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ABSTRACT

NEURAL NAMED ENTITY RECOGNITION FOR

MORPHOLOGICALLY RICH LANGUAGES

Named entity recognition (NER) is an important task in natural language pro-

cessing (NLP). Until the revival of neural network based models for NLP, NER taggers

employed traditional machine learning approaches or finite-state transducers to detect

the entities in a given sentence. Neural models improved the state-of-the-art perfor-

mance with sequence-based models and word embeddings. These approaches neglect

the morphological information embedded in the surface forms of the words. In this

thesis, we introduce two NER taggers that utilize such information, which we show

to be significant for morphologically rich languages. Using these taggers, we improve

the state-of-the-art performance levels for Turkish, Czech, Hungarian, Finnish, and

Spanish. The ablation studies show that these improvements result from the inclusion

of morphological information. We also show that it is possible for the neural network

to also learn how to disambiguate morphological analyses, thereby, eliminating the de-

pendence on external morphological disambiguators that are not always available. In

the second part of this thesis, we propose a model agnostic approach for explaining any

sequence-based NLP task by extending a well-known feature-attribution method. We

assess the plausibility of the explanations for our NER tagger for Turkish and Finnish

through several novel experiments.
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ÖZET

BİÇİMBİLİMSEL AÇIDAN ZENGİN DİLLERDE SİNİR

AĞI TABANLI VARLIK İSMİ TANIMA

Varlık ismi tanıma (VİT), doğal dil işleme (DDİ) alanınındaki önemli bir görevdir.

VİT etiketleyicileri verili bir cümledeki varlıkları etiketlemek için sinir ağı tabanlı mod-

ellerin yeniden doğuşuna kadar geleneksel yapay öğrenme yöntemleri veya sınırlı du-

rumlu dönüştürücüleri kullanmaktaydı. Dizi tabanlı modelleri veya sözcük temsil-

lerini kullanan sinir ağları o zamana kadar elde edilmiş en iyi başarımları ilerletti.

Bu yaklaşımlar sözcüklerin yüzey biçimlerindeki biçimbilimsel anlam ifade eden bilgiyi

görmezden gelmiştir. Bu tezde, biçimbilimsel bilgiyi kullanan iki VİT etiketleyicisi

sunulmakta ve bu tür bilginin kullanılmasının biçimbilimsel açıdan zengin dillerdeki

başarıyı önemli derecede artırdığı gösterilmektedir. Bu etiketleyiciler kullanılarak Türk-

çe, Çekçe, Macarca, Fince ve İspanyolca VİT görevinde o zamana kadar elde edilmiş

en iyi başarımlar ilerletilmiştir. Modelin çeşitli kesimlerini etkin veya devredışı kılarak

yaptığımız deneylerle bu ilerlemenin biçimbilimsel bilginin modele dahil edilmesinden

kaynaklandığı gösterilmiştir. Bunlara ek olarak, olası tüm biçimbilimsel çözümlemeler-

den doğru olanı seçme işinin her zaman elde edilmesi mümkün olmayan harici çözümleyi-

ciler kullanmadan sinir ağının bir parçası olarak yapılabileceği gösterilmiştir. Tezin

ikinci kısmında, bilinen bir öznitelik ilişkilendirme yöntemi temel alınarak herhangi

bir model türüne özgü olmayan bir açıklama getirme yöntemi geliştirilmiştir. Bu

yöntemin ürettiği açıklamaların ikna ediciliği ilk kısımda geliştirilen VİT etiketleyi-

ciler kullanılarak çeşitli özgün deneylerle gösterilmiştir.
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1. INTRODUCTION

Natural language processing (NLP) aims to process human language samples to

produce some type of useful output. There are numerous well-known tasks related

to NLP, such as finding the entities referred in a given text, known as named entity

recognition (NER). Another task aims to answer questions asked by people who are

seeking information about a specific subject, which is called question answering. These

tasks are solved using various methods. Some of them are shared among all tasks,

such as representing words with fixed-size vectors or modeling the sequence of words

in a sentence to obtain a representation for the target task. These methods employ

algorithms from probabilistic modeling, information theory, optimization theory, and

dynamic programming. Thus, NLP is a subject area which encompasses many tasks,

methods, and algorithms.

In this work, we focus on named entity recognition (NER) which is one of the

most utilized in NLP tasks. Its popularity can be demonstrated with a simple scenario.

For example, consider a researcher who wishes to explore a news archive. Normally,

she would begin by browsing the subject index to find the news items of interest to

her. A typical subject index is often divided into a limited number of sections such as

foreign relations, internal a↵airs, economics, petty crimes, sports related articles and

opinion articles. For some researchers, this level of detail is adequate. However, if the

researcher needs a more detailed analysis of articles on health issues, she may very well

be interested in being able to investigate the person, organization or location names

mentioned in these articles.

The named entity recognition (NER) task was introduced to provide a solution

to the problem of exploring vast text databases or detecting mentions to entities in

news outlets. Figure 1.1 shows the output of a NER system for the title and first

few sentences of an opinion article1 in The Atlantic. It identifies several organizations,

1The article was accessed on 09/04/2020 at https://www.theatlantic.com/ideas/archive/2020/03/
interview-francis-collins-nih/608221/.
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persona, and location. Suppose that the researcher is a historian from the future and

wants to know the frequency of the articles about the COVID-19 pandemic that refer

to the National Institute of Health in USA. Using NER systems, it is possible to build

a searchable database of news articles that are related to a common named entity. The

researcher would then be free to select ‘NIH’ or ‘National Institute of Health’ entities

along with the ‘coronavirus’ keyword to specify the desired articles. If the researcher is

restricted to browse the articles according the news sections, several articles of interest

may be missed. For example, the article is in the Opinion section and would be missed

by a person browsing the health section even though it is very relevant.

Figure 1.1. An excerpt from an opinion article published at The Atlantic. The NER

system used while creating this illustration was targeting organization, person and

location names, each marked with ‘ORG’, ‘PERSON’, and ‘LOCATION’ labels.

The NER task was first introduced in the Sixth Message Understanding Con-

ference (MUC-6) [1] as a short-term subtask. At that time, it was thought that a

practical system could be developed in a relatively short time, which could also serve

as a domain-independent tool for other information extraction tasks. To accomplish
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the NER task, portions of text were selected that refer to rigid designators. A rigid

designator is some text that refers to the same entity in all possible contexts which

they exist, and does not refer to anything else in contexts which that entity does not

exist [2]. In practice, a rigid designator is almost always a proper name, except mate-

rials and objects that are found abundantly in nature, like water, air, apple, etc. For

the purposes of this work, we limit the rigid designators to the most prominent ones:

person names, geographical locations, and organization names, which were defined in

the NER task in MUC-6. These designators are referred to as ‘entity types’ in our

work.

The early work on NER often used word lists (known as gazetteers) that con-

tain all known named entities for each entity type to detect named entities. However,

this approach has some shortcomings. First of all, a single entity might be referred

to in a variety of manners: the terms “JFK”, “Kennedy” or “John F. Kennedy” may

all refer to the same entity (the 35th president of USA) in relevant contexts. Sec-

ondly, the phrases “JFK” or “John F. Kennedy” might refer to the airport in New

York City. This complex task has been addressed by numerous studies that will be

detailed in Section 2.1. Current approaches employ sequence-based neural network ap-

proaches and incorporate word embeddings formed using unlabeled text from various

domains [3–6]. However, these approaches are not well studied for morphologically

rich languages (MRLs). Morphologically rich languages retain syntactical information

in the morphology of the surface form of words. Such information is conveyed with

the syntax of other types of languages. For example, in Turkish, a morphologically

rich language, the word “İstanbul’daydı” means ‘he/she was in Istanbul’. This single

word embodies the tense and the locative case, which in this case also forms a com-

plete sentence. This makes morphological understanding more important for MRLs in

comparison to languages with simpler morphological mechanisms.

The hypothesis of this work is that morphological tags capture syntactic and

semantic information and thus can be influential in improving the NER performance.

The motivation behind this can be explained using the Turkish word “İstanbul’daydı”.

The morphological analysis of this word is given below. We follow the notation that
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originates from the widely accepted representation scheme for Turkish [7].

İstanbul+Noun+Prop+A3sg+Pnon+Loc^DB+Verb+Zero+Past+A3sg

The analysis denotes that the root word ‘İstanbul’ is a proper noun in locative

case and it is not marked with a possessive marker (see Section 3.2.1.1). The final word

is a verb in past tense of 3rd person singular agreement. Looking at this analysis, one

can suggest that the locative case tag and the fact that it is not possessed by anyone

or anything might be a good indicator of it being a named entity.

If our hypothesis holds true, models that exploit the morphological information

more e↵ectively are expected to achieve higher NER task performance for morpho-

logically rich languages. For this purpose we propose neural sequence tagger based

NER models that exploit morphological analyses. In Chapter 3 we present a model

that makes use of an external morphological disambiguator. Chapter 4 presents an

approach that eliminates this dependency with a NER tagger that jointly learns to

disambiguate morphological analyses. One may consider that earlier work that utilizes

character based embeddings in word representations [3] and entities tagged at character

level [8] already capture morphological information. Moreover, morphological tags have

already been utilized for the NER task [9, 10]. Our models process the morphological

analysis in a number of di↵erent ways which can be applied to many morphologically

rich languages, such as forming morphological tag sequences or treating the analysis

as a character string. It is also the first to propose an embedding based framework

for representing the morphological analysis in the context of NER. In Chapter 3, we

show that when morphology is represented with embeddings the performance of the se-

quence based NER models surpass the state-of-the-art results. Building on this model,

we introduce another model which eliminates the need for an external morphological

disambiguator in Chapter 4. This is significant since external morphological disam-

biguators for many languages are not available, which limits the applicability of the

former model. We remove this obstacle by incorporating a disambiguator in the sec-

ond model. The disambiguator is jointly learned along with the tagger by using either
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a single dataset that includes both morphological and named entity labels or several

datasets consisting of some with morphological labels and others with named entity

labels.

Our work also addresses the need to explain the predictions of a machine learning

model. A user of our model might need an explanation for two reasons: i) to inspect

whether the trained model is paying attention to parts of the input that make sense ii)

to inspect the contributing factors given a specific input. In Chapter 5, we introduce

a framework for explaining the predictions of sequence-based NLP tasks. This frame-

work can be applied to any sequence-based model targeted at any NLP task given the

probabilities for each possible prediction. Using this framework, we show how to pro-

vide an explanation for the named entity labels predicted by our models. Explanations

are provided in terms of the significance attributed to each morphological feature asso-

ciated with the tokens comprised in named entities. Figure 1.2 shows an explanation

for a Finnish sentence.

Figure 1.2. An explanation regarding the prediction of PRODUCT for the first three words

of a Finnish sentence. Each bar is associated with a specific morphological feature. The

height of a bar indicates the importance factor while the direction indicates the e↵ect

to be positive or negative.

1.1. Contributions

The main contributions of this thesis can be summarized as follows:

The significance of morphological information in NER. We showed that

using morphological information to predict named entity tags improves the perfor-
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mance. The experiments that are reported in Table 3.3 show that using embeddings

based on morphological features yields higher performances for five languages (Turk-

ish, Czech, Hungarian, Finnish, and Spanish) compared to embeddings based only on

character sequences of the surface forms of the input words. Relying only on pre-

trained word embeddings, the F1-measure for Turkish is 82.25%. The inclusion of

character-based embeddings increases the F1-measure to 86.70%. When morphologi-

cal embeddings are introduced, the performance reaches 88.12%. Finally, when both

morphological and character-based embeddings are utilized the performance reaches

91.04%. When the model size is increased by modifying the cell size of bidirectional

Long Short-Term Memory (Bi-LSTM) modules, our model achieves an F1-measure of

92.93% which became the state-of-the-art for Turkish. This model also surpasses the

state-of-the-art for other four languages as reported in Table 3.4. Parts of this work

has been presented in the 26th Signal Processing and Communications Applications

Conference [11] and published in Natural Language Engineering [12].

Joint morphological disambiguator and named entity tagger. We showed

the feasibility of building a named entity tagger, which itself disambiguates the mor-

phological tags of words. This tagger exhibits comparable performance to those that

utilize the disambiguated analyses obtained from external morphological disambigua-

tors. Chapter 3 describes the three models we developed for this purpose: i) EXT M FEAT:

a model that employs an external morphological disambiguator, ii) NER: the same archi-

tecture that does not use morphological features, and iii) J MULTI: a model that jointly

learns both how to label named entities as well as how to disambiguate morphologi-

cal analyses. A comparison of NER (81.07%) with J MULTI (83.21%) suggests that the

morphological information improves the performance (Chapter 3). However, statistical

tests to reject the hypothesis that the performances of J MULTI and EXT M FEAT are on

the same level, could not confidently reject the hypothesis. Although this does not

prove the alternative hypothesis that one of them is better than the other, it does

support that J MULTI is on par with EXT M FEAT. This is significant as J MULTI does not

require external disambiguators, which are not readily available for many languages.

This work has been presented at COLING 2018 [13].
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Explanation framework for any sequence-based NLP task. A model-

agnostic explanation method has been proposed for sequence-based NLP tasks. For

this purpose, the concept of a region that can be adapted to any NLP task has been

formalized. Given the rules for identifying a region for an NLP task, the method

produces a vector consisting of importance scores corresponding to each feature of

the model. This method is applied to explain the NER tagger introduced in Chapter

4. A qualitative and quantitative analysis is performed on the resulting explanations.

The readability and plausibility of the explanations were found to be consistent with

linguistic knowledge. This work has been published in PLOS ONE [14].

1.2. Thesis outline

This thesis is outlined as follows. The relevant work on named entity recognition,

morphological analysis, and interpretability of machine learning models are provided

in Chapter 2. Chapter 3 introduces a NER tagger that utilizes morphological analyses

from an external morphological disambiguator. The NER tagger in Chapter 4 jointly

learns to disambiguate morphological analyses. In Chapter 5, we introduce an expla-

nation method for sequence-based NLP tasks that utilizes the NER tagger in Chapter

4 as a use case. Chapter 6 lays out di�culties that restricted us, ideas that would lead

to future work, and, certain restrictions or di�culties encountered when forming expla-

nations due to the nature of the language input. Finally, Chapter 7 gives a discussion

of the outcome of the work presented in this thesis to aid future research.



8

2. RELATED WORK

2.1. Named entity recognition

NER is closely related to complex natural language understanding tasks such

as relation extraction [15], knowledge base population [16], and question answering

[17–19].

Early studies proposed compiling lists of people, place and organization names

and exploiting them to decide whether there exists a named entity using hand crafted

rules [20, 21]. Traditional approaches to NER typically use several hand-crafted fea-

tures such as capitalization, word length, gazetteer based features, and syntactic fea-

tures (part-of-speech tags, chunk tags, etc.). A wide range of machine learning-based

methods have also been proposed to address the named entity recognition task. Some

of the well known approaches are conditional random fields (CRF) [22,23], maximum

entropy [24], bootstrapping [25, 26], latent semantic association [27], and decision

trees [28]. These techniques are generally used to create classification models which

act on every token to decide whether there is an entity on that position of the text or

not.

Recently, deep learning models have been instrumental in deciding how the parts

of the input should be composed to form the most beneficial features leading to state

of the art results [29]. One of the key issues is the determination of how to represent

the words. This is due to the symbolic nature of words. These methods rely on simple

tokenization by white space and employ distributional hypothesis [30]. The research

in this direction led to the use of fixed length vectors in a dense space that improved

the overall performance of many tasks, such as sentiment analysis [31], syntactic pars-

ing [32], language modeling [33], part-of-speech tagging, and NER [29]. These word

representations or embeddings are automatically learned either during or before the

training phase using methods such as Word2Vec [34] GloVe [35]. The incorporation

of morphology into this type of word embeddings was proposed for language model-
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ing [36–40], and for morphological tagging and segmentation [41,42].

