P),P2,P1)

Heat Exchanger

137

The heat exchanger system (Figure 9.1.1) to be used in this example is from

[16]. There is cold water in the bath shown as the box in the figure. Hot liquid

enters from one end of the pipe and leaves, cooler because of the heat flow,

from the other end. There are three different behaviors, determined by

whether the heat flow stops when the unit volume of liquid that we are

interested in is in the pipe, and if so, where. Supposing that the parameters in

the input are X, (position of liquid in the pipe; the entry end is the negative

landmark x * and the exit end is 0,) Q, (surplus heat of liquid; 0 when thermal

equilibrium is reached, a positive value at the start,) and F, (the heat flow in

the liquid,) the algorithm starts with the three behaviors in Table 9.1.14. thru

9.1.16.

cool water

hot liquid

Figure 9.1.1. The heat exchanger

TABLE 9.1.14. Input behavior #1 for heat exchanger identification

x
<x*, inc>
«x*, 0), inc>
<0, inc>

o F
<q*, dec> <f*, inc>
«0, q*), dec> <(1*, 0), inc>
<0, std> <0, std>

TABLE 9.1.15. Input behavior #2 for heat exchanger identification

x
<x*, inc>
«x*, 0), inc>
<0, inc>

o F
<q*, dec> <f*, inc>
«0, q*), dec> <(1*, 0), inc>
«0, q*), dec> <(1*,0), inc>

TABJ.:.E 9.1.16. Input behavior #3 for heat exchanger identification

x Q F
<x*, inc> <q*, dec> </*, inc>
«x*, 0), inc> «0, q*), dec> <(1*,0), inc>
«x*, 0), inc> <O,std> <0, std>
«x*,O), inc> <O,std> <0, std>
<0, inc> <O,std> <0, std>

138

Initial constraint determination comes up with the model of Table 9.1.17,

which really covers the heat flow relationships; the first constraint is the

definition of flow, whereas the fourth one has the equation

F=-KQ

(where -K is the thermal conductivity) "embedded" in it. (Even in the case

where only the longest behavior is entered, those relationships are still

discovered; the figures in Table 7.1.1 reflect that situation.) The other

constraints are coincidental. Note, however, that DERIV(F,Q) is what one would

expect to be discovered if those two names were swapped in the input, i.e. if the

liquid III the pipe was warming instead of cooling.

Depth testing on the above-mentioned constraint set fails automatically

without simulation, because X does not appear III any of the constraints. In the

model extension stage, the derivative of only X will be postulated, since the

derivatives of both Q and F are already there. The heuristics lead to a fixed

139

positive value for that parameter to be determined. The resulting model's

simulation is satisfactory, and QSI terminates after the dimension consistency

stage. A fixed value for the derivative of X is sensible, since it simply means

that the speed of the liquid in the pipe is constant.

TABLE 9.1.17. Initial constraints for heat exchanger identification

CONSTRAINT CVs

DERIV(Q,F)
DERIV(F,Q)
MINUS (F,Q)
M-(F,Q) (0,0)
MULT(F,F,Q)

A justifiable remark about this problem is that instead of the heat and its

flow, the temperatures of the liquids would be more appropriate as shallow

parameters. See Section 9.2 for a discussion.

9.1.6. The Upward Thrown Ball

No discussion about a new qualitative reasoner would be complete without a

version of the upward thrown ball problem; this tradition was observed in the

descriptions of improved QSIM and the postdiction algorithm. This section will

be concluded by an account of the execution of QSI when fed a single input

behavior (Table 9.1.18) describing the height of a ball which rises for a while

and then falls back.

TABLE 9.1.18. Behavior of ball height

y

«0, 00), inc>
«0, 00), inc>

<disc/mY, std>
«0, disc/mY), dec>

<0, dec>

After an empty initial model, derivative postulation will result in the

extended behavior of Table 9.1.19, but the single DERIV linking the two

parameters is not sufficient for a tight simulation, and model extension has to

140

be performed for a second time. The derivative of Y' is decided to be fixed at a

negative value and permanently added to the model, which passes the test.

From a single account of the height of a thrown object, the "laws" governing

such bodies have been identified. Two deep parameters representing the

velocity and acceleration have been correctly suggested. Consult Table 7.1.1 for

the execution times of the examples of this section.

TABLE 9.1.19. Input to second constraint determination in ball system

identification

Y
«0,00), inc>
«0,00), inc>
<disc ImY, std>
«0, disc!mY), dec>
<0, dec>

Y'
«0, 00), dec>
«0,00), dec>
<0, dec>
«-00,0), dec>
« -00, 0), dec>

9.2. Further Issues

The behavior calculation procedure, invoked in the model extension stage to

assign one of possibly infinitely many alternative behaviors to each postulated

parameter, is the only "heuristic" part of the algorithm (as explained III

Chapter 6.) The behaviors it comes up with are guaranteed to be

mathematically plausible with regard to their neighbors specified in the input,

but the extent to which they match the corresponding deep parameters in the

semantical interpretation that we give to the system is dependent on the "rules

of thumb" of behavior selection embedded into QSI. This means that there is

always room for improvement in that procedure, and possible new heuristics

and representation schemes may increase the number of· problems that can be

solved satisfactorily by the algorithm. Examples of some such issues about

behavior selection will be presented in this section.

Consider the heat exchanger of Section 9.1.5 again. This time, the more

realistic assumption that the initial parameters are X (meaning the same as

before,) T _out (the fixed temperature of the cool water bath,) and T _in (the

141

temperature of the unit volume of liquid that one is tracking in the pipe,) will

be made. The input behaviors are shown in Tables 9.2.1 thru 9.2.3.

