
IMPROVING THE PERFORMANCE OF SOFTWARE DEFECT PREDICTORS

WITH INTERNAL AND EXTERNAL INFORMATION SOURCES

by

Burak Turhan

B.S., in Computer Engineering, Boğaziçi University, 2002
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of Bedaş A.Ş. Who can eliminate the endless support provided by friends? Ali Haydar
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ABSTRACT

IMPROVING THE PERFORMANCE OF SOFTWARE

DEFECT PREDICTORS WITH INTERNAL AND

EXTERNAL INFORMATION SOURCES

In this dissertation, we make an analysis of software defect prediction problem

from a data mining perspective, where software characteristics are represented with

static code features and defect predictors are learned from historical defect logs. We

observe that straightforward applications of data mining methods for constructing de-

fect predictors have reached a performance limit due to the limited information content

in static code features. Therefore, we aim at increasing the information content in data

without introducing new features, since collecting these may either be expensive or not

possible in all contexts. We feed data mining methods with richer data in terms of

information content. For this purpose, we propose the following methods: 1) relax-

ing the assumptions of data miners, 2) using project data from multiple companies,

3) modeling the interactions of software modules. For the first method, we use naive

Bayes data miner and remove its i) independence and ii) equal importance of features

assumptions. Then we compare the performance of defect predictors learned from

local and remote data. Finally, we introduce call graph technique to model the inter-

actions of modules. Our results on public industrial data show that: 1) relaxing the

assumptions of naive Bayes may increase defect prediction performance significantly,

2) predictors learned from remote data have great capability of detecting defects at

the cost of high false alarms, however this cost can be removed with the proposed fil-

tering method 3) proposed way of modeling interactions may decrease the false alarm

rates significantly. Our techniques provide guidelines for 1) employing defect predic-

tion using remote information sources when local data are not available, 2) increasing

prediction performances using local information sources.
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ÖZET

DAHİLİ VE HARİCİ BİLGİ KAYNAKLARI İLE YAZILIM

HATA TAHMİNİ PERFORMANSININ İYİLEŞTİRİLMESİ

Bu tezde, yazılım hata tahmini probleminin, yazılım karakteristiklerinin statik

kod ölçütleriyle temsil edildiği ve hata tahmin modellerinin geçmiş hata kayıtlarından

öğrenildiği, veri madenciliği perspektifinden analizi yapılmıştır. Hata tahmin model-

leri oluşturmak için uygulanan veri madenciliği metodlarının, statik kod ölçütlerindeki

kısıtlı bilgi içeriğinden dolayı üst performans limitlerine ulaştığı gözlemlenmiştir. Bu

sebeple, yeni ölçütler kullanmadan, verideki bilgi içeriğinin arttırılması hedeflenmiştir.

Çünkü yeni ölçütlerin toplanması ya maliyetli olmaktadır ya da her durumda mümkün

olmamaktadır. Veri madenciliği metodları bilgi içeriği açısından zengin veriler ile

beslenmiştir. Bu amaçla 1) veri madenciliği metodlarının varsayımları, 2) birden çok

şirketin proje verilerinin kullanılması, 3) yazılım modülleri arasındaki ilişkilerin model-

lenmesi analizleri gerçekleştirilmiştir. İlk analizde, naive Bayes metodunun ölçütlerin i)

bağımsızlığı ve ii) eşit öneme sahip oldukları varsayımları ortadan kaldırılmıştır. Daha

sonra yerel ve yabancı veriyle öğrenilen hata tahmin modelleri karşılaştırılmıştır. Son

olarak, modül ilişkilerini modellemek için çağrı grafikleri analizi yapılmıştır. Kamuya

açık endüstriyel veriler üzerinde yapılan analiz sonucunda: 1) naive Bayes varsayımlarının

ortadan kaldırılmasının hata tahmini performansını arttırabildiği, 2) yabancı veril-

erle öğrenilen hata tahmini modellerinin hata yakalama kapasitelerinin -fazla yanlış

alarm maliyetiyle- çok yüksek olduğu; ancak bu maliyetin önerilen süzme tekniğiyle

ortadan kaldırılabildiği, 3) önerilen ilişki modeli ile yanlış alarmların azaltılabildiği

gözlemlenmiştir. Yapılan analizler 1) yerel veri olmadiğı durumlarda yabancı veriyle

hata tahmini yapabilmek, 2) yerel verilerle tahmin performansını arttırmak açısından

yol gösterici ilkeler sağlamaktadır.
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1. INTRODUCTION

Software products play a part in our lives covering a wide spectrum including PC

applications, mobile applications, home appliances, telecommunication infrastructure,

automated production lines, mission critical space explorations, nuclear powerplant

control and so on. This was not the case in the midst of the 20th century, when

software applications were being developed by certain parties for specific tasks. As

the complexity of software systems and the interactions between increasing number

of developers have grown, the need for an engineering discipline has emerged to solve

common problems of the domain: completing projects on time, within budget with

minimum errors.

Software projects are inherently difficult to control. A landmark is the 1995

Standish group report that described a $250 billion dollar American software industry

where 31% of projects were canceled and 53% of projects incurred costs exceeding

189% of the original estimate [6]. In 2004 version of the report (see Figure 1.1), the

percentage of failed projects dropped to 18%, yet the rate of successful projects was

only 29%. These reports are important in the sense that they reflect a snapshot of the

greatest problems of software industry.

Considering the criteria of Figure 1.1, a software project needs to have two im-

portant properties in order to be classified as succeeded. The first one is that it should

be completed within schedule and budget. Most of the software projects are regarded

as challenged using this property. To satisfy the schedule constraints, every step of

the software project life-cycle should be carefully planned and employed. Moving on

to the next step requires the most possible confidence on the quality of the preceding

level. The budget constraint depends on both satisfying the schedule constraint and

the quality of the final product. Unfortunately, most software companies do not take

maintenance costs into account and try to minimize the expenses considering only the

period up to the release of the software product.
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Figure 1.1. Distribution of failed, challenged and succeeded software projects in 2004.

From [1].

The second important property of a successful software project is that the final

product should satisfy the customer expectations by conforming to their requirements.

Clearly, this is not enough for a software company to permanently hold a share in

a competitive market place. Additional functionality and originality should also be

involved. However, producing software with better and more complex functionality

does not always yield successful projects in terms of customer satisfaction due to quality

problems.

1.1. Software Quality, Testing and Defect Prediction

The key element that affects the success of a software project is the concept

of quality [7]. Ensuring to have quality standards at each step of software develop-

ment lifecycle inherently includes the satisfaction of customer expectations, schedule

constraints and the budget constraints, and brings along success.

Like every other product or service providing industry, there are two main con-

cerns of the software industry:

1. to present the highest quality products and services,

2. to achieve these at the lowest costs.
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These concerns have drawn much attention to software quality. Software quality

deals with establishing models of software development (i.e. waterfall, spiral and agile

methods), standardization of software development processes and improving these (i.e.

CMMI, ISO, IEEE Standards) [8, 9, 10, 11]. Empirical software quality research makes

use of quantitative and qualitative features referred to as software metrics. Several

metrics that are assumed to represent the characteristics of software are proposed [12,

13, 14]. Metrics enable measuring and quantifying the properties of software systems.

Quality of software is often measured by the number of defects in the final product.

Minimizing the number of defects -maximizing software quality- requires a thorough

testing of the software in question. On the other hand, testing phase requires approx-

imately 50% of the whole project schedule [15, 16]. This means testing is the most

expensive, time and resource consuming phase of the software development lifecycle.

An effective test strategy should consider minimizing the number of defects while us-

ing resources efficiently. Therefore, effective testing leads to a significant decrease in

project costs and schedules.

In 2002 IEEE Metric Panel, a group of noted researchers have agreed that [17]

fixing defects in a software product after being delivered to the customer is up to 100

times more expensive than finding and fixing it during the requirements and design

phases [18, 17]. They have also argued that up to 50% of effort is spent on avoidable

work, 80% of which comes from a small number of defects (i.e. 2̃0%) in the system.

In this sense, defect prediction models are helpful tools for guiding software test-

ing. The aim of defect prediction is to give an idea about the testing priorities, so

that either exhaustive testing is prevented or larger number of defects are detected in

shorter times. Accurate estimates of defective modules may yield decreases in testing

times and project managers may benefit from defect predictors in terms of allocating

the testing resources effectively [19]. Correctly identifying defective modules not only

yields shorter test phases but also enables earlier release of products, which is very

important in competitive markets. Shorter test phases also decrease project costs in

terms of man hours spent on the project.
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1.2. AI in Software Engineering

In many real world problems, there are lots of random factors affecting the out-

comes of a decision making process. It is usually impossible to consider all these factors

and their possible interactions. Under such uncertainty, AI methods are helpful tools

for making generalizations of past experiences in order to produce solutions for the

previously unseen instances of the problem [20]. These past experiences are extracted

from available data, which represent the characteristics of the problem.

Fundamental concepts of AI are commonly used in other disciplines for problem

solving. A hardly exhaustive list, where methods and tools inspired from machine

learning and data mining community are used, includes: image processing, face recog-

nition, robotics, multi agent systems, medicine, finance [21, 22, 23, 24, 25, 26]. Many

data mining applications deal with large amounts of data and their challenge is to re-

duce this large search spaces. On the other hand, there exist domains with very limited

amount of available data. In this case, the challenge becomes making generalizations

from limited amounts of data.

In this context, software engineering is a domain with many random factors and

relatively limited data. Nevertheless, in software domain, remarkably effective pre-

dictors for software products have been generated using data mining methods. The

success of these models seems unlikely considering all the factors involved in software

development. For example, organizations can work in different domains, have different

processes, and define or measure defects and other aspects of their product and pro-

cess in different ways. Furthermore, most organizations do not precisely define their

processes, products, measurements, etc. Nevertheless, it is true that very simple mod-

els suffice for generating approximately correct predictions for software development

time [27], and the location of software defects [28].

One candidate explanation for the strange predictability in software development

is that despite all seemingly random factors influencing software construction the net

result follows very tight statistical patterns. Other researchers have argued for similar
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results [29, 30, 31, 32, 33]. In this dissertation we also observe such patterns.

Building software defect predictors via data mining is also an inductive general-

ization over past experience. According to Mitchell’s classic model of data mining [20],

any inductive generalization explores a space of possible theories. All data miners hit

a performance ceiling effect when they cannot find additional information that better

relates software metrics with defect occurrence. What we observe from recent results is

that current research paradigm, which relied on relatively straightforward application

of machine learning tools, has reached its limits. To overcome these limits, researchers

use combinations of metric features from different artifacts of software, which we call

information sources, in order to enrich the information content in the search space.

However, these features from different sources come at a considerable collection cost

and are not available in all cases. Another way to avoid these limits is to use domain

knowledge. In this dissertation we combine the most basic type of these features, i.e.

source code measurements, with domain knowledge and we propose novel ways of in-

creasing the information content using these information sources. We especially aim at

startup or small companies that have scarce of no historical defect data. Using domain

knowledge, we show that data miners for defect prediction can easily be constructed

with limited or no data.

1.3. Contributions

The contributions of this dissertation are relevant for both academia and practice.

They will be discussed in detail in Chapter 6. Nevertheless, we provide a summary of

contributions below:

• Evaluation of model assumptions on software defect data: Prior to this disserta-

tion, all applications of machine learning models for constructing defect predictors

were, in general, straightforward use of algorithms. No study was performed to

extend these applications by investigating the model assumptions. We use naive

Bayes as a baseline method and investigate the validity of its assumptions on

software defect data.



6

• Constructing defect predictors by combining data from multiple companies: Prior

to this dissertation, no study was performed to investigate the relative merits of

using cross company or within company data for constructing defect predictors.

We make an extensive analysis to determine the conditions for using remote data

from other companies and find that it may be preferred in certain domains.

• Empirical evaluation of the common belief that local data is better for constructing

defect predictors: We compare performances of defect predictors learned from

cross company and within company data. In favor of the common belief, we

empirically show that using within company data is better for defect prediction

problem.

• Empirical evaluation of the common belief that the time required to collect local

data takes too long: We employ an incremental learning approach and compare

defect predictors learned from different amounts of local data. Contrary to the

common belief, we empirically show that the required local data for constructing

defect predictors can be easily and quickly collected within a few person-months.

• A methodology that allows companies to perform defect prediction without collect-

ing local defect logs: We use a simple filtering of cross company (CC) data to

obtain a more homogeneous subset of CC data that reflects local coding charac-

teristics. Our analysis suggests that in the absence of local data, companies can

benefit from cross company data with: high probability of detecting defective

methods, affordable false alarm rates, a minor investment, which is to use an

automated tool to collect local static code measurements.

• Modeling the interactions between software modules rather than relying on simple

counts of interactions:. We propose to use module interactions in a way that has

not been employed in defect prediction literature and practice. We use PageRank

algorithm to assign ranks to software modules, where modules correspond to web

pages and interactions correspond to hyperlinks. Our proposed method decreases

the false positive rate of defect predictors significantly, while detecting the same

number of defects with standard approach.

• Donation of new industrial datasets to public repositories: We have collected

data from Turkish industry and made it publicly available for the use of other

researchers and practitioners. This is an important contribution in the field of
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software quality where industrial defect data are difficult to obtain.

• Prest: An open source software metric collection and defect analysis tool: With

contributions of other SOFTLAB researchers, we have developed an open source

tool, named Prest, to collect and analyze data from our industrial partners.

Though there are commercial products for the same purpose, Prest is the only

free tool with a capability of extracting more than 40 static code features from

C, C++, Java and Jsp codes. It also has an analysis module currently including

naive Bayes and decision tree data miners.

1.4. Organization

This dissertation is organized as follows: In Chapter 2, we provide the necessary

background on software metrics and defect prediction. We discuss the related work

together with the motivational background of the study and present our research ques-

tions in Chapter 3. Chapter 4 describes the data mining methods, data used in our

analysis and the measures for assessing performance in detail. A set of six experiments

that are designed to answer the research questions are carried on in Chapter 5. In

Chapter 6, we conclude our research, summarize the results of the experiments, give

answers to the research questions and point future research directions.
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2. BACKGROUND

This chapter is reserved for the necessary background to describe the approaches

used to solve the defect prediction problem. We will first describe software metrics,

which provide the characteristics of software projects in qualitative and quantitative

forms. Then, we describe the software defect prediction problem and give details on

the commonly used approaches.

2.1. Background on Software Metrics

As in any machine learning problem, software defect prediction models require

a set of features (i.e. independent variables) to characterize the problem and to give

an estimation on the defect proneness of the system (i.e. dependent variable). In

software quality, these attributes are referred to as software metrics. Metrics are the

attributes that represent software; they are the raw data for software domain. An

effective management of any software development process requires monitoring and

analysis of software metrics. Sequential measurements of quality attributes of software

and also processes can provide an effective foundation for initiating and managing

process improvement activities [34].

Considering the software defect prediction problem, defect predictors have been

successfully learned from product and process metrics. While product metrics are

derived from the software product itself, process metrics are derived from the processes

that yield the product. Although we only use product metrics in this dissertation, we

will provide brief information about process metrics for the sake of completeness.

In the following sections we give details about types of software metrics relevant

to this dissertation.
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2.1.1. Static Code Features

Static code features are the most basic type of software metrics that are directly

extracted from source code. They give indications about the size and the complexity

of the implemented code. As a quality indicator, static code features can only be used

at later stages of software development (i.e. implementation), since they require source

code to be available. However, analysis of static code metrics is crucial for ensuring

the quality of later stages, i.e. testing and maintenance, which are the most resource

consuming stages of software development lifecycle [15, 16].

Static code features can be organized into three main categories and each category

of metrics uses a different perspective to estimate the complexity of the code. The first

category is based on simple line counts of source code and referred to as line of code

(LOC) metrics. Other two categories are the McCabe [12] and Halstead [13] metrics,

which are more complex than LOC metrics. They give estimates about the code

complexity based on program flow and readability of the code, respectively. We leave

a critical discussion on static code features to Section 3.2 and describe these metrics

in detail in the next section.

2.1.1.1. Line of Code (LOC) Metrics. LOC metrics are the simplest measures that

can be extracted from source code. These include, but are not limited to:

• Total Lines of Code: It is a simple count metric, where one line equals one count.

It is assumed that longer codes indicates more complexity, hence are more defect-

prone.

• Blank lines of code: It is a count of blank lines in source code. It can be used as

a measure of compliance to programming standards.

• Lines of Commented Code: It is a count of code comments and can be useful for

estimating the maintainability and readability of source code. Comments usually

exist in block forms before the actual implementation of methods, providing a

generic description.
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Table 2.1. Sample Source Code

void main()

{ //This is a sample code

int a, b, c;

a = 2; b = 5; //M1

//Find the sum and display c if greater than zero

c = sum(a, b); //M2

if c > 0 //M3

printf(%d\n, c); //M4

return; //M5

}

int sum(int a, int b)

{ // Returns the sum of two numbers

int c;

c = a + b;

return c;

}

• Line of Code and Comment: It is a count of code lines that include both ex-

ecutable statements and comments. This kind of comments allows developers

to understand what that line is supposed to do, rather than providing a generic

description of the functionality as in block comments.

• Line of Executable Code: It is a count of the actual code statements that are

executable (i.e. total lines of code after the blank and commented lines are

ignored)

For the main method of the sample code given in Table 2.1, there are a total of

13 lines of code with three blank lines. Seven lines include comments, five of which

have both code and comments. Executable code line count is six.

2.1.1.2. McCabe Metrics. Introduced in 1976 by Thomas McCabe, the idea behind

McCabe metrics is to capture the structural complexity level of a code [12]. The as-

sumption is that it is more likely for the number of defects to increase as the source code
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gets more complex. McCabe metrics include cyclomatic complexity, design complexity

and essential complexity. McCabe argued that the complexity of pathways between

module symbols are more insightful than just a count of the symbols [12].

Figure 2.1. Flowgraphs and McCabe metrics for the main method of sample code.

In order to calculate McCabe metrics, flow graphs should be generated. A flow

graph is a directed graph G where each node corresponds to a program statement,

and each arc indicates the flow of control from one statement to another. Then the

cyclomatic complexity of a module is

v(G) = e− n+ 2 (2.1)

where G is a program’s flow graph, e is the number of arcs in the flow graph, and n is

the number of nodes in the flow graph [35].

Cyclomatic complexity measures the number of linearly independent paths of

a program execution. For example, if there is no branching in a module (i.e. no

conditional statements such as if, while), then the corresponding cyclomatic complexity

is 1. Because in this case e = n − 1 and v(G) = −1 + 2 = 1. Further, if there is only

one branching, then there are two possible paths that the program can execute, hence

its cyclomatic complexity is 2.
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Although, high cyclomatic complexity by itself does not necessarily mean that a

module has high risk, there is a certain consensus among researchers and practitioners

on the thresholds of this metric. For example, NASA Independent Validation and

Verification (IV&V) activities use this metric for prioritizing the test order [36]. In

general, a module with cyclomatic complexity greater than 10 is considered as a high

risk module.