Built upon these findings, several approaches have been proposed which treat the

NER task as a sequence labeling problem [3–6]. These studies employ Long Short-Term

Memory (LSTM) or Gated Recurrent Unit (GRU) components to capture the syntactic

and semantic relations between the units that make up a natural language sentence.

In Huang et al. [4], a Bi-LSTM network with a CRF layer on label scores is proposed.

A special fixed-size representation is prepared for each word. The first component of

this representation is the spelling features extracted from the surface forms such as

whether all letters are lowercase or whether the first letter is uppercase. The second

component is composed of a feature for each word bi-gram and tri-gram that exists

in the context. The resulting representation is then fed to a word level LSTM. This

network’s NER performance is reported to be comparable to the performance of the

state of the art studies. Another similar approach processes characters in each surface

form in the sentence with a convolutional neural network (CNN) [5]. This helps the

network to automatically represent the features that are extracted according to rules

that are carefully designed in previous work. The word representations formed with

this additional component is then fed to a word level LSTM resulting in state of the

art performance. Two di↵erent approaches use LSTMs [3] and GRUs [6] instead of

CNNs at the character and word levels otherwise similar to other work [5]. These two

studies report results similar to each other and improve the state of the art results. In

these studies, the morphological information present in the surface form of the word

is handled only through the use of character based embeddings. Although this is not

a limiting factor for languages which are not morphologically rich, in Chapter 3, we

show that employing morphologically disambiguated tags when representing words in

a neural architecture improves the NER performance.

There has been other approaches to the NER task for morphologically rich lan-

guages [9, 10, 43–45]. A study which can be considered as one of the first attempts

in tackling NER for morphologically rich languages uses a hidden Markov model and

takes the morphological tag sequence as input along with others like the surface form,

capitalization features and similar features [9]. In a study which basically depends on
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handcrafted features given to a CRF-based sequence tagger system, the morphology of

the word was captured using the first and last three characters of the word as a feature

resulting in an improvement in the NER tagging performance for Bengali [45]. In an-

other study [10], a similar approach is taken with features generated using the output of

an external morphological disambiguator and also shown to improve the performance.

Another study [44] uses the same method but with a di↵erent approach for extracting

morphological information, where they show an improvement over the previous state

of the art results of [10]. The first study focusing on morphologically rich languages

to employ neural networks [43] contains a regularized averaged perceptron [46] and

relies on handcrafted rules along with pretrained word embeddings. However, they

refrain from using output from external morphological disambiguators and only rely

on the first and last few characters of a word as features. In our proposed NER tagger

described in Chapter 3, however, the disambiguated morphological analysis is used to

generate a fixed length vector in a number of di↵erent ways (Section 3.3.2) which is

called a morphological embedding. This morphological embedding is composed with

pretrained word embeddings and character based embeddings to obtain a word repre-

sentation for each word and employed in a setting similar to previous work [5]. Our

second proposed NER tagger described in Chapter 4 di↵ers from these studies as it

does not rely on handcrafted features. We represent words as fixed length vectors,

employ morphological information to disambiguate the correct morphological analysis,

and then combine them in such a way to obtain a context vector to label with NER

tags.

2.2. Morphological analysis and disambiguation

In a recent study on morphological disambiguation [47], the authors propose a

two-layer network for prediction. In the first layer, they process the candidate mor-

phological analyses along with the correctly predicted analyses of previous words and

obtain a vector to be processed in the second layer. The second layer takes all vectors

propagated from the previous words and computes a softmax function over positive

and negative classes. They predict the correct morphological analysis starting from
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the first word and use this prediction in the next word positions. The model is eval-

uated on a dataset manually labeled by the authors and considered as the state of

the art for Turkish and competitive for French and German. Our proposed model for

morphological disambiguation relies on scoring the candidate morphological analyses

to predict the correct one for a word in a sentence. We borrow this idea from [41].

In their study, they feed the word representations to a Bi-LSTM and obtain context

embeddings for each position. Using these embeddings, they score each morphological

analysis by calculating a similarity function reaching the state of the art or competitive

results for Turkish, Russian and Arabic.

Most of the work in morphological disambiguation or tagging strictly depend

on their chosen specific output format for morphological analysis. This is due to the

fragmented nature of computational approaches to morphological analysis for every

language in the literature. However, we argue that our approach is immune to this

problem as all of these output formats can be treated as a sequence. An example

from Finnish is ‘raha+[POS=NOUN]+[NUM=SG]+[CASE=ADE]’ [48], another from Turk-

ish is ‘Ankara+Noun+Prop+A3sg+Pnon+Loc’ [7], and one for Hungarian is ‘hı́r+NOUN+

Case=Nom+Number=Plur’ [49]. All of these can be split by the ‘+’ symbol and trans-

formed into a root and tag sequence. Moreover, there is an attempt in the area to

unify the morphological annotation along with syntax annotation across many lan-

guages which will contribute more towards a solution [50].

2.3. Joint modeling

Many models targeting NLP tasks are designed to work independently although

they usually employ linguistic information related with other tasks. Given that there

are state of the art models which are similar in the sense that they all employ a sentence

level Bi-LSTM, it is reasonable to hypothesize that jointly learning several tasks will

improve the performance as shown in the literature [51, 52]. In a recent study, it has

been suggested that using separate layers for separate tasks is better rather than using

the same (or usually top) layer for all the tasks [53].
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2.4. Interpretability

There are several approaches to explaining the results of machine learning models.

Some machine learning models are self-explanatory, such as decision trees, rule-based

systems, and linear models. For example, the output of a decision tree model is a

sequence of answers to yes/no questions, which can be considered as explanations.

For other models, special mechanisms should be designed to provide explanations.

Explanation models aim to provide two types of explanations: i) model (or global)

explanations, and ii) outcome (or local) explanations. Local explanations focus on

the outcome resulting from specific input samples, whereas model explanations reveal

information about the machine learning model in question. Explanation models further

di↵er in their explanation methods, the types of machine learning models that can

be explained, and the type of data that can be explained [54]. According to the

classification in [54], the method proposed in this work is a model-agnostic features

importance explainer, since it aims to reveal the importance of each feature given an

input sample.

The method proposed in this work (EXSEQREG) is inspired by the LIME ap-

proach [55] which explains the predictions of any model. It achieves this by perturbing

the input to assess how the predictions change. LIME uses a binary vector to indicate

whether a feature is perturbed, as described in Section 5.2. The binary vector (z)

indicates the presence or absence of a feature. One shortcoming of this representation

is that it does not convey whether a feature that is absent in the perturbed version is

due to removal, since it may have been absent in the original input. In other words, a

zero value may indicate two states: the feature does not exist at all or it is perturbed.

Since this distinction may be significant in an explanation, we modified this scheme

to remedy this. We follow an encoding scheme where we mark the features that are

present but removed with minus one, the features that are present and not removed

with one, and the features that are not present at all with zero. Furthermore, we

focus on the probability di↵erences induced by perturbations as opposed to the exact

probabilities that are utilized by LIME.
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A recent approach called LORE [56] learns a decision tree using a local neigh-

borhood of the input sample. The method then utilizes this decision tree to build an

explanation of the outcome by providing a decision rule to explain the reasons for the

decision and a set of counterfactual rules to provide insights about the impacts of the

changes in the features.

The method proposed in our work is part of a general class of methods called

additive feature attribution methods [57]. Methods from this family include DeepLIFT

[58], layer-wise relevance propagation method [59], LIME [55], and methods based on

classic Shapley value estimation [60–62]. DeepLIFT aims to model the impact of

altering the values assigned to specific input parts. Layer-wise relevance propagation

works similar to DeepLIFT, however, in this case, the altered values are always set

to zero. Shapley value estimation depends on the average of prediction di↵erences

when the model is trained repeatedly using training sets perturbed by removing a

single feature i from a subset S of all unique features. Sampling methods for e�ciently

computing Shapley values are also o↵ered [62]. All these methods, including LIME,

depend on solving linear models of binary variables similar to Equation 5.1.

An explanation method for NER based on LIME has been proposed by [63].

The method treats input sentences as word sequences and ignores fine-grained features

such as part-of-speech tags which are often attached to words as part of the input.

The resulting explanation is a vector of real numbers that indicate the impact of each

word. The method is restricted to models that are limited to token-level named entity

tag prediction. However, every token is dependent on each other in the named entity

recognition task. Many models exploit this dependency and combine token-level named

entity tag prediction probabilities to have a single named entity prediction probability

for the entire token sequence of the entity. Contrary to this method, in this work, we

aim to handle this dependency issue by proposing a special transformation procedure,

which is detailed in Section 5.3.4 section for named entity recognition.

LIME defines a text classification problem conditioned on features that corre-

spond to the frequency of unique words in the input sentence. To obtain the explana-



14

tion vector for a given prediction, the input is perturbed by selecting a random set of

words and eliminating all instances from the input sentence, thus removing the bag-

of-words frequency values for the corresponding words from the input. This causes

problems while explaining models that employ sequence processing constructs like re-

current neural networks (RNN) because a bag-of-words feature is devoid of information

about the positions of the words within a sentence. This makes it di�cult to relate a

specific feature to a certain portion of the input sentence. Instead, selecting random

subsequences (or substrings if we ignore tokenization) from the input sentence, desig-

nating these as distinct features, and removing these new features would both perturb

the original sentence and enable specifying the specific position of the perturbation.

These position-aware features are used in another extension of LIME to explain the

prediction of such models [64]. In this work, however, we are only interested in the

impact of features in a specific region in the sentence, so it is not required to have

position-aware features.

The interpretation of machine learning models for NLP became significant subse-

quent to the success achieved by neural models. Although they achieve state-of-the-art

results for many tasks, their black box nature leaves scientist curious about whether

these models learn relevant aspects. For non-neural models, the approach was to

provide mechanisms for explanations of features and their importance. However, the

complexity of neural models has rendered explanations for models or specific outcomes

very di�cult. One approach is to use auxiliary diagnostic models to assess the amount

of linguistic knowledge that is contained in a given neural representation [65–69].

Another prominent approach is to exploit attention mechanisms in the models

[70, 71] to explain specific outcomes by attaching importance values to certain input

features, like n-grams, words, or characters that make up the surface forms. Most of

these methods modify the input samples so that they are reflected as changes in the

output or the inner variables of the models. Other works exploit specially created

datasets to assess the performance of an NLP task. For example, a custom dataset

derived from a corpus of tasks related to the theory of mind was used to explore

the capacity of a question answering model to understand the first and second-order
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beliefs and reason about them [72]. Custom datasets are also used when trying to

test whether the semantic properties are contained in word representations by using

a special auxiliary diagnostic task that aims to predict whether the word embedding

contains a semantic property or not [73].

Finally, approaches have been proposed to explain machine learning models by

introducing latent variables to models [74] or that produce inherently interpretable

output such as via word alignment information in machine translation [75].

2.5. IOB and IOBES tagging schema for NER

Named entities are labeled with types, such as ‘PER’ (person) and ‘LOC’ (loca-

tion). The IOB scheme uses particular prefixes within a chunk to indicate whether it

is inside (I), outside (O), and beginning (B) [76]. The IOBES scheme further refines

this scheme to indicate the ending token and single tokens with the ‘E’ and ‘S’ prefixes

respectively.

The labels are denoted as the position prefix followed by ‘-’ and the type of the

entity. Thus, a named entity of ‘LOC’ type consisting of a single token would be

labeled as ‘S-LOC’. A named entity of ‘LOC’ type that consists of three tokens would

be labeled as ‘B-LOC’, ‘I-LOC’, and ‘E-LOC’ respectively. All tokens that are not a

part of any named entitiy are labeled as ‘O’.
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3. MORPHOLOGICAL INFORMATION FOR NAMED

ENTITY RECOGNITION

3.1. Introduction

In this part of the thesis, we introduce a neural named entity recognition model.

This model treats the morphological analysis in a number of di↵erent ways which can be

applied to many morphologically rich languages. This is the first work that proposes an

embedding based framework for representing the morphological analysis in the context

of NER.

The main contribution of this work is a state-of-the-art system for named entity

recognition in morphologically rich languages. We also provide evidence that shows

augmenting word representations with morphological embeddings improves NER per-

formance.

This chapter is organized as follows: Section 3.2.1 provides information about

morphologically rich languages in general and also some specific details about Turkish,

Finnish, Czech, Hungarian, and Spanish. Section 3.2.2 covers Bi-LSTM networks uti-

lized in the proposed model. In Section 3.3, the proposed model is defined. Section 3.4

presents the experiments in these five languages to evaluate our model’s NER perfor-

mance. The results of these experiments and a comparison of the proposed model’s

state-of-the-art results with the previous work are also given. Section 3.5 makes con-

cluding remarks.
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3.2. Background

3.2.1. Morphologically Rich Languages

The languages in which some of the syntactical functions of words are expressed

by morphological phenomena within the surface forms of the words are called morpho-

logically rich languages. In these languages, the number of words that can be generated

from a single root word is very high in general. A significant number of inflections and

derivations are possible for most root nouns and verbs. In practice, however, this po-

tential is not fully realized where a few of the a�xes are attached to a stem in succession

to form new words. Regardless, the number of words that can be obtained from the

root words is very large. This expressiveness gives rise to complications in applications,

such as data sparseness due to words with many alternative a�xes.

The following sections describe the basic characteristics of the morphologically

rich languages Turkish, Czech, Hungarian, Finnish and Spanish.

3.2.1.1. Turkish. Turkish is an agglutinative language, which expresses most syntactic

information through the morphology of the surface form of the words. Thus, studies

in Turkish NLP have mainly focused on the morphological analysis of words. To this

end, a finite state transducer based on a two level formalism [77] was introduced [7] to

capture the rules of Turkish morphology [78,79]. The notation introduced in this work

is considered the standard for morphological analysis in Turkish. The morphological

analysis of the word “İstanbul’daydı” (‘he/she was in İstanbul’) is:

İstanbul+Noun+Prop+A3sg+Pnon+Loc^DB+Verb+Zero+Past+A3sg

where Prop indicates a proper noun, A3sg denotes the third singular person agreement,

and Pnon signifies that no possessive agreement is active. DB (derivational boundary)

indicates a transition of the part-of-speech usually induced by a derivational su�x. It
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also marks the beginning of a new sequence of inflectional morphemes called inflectional

group (IG) [80]. In this example, the derivation is triggered by the ‘-ydı’ su�x which

is decoded with the Past (past tense) tag.

3.2.1.2. Finnish. Finnish is an agglutinative language which exhibits vowel harmony

and consonant gradation. Finnish uses derivational su�xes to a great extent. In our

work, the morphological tagging of Finnish text is done by a toolkit called FinnPos [81],

which is an averaged structured perceptron classifier. FinnPos relies on Omorfi [82]

for morphological labels and lemmatization. In this work, the tool named ftb-label

from the FinnPos package was used to obtain the disambiguated analysis as the mor-

phological information associated with the word.

An example output of the disambiguator for the word ‘Tampereella’ meaning “in

Tampere”, where Tampere is a city in southern Finland is:

tampere+[POS=NOUN]+[PROPER=PROPER]+[NUM=SG]+[CASE=ADE]

which tags the word as a singular proper noun in adessive case.

3.2.1.3. Czech. Czech is a language with free word order known for its rich morpholog-

ical properties. In our work, we obtain the morphological tags for Czech from a subset

of the Prague Dependency Treebank 2.0 [83, 84]. These tags consist of 15 character

strings where each position encodes a di↵erent morphological aspect. The tags in this

treebank were labeled by seven annotators in two phases. In the first phase, annotators

were given the output of a morphological tagger and were requested to select the best

option. In the second phase, the discrepancies in annotator responses were resolved by

another person [85]. For example, the word ‘dlaně’ (‘palms’) is decoded as:

dlaň+NNFP2-----A----
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which tags the word as a common noun (NN), feminine (F), plural (P), genitive (2),

and not-negated/a�rmative (A). The tag can be decoded by a simple lookup in the

tables provided in the morphological annotation manual for the Prague Dependency

Treebank 2.0 [86].

