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QUALIT A TIVE SYSTEM IDENTIFICATION 

The main contribution of this research in the qualitative reasoning area of 

Artificial Intelligence is the development of the qualitative system 

identification algorithm QSI. QSI's input is a description of the qualitative 

behaviors of the system to be identified. Its output is a constraint model 

(possibly containing "deep" parameters absent in the input) of that system, in 

the format of Kuipers' qualitative simulation algorithm QSIM. The QSI approach 

to qualitative modeling makes no assumptions and requires no knowledge about 

the "meanings" of the system parameters. QSI is discussed in detail. 

Other contributions are a new method of eliminating a class of spurious QSIM 

predictions, and an algorithm for postdiction. 

Unlike other approaches to spurious behavior reduction, the method presented! 

here does not require restricting assumptions about the input model. A 

particular kind of spurious behavior is shown to be caused by pure QSIM's 

insistence on assigning only point values to "corresponding value tuples" 

associated with model constraints. The solution put forward here preserves the 

overall complexity of the algorithm, while producing fewer incorrect 

predictions, as shown by the presented reports of the case runs and proofs. 

Postdiction is the task of finding out the possible pasts of the system under 
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consideration, given the laws of change and the current state. For obtaining 

the algorithm, a different scheme of interpreting the tree built by simulation 

is imposed, as well as the handling of the "flow" of time. Issues of thig 

reasoning task, which is promising for diagnosis applications, are discussed. 
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NITEL StSTEM T ANILA1\1A 

Yapay Zeka'nm nitel uslamlama alamndaki bu ara~tlfmanm temel katklsl, nilel 

sistem tamlama algoritmasl QSl'm geIi~tiriImesidir. QSl'm girdisi, tamlanacak 

sistemin nitel davram~lannm bir betimlemesidir. <;lkUSl bu davram~lan 

g5steren sistemin Kuipers'in QSIM nitel benzetim algoritmasmm bir;eminde ve 

sistemin girdide belirtilmemi§ "derin" parametrelerini de ir;erebilen bir klSlt 

modelidir. Nitel modellemeye QSI yakla~lml sistem parametrelerinin 

"anlamlan" hakkmda hi~ bir varsaYlm yapmaz ve bilgiye gereksinmez. QSI 

geni§bir;imde tartl~Ilmakta ve 5rneklenmektedir. 

Diger katkllar, bir grup "sahte" QSIM daVram§IDl elemek i~in yeni bir yontem 

ve bir sonradan tahmin algoritmasldlf. 

Sahte davram§lan azaItma konusuna ba~ka yakla§lmlann aksine, burada 

sunulan y5ntem girdideki model hakkmda kIsItlaYlcl varsaYlmlar gerektirmez. 

Belli bir ttir sahte davram§m saf QSIM'in model klsItlan ir;in kul1amlan 

kar§lhk deger takImlannda sadece nokta degerlerin tutulmasl konusundaki 

isran nedeniyle ortaya r;lktlgl saptanml~tlr. Sunulan r;ozlim, verilen i~letim 

5rnekleri ve ispatlann da gosterdigi gibi, algoritmamn genel karma§lkhgml 

k5tlile§tirmeden daha dogru r;lkttlann oIu§maslnt saglar. 

Sonradan tahmin, degi§im yasalan ve ~imdiki durum verildiginde 01:UH 
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ge~mi~leri bulma i~idir. AIgoritmaYI elde etmek i~in, zamanm "ge~i~i" iJe ilgili 

degi~ikliklerin yamslra, benzetimce Uretilen durum agacml yorumlamanm 

farkh bir y5ntemi getiri1mi~tir .. Tam .. uygulamalan i~in umut vaadeden bUl 

uslamlama tUrUyle ilgili konular tartl~Ilml~tlT. 
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I. INTRODUCTION 

Artificial Intelligence (AI) has been defined as "the field of Computer Science 

that concerns itself with the production of programs which accomplish tasks 

which, when performed by a human, can be considered intelligent." [1] In the 

35 years since the Dartmouth Conference, widely regarded as the start of AI, 

considerable success has been achieved in the automation of some such tasks. 

Programs which play chess (and some other board games) better than most 

humans have been written [2]. Expert systems which· possess some of the 

knowledge of a human expert in a specific domain are commercially available 

and used in various areas [2,1]. 

However, some other mental tasks performed routinely by humans (so 

easily, in fact, that they are not normally considered very intelligent,) have 

proven to be very hard to program, against the early optimistic expectations of 

some researchers. 

Upon comparison of these "basic" tasks (like vision, understanding 

natural language, or the possession of what may be called "commonsense" 

knowledge of the world) to the more "advanced" ones mentioned in the first 

paragraph, one sees that the knowledge representation required for tackling 

the "simple" tasks is much more complicated. Most games have a simple, 

standard and obvious representation, the board. Expert systems store their 

knowledge in relatively simple representations (using, for example, 

production rules or frames.) On the other hand, the internal representation of 

things like languages or "the world" is certainly bound to be more complicated. 

Actually, it is because of their simplistic representation schemes that expert 

systems cannot solve problems that belong to their domain but are too simple 

for the expertise level that they are "geared" to. They lack deep knowledge. 

that is, a model of the underlying mechanism causing the observable features 

in the domain. Some variables of this model may not even be directly visible. 

Knowledge of such a model enables one to perform flexible reasoning, 

answering a wide variety of questions, and providing causal explanations (e.g. 
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"the rise in the pressure in tank A led to an increase in the pressure 

difference, which in turn caused a flow from tank A.") of system behaviors. 

Most of today's expert systems work with shalIow knowledge; their conclusions 

are based on empiric relationships with the observations. As Hobbs [3] says: 

"An expert system in geology may know the characteristics of a good! 
prospect site without knowing that a rock is a physical object and that a 
geologist is a person." 

Considering the importance of representation, McCarthy and Hayes [4] 

have pointed out that intelligence has two parts: e pis t e mol 0 g i c a I 

(representation of the world) and heuristic (the problem solving mechanism.) 

In order to construct the epistemological part of an AI, they say: 

"The first task is to define even a naive, common-sense view of the world 
precisely enough to program a computer to act accordingly. This is a very 
difficult task in itself." 

In 1979, Hayes wrote "The Naive Physics Manifesto," [5] in which he 

called for "a formalization of our knowledge of the everyday physical world: of 

naive physics," and set out the guidelines for this project. This paper had a 

great effect, and many researchers were actively involved in the various 

branches of this endeavor [3]. 

Humans generally do not use numerical or exact information when 

performing commonsense reasoning. Rather, the knowledge they utilize is 

qualitative (and, sometimes, wrong.) For example, a human can tell what a ball 

thrown upward will do, even though (usually) neither the value of its velocity, 

nor the exact equations governing its flight are known to him. That is why the 

reasoners and theories developed for automating the task of understanding the 

behavior of physical systems have adopted a qualitative representation of 

system models and parameter values, and the associated field of research [6] has 

been given names like qualitative physics or qualitative reasoning. 

Generally, these programs start with a qualitative model of the system 

under consideration and reason about its time behavior. This model-based 

reasoning capability is a candidate for solving the deep knowledge problem of 

expert systems. It also provides for the generation of causal explanations of 

device behaviors, with potential applications to design and diagnosis aids, and 

tutoring systems, where capturing and making use of the user's intuition is of 

great importance. The ability to express and reason with incomplete knowledge 

is another desirable property of these reasoners. Early applications of this 
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technology have already appeared, in domains of expertise as diverse as 

electrical circuits [7] and physiological systems [8,9]. (Also see [10].) 

.' 
Most of the research in the. field of qualitative reasoning has been in the 

area of qualitative simuia,tion [11-14]. A qualitative simulator is a program 

which takes as input the initial state of a physical system and a qualitative 

model composed of constraints representing time-independent relations 

between the system's parameters, and produces an account of all possible 

future behaviors of the system, represented as sequences of qualitative states 

(parameter value collections.) Because of the incomplete nature of the 

information they deal with, qualitative simulators can produce s pur i 0 U S 

behaviors, i.e. those which do not correspond to any actual physical behavioll 

that the system can exhibit, for some inputs. 

After pioneering work by researchers including de Kleer and Brown 

[11], Forbus [12], and Williams [13] on this topic, Benjamin Kuipers developed 

the QSIM [14,15] algorithm, which is distinguished from the others by its 

implementation efficiency and its ability to discover qualitatively important 

landmark values about the modeled system. 

QSIM has been used as a tool in the development of other reasoners, and 

the work in qualitative reasoning that will be explained in this dissertation has 

also been performed in the context of QSIM, using its representation and 

formalism, so that the compatibility of its products to this "standard" is 

guaranteed. 

1.1. Contribution of This \Vork 

Where do the qualitative models used by the above-mentioned reasoners come 

from? Surely, modeling the systems in the first place is a very important task, 

if model-based reasoning is to be performed. Almost all presently available 

qualitative physical reasoners get these models as input, leaving the whole 

modeling task to the user. Some authors [11,14] even describe methods of hand

transforming ordinary differential equations governing the input system 
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(which are to be obtained from, say, textbooks on that domain,) to qualitative 

form. Some (like Forbus [12]) provide methodologies where the user gives ~ 

description of the individuals, configurat,ion and quantities of a physical scene, 

and the reasoner builds the model using this input, together with already 

present information about a great variety of physical processes that may be 

active and the relations on the system parameters imposed by tbese processes. 

Although these are admirable approaches to using available knowledge and! 

building correct models, the question remains: Can one automate the task of 

finding out this information about the relations between the parameters of a 

given system? 

Humans can form a mental model of the dynamics of a newly seel!ll 

physical system after observing its working for some time. This suggests that a 

kind of learning process is going on, whose input consists of system behaviors 

and whose output is a model of the system. There is also a well-established field 

(quite unrelated to AI) of modeling dynamic systems from (numerical) 

experimental data, known as system identification. In this study, it has been 

decided to adopt such an approach to the problem, and a qualitative system 

identification algorithm, QSI, which takes a set of system behaviors expressed 

in the QSIM format as input, performs constraint generation and testing on 

these data, and proposes a QSIM-style model of the system as output, has been 

developed. QSI also has the capability of finding an "appropriately" deep model. 

a feature that also exists in conventional system identification. Despite their 

conceptual similarity, the methods have great internal differences, because of 

the different natures of the data they handle. 

Research in qualitative physical reasoning has mostly striven to 

produce qualitative analogs of existing "standard" methods for performing 

various analysis tasks. The already mentioned technique of qualitative 

simulation, for instance, is the equivalent of numerical simulatiolil OIl 

analytical solution of equations, in this domain. Similarly, Daniel Weld's 

methods of comparative analysis [16,17] are qualitative analogs of the standard 

task of perturbation analysis. As remarked above, QSI adds the system 

identification task to the repertory of qualitative reasoning. 

In addition to its suitability as a model generator for qualitative 

simulators, the QSI method also suggests an approach to the model structure 

determination problem of conventional system identification itself. Its abilhy 

of preparing models for systems whose behaviors are observed, withoua 



making any restrictive assumptions on the meaning or function of the 

systems, also makes QSI a good candidate for diagnosis applications. 

As mentioned above, QSI achieves learning; a topic of much AI work. 

How it compares to established learning procedures has been investigated!. 

Proofs of correctness and a performance evaluation which shows that its tim~ 

complexity is comparable to that of other qualitative reasoners have also beellll 

given. 

Prediction of future behavior is only one of a variety of temporal 

reasoning tasks [12] which can be accomplished using qualitative models. One 

such task, which has been little-explored because of some inherent difficulties. 

is postdiction, inferring what happened in the past from the current state of 

the system. Certain modifications on the "time-passing" module of QSIM have 

been made and a new way of interpreting the state graph it produces during 

simulation has been developed, resulting in an algorithm for postdiction by 

qualitative simulation. Postdiction is promising in relation to diagnosis tasks, 

where it can be used to enumerate the various ways in which "things may 

have gone wrong," given a problematic system state. 

As explained before, qualitative simulators may predict spurious 

behaviors. Work has been going on [18,19] to decrease the number of such 

spurious solutions produced by QSIM. In the course of this study, a shortcoming 

in the corresponding value filters, which QSIM uses during simulation to 

prevent states which do not satisfy the constraint model from being generated. 

has been discovered. This anomaly causes a particular class of "illegal" states to 

pass the filters, thereby producing spurious behaviors. Improved qualitative 

arithmetic and corresponding value recording routines have been designed as 

a solution to this problem. These modifications have been integrated into an 

implementation of QSIM, and a provably improved program has been obtained]. 

The method requires no changes in the assumptions about the input 

information, unlike the other approaches to spurious behavior reduction. 
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1.2. Structure of the Dissertation 

The rest of this dissertation is structured as follows: Chapter 2 provides the 

background and gives a technical overview of previous qualitative reasoners, 

with an emphasis on their features relevant to this work. The qualitative 

simulation algorithm QSIM is examined in a similar manner in Chapter 3. The 

filtering problem of QSIM which leads to an avoidable class of spurious 

behaviors and the solution for it are explained in Chapter 4. The work on 

postdiction by qualitative simulation is detailed in Chapter 5. Chapter 6 starts 

the coverage of qualitative system identification with a detailed presentation of 

the algorithm. Complexity and correctness analyses of QSI are given in Chapter 

7. Chapter 8 is a discussion of the various considerations that arise when 

performing the QSI task, and the place of the algorithm in the wider reasoning 

scene. Various QSI examples are presented in Chapter 9. Chapter 10 contains 

recommendations for future work in the area and a conclusion. The appendix is 

about the implemented programs. 
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II. QUALITATIVE PHYSICAL REASONING 

The behavior of physical systems takes place in time, and reasoning about them 

requires an adequate and efficient way of representing time and change. This 

chapter of the dissertation will begin with an overview of the "classical" AI 

approaches to temporal representation. Various qualitative reasoners will be 

presented, with their features relevant to the present areas of interesR 

highlighted. Finally. other AI topics with a relation to the presently 

investigated ones will be briefly covered. 

2.1. Temporal R epresenta tions 

Temporal reasoning 

summarized in this 

needs 

section 

a specialized 

have greatly 

representation. The approaches 

affected and shaped further AI 

research in the area. As will be seen in the next section, qualitative physical 

reasoning researchers have also adopted and specialized the methods that will 

be mentioned here. 

2.1.1. The Situation Calculus 

The best-known temporal representation scheme is the situation calculus, 

developed by McCarthy [20] and Hayes [4]. In this formalism. a situation is the 

state of the whole universe at a given time. (Of course, the reasoner's 

knowledge of "the whole universe" is very limited. What is meant here is "all 

the fa c t s known to the reasoner.") A situation persists until some facts about 

the world change. in which case a new situation begins. Facts can be changed 

by actions (e.g. shooting somebody causes the facts about his health to be 



changed, therefore leading to a new situation,) or events (the falling of a vase 

changes its price.) Transitions between situations (i.e. the passing of time) are 

shown by the result function: 

new_s = result" (s, e) (2.1) 

means that if event e occurs in situation s, the situation new s results. The 

state of the world d uri n g the change is not modeled and therefore cannot be 

reasoned about. Laws of change, which dictate how particular events cause 

change are then represented as in the following example [21]: 

v s, x, e: color(result(s, paint(x, e)), x) = e (2.2) 

That is, in the situation that results when object x is painted to color e, the 

color of x is e. Note how facts have situations as arguments. This is necessary 

because one is performing temporal reasoning; the facts are time-dependent. 

A famous drawback of the situation calculus is the frame problem. 

Consider a reasoner which supports "color" facts about objects as in the above 

example together with lots of other facts about other things, such as the name 

of the prime minister, for instance. In situation s _1, many such facts are 

known. Then, paint(object_1, blue) occurs, resulting in situation s _2. Now, if 

the reasoner is asked about the name of the prime minister in situation s 2. 

will it be able to answer the question? That fact is known in s 1, but how can 

one deduce that it is still there in s 2? As this example illustrates, in classical 

situation calculus, one has to include a huge number of frame axioms that 

specify which aspects of the world do not change (i.e. are attached to the 

"frame") when a particular event occurs, for each aspect and for each kind· of 

event. 

But the real problem with situation calculus from the point of view of 

reasoning about physical systems is that it cannot deal with continuou~~ 

change in a healthy manner. As McCarthy [21] says, the situation calculus 

"applies only when it is reasonable to reason about discrete events, each of 

which results in a new total situation. Continuous events and concurrent 

events are not covered." 
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2.1.2. Hayes' Work 

In "The Naive Physics Manifesto" [5], Hayes introduced a new ontological 

primitive, the history, as an alternative to situation calculus. The history of an 

object or an event is the 4-dimensional piece of spacetime that it occupies, 

bounded spatially and temporally by its "natural" boundaries. This scheme has 

no frame problem, since only objects and events whose histories interact iDl 

some manner can affect each other; all other things are isolated from them and 

thus do not change. 

In the same paper, while enumerating the general commonsense 

concepts that humans have, Hayes gives a definition of quantities as qualities 

that can be measured. He goes on to point out that the measuring scale involved 

may not impose a strict linear order on the space of quantities being measured. 

He adds that fuzzy values [22] may be used in this context. Interestingly, as will 

be discussed later, a qualitative representation quite different from the fuzzy 

setup has been adopted in the field. 

2.1.3.. Allen's Theory of Time 

Allen [23,24] proposed a model of naive temporal reasoning which is based 

solely on time intervals. He argued that time "points," i.e., "instants" in the 

representation produce some confusing interpretation problems and c1aimedl 

that effective temporal reasoning can be achieved without them. His c1assic 

example is as follows: Someone turns on the light. This means that two time 

intervals exist: One during which the light was off, followed by another one 

during which it is on. If these intervals are both open, there is a time point iDl 

between "during" which the light is neither on nor off. This is 

counterintuitive. If the intervals are both closed, then there is a time point 

when the light is both on and off. This is even worse. And there is no good 

reason for one interval being closed and the other being open. So one should 

not use "the real line as a model of the time line" in naive physical reasoning. 

Allen says that the commonsense notion of time point, sometimes used! by 

humans, is actually an interval which is too small for the scale of the currelITlt 
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discussion, and can always be decomposed to smaller intervals at smaner 

s c a I e s 1. (Consider the different time scales used by astrophysicists and! 

politicians, for instance.) 

In Allen's model, two intervals, one of which is immediately followed by 

the other, like those in the light switch example, are said to meet. Twelve other 

"primitive" relations that are possible between intervals are defined and! ~ 

constraint propagation algorithm for performing reasoning of the kind of 

being able to answer queries like "Did evencl happen before or after 

evenc8?" is developed. These sort of problems can arise in story 

understanding. 

Allen's theory caused some controversy. Galton [25] says that it is not 

suitable for representing continuous change, and proposes that instants should 

be included III the ontology as part of his solution. Williams, who has adopted 

the real line representation for time in his qualitative physical reasoning 

system, criticizes Allen's ontological decisions in [13]. His arguments will be 

presented in Section 2.2.3. 

2.2. Qualitative Reasoning 

The basic difference of the work to be explained here from that of the 

researchers referenced above is that, while those researchers' aim was to 

achieve generality in AI, (i.e. they were after a scheme which was up to 

representing a wide range of the temporal reasoning tasks that humans 

perform,) the aim of what has become known as the qualitative physical 

reasoning field is to automate reasoning about the smaller domain of the 

working of physical systems. Special emphasis on the relation of the structure "-

of these systems (or mechanisms, devices, etc.) to their behavior is made. A 

model of the system, describing the relations between its various elements 

1 Kuipers has used this notion of time scale in designing an abstraction method 
for QSIM (Section 3.2.1.) 



11 

(parameters, quantities, etc.) is used to generate not only a description. but also 

an explanation of various aspects of its behavior. Since this task domain is 

much more specialized both representat"~onally and computationally than what. 

say, the situation calculus set out to handle, more efficient representations and! 

algorithms that deal with it can be, and have been, developed. 

2.2.1. Qualitative Process Theory 

Forbus' Qualitative Process (QP) Theory [12] is one of the foundations of 

qualitative reasoning about physical systems. Many concepts and techniques 

used in the field were firmly established in the context of that work. 

QP theory is a model-building methodology based on the notion of 

physical processes. All change is viewed to be caused by processes. The 

reasoner is assumed to h ave a (big) library of model fragments [26]; knowledge 

about various kinds of processes (under what conditions and in what 

configurations they occur, what changes they impose on various quantities,) 

and of relations that various states impose on the continuous parameters 

involved in - them (e.g. the existence of water in a container necessitates a 

relation between the amount of water and the pressure at the bottom.) 

Forbus introduced the quantity space representation for the magnitudes 

of parameters. The quantity space of a parameter is a partially ordered set of 

landmarks, symbols representing qualitatively important real values (like O. 

boilingyoint, or maximum_capacity) that this parameter can take. Magnitudes 

are then represented as points or intervals in the quantity space. Each 

parameter's value is composed of its magnitude and time derivative. In this 

way, the directions of change of parameters are easily represented in their 

values. 

The reI ations between parameters can be either in the form of 

arithmetic operations, as a parameter being the sum of two others, or in terms 

of qualitative proportionalities, as in 

pressure a Q+ amouncoCIiquid (2.3) 

which means that, all other things held constant, pressure will increase if 

amount is increased, and it will decrease if amount is decreased. No details about 



the function except its monotonicity are known. ex Q_ 

inverse proportionality. Additional information about 

12 

similarly represents 

the function can be 

specified using corresponding values)n the quantity spaces of the related! 

parameters that define points which the function crosses. For example, (0,0) i§ 

a corresponding value tuple for the above proportionality, since the pressure 

is zero when the amount is zero. 

Given a description of the individuals, configuration, and certain 

parameter values, if one makes the Closed World Assumption (CWA) that an the 

relevant knowledge about the part of the world in which one is interested is 

available, QP theory can be used to determine the currently active processe§. 

and therefore to assemble a model of the laws of motion driving the system. Thre 

future behavior of the system is then predicted by qualitatively combining the 

effects on the quantities to see which threshold values they will cross, possibly 

leading to changes in the process structure. Because of the ambiguity inherent 

in the representation of quantities and relations, usually many alternative 

futures are predicted, each of them corresponding to an actual scenario that 

satisfies the model. 

The limit analysis technique used by Forbus to achieve the "passing" of 

time, i.e. to find the "next" interval (Allen's model of time is adopted) in which 

some aspects are qualitatively different from the current one, evolved to be a 

standard method used by qualitative simulation programs. The idea is this: The 

sign of the time derivative of each parameter indicates its direction of change. 

So all changing parameters are nearing certain points in their quantity 

spaces. When one of them arrives at such a point, a qualitative change occurs. 

Barring some cases, in which corresponding value information may be used to 

eliminate some such transitions, one generally has no way of knowing which 

parameter will change qualitative value first, so the prediction branches to 

consider all cases. For instance [12], suppose the existence of two containcJl'§ 

with fluids in them, and an open fluid path between them has been described 

in the input. A fluid flow process is activated from the container with the 

greater pressure to the other one. (Equation 2.3 is sUso part of the present 

information.) Given all this, a reasoner employing QP theory is able to deduce 

two alternative futures for the system with limit analysis. In one of them, the 

pressures eventually become equal (since the flow process influences the 

"target" amount positively, and the "source" amount negatively,) and the 

process terminates as the pressure difference that triggered it vanishes. In the 
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other alternative, the source container runs out of fluid (i.e. that amount 

reaches the landmark 0) and the process stops, since a flow needs the existence 

of a source. Which of the alternative~_: actually occurs cannot be determined 

without further (configurational) information about the system. 

Forbus also introduces encapsulated histories to represent "destructive" 

events, like breakings, collisions, and explosions, whose underlying 

mechanism is hard to model. These are just accounts of what happens when 

such an event occurs. 

Since qualitative simulators are mostly outgrowths of one another. a 

detailed example of their complete working will only be given for QSIM. in 

Chapter 3. 

Forbus argues that QP theory can be helpful for the generation of Hayes

style histories. He proposes ways of identifying components of physical scenes 

that do not affect each other, and therefore can be reasoned about 

independently. 

The origin of the huge number of model fragments which contain 

knowledge of dynamics that are an essential part of QP theory is not made dear. 

In this study, it is claimed that such knowledge of structure can be obtained by 

examining the behavior exhibited by the system, and observing the relations 

between the parameter values. An algorithm based on this claim will be 

presented in Chapter 6. 

2.2.2. Qualitative Physics and Causality 

de Kleer and Brown's ENVISION [11] program, based on their Qualitative 

Physics, assumes a mechanistic world view. The input system models are formed 

by connecting component models III the program's component library 

according to the device topology of the system. Zero is (practically always) the 

only landmark used. There are con d u i t laws which have to hold in the 

connections between the components, representing physical conservation 

rules, as well as the time-invariant confluences (qualitative differential 

equations) of each component, governing its working. Furthermore, each 
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component may have various states 2 in which different confluences apply, 

determined by the values of certain variables. The component confluences 

have to have been previously written by a human, either employing 

"commonsense," or directly transforming them from the conventional 

physical equations (to be found in, say, a textbook,) to the qualitative form, 

where only the signs of variables and their derivatives come into play. 

Making the assumption that the system is always near or at equilibrium, 

and starting with the initial values of some of the variables, ENVISION solves 

the system of equations to obtain the intrastate behavior; that is, a complete 

assignment of values to variables. Descriptions of the variable values and 

directions in all different states that the system can enter can be calculated. 

Since the directions indicate the "next" values that the variables may obtain, a 

diagram showing all possible state transitions that the system can go through 

can then be constructed. One must note that this cannot be considered a 

simulation process like the scheme discussed in relation to QP theory; in 

sinulation, if event A comes after event B in "real life," (his relation is 

reflected in the order they are processed by the program. ENVISION, on the 

other hand, "calculates" all states that the system can have, and then starts an 

analysis of possible transitions between them. 

de Kleer and Brown also developed a way of producing causal 

explanations of intrastate behavior, trying to show how the change in the 

value of a variable causes changes III the values of other variables in the same 

confluence. Causality is very hard to formalize [27], and de Kleer and Brown 

were not entirely successful. Consider the very simple equation 

X=Y. (2.4) 

ENVISION produces explanations like "X increased, and this caused Y to 

increase," but this seems to imply that there was a time period during which 

X;t: Y, which doesn't make sense. de Kleer and Brown had to introduce the 

concept of mythical time, during which the laws may be temporarily violated. 

No "normal" time passes during mythical time. When the confluences are 

slightly more complicated than the form above, ambiguities result as to how 

causality should be propagated among the variables. de Kleer and Brown use 

2 Note that de Kleer and Brown's notion of state is somewhat different from the 
one that will be used in most of this text. 
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canonicality heuristics which encompass the intuition "If you do not know that 

something is changing, assume that it is not," to help decide in propagation in 

such cases. Iwasaki and Simon [28,29] pointed out the weaknesses of mythical 

causality and showed how the method of causal ordering, developed by Simon 

in the 1950's for the field of econometrics, provides better solutions. 

2.2.3. Temporal Qualitative Analysis 

Brian Williams [13] developed the temporal qualitative (TQ) analysis technique 

as the basis of a CAD tool for high-performance circuits. Specialized to this 

domain, the model building and explanation-generation features of TQ analysis 

are similar to those of de Kleer and Brown. However, the interstate transitions 

are handled with transition analysis, in which the limit analysis task 

introduced by Forbus is performed using a comprehensive set of rules. This 

task is divided into the transition recognition (Which parameters are likely to 

change qualitative value in the next instant?) and transition ordering (Which 

of these transitions will occur first?) parts, guided by continuity considerations 

and device laws. These make TQ analysis a major qualitative simulation 

technique, and an important predecessor of QSIM. Since operation region 

c han g e s, where the equations governing the device have to be replaced by 

another set are common in this domain, they are handled in detail. Williams 

adopts the real line representation of alternating points and open intervals for 

both parameter values and time. A parameter which is positive and decreasing 

(or negative and increasing) takes an instant (a time point) to cross zero, and 

an interval of time to cross an interval, and since the device behavior is an 

account of the ways in which the collection of parameters are changing, it has 

to be presented as a sequence of alternating time points and intervals. 

Countering Allen's light switch argument (see Section 2.1.3) against time 

points, Williams points out that the intensity of the light is a continuous 

parameter, and the notorious "point" in between the . two intervals actually 

contains a (very short) interval during which the intensity is increasing from 

o to its standard level. He puts forward the example of a ball thrown upwards (a 

very popular "system" in commonsense reasoning research) and says that, 

intuitively, the ball "stops" at the top of its trajectory for only an instant, i.e, a 

time point between the two intervals of rising and falling, and therefore time 

points have 3. place in intuition in domains where continuous change is 

present. 
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2.2.4. Kuipers' Work 

Early in his work on qualitative simulation of mechanisms, Benjamin Kuipers 

developed the ENV [30] program. Unlike its predecessors, ENV does not have a 

library of model fragments, and for each input, the user is expected to specify 

the laws of the mechanism in terms of time-invariant constraints between the 

parameters. The allowable constraint types include arithmetic, functional, and 

derivative, which later formed QSIM's constraint vocabulary. Functional 

constraints state that the two parameters linked by them have a functional 

relationship which is either monotonically increasing (in the case of the M+ 

constraint) or monotonically 

Since this definition is 

decreasing (in the case of the M- constraint.) 

different from that of Forbus' qualitative 

proportionalities, (where other parameters may have opposing effects on the 

parameters involved,) the sign of the time derivarive of a parameter in a 

functional constraint can be immediately determined if th~ sign of the other 

parameter's derivative is known. 

ENV leaves the whole modeling task to the user, but its flexible 

constraint vocabulary allows any system with continuous time-varying 

parameters governed by differential equations to be described to it, making it a 

most general-purpose qualitative simulator. Kuipers' interest in the medical 

domain, [8,9] where most "component" laws are only very incompletely known, 

may have influenced this decision. 

Starting with a description of the system's initial state, ENV executes a 

propagation/prediction cycle: Propagation completes information about the 

current state, prediction uses a great number of rules, similar to Williams' 

transition analysis rules, to determine the next state. If intractable branching 

(i.e. too many alternative predictions) occurs, the system model is simplified to 

avoid this situation and simulation continues. Cyclic. system behaviors and 

equilibria can be recognized by the reasoner. 

ENV allows the use of nonzero landmarks, and, as an improvement to all 

its predecessors, is able to discover new landmarks of the parameters during 

simulation. 
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Kuipers later developed QSIM [14] as a successor to ENV. QSIM adopts a 

total-ordered, independent quantity space representation for parameters. It 

contains many improvements (e.g, much clearer methods of transition analysis 

and constraint filtering, which make the algorithm amenable to proofs of 

correctness and lead to very acceptable execution times) over ENV. Work on 

QSIM is continuing around the world to get rid of spurious behaviors (i.e. those 

that do not correspond to any actual solution of the underlying differential 

equations) that it can produce for some input systems, and to make it work 

feasibly for large models. 

A modification to the QSIM algorithm that leads to improved constraint 

filtering, which in turn helps to eliminate some spurious behaviors, will be 

presented in Chapter 4. Certain other modifications which enable the structure 

of QSIM to be used for performing postdiction, or "predicting the past," will be 

explained in Chapter 5. 

As well as the many people from the expert systems, monitoring and 

control, and simulation fields who were attracted to QSIM for its applications, 

other qualitative reasoning researchers too have used it as a tool to build their 

own reasoners (See the section on Weld's work) because of its simple 

representation and powerful simulator. The same approach has been adopted in 

the development of the qualitative system identification method, QSI. Since 

QSIM plays such an integral role in this study, the basic algorithm and the 

many improvements to it will be presented and discussed in detail in Chapter 3. 

2.2.5. Weld's Work 

Weld [31] introduced the technique of aggregation for qualitative simulators, 

and developed the PEPTIDE program as a first attempt to implement it. 

Aggregation involves simulating the behavior of a process (which may be 

discrete or continuous) and trying to recognize cycles in this behavior. Unlike 

the method used by QSIM, which identifies a cycle when a qualitative state is 

identical to a previous one, aggregation recognizes cycles if the states are 

similar to each other. The net effect of one "tum" of the cycle (e.g. reducing 

the amount of a finite resource) IS determined, and this repeating cycle of 

processes is replaced by a single continuous process summarizing their effect. 

Since it is continuous, this higher-level abstraction of the system can be 
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simulated using transition analysis leading to faster and more powerful 

reasoning. Some problems remain with the aggregation method, but the fact 

that it provides insights about dealing with discrete processes in qualitative 

simulation is interesting. 

