
HARDWARE/SOFTWARE PARTITIONING FOR CUSTOM INSTRUCTION

PROCESSORS

by

Kubilay Atasu

B.S., in Computer Engineering, Boğaziçi University, 2000

M. E., in Embedded System Design, Università della Svizzera italiana, 2002

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2007

iii

ACKNOWLEDGEMENTS

The support of Boğaziçi University Research Projects (05HA102D) and UK EP-

SRC (EP/C509625/1, EP/C549481/1) for this work is gratefully acknowledged. I also

would like to express my gratitude for the support of the Scientific and Technological

Research Council of Turkey (TUBITAK) under National Ph.D. Scholarship Program.

I would like to thank my thesis advisors Prof. Günhan Dündar and Assoc. Prof.

Can Özturan for their invaluable guidance and support throughout the development of

this thesis. In particular, I am grateful to Assoc. Prof. Can Özturan for encouraging

me to do graduate studies since my undergraduate years. His love in mathematics

and theoretical computer science has been a constant source of inspiration for me. I

am indebted to Prof. Günhan Dündar for dedicating some of his valuable time for

me weekly. His trust in me and his continuous help with all kinds of difficulties I

faced during my Ph.D. years helped me keep my motivation always high and made this

thesis possible. Additionally, I would like to thank Assoc. Prof. Oskar Mencer and

Prof. Wayne Luk for giving me the opportunity to work with the Custom Computing

and Computer Architecture groups at Imperial College London in the last two years.

The prolific environment and the insightful discussions have greatly contributed to

the quality of this thesis. I also would like to thank Prof. Cem Ersoy and Prof.

Çetin Kaya Koç for taking part in my thesis committee. Their helpful comments and

suggestions have greatly improved this work. I am grateful to Prof. Nadir Yücel and

Prof. Mariagiovanna Sami as well, for their support and advices throughout my studies.

I would like to thank all of my friends who made my life enjoyable during the hard

Ph.D. years. In particular, I would like to mention Başkan Kalezade, Kemal Kaplan,

Tamer Demir, Miljan Vuletic, and Carlos Tavares. Finally, I am most grateful to my

mother Perihan Atasu and my brother Atalay Atasu. Without their help and support

this thesis would not be possible. This thesis is dedicated to my mother who always

believed in me and helped me overcome all the hardships with her endless love.

iv

ABSTRACT

HARDWARE/SOFTWARE PARTITIONING FOR

CUSTOM INSTRUCTION PROCESSORS

In this thesis, we describe an integer linear programming (ILP) based system

called CHIPS for identifying custom instructions given the available data bandwidth

and transfer latencies between the base processor and the custom logic. Our approach,

which involves a baseline machine supporting architecturally visible custom state regis-

ters, enables designers to optionally constrain the number of input and output operands

for custom instructions. We describe a comprehensive design flow to identify the most

promising area, performance, and code size trade-offs. We study the effect of the con-

straints on the number of input/output operands and on the number of register file

ports. Additionally, we explore compiler transformations such as if-conversion and

loop unrolling. Our experiments show that, in most of the cases, the highest perform-

ing solutions are identified when the input/output constraints are removed. However,

input/output constraints help our algorithms identify frequently used code segments,

reducing the overall area overhead. We provide detailed results for eleven benchmarks

covering cryptography and multimedia. We obtain speed-ups between 1.7 and 6.6

times, code size reductions between six per cent and 72 per cent, and area costs that

range between 12 adders and 256 adders for maximal speed-up. We demonstrate that

our ILP based solution scales well, and benchmarks with very large basic blocks con-

sisting of up to 1000 instructions can be optimally solved, most of the time within a few

seconds. We show that the state of the art techniques fail to find the optimal solutions

on the same problem instances within reasonable time limits. We provide examples of

solutions identified by our algorithms that are not covered by the existing methods.

v

ÖZET

ÖZELLEŞTİRİLEBİLİR KOMUT KÜMELİ İŞLEMCİLER

İÇİN YAZILIM/DONANIM BÖLÜŞTÜRMESİ

Bu tezde doğrusal tamsayı programlama (ILP) tabanlı, CHIPS adı verilen bir

araç zinciri tarif edilmektedir. Temel bir işlemci ile adanmış bir mantıksal devre

arasındaki veri bandı genişliği verildiğinde, CHIPS özelleştirilmiş komutları bulur.

Özelleştirilmiş durum yazmaçlarını destekleyen bir temel işlemci mimarisi üzerine ku-

rulu bu yöntem, tasarımcıların isteğe bağlı olarak komutların işlenen girdi ve çıktılarının

sayılarını sınırlandırmalarına olanak verir. Bu tezde, en vaad edici alan, başarım ve kod

büyüklüğü ödünleşimlerinin bulunması için kapsamlı bir tasarım akışı anlatılmaktadır.

Girdi/çıktı sayısı ve yazmaç dosyası kapı sayısı üzerindeki sınırlandırmalar ile birlikte

if-dönüştürmesi ve döngü açılması gibi derleyici dönüşümleri değerlendirilmektedir.

Deneylerimizin önemli bir çoğunluğunda en yüksek başarımlı çözümlerin girdi/çıktı

sınırlamaları kaldırıldığında bulunduğu gözlemlenmiştir. Fakat, girdi/çıktı sınırlamaları

sık kullanılan kod kısımlarının tanımlanmasını sağlamıştır. Şifreleme ve çoklu ortam

alanlarını kapsayan on bir denektaşı testi üzerinde detaylı sonuçlar sunulmaktadır.

Denektaşı testleri 1.7 ve 6.6 kat arasında hızlandırılmış, kod büyüklükleri yüzde altı

ve yüzde 72 oranları arasında azaltılmış, en yüksek başarım için 12 ile 256 toplayıcı

alanı arasında değişen mantıksal devre alanlarına ihtiyaç duyulmuştur. Yöntemimizin

büyük problemler üzerinde de etkili olduğu, 1000 kadar komuttan oluşan temel kod

blokları içeren denektaşı testlerinin eniyi şekilde, çoğu zaman sadece bir kaç saniye

içinde çözülebildikleri gösterilmiştir. Aynı testler üzerinde var olan en ileri yöntemlerin

kabul edilebilir süreler içinde eniyi sonuçlara ulaşamadıkları görülmüştür. Çalışmamız

diğer yöntemler tarafından bulunamayan çözüm örnekleri ile de desteklenmektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF SYMBOLS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Contributions of the Thesis . 8

2. BACKGROUND AND RELATED WORK 10

2.1. Compilers . 10

2.1.1. Intermediate Representation . 11

2.1.2. Definitions for Custom Instruction Identification 13

2.2. Architectural Approaches for Custom Logic Integration 16

2.2.1. Attached and External Processing Units 17

2.2.2. Tightly Coupled Coprocessors 17

2.2.3. Custom Instruction Processors 21

2.3. Technology Choices for Custom Instruction Processors 22

2.3.1. Synthesizable ASIC Processors 23

2.3.2. Soft Core FPGA Processors . 24

2.3.3. Hard Core Processors with Reconfigurable Datapaths 25

2.4. Related Work on Hardware/Software Partitioning Algorithms 26

2.5. Summary . 31

3. THE CHIPS APPROACH . 32

3.1. Problem Formulation . 34

3.2. Integer Linear Programming Model . 36

3.2.1. Calculation of the Input Data Transfers 38

3.2.2. Calculation of the Output Data Transfers 40

3.2.3. Convexity Constraint . 42

vii

3.2.4. Critical Path Calculation . 44

3.2.5. Objective . 44

3.2.6. Scalability of the Model . 45

3.2.7. Support for Statements with Multiple Destination Operands . . 45

3.3. Template Generation . 46

3.4. Template Selection . 49

3.5. Machine Description and Code Generation 52

3.6. Summary . 52

4. EXPERIMENTS AND RESULTS . 53

4.1. Experiment Setup . 53

4.1.1. Base Processor Configuration 53

4.1.2. Synopsys Synthesis . 54

4.1.3. Benchmarks . 54

4.1.4. Run-time Environment . 55

4.2. If-conversion Results . 55

4.3. Examples of Custom Instructions . 56

4.3.1. AES Encryption . 56

4.3.2. DES Encryption . 60

4.4. Effect of Input and Output Constraints 62

4.5. Effect of Register File Ports . 65

4.6. Effect of Loop Unrolling . 67

4.7. Granularity vs. Reusability . 70

4.8. Run-time Results . 71

4.9. Performance and Code Size Results . 74

4.10. Processor Synthesis Results . 75

4.11. Summary . 78

5. A SIMPLIFIED MODEL . 80

5.1. Motivation . 80

5.2. Formulation of the Simplified Problem 81

5.3. An Upper Bound on the Size of the Search Space 83

5.4. Related Work . 86

5.5. Summary . 87

viii

6. CONCLUSIONS . 88

6.1. Summary and Conclusions . 88

6.2. Future Work . 90

APPENDIX A: IMPLEMENTATION DETAILS 93

A.1. If-Conversion Implementation . 93

REFERENCES . 95

ix

LIST OF FIGURES

Figure 1.1. Design complexity (transistors per chip) vs. designer productivity

(transistors per man-month). 3

Figure 1.2. Efficiency vs. programmability. 4

Figure 1.3. The custom instruction processor. 5

Figure 1.4. Datapath of the custom instruction processor. 6

Figure 2.1. The control flow graph, the nodes represent basic blocks. 12

Figure 2.2. The DAG representation of a basic block. 14

Figure 2.3. The custom instruction template extracted from Figure 2.2, having

four input and two output operands. 14

Figure 2.4. The DAG of Figure 2.2 after replacing the template shown in Fig-

ure 2.3 with a custom instruction. 15

Figure 2.5. A custom instruction template that is not convex. 15

Figure 2.6. A classification of integration methods. 17

Figure 2.7. A tightly coupled coprocessor has direct access to the main proces-

sor through dedicated control and data transfer channels. 18

Figure 2.8. Xilinx MicroBlaze processor. 20

x

Figure 2.9. Integration of custom functional units (FUs) into the pipeline of a

MIPS type single issue processor with five pipeline stages. 21

Figure 3.1. CHIPS: we integrate our algorithms into Trimaran compiler. . . . 33

Figure 3.2. The register file supports RFin read ports and RFout write ports.

Custom instructions might have an arbitrary number of input and

output operands, INSTin and INSTout. 35

Figure 3.3. Templates are defined based on the assignment of ones and zeros

to the binary decision variables associated with the DAG nodes. . 37

Figure 3.4. We iteratively solve a set of ILP problems. A good upper bound

on the objective value can significantly reduce the solution time. . 47

Figure 4.1. We apply an if-conversion pass before identifying custom instruc-

tions. 56

Figure 4.2. The AES round transformation. 57

Figure 4.3. A 32-bit implementation of the MixColumn transformation. . . . 58

Figure 4.4. An optimized AES encryption implementation 59

Figure 4.5. Optimal custom instruction implementing the DES rounds. . . . 60

Figure 4.6. A fully unrolled DES encryption implementation. 61

Figure 4.7. 32-bit implementation of a DES round in C. 62

xi

Figure 4.8. AES decryption: per cent reduction in the execution cycles. Regis-

ter file supports four read ports and four write ports (i.e., RFin = 4,

RFout = 4). An input constraint of MAXin and an output con-

straint of MAXout can be imposed on custom instructions. 63

Figure 4.9. DES: per cent reduction in the execution cycles. Register file sup-

ports two read ports and one write port (i.e., RFin = 2, RFout = 1).

An input constraint of MAXin and an output constraint of MAXout

can be imposed on custom instructions. 64

Figure 4.10. Register file supports two read ports and one write port (i.e., RFin =

2, RFout = 1). Speed-up (with respect to the base processor) im-

proves with the relaxation of input/output constraints. 65

Figure 4.11. DES: effect of increasing the number of register file ports (i.e., RFin

and RFout) on the performance. 66

Figure 4.12. djpeg: effect of increasing the number of register file ports (i.e.,

RFin and RFout) on the performance. 66

Figure 4.13. djpeg: increasing the number of register file ports (i.e., RFin, RFout)

improves the performance. First four columns depict the achievable

speed-up for the four most time consuming functions of djpeg. . . 67

Figure 4.14. Loop unrolling improves the performance, and enables coarser grain

custom instructions. 68

Figure 4.15. Loop unrolling increases the number of instructions in the code.

Code compression due to the use of custom instructions often com-

pensates for this effect. 69

Figure 4.16. Granularity vs. reusability. 70

xii

Figure 4.17. AES decryption: run-time performance of our template generation

algorithm. 71

Figure 4.18. DES: run-time performance of our template generation algorithm. 72

Figure 4.19. All benchmarks: increasing the number of register file ports im-

proves the performance. 75

Figure 4.20. All benchmarks: increasing the number of register file ports reduces

the number of instructions in the code. 76

Figure 4.21. AES Decrypt processor layout. 0.307 mm2 area generated using a

130nm process technology. 77

Figure 4.22. The ASIC area and the worst case negative timing slack with a 200

MHz constraint on the clock rate. 78

Figure 5.1. Example DAG: v4 and v5 are invalid nodes. 85

Figure 5.2. Incompatibility graph for the DAG of Figure 5.1. 87

Figure A.1. The initial code contains branches (left). If-conversion eliminates

the branches (right). 94

xiii

LIST OF TABLES

Table 2.1. A comparison with some state-of-the-art techniques 30

Table 4.1. Relative latency and area coefficients for various operators based on

synthesis results on UMC’s 130nm process. 54

Table 4.2. Information on benchmarks: BB represents basic block. 55

Table 4.3. Relaxed problem: size of the largest basic block (BB), the number

of integer decision variables (Vars), the number of linear constraints

(Constrs), and the solution times associated with the first iteration

of the template generation algorithm. 73

Table 4.4. Original problem with the convexity constraint: solution times asso-

ciated with the first iteration of the template generation algorithm.

. 73

Table 4.5. Run-time comparison with the exact algorithm of [24]. We show the

solution times in seconds for four (MAXin,MAXout) combinations. 74

Table 5.1. Solutions for the DAG of Figure 5.1 85

xiv

LIST OF SYMBOLS/ABBREVIATIONS

C(T) Communication latency of template T

DTin The number of input data transfers

DTout The number of output data transfers

G Directed acyclic graph representing a basic block

hi The hardware latency of node i

H(T) Hardware latency of template T

INSTin The number of input operands for a custom instruction

INSTout The number of output operands for a custom instruction

MAXin The maximum number of input operands allowed

MAXout The maximum number of output operands allowed

RFin The number of register file read ports

RFout The number of register file write ports

si The software latency of node i

S(T) Software latency of template T

T Custom instruction template

xi Binary decision variable representing node i

Z(T) Objective value of template T

AES Advanced encryption standard

ALU Arithmetic logic unit

ASIC Application-specific integrated circuit

ASIP Application-specific instruction-set processor

CFG Control flow graph

CPLD Complex programmable logic device

DAG Directed acyclic graph

DES Data encryption standard

DSP Digital signal processor

FIFO First in, first out

FPGA Field programmable gate array

xv

FSL Fast simplex link

GHz gigahertz

GPP General purpose processor

ILP Integer linear programming

IR Intermediate representation

ISA Instruction set architecture

MDES Machine description

MHz megahertz

MPSoC Multiprocessor systems-on-chip

RAM Random access memory

RISC Reduced instruction set computer

RTL Register transfer level

SHA Secure hash algorithm

SIMD Single instruction multiple data

SoC Systems-on-chip

SSA Static single assignment

TIE Tensilica instruction extension

VLIW Very long instruction word

1

1. INTRODUCTION

Information processing has become a part of our daily life. Nowadays, special

purpose computer systems are embedded into everyday objects, such as automobiles,

consumer electronics, telecommunications, home automation and office automation

devices. We are often involved in multiple computational activities at the same time,

sometimes even without being aware. The new computational model, known as ubiqui-

tous computing, depends heavily on embedded systems for processing and distribution

of the ubiquitous information. Unlike general purpose computer systems, embedded

systems are dedicated to specific application domains. Such systems are often pro-

duced in high volume, and built under strict cost and performance constraints. Today,

embedded processors constitute the majority of the sales in the microprocessor market.

More than a billion embedded processors are used in embedded devices every year.

This thesis introduces novel techniques for the efficient design space exploration

of embedded processors with customizable instruction-sets, which can be tailored for

specific application domains. The rest of this chapter is organized as follows: Section 1.1

describes the motivation for our research and Section 1.2 covers our contributions.

1.1. Motivation

The highly competitive end-market for consumer electronics, multimedia, and

communications devices is continuously forcing the producers to release new prod-

ucts with improved functionality and performance. The complexity of the embedded

systems-on-chip (SoC) devices is constantly increasing, while the life cycles of the end

products are getting shorter. In the late nineties, a typical embedded SoC contained

only one or two programmable components, i.e., a microcontroller and possibly a digital

signal processor (DSP), in addition to some dedicated logic, memories and peripherals.

New generation embedded SoCs are increasingly replacing the complex dedicated logic

with programmable processing units and off-the-shelf standard components in order

to reduce the design times and nonrecurring engineering costs. Today, a modern SoC

2

device can contain tens of programmable processing units.

In 1965 Gordon Moore observed that the number of transistors placed in an inte-

grated circuit doubled every one to two years, and predicted that the same trend would

continue for a long period of time. The trend Moore projected, later known as Moore’s

law [1], set the pace for the chip developers. The continuous improvement in the process

geometries and circuit characteristics has so far allowed semiconductor manufacturers

to keep up with Moore’s law, doubling the circuit densities approximately every two

years. Although signal integrity, interconnect delay, and power dissipation problems

are getting increasingly harder to cope with, and further scaling of the technology re-

quires significant innovation, the exponential rate of increase in the circuit densities is

expected to continue at least for 15 more years [2].

New process technologies make it possible to build SoC devices with hundreds of

millions of transistors. A diversity of applications with enormous functionalities can

now be integrated into the same chip. Within a few years, SoC devices with more than

a billion transistors are expected to be on the market. SoC designers are continuously

faced with the challenge of designing more and more versatile systems using more and

more logic gates. The tight silicon integration is continuously reducing the size of

the end products, making them small enough to be portable. New technologies are

reducing the energy consumption as well, allowing more and more end products to be

battery powered. The increasing use of wireless and hand-held devices in the daily life

has made the energy efficiency a critical factor in the SoC design.

A major problem for SoC producers of today is that the designers are not able

to keep up with the growth in the logic complexity. Although chip design tools for

high level simulation, logic synthesis, placement, and routing are continuously being

improved, and systematic design reuse helps in reducing the design effort, the designer

productivity improves at a much lower rate compared with the growth in the logic

complexity. This phenomenon, known as the SoC design gap [3], is illustrated in

Figure 1.1. The design gap necessitates new approaches in the design of complex SoCs.

First of all, the new generation SoCs should be sufficiently programmable so that the

3

21%

58%

SoC design gap

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1980 1985 1990 1995 2000 2005 2010

T
R

A
N

SI
ST

O
R

S
(K

)

YEAR

chip density
designer productivity

Figure 1.1. Design complexity (transistors per chip) vs. designer productivity

(transistors per man-month). Source: Semiconductor Research Corporation [4].

same chip design can be used to realize multiple applications, amortizing the chip

design costs. Secondly, there is a need for mechanisms that facilitate optimization of

the performance, area, and power efficiency of the SoC designs for specific applications.

Efficiency and programmability are two conflicting goals in the design of complex

SoCs for embedded systems. Application-specific integrated circuit (ASIC) technol-

ogy allows optimization of hardware resources in order to maximize performance and

minimize area overhead and power consumption for a specific application at the de-

sign phase. However, ASIC devices are not programmable. The ability of ASICs to

adapt to different applications or revisions in the system specification is very limited.

In addition, implementing a complete application on ASIC technology is not always

feasible due to the growing complexity of SoC designs, time to market pressure, and

chip fabrication costs. On the other hand, general purpose processors (GPPs) and

DSPs can implement a wide range of applications of arbitrary complexity because of

their programmable nature. However, both alternatives lack the efficiency of ASICs

and often fail to satisfy the strict performance, area, and power consumption require-

ments of embedded applications. Reconfigurable devices, such as those based on field

programmable gate arrays (FPGAs), offer viable solutions combining efficiency and

programmability. The computational resources and the interconnections between re-

4

Figure 1.2. Efficiency vs. programmability.

sources can be configured to exploit the inherent parallelism within an application,

enabling hundreds of arithmetic and logic operations to be performed concurrently.

However, reconfigurable devices are not as performance efficient as ASICs, and their

unit costs are higher. Furthermore, reconfigurable devices have a relatively low logic

density and a limited resource capacity. Mapping a complete application on recon-

figurable logic can be impracticable depending on the size of the application and the

volume of the production. Figure 1.2 compares different implementation alternatives

based on the relative efficiency and the degree of programmability.

The well known 90/10 law [5] states that a computer program spends 90 per cent

of its execution time in only 10 per cent of the code. Therefore, mapping a complete

application to dedicated logic, such as ASICs and FPGAs, is very cost inefficient. A

common approach in the design of embedded SoCs is to implement only the most

computation intensive parts of the code on dedicated logic and the rest of the code on

a general purpose processor. Data transfers between the general purpose processor and

the dedicated logic is often achieved by means of a bus interface, which can be subject

to potential resource contentions. The limited data bandwidth between the processor

and the custom logic is often a bottleneck in the overall performance of the system.