3.2.1.4. Hungarian. Hungarian is also a morphologically rich language with free word

order. In this work, the morphological features produced by the magyarlanc tool are

associated with words [87]. There are three main morphological coding schemes for

Hungarian: Humor [88], MSD [89], and KR [90]. We use the harmonized version of

these schemes o↵ered by the magyarlanc toolkit [91].

The morphological features for ‘nyelvészek’ (‘linguists’) are:

nyelvész+Case=Nom+Number=Plur

which indicates the nominal case and plurality.

3.2.1.5. Spanish. Spanish is a Romance language which is not generally considered as

a morphologically rich language, but a fusional language. We examine it along with

morphologically rich languages because it di↵ers from many languages as the number

of conjugated forms per verb can be as high as 47. A simplified version of the part of

speech (POS) tags from the AnCora treebank2 was used to obtain the morphological

tags of the words. These POS tags do not specify the morphological features separately

(as in the other four languages), instead they carry morphological information attached

to the word. For instance, the Spanish word ‘visitada’ is labeled as VMP indicating the

past participle form of the verb. Here, V indicates a verb, M states that the verb is

principal, and P indicates a participle verb.

For sentences within the corpus, the supplied POS tags are used, while for sen-

2See http://clic.ub.edu/corpus/en/ancora and https://web.archive.org/web/

20160325024315/http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html

http://clic.ub.edu/corpus/en/ancora
https://web.archive.org/web/20160325024315/http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
https://web.archive.org/web/20160325024315/http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
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tences outside the corpus, the Stanford POS tagger is employed.

3.2.2. Bidirectional LSTMs

Bi-LSTM is a type of sequential neural network which is composed of two long

short-term memory (LSTM) modules, in which the first one reads the input sequence in

forward order and the second one reads it in reverse order. The backwards component

is important as it captures information about subsequent words, which can be highly

significant in NLP tasks.

LSTM models were introduced to solve the vanishing gradients problem of re-

current neural networks (RNN) [92]. The sequential formulation of RNN is defined in

terms of the following functions given a sequence of input vectors xt of size d:

ht = tanh(Uxt +Wht�1)

ot = softmax(V ht)

where ht is the hidden state corresponding to item t of size p, ot is the output vector

corresponding to item t of size p, U is a p ⇥ d matrix, and W,V are matrices of size

p⇥ p.

LSTM di↵ers from RNN in how it computes the output and hidden vectors. The

following equations define an LSTM architecture [92]:

it = �(W (i)
xt + U

(i)
ht�1)

ft = �(W (f)
xt + U

(f)
ht�1)

ot = �(W (o)
xt + U

(o)
ht�1)

c̃t = tanh(W (c)
xt + U

(c)
ht�1)

ct = ft � ct�1 + it � c̃t

ht = ot � tanh(ct)

(3.1)
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where � is the sigmoid function and � is the element-wise multiplication. In this

architecture, variables it, ft, and ot represent the will of the LSTM to memorize the

cell’s new value c̃t, forget the contents of the previous cell’s value ct�1 and display the

current cell’s value ct, respectively. The information is carried by ct�1 and ht�1 from the

previous item. In this architecture, the hidden state ct is calculated as a parametrized

sum of the previous hidden state ct�1 and c̃t, which is a nonlinear function of the

input xt and the previous output ht�1. This eliminates the repetitive multiplication

performed in the RNN architecture, thereby solving the vanishing gradient problem.

For a single LSTM cell, the output vector ht can be used for classification, re-

gression or as input to upper layers of the neural network. In the case of Bi-LSTM,

two LSTM cells, one for forwards and one for backwards, with their corresponding

output vectors
�!
ht and

 �
ht are defined. The concatenation ht = [

�!
ht ;
 �
ht ] is the output of

a Bi-LSTM component [93].

An LSTM cell is trained by learning the variables, the matrices W (i), W (f), W (o),

W
(c) with size p ⇥ d, and the matrices U (i), U (f), U (o), U (c) with size p ⇥ p. Learning

is performed by backpropagation through time [94] with an update rule of choice. A

simple choice such as vanilla stochastic gradient descent or more advanced gradient

based algorithms like Adam [95] or RMSProp [96] can be used. The training of Bi-

LSTM is the same with additional parameters for the extra LSTM.

3.3. Model

In this work, the named entity recognition problem is treated as a sequence

tagging problem. The input is expected to be in sentence form and the entities referred

in it must be labeled with the IOB scheme (Section 2.5). Figure 3.1 shows a labeled

English sentence. The sample in the figure contains three named entities: ‘UN’ as an

organization name, ‘Rolf Ekéus’ as a person name, and ‘Baghdad’ as a location name.

Given an input sentence of length n and its corresponding labels, we define them

as X = (x1, x2, . . . , xn) and Y = (y1, y2 . . . , yn). Each xi is a fixed length vector of
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UN o�cial Rolf Ekéus heads for Baghdad.

b-organization b-person i-person b-location

Figure 3.1. NER sample with IOB tagging scheme.

size d, consisting of embeddings that represent the ith word. Further details of word

representations are provided in Section 3.3.1. The label variable yi is a vector of size K

such that yik = 1 if and only if the correct tag is the kth tag in our tag vocabulary of

size K, otherwise yik = 0. Tag vocabulary when IOB scheme is used consists of ‘B-tag’

and ‘I-tag’ for each tag, and ‘O’.

The words xi are fed to a Bi-LSTM which is composed of two LSTMs [92] treating

the input forwards and backwards respectively as explained in Section 3.2.2. The

forward and backward components’ cell matrices
�!
H and

 �
H are both of size n⇥p, where

p is the number of dimensions of one component of the Bi-LSTM. Figure 3.2 describes

how the proposed model works with a Turkish sentence as an example.
�!
H i,j denotes

the value of the jth dimension of the ith output vector of the forward component

which corresponds to the ith word in the sentence, whereas the corresponding value in

the backward component is denoted by
 �
H n�i+1,j. The concatenation of rows

�!
H i and

 �
H n�i+1 from

�!
H and

 �
H , respectively, are fed to a fully connected hidden layer of K

output neurons for each of the n input words. The output of this fully connected layer

for the ith word is denoted with ⇠i.

A conditional random field (CRF) [97] based approach is followed to predict the

entity tags. CRF based approaches model the dependencies between consecutive input

units better than the approaches that only try to predict the correct tag based on

⇠i. At this point, it is possible to exponentiate the values of ⇠i vectors and normalize

them to obtain a vector which we utilize to estimate the probabilities of each tag:

⇠̃i,k =
exp(⇠i,k)PK

=1 exp(⇠i,)
and use ⇠̃i in a cross-entropy loss function to optimize the parameters

of the model: s(xi, yi) = �
PK

k=1 yi,klog(⇠̃i,k) where xi is the ith word and yi encodes

the correct tag for the ith word. However, this approach is weaker than using a loss

function which also models the dependencies between the consecutive input units.
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Figure 3.2. Processing a Turkish sentence with the proposed model which can be

translated as ‘UN o�cer Rolf Ekéus was in Istanbul’. Words are represented with a

fixed length vector that combines the word, character, and morphological embeddings

(see Section 3.3.2).

The advantage of the CRF model stems from the logical requirements of the IOB

tagging scheme. For instance, the scheme allows tags that start with ‘I-’ only after

a ‘B-’ or ‘I-’ tag of the same type. That is, ‘I-PERSON’ might only come after ‘B-

PERSON’ or ‘I-PERSON’, and not after ‘O’ or ‘B-LOCATION’ or others. Moreover,

the sequences in the corpus might indicate an ordering relation between two tag types.

For instance, ‘LOCATION’ tags may tend to appear more frequently before ‘PERSON’

tags compared to the other way around. Since CRF models allocate a probability to

every valid sequence, it is possible to determine which tag sequences do not adhere to

these rules as well as assigning higher probability to sequences that are in line with the
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ordering relations.

In order to implement a CRF model, the tag score vector ⇠i at each position i

is treated as the observation score obtained from the fully connected layer and the

following objective function for a sample sentence X is optimized:

s(X, y) =
X

i

Ayi,yi+1 +
X

i

⇠i,yi (3.2)

where At,t0 represents the score of a transition from tag t to tag t
0. Then, the most

probable tagging sequence y
⇤ is

y
⇤ = argmax

y0
s(X, y

0).

3.3.1. Embeddings

It has been shown that modeling units of information in a natural language input

as fixed length vectors, which are called embeddings, is more e↵ective at encoding

semantic properties of the words compared to using manually designed features [29,

98]. Our model in this chapter utilizes embeddings where the input words, xi, are

represented as fixed length vectors composed of three components: word, character,

and morphological.

Word embeddings. For each unique word, a vector of length dw is defined.

As mentioned above, word representations are connected to the final loss expression

through ⇠i. This relation makes them parameters of the model. Thus, it is possible to

optimize each of the dw dimensions for the target task for every unique word. However,

these parameters are not learned from scratch during training of our model in this

chapter. The word embeddings are initialized to vectors obtained through approaches

like skipgram with negative sampling [34] and fastText [99]. If a corpus larger than

the Wikipedia is available for a specific language, the skipgram algorithm is employed
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to obtain the word embeddings using that corpus. If such a corpus is not available, we

use the word embeddings that are pretrained using Wikipedia [99].

Character embeddings. In addition to the word embedding for a word, the

covert relationships in the character sequence of the word is of value [5]. To capture

these relationships, a separate Bi-LSTM component is used for this embedding type

with a cell dimension of dc. This Bi-LSTM component is fed with the characters of the

surface form of the ith word. After all the characters are processed by the Bi-LSTM

component, the last cell’s output of the forward and backward LSTMs are concatenated

to obtain the character embedding of the word of length 2dc (see Figure 3.3).

Morphological embeddings. These embeddings are constructed similar to

character embeddings. In this case, the tags of the morphological analysis are treated

as a sequence and fed to a separate Bi-LSTM component formorphological embeddings,

resulting in a vector of length 2dm. Our definition of a morphological analysis di↵ers

for each language. While all definitions are made up of morphological tags that are

combined in some way, morphological tags do not share a common set across languages.

In our work, we tried several alternative combination strategies for each language to

obtain morphological tag sequences as described in Section 3.3.2.

When all of the components are active, the total size of a word representation

is d = dw + 2dm + 2dc. Figure 3.3 shows the representation for the Turkish word

“evlerinde” (“in his/her houses”). This representation is then fed into the sentence

level Bi-LSTM described in Section 3.33 .

3Experiments with three separate sentence level Bi-LSTMs, one for each of the components of our
word representation were also done. However, initial experiments with this model did not give good
enough results to proceed further. By doing this, it was thought that this might help in training the
Bi-LSTMs so that they are better customized to their specific input embeddings. This is basically the
same as the model described above. However in separate Bi-LSTM mode, although the outputs from
each of the separate Bi-LSTMs are concatenated too, each separate Bi-LSTM is fed with only one
component of the word representation. For example, morphological embeddings are fed as if only they
are available, while word embeddings are fed into another Bi-LSTM and the character embeddings
are fed into a third Bi-LSTM.
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Figure 3.3. The representation of the Turkish word “evlerinde” according to the pro-

posed model featuring all three components: word, character and morphological em-

beddings.

3.3.2. Morphological embedding configurations

In order to determine an e↵ective configuration for extracting the syntactic and se-

mantic information in the morphological analysis of a word, experiments with a total of

four di↵erent combinations of morphological tags were performed. In morphologically

rich languages, it is common for a word to have more than one possible morphological

analysis. The correct analysis within a context is determined using a morphological

disambiguator for that language. For example, the Turkish word ‘evlerinde’ has three

di↵erent meanings depending on the context: ‘in their house’, ‘in their houses’ and ‘in

his/her houses’. If the correct sense in a particular context is the last one, then the dis-

ambiguator will output the morphological analysis ‘ev+Noun+A3pl+P3sg+Loc’. Here

‘A3pl’ indicates 3rd person plural, ‘P3sg’ is the possessive marker for 3rd person singu-

lar, and ‘Loc’ is the locative case marker. After the correct morphological analysis for

a word is determined, the embeddings are formed as explained below.

Table 3.1 shows an example for each morphological embedding configuration em-

ployed in this work for each language. The first one uses the root accompanied with

all the morphological tags in the analysis. This embedding configuration is called WITH

ROOT (WR). This is the simplest embedding style that can be considered given the mor-

phological analysis of words in any language. This is because most of the time the

morphological tags output by morphological disambiguation tools can be treated as
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sequences.

For Turkish, the morphological analysis of the word “evlerinde”, which is “ev+

Noun+A3pl+P3sg+Loc”, is transformed into a list by splitting from the ‘+’ symbols.

For Czech, the output of the morphological disambiguator [100] are the root lemma

and a string of 15 characters for tags. In the WITH ROOT (WR) configuration, this

is transformed into a fixed length list by splitting with the ‘+’ symbol. For in-

stance, the analysis ‘prezident+NNMS1-----A----’ is converted into (‘prezident’,

‘NNMS1-----A----’). A similar transformation is applied to Hungarian. The analy-

sis of the word ‘Magyar’, “Magyar+PROPN+Case=Nom+Number=Sing”, is converted into

the list (‘Magyar’, ‘PROPN’, ‘Case=Nom’, ‘Number=Sing’). The disambiguator

that is used for Finnish outputs the tags separately so it is just transformed into a

list. The disambiguated morphological analysis of the word ‘Tampereella’ is ‘tampere+

[POS=NOUN]+[PROPER=PROPER]+[NUM=SG]+[CASE=ADE]’. Then for the embedding con-

figuration WR, it is transformed into (‘tampere’, ‘[POS=NOUN]’, ‘[PROPER=PROPER]’,

‘[NUM=SG]’, ‘[CASE=ADE]’). One exception to this is Spanish in our choice of lan-

guages. For Spanish, a single tag is used to represent both the part of speech and

the morphological properties that might be attached to the word. For instance, the

Spanish word ‘visitada’ is only labeled with ‘VMP’ indicating the past participle form.

So the result is just a single item list for Spanish.

The second embedding configuration follows from the WITH ROOT (WR) scheme.

The root is omitted from the list and the resulting list is the embedding configuration

WITHOUT ROOT (WOR). Obviously, this embedding configuration does not make sense for

languages that do not carry the root lemma in their morphological analysis represen-

tations, such as Spanish.

The next configuration is specific to the Turkish language. The morphological

notation of Turkish includes a ‘DB’ tag. This tag denotes a change in the part of speech

during the derivational process, hence the name ‘derivational boundary’ DB. The parts

that are separated by DB tags are called inflectional groups (IG) [80]. To examine

the significance of these boundaries on the performance of the task, the tags between
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the root and the last derivational boundary are removed. The intuition is that the

information given by the features before the last derivational boundary may not be

relevant at all or may be relatively less relevant. This is because the last derivational

part yields the derived word whose lexical and syntactic properties may be slightly

di↵erent from the intermediate parts. This configuration is named as WITH ROOT AND

AFTER LAST DB (WR ADB). The following is an example for the word “İstanbul’daydı”

(“he/she was in İstanbul”). The first line is the raw morphological analysis. The

model uses the form in the second line.

1. İstanbul+Noun+Prop+A3sg+Pnon+Loc^DB+Verb+Zero+Past+A3sg

2. (‘_Istanbul’, ‘Verb’, ‘Zero’, ‘Past’, ‘A3sg’)

Finally, the morphological analysis of a word is simply treated as a string, which

is transformed to a list containing each of its characters. This embedding configuration

is referred to as CHAR. Examples for all of these configurations can be observed in Table

3.1.