Weld has developed two different methods for comparative analysis, the 

task of determining how small perturbations cause changes in the system 

behavior. The QSIM format and algorithm are used in both of them. The input to 

comparative analysis is a QSIM model of a system, its initial state, and a QSIM

produced behavior leading from this initial state, together with a perturbation 

specifying the direction(s) of the perturbed parameter(s). The expected output 

is an account of how and why the behavior changes in response to the 

perturbation. The first method, differential qualitative (DQ) analysis [16], 

involves the assumption that the "structure" of the behavior does not change, 

and achieves its results by propagating the input changes through the 

constraints. DQ analysis may fail to solve some problems, but gives correct 

answers for all the ones that it solves. 

The second method, exaggeration [17], approaches the comparative 

analysis problem by considering extreme. perturbations in the direction 

indicated in the input. For instance, when asked about the change in the period 

of the oscillating block/spring system in response to increased block mass, a 

system model where the block mass is infinite is simulated. A modified version 

of QSIM that can deal with hyperreal values (infinity and infinitesimals) is 

used for this process. Assuming that the system responds monotonically to the 

perturbation, the set of deviations in the result obtained for the extreme case is 

presented as output. Exaggeration may give wrong answers for some problems. 

Weld points out [16,17] that QSIM's representation of behaviors as 

sequences of statp.-s may force it to predict an unnecessarily large number of 

behaviors that have no interesting difference. (This happens when the model 

is large and the quantity spaces have relatively many landmarks in them.) 

Hayes' development of histories was an attempt to avoid this problem, which is 

also present in the situation calculus, where the smallest change in the facts 

causes the whole world to enter a new situation. Williams [32] devised a 

temporal constraint propagator which embodies these ideas to forgo a total 

ordering on non-interacting events, and therefore to produce fewer behaviors. 
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2.2.60 Concluding Remarks on Literature Survey 

This section has presented a brief overview of the qualitative physical 

reasoning field. Emphasis was on the section of literature that bears a direct 

relation to and can provide a background for the concepts and tools used in this 

study. For this reason, a lot of important work (for instance, on spa t i a I 

reasoning [33,34]) not immediately relevant to the undertaken research was 

left out. 

The power and efficiency that qualitative reasoners have achieved in 

the past few years is evident in the various applications [35,1,36] they are being 

integrated to. Comparisons are being made [37-39] of qualitative reasoning 

methods, which originally set out to automate human commonsense, to the 

well-established science of conventional dynamic systems theory. This 

underlines the potential importaTIce of the new methods of qualitative 

reasoning that will be introduced later in this dissertation. 

2.3. Related Topics 

This section is about certain AI topics that are related to, and sometimes 

confused with, qualitative reasoning. Brief comparisons will be made between 

these and the present subject, and the differences will be underlined. So in a 

sense, what this dissertation is not about is explained here. 

The fuzzy representation [22] for variable values and the relationships 

among them is a well-established approach to dealIng with incompletely 

known systems, and has an extensive literature of its own. The qualitative 

reasoning methods' inherent property of representing parameter values and 

functions incompletely may lead to an impression that a type of fuzzy 

representation is employed. This is untrue. Although both approaches use the 

technique of summarizing a whole range of real numbers to a single "value," 

the manner in which they accomplish this is fundamentally different. The 
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mapping of a real number to a fuzzy value is a "possibilistic" issue, depending 

on the grade of membership of that number in the fuzzy subset describing the 

fuzzy value. Furthermore, a single real number can be mapped to several fuzzy 

values; it may be the case that a given temperature turns out to be both "hot" 

and "cold," (with varying degrees.) This is never the case in the quantity space 

representation. Each real number is mapped to exactly one qualitative 

magnitude, (though one may not know which one, if the numerical values of 

the landmarks are not known.) In the absence of further information, two real 

numbers in the same interval in the quantity space are indistinguishable, the 

idea being that if they did have an important difference, a landmark between 

them, making ordinal comparison possible, would be provided. (A method that 

makes use of program-generated history information to compare two instances 

of the same interval is presented in Chapter 4.) 

Suzuki et aL [40] have proposed a qualitative simulator using fuzzy logic. 

Tht'jr program does not predict multiple behaviors, since this i~ not: desirable 

in the particular application (plant control) that they have in mind. 

As mentioned above, "temporal reasoning" in AI means much more than 

this study's particular area of interest. Any program that answers some kind of 

time-related query can be regarded as performing temporal reasoning. The 

techniques in the field have been developed mainly to deal with two separate 

issues [2, Ch. 7]: One "family" of programs specialize as "databases" and strive to 

provide efficient organization and retrieval of large amounts of time-indexed 

data. Methods of the second group focus on inference; Le. on how to deduce new 

items of information from the already present ones. The inferred items usually 

reflect later events which are results of the ones used as antecedents. It has 

already been pointed out that qualitative physical reasoning is a quite 

specialized subfield of this inference approach; the laws of change it employs 

(e.g. "If 

the near 

case (like 

a quantity is 

future") are 

"If you kick 

increasing now, it either goes on increasing or stops in 

much more basic compared to those used in the general 

a dog, it will want to bite you.") 

As to the relation of conventional simulation techniques with qualitative 

simulation, see Section 3.1.4 for a discussion. 
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III. QSIM AND ITS EXTENSIONS 

Since Kuipers' first presentation of QSIM in [14], many extensions, improving 

the algorithm in a variety of ways, have been produced, mostly by Kuipers and 

his team in the University of Texas at Austin. But the "core" of QSIM remained 

intact, and other researchers using QSIM for their own purposes always started 

out with the pur e version of the algorithm. Kuipers sends the code to 

interested researchers. In the course of this study, the program was written 

according to the specifications in [14] in Turbo PROLOG Version 2.0, and the 

work reported in this dissertation was implemented upon that basis. (The 

original QSIM is in LISP.) The next section contains an explanation of pure 

QSIM. Design decisions that were made on points where [14] is not clear are 

indicated. The terminology is slightly modified for purposes of clarity. Section 

3.2 is about the various extensions to this algorithm that appeared in literature. 

Most of these are relevant to the present work too. 

3.1. QSIM 

This section is a detailed description of QSIM: Its representation and algorithm 

are explained in depth. Examples are given of the working of, and problems 

with, the algorithm. The correctness and complexity issues are discussed, and a 

comparison of QSIM with classical simulation methods is' presented. 

3.1.1. Parameters, Constraints and Value Transitions 

The parameters of the physical system under consideration are continuously 

differentiable functions of time. Both the domains and the ranges of these 
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functions are closed intervals in the extended real number line R *, Le. [-00 ,00 ] . 

QSIM requires the parameters to be reasonable functions, which means they 

have to have only finitely many critical points in any interval. 

Each parameter has a quantity space. This is a totally ordered set of 

symbols, Le. landmarks, representing interesting real values that the function 

can have, such as its values at its critical points. The three landmarks _00, 0, and 

00, appear in all quantity spaces. All other landmarks are meaningful only in 

their own quantity spaces. One cannot represent much of the numerical value 

of a landmark in this setup. All one can say stems from its ordinal relations 

with the other landmarks in its quantity space. At least, the sign of each 

landmark is evident, since 0 is in every quantity space. 

The qualitative magnitudes that a parameter can take are the points and 

intervals between adjacent points in its quantity space. So, for instance, with 

the basic quantity space {_oo, 0, oo}, the whole extended real numbers are mapped 

t.o five qualitatively distinct qualitative magnitudes: -00, (-00,0),0, (0, (0), and 00 • 

. This definition makes the rationale for including -00 and 00 in every quantity 

space evident. 

The qualitative direction of a parameter is the sign of its derivative at 

that time. In that context, the symbols inc (increasing,) std (steady) and dec 

(decreasing) are used for +, 0, and -, respectively. 

The qualitative value of a parameter at a particular time is the pair 

consisting of its qualitative magnitude and qualitative direction. 

The time points in a parameter's domain, in 

changes to or from a landmark are called its distinguished 

which its magnitude 

time-points. to, the 

time at which the simulation begins, is the first distinguished time-point. The 

qualitative behavior of a parameter is then the sequence of its qualitative 

values in the alternating time points and open intervals to, (to, t]), t], (t], t2), ... 

In the time intervals, the parameter is either increasing or decreasing in an 

interval in its quantity space, or "sitting" at a landmark. At the time points, it 

either arrives at (and maybe passes) a landmark, or leaves a landmark that it 

has been sitting at. So only the changes are represented by the behavior. 

Nothing is known about the numerical values of the time points, except their 

ordering. The "length" of (i.e, the number of qualitative values in) the 

behavior of a parameter is just a measure of the qualitative changes that occur, 
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not of the time that passes. The height of a rocket that is launched from the 

Earth and continues in the same direction for a million years will have a 

qualitative behavior consisting of only two values, those at to and (to, t1), 

while the height of a bouncing ball thrown up will have a much longer 

behavior. 

The distinguished time-points of the system being simulated are the 

union of the distinguished time-points of the parameters of the system. The 

qualitative state of the system is the collection of the qualitative values of its 

parameters at that time. The qualitative behavior of a system is then the 

sequence of its qualitative states at its distinguished time-points and the 

intervals between them. So the system changes state when one or more of its 

parameters exhibit a qualitative value change. 

At each step of the simulation, QSIM considers all the possible qualitative 

values that each parameter may take on in the next qualitative state. Kuipers 

has proven [14] that each l'ararr.eter is restricted to the qualitative value 

transitions shown in Table 3 . .1.1. Tn that table, lj-1, lj, and Ij+1 are three 

ordered landmarks of the parameter. P-transitions are transitions from 

qualitative values at distinguished time-points to intervals, while I -transitions 

are transitions from intervals to time-points. Table 3.1.1 (along with most of this 

section) has been taken from [14], but transitions P4 and P5 have been 

interchanged. This has no effect on pure QSIM, the reason for this change will 

be explained in Chapter 5. 

Transitions 18 and 19 give QSIM an ability nonexistent in other reasoners; 

they discover new landmarks. The parameter "comes to a halt" in an interval in 

its quantity space, its value at that point is inserted as a new landmark between 

l j and lj + 1, preserving the total ordering. 

The "laws" that the system has to obey are represented by qualitative 

constraints between the parameters that have to be satisfied in each state. 

These form a model of the system, reflecting the underlying structure behind 

the behavior. QSIM assumes that there is·· an ordinary differential equation 

(ODE) governing the system, and the constraint set is its qualitative 

counterpart, that is, it is a qualitative differential equation (QDE.) The ODE need 

not be actually known, it is just assumed to exist. A QDE may correspond to many 

ODEs, as will be discussed below. Performing qualitative simulation on the QDE is 
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analogous to solving the ODE, they both find out the time behavior of the 

system. 

name 

PI 

P2 

P3 

P4 

P5 

P6 

P7 

name 

II 

12 

13 

14 

15 

16 

I7 

18 

19 

TABLE 3.1.1. The transitions 

P-transitions 

< lj, std> 

<lj,std> 

< lj, std> 

< (lj, lj+l ) , inc> 

< lj, inc > 

< lj, dec> 

< (lj , lj + 1 ) , dec > 

I-transitions 

in (ti • ti+l) 

< lj. std> 

< (lj, lj+l) • inc> 

< (lj , lj + 1 ) • inc > 

< (lj • lj + 1 ) , inc > 

< (lj. lj+l ) , dec> 

< (lj • lj + 1 ) , dec > 

< (lj , lj + 1 ) , dec > 

< (lj, lj+l ) , inc> 

< (lj, lj+l ) , dec > 

In (ti, ti+l ) 

< lj, std> 

< (lj , lj+l ) , inc > 

< (lj-l , lj) , dec> 

< (lj , lj+ 1 ) , inc > 

< (lj , lj+l ) , inc> 

< (lj-l , lj) , dec> 

< (lj • lj+l ) • dec> 

at ti+ 1 

< lj, std> 

< lj+l , std> 

< lj+l • inc> 

< (lj • lj+l ) , inc> 

< lj. std> 

< lj, dec> 

< (lj , lj+ 1 ) • dec> 

< 1* , std > 

< 1* , std > 

For most realistic systems, one set of equations cannot cover the whole 

range of operation of the system. QSIM acknowledges this with the notion of 

operating regions. A set of constraints apply only in a specific operating 

region. When one of the parameters exceeds its legal range, that is, a 

previously specified interval in its quantity space, in an operating region, a 

new set of constraints associated with the new operating region, specified by 

the parameter that caused the change, become valid. 
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There are six types of constraints in pure QSIM: ADD, MULT, MINUS, 

DERIV, M+, and M-. 

The constraint DERIV(X,Y) indicates that the parameter Y is the time 

derivative of parameter X. That is, the direction of X should always be equal to 

the sign of the magnitude of Y. 

MINUS(X,Y) means that the parameters X and Yare always the negatives 

of each other. 

ADD(X,Y,Z) means that the sum of X and Y is always Z. 

MULT(X,Y,Z) means that the product of X and Y is always Z. 

M+(X, Y) says that there is a monotonically increasing functional 

relationship between X and Y, and M-(X,Y) means that the function is 

monotonica.i.ly decreasing, (See [14] for the exact definitions.) If one h:cts 

M+(X,Y), ,:the dire~tions of X and Yare always the same. If M-(X,Y) or 

MINUS(X,Y), the directions are the negatives of each other. Note that the 

functional constraints M+ and M- correspond to an infinite number of "actual" 

functions, and therefore a QDE which contains them will be an abstraction of 

many ODEs at once. 

All constraints except DERIVs can have corresponding value (CV) tuples 

of landmarks that define known points of the relation. The corresponding 

values (0,0) of the constraint M+(amouncoCliquid, pressure) were mentioned 

in Chapter 2. Some corresponding value tuples are "natural," e.g. every ADD 

and MULT has a (0,0,0) triple associated with it. Others may be found during 

simulation, when all parameters involved in the constraint are noticed to have 

landmark magnitudes. 

The constraints are used to filter proposed "next" states produced by the 

transition rules, and corresponding value information plays an important role 

in this process. For instance, if the magnitudes A *, (0 ,B *), and C * are proposed 

for the parameters in ADD(A,B,C), and this constraint already has the CV triple 

(A * ,B * ,C *) in its records, the proposed transition will be eliminated, since it is 

contrary to the algorithm's knowledge of addition and known values. The exact 

mechanism of this filtering will be detailed later. 

"' .. -



26 

This is a good place to reiterate that qualitative arithmetic is ambiguous: 

An arithmetic operation can have more· than one result. Consider Table 3.1.2, 

which QSIM uses when checking whether the directions of three proposed 

values satisfy the ADD constraint. "any" in this table means any of inc, std, or 

dec, and is necessary since the relative magnitudes are not known. 

TABLE 3.1.2. Qualitative addition 

y 

dec std inc 
dec dec dec any 

X std dec std inc 
inc any inc inc 

Given any ODE defined only in terms of addition, multiplication, negation, 

and functions with continuous and strictly nonzero derivative, a set of 

parameters and constraints can be wrh:en, such that any reasonable function 

that satisfies the ODE also satisfies the constraints [14]. All the models that will 

be discussed in this study are subject to these restrictions. 

Example 

As a classic [15] example that will also be used later in the discussion, consider 

how a simple V -tube (Figure 3.1.1) is modeled. The V -tube, in its "healthy" state, 

is made of two tanks connected by a pipe. The QDEs for the cases where tank A or 

tank B are burst will also be considered. So one has three operating regions to 

model: NORMAL, A_BURST, and B_BURST. 

Figure 3.1.1. V-tube in operating region NORMAL 

After a lot of simplifying assumptions, the parameters of the system are 

identified as in Table 3.1.3. There are also the invariants that the amount and 

pressure parameters are never negative. 



TABLE 3.1.3. Parameters of the U-tube system 

P ARA.VIETER 

amount_A 
amount_B 
flow_AB 
flow_BA 
pressure_A 
pressure_B 
p_difCAB 

OUANTITYSPACE 

{-oo, 0, AMAX, oo} 
{-oo, 0, BMAX, oo} 
{-oo, 0, oo} 
{-oo, 0, oo} 
{-oo, 0, oo} 
{-oo, 0, oo} 
{-oo, 0, oo} 

REMARKS 

AMAX is maximum capacity 
BMAX is maximum capacity 
flow from A to B 
flow from B to A 
pressure at bottom of A 
pressure at bottom of B 
pressure_A - pressure_B 
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The constraints for operating region NORMAL are listed in Table 3.1.4. In 

this and the following tables describing QDEs, the "natural" CVs of the 

arithmetic constraints (like (0,0) for MINUS) are not shown; note that the ones 

that are shown need not appear for any M + constraint. 

TABLE 3.1.4. U-tube constraints in region NORMAL 

CONSTRAINTI' CV s 

M+(amouncA, pressure_A) 
M+(amouncB, pressure_B) 
DERIV(amount_A, flow_BA) 
DERIV(amouncB, flow_AB) 
ADD(pressure_B, p_difCAB, pressure_A) 
M+(p_difCAB, flow_AB) 
MINUS (flow_AB, flow_BA) 

(0,0) and (00, (0) 
(0,0) and (00, (0) 

(0,0) and (00, (0) 

Suppose that when an amount parameter exceeds its maximum capacity, 

the corresponding tank bursts. If B exceeds B M A X in region NORMAL, the 

constraints for the ensuing operating region, B_BURST, are then as in Table 

3.1.5. The changes are caused by the fact that amouncB is fixed at 0 in this 

operating region. The QDE for A_BURST is similar. 

TABLE 3.1.5. U-tube constraints in region B_BURST 

CONSTRATI\li CVs 

~f+(amoum_A, pressure_A) 
~I+(amouncB, pressure_B) 
DERIV(amount_A, flow _BA) 
ADD(pressure_B, p_difCAB, pressure_A) 
~f+(p_difCA.B. flow _AB) 
:.lINUS(flow_AB, rlow_BA) 

(0,0) and (00, (0) 
(0,0) and (00, (0) 

(0,0) and (00, (0) 
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Consider the state where some water has been instantly poured to tank A, 

and tank B is empty. This point state, which can be completed by propagation of 

values from this initial information using QSIM's knowledge of constraints, is 

shown in Table 3.1.6. 

TABLE 3.1.6. Initial state of U-tube system 

PARAMETER 

amount A 
amount_B 
flow_AB 
flow_BA 
pressure_A 
pressure_B 
p_difCAB 

VALUE 

«O,AMAX), dec> 
< 0, inc> 
«0, (0), dec> 
« -00, 0), inc> 
«0, (0), dec> 
< 0, inc> 
«0, (0), dec> 

Now consider, for example, amounCA. Only transition P7 (which does not 

change the parameter' s value) from Table 3.1.1 is suitable. for it, so amouncA' s 

value has to be again «0 ,A MAX), dec> in the next state. This example will be 

concluded in Section 3.1.2. 

3.1.2. The QSIM Algorithm 

The input to QSIM is the following: The names, quantity spaces, and legal ranges 

of the system's parameters, invariant assertions that some parameters may 

have to satisfy, (like "being constant,") one or more operating region 

descriptions with their associated constraint sets, and a complete description of 

all the parameter values and the operating region at to, (that is, the initial 

state.) 

Since more than one behavior can be predicted, QSIM builds a tree of 

qualitative states, whose root is the initial state, and every path from the root to 

a leaf is a distinct system behavior which is output. 

The algorithm starts by putting the initial state in a list which always 

contains the states whose successors have not been created yet. Then the 

following is repeated until the list is empty, or one has to stop for external 

reasons (the tree may be infinite): 



1. Take a state from the list. 

2. "Open" it, (i.e, generate all its successors,) doing the following: 
2.1. For each parameter, find its possible transitions to the next state using 

Table 3.1.1. 
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2.2. For each constraint, eliminate all tuples of transitions of its parameters 
that do not satisfy the constraint in the next state. 

2.3. Check that each proposed transition of every parameter P in a 
constraint also appears in other constraints involving P. Otherwise, 
eliminate that transition tuple. 

2.4. Construct all the possible next states by using the join of the 
remammg transition tuples. If all the parameters have made 
transitions in the set {II, 14, I7}, that state is identical to its predecessor, 
so do not consider it a "next" state. If, in a next state, all magnitudes of a 
non-DERIV constraint are landmarks, add that tuple of magnitudes to 
the CV list of that constraint in that branch. If, for any parameter, a 
new landmark has been found, augment that parameter's quantity 
space in that branch. 

3. Put all the new states created in Step 2 to the list, except when: 
a) A new state is identical to a state S that appears in the path from the root 

to it; a cycle has been detected, put a pointer from the new state to S, you 
do not have to continue in this branch anymore. 

b) Any parameter has ar.. iafinite value in the new state. 

Heuristics that assume that the system has achieved quiescence and stop 

simulation when all qualitative directions are s t d, and do not allow any 

transitions to infinite values, are also used .. 

In the constraint filtering phase (Step 2.2 above,) the newly proposed 

values are checked for consistency of both their directions and their 

magnitudes with the constraints they participate in. Apart from the well

known rules that MINUS, ADD and MULT impose on the signs of parameter 

magnitudes, the CV lists are also a valuable source of information for filtering. 

As always, the ordinal relations among landmarks are the only guide. For the 

two-place constraints, consistency with previous CV information is easy to 

check. In all such constraints, for each CV tuple (p ,q), the magnitudes of the 

two parameters should either be both a t those landmarks, or both away from 

them. This simply follows from the nature of being corresponding values. For 

the ADD and MULT constraints, Kuipers presents [14] the following rules, which 

greatly simplify the filtering process: 

- When a triple of magnitudes (m A, m B, me) is proposed for parameters A, B, C, 

and the constraint ADD(A,B,C) exists, the following has to hold for each CV triple 

(p, q, r) of that constraint: 

(mA - p) + (mB - q) = (me - r) (3.1) 
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Proof. It is known that p + q = r and also mA + mB = me should be true. 

Since p, q, and r are point values, each term in (3.1) has an unambiguous 

value (either +, 0, or -,) and this sign addition's correctness is checked by using 

Table 3.1.2. (Remember that dec, std, and inc are just names for signs.) The 

rule for MULT is similar: 

- When a triple of magnitudes (m A, m B , me) is proposed for parameter~ A, B, C, 

and the constraint MUL T(A,B, C) exists, the following has to hold for each 

nonzero CV triple (p ,q ,r) of that constraint: 

(3.2) 

The logic is the same. Qualitative division m. yielding one of the symbols Ito 

«1), one, or gto (>1), can be applied when X and Y have the same (nonzero) 

sign. The multiplication table (Table 3.1.7) then facilitates the, con:;i3tency 

check. 

TABLE 3.1.7. Qualitative multiplication 

Y 

Ito one to 
lto Ito Ito any 

X one Ito one gto 
gto any gto gto 

How QSIM handles operating region changes is not made clear in [14]. In 

later work, (Section 3.2.5) QSIM is explicitly restricted to run in a single 

operating region, another program taking over when a region transition 

occurs. Using [34] as a guide, this version of QSIM was implemented such that it 

does the following: 

If a state in which a parameter is about to exceed its legal range is 

obtained, the next operating region's name is found by looking at the 

appropriaie input record of this parameter, and another state, which is the 

direct descendant of this state, is created. Since the newly created state is the 

first one of the new operating region, it has to be given special treatment. 

Usually, the new constraint set has only a few differences from the old one. 

Constraints which "survive" the operating region change are identified from 



31 

the region description and their CV lists are retained. Similarly, surviving 

parameters retain their quantity spaces. Operating region changes are very 

similar to Forbus' encapsulated histories (Section 2.2.1) in that they are an easy 

way of representing "jumps" in the values of some parameters. For example, 

the level of liquid in a burst container starts from zero (and stays so!) and this is 

facilitated by including an input fact specifying that this parameter obtains the 

value zero at the start of this region, disregarding continuity. Parameters 

which "inheri t" their values from the previous region are also indicated in the 

input. If there are still unknown parameter values, this version of QSIM 

generates all completions of the state obeying the constraints, leading to a new 

branching in the tree. Contrary to intra-region transitions, an inter-region 

transition is from a time-point to a time-point, with the interval in between not 

being modeled. Or, alternatively, the change may be viewed as instantaneous 

and discontinuous. Simulation within the new operating region then continues 

as usual. 

Example (continued) 

The three behaviors that QSIM predicts for the input of Section 3.1.1, (Tank A 

contains liquid, tank B is empty,) seen in Tables 3.1.8 thru 3.1.10, are: 

- Behavior #1: The amounts stabilize at landmarks below the maximum 

capacities. 

Behavior #2: amouncB stabilizes just at B MAX, narrowly avoiding a burst. 

- Behavior #3: Tank B bursts, the liquid in tank A drains away from the "hole." 

The quantity spaces of parameters for which new landmarks have been 

discovered have been shown after the behavior in the tables. 

During the region transition from NORMAL to B_BVRST, amouncB is set 

to zero. Discontinuous changes are also seen in the. values of pressure_B, 

p_difCAB, and the flows, which are linked to amount_B and each other by 

constraints. For this run of QSIM, the state tree produced has the shape shown 

in Figure 3.1.2. The point states are shown as circles in that figure, and the time 

value corresponding to each level is indicated. The reason why all behaviors 

have the same first two states is obvious from the figure. 



TABLE 3.1.8. Behavior #1 of the U-tube 

time 
amount A 
amount B 
flow AB 
flow BA 
pressure A 
pressure B 
p diff AB 

Quantity space 
Quantity space 
Quantity space 
Quantity space 

to 
«O,AMAX), dec> 
<0, inc> 
«0, (0), dec> 
« -00, 0), inc> 
«0, (0), dec> 
<0, inc> 
«0, (0), dec> 

of amouncA: 
of amouncB: 
of pressure_A: 
of pressure_B: 

(~,~) ~ 
«O,AMAX), dec> <NewA, std> 
«O,BMAX),inc> <NewB, std> 
«0,00), dec> <0, std> 
«-00,0), inc> <0, std> 
«0,00), dec> <FA, std> 
«0,00), inc> <FB, std> 
«0, 00), dec> <0, std> 

{-oo, 0, NewA, AMAX, oo} 
{-oo, 0, NewB, BMAX, oo} 
{-oo,O,PA,oo} 
{-oo, 0, PB, oo} 

TABLE 3.1.9. Behavior #2 of the U-tube 

time 
amount A 
amount B 
flow AB 
flow BA 
pressure A 
12ressure B 

12 diff AB 

Quantity space 
Quantity space 
Quantity space 

to 
«O,AMAX), dec> 
<0, inc> 
«0, (0), dec> 
« -00, 0), inc> 
«0, (0), dec> 
<0, inc> 
«0, ""), dec> 

of amouncA: 
of pressure_A: 
of pressure_B: 

(to,t]) t] 
«O,AMAX), dec> <NewA, std> 
«O,BMAX),inc> <BMAX, std> 
«0, 00), dec> <0, std> 
« -00, 0), inc> <0, std> 
«0,00), dec> <FA, std> 
«0,00), inc> <FB, std> 
«0, 00), dec> <0, std> 

{-oo, O,NewA,AMAX, oo} 
{-oo,O,PA,oo} 
{-oo, 0, PB, oo} 
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TABLE 3.1.10.a Behavior #3 of the V-tube (in operating region NORMAL) 

time to (to,t] ) t] Operating 
amount A «O,AMAX), dec> «O,AMAX), dec> <NewA, dec> region 
amount B <0, inc> «O,BMAX),inc> <BMAX, inc> change 
flow AB «0, 00), dec> «0, 00), dec> <NewF, dec> from 
flow BA «-00,0), inc> «-00,0), inc> <NewR, inc> NORMAL 
12 re ssure A «0, 00), dec> «0, 00), dec> <FA, dec:> to 
12 re ssure B <0, inc> «0, 00), inc> <FB, inc> B_BURST 
12 diff AB «0, 00), dec> «0,00), dec> <NewD, dec> occurs now 

Quantity space of amount_A: 
Quantity space of flow _AB: 
Quantity space of flow_BA: 
Quantity space of pressure_A: 
Quantity space of pressure_B: 
Quantity space of p_difCAB: 

{-oo, 0, NewA, AMAX, oo} 
{-oo, 0, NewF, oo} 
{-oo, NewR, 0, oo} 
{-oo, 0, PA, oo} 
{-oo, 0, PB, oo} 
{-oo, 0, NewD, oo} 
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TABLE 3.1.10.b Behavior #3 of the U-tube (in operating region B_BURST) 

time t1 (t1 ,t2) t2 (t2,t3) t3 
amount A <NewA, dec> «O,NewA), dec> «O,NewA), dec> «O,NewA), dec> <0, std> 
amount B <0, std> <0, std> <0, std> <0, std> <0, std> 
flow AB <NewF2, dec> «NewF,NewF2),dec> <NewF, dec> «O,NewF),dec> <0, std> 
DQl\!: BA <N ewR2, inc> «NewR2,NewR),inc> <NewR, inc> «NewR,O) ,inc> <0, std> 
11 ressure A <FA, dec> «0, PA), dec> «0, PA), dec> «0, PA), dec> <0, std> 
11 r es::;ure B <0, std> <0, std> <0, std> <0, std> <0, std> 
11 diff AB <NewD2, dec> «NewD,NewD2),dec> <NewD, dec> «O,NewD),dec> <0, std> 

Quantity space of amounCA: {-oo, 0, NewA, AMAX, oo} 
Quantity space of flow_AB: {-oo, 0, NewF, NewF2, oo} 
Quantity space of flow_BA: {-oo, NewR2, NewR, O,oo} 
Quantity space of pressure_A: {-oo, 0, PA, oo} 
Quantity space of pressure_B: {-oo, 0, PB, oo} 
Quantity space of p_difCAB: {-oo, 0,NewD,NewD2, oo} 

to 

(b ,t1) 

t 
1 

t1 

(7 ,t
2 

) 

t 
2 

(t2 ,(3 ) 

t3 

Figure 3.1.2. State tree for U-tube simulation (time values shown) 

3.1.3. Complexity and Correctness 

Complexitv 

Considering the time QSIM requires to generate all successors of a given state, 

Kuipers shows that there are cases where one state yields 2P successors, where 
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p is the number of parameters. So one has an algorithm where opening one 

node is exponential in p, and this in a tree where nodes can have up to 2P 

successors! Fortunately, these pathological cases are rare, and in practice (14], 

opening one node seems to be O(c s), where c is the number of constraints, 

(which is O(p ),) and s is the current length of the behavior being generated. s 

enters the consideration in two places: The CV lists grow as one goes down the 

tree, and all the previous states in the behavior have to be checked for cycle 

detection in Step 3.a. 

Let us propose an "improvement" to QSIM and then try to see whether it 

really is an improvement or not. Consider the tree of Figure 3.1.3, which has 

been produced by QSIM after running for some time. The nodes (states) marked 

X are identical. (Actual parameter values and constraints that yield such a 

situation can easily be written.) The subtrees having these nodes as roots will, 

of course, be identical, and, depending on the specifics of the situation, these 

subtrees may be huge in size. Clearly, there is no need to open both of these_ 

nodes, only a pointer need be set from the "second" to the "first" one; this wilL 

save a lot of time. However, QSIM does not realize this situation, since each new 

state is only compared with the states on the path to the root. One can change 

the algorithm such that it checks for identical states all over the tree, when a 

new state is produced. What will be the complexity of this new algorithm? 

Figure 3.1.3. A partial state tree 

Previously, identicalness detection took O(p s) time. If one checks all the 

states, instead of those on a single path, the time required will be exponential 

in s, since this is the relation between the number of nodes III a tree and its 

depth. Furthermore, this amount of time will be required III all successor 
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generations, not just in pathological cases. Since worst-case complexity is being 

considered, one must assume that no reduction in the overall number of states is 

obtained, (which may well be the case most of the time,) and one is left with a 

worse algorithm. Obtaining the average-case complexity is much harder. How 

the number of states varies with p and c cannot be determined with this 

information alone. 

As part of this study, a simple "extension" to QSIM, where a (possibly 

incomplete) "target" state description may be included in the input, has been 

implemented. QSIM runs as usual, but only behavior(s) which are paths from 

the initial to the target state (if any) are output. All that is required is that each 

new state be compared with the target description, which is O(P). 

Many researchers are working towards improving QSIM's performance, 

in order to apply it to large-scale systems. 

Correctness 

Kuipers has proven that QSIM's inference is sound, but incomplete. That is, all 

the actual behaviors of a real system modeled by the QDE are predicted by QSIM, 

but there may be some spurious output behaviors which do not correspond to 

any actual behaviors. 

Soundness is proven as follows: QSIM starts with a correct description of 

the system state. At each next state generation, all the possible transitions of 

each parameter are generated, and only the combinations that do not satisfy the 

constraints (the system's laws) are filtered out. So there is no way that a real 

state can be absent from the output. Note that this proof is valid within a single 

operating region. 

