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ABSTRACT

OPTIMIZATION AND ORCHESTRATION IN

MULTI-TIER EDGE COMPUTING

In addition to the e↵orts in the next-generation cellular networks and traditional

network services, the demand for a novel set of services leveraged through smart devices

and artificial intelligence (AI) techniques increases tremendously. Pervasive healthcare,

online gaming, augmented reality, smart city and many other service types with various

performance and functional requirements are supplied with data generated by end-user

devices. In this highly dynamic environment, the legacy network infrastructure and

operations remain incapable of satisfying the expectations of the users and require-

ments of the services, especially those demanding real-time interaction with ultra-low

latency. Therefore, this thesis focuses on the task o✏oading operations in a multi-tier

edge environment and network slicing optimization problems to enable service-oriented

behavior and address the demands of both operators and end-users. In this direction,

an extensive literature review is carried out, the requirements are determined, and we

provide a formal optimization model for each problem definition. In order to address

the scalability issues and finding good quality solutions in a short time, heuristic so-

lutions are proposed. Besides e↵orts in optimization purposes, two di↵erent solution

proposals using programmable network paradigms are provided as short-term and long-

term for implementing the service-centric behavior. The short-term solution based on

Software-defined Networking (SDN) is further evaluated by implementing a fall-risk

assessment service with real sensory data. The proposed solutions are novel and pro-

vide comprehensive guidance for operators and service providers on implementing a

service-centric behavior and optimizing the operations in multi-tier edge systems.
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ÖZET

ÇOK KATMANLI UÇ HESAPLAMADA ENİYİLEME VE

DÜZENLEME

Yeni nesil hücresel ağlar ve geleneksel ağ servislerine yönelik girişimlerin yanı

sıra, akıllı cihazlar ve yapay zekâ teknikleri ile geliştirilen özgün servislere yönelik

talepte çok büyük bir artış olmaktadır. Çeşitli başarım ve fonksiyonel gereksinim-

leri talep eden yaygın sağlık hizmeti, çevrimiçi oyunlar, artırılmış gerçeklik, akıllı

şehir ve birçok başka servis tipleri son kullanıcı cihazları tarafından üretilen veriler

aracılığı ile beslenmektedir. Böylesine dinamik bir ortamda, eski ağ altyapısı ve ope-

rasyonları kullanıcıların beklentilerini ve servislerin gereksinimlerini, özellikle gerçek

zamanlı etkileşim talep edenlerin, karşılamakta yetersiz kalmaktadır. Dolayısı ile, bu

tezde, servis merkezli yapıyı olanaklı kılmak, operatörlerin ve son kullanıcıların bek-

lentilerini karşılamak amacıyla çok katmanlı uç hesaplama sistemlerinde görev atan-

ması ve ağ dilimleme problemlerinin eniyilenmesine odaklanılmıştır. Bu doğrultuda

oldukça geniş bir literatür taraması yapılmış, gereksinimler belirlenmiştir ve her bir

problem tanımı için bir eniyileme modeli geliştirilmiştir. Ölçeklenebilirlik sorununa

değinmek ve problemlere kısa süre içerisinde kaliteli bir çözüm bulabilmek için sezgisel

yöntem önerileri de sunulmuştur. Bütün bunların yanı sıra, servis merkezli yapının

gerçekleştirilmesi için programlanabilir ağ paradigmalarını kullanarak kısa ve uzun

vadeli olmak üzere iki farklı çözüm önerisi sunulmuştur. Yazılım-tanımlı ağ yapısı

üzerine kurulan kısa vadeli çözüm önerisi gerçek veri ile desteklenmiş bir düşme riski

analizi servisi ile ayrıca değerlendirilmiştir. Önerilen çözüm önerileri özgün olup, ope-

ratörlere ve servis sağlayıcılara çok katmanlı uç hesaplama sistemlerinde servis merkezli

davranışın gerçekleştirilmesi ve operasyonların eniyilenmesi konusunda kapsamlı bir yol

gösterici olmaktadır.
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1. INTRODUCTION

The ubiquitous computing domain has a long-standing evolution, and Mark

Weiser’s vision of “computation being integrated into the fabric of our daily lives” is

advancing to become a reality [1]. The recent progress is that the smartphone itself has

become the primary computational equipment for an end-user. The new edge devices

are not just the traditional desktops that are compact systems; they have a lot more.

A broad set of multimodal sensors and audio-visual data with di↵erent properties and

distributions change the scene for the new set of applications.

Figure 1.1. Evolution of the end-user devices and servers.

Either coexist with smartphones or in a standalone manner, a wide range of wear-

able appliances also contributes to the ubiquitous computing vision. A new edge device

such as smart glass, smartwatch and smart clothes is becoming commercially available
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in the market every day. The evolution of personal devices as the computational re-

sources over the last years is illustrated in Figure 1.1. These devices continuously log

data, implement novel services and generate intermittent data tra�c. Still, another

category falls under the concepts of Internet of Things (IoT) and Machine-to-Machine

(M2M) Communications, where machines themselves communicate with each other

and participate in di↵erent services. IEEE (Institute of Electrical and Electronics En-

gineers) [2], AllSeen Alliance [3], Thread Group [4], Open Interconnect Consortium [5],

and many others have a large set of standards for IoT [6]. Accompanying the ongoing

research activities, great e↵ort is put into developing real applications with the help of

available standards bodies and specifications.

When we gather all these developments and improvements, we see a pervasive

computing environment with a network of devices generating data and o↵ering a large

spectrum of novel services. Pervasive healthcare services such as fall-risk assessment, in-

fotainment applications, vehicular communication, augmented reality and many other

services can be given concrete examples. However, one problem is implementing ser-

vices that are integrated with complex machine learning techniques to realize the envi-

sioned use cases via computationally restricted mobile devices. A simple alternative is

to improve the computation power of these edge nodes by benefiting from the central-

ized cloud computing resources. However, even with “unlimited” resource capacities,

cloud computing infrastructures cannot solve all problems to the inherent delay con-

straints of the Wide Area Network (WAN) access [7]. Since most of these services have

stringent requirements such as real-time interaction with high Quality of Service (QoS)

expectations, this obstacle cannot be underestimated. Considering these limitations

in the public Internet, the alternative technical solution that overcomes the problem

of indefinite latency is bringing the cloud resources in the proximity of these devices.

Recently, we notice a related trend in ubiquitous computing called edge computing,

where the computational and storage resources are deployed nearer to the end-user.

Eliminating the WAN latency creates the opportunity to meet the requirements of real-

time interaction imposed by the latency-intolerant services. Besides, edge computing

eases the congestion within the core network and datacenters by keeping the data at
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the edge where it is created. It also helps to enable e�cient tra�c management prac-

tices with less e↵ort. It should be noted that expanding the computational capacities

of end-user devices through edge computing is not a replacement for the cloud; on the

contrary, they are complementary paradigms that need to be in cooperation.

The development of edge computing leads to the proliferation and heterogeneity

of the service types provided to the end-users. These services, which are not feasible to

be realized so far, are hosted on the distributed edge servers, and the amount of data

tra�c generated at the edge increases excessively. In order to maintain high service

quality and desired level performance, replications of a service type should be provided

by the geographically distributed servers.

With the improvements in the computation methodologies and emergence of ser-

vices enhancing the quality of our daily lives, the focus shifts to the service itself rather

than its location. The current IP-based operations remain incapable of orchestrating

the interactions between clients and servers e�ciently. This problem has higher prior-

ity in an edge computing environment, as the service routines may be deployed over

many servers. These service instances may also partially reside on local servers and

the cloud. A service-centric design is required to resolve all the complexities involved.

When all these cases and requirements are assembled, it is seen that allocating

the responsibility of the complex operations such as service discovery to the end-user

devices significantly deteriorates the performance and violates the QoS requirements

in this dynamic environment. The traditional location-oriented network needs to be

remodeled as a service-centric architecture to hide all complex operations from the

end-users and implement them in the network. However, leading the focus on “what”

instead of “where” is not a smooth procedure for the network operations. Relevantly,

there is an ongoing trend for the Information-Centric Networking (ICN), Content-

Centric Networking (CCN) and Service-Centric Networking (SCN), which transform

the process of the traditional network by shifting the concentration from hosts to the

contents, information or services [8]. The “Future Internet” is envisioned as service-
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centric [9] and within this context, a service can be requested without any knowledge

about server location [10].

However, it is not a straightforward attempt to deploy computational resources

at various levels of the network and establish service-oriented operations while letting

them be accessible ubiquitously. The envisioned environment and functionality pro-

vided by the network and computation infrastructure should be compatible with the

TCP/IP protocol stack. Simultaneously, besides its implementation, various optimiza-

tion problems should be considered, especially in this environment where real-time

interaction and QoS have the utmost importance.

1.1. Thesis Contributions

In this thesis, we focus on optimizing the operations in a multi-tier service-

oriented structure to address the expectations of both end-users and operators. Based

on our previous work [11], an SLA (Service Level Agreement)-aware optimal resource

allocation scheme is introduced, in which the main problem components are as follows:

• Undi↵erentiated set of services where each service type has the same priority

• Fairness among the services with a minimum satisfaction ratio imposed by SLAs.

. For addressing each problem and use-case scenario, two di↵erent optimization models

for resource allocation and task assignment are designed and implemented: (i) a real-

istic mixed-integer nonlinear programming (MINLP) model, and (ii) a mixed-integer

linear programming (MILP) model obtained by linear approximation of the MINLP

model. While the first model adopts a nonlinear queuing model for addressing the

latency requirements of the services, the second model utilizes piecewise linear approx-

imation to transform it into an MILP model for resolving the time and space complexity

issues. Additionally, a heuristic implementation based on the nearest-fit algorithm is

also presented as a quick remedy for the problems where the proposed optimization

models remain incapable of obtaining a feasible solution within an acceptable time
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limit. Besides, we addressed multi-tier computing system design and proposed an

MILP model, a Lagrangian-relaxation based heuristic and a greedy heuristic solution

to optimize the server placement and service deployment decisions.

Even though the multi-tier architecture has the inherent capability to enable the

service-oriented structure with high performance, it is not solely enough to place the

servers at specific locations, deploy the service instances over them, and allocate the

available resources optimally. Due to the dynamic nature of the edge environment and

diversified characteristics of the service types, it becomes challenging to guarantee a

certain level of QoS for particular service types. Therefore, this thesis proposes an

optimal network slicing methodology for service-oriented edge access. The proposed

Mixed Integer Programming (MIP) model aims to distribute the replications of the

services optimally while virtualizing the networking and computational resources for

allocating specific capacities for fully isolated slice instances configured for each service

type. Additionally, a heuristic algorithm NESECS (NEtwork Slicing for Edge Com-

puting Services) is introduced to find high-quality solutions quickly for cases where the

formal optimization tools fail to find feasible solutions.

In addition to the optimization aspect, we also focus on implementing service-

oriented operations within the network. With the smooth integration of the edge

and cloud servers, the multi-tier computing system handles the o✏oaded tasks in

a service-centric manner. By using the pioneers of the programmable network con-

cept, namely Software-Defined Networking (SDN) and P4 (Programming Protocol-

Independent Packet Processors), two di↵erent solution approaches are proposed to

implement such behavior based on our previous works [11–13].

The original contributions of this thesis are detailed as follows:

• Two problem definitions for SLA-aware resource allocation within a service-

centric environment, and necessary actions are discussed in detail and the so-

lutions are designed accordingly. The MINLP and MILP optimization models
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are designed with realistic formulations. The complexity issues of the MINLP

model are taken into consideration, and nonlinearity is eliminated through linear

approximation for targeting the larger-scale environments. A heuristic based on

the nearest-fit algorithm is developed to assess the performance of the optimiza-

tion models and generate a solution by addressing the scalability issues.

• Instead of Network Function Virtualization (NFV) and Service Function Chaining

(SFC) operations, the network slicing concept is applied to satisfy the require-

ments of the novel services that are envisioned to be integrated into the next-

generation networks. An MIP model is proposed to minimize the degree of SLA

violations. Additionally, a heuristic implementation is provided to eliminate the

scalability problem of the MIP model. For achieving the proposed objective, both

networking and computational resources are virtualized, individual fractions of

the physical resources’ capacities are reserved, and isolation is maintained among

the slices for each service type to ensure that the requirements are met.

• The proposed SDN method enables service-centricity without any modification

to the existing protocol stack by exploiting the TCP port number and DSCP

(Di↵erentiated Services Code Point). This method assumes the realistic view that

the mobile end-users exploit the resources of the edge servers via computation

o✏oading that can occur at the method/function resolution.

• A long-term solution for implementing the service-oriented behavior by using

P4 language is proposed. This proposal focuses on service o✏oad operations

with a sub-service resolution and tries to achieve the necessary objectives with

a compatible operation with the TCP/IP protocol stack by enabling a fully-

programmable network environment.

1.2. Thesis Outline

The content of the thesis is organized as follows: Chapter 2 presents an overview

of the related studies in the literature and highlights the contributions of the thesis.

In Chapter 3, a background on service-centric networks, Edge Computing, network

slicing, and programmable network paradigms are presented.
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Chapter 4 provides the problem definitions and optimization model formulation

of SLA-aware resource allocation scheme for service-oriented multi-tier computing in-

frastructure. Additionally, it discusses how the proposed MINLP model is simplified

by adopting the linear approximation methodology and presents the operations of the

nearest-fit heuristic implementation. Chapter 5 discusses the problem definition of

optimal network slicing, formulates the problem with an MIP model, and provides

the details of the NESECS heuristic algorithm. Chapter 6 presents the service-centric

network implementation by using SDN and P4 concepts as two di↵erent solution ap-

proaches. Additionally, this chapter presents a use case of fall-risk assessment service

and orchestration mechanism as SDN in a multi-tier computing system. The thesis is

concluded with Chapter 7, with a brief summary of the content, discussion upon the

contributions and possible future works in this research area.
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2. RELATED WORKS

In this chapter, the related works in the literature are discussed by highlighting

the original contributions of this thesis. The building blocks of the implementation

and optimization of service-centric behavior in a multi-tier computation system are

analyzed thoroughly, and the literature is reviewed accordingly. The studies fall under

the topics of the service-centric networks, SDN, P4, task o✏oading and resource allo-

cation, multi-tier system design, service placement, and network slicing are discussed

by presenting the features of these studies.

2.1. Related Work on the Service-centric Network Implementation

In a study made by El Mougy [14], SDN programmability is asserted as a solution

to enable core functionalities of ICN such as content forwarding, in-network caching

and multicasting. The study focuses on the architectural modifications that may be

applied to SDN and OpenFlow to leverage ICN and manage the dynamic environment.

Since the recent version of OpenFlow, currently v.1.5.1, does not support a matching

mechanism concerning the named data, carrying out a smooth integration is not a

simple operation.

An approach for Software-Defined Content-Centric Networking (SDCCN) is pro-

posed by Charpinel et al. for integrating SDN and CCN to provide a caching pol-

icy [15]. The system is designed to involve users interested in contents, CCN switches

and a logically centralized controller. The users generate a request for content (i.e.,

the interest packet), and the network propagates these packets to the nearest provider.

Then the content is propagated back to the user using the reverse route. All these

routing processes are managed by the controller.

There are solutions presented for supporting the ICN structure with the help of

SDN concepts, and Salsano et al. provide both a long-term solution for ICN without
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considering the current limitations in SDN and a short-term solution to experiment

with the combination of ICN and SDN [16]. Since the SDN still has missing points to

support the ICN environment fully, the long-term solutions discuss several choices for

the packet format.

Named Data Networking (NDN) [17] is a popular ICN architecture based on CCN.

A study proposed by van Adrichem et al. integrates SDN into NDN for leveraging

an application-specific forwarding mechanism [18]. In order to distinguish the tra�c

generated by ICN from traditional IP tra�c, this study introduces a layer to OpenFlow.

It implements a specific communication channel and controller module that cooperates

with the existing OpenFlow communication channel.

There are also solutions for combining the ICN and SDN by utilizing the existing

features. One of them is proposed to integrate an ICN solution to the OpenFlow

networks, which maps the content name carried in IP options into a tag transported in

TCP and UDP port fields that can be used as a matching field by the OpenFlow [19].

Serval is a proposal for SCN, which aims to provide a solution for providing

services with multiple servers to the mobile users [20]. Their motivation is that the

traditional network structure does not fit the dynamic service environment. In order

to mitigate this challenge, they propose the Serval architecture with a Service Access

Layer above the network layer. This new layer provides name-based routing, decoupling

of control and data planes, and other service-level operations.

In addition to SDN, P4 becomes a promising solution for carrying out the key

functionalities to enable a service-centric model. Related work is prepared by Signorello

et al. [21], which utilized P4 to program the data plane to support ICN structure. The

main objective of the study is implementing the NDN paradigm, which is considered

an instance of ICN, through the fully programmable environment provided by P4.

The components of an NDN instance are implemented as a P4 program, and the

implementation details are explained in detail.
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2.2. Related Work on the Task O✏oad Operations

An optimal resource allocation scheme is crucial for providing user-centric services

depicting various requirements in a high-performance manner. In the literature, opti-

mization problems are defined in various contexts, and specific approaches are proposed

in task o✏oading. This section discusses the related works that focus on optimization

models of task o✏oading, service-centric network design and user-centric services with

various requirements.

In study made by Wang et al. [22], the authors propose a joint optimization model

for MEC-enabled systems, which includes an optimal resource allocation scheme aim-

ing to minimize the energy consumption of access points concerning the latency con-

straints. JCORAO [23] is an alternative approach for providing a joint optimization of

resource allocation and computation o✏oading methodology for Mobile Edge Comput-

ing (MEC). The proposed optimization model provides a policy for wireless channel

allocation and computation o✏oad scheduling in heterogeneous network environments.

The simulation results depict that JCORAO can decrease the energy consumption of

mobile terminals and the task completion time.

As discussed in the literature, MEC will play an essential role in the next-

generation cellular networks, 5G. In a study made by Zhang et al. [24], an optimal

resource allocation and task o✏oading scheme are introduced to enhance the users’

gains through task o✏oading. The gain in this context is described as the decrease in

the task completion time and energy consumption by mobile devices. This optimiza-

tion model is designed for MEC environments with multiple servers that are deployed

near the base stations. In another study, the authors the optimal o✏oading problem

is solved with a game-theoretic approach [7]. The problem is formulated as a game

among multiple users that o✏oad their computational tasks to nearby MEC servers.

The dynamicity of the edge network is taken into account for achieving an optimal

tra�c assignment. In a study made by Ceselli et al. [25], a framework is devised to
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optimize the tra�c assignments to MEC servers to satisfy the demands and meet the

capacity constraints of the facilities. In this study, a real dataset of mobile tra�c is

utilized to evaluate the performance of the proposed optimization model.

Besides MEC-based systems, Fog Computing is also a popular approach for

providing computation services at the network edge. A multi-objective optimization

methodology is proposed by Liu et al. [26], which utilizes queuing models for address-

ing the problems of energy consumption, execution delay and the unit cost of task

o✏oading to a nearby fog server.

While service latency is considered a constraint in some optimization problems,

another set of studies aim to achieve minimized latency within the network. In a study

made by Ren et al. [27], the authors suggest a model that minimizes the latency, con-

sidering the allocation of both networking and computation resources. In this study,

three di↵erent task execution schemes are investigated: (i) local execution, (ii) edge ex-

ecution and (iii) hybrid methodology, where some of the data is processed locally while

the rest is transmitted to the edge server. The optimal resource allocation model is

tested for the hybrid execution methodology through comparison among the execution

models. Similarly, Chen et al. [28] formulate the o✏oading problem with an SDN-based

solution for minimizing the delay while considering the energy constraints of the mobile

devices. Since MEC is proposed to serve latency-intolerant and computation-intensive

tasks within ultra-dense networks, the location where the task is processed becomes an

important criterion. The proposed solution employs controllers at macro cell BSs and

decides on the task assignment and resource allocation plans considering the residual

energy on the mobile device at that time.

The o✏oading problem is not only studied for Edge Computing systems but also

for multi-tier computing architectures. The study made by Tong et al. [29] considers a

hierarchically deployed set of computation resources. An adaptive workload assignment

algorithm is proposed to enhance the resource utilization e�ciency among di↵erent

tiers, especially during peak times.
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Table 2.1. Summary of the related studies on task o✏oading optimization.

Study Di↵erentiated

Service Types

Realistic Delay Model Methodology Fairness

[31] - Only Computational,

Objective

Simulation -

[32], [26], [33] - Available, Objective Simulation -

[34], [23], [7],

[30], [35]

3 - Simulation -

[36] 3 - SDN Simulation -

[25], [37] 3 - Optimization + Heuristic -

[38], [39] 3 Only Network, Objective Simulation -

[40] 3 Available, Objective Simulation -

[41] 3 Available, Objective Optimization +

Simulation

-

[42], [43] 3 - Testbed + Simulation Among Users

[44], [45], [46],

[47]

3 - Simulation Among Users

[48] 3 Only Network, Objective Testbed Among Services

[49] 3 - Testbed Among Services

This thesis 3 Available, Constraint Optimization + Heuristic Among Services

The service or user characteristics should also be considered while achieving an

optimal task o✏oading and resource allocation scheme. A multi-objective optimization

model is proposed by Malekloo et al. [30] to handle balance among QoS requirements of

SLA definitions and the energy consumption of virtual machines. Within this context,

a multi-objective Ant Colony Optimization (MACO) is applied to save energy and

minimize the possible SLA violations in cloud environments.