Application-specific instruction-set processors (ASIPs) try to overcome this bottleneck

by integrating custom logic directly into the processor.

5

Figure 1.3. The custom instruction processor. Register file ports can be shared

between the standard execution units and the custom functional units.

ASIPs provide a good compromise between general-purpose processors and cus-

tom ASIC or FPGA designs. The instruction processor preserves the programmability,

while the application-specific instructions enhance the processor efficiency. The tradi-

tional approach in the design of ASIPs involves the definition of a complete instruction

set architecture (ISA) for a given application. The processor and the compiler are

synthesized based on a high level ISA description. Target’s CHESS compiler [6] based

on the nML [7] architecture description language (ADL), and Coware’s LISATek based

on LISA [8], are among the commercial examples in this area. The more recent ap-

proach, however, assumes a pre-verified, pre-optimized base processor with a basic

instruction-set. The base processor is extended with custom functional units that

implement application-specific instructions. A dedicated link between custom units

and the base processor provides an efficient communication interface. Re-using a pre-

verified, pre-optimized base processor reduces the design complexity and the time to

market. Several commercial examples exist, such as Tensilica Xtensa [9], ARC 700 [10],

Altera Nios II [11], MIPS Pro Series [12], and Stretch S6000 [13]. In this thesis, we

target the processors of the second type, which we refer to as custom instruction pro-

cessors. We call the extensions to the basic instruction-set as custom instructions.

Figure 1.3 illustrates the way custom functional units are integrated into a base

processor. The base processor is typically a reduced instruction set computer (RISC) [5]

6

Figure 1.4. Datapath of the custom instruction processor: the data bandwidth may

be limited by the register file ports or by the dedicated data transfer channels.

with a load/store architecture. Custom functional units share the base processor re-

sources, such as register file ports and operand buses with the standard execution units

of the base processor. Direct access from custom functional units to the memory system

can be enabled through dedicated load/store units and data transfer channels.

Custom instruction processors offer new opportunities in the hardware/software

codesign of complex SoCs. In the context of custom instruction processors, hard-

ware/software partitioning is done at the instruction level granularity. Given the de-

scription of an application in a high level programming language, custom instructions

provide efficient hardware implementations for the frequently executed code segments.

The partitioning of an application into base processor instructions and custom instruc-

tions is done under certain constraints. First of all, the size of the custom logic area is

limited, and custom functional units must fit into the available area. Secondly, the data

bandwidth between the base processor and the custom functional units is limited either

by the available register file ports or by the dedicated data transfer channels as shown

in Figure 1.4. Thus, the cost of the data transfers between the base processor and the

custom units have to be explicitly evaluated. Next, only a limited number of input

and output operands can be encoded within a fixed-length instruction word. Finally,

7

additional restrictions on the structure of the custom instructions can be necessary in

order to guarantee a feasible schedule for the instruction stream.

The objective of the hardware/software partitioning is often formulated as maxi-

mizing the performance of the custom instruction processor under area constraints [14].

Similarly, given constraints on the performance, the objective could be minimization of

the area overhead [15]. Power consumption and code size are among other important

metrics. In fact, improving the performance allows decreasing the clock rate of the pro-

cessor, which enables a reduction in the power consumption. Ideally, the partitioning

algorithms should enable efficient exploration of the design space in order to identify

the most promising trade-offs in terms of several different metrics.

Custom instruction processors are emerging as the basic building blocks in the

design of complex SoCs, replacing dedicated register transfer level (RTL) hardware

blocks. The new multiprocessor SoC (MPSoC) design approach [2] assumes that the

application can be decomposed into a set of communicating tasks, and that the func-

tionality of each task can be defined in software using a high level programming lan-

guage. The processors in the system are then tailored for specific tasks, enhancing

the performance, area, and power efficiency. The software based MPSoC approach is

expected to reduce the SoC development effort and allows adaptation of the design to

changes in the system specification that occur late in the design process, even after

the chip fabrication. The MPSoC design problem [2] involves multiple steps: (1) de-

composition of an application into a set of tasks; (2) mapping of the tasks to a set of

customizable processors; (3) optimization of each processor for the tasks assigned to

it; (4) optimization of the communication between the processors. This work targets

step (3) only. Given the description of a specific task or a set of tasks (or perhaps a

complete application), we explore the design space of a single customizable processor

by generating and evaluating custom instructions. The results of this thesis provide

key components in the design space exploration for MPSoC devices.

The availability of automated tools for the synthesis of custom instructions re-

duces the time to market pressure and affects the nonrecurring engineering costs in the

8

design of custom instruction processors for SoC and MPSoC devices. Recent years have

witnessed a significant progress in terms of formalizations and automation techniques

for the synthesis of custom instructions. The advance in the theory is also reflected

by the availability of successful commercial tools offering automated solutions, such as

Tensilica’s XPRES Compiler [16] and CoWare’s CORXpert [17].

1.2. Contributions of the Thesis

In this thesis, we propose algorithms for automatic identification of the most prof-

itable custom instructions for a baseline architecture given the functional specification

of an application in C/C++. In addition, we develop a framework that allows us to

explore the design space of custom instruction processors under various constraints and

for different metrics. Our contributions can be summarized as follows:

(1) An Integer Linear Programming (ILP) Based Approach: We contribute a

formulation of the problem of identifying custom instructions under constraints on the

number of input and output operands as an integer linear programming (ILP) prob-

lem [18]. Alternatively, the constraints on the number of input and output operands

can be relaxed, and the ILP model can evaluate the data transfer costs between the base

processor and the custom logic given the data bandwidth of the interface [19, 20, 21].

Section 3.2 describes our ILP formulation in detail. Section 3.2.6 shows that the num-

ber of integer variables and the number of linear constraints used in our ILP model

grow only linearly with the size of the problem. Section 4.8 demonstrates on a set

of benchmarks that our ILP approach optimally solves very large problem instances

representing basic blocks consisting of up to 1000 statements, with and without in-

put/output constraints, most of the time within only a few seconds. We show that the

state of the art techniques [22, 23, 24, 25] fail to find the optimal solutions on the same

problem instances within reasonable time limits. In Section 4.3, we provide examples

of solutions identified by our algorithms that are not covered by the existing methods.

(2) Custom Instruction Template Generation and Selection Algorithms: are con-

tributed by integrating our ILP based solution into an iterative template generation

9

algorithm (Section 3.3). As part of our algorithms, structurally equivalent instruction

templates are identified, behavioral descriptions of the custom datapaths are produced,

and area and delay estimates are generated (Section 3.4). Finally, the most profitable

candidates under area constraints are selected based on a Knapsack model.

(3) A Custom Hardware Instruction Processor Synthesis (CHIPS) Tool Chain

for Design Space Exploration: We integrate our algorithms into an academic compiler

infrastructure [26], automatically producing high level processor descriptions support-

ing the custom instructions and the assembly code utilizing the custom instructions.

Based on the compiler feedback, we evaluate the impact of input/output constraints

(Section 4.4), register file port constraints (Section 4.5), and code transformations

such as if-conversion (Section 4.2) and loop unrolling (Section 4.6) on the performance

and code size for a range of area constraints on eleven multimedia and cryptography

benchmarks (Section 4.9). We integrate our compilation flow that generates behavioral

descriptions of the custom datapaths into an academic custom processor synthesis in-

frastructure [27]. We observe that around half of the custom instruction processors

automatically generated from C/C++ source codes meet the target clock frequency

using fully automated ASIC synthesis flows (Section 4.10).

(4) A Simplified Model: In Chapter 5, we develop a simplified model for custom

instruction identification based on the observation that the highest performing solutions

are systematically found when the input/output constraints are removed (Section 4.4

and Section 4.9). We derive a practical upper bound on the worst case time complexity

of the solution algorithms for the simplified problem.

10

2. BACKGROUND AND RELATED WORK

The CHIPS (Custom Hardware Instruction Processor Synthesis) tool chain de-

scribed in this thesis is built on a compiler infrastructure. Therefore, we first review

the compiler technology terminologies, and we introduce the notation we use in the

thesis for representing application basic blocks and custom instructions (Section 2.1).

Next, we give a review of architectural approaches for integrating a general purpose

processor with custom logic (Section 2.2), and a review of technology choices for custom

instruction processors (Section 2.3). Finally, we present the related work in automated

hardware/software partitioning and custom instruction synthesis (Section 2.4).

2.1. Compilers

Compilers translate a program written in a high level language, such as C/C++

into an equivalent program in the assembly language of a target machine. A compiler

consists of three main phases:

• Front end: The front end carries out lexical, syntax and semantic analysis of

the source program, and converts it into a machine-independent intermediate

representation (IR). A common approach is to transform the source code into a

sequence of three address statements, where every statement is a label, a branch,

or an assignment with at most two source operands and one destination operand.

• IR optimizer: The IR generated by the front end is not optimized. It may contain

redundancies that are either introduced by the software programmer, or by the

front end itself. Classical compiler optimizations, such as constant propagation,

common subexpression elimination, dead code elimination, and jump optimiza-

tion remove major redundancies and improve the code quality.

• Back end: The back end operates on the optimized IR, and generates the assembly

code for the target machine. The back end implements code selection, register

allocation, and instruction scheduling for the target machine. The back end often

includes additional machine specific optimizations.

11

Compilers are key tools in the behavioral synthesis domain where functional de-

scriptions of the applications are automatically mapped to hardware blocks. Compilers

provide a formal representation of the application on which various analyses and op-

timizations can be carried out. Compilers are of paramount importance in the design

of custom instruction processors as well. In this work, the compiler IR is the main in-

put for the algorithms we propose for custom instruction identification. Furthermore,

compilers provide various utilities that help in transforming programs into forms that

are more suitable for our analysis. Moreover, once the custom instructions are iden-

tified and the custom datapaths are synthesized, the compiler has to be adapted so

that the machine code utilizing custom instructions can be efficiently and automati-

cally generated. Finally and most importantly, compilers play a key role in the design

space exploration of custom instruction processors, providing feedback on the choice

of custom instructions and in the evaluation of different program transformations.

2.1.1. Intermediate Representation

Several studies have targeted design of efficient compiler IR, since the choice of

representation has an immediate effect on the complexity of the compiler optimization

algorithms. In the most basic form, the IR is a sequence of three address statements.

The typical approach transforms the IR into control flow graphs (CFG) and def-use

chains [28] that represent the data flow. The unified control/data flow graph rep-

resentation is widely used in the behavioral synthesis domain [29]. The control flow

information is used in the generation of the control units, and the data flow information

is used in the synthesis of the datapaths, allowing the exploration of various area and

performance trade-offs. Other well known representations include program dependence

graphs [30], static single assignment (SSA) form [31], and dependence flow graphs [32].

Given a three address statement S, which assigns a value to the destination

operand x based on the values of the source operands y and z, we say that S defines x,

and uses y and z. A data dependence exists between two statements if and only if one

of the statements defines a storage (whether a scalar variable or a memory location)

that is used or defined by the other. Assume two statements S1 and S2, where S1 is

12

Figure 2.1. The control flow graph, the nodes represent basic blocks.

executed before S2. If S2 uses a storage defined by statement S1, we say that S2 is

flow dependent on S1. If statement S2 redefines a storage used by statement S1, we

say that S2 is anti dependent on S1. If statement S2 redefines a storage defined by

statement S1, we say that S2 is output dependent on S1.

This thesis assumes that the compiler IR is transformed into a CFG, where the

nodes of the CFG are the basic blocks of the application. A basic block is a sequence of

consecutive statements in which the control flow always enters at the first statement and

exits at the last statement. The edges of the CFG represent the flow of control across

basic blocks. Figure 2.1 shows the control flow graph for a hypothetical application.

Within a basic block control dependencies do not exist, the only dependencies

that exist are the data dependencies. A basic block can be viewed as a directed

acyclic graph (DAG), where the nodes represent statements, and the edges represent

13

data dependencies between statements. A variable x is called live at a point p in the

program if the value of x at p could be used by a statement that resides on some

execution path of the program starting at p. The variables that are live coming into

the basic block and the statements using these values before a redefinition within the

basic block can be identified via liveness analysis and def-use chains [28]. The variables

that are live out of the basic block and the statements defining these values within the

basic block can be computed based on a similar analysis.

SSA form [31] ensures that each variable is defined only once in the IR, effectively

eliminating the anti and output dependencies. If there are multiple definitions of

the same variable in the code, the destination operands of the associated assignment

statements are renamed with different versions of that variable. The statements using

the variable are also modified so that their source operands match the version that is

most recently defined. Although it is straightforward to rename the variables within

basic blocks, multiple versions of the same variable may reach to the same point in

the program from different basic blocks in the presence of conditionals or loops. In

such cases, the so-called φ-functions, which are similar to multiplexers in hardware,

merge different versions of the variable into a new version. Insertion of the φ-functions

increases the number of statements in the IR, but the effect on the size is not significant.

2.1.2. Definitions for Custom Instruction Identification

For simplicity, we assume that the compiler IR is in SSA form. Therefore, each

assignment statement is associated with a unique output variable that is assigned

exactly once in the IR. We represent a basic block using a DAG G (Vb ∪ V in
b , Eb ∪ Ein

b)

where the nodes Vb represent statements within the basic block, and the edges Eb

represent flow dependencies between statements. The nodes V in
b represent the input

variables of the basic block, i.e., variables that are live coming into the basic block, and

used within the basic block. The edges Ein
b connect V in

b to the statements in Vb using

these variables. The nodes V out
b ⊆ Vb represent statements defining variables that are

live out of the basic block, i.e., the output variables of the basic block. The nodes

V invalid
b ⊆ Vb represent statements that cannot be implemented by custom instructions

14

Figure 2.2. The DAG representation of a basic block.

Figure 2.3. The custom instruction template extracted from Figure 2.2, having four

input and two output operands.

either because of the limitations of the base processor architecture, or because of the

limitations of the custom datapath, or by the choice of the designer.

Given a basic block G (Vb ∪ V in
b , Eb ∪ Ein

b), a custom instruction template can be

uniquely defined by a set of statements Vt ⊆ Vb/V
invalid
b . A custom instruction template

T (Vt ∪ V in
t , Et ∪ Ein

t) is a subgraph of G. The nodes Vt represent statements included in

the template, and the edges Et represent flow dependencies between these statements.

The nodes V in
t represent the input operands of the template, i.e., variables that are

15

Figure 2.4. The DAG of Figure 2.2 after replacing the template shown in Figure 2.3

with a custom instruction.

Figure 2.5. A custom instruction template that is not convex. The path from V1 to

V6 that goes through V3 and V4 violates the convexity property.

live coming into the template, and used within the template. The input operands of

T are either the input variables of G, or are defined by the statements in G that are

not in T , i.e., V in
t ⊆ V in

b ∪ (Vb/Vt). The edges Ein
t connect V in

t to the statements in

Vt using these operands. The nodes V out
t ⊆ Vt represent statements defining variables

that are live out of T , i.e., the output operands of T . A statement in Vt defining an

output variable of G, defines also an output operand of T , i.e., Vt ∩ V out
b ⊆ V out

t .

16

Figure 2.2 shows the flow data within an example basic block. Nodes I1 to I6

(i.e., V in
b) represent variables that are defined outside the basic block, and used within

the basic block. Nodes V1 to V6 (i.e., Vb) represent the statements of the basic block.

Nodes V5 and V6 (i.e., V out
b) define variables that are used outside the basic block. A

subset of the statements (i.e., nodes V3, V4, and V6) are circled to define a custom

instruction template. Figure 2.3 describes the extracted template with its internal

data flow, input and output operands. The template has four input and two output

operands. Inputs I2 and I6 are among the input variables of the basic block. Inputs

V1 out and V2 out are defined by nodes V1 and V2 of the basic block. Nodes V4 and

V6 define the output operands of the template. Finally, Figure 2.4 illustrates how the

basic block looks like after the template is replaced by a custom instruction.

A template T is convex if there exists no path in G from a node u ∈ Vt to another

node w ∈ Vt which involves a node v /∈ Vt. The convexity constraint is imposed on

the templates to ensure that custom instructions can be atomically executed on the

processor datapath and that a feasible schedule can be achieved for the instruction

stream. Figure 2.5 shows a template that is not convex. The path between the two

template nodes V1 and V2 that goes through V3 and V4 violates the definition of

the convexity. Replacing the template with a custom instruction introduces a cyclic

dependency in the data flow graph. Such a dependency is not supported by standard

compilers and architectures, and interpreted as an infeasible schedule.

2.2. Architectural Approaches for Custom Logic Integration

In this section, we give an overview of the architectural approaches that integrate

a general purpose processor with custom logic for application acceleration. Figure 2.6

shows a classification of different integration methods according to the degree of cou-

pling between the main processor and the custom logic:

• attached and external processing units that communicate with the main processor

through a general purpose bus interface;

• tightly coupled coprocessors having direct access to the main processor;

17

Figure 2.6. A classification of integration methods based on the degree of coupling.

Attached and external processing systems are outside the scope of this work.

• processors with custom functional units (i.e., custom instruction processors).

2.2.1. Attached and External Processing Units

Attached and external processing units have no direct access to the main pro-

cessor. The integration with the main processor is done through a general purpose

bus interface, and it is relatively easy. However, the performance of such systems of-

ten suffers from the high communication overhead due to the bandwidth and latency

limitations of the general purpose bus. This type of systems [33] can be beneficial in

accelerating certain types of applications having a high computation to communica-

tion ratio, such as stream-based applications. Attached and external processing units,

sometimes also called loosely coupled coprocessors, are outside the scope of this thesis.

2.2.2. Tightly Coupled Coprocessors

Unlike attached and external processing units, tightly coupled coprocessors are

directly connected to the local bus or to the dedicated pins of the main processor.

18

Figure 2.7. A tightly coupled coprocessor has direct access to the main processor

through dedicated control and data transfer channels.

Tightly coupled coprocessors have the same view of the memory hierarchy as the main

processor. The coprocessor has its own set of registers, control logic, and datapath.

A coprocessor access protocol allows information exchange and synchronization with

the main processor. The low-latency, high-bandwidth connection between the main

processor and the coprocessor increases the number of program sections that can be

profitably run on the coprocessor. A typical way of integrating a tightly coupled

coprocessor with a main processor is shown in Figure 2.7.

The ARM7TDMI processor [34], widely used in the smart cards due to its com-

pactness and low power consumption characteristics, supports a highly flexible copro-

cessor interface. Operations that are computationally expensive on the processor, such

as encryption and decryption functions, can be migrated to the coprocessor. The co-

processor has access to the instruction stream from the main memory and continuously

keeps track of the instructions executed in the processor pipeline. Dedicated control

signals allow handshaking between ARM7TDMI and the coprocessor. When a copro-

cessor instruction is decoded, the processor pipeline is stalled until the coprocessor

completes the execution of the instruction. Coprocessor data processing instructions

immediately activate the coprocessor datapaths. Coprocessor register transfer instruc-

19

tions enable low latency data transfers between processor registers and coprocessor

registers through the data bus of the processor. Coprocessor load and store instruc-

tions allow data transfers between the data memory and the coprocessor registers.

The Garp approach [35] tightly couples a MIPS based processor [5] with a recon-

figurable array consisting of logic blocks similar to those found in conventional FPGAs,

with additional control blocks and routing channels that enable efficient configuration

and efficient integration with the processor and the memory system. The processor

controls the reconfigurable array by loading and executing configurations and issu-

ing register transfer instructions. Unlike ARM7TDMI, the Garp approach allows the

reconfigurable coprocessor to initiate memory accesses without processor intervention.

The ADRES architecture [36] couples a very long instruction word (VLIW) pro-

cessor with a coarse-grained reconfigurable matrix. The VLIW processor can execute

multiple instructions in parallel using functional units connected through a multiported

register file. The reconfigurable matrix is composed of reconfigurable cells, which are

made up of ALU like configurable functional units and local register files. The computa-

tion intensive loop kernels of the applications are mapped to the reconfigurable matrix

based on an adaptation of the modulo scheduling algorithm [37]. The VLIW proces-

sor and the reconfigurable matrix cannot execute concurrently. This allows resource

sharing between the main processor and the reconfigurable matrix. The multiported

register file, the memory interface, and the functional units of the main processor are

shared resources. Sharing of the multiported register file results in an efficient commu-

nication interface between the processor and the reconfigurable matrix.

The MicroBlaze [38] processor is an intellectual property of Xilinx optimized for

embedded applications. MicroBlaze is offered as a soft core, i.e., it is implemented

using the logic resources of an FPGA. The remaining logic resources of the FPGA can

be configured to implement user defined functions. The Fast Simplex Link (FSL) inter-

faces of the MicroBlaze processors provide low-latency, high-bandwidth data transfer

channels between MicroBlaze and user defined coprocessors. The FSL channels are uni-

directional, point-to-point, dedicated first in, first out (FIFO) interfaces. MicroBlaze

20

Example Code

// send the input operands of function x through FSLx

put Ra, FSLx

put Rb, FSLx

// receive the output operands of function x through FSLx

get Rc, FSLx

Figure 2.8. Xilinx MicroBlaze [38]: contents of the MicroBlaze registers can be

transferred to the coprocessor registers, and the results generated by the coprocessor

can be transferred back to the MicroBlaze registers through the FSL channels.

supports up to eight input and eight output FSL channels. Contents of the MicroBlaze

registers can be transferred to a coprocessor through the FSL channels using the put

instructions of the MicroBlaze ISA. Similarly, the results generated by a coprocessor

can be transferred back to the MicroBlaze registers using the get instructions of the

MicroBlaze ISA. Both instructions can be blocking or nonblocking, and can be used in

transferring data or control information. Nonblocking communication is a key feature

of the FSL interfaces that allows Microblaze processors and custom coprocessors to

operate asynchronously at different clock rates. Figure 2.8 illustrates the integration

of a coprocessor with a MicroBlaze processor through the FSL channels.