Incompleteness is proven by exhibiting a constraint set which causes 

QSIM to produce some spurious behaviors. The example Kuipers gives in [14] is 

particularly interesting: In the spring/block system of Figure 3.1.4, X is the 

horizontal position of the block, (0 when the spring is "at ease,") V and A are 

veloci ty and acceleration, respectively. 

This system, defined by the constraints of Table 3.1.11, and initial state 

X= <0, inc>, 
V = <V*, std>, 
A=<O, dec>, 
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where V * is a positive landmark, is periodic, i.e. has a single actual behavior, 

that shown in Table 3.1.12. But QSIM computes an infinite number of behaviors, 

the first branching occurring at t4, as shown in Tables 3.1.13 and 3.1.14. The 

algorithm has no way of knowing that the values a and V * of the parameters X 

and V "belong" together, (they are not corresponding values) and mistakenly 

tries out all transitions for V. Ways of eliminating spurious behaviors are active 

topics of research. A way of eliminating some spurious predictions of pure QSIM 

will be introduced in Chapter 4. For the spring system, Kuipers says [14J 

"By changing the problem to take into account of conservation of total 
energy, an expanded view of the spring mechanism allows QSIM to determine 
that there is a single, periodic behavior. A physicist can look at [the spring QDEJ 
and recognize or derive the fact that it represents an energy conserving 
system, and therefore that the behavior must be periodic. Part of this 
knowledge is the ability to recognize the physical system described by a set of 
constraints, and to know that there is a better structural description for it; one 
which adds parameters and constraints (e.g. energy) that illuminate the actual 
behavior. This approach takes us outside the realm of qualitative simulation, 
and into the realm of problem formulation. [ ... J 

Returning to the larger problem of qualitative causal reasoning about 
mechanisms, an important problem is to formulate a suitable set of constraints 
given a physical situation, using the device-topology approach of de Kleer, 
Brown and Bobrow, the process-based approach of Forbus, or some approach yet 
to be discovered." 

Such an approach is presented in Chapter 6. 

Figure 3.1.4. The spring/block system 

TABLE 3.1.11. QDE of spring/block system 

CONSTRAINT 

DERIV(X, V) 
DERIV(V, A) 
M-(A, X) (0,0) 
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TABLE 3.1.12. Stable oscillatory behavior of spring/block system 

x V A time 
<0, inc> <V*,std> <O,dec> to 
«0, (0), inc> «O,V*),dec> « -00,0), dec> (to,t]) 
<Xl, std> <0, dec> <A1, std> t] 
«0,)(1), dec> « -00,0), dec> «A1,0), inc> (t],t2) 
<0, dec> <V1, std> <0, inc> t2 
«-00,0), dec> «V1,0), inc> «0,00), inc> (t2 ,t3) 
<X2, std> <0, inc> <A2, std> t3 
«X2,0), inc> «0, V*), inc> «0,A2), dec> (t3,t4) 
<O,inc> <V*,std> <O,dec> t4 

Cycle detected: States at to and t4 are identical. 

Quantity space of X: {-00,X2. 0,X1, oo} 
Quantity space of V: {-oo, V1, 0, V*, oo} 
Quantity space of A: f -0<.. A1 ;:; A2 oo} c. ,. ,.., ,. 

TABLE 3.1.13. A spurious behavior of spring/block system (first nine states) 

X V A time 
<0, inc> <V*,std> <0, dec> to 
«0,00), inc> «O,v*),dec> « -00,0), dec> (to,t]) 
<Xl, std> <O,dec> <A1, std> t] 
«0,)(1), dec> «-00,0), dec> «A1,0), inc> (t],t2 ) 
<0, dec> <V1, std> <0, inc> t2 
«-00,0), dec> «V 1,0), inc> «0,00), inc> (t2 ,t3) 
<X2, std> <0, inc> <A2, std> t3 
«X2,0), inc> «O,v*), inc> «0,A2), dec> (t3,t4) 
<O,inc> <V2, std> <0, dec> t4 

Quantity space of X: {-00,X2, 0, Xl, oo} 
Quantity space of V: {-oo, V1, 0, V2, V*, oo} 
Quantity space of A: { -00, A1 , 0, A2, 00 } 
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TABLE 3.1.14. Another spurious behavior of spring/block system (first nine 

states) 

x V A time 
<0, inc> <V*,std> <O,dec> to 
«0,00), inc> «O,v*),dec> «-00,0), dec> (to,t1) 
<Xl, std> <0, dec> <Al, std> t1 
«O,xl), dec> «-00,0), dec> «Al,O), inc> (t1,t2) 
<0, dec> <Vl, std> <0, inc> t2 
«-00,0), dec> «V l,O), inc> «0,00), inc> (t2 ,t3) 
<X2, std> <0, inc> <A2, std> t3 
«X2,0), inc> «O,V*), inc> «0,A2), dec> (t3,t4) 
«X2,0), inc> <V*, inc> «0,A2), dec> t4 

Quantity space of X: {-00,X2, O,Xl, oo} 
Quantity space of V: { -00, V 1 , 0, V*, 00 } 

Quantity space of A: { -00, Al , 0, A2, 00 } 

3.1.4. QSIM as Simulation 

Qualitative simulation is interesting when viewed from the classical 

simulationist's perspective. Numerical simulation can be divided into two 

different kinds: Continuous and discrete. Continuous simulation is suitable for 

systems whose values are changing at all time points, and which have been 

formulated as differential equations. Typically, these are fluid, mechanical, 

thermal, or electrical circuit systems. Discrete simulation, on the other hand, 

deals with event-driven systems, described by discrete event models, whose 

states change discretely and are constant at intermediate points. Various 

queueing and "traffic" problems are suitable for this kind of simulation, in 

which stochastic processes are employed to model the random influences on the 

system. Because of these differences, the algorithms used for continuous and 

discrete simulation are markedly different. While continuous simulation 

algorithms focus on more efficient ways of computing the next set of values 

that satisfy the equations, discrete simulation's main concern is to schedule thl~ 

"next" event that will occur within the system. 

The QSIM method, although its area of application is almost exactly that of 

continuous simulation as described above, involves an algorithm that resembles 

the discrete-event kind of numerical simulation algorithms. In QSIM, just as in 

discrete numerical simulation, time is "advanced" between distinguished time-
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points in which what can be called an "event" (a qualitative value change) 

occurs. The qualitative representation allows the algorithm to treat time 

intervals in which the parameters are changing between landmark values as 

single states. QSIM's transition rules may be viewed as analogues of discrete 

event state-change rules. On the other hand, QSIM inputs have no "unknown" 

or stochastic component in the sense of discrete simulation. Unlike any kind of 

numerical simulation, a QSIM run may in general produce more than one 

future behaviors, when the algorithm cannot decide which of a number of 

transitions will occur earliest. This is desirable in certain applications for 

which qualitative reasoners may be used; for example, in tutoring systems, 

where explaining the changes in the behavior of the system in response to a 

parameter value exceeding or staying below a given threshold is important. 

3.2. Extensions to QSIM 

Kuipers and his colleagues have developed many extensions to the pure QSIM 

algorithm. Several of these will be briefly summarized in this section. Some 

parts of the present work (see Chapters 4 and 5) is also comprised of 

improvements or extensions to QSIM; a comparison with the research described 

here will be possible. 

3.2.1. Time-Scale Abstraction 

One way to deal with the execution time problem that QSIM faces when the input 

system is big, (Le. has many parameters,) is to decompose it to many small 

systems. This can be achieved when it is known that. certain subsets of the 

constraint set representing various "mechanisms" in the system operate at 

widely different time-scales. Kuipers [41] has proposed a method of time-scale 

abstraction of systems, based on this idea. In this setup, mechanisms identified 

as "fast" view "slower" ones as constant, whereas the slow ones view faster ones 

as instantaneous. The whole collections of constraints representing the fast 

mechanisms are abstracted to single M+ or M- constraints in the slower ones. 
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Simulation begins with the fastest mechanism. That mechanism is simulated 

until equilibrium. Parameters of this mechanism shared with the next fastest 

mechanism pass their values to that one, and so the whole system can be 

simulated as a composite of manageable subsystems in this manner. 

3.2.2. Ways of Producing Smaller Trees 

Kuipers and Chiu ([42]; also see [18]) present two different methods to eliminate 

a situation that sometimes arises: QSIM may produce an intractably large tree, 

in which most behaviors of the system are practically the same, the only 

difference between them being the behavior of one (or a few) parameters, 

which are "chattering." A parameter chatters (i.e. it may increase, then stop, 

then decrease, stop again, decrease again, etc.) if the constraints are satisfied 

for all the qualitative directions that it may take. For example, if ADD(X,Y,Z), and 

X=«O, 00), dec> and Y=«-oo,O), im>, 

and there are no other constraints involving Z, it chatt~r.<;. (Actually, it does 

more than that, since it can take any qualitative mag nit u d e as well, because of 

the magnitudes of X and Y in the example, and the ambiguity of qualitative 

addition.) This, in itself, is not a spurious prediction, there may be real systems 

which correspond to each behavior. The trouble is, chattering causes QSIM to 

produce such large trees that the size of the output reduces its usefulness. 

The first method of handling this problem is simple: The user specifies 

that he does not care about the directions that certain parameters (those likely 

to chatter) may take on. QSIM then uses only the symbol i gn (standing for 

"ignore") to represent these parameters' directions. So changes in their 

directions do not cause branchings in the tree, and simulation ends in a 

reasonable time. Additional care is taken to ensure that unreal behaviors for 

these parameters are not predicted, i.e. that a continuous assignment of inc, std 

or decs for all the igns exists. 

The second method requires making the sign-equality assumption about 

the system being simulated. This practically means that all the M constraints in 

the QDE reflect linear functional relationships. Once this assumption is made, 

automatic calculation of the higher-order derivatives of the system parameters 

is possible, and this information is used to eliminate branchings in the tree 

resulting from qualitative direction ambiguities. The directions are derivatives, 
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and knowledge of their derivatives restricts the possible values they can take 

on. Application of this method thus involves a round of preprocessing in which 

the QDE is checked for parameters likely to chatter, and a qualitative algebraic 

manipulator is employed to derive expressions for the signs of the higher order 

derivatives. During QSIM's execution, the HOD (H igher Q..rder De ri vat i v e) 

constraint has to be satisfied, as well as the "classical" types of constraints. 

Since, in general, M constraints may not obey the sign-equality assumption, 

higher-order derivative filtering is not cons e TV a tiv e, Le., it may eliminate 

consistent transitions. The method for spurious behavior reduction that will be 

presented in Chapter 4 entails conservative filters. 

3.2.3. Incorporation of Quantitative Knowledge into QSIM 

Kuipers and Berleant [43,44] introduced a way for including available 

quantitative infornatioD into QSIM's reasoning, and produced the Q2 program. 

Two kinds of quantitativeness are allowed: 1) Numerical values of the possible 

lower and upper bounds of the ranges that landmarks lie in, and, 2) Bounds on 

the "shapes" of the functions represented by the M constraints. One can specify 

upper and lower en vel 0 pes (numerically computable partial functions) for 

each monotonic constraint, meaning that the value of its function is to remain 

between the two envelopes. Bounds on the first and second derivatives of these 

functions can also be specified. 

Q2 does the following: QSIM runs as usual. The behaviors produced are 

examined, making use of the quantitative information. This information can be 

propagated across the algebraic equations implied by the relations between the 

landmarks. Some enhanced quantitative knowledge about the landmarks (and 

even the time points) can be obtained from this propagation. In some cases, 

contradictions result, which mean that that behavior is impossible to occur, 

given the quantitative knowledge available. This results in that behavior being 

pruned off, leading to a less ambiguous output. 

3.2.4. Qualitative Phase Space and Other Constraints 

The phase space representation is well-known in mathematics, and can be used 

practically in relation to differential equations. In the phase space, there is an 
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axis for each independent parameter of the system. Each state (tuple of 

parameter values) of the system corresponds to a point in phase space. Various 

time behaviors of the system can then be represented as trajectories in the 

space. There is a theorem which states that trajectories in phase space cannot 

cross themselves, unless they are closed curves [45,46]. 

This knowledge, if adequately represented, can enable QSIM to rule out 

some spurious predictions. Lee and Kuipers [19] report on an extension to QSIM 

which does just that. They use the above-mentioned theorem as an additional 

type of constraint, named the non - in t e r sec t ion constraint. Their 

implementation of it is limited to second-order systems. Interesting 

considerations arise because the "points" in this qualitative phase space can be 

points, line segments, or even rectangles, because of the nature of qualitative 

magnitudes. 

Other proposals for reducing the number of spurious behaviors are also 

mentioned in [19]. These involve adding yet other constraints to the QDE, 

making comparisons of the energy and phase properties of an oscillatory 

system at different extreme points possible [15]. Note that these are system

s p e ci/i c features, not generally applicable to an arbitrary model. 

3.2.5. Using QP Theory to Build QSIM Models 

Recognizing the importance of the task of building the qualitative models in 

the first place, Crawford et al. [26] present QPC; a compiler which can assemble 

model fragments into QDEs. Knowledge about the current situation in the 

physical scene of interest is input; this information is used to identify the model 

fragments relevant to the currently active processes~ (Section 2.2.1) Use of QP 

theory and the Closed World Assumption is made to obtain the constraint set. 

QSIM then runs on those constraints Until an operating -region transition 

occurs. In that case, control returns to QPC, and the new processes and 

quantities are identified to obtain a new constraint set that will describe the 

new operating region. QSIM is employed with this new QDE, and' this model 

building/simulation cycle continues until the system reaches quiescence. 

The difference between this form of model building and the QSI method 

that will be presented in Chapter 6 is fundamental: Here, the relations that 

apply in various p~ysical situations are stored in a library, and the model 
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builder's task is to find the relevant constraints and bring them together to 

form the QDE, given a description of the configuration of the system at a single 

(the "current") state. QSI, on the other hand, has no such library; the 

constraints are i nf err e d from accounts of the behavior of the system over a 

time period. 

3.2.6. QSIM for Monitoring 

Dvorak and Kuipers [35] have reported on MIMIC, a method of monitoring 

dynamic systems. Monitoring, in this context, is a form of diagnosis (i.e, the task 

of understanding that something is wrong and identifying the problem,) that 

has to be performed while the system is operating, since it may be too expensive 

or impossible to shut down. Another issue with monitoring is that only a few of 

the parameters can be observed. 

, fhe basic idea of MIMIC is as follows: The system's (visibh,) parameters 

are observed over time. All the while, QSIM (with incomplete quantitative 

reasoning capability, see Section 3.2.3.) is parallelly run with the "normal" and 

a number of "faulty" models of the system. According to the observations, some 

of these models can be discarded if their predictions are not being satisfied, and 

new "suspected" fault models can be activated. The currently "active" models 

(i.e., the ones whose simulations are producing results that match the 

observations) are reported to the system operators. 

This approach requires somebody to write down the normal and (all 

kinds of) faulty models of all types of components in the system. A great 

number (but still, only a fraction of all the possibilities) of system models with 

various kinds of faults are then built from these component models. QSIM is run 

on all these models and from each possible initial state, to produce a complete 

state tree for each case. Now that the "states" (collections of visible values) that 

can be created at some time by each kind of fault under consideration are 

known, they are stored in a decision tree that MIMIC will use during its 

operation to see which faults may be producing the observed behavior. So all 

the procedure described in this paragraph has to be completed before 

monitoring by MIMIC even starts. 
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A simpler approach to the monitoring problem is seen to be desirable. 

QSI's (Chapter 6) capability of finding the constraints that hold in a sequence of 

states may provide an answer. 
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IV. IMPROVED CONSISTENCY FILTERING FOR QUALITATIVE 

SIMULATION 

As demonstrated in the previous chapter, qualitative simulation programs may 

occasionally predict spurious behaviors. Among the reasons for this are the 

local nature of simulation (i.e, states are determined by their predecessors, and 

the farther past of the system is generally not considered,) and the inherent 

incompleteness of the information being dealt with. Methods for reducing the 

number of spurious predictions of pure QSIM have been proposed; these 

require restrictions on the possible relationships between the system's 

parameters, like the dgn-equality assumption (Section 3.2.2,) or are system

specific [19] and not generally applicable. They generally necessitate major 

additions to the algorithm. In this chapter, a modification to the algorithm 

which allows it to detect and eliminate a class of spurious behaviors is 

introduced. This method has none of the above-mentioned requirements, since 

it makes use of information already possessed but not used by pure QSIM. 

4.1. A Class of Spurious Behaviors 

This section contains examples showing the kind of spurious behavior that will 

be dealt with in this chapter. Two systems, in both of. which little balls are 

thrown upwards at the beginning, will be considered. 
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4.1.1. Example 1: The Elevator/Ball System 

Consider a system consisting of a ball thrown upward in a descending elevator 

(Figure 4.1.1.) The elevator is going down with constant speed in an 

underground shaft. The parameter representing the elevator's upward 

velocity, EL_ V, is therefore fixed at a negative landmark value. The elevator 

floor's height, EL_H. is at the negative landmark e 1 ha at the beginning of the 

simulation, ta. Ground level corresponds to zero in EL_H's quantity space. One is 

interested in the ball's height relative to the elevator floor; the parameter 

REL_H represents this quantity. Two positive landmarks of REL_H are known; 

relha is the relative height of the ball at to , and win_h is the height of the 

elevator's window (relha < win h). The parameter BALL_H is the height of the 

ball relative to the Earth; zero is ground level. Note that, as a result of these 

definitions, 

at all times. BALL_H has two negative landmarks; b lha is its magnitude at ta 

(therefore, elha + relha = blha ) and blh] is another landmark, such that blha 

< blhj. The ball's flight is governed by gravity. The upward acceleration of all 

falling bodies, including the ball, is the parameter ACC, which has the constant 

magnitude g (a negative landmark.) The velocities of the ball relative to the 

elevator, REL_ V, and relative to the Earth, BALL_V, are also parameters. 

EL_H 

0 o 
REL_H 

win h -

relho • elf(; 0 

Figure 4.1.1. The elevator/ball system at to 



This system is described by the constraints shown in Table 4.1.1. 

TABLE 4.1.1. QDE of elevatorlball system 

CONSTRAINT CVs 

DERIVCEL_H, EL_ V) 
DERIV(REL_H, REL_ V) 
DERIV(BALL_H, BALL_V) 
DERIV(REL_ V, ACC) 
DERIV(BALL_ V, ACC) 
ADDCEL_H, REL_H, BALL_H) 
ADD (EL_ V, REL_ V, BALL_V) 

(elho, relhO, blhO) 
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Note that various "realities" which would violate these constraints and 

are not relevant to the present discussion have not been modeled. So the shaft 

is infinitely deep, the elevator has no ceiling which might interrupt the ball's 

flight, and one does not care what happens after the hall hits the elevator floor. 

Now consider Table 4.1.2. This is part of one of the behaviors that pure 

QSIM predicts when started on this system with the initial state described above. 

Only the values and quantity spaces of the height parameters have been shown 

in the table. This behavior is actually "longer," i.e, there is more to come after 

t4. however, the sequence in the table is enough for the present discussion. 

(QSIM can be made not to generate the successors of nodes which are "deeper" 

in the tree than a specified level, by the inclusion of a simple control.) 

TABLE 4.1.2. Spurious behavior of elevatorlball system 

EL H REL H BALL H tim~ 

<elho, dec> <relho, inc> <blhO, inc> to 
« -00, elhO), dec> «relho,win _h) ,inc> «blhO, blhl), inc> (to,tl) 
« -00, elho), dec> <win_h, inc> <blhl, inc> tl 
« -00, elho), dec> «win h, (0), inc> «blhl, 0), inc> (tl ,t2) 
« -00, elhO), dec> «win_h, (0), inc> . <NewB, std> t2 
« _00, elho), dec> «win_h, (0), inc> «blhl, NewB), dec> (t2 ,t3) 
« -00, elhO), dec> <NewR, std> «blhz, NewB), dec> t3 
« -00, elho), dec> «win_h,NewR),dec> «blhl, NewB), dec> (t3 ,t4) 
« -00, elho), dec> <win_h, dec> «blhl, NewB), dec> t4 

Quantity space of EL_H: {-oo, elho, 0, oo} 

Quantity space of REL H: {-oo, 0, relho, win _h, N ewR, oo} 

Quantity space of BALL_H: {-oo, blhO, blh1, NewB, 0, A2, oo} 
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To see that this is indeed a spurious behavior, inspect the parameter 

values at t j and t4. At t j, the ball is passing the level of the elevator's window in 

its upward journey, and at that moment, its "absolute" height is known to be 

blhj. As expected, the ball rises for a while, and then starts descending, passing 

by the window for a second time at t4. QSIM predicts that at that time, the ball's 

(and so the window's) absolute height is in the interval (blhj, NewB), in other 

words, higher than blhj. But this does not make sense, since the elevator is 

known to be descending all along, its window cannot be higher at t4 than at t j . 

So the behavior of Table 4.1.2. is a spurious prediction; this sequence of events 

will never occur. 

4.1.2. Example 2: The Ball/Shadow System 

As a second example, the behavior of a little ball thrown ~,lpward from the 

ground, and the position of its shadow on the ground will be examined. (See 

Figure 4.1.2.) A small and powerful light source is fixed at a location of a certain 

height to the left of the point of takeoff of the ball. It is assumed that the ball 

can never reach the height of the light source. The height, velocity, and 

acceleration of the ball are parameters Y, V, and A, respectively. A is fixed at a 

negative landmark, like in the previous example. One is also interested in the 

position of the ball's shadow on the ground, represented by parameter X. 0 

(zero) is the point of takeoff of the ball in both X and Y's quantity spaces. The 

ground is level (Le. has no "bumps") so that X is a reasonable function. The 

highest altitude that the ball has ever reached before is the landmark a I t r e c 

in Y's quantity space. There is a dead bug lying at a point to the right of the 

ball's takeoff point. X has the positive landmark bugyt when the shadow is on 

the bug. Light tmvels infinitely fast (for the commonsense time scale at which 

the system is being viewed, of course.) The set of constraints is that of Table 

4.1.3. 

TABLE 4.1.3. QDE of ball/shadow system 

CONSTRAINT CVs 

DERIV(V, A) 
DERIV(Y, V) 
M+(X,Y) (0,0) 
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o Light source 

o Ball 

o bug shadow 

Figure 4.1.2. The ball/shadow system 

The ball is shot up with initial velocity v 0 at to. Table 4.1.4 contains part 

of one of the spurious behaviors that QSIM predicts. 

What is wrong with this behavior? The ball IS shet up at to. At t1, it 

breaks the old altitude record and goes on climbing. At t2, when the ball is at a 

point above alt_ree, its shadow falls on the bug. At t3, both the ball and its 

shadow stop for an instant, and their magnitudes at that point are recorded as 

CVs. After that, the ball starts going down, crossing alt_ree at t4. But the shadow 

has still not reached the bug for a second time. This is inconsistent with the 

available knowledge about the function from Y to X at t1, so Table 4.1.4 contains 

a spurious behavior. 

TABLE 4.1.4. Spurious 

Y V 
<0, inc> <vo, dec> 
«0, alt_ree), inc> «0, VO), dec> 
<aft_ree, inc> «0, VO), dec> 
«altJee, 00), inc> «0, VO), dec> 
«alt_ree, 00), inc> «0, VO), dec> 
«alt_ree, 00), inc> «0, VO), dec> 
<NewY, std> <0, dec> 
«alt_ree, Newy),inc> «-00, 0), dec> 
<aft_ree, dec> « _00, 0), dec> 

Quantity space of X: 
Quantity space of Y: 

behavior of ball/shadow system 

A X 
<g, std> <O,inc> 
<g, std> «0, bugyt), inc> 
<g, std> «0, bugyt), inc> 
<g, std> «0, bugyt), inc> 
<g, std> <bugyt, inc> 
<g, std> «bugyt, 00), inc> 
<g, std> <NewX, std> 
<g, std> «bugyt, NewX), dec> 
<g, std> «bugyt, NewX), dec> 

{-oo, 0, bugyt, NewX, oo} 
{-oo, 0, alt_ree, NewY, oo} 

time 
to 
(to,t1 ) 
t1 
(t1,t2) 
t2 
(t2 ,t3) 
t3 
(t3,t4) 
t4 
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4.2. The Cause of Spurious Behaviors 

The spurious behaviors of the previous section are not results of the 

"weakness" of the sets of constraints, or a fundamental shortcoming of 

qualitative simulation. All the information required for identifying that the 

qualitative states at t4 (in both examples) are inconsistent with the past 

behaviors of the systems is available to the algorithm: The constraints between 

the parameters are given as input, and the states up to t4 are created by the 

algorithm itself. The problem is the inability of the algorithm to utilize this 

information. 

QSIM uses corresponding value information to check the consistency of 

newly proposed parameter magnitudes with previous knowledge about the 

arithmetic and functional relationships in the system. However, the tuple of 

magnitudes at t 1 in Section 4.1.1, and those at t2 in Section 4.1.2, which allows 

one to recognize that something is wrong, are not recorded as CV s of the 

constraints by the algorithm. The reason for this is that only landmarks are 

allowed in CV tuples, and in both cases under discussion, there are parameters 

which have interval magnitudes at the times of interest. In fact, EL_H of the 

elevator example has an interval magnitude in each state after to in all 

behaviors of the system, so no CV tuples will be recorded for any constraint 

involving it. 

Moreover, it would not be of much use in the elevator example, even if 

pure QSIM recorded such CV tuples. Equation 3.1 is used as the ADD CV 

consistency check, which would, when comparing the values at t4 and t I , 

require that 

« -00, elho) - (-00, elho» + (win _h - win _h) = «blh 1 ,N ewB) - blh 1) (4.1) 

be satisfied. This would reduce to 

?+O=+ 
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where "?" can be anyone of +, 0, or -, so the consistency check would be 

satisfied, the state at t4 would be generated, and the same spurious behavior 

would still be produced. 

The reason for pure QSIM's insistence on landmarks as CVs may be the 

fact that neither qualitative subtraction nor (provided the signs are the same) 

qualitative division are ambiguous when one of the values participating m 

them is guaranteed to be a landmark. When both operands are allowed to be 

intervals, one may be faced with a situation where one has to compare an 

interval with itself, as in Equation 4.1, which leads to the condition being 

satisfied trivially. 

However, it was demonstrated that the use of only-landmark CVs causes 

the generation of spurious behaviors. What is needed is a way of recording 

interval CVs (ICVs), and an extension of the consistency filtering and 

qualitative arithmetic rules to handle this generalization. 

4.3. Filtering Spurious Behaviors 

To enable it to use more of the available information about the system's 

arithmetic and functional relationships, the following changes have been 

made to pure QSIM, (Section 3.1.2) resulting in the improved QSIM algorithm, as 

it will be called in the rest of this text: 

1) Whenever a new landmark is discovered for parameter P, augment the CV 
lists of constraints in which P participates to reflect this new information. 

2) In Step 2.4 of the original algorithm, for every newly created state, add the 
parameter magnitudes appearing in all non-DERIV constraints as tuples to the 
CV lists of these constraints, regardless of whether any of the magnitudes are 
landmarks or not. 

3) During the CV consistency filtering phase (in Step 
proposed magnitudes will be eliminated unless they 
relationships with all of their constraints' CV tuples: 

2.2,) the tuples of 
have the following 
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i. For MINUS and M- constraints, if the proposed magnitude tuple is (mA. 
m B) and the CV tuple is (p, q), the signs of (m A - p) and (m B - q) should be the 
opposites of each other. 

ii. For M+ constraints, if the proposed magnitude tuple is (m A, m B) and the 
CV tuple is (p, q), the signs of (m A - p) and (m B - q) should be the same. 

iii. For ADD and MULT constraints, equations 3.1 and 3.2 should be satisfied, 
respectively. 

iv. When a subtraction, or, (in the case of MULT,) division operation 
required for the above controls has an ambiguous result, the predicate in 
question will be automatically satisfied for that CV tuple. 

4) Qualitative subtraction will yield one of +, 0, or -, according to the ordinal 
relation of its operands. However, when this relation cannot be determined 
from the operands, (m A - p) will yield: 

+, if both its operands are the same interval magnitude, the parameter has 
had this same magnitude since the recording of p, and its direction is inc, 

-, if both its operands are the same interval magnitude, the parameter has 
had this same magnitude since the recording of p, and its direction is dec, 

?, (the ambiguous value,) otherwise. 

5) Qualitative division will yield one of Ito, one, or gto, according to the signs 
and ordinal relation of its operands. However, when this relation cannot be 

determined from the operands, (~A) will yield: 

gto. if both its operands are the same positive interval magnitude, the 
parameter has had this same magnitude since the recording of p, and its 
direction is inc, 

g to, if both its operands are the same negative interval magnitude, the 
parameter has had this same magnitude since the recording of p, and its 
direction is dec, 

I to, if both its operands are the same positive interval magnitude, the 
parameter has had this same magnitude since the recording of p, and its 
direction is dec, 

Ito, if both its operands are the same negative interval magnitude, the 
parameter has had this same magnitude since the recording of p, and its 
direction is inc, 

?, (the ambiguous value.) otherwise. 

As an example to (1), consider the behavior of BALL_H in Table 4.1.2. In 

(t1,t2). the ball is in the interval (blh1. 0). This fact is recorded in the CV list of 

the ADD. as modification (2) requires. At t2 , BALL_H stops at its new landmark, 

New B. This tells one that the pre v i 0 us magnitude of BALL_H can be more 
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correctly described as (b l h] , New B), and the related CV tuple is changed to 

contain the new information. (Actually, this application of (1) does not 

contribute to the elimination of the spurious behavior in this example. A 

"system" where (1) is necessary to prune the spurious prediction will be 

presented at the end of this section.) 

The rationales for (3.i) and (3.ii) stem from the nature of inverse and 

direct proportionality, respectively. If M-(A,B), then for every CV tuple 

(A _ mag, B _ mag) of this constraint, A and B' s magnitudes should always be at 

opposing sides of A_mag and B _mag, (unless they are both exactly "on" them,) 

because they always "go" in opposing directions. (When A_mag and B _mag are 

both landmarks, this is very easy to see, the rules of (4) and (5) allow it to be 

generalized to interval CVs.) For the same reason, parameters linked by M+s 

should always be at the same sides of their CVs. 

The justification for the rules of (4) and (5) is as follows: For any 

reasonable function f, if f' (t) > 0 for all t E [tb e g , te nd)' lhen f( t 1) < f( t2) for 

all ,I;] ,t2 E [tbeg, tend) such that t] < t2· (An analogous proposition holds 

when f'(t) < 0; thenf(t]) >f(t2).) That is, if a quantity is continuously 

increasing (decreasing) in an interval, its value at a later time III that interval 

will be greater (less) than its value at an earlier time in the same interval. 

Whether the parameter has had the same magnitude at all times since the 

recording of the CV to the proposal of the new values can be checked using 

information in the CV list or the state tree. 

Table 4.3.1 shows the calculations made by the improved algorithm when 

the spurious state at t4 is proposed in the elevator simulation. Each new CV 

triple is added to the beginning of the list, so older values are used later in the 

check. As can be seen in the table, Equation 3.1 fails to be satisfied when the 

proposed tuple is checked against the CV of t] As a result of this, a state 

containing that combination of magnitudes will not be created, and the 

spurious behavior of Table 4.1.2 will not be predicted. 

Table 4.3.2 similarly shows how the spurious state (and behavior) of 

Table 4.l.4 is eliminated. Every CV tuple's Y magnitude is subtracted from the 

proposed Y magnitude to obtain the sign of the Y difference. The same thing is 

done for X. According to (3.ii), the signs should agree. When the CV triple of t2 

is considered, they definitely do not, so the proposed magnitudes are wrong. 



TABLE 4.3.1. CV triples used to test ADD(EL_H,REL_H,BALL_H) at t4 

proposed triple: «-00, elho),win_h, (blhl, N ewB» 

CV triple Equation 3.1 

«-00, elho), (win_h, NewR), (blhl, NewB» (-) + (-) = (-) 
«-00, elho), NewR, (blhl, NewB» (-) + (-) = (-) 
«-00, elho), (win h, NewR), (blhl, NewB» (-) + (-) = (-) 
« -00, elho), (win_h, N ewR), N ewB) (-) + (-) = (-) 
«-00, elhO), (win_h, NewR), (blhl, NewB» (-) + (-) = (?) 