Zheng et al. [50] formulate a resource allocation scheme to provide fairness among

the users by considering the energy constraints and QoS requirements. The QoS re-

quirements are integrated into the optimization model as a constraint, where a certain

level of QoS should be guaranteed. However, the QoS metrics and criteria are not

discussed in detail. In a study made by Kolomvatsos and Anagnostopoulos [51], the

task allocation problem is divided into two steps where the first step tries to decide
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whether the task should be o✏oaded or not. In the second step, the task is decided to

be executed on a group of peers or a fog server. The decision process is directly related

to task characteristics such as priority, complexity, and execution requirements.

On the other hand, an SDN-based algorithm is proposed to provide load bal-

ancing among the links considering the service types. The northbound applications

implemented over the SDN controller can be aware of the service type and extract the

load information throughout the network. The proposed system di↵erentiates services

through their QoS requirements, including link bandwidth requirements, packet loss

rate and acceptable delay values. A similar SDN-based approach is provided by Bah-

nasse et al. [52], where QoS requirements are considered for VoIP, video streaming,

HTTP, and ICMP tra�c flows. The main QoS criteria for di↵erentiating the services

are jitter, latency, packet loss rate, and delay time.

Healthcare applications are concrete examples of user-centric services with latency

limitations. In a study made by Elhoseny et al. [53], the main objective is enhancing the

performance of the healthcare systems by addressing the issues of patients’ data stor-

age, real-time interaction, and execution time. A Genetic Algorithm, Particle Swarm

Optimization and Parallel Particle Swarm Optimization are implemented to optimize

the resource allocation through VM selection. The specific criteria that are taken into

consideration by the proposed model are the CPU utilization values, turn-around time,

and waiting time. Another framework that focuses on the requirements of healthcare

applications is proposed by Chen et al. [54]. The edge-based healthcare system ad-

dresses the issue of computing resource allocation for monitoring and analyzing the

health status of the end-users. To enhance the QoE levels and meet distinct require-

ments of the healthcare applications, the users are prioritized according to their health

risk levels for allocating the limited resources.

The properties of the related studies and approaches utilized there are presented

in Table 2.1. As observed, some of the studies do not provide a detailed delay model

in order to calculate the end-to-end service latency for each request, considering both
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networking and computational resources. On the other hand, there also exist studies

that include a realistic delay model by only dealing with the network latency or the

delay contributed by all the computational resources. One way or another, these studies

formulate an objective function to minimize the service latency, instead of defining the

service latency as a constraint defined by the SLAs.

Besides this, di↵erent service types and their unique requirements are not ex-

amined exhaustively by other studies. Additionally, most of the studies that discuss

the concept of di↵erentiated service types do not address the fairness among various

services, considering their requirements. In terms of the main approach for solving the

problem of resource allocation and task assignment, some of the studies evaluate the

performance of the proposed solutions through a simulation environment and do not

report an optimality gap.

As a result of examining the properties of related studies and their approaches,

the original contributions of this thesis and unique benefits of the proposed techniques

are summarized as follows:

• Di↵erentiating service types considering their distinct requirements,

• Providing a detailed delay model including both networking and computational

resources,

• Investigating a service-oriented environment with the multi-tier structure of the

computational resources,

• Formulating the end-to-end service delay as a constraint to ensure that service

requirements defined in the SLAs are satisfied for more realistic use cases,

• Providing two di↵erent optimization models and evaluating the performance

through randomly generated instances,

• Maintaining the fairness among di↵erent service types,

• Implementation of a heuristic approach based on the nearest-fit algorithm for

addressing the scalability issues.
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2.3. Related Work on the Network Slicing Operations

The network slicing concept, configuration, and optimization of the slice instances

currently have an essential place in the literature. Several methodologies may be

applied within the network while maintaining the isolation among dedicated virtual

resources. Software-defined networking (SDN), NFV, SFC, and other supportive tech-

nologies may play a significant role in the process of integration of the slicing concept

into a dynamic networking environment [55]. Regardless of the technology or approach

adopted to leverage the isolated slice instances, optimization of these operations is of

a particular importance for satisfying the high-performance expectations.

PERMIT [56] is a network slice orchestration mechanism for enhancing the per-

sonalization of the next-generation cellular networks. It is aimed to replace the uniform

services that are currently o↵ered by LTE with a set of services under various require-

ments. This study proposes to integrate NFV, SDN, Edge Computing, and cloud on

top of the network slices to remove the overhead of uniform network services. Slices

are configured and instantiated in per user resolution. However, it is stated that there

may be cases that necessitate slicing per device or application.

The optimization of the slice management is critical for achieving isolation among

slices. In a study by Addad et al. [57], a slice instance is defined as a set of SFCs that

are composed of Virtual Network Functions (VNFs). An MILP model and a greedy

heuristic approach are proposed to minimize the slice deployment and operation costs.

Additionally, assignments and slice mapping operations are also optimized. However,

only the servers within the core network are considered as the sliced resources. In

order to evaluate the performance, the proposed MILP model is run on the Gurobi [58]

optimization solver, while the proposed greedy heuristic is implemented with Python.

Guan et al. [59] consider both networking and computational resources through-

out the slicing processes, including wireless access. A mathematical model is proposed

for constructing the slice requests and mapping them to the physical infrastructure.
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By this mapping, the deployments of the VNFs are optimized, and links are selected

for the SFC operations. The proposed solution adopts the complex network theory, in

which the primary objective function di↵ers from case to case: enhanced mobile broad-

band (eMBB), massive machine-type communications (mMTC), and ultra-reliable and

low-latency communication (uRLLC). For instance, for eMBB slices, the objective is

to maximize the remaining capacities of the resources, An Integer Linear Program-

ming (ILP) model and a heuristic algorithm are proposed, and the performance of the

solutions is evaluated with simulations.

While maintaining the isolation among the slices, Kasgari et al. [60] minimize the

transmit power between the base stations and users. Two di↵erent slices are considered

by the proposed framework: reliable low latency (RLL) and self-managed (capacity

limited). A stochastic optimization solution based on Lyapunov drift-plus-penalty

method is applied to achieve slices for wireless access. The necessary level of isolation

is maintained if the number of users to be served does not exceed the maximum value

specified in the contract. The proposed solution is evaluated through simulations.

Han et al. [61] consider only the networking resources for the slicing operations.

An online optimizer based on genetic algorithms is proposed for the network slicing

problem and inter-slice resource management. While the proposed approach aims to

maximize the utility within the network, the utility can be customized according to the

need of slices. The presented utility model and long-term strategy optimization model

are non-convex. Thus, a heuristic based on the genetic algorithm is proposed. The

performance of the genetic algorithm implementation is evaluated through simulations.

The network slicing concept is also adopted for the vehicular edge computing

environments. In the study made by Xiong et al. [74], a slicing scheme is proposed

to address the problem of dynamic mobility of the vehicles and allocation of the fog

resources. The proposed slicing approach is based on Monte Carlo tree search to

accommodate the network tra�c in an e�cient manner. The main focus is on slicing

Radio Access Network (RAN) and fog nodes to minimize the V2V outage probability.
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Table 2.2. Related studies on network slicing optimization and their properties.

Study Objective Slicing the

Netw.

Resources

Slicing

Comp.

Resources

Per

Service

Slicing

Service

Placement

Resource

Reserva-

tion

Optimization

Solver

[57] Min. the operation costs 3 3 7 3 7 3

[59] Various objectives 3 3 7 3 7 7

[60] Min. the power consumption 3 7 7 7 7 7

[61] Max. the network utility 3 7 7 7 7 7

[62] Min. the ratio between actual

and maximum latency

7 3 3 3 3 7

[63] Max. the profits generated by

slice rentals

3 3 3 7 3 7

[64] Minimizing the total latency

of computing tasks

3 3 7 3 3 7

[65] Maximizing the total number

of linked resource blocks

3 7 7 7 7 3

[66] Max. the fairness 3 3 3 7 7 7

[67] Max. the resource e�ciency

and profit

3 3 7 3 7 7

[68] Min. the delay 3 3 7 3 7 3

[69] Max. the overall system

utility

3 3 3 3 7 3

[70] Max. slice utility 3 3 7 3 7 7

[71] Max. revenue of the service

providers

3 3 7 3 7 7

[72] Max. the total throughput 7 3 7 3 7 7

[73] Min. the mean response time

in the system

3 3 7 7 7 7

[74] Min. the V2V communication

outage probability

3 3 3 7 7 7

[75] Min. the weighted hops 3 7 7 3 7 7

This

thesis

Min. the SLA violations 3 3 3 3 3 3

In the study made by Wang et al. [67], an optimization framework is proposed

to both maximize resource e�ciency and profit by defining two separate problems

from the perspective of a slice provider and a slice customer. A distributed algorithm

is proposed for analyzing the tradeo↵ among the objectives and handle the utility

maximization for both operators and customers. Since the proposed approach considers
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the dynamic management of the slice instances, the simulations compare the results

obtained through the distributed algorithm with a static slicing approach where slice

requests are processed without any reconfiguration.

The requirements of the network slices are also recently addressed by the applica-

tion of learning algorithms [76]. Hua et al. [77] propose a Deep Reinforcement Learning-

based approach for useful resource management in network slices. The varying demands

within RAN of 5G networks are considered to satisfy the SLA requirements of the ser-

vices. Similarly, Chergui and Verikoukis [78] apply a Deep Learning methodology to

provide a dynamic end-to-end network slicing functionality. The required resources are

estimated through the neural network so that the SLA requirements are not violated.

According to the details of the reviewed studies and the analysis of more that is

depicted in Table 2.2, it can be deduced that our proposed solution for the optimiza-

tion of the network slicing operations di↵ers from the related ones in the literature.

Most of the studies do not consider the virtualized resources of both networking and

computational resources with capacity allocation for each slice. Besides, the slicing

concept is generally applied for 5G networks with the proliferation of NFV technology.

However, the proposed solution in the thesis is generally applicable in heterogeneous

environments, and the realistic SLA requirements of the services are considered with

the objective of the minimization of the SLA violation in a network. The proposed MIP

model solved with optimization tools, and a heuristic implementation is proposed for

the scalability issues. The performance of both solutions is analyzed with an extensive

set of test environments.
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3. BACKGROUND

The main objective of this thesis is to implement the service-centric behavior

through programmable network paradigms and optimizing the operations within this

environment. Before going into the details of the corresponding solution approaches

and methodologies, it is essential to provide a brief overview of the technologies that

are the elementary units of this thesis. In this section, the background information

related to service-centric networking, Edge Computing, network slicing and SDN may

provide a general understanding of the solution methodologies.

3.1. Service-centric Networks

The ancestor of the service-centric model is the Information-Centric Networks

(ICN), which aims to transform the operations of the traditional networks [79]. The

current network infrastructure and TCP/IP protocol stack focus on the location of the

hosts (i.e., IP addresses). In other words, there is a host-centric mechanism where

routing operations are executed through the IP addresses within the packet headers.

However, ICN proposes that content itself becomes more important than its location

[80]. This transformation requires a technique to access the content independent from

its location. Therefore, instead of explicitly identifying a definite server by its IP

address, there is a need for a naming scheme that describes the content itself.

The terms ICN [81] and content-centric networking (CCN) [15] become more pop-

ular in the literature for addressing the problem of traditional IP-address or location-

centric model. Although they share the same objectives and architectural features,

there are some di↵erences between them, such as name resolution, routing, caching and

Named Data Objects (NDO) granularity [82]. SCN emerges as an extension of ICN

as the Internet becomes the pool of novel services. In addition to the contents, SCN

states that services are the main elements of the Internet, and they need to be handled

with an e�cient orchestration scheme to deploy and replicate the instances over the
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servers dynamically [83]. It is discussed that content-centric schemes should be gener-

alized towards a service-centric architecture because the Future Internet is envisioned

as a supporting mechanism for services such as file storage/retrieval, video streaming

and location-based services [9]. As new service types emerge with innovative com-

munication and computation methodologies, service management and orchestration

operations, client mobility, and dynamic environment characteristics are not aligned

well with the current TCP/IP protocol stack. Correspondingly, SCN is proposed to

support e↵ective service management [20].

Figure 3.1. Di↵erence between ICN and SCN.

In SCN, clients can request for a service type by sending the input data required

for the code execution at the server-side, and output is formed as a result [33]. In order

to exemplify this operation, let us consider an end-user requesting the face recognition

service with an image as input. The corresponding server hosting this service executes

the necessary code routines and generates a response with the execution result. Even

though both ICN and SCN possess parallel objectives, the main di↵erence between

them is the task execution with input data, which is illustrated in Figure 3.1.
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Predictably, modifying the existing protocol stack that is around for decades is not

an easily applicable solution. Therefore, a supportive mechanism that is interoperable

with the existing infrastructure and technologies is mandatory. From this perspective,

the orchestration of the services requires a set of processes, including a scheme of service

identification, service discovery, sub-service resolution and service mobility.

3.1.1. Service Identification

Since the legacy TCP/IP protocol stack was initially designed for providing end-

to-end communication through IP addresses and port numbers, it remains incapable of

handling the information-centric functionalities. The emergence of specialized gadgets

and an increase in the number of services requested by the devices are reforming ICN

as a service-centric model. Services that are infeasible to be executed on the device

due to capacity restrictions can be deployed over the servers and executed there [10].

The service replications may be distributed all over the network, and requesting them

via a specific IP address cannot be the desired procedure to satisfy the user experience.

Therefore, a model that uniquely identifies the services, including their sub-services,

and eliminates the obligation of prior knowledge about the destination server’s IP

address is still necessary.

The naming scheme should be unique for each service type. Like DNS (Domain

Name System) operations, the user application embeds the information of service iden-

tity into the request, and the service orchestrator resolves it. Then, this request is

forwarded to a server, which is determined by the orchestrator capable of handling and

executing the particular service procedures. All these complex operations need to be

hidden from the end-user for an enhanced experience with real-time interaction.

3.1.2. Service Discovery

The service components (i.e., code and instructions) may be distributed over a

wide area to improve the user experience and fulfill the requests as soon as possible. As
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mentioned, the user application has information only about the requested service and

its identification. The orchestration mechanism inspects the request and maintains

the set of servers that can execute the corresponding service routines. It achieves

these resolving operations through a mapping table that is frequently updated with

the information supplied by the servers after each service deployment and replication.

Including the user application in these operations not only increases the complex-

ity but also deteriorates the user experience. Therefore, the only action that a user

ought to take is to create a new request by specifying the service identity, and the rest

should be isolated from the user.

3.1.3. Sub-Service Resolution

As proposed by Mobile Cloud Computing (MCC), the computation o✏oading can

occur at the method/function resolution [84]. In other words, each part of the code

can be executed independently from the remaining parts. While some of the methods

can be executed on the device itself, the remaining can be o✏oaded to a server with

an RPC/RMI fashion to conserve energy and decrease the execution time.

Similar approach can be applied to the service context. For example, a face

recognition service consists of several procedures such as noise reduction, face detection

and feature matching. The implementation needs to follow a certain way to divide these

methods into segments to be executed separately in a parallel or sequential manner.

Hence, we need to define a sub-service resolution where the user does not need to

request the service as a whole. Instead, the application should be able to request

only an intended subset of the procedures. This methodology provides a realistic

environment and models the actual granularity between the devices and the servers.
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3.1.4. Service Mobility

When the demand for a service increases to a level where the server fails to

meet the requests, it is possible to deploy its replication on another server. Applying

this feature to all services within the network creates a dynamicity that is di�cult to

handle. Tracking the new service deployments and keeping the mapping table updated

is critical in the service-centric model. In addition to this, service or virtual machine

(VM) migration may be realized for energy e�ciency and performance enhancement.

Providing a seamless migration without disrupting the service continuity for the end-

user is essential for the multi-tier orchestration mechanisms.

3.2. Edge Computing

The proliferation of edge devices, including smart glasses and smartwatches, cre-

ates a necessity to process at least some of the data at the edge rather than carrying

them to the remote data centers. It is a vital operation for minimizing not only the

service delay but also energy consumption. Recently, there have been many proposals

for the operation and architectural design of the Edge Computing systems. It is no

coincidence that the terms Mobile Cloud Computing (MCC) [85], Cloudlet [86], Fog

Computing [87], Edge Computing [88], and Multi-access Edge Computing (MEC) [89]

are all hot topics in the literature. All these proposals define various practical im-

plementations for Edge Computing. These approaches have common grounds when

carefully inspected but di↵er in their target use cases and deployment models. Edge

Computing is an umbrella concept that covers a range of practical schemes.

3.2.1. Edge Computing Paradigm

Although intended for di↵erent parts of the overall network, edge computing and

cloud computing are interrelated paradigms that complement each other. Analyzing

the features of various edge proposals [90, 91], a comparison between cloud and edge

computing technologies is depicted in Table 3.1.
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Table 3.1. Di↵erences between cloud and edge computing.

Requirements/Features Cloud Computing Edge Computing

Latency High Low

Network Access Type Mostly WAN LAN(WLAN)

Server Location Anywhere within the network At the edge

Mobility Support Low High

Distribution Centralized Distributed

Task/Application Needs Higher computation power Lower latency

User Device Computers, mobile devices (limited) Mobile-smart-wearable devices

Management Service Provider Local Business

Number of Servers High Low

State Soft and hard state Soft state

Figure 3.2 compares the various approaches for providing the necessary compu-

tation power to the users at the edge. Conventional datacenter design is highly regular

with identical servers and networking hardware aligned in a grid-like fashion. Although

at the edge of the network, MEC still depicts a more rigid and well-defined structure

than other edge computing proposals. The main reason for this behavior of MEC

is its envisioned existence in a telecommunications infrastructure, which is inherently

regulated. Functionality served over MEC will not be some individual services locally

available to the edge users but will be highly controlled and orchestrated in accordance

with the overall state of the 5G network.

Compared with MEC, Cloudlets and Fog Computing solutions have less stringent

hardware and application execution model constraints. A Cloudlet hardware can be

a micro-sized server in a co↵ee shop where WLAN allows users to carry out code

o✏oading. Fog servers can be co-located on a networking device to handle the IoT

tra�c at the edge. In that respect, Cloudlet and Fog have much wider design spaces

allowing irregularity.

The utilization of various edge computing proposals and traditional cloud servers

is illustrated in Figure 3.3. Smart devices, vehicles and IoT-related appliances can
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o✏oad their tasks to the edge servers, accessible at one hop through di↵erent access

technologies. Simultaneously, a subset of requests can be directly forwarded to the

traditional cloud datacenters through WAN, or the edge servers may operate as an

intermediate computation layer to pre-process the o✏oaded tasks.

Figure 3.2. Comparison among the edge computing spectrum.

3.2.2. The Need for Edge Computing

The causes that lead to the emergence of Edge Computing are discussed briefly

to form a basis for the edge server proposals.

3.2.2.1. Real-time QoS & Delay Sensitiveness. Although these end-user devices are

as powerful as they have never been so far, most of them still lack enough capacity

for accomplishing real-time use cases with the pre-defined QoS requirements. Cloud

computing is acknowledged as a remedy for limited-capacity devices by providing a pool

of computation and storage resources. However, wearable devices and IoT are designed

for delay-sensitive use cases. Since most of these devices demand high QoS requirements

because of the mobility, interactive environment and real-time requirements, legacy

cloud servers cannot be the sole solution because of the indefinite WAN delay.
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Figure 3.3. The possible cooperation of edge technologies and cloud computing.

3.2.2.2. Battery Lifetime. Energy consumption is one of the most critical parameters

for mobile devices [92]. Although smartphones’ processing capabilities enhance steadily,

their battery life does not improve at the desired rate.

One of the main objectives of task o✏oading is to decrease energy consumption.

The related studies show that o✏oading reduces the total energy consumption [93–95].

O✏oading can be achieved through two approaches: (i) cloud servers and (ii) edge

servers. Although the o✏oading operations inherently decrease the energy consump-

tion, utilization of edge servers decreases it further. Ha et al. [96] analyzes energy

consumption rates for applications such as face recognition and augmented reality. It

is stated that o✏oading tasks to the edge servers results in lower energy consumption

than cloud servers. Unsurprisingly, executing these applications on the device leads to

the highest energy consumption among all methodologies.

3.2.2.3. Regulating Core Network Tra�c. The limited bandwidth of the core network

makes it vulnerable to congestion. In 2023, it is expected that there will be 13.1 billion
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mobile devices [97]. As a result, operators face di�culties in managing cumulative data

tra�c with varying sizes and characteristics.

In the traditional approach, the tra�c generated by the edge devices flows through

the core network to access cloud servers. If we keep the tra�c at the edge, the burden

on the core network is relieved, and the bandwidth utilization is optimized [98]. This

shift in operations prevents the consumption of the limited bandwidth of the core

network by billions of devices at the edge. Therefore, the core network tra�c becomes

manageable in size and the orchestration functions are simplified.

3.2.2.4. Scalability. The tremendous increase in the number of end-user devices cre-

ates a significant scalability problem [99]. In order to support the dynamic demands

and continuously varying expectations, the cloud can be scaled accordingly [100]. How-

ever, sending tremendous volumes of data to cloud servers create congestion within the

datacenters [101]. The changing characteristics and massive amount of the data traf-

fic generated by IoT and wearable devices make the operators’ duties more di�cult.

With these Cloud computing’s centralized structure falls short of providing a scalable

environment for the data and applications with these rates.

3.3. Network Slicing

Deploying the replications of the service code throughout the edge of the network

and o✏oading the end-user application tasks to the resources in the vicinity solely

is not useful in practice. Assuming that various services coexist in a heterogeneous

setting and the o✏oad operations are handled by the same physical infrastructure, the

demand or load increase for a service may degrade the adjacent services’ performance.

The congestion caused by the services and introduction of a new application in this

environment may a↵ect the performance of all previously deployed services. Therefore,

it becomes necessary to provide isolation among the service types and share the physical

resources fairly.
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Figure 3.4. Di↵erent colors representing isolated slice instances for each service type

within an edge computing environment.