TABLE 9.2.1. Input #1 for heat exchanger identification (temperature

version)

x
<x*, inc>
«x*, 0), inc>
<0, inc>

T in
<Tbegin, dec>
«0, Tbegin), dec>
<disclmT, std>

T out
<Tcoo[, std>
<Tcoo[, std>
<Tcoo[, std>

TABLE 9.2.2. Input #2 for heat exchanger identification (temperature

version)

x
<X*, inc>
«x*, 0), inc>
<0, inc>

T in
<Tbegin, dec>
«0, Tbegin), dec>
«0, Tbegin), dec>

T out
<Tcoo[, std>
<Tcoo[, std>
<Tcoo[, std>

TABLE 9.2.3. Input #3 for heat exchanger identification (temperature

version)

x
<X*, inc>
«x*, 0), inc>
«x*, 0), inc>
«x*, 0), inc>
<0, inc>

T in
<Tbegin, dec>
«0, Tbegin), dec>
<disclmT, std>
<disclmT, std>
<disclmT, std>

Tout
<Tcoo[, std>
<Tcoo[, std>
<Tcoo[, std>
<Tcoo[, std>
<Tcoo[, std>

By using om knowledge of the domain, we can "cheat" and write down

the constraints that QSI is "supposed" to find if it is to identify the system as we

interpret it. The rate of increase of T_in will have the sign, of (T_out - T_in); i.e.

we expect QSI to find the relations DERIV(T_in,P) and ADD(T_in,P,T_out) along

with the already seen one about the derivative of X. The trouble is, three

alternative behaviors for the derivative of T _in in Table 9.2.2 exist, among

which the heuristics cannot make a preference: 1) P negative and fixed, 2) P

negative and increasing, and 3) P negative and decreasing. Of these, one will

142

be chosen randomly. (2) is the one which fits our understanding of the system,

and the expected model will be found if it is selected, otherwise, it will not.

This illustrates the motivation for the ongoing research for better

heuristics. A way of representing the state tree's structure in the input could

also provide a solution, since it would cause values in several behaviors to be

identified as a single one, imposing an additional restriction which would

probably reduce the number of alternatives. Next, some issues that can be

resolved by the use of a more flexible representation will be briefly

considered.

In the U-tube identification of Section 9.1.l, the difference parameters

(A-B) and (B-A) are assigned behaviors in which they both have the value zero

at equilibrium. This is a possibility, but two other possibilities, corresponding

to the cases where either amouncA or amouncB is the greater of the two, also

exist. Since the behaviors representing these possibilities have more than

three values in them, they are not even considered b;r the algorithm. It must

also be mentioned that QSI takes special care in the behavior calculation of new

parameters which are negatives or reciprocals of each other, like PI and P2

defined by ADD(X,Pl,Y) and ADD(Y,P2,X) or P3 and P4 defined by MULT(A,P3,B)

and MULT(B,P4,A), so that no inconsistency is allowed between the new

behaviors.

Finally, consider the subsystem of Table 9.2.4. The derivative of X is to be

postulated by QSI.

TABLE 9.2.4. Behavior of X-Y subsystem

X Y
<neglm, std>
«negim, 0), inc>
<0, inc>
«0, posim), inc>
<posim, inc>
«posim, maxim),
<maxim, std>

«0, 00), inc>
«0, 00), inc>
«0, 00), inc>
«0, 00), inc>
<YZm, std> ,

inc> «0, Ylm), dec>
«0, Ylm), dec>

The new parameter's magnitude clearly has to be zero at the endpoints

of the behavior, and positive within it. Once again, there is more than one

choice, even when one restricts attention to behaviors with seven values and

applies the heuristics (Table 9.2.5.)

143

TABLE 9.2.5. Two choices for the behavior of X'

X choice #1 fQr X' choice #2 for X'
<neglm, std> <0, inc> <0, inc>
«neglm, 0), inc> «0, 00), inc> «0, 00), inc>
<0, inc> <lmI, std> «0, 00), inc>
«0, poslm), inc> «O,lmI), dec> «0, 00), inc>
<posim, inc> «O,lmi), dec> <imi, std>
«posim, maxim), inc> «0, Imi), dec> «0, imI), dec>
<maxim, std> <O,dec> <0, dec>

Furthermore, there is no good reason that the derivative should arrive at

its landmark just when

landmarks, and the "real"

of qualitative states. All

another parameter is crossing one of its own

description may well be one with a greater number

these different possibilities would cause different

constraints involving X' to be found, or not to be found. For example, M+(X', Y)

is found only if choice #2 is selected for X.' To deal with such situations so that

the chances of constraint discovery are maximized, a more flexible

representation scheme for the directions of postulated derivatives has been

designed. The idea is to defer the decision on when the new parameter actually

stops at its landmark until a constraint involving it is found in the constraint

determination phase. Till then, the postulated parameter's direction in the

period between its two zeros is set to either isd a.ncreasing-~teady-4.ecreasing)

or dsi (.d..ecreasing-.[.teady-increasing,) depending on its sign. After the

discovery of the first significant constraint involving the parameter, its

behavior is translated into the conventional format. In the example, the

situation at the end of the postulation stage will be as shown in Table 9.2.6.