21

Figure 2.9. Integration of custom functional units (FUs) into the pipeline of a MIPS

type single issue processor [5] with five pipeline stages: instruction fetch (IF),

instruction decode (ID), execute (EX), memory access (MEM), and write back (WB).

2.2.3. Custom Instruction Processors

Custom instruction processors further improve the data bandwidth between the

processor and the custom logic and avoid the overhead of the coprocessor access pro-

tocol. Custom functional units are integrated into the regular datapath of the base

processor in parallel to the basic execution units. Register file ports, operand buses, as

well as the forwarding and the interlock logic can be shared between the basic execution

units and the custom functional units. Figure 2.9 demonstrates a typical method of

integrating the custom functional units into the pipeline of a MIPS like base processor.

Custom instruction processors are not limited to streaming type applications and

can accelerate a wide range of applications. The improved data bandwidth and the

reduced communication latency allows simple sequences of dataflow operations to be

22

profitably executed on custom logic as custom instructions. In fact, any combinational

or sequential circuit could be implemented by custom instructions given a handshake

mechanism between custom functional units and the base processor that allows the

base processor to determine when the custom instruction execution is complete.

Modern custom instruction processors comprise parallel, deeply pipelined custom

functional units including state registers, local memories, and wide data buses to local

and global memories. These features make it possible for modern custom instruction

processors to achieve a computational performance that is comparable to the perfor-

mance of custom RTL blocks. In the near future, custom instruction processors may

supersede the rigid RTL blocks in the design of embedded SoC devices.

An RTL block is typically composed of a datapath and a finite state machine

based control logic. The datapaths are often regular blocks of computation, and can be

reused in the implementation of multiple different applications. On the other hand, the

control logic is completely application specific and can be highly irregular. Therefore,

most of the risk in the design and verification of complex RTL blocks is associated

with the control logic. Furthermore, a change in the system specification that occurs

late in the design process affects the control logic most, whereas the elements of the

datapath often remain unchanged and can still be used. Custom instruction processors

can significantly reduce the design and verification effort by replacing the hardwired

control logic with a software programmable base processor. The control flow is directed

by the software running on the processor, and the instruction decoding logic generates

the necessary control signals for the custom datapaths. The software based approach

makes the design much more resilient against the changes in the system specification.

2.3. Technology Choices for Custom Instruction Processors

Custom instruction processors can be realized using different technology choices.

In the following sections we describe the three main approaches in detail with some

selected examples from the industry and the academia.

23

2.3.1. Synthesizable ASIC Processors

Synthesizable processors naturally match the standard ASIC design flows and can

be easily integrated into complex SoCs. In addition, synthesizable processors provide

the flexibility of fabrication in multiple foundries and processes. They can be quickly

ported to a new foundry or process technology. Moreover, the same synthesizable

processor description can be used to generate different circuits with different optimiza-

tion goals in mind. The same design can be optimized for performance, power, or

area by simply changing the target standard cell libraries and the synthesis constraints

provided to the ASIC tools. Most importantly, the synthesizable processors can be

customized to match the specific requirements of differerent applications. In particu-

lar, Tensilica Xtensa [9], ARC 600/700 [10], and MIPS Pro Series [12] processors allow

the customization of their instruction-sets.

Synthesizable processors cannot reach the operating frequency of the processors

designed with full custom circuit design techniques due to the limitations of standard

cell libraries and ASIC synthesis tools. However, very high performance synthesiz-

able processors are already commercially available. The recently introduced MIPS32

74K [39] synthesizable processor with a superscalar out-of-order pipeline can operate

at a frequency of one gigahertz (GHz) and provides support for custom instructions.

The synthesizable Tensilica Xtensa processor allows the designers to express the

custom instructions in a high level language called the Tensilica Instruction Exten-

sion (TIE) language [40]. Unlike architecture description languages, such as nML [7]

and LISA [8], TIE is not intended to describe a complete ISA. TIE allows the de-

signers to define a wide variety of custom instructions for extending a selected base

processor configuration. The formats and the encoding of custom instructions, and the

custom datapaths that implement custom instructions are specified using high level

constructs. The TIE compiler automatically generates the synthesizable processor de-

scriptions. Custom instructions can be single cycle or multi-cycle. The TIE compiler

automatically generates the pipeline registers, the interlock and the forwarding logic.

Custom instructions may involve architecturally visible custom state registers, as well.

24

State registers can store some of the temporary variables in the custom logic during

the program execution and allow custom instructions to operate on more input and

output operands than what the core register file supports. Finally, the TIE compiler

generates the scheduled machine code that makes good use of the custom datapaths.

In addition to the custom instruction support, the Tensilica Xtensa processors

allow the customization of their ISA using VLIW and vector instructions [14]. A VLIW

instruction is composed of multiple independent operations that can be issued in par-

allel. The performance increase is at the expense of hardware cost, such as parallel

decoders, multiple independent execution units, and a multiported register file that

supports simultaneous access. Vector or SIMD (Single Instruction Multiple Data) in-

structions can improve the performance by operating on more than one data element

at the same time. The improvement in the performance is again at the expense of

hardware cost, such as vector register files for storing vectors of data elements and

the additional logic for executing vector operations. Custom instructions can compress

several dependent and independent operations into a single hardware optimized opera-

tion. Latency of the custom instructions can be significantly lower than the combined

latency of the simple operations. Moreover, custom instructions can significantly re-

duce the code size, the number of register file ports, and the issue width for VLIW

processors. However, custom instructions have an area overhead, too. The Xtensa

approach combines all three techniques (i.e., VLIW, vector, and custom instructions)

in order to obtain the maximal performance improvement at a given area cost.

2.3.2. Soft Core FPGA Processors

Shrinking process geometries increase the fabrication costs of ASICs. In addition,

the process variability and the signal integrity problems are getting harder to cope

with, and this makes the design cycles of ASICs longer [41]. FPGAs eliminate the

nonrecurring engineering costs in the fabrication of the chip and significantly shorten

the design cycles and the time to market. The unit costs of FPGA devices are higher

than the unit costs of ASIC devices, and the logic density and the performance of

FPGAs cannot match those of ASICs. However, the reprogrammable nature of FPGA

25

devices allows FPGA based designs to quickly adapt to the changes in the system

specification and increases their life times. The re-programmability and the time to

market advantages of FPGAs make them highly competitive solutions for the industry.

A soft core FPGA processor is provided as a hardware description language source

code or as a structural netlist that can be mapped to the reconfigurable resources of an

FPGA device. Modern FPGA devices have sufficient density and resources that enable

efficient implementation of several soft core processors. Altera’s Nios II [11] processor

is among the most well-known commercial examples. Nios II custom instructions are

custom logic blocks connected directly to the operand buses of the ALU in the proces-

sor’s datapath (similar to Figure 2.9). The custom instruction can have a single cycle

(combinational) or multi-cycle (sequential) execution latency. Multi-cycle instructions

can have a fixed or variable duration. Custom logic blocks with a variable duration

inform the base processor of the completion of their execution using dedicated hand-

shake signals. Nios II architecture allows definition of up to 256 custom instructions.

Nios II also supports definition of internal register files and provides access to external

logic or memories through FIFO channels. These features can significantly improve

the capabilities of custom instructions and the efficiency of the Nios II processors.

Seng et al. [42] describe a customizable soft core processor that can adapt to

the application running on it by modifying its instruction-set through run-time recon-

figuration of the FPGA resources. Dimond et al. [43] introduce a customizable soft

processor with multi-threading support that can hide the latency of the memory ac-

cesses. In [27], it is shown that the energy consumption of a softcore processor can be

significantly reduced by aplication specific encoding and re-ordering of the instructions.

2.3.3. Hard Core Processors with Reconfigurable Datapaths

The soft core processors operate at a limited frequency and cannot achieve the

performance efficiency of their counterparts produced in ASIC technology or using full

custom circuit design techniques. An alternative way of introducing processor func-

tionality efficiently within FPGA devices is to use embedded hard processor cores.

26

Such cores can operate at very high frequencies while occupying a relatively small area

on the die. Commercial examples exist, such as Altera’s Excalibur devices integrating

ARM922T cores and Xilinx Virtex-II FPGAs integrating PowerPC 405 cores. Al-

though these architectures do not support custom instructions, several research groups

have already studied possible ways of integrating a high performance processor with

reconfigurable functional units [44, 45, 46, 47] for efficient custom instruction support.

The Chimaera approach [46] introduces a special purpose reconfigurable array with

partial run-time reconfiguration support. The ConCISe architecture [47], on the other

hand, proposes the use of a complex programmable logic device (CPLD) that enables

extensive logic minimization and improves the utilization of the resources.

The Stretch S6000 family of processors [13] can be classified into this category.

The baseline processor is a Tensilica Xtensa processor configured as a dual issue VLIW

with vector instruction support fabricated in ASIC technology. Custom instructions are

mapped to a special purpose coarse grain reconfigurable fabric that includes numerous

ALUs, distributed registers, multipliers, and RAM blocks.

2.4. Related Work on Hardware/Software Partitioning Algorithms

Automatic hardware/software partitioning is a key problem in the hardware and

software co-design of embedded systems. The traditional approach assumes a processor

and a coprocessor integrated through a general purpose bus interface [48, 49, 50, 51].

Hardware/software partitioning is done at the task or basic block level. The system is

represented as a graph, where the nodes represent tasks or basic blocks, and the edges

are weighted based on the amount of communication between the nodes. Gupta et

al. [48] initially allocate all nodes in hardware. Area cost is reduced by iterative move-

ments from hardware to software while trying not to exceed a constraint on the schedule

length. Ernst et al. [49] propose a simulated annealing based methodology. Niemann et

al. [50] formulate the hardware/software partitioning problem under area and schedule

length constraints as an ILP problem. In [51], Vahid and Le extend the Kernighan-Lin

heuristic for hardware/software functional partioning. Hardware/software partitioning

problem under area and schedule length constraints is shown to be NP-hard in [52].

27

Custom instruction processors are emerging as an effective solution in the hard-

ware and software co-design of embedded systems. In the context of custom instruction

processors, hardware/software partitioning is done at the instruction level granular-

ity. Application basic blocks are transformed into DAGs, where the nodes represent

instructions similar to those in assembly languages, and the edges represent data de-

pendencies. Profiling analysis identifies the most time consuming basic blocks. Code

transformations, such as loop unrolling and if-conversion, selectively eliminate control

flow dependencies and merge application basic blocks. Custom instructions provide

efficient hardware implementations for frequently executed dataflow subgraphs.

Custom instruction identification is seemingly similar to traditional microcode

compaction techniques [53]. In both cases, the optimization goals include reducing the

schedule length and the code size of a given application. The main difference is that in

the context of custom instruction processors we derive specialized processor datapaths

in order to optimize the application execution. On the other hand, microcode com-

paction techniques assume a fixed processor datapath, and try to identify combinations

of microoperations that can fully exploit the parallelism within that fixed datapath.

Automatic identification of custom instructions has remained an active area of

research for more than a decade. The automation effort is motivated by manual design

examples, such as [42, 54], which demonstrate the importance of identifying coarse

grain and frequently used code segments. The mainstream approach divides the custom

instruction identification problem into two phases: (1) generation of a set of custom

instruction templates; (2) selection of the most profitable templates under area or

schedule length constraints. Most of the early research and some of the recent work [55,

56, 57, 58, 59, 60, 61] rely on incremental clustering of related DAG nodes in order

to generate a set of custom instruction templates. In [62], Alippi et al. introduce

the MaxMISO algorithm, which partitions a DAG into maximal input, single output

subgraphs in linear run-time. In [15], Binh et al. propose a branch-and-bound based

algorithm for the selection problem in order to minimize the area cost under schedule

length and power consumption constraints. In [63], no explicit constraint is imposed

on the number of input or output operands for custom instructions. The generation

28

and the selection of custom instruction templates are based on greedy techniques.

Cheung et al. generate the custom instruction templates based on exhaustive

search in [64]. The exhaustive search approach is not scalable since the number of

possible templates grow exponentially with the size of the DAGs (given a DAG with

N nodes there exists 2N distinct DAG subgraphs induced by the nodes). In [22, 23],

Atasu et al. introduce constraints on the number of input and output operands for

subgraphs in order to reduce the exponential search space. Application of a constraint

propagation technique reduces the number of enumerated subgraphs significantly. A

greedy algorithm iteratively selects non-overlapping DAG subgraphs having maximal

speed-up potential based on a high level metric. The proposed technique is often limited

to DAGs with a few hundred nodes, and the input/output constraints must be tight

enough to reduce the exponential worst case time complexity. The work by Atasu et al.

shows that clustering based approaches (e.g. [59]) or single output operand restriction

on the custom instructions, (e.g. [62]) can severely reduce the achievable speed-up.

Cong et al. propose a dynamic programming based algorithm in [65], which

enumerates single output subgraphs with a given number of inputs. In [66], Yu et

al. show that subgraph enumeration under input and output constraints can be done

much faster if the additional connectivity constraint is imposed on the subgraphs.

In [24], the algorithm of [22, 23] is further optimized, and it is shown that enumerating

connected subgraphs only can substantially reduce the achievable speed-up. Biswas

et al. propose an extension to the Kernighan-Lin heuristic again based on input and

output constraints in [67]. This approach does not evaluate all feasible subgraphs.

Therefore, an optimal solution is not guaranteed. In [68], Bonzini et al. derive a

polynomial bound on the number of feasible subgraphs if the number of inputs and

outputs for the subgraphs are fixed. However, the complexity grows exponentially as

the input/output constraints are relaxed. Performance of the proposed algorithm is

reported to be similar to the performance of the algorithm described in [24].

In [69], Leupers et al. describe a code selection technique for irregular datapaths

with complex instructions. In [61], Clark et al. formulate the problem of matching

29

a library of custom instruction templates with application DAGs as a subgraph iso-

morphism problem. Peymandoust et al. propose a polynomial manipulation based

technique for the matching problem in [70]. In [65], Cong et al. use isomorphism

testing to determine whether enumerated DAG subgraphs are structurally equivalent.

In [71], Cheung et al. use model equivalence checking to verify whether generated

subgraphs are functionally equivalent to a pre-designed set of library components.

Clark et al. propose a reconfigurable array of functional units tightly coupled with

a general purpose processor that can accelerate dataflow subgraphs in [72]. A microar-

chitectural interface and a compilation framework allows transparent instruction-set

customization. DAG merging techniques that can exploit structural similarities across

custom instructions for area efficient synthesis are proposed in [73, 74, 75].

The speed-up obtainable by custom instructions is limited by the available data

bandwidth between the base processor and custom logic. Extending the core register

file to support additional read and write ports improves the data bandwidth. However,

additional ports result in increased register file size, power consumption, and cycle

time. The Tensilica Xtensa [14] processor uses custom state registers to explicitly

move additional input and output operands between the base processor and custom

units. Hauck et al. propose the use of shadow registers to increase the data bandwidth

in [46]. Shadow registers duplicate a subset of the base processor registers in the custom

logic area. Contents of the shadow registers can be read without any limitation on the

bandwidth. The mapping between the base processor registers and the shadow registers

can be fixed or can be established at compile time [76]. Jayaseelan et al. demonstrate

that up to two additional input operands for custom instructions can be supplied free

of cost by exploiting the forwarding paths of the base processor in [77]. Pozzi et al. [78]

show that the data transfer overhead of multi-cycle custom instructions can be reduced

by overlapping data transfers cycles with execution cycles.

Another potential complexity in the design of custom instruction processors is

the difficulty of encoding multiple input and output operands within a fixed length

instruction word. Issuing explicit data transfer instructions to and from custom state

30

Table 2.1. A comparison with some state-of-the-art techniques

[22, 23, 24] [65] [66] Our work

Controllability of inputs
√ √ √ √

Controllability of outputs
√ √ √

Support for disconnectedness
√ √

Removal of I/O constraints
√

registers is a way of encoding the additional input and output operands. An orthog-

onal approach proposed by Lee et al. in [79] restricts the input and output operands

for custom instructions to a subset of the base processor registers. This approach ef-

fectively reduces the bit-width necessary for operand encoding. However, additional

data movement instructions between the base processor registers may be necessary.

Tensilica Xtensa LX processors [80] introduce flexible instruction encoding support for

multi-operand instructions, known as FLIX, in order to address the encoding problem.

In this thesis, we assume a baseline machine that supports architecturally visible

custom state registers, and dedicated instructions that can transfer data between base

processor registers and custom state registers. We optionally constrain the number of

input and output operands for custom instructions, and we explicitly account for the

data transfer cycles between the base processor and the custom logic if the number of

inputs or outputs exceed the available register file ports. We explore compiler trans-

formations, such as if-conversion [81] and loop unrolling that can partially eliminate

control dependencies, and we apply our algorithms on predicated basic blocks.

Today’s increasingly advanced ILP solvers such as CPLEX [82] are often able

to solve problems with thousands of integer variables and tens of thousands of linear

constraints efficiently. To take advantage of this widely used technology, we formulate

the custom instruction identification problem as an ILP in Chapter 3. We show that

the number of integer variables and the linear constraints used in our ILP formulation

grow only linearly with the size of the problem. In Section 3.3, we integrate our ILP

based solution into an iterative algorithm, used also in [22, 23, 24], which reduces the

31

search space based on a most profitable subgraph first approach. Table 2.1 compares

our approach with some state-of-the-art techniques in terms of the supported features.

2.5. Summary

In this chapter, we first introduce the compiler terminology and the notation for

automated custom instruction identification. After that, we review the architectural

approaches that integrate custom logic with a base processor for application accel-

eration. Next, we describe possible technology alternatives for implementing custom

instruction processors. Finally, we provide an overview of the existing work on au-

tomated hardware/software partitioning and custom instruction synthesis algorithms

and we compare and contrast our approach with the existing techniques.

32

3. THE CHIPS APPROACH

Today, the most widely used language for programming embedded devices is

C/C++. Therefore, we assume that the functionality of the application to be accel-

erated is specified in C/C++. We target customizable processor architectures, similar

to Tensilica Xtensa [9], where the data bandwidth between the base processor and the

custom logic is constrained by the available register file ports. Our approach is also

applicable to processor architectures that support tightly coupled coprocessors, where

the data bandwidth is limited by dedicated data transfer channels, such as the Fast

Simplex Link channels of the Xilinx MicroBlaze processor [38]. Given the available

data bandwidth and the transfer latencies, we identify the most profitable custom in-

structions based on an integer linear programming (ILP) model. Figure 3.1 depicts our

tool chain called CHIPS (Custom Hardware Instruction Processor Synthesis).

We use the Trimaran [26] compiler infrastructure to generate the control and

data flow information, and to achieve basic block level profiling of a given application.

Specifically, we work with Elcor, the back-end of Trimaran. The Impact front-end and

the Elcor back-end already support most of the well-known compiler optimizations.

Additionally, we implement an if-conversion pass adapted to our purposes, which se-

lectively eliminates control flow dependencies due to branches. We apply our algorithms

for identifying custom instructions immediately after code selection and prior to reg-

ister allocation. Therefore, the statements in the IR are mapped to the instructions

supported by the base processor, and no register spills are visible at this stage.

Section 3.2 describes a scalable ILP formulation that identifies the most promising

data flow subgraphs as custom instructions templates. Our ILP formulation guarantees

a feasible schedule for the generated templates. Furthermore, our ILP formulation

explicitly calculates the data transfer costs and the critical path delays, and identifies

the templates that reduce the schedule length most. We use CPLEX Mixed Integer

Optimizer [82] within our algorithms to solve the ILP problems we generate.

33

Figure 3.1. CHIPS: we integrate our algorithms into Trimaran [26]. Starting with

C/C++ code, we automatically generate behavioral descriptions of custom

instructions in VHDL, a high level machine description (MDES), and assembly code.

Given the available data bandwidth and the transfer latencies between the base

processor and the custom logic, our template generation algorithm iteratively solves

a set of ILP problems and produces a set of custom instruction templates that can

be profitably run on the custom logic. Section 3.3 describes our template generation

algorithm in detail. Our template selection algorithm groups structurally equivalent

templates within isomorphism classes as custom instruction candidates. Given the be-

havioral descriptions of the custom instruction candidates in VHDL, Synopsys Design

Compiler [83] produces area and delay estimates. Given constraints on the available

34

custom logic area, the template selection algorithm identifies the most profitable can-

didates. Section 3.4 describes our template selection algorithm in detail.

Once the most profitable custom instruction candidates are selected under area

constraints, we automatically generate high level machine descriptions (MDES [84])

supporting the selected candidates. Next, we insert the custom instructions in the code,

and replace the matching DAG subgraphs. Finally, we apply Trimaran scheduling and

register allocation passes, and we produce the assembly code and scheduling statistics.