The network slicing approach, which is proposed initially by the NGMN (Next

Generation Mobile Networks) Alliance, aims to achieve the desired level of flexibil-

ity and scalability by enabling the isolation among the slice instances through logical

networks [102]. By partitioning the physical resources and assigning the allocated ca-

pacity of the virtual resources to the slice instances, the isolation can be preserved for

accommodating high-performance services. According to Open Networking Foundation

(ONF) [103], the bandwidth of a network link, the forwarding tables and processing

capacity of a networking node, and the computation capacity of a server can be parti-

tioned into virtual resources. By reserving a specific physical resource capacity, either

networking or computational, through the virtualization approaches, a slice instance

may not be a↵ected by the fluctuations or faults within an adjacent slice. Thus, the

projected performance can be maintained continuously. An example scenario of slic-

ing the network into isolated partitions is depicted in Figure 3.4. In an environment

where emergency applications share the same physical infrastructure with other edge

computing use cases, di↵erent colors on the network links and edge servers correspond

to isolated slices for di↵erent service types.

The network slicing paradigm is initially targeted for 5G networks where the

verticals’ diversified requirements should be satisfied over the same networking infras-

tructure [104]. A slice instance may be composed of VNFs and the operations of SFC
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for tra�c steering. As envisioned by the International Telecommunication Union (ITU)

and 5G-PPP, there are be three di↵erent application classes that should be handled in

the next-generation cellular networks: eMBB, mMTC (e.g., smart transportation and

autonomous driving [105]), and critical services as uRLLC [106].

For example, in a vehicular communication scenario, to provide reliable com-

munication between the vehicles and road side units, the envisioned applications for

autonomous driving, vehicular emergency, and infotainment should be allocated with

adjacent slice instances on the same physical infrastructure [107]. As 5G networks

become a catalyst for innovative vehicular scenarios, the network slicing concept takes

an essential place in providing the necessary QoS level required for ultra-reliable vehic-

ular communication, and safe transportation [108]. Considering a vehicular emergency

scenario, an ambulance or an emergency team should arrive at the place of an acci-

dent immediately [109]. The network and computation resources should be allocated

to an emergency service slice to maintain high connectivity and QoS for the related

applications (e.g., path recommendation and emergency call).

These concepts apply not only to the operators but also to the service providers.

In order to ensure all these divergent demands in the form of performance requirements

(e.g., data rate, latency), end-to-end slices should be initiated through dedicated virtual

resources with optimized capacities, both within the network for tra�c routing and on

the edge servers for the execution of the complex application routines.

3.4. Programmable Networks: Software-Defined Networking & P4

3.4.1. Software-Defined Networking and OpenFlow

It is envisioned that SDN can o↵er a remedy for a broad set of challenges en-

countered within the scope of the traditional networking approach and operations.

Similarly, when the intrinsic properties of SDN are considered, fruitful cooperation

with the edge computing framework can be foreseen.
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SDN is proposed for using the limited network resources optimally and enabling

flexible network management by separating the control layer from the data layer [110].

Since the main logic is extracted from the networking nodes that are no longer capable

of making decisions on their own, it is concentrated on the software-based controller

with a general view of the underlying network [111–114].

Figure 3.5. A view on SDN architecture for edge computing.

Routing and forwarding behavior of the network elements can be inquired and

modified upon customized policies defined by the SDN controller. These policies

are applied to modify and populate the flow tables of the network nodes the with

match/action flow rules. When there is an incoming packet, the corresponding switch

initially checks its flow table to match this packet with any rule. If found, it applies the

action defined by the matched flow rule. Otherwise, the switch bu↵ers this packet for a

limited time and forwards an encapsulated replication to the controller for determining
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the most appropriate action according to the policy [115]. The SDN controller then

decides on an action to be applied on this packet and installs the necessary flow rule on

the corresponding switch for applying the same action on similar packets in the future.

All operations of SDN and the flexible communication between the controller and

the switches are carried out with the OpenFlow protocol [115,116], which is developed

by ONF [117]. OpenFlow represents the main functionalities of SDN, such as managing

the flow tables on the forwarding nodes, populating them, defining flow rules, gathering

statistics, and many other managerial operations.

The layers of the envisioned SDN architecture for orchestrating a multi-tier edge

system is depicted in Figure 3.5:

• Edge layer

• SDN infrastructure

• Northbound applications

There are servers positioned at the bottom layer to handle the user requests and

various edge devices demanding services through o✏oad operations. At the intermedi-

ate level, the traditional SDN infrastructure composed of OpenFlow-enabled switches

and the SDN controller is organized. Although SDN considers them as separate planes

(i.e., data and control planes), it forms the typical SDN infrastructure where the re-

sponsibilities of both the controller and forwarding nodes are clearly defined. The

novelty of this adapted SDN architecture is specified by the top layer, which consists

of customized and virtualized northbound applications that define the behavior of the

control mechanism and policy to be applied on the managed network. Service manage-

ment and orchestration, optimal resource allocation and mobility management can be

concrete examples of orchestration applications for an edge environment. These appli-

cations that define the network behavior can communicate with the controller through

the northbound interface API implemented by the controller [113]. The high-level

commands as policy rules generated by the northbound applications are forwarded to
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the controller via the northbound API, which is not standardized yet [114]. Then, the

controller transforms these commands into low-level OpenFlow messages to be sent to

the data plane [118]. In distributed control plane where several controllers are deployed

over geographically distant servers, a mechanism is necessary to provide communication

between the controllers for synchronization through east/west interfaces.

3.4.2. P4 Language

The fixed-function chips available in the networking nodes and TCP/IP proto-

col stack remain infeasible to accommodate the functionalities of the service-centric

approach. Handling and routing the network packets according to a new protocol

is challenging for the traditional network infrastructure. Integrating new protocols

without replacing the networking devices or upgrading the firmware is not a practical

approach. Therefore, there should be a certain level of programmability and flexibility

to realize the desired functionalities of an innovative operation, such as implementing

the service-centric model.

Although the current pioneer of the programmable networks in the form of SDN

and OpenFlow provides a solution alternative for enabling a service-centric approach,

the level of provided programmability is a restricting factor in the long term.

P4 is a language that provides a fully programmable environment, instead of the

partial programmability brought by OpenFlow, which is the primary mechanism uti-

lized for our initial solution for the service-centric model [12]. Due to its nonrestricted

operations, P4 has proved itself a promising candidate to perform innovative operations

within the network.

P4 (Programming Protocol-Independent Packet Processors) was proposed in 2015

by the P4 Consortium, in which the pioneers of SDN also have an essential role [119]. It

promises the fully programmable data planes through a high-level language developed

explicitly for defining the behaviors and characteristics of the networking nodes. With
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P4, any protocol can be implemented from scratch, and how switches process each

packet can be customized. By enhancing the degree of flexibility, P4 mitigates the

limitations of SDN, enables protocol-independency and paves paves the road for vendor

independence by eliminating the need for specific firmware updates or chip upgrades.

Table 3.2. Comparison of SDN/OpenFlow and P4.

Property SDN/OpenFlow P4

Proposer Open Networking Foundation

(ONF)

P4 Consortium (Common mem-

bers with ONF)

Programmability Partial Full

Centralized Controller Available Available

Gathering Statistics Available Available

Populating Tables Available Available

Creating Custom Tables Not Available Available

Matching Fields Fixed (40+ fields Layer2/3/4) User-defined

Possible Actions Fixed User-defined

Topology Detection Available Not Available

Protocol-independency Not Available Available

Fault Detection Available Not Available

The recent version of OpenFlow (v1.5.1) [120] supports 40+ packet header fields

(Layer 2/3/4) for the matching mechanism. Although this number was lower in the

previous versions, there is still protocol-dependency that constructs a barrier for accel-

erating innovation. The limited progress in OpenFlow and restricted set of matching

fields are the main obstacles to implement the SDN-based service-centric model. The

capability of defining custom headers is the main argument for applying P4 to leverage

service-centricness. P4 is not proposed as a replacement for OpenFlow, but it addresses

the limitations in the SDN. While OpenFlow supports partial-programmability, P4 en-

hances the degree of flexibility and creates the opportunity to define customized be-

havior for each packet processor. Similar to the OpenFlow, P4 Runtime API provides

functions to populate and organize the match/action tables. The detailed comparison

of SDN/OpenFlow and P4 is summarized in Table 3.2. As observed, there are common

features, but each technology is specialized in specific responsibilities and objectives.
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4. SLA-AWARE OPTIMAL RESOURCE ALLOCATION

Each of the services provided by the multi-tier computing architecture (e.g.,

healthcare applications, infotainment through video streaming, vehicular communi-

cation and augmented reality) has its own set of requirements and characteristics.

Maximum tolerable service delay, code complexity, generated load within the network,

and the minimum required satisfaction level can be given concrete examples. Consid-

ering these properties, the network infrastructure and orchestration mechanism should

treat them accordingly to comply with the SLA definitions. Within this context, a fine-

tuned SLA-aware resource allocation and task assignment scheme is a key component

to handle the service requests generated at the network edge.

Figure 4.1. Service-oriented environment and SLA definitions of the services.

Correspondingly, this section introduces an SLA-aware optimal resource alloca-

tion scheme designed for the service-centric multi-tier computing architecture. Before

providing the details of the proposed solution approaches, the main problem compo-

nents within the multi-tier computing architecture based on service-oriented operations

are defined.
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4.1. Problem Definition

In a multi-tier service-centric environment as depicted in Figure 4.1, the main

objective is to maximize the number of handled requests through an optimal resource

allocation scheme while maintaining service quality above a predefined level. The

resource allocation decisions have to be determined so that the delay constraints and

other requirements of each service instance are met.

This thesis considers two di↵erent problem definitions based on the behavior of

the services and the context of the SLAs:

• Undi↵erentiated set of services where each service type has the same priority

• Fairness among the services through a minimum satisfaction ratio imposed by

SLAs.

While defining these problems, we assume that the following parameters are spec-

ified in advance:

• Locations of users, servers, and service instances

• Network topology

• Capacities of the network and computational resources

• Service attributes and requirements

• Average number of requests by each user for each service type

To model an SLA-aware service-centric environment, the network topology G =

(N,E) is assumed to be given in advance, where N and E represent the nodes and the

links connecting the nodes, respectively. The capacity of each networking node n 2 N

is denoted by cn, and the capacity of each link {i, j} 2 E is represented by aij, in terms

of Mbps. Similarly, the computation infrastructure capabilities, service attributes, and

requirements are considered input parameters for the model. The set S denotes the

servers throughout the network, and Q represents the set of service types with di↵erent
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requirements. The capacity of each server s 2 S is denoted by bs in terms of million

instructions per second (MIPS). A binary parameter vqs takes value 1 if service type q

is deployed on server s, and 0 otherwise.

Table 4.1. Set and parameter notations.

Definition Notation

Network topology G = (N,E)

Networking nodes N = {n1, n2, n3, ...}

Networking links E = {e12, e13, e14, ...}

End-users U = {u1, u2, u3, ...}

Servers S = {s1, s2, s3, ...}

Service types Q = {q1, q2, q3, ...}

Server capacity bs

Node capacity cn

Link capacity aij

Service deployment vqs

Computational load of service type q mq

Network load of service type q l
req
q , lresq

Maximum allowed delay for service type q ↵q

Tra�c requirements ruq

Each service may demand a particular capacity of both networking and computa-

tional resources. The expected number of instructions (in millions) to be executed for

service type q 2 Q is represented by mq. On the other hand, the service requests and

corresponding responses may contribute to the network load in di↵erent amounts. A

service type q request and its corresponding response generate an amount of load equal

to l
req
q and l

res
q on the average in terms of Mbit, respectively. The user-centric services

deployed over the multi-tier system are latency intolerant. Therefore, their SLAs assert

a maximum acceptable delay to be satisfied. The upper limit of the overall latency

for service type q, maximum acceptable end-to-end latency value is denoted as ↵q in

seconds which consists of networking and code execution operations.
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Finally, the set U refers to the end-users in the system and the average number

of o✏oading operations requested by user u for service type q in a unit time interval is

denoted by ruq. All index sets and parameters that are utilized in the following models

are summarized in Table 4.1.

4.2. MINLP Model Formulation

4.2.1. Model Formulation for Undi↵erentiated Services

The first optimization problem consists of various services with di↵erent charac-

teristics deployed throughout the multi-tier computing architecture. The services are

non-prioritized, and fairness is not of concern. Remarkably, the network and computing

infrastructure does not commit privilege to any service in terms of resource allocation.

The primary goal of the problem is to handle the service requests within the

specified delay constraints. Therefore, the objective function is to maximize the total

number of accomplished service requests, which can be formulated as

max z =
X

u

X

q

ruq✓uq (4.1)

✓uq =

8
>>>>><

>>>>>:

1, if o✏oading services of type q

by user u is successfully handled

0, otherwise

(4.2)

where ✓uq is a binary variable that represents the status of the o✏oaded task for service

type q demanded by user u. If requests of user u are successfully handled by the multi-

tier system, ✓uq = 1, otherwise, ✓uq = 0 indicating that requests are discarded.

Since the service-centric environment aims to allocate the most feasible resources

for the requests, it is essential to analyze the task assignments. In order to enhance

the resolution, the objective function and the related constraints can be written as
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max z =
X

u

X

q

X

s

ruq✓uqs (4.3)

s.t.

X

s

✓uqs  1 8u, q (4.4)

✓uqs  vqs 8u, q, s (4.5)

✓uqs 2 {0, 1} 8u, q, s (4.6)

where ✓uqs is a binary variable representing whether the request for service type q

demanded by user u is handled by server s within the multi-tier system. Therefore, the

objective function can be formulated as maximizing the number of satisfied requests

considering all users, service types, and servers. In constraints (4.4), it is defined that

a request can be handled by at most one server and constraints (4.5) indicate that

the assignment operation can be valid if the requested service type is deployed on the

server. Constraints (4.6) enforce that ✓uqs is a binary decision variable.

Since most user-centric services are delay-sensitive, the end-to-end delay expe-

rienced by a task o✏oad operation should be lower than the acceptable delay value

specified by the SLA of the corresponding service type. This can be expressed as

⌧uqs  ↵q 8u, q (4.7)

where ⌧uqs denotes the expected end-to-end latency of a type q service request by user

u when handled by server s. When the life-cycle of a service execution is analyzed, we

can observe that the following actions contribute to the overall delay:

(i) Routing the service request from the end-user location to the server-side

(ii) Executing the service code

(iii) Routing the response of the execution as output from the server back to the

end-user device
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Both networking and computational resources are considered while calculating

the overall delay, including the operations mentioned above. Within this context,

traditional queuing models represent the behavior of resources in terms of processing.

Once the task assignment decision and the corresponding server is determined through

the ✓uqs variable, the path with the minimum number of hops between the user and

the target server is chosen for routing. On this shortest path, the delay contributed

by the network nodes is calculated through the M/M/1 queuing model. However, the

optimization model is flexible enough to incorporate other delay models if necessary.

Let Nus 2 N be the set of nodes on the min-hop route between the location of user

u and the location of server s. The expected networking delay of routing the service

type q request from the end-user to the destination server can be calculated as

X

n2Nus

l
req
q

cn �
P
q

P
(u,s):
n2Nus

ruq(l
req
q + lresq )✓uqs

. (4.8)

Since the request and the response of an o✏oading operation are assumed to

follow the same route in reverse order, the network delay for forwarding the response

back to the end-user is calculated similarly as

X

n2Nus

l
res
q

cn �
P
q

P
(u,s):
n2Nus

ruq(l
req
q + lresq )✓uqs

. (4.9)

Therefore, the overall delay produced by the networking operations as part of

task o✏oading can be expressed as

E(T q
node) =

X

n2Nus

l
req
q + l

res
q

cn �
P
q

P
(u,s):
n2Nus

ruq(l
req
q + lresq )✓uqs

(4.10)

where the latency is directly a↵ected by the capacity cn of the forwarding device and

the current load on that particular device. The load caused by adjacent operations
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within the network is determined by the ✓uqs decision variable if the corresponding

node is on the same path between di↵erent source-destination pairs.

The data transmission delay through the links connecting the nodes on the short-

est path depends on the network load requirement of the service and the capacity of the

link. The overall delay for both request and response forwarding operations through

the links is calculated as

E(T q
link) =

X

(i,j)2Eus

(lreqq + l
res
q )

aij
(4.11)

where Eus 2 E represents the set of links on the shortest path between user u and

server s.

In addition to the communication latency, the service execution latency is also

considered while meeting the upper limit of the acceptable delay specified for a service.

Like networking resources, a traditional queuing model is utilized to calculate the

expected code execution delay at the server-side. Thus, the expected service execution

time, which is denoted as E(Tqs), is calculated as

E(Tqs) =
mq

bs �
P
u

P
q
ruqmq✓uqs

(4.12)

where the delay is a↵ected by the service computation load requirements, the capacity

of the server, and the adjacent executions on the same server. Hence, the end-to-end

delay constraints in (4.7) can be rewritten as

X

s

(E(Tqs) + E(T q
node) + E(T q

link)) ✓uqs  ↵q 8u, q , (4.13)

which states that the total delay of code execution, switching, and link transmission

of an o✏oaded service should not exceed the delay limit specified by the SLA.
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For an M/M/1 queuing system, as the utilization of a resource increases and

reaches a point close to one, the queue length explodes, the delay increases indefinitely,

and the system becomes unstable. In order to prevent excessive latency values, the

maximum allowed utilization for computational resources is set to �, and for networking

resources it is set to ', where 0 < � < 1 and 0 < ' < 1. In order to ensure that

the average utilization of servers and nodes does not exceed this limit, the following

constraints are added to the model:

X

q

X

(u,s):
n2Nus

ruq(l
req
q + l

res
q )✓uqs  'cn 8n (4.14)

X

u

X

q

ruqmq✓uqs  �bs 8s . (4.15)

In constraints (4.14), for all nodes within the network, it is asserted that the

mean utilization of a node should be at most  . The same limitation is defined for all

servers in the multi-tier system in constraints (4.15).

4.2.2. Service Fairness Problem

In the previous problem, even though the services require di↵erent loads on com-

putational and network resources and impose specific delay limits, each service assign-

ment is treated equally by the objective function of the problem. In other words, each

service execution has the same reward in the overall objective regardless of the ser-

vice type. However, the previous formulations may result in solutions with unbalanced

satisfaction ratios among services to increase the total number of executed tasks.

A more realistic problem definition can be obtained by enforcing additional re-

quirements on resource allocations and task assignments. The SLA definitions may

impose not only the delay conditions but also further regulations. The third-party ap-

plication developers or service providers may specify a minimum ratio of user requests

to be satisfied. The objective function and constraints formulated for undi↵erentiated
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services problem do not consider this restriction. The services that are more latency-

intolerant or demanding than the others may have secondary importance since it is

more challenging to allocate resources optimally.

In order to provide fairness among services, let �q denote the minimum required

ratio of handled requests to overall requests generated by the users for service type q.

For incorporating this modification in the optimization model, we can add the following

constraints while the objective function and the rest of the constraints remain the same:

X

u

X

s

ruq✓uqs � �q

X

u

ruq 8q . (4.16)

These constraints ensure that the number of successful task assignments cannot

be lower than the minimum level for each service. The integration of these constraints

provides a customized behavior for each service type to achieve a certain level of cus-

tomer satisfaction.

4.2.3. Linearization of the Non-linear Model

In the previous formulations, ✓uqs variables are defined as binary variables, and

the delay constraints in (4.13) are nonlinear. Therefore, it is an MINLP model, which

combines the challenges of handling nonlinearities with the combinatorial explosion of

integer variables.

For providing an alternative approach and solve the problem for which the MINLP

model is inadequate to find a good solution, the delay function obtained by the formula-

tions of theM/M/1 queuing model can be replaced by a piecewise linear approximation.

For computational and networking resources within the network, the utilization-delay

curve can be divided into four subsections, as in Figure 4.2. While formulating the

delay function, the points where the slope changes are referred to as breakpoints. Let

v1, v2, v3, and v4 denote the four breakpoints along the utilization axis in Figure 4.2,
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and let T (v1), T (v2), T (v3), and T (v4) denote the corresponding latency values that can

be calculated beforehand. Utilization levels between v1 and v2 are considered as low

load tra�c. This portion of the delay curve can be approximated by a line, as shown

in the figure. Similarly, utilization levels between v2 and v3 are considered medium

load tra�c, and levels between v3 and v4, where the exponential increase in the delay

function is more noticeable, form high-load tra�c. Separate lines also approximate

these segments. A utilization beyond v4 is not allowed for servers and nodes to prevent

excessive latency values as in the nonlinear case.

Figure 4.2. Linearization of utilization-delay curve.

It is worth noting that any utilization point u between v1 and v4 can be expressed

as a weighted sum of breakpoints. Let �1,�2,�3, and �4 denote four nonnegative

weights such that their sum is one. Then, the piecewise linear approximation of the

delay function can be written as

�1T (v1) + �2T (v2) + �3T (v3) + �4T (v4) = T (u) (4.17)

�1v1 + �2v2 + �3v3 + �4v4 = u (4.18)

�1 + �2 + �3 + �4 = 1 (4.19)
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with the requirement that at most two adjacent �’s can be nonzero. To ensure this,

we defined new binary variables x1, x2, x3 and added the following constraints:

�1  x1, (4.20)

�k  xk�1 + xk k = 2, 3, (4.21)

�4  x3, (4.22)

x1 + x2 + x3 = 1. (4.23)

With this transformation, we can eliminate the nonlinearity of the utilization-

delay curve, convert the overall problem into an MILP problem. In this method, the

number of breakpoints can be increased to obtain more accurate results, which may

create a computational overhead.