3.4. Experiments

To test the validity and performance of our proposed method, two main sets

of experiments are conducted: i) experiments that compare the proposed approach

with the state-of-the-art models, ii) experiments that aim to demonstrate the di↵ering

performance characteristics of di↵erent model configurations. In this section, before

giving the results of the experiments, the training method and the datasets used in the

experiments are explained.

3.4.1. Training

The parameters to be learned by the training algorithm are the parameters of the

Bi-LSTM described in Section 3.3 (Figure 3.2), the parameters of the Bi-LSTMs for

the character and morphological embeddings (Figure 3.3), and the word embeddings
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for each unique word. After experiments with several di↵erent choices for the number

of dimensions for these parameters, a choice of 100 for word embeddings, 200 for

character embeddings, and 200 for morphological embeddings was observed to give the

best results. However, it was not possible to use these dimension sizes in all of the

experiments covering all of the languages and configurations due to time complexity.

In the first set of experiments that aim to compare the model configurations,

the cell dimension of the sentence level LSTM, word, character and morphological

embedding dimensions, and character and morphological LSTM cell dimensions were

set as 10. For word embeddings, embeddings of size 10 were trained with an algorithm

that takes sub-word information into account [99] using the corresponding language

version of Wikipedia and were used as pretrained word embeddings. Higher dimension

sizes that yield the best performances as stated above were used in the second set of

experiments that compare the proposed model with the previous work.

Model training was done by calculating the gradients using the back propagation

algorithm and updating the parameters with the stochastic gradient descent algorithm

with a learning rate of 0.01. Gradient clipping was employed to handle gradients

diverging from zero. Additionally, dropout was used on the inputs with probability

0.5. Each language was trained for 50 epochs.

3.4.2. Datasets

Five morphologically rich languages were selected to evaluate the proposed method:

Turkish, Czech, Hungarian, Finnish, and Spanish. In this section, the dataset of each

language is described separately as the morphological analysis format, the pretrained

word embeddings, and the origin of the data di↵ers for each.

Turkish. Our model is trained and evaluated using a corpus which was widely

used in previous works on Turkish NER [9]. The training part of the corpus contains

14,481 person names, 9,411 location names, and 9,037 organization names while the

test part contains 1,594 person names, 1,091 location names, and 863 organization
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names. In addition to the named entity tags and the corresponding surface forms,

the corpus also contains a single disambiguated morphological analysis for each input

word.

Word embeddings4 of Turkish words as vectors of length 100 were obtained using

the skipgram algorithm [34] on a corpus of 951 million words, 2,045,040 of which are

unique [101], This corpus consists of Turkish texts extracted from several national

newspapers, news sites, and book transcripts. fastText algorithm was employed to

obtain word embeddings of size 10 using the same corpus [99].

Czech. CNEC 2.0 corpus was used to test the performance of our model on the

Czech language [83,102]. Seven di↵erent named entity types are labeled in this corpus.

The number of labels for each of these entity types for training, validation and test

portions of the dataset is given in Table 3.2. For each word, the morphological analysis

provided in the dataset was used. fastText algorithm was used to obtain pretrained

word embeddings of size 10 and 100 for Czech using the Czech version of Wikipedia [99].

Hungarian. We used ‘The Named Entity Corpus for Hungarian’ which con-

tains around 14,400 phrases tagged with entity labels [103]. The corpus is labeled with

the standard named entity tags. The training part contains 795 person names, 1,056

location names, 8,458 organization names, and 1,327 miscellaneous names. The cor-

pus originally contained only training and test parts, so validation and test sets were

created by randomly selecting from the test part. The test set contains 100 person

names, 125 location names, 1,055 organization names, and 160 miscellaneous names.

In the validation set, there are 87 person names, 113 location names, 1,020 organiza-

tion names, and 174 miscellaneous names. A statistical morphological analysis tool for

Hungarian was used to process each word [87] and its output was used as the input for

morphological embeddings. For word embeddings, fastText algorithm was used to ob-

tain pretrained word embeddings of size 10 and 100 for Hungarian using the Hungarian

version of Wikipedia [99].

4These word embeddings are available at https://github.com/onurgu/

linguistic-features-in-turkish-word-representations/releases.

https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases
https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases
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Finnish. A labeled corpus5 which was compiled from news articles in an online

Finnish technology news site was used. The articles were published between 2014 and

2015. Extracting the morphological tags was done by a Finnish morphological analysis

tool called Omorfi. Morphological disambiguation was done by FinnPos while creating

the training and test sets [81]. This corpus is labeled with five more named entity

tags in addition to the standard set: ‘DATE’ for depicting date references, ‘EVENT’ for

marking events, ‘PRO’ for marking products, ‘TIM’ for marking time expressions and

‘TIT’ for titles. The number of labels for each entity type is shown in Table 3.2.

fastText algorithm was used to obtain pretrained word embeddings of size 10 and 100

for Finnish using the Finnish version of Wikipedia [99].

Spanish. CoNLL 2002 Shared Task6 publishes a corpus tagged with NER and

POS labels which has clearly defined training, development and testing portions of

the dataset. This dataset is widely used in NER related research for benchmarking.

The POS tags were treated as the morphological analysis of the word as the POS

tag contains the morphological information associated with the word if there is any.

This corpus contains 6,278 person names, 6,981 location names, 10,490 organization

names, and 2,957 names of miscellaneous types. fastText algorithm was used to obtain

pretrained word embeddings of size 10 and 100 using the Spanish version of Wikipedia7

[99].

3.4.3. Results

This section presents the results of experiments performed to measure the impact

of using morphological information for the NER task along with character based em-

beddings. The experiments are conducted with the Turkish, Czech, Hungarian, Finnish

and Spanish languages.

The experiments are performed with alternative embedding configurations, which

5We obtained the corpus from https://github.com/mpsilfve/finer-data for our experiments.
At that time, the corpus was not part of a published article. It was later published [104].

6The data can be accessed at http://www.lsi.upc.es/~nlp/tools/nerc/nerc.html.
7
http://www.wikipedia.org

https://github.com/mpsilfve/finer-data
http://www.lsi.upc.es/~nlp/tools/nerc/nerc.html
http://www.wikipedia.org
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are referred to with Setup followed by an integer as an identifier. The setups are: i)

only pretrained word embeddings (Setup 1), ii) only word and character embeddings

(Setup 2), iii) only word and a choice of one of the morphological embedding configu-

rations (Setups 3-6), and iv) word, character, and a choice of one of the morphological

embeddings (Setups 7-10).

Table 3.3 summarizes these results. A comparison of the basic model (Setup

1) with those that use morphological information (Setups 3-6) shows a performance

increase when morphological information is used (ME(CHAR) and ME(WOR)).

In the case of Setup 4 an improvement is observed only for Turkish. Also, again

for Turkish, using only the tags after the last derivational boundary (ME(WR ADB)) is

one of the most successful morphological configurations.

The performances of ME(CHAR) and ME(WOR) are comparable with the latter being

slightly lower (except for Czech). The di↵erence in the performance between Setups 5

and 6 may stem from the errors present in the morphological analyses. These errors are

mostly due to unknown or misspelled words. In such cases, the analysis in the corpus

usually defaults to the same nominal case. The higher performance of ME(CHAR) may

be attributed to its ability to handle possibly faulty roots as this leads to morphological

embeddings that capture more useful information in comparison to ME(WOR).

Another advantage of ME(CHAR) embeddings is its ability to capture the rela-

tionship between roots with the same prefix. For example, in the Finnish corpus,

the frequencies of words with the same prefix often di↵er significantly based on their

roots, such as in the cases of ‘allekirjoittaa’ (sign) vs. ‘allekirjoittaja’ (signatory) and

‘Tampere’ (a city in southern Finland) vs. ‘Tamperelainen’ (of Tampere) where the

occurrence of the former is much frequent than the latter. The ME(CHAR) scheme also

benefits from the common parts in related morphological tags. For instance, in Turkish,

the tags ‘A3sg’ and ‘A3pl’ denote, respectively, 3rd person singular and 3rd person plu-

ral, where the leading two characters ‘A3’ indicate 3rd person agreement. The model

can capture this information when the tags are represented in terms of characters.
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Therefore, ME(CHAR) is a better representation than either ME(WR) or ME(WOR).

Using only character embeddings in addition to the word embeddings (Setup

2) also improves the NER performance. Combining character embeddings with the

ME(CHAR) and ME(WOR) models (Setups 9 and 10) outperforms all other setups (except

Czech). For all the languages, the best performance is achieved with Setup 9 where both

character embeddings and ME(CHAR) embeddings are employed8 . Although adding CE

to Setup 1 (word embeddings) causes a large improvement, adding CE to Setup 5 (word

embeddings and character embeddings of morphological part) provides a relatively

small increase in performance (Setup 9). This may be the result of CE and ME(CHAR)

both taking part in representing morphological information of words.

The results of these experiments show that an increase in NER performance is

observed for all languages when either of CE or ME is included in the word representa-

tion. The best performance is achieved when both CE and ME are included in the word

representation for all languages.

Table 3.4 shows a comparison of the proposed approach in this chapter with the

state-of-the-art results reported in literature. The CE+ME(CHAR) configuration (Setup 9)

is used for comparison, since it yielded the best results. The models for each language

were trained with higher number of parameters. The values for cell dimension of

the sentence level LSTM, character and morphological LSTM cell dimensions, and

character and morphological embedding dimensions were all set to 200. The word

embeddings was set to 100. Other hyper-parameters and training related settings were

unaltered. This work is the first one to report test results for all of Czech, Turkish,

Hungarian, Finnish and Spanish. As such, comparisons are made using di↵erent studies

for each language. For Turkish, a comparison with three di↵erent results are presented.

The performance of Şeker and Eryiğit [44] shown in the table was obtained using

gazetteers. When such resources are not used, the performance drops to 89.55%. Kuru

et al. [8] do not employ any external data. Demir and Özgür [43] rely on hand-crafted

8The relatively lower values for Czech is due to the corpus that was used. This is also apparent
in Table 3.4 where we compare our best results with the literature, i.e. the performance on Czech
dataset of other work are also relatively lower compared to the performance on the Turkish dataset.
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features, however exploit externally trained word embeddings. A new approach for

Turkish was introduced in 2020 that exploits contextual word embeddings to tag NER

labels [105]. This approach represents the current state-of-the-art for NER tagging

with a F1-measure of 95.55%. The creators of the Finnish dataset were working on

publishing a NER model during we make our own experiments. In the meantime,

they have provided a performance metric using Stanford NER9 . Recently, the authors

published the results of their rule-based Finnish NER tagger FiNER [104]. The new

results surpass our F1-value of 84.34 by 2.48 points. We believe this gap is the result

of the patterns formed carefully during the design process of their rule-based tool. For

Spanish, we chose to report the state-of-the-art result for Spanish NER task [3]. A

noteworthy observation is the increase in NER performance for Spanish even though

its morphological characteristic di↵ers from the other languages.

3.5. Conclusions

In this chapter, a state-of-the-art system for named entity recognition in morpho-

logically rich languages was introduced. Several ways for combining morphological tags

to obtain fixed length vector embeddings that represent the morphological information

were compared by their impact to the NER performance. It revealed that augment-

ing word representations with morphological embeddings improves NER performance,

which is further improved when combined with character based word representations.

Experiments with five languages, all morphologically rich languages except Spanish,

were performed. The results obtained using this approach are the state-of-the-art for

all of these languages. However, very recently, our Finnish result is surpassed by a rule

based system [104]. Our Turkish result is also recently improved by an approach that

utilizes contextual word embeddings [105]. An ablation study to examine the impact of

using morphological information revealed that the improved performance was similar

across these languages.

Although extensive experiments regarding the interaction of morphological anal-

9
https://github.com/mpsilfve/finer-data/blob/79f652521873a87554e5c9ffce1416e8d22e1e60/

documents/finer.tex

https://github.com/mpsilfve/finer-data/blob/79f652521873a87554e5c9ffce1416e8d22e1e60/documents/finer.tex
https://github.com/mpsilfve/finer-data/blob/79f652521873a87554e5c9ffce1416e8d22e1e60/documents/finer.tex
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ysis based and surface form based representations were done, morphological tags and

a�xes which are subcomponents of these two representations were not investigated

with much detail. In Chapter 5, we will introduce an explanation framework that is

designed to assign importance values to parts of a given input to any NLP task. NER

model in Chapter 4 is used as a use case.
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Table 3.1. Embedding configurations for Turkish, Czech, Hungarian, Finnish and Span-

ish: WITH ROOT (WR), WITHOUT ROOT (WOR), WITH ROOT AND AFTER LAST DB (WR ADB),

CHAR.

TR

WR (‘ev’, ‘Noun’, ‘A3pl’, ‘P3sg’, ‘Loc’)

WOR (‘Noun’, ‘A3pl’, ‘P3sg’, ‘Loc’)

WR ADB (‘_Istanbul’, ‘Verb’, ‘Zero’, ‘Past’, ‘A3sg’)

CHAR (‘e’, ‘v’, ‘+’, ‘N’, ‘o’, ‘u’, ‘n’, ‘+’, ‘A’, ‘3’, ‘p’, ‘l’,

‘+’, ‘P’, ‘3’, ‘s’, ‘g’, ‘+’, ‘L’, ‘o’, ‘c’)

CS

WR (‘prezident’, ‘NNMS1-----A----’)

WOR (‘NNMS1-----A----’)

CHAR (‘p’, ‘r’, ‘e’, ‘z’, ‘i’, ‘d’, ‘e’, ‘n’, ‘t’, ‘+’, ‘N’, ‘N’,

‘M’, ‘S’, ‘1’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘A’, ‘-’, ‘-’, ‘-’,

‘-’)

HU

WR (‘Magyar’, ‘PROPN’, ‘Case=Nom’, ‘Number=Sing’)

WOR (‘PROPN’, ‘Case=Nom’, ‘Number=Sing’)

CHAR (‘M’, ‘a’, ‘g’, ‘y’, ‘a’, ‘r’, ‘+’, ‘P’, ‘R’, ‘O’, ‘P’, ‘N’,

‘+’, ‘C’, ‘a’, ‘s’, ‘e’, ‘=’, ‘N’, ‘o’, ‘m’, ‘+’, ‘N’, ‘u’,

‘m’, ‘b’, ‘e’, ‘r’, ‘=’, ‘S’, ‘i’, ‘n’, ‘g’)

FI

WR (‘tampere’, ‘[POS=NOUN]’, ‘[PROPER=PROPER]’, ‘[NUM=SG]’,

‘[CASE=ADE]’)

WOR (‘[POS=NOUN]’, ‘[PROPER=PROPER]’, ‘[NUM=SG]’, ‘[CASE=ADE]’)

CHAR (‘t’, ‘a’, ‘m’, ‘p’, ‘e’, ‘r’, ‘e’, ‘+’, ‘[’, ‘P’, ‘O’, ‘S’,

‘=’, ‘N’, ‘O’, ‘U’, ‘N’, ‘]’, ‘+’, ‘[’, ‘P’, ‘R’, ‘O’, ‘P’,

‘E’, ‘R’, ‘=’, ‘P’, ‘R’, ‘O’, ‘P’, ‘E’, ‘R’, ‘]’, ‘+’, ‘[’,

‘N’, ‘U’, ‘M’, ‘=’, ‘S’, ‘G’, ‘]’, ‘+’, ‘[’, ‘C’, ‘A’, ‘S’,

‘E’, ‘=’, ‘A’, ‘D’, ‘E’, ‘]’)

ES
WR (‘VMP’)

CHAR (‘V’, ‘M’, ‘P’)
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Table 3.2. The number of labels for each entity type in Czech and Finnish datasets.

Czech

Person Geo. Inst. Media Address Time Artificial

Training 3,757 3,117 2,705 314 402 2,431 2,459

Validation 509 431 340 53 77 280 325

Test 480 378 324 48 55 368 382

Finnish

Person Loca-

tion

Org. Misc. Date Event Pro-

duct

Time Title

Training 2,229 2,040 9,098 907 956 93 4,462 4,958 631

Test 409 505 1,910 182 238 17 1,134 1,066 129

Table 3.3. The performance of the model using various embedding configurations for

five languages.