«-00, elho), win_h, blhl) (-) + (0) = (+) 

TABLE 4.3.2. CV tuples used to test M+(Y,X) at t4 

proposed tuple: (alt_ree, (bugyt, N ei.!IX)) 

O.K.? 

Yes 

Yes 

Yes 

Yes 

Yes 
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CV tuple Sign of Y diff. Sign of X diff. Signs equal? 

«alt_ree, NewY), (bugyt, NewX» 

(NewY, NewX) 

«alt_ree, NewY), (bugyt, NewX» 

«alt ree, NewY), bugyt) 

? 

+ 

Yes 

Yes 

Yes 

A spurious prediction which cannot be eliminated without modification 

(1) is presented here. Consider a (decidedly very simple) model, consisting of 

three parameters A, B, and C, with a single constraint among them: ADD(A,B,C). 

Table 4.3.3 is a spurious prediction of QSIM about this system. 

Like in the previous examples, the last state (the one at t5) is spurious. To 

detect this, the information at t1 must be considered together with that of t5. At 

t5, the A magnitude is less than at t1. The C m~gnitudes are the same. So B at t5 

has to be greater than B at t1 for the ADD to hold. At first sight, it seems one 

cannot decide on the relative ordering of (bI, NewB) and (bI, b2), and the CV 

check will be satisfied as it is in ambiguous situations, but the fact that B stops 

at NewB at time point t2 after decreasing in (bI, b2) in the interval (to,t2) tells 

one that B was actually in (N ewB, b2) in that time period. Now it is clear that 

the tuple of t5 is inconsistent. Without modification (1), the algorithm cannot 
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detect this inconsistency. Table 4.3.4 shows the invocations of Equation 3.1 

performed in the CV filtering of this state. 

TABLE 4.3.3. A spurious prediction 

initial quantity space of A: {-00,O,al,a2,a3,00} 
initial quantity space of B: {-oo, 0, bl, b2, oo} 
initial quantity space of C: {-oo, 0, el, e2, c3, oo} 

A 
<a3,dec> 
«a2, a3), dec> 
<a2, dec> 
«aI, a2), dec> 
«aI, a2), dec> 
«aI, a2), dec> 
<aI, std> 
«aI, a2), inc> 
«aI, a2), inc> 
«aI, a2), inc> 
«aI, a2), inc> 

B 
<b2, dec> 
«bl, b2), dec> 
«bl, b2), dec> 
«bl, b2), dec> 
<NewB, std> 
«bl, N ewB), dec> 
«bl, NewB), dec> 
«bl, N ewB), dec> 
«bl, N ewB), dec> 
«bl, NewB), dec> 
«bl, N ewB), dec> 

C 
<e3, dec> 
«e2, c3), dec> 
<e2, dec> 
«el, e2), dec> 
«el, e2), dec> 
«el, e2), dec> 
«el, e2), dec> 
«el, e2), dec> 
<ci, std> 
«el, e2), inc> 
<e2, inc> 

final quantity space of B: {-<X>, 0, bl , N ewB, b2, <X>} 

time 
to 
(to,t1 ) 
t1 
(t1 ,t2) 
t2 
(t2 ,t3) 
t3 
(t3.t4 ) 
t4 
(t4,t5) 
t5 

TABLE 4.3.4. CV triples used to test ADD(A, B, C) at t5 

proposed triple: «aI, a2), (bl, N ewB), e2) 

CV triple Equation 3.1 O.K.? 

«aI, a2), (bl, NewB), (el, e2» (+) + (-) = (+) Yes 

«aI, a2), (bl, N ewB), el) (+) + (-) = (+) Yes 

«aI, a2), (bl, NewB), (el, e2» (+) + (-) = (+) Yes 

(aI, (bl, NewB), (el, e2» (+) + (-) = (+) Yes 

«aI, a2), (bl, NewB), (el, e2» (?) + (-) = (+) Yes 

«aI, a2), NewB, (el, e2» (?) + (-) = (+) Yes 

«aI, a2), (NewB, b2), (el, e2» (?) + (-) = (+) Yes 

(a2, (NewB, b2), e2) (-) + (-) = (0) N) 
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4.4. Correctness and Complexity of Improved QSIM 

To prove that improved QSIM is actually better and not worse than pure QSIM, 

one has to show that: 

1) Improved QSIM does not predict some of the spurious behaviors that pure 

QSIM predicts, 

2) Improved QSIM does not predict any spurious behaviors that pure QSIM does 

not predict, and, 

3) Improved QSIM is sound, i.e., it does not fail to predict any actual behavior. 

(1) has alre~!dy been proven by demOJistration in the previous section. It 

IS also easy to show (2), i.e., improved QSIM causes no extra spurious behaviors: 

Consider the changes that were made to the algorithm. They cause it to record 

and check more CVs than before. CV tuples which contain only landmark 

values (Le., the only kind present in the pure version,) are handled in the same 

way as before, so all the spurious behaviors to whose eliminations they 

contribute in pure QSIM are also eliminated in improved QSIM. The only 

difference that improved QSIM has is that it checks proposed states against 

interval corresponding values; a control totally absent in pure QSIM. If no 

inconsistencies are detected in this extra checking, improved QSIM will give 

the same output as pure QSIM. Otherwise, it will predict less behaviors. In no 

case can it predict some behavior that pure QSIM does not predict. So (2) has 

been proven. 

To prove (3), one has to show that the filtering criteria given III the 

previous section eliminate only those tuples which do not satisfy their 

constraints, i.e., that the improved filters are conservativ'e (Section 3.2.2.) 

For the ADD and MULT constraints, this is already proven, since Kuipers' 

equations 3.1 and 3.2 (Section 3.1.2) are used. 

For the M+, M-, and MINUS constraints, the filtering criteria presented 

here subsume those of Kuipers, and are still conservative. Consider M+(A,B), 

the arguments for M- and MINUS are similar. A geometric interpretation of the 
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rules will be given. When intervals are allowed in CV tuples, each tuple defines 

either a point, a segment, or a rectangle in the plot of the two parameters 

against each other. It is known that the plot of A vs. B passes through these CV 

areas. Each proposed magnitude tuple also defines such an area, call it P A. For 

M+ to hold, some point in PA has to be "higher" than some other points in all 

the CV areas to the "left" of P A, and "lower" than some points in all the CV 

areas to the "right" of PA. That is because it is known that the plot will be 

"rising" as one goes from left to right in the graph (whichever way you look at 

it; A vs. B or B vs. A.) The requirement that both proposed magnitudes should be 

"on the same sides" of the values in all CVs embodies this necessity: Both 

coordinates of each point in the graph of an M+ function are either less or 

greater than the coordinates of other points. The filter eliminates tuples only 

when it is certain that they do not fulfill this condition. So no magnitudes 

which truly satisfy the M+ are eliminated. Consider the consistency check 

between the CV tuple ((alt_ree, NewY), bug_pt) and the proposed magnitude 

tuple (alt_ree, (bugyt, NewX)) (Section 4.3) which leads to the eliminatic'f.1 (·f 

the spurious ,behavior of the ball/shadow system. Figure 4.4.1 is the geonl':!t;-ic 

interpretation of that check. In the figure, the horizontal segment is the 

proposed magnitude area, and the vertical segment is the CV area. Clearly, no 

monotonically increasing function can cross both these segments. Therefore, 

the proposed tuple cannot be accepted. For M- and MINUS, the reasoning is 

similar, with the slope of the curve now negative. In all cases, only values 

which violate the constraints are filtered out, so the filters are conservative. 

y 

00 

NewY 

aicrec 

o NewX x 
00 

Figure 4.4.1. Geometric interpretation of M+ consistency check 
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Now, the complexity of the resulting algorithm will be considered. If c is 

the number of constraints and s is the current length of the behavior being 

generated, constraint filtering takes 0 ( c s ) time in pure QSIM [14]. In the 

improved version, the task of determining whether there is an unbroken 

string consisting of the same magnitude between a proposed magnitude and its 

recorded counterpart can be done in parallel with the already present 

scanning of the CV list. This means that, although the improved version is 

using more CV s, the time required for using them is still on the order of c s. 

Updating the CVs after landmark discovery takes time linear in c. The worst

case time requirement of the algorithm is, again, caused by successor 

generation, and is exponential in the number of parameters. 

TABLE 4.4.1. Execution times of improved QSIM case runs 

Problem number of number of number of number number of pure improved 
constraints parameters operating of states states in aSIM QSIM 
in input in inp'Jt region in final final tree execution execution 

transitions tree (improved) time (s) time (s) 
(pure) 

Single 2 3 0 5 5 0.16 0.17 
Ball 

Kidney 8 10 0 3 3 5.78 5.85 

Kidney 8 10 0 3 3 4.50 4.71 

U-tube 18 7 1 8 8 2.24 2.30 

Spring 6 6 0 9 9 6.79 6.93 
Balli 
Shadow 3 4 0 79 63 8.37 6.78 

Heat 
Exchanger 3 5 0 7 7 0.78 0.79 

The fact that improved QSIM's additional space and time requirements 

are not significant has also been shown by case runs of both versions of the 

algorithm on various input systems, as can be seen in Table 4.4.1. In the table, 

the section numbers indicate the location in this text where the relevant QDE is 

described; some of these are famous examples from literature. The second and 

third problems are runs of the same model with different initial states. In cases 

where it is able to prune additional behaviors, improved QSIM also shows 

(naturally) a clear time and space advantage. As indicated in the table, the 

improved version eliminates 16 states when running on the ball/shadow 

problem. These states cause four spurious behaviors to be predicted by pure 

QSIM. in addition to the 11 "actual" behaviors. The "un-improved" version 
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creates such a huge output when confronted with the elevator problem that 

our pe implementation of QSIM (Appendix A) has to be modified to handle it; 

that is why that item is absent in the table. When restricted to produce the tree 

only until t4, pure QSIM predicts 147 behaviors of the elevatorlball system, 

again four of which are spurious ones that are eliminated by the improved 

algorithm. 

4.5. Concluding Remarks 

In this chapter, it was shown how interval corresponding values can be used to 

strengthen existing qualitative simulation methods, and the exact list of 

modifications to QSIM which enable it to support and make use of IeVs were 

given. One must emphasize that improved· QSIM does not detect and eliminate 

all spurious behaviors; Those of the spring system of Section 3.1.3 are still 

predicted, for instance. Kuipers and his colleagues have concentrated on this 

problem, and the non-intersection, energy, and system property constraints 

mentioned in Section 3.2.4 handle that system and many of its variants. This 

suggests that these constraints, the interval corresponding value modification, 

and also the HOD constraint of Section 3.2.2 can be used in conjunction to 

produce simulations tighter than anyone of them can provide individually. In 

the following paragraphs, a justification for this claim is presented. 

Such a unification of methods would not cause a harmful "interference" 

where the implementation of one idea hinders another, since each involves 

separate constraints. IeVs are to be applied only on the "classical" constraints, 

so the other ones are not affected. (The algorithm applies each constraint 

independently of the others. Even a single unsatisfied constraint causes a 

proposed state to be rejected, which is what one expects from the. use of 

constraints. The addition or removal of one type of constraint does not affect 

the filtering properties or applicability of the other types.) Lee and Kuipers 

[19] state that all the additional constraint types can be used profitably 

together. 
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To show that the addition of the ICV modification will make simulation by 

the unified algorithm even tighter, it is sufficient to demonstrate a single 

spurious behavior which can only be detected by improved QSIM and not by the 

additional constraints. The ball/shadow system of Section 4.1.2 provides a good 

example. Derivatives of all necessary orders of the system parameters are 

included in that model, so the HOD constraint will not be used. The system is not 

oscillatory, so the energy and system property constraints will not be derived. 

No choice of independent variables produces a phase space with a self

intersecting trajectory, so the non-intersection constraint does not eliminate 

the spurious behavior either. Therefore, the claim about the utility of the 

proposed unified algorithm is justified. 

Improved QSIM's input and output interfaces are exactly those of pure 

QSIM, so one can easily replace pure QSIM with it; in the applications 

mentioned in Section 2.2.5, Section 3.2, or the reasoners that will be described 

in the rest of this dissertation, leading to better performance of the final 

product. 
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V. POSTDICTION BY QUALITATIVE SIMULATION 

5.1. Postdiction 

Postdiction is the task of "inferring how a particular state of affairs might 

have come about." [12] This task has also b~en named abductive projection [2] 

and retrodiction [47] in the literature. The basic idea is to utilize the existing 

laws of change of the domain in the "reverse" of their normal direction; i.e. to 

obtain the causes from the results. If a law of change of the form "A results in 

B ,. exists, and B is a current fact, A may be inferred as a cause of B. This kind of 

inference is called abduction. Abduction is not a "legal" form of inference, i.e., 

it does not always produce correct results. (To put this more formally, it allows 

false conclusions from true axioms.) That is because there may be a lot of other 

things besides A that can result in B, and just knowing B does not necessitate 

that its cause was A. 

Reasoners using a situation 

performing abductive projection (in 

have to deal with this problem. There 

calculus representation of change for 

story understanding [2], for instance) 

are simply too many laws of change that 

may lead to a given fact being true, (Suppose you see some blood on the street. 

Try to enumerate the possible courses of events that may have led to this.) and 

although, realistically, most of the laws will not even be "written down," (i.e., 

known to the reasoner,) the program still has to "go back" on all the laws that 

it does have, and to use other kinds of information to decide which "road" back 

is the most sensible one. When to stop generating causes that are further and 

further in the past is another important issue for these reasoners. 
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In this chapter, it is suggested to use a QSIM-like reasoner (actually, a 

modified version of QSIM itself) to perfonn postdiction. This will have the same 

advantages that pure QSIM has over a situation calculus-based reasoner in the 

prediction task: It will be able to handle continuously changing values, and the 

fact that its domain is much more specialized will lead to more efficient and 

elegant results. The problems mentioned above for the abductive projection 

managers will have natural solutions. 

Some straightforward but important changes need to be made in the 

QSIM algorithm to make it perfonn postdiction; these are the subject of the next 

section. 

5.2. QSIM for Postdiction 

Most of the "mechanism" of QSIM used to construct the state tree (e.g. the 

constraint filtering phase) is independent of the direction in which time is 

"running" as new states are created. By restricting the changes to the 

algorithm to the modules which deal with the "passing" of time, the continued 

validity of the already present correctness proofs and complexity analyses of 

the remaining parts of QSIM will be ensured. 

What is wanted is an algorithm which takes a "current state" of the 

system at to, together with the QDEs describing the system in all its operating 

regions, as input. The output of this algorithm will again be a state tree; with 

the state at to as the root. Each node in this tree will be a possible temporal 

predecessor of its father, rather than a successor, as in the case of pure QSIM. 

The interpretation of this tree will also be different than ,that of pure QSIM. 

There are two ways in which a state change can occur in QSIM: Either all 

the parameters obey the transitions of Table 3.1.1 and obtain new values, or a 

parameter exceeds its legal range and a new operating region is activated. 

"Reversing" the first kind of change to perform backward simulation is 

especially easy, while the second kind is more involved; as explained below, the 
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parts of the algorithm dealing with operating region changes have to be 

completely rewritten. 

The modifications that will be made to QSIM algorithm, as given in 

Section 3.1.2, for performing postdiction are the following: 

1) In Step 2.1, use Table 5.2.1 (instead of Table 3.1.1) to generate each 

parameter's possible transitions to the previous state. 

2) For each newly created state, check whether this state can be the first state 

of the current operating region, i.e., whether this is a state that the system can 

have immediately after an operating region change. If this is possible, create 

the I as t state of the previous operating region as a possible predecessor of this 

state, and continue with the new region's QDE down that branch. 

3) In Step 3, do not put a state in the list of states to be opened if any parameter 

in it is about to exceed its legal range (by the transitions of Table 52.1.) 

4) In the resultiilg :s!ate tree, every path from a (leaf or non-leaf) node to the 

root is a distinct possible past of the system. 

As can be seen, Table 5.2.1 is simply the reversed version of Table 3.1.1; 

all the possible transitions to previous values are obtained by reversing the 

arrow of time. Also note that the P-transitions have become I-transitions, and 

vice versa; this follows from their definitions in Section 3.1.1. The two "new 

landmark discovering" transitions have been moved to the new I-list, so the 

new algorithm has QSIM's ability to detect previously unknown and interesting 

parameter magnitudes, this time in the system's past. The reason for swapping 

Kuipers' original transitions P4 and P5 also becomes clear now; the part of the 

algorithm in Step 2.4, which checks the "no change" transitions {II, 14, I7} can 

work correctly without being modified, since that set contains the same 

elements in both Table 3.1.1 and Table 5.2.1. 

Whether an operating region change may have 'preceded the state at 

hand (say, S) or not can be checked as follows: All parameters which are 

designated (in the input) to have specific values at the start of the current 

operating region must have those values in S. Furthermore, there has to be 

another operating region description, Pr_OR, in the input; and a parameter III 

Pr_OR, which causes a transition into the current operating region when it 

exceeds its legal range. If these conditions are satisfied, a new state in Pr_OR 
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where that parameter is just exceeding its range is created. Parameters 

designated not to change values in this transition keep their values at S in the 

new state, while the remaining ones receive their values by completion 

according to the new constraints. See the next section for an example to this 

process. 

TABLE 5.2.1. The reverse transitions 

I-transitions 

name in (ti,ti+l) at ti 

I1 < Ij' std> < lj, std> 

12 < (lj , lj + 1 ) , inc > < lj, std> 

13 < (lj-l , lj) , dec> < Ij, std> 

14 < (lj, Ij+l ) , inc> < (lj , lj+l ) , inc> 

15 < (lj' Ij+ 1 ) , inc> < ~i, inc> 

16 < (lj-l , lj) , dec> < lj, dec > 

17 < (lj, lj+l ) , dec> < (lj , lj + 1 ) , dec > 

18 < (lj' lj+l ) , inc> < 1* , std > 

19 < (lj , Ij + 1 ) , dec > < 1* , std > 

P-transitions 

name at ti + 1 in (ti,ti+l) 

PI <lj,std> < lj, std> 

P2 < Ij+l , std> < (lj, Ij+l ) , inc > 

P3 < Ij+l , inc> < (lj , Ij+l ) , inc > 

P4 <(lj,lj+l) ,inc> < (lj , Ij+ 1 ) , inc> 

P5 < Ij, std> < (lj , Ij+l ) , dec> 

P6 < lj, dec> < (lj , Ij+l ) , dec> 

P7 < (lj' Ij+l ) , dec> < (lj , lj+l ) , dec> 

The intuition behind the rule of (3), which prevents the opening of a 

state in which a parameter is backing out of its legal range can be illustrated 

by the following example: If one sees a descending elevator, one may think that 

it was on the upper floor a short time ago. However, if one sees a descending 

elevator at the top floor, no such conclusion about the past can be made. 
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The definition of possible pasts reflects a fundamental difference 

between postdiction and prediction: One has no way of knowing when the 

system was "started up" during postdiction. The examples in the next section 

will help illustrate this issue. 

5.3. Examples 

This section will illustrate the working of the postdiction algorithm on tW(\ 

very familiar systems. Although very simple, these systems are able to reflect 

important features of the algorithm. 

5.3.1. The Ball Postdiction 

Once again, a ball thrown upwards from ground level will be considered. There 

is a single operating region, which is exited when the ball's height is about to 

become negative, (i.e., when it hits the ground.) The constraints are, as usual, 

DERIV(Y,V) 

and 

DERIV(V,A), 

where Y is the height, V is upward velocity, and A is the (fixed) acceleration. 

(Note that this particular set of constraints models a large family of actual 

systems; objects thrown at any angle, and balls on frictionless inclined planes 

being included. A vertically flying ball is the easiest of these to visualize. The 

concepts illustrated here are, of course, applicable to any QDE.) 

Let the current state be 

Y= <0, dec>, 

V = «-00, 0), dec>, 

A = <g, std>, 
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i.e., the ball is hitting the ground. The postdiction algorithm produces a single

branched tree of five states when run with this input. That branch is: (values 

of Y shown only) 

<0, dec> <-- «0, (0), dec> <-- <NewY, std> <-- «0, NewY), inc> <-- <0, inc> 

where the root is at the left end and the arrows show the well-known direction 

of time. 

If possible pasts were paths between leaves and the root, the only one 

found in this example would be the following: 

"The ball has been shot up from the ground, risen a while, then fallen back." 

But intuition tells one that this is not the only possibility, given the 

current state and this QDE. The ball may have been dropped from an initial 

position above the ground, for instance; this would again result in the input 

state. The other possibilities are the ones where the ball is s hot (i.e., given 

some initial nonzerc velocity) upwards or downwards from a point abovt; the 

ground. 

Note that the state tree contains all these different possible pasts, 

according to the definition given in the previous section. As a result, the 

algorithm presents the information m Table 5.3.1 as the output in this case. 

(Again, only Y is shown.) Figure 5.3.1 shows the paths taken by the ball in each 

of the possible pasts (P Ps.) 

PPI PP2 PP3 PP4 

o t 

t 
Figure 5.3.1. Possible pasts for a ball hitting the ground 



TABLE 5.3.1. Output of ball postdiction 

Possible Past #1 

Y 
<New Y2, dec> 
«0, 00), dec> 
<0, dec> 

time 
/-] 

(t-] ,to) 
to 

Quantity space of Y: {-oo, 0, New Y2, oo} 

Possible Past #2 

Y 
<NewY, std> 
«0, 00), dec> 
<0, dec> 

time 
/-] 

(t-],tO) 
to 

Quantity space of Y: {-oo, 0, NewY, oo} 

Possible Past #3 

Y 
<New Y3, inc> 
«0, NewY), inc> 
<NewY, std> 
«0, 00), dec> 
<0, dec> 

time 
t_ 2 

(t-2,t-]) 
/-] 

(t-],tO) 
to 

Quantity space of Y: {-oo, 0, NewY3, NewY, oo} 

Possible Past #4 

Y 
<0, inc> 
«0, NewY), inc> 
<NewY, std> 
«0, 00), dec> 
<0, dec> 

time 
t_ 2 

(t-2,t-]) 
t_ ] 
(t-],tO) 
to 

Quantity space of Y: {-DO, 0, NewY, oo} 
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Table 5.3.1 shows how the algorithm "pads" a point state with all 

magnitudes at newly designated landmarks to the beginning of possible pasts 

starting with interval states, to keep to the custom that QSIM behaviors start 

with point states. The values in times (L 1 ,to) do not contain the new landmarks 
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which appear III previous states; this is a result of the fact that the previous 

states are actually computed later by the algorithm, and can be modified easily, 

by the same method used to update the CV lists to reflect the new landmark 

information in Chapter 4. 

5.3.2. Burst Tank Postdiction 

As a second example, consider the U-tube system of Section 3.1.1. If the system 

is currently in the operating region B_BVRST, (Figure 5.3.2) what could have 

happened in the past? In the input state, a description of the system, where the 

liquid in tank A is just flowing out of the pipe between tank A and the now 

nonexistent tank B, is given (Table 5.3.2.) The "current" value of amounCA is 

Anow, a landmark in (O,AMAX). This postdiction will clearly involve a backward 

operating region change. 

\ water spilling out 

Figure 5.3.2. U-tube in operating region B_BURST 

TABLE 5.3.2. Starting state of U-tube postdiction 

PARAMETER 

amount_A 
amount_B 
flow_AB 
flow_BA 
pressure_A 
pressure_B 
p_difLAB 

VALUE 

<Anow, dec> 
< 0, std> 
«0, 00), dec> 
« -00, 0), inc> 
«0, 00), dec> 
< 0, std> 
«0,00), dec>' 

Since the program's output is too large to reproduce here in a concise 

manner (the tree contains many branchings caused by ambiguities about the 

value of the pressure difference,) verbal descriptions of the families of 

possible pasts found are given below: 
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1: The system starts in region B_BVRST, with amouncA in (Anow, AMAX), and 

moves to the input state. 

2: The system starts in region B_BVRST, with amount_A at AMAX, and moves to 

the input state. 

3: The system starts in region NORMAL, with the V-tube completely full (Le., 

amouncA at AMAX and amouncB at BMAX.) Tank B explodes immediately. 

Liquid in tank A drains for a while, and the input state is obtained. 

4: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and 

amount_B at B M A X and increasing. This is immediately followed by the 

explosion of tank B. Liquid in tank A drains for a while, and the input state is 

obtained. 

5: The system starts III region NORMAL, with amounCA in (Anow,AMAX), and 

amouncB in (0,BM,1.X) and increasing. After a while, tank B explodes. Liquid in 

tank A drains for a while, and the input state is obtained. 

6: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and 

amouncB 0 and increasing. After a while, tank B explodes. Liquid in tank A 

drains for a while, and the input state is obtained. 

7: The system starts in region NORMAL, with amouncA at AMAX and amouncB 

in (0 ,B MAX) and increasing. After a while, tank B explodes. Liquid in tank A 

drains for a while, and the input state is obtained. 

8: The system starts in region NORMAL, with amount_A at AMAX and amouncB 

o and increasing. After a while, tank B explodes. Liquid in tank A drains for a 

while, and the input state is obtained. 

9: The system starts in region NORMAL, with amouncA at its value in the input 

state, and amouncB at B MAX and increasing. This is iIJ.lmediately followed by 

the explosion of tank B, which results in the input state. 

10: The system starts in region NORMAL, with amouncA in (Anow,AMAX), and 

amounCB in (O,BMAX) and increasing. After a while, tank B explodes, and at 

that moment, the input state is obtained. 
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11: The system starts in region NORMAL, with amount_A in (Anow,AMAX), and 

amouncB 0 and increasing. After a while, tank B explodes, and at that moment, 

the input state is obtained. 

12: The system starts in region NORMAL, with amouncA at AMAX and amouncB 

in (O,BMAX) and increasing. After a while, tank B explodes, and at that moment, 

the input state is obtained. 

13: The system starts in region NORMAL, with amouncA at AMAX and amouncB 

o and increasing. After a while, tank B explodes, and at that moment, the input 

state is obtained. 

Note that all the qualitatively distinct possibilities involving various 

combinations of amounCA and amouncB values are listed. This ability of 

exhaustive postdiction is a desirable feature, as will be discussed later. 

5.4. Discussion 

When QSIM is used for postdiction, some important issues of this reasoning task 

are resolved naturally. One does not have to worry about the possibility of 

overlooking some laws of change, because, (within a single operating region,) 

all the laws are already known; they are the transitions of Table 5.2.1. Kuipers 

has proven that the rules of Table 3.1.1 cover all possible transitions from 

"this" state to the "next" state, and here they are used to retrieve the sam e 

information, albeit in the other direction, so the proof stands. The fact that the 

same laws of change apply to each input problem is another advantage of this 

algorithm, stemming from the definition of the domain. 

There is also no problem of choosing the most "sensible" law of change 

among many alternatives, since the level of description of the rules makes 

them all of equal caliber, so all possibilities are generated by the algorithm. 

There is a well-defined rule about when to stop postdiction on a branch: 

The algorithm does not try to find the predecessors of a leaf, if no other 
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operating region can have a state which would cause an immediate transition 

to this one, and: 1) The transition rules do not lead to any different state 

satisfying the constraints, or 2) The end of a legal range has been reached, or 

3) An "all-steady" state (Le. one in which all the qualitative directions are std) 

III the system's past has been reached, (note that some of the higher order 

derivatives, which are not represented as parameters, must have been nonzero 

at that point; this is contrary to the quiescence heuristic used during forward 

simulation. which assumes that all higher order derivatives are also zero when 

the represented ones are,) or 4) A cycle in the path to the root has been 

detected. 

Condition (4) above is interesting: What does a cycle in the state tree 

signify in postdiction? Consider the spring/block system of Section 3.1.3. One 

branch of the tree produced for that input contains an eight-state cycle 

(corresponding to stable oscillation) of which the input state is a member. (This 

is the backward-generated equivalent of Table 3.1.12.) The existence of an 

infinite number of distinct possible pasts is concluded from that branch, 

because the system may have started just one state ago, or two states ago..... or 

222 states ago,.... and so on. Once again. the fact that the initialization time of 

the system is not known leads one to consider all the alternatives. 

All qualitative model-based reasoners make the Closed World Assumption 

(Section 2.2.) The CWA is the reason why paths from the state tree's root to its 

leaves are defined as possible futures (behaviors) in QSIM: It is known that no 

"external" influence (Le.. one not mentioned in the input) will affect the 

system and interrupt its behavior. The balls in the previous examples will not 

be hit by ("anti-ball") missiles, for example. So the system will "run" until the 

end of the branch representing its behavior is reached. 

The CW A is also made in postdiction during the generation of the 

predecessor states: All the entities and relationships that may come about at any 

relevant situation are known; so all possible predecessors. can be computed. But 

the very notion of an initial state defies the CWA: There has to be "someone" 

(whose mode of operation is unknown or unmodeled) who "initializes" the 

system. In the presented examples. this is the "person" who throws the ball. or 

pours the water into the tank. or stretches the spring. Since the models do not 

know about this entity, which can "set" the system to any state (which satisfies 

the QDE) that it wishes, the algorithm has no way of deciding whether a state in 

the past is the initial state or not, so it presents both these possibilities in its 
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output. (This also corresponds to human intuition. People, when they see a non

quiescent physical system, seem to postulate the existence of a "creator" which 

set the system going and then left the scene.) 

The correctness considerations of the postdiction algorithm are the same 

as those of pure QSIM. Soundness (Le., that all possible pasts are found) follows 

from the fact that QSIM is sound, and the above discussion. The incompleteness 

property (Le., the possibility of generating spurious answers) is also inherited 

from QSIM, since this does not have anything to do with the direction in which 

the transition rules are being used. 

The computational complexities of the two algorithms are again the 

same. The possible past which starts with the newly created state can be printed 

out immediately after each state creation, this takes 0 (ps) time and does not 

affect the overall worst-case complexity. Case runs also show that the QSIM and 

postdiction algorithms have the same time requirements when run with inputs 

leading them to produce trees of similar size. An implemented PROLOG program 

embodying the postdiction algorithm is described in Appendix A. 

5.5. Applications 

Postdiction has an important place in the qualitative reasoning repertory. 

Diagnosis of malfunctioning physical systems is a natural area of application 

for postdiction. In diagnosis, there is a conceptual "going back" In time, from 

the occurrence of "something wrong" to its cause, so postdiction immediately 

suggests itself as a method. A fault can manifest itself either as an unexpected 

parameter value, or a change in the QDE. In the first case, postdiction from the 

current state gives an exhaustive list of all possible value combinations that the 

parameters may have possessed, which can be examined by a human expert. 

The fact that the algorithm enumerates all the qualitatively distinct pasts, some 

of which may escape the notice of a human, is an advantage in this task. The 

more "exotic" and less obvious causes of faults are not missed, thanks to this 

feature. In the burst U-tubeproblem, the possibilities in which the system 

starts out as a one-tank system are overlooked by a sizable proportion of 



73 

humans invited to "postdict" it, for instance, maybe because destructive events 

are psychologically dominant. When faults cause changes in the QDE, several 

constraint sets, representing various "faulty models" (like in Section 3.2.6) can 

be used to perform postdiction from the current state. The ones that have the 

system's (known) initial state in their possible pasts are candidate causes of the 

problem. 

Since the algorithm has only very local differences from QSIM, (the 

syntaxes of their input sets are the same,) all the extensions to QSIM explained 

in the previous chapters can also be applied to the postdiction algorithm, 

resulting in corresponding improvements in performance. 
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VI. THE QUALITATIVE SYSTEM IDENTIFICATION 

ALGORITHM 

Before performing any kind of model-based reasoning, one has to have a model 

of the system which will be reasoned about. The modeling methods used by 

current reasoners, which require possession of large amounts of information 

about physical laws and the various kinds of components or mechanisms that 

can be used to build systems, are fundamentally inadequate for general

purpose reasoning. When faced with a novel situation, or a new mechanism 

whose description is not available in the library, these reasoners cannot 

achieve modeling, even though it is in these cases that the modeling task is the 

most important and interesting. Leaving the preparation of the models 

completely to the "user," on the other hand, is clearly not a way out, from the 

point of view of artificial intelligence, which aims to automate human 

behavior. 

When one examines what humans do III similar situations, it is seen that 

a "mental" model of the "laws" of the system under consideration can be 

formed, after a period of observation of the system's behavior, which suggests 

an "algorithm" whose input is the behavior of the system, and whose output is 

the system model. This is essentially the reverse of what simulation, qualitative 

or quantitative, does. 