TABLE 9.2.6. Extended behavior of subsystem

X
<neglm, std>
«neglm, 0), inc>
<0, inc>
«0, posim), inc>
<posim, inc>
<(poslm, maxim), inc>
<maxim, std>

y

«0, 00), inc>
«0, 00), inc>
«0,00), inc>
«0, 00), inc>'
<Ylm, std>
«0, Ylm), dec>
«0, Ylm), dec>

X'
<0, inc>
«0, 00), isd>
«0, 00), isd>
«0,00), isd>
«0, 00), isd>
«0, 00), isd>
<O,dec>

Consistency checks involving is d or ds i are automatically satisfied.

When M+(X' ,Y) passes the test in this manner, the directions of X· are updated

144

with inc, std or dec so that it really satisfies the M+; this amounts to the choice

#2 in Table 9.2.5 being tIDally selected.

145

x. CONCLUSION

In this dissertation, three separate contributions in the AI area of qualitative

reasoning about physical systems were presented. The reported work has

focused on the representation and algorithm of the qualitative simulation

program QSIM. The ideas exemplified in that context can also be applied in the

wider qualitative simulation and modeling scene.

10.1. Summary of Results

The first of the contributions is about the use of tuples of corresponding values

of system parameters, a common technique in qualitative simulation.

Corresponding value information about parameter magnitudes is used by the

algorithm during the consistency filtering of newly proposed states, in

addition to the information supplied by the constraints themselves. The

existence of a class of inputs for which the QSIM algorithm predicts

mathematically impossible behaviors, although the information required to

detect and eliminate the inconsistency already exists in the state sequence

produced during the simulation, was demonstrated. It was shown that the cause

of this problem is the current practice of allowing only point magnitudes as

corresponding values. The notion of interval corresponding values was

introduced as a solution, and instructions on how to incorporate this to the

QSIM algorithm and the modification of the qualitative arithmetic routines to

handle operations where both operands are interval values were given. The

resulting algorithm, named improved QSIM, was proven to be better than pure

QSIM, in the sense that: 1) They both find all the correct behaviors, 2)

Improved QSIM does not predict some spurious behaviors that QSIM predicts,

and 3) Improved QSIM does not predict any spurious behaviors that QSIM does

146

not predict. The utility of improved QSIM was shown in example problems. As

stated in the analysis and the reports on the case runs, the modification does

not change the overall time complexity of the algorithm. A feature of the new

technique which distinguishes it from other ways of spurious behavior

reduction is that it needs no extra input information and just "squeezes" more

knowledge from the available input to achieve better results. Because of the

nature of the changes, pure QSIM can be replaced by the improved version

with' minimum effort.

Another item of this research is the development of the postdiction

algorithm for systems of continuous-valued parameters. Again, QSIM was used

as the basis. Various issues exist about this reasoning task in the general case:

If one is informed about the current scene, and asked to find out what may

have happened in the past so that this result has been obtained, there is usually

a formidably large number of possibilities for the situation in the "previous"

state, only a fraction of which may have been known. Furthermore, since

causes of "events" can in general be traced back to the beginning of the

universe, this very large "'branching" of possible previous states will occur for

each node of a very big tree. Choosing among the alternative pasts and

deciding when to stop looking for even earlier events are typical issues. These

are resolved naturally for the domain of continuous systems by the adoption of

the QSIM representation. By modifying only the value transition and operating

region change modules, the already analyzed correctness and complexity

properties of the algorithm were ensured to remain. The postdiction algorithm

produces a tree of states where each path from each node to the root is a

possible past. This different interpretation of the output stems from the fact

that one has no way of knowing whether a particular node in the state tree was

the initial state or not. The Closed World Assumption was discussed in this

context. The algorithm inherits the soundness of QSIM; it does not miss any

possible pasts that the model implies. For diagnosis applications, this exhaustive

listing could be useful. Example runs were used to illustrate the postdiction

algorithm's working.

Finally, the qualitative system identification algorithm was presented.

QSI is able to propose qualitative constraint models for systems whose

qualitative behavior it takes as input. The fact that it uses the QSIM format

makes the incorporation of the two algorithms in a unified reasoner very easy.

QSI's work corresponds to the model structure determination phase of the

147

general system identification enterprise. The algorithm's structure was

explained and exemplified in detail. Starting with (as many as possible of) the

qualitatively distinct behaviors and associated quantity spaces of the system's

parameters, the constraint determination stage finds all the constraints that

hold on the parameters by generating all syntactically possible constraints and

eliminating the ones that do not hold. The model obtained in this manner is fed

to the depth test stage where QSIM itself is used to check it not for correctness,

but for adequacy. If simulation of the model yields an unacceptably large

number of behaviors which are not present in the input, it is passed to the

model extension stage to be further tightened with the addition of more

parameters and constraints. "Useful" system parameters that do not appear III

the input are searched by postulating new parameters linked to the old ones by

various types of constraints, calculating their behaviors, and performing

constraint determination anew on the resulting extended system behaviors.

During the behavior calculation for the postulated parameters, use of

heuristics is niade to choose the "likeliest" of the alternative behaviors. This

means that the model extension stage may result in the production of modl!{s,

which, although mathematically consistent with the raw input information,

are different from the actual models that could be built given context

information about the system and the "natures" of the parameters. Unit

consistency rules are imposed on the final model that has passed the depth test

successfully; "buffer" parameters and constraints are created to meet the

arithmetic requirements about the parameter dimensions. QSI requires its

input to be completely correct (albeit qualitative.) A single wrong qualitative

value in the input can hinder the discovery of a correct model. A noise filter

that will be used as an optional preprocessor to smooth out suspected

fluctuations in individual parameter behaviors has been designed.

As the analysis shows, QSI's time complexity is similar to those of other

qualitative reasoners (which are, unfortunately, not very fast.) The fact that

each QSI run has (possibly multiple) QSIM invocations in it makes this obvious.