3.1. Problem Formulation

In this section, we introduce our problem formulation using the notation described

in Section 2.1.2. We represent a basic block using a DAG G (Vb ∪ V in
b , Eb ∪ Ein

b) where

Vb represent statements, and the edges Eb represent flow dependencies between state-

ments. The nodes V in
b represent the input variables, and the edges Ein

b connect V in
b to

the statements in Vb. The nodes V out
b ⊆ Vb represent statements defining the output

variables. The nodes V invalid
b ⊆ Vb represent statements that are not permitted to take

part in custom instructions. A custom instruction template T (Vt ∪ V in
t , Et ∪ Ein

t) is a

subgraph of G. The nodes Vt represent statements included in the template, and the

edges Et represent flow dependencies between these statements. The nodes V in
t repre-

sent the input operands of the template and the edges Ein
t connect V in

t to the statements

in Vt. The nodes V out
t ⊆ Vt represent statements defining the output operands of T .

We assume that the ports of the core register file are shared between the base

ALU and the custom units. Given RFin read ports and RFout write ports supported

by the core register file, we assume that RFin input operands can be read, and RFout

output operands can be written back free of cost by the custom instructions. Further-

more, we assume that RFin input operands and RFout output operands can be encoded

within a single instruction word. We denote the number of input operands for custom

instructions as INSTin, and the number of output operands as INSTout. Figure 3.2

duplicates Figure 1.4 and shows the RFin, RFout, INSTin and INSTout parameters of

our model on the datapath of the custom instruction processor.

35

Figure 3.2. The register file supports RFin read ports and RFout write ports. Custom

instructions might have an arbitrary number of input and output operands, INSTin

and INSTout, marshalled in and out through dedicated data transfer channels.

If the baseline machine supports architecturally visible custom state registers and

dedicated data transfer instructions, INSTin and INSTout can be arbitrarily large. If

INSTin is larger than RFin or INSTout is larger than RFout, we issue additional data

transfers between the core register file and custom state registers. We assume that the

cost of transferring additional RFin input operands from the core register file to the

custom state registers is c1 cycles, and the cost of transferring additional RFout output

operands from the custom state registers to the core register file is c2 cycles, where

c1, c2 ∈ Z+ ∪ {0}. We denote the number of additional data transfers from the core

register file to the custom state registers as DTin and the number of additional data

transfers from the custom state registers to the core register file as DTout respectively.

If the baseline machine does not support architecturally visible custom state

registers and dedicated data transfer instructions, INSTin and INSTout is practically

limited by the available register file ports or by the finite operand encoding space

available in the instruction word. The number of input and output operands may also

be bounded explicitly for the purpose of exploring the design space. In this work, we

support a constraint of MAXin on the maximum number of input operands, and a

36

constraint of MAXout on the maximum number of output operands for the templates.

We associate with every DAG node vi ∈ Vb a software latency si ∈ Z+, and a

hardware latency hi ∈ R+ ∪ {0}. Software latencies give the time in clock cycles that

it takes to execute the operations on the pipeline of the base processor. Hardware

latencies are given in a unit of clock cycles. Hardware latencies are calculated by

synthesizing the operators and normalizing their delays to a target cycle time. We

estimate the software latency S(T) of a template T (i.e., the execution latency on the

base processor) by accumulating the software latencies of the nodes that are included in

Vt. We estimate the hardware latency H(T) (i.e., the execution latency on the custom

logic) by quantizing its hardware critical path length. We represent the data transfer

cost (i.e., the communication latency) induced by a template T as C(T).

Our objective is to minimize the schedule length of the application by moving

templates from software to hardware (i.e., from the base processor to the custom logic)

as custom instructions. We search for templates, which when moved from software

to hardware, maximize the reduction in the schedule length. Given a template T we

estimate the schedule length reduction as the difference between the software latency

S(T) and the sum of hardware latency H(T) and the communication latency C(T).

3.2. Integer Linear Programming Model

We associate with every DAG node vi ∈ Vb a binary decision variable xi that

represents whether the node is included in the template (xi = 1 ⇔ vi ∈ Vt) or not (

xi = 0 ⇔ vi /∈ Vt). For vi ∈ V invalid
b we set xi = 0. We use x′i to denote the complement

of xi (x′i = 1 − xi). In this way, it is possible to encode all 2|Vb| possible templates

given a DAG with |Vb| nodes. Figure 3.3 shows the assignment of binary variables to

the nodes for the template shown in circle. Setting x3, x4, and x6 equal to one, and

setting x1, x2, and x5 equal to zero defines a template T , where Vt = {v3, v4, v6}.

37

Figure 3.3. Templates are defined based on the assignment of ones and zeros to the

binary decision variables associated with the DAG nodes.

We use the following indices in our formulations:

I1 : indices for nodes vin
i ∈ V in

b

I2 : indices for nodes vi ∈ Vb

I3 : indices for nodes vi ∈ V out
b

I4 : indices for nodes vi ∈ Vb/V
out
b

We represent the set of immediate successors of the nodes in V in
b defined by Ein

b

as follows:

Succ(i ∈ I1) =
{
j ∈ I2 | ∃ e ∈ Ein

b : e = (vin
i , vj)

}

We represent the set of immediate successors, and the set of immediate predeces-

sors of the nodes in Vb defined by Eb as follows:

Succ(i ∈ I2) = {j ∈ I2 | ∃ e ∈ Eb : e = (vi, vj)}
Pred(i ∈ I2) = {j ∈ I2 | ∃ e ∈ Eb : e = (vj, vi)}

38

3.2.1. Calculation of the Input Data Transfers

We use the integer decision variable INSTin to represent the number of input

operands of a template T . An input variable vin
i ∈ V in

b of the basic block is an input

operand for T if it has at least one immediate successor in Vt. A node vi ∈ Vb defines

an input operand of T if it is not in Vt, and it has at least one immediate successor in

Vt. The total number of input operands for T can be computed as follows:

INSTin =
∑
i∈I1

 ∨

j∈Succ(i)

xj

 +

∑
i∈I2

x′i ∧

 ∨

j∈Succ(i)

xj

 (3.1)

We calculate the number of additional data transfers from the core register file

to the custom logic as DTin:

DTin ≥ INSTin/RFin − 1, DTin ∈ Z+ ∪ {0} (3.2)

A constraint of MAXin on the maximum number of input operands can be im-

posed as follows:

INSTin ≤ MAXin (3.3)

In Figure 3.3, the input variable vin
2 of the basic block has its immediate successor

v3 in Vt (i.e., x3 = 1). Similarly, vin
6 has its immediate successor v6 in Vt (i.e., x6 = 1).

Therefore, both vin
2 and vin

6 are input operands for T . On the other hand, none of the

immediate successors of vin
4 are in Vt. Therefore, vin

4 is not an input operand for T .

Among the basic block nodes, v1 is not in Vt, and its immediate successor v3 is included

in Vt (i.e., x′1 ∧ x3 = 1). Similarly, v2 is not in Vt, and its immediate successor v4 is

included in Vt (i.e., x′2 ∧ x4 = 1). Therefore, both v1 and v2 define input operands of

T . The total number of input operands of T is calculated as four.

39

Linearization of the logical constraints is carried out as follows: Equation (3.1)

is rewritten as:

INSTin =
∑
i∈I1

zin
i +

∑
i∈I2

zi (3.4)

where, we define the auxiliary binary decision variables zin
i , zi, and ti as follows:

zin
i =

∨

j∈Succ(i)

xj, i ∈ I1 (3.5)

zi = x′i ∧ ti, i ∈ I2 (3.6)

ti =
∨

j∈Succ(i)

xj, i ∈ I2 (3.7)

Equation (3.5) can be written as follows:

zin
i ≥ xj, j ∈ Succ(i), i ∈ I1

zin
i ≤

∑

j∈Succ(i)

xj, i ∈ I1
(3.8)

Equation (3.6) can be written as follows:

zi ≤ (1− xi), i ∈ I2

zi ≤ ti, i ∈ I2

zi ≥ −xi + ti, i ∈ I2

(3.9)

Finally, we can rewrite Equation (3.7) as follows:

ti ≥ xj, j ∈ Succ(i), i ∈ I2

ti ≤
∑

j∈Succ(i)

xj, i ∈ I2
(3.10)

40

We introduce |V in
b |+2|Vb| new binary decision variables in Equations (3.5), (3.6),

and (3.7). Additionally, we use |Ein
b | + |V in

b | linear constraints to represent Equation

(3.5), 3|Vb| linear constraints to represent Equation (3.6), and |Eb| + |Vb| linear con-

straints to represent Equation (3.7). Some of the variables and some of the constraints

may be redundant and can be eliminated by a preprocessing step. In total, we need

O(|Vb|+ |V in
b |) binary variables and O(|Eb|+ |Vb|+ |Ein

b |+ |V in
b |) linear constraints to

convert Equation (3.1) into linear form.

3.2.2. Calculation of the Output Data Transfers

We use the integer decision variable INSTout to represent the number of output

operands of a template T . A node vi ∈ V out
b , defining an output variable of the basic

block, defines an output operand of T if it is in Vt. A node vi ∈ Vb/V
out
b defines an

output operand of T if it is in Vt, and it has at least one immediate successor not in

Vt. The total number of output operands for T can be computed as follows:

INSTout =
∑
i∈I3

xi +
∑
i∈I4

xi ∧

 ∨

j∈Succ(i)

x′j

 (3.11)

We calculate the number of additional data transfers from the custom logic to

the core register file as DTout:

DTout ≥ INSTout/RFout − 1, DTout ∈ Z+ ∪ {0} (3.12)

A constraint of MAXout on the maximum number of output operands can be

imposed as follows:

INSTout ≤ MAXout (3.13)

41

In Figure 3.3, the node v6 ∈ V out
b defines an output operand of T as it is in Vt

(i.e., x6 = 1). Among the basic block nodes that are not in V out
b , v4 is in Vt and has its

immediate successor v5 not in Vt (i.e., x4∧x′5). As a consequence, v4 defines an output

operand of T . On the other hand, v3 is also in Vt and has no immediate successor that

is not in Vt. Therefore, v3 does not define an output operand of T . The total number

of output operands of T is calculated as two.

We rewrite Equation (3.11) as follows in order to linearize logical constraints:

INSTout =
∑
i∈I3

xi +
∑
i∈I4

pi (3.14)

where, we define the auxiliary binary decision variables pi, and qi as follows:

pi = xi ∧ qi, i ∈ I2 (3.15)

qi =
∨

j∈Succ(i)

x′j, i ∈ I2 (3.16)

Equation (3.15) can be written as follows:

pi ≤ xi, i ∈ I2

pi ≤ qi, i ∈ I2

pi ≥ xi + qi − 1, i ∈ I2

(3.17)

We can then rewrite Equation (3.16) as follows:

qi ≥ (1− xj), j ∈ Succ(i), i ∈ I2

qi ≤
∑

j∈Succ(i)

(1− xj), i ∈ I2
(3.18)

We introduce 2|Vb| new binary decision variables in Equations (3.15) and (3.16).

42

We use 3|Vb| linear constraints to represent Equation (3.15) and |Eb| + |Vb| linear

constraints to represent Equation (3.16). In total, we need O(|Vb|) binary variables

and O(|Eb|+ |Vb|) linear constraints to convert Equation (3.11) into linear form.

3.2.3. Convexity Constraint

We make use of the following theorem when dealing with the convexity constraint:

Theorem 1. A template T is convex if and only if there is no node in Vb/Vt having

both an ancestor and a descendant in Vt.

Proof. Assume that T is convex. Suppose that there is a node v in Vb/Vt having an

ancestor u in Vt and a descendant w in Vt. Then, there exists a path from u to w going

through v, contradicting with the definition of convexity.

Conversely, assume that there is no node in Vb/Vt having both an ancestor and a

descendant in Vt. Suppose that T is not convex. Then, there exists a path in G from

a u in Vt to a w in Vt that goes through a v in Vb/Vt . In this case, v would have

both an ancestor (i.e., u) and a descendant (i.e., w) in Vt, contradicting with the initial

assumption.

For each node vi ∈ Vb we introduce two new binary decision variables ai and di.

ai represents whether vi has an ancestor in the template T (ai = 1) or not (ai = 0).

Similarly, di represents whether vi has a descendant in T (di = 1) or not (di = 0).

A node has an ancestor in Vt if it has at least one immediate predecessor that is

already in Vb or that has an ancestor in Vt.

ai =

0 if Pred(i) = ∅
(∨

j∈Pred(i) (xj ∨ aj)
)

otherwise

, i ∈ I2 (3.19)

43

A node has a descendant in Vt if it has at least one immediate successor that is

already in Vt or that has a descendant in Vt.

di =

0 if Succ(i) = ∅
(∨

j∈Succ(i) (xj ∨ dj)
)

otherwise

, i ∈ I2 (3.20)

Based on Theorem 1, there should be no node in Vb/Vt having both an ancestor

and a descendant in Vt to ensure convexity:

x′i ∧ ai ∧ di = 0, i ∈ I2 (3.21)

We rewrite Equation (3.19) as follows in order to linearize the logical constraints:

ai ≥ xj, j ∈ Pred(i), i ∈ I2

ai ≥ aj, j ∈ Pred(i), i ∈ I2

ai ≤
∑

j∈Pred(i)

xj +
∑

j∈Pred(i)

aj, i ∈ I2

(3.22)

Similarly, we rewrite Equation (3.20) as follows:

di ≥ xj, j ∈ Succ(i), i ∈ I2

di ≥ dj, j ∈ Succ(i), i ∈ I2

di ≤
∑

j∈Succ(i)

xj +
∑

j∈Succ(i)

aj, i ∈ I2

(3.23)

Finally, Equation (3.21) is written as follows:

ai + di − xi ≤ 2 (3.24)

44

We use |Vb|+ 2|Eb| linear constraints to represent Equations 3.19) and (3.20). In

total, we need O(|Eb|+|Vb|) additional constraints to linearize the convexity constraint.

3.2.4. Critical Path Calculation

We estimate the execution latency of a template T on the custom logic by quan-

tizing its critical path length. We calculate the critical path length by applying an

ASAP (as soon as possible) scheduling without resource constraints.

We associate with every DAG node vi a real decision variable li ∈ R, which

represents the time in which the result of vi becomes available when T is executed on

custom logic, assuming that all of its input operands are available at time zero.

li ≥

hixi if Pred(i) = ∅

lj + hixi, j ∈ Pred(i) otherwise

, i ∈ I2 (3.25)

The largest li value gives us the critical path length of T . We use H(T) ∈ Z+ to

represent the quantized critical path length.

H(T) ≥ li, i ∈ I2 (3.26)

3.2.5. Objective

We estimate the software cost S(T) of a template T as the sum of the software

latencies of the nodes included in Vt.

S(T) =
∑
i∈I2

(sixi) (3.27)

45

H(T) provides the estimated execution latency of T on the custom logic once all

of its inputs are ready. C(T) represents the number of cycles required to transfer the

input and output operands of T from and to the core register file (c1DTin and c2DTout

respectively) when T is executed on the custom logic.

C(T) = c1DTin + c2DTout (3.28)

Our objective is to maximize the reduction in the schedule length by moving T

from software to the custom logic.

Z(T) = max S(T)−H(T)− C(T) (3.29)

3.2.6. Scalability of the Model

Our ILP model scales linearly with the size of the problem. The number of de-

cision variables and the number of linear constraints required to represent the overall

problem is found by accumulating the corresponding numbers from Section 3.2.1, Sec-

tion 3.2.2, Section 3.2.3, Section 3.2.4, and Section 3.2.5. We observe that the overall

problem can be represented using O(|Vb ∪ V in
b |) binary decision variables, O(|Vb|) real

decision variables, and a few additional integer decison variables. In addition, we make

use of O(|Eb| + |Vb| + |Ein
b | + |V in

b |) linear constraints. If the compiler IR consists of

three address statements only (i.e., every statement has two input operands and a sin-

gle output operand), we know that |Eb|+ |Ein
b | = 2|Vb| and |V in

b | ≤ 2|Vb|. In this case,

both the number of decision variables and the number of linear constraints are O(|Vb|).

3.2.7. Support for Statements with Multiple Destination Operands

Some IRs are not composed entirely of three address statements and involve

assignment statements with multiple destination operands. We handle such statements

by adapting our ILP formulation. In the new representation, every destination operand

46

of every statement defines its own set-of data dependencies. Assuming that node vi

defines Ki destination operands, we associate with every destination operand of every

node k ∈ {1 . . . Ki} , i ∈ I2, a set of successor nodes Succ(i, k).

We rewrite Equation (3.1) as follows:

INSTin =
∑
i∈I1

 ∨

j∈Succ(i)

xj

 +

∑
i∈I2

Ki∑

k=1

x′i ∧

 ∨

j∈Succ(i,k)

xj

 (3.30)

We associate with every DAG node vi a set KS
i ⊆ Ki, which represents a subset

of the destination operands of node vi that are among the output operands of the basic

block. We rewrite Equation (3.11) as follows:

INSTout =
∑
i∈I2

∑

k∈KS
i

xi +
∑
i∈I2

∑

k/∈KS
i

xi ∧

 ∨

j∈Succ(i,k)

x′j

 (3.31)

The unified set of successors of the DAG nodes are defined as follows:

Succ(i) =

Ki⋃

k=1

Succ(i, k), i ∈ I2 (3.32)

Given j ∈ Succ {i} ⇔ i ∈ Pred {j} for i, j ∈ I2, formulations of the convexity

constraint (Section 3.2.3), critical path calculation (Section 3.2.4), and the objective

(Section 3.2.5) remain unchanged.

3.3. Template Generation

Our template generation algorithm iteratively solves a set of ILP problems in

order to generate a set of custom instruction templates. For a given application basic

block, the first template is identified by solving the ILP problem on the DAG repre-

47

1: ALGORITHM: Template Generation

2: Given G : the set of application basic blocks

3: Generate T : the set of custom instruction templates

4: G : the current basic block

5: T : the current custom instruction template

6: Objective : the current objective value

7: Upper Bound : the current upper bound

8: for G in G do

9: Objective ← MAX INT

10: Upper Bound ← MAX INT

11: while Objective > 0 do

12: Generate the relaxed ILP problem for G

13: Add the constraint (Objective ≤ Upper Bound)

14: Solve ILP, extract Objective and T

15: Upper Bound ← MIN(Objective, Upper Bound)

16: if T is NOT convex then

17: Add the convexity constraint

18: Add the constraint (Objective ≤ Upper Bound)

19: Solve ILP, extract Objective and T

20: Upper Bound ← MIN(Objective, Upper Bound)

21: end if

22: if Objective > 0 then

23: T ← T ∪ {T}
24: Collapse T into a single node in G

25: Mark the new node as an invalid node

26: end if

27: end while

28: end for

Figure 3.4. We iteratively solve a set of ILP problems. A good upper bound on the

objective value can significantly reduce the solution time.

48

senting the basic block as defined in Section 3.2. After the identification of the first

template, the nodes included in the template are collapsed into a single node in the

DAG, and the data structures representing the DAG are updated. The convexity con-

straint guarantees that the graph remains acyclic after node collapsing. We mark the

new node as an invalid node and iterate the same procedure on the updated DAG.

Marking of the new node as invalid ensures that the node will not be identified as part

of any other templates. The overall process guarantees that there will be no overlap

between the generated templates. We apply the same procedure until no more prof-

itable templates can be found in the DAG. We note here that the new nodes inserted

into the DAG can have multiple destination operands, in which case we have to use

the formulation described in Section 3.2.7. Finally, we apply the same procedure on

all application basic blocks and generate a unified set of custom instruction templates.

Providing a good upper bound on the value of the objective function can greatly

enhance the performance of the ILP solver without affecting the optimality of the solu-

tion. ILP solvers rely on well-known optimization techniques such as branch-and-bound

and branch-and-cut for exploring the search space efficiently. These techniques build

a search tree, where the nodes represent subproblems of the original problem. Given

a good upper bound on the value of the objective function, the number of branches

and the size of the search tree can be significantly reduced. In our experiments, we

have observed that the relaxation of the convexity constraint simplifies the problem,

and allows us to obtain good upper bounds on the objective value of the unrelaxed

problem within short time. In addition, the objective value of the previous iteration

provides a second and sometimes a tighter upper bound.

A formal description of our approach is given in Figure 3.4. We first solve the

relaxed problem, where the convexity constraint is not imposed on the templates. If the

identified template is convex, we add it to our template pool. Otherwise, the solution

identified provides an upper bound on the objective value of the unrelaxed problem. We

solve the problem once more with the convexity constraint imposed using the improved

upper bound. Initially, the upper bound is set to the value of the maximum integer

(MAX INT). As the iterations proceed, the DAG gets smaller, the upper bound gets

49

tighter, and these factors usually decrease the solution time.

The objective of the iterative template generation algorithm is to generate custom

instruction templates covering application DAGs as much as possible while avoiding the

exponential computational complexity of the subgraph enumeration techniques. Not

allowing overlapping between templates guarantees that the number of iterations will

be O(Ntot), where Ntot represents the total number of instructions in an application.

In practice, the number of iterations is much smaller than Ntot as the templates we

generate are often coarse grain.