This task of data-based model construction is the subject of an already 

mature field, named system identification. Extensive research has been made 

and widespread applications of efficient algorithms which perform system 

identification in the numerical domain have been produced. In this chapter, 

QSI, an algorithmic method of performing Q..ualitative S,sstem Identification, 

using the qualitative representation, is presented. In the following, 

"conventional" system identification will be called CSI to distinguish it from 

QSI. 
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6.1. QSI as CSI 

First of all, a potentially confusing difference in terminology will be clarified. 

What has been called parameters in this text are generally called variables in 

CSI. In CSI, the parameters are constants which appear III the equations 

(models) describing the system, and the main concern is to identify their 

values precisely. In the qualitative representation, a constant can be described, 

if necessary, as a parameter "stuck" at a landmark. For example, consider the 

acceleration of the balls in Chapters 4 and 5. 

Generally, there are two kinds of variables in CSI: inp1i.t and output 

. variables. The input variables can be controlled by "us," ~nc changing their 

values to "excite" the system properly is an important task. A CSI experiment 

consists of this excitation and the recording of the variable values for some 

time. Almost always, the measurements are real-valued and are made at (usually 

equidistant) discrete time points. As a complicating factor, noise, which may 

corrupt these values, is usually present, and has to be taken into account. Once 

the data are collected, the first thing to do is to determine the for m of the 

equation that is being searched. This model structure determination problem is 

still an important issue of CSI, [48] which involves the following questions: 

What should the equation "look like," Le., how should it "link" the variables 

together so that it is an acceptable description of the physical system? What 

should be its basic parameterization? 

Once a model structure has been decided, the parameters in that equation 

are estimated, using statistics-based algorithms. The aim is to find the 

parameter values which, when "inserted" to their places in the model, will 

predict the variable values seen in the experiment. 

The model which emerges as a result of this procedure is then tested, and 

accepted only if it seems to describe the system at hand appropriately. 

Otherwise, one has to go back to the parameter estimation, structure 
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determination, or even the experiment stages, to try it with new decisions all 

over again. 

The most extensively researched and accomplished part of CSI is the 

parameter estimation step. Elaborate numerical algorithms for this task have 

been developed. 

There has been some work [49] on performing CSI with fuzzy values and 

models, aimed at handling cases where the available information is incomplete. 

QSI's input is a set of QSIM behaviors of the system to be identified, and 

its output is a QSIM-style QDE describing the system. Apart from its ability to 

handle incomplete information, the adoption of the QSIM representation also 

has the advantage that QSI fits naturally to the "modeling" gap, discussed 

above, in the qualitative reasoning repertory. 

QSI does not cover the experiment design and execution stages of CSI: It 

starts with ready (qualitative) data about the behaviors. It treats input and 

output 3 parameters in the same manner, (actually, it has no distinction of 

them,) note that, in the QSIM representation, all parameters are "equal" in this 

sense. Various issues that arise about QSI's input will be discussed later. 

The QSI algorithm may be viewed as a way of finding better and better 

model structures, as will be explained shortly. QSI has the ability of postulating 

deep variables of the system, which are not visible in its input. The model 

testing stage is also a part of QSI, but the "testing" here has a different 

meaning than that of CSI: QSI tests its models to see whether they are "deep" 

enough; it does not need to test whether they really describe the input 

behaviors, because the models are created in such a way that they are provably 

correct, see Section 7.2. 

Although the qualitative representation itself is resilient to noise, 

qualitative noise filters, based on simple observations about the nature of noise, 

have also been designed for incorporation to QSI. 

QSI's relation to CSI is similar to those of other qualitative reasoning 

methods to their quantitative counterparts: The qualitative methods suppress 

3 In some applications, such as signal processing, CSI may be performed 
without any input (i.e. directly controllable) variables, as well. 
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irrelevant (or unknown) information, keep the qualitatively important 

distinctions, and arrive at useful results through much simpler computation. 

The actual algorithm that QSI uses to generate the models is 

fundamentally different than anything that CSI uses. This underlines the 

traditional difference of AI programs, which make symbolic computation, from 

"non-AI" programs, which perform numeric computation. QSI performs a 

search in the space of models; since the building blocks of the equation that 

describes the system are already known and are finite, (the "operands" are the 

parameters and the "operators" are the constraints,) a well-defined method of 

trying out all the combinations until the correct one is found can be developed. 

6.2. The QSI Algorithm 

This section includes a comprehensive presentation of the basic QSI algorithm; 

the requirements on the input, the syntaxes of input and output, examples, and 

detailed discussions of the algorithm's individual stages. 

6.2.1. Input and Output 

The input to QSI consists of one or more behaviors of the system to be identified, 

and the quantity spaces of the parameters seen in these behaviors. As 

mentioned before, it may be the case that only some of the parameters that 

would appear in a deep model of the system are easily observable, and therefore 

"at first sight," one may think that the system consists only of these 

parameters. For this reason, QSI allows the possibility that its input does not 

contain all the system parameters, and tries to find the deeper parameters by 

itself. On the other hand, the input should contain as many qualitatively 

distinct system behaviors as possible, if QSI is expected to find an appropriately 

deep model. 

Since a QSIM model that produces it will be looked for, the input should 

be generable by QSIM, i.e., there should be a QSIM input set (unknown, of 
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course, at this stage,) that would cause QSIM to produce it as output. This means 

that the input behaviors cannot be just any sequence of qualitative states: 

Definition 6.2.1. A behavior is T -I ega I if all the parameters in it obey the 

transition rules of Table 3.1.1 throughout the behavior. 

The QSIM transition rules embody all kinds of change that a continuous

valued quantity can undergo. Barring operating region changes, all quantities 

that are dealt with in this domain obey these rules. All "real" systems behave 

like this, (at least, at the commonsense scale in which one is viewing them.) All 

QSIM outputs which do not contain operating region changes are, by 

construction, T -legal. 

QSI requires that its input behaviors are T-Iegal, so in a single run, it 

should only be "shown" a single operating region of a system. In consecutive 

runs, by feeding QSI by the system behaviors at different operating regions, 

the QDEs of all the operating regions can be obtained. 

Apart from operating region changes, another source of T - i li ega I 

behaviors is the following: Suppose one is monitoring a system, as in Section 

3.2.6. Because of one's measurement intervals, one may "jump" over some states 

(especially time-point states) that appear in the actual qualitative behavior of 

the parameter being measured. This may lead to discontinuous changes in the 

"behavior" constructed as a result of the measurement. 

Actually, the constraint determination stage (Section 6.2.4) of QSI works 

equally well for T -illegal and T -legal behaviors, i.e., it finds all constraints 

valid on the parameters in the input behaviors, but the nature of the model 

depth test and extension stages requires the T -legality assumption, as will be 

seen. 

To represent some properties of behaviors that QSIM is able to indicate in 

its output, the QSI input marker symbols, EQU and CYC, are defined. These 

markers may appear after each input behavior. Their meanings are as follows: 

-EQU requires that in the last state of the behavior it precedes, all qualitative 

directions are s t d, and means that the system is quiescent from that time on. 

(This conclusion is heuristic, of course, see Section 3.1.2.) 
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-CYC requires that the last state of the behavior it precedes has appeared before 

III that behavior, and means that the rest of the behavior is cyclic. 

The landmarks discovered during simulation can be distinguished from 

the other ones in QSIM's output, and QSI also requires that such landmarks be 

specified in the input quantity spaces, by preceding their names by the string 

"d iscl m" (standing for "discovered landmark.") 

Note that none of these requirements about the input violates the 

"spirit" of system identification and let the algorithm know more than it is 

"allowed" to: Equilibrium and cyclic behavior are generally easily observable 

things, and a simple method of understanding which landmarks are discovered 

during the observed behavior is to designate all nonzero values at which the 

parameter becomes std for some time as that parameter's discovered landmarks 

III that behavior. 

Actually, 'QSI starts execution with much Ie s s information that it .is 

"entitled" to: It has no idea at all about w hat the parameters are; unit (or even, 

dimension) information on the parameters, which goes without saying in CSI, 

is nonexistent, and even the most natural invariant knowledge (like "amounts 

are never negative") cannot be used. The fact that QSI is still able to find the 

models, as will be demonstrated, shows the algorithm's potential strength. 

QSI's input may also contain an integer representing the maximum 

number of allowed iterations for the algorithm. When this item is absent, the 

number is assumed to be infinite. The allowable number of excess behaviors III 

depth testing is also an input item. (See Section 6.2.6 for explanations.) 

Finally, if he wishes, the user may include postulation and search mode 

selectors in the inrut; these specify certain restrictions on the model search 

that will be performed, and can be utilized for efficiency reasons, especially 

when additional information ("hints") about the sought model is available, as 

will be explained. 

QSI's output consists of one or more constraint sets, which are models of 

the system exhibiting the input behaviors. Each QDE in this sequence is deeper 

(Le. has more constraints and invisible parameters) than its predecessors, with 

the last one being an appropriate description of the system. 
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6.2.2. The Algorithm 

To avoid conceptual cluttering, the preprocessors, which are used for 

converting the possibly numerical input to qualitative form and qualitative 

noise filtering, will not be explained until a later section. This section will be 

devoted to the "core" of QSI, the basic algorithm which constructs system 

models from their behaviors. 

The algorithm (Figure 6.2.1) starts with a stage of constraint 

determination on the input behaviors. The QDE obtained as a result of this stage 

is tested to see whether it is appropriately deep or not. If it passes the test, the 

model has been found. Otherwise, the model (and, therefore, the behaviors,) are 

extended to contain new parameters, and constraint determination is made on 

this set, followed by a new test. This loop is exited when a "good" model is found. 

The model is enhanced by making use of dimension information inherent in 

the arithmetic constraints, and the algorithm terminates. Htie is the algorithm 

in a pseudo-high-Ievel language: 

BS := set of system behaviors from input 
perform Constraint Determination on BS, resulting in system QDE 

loop: print the QDE 
if the QDE passes the Depth Test 

then 
blockbegin 

impose Dimension Consistency on the QDE, resulting in final model 
print final model 
terminate 

blockend 
Depth Test not passed 

postulate new parameters; EBS := BS u [ the new parameter behaviors 
perform Constraint Determination on EBS, resulting in the extended 

system QDE 
BS := set of system behaviors involving parameters that appear in the QDE 
g{L,!Q loop 

The constraint determination stage finds all the constraints valid in the 

behaviors given to it, using a simple method. It considers all possible 

constraints on the given set of parameters, and controls each of them to see 

whether it holds throughout the sequence of input states. However, not every 

constraint found in this manner is included in the resulting QDE; only the 
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"useful" constraints that are not algebraic consequences of already existing 

ones are added to the model. 

constraint 
determination 

model depth test 

simulate 
ODE 

model extension 

parameter 
postulation 

constraint 
determination 

YES 
dimension 

consistency 

Figure 6.2.1. The QSI algorithm 

The model depth test stage uses a slightly modified version of the QSIM 

algorithm to make its decision. The QDE produced by the previous stage is 

simulated by QSIM for each distinct initial state appearing in QSI's input. The 

output of QSIM is then examined. Since the constraint determination stage 

performs correct system identification on its input, QSIM's output in this stage 

is bound to contain all of QSI's input behaviors. (This is proven in Section 7.2.) 

What is really checked in this stage of the algorithm is the number of QSIM 
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behaviors that do not appear in the QSI input. If these are above an 

"acceptable" level, (see discussion in Section 6.2.6) the QDE is deemed "loose," 

and model extension is performed. Otherwise, the QDE is accepted and the 

algorithm terminates after the dimension consistency stage. 

The model extension stage involves adding new variables into the 

equation of the system. These new parameters are obtained from the old ones; 

they are the derivatives, sums, squares, etc. of the old parameters. If 

interesting relationships which may tighten QSIM simulation in this extended 

set of parameters are found by constraint determination, the involved 

parameters are permanently added to the model; i.e. they are "discovered" by 

QSI. 

The dimension consistency stage converts the obtained model to a "real" 

one where the discovered relationships among the quantities still hold, but the 

simple dimension rules imposed by the constraints on their parameters (such 

as the ADD and MINUS constraints' requirement that their parameters have the 

same units) have been satisfied by the postulation of possible "buffer" 

parameters and M constraints. 

After an example which illustrates these concepts, each stage will be 

discussed in detail. 

6.2.3. An Example 

As an example to the operation of QSI, the U-tube (in operating region 

NORMAL) of Section 3.1 will be considered again. Since the QDE of this system 

has already been seen, one has an idea of what the underlying model is. Of 

course, QSI has no such information when it starts. Suppose that only the 

amount parameters appear in the input. (It is very likely that only these two 

would be recognized as parameters of this system after a "shallow" 

observation.) Two behaviors of this system are input: One of them starts with 

amount_A decreasing and amounCB zero and increasing; the other describes 

the opposite case. (To keep the example as simple as possible, the maximum 

capacity limits of the tanks are not considered at all. The algorithm would work 

equally correctly in the case where they are included, and the following 

discussion would still apply. The number of input behaviors would rise in that 

case, to cover the various ordinal relations that the amounts could have with 
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their maximum landmarks at the end of the behavior III this operating region.) 

So the input behaviors are as in Tables 6.2.1 and 6.2.2. 

TABLE 6.2.1. U-tube identification, input behavior #1 

amount A amount B time 
«0,00), dec> <0, inc> to 
«0, 00), dec> «0, 00), inc> (to ,t]) 
<disclmA, std> <disclmB, std> t] 

EQU 

TABLE 6.2.2. U-tube identification, input behavior #2 

amount A amount B time 
<0, inc> «0, 00), dec> to 
«0,00), inc> «0, 00), dec> (to ,t]) 
<disclmA, std> <disclmB, std> t] 

EQU 

The constraint determination stage tries out all constraints syntactically 

possible on amounCA and amouncB. For example, DERIV(amount_A, amouncB) 

is tried, but it fails in the very first state in the input, so it is discarded. The 

only constraint that is satisfied throughout the input is M-(amouncA, 

amount_B), so it forms the initial QDE on its own. 

Note that no such constraint appears in the U-tube model of Section 3.1.1. 

However, simple reflection about the system confirms that the amounts in the 

tanks are indeed inversely proportional in the operating region NORMAL. The 

human who wrote the QDE of Section 3.1.1. chose not to include the M-. (That 

model still adequately describes the system.) On the other hand, QSI, which is 

designed not to miss any significant constraints on the known parameters, has 

found it. (The "human" aspects of modeling vs. QSI will be discussed further in 

Section 8.1.) 

This single-constraint model is simulated in the depth-test stage from 

both initial states in the input. As expected, the model cannot pass the test; it is 

too shallow. The single constraint cannot represent the inner mechanism 

which causes the system to arrive at equilibrium. Among the behaviors 

generated by QSIM at this stage are those where one amount starts increasing 
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from zero, while the other one arrives at, and even goes below, zero. So a model 

extension is necessary. 

The model extension stage begins with the computation of the behaviors 

of the newly postulated parameters. (The extent of postulation can be modified. 

For certain problems, more efficient solutions with less postulation are 

possible; see Chapter 9 for a complete list of new behaviors for this example III 

full postulation mode.) Since the new parameters are linked by constraints to 

the old ones, whose values are already known, their values at each state can be 

calculated. Possible ambiguities are resolved using certain heuristics. (See 

Section 6.2.5.) For example, consider two new parameters, say, PX and PY, which 

are defined to be the time derivative of amouncA, and the sum of the two 

amounts, respectively. The defining constraints of these parameters are 

therefore 

DERIV(amouncA, PX) and ADD (amount_A, amounCB, PY). 

By the use of the heuristics, which basically say that "things change as 

infrequently as possible," the new parameter behaviors are calculated, and the 

system behaviors are augmented to include them, as shown in Table 6.2.3. 

Already, another important relationship has been discovered: The sum of the 

amounts is fixed, i.e. mass is conserved. 

TABLE 6.2.3. U-tube identification, behaviors of two of the postulated 

parameters 

System Behavior 

amount A amount B PX 
«0, 00), dec> <0, inc> « -oo,O),inc> 
«0,00), dec> «0, 00), inc> « -oo,O),inc> 

<disclmA, std> <disclmB, std> < 0, std> 
EQU 

S~litem Behavior 

amount A amount B PX 

<0, inc> «0, 00), dec> «0, 00), dec> 

«0,00), inc> «0, 00), dec> «0, 00), dec> 

<disclmA, std> <disclmB, std> < 0, std> 
EQU 

Quantity space of PY: {_oo, 0, nlm, oo} 

#1 

#2 

PY 
<nlm, std> 
<nlm, std> 
<nlm, std> 

PY 
<nlm, std> 
<nlm, std> 
<nlm, std> 

.... time 
to 
(to ,t1) 
t1 

time 
to 
(to ,t]) 
t1 
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Constraint determination on these larger behaviors is more involved. 

Parameters which appear in two or more constraints which do not 

algebraically imply each other are added to the model, and the constraints 

involving them are made part of the QDE. A lot of constraints which are implied 

by others are not even checked, which is good for efficiency. The QDE found 

after one iteration of model extension in derivative postulation/half search 

mode and fed to the depth· test module is presented in Table 6.2.4. The simulation 

of this model from the initial states predicts only the input behaviors, so an 

acceptable model has been obtained. 

TABLE 6.2.4. Constraints found III the U-tube identification 

CONSTRAINT 

M-(amount_A,amounCB) 
DERIV (amount_A,P 1) 
DERIV(amouncB,P2) 
ADD(amounCA,Pl,amounCB) 
ADD(amount~B,P2,amount_A) 

The ADD constraints in this model involve the addition of a quantity with 

its time derivative, which is arithmetically not legal. To legalize the situation, 

while keeping the valuable ADD relation, three buffer parameters for the 

arguments of each ADD are postulated. The buffer parameters are linked by M+ 

constraints to the ADD arguments, and each has the same quantity space 

structure as the corresponding ADD argument. The resulting model of the U

tube in operating region NORMAL is the one shown in Table 6.2.5, which is, 

although slightly different than the model of Section 3.1.1, a correct and deep 

description of the system. The newly postulated parameters are seen to 

correspond to the following actual quantities: 

PI: Flow into tank A 
P2: Flow into tank B 
P3, P8: Pressure at the bottom of tank A 
P5, P6: Pressure at the bottom of tank B 
P4: The pressure difference between tank B and tank A 
P7: The pressure difference between tank A and tank B 

The method's power of hinting 

demonstrated. (See Section 8.1 for 

meaningful, and an interpretation for 

at meaningful deep parameters is thus 

deep parameters which are not so 

them.) 



TABLE 6.2.5. Final U-tube model after identification 

CONSTRAINT CVs 

M-(amouncA,amount_B) 
DERIV (amount_A,P 1) 
DERIV(amouncB,P2) 
M+(amouncA,P3) 
M+(PI,P4) 
M+(amouncB,P5) 
ADD(P3,P4,P5) 
M+(amouncB,P6) 
M+(P2,P7) 
M+(amouncA,P8) 
ADD(P6,P7,P8) 

(0,0), (00,00), (-00, -00) 
(0,0), (00,00), (-00, -00) 
(0,0), (00,00), (-00, -00) 

(0,0), (00, 00), (-00, -00) 
(0,0), (00,00), (-00, -00) 
(0,0), (00,00), (-00, -00) 
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Various more detailed features and some problems will be discussed in 

further examples in the text. An in-depth discussion of each of the individual 

stages follows now. 

6.2.4. Constraint Determination 

The constraint determination process is summarized in the pseudo-high-Ievel 

language algorithm below. Remember that the input is a set of system 

behaviors, and the output is a set of constraints. In this sense, this stage is the 

part of QSI where system identification itself is performed, the others deal with 

improving the model in some way or another. 

for each constraint type CT do 
for each tuple ARG of parameters that can be arguments to CT do 

if existing constraints do not overrule CT(ARG) 
then 
if CT(ARG) is a consequence of existing constraints 
then 

write(CT(ARG» 
else 

blockbegin 
for each qualitative state in the input d.Q 

if CT(ARG) does not hold 
then 

break out and gQJQ. blockend 
{At this point, CT(ARG) is a novel constraint valid throughout the input} 
write(CT(ARG» 
add CT(ARG) to the QDE of the system 

blockend 
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In the algorithm above, an accumulation and control of possible CVs of 

the CT is also part of the check about whether it "holds" or not. When CT(ARG) 

is added to the QDE, any discovered CVs go with it. 

How many different qualitative constraints can be written on p 

parameters? There are six constraint types, and all of them have to be 

considered for every combination of parameters. 

M+ has to be checked on all pairs of parameters. However, since M+ is 

commutative, M+(Y,X) need not be checked if M+(X,Y) has already been 

checked. The same applies for M- and MINUS. (MINUS is a special case of M

anyway.) For each of these types, the number of constraints that will be 

checked is thus 

(6.1) 

DERIV is not commutative, so t\vice as many of those has to be considered 

as anyone of the above-discussed ones, that is: 

2.(i) =p2 - p (6.2) 

DERIV s will be checked. 

ADD and MULT are commutative, so that their first two arguments can be 

interchanged. (Not all "additive" or "multiplicative" relationships among the 

parameters are noticed at this stage: Note that any addition or multiplication of 

more than two operands can be expressed as a set of three-argument ADD or 

MUL T constraints as defined in Chapter 3. If one's initial set of parameters is 

{A,B,C,D} and the relationship A + B + C=D holds among these, the first 

constraint determination does not add the constraints representing this 

equation to the QDE, since an additional parameter is required to write them in 

the QSIM format: ADD(A,B,P), ADD(P,C,D). Such "cascades" of constraints are 

discovered later in the model extension stage; see Section 6.2.5.) The formula for 

the number of controls of ADD and MULT constraints on three different 

parameters is thus 

(P) p.(p-l).(p-2)_p3_3p2+2p 
3. 3 = 3. 6 - 2 (6.3 ) 
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since this is a matter of choosing three parameters, and deciding which of this 

will be third argument. 

Have all the possibilities been exhausted? There is still one more 

meaningful relationship which can exist between parameters, and which IS 

expressible in the present vocabulary. The parameter X can be the s qua r e of 

parameter Y, that is, MULT(Y,Y,X) may be valid. Since this is a noncommutative 

binary relationship like DERIY, the number of MULTs that will be tried in this 

manner is again p 2 - p. (The reader may note that there is also a "twice" 

relationship which can be expressed as ADD(Y, Y,X). Since this is qualitatively 

equivalent to M+(Y,X), and also not very common in practice, this combination 

is not checked.) 

The total number of possible constraints on p parameters is therefore 

the sum of the above, Le. 

(6.4) 

for p ~ 3, and only 7 for p =2. 

But the actual number of constraints that get checked against the input 

states is usually much less than that, since the semantics of the constraints can 

be used to decide on most of them without checking any values. Consider the 

following scenario: Constraint generation and testing has been going on for 

some time. The constraint M+(A,B) has been found to be valid. Now, the 

constraint MINUS(A,B) is considered. The algorithm can decide to skip this 

possibility immediately, since the MINUS has no hope of being satisfied, given 

the M+. 

The M constraints' defining properties can be used extensively to detect 

constraints which are logical consequences of already discovered constraints, 

as well. For example, if M+(A,B) and M+(B,C) are alrea~y known, there is no 

need to check M+(A,C) against the input behaviors; it is valid. There are 

interestingly many rules like this one; the ones QSI uses, together with their 

proofs, are listed in Chapter 7, which is about such "technical" issues. 

Consequence constraints like the one mentioned above, are written out, 

but not included in the QDE that is fed to QSIM for the model depth test. The 

reason for this is twofold: First, consequence constraints do not change 
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anything in the QSIM output if their antecedents are already in the input, (This 

is a result of their being consequences,) second, QSIM's time requirements are 

linear in the number of constraints, so their inclusion slows down execution 

considerably, without contributing anything. 

The consequence detection check, which has just been explained, speeds 

up the algorithm especially in later constraint determinations, made after 

model extension, when p is relatively great, and the number of values to be 

checked can be big. (See Sections 6.2.5 and 7.1.) 

6.2.5. Model Extension 

After constraint determination has been performed on a particular set of 

behaviors, no new constraints, other than those already found, can be written 

on the set of parameters appearing in these behaviors, since constraint 

determination is exhaustive. So if the model at hand is found to be too loose by 

the depth test stage (Section 6.2.6) and has to be extended by the addition of new 

constraints, one has to introduce new system parameters to the model, so that 

constraints involving them can be searched for. Since the set of behaviors is 

all that QSI knows about the system, it is used in the postulation of the new 

parameters. Each newly postulated parameter is a "neighbor" of an existing 

parameter. Two parameters are n e i g h b 0 r s if they appear in the same 

constraint. Parameter postulation is then seen to be composed of two steps: 

1) Postulation of a new constraint which links one or two "old" (i.e. known) 

parameters to a new one; this will be called the defining constraint of the new 

parameter, 

2) Calculation of the behavior of this parameter from its defining constraint 

and the values of its neighbors. 

Both of these steps give rise to important issueS, which will now be 

described. 

To make QSI search as wide an area of the "space" of models mentioned 

before as possible, virtually all neighbors of the known parameters have to be 

postulated. If some neighbors are left out,and the "real" equation describing 

the system contains them, one is faced with the possibility of failing to find a 
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good model. On the other hand, parameter postulation is an expensive process 

(Section 7.1) and a number of QSI problems, where the solution can be obtained 

efficiently with the postulation of only some neighbors, exist. (Examples to this 

are presented in Chapter 9.) Because of this, QSI has been made flexible about 

the extent of postulation, and can be run in anyone of a number of 

"postulation modes." The following analysis is about the full postufation mode, 

where, in response to the lack of any "hints" about the actual model,virtually 

all the neighbors are created, i.e. the worst case. 

Full postulation mode involves the generation of the following neighbors: 

-The derivative of every non-constant parameter 
-The sum and differences of every pair of parameters 
-The product and, if possible, ratios of every pair of parameters 
-The negative of every parameter 
-The square of every parameter 

As can be seen, all types of constraints, except the Ms, are utilized as 

.. defining constraints. The reason for the fact that not all syntactically possible 

neighbors are created will be clear when the second step of parameter 

postulation, that is, the behavior calculation procedure, is discussed. 

QSI decides that a parameter is constant when all its values are seen, or 

can be assumed, to have the direction std, and all its magnitudes are the same 

landmark. The discovery of such constants is desirable, since they greatly limit 

the proliferation of QSIM outputs, and are conceptually helpful in modeling, as 

will be further discussed. Derivatives of constants need, of course, not be 

postulated, since values fixed at zero can be eliminated from equations. (A 

"lonely" zero on one side of an equation can always be handled by using ADD 

and/or MINUS constraints.) 

Neighbors whose defining constraints are already in the QDE, (found by 

previous constraint determinations,) will also not be postulated. 

How many neighbors of p parameters are there? Assuming that none of 

the reducing conditions above apply, one has 

* p derivatives, 

* p negatives, 

* p squares, 

* (i) sums, 



* 2. ( ~ ) differences, 

* (~) products, and 

* 2.(~) ratios. 
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Therefore, the worst-case number for the full postulation mode is the sum 

of these, that is, 3p 2 new parameters will be created, provided all old 

parameters are nonzero throughout the input (which is unlikely.) If a 

parameter X does have the magnitude zero even once, no ratios of the form i 
(where Y is another old parameter) are postulated, so the above number is 

usually not reached. In cases where limited postulation is acceptable, for 

example, in the "derivative postulation mode," where only the derivatives of 

the existing parameters are created, the number of neighbors, and the time 

required, are of course accordingly less. 

To perform extended constraint determination on the new set of 

parametem, QSI must assign behaviors to each of the newly PN'tuJ ated 

parameters. The values of the old parameters at each state and the defining 

constraint are known, value sequences of the new parameter which satisfy 

both the constraint and the transition rules can be found. The problem is that, 

in most cases, there is an i nfi nit e number of legal behaviors that may be 

assigned to the new parameter. 

To see this, one behavior of the parameter amouncA from Section 6.2.3 

will be examined more closely. (Table 6.2.6.) If the derivative of amouncA, that 

is, PX. where DERIV(amouncA,PX), is being postulated, knowledge of the 

constraint alone yields the information III Table 6.2.7 about PX' s behavior in 

[to ,t 1]. It is also known that PX will have magnitude zero after t 1. 

TABLE 6.2.6. Behavior of amouncA 

amount A 
«0, 00), dec> 
«0, 00), dec> 
<disclmA, std> 

EQU 

time 
to 
(to ,t1) 
t1 

Knowledge of the transition rules lets one· conclude that PX's direction 

should be inc just before t], and it should be std at t] and after it. 
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TABLE 6.2.7. Behavior of PX in [to ,til 

PX time 
<A negative landmark or interval, ?> to 
<A negative landmark or interval, ?> (to ,t]) 
<I), ?> t] 

But this still leaves an infinite number of possibilities for the behavior of 

PX, the ones depicted in Tables 6.2.8 thru 6.2.10 being among them. There is 

nothing wrong about the "length" of the behavior in Table 6.2.10; remember 

that the number of states in a behavior is just a measure of the changes that 

occur, so by adding new parameters to a system, one always faces the possibility 

that the description of its behavior may get longer to reflect the changes in the 

new parameters. If PX indeed has that behavior, the behavior of the system 

with this parameter included will be as shown in Table 6.2.11, with the period 

designated [to ,t]] in the "PXless" fomi of the behavior now being described by 

five states from to to t2. 

TABLE 6.2.8. Possible behavior for PX 

PX time 
« -00, 0), inc> 
« -00, 0), inc> 
<0, std> 

EQU 

to 
(to ,t]) 
t] 

TABLE 6.2.9. Another possible behavior for PX 

PX time 
<lmi, std> 
<(lmi, 0), inc> 
<0, std> 

EQU 

to 
(to ,t]) 
t] 

Quantity space of PX: {-oo, lmi, 0, oo} 

All three behaviors of PX shown in these tables, and, actually, all the 

infinitely many qualitatively distinct behaviors where PX "wanders" III 

various ways in negative magnitudes before settling at zero, are physically 
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possible for the input of Table 6.2.1. The defining constraint's restrictions are 

simply unable to help one decide at one of them. ADD and MULT constraints are 

often faced with the same situation. 

TABLE 6.2.10. Yet another possible behavior for PX 

PX time 

<(lml,O), dec> 
<(lml, 0), dec> 
<Iml, std> 
< (1m 1 , 0), inc> 
<0, std> 

EQU 

to 
(to ,t]) 
t] 

(t] ,t2) 
t2 

Quantity space of PX: {-oo, Iml, 0, oo} 

TABLE 6.2.11. Possible system behavior for input of Table 

amount A a.P1oun! B PX time 
«0, 00), dec> <0, inc> <(lml, 0), dec> to 
«0, 00), dec> «0, 00), inc> < (1m 1 ,0), dec> (to,t]) 
«0, 00), dec> «0, 00), inc> <Iml, std> t] 
«0, 00), dec> «0, 00), inc> <(lml,O), inc> (t] ,(2) 
<disc/rnA, std> <disc/mE, std> <0, std> t2 

EQU 

6.2.1 

One might be tempted to design the algorithm to explore each 

qualitatively distinct possibility, as qualitative reasoners often do, but the 

previous discussion showing that there can be an infinite number of 

possibilities overrules that approach. One has to use rules of heuristic nature to 

assign the most "reasonable" of its possible behaviors to each new parameter. 

The heuristics that have been adopted after thorough experimentation 

are: 

"Prefer behaviors in which the qualitative direction' changes the fewest 
times. " 

and 

"If the parameter can be constant (i.e. std throughout at the same landmark) 
prefer that behavior and designate the parameter as constant." 
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These rules have many desirable features. They are easy to implement. 

They correspond to commonsense and scientific intuition in more than one 

way. When there are many alternative explanations for a given event, the most 

reasonable thing to do is to choose the simplest. It is simpler to assume that 

something ("thing" meaning derivatives as well as values) is not changing, 

when one does not know whether it is changing or not4 . 

The more times the direction of a parameter changes, the stronger is the 

suggestion that the derivative of that parameter is driven by an even deeper 

mechanism, leading to a presumably unnecessarily complicated model. 

Especially constant parameters are important in QSIM models, and contribute to 

the production of smaller trees. (See the examples in Chapters 4 and 5.) They 

also usually correspond to important "natural" quantities. The impressive 

number of examples in which they actually work is another important factor 

III the justification of the heuristics . 

. QSI does the following when postulating a new parameter: It determines 

the shortest length that the new parameter's behavior can have, (short 

behaviors can contain fewer changes than longer ones, by definition) and 

produces all behaviors of that length that the parameter can exhibit, obeying 

the defining constraint and T-Iegality. The heuristics are then employed to 

choose one of these behaviors and assign it to the parameter. If two or more 

behaviors are indicated to be equally preferable by the heuristics, one is 

picked randomly. Since sys te m behaviors are the input of constraint 

determination, the input behaviors are lengthened if necessary (i.e. if the new 

parameters require more values in their behaviors) as well as being "widened" 

by the behaviors of the new parameters. For more details of the behavior 

calculation process, see the discussion in Chapter 9. 