Execution times of the current implementation for various' inputs were listed in

Table 7.1.1.

Proofs of several properties of the algorithm were presented. The

constraint determination procedure finds all, and only, the constraints valid in

its input. All models produced by the algorithm (even the ones which are not

deep enough) therefore correctly describe the system's quantities. and, when

148

simulated, are guaranteed to predict each behavior in the input. The "extended"

models are never worse, and usually better, than their predecessors, by QSI's

criterion of model goodness. The consequence detection rules used to skip

testing many constraints were established.

The preparation of QSI's input (with special emphasis on the lack of

various important kinds of information in it,) and ways of interpreting its

output, were discussed in detail. QSI's applicability to diagnosis tasks was

examined, as well as its evident utility in qualitative modeling. The algorithm's

approach was compared and contrasted to other (more "human") methods of

modeling. Its place in the general framework of machine learning was

determined.

Several case runs were used to help illustrate the algorithm's working.

In addition to naturally filling the system identification gap in the

existing body of qualitative reasoning research, QSI may fonrl a part of the

basis ofa much more involved modeling. and reasoning rcocedure to be

invoked by autonomous intelligent robots in the future.

Those interested may obtain (possibly later versions of) the PROLOG

source codes of the programs embodying the above-mentioned algorithms in

magnetic media from the author for research purposes.

10.2. Suggestions for Future Work

The research reported in this text has suggested some areas of future work.

Ongoing experimentation on more and more example problems may result III

new behavior selection heuristics for QSI being found. As already discussed, in

its present form, QSI is very "mechanical," arriving at the models by what one

may call a brute-force search. This is the price paid for not relying on the

existence of any input information except accounts of the changing of some

parameter values. While this research has demonstrated that model structure

identification at a quite impressive scale is possible even with this much data, a

real-world reasoner must certainly be able to make use of any additional

149

knowledge that is available. In this regard, two possible roads for development

are evident. The first alternative is to use the "pure" QSI algorithm, as

presented here, as part of a much bigger modeling program, which combines

the many approaches to this difficult mental task. QP theory and the method of

dimension analysis would be among the methods incorporated, and hints about

the nature of the system under consideration, units of its parameters, and

model fragments that are known to be definitely there, would be some of the

additional input items. QSI's role in this setup could be to prepare initial model

proposals, from which the later stages prune off the coincidental and

noninteresting constraints. This super-modeler need not even restrict itself to

systems of continuous parameters; by spanning several domains, its usefulness

would increase. Research into what humans actually "do" during the model

building task would certainly provide valuable pointers for the construction of

such a pro gram.

The second, more modest alternative is to modify QSI so that it can use

some of the above-mentioned information itself. A knowledge base of "typical"

features of various model structures may be constructed. This knowledge would

then be used to help QSI to make more intelligent decisions, maybe forgoing

testing for some unlikely constraints, and therefore produce sleeker outputs,

more efficiently.

Our approach to the problem of deciding what constitutes an "easily

observable" parameter and what does not has been quite intuitive. Research

about this topic will certainly be useful for further work on QSI.

Attempting to apply the postdiction algorithm to perform diagnosis also

raises some issues to be handled by future work. In addition to the ["mal state of

the system, one also usually has some (at least partial) knowledge about the

starting state during diagnosis. Various other kinds of additional information

may be available, which could be used to discredit or totally eliminate many of

the alternative possible pasts. For instance, known probabilities of occurrence

of various kinds of faults may be utilized. If the algorithm is augmented to

handle available quantitative knowledge (like in Section 3.2.3,) even MTBF data

could help in imposing a likeliness order on the possible pasts.

For some purposes, the exhaustive listing of possible pasts by the

postdiction algorithm, presented in Chapter 5 as a desirable feature, may be too

cumbersome. A postprocessor which collapses several possible pasts which are

150

equivalent on a specified scale to a single one, therefore summanzmg the

output in higher-level terms, can be written. For the burst tank postdiction III

Chapter 5, for example, all the pasts involving an explosion would be

summarized in a single one.

The construction of a unified temporal reasoner, which is a combination

of not only a temporal database and a simulator, but also a modeler, is another

possibility. The storage and retrieval of time-indexed information, prediction

and postdiction from known or "what-if" facts in the database, and inference

of laws that hold in the domain from these facts, all in one program, can be

achieved by such a reasoner.

The quantity space representation is not as impoverished as it seems at

first sight. One can represent such information as b = 2a for landmarks a and

b in the same quantity space, using only pure QSIM's format, for instance. An

investigation of how much of such "quantitative" information can be squeezed

into the standard qualitL'tive representation, and the power that such

exploitations of algebra and arithmetic can impart to the various reasoners, is

among the future work planned.

Computer implementations (Appendix A) and experimentations have

been accompanying the development of the reported algorithms. Their porting

to computers with greater space and speed is an immediate practical aim.

151

APPENDIX A. IMPLEMENTATION

For hardware availability reasons, the programs embodying the algorithms

described in the text were implemented on IBM-compatible PCs. The "European"

AI programming language PROLOG (as opposed to LISP, which is popular among

American researchers) was used. Borland's Turbo PROLOG Version 2.0 [57]

provides a very acceptable program development environment, however, two

things must be mentioned in this regard. First, Turbo PROLOG differs in many

respects from the "standard" version in [58], and, although this did not cause

serious difficulties during implementation, it may have obvious negative

effects in future work to port the. programs to other environments. Secondly,

Turbo PROLOG imposes a very low (for this kind of programs, at least). limit on

the memory that can be used (640 K) by the programs. This is the cause of the

small size of the problems used for the QSI· case runs reported in Chapter 9.