Other types of McCabe metrics are derived from cyclomatic complexity.

• The essential complexity, (ev(G)) of a module is the cyclomatic complexity of the

reduced program flow graph where the structured paths are removed. Therefore,

it is a measure of unstructured constructs in a module.

• The design complexity (iv(G)) of a module is the cyclomatic complexity of the

reduced program flow graph, where the paths that do not include a call to another

module are removed. Therefore, it is a measure of module’s interactions with

other modules.

Figure 2.1 shows an example of Table 2.1 main method’s flowgraphs and corre-

sponding McCabe metrics.

2.1.1.3. Halstead Metrics. Halstead metrics were derived by Maurice Halstead in 1977,

who argued that the harder the code to read, the more defect prone the modules are [13].

While McCabe metrics are measures of structural complexity, Halstead metrics are

measures of lexical complexity. Halstead metrics include four basic metrics, which are

the:

• N1: total number of operators,

• N2: total number of operands,

• n1: unique number of operators (min(n1) = 2),

• n2: unique number of operands (min(n2) : numberofmoduleparameters).
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These basic Halstead metrics are then used to compute the derived Halstead features:

• Length: N = N1 +N2

• Vocabulary: C = n1 + n2

• Volume: V = N ∗ logC

• Level: L = 2
n1
∗ n2

N2

• Difficulty: D = 1/L

• Content: I = L ∗ V

• Effort: E = V ∗D

• ProgramTime (seconds): T = E/18

For the example in Table 2.1, these metrics are: N1 = 4, N2 = 8, n1 = 2, n2 = 3,

N = 12, C = 5, V = 12 log 5, L = 3
8
, D = 8

3
, I = 9

2
log 5, E = 32 log 5, T = 16

9
log 5,

2.1.2. Other Types of Metrics

2.1.2.1. Object Oriented Design Metrics. After the object-oriented software develop-

ment paradigm became popular, a lot of research has been dedicated to finding appro-

priate metrics especially for object-oriented design [37], [14], [38]. The idea is again to

capture the complexity level of a software by inspecting within module and between

module relations. Naturally, these metrics only apply to software developed with an

object oriented language. These metrics are explained below.

• WMC (Weighted Methods per Class): In a simple framework where all methods

in a class are considered to be equally complex, this metric is equal to the number

of methods in a class.

• DIT (Depth of Inheritance Tree): This metric is defined as the maximum depth

of inheritance graph of each class.

• NOC (Number of Children of a Class): This metric is equal to the number of

direct descendants of a class for each class.

• CBO (Coupling between Object Classes): A class is considered to be coupled

to another class if it uses methods and/or instance variables of that other class.
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CBO counts the number of couplings between classes.

• RFC (Response for a Class): This metric quantifies the number of methods that

can be executed for a message received by an object of a class.

• LCOM (Lack of Cohesion in Methods): This metric is equal to the number of

pairs of methods of a class that share instance variables, subtracted from pairs

of methods of the same class that do not share instance variables. This value is

taken to be zero whenever the above operation results in nonnegative values.

2.1.2.2. Code churn/ History Metrics. Code churn metrics basically represent the change

in source code during the implementation phase. Large scale software development typ-

ically involves the use of versioning systems such as Subversion (SVN)1 and Concurrent

Versions System (CVS).2 In versioning systems, developers share a common repository

of source code, so that they can work on different parts (in some cases on the same

parts) of the code simultaneously. Considering the difficulty of communication and

coordination issues, an increased risk factor is introduced with the number of different

developers working on the same code. Furthermore, editing an existing code, by itself,

introduces risk factors by adding, removing or modifying functionalities.

Code churn metrics are helpful for assessing the risk factor by measuring the

degree of change in source code. Versioning systems usually provide a comparison tool

between different versions of the committed code. Simply, these tools provide metrics

such as:

• added lines of code

• deleted lines of code

• modified lines of code

• age of the code

• status of the code (i.e. new, changed, unchanged)

• number of changes made on the code(i.e. commit count)

• number of distinct developers who worked on the code

1http://subversion.tigris.org
2http://www.cvshome.org
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• whether the code is modified by a developer, who has not created it

• whether a developer is working on that code for the first time

2.1.2.3. Developer Metrics. Additional information regarding the developers may also

be helpful for determining the risk factor. Developers, who commit their code to the

repository with unique ID’s, may not necessarily have the same overall experience in

software development or in the development of a specific software. While subjective

measures of experience, developers’ experiences are usually represented with their ed-

ucational background, the number of years in profession or whether they have been

involved in the development of a specific kind of software (i.e. the application domain:

embedded, mission critical, pervasive, web application etc.). It is expected that an

“experienced” developer introduces relatively less defects to the code than an “inexpe-

rienced” one.

2.1.2.4. Call Graphs. Module interactions play an important role in defect proneness

of a given code [39]. Call graphs (or dependency graphs) can be used in tracing the

software code module by module. Specifically, each node in the call graph represents

a module and each edge (a, b) indicates that module a calls module b. Call graphs

can be used to better understand the program behavior, i.e. the control flow between

modules. Another advantage is locating procedures that are rarely or frequently called.

Figure 2.2. A sample architecture showing module interaction.
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Table 2.2. Call graph matrix for the sample.

Caller/ Calee A B C D E

A 0 1 1 0 1

B 0 0 1 0 0

C 1 0 0 0 0

D 0 0 1 0 0

E 0 0 0 0 0

An N × N matrix is constructed for building module level binary call graphs,

where N is the number of modules. In this matrix, rows contain the information

whether a module calls the others or not, which are represented by 1 and 0 respectively.

Columns contain how many times a module is called by other modules. Table 2.2 shows

an example call graph matrix for the sample module interactions in Figure 2.2.

In Table 2.2, module A calls three other modules, which are modules B, C and

E. The first row in Table 2.2 shows the modules that are called by module A. These

calls are represented with 1. In addition, if we look at the first column in Table 2.2,

we observe that module A is only called from module C. Also module D is dead code

unless it is a main routine, since it is not called from any other modules. Module C

is the most critical one, since it is commonly used by other modules and any defect in

module C can propogate into other modules.

2.2. Background on Defect Prediction

2.2.1. Defects

Before explaining defect prediction, we should first define what we are trying to

predict: ‘defect’. Unfortunately, the perception of what a defect is varies in different

contexts. For example, bug databases of open source projects contain many user re-

ported entries that request for bug corrections, however their quality is questionable

[40]. These requests are frequently considered as feature requests or design decision
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manifestations by the developers of those systems. That means what one stakeholder

considers as a defect may not necessarily be perceived as the same by other stakehold-

ers.

The severity of defects may also cause different interpretations. Let us consider

two cases where there are problems in the core functions of a billing system (i.e. mis-

calculations) and in the user interface of the system (i.e. wrong background color of

a screen). In one point of view, both should be considered as defects since both are

nonconformance to the requirements. On the other hand, the quality engineer of the

system is likely to demand the detection of the defect in the core function rather than

the user interface problem.

Accordingly, Nagappan & Ball make a contextual classification of software sys-

tems: zero-defect tolerant (i.e. safety and mission critical systems), low defect tol-

erant (i.e. operating systems) and high-defect tolerant (non-critical user applica-

tions) [41, 42]. In defect prediction perspective, a defect is defined by the context

of the software system, considering what practitioners want to predict.

2.2.2. Defect Predictors

A defect predictor is a tool or method that guides testing activities. According

to Brooks [43], half the cost of software development is in unit and systems testing.

Harold and Tahat also confirm that testing phase requires approximately 50% of the

whole project schedule [15, 16]. Therefore, the main challenge is the testing phase and

practitioners seek predictors that indicate where the defects might exist before they

start testing. This allows them to efficiently allocate their scarce resources. Defect

predictors are used to make an ordering of modules to be inspected by verification and

validation teams:

• In the case where there are insufficient resources to inspect all code (which is a

very common situation in industrial developments), defect predictors can be used

to increase the chances that the inspected code will have defects.
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• In the case where all the code is to be inspected, but that inspection process will

take weeks to months to complete, defect predictors can be used to increase the

chances that defective modules will be inspected earlier. This is useful since it

gives the development team earlier notification of what modules require rework,

hence giving them more time to complete that rework prior to delivery.

2.2.2.1. Types of Defect Predictors. Application of defect predictors may vary de-

pending on the context. One view is to focus on whether a module is defective or

not and not to consider the number of defects in a module. The conceptual basis

for this view is the idea that a potentially defective module has to be inspected no

matter how many defects reside in it. This kind of application of defect predictors is

suitable for domains such as mission critical, health-care, embedded and telecommu-

nication infrastructure. Any defects in the final products of these domains may cause

safety related issues (i.e. mission critical, health-care), yield great costs to update the

software (embedded) or interrupt the availability of service (i.e. telecommunication

infrastructure).

Other application type of defect predictors deals with estimating the number of

defects at parts of software. This provides a test order for testing personnel to inspect

as many defects as possible in the shortest amount of time.

The first application type handles defect prediction as a classification problem,

whereas the second type handles it as a regression problem. For both types, the gran-

ularity level of predictions may vary depending on the availability of data: predictions

can be made in module, class, file, binary file, package, component levels. However,

classification type is usually preferred in fine-grained systems (i.e. module, class, file),

whereas regression type is used in other systems (i.e. file, package, component) [44]. In

this dissertation, we employ the first application type (i.e. classification) on the module

level for reasons to become clear in Section 3.1 and Section 3.2, also considering the

available data we use in our analysis (See Section 4.2).
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void main() 

{  //This is a sample code 

 int a, b, c; 

 a=2; b=5; 

 //Find the sum and display c if greater than zero  
 c=sum(a,b); 

 if c < 0 
  printf(“%d\n”, a); 

 return; 
} 

int sum(int a, int b) 

{  // Returns the sum of two numbers 
 int c; 

 c = a + b; 
 return c; 

} 

Module LOC LOCC V CC Error 

main() 13 2 6 2 2 

sum() 7 1 5 1 0 

LOC: Line of Code 

LOCC: Line of commented Code 
V: Number of unique operands&operators 

CC: Cylometric Complexity 

 c > 0 

c 

Figure 2.3. A sample transformation from source code to quantitative defect

prediction data.

2.2.2.2. Defect Prediction as a Classification Problem. Software defect prediction can

be viewed as a supervised binary classification problem. Software modules are repre-

sented with software metrics, and are labelled as either defective or non-defective. To

learn defect predictors, data tables of historical examples are formed where one col-

umn has a boolean value for “defects detected” (i.e. dependent variable) and the other

columns describe software characteristics in terms of software metrics (i.e. independent

variables).

An example is provided in Figure 2.3. In this example, two errors are introduced

in the if and printf statements of Table 2.1 on purpose. The sample code is supposed

to display variable c if it is greater than zero. However, implemented code displays

variable a if c is less than zero. Each row in the right hand side table of Figure 2.3

stores data from one“module” (i.e. main and sum). In this example we show only four

metrics for simplicity. Construction of such data tables, except the “Error” column,

can be easily and quickly done by metric extraction tools [45]. The“Error” column or
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the class label should be matched to corresponding modules after an examination of

defect logs. Our experiences show that it is difficult (sometimes impossible) to do this

matching, since defect logs are hard to obtain and understand, or do not exist.

After these data tables are constructed, the data mining task is to find com-

binations of features that predict for the value in the defects column. Once such

combinations are found, managers can use them to determine where to best focus their

testing effort. Better yet, if they have already focused their testing effort on the most

critical portions of the system, the detectors can guide them towards modules that

need the most attention. This type of data miners do not predict the total number of

defects, just the number of modules containing more than zero defects.
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3. RELATED WORK AND DISCUSSIONS

Body of research on defect prediction can be considered to aim at two main

goals. These goals are not mutually exclusive, yet there is a gray area between them

that makes it difficult to categorize individual studies in either one. These goals are:

• to understand the characteristics of defects and their relation with software met-

rics

• to build better defect predictors in practice.

Research aiming at the former goal inherently includes the latter, however re-

search aiming at the latter one is not necessarily involved with the former one.

3.1. Defect Prediction Studies

Considering the first goal, Fenton and Ohlson made an extensive analysis of

defects in two releases of a commercial product using product metrics [46]. They

investigated: the defect distribution on software modules, the relation between pre-

release and post-release defects, the effect of size and complexity on defect proneness

and finally the stability of defect density among releases. They report that most of

the defects reside in a small number of modules (i.e. Pareto principle [47]). The same

fault distribution has been observed by Ostrand, Weyuker and Bell in very large scale

telecommunication projects from AT&T [29, 30, 31, 32]. Furthermore, the defect trends

in Eclipse also follow similar patterns, where they are explained better by a Weibull

distribution [48].

Fenton and Ohlson found that pre-release defects are not good predictors of post-

release defects. They also report that they have found no evidence regarding the

relation between defects and the size/ complexity of the modules and they observe

similar defect densities in the two versions. Their study is replicated by Andersson and

Runeson in order to verify/ refute Fenton and Ohlson’s findings in three products of a
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different domain [49]. While Andersson and Runeson’s results conversely found support

that pre-release and post-release defects are correlated, their replication confirmed the

results of Fenton and Ohlson on other issues.

Koru and Tian, in their analysis of two IBM and four Nortel Networks products,

also report that most defect prone modules are not necessarily the ones with the highest

complexity measures [50]. On the other hand, Koru and Liu’s further research on

open source Mozilla project strongly argues that smaller modules are more defect-

prone than larger modules, whereas Fenton and Ohlson find limited support for this

hypothesis [51]. Further, in their analysis of a NASA project, Koru and Liu reports

that averaging metrics at a higher granularity level (i.e. class level rather than module

level) yields better prediction results [52]. However, this observation is based on a

single project due to limited data availability. A discussion of granularity levels will be

detailed later on this section.

Ratzinger et.al. investigates the relation between refactorings and defects in

open source software [53]. They conclude that refactorings and defects have inverse

correlation, that is refactored modules are less defect prone. This is somehow expected,

considering that refactoring is a technique for decreasing the complexity of software

modules and defects are likely to be introduced as the code gets more complex.

Ohlsson and Alberg developed tools for extracting design metrics from design doc-

uments of Ericsson telephone switches and their predictor detected 47% of the defects

in 20% of all modules [54]. The importance of this model lies in its applicability before

the implementation phase. Considering object oriented design metrics introduced by

Chidamber and Kemerer [14], different studies performed experiments to validate their

use [55, 56, 57, 58]. Subramanyam and Krishnan found them useful cautioning that

the predictive power of these metrics vary in different programming languages [56].

However, El Emam et. al. argued that when the effect of class size is also considered,

only 4 of these metrics are related with defects and just two of them are useful for

building predictors [57].
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Figure 3.1. Defect predictor performances with requirement metrics, static code

features and their combinations. From [2].

Further, Jiang et al. compared the predictor performances that are learned from

design metrics, static code features and both on 13 NASA projects, concluding that

combination of these metrics are able to predict more accurately than their individual

use [59]. Same conclusion is also achieved by Zhao et.al in their analysis of a real time

telecommunication system [60].

Jiang et.al. have further explored combining static code measures with other

measures that a particular domain may contain. For example, at ISSRE 2007 [2], they

reported experiments on NASA projects, where static code measures were combined

with requirement metrics that were extracted from requirement documents with a text

miner. They report that how a remarkable improvement in learner performance was

achieved by applying combinations of requirements and code features (see Figure 3.1).

Fenton et.al use Bayseian Belief Networks to model the causal relationships be-

tween the defects and a set of qualitative and quantitative features [47, 61]. They

report high accuracies (e.g. R2 = 0.9311), however their data collection procedure is

challenging. They perform surveys to collect data and to build the causal model, which

turns out to be company specific and requires a lot work to reproduce in other com-

panies. For example, another study that constructs Bayesian Belief Networks, merges
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both software and hardware development of embedded system [62]. They mainly re-

construct Bayesian Network of Fenton et al. and modify it by using embedded software

development lifecycle. The results of embedded and general model indicate that it is

necessary to use an embedded model for practical use.

Brook’s argument on the effects of organizational factors on software quality

is empirically investigated by Nagappan et.al. on Microsoft Windows Vista prod-

uct [43, 63]. Along with complexity metrics, they propose to use a set of features that

reflects the organizational complexity that leads to the software product. Their results

imply that organizational factors have better predictive power than complexity met-

rics in case the organization have at least 30 engineers with a minimum three levels of

organizational hierarchy. [63, 64, 65].

In another study, Nagappan et.al. also analyze the relation between code churn

metrics and post-release defects in another Microsoft software [41]. They conclude

that relative code churns are good predictors for post-release defects. In further stud-

ies they investigate many sources of information such as static code features, code

churn, dependency graphs, developers experience, organizational structure, assertions

and their combinations [64, 66]. For example Zimmermann and Nagappan report a

10% increase in detection performance when metrics derived from dependency graphs

are used rather than static code features. Further, Kudrjavets et.al. report an inverse

correlation between assertions in code and defect density [67].

Graves et. al. argue that change history metrics are better predictors of defects

than their size [68]. Supporting this claim, Arisholm and Briand report that code

history metrics are paramount for better prediction performance especially for systems

that are under continuous development [69]. They compare both approaches in a Java

legacy system using step-wise logistic regression, and show that the testing efforts

significantly decreases history data are used while pure code metrics does not improve

the testing effort. A cost sensitive analysis is performed by Moser et.al., who also

concluded in favor of change metrics compared to static code features. However, they

also report the detection performance increases when both type of metrics are used in
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combination [44]. Their proposed model is to use change metrics at first and then to

include static code features to improve performance if needed.

Ostrand, Weyuker and Bell occasionally investigate multi-release AT&T soft-

ware using static code metrics, history metrics, developer metrics and their combina-

tions [29, 30, 31, 32, 70]. Their goal is to identify and prioritize the top 20% of all

files containing the most number of defects. Their negative binomial model is able

to identify 80% of the defects in 20% of files. Their observations are similar to other

reported results: combining static code metrics with history data improves the predic-

tion performance significantly. However, they recently report that adding information

about individual developers metrics does not improve the performance of their negative

binomial model significantly [71]. Mockus and Weiss perform a similar analysis on a

large telecommunication system using a different set of developer metrics and reach to

the conclusion that more experienced developers introduce less defects[72]. Weyuker

et.al. also investigates recursive partitioning in defect data, reporting up to 85% defects

detected in 20% of the files [70].