In the U-tube example, application of the heuristics results in the 

behavior of Table 6.2.8 being selected for the derivative of amouncA, the 

enlarged system behaviors in this case would indeed look like those in Table 

6.2.3. 

It now becomes clear why it was decided not to postulate, for example, the 

parameter IX, with the defining constraint DERIV(IX,X) from any old parameter 

4 Note the parallels to Newton's first law and de Kleer and Brown's canonicality 
heuristics (Section 2.2.2.) 
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X, or the square roots of existing (necessarily nonnegative) parameters. In the 

former case, absolutely nothing about the new parameter's magnitude is 

known, while in the latter case, there are generally two alternative 

possibilities for the new parameter's values, and no hint about which one to 

choose. The procedure described above can be applied to find behaviors for 

such neighbors just as easily, but it will always come to a random selection, 

with no particularly good reason that the behavior selected is the most sensible 

one. 

The "bigger" behaviors obtained as a result of parameter postulation 

have a tentative nature. Not all of the neighbors of the input parameters have 

to be important parts of the model, therefore their permanent addition into the 

system description is deferred until they are seen to be "significant" in some 

manner. QSI's criterion for significance of a model component is the following: 

Its addition to a QSIM input should contribute to the elimination of some 

additional behaviors. This is reasonable, since the whole aim of the model 

extension stage is to eliminate as many behaviors that do not appear in the 

input of QSI as possible from the output of QSIM. Immediately after behavior 

calculation, only the defining constraints of new parameters which are seen to 

be constant throughout their behaviors are permanently added to the system 

QDE, with invariant information indicating their fixedness being included in 

the QSIM input set. Fixed parameters are significant by the above criterion, 

since they eliminate two transitions at each point state. (See Table 3.1.1.) 

The constraint determination procedure is called to find the significant 

constraints on the new and wider set of system behaviors. For efficiency 

reasons, the number of tuples that get considered in this process can be 

modified by specifying one of various "search modes," similar to the already 

mentioned postulation modes, in the input. Full search· mode tries all 

combinations, just as initial constraint determination does when acting on the 

original input. Half search mode requires at least one old parameter t<;> appear 

in each considered tuple. 

As mentioned above, constraint determination at this point also involves 

an insignificance check, which is similar to the consequence detection check. 

Not every constraint that holds on the behaviors is included in the QDE. 

Insignificant constraints are the ones that can be proven to hold without being 

tested on all the states, using present information. Defining constraints by 

themselves have this property; the computer "knows" that they hold. because it 
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postulated them, and then calculated the new parameter values so that they 

hold. Constraints of the form ADD(X,Y,Z), where Z is any parameter, and 

MINUS(X,Y) is asserted or can be derived, are also insignificant. Since the 

qualitative addition of values of opposing sign is ambiguous, such constraints 

can be satisfied for lots ofZs, without reflecting any actual relationship; their 

generation is just a by-product of QSI's policy of testing every combination. 

Significant constraints found by this stage will generally contribute to 

the elimination of QSIM behaviors, since the old parameters in them now have 

to satisfy more constraints. This usually implies a smaller number of 

transitions, and therefore, less behaviors. (See proof in Section 7.2.) 

When a significant constraint is found, it, and the defining constraint(s) 

of the new parameter(s) appearing in it are added to the QDE permanently, and 

the new parameters' behaviors are permanently "pasted" to the system's input 

behaviors. Postulated parameters and their behaviors which are still out of the 

permanent model at the end of constraint determination are dropped, and the 

extended model, (now with a greater number of "old" parameters,) is again fed 

to the· model depth test stage, to see whether it will produce only the input 

behaviors or not. 

If no significant additions can be made to the model by this stage, the 

derivatives of all parameters are appended all the same, in the hope of finding 

a better QDE in a later iteration. 

Model Depth Testing 

The model extension procedure is a well-defined way of deepening models by 

adding (presumahly) directly unobservable but important entities and 

relationships. Whether the new version of the model is satisfactory for 

simulation modeling purposes or not is determined by the model depth test 

stage. It must be emphasized that the purpose is to obtain a model which 
, 

produces all, and only, the input behaviors. That the QSI-produced models yield 

all the input behaviors is guaranteed. (See proof in Section 7.2.) To make them 

produce as few of other behaviors as possible, the obvious thing to do is to add 

more constraints to them. To check the intermediate models to see whether they 

meet the requirements, the obvious approach is to simulate them using QSIM. 
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The model depth test stage starts by preparing the QSIM inputs necessary 

for the simulation. The QDE is already formed by the previous constraint 

determinations. Recall that QSI assumes that its input originates in a single 

operating region. Initial quantity spaces are prepared by stripping the 

discovered landmarks from QSI's input, and the quantity spaces of postulated 

parameters (if any.) Invariant information, specifying which parameters are 

constant, is discovered earlier, as discussed, and incorporated here. Each 

different initial state that appears in the input of QSI is entered into QSIM's 

input separately; QSIM will run from each of them. 

Pure QSIM creates (at least, tries to create) the complete state tree for each 

initial state. In this application, one only wants to see that the model predicts 

the given behaviors correctly, so one only needs simulate for the length of 

these behaviors. Levels of the tree corresponding to events occurring after the 

end of the input behaviors are not created. (This level limiting feature was 

first mentioned in Section 4.1.1.) 

Since QSIM can predict spurious behaviors, and one has no way of 

knowing whether spurious predictions will appear (or even, have appeared) III 

a particular simulation or not, the ideal aim of finding a model which will 

generate only the input behaviors is not generally reachable. So the model 

depth test stage must not strictly require that the number of QSIM outputs and 

QSI inputs be equal; an "acceptable" number of "excess" output behaviors have 

to be allowed. In view of the fact that this number changes widely from 

problem to problem, it has been decided to let the user specify it in the input. If 

no allowable excess number is specified, it is set to zero. 

A shortcut is possible during the simulation. If the number of pre~icted 

behaviors exceed the allowed limit before the generation of the state tree 

arrives the specified level, simulation is cut off, and the current model is 

deemed unsatisfactory. This method is very easy to implement in the very first 

model testing, just after the initial constraint determination. One can always 

find the minimum number of behaviors implied by an incomplete state tree by 

simply counting its present leafs. In further iterations things are complicated 

by the fact that postulated parameters may cause a proliferation of system 

behaviors. In the following example, assume that X and Yare input (old) 

parameters, and Z is a new parameter with defining constraint ADD(X,Z, Y). 

(Obviously, these would normally be part of a bigger, meaningful system. 
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Attention is focused on this part of it, for the sake of the discussion.) Suppose 

that X and Y's input behavior is as in Table 6.2.12. 

TABLE 6.2.12. Input behavior of X-Y system 

X Y 
«0, (0), inc> «0, (0), dec> 
«0, (0), inc> «0, (0), dec> 
<disclmX, std> <disclmY, std> 

EQU 

In the model depth test stage, the parameters have the initial values 

X=«O, (0), inc>, 

Y=«O, (0), dec>, 

Z=«O, 00), dec>, 

and QSIM creates the behaviors in Table 6.2.13, which differ only in the final 

magnitude of Z, for the X-Y-Z system. 

TABLE 6.2.13. Behaviors of X-Y-Z 

x 
«0, (0), inc> 
«0, 00), inc> 
<newX, std> 

system 

Y 
«0, (0), dec> 
«0, (0), dec> 
<newY, std> 

EQU 

Z 
«0, 00), dec> 
«0, 00), dec> 
<newZ, std> 

Quantity space of Z: {-oo, 0, newZ, oo} 

x 
«0, 00), inc> 
«0, (0), inc> 
<newX, std> 

x 
«0,00), inc> 
«0,00), inc> 
«0, (0), inc> 
«0,00), inc> 
<newX, std> 

Y 
«0,00), dec> 
«0, (0), dec> 
<newY, std> 

EQU 

Y 
«0, 00), dec> 
«0, 00), dec> 
«0, 00), dec> 
«0, 00), dec> 
<newY, std> 

EQU 

Z 
«0,00), dec> 
«0, 00), dec> 
<0, std> 

Z 
«0, 00), dec> 
«0,00), dec> 
<0, dec> 
«-00, 0), dec> 
<newZ2, std> 

Quantity space of Z: {-oo, newZ2, 0, oo} 
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Should the model test fail, since three behaviors were obtained when one 

was wanted? Clearly not, because a closer examination of the QSIM output shows 

that it actually contains only the single input behavior, when one restricts 

attention to the parameters in the input. So the current model in this example 

(whatever it is) is acceptable. 

If a subsystem is defined to be a subset of the set of parameters, the 

specification, of the model depth test stage may be worded as follows: The model 

will be labeled satisfactory if the number of the input subsystem's behaviors in 

the QSIM output is acceptably close to the number of QSI input behaviors. The 

simulation cutoff mechanism should check this number, and the level limiting 

mechanism should keep the "elasticity" of the behaviors in mind when making 

its decision. 

Note that the above-mentioned features mean that this stage will 

generally take less time than a similar number of pure QSIM simulations with 

the same input model would require. 

If the "QDE" to be tested is empty, then model testing automatically fails 

without any simulation performed; model extension is clearly necessary. This 

trivial case may occur only immediately after initial constraint determination. 

If any non-constant parameter which appears in the input is missing from all 

of the constraints in the QDE, the depth test again fails without simulation, 

since an unconstrained parameter would lead to an infinite simulation. (For 

examples, see Chapter 9.) 

Model testing is automatically satisfied if the number of iterations has 

exceeded the specification in the input. This guarantees that the algorithm 

terminates even for pathologically unrelated parameters in the inpur. 

6.2.7. Dimension Consistency 

The final stage of QSI is a procedure of model rationalization, where the 

previously discovered relations are made to fit into arithmetically sensible 

constraints. QSI is totally ignorant about the nature of the input quantities in 

the beginning. But when the constraints are found, simple rules of 

mathematics imply certain relations among the dimensions of the parameters 
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in the constraints. If these relations are contradictory, the model can be 

rationalized by the use of buffer M+ constraints and parameters. 

If a DERIV(X,Y) exists, for example, this implies that X and Y's dimensions 

are not the same, (Y has X's dimension divided by time) so they can not appear 

in additive constraints together, since ADD and MINUS obviously require all 

their arguments to have the same dimensions. So if, for instance, ADD(X,Y,Z) 

also appears in the QDE, it is not acceptable, and is removed from the model. But 

one does not want to lose the addition relation whose existence in the system 

has been discovered. Therefore, the M+ constraint type, which can be viewed as 

a "dimension converter," is used. Three new (buffer) parameters B I, B2, and B3, 

whose quantity space structures are identical to those of X, y, and Z, are added 

to the model, together with the constraints M+(X,B I), M+(Y,B2), and M+(Z,B3), 

which have CVs linking each of BI, B2 and B3's landmarks to (respectively) X, Y 

and Z's landmarks. Since B I, B2 and B3 will have exactly the same behaviors as 

X, Y and Z, the constraint discovered among X.. Y and Z will exist between them 

too, so ADD(B I,B2,B3) is also added. One now has the same model, (from a 

simulation point of view,) but without the inconsistency. 

The actual mechanism of this stage is a little more complicated than the 

one just described, since some inconsistencies can be discovered only by 

considering (possibly long) chains of constraints. Suppose, in the above case, 

one did not have DERIV(X, Y), but the two constraints DERIV(X,P) and 

DERIV(P,Y). Understanding that something is wrong with ADD(X,Y,Z) would 

then require traveling along this chain of DERIVs. As another facet of the 

dimension consistency imposing problem, consider that the arithmetic 

constraints may form such chains too. Suppose one has 

DERIV(A,E), 

ADD(A,B,C), 

ADD(C,D,E). 

The fact that ADDs and MINUSes which share parameters in this manner form 

equivalence classes of parameters of the same dimension has to be recognized 

and handled by the buffering algorithm. 

Since dimension consistency always applies in the real world, the buffer 

parameters and constraints created in this stage usually hint at actual deep 

model components, as the example of Section 6.2.3 showed. As extra constraints 
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which do not contribute to any behavior pruning, the buffer M+s would 

certainly slow down a QSIM simulation of the model, but this is not a problem, 

since QSI does not make any simulation after their creation. 

The interpretation of what QSI's output actually means is quite involved, 

and will be the subject of a later section. 

6.3. Noise Filtering 

Depending on the specifics of the application, two preprocessors may be 

involved in the preparation of the QSI input. If the robot is obtaining the 

knowledge about the behavior of the system from actual numerical 

measurements, what it originally has is a group of parallel sequences of visible 

parameter values; with a real number for each parameter value at each 

discrete point of measurement. This (possibly long) input can be converted to a 

(usually much shorter) qualitative behavior by a preprocessor. Whole 

sequences of measurement points in which each parameter value changes in 

only one direction are collapsed to single qualitative states. This operation can 

be accomplished in time linear III the number of measurements. Each 

qualitative behavior in the input is obtained by a separate run of this simple 

algorithm. Other qualitative reasoners which have to perform this quantitative 

to qualitative behavior conversion (e.g. for tracking monitored systems) also 

employ similar methods. For a detailed (and much more advanced) discussion of 

the issues about this conversion, see [50]. 

QSI's input has to be a correct description of the system's behaviors if it is 

expected to perform successfully. If the input is stemming from measurements 

of the real world, it may be corrupted by noise. No is e 'will be defined as the 

differences between the measurements and the actual parameter values, caused 

by any conceivable reason. Note that the qualitative representation is 

particularly suitable (in fact, it was designed) for abstracting away 

unimportant value fluctuations. Therefore, the noise may well have been 

eliminated if the input has been prepared by a human, maybe even 

inadvertently. In some cases, noise has no effect on the qualitative description. 



102 

Consider a parameter increasing in (0 ,00), with no known positive landmarks. 

The measurement of this parameter is being continuously corrupted by noise 

so that, at each reading, say, five units more than the actual value is presented. 

The resulting qualitative behavior will again contain the value «0,00), inc> for 

this parameter, and the noise will have been "in vain." 

Despite these resilient features of the representation, a qualitative noise 

filter has been developed. The filter is aimed at individual parameters, specified 

in its input. (Because of the particular configuration of the experiment, it may 

be the case that only some parameters are subject to noise, and others are not.) 

If QSI (without running this preprocessor) fails to find a good model within the 

allowed iteration limit, this can lead one to suspect the existence of noise. 

Possibly noisy parameters can be identified as the ones with an unusually great 

number of distinguished time-points in their behaviors. 

The filter's input is the set of system behaviors, its desired sensitivity (see 

below,) rnd the names of parameters to be filtered. Its output is a short'.;r (less 

noisy) set of system behaviors, and smaller quantity spaces for the filtered 

parameters. The following is an explanation of its working. 

Many kinds of noise exist, but attention in this study will be restricted to 

white noise, which can be modeled as a sequence of independent and 

identically distributed random variables of zero mean. It is also assumed that, 

when it exists at all, the variance of the noise is not very big, so it causes the 

measurements to read values "slightly" greater or less than they normally 

would, with equal probability. For example, if the plot of the magnitude of 

parameter X is "really" as shown in Figure 6.3.1, one intuitively expects its 

noisy version to be as in Figure 6.3.2. By the same reasoning, if one sees Figure 

6.3.2 and is told that noise is present, then one would propose something like 

Figure 6.3.1 as the noiseless (filtered) version. This is the qualitative analog of 

the convolution technique, used in, for example, the early processing phase of 

the vision process [2], to "smooth" the lines that will be obtained. As with all 

filters, there is an inherent tradeoff involved in this technique: If you go too 

far with the smoothing, real features of the behavior may get wiped out too, if 

you are too cautious to avoid this, however, you run the risk of leaving actual 

noise unfiltered. There is no perfect solution to this problem, and this kind of 

noise filters are "heuristic" by their nature. 
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x 

t 

Figure 6.3.1. Actual behavior of X 

x 

t 

Figure 6.3.2. Noisy behavior of X 

The implementation of the qualitative noise filter is quite different from 

its quantitative analog. This IS to be expected, since the qualitative noise filter 

takes qualitative behaviors as input, and the averaging process of convolution 

cannot be applied in this format, since there are no ordinary "numbers" to be 

averaged. The qualitative filter again uses the ordinal relationships among 

landmarks to achieve its aim. 

An examination of Figure 6.3.2 reveals the undesirable features of the 

noisy behavior, in addition to its being incorrect. A huge number of landmarks 

have to be kept in its quantity space to describe this behavior. Note that Figure 

6.3.1 requires only two landmarks outside the basic set. The noise landmarks 

cause the behavior to have an unacceptably great number of distinguished 

time-points and states. Even worse, they decrease the intelligibility of the 

behavior and make it lose the advantages of qualitativeness. 
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A sequence of values in which the parameter's direction starts as inc (or 

dec) in the first one or more values, becomes std once, and then is dec (or 

inc) for one or more steps is called a tooth, because of the way it looks in a plot 

of the parameter, like Figure 6.3.2. The basic idea of the filter is to replace long 

sequences of teeth during which there is a general increasing (or decreasing) 

of magnitude with single values with direction inc (or dec.) 

The sensitivity of the filter is an integer specifying a lower limit for the 

length of tooth sequences to be smoothed. After all, the behavior of Figure 6.3.1 

is a (short) sequence of teeth itself, and one does not want such things to be 

smoothed. 

A tooth sequence to be filtered in a given parameter behavior IS 

determined as follows: Sequences (as long as possible) of values where a ziczac 

of directions (like {inc ... , std, dec ... , std, inc... }, where the ellipsis ( ... ) means 

"zero or more 01 the preceding,") exists are identified. Filtering can be 

accomplished if: a) The number of stds are above the filter's sensitivity, b) The 

parameter never has the value <1m, std> outside this sequence for any landmark 

I m for which it has such a value in this sequence, c) The value <0, std> does not 

appear in the sequence, and d) The odd-numbered (Le. 1st , 3rd , 5th , ... ) 

landmarks on which the parameter becomes s t d in this sequence are in 

increasing (decreasing) order, and the same applies for the even-numbered 

landmarks. 

If all these conditions hold, this sequence of values is replaced by the 

value <Mag, Dir> where Mag is the interval in the quantity space of the 

parameter which is formed after deleting all the landmarks on which it became 

s t d during the sequence, and Dir is the direction of the ordering determined in 

condition (d) above. 

Conditions (b) and (c) are required to prevent the filter from destroying 

useful landmarks by mistaking them for products of noise. 

Condition (d) is the check for the "general increasing (or decreasing) of 

magnitude" mentioned before. 

Here is an example showing how a noisy sequence is smoothed by the 

fil ter. 



«B 1,B2),inc> 
<B2,inc> 
«B2,Tl),inc> 
<Tl,stci> 
«B2,Tl),dec> 
<B2,stci> 
«B2,Tl),inc> 
<Tl,inc> 
«Tl,B3),inc> 
<B3,inc> 
«B3,T2),inc> 
<T2,stci> 
«B3,T2),dec> 
<B3,stci> 
«B3,T2),inc> 
<T2,inc> 
«T2,T3),inc> 

--------> 
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«Bl,T3),inc> 

The system behaviors have to .be renewed after parameter filterings are 

complete. Since successful filtering shortens parameter behaviors, i.e. reduces 

the number of the parameter's distinguished time-points, the system composed 

of these parameters will have much shorter behav).ors, too. This reduction in 

the size of the QSI input (keeping in mind that the quantity spaces are also 

smaller now) is naturally an improvement from the point of view of the time 

requirement. (See Chapter 7.) 

Noise filtering of a single parameter can be accomplished in a single 

pass, i.e. linear time. The same applies for the global behavior shortening. 
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VII. COMPLEXITY AND CORRECTNESS ANALYSIS OF QSI 

This and the following two chapters will focus on various aspects of the QSI 

algorithm presented in Chapter 6. Section 7.1 examines the time complexity 

issue, while formal derivations of various claims made without proof in Section 

6.2 will be presented in Section 7.2. The final section contains the rules that QSI 

uses in order to detect consequence and insignificant constraints 

6.2.5 and 6.2.6,) together with their proofs. 

7.1. Complexity 

(Sections 

The computational complexity of QSI will now be determined stage by stage. 

Most of the required analysis has already been done in the Section 6.2. In the 

following, SO is the number of states in the input, PO is the number of input 

parameters, Si and Pi are these numbers in the i th iteration. 

7.1.1. Analysis 

Constraint Determination 

Since worst-case complexity is being considered, assume none of the conditions 

(Section 6.2.4) which let the algorithm skip testing a constraint are fulfilled. 

Also assume that each constraint is satisfied for the first S i-I states, so no 

shortcut is obtained. The constraint determination after the i th iteration then 

requires O(Pl s7) time for large Pi· In further iterations, Pi, and, generally, Si 

will increase. Always, Si+l = O(Si), since all new parameter behaviors can be 

expressed simply by replacing (in the worst case) each interval state III the 
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system behavior by three-state sequences of interval-point-interval states. If 

constraint determination has to be perfonned for a second time, and if full 

postulation mode is active, PI, the total number of parameters on which the 

algorithm will work, will be O(p B), so the second determination will take 

O(P~s7;) time. Experience shows that only a small fraction of the new 

parameters are actually added to the model after determination (especially in 

half-search mode,) so Pi+l = O(Pi) for i ~ 1, and constraint determinations III 

later iterations also require O(pg s~) time. If one considers a (very) pathological 

case in which a II neighbors get added to the model at each iteration, this 
3 6 12 24 . 

stage's time requirement would be on the order of PO, PO, PO ,PO , etc. III 

successi ve iterations, i.e. it would 

number. 

Model Depth Testing 

be exponential in the current iteration 

Again assuming that no shortcuts are possible,. this stage consists of a number 

of QSIM runs with level limiting. QSIM's worst-case complexity is exponential 

in the number of parameters. As mentioned above, the number of QSIM input 

parameters is usually linear in the QSI input parameters, but the worst-case 

analysis about the parameter number stated in the above paragraph still 

stands. Note that this stage is exponential in s, because of QSIM's nature. 

Model Extension 

The points made above about the growing number of parameters apply here, 

too. The time requirement is linear in the number of postulated parameters, 
2 I 11' . b . 2 4 8 which is O(p 0) in normal y a IteratIons, ut can rIse as PO, PO, PO,... in the 

worst case. Note that this problem can only occur in postulation modes which 

involve sums, differences, products, or ratios, since only the numbers of these 

kinds of neighbors involve squared tenns. In all other postulation modes, the 

number of neighbors is linear in the number of the old parameters, so the 

"explosion" does not occur even if all the new parameters are added to the 

model, which is itself a very rare situation. 

The behavior calculation procedure, which is performed for every 

parameter that is postulated, is generally linear in the number of states, (note 

that the quantitative version of this task is linear in the length of the input,) 

but unfortunately, the fact that one calculates all possible behaviors of the 
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minimum length and the ambiguity of qualitative arithmetic mean that 

pathological cases (involving ADD or MULT as the defining constraint) in 

which the time requirement is exponential in s can occur. Consider the two 

parameters X and Y, which have the following values throughout the (long) 

system behavior: 

X=«O, 00), inc> 

Y=«-oo, 0), dec> 

Now consider the new parameter Z, whose defining constraint is ADD(X,Y,Z). 

Clearly, Z can have any value at any time, only restricted by T-Iegality. To see 

that the calculation of all of Z' s behaviors is exponential in s, note that this 

procedure is equivalent to the production of several trees whose depths are 

equal to s. Each possible value that Z may take at to is a root. Each transition 

that it may undergo is a link between nodes. 

The application of the behavior selection heuristics is linear in both s 

and the number of alternative behaviors, which can be exponential in s, by the 

reasoning of the above paragraph. This is another factor which suggests the 

use of specific postulation modes for greatly improved efficiency. 

The complexity of constraint determination, which is also part of the 

model extension stage, was discussed earlier. 

Dimension Consistency 

The last stage of QSI is also the fastest. Since it simply involves scanning the 

constraints in the QDE to find dimension relations among the parameters, it can 

be completed in time polynomial in Ci, the current number of constraints. Note 

that Ci itself is linear in the current number of parameters in the model. 

7.1.2. Remarks 

The "good news" about the complexity of QSI is that most of the analysis just 

performed entailed very pessimistic assumptions. In practice, the consequence 

and insignificance detection checks omit a lot of constraints III constraint 

determination. Constraints that do get checked against states are usually "shot 

down" very early in this process. Full postulation mode is not necessary for a 



109 

wide class of problems, similarly for full search mode. A lot of problems have 

been solved elegantly using the derivative postulation mode, see Chapter 9. PO 

and SO are usually quite small, so the grim expectations suggested by the 

determined time requirements are not realized. The input sizes generally used 

in this text are typical in the qualitative reasoning literature; also keep in mind 

the basic assumption that QSI "sees" only some of the system parameters, which 

reduces the number of parameters in its input compared to other reasoners. If 

the algorithm will be used to find QDEs for individual model fragments, as 

currently envisioned, the input sizes will rarely tum out to be problematically 

big. As explained in Sections 3.1.3 and 3.2, active research is going on [1] to 

improve QSIM's performance on medium and large-scale systems. The results of 

such research will certainly be useful for QSI as well, since it uses QSIM as a 

subroutine. 

Although clearly very high when compared to algorithms dealing with 

simpler forms of data processing, the complexity of QSI is similar to those of 

other qualitative reasoners, and is quite acceptable, considering the nature of 

the task performed. For an idea about the actual performance, see Table 7.1.1, 

which lists the execution times of some of the problems in Chapter 9 in the 

current PC implementation (Appendix A.) The section numbers indicate where 

each problem has been presented. Details can be found in Chapter 9. 

TABLE 7.1.1. Execution times of QSI case runs 

* number of number of number of number of number of execution Problem 
states in parameters model constraints constraints time (s) 
input in input extensions in final in final 

QSIM input model 

U-tube 6 2 1 7 11 3.25 

9.1.2 3 1 1 5 9 1.18 

9.1.3 3 2 1 3 6 0.72 

9.1.4 4 2 1 17 41 42.51 

9.1.5 5 3 1 6 13 19.14 

9.1.6 5 1 2 2 2 1.01 

*The derivative postulation and half search modes have been selected in all of the above. 
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7.2. Correctness 

The discussion will begin with the "heart" of the QSI process, namely, the 

constraint determination algorithm. The following assumes that full search 

mode has been selected in the input. 

Definition 7.2.1. A constraint is significant if: a) it cannot be proven using 

already known constraints as axioms, and b) it is not of the form ADD(A,B,C) 

where MINUS (A ,B) is already known. 

The reasons for such a distinction between constraints were already discussed; 

the formal definition is given here so that it can be invoked in the following 

propositions. 

Proposition 7.2.1. All significant constraints valid in the behaviors that 

constraint determination obtains as input appear in its output. 

Proof. Assume for the moment that the contradiction, consequence and 

insignificance checks are absent, and one has a "pure" constraint 

determination algorithm, as seen below. The proposition will first be proven 

for this algorithm. (Note that the omitted checks were there to improve the 

efficiency. They will later be incorporated again to show that the proof stands.) 

for each constraint type CT d..Q 
for each tuple ARG of parameters that can be arguments to CT do 
blockbegin 

for each qualitative state in the input do 
if CT(ARG) does not hold 
then 
break out and gQJQ. blockend 

{At this point, CT(ARG) is a novel constraint valid throughout the input} 
write(CT(ARG)) 
add CT(ARG) to the QDE of the system 

blockend 

Assume that the above algorithm has terminated without a constraint C 

that is valid throughout the input being written out. C must have been 
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generated at the "top" of the algorithm by the for statements, since all possible 

constraints are generated there (by construction.) This means that the check 

in ~he innermost for failed, that is, there is an input state in which C does not 

hold. But this contradicts the assumption that C is valid in the input, so pure 

constraint determination has been proven to find all valid constraints. 

The consequence and insignificance checks result in certain constraints 

being written out without being tested; therefore their inclusion cannot cause 

any valid constraints to be missed. 

The contradiction check causes constraints rendered impossible by 

present information to be skipped. The rules that may be used are: 

M+(A,B) --- --> MINUS (A,B) is impossible. 

M+(A,B) -----> M-(A,B) is impossible. 

MINUS(A,B) -----> M+(A,B) IS impossible. 

M-(A,B) -----> M+(A,B) is impossible. 

NOT(M -(A,B» -----> MINUS (A,B) is impossible. 

These are easily seen to hold, except in the case where both A and Bare 

fixed, which makes it possible for both M+(A,B) and M-(A,B) to be trivially 

satisfied at the same time. However, the special treatment given to fixed 

parameters by the algorithm means such constraints will not be necessary for 

simulation, and it is not sensible to talk about such relations between constants 

anyway. So the contradiction check will eliminate no significant and valid 

constraints, and the proof is complete. 

Proposition 7.2.2. No constraint that is not valid throughout the constraint 

determination stage's input appears in its output. 

Proof. Consider the "pure" constraint determination algorithm again. For any 

constraint C to be written out, the innermost for statement has to be completed; 

that is, C has to hold in each input state. Therefore, the proposition holds for 

the pure version. 

The contradiction check does not change the output, in particular, it does 

not add anything to it, (see discussion above,) so the proof stands. 

Insignificant constraints which do not satisfy the requirement of 

Definition 7.2.l(b) are not written out by the algorithm. All other constraints 
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which satisfy the consequence or insignificance tests are valid; see discussion 

in Sections 6.2.4, 6.2.5 and proofs in Section 7.3. This means the incorporation of 

the checks does not cause the inclusion of any invalid constraint in the output; 

the proof is complete. 

The previous two propositions can be combined to form the following 

statement of the correctness of the constraint determination procedure: 

Proposition 7.2.3. The constraint determination stage finds all, and only, the 

valid constraints that hold among the parameters in its input. 

Although there is already strong intuitive evidence for it, the fact that 

QSI really achieves correct system identification, i.e. the QDEs that it finds 

really produce the input behaviors when simulated, will now be formally 

established. It is first shown that there is an (admittedly easy) solution to any 

system identification problem. 

Proposition 7.2.4. For any T-Iegal behavior, a constraint set which will 

produce it when simulated from its initial state can be found. 

Proof. The empty set (0) has this property for any T-Iegal behavior. When 

started by the initial state of the behavior, QSIM will produce an infinite tree, 

each branch of which corresponds to a qualitatively distinct account of the 

manner the parameters change value, constrained only by continuity. (Part 

of) one of the branches will be the given behavior. 

Of course, this is the trivial case. One is really interested in bigger constraint 

sets. Note that, by the same reasoning as above, a "model" can be found, given 

any number of behaviors of a system. One should also point out that, given 

QSI's lack of knowledge of where its input comes from, there is always the 

possibility that the "parameters" in the input are really unrelated to each 

other, in which case the empty model is the correct solution. 

Proposition 7.2.5. When the constraint set found by the constraint 

determination procedure is used as the QSIM input together with the initial 

states of the input behaviors, all the input behaviors appear in the QSIM output; 

that is, correct system identification is performed. 

Proof. The model 0 does produce the input behaviors when simulated from 

their initial states, as already discussed. The addition of constraints to this model 
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will cause the infinite trees it would produce to get smaller. More specifically, 

the addition of any constraint C will prune all, and only, the states in which C 

does not hold, together with their descendants, from each tree. (See QSIM 

description in Chapter 3.) However, every constraint found by constraint 

determination holds in every state of the input behaviors, (by Proposition 

7.2.2) which means they will not be pruned, and all these behaviors will appear 

III the simulation output. 

Note that by "the input behaviors," the data on which the constraint 

determination procedure operates are meant; these will be larger than QSI's 

initial input in later iterations. So the above proofs stand for each model found 

III successive iterations of the algorithm. 

In the previous chapter, it was established that a heuristic method is 

necessary for behavior assignment to neighbor parameters, since there are 

cases where an infinite number of alternative behaviors for a single 

parameter exist. This inevitably means that QSI outputs may lack some possible 

relationships among the deep model parameters, if model extension has been 

performed. The choice of the heuristics was made with this fact in mind, 

aiming to minimize the number of overlooked relationships. 

Finally, it will be proven that model extension never produces 

"shallower" models according to QSI's criterion of model depth, that is, fewness 

of QSIM behaviors predicted by the model. Note that this is not obvious; in model 

extension, both the number of constraints and parameters increase, more 

constraints tend to decrease the number of behaviors, but more parameters 

generally mean more behaviors. The following shows that, after model 

extension, one never obtains more QSIM behaviors than those obtained before 

extension: 

Definition 7.2.2. The number of behaviors of the input subsystem that would 

be predicted at the i th execution of the model depth test stage if the behavior 

count cutoff and empty model controls were absent is' called the i th input 

subsystem behavior count, or ISBCi. 