Larger problems were tested by "chopping" them up in various not-so-elegant

ways, so that the program stayed within the memory limit.

Each of the two programs developed in relation to this research is a

Turbo PROLOG project: a collection of many files. The first such project, named

IQSIMP, is a "unified" program, which has both the postdiction ability of

Chapter 5, and the interval CV recording and using features of Chapter 4. To

ensure flexibility, the "direction of time" in which the simulation will be

performed is specified by the user in the input file. If "forward" is specified,

"normal" QSIM (but with interval CVs) runs. If "backward" is specified,

postdiction is performed.

The guidelines observed for the PROLOG implementation of QSIM were

explained in Chapter 3. The "nature" of the language makes a depth-first

approach to the creation of the state tree (Section 3.1.2, Step 1) the easiest to

write, so we followed this route.

The second project, QSI, is an implementation of the algorithm as

described in Section 6.2. As already stated, QSI calls a slightly modified version

152

of QSIM as a subroutine, so it is not surprising to see that parts the QSI project

resemble those of IQSIMP very closely. Actually, the version of QSIM that

appears in the source code of QSI which we make available is the "un

improved" one, so that one can see the differences required by the ICV features

by comparing the CV recording and qualitative arithmetic predicates in these

two programs.

Both programs invoke the Turbo PROLOG editor to aid the user in the

preparation of the input file and the examination of the output file. On-line

help during the input's preparation is also available.

As programmers know, large programs are like "living" beings; they

undergo many changes during their lifetimes. The programs described here

will also be the objects of various modifications, both to improve the space

efficiency, and to better explore many new ideas, some of which have been

mentioned in the text. (For instance, the proposals of Section 9.2.) All the

proper examples in thjs text, for which execution times were presented, and

many more, have been run with these programs, and the reported results have

been obtained as output.

The (quite long) source codes and help files can be obtained from the

author at the BITNET electronic mail address SA Y@TRBOUN.

153

BIBLIOGRAPHY

1. L. E. Widman, K. A. Loparo and N. R. Nielsen (Eds.) Artificial Intelligence,

Simulation and Modeling. New York: John Wiley and Sons, 1989.

2. E. Charniak and D. McDermott, Introduction to Artificial Intelligence.

Reading, MA: Addison-Wesley, 1985.

3. J. R. Hobbs and R. C. Moore (Eds.) Formal Theories of the Commonsense

World. Norwood, NJ: Ablex, 1985.

4. J. McCarthy and P. J. Hayes, "Some philosophkal considerations from the

standpoint of artificial intelligence," B. Meltzer an~ D. Michie (Eds.),

Machine Intelligence Vol. 4, Edinburgh, Scotland: Edinburgh University

Press, 1969.

5. P. J. Hayes, "The second naive physics manifesto," J. R. Hobbs and R. C.

Moore (Eds.) Formal Theories of the Commonsense World. Norwood, NJ:

Ablex, 1985.

6. D. S. Weld and J. de Kleer (Eds.) Readings in Qualitative Reasoning About

Physical Systems. Los Altos, CA: Morgan Kaufmann, 1990.

7. J. de Kleer, "How circuits work," Artificial Intelligence, Vol. 24, pp. 205-

280, 1984.

8. B. Kuipers, "Qualitative simulation as causal explanation," lEE E

Transactions on Systems, Man, and Cybernetics , Vol. 17, pp. 432-444,

1987.

9. B. Kuipers, "Qualitative reasoning with causal models in diagnosis of

complex systems," L. E. Widman, K. A. Loparo and N. R. Nielsen (Eds.)

Artificial Intelligence, Simulation and Modeling. New York: John Wiley

and Sons, 1989.

154 .

10. J. Shrager, D. S. Jordan, T. P. Moran, G. Kiczales and D. M. Russell, "Issues

in the pragmatics of knowledge modeling: Lessons learned from a

xerographics project," Communications of the ACM, Vol. 30 pp. 1036-

1047, 1987 ..

11. J. de Kleer and J. S. Brown, "A qualitative physics based on confluences,"

Artificial Intelligence , Vol. 24, pp. 7-83, 1984.

12. K. D. Forbus, "Qualitative process theory," Artificial Intelligence, Vol. 24

pp. 85-168, 1984.

13. B. C. Williams, "Qualitative analysis of MOS circuits," Artificial

Intelligence , Vol. 24, pp. 281-346, 1984.

14. B. Kuipers, "Qualitative simulation," Artificial Intelligence , Vol. 29, pp.

289-338, 1986.

15. B. Kuipers, "Qualitative reasoning: Modeling and simulation with

incomplete knowledge," Automatica , Vol. 25, pp. 571-585, 1989.

16. D. S. Weld, "Comparative analysis," Artificial Intelligence, Vol. 36, pp.

333-373, 1988.

17. D. S. Weld, "Exaggeration," Artificial Intelligence , Vol. 43, pp. 311-368,

1990.

18. B. Kuipers, C. Chiu, D. T. DaIle Molle and D. Throop. Higher-order

derivative constraints in qualitative simulation. Artificial Intelligence

Laboratory, The University of Texas at Austin, AI89-117, 1989.

19. W. W. Lee and B. J. Kuipers, "Non-intersection of trajectories in

qualitative phase space: A global constraint for qualitative simulation,"

Proceedings of the Seventh National Conference on Artificial

Intelligence (AAAI-88).