Since the M/M/1 delay calculation is a convex function, the linear approximation

may overestimate the real delay value. So, it guarantees that any feasible solution

obtained by the linear approximation is also feasible for the original nonlinear model.

To apply this idea in calculating the expected delay contributed by the servers

and nodes, the utilization values can be calculated as

⌥s =

P
u

P
q
ruqmq✓uqs

bs
8s (4.24)

⌥n =

P
q

P
(u,s):n2Nus

ruq(lreqq + l
res
q )✓uqs

cn
8n (4.25)

where ⌥s and ⌥n denote utilizations for server s and node n, respectively. Then, the

expected code execution delay on server for service type q, represented by E(Tqs) in

equality (4.12), and the expected networking delay on nodes for service type q, denoted

by E(T q
node) in equality (4.10) can be replaced by a weighted sum as in equality (4.17)

with the additional constraints (4.18-4.23). Hence, the nonlinear end-to-end delay
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constraints (4.13) can be replaced by a linear function and the overall problem can be

converted into an MILP model. It embraces the same objective function and constraints

with the previously presented MINLP model, except the linearized delay formulation.

Thereby, the time complexity of the MINLP model can be reduced.

4.3. Nearest-Fit Heuristic Algorithm

In addition to optimization model proposals, a heuristic algorithm is provided to

address the time complexity of the undi↵erentiated services problem. The algorithm

can be used to find a feasible solution quickly, which is beneficial for setting a lower

bound for the optimization models. It is a greedy approximation algorithm similar to

those used to solve the bin packing problem.

The algorithm initially reads the input parameters, such as topology, service

characteristics, set of users and servers, and the average number of tasks o✏oaded by

each user. The algorithm starts with the most latency-intolerant service type. For

each request targeting that service type, it checks whether there is enough capacity for

execution. It attempts to allocate resources for the request on the nearest server by

considering the capacity constraints. If the task assignment is not feasible, it continues

to check the following servers based on the distance regarding the number of hops.

The task assignment feasibility is maintained if that service is already deployed

on the server and the utilization of the target server or any node on the shortest path

does not exceed the parameters � and ' after the current task assignment. The overall

delay of a request is calculated using formulations of the M/M/1 queuing model. If it

satisfies the minimum delay requirement, the request can be assigned to that server.

However, solutions obtained in this way may violate end-to-end delay constraints of the

requests that are already assigned. Therefore, an additional procedure checks whether

the latency requirements are still met for the previously assigned requests. If any of

them are violated, the algorithm does not make the new assignment and continues to

check the subsequent server.
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foreach q 2 Q, u 2 U do
sortDistance(S, u);

foreach s 2 S do
totalDelay  0;

if vqs = 0 or serverUtil(s) > ' then
return false;

end

totalDelay+ = delay(q, s);

foreach n 2 shortestPath(u, s), (i, j) 2 shortestPath(u, s) do

totalDelay+ = delay(q, n);

totalDelay+ = delay(q, i, j);

if nodeUtil(n) > � or totalDelay > ↵q then

return false;

end

end

if totalDelay >↵q then

return false;

end

✓uqs = 1;

foreach assigned request with ✓uqs = 1 do

newDelay  calculateNewDelay(u, q, s);

if newDelay > ↵q then

return false;

end

end

end

end

Figure 4.3. Nearest-fit heuristic implementation.

The algorithm iterates over the set of users until the last request for the service

type that is the most latency-intolerant. Then, the same process is executed for the
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second service type in the set until all requests are inspected. The algorithm then ter-

minates and generates the results of the resource allocations as the output. The details

of the heuristic implementation and execution steps are summarized in Algorithm 4.3.

Table 4.2. Topology design and parameters.

Topology Size Number of

Users

Number of

Nodes

Number of

Edge Servers

Number of

Metro Servers

Number of

Cloud Servers

Small Topology

(Abilene)

360 11 12 3 7

Medium Topology

(AboveNet)

510 18 24 9 9

Large Topology

(ATT)

630 25 28 15 14

The main objective of the proposed solution approaches is to create an action plan

for the operators in the long run to optimize the policy of orchestration procedures.

Therefore, it does not address the requirements of a highly dynamic edge environment,

which is not within the scope of the thesis. Legacy solution methodologies may remain

infeasible for the problem definition of dynamic task o✏oading considering concrete

use case examples such as vehicular communication or massive IoT deployments in 5G

systems. In order to take handover operations into account for capturing the e↵ect of

mobility at the edge, intelligent orchestration systems using AI/ML methodologies can

be integrated [121].

4.4. Performance Evaluation

The performance of the optimization models and the heuristic algorithm is evalu-

ated on the undi↵erentiated services problem and the service fairness problem. Before

going into the details of the numerical results and discussion of the performances of

the solution approaches, the experimental design and use cases are introduced.
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4.4.1. Experimental Design

In this study, the proposed methods are evaluated under randomly generated

instances with di↵erent topologies. Each topology varies concerning the number of

nodes, users, and servers. Three di↵erent connected real-world topologies from Topol-

ogy Zoo [122] are utilized for assessing the performance of the optimization models and

the heuristic algorithm: small, medium and large-sized topologies. The attributes of

each topology and the corresponding parameters are displayed in Table 4.2. Also, the

design of the large topology is shown in Figure 4.4 to give an idea about the network

environment of the use cases.

Figure 4.4. The map for large topology (ATT).

For each topology, three di↵erent load conditions are produced with respect to

the average number of service requests in a unit time, as summarized in Table 4.3. Each

end-user generates one service request/second on average when the network is lowly

loaded. In the high load cases, some of the end-users generate two requests/second on

average. Lastly, the medium load cases are configured as an intermediate.

In order to observe the e↵ects of services with di↵erent characteristics in detail,

four di↵erent service types are determined. While creating the service types and reg-

ulating the requirements of each type, the use cases envisioned by ETSI for MEC and
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5G-PPP for the next-generation cellular networks are adapted. ETSI [123] states that

video streaming, augmented reality, and IoT services are example scenarios that are

possible to be served by the MEC servers. Besides, 5G-PPP [124] defines a set of ser-

vices composed of healthcare and entertainment applications. In order to reflect the

characteristics of such service types, their requirements are determined accordingly. It

is predicted that although service-oriented networks with multi-tier computing systems

are not implemented in real environments yet, future deployments will use these ser-

vices as main use case scenarios. The resource requirements and the latency constraints

of these services are shown in Table 4.4.

Table 4.3. Tra�c requirements (requests/second).

Topology Low Load Medium Load High Load

Small Topology 360 499 543

Medium Topology 510 664 747

Large Topology 630 854 951

Computational load requirements on servers denoted as mq are given in terms

of million instructions (MI) to be executed, and the networking resource demand of

each service request and response is presented as lreqq and l
res
q , respectively, in terms of

Mbits. Lastly, the maximum acceptable delay values imposed by the SLA definitions

denoted as ↵q are given in seconds.

Table 4.4. Services and their attributes.

Service Name Computation

Load (mq in

MI)

Network Load for

Request (lreqq in

Mbits)

Network Load for

Response (lresq in

Mbits)

Max. Delay

(↵q in sec)

Face Recognition (q1) 500 20 20 0.5

Fall Risk Assessment (q2) 1000 30 10 1.5

Augmented Reality (q3) 1500 40 40 1.0

Video Streaming (q4) 2000 50 50 2.0
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Throughout the use cases, three di↵erent levels in the multi-tier system are con-

sidered. The capacity parameter bs is configured as 15,000 MIPS for the edge servers,

30,000 MIPS for the metro servers, and 80,000 MIPS for the cloud servers. Each edge

server is randomly deployed with two service types, while metro servers provide three,

and cloud servers provide all four of the service types.

In addition to the capacities of the computational resources, while the links have

an identical capacity of 10 Gbps, the switches close to the end-users provide 10 Gbps

processing capacity. The switches providing the connection to the cloud servers have

1 Gbps capacity.

For experimental purposes, the maximum utilization parameters � and ' is set

to 0.9 so that at most 90% of the resource capacity can be utilized by servers and

switches. Correspondingly, the utilization breakpoints v1, v2, v3, and v4 defined for

linear approximation approach are set as 0, 0.5, 0.8, and 0.9, respectively.

The MINLP and MILP formulations are executed using General Algebraic Mod-

eling System (GAMS 25.1.3) [125] running on a computer with Intel Xeon E5-2690 2.6

GHz CPU and 64GB main memory. For MINLP models, SCIP [126, 127] is used as

an optimization solver, whereas Gurobi [58] is utilized for MILP models. Lastly, the

heuristic algorithm is implemented in C++ programming language, which also utilizes

Gurobi for finding the shortest paths between each source-destination pair. For opti-

mization solvers, three hours of run-time is set as the time limit for each problem size.

The following information is reported for each topology and solution approach:

• The total number of service requests in the system,

• The objective value of the best feasible solution obtained by the solution method

within the given time limit denoted as Zmethod,

• An upper bound for the optimal objective value obtained by the MINLP model

within the given time limit, denoted as ZUB,

• The minimum optimality gap obtained at the end of the given time limit for the
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MINLP model (calculated as ZUB�ZMINLP
ZMINLP

),

• The percentage di↵erence between the objective value of the best feasible solution

obtained by the solution method and the upper bound for the objective value

obtained by the MINLP model (calculated as ZUB�Zmethod
Zmethod

),

• The amount of time spent by each method in seconds,

• The ratio of successfully handled requests to the total number of requests for the

overall system and for each service type.

The results of the computational study and the discussion of the performances of

the solution approaches are presented in the following subsections for the undi↵erenti-

ated services and service fairness problems.

Table 4.5. MINLP model for undi↵erentiated services problem.

Topology Type Load

Condi-

tion

Total

Re-

quests

ZMINLP ZUB Optimality

Gap

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology

Low Load 360 360 360 0% 207 100% 100%-100%-

100%-100%

Medium

Load

499 472 476 0.85% 10800 95% 100%-100%-99%-

80%

High Load 543 495 501 1.21% 10800 91% 100%-98%-97%-

70%

Medium Topology

Low Load 510 510 510 0% 3977 100% 100%-100%-

100%-100%

Medium

Load

664 642 657 2.34% 10800 97% 97%-100%-97%-

92%

High Load 747 661 683 3.33% 10800 88% 100%-99%-95%-

66%

Large Topology

Low Load 630 630 630 0% 5412 100% 100%-100%-

100%-100%

Medium

Load

854 782 806 3.07% 10800 92% 99%-99%-96%-

72%

High Load 951 828 848 2.42% 10800 87% 100%-99%-95%-

55%
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4.4.2. Results for Undi↵erentiated Services Problem

For the undi↵erentiated services problem, the results obtained by the MINLP

model are provided in Table 4.5. The MINLP model can find the optimal solution for

cases where the network is low-loaded. In these cases, all user requests are satisfied

by the system. As the topology size increases, it takes more time to find the optimal

solution. Moreover, as the total number of requests increases for each topology size,

more tasks can be assigned, but the overall satisfaction ratio decreases. Although

the MINLP model can find a good feasible solution with at most 3.33% gap, it cannot

guarantee the optimality of the current solution within the given time limit for medium

and high load conditions in every topology.

In addition, since each service type is identical regarding contribution to the

objective, the satisfaction ratio of the video streaming service, which demands the

highest resource among all, is lower than the others, and it decreases even further

when the network becomes highly loaded. Since the model aims to maximize the

total number of successfully handled o✏oad operations, it greedily accepts the services

demanding relatively less resources. Therefore, while requests for the other services are

satisfied with at least 95%, the video streaming service users su↵er from the deteriorated

performance, especially when the network is highly loaded.

Similar results are obtained for the MILP model, as presented in Table 4.6. Since

the delay function is linearized, the complexity of the problem is reduced, and so the

model can achieve optimality for low load cases in a shorter amount of time. It can

also provide slightly better feasible solutions with a higher satisfaction ratio for medium

and high load cases. However, the di↵erence is not significant compared to the MINLP

model. At the same time, the optimality gap is decreased because of the reduced

problem complexity. It is observed that the proposed models can find either optimal

or near-optimal solutions for the undi↵erentiated services problem with at most 3.33%

optimality gap. It should be reported that the MILP model can find a good feasible

solution in a short while, but it tries to minimize the optimality gap further during the
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allowed run time of three hours. Like the MINLP model, video streaming service users

su↵er from low satisfaction while the other service requests are completely satisfied.

Table 4.6. MILP model for undi↵erentiated services problem.

Topology Type Load

Condi-

tion

Total

Re-

quests

ZMILP ZUB Di↵erence

from

ZUB

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology

Low Load 360 360 360 0% 46.1 100% 100%-100%-

100%-100%

Medium

Load

499 474 476 0.42% 10800 95% 100%-100%-

100%-80%

High Load 543 499 501 0.40% 10800 92% 100%-100%-

100%-68%

Medium Topology

Low Load 510 510 510 0% 119.7 100% 100%-100%-

100%-100%

Medium

Load

664 653 657 0.61% 10800 98% 100%-100%-

100%-93%

High Load 747 679 683 0.59% 10800 91% 100%-100%-

100%-69%

Large Topology

Low Load 630 630 630 0% 861 100% 100%-100%-

100%-100%

Medium

Load

854 796 806 1.26% 10800 93% 100%-100%-

100%-72%

High Load 951 840 848 0.95% 10800 88% 100%-100%-

100%-54%

In order to reduce the complexity of the problem, users are considered aggregated

demand points. For each topology design, the users are aggregated concerning their

locations. The average number of requests generated from a user location is the sum

of all individual user requests within the same location as if a single aggregated user

generates the requests. In Tables 4.7 and 4.8, the results of both formulations are shown

for the aggregate users case. The upper bound values for the objective function given

in these tables are taken from the MINLP model where the users are not aggregated,

and the di↵erence is calculated accordingly. When we compare the equivalent cases



54

of separate and aggregate user cases, it can be easily seen that the overall satisfaction

ratio decreases, even though the complexity is lowered. Optimal solutions could be

found in a much shorter time. By aggregating the users based on their locations, the

search space is narrowed to achieve the solutions easily. However, since the requests

from the same location are considered a batch, and the assignment variables are binary,

handling the requests on di↵erent servers becomes impossible. Consequently, there is a

trade-o↵ between the solution time and the satisfaction ratios of the service types. The

aggregation of end-users and service requests can still be beneficial to find a feasible

solution when the network is even larger and the number of users is very high.

Table 4.7. MINLP model for undi↵erentiated services problem with aggregate users.

Topology Type Load

Condi-

tion

Total

Re-

quests

ZMINLP,Agg ZUB Di↵erence

from

ZUB

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology

Low Load 360 360 360 0% 5 100% 100%-100%-

100%-100%

Medium

Load

499 441 476 7.94% 2 88% 100%-100%-

100%-54%

High Load 543 453 501 10.6% 5 83% 100%-100%-94%-

41%

Medium Topology

Low Load 510 462 510 10.39% 15 91% 100%-100%-90%-

76%

Medium

Load

664 515 657 27.57% 718 78% 100%-100%-65%-

45%

High Load 747 579 683 17.96% 7 78% 100%-100%-79%-

41%

Large Topology

Low Load 630 570 630 10.53% 104 90% 100%-100%-88%-

74%

Medium

Load

854 696 806 15.8% 612 81% 100%-100%-93%-

31%

High Load 951 693 848 22.37% 273 73% 100%-100%-65%-

25%

In order to create a benchmark for the proposed optimization models, the perfor-

mance of the nearest-fit heuristic algorithm is also evaluated for the undi↵erentiated



55

services problem, as shown in Table 4.9. In order to assess the e�ciency of the heuristic

algorithm more accurately, the di↵erence between the objective values obtained by the

heuristic algorithm and the optimization models is presented.

Table 4.8. MILP model for undi↵erentiated services problem with aggregate users.

Topology Type Load

Condi-

tion

Total

Re-

quests

ZMILP,Agg ZUB Di↵erence

from

ZUB

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology

Low Load 360 360 360 0% 1.2 100% 100%-100%-

100%-100%

Medium

Load

499 441 476 7.94% 1.1 88% 100%-100%-

100%-54%

High Load 543 453 501 10.6% 1.6 83% 100%-100%-94%-

41%

Medium Topology

Low Load 510 462 510 10.39% 17.3 91% 100%-100%-90%-

76%

Medium

Load

664 515 657 27.57% 30.3 78% 100%-100%-66%-

44%

High Load 747 579 683 17.96% 3.6 78% 100%-100%-84%-

36%

Large Topology

Low Load 630 570 630 10.53% 33.2 90% 100%-100%-88%-

74%

Medium

Load

854 696 806 15.8% 21.8 81% 100%-100%-93%-

31%

High Load 951 693 848 22.37% 16.6 73% 100%-100%-65%-

25%

The results indicate that the heuristic approach can find a feasible solution for

all instances quickly by making near-optimal task assignment and resource allocation

decisions. The maximum di↵erence between objective values of the heuristic algorithm

and the optimization models is 7.42%. Since no related study in the literature ad-

dresses the exact problem definition with the same objective function and constraints,

the nearest-fit heuristic algorithm can be considered a baseline. As a result of its per-

formance in terms of the optimality gap and the run-time, it can be concluded that the

nearest-fit heuristic algorithm is a good candidate for assessing the performance of the
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proposed optimization models. Besides, it outperforms the user aggregation approach

by significantly improving the overall satisfaction ratio within a shorter time. The per-

formance of the proposed heuristic algorithm demonstrates that it can be a promising

alternative to find feasible solutions for even more complex network designs.

Table 4.9. Heuristic implementation for undi↵erentiated services problem.

Topology Type Load

Condi-

tion

Total

Re-

quests

ZHeuristic Di↵erence

from

MINLP

Di↵erence

from

MILP

Time

(sec)

Overall

Satis-

faction

Ratio

Service

Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology

Low

Load

360 359 0.28% 0.28% 2.4 100% 100%-100%-

100%-99%

Medium

Load

499 446 5.83% 6.28% 3.7 89% 100%-100%-

100%-58%

High

Load

543 473 4.65% 5.50% 4.0 87% 100%-100%-

100%-49%

Medium Topology

Low

Load

510 510 0% 0% 4.9 100% 100%-100%-

100%-100%

Medium

Load

664 632 1.58% 3.32% 7.9 95% 100%-100%-

100%-79%

High

Load

747 653 1.23% 3.98% 11.5 87% 100%-100%-

100%-58%

Large Topology

Low

Load

630 625 0.80% 0.80% 18.3 99% 100%-100%-

100%-97%

Medium

Load

854 756 3.44% 5.29% 28.9 89% 100%-98%-

100%-54%

High

Load

951 782 5.88% 7.42% 33.8 82% 100%-87%-

97%-47%

4.4.3. Results for Service Fairness Problem

In order to maintain fairness among di↵erent service types and find a solution to

the low satisfaction ratio problem for video streaming service, additional constraints

forcing a minimum satisfaction ratio for all service types are integrated into the op-
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timization models. Since all of the o✏oad operations are successfully handled by the

multi-tier architecture when the load within the network is low for each topology design,

only medium and high load cases are examined, in which the undi↵erentiated services

problem leads to an unfair solution in terms of service-specific satisfaction ratios. The

minimum satisfaction ratio for each service type is set as 90% for medium load cases

(except the medium topology, which is set as 95% since, in the solution for the undif-

ferentiated services problem, all service types already satisfy the 90% satisfaction ratio

requirement) and 80% for high load cases.

The results obtained by integrating the minimum satisfaction ratio constraints

into the MINLP model are presented in Table 4.10. For small topology instances,

the solutions satisfy the minimum satisfaction ratio requirement for each service type.

The satisfaction ratio of video streaming service increases from 80% to 91%, and from

70% to 81% for medium and high load cases, respectively. However, the upper bound

values for the objective function decrease compared to the undi↵erentiated services

problem. It is because new constraints restrict the feasible region, and some solutions

become infeasible. Moreover, the objective value of the best feasible solution and the

overall satisfaction ratio decreases slightly. The leading cause of this situation can be

explained as follows: In order to increase the number of satisfied requests for video

streaming service by one, a higher number of requests for the lighter service types

should be neglected for possible allocation. Since the problem becomes more complex

with the minimum satisfaction ratio constraints, the MINLP model is unable to find

feasible solutions for medium and large topologies within the allowed time limit.

The same experiments are also carried out for the MILP model. In Table 4.11, it

can be observed that the model can find near-optimal solutions for small and medium

topologies with at most 0.85% di↵erence from the upper bound. However, a feasi-

ble solution that maintains service fairness could not be extracted for large topology

instances. Compared to the MINLP model, it can be concluded that the obtained ob-

jective values are very close, and there are minor di↵erences among the service-specific

ratios for the small topology instances.
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Table 4.10. MINLP model for service fairness problem.

Topology Type Load

Condition

Min.

Sat.

Ratio

ZMINLP ZUB Optimality

Gap

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology
Medium

Load

90% 466 473 1.5% 10800 93% 99%-94%-90%-

91%

High Load 80% 491 497 1.22% 10800 90% 100%-100%-84%-

81%

Medium Topology

Medium

Load

95% - 657 - 10800 - -

High Load 80% - 679 - 10800 - -

Large Topology

Medium

Load

90% - 784 - 10800 - -

High Load 80% - 811 - 10800 - -

Integrating the minimum satisfaction ratio for service fairness constraints makes

the problem even more complex than the undi↵erentiated services problem. Hence, the

optimization models become inadequate to find feasible solutions for higher-scale net-

work environments. The nearest-fit heuristic algorithm used to find feasible solutions

for the undi↵erentiated services problem cannot remedy the service fairness problem.