Considering history metrics, our experiences in constructing file level defect pre-

dictors are inline with these research [73]. We have used file level aggregated3 static

code metrics of a large (i.e. 750.000 LOC), multi version telecommunication infras-

tructure software for defect prediction. As shown in Table 3.1 the detection rates are

above 80%, yet the false alarms are also above 50%, which makes this detector imprac-

tical in that form. However, most of these false alarms are associated with files that

are not changed for a long time. If history metrics were to be used, these false alarms

were to be reduced with the prior knowledge that the corresponding files are defect-free

and have not been changed. On the other hand, using this prior knowledge would not

affect the detection rates. Nevertheless, static code features are useful at the module

level as to be shown in Chapter 5 and should better be used together with different

types of features in other granularity levels. Another reason for the high false alarms

of Table 3.1 is that aggregated measurements lose information by summarizing. Since

3static code metrics from modules are aggregated by the minimum, maximum, sum and average
measurements of modules in a file.
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Table 3.1. File level predictors for four versions of a multi release telecommunication

software using static code features only.

v.2.32 v.2.33 v.2.34 v.2.35

Detection Rate 80% 80% 67% 100%

False Alarm Rate 59% 64% 44% 35%

Table 3.1 projects are very large scale and data miners need larger amounts of data

to learn effective predictors, summarizing information is not effective, at least in the

beginning. However, once enough data are collected, static code features by themselves

can yield better performances. This can be observed in the 100% detection and 35%

false alarm rate for the last version(i.e. v.2.35) where data from all previous three

versions are used to construct that predictor.

Researchers on defect prediction have used various machine learning techniques

such as linear regression, discriminant analysis, decision trees, neural networks and

naive Bayes. Munson and Khoshgoftaar investigate linear regression models and dis-

criminant analysis to conclude the performance of the latter is better [74]. Bullard

et.al employ a rule based classification model in a telecommunication system and re-

port that their model produces lower false positives, which are considered as high cost

classification errors [75]. Khoshgoftaar and Gao propose a multi-strategy classifier for

embedded software, which cascades a rule based approach with two case-based learning

schemes for the same purpose [76]. A cascading classifiers approach is also performed

by Tosun et.al., where they report decreased testing efforts on embedded software.

Specialized prediction models for embedded systems are also investigated by Khos-

ghoftaar et al., where they built a classification and regression tree for predicting high

risk software modules in telecommunications system software [77]. They also investi-

gate genetic programming approaches to optimize multiple objectives for minimizing

the false positives while maximizing the number of detected defects. They present the

applicability of their model on a real life industrial software.

Nagappan et.al. also uses linear regression analysis with the STREW metric

suite [78]. This suite of metrics are extracted from the testing process and are used
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to estimate the post-release defects. They validate their approach on industrial, open

source and student projects and find strong correlations between the proposed metric

suite and post-release defects. On open source software, Denaro and Pezze analyzed

Apache using logistic regression with static code features and their 80% prediction

performance pointed 50% of the modules to be inspected [79].

Nevertheless, In January 2007, Menzies et.al. published a study [28] that defined a

repeatable experiment in learning defect predictors. The intent of that work was to offer

a benchmark in defect prediction that other researchers could repeat/ improve/ refute.

Surprisingly, very simple Bayes classifiers (with a simple logarithm pre-processor for the

numerics) outperformed the other studied methods. They have later tried to find better

data mining algorithms for defect prediction. The experiments that have found no

additional statistically significant improvement from the application of the further data

mining methods include: logistic regression, average one-dependence estimators [80],

under- or over-sampling [81], random forests [82], RIPPER [83], J48 [84], OneR [85],

Bagging [86] and Boosting [87].

Lessmann et. al. also investigated this issue and in a very recent paper in IEEE

TSE, he reported no statistical difference between the results of 19 learners, including

naive Bayes, on the same datasets [3]. Figure 3.2 shows that the simple Bayesian

method discussed above ties in first place along with 15 other methods.

In summary, a general overview of defect prediction literature suggests the fol-

lowing:

• Different sets of software metrics are used to characterize the problem. However,

there is not an agreement on a universal metric set. Defect predictors are con-

structed with whatever data are available. Combining different sets of metrics,

i.e. combining different information sources improves the performance of defect

predictors.

• Similarly, straightforward applications of data mining methods are usually used

to approach the problem. However, there is not a consensus on which method is
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Figure 3.2. All the methods whose top ranks are 4 to 12 are statistically

insignificantly different. From [3].

better. Latest results suggest that the selection of the method is not so important.

• All previous studies assume the existence of local defect data, and construct defect

predictors accordingly. There are no studies investigating the problem in case of

no defect data.

• There is not an analysis regarding the minimum amount of data required for

constructing defect predictors.

• All studies assess the defect proneness of modules independently. Although some

research include inter-module measurements, none of them models these interac-

tions.

Considering these observations, we focus on increasing the information content

in metric data. In doing so, we use the most basic type of metric, i.e. static code

features, and we show how their information content can be increased in a novel way.

Further, our proposed method does not require local defect data to be available. We

also investigate the minimum amount of data required for constructing local defect

predictors, when local defect data are available. In order to explore these issues in
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detail, we will first discuss the value of static code features, then the value of additional

information sources for increasing the information content in data. We will provide

further evidence regarding that performance increase in defect predictors based on

static code features will not come from application of different algorithms due to their

limited information content. Before stating our research questions, we will explore

using data from multiple companies.

3.2. On the value of Static Code Features

In this dissertation, we focus on defect predictors based on static code features

only. Therefore, we provide a discussion in this section for the justification of our

approach.

In theory, defect predictors based on static code features are not useful. As

Fenton suggests, the same functionality can be achieved using different programming

language constructs resulting in different static measurements for that module [88].

Fenton uses this example to argue the uselessness of static code attributes. Further,

Fenton & Pfleeger note that the main McCabe’s attribute (cyclomatic complexity, or

v(g)) is highly correlated with lines of code [35]. Shepperd & Ince repeated that result,

commenting that [89].

for a large class of software it (cyclomatic complexity) is no more than a proxy
for, and in many cases outperformed by, lines of code

There are, indeed, many reasons to doubt the value of static code attributes for

defect prediction. In their discussion on the difficulties of software process research,

Basili and Shull state that

It is clear that there are many sources of variation between one development
context to another.

Accordingly, descriptions of software modules only in terms of static code attributes can

overlook some important aspects of software including the type of application domain;
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the skill level of the individual programmers involved in system development; contractor

development practices; the variation in measurement practices; and the validation of

the measurements and instruments used to collect the data. For this reason some

researchers augment or replace static code features with other information sources

such as the history of past faults or changes to code or number of developers who have

worked on the code [68].

However, in practice, static code features are quite effective. If the above criti-

cisms are correct then we would expect that, in general, the performance of a predictor

learned by a data miner should be very poor. More specifically, the supposedly better

static code attributes such as Halstead and Mccabe should perform no better than just

simple thresholds on lines of code. However, many studies [90, 28, 91, 92, 93, 94, 95, 96,

97, 2, 98, 99], report performance results much higher than known industrial averages

for manual defect detection [100, 101]. Bhat and Nagappan also acknowledges that

static code features are useful as early indicators of software quality based on their

analysis of Microsoft Windows code base [102]. The defect predictors learned from

static code attributes perform surprisingly well.

Menzies et.al. compare their results against standard binary prediction results

from the UC Irvine machine learning repository of standard test sets for data min-

ers [103]. Their performance measures turn out to be very close to the standard results

on this repository which, they say, is noteworthy in two ways:

It is unexpected. If static code attributes capture so little about source code
(as argued by Shepherd, Ince, Fenton and Pfleeger), then we would expect lower
probabilities of detection and much higher false alarm rates.

• Their results are better than currently used industrial methods such as the 60%

detection rates reported at the 2002 IEEE Metrics panel or the median detection

rates varying from 21% to 50% reported by Raffo[28]

Considering the pros and cons, we study defect predictors learned from static code

attributes since they are useful, easy to use, and widely-used.
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Useful: Defect predictors are considered useful, if they provide a prediction per-

formance that is comparable or better than manual reviews [44]. Further, defect pre-

dictors based on static code featuras are considered as static analysis, since they do not

require the execution of code. Zheng et.al. compare automated static analysis (ASA)

with manual inspections on Nortel software and conclude that [104]

our results indicate that ASA is an economical complement to other verifica-
tion and validation techniques.

Easy to use: Employing defect predictors in practice should not take too much

time for data collection and constructing the models themselves [44]. An advantage of

static code features is that they can be quickly and automatically collected from the

source code, even if no other information is available. Static code attributes like lines of

code and the McCabe/Halstead attributes can be automatically and cheaply collected,

even for very large systems [42]. By contrast, other methods such as manual code

reviews are labor-intensive; e.g. 8 to 20 LOC/minute can be inspected and this effort

repeats for all members of the review team, which can be as large as four or six [105].

Furthermore, other features (e.g. number of developers, the software development

practices used to develop the code) may be unavailable or hard to characterize.

Widely used: Many researchers use static features to guide software quality pre-

dictions (see [13, 12, 106, 91, 107, 108, 109, 42, 110, 111, 112, 113, 114, 97, 94, 93, 115,

116, 117, 118]). Verification and validation (V&V) textbooks ([119]) advise using static

code features to select modules worthy of manual inspections. Menzies reports4 that

during his studies on-site at the NASA software Independent Verification and Valida-

tion facility, he has witnessed several large government software contractors that won’t

review software modules unless tools like McCabe predict that they are fault prone. He

also acknowledges of two briefings he has attended with NASA and European Space

Agency test engineers, who both cited McCabe’s v(g) ≥ 10 as one of their triggers

for modules requiring closer inspections. Further, major software related companies

including NASA, Microsoft, AT&T, IBM, HP, Nortel Networks use static code features

4Personal communication
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as a factor in guiding their software quality efforts.

We take great care not to demand defect prediction should always be based either

on static code features or other types of features. The “best” set of features may change

from project to project [28, 120]. More pragmatically, we note that different projects

use different tools and build software. Here, we identify a particular type of feature

(i.e. static code features) which we can collect from multiple projects. With that data

in hand, we will explore our research questions. For future work, we would repeat this

analysis with other kinds of features, if and when they become available from multiple

projects.

3.3. On Additional Information Sources

A closer look in the studies that are explained in Section 3.1 reveals an important

observation. All studies include some basic features and augment the data with other

information sources such as code churn, dependency graphs, developer information,

requirement metrics when possible. Moreover, they report improved results whenever

multiple information sources are combined.

The attempts to combine multiple information sources should not necessarily

interpreted as “always augment some kind of feature with some other kind of feature”.

This is impractical, since not all domains allow data mining specialists access to source

code and the processes that produced them. Furthermore, different projects have access

to different sets of features which may be useful for predicting where defects hide; for

example:

• An open source software (OSS) or agile development process may have no access

to the detailed requirement documents used to build model by Jiang et.al. [2];

• Public project data from NASA sub-contractors report neither the personnel

information used by Nagappan et.al. [121] nor the code churn history used by

Ostrand et.al. [32]
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However, it is not surprising to observe that combining multiple sources of in-

formation increases the performance of data miners. Providing additional information

to data miners is expected to increase their performance. Results from data mining

literature are analogous to these observations in defect prediction literature. For exam-

ple, in the JMLR special issue on feature selection, Guyon and Elisseeff provide simple

examples showing that the information content of data can be significantly increased

when features are used together rather than individually [122].

In the context of this dissertation, we would re-express these examples as:

• Using features from different information sources, e.g. requirements and source

code, can significantly increase the information content of SE data.

• Software Engineering domain should make use of domain specific knowledge

(when possible) to differentiate from general data mining tasks.

Our goal in this dissertation is also to increase the information content in data,

yet in a previously unexplored way. Before detailing our approach, in the rest of this

section, we provide more evidence from literature and perform a small experiment, both

suggesting that improvements will not come from application of different algorithms.

3.4. To Improve the Algorithms or to Improve Data?

As documented in Section 3.1, the current state of the art in learning defect

predictors is curiously static. Better results have not been forthcoming, despite the

application of supposedly better data miners. Considering all the failed efforts to im-

prove the benchmark results by Menzies et. al. [28], these failed attempts to improve

defect prediction performance require an explanation. One explanation is that explor-

ing better algorithms may not be productive. Reported results in defect prediction

literature suggest that further progress in learning defect predictors may not come

from application of different algorithms.

After a careful study of 19 data miners for learning defect predictors, Lessmann
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et.al. [3] conclude

the importance of the classification model is less than generally assumed and
that practitioners are free to choose from a broad set of candidate models when
building defect predictors.

If different types of algorithms are not useful for increasing the performance of

data miners, perhaps it is time to better understand the training data. Further, we need

to improve the information content of the training data that are fed to these algorithms.

Accordingly, in this dissertation, instead of searching for better data miners we search

for better training data.

In this context, Menzies et.al. further report over and under sampling experi-

ments in order to check whether the performance of defect predictors can be increased

by sampling methods due to their possible bias from the unbalanced nature of de-

fect data. Over- and under-sampling [81, 123] are examples of more controlled sub-

sampling methods than random sampling. Both methods might be useful in data sets

with highly unbalanced class frequencies, which is usually the case for defect datasets

(see Table 4.2). Regardless of which sub-sampling method is used, the result is a data

set with an equal number of target and non-target classes.

That study again used a simple Bayes classifier, since it was useful in their prior

experiment [28], plus a C4.5-like decision tree learner, J4.8 [124], since that was used

in prior under- and over- sampling experiments [81].

The results are given in Table 3.2 and they are consistent with certain prior re-

sults. The simple Naive Bayes they recommended previously [28] performed as well as

anything else. Seemingly cleverer learning schemes did not outperform simple Bayesian

classifiers. Just like their previous results, throwing away data (i.e. under-sampling)

does not degrade the performance of the learner. In fact, in the case of J48, throwing

away data improved the median performance from around 40% to over 70%. Under-

sampling beats over-sampling for both J48 and Naive Bayes. This result is consistent

with Drummond & Holte’s sub-sampling experiments [81] and the sub-sampling clas-
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Table 3.2. Over-sampling, under-sampling and no sampling results. From [5]

treatment 0 25% 50% 75% 100%

NB/ none 21.9 67.7 74.6 81.9 100.0

NB/ under 19.9 67.1 74.1 81.6 100.0

J48/ under 21.6 64.8 73.6 82.6 100.0

NB/ over 17.5 42.0 62.5 72.2 100.0

J48/ over 0.0 29.3 45.6 56.2 100.0

J48/ none 0.0 29.3 42.3 54.5 100.0

sification tree experiments of Kamei et.al. [125].

However, Table 3.2 has also some new results. We can observe that NB/none is

one of the topped-ranked methods. That is, sub-sampling decision tree learning does

not outperform Naive Bayes. NB/none ties with NB/under. That is, while sub-

sampling offers no improvement over un-sampled Bayesian learning, under-sampling

does not harm classifier performance. This last point is the most significant. It means

effective detectors can be learned from a very small sample of the available data.

Further, Seliya and Khoshgoftaar performed experiments for defect prediction with

limited data where they learned defect predictors with a subset of available data. In

that study they used 800 defect free and 200 defective modules for building predictors

and reported comparable results to using all data [126]. To explore this issue, we have

performed a small experiment on the same project data where we focus on even a

smaller scale. In order to determine the lower-limit on the number of cases that are

required to build a stable defect predictor, we employed an extreme under-sampling

policy, which we call micro-sampling. Given N defective modules in a data set,

M ∈ {25, 50, 75, .} ≤ N

defective modules were selected at random. Another M non-defective modules were

selected, at random. The combined 2M data set was then passed to a 10*10-way cross

validation.
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Formally, under-sampling is a micro-sampling where M = N . Micro-sampling

explores training sets of size up to N, standard under-sampling just explores once data

set of size 2N .

For this study we used Naive Bayes since, in all the above work, it seems to be

doing as well as anything else. Our results indicate that detectors learned from small

M instances do as well as detectors learned from any other number of instances. For

eight data sets, micro-sampling at M = 25 did just as well as any larger sample size.

For one data set, best results were seen at M = 75. However , in many cases 8
11

,

M = 25 did just as well as anything else. For three data sets best results were seen at

M = {200, 575, 1025}. However, for these three data sets M = 25 did as well as any

larger value.

In summary, the number of cases that must be reviewed in order to arrive at the

performance ceiling of defect predictors is very small: as low as 50 randomly selected

modules (25 defective and 25 non-defective).

3.4.1. Implications of Ceiling Effects

Considering the sampling experiments of Menzies et.al. and the outcomes of our

small experiment in the previous section, we argue that data mining methods have hit

a “performance ceiling”; i.e. some inherent upper bound on the amount of information

offered by static code features when identifying modules which contain faults.

We have been motivated to find an explanation for this ceiling effect. We claim

that static code features have “limited information content”; i.e. their information

can be quickly and completely discovered by even simple learners. Specifically, we

documented how throwing training data away does not affect the performance of defect

predictors. The results are quite surprising. In experiments with different sampling

strategies, we observe that much of the training data can be discarded without losing

effectiveness in defect prediction. This leads to the following notion:
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Hypothesis: Static code features have limited information content.

which is supported by these three observations:

• Observation 1: The information from static code features can be quickly and

completely discovered by even simple learners.

• Observation 2: More complex learners do not find new information.

• Observation 3: Further progress in learning defect predictors does not come from

better algorithms, but from improving the information content of the training

data.

Different from previous line of research, our goal in this dissertation is to show

that the performance of defect predictors can be increased by improving the information

content in data by previously unexplored kinds of information sources, which do not

require collection of new features:

• Explore the assumptions of data miners to check whether these assumptions are

valid for software defect data.

• Increase the information content of data by combining project data from multiple

companies. This combined data may yield more information content since they

span a large class of software projects developed at different sites for a wide range

of applications.

• Model the interactions between modules, rather than assuming their indepen-

dence on defect proneness.

The second issue deserves more discussion due to its practical impacts. It suggests

that defect predictor can be constructed locally without using local data. Furthermore,

it does not require collection of additional features in order to increase the information

content in data. In the next section, we discuss the merits of using within and cross

company data.
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3.5. Within- vs. Cross- Company Data

What we propose is to increase the information content in data by using cross

company (CC) data for building within company (WC) defect predictors. Intuitively,

it could be argued that there is no issue in comparing WC vs. CC studies, because of

the common belief that local data is always better than imported data. Nevertheless,

it is important to question the value of WC vs. CC studies.

Prior to this dissertation, there was no test of this intuition in the domain of

defect prediction. However, in the domain of effort estimation, it turns out that this

intuition has only mixed support:

• Mendes et al. [127] found within-company data performed much better than cross-

company data for predicting estimation effort of web-based projects. They only

recommend using cross-company data in the special case when that “data are

obtained using rigorous quality control procedures”.

• A similar conclusion was reached by Abrahamsson et al. who discussed learn-

ing effort predictors in the context of an agile development process [128]. They

strongly advocate the use of WC-data.