20. J. McCarthy, "Programs with common sense," R. J. Brachman and H. J.

Levesque (Eds.) Readings in Knowledge Representation. Los Altos, CA:

Morgan Kaufmann, 1985.

21. J. McCarthy, "Generality in artificial intelligence," Communications of

the ACM, Vol. 30, pp. 1030-1035, 1987.

155

220 L. Ao Zadeh, "Outline of a new approach to the analysis of complex

systems and decision processes," IEEE Transactions on Systems, Man, and

Cybernetics , Vol. 3, pp. 28-44, 1973.

23. J. Allen, "Maintaining knowledge about temporal intervals,"

Communications of the ACM, Vol. 26, pp. 832-843, 1983.

24. J. F. Allen and H. A. Kautz, "A model of naive temporal reasoning," J. R.

Hobbs and R. C. Moore (Eds.) Formal Theories of the Commonsense World.

Norwood, NJ: Ablex, 1985.

250 A Galton, "A critical examination of Allen's theory of action and time,"

Artificial Intelligence, Vol. 42, pp. 159-188, 1990.

260 J. Crawford, A. Farquhar and B. Kuipers, "QPC: A compiler from physical

models into qualitative differential equations," Proceedings of the Tenth

National Conference on Artificial Intelligence (AAAI-90) , 1990.

270 E. Till, "Nedensel

Elektrik-Elektronik

19910

formal sistemlerle ~lkanm," Bilkent Universitesi

ve Bilgisayar Mii.hendisligi Konferansz, Ankara,

280 Y. Iwasaki and H. A. Simon, "Causality ill device behavior," Artificial

Intelligence, Vol. 29, pp. 3-32, 1986.

290 Y. Iwasaki and H. A. Simon, "Theories of causal ordering: Reply to de

Kleer and Brown," Artificial Intelligence , Vol. 29, pp. 63-72, 1986.

30. Bo Kuipers, "Commonsense reasoning about causality: Deriving behavior

from structure," Artificial Intelligence , Vol. 24, pp. 169-203, 1984.

31. Do So Weld, "The use of aggregation- in causal simulation," Artificial

Intelligence. Vol. 30, pp. 1-34, 1986.

320 Williams, "Doing time: Putting qualitative reasoning on firmer ground",

D. S. Weld and J. de Kleer (Eds.) Readings in Qualitative Reasoning About

Physical Systems. Los Altos, CA: Morgan Kaufmann, 1990.

33. B. Faitings, "Qualitative kinematics in mechanisms," A rtifi cial

Intelligence , Vol. 44, pp. 89-119, 1990.

34. D. R. Throop, Spatial unification: Qualitative spatial

steady state mechanisms. Artificial Intelligence

University of Texas at Austin, AI89-95, 1989.

reasoning

Laboratory,

156

about

The

35. D. Dvorak and B. Kuipers, "Model-based monitoring of dynamic systems,"

Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence (IJCAI-89) , 1989.

36. N. Lavrac and 1. Mozetic, "Methods for knowledge acquisition and

refinement in second generation expert systems," SIGART Newsletter 108

(1989) 63-69.

37. E. Sacks, "A dynamics systems perspective on qualitative simulation,"

Artificial Intelligence , Vol. 42, pp. 349-362, 1990.

38. E. Sacks, "A dynamics perspective on comparative analysis," IEEE Expert,

pp. 67-69, February 1991.

39. D. S. Weld, "Comparative analysis and qualitative reasoning," IEEE

Expert, pp. 70-72, February 1991.

40. J. Suzuki, N. Sued a, Y. Gotoh and A. Kamiya, "Plant control expert system

coping with unforeseen events - Model-based reasoning using fuzzy

qualitative reasoning," Proc. 3rd Int'/. Conf. Industrial and Engineering

Applications of AI and Expert Systems, July 15-18, 1990, Columbia, S.

Carolina.

41. B. Kuipers, "Abstraction by time-scale in qualitative simulation,"

Proceedings of the Sixth National Conference on Artificial Intelligence

(AAAI-87), 1987.

42. B. Kuipers and C. Chiu, "Taming intractable branching In qualitative

simulation," Proceedings of the Tenth International Joint Conference on

Artificial Intelligence (UCAI-87) , 1987.

43. B. Kuipers and D. Berleant, "Using incomplete quantitative knowledge in

qualitative reasoning," Proceedings of the Seventh National Conference

on Artificial Intelligence (AAAI-88), 1988.

157

44. B. Kuipers and D. Berieant, A smooth integration of incomplete

quantitative knowledge into qualitative simulation. Artificial

Intelligence Laboratory, The University of Texas at Austin, AI90-122,

1990.

45. P. M. DeRusso. R. 1. Roy and C. M. Close, State Variables for Engineers.

John Wiley & Sons, 1965.

46. P. Struss, "Global filters for qualitative behaviors," D. S. Weld and J. de

Kleer (Eds.) Readings in Qualitative Reasoning About Physical Systems.

Los Altos, CA: Morgan Kaufmann, 1990.

47. R. Penrose, The Emperor's New Mind. Oxford: Oxford U. Press, 1989.

48. L. Ljung, "Issues in system identification," IEEE Control Systems, Vol. 11,

pp. 25-29, 1991.

49. C. W. Xu and Y. Z. Lu, "Fuzzy model identification and self-learning for

dynamical systems," IEEE Transactions on Systems, Man, and Cybernetics

, Vol. 17, pp. 683-689, 1987.

50. K. D. Forbus, "Interpreting observations of physical systems", D. S. Weld

and J. de Kleer (Eds.) Readings in Qualitative Reasoning About Physical

Systems. Los Altos, CA: Morgan Kaufmann, 1990.