At each iteration, we choose the template that provides the highest objective

value (i.e., the most profitable subgraph). Although our approach is heuristic, recent

research shows that our approach results in good overall code coverage. Clark et al. [85],

combine the subgraph enumeration algorithm of [22, 23, 24] with a unate covering based

code selection approach. The improvement in the speed-up over the iterative approach

is reported as one per cent only. On the other hand, the same work reports that the

use of a locally optimal solution at each iteration, such as in [22, 23, 24], provides

significant gains over the use of heuristic clustering based techniques, such as in [61].

3.4. Template Selection

Once the template generation is done, we calculate the isomorphism classes. We

apply pairwise isomorphism checks using the Nauty package [86]. The nauty package

makes use of a backtracking algorithm that produces automorphism groups of a given

graph, as well as the canonically labeled isomorph. A set of templates are isomorphic

if and only if their canonically labeled isomorphs are equivalent.

We assume that the set of templates T generated by the algorithm of Section 3.3

is partitioned into NG distinct isomorphism classes:

T = T1 ∪ T2 ∪ ... ∪ TNG
(3.33)

50

An isomorphism class defines a custom instruction candidate that can imple-

ment all the templates included in that class. Once isomorphism classes are formed,

we generate behavioral hardware descriptions of the custom instruction candidates in

VHDL. We apply high level synthesis, and we associate an area estimate A(Ti), and a

normalized critical path estimate D(Ti) with each custom instruction candidate Ti.

The value of the objective function Z(T) described in Section 3.2.5 provides an

initial estimation of the reduction in the schedule length by a single execution of the

template T ∈ Ti on the custom logic. We replace the estimated critical path length

H(T) with the more accurate result D(Ti) we obtain from high level synthesis in order

to generate a refined estimation of the reduction in the schedule length for the custom

instruction candidate Ti:

Z(Ti) = Z(T) + H(T)−D(Ti) (3.34)

Given that a template T ∈ Ti is executed F (T) times by a typical execution of

the application, the total number of executions of a custom instruction candidate Ti is

calculated as follows:

F (Ti) =
∑
T∈Ti

F (T), i ∈ {1..NG} (3.35)

The overall reduction in the schedule length of the application by implementing

Ti as a custom instruction is estimated as follows:

G(Ti) = Z(Ti) ∗ F (Ti) (3.36)

We formulate the selection of the most profitable custom instruction candidates

under an area constraint AMAX as a Knapsack problem, and solve it using the ILP

solver. We associate a binary decision variable yi with each custom instruction candi-

51

date Ti, which represents whether Ti is selected (yi = 1) or not (yi = 0).

The Knapsack formulation is constructed as follows:

max
∑

i∈{1..NG}
G(Ti)yi

s.t.
∑

i∈{1..NG}
A(Ti)yi ≤ AMAX

yi ∈ {0, 1} , i ∈ {1..NG}

(3.37)

Naturally, the number of custom instruction candidates is smaller than the num-

ber of custom instruction templates generated. Hence, the number of binary decision

variables used in Equation (3.37) is O(Ntot), and in practice much smaller than Ntot.

This allows us to solve the Knapsack problem optimally using ILP solvers for all prac-

tical examples.

We note that, the F (Ti) values we use in our formulations might not accurately

represent the potential of a custom instruction candidate since there might be other

instances of the candidate in the application DAGs not identified by our algorithms. A

truly optimal solution could be possible by enumerating all possible subgraphs within

the application DAGs. However, this approach is not computationally feasible since:

(1) the number of subgraphs grows exponentially with the size of the DAGs; (2) allow-

ing overlapping between selected subgraphs significantly complicates the mathematical

model for template selection. In [87], Yu and Mitra enumerate only connected sub-

graphs having up to four input and two output operands, and do not allow overlapping

between selected subgraphs. Although the search space is significantly reduced by these

restrictions, Yu and Mitra report that optimal selection using ILP solvers occasionally

fails to complete within 24 hours and propose a heuristic solution for selection.

52

3.5. Machine Description and Code Generation

The Trimaran [26] infrastructure provides a baseline machine that implements the

HPL-PD architecture [88] based on a high level machine description model (MDES [84]).

MDES requires specifications of the operation formats, resource usages, scheduling al-

ternatives, execution latencies, operand read and write latencies, and reservation table

entries for the instructions supported by the architecture. We automatically generate

the MDES entries for the custom instruction candidates selected by our algorithms.

We implement custom instruction replacement using a technique similar to the one

described by Clark et. al. in [61]. Finally, we apply standard Trimaran scheduling and

register allocation passes, and we produce the assembly code and scheduling statistics.

3.6. Summary

In this chapter, we describe an ILP model that identifies the most profitable cus-

tom instructions given the available data bandwidth and transfer latencies between

the base processor and the custom logic. Our ILP model can optionally constrain the

number of input and output operands as well. We show that the number of decision

variables and the number of linear constraints used in our ILP formulation grows only

linearly with the size of the problem, making our solution highly scalable. We integrate

our ILP based solution into an iterative template generation algorithm, which aims to

maximize the amount of code covered by the custom instruction templates. Next, we

group structurally equivalent custom instruction templates within isomorphism classes

as custom instruction candidates. We generate behavioral descriptions of the custom

instruction candidates, and we produce area and delay estimates. We select the can-

didates that reduce the schedule length of the application most under area constraints

based on a Knapsack model. Finally, we generate a high level machine description

supporting custom instructions, the assembly code and the scheduling statistics.

53

4. EXPERIMENTS AND RESULTS

In this chapter, we first describe our experiment setup (Section 4.1). We provide

examples of custom instructions automatically found by our algorithms (Section 4.3).

Based on the compiler feedback, we evaluate the impact of input/output constraints

(Section 4.4), register file port constraints (Section 4.5), and code transformations such

as if-conversion (Section 4.2) and loop unrolling (Section 4.6) on the performance and

code size for a range of area constraints on eleven multimedia and cryptography bench-

marks (Section 4.9). In Section 4.8, we show the run-time results of our algorithms.

In Section 4.10 we integrate our compilation flow into an academic custom processor

synthesis infrastructure [27], and we provide custom ASIC processor synthesis results.

4.1. Experiment Setup

We evaluate our technique using Trimaran [26] scheduling statistics to estimate

the execution cycles, and Synopsys [83] synthesis to estimate the area and delay for

custom instructions. In the following sections, we provide information on the base

processor configuration, synthesis tools, benchmarks, and the run-time environment.

4.1.1. Base Processor Configuration

We define a single-issue baseline machine with predication support including 32

32-bit general purpose registers and 32 one-bit predicate registers. We assume two-

cycle software latencies for integer multiplication instructions, and single-cycle software

latencies for the rest of the integer operations. We do not allow division operations to be

included in custom instructions due to their high area overhead. We exclude support for

memory access instructions as part of custom instructions as well, in order to avoid non-

deterministic latencies due to the memory system and the necessary control circuitry.

We assume single-cycle data transfer latencies between general purpose registers and

custom units (c1 = c2 = 1). Finally, we assume single-cycle copy and update operations

for transferring the predicate register file contents to and from the custom logic.

54

Table 4.1. Relative latency and area coefficients for various operators based on

synthesis results on UMC’s 130nm process.

Operator Latency Area

32-bit + 32-bit adder 1.000 1.000

32-bit * 32-bit multiplier 1.524 18.463

32-bit and 0.010 0.236

32-bit xor 0.029 0.415

32-bit shifter 0.295 1.977

32-bit shifter (constant) 0.000 0.000

32-bit comparator (eq) 0.095 0.512

32-bit comparator (geq) 0.552 0.632

4.1.2. Synopsys Synthesis

We calculate the hardware latencies of various arithmetic and logic operations

(i.e., hi values described in Section 3.1.) by synthesizing on UMC’s 130nm standard

cell library using Synopsys Design Compiler [83], and normalizing to the delay of a

32-bit ripple carry adder (RCA). Table 4.1 shows the relative latency and area coeffi-

cients for some selected operators. Once our algorithms identify the custom instruction

candidates, we automatically generate their VHDL descriptions, and synthesize on the

same library. If the critical path delay of a candidate is larger than the delay of a 32-bit

RCA, it is pipelined to ensure a fixed clock frequency.

4.1.3. Benchmarks

We apply our algorithms on a number of cryptography and media benchmarks.

We use highly optimized 32-bit implementations of Advanced Encryption Standard

(AES) encryption and decryption described in [89], a FIPS-46-3 compliant fully un-

rolled Data Encryption Standard (DES) implementation [90], a loop based and a fully

unrolled Secure Hash Algorithm (SHA) implementation from MiBench [91], and several

other benchmarks from MediaBench [92].

55

Table 4.2. Information on benchmarks: BB represents basic block.

Benchmark # of BBs # of Instrs Largest BB

AES encryption 27 735 317

AES decryption 28 1011 501

DES 45 1235 822

SHA (loop) 38 302 24

SHA (fully unrolled) 30 1339 1155

IDEA 65 595 96

djpeg 957 5503 92

g721encode 85 892 131

g721decode 79 864 131

mpeg2enc 147 2861 568

rawcaudio 13 119 54

rawdaudio 11 102 45

4.1.4. Run-time Environment

We carry out our experiments on an Intel Pentium IV, 3.2 GHz workstation with

one gigabyte memory running Linux. Our algorithms are implemented in C/C++ and

compiled with gcc-3.4.3 using -O2 optimization flag.

4.2. If-conversion Results

We implement an if-conversion pass to selectively eliminate the control flow de-

pendencies. This improves the scope of our algorithms, and enables us to identify

coarser grain custom instructions. We apply if-conversion only on the most time con-

suming functions of the application. We partition control flow graphs into maximal

single entry, single exit regions, and convert each region into a predicated basic block.

The results of our if-conversion pass on five MediaBench benchmarks are shown

in Figure 4.1. We observe that the number of execution cycles and the number of

56

Figure 4.1. We apply an if-conversion pass before identifying custom instructions.

This reduces the number of execution cycles and the code size in most of the cases.

instructions in the code are reduced in most of the cases, although this is not our

main objective. The remaining benchmarks are only marginally affected, particularly

because they already consist of large basic blocks and contain few control flow changes.

Table 4.2 shows the total number of basic blocks, the total number of instructions,

and the number of instructions within the largest basic block for each benchmark. This

information is collected after the application of if-conversion and considers basic blocks

with positive execution frequencies only.

4.3. Examples of Custom Instructions

4.3.1. AES Encryption

Our first example is the Advanced Encryption Standard (AES). The core of the

AES encryption is the round transformation (see Figure 4.2), which operates on a 16-

byte state. The state can be considered as a two dimensional array of bytes having four

rows and four columns. The columns are often stored in four 32-bit registers, and are

57

^ ^ ^

S S S S S S S S S S S S S S S S

^

Column1 Column2 Column3 Column4

Column1 Column2 Column3 Column4

Rotate Rows

MixColumn MixColumn MixColumn

Round Key

MixColumn

Figure 4.2. The AES round transformation. Given an input constraint of four and an

output constraint of four, our algorithms successfully identify the four parallel

MixColumn Transformations as the most promising custom instruction candidate.

None of the algorithms described in [24] are able to identify this solution.

inputs and outputs of the round transformation. First, a nonlinear byte substitution is

applied on each of the state bytes by making table lookups from S-Boxes stored in the

memory. Next, the rows of the state array are rotated over different offsets. After that,

a linear transformation called MixColumn transformation is applied on each column.

The final operation of the round transformation is an EXOR with the round key. The

output of a round transformation, becomes the input of the next round transformation.

Very often, several round transformations are unrolled within a loop, resulting in very

large basic blocks consisting of several hundreds of operations.

The most compute-intensive part of AES encryption is the MixColumn transfor-

mation. The MixColumn transformation is a single input, single output transformation

consisting of around 20 bitwise operations with frequent constant coefficients. In fact,

the MixColumn transformation is the most likely choice for a manual designer as a cus-

tom instruction as shown by Seng et al. in [42]. The data flow between the operations

implementing MixColumn transformation is depicted in Figure 4.3.

58

<< >>

|

^

&

>>

<< >>

|

<<

&

^

^

|

>><<

0x80808080

|

0x7F7F7F7F

XTIME

ROTATE

OUTPUT

INPUT

^

>>

|

<<

Figure 4.3. A 32-bit implementation of the MixColumn transformation [89]

We used a 32-bit implementation of AES optimized for memory constrained em-

bedded platforms described in [89]. As shown in Figure 4.4, two round transformations

are unrolled within a loop, resulting in the largest basic block of the application consist-

ing of 317 operations. A second basic block consists of a single round transformation

followed by the final round transformation, which does not incorporate the MixColumn

transformations. The code also includes an initialization stage, where the encryption

state is read from main memory and reorganized for fast processing, and a finalization

stage, where the encryption state is written back to main memory in its original format.

Given an input constraint of one, and an output constraint of one, our algorithms

successfully identify all 12 instances of the MixColumn transformation in the code as

the most promising custom instruction for the application. Given an input constraint

of two and an output constraint of two, our algorithms successfully identify two parallel

MixColumn transformations within a round transformation as the most promising cus-

tom instruction, finding all six instances in the code. Given an input constraint of four

59

FUNCTION ENCRYPTBLOCK

BEGIN

Initialize(State)

FOR i in {1..num rounds/2}
BEGIN

Round(State, RoundKey++) ;

Round(State, RoundKey++) ;

END

Round(State, RoundKey++) ;

FinalRound(State, RoundKey) ;

Finalize(State)

END

Figure 4.4. An optimized AES encryption implementation [89]

and an output constraint of four, our algorithms successfully identify the four parallel

MixColumn transformations within a round transformation, and all three instances of

the four-input four-output custom instruction are matched in the code. In all cases,

our algorithms identify optimal solutions within a few seconds. On the other hand, the

subgraph enumeration algorithm of [24] fails to complete output constraint given an

output constraint of four, and none of the approximate algorithms described in [24, 25]

are able to identify four MixColumn transformations in parallel.

The synthesis results show that the critical path delay of the MixColumn trans-

formation is around one-fourth of the critical path delay of a 32-bit ripple carry adder,

and its area cost is less than the area cost of two 32-bit ripple carry adders. Therefore,

the complete transformation can be implemented as a single cycle instruction. Given

a register file with two read ports and two write ports, we could as well implement

two parallel MixColumn transformations as a single cycle instruction. Obviously, this

solution would incur two times more area overhead. Given a register file with four

read ports and four write ports, we could even implement four parallel MixColumn

transformations as a single cycle instruction depending on our area budget.

60

Figure 4.5. Optimal custom instruction implementing the DES rounds. Eight of the

inputs (SBs) are substitution table entries, and eight of the outputs are indices of the

substitution table entries that should be fetched for the next round. SK1 and SK2

contain the round key. The input Y represents the second half of the current state,

and the first half of the state for the next round is generated in X. 15 instances of the

same instruction are automatically identified from the reference C code.

4.3.2. DES Encryption

In Figure 4.5 we show the most promising custom instruction our algorithms

automatically identify from the DES C code when no constraints are imposed on the

number of input and output operands. An analysis reveals that the custom instruction

implements the complete data processing within the round transformations of DES.

It has eleven inputs and nine outputs, 15 instances of it are automatically matched

in the C code. To our knowledge, no other automated technique has been able to

achieve a similar result. Subgraph enumeration algorithms, such as [22, 23, 24, 66]

are impracticable when the input/output constraints are removed or loose, and cannot

identify custom instructions such as the one in Figure 4.5.

Figure 4.6 shows the actual implementation of the DES encryption. DES operates

on a 64-bit state stored in two 32-bit variables (X, Y). After an initial permutation of

the bytes, DES round transformation is applied 16 times on the state, followed by a

61

DES ENCRYPT(SK, X, Y)

BEGIN

DES IP(X, Y);

DES ROUND(SK, Y, X); DES ROUND(SK, X, Y);
...

DES ROUND(SK, Y, X); DES ROUND(SK, X, Y);

DES FP(Y, X);

END

Figure 4.6. A fully unrolled DES encryption implementation.

final byte permutation. Figure 4.7 demonstrates a 32-bit implementation of the DES

round transformation. Every DES round consumes a 64-bit round key stored in a

32-bit array (SK). Every round makes eight table look-ups to the byte substitution

tables (SBs) stored in the main memory. The DES round transformation is the most

time consuming part of the DES encryption, and would be the most likely choice for a

manual designer as a custom instruction.

An analysis shows that eight of the inputs of the custom instruction of Figure 4.5

are static look-up table entries (SBs), and eight of the outputs (ADRs) contain indices

of the look-up table entries that should be fetched for the next round. Two of the

inputs (SK1, SK2) contain the DES round key, the input Y and the output X repre-

sents the DES encryption state. The custom instruction implements 35 base processor

instructions, which are mostly bitwise operations. The synthesis results show that the

critical path of the custom instruction is around one-eight of the critical path of a 32-

bit ripple carry adder. Hence, the custom instruction can be executed within a single

cycle. However, as the register file has a limited number of read and write ports, we

need additional data transfer cycles to transfer the input and output operands between

the core register file and the custom units. In practice, the granularity of the custom

instruction is coarse enough to make it profitable despite the data transfer overhead,

and this overhead is explicitly calculated by our algorithms.

62

DES ROUND(SK, X, Y)

BEGIN

T = ∗SK++ ˆ X;

Y ˆ = SB8[(T) & 0x3F] ˆ

SB6[(T >> 8) & 0x3F] ˆ

SB4[(T >> 16) & 0x3F] ˆ

SB2[(T >> 24) & 0x3F];

T = ∗SK++ ˆ ((X << 28) | (X >> 4));

Y ˆ = SB7[(T) & 0x3F] ˆ

SB5[(T >> 8) & 0x3F] ˆ

SB3[(T >> 16) & 0x3F] ˆ

SB1[(T >> 24) & 0x3F];

END

Figure 4.7. 32-bit implementation of a DES round in C.

4.4. Effect of Input and Output Constraints

In this work, we use input/output constraints to control the granularity of the

custom instructions, and to locate structural similarities within an application. Our

motivation is that applications often contain repeated code segments that can be char-

acterized by the number of input and output operands. When the input/output con-

straints are tight, we are more likely to identify fine grain custom instructions. As

we demonstrate in Section 4.7, fine grain custom instructions often have more reuse

potential. Relaxation of the input/output constraints results in coarser grain custom

instructions (i.e., larger dataflow subgraphs). Coarse grain instructions are likely to

provide higher speed-up, although at the expense of increased custom logic area.

In Figures 4.8 and 4.9 we analyze the effect of different input and output con-

straints (i.e., MAXin, MAXout) on the speed-up potentials of custom instructions.

For each benchmark we scale the initial cycle count down to 100, and we plot the per

cent decrease in the cycle count by introducing custom instructions for a range of area

63

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20 24 28 32 36 40 44 48

N
O

R
M

A
LI

Z
E

D
 E

X
E

C
U

T
IO

N
 C

Y
C

LE
S

AREA CONSTRAINT (RIPPLE CARRY ADDERS)

(RFin = 4, RFout = 4, MAXin = 2, MAXout = 1)
(4, 4, 2, 2)
(4, 4, 4, 1)
(4, 4, 4, 2)
(4, 4, 4, 4)

(RFin = 4, RFout = 4, MAXin = ∞, MAXout = ∞)

Figure 4.8. AES decryption: per cent reduction in the execution cycles. Register file

supports four read ports and four write ports (i.e., RFin = 4, RFout = 4). An input

constraint of MAXin and an output constraint of MAXout can be imposed on custom

instructions, or these constraints can be removed (i.e., MAXin = ∞, MAXout = ∞).

constraints (up to 48 ripple carry adders). At the end of this analysis, we locate the

pareto optimal points (i.e., input/output combinations) that maximize the cycle count

reduction at each area constraint.

In Figure 4.8, we assume a register file with four read ports and four write ports,

and we explore the achievable speed-up for AES decryption. The main difference

between AES decryption and AES encryption is the InvMixColumn transformations

that replace MixColumn transformations in the round transformation. The area cost of

the InvMixColumn transformation is around the area cost of four ripple carry adders.

Figure 4.8 shows that at an area constraint of four adders, the pareto optimal solution

is obtained using four-input single-output custom instructions. On the other hand, at

an area constraint of 16 adders, four-input four-output custom instructions provide the

pareto optimal solution. This solution implements four InvMixColumn transformations

in parallel as a single cycle instruction. We observe that removing the input/output

constraints improves the performance slightly until an area constraint of 40 adders.

64

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 4 8 12 16 20 24 28 32 36 40 44 48

N
O

R
M

A
LI

Z
E

D
 E

X
E

C
U

T
IO

N
 C

Y
C

LE
S

AREA CONSTRAINT (RIPPLE CARRY ADDERS)

(RFin = 2, RFout = 1, MAXin = 2, MAXout = 1)
(2, 1, 2, 2)
(2, 1, 4, 1)
(2, 1, 4, 2)
(2, 1, 4, 4)

(RFin = 2, RFout = 1, MAXin = ∞, MAXout = ∞)

Figure 4.9. DES: per cent reduction in the execution cycles. Register file supports

two read ports and one write port (i.e., RFin = 2, RFout = 1). An input constraint of

MAXin and an output constraint of MAXout can be imposed on custom instructions,

or these constraints can be removed (i.e., MAXin = ∞, MAXout = ∞).