Setups F1-Measure

Setup CE ME TR CS HU FI ES

1 - - 82.25 67.56 94.02 70.56 80.38

2 CE - 86.70 72.35 95.10 79.36 81.00

3 - ME(WR ADB) 87.99 N/A N/A N/A N/A

4 - ME(WR) 87.78 66.62 93.98 67.30 N/A

5 - ME(CHAR) 88.12 72.66 95.11 75.89 82.19

6 - ME(WOR) 87.78 67.85 95.14 75.34 81.44

7 CE ME(WR ADB) 87.69 N/A N/A N/A N/A

8 CE ME(WR) 87.09 69.10 92.67 72.17 N/A

9 CE ME(CHAR) 91.04 73.61 95.60 81.37 82.94

10 CE ME(WOR) 89.85 67.19 95.50 80.27 82.68
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Table 3.4. Comparison of results with state-of-the-art NER results for each language.

Work F1-Measure

TR CS HU FI ES

Kuru et al. [8] 91.30 72.19 - - -

Demir and Özgür [43] 91.85 75.61 - - -

Şeker and Eryiğit [44] 91.94 - - - -

Varga et al. [106] - - 94.77 - -

Lample et al. [3] - - - - 85.75

Strakova et al. [107] - 80.79 - - -

(unpublished, uses Stanford NER) - - - 82.42 -

The model in this chapter 92.93 81.05 96.11 84.34 86.95

BERTurk [105] 95.55 - - - -

Ruokolainen et al. [104] - - - 86.82 -
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4. NAMED ENTITY RECOGNITION AND

MORPHOLOGICAL DISAMBIGUATION WITH A JOINT

MODEL

Works that represent the current state of the art in NER generally start by rep-

resenting words with pretrained word embeddings and embeddings that rely on surface

form characters [3, 5]. These architectures feed the word representations to a bidirec-

tional long short-term memory layer (Bi-LSTM, see Section 3.2.2) to produce fixed

length vector representations of the context at every position. These representations

are then used to disambiguate between the possible entities by decoding on trellis

provided by a conditional random field (CRF) model.

In Chapter 3, we introduce such a model that has achieved state-of-the-art per-

formance for several morphologically rich languages (MRLs). We have shown that

using embeddings based on characters or linguistic properties of the word such as mor-

phological features improves the performance compared to using only pretrained word

embeddings. Even though this is a better approach for MRLs, the model in Chapter

3 require an external morphological disambiguator for every language of interest, a

requirement which can be hard or even impossible for some languages to satisfy. This

is especially true for agglutinative languages where there can be many roots and mor-

phological tag sequences for a single word. Although there is an e↵ort to provide a

tool for POS tagging and lemmatization for many languages in a single format [108], it

has been shown that there is a better approach for morphological tagging in terms of

performance which can utilize the information in the context of the target word [41].

In this chapter, we propose a NER model which can exploit the morphological

information by itself alleviating the external morphological disambiguator requirement.

This model jointly learns the NER and morphological disambiguation (MD) tasks. We

design our model so that any language with a mechanism that can provide a number

of candidate morphological analyses for a word can utilize our joint model. This is



40

easier compared to providing disambiguated morphological analyses because systems

that disambiguate morphological analyses are harder to build. Furthermore, we do not

require the labels of each task to be present in the same dataset. One can easily train

the part of the model that is responsible for the MD task in another -preferably larger-

dataset and start with the pretrained model. Our main contribution is to show that

jointly disambiguating morphological tags and predicting the NER tags results in an

equivalent level of performance compared to using externally provided morphological

tags.

We give a survey of related work on the subject in Section 2.2 and 2.3. Our

proposed joint models are explained in Section 4.1. In Section 4.2, we describe our

dataset that is derived from the Turkish dataset used in Chapter 3. After running the

experiments described in Section 4.3, we observe that jointly training our model for

NER and MD results in an increase in the NER performance.

4.1. Models

This section examines NER models. For this purpose, two base models are intro-

duced:

(i) a Bi-LSTM based sequence tagger that predicts the correct NER tags with a CRF

(Section 4.1.1)

(ii) a Bi-LSTM tagger that exploits the context representation to select the correct

morphological analysis at the given position (Section 4.1.2)

These models are examined by introducing variations. First variation is the

same model in Chapter 3 without the morphological embeddings (Section 3.3). Second

variation is same as the state-of-the-art model in Chapter 3, which we call ext m feat.

The MD model has a single variation which is based on [41]. The joint models are

formed of these two basic models combined in various ways (Section 4.1.3). In Section

4.3, we test our hypothesis by training these models by enabling or disabling various
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components and input features 10 .

4.1.1. NER Model

We formally define an input sentence as X = (x1, x2, . . . , xn) where each xi is a

vector of size l and the corresponding NER labels as yNER = (yNER,1, yNER,2, . . . , yNER,n).

xi are then fed to a Bi-LSTM which is composed of two LSTMs (Section 3.2.2) treating

the input forwards and backwards. The output of this Bi-LSTM at position i, hi, is a

vector of size 2p where p is the size of the LSTM cell. Further, we transform hi through

a fully connected layer FClast with tanh activations at the output to combine the left

and right contexts into a vector of size p. This is followed by another fully connected

layer to obtain a vector si of size K, where K is the number of the NER tags.

We follow a conditional random field (CRF) based approach to model the de-

pendencies between the consequent tokens [97]. To do this, we take the vector si at

each position i as the score vector of the corresponding word and aim to minimize the

following loss function lossNER(X, yNER) for a single sample sentence X:

lossNER(X, yNER) =�
nX

i=0

Ayi,yi+1 �
nX

i=1

si,yi + logZ(X),

Z(X) =
X

y02Y

exp

 
nX

i=0

Ayi,y
0
i+1

+
nX

i=1

si,y
0
i

!

where Ai,j represents the score of a transition from tag i to j, Y is the set of all possible

label sequences. Using this model, we decode the most probable tagging sequence y⇤
NER

as argmaxỹNER
lossNER(X, ỹNER). We call this basic model the ner model [3] (see

Figure 4.3).

In the remaining part of the section, we explain the details of the word represen-

tations used in this chapter.

10The code to replicate the experiment environment and the actual source code is published at
https://github.com/onurgu/joint-ner-and-md-tagger

https://github.com/onurgu/joint-ner-and-md-tagger
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4.1.1.1. Representing words. As the default setting, we obtain word and character

based embeddings as described below and combine them by concatenation. For the

first component, we allocate a word embedding vector of size dw for every word in

our dataset. This can be loaded from a pretrained word embeddings database as is

done frequently in the literature, but we chose to learn the word embeddings during

training. The second component is generated from the surface forms. We feed the

character sequence of the word into a separate Bi-LSTM as described at the beginning

of this section. However, instead of using the outputs of LSTM cells at each position,

we just take the last and the first cell outputs of the forward and backward LSTMs and

concatenate them (Figure 4.1). The resulting representation is two times the length of

one character embedding length, 2dc. This second component is in turn concatenated

with the first component to obtain a word representation vector xi of size dw + 2dc.

Figure 4.1. The Bi-LSTM model that generates word representations. Word or root

surface forms and morphological tag sequences are treated using this architecture. The

input sequence (e1, e2, · · · , en�1, en) can either be the character sequence of the whole

word or the root of the word, or the tags in the morphological tag sequence. RELU

unit is only active for roots and morphological tag sequences.

4.1.1.2. External morphological features. In order to compare our models with the

proposed method in Chapter 3, we utilize the golden morphological analysis provided

with the dataset in addition to the word and character based embeddings and call

this model ext m feat. The best approach in Chapter 3 treats the string form of
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Analysis: ev+Noun+A3pl+P3sg+Loc

Transformation: e v + N o u n + A 3 p l + P 3 s g + L o c

Figure 4.2. Morphological analysis of Turkish word ‘evlerinde’ (in his/her houses) and

its corresponding transformation.

a morphological analysis as a sequence of characters (Table 3.3), which is slightly

di↵erent compared to the MD model in this chapter. ext m feat model then applies

the process depicted in Figure 4.1 to obtain morphological embeddings.

Using the sequence of characters of the morphological analysis instead of the

sequence of morphemes might seem counterintuitive at the first glance. However, it is

possible to give an explanation to show its benefits. For the sake of this explanation,

the Turkish morphological analysis example and its corresponding transformation from

Table 3.1 is presented in Figure 4.2. It has been argued that a benefit of treating

morphological analyses as sequences of characters is that the information conveyed

by the characters within the tags is shared among morphological embeddings. For

example, in Turkish, the tags ‘A3sg’ and ‘A3pl’ indicate third person singular and third

person plural where the leading two characters ‘A3’ indicate third person agreement.

This allows the model to represent the fragments of the tags which may improve the

training performance. In this case, ‘A3’ would represent the third person agreement

independent of the singular or plural case. The resulting vector representation is thus

of length 2dm which is added to word and character based embeddings to obtain a

word representation of dw + 2dc + 2dm.

4.1.2. MD Model

In MD model, we are given a sentence X in the same form as in the NER task,

however we optimize the model to predict yMD where yMD,i represents the correct mor-

phological analysis out of the candidate morphological analyses for word i. As in the

ner model, the md model also employs a Bi-LSTM layer to obtain context representa-

tions when fed with the word representations xi (Figure 4.3). We define the candidate
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Figure 4.3. Our basic models: ner and md. The portions of the model which are only

active either for ner or md models are indicated with dashed lines. The symbol ⇥
represents the selection of maij⇤ .

morphological analyses for word i as mai = {mai,1, mai,2, · · · , mai,j, · · · , mai,K}. To de-

termine the correct morphological analysis, we examine each morphological analysis to

extract the root surface form and the morpheme sequence and generate the represen-

tation maij.

We design this approach to be generalizable to many morphological analysis out-

put forms described in Section 2.2. We give an example from Turkish here: the unique

analysis of the Turkish word “Moda’da” is “Moda+Noun+Prop+A3sg+Pnon+Loc” (‘in

Moda’, which is a district in İstanbul) in which a common morpheme naming con-

vention is used [7]. From this analysis, we determine the root as ‘Moda’ and the

morpheme sequence as ‘(Noun, Prop, A3sg, Pnon, Loc)’. The root and the mor-

pheme sequence are used to generate a representation as depicted in Figure 4.1. The

RELU activation function [109] is also applied to the concatenation of the root and
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morpheme sequence representations. We choose the resulting representations rij and

msij to be of two times the length of a morpheme embedding dm. Furthermore, we add

the root representation vector rij and the morpheme sequence representation vector

msij and apply hyperbolic tangent function (tanh), thus the morphological analysis

representation maij is defined as follows tanh(rij + msij).

We then select the morphological analysis maij⇤ by performing a dot product

with the context vector hi: maij⇤ = argmaxj hi · maij when decoding. During training,

the loss is calculated as

lossMD(X, yMD) = �
nX

i=1

log softmax(mscorei)

over a score vector mscorei such that mscoreij = {hi · maij}.

4.1.3. Joint model for NER and MD

We have experimented with three approaches for jointly learning NER and MD

tasks. In this section, we explain the details of each approach.

4.1.3.1. Approach 1: Two losses. In this scheme, we employ a Bi-LSTM layer which

is fed with word representations as in the basic models, ner and md. We then use

the same context hi to calculate the losses separately for NER and MD as explained

in Sections 4.1.1 and 4.1.2. We call this joint model joint1 and show in Figure 4.4a.

We then learn the model parameters to optimize lossJOINT1

lossNER(X, yNER) + lossMD(X, yMD).

4.1.3.2. Approach 2: Enriching the context vector. As in the joint1model, this model

also calculates separate losses for each task and sums them to obtain a single loss to

optimize. However, we additionally concatenate the selected morphological analysis
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representation maij⇤ to hi before feeding it into the fully connected network with tanh

outputs as described in Section 4.1.1. The model is shown in Figure 4.4a. The ra-

tionale of this concatenation is to facilitate information flow from the disambiguated

morphological analysis. We call this model joint2. The loss function lossJOINT2 of

this model is then calculated similar to lossJOINT1.

4.1.3.3. Approach 3: Multilayer and Shortcut Connections. Our most complicated model

employs three Bi-LSTM layers instead of only one. We basically feed the output of the

first layer h
1
i to layer 2, the output of the second layer h

2
i to layer 3. In addition to

this, we transfer the word representation xi to all layer inputs and concatenate with

h
level
i to obtain h

level
i . When processing to obtain the third layer’s output h

3
i , we also

concatenate the selected morphological analysis representation maij⇤ to h
3
i in addition

to xi. This is done to propagate the information gained from the disambiguated mor-

phological analysis to the last layer of the network. We use the first layer’s output h1
i

when calculating mscorei as shown to be better for lower level NLP tasks such as POS

tagging or chunking [51]. We call this model j multi and depict in Figure 4.4b.

4.2. Data

To test our proposed model, we derived a new dataset based on the dataset that

was employed in Chapter 3. This dataset is commonly used in the literature for the

Turkish NER task [9]. The dataset contains sentences from the online edition of a

Turkish national newspaper with NER labels. The creators of the dataset also provide

a golden morphological analysis along with each word. However, golden morphological

analyses in this dataset are sometimes erroneous. For example, words which are in-

flections of foreign words are usually problematic. An example is “Hillary’nin” which

is the genitive case for the word “Hillary”, i.e. ‘Hillary’s’. It is incorrectly labeled as

if it is in nominal case. Also, when the surface form is a number in any noun case,

like “98’e” (‘towards 98’) which is the dative case for the number ninety eight, the

morphological analysis is almost always nominal. We believe that the reason for this

is the incorrect handling of the quote character when preparing the original version.
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In our study, we have first divided the training portion of the original dataset

into training and development sets. We then augmented every word with a list of its

all possible morphological analyses using a commonly used morphological analyzer [7].

These lists are used in morphological disambiguation component of our models. Unfor-

tunately, the golden morphological analyses in about 5% of the word tokens were not

found in these candidate analyses. This is probably due to the issues explained in the

previous paragraph and to the changes in the morphological analyzer implementation.

We built a tool to mitigate this issue semi-automatically.

The tool lists the most frequent contexts where a specific mismatch happens.

The user selects the most suitable morphological analysis out of the candidates for

each context. This is recorded as a solution to the mismatch. Using these solutions,

we automatically corrected all contexts with a mismatch which has a solution in our

solution database. Although we tried to give the utmost attention to selecting the best

solution, some of our solutions might be problematic. Thus, we share the data, the

scripts and the tool for academic use and examination11 . Figure 4.5 shows the user

interface of the tool that has been developed to execute this selection and correction

process.

Unfortunately, there were still left a few hundred mismatches. As providing a

solution for them required a lot of manual work and would only save 1-2 sentences for

each, we just removed any sentence that contains any of these mismatches. This way,

we have retained 25,511 out of 28,835 sentences in the original dataset for training,

2,953 of 3,336 for development and 2,913 of 3,328 for test. By this process, despite

losing some of the sentences, we have built a new dataset with both the NER labels

and the candidate morphological analyses which have correct golden labels.

4.2.1. Training

We implemented the model using the DyNet Neural Network Toolkit [110] in

Python. The model parameters are basically the word embeddings, the parameters

11The data can be found at https://github.com/onurgu/joint-ner-and-md-tagger

https://github.com/onurgu/joint-ner-and-md-tagger
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of Bi-LSTMs, the weights of the fully connected layer FClast, and the CRF transition

matrix A. We trained by calculating the gradients of the loss for a batch of five

sentences consisting of surface forms and its associated NER and/or MD labels and

updated the parameters with Adam [111] for 50 epochs and reported the performance

on test set of the model with the highest development set performance. We applied

dropout [112] with probability 0.5 to the word representations xi. To facilitate the

reproducibility of our work, we also provide our system as a virtual environment12 that

provides the same environment on which we evaluated our system in an open manner.