However, other studies are not so clear in their conclusions:

• MacDonell & Shepperd tried to find trends in a set of papers relating to project

management and effort estimation [129]. However, the papers studied by Mac-

Donell & Shepperd used a wide range of data sets, so these authors found it hard

to offer a definitive combined conclusion.

• In other work, after a review of numerous case studies, Kitchenham et al. [130]

concluded that the value of CC vs. WC data for effort estimation is unclear:

some organizations would benefit from using models derived from cross-
company benchmarking databases but others would not [130].

• Premraj and Zimmermann suspects that the reason for the contradictory results

are due to heterogeneity in data. Therefore, they build business specific cost mod-
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els to have homogeneity in data. They compare within company, cross company

and business specific cost models and report that although cross company models

perform slightly worse, neither model is significantly better than others [131].

One possible explanation for these contradictory results is that effort estimation re-

quires the collection of project data, some of which has ambiguous definitions. For

example, one of the features of the COCOMO-family [132] of effort predictors is “ap-

plications experience” (aexp). According to one on-line source5 , this feature is defined

as follows: “the project team’s equivalent level of experience with this type of applica-

tion”. No guidance is offered regarding how to characterize “this type of application”.

Hence, there is some degree of ambiguity in this definition. We conjecture that the

ambiguity of the effort estimation features is one reason for the variance in the results

reported by MacDonell & Shepperd and Kitchenham et al. [129, 130].

Static code features that we use in this study, on the other hand, are not so

ambiguous. Simple toolkits can be used to collect these features in a rapid, automatic,

and uniform manner across multiple projects. Therefore, in theory, conclusions reached

from these features should be less ambiguous than those reached from effort estimation

features.

3.6. Research Questions

In this section we pose our above discussions in terms of research questions. We

state six research questions, and in the rest of this dissertation, we will perform several

experiments to look for empirical evidence for the answers to these questions.

3.6.1. How can we improve the information content of local data without

introducing new information sources?

Assumptions of certain algorithms may prohibit the use of inherently available

information in defect data. Specifically, we analyze the Naive Bayes’ assumptions to

5http://sunset.usc.edu/research/COCOMOII/expert_cocomo/drivers.html
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check whether they are valid for software data. The first assumption we analyze is the

independence of features considering that many static code features are shown to be

correlated. The other assumption under question is the equal importance of attributes,

that is all static code features have the same impact on defectiveness.

3.6.2. How can companies construct local defect predictors with remote

data?

Our goal is to identify the conditions under which cross-company data may be

preferred to within-company for the purposes of learning defect predictors. In the

related experiment, we compare the performance of defect predictors learned from WC

data to those learned from CC data.

3.6.3. How can companies filter remote data for local tuning?

CC data includes information from many diverse projects and are heterogeneous

compared to WC data. The goal of the related experiment is to select a subset of the

available CC data that is similar to WC data (however, with more information content)

and to investigate the effect of data homogeneity on the defect prediction performance.

We apply a simple nearest neighbor (NN) filtering to CC data for constructing a locally

tuned repository. We use the Euclidean distance between static code features of WC

and CC data for measuring similarity and determining neighbors.

3.6.4. How much local data do organizations need for constructing a defect

prediction model?

A common belief is that collecting local data that are required to build defect

prediction models takes too much time and effort. Kitchenham et al. [130] argue that

organizations use cross-company data since within-company data can be so hard to

collect:

• The time required to collect enough data on past projects from within a company
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may be prohibitive.

• Collecting within-company data may take so long that technologies change and

older projects do not represent current practice.

In the related experiment, we will check whether this belief is valid or not for de-

fect data. We employ an incremental learning approach to WC data in order determine

the number of samples in local repositories for building defect prediction models.

3.6.5. Can our results be generalized?

We initially use only NASA datasets in our CC and WC experiments to answer the

above questions. In order to check the external validity of our results, this experiment

will replicate all three experiments on data from a company that has no ties with NASA:

specifically, a Turkish company writing software controllers for Turkish whitegoods.

3.6.6. How can we improve the information content in static code features

with more local resources?

In order to answer this question, we propose to use an approach that is shown

to be useful in other disciplines including search engines and reputation of multi-agent

systems [133, 21]. We apply PageRank algorithm to module dependency graphs in

order to model the inter-module structure of software systems in addition to their

intra-module structure explained by static code features.
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4. METHODOLOGY

This chapter explains in detail: the algorithms for constructing defect predictors,

the data used in the experiments and the measures used to evaluate the performance

of defect predictors.

4.1. Methods Used in the Study

This section explains predictor models used for defect prediction. The Naive

Bayes classifier is taken as a baseline, since it is shown to acquire best results obtained

so far [10]. We remove the assumptions of the Naive Bayes classifier one at a time

and construct the linear, quadratic discriminants and the weighted Naive Bayes. The

first assumption in Naive Bayes is that the features of data sample are independent,

thus it employs the univariate normal distribution. We use a multivariate normal

distribution to model the correlations among features. In the next section, univariate

and multivariate normal distributions are briefly explained. We then use a weighting

scheme for analyzing the second assumption (i.e. equal importance of attributes).

4.1.1. Univariate vs. Multivariate Normal Distribution

In univariate normal distribution, x ∼ N(µ, σ2), x is said to be normal distributed

with mean µ and standard deviation σ with the probability distribution function is

defined as:

p(x) =
1√

(2Π)σ
exp

(
−(x− µ)2

2σ2

)
(4.1)

The term inside the exponentiation in Equation 4.1 is a distance function where the

distance of a data sample x to the sample mean µ is measured in terms of standard

deviations σ. This ensures to scale the distances of different features in the case that

feature value cardinalities are different. This measure does not consider the correlations
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among features.

In the multivariate case, ~x is a d dimensional vector that is normal distributed,

i.e. ~x ∼ Nd(~µ,Σ), and the pdf of a multivariate normal distribution is defined as:

p(x) =
1

(2Π)d/2Σ1/2
exp

(
−1

2
(~x− ~µ)T Σ−1(~x− ~µ)

)
(4.2)

where Σ is the covaraince matrix and ~µ is the mean vector. The term inside the expo-

nentiation in Equation 4.2 is again a distance function and it is called the Mahalanobis

distance [134]. In this case, the distance to the mean vector is normalized by the co-

variance matrix and the correlations of features are also considered. This results in less

contribution of highly correlated features and features with high variance.

Since software data attributes are highly correlated, a multivariate model would

be more appropriate than the univariate model. Besides multivariate normal distri-

bution is analytically simple, tractable and robust to departures from normality [134].

However, using a multivarite model increases the number of parameters to estimate. In

the univariate case only two parameters, µ and σ are estimated. But in the multivariate

case, d parameters for ~µ and d× d parameters for Σ need to be estimated.

4.1.2. Multivariate Classification

In software defect prediction, one aims to seperate classes C0 and C1 where sam-

ples in C0 are non defective and samples in C1 are defective. In this binary classification

problem, it is sufficient to find one discriminant that seperates instances from the two

distinct classes. Combining the multivariate normal distribution and the Bayes rule,

then using different assumptions results in different discriminants with different com-

plexity levels.

Bayes theorem states that the posterior distribution of a sample is proportional
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to the prior distribution and the likelihood of the given sample. More formally:

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
(4.3)

Equation 4.3 is read as:

The probability of a given data instance x to belong to class Ci is equal to the

multiplication of the likelihood that x is coming from the distribution that generates Ci

and the probability of observing Ci’s in the whole sample, normalized by the evidence.

Evidence is given by

P (x) =
∑

i

P (x|Ci)P (Ci) (4.4)

and it is a normalization constant for all classes, thus it can be safely discarded. Then

Equation 4.3 becomes:

P (Ci|x) = P (x|Ci)P (Ci) (4.5)

In a classification problem we compute the posterior probabilities P (Ci|x) for each

class and choose the one with the highest posterior. This is equaivalent to defining

a discriminant function gi(x) for class Ci derived from Equation 4.5 by taking the

logarithm for convenience.

gi(x) = logP (x|Ci) + logP (Ci) (4.6)

In order to achieve a discriminant value, one needs to compute the prior and

likelihood terms. Prior proability P (Ci) can be estimated from the sample by counting.

The critical issue is to choose a suitable distribution for the likelihood term P (x|Ci).
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This is where the multivariate normal discussion takes place. In this study likelihood

term is modelled by the multivariate normal distribution.

Computing discriminant values for each class and assigning the instance to the

class with the highest value is equivalent to using Bayes Theorem for choosing the class

with the highest posterior probability. For the binary classification case, it is sufficient

to construct a single discriminant by g(x) = g0(x)− g1(x). Using discriminant point of

view, we will explain different classifiers (more complex to simpler ones) in the following

sections.

4.1.3. Quadratic Discriminant

4.1.3.1. Assumptions.

1. Data sample is i.i.d. (independent and identically distributed)

2. Each class is formed by a single group, i.e. unimodal.

3. Each class has distinct Σi and ~µi

4.1.3.2. Derivation. Combining Equation 4.2 and 4.6 we get,

gi(~x) = −d
2

log 2π − 1

2
log |Σi| −

1

2
(~x− ~µi)

T ~Σi

−1
(~x− ~µi) + logP (Ci) (4.7)

First term can be safely dropped because it is a constant term in all discriminants.

Then Σi, µi and P (Ci) are replaced with their maximum likelihood estimates Si, mi

and P̂ (Ci)respectively.

gi(~x) = −1

2
log |Si| −

1

2
(~x− ~mi)

T ~Si

−1
(~x− ~mi) + log P̂ (Ci) (4.8)

Rearranging terms we obtain

gi(~x) = −1

2
log |Si| −

1

2
(~xTS−1

i ~x− 2~xTS−1
i ~mi + ~mi

TS−1
i ~mi) + log P̂ (Ci) (4.9)
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and by defining new variables Wi, wi and wi0, the quadratic discriminant is obtained.

gi(~x) = ~xTWi~x+ ~wT
i ~x+ wi0 (4.10)

where

Wi = −1

2
S−1

i (4.11)

wi = S−1
i ~mi (4.12)

wi0 = −1

2
~mT

i S
−1
i mi −

1

2
log |Si|+ log P̂ (Ci) (4.13)

We classify an instance ~x as Ci such that i = argmaxk(gk(~x))

Quadratic model considers the correlation of the features differently for each class.

In case of K classes, the number of parameters to estimate is K×(d×d) for covariance

estimates and (K × d) for mean estimates. Also K prior probability estimations are

needed.

4.1.4. Linear Discriminant

4.1.4.1. Assumptions.

1. Data sample is i.i.d.

2. Each class is formed by a single group, i.e. unimodal.

3. Each class has a common Σ and distinct ~µi

4.1.4.2. Derivation. Assumption 3 states that classes share a common covariance ma-

trix. The estimator is calculated as

S =
∑

i

P̂ (Ci)Si (4.14)
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Placing this term in Equation 4.9 we get

gi(~x) = −1

2
log |S| − 1

2
(~xTS−1~x− 2~xTS−1 ~mi + ~mi

TS−1 ~mi) + log P̂ (Ci) (4.15)

Please note that now the first term of the equation and the first term in the parantheses

become common in all discriminant and can be safely dropped and it reduces to

gi(~x) = −1

2
(−2~xTS−1 ~mi + ~mi

TS−1 ~mi) + log P̂ (Ci) (4.16)

which is now a linear discriminant in the form of

gi(~x) = ~wi
T~x+ wi0 (4.17)

where

wi = S−1
i ~mi (4.18)

wi0 = −1

2
~mi

TS−1
i ~mi + log P̂ (Ci) (4.19)

We classify an instance ~x as Ci such that i = argmaxk(gk(~x))

This model considers the correlation of the features but assumes the variances

and correlation of features are the same for both classes. The number of parameters

to estimate for covariance matrix is now independent of K. For covariance estimates

(d× d), for mean estimates (K × d) and for priors K parameters should be estimated.

4.1.5. Naive Bayes

4.1.5.1. Assumptions.

1. Data sample is i.i.d.
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2. Each class is formed by a single group, i.e. unimodal.

3. Each class has a common Σ with off-diagonal entries equal to 0, and distinct ~µi

4.1.5.2. Derivation. Assumption 3 states the independence of features by using a di-

agonal covariance matrix. Then the model reduces to a univariate model given in

Equation 4.20.

gi(x) = −1

2

d∑
j=1

(
xt

j −mij

sj

)2

+ log(P̂ (Ci)) (4.20)

This model does not take the correlation of the features into account and measures

the deviation from the mean in terms of standart deviations. This results in the classes

to be aligned to axes and variance in each axis may be different. For Naive Bayes, d

covariance, (K × d) mean and K prior parameters should be estimated.

Bayesian classifiers offer a relationship between fragments of evidence Ei, a prior

probability for a class P (H), and a posteriori probability P (H|E). Please note that the

likelihood P (H|E) is approximated by the product term due to the i.i.d. assumption:

P (H|E) =

(∏
i

P (Ei|H)

)
P (H)

P (E)
(4.21)

For example, in our data sets, there are two hypotheses: modules are either defec-

tive or not; i.e. H ∈ {defective, nonDefective}. Also, if a particular module has

numberofSymbols = 27 and LOC = 40 and was previously classified as “defective”

then

E1 : numberOfSymbols = 27

E2 : LOC = 40

H : defective

When building defect predictors, the posterior probability of each class (“defective” or

“defect-free”) is calculated, given the features extracted from a module. So, if a data
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set has 100 modules and 25 of them are faulty, then:

P (defective) = 0.25

When testing new data, a module is assigned to the class with the higher probability,

calculated from Equation 4.3.

For numeric features, a feature’s mean µ and standard deviation σ is used in a

Gaussian probability function [124]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2

All the static code features of Table 4.3 are numeric and are highly skewed.

Therefore, we replace all numerics with a “log-filter”, i.e. N with log(N). This spreads

out skewed curves more evenly across the space from the minimum to maximum values

(to avoid numerical errors with ln(0), all numbers under 0.000001 are replaced with

ln(0.000001)). This “spreading” can significantly improve the effectiveness of data

mining, since the distribution of log-filtered feature values fits better to the normal

distribution assumption [28].

4.1.6. Weighted Naive Bayes

Standard Naive Bayes derivation can be obtained by placing a special form of

multivariate normal distribution, as the likelihood estimate in the Bayes theorem. By

special form we mean that the off-diagonal elements of the covariance matrix estimate

are assumed to be zero, i.e. the attributes are independent. In this case, the mul-

tivariate distribution can be written as the sum of univariate normal distributions of

each attribute (See Equation 4.20). While assuming the independence of attributes,

a weighting term can be introduced to reflect the relative importances of attributes.

Then Weighted Naive Bayes can be written as in Equation 4.22 [135, 136].
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Table 4.1. List of heuristics used in this study.

Heuristic Equation

PCA See text

IG IG(x,A) = Entropy(x)−∑a∈A
|x=a|
|x| Entropy(x = a)

GR GR(x,A) = IG(x,A)
SplitInfo(x,A)

, where SplitInfo(x,A) = −∑a∈A
|x=a|
|x| log |x=a|

|x|

KL DKL(x,A) =
∑

a∈A p(x = a|pos) log(x = a|neg)

OR OR(x,A) = log
∑

a∈A
p(x=a|pos)(1−p(x=a|neg))
(1−p(x=a|pos))p(x=a|neg)

LP LP (x,A) = log
∑

a∈A
p(x=a|pos)
p(x=a|neg)

EP EP (x,A) = exp (
∑

a∈A p(x = a|pos)− p(x = a|neg))

CE CE(x,A) =
∑

a∈A p(x = a|pos) log p(x = a|neg)

P (Ci|x) = −1

2

d∑
j=1

wj

(
xt

j −mij

sj

)2

+ log(P̂ (Ci)) (4.22)

Now that we have introduced another parameter, the weight term wj, we should

find a way of estimating it accurately. For this purpose we use eight heuristics, which

are explained in the next section.

4.1.7. Attribute Weight Estimation

We use eight heuristics mostly derived from attribute ranking techniques in order

to estimate weights for the static code features. In all heuristics we compute the rank

values for the features and then derive weights by normalizing over the sum of all rank

values (See Equation 4.23). Thus, all weights are scaled to lie in the [0, 1] interval. A

complete list of heuristics used in this research is given in Table 4.1.

wj =
Rank(j)∑
iRank(i)

(4.23)
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First heuristics is based on the Principal Component Analysis (PCA), which

projects the data points onto orthogonal principal axes such that the variance in each

axis is maximized. We do not directly use PCA for dimensionality reduction. Rather,

we claim that attributes with higher contributions for determining principal compo-

nents should have higher weights in the prediction method. In our proposed heuristic,

we use k eigenvalue and eigenvector pairs that correspond to the 95% of the proportion

of the variance explained. Eigenvalues are written as λ1, λ2, .., λk and eigenvectors are

written as eid where i = 1..k, d = 1..D and D is the number of attributes. Then the

weight of attribute d is estimated as a weighted sum of the corresponding eigenvector

elements as given in Equation 4.24.

wd =

∑
λieid∑
λi

(4.24)

Among proposed heuristics, GainRatio (GR) and InfoGain (IG) are mainly used

in decision tree construction to determine the attributes that best splits the data [84].

Zhang and Sheng use the GainRatio heuristic for attribute weight assignment [135].

InfoGain is used in other studies for subset selection by ranking attributes [137, 28].

Our goal is to convert these ranking estimates into attribute weights. For this purpose

we also evaluate OddsRatio (OR), LogProb (LP), ExpProb (EP), CrossEntropy (CE)

and Kullback-Leibler (KL) Divergence.

In defect prediction context, these heuristics correspond to the following: Given

an attribute A,

• KL measures the similarity between the distributions of defective and nondefec-

tive modules. The more different the distributions are, the higher weight attribute

A has.

• OddsRatio measures whether defective modules are more likely to occur than the

nondefective modules.
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• LogProb is the logarithm of the ratio of probability of a module being defective

over probability of a module being nondefective.

• ExpProb is the exponentiation of the difference of probability of a module being

defective and probability of a module being nondefective.

• CrossEntropy is the average number of bits needed to differentiate between the

defective and nondefective module distributions.

Assigning weights with these heuristics takes linear time. On the other hand,

ranking the attributes with these methods and then searching for an optimal subset

requires both an exhaustive search in the attribute space and the evaluation of perfor-

mance with each candidate subset. We expect to observe that the attributes that are

discarded by the subset selection methods would have relatively small weights than the

selected attributes.

4.1.8. Call graph based ranking (CGBR) framework

For this framework, we are inspired from the web searching algorithms. For

example, Google use the PageRank algorithm that is developed by Page and Brin [133].

The PageRank algorithm computes the most relevant results of a search by ranking

web pages. We have adopted this ranking methodology to software modules.