In Figure 4.9, we assume a register file with two read ports and single write port,

and we explore the achievable speed-up for DES. We observe that when the area budget

is below 16 adders, pareto optimal solutions are generated by four-input four-output

custom instructions. However, we obtain the highest reduction in the execution cycles

when the input/output constraints are removed, at an area cost of 20 adders.

In Figure 4.10, we assume a register file with two read ports and a single write

port (i.e., RFin = 2, RFout = 1), and we show the improvement in speed-up with the

relaxation of input/output constraints. The first approach limits the number of inputs

and outputs to the available register file ports (i.e., MAXin = 2, MAXout = 1). The

second approach removes the input/output constraints completely (i.e., MAXin = ∞,

MAXout = ∞), improving the speed-up from 1.14 times to 1.28 times for fully unrolled

SHA, from 1.49 times to 1.92 times for DES, from 3.45 times to 4.36 times for AES

decryption and from 2.55 times to 2.82 times for AES encryption.

65

Figure 4.10. Register file supports two read ports and one write port (i.e., RFin = 2,

RFout = 1). Speed-up (with respect to the base processor) improves with the

relaxation of input/output constraints.

4.5. Effect of Register File Ports

In Figures 4.11 and 4.12 we demonstrate the improvement in performance using

additional register file ports. We scale the initial cycle count down to 100, and we plot

the per cent reduction in the execution cycles for a range of area constraints. For each

(RFin, RFout) combination, we explore six different (MAXin, MAXout) combinations:

(2,1), (2,2), (4,1), (4,2), (4,4), and (∞,∞). At each area constraint we choose the

pareto optimal solution given by one of the (MAXin, MAXout) combinations.

A monotonic decrease in the execution cycles with the increasing number of reg-

ister file ports is clearly visible from Figures 4.11 and 4.12. We observe that a register

file with two read ports and two write ports is often more beneficial than a register file

with four read ports and a single write port. In addition, a register file with four read

ports and two write ports generates favorable design points.

In Figure 4.13, we analyze the four functions that constitute approximately 92

66

 30

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20 24 28 32 36 40 44 48

N
O

R
M

A
LI

Z
E

D
 E

X
E

C
U

T
IO

N
 C

Y
C

LE
S

AREA CONSTRAINT (RIPPLE CARRY ADDERS)

(RFin = 2, RFout = 1, best MAXin, best MAXout)
(2, 2, best, best)
(4, 1, best, best)
(4, 2, best, best)
(4, 4, best, best)

Figure 4.11. DES: effect of increasing the number of register file ports (i.e., RFin and

RFout) on the performance. At each area constraint we choose the best MAXin,

MAXout combination that minimizes the execution time.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

N
O

R
M

A
LI

Z
E

D
 E

X
E

C
U

T
IO

N
 C

Y
C

LE
S

AREA CONSTRAINT (RIPPLE CARRY ADDERS)

(RFin = 2, RFout = 1, best MAXin, best MAXout)
(2, 2, best, best)
(4, 1, best, best)
(4, 2, best, best)
(4, 4, best, best)

Figure 4.12. djpeg: effect of increasing the number of register file ports (i.e., RFin

and RFout) on the performance. At each area constraint we choose the best MAXin,

MAXout combination that minimizes the execution time.

67

Figure 4.13. djpeg: increasing the number of register file ports (i.e., RFin, RFout)

improves the performance. First four columns depict the achievable speed-up for the

four most time consuming functions of djpeg. The last column depicts the achievable

speed-up for djpeg. Area costs are given in units of ripple carry adders (RCAs).

per cent of the run-time of the djpeg benchmark. Given sufficient register file ports

and area resources, the custom instructions we identify provide more than 2.8 times

speed-up for jpeg idct islow and h2 v2 fancy upsample functions, whereas acceleration

for the other functions is more limited. The last column shows that given four read

and four write ports, we achieve a 47 per cent reduction in the execution cycles of

the overall application at an area cost of 256 adders. This translates to a 1.89 times

overall speed-up. We observe that most of the area is consumed by the jpeg idct islow

function (172 adders for maximal speed-up). Figure 4.12 depicts the area-delay trade-

offs in more detail. As an example, using a register file with four read and two write

ports, an overall speed-up of 1.63 times can be achieved at an area cost of 128 adders.

4.6. Effect of Loop Unrolling

In Figure 4.14, we demonstrate the effect of loop unrolling on the performance

of SHA, and on the quality of the custom instructions our algorithms generate. We

68

Figure 4.14. Loop unrolling improves the performance, and enables coarser grain

custom instructions. SHA (2) represents the SHA implementation where the main

loop is unrolled by two. Area costs in units of ripple carry adders (RCAs), and the

run-times required to identify the custom instructions are shown.

consider five different SHA implementations: the first implementation does not unroll

the loops; the next three implementations have their loops unrolled two, five and

ten times. The fifth implementation has all SHA loops fully unrolled. We impose no

constraints on the number of inputs and outputs for custom instructions (i.e., MAXin =

∞, MAXout = ∞) on the first five columns. The last column again targets the fully

unrolled implementation and imposes MAXin = 4 and MAXout = 2.

We observe that the solution time required to identify the custom instructions

is less than 0.5 seconds for the first five columns. Loop unrolling increases the size

of the basic blocks and results in coarser grain custom instructions. The number of

execution cycles monotonically decreases with the amount of unrolling. However, the

area overhead increases monotonically, too. We observe that in the last column, by

imposing constraints on the number of input and outputs, we identify smaller custom

instructions, but we find several equivalent instances of these instructions in the code.

The result is a fair speed-up at a reduced area cost. The last column provides a speed-

69

Figure 4.15. Loop unrolling increases the number of instructions in the code (up to

443 per cent). Code compression due to the use of custom instructions often

compensates for this effect.

up of 1.56 times over the highest performing software implementation at the cost of

only 36 adders. In this case, the time required to identify the custom instructions by

our algorithms is around eleven hours.

In Figure 4.15, we consider the same design points shown in Figure 4.14, and

we analyze the effect of loop unrolling on the code size. We observe that although

loop unrolling increases the number of instructions, the compression due to the use of

custom instructions often compensates for this effect. We note that the third column,

where the main loop of SHA is unrolled five times, provides a speed-up of 1.68 times

over the highest performing software implementation at an area cost of 100 adders,

and results in a code size reduction of 20 per cent over the most compact software

implementation. The associated solution time is less than 0.2 seconds.

70

 1

 10

 100

 1 10 100 1000

R
E

U
S

A
B

IL
IT

Y

GRANULARITY

AES enc
AES dec

DES
SHA

Figure 4.16. Granularity vs. reusability. Each point represents a custom instruction

candidate identified by our algorithms.

4.7. Granularity vs. Reusability

We define the granularity of a custom instruction candidate as the number of

base processor instructions contained in it. We define the reusability of a custom in-

struction candidate as the number of structurally equivalent instances of the candidate

identified in the application DAGs. Figure 4.16 depicts the granularity of the custom

instruction candidates we have generated from four cryptography benchmarks versus

their reusability. We observe that candidates with high reusability are often fine grain,

and coarse grain candidates usually have limited reusability. In one case, we identify

a candidate consisting of 1065 base processor instructions, which has only a single in-

stance in the code. In another case, we identify a candidate consisting of only three

base processor instructions, which is reused 80 times. Another candidate identified by

our algorithms consists of 45 base processor instructions and it has 12 instances in the

code. Exploring different granularities in this manner allows us to identify the most

promising area and performance trade-offs within the design space.

71

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

T
IM

E
 (

S
E

C
O

N
D

S
)

GRAPH NODES

with convexity constraint
relaxed problem - convex solution

relaxed problem - nonconvex solution

Figure 4.17. AES decryption: run-time performance of our template generation

algorithm. Each point represents an iteration.

4.8. Run-time Results

The performance of our algorithms is quite notable. We observe that the run-

time of our tool chain is dominated by the template generation algorithm described in

Figure 3.4, which iteratively solves a series of ILP problems. In Figures 4.17 and 4.18

we plot the time taken to solve the ILP problems generated throughout the iterations

of the template generation algorithm on AES decryption and DES benchmarks. In

the figures we merge the run-time results for all (RFin, RFout, MAXin, MAXout)

combinations we use in our experiments. The largest run-time we observe for a single

iteration of AES decryption is around six seconds, and the largest run-time we observe

for a single iteration of DES is around 100 seconds.

Often, the first iteration of the template generation algorithm is the most time

consuming one. The DAG shrinks after each iteration, as identified templates are

collapsed into single DAG nodes and excluded from further iterations. Note that at

each iteration we first solve a relaxed problem, where the convexity constraint is not

imposed on the custom instruction templates. In general, the time required to solve

72

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
IM

E
 (

S
E

C
O

N
D

S
)

GRAPH NODES

with convexity constraint
relaxed problem - convex solution

relaxed problem - nonconvex solution

Figure 4.18. DES: run-time performance of our template generation algorithm. Each

point represents an iteration.

the relaxed problem is much smaller, and the generated solution is often convex. If the

solution to the relaxed problem is a convex template, we can proceed with the next

iteration. If not, we impose the convexity constraint and solve once more. We use the

solution to the relaxed problem as an upper bound for the original problem in order to

reduce its run-time. We obtain optimal ILP results in all of our experiments.

In Tables 4.3 and 4.4 we describe the ILP statistics associated with the first itera-

tion of the template generation algorithm on the largest basic blocks of four cryptogra-

phy benchmarks for four (MAXin, MAXout) combinations (i.e., (4,1), (4,2), (4,4), and

(∞,∞)). While generating these results, we set (RFin = 2, RFout = 1) if (MAXin = ∞,

MAXout = ∞). Otherwise, we set (RFin = MAXin, RFout = MAXout). We observe

that the run-time is usually a few seconds. Often, the relaxed problem generates a con-

vex template, and we skip solving the original problem with the convexity constraint.

The run-time may exceed one hour in some cases as it happens for fully unrolled SHA

when MAXout = 2 or MAXout = 4. In these two cases, the upper bound provided

by the relaxed problem reduces the run-time of the original problem considerably. We

note that our algorithms are extremely efficient when the input and output constraints

73

Table 4.3. Relaxed problem: size of the largest basic block (BB), the number of

integer decision variables (Vars), the number of linear constraints (Constrs), and the

solution times associated with the first iteration of the template generation algorithm

for four (MAXin,MAXout) combinations: (4,1), (4,2), (4,4), and (∞,∞).

Benchmark BB size Relaxed problem

Vars Constrs Solution time (seconds)

(4,1) (4,2) (4,4) (∞,∞)

AES enc. 317 879 1872 0.06 0.12 0.05 0.03

AES dec. 501 1591 3508 0.25 0.23 0.13 0.06

DES 822 1962 4043 2.75 0.42 0.09 0.08

SHA (full) 1155 3777 8885 193 5633 5116 0.22

Table 4.4. Original problem with the convexity constraint: solution times associated

with the first iteration of the template generation algorithm. If the relaxed problem

generates a convex template, we skip solving the original problem.

Benchmark BB size Original problem with convexity constraints

Vars Constrs Solution time (seconds)

(4,1) (4,2) (4,4) (∞,∞)

AES enc. 317 1403 4124 skipped skipped 0.78 0.14

AES dec. 501 2483 7404 skipped 0.55 2.98 0.37

DES 822 3417 9760 skipped skipped 9.78 11.23

SHA (full) 1155 5899 18524 skipped 4122 1839 skipped

are removed (i.e., MAXin = ∞, MAXout = ∞): the run-time of the first iteration of

the template generation algorithm on fully unrolled SHA is only 0.22 seconds.

In Table 4.5 we show the run-times of the first iteration of the exact algorithm

of [24] on the same benchmarks and for the same (MAXin, MAXout) combinations

given in Tables 4.3 and 4.4. We also show the run-times of our own method, which

74

Table 4.5. Run-time comparison with the exact algorithm of [24]. We show the

solution times in seconds for four (MAXin,MAXout) combinations. In the majority of

the cases, the algorithm of [24] fails to terminate within 24 hours.

Benchmark [24] Our work

(4,1) (4,2) (4,4) (∞,∞) (4,1) (4,2) (4,4) (∞,∞)

AES enc. 0.43 397 - - 0.06 0.12 0.83 0.17

AES dec. 1.05 1417 - - 0.25 0.78 3.11 0.43

DES - - - - 2.75 0.42 9.87 11.31

SHA (full) 3.94 317 - - 193 9755 6955 0.22

are sums of the solution times of the relaxed and original problems from Table 4.3

and Table 4.4. We note that given (RFin = MAXin, RFout = MAXout), the objective

function of our ILP formulation is equivalent to the merit function of [24]. We observe

that the algorithm of [24] is generally efficient when the input/output constraints are

tight (i.e., MAXout = 1 or MAXout = 2), although it fails to complete for DES within

24 hours even if MAXout = 1. The algorithm of [24] becomes extremely inefficient

when the constraints are loose (i.e., MAXout = 4) or removed (i.e., MAXout = ∞),

and fails to complete for all four benchmarks within 24 hours. Our algorithm is faster

in most of the cases, and successfully completes in all of the cases.

4.9. Performance and Code Size Results

In Figure 4.19 we describe the reduction in the execution cycle count for all the

benchmarks from Table 4.2 while increasing the number of register file ports. The area

costs, and the solution times are given on top of the columns for each benchmark.

Using only a limited amount of hardware resources, we obtain a speed-up of up to

4.3 times for AES encryption, 6.6 times for AES decryption, 2.9 times for DES, 5.8

times for IDEA, 2.7 times for g721decode, 1.7 times for mpeg2encode and 4.7 times

for rawcaudio. Except for a few cases, we obtain the highest performing solutions when

we remove the input/output constraints. In most cases the highest performing solution

is found in only a few seconds, but it may take up to a few minutes as observed for

75

Figure 4.19. All benchmarks: increasing the number of register file ports (i.e., RFin,

RFout) improves the performance. Area costs in units of ripple carry adders (RCAs),

and run-times are shown above the columns. For each benchmark, the highest

performing code with and without compiler transformations is taken as the base.

DES and mpeg2enc. For the same design points, Figure 4.20 shows the reduction in

the total number of instructions in the code. A reduction of up to 72 per cent can be

reached for AES decryption. For large benchmarks with small kernels, the code size

reduction can be as small as six per cent, as it is observed for djpeg.

4.10. Processor Synthesis Results

We integrate our optimizing compiler that generates VHDL descriptions of the

custom datapaths with a parameterizable academic customizable processor infrastruc-

ture [27] that implements the MIPS integer instruction set and supports up to 512

custom instructions. The infrastructure supports a core register file with two read

ports and a single write port and generates state registers for each custom instruc-

tion operand. Dedicated data transfer instructions provide single cycle data transfers

between the core register file and custom state registers. The combined framework au-

76

Figure 4.20. All benchmarks: increasing the number of register file ports (i.e., RFin,

RFout) reduces the number of instructions in the code. For each benchmark, the

smallest code with and without compiler transformations is taken as the base.

tomatically generates synthesizable processor descriptions directly from the application

C/C++ source code. The base processor is synthesized to UMC’s 130nm standard cell

library using Synopsys Design Compiler and routing and layout generation are done

using Cadence SoC Encounter. The base processor does not contain a multiplier and

its operating frequency is 200 MHz, which is largely determined by the adder provided

by standard Synopsys libraries. The area overhead of the base processor is 0.225 mm2.

Given a register file with two read ports and two write ports (i.e., RFin = 2,

RFout = 1), we evaluate five different constraints on the maximum number of input

and output operands: (MAXin,MAXout) ∈ {(2, 1), (2, 2), (4, 1), (4, 2), (4, 4)} and 12

different area constraints (four to 48 ripple carry adder units, multiples of four only).

Therefore, we evaluate 60 different parameter combinations for each benchmark. For

each parameter combination we automatically generate a CPU core implementing the

custom instructions selected. Some of the parameter combinations may result in equiv-

alent processor configurations having the same set of custom instructions. We evaluate

77

Figure 4.21. AES Decrypt processor layout (taken from [19]). 0.307 mm2 area

generated using a 130nm process technology. The top right area is the register file.

those processor configurations only once. We obtain realistic timing and area results by

synthesizing each processor configuration to UMC’s 130nm standard cell library using

Synopsys Design Compiler and generating the layout and the routing using Cadence

SoC Encounter. Figure 4.21 shows an example layout generated automatically from

the AES C source code. In Figure 4.21, custom instructions incur only a 35 per cent

increase over the area of the unextended processor while offering a speed-up of 4.3×.

Figure 4.22 summarizes timing results for each generated processor (179 in total).

The volume of designs prohibits manual optimization, hence we report the worst case

negative slack with a 200 MHz constraint for the tool vendor’s recommended fully au-

tomated flow. Our technique pipelines multi-cycle instruction-set extensions to avoid

decreasing the processor clock rate. Figure 4.22 shows that 48 per cent of the cus-

tomized designs meet timing in the first pass. A further 31 per cent marginally fail to

meet timing (<1ns negative slack), and the remainder miss by a greater margin.

78

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 220000 240000 260000 280000 300000 320000 340000

S
la

ck
/n

s

Area/um2

No Extensions
AES Dec
AES Enc

DES
SHA

Figure 4.22. The ASIC area and the worst case negative timing slack with a 200 MHz

constraint on the clock rate (taken from [19]).

4.11. Summary

We integrate our algorithms into the Trimaran academic compiler [26], auto-

matically producing high level processor descriptions supporting the custom instruc-

tions, and the assembly code utilizing the custom instructions. Based on the compiler

feedback, we evaluate the impact of the input/output constraints, register file port

constraints, and code transformations such as if-conversion and loop unrolling on the

performance and on the code size for a range of area constraints on eleven multime-

dia and cryptography benchmarks. We observe that in most of the cases we obtain

the highest performing solutions when we remove the input/output constraints on the

custom instructions. However, this happens at a relatively high area overhead. On

the other hand, introducing input/output constraints on the custom instructions al-

lows us to control the granularity of the custom instructions and to locate frequently

used segments of the code. In this way, we explore a wide range of area, performance,

and code size trade-offs in the design space. In addition, we demonstrate that our

ILP based approach optimally solves very large problem instances representing basic

79

blocks having up to 1000 statements with and without input/output constraints, most

of the time within only a few seconds. We show that the state of the art techniques

fail to find the optimal solutions on the same problem instances. We provide examples

of solutions identified by our algorithms that are not covered by the state of the art

methods. We also integrate our compilation flow that generates custom datapaths into

an academic custom processor synthesis infrastructure [27]. We show that around half

of the custom instruction processors automatically generated from C/C++ source code

meet the target clock frequency using fully automated ASIC synthesis flows.

80

5. A SIMPLIFIED MODEL

5.1. Motivation

The results of Section 4.4 and Section 4.9 show that the highest performing

solutions are found when the constraints are removed on the number of input and

output operands for custom instructions, although this happens at the expense of a

high area overhead. In addition, we observe that the run-time of the ILP solver is

significantly reduced with the removal of input/output constraints.

Re-evaluating Figure 4.5, we observe that the amount of data transfers can be

significantly reduced for the DES custom instruction by applying a post processing

step. The size of the static look-up tables (SBs) providing input operands for the

custom instructions is only 256 bytes. Storing eight such tables within local memories,

we can eliminate all the necessary register file reads, as well as the load instructions

that retrieve the data from the main memory to the register file. Moreover, the indices

generated at each round (ADRs) are used only within the next round. These values

could be stored in custom state registers, avoiding all the related write backs to the

register file. The variables X and Y could also be stored in state registers, eliminating

all the relevant intermediate register file read and writes. Moreover, we observe that

SK1 and SK2 variables are fetched sequentially from an array in the memory. The data

within this array could be streamed directly from the main memory to the custom units

if dedicated data transfer channels, such as the queue interfaces of Tensilica Xtensa

LX [80], are available. Although optimizations of these kind are not yet included in our

work, this example clearly demonstrates that removing the constraints on the number

of input and output operands provides additional optimization opportunities that can

have a significant impact on the achievable speed-up using custom instructions .

In this chapter, we study the problem of identifying maximal convex subgraphs of

the application DAGs without imposing any constraints on the number of inputs and

outputs. We assume that the the critical path delay and the data transfer costs can

81

be optimized separately by a post-processing step. In Section 5.2, we introduce a new

model with a simplified objective function, and we show that the convexity constraint

can be significantly simplified for the proposed objective function definition. Finally,

we derive an upper bound on the search space for the simplified problem in Section 5.3.

5.2. Formulation of the Simplified Problem

We first define a simplified objective function as follows:

Z(T) = max
∑
i∈I2

(sixi) (5.1)

We note that any instance of the objective function (5.1) can be transformed into

the objective function (3.29) by setting c1 = 0, c2 = 0, and hi = 0 for i ∈ I2 in (3.29).

In the rest of this section, we assume that objective function (5.1) is used instead

of objective function (3.29) in the optimization. We further assume that MAXin =

MAXout = ∞, and the only constraint imposed while identifying custom instructions

is the convexity constraint of section 3.2.3.

Theorem 2. Given the objective function (5.1), imposing constraint (3.21) only on

the invalid nodes (vinv ∈ V invalid
b) is sufficient to guarantee that the optimal solution is

convex, i.e., (3.21) holds also for the nodes vval ∈ Vb/V
invalid
b in the optimal solution.