4.3. Experiments and results

To test our approach, we train and evaluate every model for 10 times and report

the mean F1-measure value for named entity recognition and accuracy for morpholog-

ical disambiguation. This decreases the potential negative e↵ects of random initial-

ization of model parameters as shown in the literature [113]. However, to accomplish

this, we set the parameter dimension sizes to 10 and do not employ pretrained word

embeddings which is a necessary compromise given our limited computing resources.

The results are shown in Table 4.1. We see that the mean NER performance

increases in joint models. Moreover, the joint2 model is performing better than just

calculating two losses at the last layer as we did in the joint1 model. However, apply-

ing the Welch’s t-test between the joint1 and joint2 runs does not strongly imply

this di↵erence (p = .24). Adding multiple Bi-LSTM layers to joint2 and obtaining

j multi also helped and achieved the best score among our joint models13 . Employ-

ing Welch’s t-test confirms the significance of this di↵erence with other joint models,

p < .05 for each pair.

To make a comparison with the method introduced in Chapter 3, we evaluated a

12You can obtain our implementation and find more information about how to use our virtual
environment at https://github.com/onurgu/joint-ner-and-md-tagger.

13One can wonder whether this performance improvement could be due to an increase in the total
number of parameters of the model. We saw that the increase is negligible as it only accounted for a
2% increase.

https://github.com/onurgu/joint-ner-and-md-tagger
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Table 4.1. Evaluation of our models for NER performance with our dataset. We report

F1-measure results over the test portion of our dataset averaged over 10 replications

of the training with the same hyper parameters.

This work

Model Mean F1-measure

ner 81.07

joint1 81.28

joint2 81.84

j multi 83.21

Previous work

ext m feat 83.47

model where the golden morphological analysis in the corpus is represented as a vector

and concatenated to the word representation xi, namely ext m feat (see Section

4.1.1.2). As one can see from Table 4.1, it achieved the best results compared to

our joint models. However, we cannot confirm the di↵erence between ext m feat

and j multi models as the calculated p is well above .05. Thus our best performing

model j multi is performing at a competitive level with an additional advantage of

disambiguating the morphological tags while predicting the NER tags. This also serves

as another confirmation to the hypothesis that employing linguistic information such

as morphological features leads to an increase in the NER performance.

To evaluate the performance of morphological disambiguation, we have tested

the MD performance of our models, which are trained with the training portion of our

dataset, on the test portion of a frequently used dataset [114]. As can be seen from

Table 4.2, we are very close to the state of the art MD performance even if we only

trained with a low number of parameters as stated in the beginning of this section. We

have to also note that in contrast with the NER task, the MD task did not enjoy a

performance increase from joint learning. This might be due to the fact that NER can

utilize the disambiguated morphological analysis of a word to predict the correct label,

however a correctly predicted NER label does not contribute to the disambiguation of
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the word’s morphology.

Table 4.2. Evaluation of our models for MD performance. As in the NER evaluation,

we report accuracies over the test dataset averaged over 10 replications of the training.

This work

Model Mean Accuracy

md 88.61

joint1 88.17

joint2 86.86

j multi 88.05

Previous work

[114] 89.55

[41] 91.03

4.4. Conclusions

In this chapter, we introduced a joint model of NER and MD tasks that removes

the need for external morphological disambiguators. Additionally, it is shown that the

performance of this joint model can match the state-of-the-art NER model in Chapter

3. Achieving the same performance level without relying on an external morphological

disambiguator is an improvement.

Moreover, the method is applicable to every language given that one can provide

the candidate morphological analyses for a word, making this approach portable to

many languages. We have also shown that joint learning itself leads to an increase in

the NER tagging performance.

However, there is more work to do as we are still bound to language specific

tools in obtaining the list of candidate morphological analyses. Generating the list of

candidate analyses within the model, testing our hypothesis on other morphologically

rich languages, and testing with models which have higher number of parameters are

not addressed in this thesis and left for future work.
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(a) (i) Model joint1: two losses for two tasks sharing a Bi-LSTM. (ii)

Model joint2: We concatenate the selected morphological analysis’ vector

representation to the last layer’s context vector.

(b) Model j multi: We employ shortcut connections and two more Bi-

LSTM layers.

Figure 4.4. Our joint models: (a) joint1 and joint2 models (b) j multi model. The

symbol ⇥ represents the selection of maij⇤ .
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Figure 4.5. Graphical user interface of the tool that was developed to comb through

the dataset to identify most frequent erroneous analyses and replace them with sensible

ones.
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5. EXPLAINING THE PREDICTIONS OF SEQUENTIAL

TAGGERS

5.1. Introduction

In Chapter 3, we introduced a neural network based NER tagger which achieves

state-of-the-art results for four morphologically rich languages. We show that the per-

formance of a model that utilizes disambiguated morphological tags is superior to one

that does not. We attribute the improvement in the performance to this modifica-

tion. This explanation is satisfying only up to a degree. However, a more detailed

explanation would be more convincing. For example, we would like to know which

morphological features are most significant for determining that an entity is of type

‘Location’ in a single sentence. More specifically, we want to know which morphological

features are relevant in determining the type of an entity in a given sentence as well as

those that are generally significant in predicting a specific entity type.

Although explanations of this nature have not yet been proposed for NLP tasks,

various approaches to provide explanations for machine learning predictions have been

proposed [59,60,62,115,116]. One of the promising approaches to explain the outcome

of a machine learning model is called Local Interpretable Model-Agnostic Explanations

(LIME) [55], which proposes to explain a model’s prediction based on the model’s

features. The given input sample is perturbed by randomly removing some features.

The model’s prediction function is employed to obtain probabilities corresponding to

the perturbed versions of the input sample. LIME is based on the idea that the

prediction probabilities of perturbed samples can be modeled by a linear model of

features. The solution of the linear model is a vector of real values corresponding to

the importance of each feature. Such vectors are considered to be valuable in assessing

the quality of a model since they render the insignificant features evident, which are

often the culprits in biased decisions.
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In this chapter, we propose an extended version of LIME to handle any sequence-

based NLP task in which a procedure for transforming the task into a multi-class

classification problem can be constructed. This method utilizes regions which refer

to the segments of the inputs that are directly related to the predictions, e.g. the

tokens that cover a named entity in named entity recognition. The transformation

procedure requires the probability of each prediction associated with a given region.

Some models yield these probabilities as a part of their output. In other cases, access

to the internals of the model are required to compute these probabilities. For example,

for the sentiment classification task, typically a vector of class potentials is used to

predict the sentiment of a sentence. This vector is used to calculate the probability

of each sentiment type for the given sentence. For tasks with more complex labels,

further computation may be required to calculate the probability of each prediction.

For example, the probability of the entity tag for named entity recognition task is

computed using the probabilities of the token-level tags. The prediction probabilities of

each label in these perturbed samples are calculated using the transformation procedure

specific to the task as detailed in Section 5.3.3 and 5.3.4.

The main aim of the proposed method is to provide a vector which indicates the

strength and the direction of the impact of each feature. The first step is to observe the

probability di↵erences caused by the removal of each feature due to the perturbations.

A linear regression model is used to relate these di↵erences with the removed features.

The solution of this linear model produces a list of weights corresponding to each

feature. This list indicates the significance of each feature for a given prediction, which

we consider to be an explanation.

To demonstrate the explanation method, we focus on the NER task using a NER

tagger for the morphologically rich languages Turkish and Finnish [13]. The tagger

requires all the morphological analyses of each token in the sentence to be provided

to the model. Figure 5.1 shows a Turkish sentence and the potential morphological

analyses for the named entity “Ali Sami Yen Stadyumu’nda” (meaning ‘at the Ali Sami

Yen Stadium’ in English) that spans the tokens from the second to the fifth position.

The model first predicts the correct morphological analyses, then uses to recognize the
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Figure 5.1. A Turkish sentence (translated as “She/he had not played at the Ali Sami

Yen Stadium yet.”) with one named entity tag and the possible morphological analyses

of the tokens in the named entity.

named entities.

In Section 5.4, we provide quantitative and qualitative evaluations of the results

of the explanation method. The quantitative evaluation compares the most influential

morphological features in the predictions with those whose mutual information scores

are the highest with respect to entity tags. The qualitative analysis is performed for

both Turkish and Finnish by examining the morphological tags which are significant

to several named entity tags.

The main contributions of the explanation related work are:

(i) a general method to explain predictions of any sequence-based NLP task by means

of transforming them into multi-class classification problems,

(ii) a method to assess the impact of perturbations of input samples that relies on

probability di↵erences instead of the typical use of exact probabilities,

(iii) an encoding that distinguishes whether a feature absent in the perturbed sample

was present in the original input, thereby capturing the knowledge of a removal

operation,
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(iv) a qualitative and quantitative evaluation of the proposed method for the NER

task for the morphologically rich languages Turkish and Finnish, and

(v) an open source software resource to replicate all results reported in this chapter

[117].

The work presented in this chapter is related to the current literature presented in

Section 2.4. The remainder of this chapter is organized as follows: Section 5.2 explains

the method that is the basis of our proposed explanation method which we introduce

in Section 5.3. Section 5.4 presents the results of applying our method to Turkish and

Finnish NER taggers. Finally, Section 5.5 summarizes the main takeaways and future

directions.

5.2. The base explanation method: LIME

The Local Interpretable Model-Agnostic Explanations (LIME) [55] is a model-

agnostic method for explaining the predictions of any machine learning model. It

treats the model as a blackbox that produces a prediction along with an estimated

probability. LIME belongs to the class of methods called additive feature attribution

methods [57]. These methods yield a list of pairs composed of a feature and its impact

on the prediction. This list is regarded as an explanation of the prediction based on the

magnitude and the direction of the impact of each feature. Typically, these methods

learn a linear model of the features to predict the expected probability of the prediction.

The data samples required to train the linear model are obtained by perturbing the

original input sample by removing a randomly selected feature.

In order to represent the features that are removed or retained during the per-

turbation, a binary vector z that is mapped to the original input x with a function h

is used. The mapping depends on the model to be explained. For example, if a model

expects the input sentence x to be in the bag-of-words form, x consists of word and

frequency pairs. In this case, the binary vector z is composed of zis each of which

indicate whether or not the ith word is retained. In other words, if zi is 1, word i’s

bag of words frequency value remains the same as the frequency in the input sentence,
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otherwise it is set to zero.

Additive feature attribution methods are generally defined as

g(z) = �0 +
X

i=1

�izi (5.1)

where zi is the binary value that indicates whether feature i is retained or not, �i is a

value that indicates the importance of feature i, and �0 is the bias. The function g(z) is

the outcome of the linear model that estimates the probability f(x) which is obtained

from the machine learning model. The following function is minimized to obtain the

importance values �i:

argmin
g

L(f, g,⇧(x, z)) + ⌦(g) (5.2)

where f is the probability function of the model, ⇧(x, z) is the local weighting function

and ⌦(g) constrains the complexity of g. For example, to explain a text classification

model, one might set ⇧(x, z) to an exponential kernel with cosine distance between x

and z. Any function that satisfies the distance constraints, namely the non-negativity,

zero distance if x = z, symmetry, and the triangle inequality (d(x, z)  d(x, y)+d(y, z)),

may be used for ⇧(x, z). A reasonable choice for ⌦(g) is a function that returns the

number of words in the vocabulary. Accordingly, the loss function L is defined as the

sum of the squared errors weighted by ⇧(x, z):

L(f, g,⇧(x, z)) =
X

x,z=h(x)

⇧(x, z)(f(x)� g(z))2. (5.3)

5.3. Explaining sequence-based NLP tasks

This section introduces a method for explaining specific predictions of models

trained for sequence-based NLP tasks. Essentially, the method provides explanations

about which part of the input impacts the prediction of a given neural model. The
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method produces an explanation vector of scores that indicate the impact of the features

used by the model. This vector can be utilized in o↵ering an explanation to the user of

the model’s prediction. For example, a model trained for classifying the sentiment of

a sentence may rely on features such as the specific words that occur in the sentence,

the position and the number of punctuation marks in the sentence, or the content

of the fixed-size vector representations pretrained for each word. In this sentiment

classification task, the user should be suspicious of a model if words that have clear

negative sentiment are e↵ective in a positive sentiment prediction.

5.3.1. Defining NLP tasks

We define NLP tasks as processes that transform input consisting of a sequence

of tokens along with a set of features into a sequence of labeled tokens. Figure 5.2

provides an overview of NLP processes. In this chapter, we denote the input with X,

the tokens for input with T and for output with T
0, the number of tokens for input with

Nt and for output with No, the output labels with Y , and the number of output labels

with Ny. These processes are implemented by models. Each model has a prediction

function that maps X to T
0 and Y . The model architecture determines the size and

the contents of the feature sets F . An example for a type of feature could be the word

embedding that corresponds to a token in T . This is a flexible definition that applies

to nearly all NLP tasks.

Some NLP tasks and their corresponding parameters are shown in Table 5.1. The

sentiment classification task can be associated with the question: “Is the sentiment of

the sentence X positive?”. The expected output is simply “Yes” or “No”. In this case,

there are no token outputs, thus No = 0 and the cardinality of the label space is two

(or |Y | = 2). The word sense disambiguation task can be expressed with the question

“What is the sense of the word X?” whose answer is one of the expected word senses.

In this case, again, No = 0 while Ny = 1, but the cardinality of the output label space

is the number of possible senses. The NER task can be expressed as a mapping from

each input token to a named entity tag. As such, No = 0, Ny = Nt and the cardinality

of the output label space is the number of token tag sequences of length Ny. Machine
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Figure 5.2. Relations between processes, models, input, and output in the scope of our

explanation method.

translation can also be defined by this scheme by setting Nt > 0, No > 0, Ny = 0, and

the cardinality of the output token space to the number of token sequences of length

No. In another case, the task may require both output tokens and output labels,

like in morphological disambiguation which we give an example in Table 5.1. This

scheme is flexible enough to express models that employ features concerning the whole

sentence. For example, an alternative version of the example for sentiment classification

could have a single feature set for the whole sentence (e.g. sentence embedding). The

parameter configuration for this case would be Nt > 0, Nf = 1, No = 0, and Ny = 1.

5.3.2. EXSEQREG: Explaining sequence-based NLP tasks with regions

This section describes the proposed framework for explaining neural NLP models.

For illustration purposes, we use the NER tagger we introduced in Chapter 4 as a use

case. We describe our method using a set of variables along with the indices i, t, j,

and k (see Table 5.2). These indices are used to refer to input sentence Xi as the ith

sentence in the dataset, feature set Fit corresponding to tth token in sentence i, and

label Yit corresponding to tth token in sentence i. Figure 5.3 depicts an example that

utilizes these variables. For the NER tagger, Yit is the token-level named entity tag,

e.g. ‘B-PER’, ‘I-PER’, ‘I-LOC’, and similar. The input to the NER tagger consists of
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Table 5.1. Selected examples of NLP tasks that can be covered by the method.

Task T F T 0 Y

Sentiment classifi-

cation (model 1)

“Great music!”

Nt = 2

A feature

set for

each token,

Nf = 2

No = 0
‘YES’

Ny = 1

Sentiment classifi-

cation (model 2)

“Great music!”

Nt = 2

A feature

set for

the whole

sentence,

Nf = 1

No = 0
‘YES’

Ny = 1

Word sense dis-

ambiguation

“We bought gas

for the car.”