The main reason is that the newly added constraints narrow the feasible region very

much, and the task assignment decisions should be made considering the interactions

between di↵erent assignments comprehensively. However, the nearest-fit heuristic al-

gorithm performs a pass through the requests once, and when it assigns a request, it

never checks and reassigns the request to create a room for the subsequent requests.

A matheuristic approach that combines metaheuristics and mathematical pro-

gramming techniques can be adopted to attain a feasible solution for larger instances.

The operations carried within the scope of a matheuristic consist of two phases. In

the first phase, the minimum satisfaction ratio constraints are reversed (i.e., reversing

the inequality) so that the optimization models can find a task assignment where each

service type is satisfied by the specified maximum ratio. Since the objective is to max-

imize successfully handled requests, all service-specific satisfaction ratios are close to
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the minimum required level in the solution obtained at the end of this phase. This

solution can be converted into a feasible solution concerning the service fairness prob-

lem by adding a few new task assignments. In the second phase, the task assignment

variables of services requiring heavy load are fixed since they are depreciated the most

when fairness among services is not enforced. Then, the optimization model is solved

for the remaining task assignment variables. Fixing some of the task assignment vari-

ables can reduce the problem complexity, so that a feasible solution can be obtained

at the end of the second phase. However, the optimality is not guaranteed.

Table 4.11. MILP model for service fairness problem.

Topology Type Load

Condition

Min.

Sat.

Ratio

ZMILP ZUB Di↵erence

from ZUB

Time

(sec)

Overall

Satis-

faction

Ratio

Service Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology
Medium

Load

90% 469 473 0.85% 10800 94% 97%-99%-90%-

91%

High Load 80% 495 497 0.40% 10800 91% 100%-100%-87%-

80%

Medium Topology

Medium

Load

95% 652 657 0.77% 10800 98% 100%-100%-97%-

95%

High Load 80% 674 679 0.74% 10800 90% 100%-100%-83%-

80%

Large Topology

Medium

Load

90% - 784 - 10800 - -

High Load 80% - 811 - 10800 - -

The e�ciency of this approach is tested with both MINLP and MILP models. In

these experiments, two approaches are evaluated: i) fixing only the heaviest service (i.e.,

video streaming service), and ii) fixing two services with heavier load requirements (i.e.,

augmented reality and video streaming services). The results are presented in Tables

4.12 and 4.13. The upper bound values for the MINLP model presented in Table 4.10

are used to observe the e�ciency of the approach. It can be seen that the MINLP

model is still incapable of finding a feasible solution for some instances by fixing only

one service type, but it can find solutions by fixing two service types.
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Table 4.12. Matheuristic approach with MINLP model for service fairness problem.

Fixing one service type Fixing two service types

Topology Type Load Condition ZMINLP Di↵erence

from ZUB

Service

Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

ZMINLP Di↵erence

from ZUB

Service

Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology
Medium Load 463 2.16% 99%-92%-90%-91% 463 2.16% 99%-92%-90%-91%

High Load 493 0.81% 100%-100%-82%-84% 483 2.90% 99%-84%-89%-84%

Medium Topology
Medium Load - - - 637 3.14% 97%-96%-95%-96%

High Load 667 1.8% 100%-98%-81%-80% 647 4.95% 100%-83%-86%-80%

Large Topology
Medium Load - - - 772 1.55% 91%-91%-90%-90%

High Load - - - 782 3.71% 88%-80%-81%-81%

On the other hand, the MILP model can find near-optimal solutions in both

approaches utilizing the matheuristic method. MINLP and MILP models may find dif-

ferent solutions for the same instances because they may fix di↵erent task assignment

variables at the beginning of the second phase. In addition, fixing only one service type

yields higher objective values for both MINLP and MILP models since having more

fixed task assignment variables may move the model away from the optimality. Nev-

ertheless, the solution quality obtained by fixing two service types is still satisfactory.

Therefore, fixing more service types can still be a reasonable option since it reduces

the problem complexity and may decrease the solution time.

The matheuristic approach utilizing both MINLP and MILP models finds a near-

optimal solution with at most 4.95% optimality gap. Similar to the undi↵erentiated

services problem, there is no study in the literature that addresses the fairness problem

among various service types. Therefore, the matheuristic approach results are reported

with the optimality gap calculated through the upper bounds set by the optimization

models as the primary indicator of the performance. As a result, the matheuristic ap-

proach can be utilized to obtain good feasible solutions for the service fairness problem.

The optimal SLA-aware resource allocation problem and solutions introduced in

this chapter address the end-user expectations and service requirements. However, con-
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sidering the overall business model, another approach could be to address the demands

of an operator as the owner of a multi-tier system. In this alternative setting, the op-

erator can aim to optimize the orchestration practices for o✏oaded tasks to meet the

performance requirements and also gain revenue in return. In such a problem defini-

tion, the operator can seek optimal placement of servers with di↵erent capacity levels

and the deployment of the service replications for maximizing the expected revenue

gain [128].

Table 4.13. Matheuristic approach with linearized model for service fairness problem.

Fixing one service type Fixing two service types

Topology Type Load Condition ZMILP Di↵erence

from ZUB

Service

Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

ZMILP Di↵erence

from ZUB

Service

Specific

Satisfaction

Ratio

(q1-q2-q3-q4)

Small Topology
Medium Load 468 1.07% 98%-97%-90%-91% 461 2.6% 93%-91%-95%-91%

High Load 491 1.22% 100%-100%-82%-83% 480 3.54% 97%-90%-85%-83%

Medium Topology
Medium Load 649 1.23% 100%-100%-95%-96% 644 2.02% 100%-96%-97%-95%

High Load 662 2.57% 100%-92%-80%-83% 647 4.95% 100%-81%-84%-83%

Large Topology
Medium Load 774 1.29% 90%-92%-90%-90% 771 1.69% 90%-90%-90%-90%

High Load 794 2.14% 94%-81%-80%-81% 792 2.4% 90%-80%-84%-80%
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5. OPTIMIZATION OF THE NETWORK SLICING

OPERATIONS FOR HIGH-PERFORMANCE SERVICE

ORCHESTRATION

Deploying replications of the services at the edge and o✏oading the tasks to

the available edge servers in the vicinity solely is not useful in practice. Assuming

that various services coexist in a heterogeneous setting and the o✏oad operations are

handled by the same physical infrastructure, the increase in the demand for a service

may degrade the performance of the adjacent services. The congestion caused by the

services and the introduction of a new application in this environment may a↵ect the

performance of all previously deployed services. Therefore, it becomes necessary to

provide isolation among the service types and share the physical resources fairly.

Open Networking Foundation (ONF) [103] states that a network link, a network-

ing node, and the computation capacity of a server can be partitioned into virtual

resources. By reserving and allocating a specific capacity of a physical resource (i.e.,

computational and network resources) through virtualization techniques, the isolation

between the slice instances is implemented. Hence, the performance of a slice may not

be a↵ected by the fluctuations or faults within an adjacent slice.

In this direction, we propose an optimal network slicing methodology for service-

oriented edge access to provide isolation among the service types. The proposed Mixed

Integer Programming (MIP) model aims to deploy the replications of the services op-

timally in a distributed manner while virtualizing the networking and computational

resources for allocating specific capacities for the slices initiated for each service type.

Additionally, a heuristic algorithm NESECS (NEtwork Slicing for Edge Computing

Services) is introduced to find high-quality solutions in a short time for cases where

the formal optimization tools fail to find feasible solutions.
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Figure 5.1. Optimization approach for network slicing.

5.1. Problem Definition

In an edge environment where the end-user devices o✏oad various tasks, the main

objective is to satisfy the performance requirements specified in SLA definitions and

meet user expectations. Since most edge services impose stringent latency require-

ments, service deployment and resource allocation operations become complicated.

The operator may reserve and allocate a certain amount of resources for each service

type by partitioning the already-deployed physical resources. This approach avoids

the performance degradation for a service type when the network tra�c fluctuates,

or another type of resource-hungry service exploits all available resources in the same

infrastructure. Thus, we address the problem of service deployment decisions, generat-

ing slices for each service type, and reserving resources for these slices. In this thesis,

we consider the end-to-end service latency as the main SLA requirement. However,

the proposed solutions are flexible enough to accommodate other performance require-

ments such as energy e�ciency and reliability. The general overview of the proposed

formal optimization model is depicted in Figure 5.1.

The formulation of the given problem definition considers that the network topol-

ogy G = (N,E) is known. The set of networking resources N and links connecting

them E is functioning. While the capacity of a network node n is denoted as cn, the

capacity of a link between nodes (i, j) 2 E is represented by aij, both in terms of Mbps.
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Table 5.1. Set and parameter notations.

Definition Notation

Network topology G = (N,E)

Networking nodes N = {n1, n2, n3, ...}

Networking links E = {e12, e13, e14, ...}

End-users locations U = {u1, u2, u3, ...}

Edge server locations S = {s1, s2, s3, ...}

Service types Q = {q1, q2, q3, ...}

Max. number of service instances on edge server y

Node capacity cn

Link capacity aij

Edge server capacity bs

Computational load of service type q mq

Network load of service type q l
req
q , lresq

Max. allowed delay for service type q ↵q

Delay violation penalty for service type q wq

Tra�c requirements ruq

The edge servers are assumed to be deployed by the operator to host various

service types. The set S denotes the server locations, and the computation capacity of

a server s 2 S is designated as bs in terms of MIPS (million of instructions per second).

Since the edge servers’ resources are restricted regarding the capacity, it is allowed that

at most y VMs can be hosted on an edge server. Besides, this constraint minimizes

the overhead of the lifecycle management of the VMs, and orchestration in practice.

The service types and their characteristics are known, where the set of services

Q is composed of di↵erent service types with diverse SLA requirements. The SLA

definition of a service type q 2 Q specifies that there is a maximum acceptable delay

value, which is denoted as ↵q in terms of milliseconds. However, in some cases where

the network is highly congested, the end-to-end service latency may exceed the specified



65

maximum delay value. In order to reflect the deterioration in the system performance

and user experience, there is a penalty wq for service type q if the end-to-end delay

requirement is violated. Since ↵q for each service type q is rendered in milliseconds, wq

represents a penalty value for every millisecond that is violated, similar to the expected

reward/penalty for an action taken in reinforcement learning approaches [129]. It is

also specified that the task o✏oading operation for service type q generates mq load on

average as the number of instructions to be executed (in millions) on the edge servers.

While a request for the same service introduces l
req
q load on average on the network

resources, the response generated by an edge server additionally contributes to this

load by l
res
q on average, both in terms of Mbit. The application provider may enforce

that a certain fraction, �q, of the overall end-user requests for service type q should be

assigned to any server that hosts the corresponding service type.

Lastly, the operator knows the number of users, their locations, and the average

number of requests generated by each user for each service type. The set of users is

denoted as U , and the average number of requests generated by user u for service type

q in a unit time interval is represented as ruq. The parameters and index sets that are

utilized in the optimization model are summarized in Table 5.1. Slicing decisions and

parameters are quite static in real deployments since they are explicitly defined in a

contract between the communication service provider and the consumer. Even though

it is possible to modify the properties of the allocated slice, this is rarely performed,

and the optimality of the parameters should be evaluated in advance. Therefore, it is

assumed that the service provider with the role of instantiating the slice instances has

the information above beforehand, and the decisions are made accordingly.

5.2. MIP Model Formulation

According to the problem definition, the operator should configure and initial-

ize the slice instances so that the instances are isolated from each other and the SLA

requirements are not violated. Rather than satisfying the SLA requirements precisely

under all conditions, there is a penalty for not meeting these requirements. The main
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objective of the operator is minimizing the overall SLA violations, as well as the penal-

ties to occur. Therefore, the model can be formulated as

minimize

X

u

X

q

X

s

puqs ⇤ wq ⇤ ✓uqs ⇤ ruq + (1 �
X

s

✓uqs) ⇤ wq ⇤ ruq (5.1)

Subject to

puqs =

8
><

>:

0, if ⌧uqs  ↵q

⌧uqs � ↵q otherwise
(5.2)

X

s

✓uqs  1 8u, q (5.3)

✓uqs 2 {0, 1} 8u, q, s (5.4)

✓uqs  Yqs 8u, q, s (5.5)
X

q

Yqs  y 8s (5.6)

Yqs 2 {0, 1} 8q, s (5.7)

where puqs represents the penalty due to SLA violation. In Equation (5.2), ⌧uqs repre-

sents the end-to-end delay for a user u requesting service type q that is served by server

s. If this value exceeds the maximum acceptable delay value, ↵q, it contributes to the

total penalty. On the other hand, if ⌧uqs is less than ↵q, it can be considered that SLA

is not violated, and it does not contribute to the objective value. Additionally, ✓uqs is a

decision variable that depicts whether the requests for service type q generated by user

u that is successfully assigned to server s. To eliminate the principle of minimizing the

penalty by not o✏oading the task at all, in the second part of Equation (5.1) penalty

wq is added to the objective for the tasks that are not assigned to any edge server. In

Constraints (5.3) and (5.4), it is specified that any service request can be executed on

at most one server or not assigned to any server respectively. In Constraints (5.5), Yqs

represents a binary value that takes value 1 if the service type q is served by server s,

and it is enforced that any request for service type q cannot be handled by server s,
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if the requested service is not hosted on that server. In Constraints (5.6), it is stated

that at most y service instances can be hosted on a physical server. Lastly, Constraints

(5.7) state that service deployment decision is represented as a binary variable.

The end-to-end delay is represented as the total latency contributed by the net-

work and the computational resources. The classical congestion-dependent M/M/1

queuing model is applied throughout the network and edge servers. The end-to-end

delay for an o✏oading process is constituted by the same operations discussed in the

previous section. In practical scenarios, the arrival rate on average can exceed the

service rate, and the system would become unstable. However, in this thesis, the av-

erage number of requests and the task assignment operations are used to optimize the

slice parameters before initializing the slice. The projection of the minimum penalty

in the future depends on the tra�c requirements information and a task assignment

scheme, and the proposed optimization model will not be used for each o✏oaded task.

The model aims to allocate resources in advance to provide isolation among the slices.

It can be achieved by reserving a certain fraction of a physical resource as a virtual

resource for each service type q. The total network delay for service type q generated

by user u to be executed on server s can be formulated as

X

(i,j)2P (u,s)

l
req
q + l

res
q

�qij ⇤ aij �
P
u,s

ruq ⇤ ✓uqs ⇤ (lreqq + lresq )
. (5.8)

In Equation (5.8), �qij represents the fraction of the physical resource capacity

(i.e., the capacity of the link connecting nodes (i, j)) that is allocated for the slice of

service type q. It is assumed that as soon as the corresponding edge server is determined

for the task assignment, the minimum hop routing is used to transmit the data in the

network. Therefore, P (u, s) represents the set of links that constructs the shortest path

between end-user u and edge server s. In this study, the packet processing latency by

switching operations within a node is neglected.
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After assigning the service type q task to an edge server s, the corresponding VM

that hosts the requested service type handles the execution of the service routines. The

code execution delay can be calculated as

mq

�qs ⇤ bs �
P
u
ruq ⇤ ✓uqs ⇤mq

(5.9)

where �qs represents the capacity allocated for the VM hosting the service type q on

edge server s. The �qij and �qs decision variables are related with the main slicing

operations Therefore, additional constraints can be expressed as follows.

0 
X

q

�qs  1 8s (5.10)

0 
X

q

�qij  1 8(i, j) (5.11)

Constraints (5.10) and (5.11) assert that total capacities of the virtual resources

cannot exceed the capacity of physical edge server and network links, respectively.

When assembled, the total end-to-end delay ⌧uqs of a request for service type q

that is generated by user u and handled by server s can be expressed as

⌧uqs =
mq

�qs ⇤ bs �
P
u
ruq ⇤ ✓uqs ⇤mq

+

X

(i,j)2P (u,s)

l
req
q + l

res
q

�qij ⇤ aij �
P
u,s

ruq ⇤ ✓uqs ⇤ (lreqq + lresq )

(5.12)

The list of decision variables introduced in Equations (5.1)-(5.12), and their def-

initions are summarized in Table 5.2.
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Table 5.2. Decision variables and definitions.

Variable Definition Type

puqs The value delay limit is exceeded for a request for service type q that is

generated by user u and handled by server s

Continuous

✓uqs Task assignment of a request for service type q that is generated by

user u and handled by server s

Binary

↵qs Service deployment for service type q on server s Binary

E(Tqij) Networking delay contributed by network link (i,j) for service type q Continuous

E(Tqs) Computation delay at server s for service type q Continuous

�qij Slicing decision on a network link (i,j) for service type q Continuous

�qs Slicing decision on a server s for service type q Continuous

⌧uqs Total end-to-end delay of a request for service type q that is generated

by user u and handled by server s

Continuous

5.2.1. Addressing the Complexity of Slicing Operations and Delay Model

The original optimization model tends to su↵er due to the non-linear objective

function and set of constraints. In order to decrease the complexity and integrate

the model into an MIP solver, the big-M methodology is applied upon the quadratic

constraints, which is a common approach to linearize the constraints including product

of binary variables and continuous variables [130], [131]. By tuning the M constant,

this approach ensures that the linearized problem has the same optimal value as the

original one.

Let us denote the latency contributed by server s for executing the instructions of

service type q as E(Tqs), which can be calculated by Equation (5.9). The user index u

is omitted since every user requesting the service type q encounters the same execution

delay on an edge server s on average. The execution delay occurs regardless of which

user requests the service. When the dividing operation is eliminated, the formulation

can be written as

E(Tqs)�qs ⇤ bs � E(Tqs)
X

u

ruq ⇤ ✓uqs ⇤mq = mq. (5.13)
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In Equation (5.13), both E(Tqs) and �qs variables are continuous, and their multi-

plication results in a non-linear constraint. In order to simplify the linearization e↵orts,

we added an index �qsz, where z 2 Z. The set Z can be considered as the identical

fragments of a physical resource. Through this approach, �qsz becomes a binary vari-

able, which equals 1 if the z
th fragment of the computational resource of server s is

allocated for service type q. In this direction, additional constraints are defined as

X

z

�qsz  Yqs|Z| 8q, s (5.14)

X

q

X

z

�qsz  |Z| 8s. (5.15)

Constraints (5.14) enforce that a fragment of a computational resource can be allocated

for service type q if that service type is hosted on server s. Constraints (5.15) ensure

that the total number of fragments allocated for all service types on a server cannot

exceed the number of fragments available on the physical resource.

Converting � to a binary variable results in the multiplication of a binary and

continuous variable in Equation (5.13), as
P

z E(Tqs)�qsz ⇤ bs. Therefore, an additional

continuous variable �qsz is integrated for transforming the non-linearity into a set of

linear constraints by using the big-M methodology where M is a large number

�qsz � E(Tqs)bs �M(1� �qsz) 8q, s, z (5.16)

�qsz  �qszM 8q, s, z (5.17)

�qsz  E(Tqs)bs 8q, s, z. (5.18)

The second operand of Equation (5.13) also consists of the multiplication of a

binary and a continuous variable, ✓uqs and E(Tqs), respectively. A similar approach is

adopted for this quadratic constraint: proposing ⇥uqs variable as a substitution. We

integrated the substitute variable and added new constraints as
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⇥uqs � E(Tqs)mqruq �M(1� ✓uqs) 8u, q, s (5.19)

⇥uqs  ✓uqsM 8u, q, s (5.20)

⇥uqs  E(Tqs)mqruq 8u, q, s (5.21)

mq =
X

z

�qsz �
X

u

⇥uqs 8q, s. (5.22)

After the transformation of the non-linear server delay formulation, the same

actions are taken for the non-linear networking delay, as presented in Equation (5.8)

of the original formulation. Let us denote the delay occurred on link (i, j) for service

type q as E(Tqij). The equation can be rewritten as

E(Tqij)�qij ⇤ aij � E(Tqij)
X

u,s

ruq ⇤ ✓uqs ⇤ (lreqq + l
res
q ) = (lreqq + l

res
q ) (5.23)

Similar to the operations related to computational resources, the networking resources

are also partitioned into identical fragments as the allocatable fractions of physical

capacity. By using the same notation for a fragment, we have converted the original

slicing decision for networking resources �qij to �qijz, where

X

q

X

z

�qijz  |Z| 8(i, j). (5.24)

Since �qijz is a binary variable, its multiplication with the continuous variable

E(Tuqij) can be transformed into linear constraints by utilizing the big-M methodology

as carried out with the computational resources. In order to achieve this objective, a

new continuous variable �qijz is added to the model. Correspondingly, the following

constraints are added with regards to the big-M methodology.
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�qijz � E(Tqij)aij �M(1� �qijz) 8q, (i, j), z (5.25)

�qijz  �qijzM 8q, (i, j), z (5.26)

�qsz  E(Tqij)aij 8q, (i, j), z (5.27)

The second operand of Equation (5.23) is also quadratic, due to the multiplication

of two decision variables: E(Tuqij) and ✓uqs. Similar to the ⇥uqs in Constraints (5.19),

(5.20), (5.21) and (5.22), the quadratic multiplication is substituted through a variable,

which is denoted as #uqs. Therefore, a new set of constraints is defined as

#uqs � E(Tqij)(l
req
q + l

res
q )ruq �M(1� ✓uqs)

8u, q, i, j (5.28)

#uqs  ✓uqsM 8u, q, s (5.29)

#uqs  E(Tqij)(l
req
q + l

res
q )ruq 8q, i, j, z (5.30)

(lreqq + l
res
q ) =

X

z

�qijz �
X

us

#uqs 8q, i, j. (5.31)

Through these transformations, the set of constraints defined over the objective

function in the original model is linearized so that the time and space complexity

could be lowered to solve the model through an MIP solver. In order to address the

same issue, a greedy heuristic implementation, namely NESECS, is proposed, and its

implementation details are presented in the following section.