51. D. Halliday and R. Resnick, Physics. John Wiley & Sons, 1978.

52. R. Bhaskar and A. Nigam, "Qualitative physics using dimensional

analysis," Artificial Intelligence , Vol. 45, pp. 73-111, 1990.

53. J. Rothenberg, "The nature of modeling," L. E. Widman, K. A. Loparo and

N. R. Nielsen (Eds.) Artificial Intelligence, Simulation and Modeling.

New York: John Wiley and Sons, 1989.

54. R. M. O'Keefe, "The role of artificial intelligence in discrete-event

simulation," L. E. Widman, K. A. Loparo and N. R. Nielsen (Eds.) Artificial

Intelligence, Simulation and Modeling. New York: John Wiley and Sons,

1989.

158

55. K D. Forbus, "Qualitative Physics: Past, present and future," D. S. Weld

and J. de Kleer (Eds.) Readings in Qualitative Reasoning About Physical

Systems. Los Altos, CA: Morgan Kaufmann, 1990.

56. R J. Doyle, "Reasoning about hidden mechanisms," Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence

(IJCAI-89), 1989.

57. Turbo PROLOG Reference Guide Version 2.0. Borland International, 1988.

58. W. Po Clocksin and C. S. Mellish, Programming in Prolog.

Springer, 1987.

Berlin:

159

REFERENCES NOT CITED

H. Abelson, M. Eisenberg, M. Halfant, J. Katzenelson, E. Sacks, G. J. Sussman, J.

Wisdom and K. Yip, "Intelligence In scientific computing,"

Communications of the ACM, Vol. 32, pp. 546-562, 1989.

T. Bylander, "A critique of qualitative simulation from a consolidation

viewpoint," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18,

pp. 252-263, 1988.

C. Chiu, "Constructing qualitative domain maps from qualitative simulation

models," L. E. Widman, K. A. Loparu and N. R. Nielsen (Eds.) Artificial

Intelligence, Simulation and Modeling. New York: John Wiley and Sons,

1989.

M. O. Cordier, "SHERLOCK: An expert system with hypothetical reasoning

capabilities," Proceedings of the Second International Symposium on.

Computer and Information Sciences (ISCIS-Il), Istanbul, 1987.

D. R. Coughanowr and L. B. Koppel, Process Systems Analysis and Control. New

York, NY: McGraw-Hill, 1965.

P. T. Cox and T. Pietrzykowski, "Causes for events: Their computations and

applications," Proceedings of the Eighth International Conference on

Automated Deduction, Oxford, 1986.

B. D'Ambrosio, "Extending the mathematics in qualitative process theory," L. E.

Widman, K. A. Loparo and N. R. Nielsen (Eds.) Artificial Intelligence,

Simulation and Modeling. New York: John Wiley and Sons, 1989.

C. J. Date, An Introduction to Database Systems. Reading, MA: Addison-Wesley,

1989.

T. Dean, "Using temporal hiearchies to efficiently maintain large temporal

databases," Journal of the ACM, Vol. 36, pp. 687-718, 1989.

160

T. L. Dean and D. V. McDermott, "Temporal data base management," Artificial

Intelligence, Vol. 32, pp. 1-55, 1987.

J. de Kleer, "An assumption-based TMS," Artificial Intelligence, Vol. 28, pp.

127-162, 1986.

J. de Kleer, "Extending the ATMS," Artificial Intelligence, Vol. 28, pp. 163-196,

1986.

J. de Kleer, "Problem solving with the ATMS," Artificial Intelligence, Vol. 28,

pp. 197-224, 1986.

J. de Kleer and J. S. Brown, "Theories of causal ordering," Art ifi cia I

Intelligence, Vol. 29, pp. 33-61, 1986.

J. de Kleer and B. Williams, "Diagnosing multiple faults," Artificial Intelligence,

Vol. 32, pp. 97-130, 1987.

V. Dhar and H. E. Pople, "Rule-based versus structure-based models for

explaining and generating expert behavior," Communications of the

ACM, Vol. 30, pp. 542-555, 1987.

D. W. Franke, Proposal for research: Representing, utilizing and acquzrzng

teleological descriptions. Artificial Intelligence Laboratory, The

University of Texas at Austin, AI89-112.

F. Gardin and B. Meltzer, "Analogical representations of naive physics,"

Artificial Intelligence, Vol. 38, pp. 139-159, 1989.

T. Gungor, "Generating Causal Relations from Mathematical Models", M. S.

Thesis, Bogazic;i University, 1989.

P. J. Hayes, "Naive physics I: Ontology for liquids," J. R. Hobbs and R. C. Moore

(Eds.) Formal Theories of the Commonsense World~ Norwood, NJ: Ablex.

1985.

D. R. Hofstadter, Godel, Escher, Bach: Ein Endloses Geflochtenes Band. Translated

from the english original Godel, Escher, Bach: An Eternal Golden Braid

by P. Wolff-Windegg and H. Feuersee, Munich: DTV, 1991.

161

D. Israel, "A short companion to the naive physics manifesto," J. R. Hobbs and

R. C. Moore (Eds.) Formal Theories of the Commonsense World. Norwood,

NJ: Ablex, 1985.

S. Kuru and T. Gungor, "Sign analysis technique for predicting system

behavior," to appear in International Journal of Intelligent Systems.

S. Kuru and A. W. Westerberg, "A Newton-Raphson based strategy for exploiting

latency in dynamic simulation," Computers and Chemical Engineering,

Vol. 9, No.2, pp. 175-182, 1985.