In web page ranking, the PageRank theory holds that an imaginary surfer, who

is randomly clicking on links, will continue surfing with a certain probability. This

probability, at any step, that the person will continue is defined as a damping factor

d. The damping factor is in the range 0 < d < 1, and it is usually set to 0.85 [4,

6]. In our case, we do not necessarily take the damping factor as a constant, rather

we dynamically calculate it for each project. The web surfer analogy corresponds to

calling other software modules in our context. Therefore, we define the damping factor,

d, of software with N modules, as the ratio of actual module calls to the all possible

module calls.

In CGBR framework, the software modules are analogous to web pages, and call
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interactions are analogous to the hyperlinks between the web pages. We assign equal

initial values (i.e. 1) to all modules and iteratively calculate module ranks. We name

the module rank results as the Call Graph Based Ranking (CGBR) values. The formula

for calculating CGBR values is given in Equation 4.1.8.

CGBR(A) = (1− d) + d ∗
∑

i

CGBR(Ti)

C(Ti)
(4.25)

where CGBR(A) is the call graph based rank of module A, CGBR(Ti) is the call graph

based rank of module Ti which calls for module A, C(Ti) is the number of outbound

calls of module Ti and d is the damping factor. Usually after 20 iterations the CGBR

values converge [133, 39].

4.2. Data Description

Software engineering is a poor domain for obtaining datasets compared to other

data mining domains. There are several reasons for this such as the confidentiality of

information. Another reason is that software companies prefer allocating their resources

on continuous development and, ironically, trying to locate and fix defects, rather than

collecting and analyzing metrics. Even when researchers obtain necessary data, most

of the time they cannot share the data publicly and therefore, these studies can not be

replicated.

As the application of machine learning methods in software studies increased,

efforts for forming a public data repository of software resulted in the PROMISE Soft-

ware Engineering Repository [138]. NASA Metrics Data Program (MDP) is another

repository that offers software data [36]. PROMISE contains a subset of data avail-

able at NASA. Repository datasets are mainly categorized as defect prediction, cost

estimation, text mining applications. Most of the defect prediction data are supplied

by NASA and includes McCabe, Halstead, line of code metrics which will be detailed

in the following section.

As a contribution of this dissertation, we have collected similar datasets from
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Turkish software industry, to make similar analysis and donated them to PROMISE

repository for the use of other researchers.

The experiments of this dissertation use the projects of Table 4.2, which are

downloaded from the PROMISE repository6 . The static code features of our projects

are shown in Table 4.3. These features are divided into lines of code features, Halstead

features, and McCabe features. Shared features between projects are given in Table 4.4

and are to be used in our CC, WC experiments.

These projects are from software developed in different geographical locations

across North America (NASA) and Turkey (SOFTLAB). Within a system, the sub-

systems shared some common code base but did not pass personnel or code between

sub-systems. While NASA and SOFTLAB are one single source of data, there are sev-

eral projects within each source. For example, NASA is really an umbrella organization

used to co-ordinate and fund a large and diverse set of projects [139]:

• The NASA data were collected from across the United States over a period of five

years from numerous NASA contractors working at different geographical centers.

• These projects represent a wide array of projects, including satellite instrumen-

tation, ground control systems and partial flight control modules (i.e. Attitude

Control).

• The data sets also represent a wide range of code reuse: some of the projects are

100% new, and some are modifications to previously deployed code.

Nevertheless, using our connections with the Turkish software industry, we col-

lected new data sets in the format of Table 4.3 from a Turkish white-goods manufac-

turer. The SOFTLAB datasets ({ar3, ar4, ar5}) in Table 4.2 are the controller software

for:

• A washing machine;

• A dishwasher;

6http://promisedata.org/repository
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• And a refrigerator.

We have used a tool, named Prest, in order to collect these metrics from industry.

Prest7 is an open source metric extraction and defect analysis tool, which is developed

by SOFTLAB researchers in the context of this research. Prest was developed as a

free alternative to commercial counterparts. Prest can extract static code features

from C, C++, Java and Jsp files and generates corresponding call graphs. SOFTLAB

data collected with Prest are manually matched with defect reports with the help of

corresponding project developers and managers.

In summary, seven datasets are from NASA projects developed at different sites

by different teams, hence we treat each of them as if they were from seven different

companies. Remaining three datasets are from a Turkish company collected from

software for domestic home appliances. Therefore, we use ten projects from eight

different companies.

Table 4.2. Data from ten software projects.
(# modules) .

source project language examples features loc %defective

NASA pc1 C++ 1,109 21 25,924 6 94.

NASA kc1 C++ 845 21 42,965 15 45.

NASA kc2 C++ 522 21 19,259 20 49.

NASA cm1 C++ 498 21 14,763 9 83.

NASA kc3 JAVA 458 39 7749 9 38.

NASA mw1 C++ 403 37 8341 7 69.

SOFTLAB ar4 C 107 29 9196 18 69.

SOFTLAB ar3 C 63 29 5624 12 70.

NASA mc2 C++ 61 39 6134 32 29.

SOFTLAB ar5 C 36 29 2732 22 22.

4,102

4.3. Performance Evaluation

We have used probability of detection (pd or recall) and probability of false alarm

(pf) as the performance measures [28]. Formal definitions for these performance criteria

are given in Equation 4.26 respectively and they are derived from the confusion matrix

7http://svn.cmpe.boun.edu.tr/svn/softlab/prest/trunk/Executable/PrestTool.rar
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Table 4.3. Static code features available in Table 4.2 projects.
# Feature pc1 kc1 kc2 cm1 kc3 mw1 ar4 ar3 mc2 ar5

1 branchcount X X X X X X X X X X

2 codeandcommentloc X X X X X X X X X X

3 commentloc X X X X X X X X X X

4 cyclomaticcomplexity X X X X X X X X X X

5 designcomplexity X X X X X X X X X X

6 halsteaddifficulty X X X X X X X X X X

7 halsteadeffort X X X X X X X X X X

8 halsteaderror X X X X X X X X X X

9 halsteadlength X X X X X X X X X X

10 halsteadtime X X X X X X X X X X

11 halsteadvolume X X X X X X X X X X

12 totaloperands X X X X X X X X X X

13 totaloperators X X X X X X X X X X

14 uniqueoperands X X X X X X X X X X

15 uniqueoperators X X X X X X X X X X

16 executableloc X X X X X X X X X X

17 totalloc X X X X X X X X X X

18 halsteadcontent X X X X X X X

19 essentialcomplexity X X X X X X X

20 halsteadvocabulary X X X X X X X

21 blankloc X X X X X X X X X X

22 callpairs X X X X X X

23 conditioncount X X X X X X

24 cyclomaticdensity X X X X X X

25 decisioncount X X X X X X

26 decisiondensity X X X X X X

27 halsteadlevel X X X X X X

28 multipleconditioncount X X X X X X

29 designdensity X X X X X X

30 normcyclomaticcomplexity X X X X X X

31 formalparameters X X X X X X

32 modifiedconditioncount X X X

33 maintenanceseverity X X X

34 edgecount X X X

35 nodecount X X X

36 essentialdensity X X X

37 globaldatacomplexity X X

38 globaldatadensity X X

39 percentcomment X X X

40 numberoflines X X X

Total 21 21 21 21 39 37 29 29 39 29
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Table 4.4. Static code features shared by NASA and SOFTLAB projects in Table 4.2

projects.

# Feature NASA shared All Shared

1 branchcount X X

2 codeandcommentloc X X

3 commentloc X X

4 cyclomaticcomplexity X X

5 designcomplexity X X

6 halsteaddifficulty X X

7 halsteadeffort X X

8 halsteaderror X X

9 halsteadlength X X

10 halsteadtime X X

11 halsteadvolume X X

12 totaloperands X X

13 totaloperators X X

14 uniqueoperands X X

15 uniqueoperators X X

16 executableloc X X

17 totalloc X X

18 halsteadcontent X

19 essentialcomplexity X

Total 19 17
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Table 4.5. Confusion Matrix

Estimated

Real Defective Nondefective

Defective A C

Nondefective B D

given in Table 4.5. pd is a measure of accuracy for correctly detecting the defective

modules. Therefore, higher pd’s are desired. pf is a measure for false alarms and it is an

error measure for incorrectly detecting the nondefective modules. pf is desired to have

low values. Since we need to optimize two parameters, pd and pf, a third performance

measure called balance is used to choose the optimal (pd, pf) pairs. Balance is defined

as the normalized Euclidean distance from the desired point (0,1) to (pd, pf) in a ROC

curve [28].

pd = (A)/(A+ C) (4.26)

pf = (B)/(B +D)

Zhang and Zhang argue that using (pd,pf) performance mesures in imbalanced

classification problems is not practical due to low precisions [140]. On the contrary,

Menzies et.al argue that precision has an unstable nature and it can be misleading to

determine the better predictor [28]. They also give examples of low precision predictors

that are successfully used (i.e. using a web search engine, a user may find the relevant

web page in the 3rd page). Therefore, we do not use precision as a performance measure.

In addition, we would like to point out that balance performance measure should

be used carefully for determining the best among a set of predictors. Since it is a

distance measure, i.e. the distance of (pd,pf) to the optimal point (0,1), a specific

balance value defines a quarter-circle on the ROC graph with radius of (1 - bal) and

with the origin (0,1) (See Figure 4.1). So, predictors with different (pd,pf) values can

have the same balance value. This does not necessarily show that all predictors with
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Figure 4.1. Balance defines a set of points in the ROC curve.

the same balance value have the same practical usage. As mentioned above, domain

specific requirements may lead us to choose a predictor with a high pd rank although

it may also have a high pf rank.

Our results are visualized using either boxplots or quartile charts. These two

visualization methods summarize the results similarly and we use the more convenient

one in reporting our results. To generate quartile charts, the performance measures

for a population are sorted to show the median and the lower and upper quartile of

numbers. The following example (from [28]):

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31,

median︷︸︸︷
40 , 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

looks like as follows:

0% u 100%
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In quartile charts, the upper and lower quartiles are marked with black lines; the

median is marked with a black dot; and vertical bars are added to mark the 50%

percentile value.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

1

2

Values
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m
n 
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m
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Figure 4.2. Sample boxplot.

Figure 4.2 shows boxplots for two populations with normal distribution parame-

ters µ1 = 5, µ2 = 6 and σ2
1 = σ2

2 = 1. In Figure 4.2, the leftmost and the rightmost lines

in the boxes correspond to the 25% and 75% quartiles and the line in the middle of the

box is the median. The notches around the median correspond to the 95% confidence

interval of the median. It is a sign of skewness if the medians are not centered between

25% and 75% quartiles. The dashed lines in the boxplots indicate 1.5 times of the

interquartile range, i.e. the distance between the 25% and 75% quartiles. Data points

outside these lines are considered as outliers.

We use t-test and Mann-Whitney U test [141] to test for statistical difference

between results.

Mann-Whitney U (MWU) test assesses whether the distribution of two samples

are the same. MWU sorts performance measure inside two populations to compare.

These sorted samples are then ranked and pairwise compared using the number of wins
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(W), losses (L) and ties(T). U statistics are calculated for both populations, using the

W,L, T counts and the smaller one is used to test for significance. Such non-parametric

tests are recommended in data mining since many of the performance distributions are

non-Gaussian [142]. However, in order to compare our results with previous research,

where t-tests are used, we also use t-tests for assessing significance. t−tests assume the

Student’s t− distribution of populations and test their difference using the t statistic.

Therefore, t-test is a parametric test whereas MWU is a non-parametric one. In all

statistical significance tests, we use α = 0.05.
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5. EXPERIMENTS AND RESULTS

5.1. Experiment I: Analysis of Bayesian Assumptions

The amount of research for relaxing the assumptions of Naive Bayes has signif-

icantly increased in recent years. These research focus on modifications to break the

conditional independence assumption and weighting attributes [143, 144, 135, 136].

Especially the weighting studies reported results that are generally ‘not worse’ than

the standard Naive Bayes, while preserving the simplicity of the model.

This section attempts to tackle the assumptions of Naive Bayes in defect pre-

diction context. First, we analyze the “independence of attributes” assumption. In

order to overcome this, we incorporate multivariate approaches rather than univariate

ones. Univariate approaches assume the independence of features whereas multivariate

approaches take the relations between features into consideration. Obviously univari-

ate models are simpler than multivariate models. While it is good practice to start

modeling with simple models, the problem at hand should also be investigated by using

more complex models. Then it should be validated by measuring performance whether

using more complex models is worth the extra complexity introduced in the modeling.

This section performs experiments with both simple and complex models and compares

their performances.

We then analyze the other assumption of Naive Bayes, which is the “equal impor-

tance of attributes”. We use an attribute weighting scheme to overcome this assump-

tion. Attribute weighting has been explored to some extent for other problems such as

software cost estimation. Auer et. al. employ attribute weigthing for analogy based

cost estimation [145]. However, they assign random weights to project features and

search for the optimal weigths. Similarly, neural network models for defect prediction

have inherent attribute weighting. However, neural networks are non-deterministic

and complex models that require optimization of the network structure together with

many model parameters. Thus they require relatively large number of data samples for
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building a predictor. In practice, usually a limited amount of data is available. Fur-

ther, the weights of the neural network model can not be easily interpreted especially

in complex networks.

Considering defect prediction, we claim that all static code attributes do not have

equal effect on defect prediction and they should be treated accordingly. Our goal is to

develop a methodology that permits the use of static code attributes in terms of their

relevance to defect prediction. Menzies et.al. state that [28]:

how the attributes are used to build predictors is much more important than
which particular attributes are used

We also focus on how rather than which. For this purpose, we propose attribute

weighting along with several heuristics for determining the degree of importance of

static code attributes.

We reproduce the experiments on NASA datasets with Naive Bayes by Menzies

et.al in order to construct a baseline for comparison [28]. We also use multivariate

methods and weighted Naive Bayes classifier in order to analyze the effect of the above-

mentioned assumptions.

5.1.1. Design

We have compared the state of the art classifier (log-filter, InfoGain attribute

selection, standard Naive Bayes) with the Linear Discriminant, Quadratic Discriminant

and weighted Naive Bayes classifiers constructed by our proposed heuristics on NASA

datasets. We have also reproduced Menzies et.al.’s experiments on NASA datasets

as benchmark results [28]. However, in [28], Menzies et.al. use a different version of

projects measurements in their experiments than given in Table 4.2. This version of

NASA projects include 38 features and can be accessed online from [36]. Furthermore,

some projects used in that study turned out to have measurement errors and PROMISE

community does not advise their use in further experiments. Therefore, only for this
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Figure 5.1. Effect of Log-filtering

experiment, we will use the same datasets in [28] to be able to make comparisons. The

other experiments of this dissertation will use Table 4.2 projects.

The experimental design follows the framework suggested as a baseline by Menzies

et.al. [28]. We have applied log-filtering on the datasets before we trained the predictor

[28]. As Figure 5.1 shows, normal distribution fits better on the data points after log-

filtering (this is also verified with goodness of fit tests). Since the Naive Bayes predictor

assumes the existence of normal distribution, it is expected to see better results when

log-filtering is employed. In [28], InfoGain is used for feature selection. Singularity

issues occured in our preliminary LD and QD results due to low rank data matrices.

Therefore, we use PCA for reducing the dimensionality and removing the co-linearities

in data (i.e. 95% proportion of variance explained).

We have used 10-fold cross-validation in all experiments. That is, datasets are

divided into 10 bins, 9 bins are used for training and 1 bin is used for testing. Repeating

these 10 folds ensures that each bin is used for training and testing while minimizing

the sampling bias. Each holdout experiment is also repeated 10 times and in each
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repetition the datasets are randomized to overcome any ordering effect and to achieve

reliable statistics. Overall, we have performed 10x10=100 experiments per heuristic

for each dataset and our reported results are the means of these 100 experiments for

each dataset. We have applied t-test with α = 0.05 in order to determine the statistical

significance of mean results. We also include boxplots in order to visualize our results.

5.1.2. Results and Discussions

5.1.2.1. Independence of Attributes Assumption. Results on relaxing the independence

assumption (i.e. using LD or QD rather than NB) are tabulated in Table 5.1. Mean

results of (pd,pf) pairs selected by the bal measure after 10×10 holdout experiments are

given. For ‘Subset Selection’ columns, the best subset of features obtained by InfoGain

is used as reported in [28]. Each predictor’s performance on each dataset is given and

the best predictor according to the bal measure is written in bold face. Cells with a

dash (i.e. ‘-’) indicate no result due to singularities.

Subset selection is better in only one out of eight datasets (CM1). In the remain-

ing datasets, best performances are obtained by pre-processing with PCA. As for the

predictors, Naive Bayes (NB) wins five times, linear discriminant (LD) wins twice and

quaratic disrciminant (QD) wins only once.

Overall performance of our approach numerically improves the best results re-

ported so far. Menzies et al. reported mean((pd,pf)) = (71, 25) which yields bal =

72 [28]. Our results give mean((pd,pf)) = (76, 27) where bal = 74. For replicated exper-

iments, we achieved mean((pd,pf)) = (64, 19) and bal = 71, still below our performance.

Even though NB is the majority winner, it is observed that performances on

some datasets are increased by using QD or LD. However, these improvements are not

statistically significant. Therefore, we assert that there is no need to increase the com-

plexity of the Naive Bayes by modeling correlations and the independence assumption

is valid for software defect data, at least after PCA processing. Similarly, Domingos

and Pazzani show theoretically that the independence assumption is a problem in a
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Figure 5.2. Experiment I results of feature weighting heuristics for Nasa projects

vanishingly small percent of cases [146]. This explains the repeated empirical result

that, on average, seemingly naive Bayes classifiers perform as well as other seemingly

more sophisticated schemes.

5.1.2.2. Equal Importance of Attributes Assumption. (pd, pf, bal) results of 100 ex-

periments on NASA projects are plotted in Figure 5.2 for each heuristic. We ob-

serve that Infogain(IG), GainRatio(GR) heuristics and standard Naive Bayes with

log-filtering(LNB) outperform other heuristics. These three methods show statistically

significant performances than others in all datasets. Thus, we only tabulate these three

methods’ mean (pd,pf,bal) values in Table 5.2.

In NASA projects, overall evaluation yields five, six and four wins for InfoGain,

GainRatio heuristics and LNB respetively after applying pairwise t-tests. These results

indicate that our proposed approach yields comparable and in some cases better results

than the ones reported on these datasets so far. InfoGain and GainRatio heuristics
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Table 5.1. Experiment I results for independence assumption.