5.3. NESECS Heuristic Implementation

In addition to the formulated optimization model, a greedy algorithm called

NESECS (NEtwork Slicing for Edge Computing Services) is developed. The primary

aim is to obtain quick and feasible solutions for larger instances for which the formal



73

optimization tools cannot find any in a reasonable time. The steps of NESECS are

provided in Algorithm 5.2. The general structure of the algorithm consists of three dif-

ferent phases: (i) service deployments, (ii) task assignments, and (iii) slicing decisions.

Before deploying the service instances, the algorithm makes prioritization among

the set of servers. Based on the number of users each server can reach with at most x

hops, the list of servers S is sorted in descending order. Then, starting with the server

that falls within the range of the most crowded area, the algorithm deploys the service

instances. Through a calculation made over the tra�c requirements matrix ruq for the

users in the range of x hops, the algorithm deploys y most requested service types until

all servers are processed sequentially.

Then, the solution starts assigning the o✏oaded tasks feasibly. First, for a user u,

the algorithm finds servers deployed with the requested service type q. The algorithm

tries to assign the o✏oaded task to the server, resulting in the minimum service delay,

including networking and computation latency. During this phase, the algorithm also

checks whether there is enough remaining capacity for handling the mq of computa-

tional load. A similar operation is applied to network resources that are on the shortest

path between user u and target server s. For each link on the path, the current load

and the load generated by this request as lreqq + l
res
q are inspected. After calculating the

expected server latency for all possible servers, the algorithm completes the assignment

by allocating the server with the minimum service latency. The algorithm iterates by

assigning each request until all requests are processed.

After completing the task assignment operations, the algorithm finds slicing de-

cisions for networking and computational resources. The slicing decisions are based

on the expected load on both networking and computational resources. When a slice

instance is configured for a service type q, it would be a near-optimal decision to base

it on the average load generated by that service type on a resource. Since the opera-

tor does not know the immediate demands of a service type, allocating more resource

capacity than the expected load may lead to under-utilization in general.
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Data: Q, U , S

Result: Objective value, slicing decisions

Sort S in descending order of number of users within x hops;

foreach s 2 S do
Find and deploy y most requested service types within x hops;

end

foreach u 2 U , q 2 Q do

if ruq > 0 then

foreach s 2 Suq, link ij 2 shortestPathus do
if mq + serverLoad(s) > bs or linkLoad(ij) + (lreqq + l

res
q ) > aij

then
continue;

end

end

Calculate totalDelay(u, q, s);

assign ruq to s with minimum totalDelay(u, q, s);

end

foreach s 2 S, (ij) 2 E do
Calculate total load as totalLoads;

Calculate total load as totalLoadij;

foreach q 2 Q, do
Calculate load of service type q as loadqs;

gammaqs = loadqs/totalLoads;

Calculate load of service type q as loadqij;

phiqij = loadqij/totalLoadij;

end

end

end

Figure 5.2. NESECS algorithm.

For a computational resource, the slicing decision for service type q is calculated as

the load generated by that service type divided by the overall load on that resource. Let
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us denote the load generated by service type q on server s as serverLoadqs and the over-

all load on the same server as totalServerLoads. The computational slicing decision

�qs for service type q on server s is calculated as serverLoadqs/totalServerLoads. This

approach is applied to all computational resources and service types. A similar slicing

approach is applied to network resources. If the overall load on a link (i, j) is denoted

as totalLinkLoadij and the load generated by service type q on that link as linkLoadqij,

the network slicing decision �qij is calculated as linkLoadqij/totalLinkLoadij. After

obtaining the slicing decisions, the algorithm calculates the objective value, as depicted

in Equation (5.1), and reports it as the output.

5.4. Performance Evaluation

Performances of the proposed MIP model solved with optimization tools and

the heuristic algorithm are evaluated concerning the slicing operations. A detailed

and realistic set of experiment cases is designed with randomly generated instances to

execute a comprehensive evaluation phase.

5.4.1. Experiment Design

The quality of the proposed solutions is evaluated with di↵erent topologies gener-

ated using the NetworkX [132] package in Python. Three di↵erent topology instances

with {50, 100, 200, 300} nodes are used in the tests, where each node’s degree is cho-

sen arbitrarily between [2,4] for creating a connected topology. Since evaluating the

scalability of the proposed solution approaches is also critical, large-scale randomly gen-

erated instances are used instead of real internet topologies such as TopologyZoo [122].

For a particular topology, the number of users and servers is also factorized to observe

the e↵ect on the slicing operations. In each case, the locations of the users and servers

are determined randomly. Each case is generated with a specific random seed to com-

pare the performance of the proposed approaches accurately. The service types and

their characteristics are designed to express the main motivation behind the network

slicing and edge computing paradigms. Five di↵erent service types are created, as
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depicted in Table 5.3, where mq is denoted in MIPS, lreqq and l
res
q in Mbit, and ↵q in

seconds. Among all, q1 is shaped as a vehicular emergency service, which is the most

sensitive service type to the latency with the highest penalty value.

Table 5.3. Service properties and characteristics.

Property q1 q2 q3 q4 q5

mq [500, 900] [1800, 2000] [1000, 1500] [700, 1400] [1500, 2000]

l
req
q 2 20 8 10 15

l
res
q 3 25 10 5 10

↵q 0.5 0.6 1.4 1.1 0.8

wq 1000 10 500 200 300

The capacity of the links aij 8(i, j) 2 E is set to 10000 Mbps [133] and the capacity

of the edge servers bs, 8s 2 S is fixed as 40000 MIPS to emulate a server that is not

very powerful in terms of computation. The capacities of similar sources are chosen

identical so that we can interpret the results more accurately. However, capacities

can be determined as desired thanks to the flexibility provided by the optimization

model and the heuristic algorithm. The maximum number of service instances on a

server y is set to 3 throughout the network, and the number of identical fragments on a

physical resource z is set to 20. The locations of the edge servers and end-users and the

tra�c requirements matrix are determined randomly. In order to eliminate the e↵ect

of randomness and analyze di↵erent states of the environments, each instance is run

with eight random seeds, and average results are presented. The same seed is used for

corresponding instances to maintain consistency among the optimization model and

NESECS algorithm.

The proposed optimization model is implemented in C++, and Gurobi 9.0.1 [58]

is used as the MIP solver. Three hours is set as the maximum run time to find a

feasible solution for each instance. Additionally, NESECS is implemented using C++,

and both approaches are evaluated on a system with Intel Xeon E5-2698 CPU and 250

GB main memory.
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Figure 5.3. Service satisfaction ratios in case of an emergency.

5.4.2. Benefits of Slicing the Network

Before discussing the detailed performance analysis of the proposed solutions,

the advantage of the slicing approach over traditional networking operations is demon-

strated. The main objective is to preserve the QoS of emergency services by reserving

resources through slice instances.

A use case is designed where the topology is composed of 21 nodes. Within

this environment, 50 users and 5 edge servers are placed arbitrarily. The proposed

optimization model and its equivalent without any slicing decisions are experimented

with and run with the optimization solver. The optimization solver determines the

corresponding decision variables for both models by satisfying all service types by

100%. After fixing the slicing, service placement, and task assignment decisions, the

number of requests for service types q2, q4, and q5, which are the non-emergency services

due to low penalty values, is increased. In case of an emergency (i.e., instantaneous

increase in service requests), to what extent the service satisfaction ratios are a↵ected

is analyzed, and they are presented in Figure 5.3.
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When the slicing is enabled, the performance of service types q1 and q3, which

are the critical services with the highest penalty values among all, does not fluctuate.

However, when the resources are not sliced (i.e., without slicing), we can observe that

none of the requests are satisfied for any service type, except q2, because of the resource

contention with an increased overall load. The requirements of service type q2, a

non-critical service such as infotainment, appear to be highly satisfied. However, in

return, it is seen that emergency services could not be satisfied in any way. The main

reason is that q2 has the highest resource requirements with the lowest penalty, and

it predominates the other service types regarding the resource contention. Therefore,

the main objective of the network slicing is achieved through the resource reservation

provided by the proposed optimization model.

It is also observed that the satisfaction ratio decreases for non-critical services

when slicing is enabled. However, since the resources are reserved according to the

average number of requests for each service type, resource contention occurs only among

requests for the same service type. Therefore, even though the satisfaction ratio for

non-critical services has decreased, it is more e↵ective than the non-slicing approach.

5.4.3. Results

An additional approach that randomly assigns the tasks is implemented to as-

sess the quality of the solutions. Instead of utilizing the minimum service latency

assignment approach in NESECS, this approach assigns the tasks to a random server

deployed with the requested service type. The average of 100 runs is reported as the

objective found by the random assignment approach. The performance of the solu-

tions is evaluated with di↵erent size instances, and the obtained results are presented

in Table 5.4. The columns of this table can be explained as follows:

• Instance (N, U, S): The test environment instance with the format of (Number

of Nodes, Number of Users, Number of Edge Servers)

• No. of solved instances : The number of instances for which a feasible solution
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can be found by the corresponding approach (out of 8)

• Objective (ZM , ZR, ZN): The objective value of the solution provided by the

MIP model, random assignment and NESECS, respectively

• Runtime: Total amount of time in seconds spent by the corresponding approach

• Improvement over ZM (%): The improvement provided by NESECS over MIP

in terms of the objective values, which is calculated as ZM�ZN
ZM

• Improvement over ZR (%): The improvement provided by NESECS over random

assignment in terms of the objective values, which is calculated as ZR�ZN
ZR

Table 5.4. Main results of the optimization model and NESECS algorithm.

MIP model Random

Assignment

NESECS

Instance

(N, U, S)

No. of

Solved

Instances

Objective

(ZM)

Runtime

(sec)

Objective

(ZR)

No. of

Solved

Instances

Objective

(ZN)

Improvement

over ZM (%)

Improvement

over ZR (%)

Runtime

(sec)

(50,20,10) 8 0 196.41 2534.89 8 75 - 97.04% 0.01

(50,40,20) 8 0 3215.11 8818.95 8 0 - 100% 0.07

(50,60,30) 8 50 10410.63 17435.40 8 30.17 - 99.82% 0.22

(50,80,40) 5 256 10800 27719.40 8 254.04 - 99.08% 0.48

(100,20,10) 8 0 2420.35 2650.96 8 775 - 97.32% 0.02

(100,60,30) 8 993.92 10800 16774.10 8 101.61 89.77% 99.39% 0.44

(100,100,50) 0 - - 38024.50 8 414.94 100%* 98.90% 1.82

(100,140,70) 0 - - 58652.40 8 441.99 100%* 99.24% 4.71

(100,180,90) 0 - - 81057.65 8 5732.24 100%* 92.92% 9.63

(200,40,20) 8 504.48 10800 5274.82 8 690.47 - 86.91% 0.30

(200,120,60) 0 - - 35227.96 8 201.46 100%* 99.42% 6.17

(200,200,100) 0 - - 75919.30 8 1369.59 100%* 98.19% 26.93

(200,280,140) 0 - - 121594 8 15354.38 100%* 87.37% 71.20

(200,360,180) 0 - - 165747 8 5817.12 100%* 96.49% 146.28

(300,60,30) 4 13664.79 10800 7959.03 8 79.34 99.72% 99.26% 1.34

(300,180,90) 0 - - 53177.10 8 1293.39 100%* 97.56% 29.90

(300,300,150) 0 - - 118127 8 2578.01 100%* 97.81% 133.14

(300,420,210) 0 - - 186087 8 5031.89 100%* 97.29% 352.42

(300,540,270) 0 - - 258630 8 2960.64 100%* 98.85% 702.93

* 100% improvement means that NESECS obtains feasible solution for the corresponding

instance which cannot be found by the MIP solver.

We can infer that the MIP model can find feasible solutions for small cases.

It even finds the optimal solution for the smallest cases with 50-node topology in a
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short time. However, the increase in the number of nodes, servers, or users makes the

problem di�cult due to time and space complexity. With the increase in the number

of computational or networking resources in the environment, the number of slicing

decisions also increases, making it challenging to find a solution. It can be said that

the number of servers has the highest e↵ect on the complexity of the model due to the

corresponding number of decision variables. Not only the slicing operations but also the

service placement and task assignment processes become complicated as the number

of edge servers increases. On the other hand, while the number of users interrelated

with the task assignment decisions, the topology size with various networking nodes

a↵ects the end-to-end delay and slicing operations. It should be noted that for cases

where Gurobi cannot find a solution, the objective value can be considered as the upper

bound in the system, in which none of the requests is assigned to an edge server.

Considering (50, 20, 10), (50, 40, 20), (50, 60, 30), (100, 20, 10), (100, 60, 30) and

(200, 40, 20) instances, MIP model can produce a feasible solution for all 8 cases.

Among these, in relatively smaller instances, it is observed that Gurobi could obtain

the optimal solution in which no SLA requirements are violated. However, as the ratio

of the overall load within the network to the total resource capacity increases, we see

that the degree of SLA violations tends to increase in parallel. On the other hand, for

the instance of (50, 80, 40), Gurobi could only produce feasible solutions for 5 cases, and

producing a feasible solution for 4 cases of (300, 60, 30) instance. When the instances

of (100, 60, 30) and (300, 60, 30) are compared, it can be said that the increase in the

number of nodes makes it di�cult to find a solution. On the other hand, due to both

model complexity and the networking delay, the objective value obtained by Gurobi

is much higher in (300, 60, 30) instance. The maximum runtime allowed for the MIP

model on Gurobi is set as three hours, and this time is completely used for all cases to

find the best solution, except for the small instances.

On the other hand, the NESECS algorithm successfully produces a feasible solu-

tion for all instances. When the objective values found by NESECS are compared with

the ones obtained by the optimization model, we see that the NESECS outperforms
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the MIP model in general, except for the smallest instances with 50-node topology. For

the instances where the MIP model produces a better solution in terms of the objective

value, the improvement provided by NESECS is not reported. While Gurobi produces

better solution than NESECS for small cases by producing the optimal solution in

general, the improvements in the objective value brought by NESECS for the cases

where Gurobi also produces feasible solutions are 89.15% and 99.72% for (100, 60, 30)

and (300, 60, 30) instances, respectively. Since Gurobi could not solve the remaining

11 instances, improvement provided by the NESECS algorithm is reported as 100%.

To validate the quality of the solutions found by NESECS for the cases where

Gurobi fails to produce any, the results are compared with the objective value obtained

through random assignment. Utilizing the NESECS approach instead of arbitrarily

assigning the tasks enhances the quality of the solutions significantly. Among all, the

least improvement provided by NESECS over random assignment is 29.46%, and the

maximum improvement is 99.78%. Considering all instances, the average improvement

as a percentage provided by NESECS over random assignment is 63.32%.

When we examine this table, we can say that the MIP model shows good perfor-

mance in small environments by producing optimal or near-optimal solutions. How-

ever, as the test environment gets larger, the rate of improvement brought by NESECS

increases, and it produces a better solution than Gurobi in a very short time.

When we analyze the results of the algorithm in terms of runtime, we observe

that it can produce a good solution for small environments instantly and for large envi-

ronments in a short time. While NESECS spends 0.03 seconds in the smallest topology

to produce a feasible solution, it spends 991.82 seconds in the most extensive test en-

vironment. We also observe that the number of users and servers is more significant

than the number of network nodes in terms of the algorithm’s runtime.

An additional comparison of the solution methods is performed on a varied num-

ber of users with 100 nodes and 80 servers, as presented in Figure 5.4. According
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to the results obtained through Gurobi, the average objective value tends to increase

as the number of users exceeds 40. The main reason is that the number of users in

the environment as well as the number of task assignment decisions that need to be

made increases, and so Gurobi obtains a feasible solution that is far from optimality.

This inference can also be made with regards to the variance among the solutions of a

corresponding instance. When there are 50 or 60 users in the system, Gurobi fails to

assign any o✏oaded task to an edge server for some of the random instances, which

results in high variances. Additionally, this situation applies to all random instances

when the number of users exceeds 60. In these scenarios, Gurobi cannot assign any

o✏oaded task, and this is reported as the feasible solution. Therefore, the objective is

valuated by penalizing the o✏oaded tasks that are not assigned to any edge server.

Figure 5.4. E↵ect of the number of users on the objective value for 100 nodes and 80

servers case.

When we examine the results of NESECS, we can observe that the SLA require-

ments are satisfied when the number of users is less than 70. Considering that NESECS

can find near-optimal solutions to all cases in a short time, with the increase in the

number of users, the algorithm can still assign service requests to the servers with low
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latency. As the number of users continues to increase, we see that the SLA violations

occur within the environment, but the slope of the curve is far less than the curve ob-

tained through Gurobi. On the other hand, with the increase in the number of users,

the variance of the objective value among 8 cases in a particular instance increases.

However, in these cases, it can be seen that the algorithm can still find the optimal

solutions in which the SLA requirements are not violated.

Figure 5.5. E↵ect of the number of servers on the objective value for 50 nodes and 50

users case.

Similarly, the e↵ect of the edge server capabilities in an environment on the

objective value is also evaluated by comparing the proposed solutions. As presented in

Figure 5.5, Gurobi could obtain the optimal solution in all instances by not violating

any SLA requirement. On the other hand, the objective value could be minimized

by NESECS algorithm by increasing the total capacity of the computational resources

in the environment. While the deviation among the cases is high for the cases where

the overall capacity of the computational resources is restricted, deploying more edge

servers in the environment makes it possible to obtain low deviation and an objective

value close to the optimality.
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As a general outcome, we can say that Gurobi could obtain the optimal value

when the available computation capacity is relatively restricted, and the proposed MIP

model can be preferred as the primary approach as a solution for the slicing operations.

However, as the number of available edge servers in the environment exceeds a certain

level, NESECS could produce near-optimal solutions in a very short time. In such cases,

NESECS can be e�cient in terms of time and space complexity, and more dynamic

actions can be taken for the slice management operations at the edge.
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6. IMPLEMENTATION OF THE SERVICE-CENTRIC

BEHAVIOR WITH PROGRAMMABLE NETWORK

PARADIGMS

In the service-centric approach, the services themselves are handled independent

of their location, and the focus shifts to “what” instead of “where”. Due to the com-

plexities involved, establishing service-centricity at the edge scenarios is not a straight-

forward task. As a remedy, this thesis proposes a service-centric approach at the edge

using orchestration capabilities o↵ered by the programmable network paradigms. Cor-

respondingly, two solution methodologies are developed to achieve this objective: (i)

SDN/OpenFlow and (ii) fully-programmable P4 approach. In this section, these pro-

posals are defined and presented along with their performance evaluation. In order to

provide a practical application of service-centric implementation, the SDN-based solu-

tion is integrated into a pervasive healthcare environment to orchestrate the fall-risk

assessment service within the multi-tier structure.

6.1. SDN Implementation

This thesis envisions a sub-service granularity while maintaining the intrinsic

features of the service-centric behavior. The set of novel services to be requested by

the end-user devices is considered the composition of multiple sub-services. The main

reason for decomposing a service instance into sub-procedures is to provide a decent

granularity environment. A gadget may execute some of the sub-services locally and

o✏oad the remaining part of the task to a remote computation resource [134].

A sample face recognition service that is composed of many sub-services dis-

tributed over the end-user gadget and edge servers is depicted in Figure 6.1. A subset

of procedures is deployed on the first server. Another subset (common or distinct

sub-services) is deployed on the second server, and the last server provides all of the

sub-services. In parallel, it should be noted that the end-user device can also execute
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some of the service routines locally to optimize the overall execution process. In most

cases, it is expected that the sub-services can be served from many locations to increase

the system’s general performance by balancing the load. This sample illustrates the

insight of the sub-service resolution and provides an example case for the sub-service

deployment over edge servers.

Figure 6.1. Distribution of sub-services over the mobile device and edge servers.

The sub-service resolution allows the system designers to reflect the underlying

code-o✏oading mechanisms into the networking level. Similar commercial attempts

exist, such as Amazon Lambda, which allows users to deploy and execute a portion of

a code on the Amazon computational resources [135].

6.1.1. System Implementation and Northbound Applications

In order to come up with an e�cient scheme that addresses the requirements

of service-centric networks and operations with the sub-service resolution, SDN and

OpenFlow capabilities are exploited. OpenFlow Extensible Match (OXM) allows using

more than 40 di↵erent fields as the primary matching mechanism within the flow tables.

However, the flexibility provided by the OXM is not available in the legacy TCP/IP

stack. The proposed solution should be compatible with the legacy solutions where the

network infrastructure is heterogeneous. As a remedy, DSCP (Di↵erentiated services
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code point) field of the IP header is used to identify sub-services in the TCP/IP domain

before interacting with the SDN domain. In order to identify the service itself, to which

the requested sub-service belongs, typical TCP port numbers are used. Historically,

6-bit DSCP and 2-bit ECN (Explicit Congestion Notification) replaced the 8-bit Type

of Service (ToS) field to support QoS requirements and mitigate the congestion. ECN

has an essential role in the current network structure for congestion control, but DSCP

is still not commonly used. The DSCP field is designed by IETF (Internet Engineering

Task Force) for di↵erentiated services. This behavior is per-hop and implemented

locally in each router. When we consider the OpenFlow-enabled switches, they will not

have such implementations soon since they are kept as simple as possible. Therefore,

in this thesis, the DSCP field is used with sub-service addressing to achieve the desired

service management qualities for edge services.