Proof. Suppose that the constraint (3.21) is imposed only on the invalid nodes. Assume

that the optimal solution for the associated problem contains a node vval ∈ Vb/V
invalid
b

that violates constraint (3.21). Then, the node vval has both ancestors and descendants

in the optimal solution. We are going to show that including vval in the solution does

not result in a violation of the constraint (3.21) for any node vinv ∈ V invalid
b .

In a convex solution, there exist three possible choices for each vinv ∈ V invalid
b :

• The invalid node vinv has ancestors, but no descendants in the optimal solution.

82

In this case, we know that vval cannot be a descendant of vinv. If vval was a

descendant of vinv, vinv would have descendants in the solution, since vval has

descendants in the solution. Because vval is not a descendant of vinv, including

vval in the solution does not affect the feasibility of the constraint (3.21) for vinv.

• The invalid node vinv has descendants, but no ancestors in the optimal solution. In

this case, we know that vval cannot be an ancestor of vinv. If vval was an ancestor

of vinv, vinv would have ancestors in the solution, since vval has ancestors in the

solution. Because vval is not an ancestor of vinv, including vval in the solution

does not affect the feasibility of the constraint (3.21) for vinv.

• The invalid node vinv has neither an ancestor nor a descendant in the optimal

solution. In this case, we know that vval is neither an ancestor nor a descendant

of vinv. Otherwise vinv would have ancestors or descendants in the solution. As a

result, including vval in the solution does not affect the feasibility of the constraint

(3.21) for vinv.

We have shown that if there exists a vval ∈ Vb/V
invalid
b that violates the constraint

(3.21) in the optimal solution, we can safely include it in the solution without violating

the constraint (3.21). This contradicts with the optimality of the solution with respect

to the objective function (5.1). Therefore, a vval ∈ Vb/V
invalid
b that violates constraint

(3.21) cannot exist in the optimal solution if constraint (3.21) is satisfied by all vinv ∈
V invalid

b . Thus, imposing constraint (3.21) only on the invalid nodes (vinv ∈ V invalid
b) is

sufficient to guarantee that the optimal solution is convex.

Based on Theorem 2, we can simplify the formulation of the convexity constraint.

For this purpose, we introduce the following additional indices:

I5 : indices for nodes vi ∈ V invalid
b

I6 : indices for nodes vi ∈ Vb/V
invalid
b

83

We can now rewrite Equation (3.21) as follows:

x′i ∧ ai ∧ di = 0, i ∈ I5 (5.2)

Since xi = 0 for i ∈ I5, we can further simplify Equation (3.21) as follows:

ai ∧ di = 0, i ∈ I5 (5.3)

The complete ILP formulation for the simplified problem is given as follows:

Z(T) = max
∑
i∈I2

(sixi)

ai ∧ di = 0, i ∈ I5

ai =

0 if Pred(i) = ∅
(∨

j∈Pred(i) (xj ∨ aj)
)

otherwise

, i ∈ I2

di =

0 if Succ(i) = ∅
(∨

j∈Succ(i) (xj ∨ dj)
)

otherwise

, i ∈ I2

xi, ai, di ∈ {0, 1} .

5.3. An Upper Bound on the Size of the Search Space

A node vi, i ∈ I6 is part of the solution if it does not have an ancestor vj, j ∈ I5

for which an ancestor exists in the solution. Otherwise, vj would have both an ancestor

84

and a descendant in the solution. Similarly, a node vi, i ∈ I6 is part of the solution if

it does not have a descendant vj, j ∈ I5, for which a descendant exists in the solution.

We represent the set of ancestors, and the set of descendants of the nodes in

Vb/V
invalid
b that are in V invalid

b as follows:

Anc(i ∈ I6) = {j ∈ I5 | There exists a path from vj to vi in G}
Desc(i ∈ I6) = {j ∈ I5 | There exists a path from vi to vj in G}

Once aj and dj values are fixed for the nodes vj, j ∈ I5, whether a node vi, i ∈ I6

is part of the solution can be found by the following equation:

xi =

 ∧

j∈Anc(i)

a′j

 ∧

 ∧

j∈Desc(i)

d′j

 , i ∈ I6 (5.4)

We note that there exists only three valid aj, dj choices for a vj ∈ V invalid
b : (1)

aj = 1, dj = 0; (2) aj = 0, dj = 1; (3) aj = 0, dj = 0. The third choice can be

disregarded, since the optimal solution would include as many nodes as possible by the

nature of the objective function and only the first and the second choices can improve

the objective value. We note that the case where an invalid node vj has neither an

ancestor nor a descendant in the solution can still occur (a) if we choose aj = 1, dj = 0

and none of the ancestors of the invalid node can be included in the solution either

by the properties of the DAG G or because all of the ancestors of the invalid node

are prohibited by the choices made for the remaining invalid nodes; (b) if we choose

aj = 0, dj = 1 and none of the descendants of the invalid node can be included in the

solution either by the properties of the DAG G or because all of the descendants of the

invalid node are prohibited by the choices made for the remaining invalid nodes.

For all vj ∈ V invalid
b , it is sufficient to evaluate 2|V

invalid
b | possible choices (i.e.,

aj = 1, dj = 0 or aj = 0, dj = 1, j ∈ I5). Each choice is associated with a single

85

Figure 5.1. Example DAG: v4 and v5 are invalid nodes.

optimal solution that includes the maximal number of nodes from Vb/V
invalid
b , which

can be inferred directly from the values of aj and dj for j ∈ I5 using Equation (5.4).

As a result, there exists an upper bound of 2|V
invalid
b | on the size of the search space.

Table 5.1. Solutions for the DAG of Figure 5.1

(a4, d4) (a5, d5) Solution

(1,0) (1,0) {v1, v2, v3, v9, v10}
(1,0) (0,1) {v1, v8, v9, v10}
(0,1) (1,0) {v3, v6, v9, v10}
(0,1) (0,1) {v6, v7, v8, v9, v10}

Figure 5.1 depicts an example DAG. The nodes v4 and v5 are invalid nodes.

Because there exists only two invalid nodes, there exists only 22 = 4 possible choices

we need to consider: (1) ancestors of v4 and ancestors of v5 can take part in the solution

(a4 = 1, d4 = 0 and a5 = 1, d5 = 0); (2) ancestors of v4 and descendants of v5 can take

part in the solution (a4 = 1, d4 = 0 and a5 = 0, d5 = 1); (3) descendants of v4 and

ancestors of v5 can take part in the solution (a4 = 0, d4 = 1 and a5 = 1, d5 = 0); (4)

descendants of v4 and descendants of v5 can take part in the solution (a4 = 0, d4 = 1

and a5 = 0, d5 = 1). Table 5.1 shows the solutions associated with these four choices.

We note that the nodes v9 and v10 can be included in the solutions associated with all

the choices because they have neither ancestors nor descendants among invalid nodes.

86

5.4. Related Work

Recent work by Pothineni et al. [93] targets the same problem. Given a DAG,

Pothineni et al. first define an incompatibility graph, where the edges represent pairwise

incompatibilities between DAG nodes. Pothineni et al. define the ancestors and the

descendants of an invalid node as incompatible. A node clustering step is applied

to identify groupwise incompatibilities and to reduce the size of the incompatibility

graph. The incompatibility graph representation allows Pothineni et al. to formulate

the maximal convex subgraph enumeration problem as a maximal independent set

enumeration problem. Pothineni et al. indicate that the complexity of the enumeration

is O(2NC), where NC represents the number of nodes in the incompatibility graph.

In [94], Verma et al. use maximal clique enumeration instead of maximal inde-

pendent set enumeration. However, the two problems can be directly transformed into

each other. Therefore, the approach of Verma et al. and the approach of Pothineni et

al. are the same. We note that (see for example, Garey and Johnson [95, p.54]) for

any graph G(V, E) and a subset V ′ ⊆ V , the following statements are equivalent:

• V ′ is an independent set for G.

• V ′ is a clique in the complement Gc(V c, Ec) of G(V, E), where V c = V and

Ec = {(u, v) : u, v ∈ V and (u, v) /∈ E}.
• V/V ′ is a vertex cover for G.

Figure 5.2 shows the incompatibility graph generated by Pothineni’s algorithm

for the DAG of Figure 5.1. The incompatibility graph contains seven nodes. One of the

nodes is disconnected from the rest of the graph, and it can be ignored. According to

Pothineni’s work, the worst case complexity of maximal convex subgraph enumeration

for this graph can be 26. On the other hand, we have shown in Section 5.3 that it is

possible to enumerate all maximal convex subgraphs in only 22 algorithmic steps.

87

Figure 5.2. Incompatibility graph for the DAG of Figure 5.1.

5.5. Summary

In this chapter, we study a simplified version of the custom instruction identi-

fication problem. We do not consider all the subgraphs within application DAGs as

potential solutions, but we search for maximal convex subgraphs, assuming that the

data transfer costs and the critical path delays of the custom instructions can be in-

dependently optimized. We first provide a simplified objective function, and we show

that the formulation of the convexity constraint can be significantly simplified as well.

Next, we show that there exists an upper bound of 2|V
invalid
b | on the size of the search

space, where |V invalid
b | is the number of invalid nodes in a given DAG. The results of

our analysis enable efficient enumeration algorithms with significantly lower worst case

time complexity compared with the existing work targeting the same problem [93, 94].

88

6. CONCLUSIONS

6.1. Summary and Conclusions

The complexity of the SoC designs for embedded systems is continuously in-

creasing. However, the designer productivity is improving at a much lower rate. The

increasing time to market pressure in the competitive end-market is stimulating the use

of more and more programmable components in complex SoCs. Combining efficiency

with programmability, custom instruction processors are emerging as basic building

blocks in the design of modern SoCs. In this thesis, we introduce efficient algorithms

and tool chain support for the design space exploration of custom instruction proces-

sors. Starting with high level application source codes in C/C++, our tools provide a

range of area/performance trade-offs, most of the time in only a few seconds. Our tools

can be integrated into design space exploration tools for SoC and MPSoC designs, and

can help in improving the designer productivity and overcoming the SoC design gap.

In this thesis, we describe an ILP based system called CHIPS for identifying

custom instructions given the available data bandwidth and transfer latencies between

the base processor and the custom logic. Our approach involves a baseline machine

that supports architecturally visible custom state registers and dedicated data transfer

channels. Given the data bandwidth between the base processor and the custom logic,

our ILP model explicitly evaluates the data transfer costs. We iteratively solve a set

of ILP problems in order to generate a set of custom instruction templates. At each

iteration, ILP orders feasible templates based on a high level metric, and picks the one

that offers the highest reduction in the schedule length. The iterative algorithm aims

to maximize the code covered by custom instructions, and guarantees that the number

of generated custom instruction templates is at most linear in the total number of

instructions within the application. After template generation, we group structurally

equivalent templates as custom instruction candidates based on isomorphism testing.

We produce the behavioral descriptions of the custom instruction candidates, and we

generate area and delay estimates using high level synthesis tools. Finally, we select

89

the most profitable candidates under area constraints based on a Knapsack model.

We enable designers to optionally constrain the number of input and output

operands for custom instructions. We demonstrate that our algorithms are able to

handle benchmarks with large basic blocks consisting of up to 1000 instructions with

or without the input/output constraints. Our experiments show that the removal of

input/output constraints results in the highest performing solutions. We demonstrate

that these solutions cannot be covered by the subgraph enumeration algorithms of [22,

23, 24], which rely on input/output constraints for reducing the search space. On the

other hand, we show that input/output constraints help us identify frequently used

code segments and efficiently explore area/performance trade-offs in the design space.

We integrate our algorithms into an academic compiler infrastructure automat-

ically producing high level processor descriptions supporting the custom instructions

and the assembly code utilizing the custom instructions. Compiler feedback enables

us to evaluate the impact of input/output constraints, register file port constraints,

and code transformations such as if-conversion and loop unrolling on the performance

and code size for a range of area constraints on eleven multimedia and cryptography

benchmarks. Furthermore, we integrate our compilation flow that generates behav-

ioral descriptions of the custom datapaths into an academic custom processor synthesis

infrastructure. We show that a significant percentage of the automatically generated

processors meet the target clock frequency using fully automated ASIC synthesis flows.

We develop a simplified model for custom instruction identification, where we

ignore the effect of the critical path delays and data transfer costs. We show that the

ILP model can be significantly simplified, and we derive a practical upper bound on

the worst case time complexity of the solution algorithms. We demonstrate that the

tight upper bound enables efficient maximal convex subgraph enumeration algorithms.

Our work improves upon the state-of-the art solution [22, 23, 24] for custom

instruction identification that is being used by various research groups in the academia

and in the industry [14, 72, 78, 85, 96]. The improved solution proposed in this thesis

90

has already found its use in the research community [97]. Other ILP based approaches

similar to ours have followed our work as well [98].

6.2. Future Work

Our approach does not guarantee a globally optimal solution. Whether a truly

optimal algorithmic flow exists is still an open research question. Our solution can still

be improved by (1) combining our approach with pattern matching techniques [61, 69,

70, 71], in order to improve the utilization of the custom instructions we generate; (2)

integrating our approach with datapath merging techniques [73, 74, 75], in order to

exploit partial resource sharing across custom instructions for area efficient synthesis.

Future work includes exploration of architectural mechanisms and automation

techniques that enable custom instructions to access the memory hierarchy efficiently.

Existing work in this field includes embedding of static look-up tables [25] and relatively

small sized arrays [99] within local memories in custom logic. However, a formal

approach that partitions the program data across on-chip, off-chip, and local memories

under capacity constraints has not yet been proposed. The allocation of the data in

local memories directly affects the communication overhead of the custom instructions.

Therefore, partitioning of the data between local and global memories should ideally be

done simultaneously with the partitioning of the program into software and hardware

components (i.e., base processor instructions and custom instructions).

A natural way of improving the memory access efficiency for streaming type ap-

plications is to use vector instructions with wide memory access capability. We believe

that automatic identification of custom instructions that can operate on vectors of

data elements [14] is a promising direction of research. The wide memory access band-

width provided by the vector register files can significantly improve the efficiency of

the custom instructions. From a different point of view, such an approach allows vec-

tor operations to represent complex computations, significantly improving their power

and efficiency. Additionally, integration of data layout, array access, and control flow

transformations within our tool chain in order to increase the number of vectorizable

91

loops in a given application would be a complementary direction of research.

The techniques proposed in this thesis are applied on the compiler intermediate

representation as part of the compiler back-end. However, our technique is applicable

at the source code level, binary level or assembly level as well. In fact, our ILP based

approach has already been adapted to operate at the source code level [97]. In all of

the cases, some of the compiler functionality, such as lexical and syntax analysis, as

well as control flow and data flow analysis, have to be carried out on the input. At the

source level, information related to loops, arrays, etc. is easily accessible. However,

source level statements do not exactly match the instructions of the base processor,

and modeling of the software latencies for source level statements may not be precise.

On the other hand, working at the binary level enables acceleration of legacy code and

libraries for which the source codes are not available. In this case, disassembler tools

convert the software binaries into assembly code. However, complete recovery of source

level constructs, such as loops and arrays, may not be possible. Coprocessor synthe-

sis methodologies based on binary level hardware/software partitioning have already

been proposed in the literature [100]. We believe that synthesis of custom instruction

processors from software binaries could also be a promising research direction.

Other possible improvements to our existing approach can be listed as follows:

• support for cyclic data flow graphs to enable more efficient handling of the loop

carried data and better optimization of the inner loops [25];

• inclusion of power and energy constraints in the design space exploration [101];

• adaptation of our approach to cover run-time reconfigurable processsors [42, 102];

• integration of our design flow into design space exploration for heterogeneous

MPSoC devices [103, 104];

• a study of trade-offs between coprocessors and custom instructions [105];

• a study of trade-offs between VLIW instructions and custom instructions [14].

We believe that methodologies for the design space exploration of custom instruc-

tion processors will remain as an active area of research in the following years. Modern

92

custom instruction processors, such as Tensilica Xtensa LX [80] and Altera Nios II [11]

already allow custom instructions to implement the functionality of a coprocessor. Cus-

tom functional units can now have internal state and memories, communicate with the

base processor through hand shake signals, access the main memory, and send (receive)

data to (from) external logic using FIFO channels. On the other hand, including arbi-

trarily complex logic in the datapath of a processor without increasing its cycle time,

and the functional verification of the resulting system remain as grand challenges. We

believe that research groups will continue to investigate new techniques that can bet-

ter exploit the capabilities of customizable architectures, while trying to identify and

overcome the architectural and the technological limits on processor customization.

93

APPENDIX A: IMPLEMENTATION DETAILS

A.1. If-Conversion Implementation

We implement if-conversion to selectively eliminate the control flow dependencies.

We transform multiple basic blocks into a single basic block with predicated instruc-

tions. This improves the scope of our algorithms, and enables us to identify coarser

grain custom instructions. Consider the sample code with if statements shown on the

left part of Figure A.1. After applying if-conversion, we obtain the new code shown on

the right part of the figure. The branches are eliminated and the whole code is trans-

formed into a predicated basic block, where statements S2 and S3 are conditionally

executed based on predicate values c1 and c2.

Given the CFG of a function, our aim is to partition the CFG into maximal

single entry, single exit regions, and convert each such region into a predicated basic

block. In order to identify the maximal single entry, single exit compiler regions, we

apply interval analysis [106] on the CFGs. An interval is a maximal, single entry

subgraph of the CFG. A CFG may be partitioned into a unique set of disjoint intervals

using an algorithm similar to the one described in [106]. In our work, we impose the

additional constraint that intervals may not cross loop boundaries. From each interval

we generate, we heuristically remove CFG nodes until the number of exits become

one, and we apply if-conversion on the remaining nodes generating a single basic block

with predicated instructions. We apply if-conversion only on the most time consuming

functions that constitute around 99 per cent of the overall run-time.

Since Trimaran does not support the SSA form, we adapted our data structures

and the ILP formulation to support the peculiar data dependencies within predicated

basic blocks. Consider again the code in Figure A.1. Although statements S2 and

S3 produce the same output (i.e., a), there is no data dependency between the two

statements, as they are executed mutually exclusively. Statement S2 generates an

input operand of a template if it is not included in the template, and if statement S4 is

94

a = 3

b = a +10

if (c1)

a = 5

else if (c2)

a = 7

c = a +20

S0 : a = 3

S1 : b = a +10

S2 : a = 5 (c1)

S3 : a = 7 (c2)

S4 : c = a +20

Figure A.1. The initial code contains branches (left). If-conversion eliminates the

branches (right): statements S2 and S3 are conditionally executed based on the

values of the predicates c1 and c2.

included (i.e., x′2∧x4). Similarly, statement S3 generates an input operand of a template

if it is not included in the template, and if statement S4 is included (i.e., x′3∧x4). While

calculating the number of input operands generated by statements S2 and S3 together,

we cannot use summation as usual, since the two statements produce the same output

operand. Instead we need to use the or operator (i.e., (x′2∧x4)∨(x′3∧x4)). Calculation

of the number of output operands can be adapted similarly.

Consider the case where statements S0 and S1 are not included in a template and

statements S2, S3, and S4 are included. Although there is no flow dependency between

statement S0 and statements S2 and S3, statement S0 provides the default value of the

variable a in case both conditions (i.e., c1 and c2) do not hold. On the other hand,

consider the case where statements S0, S1, and S2 are not included in the template

and statements S3 and S4 are included. The valid value of the variable a as an input of

the template is produced by the conditional execution of statement S2, and statement

S0 is not relevant after this point. Therefore, statement S0 produces an input of the

template if both statements S2 and S3 are included in the template, or statement S1

is included (i.e., x′0 ∧ (x1 ∨ (x2 ∧ x3))). Evaluation of whether statement S0 produces

an output operand of a template is similar.

95

REFERENCES

1. Moore, G. E., 1965, “Cramming more components onto integrated circuits” Elec-

tronics, Vol. 38, No. 8, April.

2. Tensilica Inc., 2007, Catching Up with Moore’s Law: How to Fully Exploit the

Benefits of Nanometer Silicon, White Paper, http://www.tensilica.com

3. Henkel, J., 2003, “Closing the SoC Design Gap”, Computer, Vol. 36, No. 9, pp.

119–121, September.

4. Semiconductor Research Corporation, http://www.src.com

5. Patterson, D. A. and J. L. Hennessy, 1996, Computer Architecture: A quantitative

approach, Morgan Kaufmann Publishers.

6. Lanneer, D., J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen and

G. Goossens, 1995, “CHESS: Retargetable Code Generation for Embedded DSP

Processors”, Code Generation for Embedded Processors, pp. 85–102, Kluwer Aca-

demic Publishers.

7. Fauth, A., J. Van Praet and M. Freericks, 1995, “Describing Instruction Set

Processors using nML”, Proceedings of the European Design and Test Conference,

pp. 503–507, Paris, France.

8. Hoffmann, A., H. Meyr and R. Leupers, 2002, Architecture Exploration for Em-

bedded Processors with LISA. Kluwer Academic Publishers.

9. Gonzalez, R. E., 2000, “Xtensa: A Configurable and Extensible Processor”, IEEE

Micro, Vol. 20, No. 2, pp. 60–70.