PCA Subset Selection

Dataset Discriminant pd (%) pf (%) bal (%) pd (%) pf (%) bal (%)

CM1 QD 76 35 70 91 51 64

CM1 LD 82 38 71 90 54 61

CM1 NB 82 37 71 84 32 74

PC1 QD 71 38 66 43 27 56

PC1 LD 66 24 70 - - -

PC1 NB 68 25 71 40 11 57

PC2 QD 78 32 72 68 14 75

PC2 LD 71 12 78 72 15 78

PC2 NB 72 13 78 72 15 78

PC3 QD 75 37 68 79 47 64

PC3 LD 76 31 72 - - -

PC3 NB 77 32 72 58 15 68

PC4 QD 88 20 83 98 31 78

PC4 LD 87 23 81 98 31 78

PC4 NB 87 24 81 91 29 79

KC3 QD 79 42 67 74 28 73

KC3 LD 79 25 77 53 19 64

KC3 NB 79 25 77 47 14 61

KC4 QD 75 29 73 69 38 66

KC4 LD 78 33 72 73 38 67

KC4 NB 80 32 73 80 32 73

MW1 QD 73 41 65 16 1 41

MW1 LD 70 34 68 - - -

MW1 NB 70 35 67 45 7 61

Best Avg: 76 27 74 64 (71) 19 (25) 71 (72)
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Table 5.2. Experiment I results for Equal Importance Assumption

Data IG+WNB (%) GR+WNB (%) LNB (%)

pd pf bal pd pf bal pd pf bal

CM1 82 39 69 82 41 68 83 32 74

PC1 69 36 66 69 35 67 41 12 57

PC2 66 22 72 66 20 72 70 15 76

PC3 81 37 71 81 37 71 59 15 69

PC4 89 32 76 88 27 79 92 29 78

KC3 85 28 77 78 25 76 47 14 61

KC4 80 34 72 78 33 72 79 32 73

MW1 64 32 66 71 37 67 44 07 60

Avg: 77 33 71 77 32 72 64 20 69

achieve higher pd and pf values compared to LNB. We argue that the projects that

require high reliability should have higher pd values. Since these datasets have this

requirement, InfoGain and GainRatio based heuristics may be preferred over LNB.

Figure 5.3 to Figure 5.10 show the boxplots of 100 balance results for IG, GR

and LNB. We observe that the weighting results are more stable than standard Naive

Bayes, since in all datasets, the spread of balance values are less than or equal to
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Figure 5.3. Experiment I boxplots for CM1 dataset.
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Figure 5.4. Experiment I boxplots for PC1 dataset.
0.2 0.4 0.6 0.8 1

IG

GR

LNB

Balance

M
e
th
o
d

CM1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

IG

GR

LNB

Balance

M
e
th
o
d

PC1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IG

GR

LNB

Balance

M
e
th
o
d

PC2

0.5 0.6 0.7 0.8

IG

GR

LNB

Balance

M
e
th
o
d

PC3

0.6 0.65 0.7 0.75 0.8 0.85 0.9

IG

GR

LNB

Balance

M
e
th
o
d

PC4

0.3 0.4 0.5 0.6 0.7 0.8 0.9

IG

GR

LNB

Balance

M
e
th
o
d

KC3

0.4 0.5 0.6 0.7 0.8 0.9 1

IG

GR

LNB

Balance

M
e
th
o
d

KC4

0.2 0.4 0.6 0.8 1

IG

GR

LNB

Balance

M
e
th
o
d

MW1

Figure 5.5. Experiment I boxplots for PC2 dataset.
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Figure 5.6. Experiment I boxplots for PC3 dataset.
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Figure 5.7. Experiment I boxplots for PC4 dataset.
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Figure 5.8. Experiment I boxplots for KC3 dataset.
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Figure 5.9. Experiment I boxplots for KC4 dataset.
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Figure 5.10. Experiment I boxplots for MW1 dataset.
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Figure 5.11. Experiment I InfoGain Weights.

that of Naive Bayes. Visually inspecting the quartile charts, we also observe that the

statistical significance of the means also applies for the medians of the three methods

in most cases.

In Figure 5.11 and Figure 5.12, we have plotted the relative weights of 38 metrics

available in the NASA projects. These figures show the cumulative metric weight sums

over eight projects. Figure 5.11 shows these values for InfoGain based heuristic and

Figure 5.12 plots values for GainRatio based heuristic. Examining these figures, we

see that metrics enumerated with 17 and 36 are never used. These metrics are ‘Global

Data Density’ and ‘Pathological Complexity’. An analysis of datasets shows that these

metrics have a unique value for all modules in all datasets. Thus, they do not have any

discriminative power and they are eliminated by the weighting approach. Also metrics

enumerated with 15 and 16 (‘Parameter Count’ and ‘Global Data Complexity’) are used

only in PC4 and KC3 where similar observations are valid. The general trend of weight

assignment by both heuristics is similar. Metrics enumerated by 3, 12, 29, 33, 35, 38

in Figure 5.11 and Figure 5.12, which are ‘Call Pairs’, ‘Edge Count’, ‘Node Count’,

‘Number of Unique Operands’, ‘Total Number of Lines’ and ‘Total Number of Line of
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Figure 5.12. Experiment I GainRatio Weights.

Code’ respectively, are consistently selected by these heuristics. These attributes are

consistent with the set of attributes that Menzies et. al. reported for subsetting [28].

These validate our expectation of observing relatively small weights for attributes that

are discarded by subsetting.

In summary, our results indicate that assigning weights to static code attributes

may increase the prediction performance significantly, while removing the need for fea-

ture subset selection. On the other hand, we observe that the independence assumption

of Naive Bayes is valid for software defect data, at least after PCA processing. There-

fore, we conclude that using weighted Naive Bayes may produce better results to locate

defects.

5.2. Experiment II: Are the defect predictors learned from CC data

beneficial for organizations?

Several research in defect prediction focus on building models with available local

data (i.e. within company predictors). To employ these models, a company should have
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a data repository where project metrics and defect information from past projects are

stored. However, few companies apply this practice. We suspect that a common

reason for not using defect predictors in practice is the lack of local data repositories.

Constructing such a repository requires keeping track of project metrics together with

related defect information. In the absence of certain infrastructure like automated tools

to collect these metrics, manual effort is unavoidable to accomplish this process. Our

view is that managers do not take the effort to collect metrics for process improvement

due to tight schedule and budget constrains.

On the other hand, there are public data repositories including projects from

companies such as NASA [138]. In this context, we investigate whether these public

project data can be helpful for other companies for building localized defects predictors,

especially for those with limited or no defect data repository.

While there exists numerous research in learning predictors using within company

data [69, 29, 30, 31, 32, 28, 98, 99, 147, 148, 149, 2, 150, 97, 96, 114, 94, 93, 92, 91,

28, 90, 42], utilizing cross-company data has not been investigated in defect prediction

research. On the other hand, this issue has been throughly analyzed in a closely related

area, that is, cost estimation. In their systematic review, Kitchenham et.al. argue that

it is not possible to reach a conclusion whether to use within or cross company data

for cost estimation purposes [130].

In this dissertation, we turn the attention to defect prediction and perform ex-

periments to check if we can reach a conclusion in favor of either CC or WC data.

Specifically, we assess the relative merits of cross-company (CC) vs. within-company

(WC) data for defect prediction. To the best of our knowledge, this kind of analysis is

a novel one in defect prediction literature.

5.2.1. Design

Our first WC-vs-CC experiments repeated the procedure explained in Table 5.3,

for all seven NASA projects of Table 4.2. For each project, test sets were built from
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10% of the data, selected at random. Defect predictors were then learned from:

• CC data: all data from the other six projects.

• WC data: remaining 90% data of that project;

Most of the Table 4.2 data come from systems written in “C/C++” but at least one of

the systems was written in JAVA. For cross-company data, an industrial practitioner

may not have access to detailed meta-knowledge (e.g. whether it was developed in “C”

or JAVA). They may only be aware that data, from an unknown source, are available

for download from a certain url. To replicate that scenario, we will make no use of our

meta-knowledge about Table 4.2.

In order to control for order effects (where the learned theory is unduly affected

by the order of the examples) our procedure was repeated 20 times, randomizing the

order of data in each project each time. In all, we ran 280 experiments to compare

WC-vs-CC:

(2 experiments) ∗ (20 randomized orderings) ∗ (7 projects)

The project data come from different sources and, hence, have different features.

For this experiment, only the features that are common in all NASA projects are used, a

total of 19 features. These features are marked in ”NASA Shared” column of Table 4.3.

5.2.2. Results and Discussions

Table 5.4 shows the {pd, pf} quartile charts for CC vs. WC data averaged over

seven NASA projects. The pattern is very clear: CC data dramatically increases both

the probability of detection and the probability of false alarms. The pd results are

particularly striking.

For cross-company data:
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Table 5.3. Experiment II Design

DATA = [PC1, KC1, KC2, CM1, KC3, MW1, MC2]

LEARNER = [Naive Bayes]

C_FEATURES <- Find common features IN DATA

FOR EACH data IN DATA

data = Select C_FEATURES in data

END

REPEAT 20 TIMES

FOR EACH data in DATA

CC_TRAIN = DATA - data

WC_TRAIN = random 90% of data

TEST = data - WC_TRAIN

CC_PREDICTOR = Train LEARNER with CC_TRAIN

WC_PREDICTOR = Train LEARNER with WC_TRAIN

[cc_pd, cc_pf, cc_bal] = CC_PREDICTOR on TEST

[wc_pd, wc_pf, wc_bal] = WC_PREDICTOR on TEST

END

END

Table 5.4. Experiment II results averaged over seven NASA projects.

treatment min Q1 median Q3 max

pd CC 50 83 97 100 100 u
WC 17 63 75 82 100 u

pf CC 14 53 64 91 100 u
WC 0 24 29 36 73 u

• 50% of the pd values are at or above 97%

• 75% of the pd values are at or above 83%;

• And all the pd values are at or over 50%.

To the best of our knowledge, Table 5.4 are the largest pd values ever reported

from these data. However, these very high pd values come at some considerable cost. In

Table 5.4 the median false alarm rate has increased from 29% (with WC) to 64% (with

CC) and the maximum pf rate reaches 100%. We should caution that a 100% pf rate

means that all defect-free modules are classified as defective, which yields inspection of
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Table 5.5. Summary of U-test results (95% confidence): moving from WC to CC.

pd pf

group WC → CC WC → CC tables |tables|

a increased increased CM1 KC1

KC2 MC2

MW1 PC1

6

b same same KC3 1

all these modules unnecessarily and contradicts with the purpose of defect prediction.

However, it is not right to assess the general behavior of the CC defect predictors with

such an extreme case. We mention this issue in order to clarify that high false alarm

rates may be prohibitive in the practical application of defect predictors.

We explain these increases in pd, pf with the extraneous factors in CC data. More

specifically, using a large training set (e.g. seven projects in Table 4.2) informs not only

all the causes of errors, but also of numerous irrelevancies (e.g. using code features

gathered from JAVA programs for predicting defects in “C” programs, using code

features gathered from different companies and different project domains). Hence, large

training sets increase the probability of detection (since there are more known sources

of errors) as well as the probability of false alarms (since there are more extraneous

factors introduced to the analysis). We will test the validity of this claim in the next

experiment.

Once a general result is defined (e.g. CC data dramatically increases both pf and

pd), it is good practice to check for specific exceptions to that pattern. Table 5.5 shows

a summary of results when U tests with α = 0.05 were applied to test results from

each of the seven projects, in isolation and Table 5.6 to Table 5.12 show the {pd, pf}

quartile charts for Experiment #1 for each NASA project:

• Usually (6
7
), the general pattern (i.e. both (pd, pf) increases in CC models com-

pared to WC models) still holds (see group a).
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Table 5.6. Experiment II results for CM1.

Table (cm1)

treatment min Q1 median Q3 max

pd CC 80 100 100 100 100 u
WC 40 60 80 100 100 u

pf CC 87 91 96 96 98 u
WC 24 27 33 38 47 u

Table 5.7. Experiment II results for KC1.

Table (kc1)

treatment min Q1 median Q3 max

pd CC 82 88 94 94 100 u
WC 64 73 82 85 97 u

pf CC 47 49 51 53 57 u
WC 27 34 36 38 40 u

• In one case (see group b), there was no difference in the results of the CC-WC

data

Overall, the general pattern holds in the majority of cases (i.e. 6
7

), which is not a 100%

internally consistent, however still a very clear effect.

When practitioners use defect predictors with high false alarm rates (e.g.the 64%

reported above), they must allocate a large portion of their debugging budget to the

unfruitful exploration of erroneous alarms. Defect predictors with high false alarms

can be useful in industrial contexts:

• When the cost of missing the target is prohibitively expensive. In mission critical

or security applications, the goal of 100% detection may be demanded in all

situations, regardless of the cost of chasing false alarms.

• When only a small fraction the data is returned. Hayes, Dekhtyar, & Sundaram
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Table 5.8. Experiment II results for KC2.

Table (kc2)

treatment min Q1 median Q3 max

pd CC 82 91 91 100 100 u
WC 55 73 82 91 100 u

pf CC 57 62 64 74 81 u
WC 14 24 31 33 45 u

Table 5.9. Experiment II results for KC3.

Table (kc3)

treatment min Q1 median Q3 max

pd CC 60 80 80 80 100 u
WC 40 60 80 80 100 u

pf CC 14 19 24 31 38 u
WC 10 17 21 26 36 u

Table 5.10. Experiment II results for MC2.

Table (mc2)

treatment min Q1 median Q3 max

pd CC 50 67 83 100 100 u
WC 17 33 67 67 83 u

pf CC 55 64 73 73 100 u
WC 0 27 36 45 73 u
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Table 5.11. Experiment II results for MW1.

Table (mw1)

treatment min Q1 median Q3 max

pd CC 75 75 100 100 100 u
WC 25 50 75 75 100 u

pf CC 50 55 63 66 82 u
WC 13 18 21 29 37 u

Table 5.12. Experiment II results for PC1.

Table (pc1)

treatment min Q1 median Q3 max

pd CC 88 100 100 100 100 u
WC 38 63 63 75 88 u

pf CC 89 92 93 95 99 u
WC 17 25 27 30 34 u
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call this fraction selectivity and offer an extensive discussion of the merits of this

measure [151].

• When there is little or no cost in checking false alarms.

Nevertheless, we suspect that most sites do not accept false alarm rates as high as

64%. Therefore, the conditions under which the benefits of CC data (high probabilities

of detection) outweigh their high costs (high false alarm rates) are quite rare. In

summary, for most software applications, very high pf rates like the CC results of

Table 5.4 make the predictors impractical to use.

5.3. Experiment III: How can companies filter CC data for local tuning?

The results of Experiment II limits the use of CC data to a limited domain (i.e.

mission critical) and may look discouraging at first glance. In that experiment we

explained our observations with the extraneous factors, that the results are affected by

the irrelevant factors in CC data. In this section we hypothesize this claim and test

for its validity.

5.3.1. Design

In this experiment, we try to construct more homogeneous defect datasets from

CC data. For this purpose we use a simple filtering method (i.e. nearest neighbor

(NN)). Our idea behind sampling is to collect similar instances together in order to

construct a learning set that is homogeneous with the validation set. More formally, we

try to introduce a bias in the training data that reflects the validation set characteris-

tics. We simply use the k-Nearest Neighbor (k-NN) method to measure the similarity

between the validation set and the training candidates. The similarity measure is the

Euclidean distance between the static code features of validation and training candi-

date sets. The expected outcome of the sampling part is to obtain a subset of available

CC data that shows similar characteristics to the local code culture.

We do not use the class information (i.e. a module is defective or defect-free)
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while measuring similarity and selecting neighbors. This corresponds to a real life

case, where the development of some modules are completed and they are ready for

testing: there is no defect related information available, however static code features

are collected with automated tools.

The experiment design is given in Table 5.13. We calculate the pairwise Euclidean

distances between the validation set and the candidate training set (i.e. all CC data).

Let N be the number of validation set size. For each validation data, we pick its

k = 10 nearest neighbors from candidate training set. Then we come up with a total

of 10 × N similar data points (i.e. module features). These 10 × N samples may not

be unique (i.e. a single data sample can be a nearest neighbor of many data samples in

the validation set). Using only unique ones, we form the training set and use a random

90% of it for training a predictor. We repeat the last step 100 times.

5.3.2. Results and Discussions

If the high false alarm rates of Experiment II are due to the extraneous factors

in CC data (as we suspect), then we would expect lower pf’s in NN results than CC

results. Therefore, we define the null hypothesis as:

H0 : NNpf ≥ CCpf

H0 is rejected by the U test with α = 0.05. Therefore, using NN filtered CC data

significantly decreases the false alarms compared to CC data. Yet, we observe that

pds have also decreased. However, false alarm rates are more dramatically decreased

than detection rates as seen in Table 5.14 and Table 5.15. For example, in CM1

project, the median false alarm rate decreases nearly one thirds, from 91% to 33%,

whereas the median detection rate slightly decreases from 94% to 82%. In all cases,

NN dramatically reduces the high false alarm rates associated with the use of cross-

company data. Often that reduction halves the false alarm range. For example, in

MW1, the median false alarm rate drops between CC to NN from 68% to 33%.
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Table 5.13. Experiment III Design

DATA = [PC1, KC1, KC2, CM1, KC3, MW1, MC2]

LEARNER = [Naive Bayes]

C_FEATURES <- Find common features IN DATA

FOR EACH data IN DATA

data = Select C_FEATURES in data

END

REPEAT 100 TIMES

FOR EACH data in DATA

WC_TRAIN = random 90% of data

TEST = data - WC_TRAIN

CC_TRAIN = DATA - data

//NN-Filtering

FOR EACH test IN TEST

dist = L2_DISTANCE{test, CC_TRAIN}

NNCC_TRAIN <- 10 Samples in CC_TRAIN with min{dist)

END

NNCC_TRAIN = UNIQUE(NNCC_TRAIN)

NNCC_PREDICTOR = Train LEARNER with NNCC_TRAIN

CC_PREDICTOR = Train LEARNER with CC_TRAIN

WC_PREDICTOR = Train LEARNER with WC_TRAIN

[nncc_pd, nncc_pf, nncc_bal] = NNCC_PREDICTOR on TEST

[cc_pd, cc_pf, cc_bal] = CC_PREDICTOR on TEST

[wc_pd, wc_pf, wc_bal] = WC_PREDICTOR on TEST

END

END



83

Table 5.14. Experiment III pd results where NNpd ≥ WCpd.

quartiles

rank 0 25 50 75 100

CM1 1 CC 98 98 98 98 98 u
2 NN 76 82 82 84 84 u
3 WC 20 60 80 80 100 u

MW1 1 CC 90 90 90 90 90 u
2 NN 68 68 68 68 71 u
2 WC 0 50 50 75 100 u

PC1 1 CC 99 99 99 99 99 u
2 NN 74 77 77 77 78 u
3 WC 38 62 62 75 100 u

50%

Table 5.15. Experiment III pd results where NNpd < WCpd.

quartiles

rank 0 25 50 75 100

KC1 1 CC 94 94 94 94 94 u
2 WC 64 76 82 85 94 u
3 NN 60 64 65 66 69 u

KC2 1 CC 94 94 94 94 94 u
2 WC 45 73 82 91 100 u
2 NN 77 78 79 79 80 u

KC3 1 CC 81 81 81 84 84 u
2 WC 20 60 80 100 100 u
3 NN 60 63 65 67 70 u

MC2 1 CC 83 83 83 83 85 u
2 WC 17 50 67 83 100 u
3 NN 56 56 56 56 58 u

50%
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Table 5.16. Experiments III pf results where NNpf ≤ WCpf .

quartiles

rank 0 25 50 75 100

KC1 1 NN 22 23 24 25 27 u
2 WC 26 32 35 37 43 u
3 CC 59 60 60 60 60 u

KC2 1 NN 24 25 25 25 27 u
1 WC 10 21 26 31 40 u
2 CC 67 67 67 67 67 u

KC3 1 NN 17 18 18 19 20 u
2 WC 7 17 21 26 31 u
3 CC 26 27 27 27 27 u

MC2 1 NN 29 30 31 32 35 u
2 WC 0 27 36 45 73 u
3 CC 71 71 71 71 71 u

50%

Table 5.17. Experiment III pf results where NNpf > WCpf .

quartiles

rank 0 25 50 75 100

CM1 1 WC 16 29 33 38 49 u
2 NN 40 43 44 45 46 u
3 CC 90 91 91 91 93 u

MW1 1 WC 8 21 26 29 47 u
2 NN 30 32 33 33 36 u
3 CC 67 68 68 69 70 u

PC1 1 WC 16 24 28 31 40 u
2 NN 45 48 48 49 53 u
3 CC 94 94 94 94 94 u

50%
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Showing that NN is significantly better than CC, the ideal result would be that

NN can be used as an alternative to local WC data. This, in turn, would mean that

developers could avoid the tedious and expensive work of local data collection. We

now investigate the relation between NN and WC.