If the result of initial constraint determination is the empty model, then 

ISBCl =00 , as already mentioned. 

Proposition 7.2.6. For any QSI run in which the model depth test stage IS 

executed more than once, say, n times, ISBCi ~ ISBCi+l , for all i, where i < n. 
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Proof. Assume that an input subsystem behavior predicted at a later execution 

of depth testing was not predicted at an earlier execution. This means that there 

was at least one constraint in the model which caused that behavior to be 

filtered out during the earlier testing, and this constraint was not present in 

the later one. However, this is impossible, since constraints added to the model 

at the end of model extension are never removed, Le. the QDE can never get 

smaller. Therefore, all behaviors of the later stage must also be present in the 

earlier stage, that is, ISBCi < ISBCi+l is never the case. 

The reason why an integer representing the maximum number of 

allowed iterations was included in the input also becomes clear now. We have 

no proof that ISBCi is strictly greater than ISBCi+ 1 for all L Without this, one 

cannot prove that the algorithm will terminate for all cases (although the 

examples show that it does for a lot of useful ones,) so an iteration cutoff is 

necessary, to be on the safe side. 

7.3. Consequence Constraints 

In Chapter 6, the consequence and insignificance checks, which are parts of 

the constraint determination algorithm, were mentioned. Both these checks 

are used to see whether a particular constraint is already implied by the 

current knowledge of constraints or not. If it is implied, the process of 

checking the constraint against each input state is unnecessary and is skipped. 

It is a nontrivial task to impart the total knowledge of qualitative algebra 

required to identify all consequence constraints to the program, and it is not 

claimed that the following list is complete. Recall that the existence or absence 

of consequence constraints in the constraint determination stage's output 

affects only the efficiency of the algorithm, not its correctness. 

In the following, the left hand side of the arrow contains conjunctions 

of "known" constraints; these are either in the QDE, or previously discovered 

consequences of those in the QDE. The right hand sides are the consequences. 

:\f+(A, B), :\1+(B, C) --------> M+(A, C) 
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Proof. Recall that A, B, and C are functions of time. Furthermore, the M+s 

mean that there exist functions F and G such that A(t) = F(B(t» and B(t) = 
G(C(t» (with the proper domains and ranges,) and both F' and G' are positive 

everywhere in their domains [14]. But this means that 

A(t) = F(G(C(t») 

and since the derivative of the composite function FoG ;: H is the product of F' 

and G', H' > 0 throughout its domain; A(t) = H(C(t» is the very definition of 

M+(A, C), and the proof is complete. 

A more "qualitative" proof for the same rule is as follows: Consider all 

the qualitative directions that the parameters may take on. Given the 

antecedents, the possible direction tuples are those of Table 7.3.1. Obviously, 

M+(A,C) "holds" in each possibility. (CV information of the consequence 

constraint is also handled by the CVs of the two antecedent constraints, using 

parameter .B as a sort of "bridge.") 

TABLE 7.3.1. Possible directions of A, B and C 

A ~ C 

inc inc inc 
dec dec dec 
std std std 

The first two of the following rules have similar proofs as the one above. 

M+(A, B), M-(B, C) --------> M-(A, C) 

M-(A, B), M-(B, C) --------> M+(A, C) 

ADD (A, B, C), M-(A, C) --------> M-(A, B) 

The proof is again very simple. The antecedents say that . 

A(t) + B(t) = F(A(t» 

where F' is negative. Rearranging, one gets 

B(t) = -A(t) + F(A(t» 
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Clearly, there exists a function G such that 

B(t) = G(A(t» 

and G' is negative in its domain. This means that M-(B, A). 

Similarly. 

ADD(A. B. C), M+(A. B) --------> M+(A, C). 

The fact that the derivative of a constant is zero implies the following 

rules, where K is a parameter already known to be fixed at a landmark: 

ADD(A. B. K) --------> M-(A. B) 

ADD(A, K, B) --------> M+(A, B) 

Other rules make use of the properties of MINUS and tIle fact that 

rear:ran ged equations still "say" the same thing: 

MlNUS(A. B) --------> M-(A. B) 

ADD(A.B,C). MINVS(A.D) --------> ADD(C.D.B) 

ADD(A,B,C). ADD(C,D,A) --------> MINUS(B, D) 

Since all constraints except DERIY are commutative, the left hand sides of 

the above rules may be changed to reflect this fact; they will still apply. 
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VIII. QSI: A DISCUSSION 

This chapter aims to put QSI in perspective: Its relation with existing 

techniques of modeling, aspects of its utilization, and ideas about using it for 

different applications, such as diagnosis, are discussed. QSI and the method of 

inductive learning are compared. 

8.1. QSI as Modeling 

As well as being a natural counterpart to QSIM, (i.e. system identification vs. 

system simulation,) QSI also provides a new approach to the qualitative model 

formulation problem. Its ability of finding significant deep relationships 

among the system's quantities can be used to write the "best" model, given a 

system. A striking example where QSI can propose a better model than the 

obvious one is the spring/block system of Section 3.1.3. Recall that the three-

parameter, three -c onstrain t model of Table 3.1.11, which, although 

mathematically adequate· to produce only a single periodic behavior, (Table 

3.1.12) leads to a simulation with infinite spurious solutions, because of 

inherent representation problems. It was mentioned in the same section that a 

more comprehensive model containing . energy laws applying in that situation 

does produce the single behavior output, but it is not obvious for the user how 

the model should be formulated. in the beginning. Now suppose that the 

behavior of Table 3.1.12 has been presented to QSI as input. The initial 

constraint determination finds the constraint set of Table 3.1.11, as expected, 

plus the constraint MINUS(X,A). (Remember that dimension consistency is not 

imposed until QSI terminates.) The model is found to be unsatisfactory by the 

depth test stage, since three behaviors (those of Tables 3.1.12 thru 3.1.14) are 

predicted by QSIM, so model extension is performed. Among the new 
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components added to the model by this stage are the parameters P9 and PIO, 

defined by the constraints 

MULT(X,X,P9) and MULT(V,V,PlO), 

and the constraint " 

M-(P9,PIO) 

The bigger model is satisfactory, and QSI ends. 

P9 and PIO correspond to the potential and kinetic energies, 

respectively. The M- constraint among them represents the fact that the sum of 

these two energies, i.e. the total energy, is constant. The relevant "real-world" 

equation [51] is 

1 1 2 mv2 + 2 kx2 = E (8.1) 

Note how constants like m, the mass of theblcck, k, the spring constant, and 

the total energy are "buried" in the constraints QSI finds; this will be taken up 

in Section 8.1.2. QSI's usefulness as a modeling tool has thus been demonstrated. 

The rest of this section is comprised of further discussions of some aspects of 

QSI's utilization. 

8.1.1. How to Prepare QSI's Input 

As pointed out in Section 6.1, the procedures of observation (and possibly, 

excitation) of the system to obtain the accounts of its behaviors are outside QSI's 

specification. The algorithm operates with the assumption that the input has 

been obtained so that: a) Each qualitative behavior correctly describes the 

corresponding family of actually exhibited (or, in design applications, 

expected) behaviors, and, b) As many distinct qualitative behaviors that the 

system can exhibit as possible have been included. Both of these conditions may 

be difficult to meet in practice in some cases (see the section on qualitative 

noise filtering in relation to condition (a),) and automation of the data 

collection task has to be an imponant target for future research. 

But before the considerations mentioned above can even arise, one has 

to decide (even roughly) w hat the system is, that is, which observable 
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quantities to include in a single QSI input as shallow parameters. In all the 

examples in this text, and probably in the QSI modeling applications III the 

foreseeable future, the problem will be clearly defined by the user, who knows 

it is about a tank system, spring, etc. An independent intelligent robot would 

have to perform this problem definition by itself. Suppose such a robot enters a 

big room in, say, a chemical plant, which it is "seeing" for the first time. The 

room contains many tanks with fluids in them; some of them are connected by 

pipes, some are not. Most probably, all observable quantities in the room would 

not be parameters of the same system. Rather, it would be more suitable to 

partition them to a number of independent systems. This allocation task 

involves many perception and modeling issues, some of which are related to QP 

theory, some others outside the scope of the qualitative reasoning area itself, 

let alone this study. 

Another feature which has already been mentioned is QSI's total 

disregard of possibly useful information about the "natures" of the parameters, 

including' their dimensions. Thus, QSI views its input simply as accounts of the 

changing of some collection of quantities over time. The output that it produces 

then reflects various mathematically possible relations on these nameless 

quantities. Humans clearly do not "act" like this when performing modeling, as 

will soon be discussed. 

In this regard, the work of Bhaskar and Nigam [52] in which the 

dimensional representations of the relevant variables of the system are 

presented as input to the qualitative reasoner, without explicitly stating the 

physical laws, can be seen as an interesting opposite of the approach taken by 

QSI. 

8.1.2. How to Interpret QSl's Output 

The constraints in QSI's output provably hold on the, set of parameters, as 

already seen. But the interpretation of these constraints to obtain a "real

world," e.g. verbal, model involves some issues arising from the natures of the 

representation and the algorithm. 

The qualitative representation tends to "look over" constants, since 

systems can usually be modeled just as tightly without them. The monotonic 
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constraints are especially useful for this purpose. Take the spring/block 

example again. The well-known formulae for the force on the block are 

F=ma (8.2) 

and 

F= -kx (8.3) 

which can, if wished, be translated into the qualitative representation directly 

by defining parameters for all the quantities in the equations, and two MUL T 

constraints. But one generally does not do this, and uses instead M-(X,A) with 

CVs (0,0) as in [14], since it is more sensible from a simulation point of view to 

choose the smaller of two equally strong models. 

So the M constraints presented by QSI can "hide" other relationships in 

them, which may be interesting to examine if even deeper modeling is desired. 

Only two ver;l simple examples will be considered. Each M may bl! the 

abstraction of an arbitrarily long chain of Ms, for instance, M+(A,B) can mean 

M+(A,P1), M+(P1,P2), M-(P2,P3), M-(P3,P4), M+(P4,B). (For an example to such 

chains of Ms in real models, see the water balance mechanism in the human 

kidney, modeled in [8,9], and also Section 8.1.4.) M-(X,Y) may have been derived 

from, say, an equation of the form XY =K (K >0) among many others. Since the 

input can be an abstraction of not one, but a family of systems, the output also 

reflects all of these possibilities. The user can choose the most suitable one 

from among the alternatives implicit in the output of QSI, in the role of a 

modeling aid. 

Another issue that may come up is the "discovery" of some deep 

parameters that do not seem meaningful when considered in a real-world 

context, given their defining constraints, and the meanings humans give to 

their defining neighbors, something QSI is unable to do. For example, in the U

tube problem of Section 6.2.3, if full postulation is used, the following new 

constraints and parameters are among the ones added to the model by the 

extension stage, in addition to those already discussed: 

MULT(amounCA,amounCB,PlO) 

ADD(PIO,Pll,amouncA) 

MULT(amount_A,amount_A,P11 ) 
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Even after dimension consistency is imposed, this relationship does not reflect 

any intuitively obvious feature of the U-tube. The very idea of multiplying the 

amounts in the tanks by each other, or squaring them, does not make sense. 

The answer is, of course, this nee d not be part of a model of the U-tube. The 

relationship has been discovered, because it is mathematically implied by the 

input behaviors. The existence of this co i nc i de n ta l constraint is the proof of 

existence of a "system" (which would probably be much harder to physically 

visualize, compared to the U-tube,) in which the parameters A and B behave as 

specified in the input, and whose QDE includes the squares and products of A 

and B and links them in a "meaningful" way. Again, the user, with his 

knowledge of the natures of the quantities, can choose the meaningful 

constraints from among the ones QSI presents. Note that, even if no such 

selection is made, the QSI output is still guaranteed to produce the input when 

simulated, i.e. even the unintuitive components cannot filter out the input 

behaviors. 

8.1.3. QSI vs. Modeling by Humans 

Modeling is a tremendously important mental activity, which is very hard to 

automate. QSI must be viewed as an early step in this direction. It is not known 

which processes go on in the human mind when one attempts to solve problems 

of the kind discussed in these chapters, but most probably, the approach taken 

by the brain is not QSI's method of trying out all the possibilities. Many very 

"human" capabilities, among them, the use of analogies [2], and pure "insight" 

may come into play. In this regard, QSI is taking what Rothenberg [53] calls the 

"engineering" approach to AI: Exploiting the computer's abilities to come up 

with methods for solving the problems, without caring whether humans solve 

them in the same way. 

Having said this about QSI's relation to the naive modeling activity, let us 

briefly compare it with what can be called "expert modeling," i.e. the task of 

writing down the algebraic or differential equations describing a system. This 

task is normally performed by scientifically oriented people, so one might 

expect there is a more formal way in which it can be described. However, this 

does not seem to be the case. The modelers use their previous knowledge of laws 

that may apply in the current situation, and again seem to employ "insight" to 
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recognize the particular law instances that do apply. A QSI-style search is 

absent. Iwasaki and Simon [28] say that "good" models should contain each 

different law in a different structural equation, like equations 8.2 and 8.3, 

rather than combining them, like writing 

rnA = -kx (8.4) 

for the spring/block syste'm. In this manner, modifications in the physical 

situation which cause different laws to apply can be handled nicely. Note that 

QSI does not (and can not) impose such a form on the output models; this would 

again be the responsibility of the model user, using the guidelines of Section 

6.4.2. As Iwasaki and Simon point out in [28], "Establishing the structural 

equations for a system is as much an empirical as a formal matter, and 

certainly not a syntactical exercise." 

8.1.4. QSI for· Diagnosis 

Kuipers [8,9] has proposed a medical diagnosis expert system based on a 

"hypothesize-and-match" architecture which combines a first generation 

expert system with QSIM. Clinical findings are fed to the first-generation 

system to obtain a set of "candidate" diseases. Previously prepared QDEs 

describing each of the diseased mechanisms are simulated one by one, and the 

QSIM predictions are compared with the clinical observations, completing the 

cycle. Diagnosis is achieved when the observations match the predictions. 

When behavior data about a reasonably big subset of the parameters are 

available for both the healthy mechanism and the present state of the 

mechanism, QSI offers an alternative approach to the diagnosis p,roblem. 

Identifications of both sets of behaviors can be performed. By this method, the 

disease QDE can be found immediately, without going to the trouble of 

simulating a lot of non-answers. The first generation expert system is rendered 

unnecessary. If the "QDE-base" of possible diseases mentioned in the above 

paragraph is present, matching its entries with the QSI output leads to, 

diagnosis. Even if such a disease dictionary is not available, comparison and 

contrasting of the models of the healthy and diseased mechanisms may give 

useful hints to a human expert of the domain about the nature of the problem. 
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For example, Tables 8.1.1 and 8.1.2 contain healthy and diseased models 

[8,9,41] of the water balance mechanism (Table 8.1.3) of the human kidney, 

respectively. This mechanism governs the relationship between the ingestion 

and excretion (in the urine) of water in the body. The disease of Table 8.1.2 is 

called SIADH (Syndrome of Inappropriate Antidiuretic Hormone Secretion.) A 

detailed discussion of what goes on in the kidney in the normal and abnormal 

cases, together with explanations of the parameters, can be found in the 

references. Assume that QSI has been shown the behaviors (including most of 

the parameters; see below) of both the normal and post-SIADH periods in two 

separate runs. (These behaviors are also presented in [8], they are quite simple 

accounts of the variables nearing and settling at the equilibrium values in 

each case.) As has been proven, the QDEs of Tables 8.1.1 and 8.1.2 will be 

presented as outputs. An expert physician will notice that the differences of 

the diseased model from the healthy one (the loss of the direct proportionality 

of the sodium concentration to the ADH concentration, and the fixed higher-

than-normal value for the ADH concentration) are signs of SIADH, and 

concentrate on the problem more quickly, since the many other measured 

parameters do not appear in the difference set of the two 

presumably do not contribute to the trouble. 

TABLE 8.1.1. Healthy water balance mechanism 

CONSTRAINT 

MUL T(amt(water,P),c(Na,P),amt(N a,P» 
M +( amt(water ,P) ,c(natri uretic hormones ,P» 
M+(c(Na,P),c(ADH,P» 
M+(c(natriuretic hormones,P),flow(water,P->U» 
M +( c(ADH,P) ,reabsorbed flow( water, U -> P» 

models, and 

ADD(reabsorbed flow(water,U->P),netflow(water,P->U),flow(water,P->U» 
ADD(net flow(water,P->U), netflow(water,out->P), netflow(water,ingest->P» 
DERIV(amt(water,P),netflow(water,out->P» 

{amt(Na,P) and netflow(water,ingest->P) are fixed at positive landmarks. 

All constraints have CVs at the "equilibrium" values.}' 

Of course, the above discussion entailed the basic assumption that all the 

deep parameters were already identified and could be measured; this is a little 

bit too optimistic, as has been stressed before. But QSI can also be employed to 

hint at a deeper structure. Chapter 9 contains a modest-sized problem about the 
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kidney system in which only the most easily observable parameters are in the 

input. and the QSI solution to it in the derivative postulation mode. 

TABLE 8.1.2. Water balance model with SIADH 

CONSTRAINT 

MULT(amt(water,P),c(Na,P),amt(Na,P» 
M+(amt(water,P),c(natriuretic hormones,P» 
M+(c(natriuretic hormones,P),flow(water,P->U» 
M+(c(ADH,P),reabsorbed flow(water, U->P» 
ADD(reabsorbed flow(water,U->P),netflow(water,P->U),flow(water,P->U» 
ADD(net flow(water,P->U), netflow(water,out->P), netflow(water,ingest->P» 
DERIV(amt(water,P),netflow(water,out->P» 

{amt(Na,P) and netflow(water,ingest->P) are fixed at positive landmarks. 

c(ADH,P) = fixed at a landmark higher than its equilibrium value in Table 8.1.1. 

All constraints have CVs at the "equilibrium" values.} 

PARAMETER 

amt(water ,P) 
amt(Na,P) 
c(Na,P) 

TABLE 8.1.3. 

c(natriuretic hormones,P) 
c(ADH,P) 
flow(water,P->U) 
reabsorbed flow(water,U->P) 
netflow(water ,P-> U) 
netflow(water ,ingest-> P) 
netflow(water ,out->P) 

Water balance model's parameters 

MEANING 

amount of water in plasma 
amount of sodium in plasma 
concentration of sodium in plasma 
concentration of natriuretic hormones in plasma 
concentration of antidiuretic hormone in plasma 
rate of water filtration from plasma into the tubules 
rate of water reabsorption from tubules back into plasma 
net rate of water excretion from the blood via the tubules 
rate of water ingestion 
net rate of change of water in plasma 

8.1.5. QSl's Limitations 

In addition to the issues already discussed in this section, some other limitations 

of the QSI algorithm, and possible ways out, will be briefly repeated here. 

QSI is very sensitive to possible errors in its input. A single "wrong" state 

may cause it to fail to find the correct system model, even if all the rest of the 

input behaviors are described correctly, since the algorithm insists that all 

output constraints should be satisfied on all the input states. Noise filtering 

(Section 6.3) may be useful in eliminating such problematic states. 



125 

The considerable worst-case computational complexity of the algorithm 

III the full modes is another limitation, (at least, for the current PC 

implementation,) practically restricting its application to relatively small-scale 

systems. (Note that even within a limit of a few parameters, a huge number of 

different systems can be considered, because of the versatility of the 

representation.) Still, as the examples in Chapter 9 illustrate, a sizeable class of 

QSI problems can be solved using the limited postulation and search modes, 

which reduces the time requirements significantly. As a general remark, one 

should point out that deep (Le. invisible) parameters seem usually to be linked 

by the derivative relation to the visible ones, which explains the success of the 

derivative postulation mode in finding relevant models. For instance, hard-to

visualize things as acceleration and variable rate of flow are derivatives of 

more easily-seen things like displacement and amount of liquid in a container. 

8.2. QSI as Learning 

QSI's relation to well-known machine learning approaches will be examined in 

this section. Ways of modifying QSI so that it fits the classical inductive 

learning framework will be explained. Related methods will be briefly 

discussed. 

Induction is the best known method used in machine learning. Here is a 

simplified definition [2] of the inductive concept learning problem: One is 

trying to learn a con c e p t, satisfied by a particular set of p a tt ern s , and not 

satisfied by patterns outside that set. From time to time, one observes different 

patterns, and is told (by the "teacher") whether each pattern one observes is in 

the set or not. Using this (ever-increasing) knowledge, the learner is expected 

to infer age n era 1 description of the patterns satisfying the concept, which 

will enable him to classify a given pattern by himself. This description can be 

too general, that is, it may lead one to believe that a pattern which is actually 

not in the set is an element. In this case, it has to be specialized to exclude the 

problematic pattern and its likes. On the other hand, one may go too far in this 

specialization and exclude some genuine patterns which satisfy the concept 



126 

from the description; when this is noticed, again a generalization is necessary. 

So the description undergoes a kind of "diminishing oscillation" as more 

information keeps coming in, being generalized and specialized again and 

again, becoming more correct after each such update. 

An obvious way of specializing a logical formula (Le. letting it be satisfied 

for less cases) is to add a conjunct to it, while one can remove a conjunct, or add 

a disjunct, to perform generalization. (There are many other ways of doing 

these.) 

Now consider the following interpretation of QSI as a form of inductive 

learning: The observed qualitative states of the system are the patterns. The 

description QSI is trying to learn is the system model. Each QDE is a conjunction 

of constraints; adding a conjunct (a new constraint) to a model specializes it, i.e. 

causes it to produce tighter simulations. Removing a constraint would have the 

opposite effect. 

View QSI as starting with the assumption that all possible. constraints do 

hold, implying a description with a great number of conjuncts. That is, QSI 

overspecializes in the beginning. Considering the . input states causes the 

unsatisfied conjuncts to be dropped from the model, i.e. generalization. The 

depth test "tells" the algorithm whether it has 0 v erg en era Ii zed (0 btained a 

model that would predict unwarranted behaviors) or not. If so, the complete set 

of constraints involving the neighbor parameters is assumed to hold, 

(overspecialization again,) followed by the checking and probable elimination 

of the constraints against the extended states (generalization again) and a new 

depth test. This goes on until the algorithm terminates. 

As can be seen, this is quite a special case of the general learning 

algorithm presented above. There are no "negative instances" (Le. patterns 

that do not satisfy the concept) in QSI's input. It takes all of its input in one 

batch, and works and reworks it until it finds a satisfying modeL A general

purpose learning "algorithm" would generally "run" for a very long time 

(ideally, the lifetime of the "processor" that is running it,) and would accept its 

input items piece by piece, with sometimes considerable periods between them. 

Qsr s reason for requiring all distinct behaviors of the system to appear in the 

input is clearer now: The completeness of this information ensures the 

"health" of the induction, in the sense that it helps the "teacher" (the model 

depth test stage) to know the correct answers. 
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This suggests a natural way to convert QSI to an interactive algorithm, 

using a human (the modeler) as the teacher in the depth test stage. All that is 

needed is a small modification (actually, a simplification) to that stage. The idea 

is as follows: The model depth test stage simply simulates the proposed QDE from 

each initial state without counting the number of behaviors, presents each 

behavior that does not appear in the QSI input to the user, and asks whether 

this is a genuine behavior of the system or not. Behaviors identified as genuine 

are incorporated to the QSI input. The number of the remaining ones is used to 

decide for or against a new iteration. This modified algorithm, as well as fitting 

more nicely to the concept learning outline by having a distinct teacher, is 

also very suitable for the prospective modeler, since it informs the user of 

possibly unexpected behaviors of the system in an on-line manner, allowing 

him to form decisions during the modeling session. Thus, user-friendliness is 

gained at the cost of independence. 

Anowing the user to actually specify parts of the system model before the 

search to QSI, which normally starts with no idea at all about the sought model, 

would be a simple instance of learning by being told, another important 

learning approach. 

As work related to the presently explained one in this regard, the fact 

that inductive algorithms have been used to generate model fragments in 

discrete-event simulation must be mentioned. Quinlan's inductive learning 

algorithmS ID3 has 

EASE [54], where it 

statements in which 

"previous" state, and 

been 

can 

the 

the 

incorporated, for instance, in the package EXPERT

produce simulation rules, in the form of nested if 

conditional expressions depend on aspects of the 

statements in the then and ~ parts indicate the 

activities to be started in the "next" state. ID3 requires a table completely 

describing all the previous-next combinations as input, and is not able to 

handle uncertainty. In addition to the fundamental dissimilarity of their 

domains, ID3 and QSI are also different in the sense that the "rules" 

(constraints) found by the latter are much more general; they do not contain 

explicitly specified values in them as those of ID3, and describe conceptually 

more basic relations. 

S A similar algorithm is used to produce the decision trees for MIMIC (Section 
3.2.6.) 
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As Forbus notes in a survey [55] of the qualitative physical reasoning 

field, different aspects of the problem of the machine learning of physical 

models [36,56] have been studied. QSI is distinguishable among these as a 

method which starts out with no model (instead of refining an existing one) 

and produces a qualitative constraint model ready for simulation, given only 

the qualitative behaviors of the system. 



129 

IX. QSI AT WORK 

This chapter is comprised of two sections. First, several additional examples 

which further illustrate the working of the QSI algorithm are presented. The 

common small scale of the inputs is a result of the insistence that these be 

actually tested on the computer, and the fact that Turbo PROLOG imposes a 

maximum memory limit of 640 K (See Appendix A.) Also keep in mind that all 

the "semantical" comments about the systems and their models have been 

added by a human for the benefit of the readers; the actual input and output of 

QSI are free of that. The second section discusses some detailed features and 

W;l¥S of handling certain remaining difficulties with the' method_ 

9.1. Examples 

9.1.1. U-tube with Full Postulation 

As shown in Chapter 6, most QSI problems, including that of the U-tube in 

region NORMAL, can be solved easily in the derivative postulation mode. For 

completeness' sake, however, an account of the algorithm's execution in the 

full postulation mode is presented here. 

The input is again that of Tables 6.2.1 and 6.2.2. Since the postulation and 

search modes do not affect the initial constraint determination, the initial 

model is again found to be 

M-(amouncA, amouncB), 
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and depth testing fails because of the great number of QSIM behaviors which 

are predicted. Now, all neighbors of the two visible parameters are postulated 

and their behaviors are calculated; this results in an equivalent of Table 9.1.1 

being constructed by the program. In that table, the names of the new 

parameters (which are shown in the leftmost column) are chosen so that the 

reader can understand their defining constraints, for example, A' is the 

parameter which is defined to be amounCA's derivative. The assigned 

behaviors can be seen to be "sensible" enough, though (A-B) and (B-A) can 

raise a few thoughts, see Section 9.2 for a discussion on this. 

TABLE 9.1.1. Old and postulated parameters for U-tube identification 

BEHAVTOR#l ~B=E=H=A~VT~O~R~#~2~ ______________ ~ 

time ~to~ ______ ~(~t~a~t.~U~ ____ ~t~7 __________ ~tQ~ ________ (ut~a~t~7~) ____ ~t~1 ________ ~ 

«0, 00), dec> «0, 00), dec> <disc/mA, std> <0, inc> «0, 00), inc> <disclmA, std> 

<0, inc> «0, 00), inc> <disc/mB, std> «0, OQ), dec> «0, 00), dec> <disclmB, std> 

A' « -OQ, 0), inc> «-00, 0), inc> <0, std> 

B' «0, 00), dec> «0,00), dec> <0, std> 

- A « -00, 0), inc> «-00, 0), inc> <lml, std> 

-B <0, dec> « -00, 0), dec> <1m2, std> 

A+B <1m3, std> <1m3, std> <1m3, std> 

A-B «0,00), dec> «0,00), dec> <0, std> 

B-A «-00,0), inc> «-00,0), inc> <0, std> 

A*B <0, inc> «0,00), inc> <lm4, std> 

A 2 «0, 00), dec> «0, 00), dec> <lm5, std> 

B2 <0, inc> «0, 00), dec> <lm6, std> 

«0, 00), dec> «0, 00), dec> <0, std> 

« -00, 0), inc> « -OQ, 0), inc> <0, std> 

<0, dec> « -OQ, 0), dec> <lml, std> 

« -00, 0), inc> « -OQ, 0), inc> <1m2, std> 

<1m3, std> <1m3, std> <1m3, std> 

« -OQ, 0), inc> « -OQ, 0), inc> <0, std> 

«0, 00), dec> «0, 00), dec> <0, std> 

<0, inc> 

<0, inc> 

«0, OQ), inc> <lm4, std> 

«0, 00), dec> <1m5, std> 

«0, OQ), dec> «0, OQ), dec> <lm6, std> 

If half search mode (which is more efficient than full search mode, 

especially in full postulation, where the number of old parameters is only a 

little fraction of the new ones,) is active, the constraints listed in Table 9.1.2 are 

found to hold. The constraints marked as "consequence" or "insignificant" in 

the table are not checked against the values of Table 9.1.1, and they are not 

added to the QSIM input. New parameters that appear in the remaining entries 

of Table 9.1.2 are made permanent. The .fact that (A+B) is fixed is also marked in 

the QSIM invariants. Simulation with the extended model produces only the 

input behaviors, the dimension consistency stage adds the required buffer 

parameters and constraints, and QSI terminates successfully. Since this 
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system's model has already been discussed, let us concentrate on the additional 

constraints that were found in this section. 

The last two ADDs, relating the products of amouncA and amounCB with 

their squares, are coincidental; they do not reflect any fundamental property 

of the U-tube, but may be the components of another system with similarly 

behaving quantities, as explained in Section 8.1.2. Another such coincidence 

has caused the four ADD constraints involving (A+B). In fact, these constraints 

do not make any arithmetic sense; they survive the contradiction check since 

there exist trivial cases where the equations they imply can be satisfied, 

though not with the particular values here. They happen to hold throughout 

the behaviors, and will not cause any negative effects (except cluttering the 

output and slowing simulation,) so they have been allowed to stay. By enabling 

the contradiction check to examine old parameter values, this sort of 

constraints can be totally eliminated. 

TABLE 9.1.2. U-tube (NORMAL) constraints found after model extension 

CQNSTRAINT REMARK 

ADD(A,A',B) 
M-(A,A') consequence 
M+(B,A') consequence 
ADD(B,B',A) 
M+(A,B') consequence 
M-(B,B') consequence 
M+(B,(-A» consequence 
ADD(B,(-A),A') consequence 
M+(A,(-B» consequence 
ADD(A,( -B),B ') consequence 
M+(A,(A-B» consequence 
M-(B,(A-B» consequence 
DERIV(B,(A-B» see 9.2 
ADD((A+B),(A-B),A) 
ADD(B,(A-B),(A+B» 
M+(B,(B-A» consequence 
M-(A,(B-A» consequence 
DERIV(A,(B-A» see 9.2 
ADD((A+B ),(B-A),B) 
ADD(A,(B-A),(A+B» 
ADD((A-B),(B-A),A) insignificant 
ADD((A-B ),(B-A),B) insignificant 
ADD(A,( -A),(A *B» insignificant 
ADD(B,(-B),(A*B» insignificant 
ADD(A,( -A),A 2) insignificant 
ADD((A*B),A2,A) 
ADD(B,(-B),B2) insignificant 
ADD((A *B),B2,B) 
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As illustrated here, full postulation tends to produce a big output, 

increasing the user's (already important) responsibility of retrieving the 

relevant model constraints from among the ones in it. For this reason, it is 

suggested that full postulation should be used in the last resort, if an initial 

approach using the derivative postulation mode proves to be unsuccessful. 

9.1.2. Single Leaking Tank 

In Chapter 6, it was pointed out that the QDEs of different operating regions of 

the same system can be obtained by different runs of QSI. (Actually, QSI has no 

distinction of two operating regions of the "same" system and two different 

systems.) Here is an account of a V-tube half of which has burst (or, 

equivalently, a bathtub whose plug has been pulled off after the bath) is 

identified by QSI: (Figure 5.3.2) 

Assume the only initially recognizable parameter is the amount of water 

in the tank, and this decreases and stops at zero. (Table 9.1.3.) 

TABLE 9.1.3. Input of bathtub identification 

amount 
<init, dec> 

«0, init), dec> 
<0, std> 

EQV 

No constraints can be defined on a single parameter, which means the 

initial model is empty. Depth testing fails automatically, and the model 

extension stage (with derivative postulation mode) is activated, with the single 

parameter amount' being postulated. (See Table 9.1.4.) 