The main objectives are achieving the task o✏oading operations using a sub-

service resolution instead of the current IP address-based design and satisfying the

QoS requirements of the end-users, such as low end-to-end service delay. The SDN as

an enabling management layer can realize these objectives through a software-based

controller and northbound applications where each one defines a di↵erent feature for

the whole system.

The general framework of the proposed system has the following components:

• Users and applications that demand di↵erent sub-services

• Data plane with OpenFlow-enabled network devices

• Edge server that accessible through a LAN connection

• SDN controller

• Northbound applications for load balancing and service orchestration

• Global service locator

The main operations of the system when a request is generated by an end-user

are presented in Figure 6.2. In Step 1, the end-user generates a sub-service request
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by providing the destination port number and DSCP value. The OpenFlow-enabled

switch bu↵ers this packet and forwards a replication to the controller in Step 2 if it

cannot match the packet with any of the flow rules within its flow table. The generated

request needs to have a destination IP address to be routed. However, since the user

application does not know the service location, it initially inserts a generic IP address

defined by the system into the packet header. This information is then modified by

the first switch within the network to be forwarded to the destined server.

Edge Server

Figure 6.2. Processes for forwarding the service request to the edge server.

The service orchestrator receives this packet in Step 3. It interacts with the

service locator in Step 4 to obtain the corresponding location of the edge server that
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can provide the demanded sub-service indicated by the DSCP value. The locator

queries its database with the specified port number and DSCP value and creates a list

of IP addresses available to accomplish the o✏oad operation in Steps 5 and 6.

In general, the orchestrator takes the list of IP addresses and forwards it to the

load balancer. These steps are merged as a single step in 7. Load balancer northbound

application then internally decides on the destination server with a load balancing

algorithm and sends the necessary information about this server, such as its IP address,

to the controller in Step 8.

The controller installs a flow rule in Step 9 with a particular timeout value. In

OpenFlow, two di↵erent timeout values are implemented to enhance the flexibility

of the flow table management. First is “idle timeout”, which indicates that if no flow

arrives that matches a specific rule within that timeout period, the flow rule is removed

automatically. The other one is “hard timeout” that causes the removal of the flow

rule after the timeout period, independent of the number of the matched flows. These

parameters have a significant e↵ect on the performance of the proposed solution.

The newly inserted flow rules indicate that any further request for a sub-service

with the corresponding port number and DSCP value should be forwarded to the

specified server by replacing the IP header field with the corresponding edge server.

After installing the flow rule, it sends an OpenFlow message (OFPT PACKET OUT)

to the switch to apply the same set of actions on the bu↵ered packet. Lastly, at step

10, the incoming request is forwarded to the edge server that provides the requested

sub-service. Besides, any edge server can make a sub-service registration by sending a

notification to the controller at any time when it is deployed with that sub-service.

As illustrated in Figure 6.2, the service locator keeps track of the services, sub-

services and their locations by introducing a mapping mechanism within the database.

The database tuples are recorded through the service registration process initiated

by the edge servers. When a sub-service is deployed over an edge server and becomes
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available to be executed through a task o✏oading request, it needs to inform the service

locator. Correspondingly, a new record is created by specifying the identity of the edge

server and related service information (i.e., corresponding packet header fields). When

a task o✏oading operation arrives, the service locator queries the database with the

given TCP port number and DSCP field. As a reply, it generates a list of IP addresses

that provide the requested sub-service.

The main contribution of the proposed solution is the customized control layer

composed of the SDN controller and two di↵erent northbound applications.

6.1.1.1. Service Orchestration. When a sub-service request arrives at the OpenFlow-

enabled switch with a specific destination port number and the DSCP field, the switch

forwards any unmatched request to the controller. The controller handles this event by

delegating it to the service orchestration northbound application. The service orches-

tration extracts the packet header fields and generates a query for the service locator to

find the set of edge servers that provide the requested sub-service. After that, the Ser-

vice Locator provides the list of corresponding IP addresses to the service orchestrator.

Although the load on computational resources plays a vital role in the performance of

the framework, the load on the controller also has a significant impact. Therefore, tasks

that require a considerable amount of processing are assigned to a northbound appli-

cation instead of the controller itself. Thus, the orchestrator cooperates to locate the

services and reduce the burden on the controller for avoiding performance degradation.

6.1.1.2. Load Balancing. The load balancing application operates in coordination with

the service orchestrator. Once the service orchestrator receives the list of servers, it

assigns the task of deciding on the most feasible edge server to the load balancing

northbound application. After the load balancing application decides on the server, it

informs the SDN controller by sending the destined edge server’s IP address. In order

to apply similar operations on the further requests belonging to the same flow, the

controller installs the corresponding flow rules.
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Four di↵erent load balancing methods are implemented as separate northbound

applications. The first algorithm balances the load among the servers considering

their CPU usage. By collecting the CPU utilization information from the edge servers

frequently, it can determine the least loaded one within an IP address set provided by

the service locator.

The other method uses the already existing mechanisms in SDN, where load bal-

ancing is done based on port statistics. The load balancing application is able to collect

statistics using OpenFlow statistics request message (OFP PORT MULTIPART RE-

QUEST ) sent to the switches, which reply with port statistics (OFP PORT STATS ),

including the number of packets or bytes sent over a port. As a result, it can find the

least loaded edge server by keeping the recent statistics. While the first northbound

application maintains the balanced state among the servers concerning the computa-

tional resources, this algorithm aims to achieve the same objective considering the load

on the network resources.

The third load balancing application is implemented by following the traditional

Round Robin algorithm at the sub-service level. Lastly, an application that assigns

sub-service requests to the edge servers in random order is used in experiments to

provide a lower bound of performance.

6.1.2. Performance Evaluation and Load Balancing

This section presents the experimental setup and the performance evaluation of

the proposed infrastructure under various load conditions.

The proposed system is implemented over the Mininet [136] evaluation environ-

ment, which is configured on a computer with Intel i5-3210M 2.5 GHz CPU and 4GB

main memory. Ryu [137] is chosen as the SDN controller because is supports the

OpenFlow versions that include the OXM mechanism. The system is implemented

in compliance with OpenFlow v1.3 specifications. Within the Mininet environment,
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OpenvSwitch (v2.5) instances are used to emulate the network nodes.

In the initial phase of the experiments, the service-centric behavior of the proposal

is demonstrated. For the second part, experiments are conducted to evaluate the

performance of load balancing northbound applications to minimize the end-to-end

service delay. Each experiment is repeated 5 times, and an average of 100000 sub-

service requests are generated for each run.

6.1.2.1. Enabling the Service-Centric Approach at the Edge. The first objective of the

framework is to enable the end-users to request a sub-service without depending on

the network location - i.e., the IP address. Therefore, the initial experiment setup is

conducted in order to present this behavior of the implemented system.

Table 6.1. Sub-service deployments for the initial experiment.

Edge Server Service Sub-service IP Address

Edge 1 Port: 50006 DSCP: 4 10.0.0.1

Edge 2 Port: 50006 DSCP: 8 10.0.0.2

Edge 3 Port: 50006 DSCP: 12 10.0.0.3

A single service experiment is designed where the service is identified with port

number 50006, and its sub-services are deployed over three di↵erent edge servers. The

sub-service deployments and the corresponding scenario are summarized in Table 6.1.

Accordingly, a single client that has access to the edge servers through LAN/WLAN

requests all of these sub-services sequentially to accomplish the service as a whole.

The peaks in Figure 6.3 correspond to the exact times when the sub-service

request arrives at the corresponding edge server so that the CPU load increases to

execute the routines of that sub-service. The client application generates a request by

specifying the TCP destination port number and DSCP value without knowing the

destination IP address. Therefore, it initially embeds a generic IP address defined by
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the system. This IP address is then modified by the OpenvSwitch on the path and

replaced with the edge server’s IP address. As observed, the sub-service requests are

forwarded to the appropriate edge servers that satisfy the o✏oad operations. In other

words, an increase in the CPU load on a server indicates an ongoing execution.

Figure 6.3. Demonstration of the service-centric behavior at the corresponding edge

servers.

Initially, the edge servers’ CPU loads are close to 0 until the user application

generates the initial request. The implementation is expected to execute the first task

at Edge Server 1 since it is only served there. Between the 15th and 30th seconds, the

first sub-service request (DSCP 4) is forwarded to Edge Server 1 by the SDN controller,

and it is executed there. The client application then generates a request for the second

sub-service (DSCP 8), which is executed by Edge Server 2 between the 40th and 60th

seconds. Lastly, the application generates the latest sub-service (DSCP 12) request,

which is provided by Edge Server 3, and the request is forwarded to the corresponding

server as observed. As depicted, the system can resolve the locations of the sub-services

that are requested by the user application and forward them accordingly. Thus, the

service-centric behavior is successfully implemented by the SDN control plane.
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6.1.2.2. Minimizing the Service Delay with Load Balancing. It is worth noting that

the delay for each sub-service is considered as the “service delay” since a client can

request sub-services independent from each other. In the experiment setup, many

clients are assumed to request sub-services from five di↵erent but identical edge servers

in the vicinity.

Figure 6.4. Experiment setup for the performance evaluation of the framework.

The service identified with port number 50006 has ten sub-services with DSCP

values 4, 8, 12, 16, 20, 24, 28, 32, 36 and 40. The distribution of these sub-services

and the experiment setup are shown in Figure 6.4. There are 40 distinct request types

defined with di↵erent combinations of these ten sub-services, as shown in Equation

7.1 and Equation 7.2, where SS stands for the set of sub-services and each Requesti

represents a request type consisting of a subset of SS. For evaluating the performance

under di↵erent user behavior, each client requests services by randomly selecting one

of these subsets.
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Figure 6.5. E↵ect of load balancing applications with di↵erent number of clients on

service delay.

After all sub-services within that subset are completed, the client chooses another

available subset of sub-services and sequentially creates requests for each element of

this subset. It is essential to mention that each sub-service is unique, and the generated

computation load is distinct. The corresponding routines have the characteristics of a

CPU-burst application. It does not cover any I/O-related operation so that only the

the related computations generate load on the CPU.

SS = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} (6.1)

Requesti ✓ SS where 8i, 1  i  40 (6.2)

As stated, four load balancing methods are implemented, and these are compared

regarding the average end-to-end service latency. Figure 6.5 depicts the e↵ect of user

tra�c on service delay. In this setting, flow rules have 5 seconds idle timeout, and the

northbound application collects CPU/port statistics for every 1 second. For less than
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20 clients, all methods provide approximately the same service delay, while CPU load

balancing provides the least delay. However, as the number of clients increases, port

load balancing, Round-Robin and random assignment result in higher service delays

where the CPU load balancing still provides the lowest service delay. It is not a↵ected

significantly by the increasing number of clients. Since each sub-service generates a

di↵erent amount of computation load on the servers, the load balancing approach that

considers the load on the computational resource performs the best among all. It is able

to track all the changes of the edge server utilization, thus assigning the sub-service to

the least-loaded one results in the lowest service delay.

0 20 40 60 80 100 120

10
0

20
0

30
0

40
0

50
0

60
0

70
0

CPU Load Collection Period (sec)

Se
rv

ic
e 

D
el

ay
 (m

se
c)

Figure 6.6. E↵ect of CPU load collection period.

On the other hand, load balancing according to the port load collection results in

the worst performance. The main reason is that the number of bytes or the number of

packets forwarded by a single port does not di↵er much among the set of sub-services.

Thus, it does not reflect the main load within the network. However, it performs even

worse than the random sub-service assignment. Collecting the port statistics through

OpenFlow messages generates an extra load on the networking resources, an overhead

that does not occur in other cases. For achieving the most accurate and complete

results, both network and computation resources can be considered together.
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Figure 6.7. E↵ect of port load collection period.

The frequency of the load statistics collection from the servers and the switches

a↵ects the performance of the corresponding methods. To capture this e↵ect, the same

environment is utilized with 40 clients where flow rules are installed with 5 seconds

of the idle timeout. The e↵ect of the time period between each load collection and

balancing the load according to the recent values are shown in Figure 6.6 and 6.7. The

minimum period of load collection is 1 second for both methods. Figure 6.6 shows that

as the time between two consecutive load collection operations increases, the service

delay increases as well. The main reason is that the flow rules are installed according

to the latest CPU load information of the edge servers. As the period increases, it

does not reflect the most recent state of the resources. The same information can be

inferred for the port load collection in Figure 6.7 by sending and receiving OpenFlow

messages. As the time between two consecutive OpenFlow statistics request messages

increases, the service delay tends to increase in parallel. Although the smaller period

results in higher numbers of OpenFlow messages within the network that can cause

congestion at specific points or increase the load on the switches, it does not become

the bottleneck. Hence, it is extracted that the period of load collection by both servers

and switches has an important e↵ect on the performance of the framework.
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Figure 6.8. E↵ect of idle timeout on service delay.

Another system parameter is related to the timeout information within the flow

rules installed by the controller. Since the CPU load balancing provides the best

performance, the idle timeout e↵ect is observed in this method. The number of clients

is fixed to 40, and the load collection period is configured as 1 second. The e↵ect of

changing the idle timeout for CPU load balancing is presented in Figure 6.8. As the

idle timeout increases from 1 (minimum idle timeout) to 30, it increases the service

delay, but increasing the idle timeout further does not a↵ect the service delay. The

initial increase in the service delay is caused by matching the old flow rules that do

not reflect the most recent state concerning the load balancing. Therefore, as the

flow rule idle timeout increases, the number of matching packets also increases. The

system is highly dynamic, and the load on the edge servers fluctuates continuously

with various task o✏oading operations. After the idle timeout reaches 30 seconds, the

service delay does not increase further because the average inter-arrival time between

two consecutive requests is not higher than 30 seconds. Thus, the flow rules are never

timed out, and the same rules are matched. This behavior heavily depends on tra�c

characteristics and user behavior. As the average inter-arrival time changes, the point

where the service delay becomes stable may change. On the other hand, the minimum
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service delay is achieved with the minimum idle timeout in every case. As a result,

this parameter is a crucial indicator that a↵ects the performance. Hence, it needs to

be optimized according to the user behavior.

6.2. SDN-based Orchestration of Pervasive Healthcare Services

The applications, including physical exercise assistants, sleep trackers, and stress

detectors, aim to give users continuous feedback for a healthier lifestyle. While smart-

watches and bracelets, with their onboard sensors, provide a convenient platform for

ordinary users to track their wellbeing, more specialized healthcare-dedicated sensors

grant clinicians the ability to monitor their patients like never before. A set of typical

healthcare services and the corresponding devices are depicted in Figure 6.9.

The spectrum of these novel services raises some requirements. The personal-

ization of the services strongly depends on the user context, such as previous health

records, and user profile. The wearable sensors generate huge amounts of data, but

only a small portion can be analyzed and turned into relevant indicators of wellbeing.

This is partly due to the insu�cient computation capabilities, limited storage capacity

and battery constraints of the devices. Even though the small form factor devices have

become more powerful than ever, their performance is still unsatisfactory to execute

healthcare service routines, as the complexity of the relevant algorithms also increases.

The complementary integration of edge and cloud servers may concentrate the

beneficial aspects of both approaches in a single architecture organized in a layered

manner. However, the internal operations of this multi-tier computing architecture

and orchestration of the heterogeneous environment are complex. Resolving all these

complications requires an external policy entity with an e↵ective monitoring module.

The actions could be taken dynamically to enhance the QoE (Quality of Experience)

at the edge of the network. The functional capability of the traditional networking

infrastructure remains inadequate to implement a reactive orchestration mechanism

that can cope with the highly progressive expectations of the services and end-users.
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Figure 6.9. Spectrum of smart gadgets and healthcare services.

An SDN-based multi-tier computing and communication architecture is proposed

to facilitate personalized healthcare services in a pervasive manner. In order to satisfy

various requirements in such a dynamic environment and embrace the heterogeneous

characteristics in a federated setting, it is of utmost importance that edge and cloud

servers cooperate in harmony. While the cloud servers are utilized for delay-tolerant

and resource-hungry tasks such as improving the model and the long-term storage of the

personal health records, the edge servers are utilized to execute the healthcare service

routines. We are still able to benefit from mobile devices for simple operations such

as preprocessing the raw sensory data. By constructing di↵erent levels of computation

and storage resources, pervasive communication can be achieved with an enhanced

management resolution.
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Figure 6.10. SDN-based multi-tier computing and communication architecture.

6.2.1. SDN-based Implementation for Healthcare Services

As depicted in Figure 6.10, the multi-tier computing architecture is composed

of a pool of resources organized in a layered manner. The overall infrastructure with

the healthcare services deployed throughout the network is controlled and orchestrated

with the SDN control plane. We can integrate various northbound applications into the

control plane that can be customized according to the requirements of the environment.

As a practical use case to demonstrate the validity of the proposed architecture,

we also designed and implemented a fall risk assessment service distributed across

multiple tiers by collaborating with the pervasive health group of our laboratory. Con-

tinuous fall risk assessment using wearable inertial sensors is a service that can benefit

greatly from Edge Computing since it requires near real-time analysis to make timely

interceptions possible. Accessibility of the patient records history is also crucial since

fall risk is tightly related to changes in gait and motor functions over time. The long-

term storage deems a central and reliable entity such as the cloud. At the same time,

the short-term data could be stored at the edge to enable time-window analysis, which

is essential for typical gait analysis implementations. The service is designed for a

hospital or nursing home scenario, where multiple mobile residents are simultaneously
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using the service across di↵erent floors and rooms. The clinicians or caregivers are

alerted to any deviations in a timely manner.

6.2.2. SDN Control Plane Components

The main contribution of this solution proposal is the implementation of a north-

bound application to leverage the autonomous management of resources in the net-

work for healthcare applications. The northbound application provides functionalities

including service discovery, topology discovery, resource allocation and load balancing

by using the Python API of the Ryu SDN controller [137].

The load balancing northbound application is presented in Algorithm 6.11. When

an unmatched packet arrives at an OpenFlow switch, a replication is sent to the con-

troller for determining the action to be applied with an OFPT PACKET IN message.

The controller then relays the incoming packet to the northbound application, and

the header fields are investigated. The northbound application particularly extracts

the destination TCP port number information since it is the field that specifies the

requested service type as presented in the previous section. Thus, service-oriented ac-

cess for healthcare applications is enabled by concentrating the service discovery at the

control plane instead of the end-user device.

After finding out the requested healthcare service by mapping the TCP port num-

ber, the list of servers that are available to provide the requested service is produced.

Among this list, the algorithm tries to choose the one that minimizes the end-to-end

service latency. For this purpose, it continuously retrieves the CPU load information

of the servers and monitors their current state. This thread runs for each second inde-

pendent of the ongoing operations within control and data planes. The load balancing

algorithm assigns a probability to each server inversely proportional with the CPU load

of the server. Then, according to these probabilities, the algorithm selects one of the

servers. The destination server is determined according to the probability value, which

is assigned inversely proportional to the current CPU load.
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Data: Servers, services

Result: Destination server

while true do

foreach s 2 Servers do
load(s) newData;

end

end

totalLoad 0;

foreach s 2 Servers(tcpPortNumber) do
totalLoad totalLoad+ load(s);

end

totalFrac 0;

foreach s 2 Servers(tcpPortNumber) do
frac(s) totalLoad/load(s);

totalFrac totalFrac+ frac(s);

end

probOfServers [];

foreach s 2 Servers(tcpPortNumber) do
prob(s) frac(s)/totalFrac;

for i = 0; i < prob(s); i++ do
probOfServers.append(s.ipAdress);

end

end

selectedServer  probOfServers.random();

return selectedServer;

Figure 6.11. Northbound application algorithm for load balancing.

After this operation, the algorithm creates a set of instructions for modifying

the destination MAC and IP address fields so that the corresponding packet can be

routed to the destination server. As stated, the northbound application is implemented

with a topology discovery routine, which frequently communicates with the underlying

control plane, and updates the topology accordingly. Thus, the northbound application
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is capable of creating routing rules and instructions to enable end-to-end connectivity.

In addition to the routing capability, tra�c management practices can be applied to

the packets to enhance the performance by monitoring the network load by exchanging

OpenFlow messages with the data plane entities.

After determining the set of matching fields and list of actions to be applied on the

incoming packet, this policy translated into an OpenFlow messageOFPT FLOW MOD.

When this message is sent to the switches, a new rule is added to the flow table. This

OpenFlow message includes the following information:

• Hard Timeout, set to c seconds

• Matching Fields = [(destination TCP port = identifier of the requested service

type), (source IP address = IP address of the requesting end user device)]

• Priority = 50000 (i.e., max. priority)

• Actions = [(modify destination IP address), (modify destination MAC address),

(output port of the switch)]

As specified, the flow rule installed in the switches is composed of two matching

fields: (i) source IP address and (ii) destination TCP port number. The motivation

behind this is that whenever the same end-user device requests the same service type,

the list of actions specified by the flow rule entry is applied without creating a load

on the control plane. First, the destination MAC address is modified to specify the

next hop, then the destination IP address is modified to route the packet to the corre-

sponding server. Lastly, the physical port of the switch is also defined, from which the

incoming packet is forwarded.

In order to fully enable the end-to-end connectivity, another OFPT FLOW MOD

message is relayed to the corresponding switch. The purpose of this OpenFlow message

is to define the routing rules in the reverse path (i.e., from server to the end-user device).

This part of the algorithm is omitted in Algorithm 6.11 in order to keep it simplified. It

is important to mention that an OFPT FLOW MOD message does not have an e↵ect
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on the unmatched packet that is bu↵ered by the switch. Thus, for applying the same

policy on this packet, an OpenFlow message OFPT PACKET OUT that has the same

content with the OFPT FLOW MOD message is sent by the controller.

Figure 6.12. Edge-enabled fall risk assessment service architecture [138].