Nt = 6

A feature

set for

each token,

Nf = 6

No = 0

Sense = au-

tomobile

Ny = 1

Named Entity

Recognition (in

Turkish)

“Henüz Ali

Sami Yen

Stadyumu

taşınmamıştı.”,

Nt = 6

A feature

set for

each token,

Nf = 6

No = 0

“O B-LOC I-

LOC I-LOC

I-LOC O”

Ny = Nt = 6

Machine transla-

tion (from Turk-

ish to English)

“Henüz Ali Sami

Yen Stadyumu

taşınmamıştı.”,

Nt = 6

A feature

set for

each token,

Nf = 6

“Ali Sami

Yen Stadium

was not re-

located yet.”

No = 8

Ny = 0

Morphological

disambiguation

(in Turkish)

“Henüz Ali Sami

Yen Stadyumu

taşınmamıştı.”,

Nt = 6

A feature

set for

each token,

Nf = 6

“Henüz Ali

Sami Yen

Stadyum+u

taşın+ma+mış

+tı”

No = 6

“Henüz Ali

Sami Yen

Stadyum+Acc

taşın+Neg

+Past-

Part+Past”,

Ny = 6
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Table 5.2. Summary of variables used by the explanation method.

Variable Description

i,X input sequence index and input se-

quence

t, T token index and token sequence

f, F feature and set of features

Y label sequence

j, R region index in sentence and set of re-

gions

⇡,⇧ perturbed sentence and set of per-

turbed sentences

k,K label k and number of labels

ekFij explanation vector for region j in sen-

tence i for label k

the morphological analyses, the word embeddings and the surface forms of the tokens.

The NER tagger exploits the information conveyed by the morphological tags within

the analyses.

The method proposes the concept of region, which is used to refer to a specific

part of the input sentence. For example, for the NER task, regions refer to named

entities which may span several consecutive tokens. Regions are used to associate

features and predictions related to a segment of the input. Figure 5.3 shows a Finnish

sentence with two regions marking named entities, one of type ‘PRODUCT’ and the

other of type ‘PERSON’.

We define an explanation vector ekFij to explain the prediction of label k for the

jth region of sentence i. This vector’s length equals the number of unique features in

the model. The regions are denoted by a sequence of integers that give the positions

of the tokens belonging to the region. For the NER problem, k is the named entity

tag and the number of unique features is equal to number of unique morphological

tags in the model. The values of the dimensions of ekFij represent the impact of their
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corresponding features.

A full example of the NER task is depicted in Figure 5.3 where Ti is the sequence

of words in sentence Xi and Nt is the number of words. There are no output tokens

for this task, thus No = 0. There is a label and a list of morphological analyses

corresponding to each input token, making Ny = Nt = Nf . The regions which contain

each named entity are denoted as rij. As shown in the figure, ri1 spans the first

three tokens, ‘Amazon Web Servicesin’, and is labeled with named entity tag ‘PRO’

which signifies a product name. This can be seen by observing the Yit values which

are the token-level named entity tags. The lower part of the figure lists all possible

morphological analyses for each token t and its feature sets Fit originating from these

lists. The union of every Fit in the region ri1 is denoted as Fi1. The explanation

vector ePROFi1 in the lower right part of the figure contains a real value for each feature

in Fi1. The diagram indicates that ‘Case=Nom’ contributes positively to the ‘PRO’

prediction. On the other hand, the presence of the ‘Number=Sing’ and ‘Case=Gen’

morphological tags is expected to decrease the probability of the ‘PRO’ named entity

tag. This is a simple example where the explanations can be viewed as the degree to

which a morphological tag is responsible for identifying a specific named entity tag.

The remainder of this section describes the main steps required to calculate ekFij :

(i) Perturbing Xi to obtain a set of sentences ⇧i (Section 5.3.3).

(ii) Calculating probability changes corresponding to all regions rij of Xi using sen-

tences in ⇧i (Section 5.3.4).

(iii) Defining and solving a special regression problem corresponding to every region

rij in every perturbed sentence in ⇧i (Section 5.3.5).

5.3.3. Perturbation

NLP tasks are divided into several classes according to their region types. The

widest regions span entire sentences, such as in the case of sentiment classification.

The regions within sentences may be contiguous or not. For example, the NER task is
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almost always concerned with contiguous regions but the co-reference resolution task

or the multi-word expression detection task is usually characterized by noncontiguous

regions.

In all of these cases, the jth region in sentence i is denoted as rij and represented

by a sequence of integers that correspond to the positions of the tokens in the region.

We define Ri as the set of all regions rij in Xi. For every rij in Ri, we perturb Xi by

only modifying the features that are found in that region. A region rij in the NER

task is represented with a sequence of integers, i.e. (start, . . . , end) where start and

end are the first and last position indices of the words in the region. For example, in

the Turkish sentence “Henüz Ali Sami Yen Stadyumu’nda oynamamıştı”, there exists

a single region which spans the words through the second to the fifth, i.e. (2, 3, 4, 5).

The set of features subject to perturbation in region rij is defined as Fij =
S

t2rij Fit. We perturb Xi by independently removing each feature f 2 Fij from Xi

to obtain ⇡ij = {remove(Xi, j, f) : f 2 Fij}. The expression remove(Xi, j, f) denotes

a sentence originating from sentence Xi where all instances of feature f are removed

from all Fit in region rij. The unperturbed version of Xi is denoted as ⇡
;
ij. Figure

5.4 shows the change in Fij corresponding to each perturbed version ⇡
r
ij. To form

⇡
1
i1, the morphological tag ‘Number=Sing’ is removed from the morphological analyses

of tokens 1, 2, and 3 (e.g. ‘Amazo| ⇠NOUN⇠N⇠Case=Gen|Number=Sing’ to yield

‘Amazo| ⇠NOUN⇠N⇠Case=Gen’). The collection of ⇡ijs results in a set ⇧i consisting

of at most
P|Ri|

j0=1 |Fij0 | perturbed sentences, which is at most |Ri|⇥ |M | where M is the

set of unique features in the model. For the case of the NER task M is relatively low.

For cases where M is very high, the number of perturbations could be computationally

overwhelming. For example, the number of features that are constructed combinato-

rially from input segments becomes very large as sentence lengths increase. In such

cases, the feature to be removed could be selected in a uniformly random manner from

F. This is repeated for several times to form a set of perturbed samples with a feasible

size.

Eventually, a set of perturbed samples ⇡ij for each region rij is obtained to be
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used as input to the prediction function of the model.

5.3.4. Calculating probabilities

In this step, we seek to obtain a matrix of label prediction probabilities Pij where

the rth row corresponds to the rth perturbed version of Xi in ⇡ij (⇡r
ij). Each row of

Pij is a vector p
r
ij of length K where each dimension corresponds to a label k of the

task at hand. Thus the size of Pij is |⇡ij|⇥K.

Depending on the task and the model, prij might be computed by the model itself.

For instance, a sentiment classification model might yield the probability of the positive

label directly. On the other hand, it might be necessary to compute p
r
ij using some

output of the model. Some models include a component which indirectly corresponds

to the prediction probability of each label k in a region rij. For example, our NER

tagger in Chapter 4 aims to find the contiguous sequence of IOBES tokens referring

to named entities with the highest probability but it does not directly output the

probability. However, special transformation mechanisms may be designed to obtain

these probabilities. We give a detailed example in the following paragraphs.

For tasks that do not output the prediction probabilities, we need a mechanism

for transforming them into multi-class classification problems to provide an explanation

for the prediction in region rij. For the NER task, the IOBES tags in the region must be

transformed to named entity tags. The transformation procedure selects paths satisfy-

ing the following regular expression “S-TAGTYPE | B-TAGTYPE,[I-TAGTYPE]*,E-

TAGTYPE | O+”. The resulting path list is filtered so that it only includes paths

with a single entity. We omit paths that result in multiple entities or paths that are

invalid (e.g. starting with a ‘I-’ prefix) in the region as the trained model consistently

attaches very low probabilities to such cases. For other NLP tasks, one should start

with enumerating all the possible prediction outcomes in a given region rij. If the

number of total outcomes in a region is very high, it is advised to omit the outcomes

which are expected to have very low probabilities. After this filtering, each remaining

outcome is considered as a label.
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Figure 5.5 shows the correct sequence of IOBES tags for a Turkish named entity

tag ‘LOC’. This is one of the 134 possible sequences. The number of possible sequences

is calculated by multiplying the number of possible token-level tags at each token

position t. In this case, the total number of possible sequences is calculated as (4⇤K+

1)N where K is the number of entity tags and N is the number of tokens.

After this transformation procedure, the NER task which is originally a sequence

tagging problem is reduced to a classification problem with K classes. The NER tagger

uses score variables st,o to predict IOBES tags (o) for each position t (Figure 5.5).

During normal operation, the NER tagger feeds these scores to a Conditional Random

Field (CRF) layer. The CRF layer treats these scores as token-level log-likelihoods and

uses the learned transition likelihoods to choose the most probable path (Section 4.1).

For the purposes of the explanation method, we define the probability of the sequence

corresponding to the entity tag k in the named entity region rij as

p
r
ij(k) = P (k|⇡r

ij) =
exp(score(⇡r

ij, k))

Z
r
ij

where score(⇡r
ij, k) is the total score of entity tag k and Z

r
ij is

P
k0 exp(score(⇡

r
ij, k

0)).

We also define the same probability for region rij in the unperturbed sentence Xi and

refer to it as p;ij.

5.3.5. Computing importance values

The previous steps of the method produce a ⇡ij and Pij for each region rij. The

final step aims to produce an explanation for every label k for every region rij. An

explanation e
k
ij for label k of region j in sentence Xi is a vector which contains one

dimension for each feature in the model. Each element of ekij indicates the impact of

a feature m from M for predicting label k, where M is the set of features used in the

model. Note that a region in a given sentence Xi is not always related to all features

(e.g. most of the morphological tags do not exist in all regions in the NER task),

thus the number of features |Fij| related to region rij is usually smaller than |M | and
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|M |� |Fij| dimensions are guaranteed to be zero.

We add the original sentence Xi to ⇡ij together with |Fij| perturbed sentences to

obtain a set of |Fij|+ 1 sentences. We first form a matrix Cij of size (|Fij|+ 1)⇥ |M |

where the rth row corresponds to ⇡
r
ij if r  |Fij|. The last row of Cij corresponds to

the unperturbed version of Xi. Every row of Cij is composed of ones, minus ones, and

zeros signifying whether the feature that corresponds to themth position was i) present

and retained, ii) present and removed, and iii) was not present in input, respectively.

We prefer this scheme to using a one or zero to indicate the presence or absence of

a feature in the perturbed sentence, since we would like to penalize the features that

were present and removed.

Secondly, we form a matrix �Pij of size K ⇥ (|Fij|+ 1) where the rth column of

the first |Fij| columns is equal to p
r
ij � p

;
ij. The last column is set to ~0 as there is no

perturbation in the original sentence. In other words, the entry (k, r) of �Pij contains

the di↵erence induced in the probability of predicting label k after the perturbation

described by the row r of Cij.

The matrices Cij and �Pij are then combined in the loss function of ridge regres-

sion which employs regularization on the explanation vector

||�Pij(k, :)� Cije
k
ij||22 + ||ekij||22 (5.4)

and minimized with respect to e
k
ij. We use notation A(i, :) to refer to the ith row of

matrix A. We call the corresponding solution as ekFij . We give the pseudo-code of the

method in Algorithm 5.6. In contrast to Equation 5.3 in Section 5.2, we do not use a

distance function in this formula because every perturbed sentence is assumed to be

at the same distance from the original sentence.

For illustration purposes, consider a very simple task with two features (Non-

emotional and Emotional) and three tags (Positive, Negative, and Neutral). Thus,

|M | = 2 and K = 3. Let’s further assume that the sentence i consists of a single region
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which spans the whole sentence and both features are present in this region. So, there

is a single region ri1 and |Fi1| = 2. Thus �Pi1 is of size 3 ⇥ (2 + 1) and Ci1 is of size

(2 + 1) ⇥ 2. Let’s choose the entries of these matrices so that we observe that the

probability of predicting ‘Positive’ label for the sentence increases when

• feature Non-emotional was present and removed, and

• Emotional was present but not removed.

This is represented in the first row of Ci1 (i.e. [�1, 1]) and in �Pi1(1, 1) (i.e. 0.3) in

the following equations. We chose the other values so that the probability of predicting

‘Positive’ decreases (i.e. �0.1) when the ‘Emotional ’ feature is present and removed,

and the ‘Non-emotional ’ feature is present but not removed.

�Pi1(1, :) =
h
0.3 �0.1 0

iT
(5.5a)

Ci1 =

2

6664

�1 1

1 �1

1 1

3

7775
(5.5b)

According to the definitions above, we can define the explanation vector for label

Positive as

e1Fi1 = argmin
e1i1

||�Pi1(1, :)� Ci1e
1
i1||

2
2 + ||e1i1||

2
2. (5.6)

When we solve it, we obtain

e1Fi1 =
h
�0.08 0.08

iT
(5.7)

which can be interpreted as the ‘Non-emotional ’ feature has a negative impact on the

prediction of label ‘Positive’, whereas the ‘Emotional ’ feature has an opposite impact.
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To apply this method to the NER task, the �P and C matrices are set up in

accordance with the parameters. For example, the Finnish NER dataset requires K

and |M | to be set to 10 and 89, respectively. These values are 3 and 181, respectively,

for the Turkish NER dataset. The method provides the explanation vectors ekij for

every entity tag k for every region rij for every sentence Xi. The values in the mth

dimension of this vector indicate the magnitude and direction of themth morphological

tag’s impact on the entity tag k for region rij.

5.4. Analysis

To assess the proposed method, two NER taggers were trained for Turkish and

Finnish with appropriate datasets as described in Section 4.2.1 of this thesis. We

followed the same training regime except that we employed 100 dimensional embeddings

instead of 10.

As the NER tagger jointly models the NER task and the morphological disam-

biguation (MD) task, two data sources are required for each language (Table 5.3). For

Finnish, we used a NER dataset of 15,436 sentences for training NER related parts

of the model [104, 118]. For MD related parts, we used 172,788 sentences from the

Universal Dependencies dataset [119] using the modified version [120] of the UdPipe

morphological tagger instead of the original version [121] because the NER tagger

proceseses all possible morphological analyses instead of just the disambiguated mor-

phological analysis.

For Turkish, we used our extended version of the most prevalent Turkish NER

dataset which is explained in Section 4.2. The dataset was extended so that it includes

all morphological analyses instead of just the disambiguated analysis.

5.4.1. Results

The evaluation of explanation methods remains an active research area. Several

approaches have emerged ranging from manual assessments to qualitative and qualita-
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Table 5.3. The hyperparameters and region-related statistics for Turkish and Finnish

NER datasets.
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89 10 25
,5
78

2.27 9,101 631 2,229 5,148 2,040 956 4,467 908 93 5

tive methods with no consensus as of yet [122]. To evaluate the explanation vectors,

we utilize three metrics based on the mean of standardized importance values (µ̂k),

the distribution of standardized importance values across the corpus (Êk(m)), and the

mutual information gain (MIk,m), which are defined in the next section.

We evaluate the explanations as follows:

(i) As a form of qualitative evaluation, the average importance values for each mor-

phological tag m (denoted as µ̂k(m)) are ranked in order of significance. This

ranking is compared with the expected ranking based on our knowledge of the

language features.

(ii) We visually inspect the importance values of the morphological tags using Êk(m).

(iii) We determine the morphological tags that are important for all entity tags using

µ̂k(m).

(iv) As a quantitative approach, we calculate the mutual information gain between

each morphological tag (m) and entity tag (k) denoted as MIk,m and rank the

morphological tags according to this metric to observe the number of matches

with the results of the proposed method.

(v) Finally, we designed an experiment to observe whether removing the higher

ranked morphological tags more significantly decreases the performance in com-
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parison to the removal of lower ranked tags.

These approaches are used to evaluate the computed explanation vectors for

Turkish and Finnish. The code for computing the metrics are shared with the research

community on a public website [117].