TABLE 9.1.4. Old and postulated parameters for bathtub identification 

amount 
<init, dec> 
«0, init), dec> 
<0. std> 

EQV 

amount' 
« -00, 0), inc> 
« -00, 0), inc> 
<0, std> 
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The constraints determined on this "bigger" behavior are again quite 

limited: 

M-(amount,amount') with CVs (0,0), 
MINUS(amount,amount'), . 
MULT(amount' ,amount' ,amount), 
DERIV(amount' ,amount), 

and, of course, the defining constraint 

DERIV(amount,amount'). 

Simulation produces the. single input behavior, dimension consistency 

requires the MINUS constraint to be dropped and buffers to be created, so the 

output is as shown in Table 9.1.5. 

TABLE 9.1.5. Output of bathtub identification 

CONSTRAINT CVs 

M+(amount,Pl) 
DERIV(Pl,P2) 
M+(P2,P3) 
M+(amount,P4) 
DERIV(P3,P4) 
M-(amount,P2) 
M+(P2,P5) 
M+(amount,P6) 
MULT(P5,P5,P6) 

(0,0),( 00,00 ),( -00,-00) 

(0,0),( 00,00 ),( -00,-00) 
(0,0),( 00,00),(-00,-00) 

(0,0) 
(0,0),( 00,00),(-00,-00) 
(0,0),( 00,00),( -00,-00) 

As for an interpretation, the square relation is again a coincidental one. 

The second DERIV is also coincidental. The remaining relationships correctly 

describe a leaking tank with no inward flow. The rate of increase of the 

amount (its derivative) is inversely proportional to it, and the flow ceases 

when the amount vanishes. The deep parameter. "flow" has been hinted at by 

the algorithm. The derivative postulation mode's utility has once again been 

demonstrated; the following examples will further underline this. 

9.1.3. Bathtub with Constant Inflow 

Now suppose that a tap exists on top of the bathtub (as is often the case,) and 

water pours out of it at a constant rate. Assuming that the constant inflow is 

recognizable as a parameter (although this is not necessary,) the input 



134 

behavior (Table 9.1.6) will be one in which the amount in the tub (starting 

from zero) arrives at equilibrium at some positive landmark. (Again, the 

possibility of overflow has been overlooked; see discussion in Section 6.2.3.) No 

constraints are found by the initial determination, and model extension is 

required. Since inFlow is constant, its derivative is not postulated, and extended 

constraint determination will be performed on the behavior shown in Table 

9.1.7. 

TABLE 9.1.6. Input for filling bathtub identification 

inFlow 
<inF, std> 
<inF, std> 
<inF, std> 

FQU 

amount 
<0, inc> 
«0, 00), inc> 
<disclrnA, std> 

TABLE 9.1.7. Input of second constraint determination III filling bathtub 

identification 

inFlow 
<inF, std> 
<inF, std> 
<inF, std> 

amount 
<0, inc> 
«0,00), inc> 
<disclrnA, std> 

FQU 

amount' 
«0, 00), dec> 
«0, 00), dec> 
<O,std> 

The QDE found (and accepted by the simulation) can be seen in Table 

9.1. 8. The dimension consistency stage results in the final model of Table 9.1.9. 

TABLE 9.1.8. Sufficient QDE for filling bathtub identification 

CONSTRAINT 

M-(amount,amount') 
ADD(amount,amount' ,inFlow) 
DERIV(amount,amount') 

The ADD in the final model represents the fundamental relation 

Net Flow = I n Flow - Out Flow. As well as the "discovered" parameter outFlow, 

the direct proportionality between it and the amount is again established. 
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TABLE 9.1.9. Output of filling bathtub identification 

CONSTRAINT 

DERIV(amount,Pl) 
M-(amount,Pl) 
M+(amount,P2) 
M+(Pl,P3) 
M +(inFlow ,P4) 
ADD(P2,P3 ,P4) 

Water Balance in Kidney 

(0,0),( 00,00),(-00,-00) 
(0,0),( 00,00 ),( -00,-00) 
(0,0),( 00,00),(-00,-00) 
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Consider the situation in which only the two (supposedly) most easily 

observable parameters of Table 8.1.3, namely, the amount of water in plasma, 

and the net rate of water excretion, are used to form the input behaviors. One 

can say right away that QSI simply can not be expected to find the complicated 

model of Table 8.1.1 from these data; the input is inadequate to uncover the 

features of the complete system. Still, it will be demonstrated that the algorithm 

comes up with a model that does predict only the specified behaviors (which is 

about all what a human novice can do "at first sight,") and gives some hints 

about possible deep parameters. 

Of the two input behaviors, one (Table 9.1.10) has been obtained by 

observing the "normal" state of things for some time. Both parameters are at 

their eqUilibrium values. 

TABLE 9.1.10. First input behavior for water balance identification 

amt(water,P) 
<.4*, std> 

net flow(water. P->U) 
<NF,std> 

EQU 

The second behavior (Table 9.1.11) is a result of observing what happens 

when the amount is rapidly increased by an outside intervention, i.e. a sudden 

large drink. This has caused an immediate increase in the excretion rate, with 

both quantities gradually returning to their normal values. 

Initial constraint determination results in the model of Table 9.1.12, but, 

as expected, simulation shows that this model is not deep enough. Again having 
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selected the derivative postulation mode, two new parameters with defining 

constraints 

DERIV(amt(water,P), PI) 

and 

DERIV(netflow(water, P->U) , P2) 

are created, both starting at negative and increasing, and settling at zero as the 

same instant when their defining neighbors arrive equilibrium. Extended 

constraint determination adds the constraints of Table 9.1.13 to the QDE. 

(Various consequences of the Ms which are found but not included in the 

simulation model, and which can be also useful for interpretation, are not 

presented here because of space considerations.) This model predicts only the 

two inputs, and is accepted. For the conditions presented in the input, a "robot 

physician" can use this as the basis of a model of the human water balance 

system. For a human physician, it would at least provide some pointers to start 

with in an attempt to form a deeper model. (Not for this particular system, of 

course; its model is already known.) For example, :the existence of a parameter 

which is the derivative of amt(water,P) is implied. There really is such a 

parameter in Table 8.1.1. Furthermore, that quantity really is inversely 

proportional to netflow(water, P -> U) if netflow(water, ingest->P) is constant, 

which is the case in the table. The direct proportionality of amt(water,P) and 

netflow(water, P->U) also follows from Table 8.1.1. All the discovered MULTs are 

coincidental. For a more specific identification, more parameters, more 

behaviors, the full postulation and search modes, and a user with some idea of 

what to expect in the model would be required. 

TABLE 9.1.11. Second input behavior for water balance identification 

amt(water,P) 
«A*, 00), dec> 
«A*, 00), dec> 
<A*, std> 

FQU 

net flow(water, P->U) 
«NF, 00), dec> 
«NF, (0), dec> 
<NF, std> 

TABLE 9.1.12. Initial model III water balance identification 

CONSTRAINT 

M+(amt(water,P), netflow(water, P->U» 
MULT(amt(water,P), amt(water,P), netflow(water, P->U» 
MULT(netflow(water, P->U), netflow(water, P->U), amt(water,P» 
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TABLE 9.1.13. Constraints added by second constraint 

determination 

CONS1RAINT 

DERIV(amt(water,P),P2) 
DERIV(netflow(water, P->U),Pl) 
ADD(amt(water,P),P1,netflow(water, P->U» 
ADD(amt(water,P),P2,netflow(water, P-> U» 
ADD(P1,amt(water,P),netflow(water, P->U» 
ADD(P2,amt(water,P),netflow(water, P-> U» 
M-(netflow(water, P->U),P1) 
M-(netflow(water, P->U),P2) 
MULT(netflow(water, P->U),P1,P2) 
MULT(netflow(water, P->U),P2,Pl) 
MULT(amt(water,P),Pl,P2) 
MULT(amt(water,P),P2,P1) 

Heat Exchanger 
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The heat exchanger system (Figure 9.1.1) to be used in this example is from 

[16]. There is cold water in the bath shown as the box in the figure. Hot liquid 

enters from one end of the pipe and leaves, cooler because of the heat flow, 

from the other end. There are three different behaviors, determined by 

whether the heat flow stops when the unit volume of liquid that we are 

interested in is in the pipe, and if so, where. Supposing that the parameters in 

the input are X, (position of liquid in the pipe; the entry end is the negative 

landmark x * and the exit end is 0,) Q, (surplus heat of liquid; 0 when thermal 

equilibrium is reached, a positive value at the start,) and F, (the heat flow in 

the liquid,) the algorithm starts with the three behaviors in Table 9.1.14. thru 

9.1.16. 

cool water 

hot liquid 

Figure 9.1.1. The heat exchanger 



TABLE 9.1.14. Input behavior #1 for heat exchanger identification 

x 
<x*, inc> 
«x*, 0), inc> 
<0, inc> 

o F 
<q*, dec> <f*, inc> 
«0, q*), dec> <(1*, 0), inc> 
<0, std> <0, std> 

TABLE 9.1.15. Input behavior #2 for heat exchanger identification 

x 
<x*, inc> 
«x*, 0), inc> 
<0, inc> 

o F 
<q*, dec> <f*, inc> 
«0, q*), dec> <(1*, 0), inc> 
«0, q*), dec> <(1*,0), inc> 

TABJ.:.E 9.1.16. Input behavior #3 for heat exchanger identification 

x Q F 
<x*, inc> <q*, dec> </*, inc> 
«x*, 0), inc> «0, q*), dec> <(1*,0), inc> 
«x*, 0), inc> <O,std> <0, std> 
«x*,O), inc> <O,std> <0, std> 
<0, inc> <O,std> <0, std> 

138 

Initial constraint determination comes up with the model of Table 9.1.17, 

which really covers the heat flow relationships; the first constraint is the 

definition of flow, whereas the fourth one has the equation 

F=-KQ 

(where -K is the thermal conductivity) "embedded" in it. (Even in the case 

where only the longest behavior is entered, those relationships are still 

discovered; the figures in Table 7.1.1 reflect that situation.) The other 

constraints are coincidental. Note, however, that DERIV(F,Q) is what one would 

expect to be discovered if those two names were swapped in the input, i.e. if the 

liquid III the pipe was warming instead of cooling. 

Depth testing on the above-mentioned constraint set fails automatically 

without simulation, because X does not appear III any of the constraints. In the 

model extension stage, the derivative of only X will be postulated, since the 

derivatives of both Q and F are already there. The heuristics lead to a fixed 
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positive value for that parameter to be determined. The resulting model's 

simulation is satisfactory, and QSI terminates after the dimension consistency 

stage. A fixed value for the derivative of X is sensible, since it simply means 

that the speed of the liquid in the pipe is constant. 

TABLE 9.1.17. Initial constraints for heat exchanger identification 

CONSTRAINT CVs 

DERIV(Q,F) 
DERIV(F,Q) 
MINUS (F,Q) 
M-(F,Q) (0,0) 
MULT(F,F,Q) 

A justifiable remark about this problem is that instead of the heat and its 

flow, the temperatures of the liquids would be more appropriate as shallow 

parameters. See Section 9.2 for a discussion. 

9.1.6. The Upward Thrown Ball 

No discussion about a new qualitative reasoner would be complete without a 

version of the upward thrown ball problem; this tradition was observed in the 

descriptions of improved QSIM and the postdiction algorithm. This section will 

be concluded by an account of the execution of QSI when fed a single input 

behavior (Table 9.1.18) describing the height of a ball which rises for a while 

and then falls back. 

TABLE 9.1.18. Behavior of ball height 

y 

«0, 00), inc> 
«0, 00), inc> 

<disc/mY, std> 
«0, disc/mY), dec> 

<0, dec> 

After an empty initial model, derivative postulation will result in the 

extended behavior of Table 9.1.19, but the single DERIV linking the two 

parameters is not sufficient for a tight simulation, and model extension has to 
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be performed for a second time. The derivative of Y' is decided to be fixed at a 

negative value and permanently added to the model, which passes the test. 

From a single account of the height of a thrown object, the "laws" governing 

such bodies have been identified. Two deep parameters representing the 

velocity and acceleration have been correctly suggested. Consult Table 7.1.1 for 

the execution times of the examples of this section. 

TABLE 9.1.19. Input to second constraint determination in ball system 

identification 

Y 
«0,00), inc> 
«0,00), inc> 
<disc ImY, std> 
«0, disc!mY), dec> 
<0, dec> 

Y' 
«0, 00), dec> 
«0,00), dec> 
<0, dec> 
«-00,0), dec> 
« -00, 0), dec> 

9.2. Further Issues 

The behavior calculation procedure, invoked in the model extension stage to 

assign one of possibly infinitely many alternative behaviors to each postulated 

parameter, is the only "heuristic" part of the algorithm (as explained III 

Chapter 6.) The behaviors it comes up with are guaranteed to be 

mathematically plausible with regard to their neighbors specified in the input, 

but the extent to which they match the corresponding deep parameters in the 

semantical interpretation that we give to the system is dependent on the "rules 

of thumb" of behavior selection embedded into QSI. This means that there is 

always room for improvement in that procedure, and possible new heuristics 

and representation schemes may increase the number of· problems that can be 

solved satisfactorily by the algorithm. Examples of some such issues about 

behavior selection will be presented in this section. 

Consider the heat exchanger of Section 9.1.5 again. This time, the more 

realistic assumption that the initial parameters are X (meaning the same as 

before,) T _out (the fixed temperature of the cool water bath,) and T _in (the 
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temperature of the unit volume of liquid that one is tracking in the pipe,) will 

be made. The input behaviors are shown in Tables 9.2.1 thru 9.2.3. 

TABLE 9.2.1. Input #1 for heat exchanger identification (temperature 

version) 

x 
<x*, inc> 
«x*, 0), inc> 
<0, inc> 

T in 
<Tbegin, dec> 
«0, Tbegin), dec> 
<disclmT, std> 

T out 
<Tcoo[, std> 
<Tcoo[, std> 
<Tcoo[, std> 

TABLE 9.2.2. Input #2 for heat exchanger identification (temperature 

version) 

x 
<X*, inc> 
«x*, 0), inc> 
<0, inc> 

T in 
<Tbegin, dec> 
«0, Tbegin), dec> 
«0, Tbegin), dec> 

T out 
<Tcoo[, std> 
<Tcoo[, std> 
<Tcoo[, std> 

TABLE 9.2.3. Input #3 for heat exchanger identification (temperature 

version) 

x 
<X*, inc> 
«x*, 0), inc> 
«x*, 0), inc> 
«x*, 0), inc> 
<0, inc> 

T in 
<Tbegin, dec> 
«0, Tbegin), dec> 
<disclmT, std> 
<disclmT, std> 
<disclmT, std> 

Tout 
<Tcoo[, std> 
<Tcoo[, std> 
<Tcoo[, std> 
<Tcoo[, std> 
<Tcoo[, std> 

By using om knowledge of the domain, we can "cheat" and write down 

the constraints that QSI is "supposed" to find if it is to identify the system as we 

interpret it. The rate of increase of T_in will have the sign, of (T_out - T_in); i.e. 

we expect QSI to find the relations DERIV(T_in,P) and ADD(T_in,P,T_out) along 

with the already seen one about the derivative of X. The trouble is, three 

alternative behaviors for the derivative of T _in in Table 9.2.2 exist, among 

which the heuristics cannot make a preference: 1) P negative and fixed, 2) P 

negative and increasing, and 3) P negative and decreasing. Of these, one will 
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be chosen randomly. (2) is the one which fits our understanding of the system, 

and the expected model will be found if it is selected, otherwise, it will not. 

This illustrates the motivation for the ongoing research for better 

heuristics. A way of representing the state tree's structure in the input could 

also provide a solution, since it would cause values in several behaviors to be 

identified as a single one, imposing an additional restriction which would 

probably reduce the number of alternatives. Next, some issues that can be 

resolved by the use of a more flexible representation will be briefly 

considered. 

In the U-tube identification of Section 9.1.l, the difference parameters 

(A-B) and (B-A) are assigned behaviors in which they both have the value zero 

at equilibrium. This is a possibility, but two other possibilities, corresponding 

to the cases where either amouncA or amouncB is the greater of the two, also 

exist. Since the behaviors representing these possibilities have more than 

three values in them, they are not even considered b;r the algorithm. It must 

also be mentioned that QSI takes special care in the behavior calculation of new 

parameters which are negatives or reciprocals of each other, like PI and P2 

defined by ADD(X,Pl,Y) and ADD(Y,P2,X) or P3 and P4 defined by MULT(A,P3,B) 

and MULT(B,P4,A), so that no inconsistency is allowed between the new 

behaviors. 

Finally, consider the subsystem of Table 9.2.4. The derivative of X is to be 

postulated by QSI. 

TABLE 9.2.4. Behavior of X-Y subsystem 

X Y 
<neglm, std> 
«negim, 0), inc> 
<0, inc> 
«0, posim), inc> 
<posim, inc> 
«posim, maxim), 
<maxim, std> 

«0, 00), inc> 
«0, 00), inc> 
«0, 00), inc> 
«0, 00), inc> 
<YZm, std> , 

inc> «0, Ylm), dec> 
«0, Ylm), dec> 

The new parameter's magnitude clearly has to be zero at the endpoints 

of the behavior, and positive within it. Once again, there is more than one 

choice, even when one restricts attention to behaviors with seven values and 

applies the heuristics (Table 9.2.5.) 
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TABLE 9.2.5. Two choices for the behavior of X' 

X choice #1 fQr X' choice #2 for X' 
<neglm, std> <0, inc> <0, inc> 
«neglm, 0), inc> «0, 00), inc> «0, 00), inc> 
<0, inc> <lmI, std> «0, 00), inc> 
«0, poslm), inc> «O,lmI), dec> «0, 00), inc> 
<posim, inc> «O,lmi), dec> <imi, std> 
«posim, maxim), inc> «0, Imi), dec> «0, imI), dec> 
<maxim, std> <O,dec> <0, dec> 

Furthermore, there is no good reason that the derivative should arrive at 

its landmark just when 

landmarks, and the "real" 

of qualitative states. All 

another parameter is crossing one of its own 

description may well be one with a greater number 

these different possibilities would cause different 

constraints involving X' to be found, or not to be found. For example, M+(X', Y) 

is found only if choice #2 is selected for X.' To deal with such situations so that 

the chances of constraint discovery are maximized, a more flexible 

representation scheme for the directions of postulated derivatives has been 

designed. The idea is to defer the decision on when the new parameter actually 

stops at its landmark until a constraint involving it is found in the constraint 

determination phase. Till then, the postulated parameter's direction in the 

period between its two zeros is set to either isd a.ncreasing-~teady-4.ecreasing) 

or dsi (.d..ecreasing-.[.teady-increasing,) depending on its sign. After the 

discovery of the first significant constraint involving the parameter, its 

behavior is translated into the conventional format. In the example, the 

situation at the end of the postulation stage will be as shown in Table 9.2.6. 

TABLE 9.2.6. Extended behavior of subsystem 

X 
<neglm, std> 
«neglm, 0), inc> 
<0, inc> 
«0, posim), inc> 
<posim, inc> 
<(poslm, maxim), inc> 
<maxim, std> 

y 

«0, 00), inc> 
«0, 00), inc> 
«0,00), inc> 
«0, 00), inc>' 
<Ylm, std> 
«0, Ylm), dec> 
«0, Ylm), dec> 

X' 
<0, inc> 
«0, 00), isd> 
«0, 00), isd> 
«0,00), isd> 
«0, 00), isd> 
«0, 00), isd> 
<O,dec> 

Consistency checks involving is d or ds i are automatically satisfied. 

When M+(X' ,Y) passes the test in this manner, the directions of X· are updated 
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with inc, std or dec so that it really satisfies the M+; this amounts to the choice 

#2 in Table 9.2.5 being tIDally selected. 
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x. CONCLUSION 

In this dissertation, three separate contributions in the AI area of qualitative 

reasoning about physical systems were presented. The reported work has 

focused on the representation and algorithm of the qualitative simulation 

program QSIM. The ideas exemplified in that context can also be applied in the 

wider qualitative simulation and modeling scene. 

10.1. Summary of Results 

The first of the contributions is about the use of tuples of corresponding values 

of system parameters, a common technique in qualitative simulation. 

Corresponding value information about parameter magnitudes is used by the 

algorithm during the consistency filtering of newly proposed states, in 

addition to the information supplied by the constraints themselves. The 

existence of a class of inputs for which the QSIM algorithm predicts 

mathematically impossible behaviors, although the information required to 

detect and eliminate the inconsistency already exists in the state sequence 

produced during the simulation, was demonstrated. It was shown that the cause 

of this problem is the current practice of allowing only point magnitudes as 

corresponding values. The notion of interval corresponding values was 

introduced as a solution, and instructions on how to incorporate this to the 

QSIM algorithm and the modification of the qualitative arithmetic routines to 

handle operations where both operands are interval values were given. The 

resulting algorithm, named improved QSIM, was proven to be better than pure 

QSIM, in the sense that: 1) They both find all the correct behaviors, 2) 

Improved QSIM does not predict some spurious behaviors that QSIM predicts, 

and 3) Improved QSIM does not predict any spurious behaviors that QSIM does 
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not predict. The utility of improved QSIM was shown in example problems. As 

stated in the analysis and the reports on the case runs, the modification does 

not change the overall time complexity of the algorithm. A feature of the new 

technique which distinguishes it from other ways of spurious behavior 

reduction is that it needs no extra input information and just "squeezes" more 

knowledge from the available input to achieve better results. Because of the 

nature of the changes, pure QSIM can be replaced by the improved version 

with' minimum effort. 

Another item of this research is the development of the postdiction 

algorithm for systems of continuous-valued parameters. Again, QSIM was used 

as the basis. Various issues exist about this reasoning task in the general case: 

If one is informed about the current scene, and asked to find out what may 

have happened in the past so that this result has been obtained, there is usually 

a formidably large number of possibilities for the situation in the "previous" 

state, only a fraction of which may have been known. Furthermore, since 

causes of "events" can in general be traced back to the beginning of the 

universe, this very large "'branching" of possible previous states will occur for 

each node of a very big tree. Choosing among the alternative pasts and 

deciding when to stop looking for even earlier events are typical issues. These 

are resolved naturally for the domain of continuous systems by the adoption of 

the QSIM representation. By modifying only the value transition and operating 

region change modules, the already analyzed correctness and complexity 

properties of the algorithm were ensured to remain. The postdiction algorithm 

produces a tree of states where each path from each node to the root is a 

possible past. This different interpretation of the output stems from the fact 

that one has no way of knowing whether a particular node in the state tree was 

the initial state or not. The Closed World Assumption was discussed in this 

context. The algorithm inherits the soundness of QSIM; it does not miss any 

possible pasts that the model implies. For diagnosis applications, this exhaustive 

listing could be useful. Example runs were used to illustrate the postdiction 

algorithm's working. 

Finally, the qualitative system identification algorithm was presented. 

QSI is able to propose qualitative constraint models for systems whose 

qualitative behavior it takes as input. The fact that it uses the QSIM format 

makes the incorporation of the two algorithms in a unified reasoner very easy. 

QSI's work corresponds to the model structure determination phase of the 
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general system identification enterprise. The algorithm's structure was 

explained and exemplified in detail. Starting with (as many as possible of) the 

qualitatively distinct behaviors and associated quantity spaces of the system's 

parameters, the constraint determination stage finds all the constraints that 

hold on the parameters by generating all syntactically possible constraints and 

eliminating the ones that do not hold. The model obtained in this manner is fed 

to the depth test stage where QSIM itself is used to check it not for correctness, 

but for adequacy. If simulation of the model yields an unacceptably large 

number of behaviors which are not present in the input, it is passed to the 

model extension stage to be further tightened with the addition of more 

parameters and constraints. "Useful" system parameters that do not appear III 

the input are searched by postulating new parameters linked to the old ones by 

various types of constraints, calculating their behaviors, and performing 

constraint determination anew on the resulting extended system behaviors. 

During the behavior calculation for the postulated parameters, use of 

heuristics is niade to choose the "likeliest" of the alternative behaviors. This 

means that the model extension stage may result in the production of modl!{s, 

which, although mathematically consistent with the raw input information, 

are different from the actual models that could be built given context 

information about the system and the "natures" of the parameters. Unit 

consistency rules are imposed on the final model that has passed the depth test 

successfully; "buffer" parameters and constraints are created to meet the 

arithmetic requirements about the parameter dimensions. QSI requires its 

input to be completely correct (albeit qualitative.) A single wrong qualitative 

value in the input can hinder the discovery of a correct model. A noise filter 

that will be used as an optional preprocessor to smooth out suspected 

fluctuations in individual parameter behaviors has been designed. 

As the analysis shows, QSI's time complexity is similar to those of other 

qualitative reasoners (which are, unfortunately, not very fast.) The fact that 

each QSI run has (possibly multiple) QSIM invocations in it makes this obvious. 

Execution times of the current implementation for various' inputs were listed in 

Table 7.1.1. 

Proofs of several properties of the algorithm were presented. The 

constraint determination procedure finds all, and only, the constraints valid in 

its input. All models produced by the algorithm (even the ones which are not 

deep enough) therefore correctly describe the system's quantities. and, when 



148 

simulated, are guaranteed to predict each behavior in the input. The "extended" 

models are never worse, and usually better, than their predecessors, by QSI's 

criterion of model goodness. The consequence detection rules used to skip 

testing many constraints were established. 

The preparation of QSI's input (with special emphasis on the lack of 

various important kinds of information in it,) and ways of interpreting its 

output, were discussed in detail. QSI's applicability to diagnosis tasks was 

examined, as well as its evident utility in qualitative modeling. The algorithm's 

approach was compared and contrasted to other (more "human") methods of 

modeling. Its place in the general framework of machine learning was 

determined. 

Several case runs were used to help illustrate the algorithm's working. 

In addition to naturally filling the system identification gap in the 

existing body of qualitative reasoning research, QSI may fonrl a part of the 

basis ofa much more involved modeling. and reasoning rcocedure to be 

invoked by autonomous intelligent robots in the future. 

Those interested may obtain (possibly later versions of) the PROLOG 

source codes of the programs embodying the above-mentioned algorithms in 

magnetic media from the author for research purposes. 

10.2. Suggestions for Future Work 

The research reported in this text has suggested some areas of future work. 

Ongoing experimentation on more and more example problems may result III 

new behavior selection heuristics for QSI being found. As already discussed, in 

its present form, QSI is very "mechanical," arriving at the models by what one 

may call a brute-force search. This is the price paid for not relying on the 

existence of any input information except accounts of the changing of some 

parameter values. While this research has demonstrated that model structure 

identification at a quite impressive scale is possible even with this much data, a 

real-world reasoner must certainly be able to make use of any additional 
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knowledge that is available. In this regard, two possible roads for development 

are evident. The first alternative is to use the "pure" QSI algorithm, as 

presented here, as part of a much bigger modeling program, which combines 

the many approaches to this difficult mental task. QP theory and the method of 

dimension analysis would be among the methods incorporated, and hints about 

the nature of the system under consideration, units of its parameters, and 

model fragments that are known to be definitely there, would be some of the 

additional input items. QSI's role in this setup could be to prepare initial model 

proposals, from which the later stages prune off the coincidental and 

noninteresting constraints. This super-modeler need not even restrict itself to 

systems of continuous parameters; by spanning several domains, its usefulness 

would increase. Research into what humans actually "do" during the model

building task would certainly provide valuable pointers for the construction of 

such a pro gram. 

The second, more modest alternative is to modify QSI so that it can use 

some of the above-mentioned information itself. A knowledge base of "typical" 

features of various model structures may be constructed. This knowledge would 

then be used to help QSI to make more intelligent decisions, maybe forgoing 

testing for some unlikely constraints, and therefore produce sleeker outputs, 

more efficiently. 

Our approach to the problem of deciding what constitutes an "easily 

observable" parameter and what does not has been quite intuitive. Research 

about this topic will certainly be useful for further work on QSI. 

Attempting to apply the postdiction algorithm to perform diagnosis also 

raises some issues to be handled by future work. In addition to the ["mal state of 

the system, one also usually has some (at least partial) knowledge about the 

starting state during diagnosis. Various other kinds of additional information 

may be available, which could be used to discredit or totally eliminate many of 

the alternative possible pasts. For instance, known probabilities of occurrence 

of various kinds of faults may be utilized. If the algorithm is augmented to 

handle available quantitative knowledge (like in Section 3.2.3,) even MTBF data 

could help in imposing a likeliness order on the possible pasts. 

For some purposes, the exhaustive listing of possible pasts by the 

postdiction algorithm, presented in Chapter 5 as a desirable feature, may be too 

cumbersome. A postprocessor which collapses several possible pasts which are 
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equivalent on a specified scale to a single one, therefore summanzmg the 

output in higher-level terms, can be written. For the burst tank postdiction III 

Chapter 5, for example, all the pasts involving an explosion would be 

summarized in a single one. 

The construction of a unified temporal reasoner, which is a combination 

of not only a temporal database and a simulator, but also a modeler, is another 

possibility. The storage and retrieval of time-indexed information, prediction 

and postdiction from known or "what-if" facts in the database, and inference 

of laws that hold in the domain from these facts, all in one program, can be 

achieved by such a reasoner. 

The quantity space representation is not as impoverished as it seems at 

first sight. One can represent such information as b = 2a for landmarks a and 

b in the same quantity space, using only pure QSIM's format, for instance. An 

investigation of how much of such "quantitative" information can be squeezed 

into the standard qualitL'tive representation, and the power that such 

exploitations of algebra and arithmetic can impart to the various reasoners, is 

among the future work planned. 

Computer implementations (Appendix A) and experimentations have 

been accompanying the development of the reported algorithms. Their porting 

to computers with greater space and speed is an immediate practical aim. 
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APPENDIX A. IMPLEMENTATION 

For hardware availability reasons, the programs embodying the algorithms 

described in the text were implemented on IBM-compatible PCs. The "European" 

AI programming language PROLOG (as opposed to LISP, which is popular among 

American researchers) was used. Borland's Turbo PROLOG Version 2.0 [57] 

provides a very acceptable program development environment, however, two 

things must be mentioned in this regard. First, Turbo PROLOG differs in many 

respects from the "standard" version in [58], and, although this did not cause 

serious difficulties during implementation, it may have obvious negative 

effects in future work to port the. programs to other environments. Secondly, 

Turbo PROLOG imposes a very low (for this kind of programs, at least). limit on 

the memory that can be used (640 K) by the programs. This is the cause of the 

small size of the problems used for the QSI· case runs reported in Chapter 9. 

Larger problems were tested by "chopping" them up in various not-so-elegant 

ways, so that the program stayed within the memory limit. 

Each of the two programs developed in relation to this research is a 

Turbo PROLOG project: a collection of many files. The first such project, named 

IQSIMP, is a "unified" program, which has both the postdiction ability of 

Chapter 5, and the interval CV recording and using features of Chapter 4. To 

ensure flexibility, the "direction of time" in which the simulation will be 

performed is specified by the user in the input file. If "forward" is specified, 

"normal" QSIM (but with interval CVs) runs. If "backward" is specified, 

postdiction is performed. 

The guidelines observed for the PROLOG implementation of QSIM were 

explained in Chapter 3. The "nature" of the language makes a depth-first 

approach to the creation of the state tree (Section 3.1.2, Step 1) the easiest to 

write, so we followed this route. 

The second project, QSI, is an implementation of the algorithm as 

described in Section 6.2. As already stated, QSI calls a slightly modified version 
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of QSIM as a subroutine, so it is not surprising to see that parts the QSI project 

resemble those of IQSIMP very closely. Actually, the version of QSIM that 

appears in the source code of QSI which we make available is the "un

improved" one, so that one can see the differences required by the ICV features 

by comparing the CV recording and qualitative arithmetic predicates in these 

two programs. 

Both programs invoke the Turbo PROLOG editor to aid the user in the 

preparation of the input file and the examination of the output file. On-line 

help during the input's preparation is also available. 

As programmers know, large programs are like "living" beings; they 

undergo many changes during their lifetimes. The programs described here 

will also be the objects of various modifications, both to improve the space 

efficiency, and to better explore many new ideas, some of which have been 

mentioned in the text. (For instance, the proposals of Section 9.2.) All the 

proper examples in thjs text, for which execution times were presented, and 

many more, have been run with these programs, and the reported results have 

been obtained as output. 

The (quite long) source codes and help files can be obtained from the 

author at the BITNET electronic mail address SA Y@TRBOUN. 
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