6.2.3. Fall Risk Assessment Service Architecture

In order to implement a fall risk assessment service, a multi-tier computation

system is proposed as depicted in Figure 6.12. This multi-tier system incorporates the

cloud datacenter, edge servers and end-user devices as separate layers of computational

resources. To meet various requirements and provide high-performance service to the

end-users, raw data collection, pre-processing, inference and training functionalities are

deployed throughout the tiers in a distributed manner.

In a typical scenario, the Bluetooth-enabled sensors may transmit the collected

data to the edge servers. Another alternative is to utilize a smartphone as an interme-

diate hop, where the raw data is pre-processed before forwarding to the edge server.

When the edge server retrieves the sensory data, it is stored, the gait parameters are

extracted, and the fall risk classification process is executed. If there is a high risk

of fall, a notification is sent to the clinicians or the relatives immediately so that the
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necessary action can be taken on time. The latency-intolerant behavior of the fall

risk assessment service demands edge infrastructure to perform the phase of decision

making. The details of the fall-risk assessment mechanism were presented in [138].

6.2.4. Performance Evaluation and Results

This section provides detailed information about the network emulation environ-

ment used to evaluate the performance of the proposed architecture. The experiments

and the system parameters used in the experimental scenarios are also introduced.

The proposed solution approach is implemented and experimented with in the

Mininet [136] setting, which runs on a system with Intel Core i7-6700K CPU, and

16GB DDR4 main memory. We used Ryu SDN controller [137] for the control plane

operations and implementation of the northbound application, which follows the Open-

Flow v1.3 specification. Within the Mininet emulation environment, Open vSwitch

(OVS) [139] instances are used as the networking resources in the data plane.

Figure 6.13. Emulation environment of SDN-based multi-tier architecture.

Figure 6.13 shows the network topology we implemented on Mininet for the ex-

periments. As depicted, there are three di↵erent sites, each of which covers various

end-users demanding the fall risk assessment service. In order to evaluate the scala-
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bility of the proposed solution, seven di↵erent cases are designed with regards to the

number of users at the edge: 1, 5, 10, 20, 30, 40 and 50. The number of users per edge

site is determined arbitrarily for each case.

The edge servers are deployed with the identical fall risk assessment procedures

and configured on Mininet in a way that an edge server is placed in each site. On top of

the edge system, a cloud server is made available to execute the necessary procedures

in case of a request. The edge and cloud servers are configured as CPU-limited hosts

in Mininet to emulate a realistic scenario, where the edge servers are restricted when

compared to the cloud server. In this direction, each edge server is configured to use

20% of the host machine’s CPU power (considering all the available cores). In contrast,

the cloud server can consume the computation power without any restriction.

The network parameters are also adjusted precisely to emulate the real network

deployments. The WLAN links connecting the end-users to the network emulate typical

802.11n connections, and the bandwidth of these links is configured to support 200

Mbps data rate according to average throughput in typical indoor scenarios [140].

Since Mininet does not provide any functionality to create and emulate wireless links,

we configured them as wired links by using the corresponding parameters to represent

a WLAN connection in the test environments. In addition to this, The LAN links

provide connectivity with the edge servers, and they are configured to emulate Gigabit

Ethernet (i.e., 1 Gbps). The propagation delays in the LAN are almost negligible.

Therefore, we set the delay for the interfaces implementing the LAN links to 5 ms

using the Linux tra�c control (tc) configurations. Lastly, the link that connects the

sites to the cloud datacenter is configured to emulate the WAN access. Since WAN data

rate is much lower than the edge of the network due to congestion, the bandwidth is

set to 100 Mbps and the propagation delay is set to 250 ms. The emulation parameters

for the network links are also presented in Table 6.2.

The sensor data collected from real patients are used in Mininet hosts for the main

tra�c generation and service request operations. In this direction, a scenario where



108

the continuous monitoring of the fall risk assessment service is exemplified and each

client simultaneously generates 5 minutes of data tra�c. The details of an alternative

scenario where each user generates tra�c for a random duration according to a uniform

distribution and performance evaluation results of this scenario are available in [138].

Table 6.2. Network link parameters in Mininet environment.

Link Bandwidth Propagation Delay

WLAN 200 Mbps 5 ms

LAN 1 Gbps 5 ms

WAN 100 Mbps 250 ms

The client and server processes are implemented in Python by using socket pro-

gramming techniques. The server process executes the fall risk assessment routines

after receiving the data sent from the client process runs in the Mininet hosts at the

edge sites. Since reliability of the communication is critical for the analysis accuracy,

TCP transport layer protocol is used.

For evaluating the the performance of the proposed solution approach, the fol-

lowing scenarios are selected and designed:

• Multi-tier with load balancing

• Multi-tier without load balancing

• Only cloud

In the multi-tier environment with a load balancing approach, SDN controller

and northbound application are utilized so that has the objective of minimizing the

end-to-end latency can be achieved. In the second approach, load balancing is disabled,

and the SDN control plane is configured to redirect the end-user requests to the closest

computation resource (i.e., edge server). Lastly, the only cloud approach is evaluated

to observe the performance of the system when all tasks are o✏oaded to the cloud

server with higher computation power through a congested network. Each of these

scenarios is repeated 10 times, where a single run takes 15 minutes on average.



109

6.2.5. Performance of Multi-Tier Architecture

The scalability of the system is a vital issue since the dynamicity at the edge

of the network, and various request patterns may a↵ect the overall performance. The

availability of the service and low end-to-end delay should be preserved even when the

popularity increases within a particular region.

First of all, in order to demonstrate that the proposed architecture of the multi-

tier system and the northbound application operate as desired, the di↵erence between

the load balancing approach and o✏oading to the closest edge server is shown in Fig-

ure 6.14 and Figure 6.15. It can be observed that the maximum CPU utilization

throughout the experiment that lasts 10 minutes is lower when the northbound appli-

cation is active and the load generated by the o✏oaded tasks is distributed among the

computational resources in a fair manner (Figure 6.15). In the load balancing scenario,

the CPU utilization of a server reaches ⇠20% at most. However, on the other hand,

the servers utilize all of their available resources (i.e., 100% CPU utilization) in the

second approach, where the tasks are o✏oaded to the closest edge server.
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Figure 6.14. Without load balancing.

Figure 6.16 shows the performance of the system where each user generates tra�c

for the same amount of time (5 minutes). When the network becomes dense with more

fall risk service requests, the average service delay for each approach increases. While
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the cloud-only approach provides equivalent service quality when the network is less

congested, the average service delay increases with the increasing number of end-users.

In fact, in this scenario, the cloud tier provides the worst result in terms of service

delay among the three approaches. On the other hand, the multi-tier structure with

load balancing still provides better performance than the approach where the requests

are o✏oaded to the closest edge server.
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Figure 6.15. With load balancing.

In general, it can be stated that the Edge Computing system is capable of mini-

mizing the end-to-end service delay so that the stringent latency requirements of such

services can be met. However, due to the scalability issues, it demands an e�cient net-

work management policy with a load balancing functionality provided by the control

entity. When we observe the results obtained through extensive tests as depicted in

Figure 6.16, the multi-tier system provides the fall risk assessment service with lower

service delay than the only cloud approach, since the edge-tier actively participates

in the o✏oading operations. However, once the number of o✏oaded tasks reaches a

certain point, the processing capability of the edge servers remains incapable of meet-

ing the low latency requirement. In other words, the edge servers may su↵er from the

scalability problem in dense settings, and the overall performance may decrease. The

proposed load balancing approach with the SDN control plane is e�cient in assigning

the o✏oaded tasks to the computational resources, which increases the scalability, as

shown by the results.
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Figure 6.16. Comparison of multi-tier approaches with continuous monitoring.
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Figure 6.17. E↵ect of hard timeout on load balancing performance.

Lastly, the e↵ect of hard timeout parameter on the average service delay is ana-

lyzed. Hard timeout is important for optimizing the performance of the load balancing

algorithm. Figure 6.17 presents the evaluation with varying values of hard timeout.

The average service delay tends to decrease up to a certain point as the hard timeout

values increase, then becoming stable. Our load balancing approach distributes the

load among the servers in advance, and triggering load balancing after the expiration

time does not a↵ect the performance greatly. Increasing the hard timeout value in-
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dicates a lower burden on the controller. As the hard timeout value increases, the

number of packets forwarded to the controller also decreases since the probability of

matching with a flow rule becomes higher. The further increase in the hard timeout

value exhibits similar results because after the loads are distributed fairly for once.

The average service delay until the next trigger is already nearly optimized.

6.3. Fully-programmable Implementation Methodology of Service-centric

Networks: P4

Our short-term solution based on the SDN approach [12] embraces the idea of

utilizing available header fields that OpenFlow supports in order to define identifica-

tions of services and sub-services. The primary motivation of this work is to present a

solution that leverages the necessary functionalities of a service-centric model without

modifying the TCP/IP protocol stack. Using the header fields supported by OpenFlow,

the SDN-based solution approach addresses the service identification with TCP/UDP

port numbers and sub-service identification with the 6-bit DSCP field.

Being forced to utilize the supported fields is not the most feasible solution in the

long run. Although the solution can name 216 services, the number of sub-services for

each service instance is limited to 26. In addition to this, using DSCP field and port

numbers may be challenging in certain contexts since they are assigned with specific

roles within the protocol stack and overriding them may not be a useful approach soon.

In order to leverage a fully functional service-centric approach, the following P4

features are implemented accordingly: (i) protocol fields, (ii) parser, (iii) control flow

and (iv) match/action tables. Besides, P4 runtime API is utilized to populate and

manage the match/action tables of the nodes.
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6.3.1. System Design and Implementation Details

The capability of defining customized protocols, packet header fields, match/action

tables and packet processing behavior is the main factor that makes P4 a promising

mechanism for leveraging the service-centric approach within the network. Through

the flexibility of determining the policies to be adapted within the network, it can be

concluded that P4 is able to produce a generally applicable solution for the envisioned

network architecture, embracing the necessary functionalities without reshaping the

legacy TCP/IP protocol stack.

Although the P4 terminology considers packet header definitions and parser as

separate implementations, they are interdependent functionalities in practice. The

header definitions implemented through P4 represent the headers that can be avail-

able within packets and recognized by P4-loaded switches. A header implementation

requires the following information: header name, number of fields, name and width of

each field in terms of bits.

The proposed solution focuses on a new protocol design to eliminate the necessity

of utilizing available header fields. Therefore, an application layer protocol is formed to

create the opportunity of identifying service and sub-services through a separate packet

header instead of disrupting the functions of Layer 2/3/4 protocols. The solution based

on P4 identifies services with a 32-bit field and sub-services with another 32-bit at the

application layer. The routing of network packets is carried out according to these

fields. Although it is currently designed as supporting 232 services and 232 sub-services

of each service, the flexibility provided by P4 brings in the convenience of widening

these fields in case of a need.

Since P4-supported switches are initially not implemented with any functionality

or protocol, the proposed solution also includes implementing the TCP/IP protocol

stack. Although the primary operations are based on the application layer proto-

col designed by this study, the host operating systems are designed according to the



114

TCP/IP protocol stack. In order to provide complete communication between two

ends and compatibility with the legacy communication solutions, Ethernet, IP, TCP

and UDP packet headers and necessary fields are also implemented with P4.

P4 language defines a parser mechanism, which inspects a user-defined set of

packet headers and produces a parsed packet representation. The flow tables then

handle the parsed instance to carry out the necessary match and action operations.

The proposed solution design embraces a parser implementation, which is summarized

in Figure 6.18, that extracts the Ethernet header initially. Then, it parses the cor-

responding Layer 3 header according to the value of type field within this header. If

the value is equal to 0x800, the following header belongs to the IP protocol. Simi-

larly, depending on the protocol field of the IP header, it either parses TCP or UDP

header. Although the current implementation includes the parsing operations of only

TCP/UDP headers, it can be improved to support other protocol values such as ICMP.

Lastly, it parses the 64-bits application layer header and forwards the parsed represen-

tation match/action tables. The control flow specifies the sequence of the tables.

Figure 6.18. Stages of the parser implementation.

In addition to the parsing process, additional functionalities (e.g., checksum calcu-

lation) are also implemented within the scope of parser. The input fields and checksum

calculation algorithm are specified within the parser, and the checksum field of each

header is updated hop-by-hop.
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Figure 6.19. Implementation of the control flow and match/action tables.

One of the critical features that the P4 language accommodates is creating custom

match/action tables, which is not available in OpenFlow. P4 provides the capability

to define the desired number of tables, and each one has separate roles in processing

the parsed representation of a network packet.

The proposed solution includes the implementation of four di↵erent match/action

tables. After the parsed representation of a packet is generated at the ingress stage,

the control flow acts as the main orchestrator to define the sequence of match-action

tables. The first table retrieves the parsed information and checks the application

layer fields, namely service and sub-service identifications. If there is a matched rule,

it modifies the destination IP address of the packet and then forwards it to the second

table defined by the control flow. The role of this table is to check the destination IP

address and determine the necessary output port for routing the packet to the server

that provides the desired service and sub-service. The association of the first two tables

can be considered as a FIB (Forwarding Information Base) table implementation for the

service-centric model. After the output port is determined, the third table modifies the

destination MAC address. Lastly, the fourth table modifies the source MAC address

and the packet is sent over the specified output port.

The details of the control flow operations, match/action tables and actions of each

table are summarized in Figure 6.19. The routing of network packets within the service-
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centric model is carried out according to the service and sub-service identifications, but

the proposed solution deals with the IP addresses of the destinations. The main reason

is that the operating system operations are based on the TCP/IP protocol stack, and

if a server receives a packet with an invalid destination IP address, it drops the packet

without forwarding it to the upper layers. Therefore, to comply with the available

design, the destination IP address is modified by the initial table. An alternative

solution may be providing two di↵erent implementations types. The core nodes may not

deal with the IP addresses, but the switch at the last hop may modify the destination

IP address to make it recognizable by the operating system of the server.

The P4 program code is compiled with a P4 compiler, such as p4c-bmv2, and it

is loaded into the target such as a software-based P4 switch called behavioral model

(bmv2). Target is the term that represents the packet processing machine that can be

implemented with P4 language. The last step that makes the proposed solution full-

fledged is populating the match/action tables. The P4 Runtime API, which provides

additional functionalities to communicate with the switch during runtime, is currently

being developed by a specific workgroup within P4 consortium [141]. The Runtime API

provides functionalities such as inserting, deleting and modifying table rules, reading

counters, retrieving information specific to the tables, and defining registers.

According to the format defined by this API, the arguments required for adding

a new entry are the name of the table, the value of the matching fields, name of the

action to be applied in case of a match and the arguments required for carrying out

specified action. In the first table, a flow rule added to this table needs to indicate the

value of service and sub-service fields to be matched and the IP address of the server

that is available to execute the demanded service instance. Similar to the first table,

necessary entries are added to the following tables through P4 Runtime API.



117

6.3.2. Demonstration of the P4-enabled Service-centric Model

The P4 environment provides alternatives for experimenting with the imple-

mented programs. The adopted methodology is compiling the implementation and

loading the program to the bmv2, which can be run within the Mininet emulation envi-

ronment. Even though Mininet is specifically utilized for OpenFlow-based experiments,

it is possible to integrate a P4-loaded switch with a custom Mininet topology.

A service resembling face recognition is used to demonstrate service-centric opera-

tions of the proposed P4-based solution. The identification of this service is determined

as fcrg, and the service routines are deployed over a server operating in the Mininet

environment. On the other hand, in order to proliferate sub-service resolution, the

feature extraction step of this service is separately taken into consideration and iden-

tified as extr. The P4 program is tested in Mininet with the topology in Figure 6.20.

An end-user requests for the execution of the feature extraction sub-service of the face

recognition algorithm. Instead of generic tra�c generators, socket programming adds

the necessary information to the application layer fields. The end-user application

generates a request message through embedding fcrg and extr identifications into the

packets. For routing the request to the corresponding server where the feature extrac-

tion subroutine is available, the necessary flow rules for each table described in the

previous section are installed as follows:

• add entry table1 0x66637267 0x65787472 service dest ip 10.0.1.10

• add entry table2 10.0.1.10 set nhop 2

• add entry table3 10.0.1.10 set dmac 00:04:00:00:00:01

• add entry table4 2 rewrite mac 00:aa:bb:00:00:01

The first flow rule is added to table1 for matching with the service and sub-service

identification and modifying the destination IP for specifying the IP address of the

corresponding server. The service and sub-service identifications are converted to the

hexadecimal information where 0x66637267 represents fcrg and 0x65787472 represents
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extr. After the destination IP is modified as 10.0.1.10, the output port is determined

as 2 by table2, which is the switch port that is connected to the destination server.

Then, table3 modifies the destination MAC address and table4 modifies the source

MAC addresses according to the matching fields that are specified. After the server

receives the request message, it executes the necessary instructions and generates a

response to the client. In order to route the response packets to the client, a reverse

path is constructed through similar flow rules.

Figure 6.20. Topology for testing the P4 program.

Embedding 64-bits of identification into packets can introduce an overhead within

the network. However, considering that video streams generates most of the overall

IP tra�c, the load generated by the service request packets with extra 8 bytes may

be neglected. This overhead can also be quantitatively analyzed. For instance, an

end-user may o✏oad a face recognition task with an image file or a fall-risk assessment

service with a set of sensory data. By taking into account that MTU (Maximum

Transmission Unit) for Ethernet is 1500 bytes, integration of 8 bytes of information

to the network packets results in approximately 0.06% of overhead. If an end-user

requests a video streaming service, where the size and number of packets are small,

the overhead rate may be higher. However, in this case, the response is composed of a

video stream, which means that the overhead caused by request packets can be easily

neglected compared with the response load.
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7. CONCLUSION

The progress of making the typical end-user devices in daily life even smarter

and improvements in the computational technologies render a novel set of services

more feasible than ever. With the processing of data produced by multi-modal sensors

embedded in these smart devices by machine learning-based applications, the require-

ments of the services and the expectations of the users have become more stringent.

Even though the cooperation of edge and cloud servers in a multi-tier computing

system enables real-time interaction and satisfy the low latency requirement of novel

services, such as fall risk assessment, the current operations of network infrastructure

and protocol stack remain infeasible to provide flexibility for dynamic management

and orchestration. Therefore, a service-oriented behavior becomes necessary instead

of host-centric operations. However, it should be noted that the envisioned multi-

tier structure with service-oriented functions should be compatible with the TCP/IP

protocol stack. Besides its implementation, the requirements in such an environment

should be analyzed, and the optimization problems should be studied in depth.

In this thesis, an SLA-aware task assignment problem is initially studied. In order

to maximize the number of successfully handled task o✏oad operations, two di↵erent

optimization models are proposed: (i) an MINLP model and (ii) an MILP model with a

linear approximation approach. Besides these solution proposals, a nearest-fit heuristic

implementation is also provided to find near-optimal solutions for the problems where

the optimization models su↵er from scalability issues due to time and space complexity.

In this study, two variant of the problem is studied. While the first one consists of

undi↵erentiated services with various performance requirements, the second one aims

to provide fairness among the service types. According to the results obtained through

an extensive experiments, the proposed solutions can provide near-optimal solutions.

While the MILP model enhances the quality of the solutions compared to the MINLP

model, the nearest-fit heuristic is capable of finding good quality solutions in a very
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short runtime. Additionally, an MILP model, a Lagrangian relaxation-based heuristic,

and a greedy heuristic solution are proposed to address the problem of multi-tier edge

computing structure design.

Even though these solutions are promising for addressing the low latency require-

ment of diversified services and expectations of both end-users and operators, the highly

dynamic environment may fluctuate the performance experienced by the end-users. In

order to ensure that all these requirements are satisfied, the network slicing concept

should be integrated to assign dedicated virtual resources to each of the service types.

Therefore, the second part of this thesis is composed of providing an optimal slicing

approach with the optimal capacity reservation of both networking and computational

resources. An MILP model is proposed with a discussion on the linearization approach

to find the optimal slicing decisions. Similar to the previous studies, a heuristic solution

is also proposed to provide a lower bound for the solutions and find reasonable quality

solutions for large instances. With an extensive set of experiments, it is depicted that

enabling the network slicing operations in an edge environment is critical for ensuring

a certain level of performance by providing isolation among the slice instances. Addi-

tionally, the heuristic algorithm is shown to find near-optimal solutions for all cases in

a short time.

Lastly, in addition to the optimization e↵orts, this thesis focuses on the imple-

mentation of service-centric behavior. Accordingly, two di↵erent solution approaches

are proposed by using the programmable network paradigms. The first is based on

SDN and OpenFlow concepts. A short-term solution is provided by utilizing the cur-

rent TCP/IP protocol stack to implement the service-centric operations. On the other

hand, the second solution proposal is long-term, and it implements the service-centric

behavior using P4 capabilities. Since the P4-based solution handles the operations at

the application layer with a customized protocol definition, it is compatible with the

current protocol stack and provides a more realistic solution. In addition to the ex-

periments with these solution proposals, the SDN-based approach is further evaluated

with a fall-risk assessment service. Since this healthcare service demands low latency,
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it is a good candidate for hosting in a multi-tier environment and orchestrating the

task assignments with the SDN approach.

Although an extensive literature review has been carried out in terms of op-

timization and implementation of service-centric behavior in a multi-tier computing

environment, another contribution of this thesis is the determination of various future

works in this field. Firstly, since the optimization models provide an o✏ine solution for

the problem definitions of task assignment, system design and network slicing, future

work is necessary for delivering online solutions. Secondly, the implementation work

can be improved for covering multiple domains with a distributed control plane. Lastly,

the network slicing problem can be extended to cover the RAN, especially targeting

the 5G deployments to provide service assurance on a large scale.
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