If NN outperformed WC then two observations would appear:

• Observation1: NN would have pd values above or equal to WC’s pd. The examples

displaying Observation1 are shown in Table 5.14.

• Observation2: NN would have pf values below or equal to WC’s pf . The exam-

ples displaying Observation2 are shown in Table 5.16.

Our results suggest that Observation1 and Observation2 are somewhat mutually ex-

clusive: As shown in Figures Table 5.14 and Table 5.17, the examples where NN

increases the probability of detection are also those where it increases the probability

of false alarms. Hence, we cannot recommend NN as a replacement for WC. Neverthe-

less, if local WC data are unavailable, then we would recommend processing foreign

CC data with NN.

In Experiment II, we have used random samples of CC data and observed that

the false alarm rates substantially increased compared to the WC models. Our new

experiment shows that NN filtering CC data removes the increased false alarm rates.

Now we argue that using NN filtering instead of using all available CC data helps

choosing training examples that are similar to problem at hand. Thus, the irrelevant

information in non-similar examples are avoided. However, this also removes the rich

sample base and yields a slight decrease in detection rates. Mann-Whitney tests reveal

that NN filtering is significantly better than random sampling CC data.

The NN vs. WC results do not give necessary empirical evidence to make a

strong conclusion. Sometimes NN may perform better than WC. A possible reason

may be hidden in the processes that implemented those projects. Maybe, a group

of new developers were working together for the first time and corresponding WC
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data included more heterogeneity, which is reduced by NN. May be the development

methodology changed during the project, producing a different code culture. However,

we do not have access to the internals of these projects that allows a discussion of these

observations.

Nevertheless, NN filtering picks training examples that are similar to the ex-

amples about which we want to make predictions. Without introducing irrelevant

information, NN filtering populates a set that has the same characteristics with the

problem. That means, the likelihood of implementing similar software modules and

having similar defects in these modules is high. Thus, NN filtering simulates that

the selected cross company data are coming from within the company. Considering

the extraneous factors, NN filtering introduces homogeneity whereas random sampling

introduces heterogeneity to cross company data.

Combining these results of Experiment II and III, if a company lacks local data,

we would suggest a two-phase approach. In phase one, that organization uses imported

CC data filtered via NN. Also, during phase one, the organization should start a data

collection program to collect static code features. Phase two commences when there is

enough local WC data to learn defect predictors. During phase two, the organization

would switch to new defect predictors learned from the WC data.

Our next experiment is, therefore, designed to determine the number of examples

required to build defect predictors from WC data.

5.4. Experiment IV: How much local data do organizations need for

constructing a model?

Our results of Experiment II and III reveals that WC data models are better if

data are available. In this section, we will show that defect predictors can be learned

from very small samples of WC data.
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Table 5.18. Experiment IV Design

DATA = [PC1, KC1, KC2, CM1, KC3, MW1, MC2]

LEARNER = [Naive Bayes]

REPEAT 100 TIMES

FOR EACH data IN DATA

WC_TRAIN = random 90% of data

TEST = data - WC_TRAIN

FOR i IN {100, 200, 300, ...}

WC_TRAIN_INCREMENTAL <- Random i Examples from WC_TRAIN

WC_INC_PREDICTOR = Train LEARNER with WC_TRAIN_INCREMENTAL

[iwc_pd, iwc_pf, iwc_bal] = WC_INC_PREDICTOR on TEST

END

END

END

5.4.1. Design

An important aspect of the Experiment II and III results is that defect predic-

tors were learned using only a handful of defective modules. For example, consider a

90%/10% train/test split on pc1 with 1,109 modules, only 6.94% of which are defec-

tive. On average, the training set will only contain 1109 ∗ 0.9 ∗ 6.94/100 = 69 defective

modules. Despite this, pc1 yields an adequate median {pd, pf} results of {63, 27}%.

Experiment IV was, therefore, designed to check how much data are required to

learn defect predictors. The design is given in Table 5.18. Experiment IV is essentially

the same as Experiment II, but without the cross-company study. Instead, experiment

IV takes the seven NASA projects of Table 4.2 and learns predictors using:

• reduced WC data: a randomly selected subset of up to 90% of each project data.

After randomizing the order of the data, training sets were built using just the first

100, 200, 300, . . . data samples in the project. After training the defect predictor, its

performance is tested on the remaining data samples not used in training.

Experiment II only used the features found in all NASA projects. For this ex-
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Figure 5.13. CM1 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis. .

periment, we imposed no such restrictions and used whatever features were available

in each data set.

5.4.2. Results and Discussions

We would like to remind that balance is a combination of {pd, pf} that decreases

if pd decreases or pf increases. As shown in Figure 5.13 to Figure 5.19, there was very

little change in balanced performance after learning from 100, 200, 300 . . . examples.

Indeed, it seems that learning from larger training sets had detrimental effects: the

more training data, the larger the variance in the performance of the learned predictor.

In kc1 and pc1, as the training set size increases (moving right along the x-axis) the

dots showing the balance performance start spreading out.

The Mann-Whitney U test was applied to check the visual trends seen in Fig-

ure 5.13 to Figure 5.19. For each project, all results from training sets of size 100, 200,

300, . . . were compared to all other results from the same project. The issue was “how

much data are enough?” i.e. what is the minimum training set size that never lost to

other training set of a larger size. Usually, that min value was quite small:

• In five projects {cm1, kc2, kc3,mc2,mw1}, min = 100;

• In {kc1, pc1}, min = {200, 300} instances, respectively.
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Figure 5.14. KC1 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis.
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Figure 5.15. KC2 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis.
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Figure 5.16. KC3 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis.



90

 0

0.5

1.0

 0  2
0

 4
0

 6
0

 8
0

 1
00

ba
la

nc
e

MC2

Figure 5.17. MC2 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis. The MC2 results only appear at the

maximum x-value since MC2 has less than 200 examples.
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Figure 5.18. MW1 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis.
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Figure 5.19. PC1 results from experiment IV. Training set size grows in units of 100

examples, moving left to right over the x-axis.
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Figure 5.20. Y-axis shows plateau point after learning from UCI data sets that have

up to X examples using Naive Bayes and decision tree learners (from [4]).

We explain the experiment IV results as follows. This experiment uses simplistic

static code features such as lines of code, number of unique symbols in the module,

etc. Such simplistic static code features are hardly a complete characterization of the

internals of a function. We would describe such static code features as having limited

information content [5]. Limited content is soon exhausted by repeated sampling.

Hence, such simple features reveal all they can reveal after a small sample.

There is also evidence that the results of Experiment IV (that performance im-

provements stop after a few hundred examples) have been seen previously in the data

mining literature. To the best of our knowledge, this is the first report of this effect in

the defect prediction literature:

• In their discussion on how to best handle numeric features, Langley and John of-

fers plots of the accuracy of Naive Bayes classifiers after learning on 10,20,40,..200

examples. In those plots, there is little change in performance after 100 in-

stances [152].

• Orrego [4] applied four data miners (including Naive Bayes) to 20 data sets to

find the plateau point: i.e. the point after which there was little net change in the

performance of the data miner. To find the plateau point, Oreggo used t-tests

to compare the results of learning from Y or Y + ∆ examples. If, in a 10-way

cross-validation, there was no statistical difference between Y and Y + ∆, the

plateau point was set to Y . As shown in Figure 5.20, many of those plateaus
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were found at Y ≤ 100 and most were found at Y ≤ 200. We observe that these

plateau sizes are consistent with the results of Experiment IV.

In the majority case, predictors learned from as little as one hundred examples

perform as well as predictors learned from many more examples. This suggests that

the effort associated with learning defect predictors from within-company data may

not be overly large. For example, the effort required to build and test 100 modules

may be as little as 2.4 to 3.7 person months. To generate an effort estimate for these

modules, we used the on-line COCOMO [132] effort estimator.8 In CM1 project, the

median module size is 17 lines. 100 randomly selected modules would have 1700 LOC.

Therefore, estimates were generated assuming 1700 LOC and the required reliability

varying from very low to very high.

5.5. Experiment V: Can our results be generalized?

Experiments II to IV were based on NASA projects. In order to search evidence

for the external validity of the conclusions of those experiments, we replicate the same

experiments on SOFTLAB projects of Table 4.2.

5.5.1. Design

For each SOFTLAB project, we follow the same procedure as in Experiments II

and III; i.e. 10% of the rows of each data set are selected at random for constructing

test sets and then defect predictors are learned from:

• CC data: all data from seven NASA projects.

• WC data: random 90% data of remaining SOFTLAB projects. In order to reflect

the use in practice, we do not use the remaining 90% of the same project for train-

ing, we rather use a random 90% of data from other projects. Since SOFTLAB

data are collected from a single company, learning a predictor on some projects

and to test it on a different one does not violate within company simulation.

8http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html
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Table 5.19. Experiment V results for the SOFTLAB projects.

Average results on SOFTLAB data

treatment min Q1 median Q3 max

pd CC 88 88 95 100 100 u
WC 35 40 88 100 100 u

pf CC 52 59 65 68 68 u
WC 3 5 29 40 42 u
Table 5.20. Experiment V results for AR3.

Table (ar3)

treatment min Q1 median Q3 max

pd CC 88 88 88 88 88 u
WC 88 88 88 88 88 u

pf CC 62 65 65 65 65 u
WC 40 40 40 40 42 u

• NN filtered CC data: similar data from seven NASA projects.

The SOFTLAB projects include 29 static code features, 17 of which are common

with the NASA projects (see Table 4.4). In order to simplify the comparison between

these new projects and Experiment II and III, we use only these shared attributes in our

CC experiments. On the other hand, we use all available features in WC experiments

for SOFTLAB projects. Finally, in this experiment, we treated each NASA project as

cross company data for SOFTLAB projects.

5.5.2. Results and Discussions

Figure Table 5.19 shows the results:

• The pd values for CC data increase compared to WC data with the cost of in-

creased pf.
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Table 5.21. Experiment V results for AR4.

Table (ar4)

treatment min Q1 median Q3 max

pd CC 95 95 95 95 95 u
WC 35 40 40 40 40 u

pf CC 52 55 56 59 60 u
WC 3 3 3 5 5 u
Table 5.22. Experiment V results for AR5.

Table (ar5)

treatment min Q1 median Q3 max

pd CC 100 100 100 100 100 u
WC 88 100 100 100 100 u

pf CC 57 68 68 68 68 u
WC 29 29 29 29 29 u

Table 5.23. Experiment V pd results for the SOFTLAB projects, where

NNpd ≥ WCpd.

quartiles

rank 0 25 50 75 100

AR4 1 CC 35 90 100 100 100 u
2 NN 65 65 70 70 70 u
3 WC 35 40 40 40 45 u

AR3 1 CC 75 88 88 88 88 u
1 NN 88 88 88 88 88 u
1 WC 88 88 88 88 88 u

AR5 1 CC 88 100 100 100 100 u
1 NN 100 100 100 100 100 u
1 WC 88 100 100 100 100 u

50%
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Table 5.24. Experiment V pf results for the SOFTLAB projects where

NNpf ≤ WCpf .

quartiles

rank 0 25 50 75 100

AR3 1 NN 38 38 38 38 40 u
2 WC 40 40 40 40 42 u
3 CC 38 55 56 60 80 u

AR5 1 NN 21 25 25 25 32 u
2 WC 29 29 29 29 29 u
3 CC 29 46 50 50 79 u

50%

Table 5.25. Experiment V pf results for the SOFTLAB projects, where

NNpf > WCpf .

quartiles

rank 0 25 50 75 100

AR4 1 WC 3 3 3 5 7 u
2 NN 24 25 25 25 28 u
3 CC 6 47 62 67 78 u

50%

• CC data shifts {Q1, median} of pf from {5, 29} to {59, 65}.

• For CC data:

– 25% of the pd values are at 100%.

– 50% of the pd values are above 95%

– And all the pd values are at or over 88%.

These results also provide evidence for the validity of our conclusions for Exper-

iment V. In Experiment V, we conclude that the minimum number of instances for

training a defect predictor is around 100− 200 data samples. Please note that SOFT-

LAB projects ar3, ar4 and ar5 have {63,107, 36} modules respectively, with a total of

206 modules. Thus, WC results in Figure Table 5.19 are achieved using a minimum of
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(63 + 36) ∗ 0.90 = 90 data samples (i.e. learn a predictor on (ar3 + ar5) and test it on

ar4) and a maximum of (63 + 107) ∗ 0.90 = 153 data samples (i.e. learn a predictor on

(ar3 + ar4) and test it on ar5).

Table 5.23 to Table 5.25 shows Observation1 (i.e. NNpd ≥ WCpd) and Obser-

vation2 (i.e. NNpf ≤ WCpf ) for SOFTLAB projects. We would like to remind that

these observations were mutually exclusive for NASA projects. The pattern is similar

in SOFTLAB projects:

• for ar4 mutual exclusiveness hold: NNpd ≥ WCpd and NNpf > WCpf

• for ar3 and ar5: NNpf ≤ WCpf . If the observations were mutually exclusive, we

would expect NNpd < WCpd. Yet, for pd NNpd ≥ WCpd, however this inequality

holds with the equity (see Table 5.23) and NNpd 6> WCpd

In summary, the WC, CC and NN patterns found in American NASA rocket

software are also observed in software controllers of Turkish domestic appliances. While

this is not the definitive proof of the external validity of our results, we find it a very

compelling result that is reproducable in different companies.

5.6. Experiment VI: Additional Local Information Sources

In this section, we use static call graph based ranking (CGBR) framework, which

can be applied to any local defect prediction model. In this framework, we model both

intra module properties and inter module relations. We aim at increasing the infor-

mation content of static code attributes by including the architectural structure of the

code. More precisely, most static code attributes assume the independence of soft-

ware modules and measure individual module complexities without considering their

interactions. In this section we adjust static code attributes by modeling their inter-

connection schema using call graphs. We calculate call graph based ranking (CGBR)

values and assign ranks to each module.
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5.6.1. Design

For this experiment, we use SOFTLAB data, since we only have access to source

codes of these projects. NASA projects do not contain call graph information. There-

fore, we used the available source code to build the static call graphs. In our experi-

ments, we left one of the projects as the test case and built predictors on the remaining

two projects. We repeat this for all three SOFTLAB projects. We use a random 90%

of the training set for the models and repeat this procedure 20 times in order to over-

come ordering effects. Before we train our model, we have applied log-filtering on the

datasets and normalized our CGBR values. We classified our CGBR values in 10 bins

and give each bin a weight value in 0.1 increments in the [0..1] interval. Then we have

adjusted the static code features of each module by multiplying each row in the data

table with corresponding weights. We compare the CGBR results with the standard

Naive Bayes results on SOFTLAB projects.

5.6.2. Results and Discussions

Figure 5.21 and Figure 5.22 show (pd, pf, bal) results for the original attributes

(i.e. without CGBR adjustment) and the dataset with CGBR adjustment respectively.

These figures show the boxplots of the (pd, pf) and balance results. Figure 5.21

and Figure 5.22 show that using CGBR adjusted data slightly decreases the median

probability of detection, and significantly decreases the median probability of false

alarms. Moreover, CGBRs pd results are spread in a narrower interval, from which we

can conclude that CGBR produces more stable results than standard approach. Please

note that 50% of the results yield detection rates over 88% and false alarms below 18%.

We observe that balance also significantly improves.

We have also analysed the cost effectiveness of the model. Table 5.26 shows

median (pd, pf) rates of the two models and the required testing effort in terms of

LOC [69, 39]. It also includes the estimated LOC for random strategy depending on

the pd rates 79% and 77% respectively. In order to detect 79% of the actual defects

in the code, the estimated LOC for inspection with random strategy is 13,866 and the
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Figure 5.21. Experiment VI standard naive Bayes results on SOFTLAB projects.

Figure 5.22. Experiment VI CGBR results on SOFTLAB projects.

estimated LOC for original data is 12,513. Therefore, using Nave Bayes predictor with

original data achieves an improvement of 10% in testing effort. Conversely for 77%

defect detection rate of the CGBR framework, the estimated LOC for random strategy

is 13,515 and the required LOC for CGBR adjusted data is 10439. The false alarm rate

has also changed from 30% to 20%. Hence CGBR framework decreases the probability
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Table 5.26. Cost effectiveness of CGBR.

Original Data CGBR

pd 79% 77%

pf 30% 20%

Estimated LOC for inspection 12513 10439

LOC for manual inspection 13866 13515

Improvement on testing effort 10% 23%

Table 5.27. Experiment VI project-wise performance of CGBR.

AR3 AR4 AR5 Average

CGBR pd 88 55 88 77

pf 33 10 18 20

Original pd 86 50 100 79

pf 42 18 29 30

of false alarms and testing effort, where the improvement is 23%.