N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

O. O. Oyeleye and M. A. Kramer, "The role of causal and noncausal constraints in

steady-state qualitative modeling," L. E. Widman, K. A. Loparo and N. R.

Nielsen (Eds.) Artificial Intelligence, Simulation and Modeling. New

York: John Wiley and Sons, 1989.

J. A. Palesis, R. W. Dwyer, D. L. Leister and J. W. Kao, "Transforming

mathematical product evaluation models into expert systems for product

design," Proc. 3 rd Int'l. Con! Industrial and Engineering Applications of

AI and Expert Systems, July 15-18, 1990, Columbia, S. Carolina.

A. C. C. Say and S. Kuru, "Postdiction by qualitative simulation," Proceedings of

the Fifth International Symposium on Computer and Information

Sciences (IS CIS-V), Nev§ehir, 1990.

A. C. C. Say and S. Kuru, "Nitel model tamlama," Bilkon-9I 1991 Bilkent Elektrik

Elektronik ve Bilgisayar Miihendisligi Konferansl, Ankara, 1991.

A. C. C. Say and S. Kuru, "Qualitative system identification," Abstracts of the

Fifteenth IFIP Conference on System Modeling and Optimization (IFIP-

91), Zurich, 1991.

T. Soderstrom and P. Stoica, System Identification. Prentice Hall, 1989.

R. K. Stobart and N. R. Shadbolt, "Process control supervision using qualitative

models," Proc. 3rd Int'l. Con! Industrial and Engineering Applications of

AI and Expert Systems, July 15-18, 1990, Columbia, S. Carolina.

	OTEZ358001
	OTEZ358002
	OTEZ358003
	OTEZ358004
	OTEZ358005
	OTEZ358006
	OTEZ358007
	OTEZ358008
	OTEZ358009
	OTEZ358010
	OTEZ358011
	OTEZ358012
	OTEZ358013
	OTEZ358014
	OTEZ358015
	OTEZ359001
	OTEZ359002
	OTEZ359003
	OTEZ359004
	OTEZ359005
	OTEZ359006
	OTEZ359007
	OTEZ359008
	OTEZ359009
	OTEZ359010
	OTEZ359011
	OTEZ359012
	OTEZ359013
	OTEZ359014
	OTEZ359015
	OTEZ359016
	OTEZ359017
	OTEZ359018
	OTEZ359019
	OTEZ359020
	OTEZ359021
	OTEZ359022
	OTEZ359023
	OTEZ359024
	OTEZ359025
	OTEZ359026
	OTEZ359027
	OTEZ359028
	OTEZ359029
	OTEZ359030
	OTEZ359031
	OTEZ359032
	OTEZ359033
	OTEZ359034
	OTEZ359035
	OTEZ359036
	OTEZ359037
	OTEZ359038
	OTEZ359039
	OTEZ359040
	OTEZ359041
	OTEZ359042
	OTEZ359043
	OTEZ359044
	OTEZ359045
	OTEZ359046
	OTEZ359047
	OTEZ359048
	OTEZ359049
	OTEZ359050
	OTEZ359051
	OTEZ359052
	OTEZ359053
	OTEZ359054
	OTEZ359055
	OTEZ359056
	OTEZ359057
	OTEZ359058
	OTEZ359059
	OTEZ359060
	OTEZ359061
	OTEZ359062
	OTEZ359063
	OTEZ359064
	OTEZ359065
	OTEZ359066
	OTEZ359067
	OTEZ359068
	OTEZ359069
	OTEZ359070
	OTEZ359071
	OTEZ359072
	OTEZ359073
	OTEZ359074
	OTEZ359075
	OTEZ359076
	OTEZ359077
	OTEZ359078
	OTEZ359079
	OTEZ359080
	OTEZ359081
	OTEZ359082
	OTEZ359083
	OTEZ359084
	OTEZ359085
	OTEZ359086
	OTEZ359087
	OTEZ359088
	OTEZ359089
	OTEZ359090
	OTEZ359091
	OTEZ359092
	OTEZ359093
	OTEZ359094
	OTEZ359095
	OTEZ359096
	OTEZ359097
	OTEZ359098
	OTEZ359099
	OTEZ359100
	OTEZ359101
	OTEZ359102
	OTEZ359103
	OTEZ359104
	OTEZ359105
	OTEZ359106
	OTEZ359107
	OTEZ359108
	OTEZ359109
	OTEZ359110
	OTEZ359111
	OTEZ359112
	OTEZ359113
	OTEZ359114
	OTEZ359115
	OTEZ359116
	OTEZ359117
	OTEZ359118
	OTEZ359119
	OTEZ359120
	OTEZ359121
	OTEZ359122
	OTEZ359123
	OTEZ359124
	OTEZ359125
	OTEZ359126
	OTEZ359127
	OTEZ359128
	OTEZ359129
	OTEZ359130
	OTEZ359131
	OTEZ359132
	OTEZ359133
	OTEZ359134
	OTEZ359135
	OTEZ359136
	OTEZ359137
	OTEZ359138
	OTEZ359139
	OTEZ359140
	OTEZ359141
	OTEZ359142
	OTEZ359143
	OTEZ359144
	OTEZ359145
	OTEZ359146
	OTEZ359147
	OTEZ359148
	OTEZ359149
	OTEZ359150
	OTEZ359151
	OTEZ359152
	OTEZ359153
	OTEZ359154
	OTEZ359155
	OTEZ359156
	OTEZ359157
	OTEZ359158
	OTEZ359159
	OTEZ359160
	OTEZ359161