10. ARC International, 2007, ARC 700 Core Family Brochure, Product Brief,

http://www.arc.com

96

11. Altera Corp., 2007, Nios II Processor Reference Handbook,

http://www.altera.com

12. MIPS Technologies Inc., 2006, MIPS Pro Series Processor Cores, Product Brief,

http://www.mips.com

13. Stretch Inc., 2007, Stretch S6000 Family, Product Brief, http://www.stretch.com

14. Goodwin, D. and D. Petkov, 2003, “Automatic Generation of Application Specific

Processors”, Proceedings of the International Conference on Compilers, Architec-

tures, and Synthesis for Embedded Systems (CASES), pp. 137–147, November.

15. Binh, N. N., M. Imai, A. Shiomi and N. Hikichi, 1996, “A Hardware/Software

Partitioning Algorithm for Designing Pipelined ASIPs with Least Gate Counts”,

Proceedings of the 33rd Design Automation Conference (DAC), pp. 527–532.

16. Tensilica Inc., 2005, The XPRES Compiler: Triple-Threat Solution to Code Per-

formance Challenges, White Paper, http://www.tensilica.com

17. CoWare Inc., http://www.coware.com

18. Atasu, K., G. Dündar and C. Özturan, 2005, “An Integer Linear Program-

ming Approach for Identifying Instruction-Set Extensions”, Proceedings of the

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pp. 172–177, Jersey City, NJ, September.

19. Atasu, K., R. G. Dimond, O. Mencer and W. Luk, 2006, “Towards Optimal

Custom Instruction Processors”, Proceedings of the IEEE HOT Chips Conference,

Stanford, CA, August.

20. Atasu, K., R. G. Dimond, O. Mencer, W. Luk, C. Özturan and G. Dündar, 2007,

“Optimizing Instruction-set Extensible Processors under Data Bandwidth Con-

straints”, Proceedings of the Design Automation and Test in Europe Conference

and Exhibition (DATE), pp. 588–593, Nice, France, April.

97

21. Atasu, K., C. Özturan, G. Dündar, O. Mencer and W. Luk, “CHIPS: Custom

Hardware Instruction Processor Synthesis”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (Accepted in 2007).

22. Atasu, K., L. Pozzi and P. Ienne, 2003, “Automatic Application-Specific

Instruction-Set Extensions under Microarchitectural Constraints”, Proceedings

of the 40th Design Automation Conference (DAC), pp. 256–261, Anaheim, CA,

June.

23. Atasu, K., L. Pozzi and P. Ienne, 2003, “Automatic Application-Specific

Instruction-Set Extensions under Microarchitectural Constraints” International

Journal of Parallel Programming, Vol. 31, No. 6, pp. 411–428, December.

24. L. Pozzi, K. Atasu and P. Ienne, 2006, “Exact and Approximate Algorithms for

the Extension of Embedded Processor Instruction Sets”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 7, pp.

1209–1229, July.

25. Biswas, P., V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt, 2004, “Intro-

duction of Local Memory Elements in Instruction Set Extensions”, Proceedings

of the 41st Design Automation Conference (DAC), pp. 729–734, San Diego, CA,

June.

26. Trimaran: An Infrastructure for Research in Instruction Level Parallelism,

http://www.trimaran.org

27. Dimond, R. G., O. Mencer and W.Luk, 2006, “Combining Instruction Coding and

Scheduling to Optimize Energy in System-on-FPGA”, Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.

175–184, Napa Valley, CA, April.

28. Aho, A. V., R. Sethi and J. D. Ullman, 1986, Compilers: Principles, Techniques

and Tools, Addison–Wesley Publishing.

98

29. Orailoglu, A. and D. D. Gajski, 1986, “Flow Graph Representation”, Proceedings

of the 23rd Design Automation Conference (DAC), pp. 503–509.

30. Ferrante, J., K. J. Ottenstein and J. D. Warren, 1987, “The Program Depen-

dency Graph and Its Uses in Optimization”, ACM Transactions on Programming

Languages and Systems, Vol. 9, No. 3, pp. 319–349, June.

31. Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck, 1989, “An

Efficient Method of Computing Static Single Assignment Form”, Proceedings of

the 16th ACM Symposium on Principles of Programming Languages, pp. 25–35.

32. Pingali, K., M. Beck, R. Johnson, M. Moudgill and P. Stodghill, 1990, “Depen-

dence Flow Graphs: An Algebraic Approach to Program Dependecies”, Proceed-

ings of the 18th ACM Symposium on Principles of Programming Languages, pp.

67–78.

33. Goldstein, S. C., H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor

and R. Laufer, 1999, “PipeRench: A Coprocessor for Streaming Multimedia

Acceleration”, Proceedings of the 26th International Symposium on Computer

Architecture (ISCA), pp. 28–39, Atlanta, Georgia.

34. ARM Ltd., 2001, ARM7TDMI Technical Reference Manual, ARMDDI 0029G.

35. Hauser, J. R. and J. Wawrzynek, 1997, “Garp: A MIPS Processsor with a Re-

configurable Coprocessor”, Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM), Napa Valley, CA, April.

36. Mei, B., S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, 2003, “ADRES:

An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Re-

configurable Matrix”, Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pp. 61–70, September.

37. Rau, B. R., 1995, Iterative Modulo Scheduling, HP Labs Technical Report, HPL-

99

94-115, November.

38. Xilinx Inc., 2007, MicroBlaze Processor Reference Guide, http://www.xilinx.com

39. MIPS Technologies Inc., 2007, Architectural Strengths of the MIPS32 74K Core

Family, White Paper, http://www.mips.com.

40. Wang, A., E. Killian, D. Maydan and C. Rowen, 2001, “Hardware/Software

Instruction Set Configurability for System-on-Chip Processors”, Proceedings of

the 38th Design Automation Conference (DAC), pp. 184–88, Las Vegas, Nev.,

June.

41. Rutenbar, R. A., M. Baron, T. Daniel, R. Jayaraman, Z. Or-Bach, J. Rose and

C. Sechen, 2001, “(When) Will FPGAs Kill ASICs?”, Proceedings of the 38th

Design Automation Conference (DAC), pp. 321–322, Las Vegas, Nev., June.

42. Seng, S. P., W. Luk and P. Y. K. Cheung, 2002, “Run-Time Adaptive Flexible

Instruction Processors”, Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), Montpellier, France, September.

43. Dimond, R. G., O. Mencer and W. Luk, 2006, “Application-Specific Customi-

sation of Multi-Threaded Soft Processors”, IEE Proceedings - Computers and

Digital Techniques, Vol. 153, No. 3, pp. 173–180, May.

44. Razdan, R. and M. D. Smith, 1994, “A High-Performance Microarchitecture with

Hardware-Programmable Functional Units”, Proceedings of the 27th International

Symposium on Microarchitecture (MICRO), pp. 172–80, San Jose, CA, November.

45. Wittig, R. D. and P. Chow, 1996, “OneChip: An FPGA Processor with Re-

configurable Logic”, Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), pp. 126–135, Los Alamitos, CA.

46. Hauck, S., T.W. Fry, M.M. Hosler and J.P. Kao, 1997, “The Chimaera Recon-

figurable Functional Unit”, Proceedings of the IEEE Symposium on FPGAs for

100

Custom Computing Machines (FCCM), pp. 87–96, Napa Valley, CA, April.

47. Kastrup, B., A. Bink and J. Hoogerbrugge, 1999, “ConCISe: A Compiler-Driven

CPLD-Based Instruction Set Accelerator”, Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM), Napa Valley, CA,

April.

48. Gupta, R. K. and G. D. Micheli, 1992, “System-level Synthesis Using Re-

programmable Components”, Proceedings of the EURO-DAC, pp. 2–7.

49. Ernst, R., J. Henkel and T. Benner, 1993, “Hardware-Software Cosynthesis for

Microcontrollers”, IEEE Design & Test of Computers, Vol. 10, No. 4.

50. Niemann, R. and P. Marwedel, 1997, “An Algorithm for Hardware/Software

Partitioning Using Mixed Integer Linear Programming”, Design Automation for

Embedded Systems, Vol. 2, No. 2, pp. 165–193, March.

51. Vahid, F. and T. D. Le, 1997, “Extending the Kernighan/Lin Heuristic for Hard-

ware and Software Functional Partitioning”, Design Automation for Embedded

Systems, Vol. 2, No. 2, pp. 237–261 , March.

52. Arato, P., S. Juhasz, Z. A. Mann, A. Orban and D. Papp, 2003, “Hardware-

Software Partitioning in Embedded System Design”, Proceedings of the Interna-

tional Symposium on Intelligent Signal Processing, pp. 197–202, September.

53. Holmer, B. K. and A. M. Despain, 1991, “Viewing Instruction Set Design as

an Optimization Problem”, Proceedings of the 24th International Symposium on

Microarchitecture (MICRO), pp. 153–162.

54. Faraboschi, P., G. Brown, J. A. Fisher, G. Desoli and F. Homewood, 2000, “Lx: A

Technology Platform for Customizable VLIW Embedded Processing”, Proceedings

of the 27th International Symposium on Computer Architecture (ISCA), pp. 203–

213, Vancouver, June.

101

55. Van Praet, J., G. Goossens, D. Lanneer and H. De Man, 1994, “Instruction Set

Definition and Instruction Selection for ASIPs”, Proceedings of the 7th Interna-

tional Symposium on High-Level Synthesis, pp. 11–16.

56. Huang, I.-J. and A. M. Despain, 1995, “Synthesis of Application Specific Instruc-

tion Sets”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 14, No. 6, pp. 663–75, June.

57. Choi, H., J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang and C.-M. Kyung, 1999,

“Synthesis of Application Specific Instructions for Embedded DSP Software”,

IEEE Transactions on Computers, Vol. 48, No. 6, pp. 603–14, June.

58. Arnold, M. and H. Corporaal, 2001, “Designing Domain Specific Processors”,

Proceedings of the 9th International Workshop on HW/SW Codesign, pp. 61–66,

April.

59. Baleani, M., F. Gennari, Y. Jiang, Y. Pate, R. K. Brayton and A. Sangiovanni-

Vincentelli, 2002, “HW/SW Partitioning and Code Generation of Embedded

Control Applications on a Reconfigurable Architecture Platform”, Proceedings of

the 10th International Workshop on HW/SW Codesign, pp. 151–56, May.

60. Brisk, P., A. Kaplan, R. Kastner and M. Sarrafzadeh, 2002, “Instruction Gen-

eration and Regularity Extraction For Reconfigurable Processors”, Proceedings

of the International Conference on Compilers, Architectures, and Synthesis for

Embedded Systems (CASES), pp. 262–269, Grenoble, France.

61. Clark, N., H. Zhong and S. Mahlke, 2003, “Processor Acceleration Through Au-

tomated Instruction Set Customization”, Proceedings of the 36th International

Symposium on Microarchitecture (MICRO), pp. 184–88, San Diego, CA, Decem-

ber.

62. Alippi, C., W. Fornaciari, L. Pozzi and M. Sami, 1999, “A DAG Based Design

Approach for Reconfigurable VLIW Processors”, Proceedings of the Design Au-

102

tomation and Test in Europe Conference and Exhibition (DATE), pp. 778–79,

March.

63. Sun, F., S. Ravi, A. Raghunathan and N.K. Jha, 2003, “A Scalable Application-

Specific Processor Synthesis Methodology”, Proceedings of the International Con-

ference on Computer Aided Design (ICCAD), pp. 283–290, San Jose, CA, Novem-

ber.

64. Cheung, N., S. Parameswaran and J. Henkel, 2003, “INSIDE: INstruction Selec-

tion/Identification & Design Exploration for Extensible Processors”, Proceedings

of the International Conference on Computer Aided Design (ICCAD), pp. 291–

297, San Jose, CA, November.

65. Cong, J., Y. Fan, G. Han and Z. Zhang, 2004, Application-Specific Instruction

Generation for Configurable Processor Architectures, Proceedings of the Inter-

national Symposium on Field-Programmable Gate Arrays (FPGA), pp. 183–189,

Monterey, CA, February.

66. Yu, P. and T. Mitra, 2004, “Scalable Custom Instructions Identification for

Instruction-Set Extensible Processors”, Proceedings of the International Confer-

ence on Compilers, Architectures, and Synthesis for Embedded Systems (CASES)

, Washington, DC, September.

67. Biswas, P., S. Banerjee, N. Dutt, L. Pozzi and P. Ienne, 2005, “ISEGEN: Gen-

eration of High-Quality Instruction Set Extensions by Iterative Improvement”,

Proceedings of the Design Automation and Test in Europe Conference and Exhi-

bition (DATE), pp. 1246–1251, Munich, Germany, March.

68. Bonzini, P. and L. Pozzi, 2007, “Polynomial-Time Subgraph Enumeration for

Automated Instruction Set Extension”, Proceedings of the Design Automation

and Test in Europe Conference and Exhibition (DATE), pp. 1331–1336, Nice,

April.

103

69. Leupers, R. and P. Marwedel, 1996, “Instruction Selection for Embedded

DSPs with Complex Instructions”, Proceedings of the EURO-DAC, pp. 200–205,

Geneva, Switzerland.

70. Peymandoust, A., L. Pozzi, P. Ienne and G. De Micheli, 2003, “Automatic In-

struction Set Extension and Utilization for Embedded Processors”, Proceedings of

the International Conference on Application-specific Systems, Architectures and

Processors (ASAP), pp. 108–118, The Hague, The Netherlands.

71. Cheung, N., S. Parameswaran, J. Henkel and J. Chan, 2004, “MINCE: Matching

INstructions using Combinational Equivalence for Extensible Processor”, Pro-

ceedings of the Design Automation and Test in Europe Conference and Exhibition

(DATE), pp. 1020–1027, Paris, France, February.

72. Clark, N., J. Blome, M. Chu, S. Mahlke, S. Biles and K. Flautner, 2005, “An Ar-

chitecture Framework for Transparent Instruction Set Customization in Embed-

ded Processors”, Proceedings of the 32nd International Symposium on Computer

Architecture (ISCA), pp. 272–283, Washington, DC.

73. Geurts, W. , F. Catthoor, S. Vernalde and H. De Man, 1997, Accelerator Data-path

Synthesis for High-throughput Signal Processing Applications, Kluwer, Boston,

MA.

74. Brisk, P., A. Kaplan and M. Sarrafzadeh, 2004, “Area-Efficient Instruction Set

Synthesis for Reconfigurable System-on-Chip Designs”, Proceedings of the 41th

Design Automation Conference (DAC), pp. 395–400, San Diego, CA, June.

75. Moreano, N., E. Borin, C. de Souza and G. Araujo, 2005, “Efficient Datap-

ath Merging for Partially Reconfigurable Architectures”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 7, pp.

969–80, July.

76. Cong, J., Y. Fan, G. Han, A. Jagannathan, G. Reinmann and Z. Zhang, 2005,

104

“Instruction Set Extension with Shadow Registers for Configurable Processors”,

Proceedings of the International Symposium on Field-Programmable Gate Arrays

(FPGA), pp. 99–106, Monterey, CA, February.

77. Jayaseelan, R., H. Liu and T. Mitra, 2006, “Exploiting Forwarding to Improve

Data Bandwidth of Instruction-Set Extensions”, Proceedings of the 43rd Design

Automation Conference (DAC), Anaheim, CA, July.

78. Pozzi, L. and P. Ienne, 2005, “Exploiting pipelining to Relax Register-File

Port Constraints of Instruction-Set Extensions”, Proceedings of the International

Conference on Compilers, Architectures, and Synthesis for Embedded Systems,

September.

79. Lee, J., K. Choi and N. Dutt, 2002, “Efficient Instruction Encoding for Automatic

Instruction Set Design of Configurable ASIPS”, Proceedings of the International

Conference on Computer Aided Design (ICCAD), pp. 649–654, San Jose, CA.

80. Martin, G., 2006, “Recent Developments in Configurable and Extensible Proces-

sors”, Proceedings of the International Conference on Application-specific Sys-

tems, Architectures and Processors (ASAP), pp. 39-44, September.

81. Allen, J.R., K. Kennedy, C. Porterfield and J. Warren, 1983, “Conversion of Con-

trol Dependence to Data Dependence”, Proceedings of the 10th ACM Symposium

on Principles of Programming Languages, January.

82. ILOG CPLEX: High-Performance Software for Mathematical Programming and

Optimization, http://www.ilog.com/products/cplex/

83. Synopsys Inc., http://www.synopsys.com

84. Aditya, S., V. Kathail and B. Rau, 1998, Elcor’s Machine Description System,

HP Labs Technical Report, HPL-98-128, October.

85. Clark, N., A. Hormati, S. Mahlke and S. Yehia, 2006, “Scalable Subgraph Map-

105

ping for Acyclic Computation Accelerators”, Proceedings of the International

Conference on Compilers, Architectures, and Synthesis for Embedded Systems

(CASES) , pp. 147–157, Seoul, Korea, October.

86. Nauty Package. http://cs.anu.edu.au/people/bdm/nauty.

87. Yu, P. and T. Mitra, 2005, ”Satisfying Real-Time Constraints with Custom

Instructions”, Proceedings of the International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS) , pp. 166–171, Jersey City, NJ,

September.

88. Kathail, V., M. Schlansker and B. Rau, 1993, HPL-PD Architecture Specification,

Version 1.0, HP Labs Technical Report, HPL-93-80R1.

89. Atasu, K., M. Macchetti and L. Breveglieri, 2004, “Efficient AES Implementations

for ARM Based Platforms”, Proceedings of the ACM Symposium on Applied

Computing (SAC), March.

90. XySSL - DES and Triple-DES Source Code, http://xyssl.org

91. Guthaus, M. et al. MiBench: A Free, Commercially Representative Embedded

Benchmark Suite, http://www.eecs.umich.edu/mibench

92. Lee, C., M. Potkonjak and W. H. Mangione-Smith, 1997, “MediaBench: A Tool

for Evaluating and Synthesizing Multimedia and Communications Systems”, Pro-

ceedings of the International Symposium on Microarchitecture (MICRO).

93. Pothineni, N., A. Kumar and K. Paul, 2007, “Application Specific Datapath

with Distributed I/O Functional Units”, Proceedings of the 20th International

Conference on VLSI Design, pp. 551–558, Hyderabad, India, January.

94. Verma, A. K., P. Brisk and P. Ienne, 2007, “Rethinking Custom ISE Identification:

A New Processor-Agnostic Method”, Proceedings of the International Conference

on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), pp.

106

125–134, Salzburg, Austria, September.

95. Garey, R. M. and D. S. Johnson, 1979, Computers and Intractability; A Guide to

the Theory of NP-Completeness, W. H. Freeman and Co., New York.

96. Lam, S. K., T. Srikanthan and C. T. Clarke, 2006, “Rapid Generation of Cus-

tom Instructions Using Predefined Dataflow Structures”, Microprocessors and

Microsystems: Special Issue on FPGA-based Reconfigurable Computing, Vol. 30,

No. 6, pp. 355–366, September.

97. Bennett, R. V., A. C. Murray, B. Franke and N. Topham, 2007, “Combining

Source-to-Source Transformations and Processor Instruction Set Extensions for

the Automated Design-Space Exploration of Embedded Systems”, Proceedings

of the Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES), pp. 83–92, July.

98. Leupers, R., K. Karuri, S. Kraemer and M. Pandey, 2006, “A Design Flow for

Configurable Embedded Processors Based on Optimized Instruction Set Extension

Synthesis. Proceedings of the Design Automation and Test in Europe Conference

and Exhibition (DATE), Munich, Germany, March.

99. Biswas, P., L. Pozzi, P. Ienne and N. Dutt, 2006, “Automatic Identification of

Application-Specific Functional Units with Architecturally Visible Storage”, Pro-

ceedings of the Design Automation and Test in Europe Conference and Exhibition

(DATE), Munich, Germany, March.

100. Stitt, G., F. Vahid, G. McGregor and B. Einloth, 2005, “Hardware/Software Par-

titioning of Software Binaries: A Case Study of H.264 Decode”, Proceedings of the

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pp. 285–290, Jersey City, NJ, September.

101. Fei, Y., S. Ravi, A. Raghunathan and N. K. Jha, 2004, “A Hybrid Energy-

Estimation Technique for Extensible Processors”, IEEE Transactions on

107

Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, No. 5, pp.

652–64, May.

102. Bauer, L., M. Shafique, S. Kramer and J. Henkel, 2007, “RISPP: Rotating In-

struction Set Processing Platform”, Proceedings of the 44th Design Automation

Conference (DAC), pp. 791–796, San Diego, CA, June.

103. Sun, F., S. Ravi, A. Raghunathan and N. K. Jha, 2006, “Application-Specific Het-

erogeneous Multiprocessor Synthesis Using Extensible Processors”, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25,

No. 9, pp. 1589–1602, September.

104. Shee, S. L. and S. Parameswaran, 2007, “Design Methodology for Pipelined Het-

erogeneous Multiprocessor System”, Proceedings of the 44th Design Automation

Conference (DAC), pp. 811–816, San Diego, CA, June.

105. Sun, F., S. Ravi, A. Raghunathan and N. K. Jha, 2006, “Hybrid Custom In-

struction and Co-processor Synthesis Methodology for Extensible Processors”,

Proceedings of the 19th International Conference on VLSI Design, pp. 473–476,

January.

106. Allen, F. E. and J. Cocke, 1976, “A Program Data Flow Analysis Procedure”,

Communications of the ACM, Vol. 19, No.3, pp. 137–147.