The results for individual projects also validate our findings. Table 5.27 shows the

(pd, pf) rates with CGBR adjusted data and with the original data. For all projects

we observe the same pattern: pf rates decrease for all projects. For AR5, pf rate is

decreased with the cost of missing some defective modules. However, AR5 is a small

dataset with only eight defective modules out of a total of 36 projects. Therefore,

CGBR adjusted data model misses only a single defective module compared to the

original data model.

We explain our observations as follows: Adjusting dataset with CGBR values

provide additional information content compared to pure static code attributes. The

adjustment incorporates inter module information by using architectural structure, in

addition to the intra module information available in static code attributes. Our results

show that defect predictors using CGBR framework can detect the same number of

defective modules, while yielding significantly lower false alarm rates. On industrial

public data, we also show that using CGBR framework can improve testing efforts by
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23%.

The benefits of using datasets adjusted with CGBR values are very important

and practical. Low pf rates make the predictors practical to use. The reason is that

low pf rates keep the amount of code to be manually inspected at a minimum rate.

As pf rates increase, the predictors become impractical, even not much better than

random testing strategies. Our proposed approach allows decreasing the pf rates, thus

it is practical to use.

Please note that CGBR adjusted model locates equivalent number of defects with

the standard model, while giving fewer false alarms. Our results show that, if testers

were to use the predictions from the CGBR adjusted model, they would spend 13% less

testing effort than the original Nave Bayes model and 23% less than random testing.

When we check the correlation between the CGBR values and the defect content

of the modules, we observe a negative correlation of −0.149. While this does not

represent a strong correlation, it suggests that there are relatively fewer defects when

the modules CGBR values are higher. We suspect that if a module is called frequently

from other modules, any defect in this module is recognized and corrected in a short

time by the developers. On the other hand, the modules which are not called by other

modules will be more defective because these types of modules are not used frequently.

Thus, developers are not as much aware as they do for frequently used modules. As a

result the defects can easily hide in less used modules.

5.7. Threats to Validity

In this section, we discuss the possible threats to the validity of our results. Like

other empirical studies, our results are possibly biased by the data and the algorithm

we have used.

The reasons for our choice of Naive Bayes as the data miner has been thoroughly

discussed in Section 3.1. In summary, the performance of Naive Bayes is identical with
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at least 14 other methods as demonstrated by Lessmann et.al. [3]. We have used Naive

Bayes for its simplicity and high performance. We further explored the validity of its

two basic assumptions for software defect data.

Our experiments regarding the assumptions of Naive Bayes is a replication of

a benchmark study by Menzies et.al. [28] Therefore, we have used exactly the same

datasets which are used in the benchmark study. However, certain data quality issues

have been reported in PROMISE repository, risking the construct validity of some

NASA projects. Considering these risks, we have not used these potentially flawed

datasets in the rest of our experiments. Once again, we have chosen to include those

in the first set of experiments, since it was designed to be comparable to the baseline

study.

Due to many factors affecting the software process and products, it is hard to

claim generality of results in software engineering domain [153]. We have included dif-

ferent project data from different companies to avoid this threat as best as we can. The

external validity of generalizing from NASA projects has been discussed by Basili et.al.

and Menzies et.al. [7, 28] In summary, NASA uses contractors who are contractually

obliged (ISO-9O01) to demonstrate their understanding and usage of current industrial

best practices. Nevertheless, in order to test claims of external validity for our cross

company experiments, we have followed a procedure, where the SOFTLAB data were

initially kept in reserve and these experiments were reproduced on SOFTLAB data.

Concerning our CGBR experiments, we have data shortage, since public data

sets do not contain call graph matrices. This is a challenge that we could overcome

by using datasets of the company that we had source code access (i.e. SOFTLAB

projects). Therefore, this study should be externally validated with other industrial

and open source projects of different sizes. Although open source projects allow access

to code, our experiences show that matching defects at the module level is difficult.
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6. CONCLUSIONS

6.1. Summary of Results

In this dissertation software defect prediction is considered as a data mining prob-

lem. We analyzed the validity of Naive Bayes’ assumptions (i.e. independence and

equal importance of attributes) on software defect data. By relaxing the assumptions

of Naive Bayes we have achieved models of different complexities. We have conducted

several experiments in order to compare the performances of these models. We have

also used several heuristics in order to estimate the weights of attributes based on their

relative importance. Our results show that the independence of attributes assump-

tion in Naive Bayes is valid for software defect data, at least after PCA processing.

Although more complex models can produce numerically better results, these are not

statistically significant. On the other hand, relaxing the other assumption (i.e. equal

importance of attributes) produced significantly better results than simple Naive Bayes.

The complexity introduced by the weighting term is negligible and the weights can be

assigned using several heuristics. Furthermore, the weighting scheme removes the need

for feature subset selection by favoring informative attributes. As a conclusion, we

advise using weighted Naive Bayes for modelling software defect data.

After our analysis of cross vs. within company data defect predictors, on the con-

trary to effort estimation literature, we have found clear and unambiguous conclusions

for defect prediction. To summarize:

• CC-data dramatically increase the probability of detecting defective modules;

• But CC-data also dramatically increase the false alarm rate.

• NN-filtering CC data avoids the high false alarm rates by removing irrelevancies

in CC data;

• Yet WC-data models are still the best and they can be constructed with small

amounts of data (i.e. 100 examples).
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In the light of these results, we conclude that companies can benefit from raw CC

data in extreme cases such as mission critical projects, where the cost of false alarms

can be afforded. Further, pruning CC data with NN-filter allows the use of CC data for

constructing practical defect predictors in other domains. NN-filtered CC data yields

much better results than raw CC data, yet closer but worse results than WC data.

Good news is that the best option of using WC data requires the collection of a mere

hundred examples from within a company and can be done in a short time (i.e. a few

months). We observe the same patterns not only in aerospace software from NASA,

but also in software from a completely different company round the globe.

We have also proposed a novel combination of the static code features and ar-

chitectural structure of software to make predictions about defect content of software

modules (i.e. CGBR framework). We model intra module properties by using static

code features. Further, we model inter module relations by ranking software modules,

where the weights are derived from static call graphs using the well-known PageRank

algorithm. This approach yielded around 10% decreases in false alarm rates.

6.2. Theoretical and Methodological Contributions

In this dissertation, we have proposed novel ways for decision making under

uncertainty, which has been a very active research area in AI for decades. Our analysis

have been carried out in software quality domain where the development of defect

prediction models has also attracted the attention of many researchers. The reason

for such a significant attention to automated quality predictors lays in their practical

importance. Current models are useful, as they allow software project managers to

better guide the allocation usually scarce quality assurance resources to artifacts which

need them the most. In this dissertation, we have made an performance analysis

of defect predictors in different contexts and proposed novel ways to construct and

improve them.

We based our analysis on the observation that straightforward applications of data

mining methods have hit a performance ceiling. With this observation, we focused our
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efforts on data related issues rather than method related issues. However, software

engineering domain is a data starving domain by its nature. Furthermore, data quality

and information content is a critical factor affecting the data mining performance.

These issues raised two common data mining challanges:

1. Available data sample should well represent the problem.

2. Solution space should be searched for better quality solutions.

In order to overcome the first challenge, we have increased the number of data

samples by using data from multiple companies. This approach yielded better rep-

resentation. However, it also spanned a wider space than pure local data, which in

turn expanded the search space. We used the NN filtering approach for guiding this

solution space search for better quality solutions. This can also be perceived as trans-

forming the unsupervised defect prediction problem without labelled within company

data into the supervised defect prediction problem of labelled cross company data. For

the case, where labeled within company data are available, we improved the data infor-

mation content with domain specific knowledge such as using call graphs. Further, we

fed the data miners with inherently available information in data such as weights and

correlations among features. Providing weights improved the quality of the solutions,

whereas providing correlations did not since it also increased the problem complexity

significantly. Nevertheless, we found better solutions using all approaches, but the

correlation modeling.

The theoretical and methodological contributions of this dissertation can be sum-

marized as follows:

1. Evaluation of Model Assumptions: Naive Bayes is a simple, yet very effective

data miner despite its unrealistic assumptions. The analysis of its assumptions

are investigated in data mining literature. In this dissertation, we extend these

analysis in software quality domain.

2. Combining Data From Multiple Sources for Improving Information Content: In

this dissertation, we combine data from multiple companies to improve the rep-
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resentation capability of the limited data sample. Then, we carry out a novel

comparative analysis of defect predictors learned from CC and WC data. This

issue has not been investigated previously. We believe that we fill a certain gap

in defect prediction literature.

3. Removing Noise from Remote Sources: Combining data from multiple companies

improved the information content in data, however it also introduced too much

noise that limited the performance of predictions to certain domains. In order to

overcome this issue, we have proposed to use NN-filtering technique for removing

the noise in data and obtained improved results.

4. Evaluation of the Validity of Common Beliefs for Defect Prediction: In favor

of the common belief, we have empirically shown that local data are better for

constructing defect predictors. Further, on the contrary to the common belief,

we have shown that required data can be collected very quickly.

5. CGBR framework for performance improvement: We have proposed a framework

that significantly improves the performance of defect predictors. Proposed frame-

work is based on call graphs. They have been previously used in other research

by carrying out complex social network analysis. However, our proposed method

is simple yet effective and its conceptual background has been used effectively in

other domains.

6. Experiment Replication: Replication studies in empirical research are very im-

portant for validating and improving the results of previous research. However,

they are rare in software quality research due to data availability. In this disser-

tation, we have replicated a benchmark experiment, validated its results and also

improved them with the proposed methods.

7. Reproducible Methodology: Another important aspect of empirical research is

reproducibility. We have performed a set of well-defined experiments on publicly

available data, which allows other researchers to replicate our research.

8. Data Collection and Donation: Software engineering is a data scarce domain.

Especially, industrial data are hard to reach and collect. In the context of this

dissertation, we have collected industrial data and made them publicly available

for the use of other researchers and practitioners.

9. Open Source Metric Collection and Defect Analysis Tool: Extracting data from
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source codes is a difficult task when carried out manually. Automated tools make

this process significantly easier and more reliable. Our developed tool, Prest, is

not only a metric collection tool but also a defect analysis tool, which is free

for the use of other researchers and practitioners. We hope that Prest will help

increasing the number of projects in public software engineering data repositories.

These contributions also have practical implications, which are discussed in the

next section.

6.3. Practical Implications

In practice, if a company lacks local data, we would suggest a two-phase approach.

In phase one, that organization uses imported CC data filtered via NN. Also, during

phase one, the organization should start a data collection program to collect static code

attributes. Phase two commences when there is enough local WC data to learn defect

predictors. During phase two, the organization would switch to new defect predictors

learned from the WC data.

Arisholm and Briand have certain concerns on the practical usage of defect pre-

dictors [69]. They argue that if X% of the modules are predicted to be faulty and if

those modules contain less than X% of the defects, then the costs of generating the

defect predictor is not worth the effort.

Let us analyze the testing efforts on a sample NASA project (i.e. MW1) from

Arisholm and Briand’s point of view. For MW1, there are a total of 403 modules with

31 defective and 372 defect-free ones. CC model yields 90% pd and 68% pf, and one

should examine 280 modules, which is around a 31% reduction in inspection efforts

compared to examining all modules. Yet, we argue that 68% pf rate is quite high and

using NN we are able to reduce it to 33% along with 68% pd. This corresponds to

examining 144 modules, a reduction of 47% compared to exhaustive testing (and we

assume an exhaustive test should examine 274 modules for detecting 68% defects, as

Arisholm and Briand suggests).
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This analysis can be extended for all projects used in this dissertation. For

instance, the company from which SOFTLAB data in Table 4.2 are collected is keen to

use our detectors, arguing that they operate in a highly competitive market segment

where profit margins are very tight. Therefore, reducing the cost of the product even

by 1% can make a major difference both in market share and profits. Their applications

are embedded systems where, over the last decade, the software components have taken

precedence over the hardware. Hence their problem is a software engineering problem.

According to Brooks [43], half the cost of software development is in unit and systems

testing. The company also believes that their main challange is the testing phase

and they seek predictors that indicate where the defects might exist before they start

testing. Their expectation from the predictor is not to detect all defects, but to guide

them to the problematic modules so that they can detect more defects in shorter times.

Hence, any reduction in their testing efforts allows them to efficiently use their scarce

resources.

An important issue worth more mentioning is the concern about the time required

for setting up a metric program (i.e. in order to collect data for building actual defect

predictors). Our incremental WC results suggest that, in the case of defect prediction,

this concern may be less than previously believed. Kitchenham et al. [130] argue that

organizations use cross-company data since within-company data can be so hard to

collect:

• The time required to collect enough data on past projects from within a company

may be prohibitive.

• Collecting within-company data may take so long that technologies change and

older projects do not represent current practice.

In most of our experiments, as few as 100 modules may be enough to learn adequate

defect predictors. When so few examples are enough, it is possible that projects can

learn local defect predictors that are relevant to their current technology in just a few

months.
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Further, our experiences with our industry partners show that data collection

is not necessarily a major concern. Static code attributes can be automatically and

quickly collected with relatively little effort. We have found that when there is high

level management commitment, it becomes a relatively simple process. For example,

in an extreme case, the three projects of SOFTLAB data were collected in less than a

week’s time. Neither the static code attributes, nor the mapping of defects to software

modules were available when the authors attempted to collect these data. Since these

were smaller scale projects, it was sufficient to spend some time with the developers and

going through defect reports. Although not all projects have 100 modules individually,

the company has a growing repository from several projects and enough data to perform

defect prediction.

We also have experience with a large scale telecommunication company, where

a long-term metric program for monitoring complex projects (around 750.000 lines of

code) requires introducing automated processes. Again with high level management

support, it was possible to employ appropriate tool support and these new processes

were introduced easily and invisible to the staff. For that project, we have now a

growing repository of defects mapped with source code (around 25 defects per month).

Note that the software in that project are being developed for more than 10 years and

have very low defect rates. We have obtained the first results in the 8th month of a 12

months long project. In summary setting up a metric program for defect prediction

can be done more quickly than it is perceived.

6.4. Answers to Research Questions

In this section we provide the answers to the research questions, considering the

outcomes of our empirical evaluations.
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6.4.1. How can we improve the information content of local data without

introducing new information sources?

We showed that relaxing assumptions of certain models may increase their pre-

diction performances. We have used the naive Bayes model in our analysis and our

weighting scheme yielded significantly better results than the standard naive Bayes

in majority of the projects. Further, we showed that the independence assumption

of naive Bayes is valid for defect data, at least after PCA processing, where the only

negative results are observed.

6.4.2. How can companies construct local defect predictors with remote

data?

Our goal was to identify the conditions under which cross-company data may

be preferred to within-company for the purposes of learning defect predictors. Those

conditions turned out to be quite extreme; so much that they hold in only a small

number of organizations (e.g. organizations would have to tolerate extremely high

false alarm rates). Hence, except in very rare cases, we can not recommend the use of

unfiltered cross-company data for defect prediction.

6.4.3. How can companies filter remote data for local tuning?

We anticipated that the answer to the previous research question will not be

enough to stop the use of cross-company data. Our explanation for the limited appli-

cability of CC data is that it mixes useful information with an excess of extraneous

information. We applied a simple nearest neighbor (NN) filtering to CC data for con-

structing a locally tuned repository and obtained better predictors, which can be used

temporarily before collecting local defect data. The performance of these temporary

predictors are far better than CC predictors, yet still worse than but much closer to

WC predictors.
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6.4.4. How much local data do organizations need for constructing a defect

prediction model?

A common belief is that collecting local data that are required to build defect

prediction models takes too much time and effort [130]. We showed that predictors

learned from a mere one hundred examples perform as well as predictors learned from

many more examples. That is, defect predictors tuned to the particulars of one com-

pany can be learned using very little data, collected in a very small amount of time:

two to four person-months.

6.4.5. Can our results be generalized?

We initially used only NASA projects in our experiments to answer the questions

related to CC analysis. In order to check the external validity of our results, we

replicated all related experiments on data from a company that has no ties with NASA:

specifically, a Turkish company writing software controllers for Turkish whitegoods.

All the results described above also hold for the Turkish data. While this does not

conclusively prove the external validty of our conclusions, it does suggest that these

results are not observed in one set of projects by chance.

6.4.6. How can we improve the information content in static code features

with more local resources?

Call graphs are easy to generate by using automated tools. We showed that the

information provided by call graphs can improve the quality of solutions significantly.

However, this was observed in SOFTLAB projects only and could not be evaluated in

NASA projects, since they do not include such information. This outcome should be

externally validated in further research if and when data are available.
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6.5. Future Directions

Standard machine learning algorithms lack the business knowledge which charac-

terizes software projects. To add that business knowledge, we propose to use human-

in-the-loop case based reasoning (CBR) tools. We expect that this approach will allow

software managers to safely focus on the application of quality assurance techniques of

choice, confident that automated quality predictors will raise alerts about the artifacts

where quality issues actually exist.

There exist numerous incremental case-based reasoning tools [154, 155, 156] that

ask humans to audit a stochastic sample of real-world cases. Insights gained from

those sessions are automatically generalized and applied to another random sample.

Experts then review the classifications made on the new sample, and offer further

refinements. In 1999, Fenton and Neil [47] postulated that such human-machines-

based system might outperform systems based on on static code measures (since other

features/metrics could be accounted for that cannot currently be addressed using static

code metrics).

Case-based reasoning methods require humans to examine and comment on spe-

cific cases. This is impractical if learning adequate theories requires examining a very

large number of cases. Our results suggest that, for static code measures, it is not

necessary to manually inspect thousands of cases. In fact, just a few hundred may

suffice. These results raise the possibility that a human-in-the-loop case-based reason-

ing environment might perform as well as automatic methods, despite the automatic

methods exploring more examples.

Such an environment might perform better than automatic methods. It can be

very useful to let experts access and combine features from whatever sources are locally

available. Such an “explore whatever” environment is not an automatic black box data

miner. Rather, it is a human-in-the-loop case-based reasoning (CBR) environment

where humans reflect on the specifics of particular cases, connect to different data

sources, and (sometimes) run automatic data miners on combinations or subsets of a
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variety of types of features.

Another role for human experts in a CBR environment is to instruct the learner

how combinations of attributes can work together to provide solutions. For exam-

ple a standard Naive Bayes classifier gives equal weights to all attributes then uses

frequency counts to learn the relative importance of each attribute. When, we have

assigned unequal attribute weights, we observed that the performance can improve over

standard Naive Bayes, and there is also no need for feature subset selection. Though

the improvements are not ground-breaking, they provide a hint regarding the value of

unequal treatment of information sources. In these figures weights are assigned by the

model. These weights provided by models may not be meaningful to humans in the

process [47]. However, we argue that weights assigned to different information sources

by human experts with business knowledge can increase the quality of solutions.
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