5.4.2. Metrics

We process the Finnish and Turkish corpora so that Fit is the union of all morpho-

logical tags in all possible morphological analyses of the tth word in the ith sentence.

We then employ the explanation method given in Algorithm 5.6 using the correspond-

ing NER tagger to obtain the explanation vectors ekFij of size |M | for every named

entity region rij in every sentence Xi by solving Equation 5.4.

We then calculate

µk =

P
i,j e

kF
ij

Nk

, (5.8a)

�k =

vuut
P

i,j(e
kF
ij � µk)

2

Nk

, (5.8b)

êkFij =
ekFij � µk

�k

(5.8c)

µ̂k =

P
i,j ê

kF
ij

Nk

. (5.8d)

where Nk is the number of named entity regions labeled with the named entity k in

the corpus. The µk and �k are vectors of size |M | where each dimension is the mean

and variance of the importance values of the corresponding morphological tag m. The

êkFij is obtained by standardizing the values using the mean and variance of ekFij . The

µ̂k is the standardized version of µk.
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Furthermore, we define

Êk(m) =
h
êkFij (m) : 8i, j

i
(5.9)

as a vector containing all values in the mth dimension of all explanation vectors in

all regions rij with label k. This variable is useful in analyzing the distribution of

standardized importance values across the corpus.

The metricMIk,m is defined to quantify the information given by a morphological

tag m to predict an entity tag k. To calculate this metric, a pair of vectors (Lk,�k,m)

are defined. Each vector has N dimensions which correspond to the total number

of regions in the corpus. Each dimension in Lk is set to 1 if the region is labeled

with entity tag k, or to 0 otherwise. Likewise, each dimension of �k,m is set to 1 if

the region contains morphological tag m, or to 0 otherwise. Using these vectors, the

mutual information score is computed for each pair of k and m:

MIk,m =
1X

j=0

1X

j0=0

|Lk(j) \ �k,m(j0)|
N

log
N |Lk(j) \ �k,m(j0)|
|Lk(j)||�k,m(j0)| (5.10)

where Lk(j) and �k,m(j) denote the set of indices that are set to j.

5.4.3. Using standardized mean importance values

To assess the importance of a morphological tag m for predicting the entity tag k

across the corpus, we examine themth dimension of µ̂k. We chose this approach instead

of assigning higher importance to features which are used to explain more instances

throughout the corpus as in the original LIME approach [55]. In this way, we avoid

falsely marking very common features as important. For instance, the morphological

tag ‘Case=Nom’ which indicates the nominal case is commonly related to many words

related to most entity tags. If we were to assign a high importance according to the

number of occurrences across the corpus, we would incorrectly consider this type of

features as important. Using standardized mean importance values in µ̂k is better in

this regard.
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We rank the morphological tags (m) for each entity tag k using µ̂k(m). The

ranked morphological tags for Finnish and Turkish can be seen in Tables 5.4 and 5.7,

respectively. To conserve space, these tables show only the tags that appear in the

top 8 (for Finnish) and top 20 (for Turkish). We also include the tables that contain

all morphological tags in the appendix (Table A.1-A.8). The rows in these tables are

the morphological tags (m) and the columns are the entity tags (k). Each cell gives

the rank of the corresponding µ̂k(m). A high rank (1 being the highest) indicates a

positive relation, whereas a low rank indicates a negative relation with respect to the

prediction of entity tag k.

5.4.3.1. Finnish. The five morphological tags with the highest and lowest ranks in

a column exhibit a coherent picture. The highest ones are generally related to the

entity tag, while the lowest ones are either unrelated or are in contradiction with the

semantics of the entity tag. For example, for Finnish, the first seven morphological

tags in column ‘LOC’ of Table 5.4 include five case related tags which indicate the

inessive ‘Case=Ine’, genitive ‘Case=Gen’, elative ‘Case=Ela’, illative ‘Case=Ill’, and

adessive ‘Case=Ade’ cases. All of these cases are related to the locative semantics of

the attached word. The column for ‘TIM’ also shows a similar relation. The essive

case marker ‘Case=Ess’ which is related with temporal semantics is in the top three

morphological markers of the Finnish ‘TIM’ entity. Additionally, we observe that the

illative ‘Case=Ill’ and innessive ‘Case=Ine’ cases are among the most negative ones

(87th and 89th) in the column of the ‘DATE’ entity tag. This is expected because

these are known to be related to location expressions. Such observations are useful in

assessing the quality of a trained model.

The significance of morphological tags is further examined by exploiting the rules

of a rule-based NER tagger that was originally used to validate the Finnish dataset by

other researchers [104,118].

The Finnish dataset was curated with manual annotations. It was subsequently

validated with the rule-based FiNERNER tagger to improve its quality [123]. FiNER is
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Table 5.4. The ranks of µ̂k(m) for each entity tag in Finnish. The morphological tags

that are in the first 8 for at least one entity tag are shown.
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Number=Sing 89 1 89 89 89 88 89 2 3 89 89 42
Case=Nom 88 89 3 82 88 11 1 89 1 1 3 39
Voice=Act 3 83 5 80 79 6 12 83 84 85 12 30
VerbForm=Fin 6 79 9 61 8 12 8 78 12 86 8 26
Mood=Ind 8 81 70 52 9 14 9 81 16 88 9 27
Number=Plur 4 85 4 86 3 23 78 1 89 75 4 35
Case=Gen 87 87 88 79 2 7 88 13 87 2 87 37
Degree=Pos 2 88 85 2 87 1 82 84 6 3 82 41
Person=3 20 84 7 54 17 33 76 66 28 83 20 19
Case=Par 17 86 87 85 6 86 2 85 7 14 7 28
Style=Coll 14 74 2 9 21 32 16 50 32 22 16 22
VerbForm=Part 23 65 57 76 39 3 33 73 8 36 33 27
Case=Ine 84 15 24 4 1 89 5 87 85 35 24 35
Case=Ill 33 14 77 75 5 87 3 82 31 34 31 29
PartForm=Past 25 69 60 77 74 5 29 65 10 33 29 26
Case=Ela 83 62 68 67 4 19 4 86 42 32 42 24
VerbForm=Inf 13 31 21 49 84 8 84 12 86 77 84 25
Voice=Pass 27 70 56 55 19 4 79 71 27 31 27 25
Person=1 9 8 73 69 11 26 6 75 29 78 11 28
Case=Ade 86 37 69 66 7 30 11 80 82 4 69 26
Connegative=Yes 22 63 20 7 26 15 23 6 17 84 22 32
Person[psor]=3 55 34 38 60 76 43 18 3 81 26 55 18
Case=All 54 75 81 65 12 36 13 79 2 23 13 22
Derivation=Minen 31 3 83 83 22 29 15 7 19 20 22 28
NumType=Card 16 68 30 88 82 21 87 77 5 6 30 32
Case=Ess 35 28 55 3 13 2 26 63 34 7 34 23
Case=Tra 53 12 17 51 70 28 43 9 38 8 43 16
Typo=Yes 28 76 64 5 83 24 40 64 13 9 40 29
Mood=Imp 34 23 8 8 25 17 75 16 23 5 25 6
Abbr=Yes 7 5 1 22 78 82 85 74 4 82 7 32
Foreign=Yes 5 11 86 27 23 69 17 5 11 81 17 30
Clitic=Kin 29 18 6 6 81 79 7 8 33 18 29 27
Derivation=Lainen 41 2 78 71 16 71 22 70 18 62 22 26
NumType=Ord 11 6 75 59 33 84 81 4 9 64 33 32
Derivation=Inen 79 4 71 62 27 34 73 19 21 69 71 24
Derivation=Vs 48 7 44 74 48 75 47 68 69 46 48 25
*UNKNOWN* 1 77 84 1 86 85 86 88 83 76 84 32
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a part of the finnish-tagtools toolkit which contains a morphological analyzer, a to-

kenizer, a POS tagger, and a NER tagger for Finnish [123]. The rules of FiNER have

been specified by linguists and tested on the dataset. As such, the labels produced by

them may be considered as gold labels.

The FiNER authors define a rule for each named entity tag that matches every

instance of it. To tag a sentence, it is tokenized and the morphological tags of every

word are determined using a Finnish morphological analyzer. These morphological

tags are then disambiguated using a POS tagger. The output of these tools consists of

the surface form, the lemma, the disambiguated morphological tags, and some extra

labels such as proper name indicators. The rules for each named entity tag are matched

against this output in the order of rules definition file. The first successful match des-

ignates the named entity tag. Each rule is either a regular expression or a combination

of other rules. Rules may be combined via a concatenation, union, or intersection

using pmatch syntax [124]. For example, the rule named PropGeoLocInt in Table 5.5

matches a single word only if the word’s morphological tag includes ‘NUM=SG’, and

one of the three case morphemes ‘CASE=INE’, ‘CASE=ILL’, ‘CASE=ELA’, and the

proper noun label ‘PROP=GEO’ (e.g. Finnish word ‘Kiinassa’ which means ‘in China’

matches this rule). In rows 2 and 3 of the table, the simple rules called ‘Field’ and

‘FSep’ are used to match a string of any length and a tab character, respectively. In

rows 4 and 5 of the table, we see a specific concatenation of these two rules and sev-

eral string literals in curly brackets. These pieces make up the rule that matches the

surface form, the lemma, the disambiguated morphological tags, and the extra labels.

However, a successful match of this rule does not result in a named entity tag. Instead,

it is used in more general rules as seen in the definition of LocGeneral2 in rows 7-8. It

matches the rule PropGeoGen and the rule PropGeoLocInt in the right context. This

hierarchical structure continues up to the top rule for the ‘Location’ named entity tag,

namely the Location rule. The morphological tags used in FiNER are di↵erent from

the ones in our paper as it employs the Omorfi morphological analyzer. However, the

mapping is straightforward except for a few cases.

To examine the correspondence between the results produced by our method and
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FiNER rules, we construct a graph. The internal nodes in the graph correspond to

the rule names and the leaf nodes to the morphological tags. We define an edge from

rule A to rule B if and only if the definition of rule A contains a reference to rule B in

the form of concatenation, union or intersection operators. We process this graph to

produce a subgraph for each of the nodes that correspond to named entity tags. For

this, we start from the node of a named entity tag and traverse the graph in breadth-

first fashion. The resulting subgraph is not a tree, however it is highly hierarchical.

Figure 5.7 shows a subgraph for ‘Location’, which demonstrates the hierarchical nature

of the FiNER rules in the graph. In the figure, ‘PropGeoGen’ is referred to by two

rules (‘LocGeneral2’ and ‘LocGeneralColloc1’), which themselves are referred to by

‘LocGeneral’. In a subgraph, we follow every possible path from the root node to the

leaf nodes that are composed of the Omorfi equivalents of the morphological tags from

Table 5.4. If there is at least one such path, we assume that the morphological tag is

related to this named entity tag and thus may be used to evaluate the list of important

tags produced by our method.

Table 5.6 shows the results of the correspondence examination between the pro-

posed explanation method and the FiNER tagger for the five most-frequently occur-

ring (more than 1,000 occurrences) named entity tags in the dataset. We ignored the

morphological tags that are not in the top 10 of the importance list of the proposed

explanation method. This resulted in a set of 19 morphological tags which was used

during the following evaluation. We quantify the rate of correspondence by counting

the number of successful matches between our method and the FiNER rules. When

it is concurrently true that a morphological tag is predicted as important for a named

entity tag and there is at least one path from the named entity to the morphological

tag, we regard this as a true positive (TP). If it is predicted to be important by our

method but no paths exist between the named entity tag and the morphological tag, it

is counted as a false positive (FP). All predictions for ‘Location’ are correct, i.e. all of

our predicted morphological tags are reachable from the named entity tag. However,

five morphological tags that are predicted as unimportant to ‘Location’ have paths

originating from the ‘Location’ named entity tag. These are regarded as false negative

(FN) predictions. The remaining seven predictions are counted as true negatives (TN).
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In Table 5.6, we see a mostly assuring picture. The precision rates of ‘Location’

and ‘Organization’ are quite high while it is lower for ‘Person’. This is due to the fact

that two of the three false positives in ‘Person’ (‘Style=Coll’ and ‘Person=3’) are absent

in the FiNER rules. ‘Style=Coll’ is a tag specific to this dataset and ‘Person=3’ does

not exist in FiNER rules although it is a tag found in our corpus. The single false

positive example in ‘Organization’ is also due to the ‘Person=3’ tag. The worst recall

rate occurs with our predictions for the ‘Product’ named entity tag. The recall ratio

indicates that we miss about 75% of the morphological features which are important

according to the FiNER rules. Some of the missed ones are among the most common

morphological tags such as ‘Case=Gen’ and ‘Number=Plur’, which are used in many

basic rules such as ‘PropGeoGen’. These basic rules appear in many paths that start

from any named entity tag. This inevitably results in the existence of many paths to

these morphological tags for each named entity tag, thus lowering the recall rate for

all. This observation is also valid for all other named entity tags in the sense that these

common tags are included within their false negatives.

5.4.3.2. Turkish. An inspection of the ‘ORG’, ‘LOC’, and ‘PER’ entity tag columns

in Table 5.7 for Turkish reveals that the tag that indicates proper nouns (‘Prop’) is

the dominant one. This shows that the model relies on the morphological analyzer’s

performance to mark proper nouns correctly. However, the case of ‘P3sg’ is more

interesting. This morpheme is commonly found in noun clauses which are organization

or location names. On the other hand, it is never attached to person names. The case

of ‘P3pl’ is similar. This is reflected in our results; these morphological tags are not

positively related with the ‘PER’ entity tag as seen in the table. The case of ‘Almost’

is interesting as it is a rare morpheme and is almost never attached to the correct

morphological analysis. These properties should have made it an unimportant tag. On

the contrary, it is regarded as an important tag for ‘ORG’ and ‘LOC’ named entity tags

by our method. One possible explanation is that when ‘Almost’ is removed from the

feature sets to create perturbed sentences, the morphological analyses that contained

‘Almost’ prior to the perturbation is regarded more probable by the tagger, which in

turn decreases the probability of the prediction. This causes the morpheme ‘Almost’
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to be considered as an important morphological tag with explanatory value.

5.4.4. Importance distributions of morphological tags

The histograms of importance values for various combinations of entity types and

morphological tags are shown in Figure 5.8 for the Finnish NER corpus. Each row in

Figure 5.8a is a heatmap that represents a histogram of values in ÊPER(m), which is a

vector that consists of all importance values of the morphological tag m explaining a

‘PER’ entity tag prediction in a region. Bin edge positions are determined by �10i/10

and 10i/10 for the negative and positive sides, respectively, where i 2 {�25, . . . , 13}.

The frequency corresponding to each bin is coded with color tones from white to black.

The morphological tags are presented in descending order according to their mutual

information gain MI
PER,m. Only the first 20 morphological tags are shown here due

to space constraints. Figure 5.8b is formed likewise. When all morphological tags are

considered instead of these, we observe that there is a clustering between �0.050 and

0.063. However, this prominent cluster fades away and new clusters emerge when we

focus on the higher ranked morphological tags. We argue that this is correlated with

high mutual information gain values corresponding to higher ranked morphological

tags.

Figures 5.8c and 5.8d show that the explanation values for the morphological

tags ‘Case=Ine’ and ‘Case=Nom’ are distributed in a di↵erent way by plotting the

histograms of ÊLOC(m) where m is the corresponding dimension. These figures have the

same x axis as in Figures 5.8a and 5.8b. We should note that the x axis is in log-space

so that the clusters near the center are very close to zero, whereas the concentration

around 7.94 indicates that a significant portion of the importance values are high.

5.4.5. Importance of morphological tags across the entity tags

To determine the morphological tags that are important across entity tags, we

count the number of times the rank of µ̂k(m) is in the top or bottom 10 ranks. The

morphological tags are sorted by the sum of these frequencies for the features that
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are ranked at the top and bottom of the list. The first 10 morphological tags with

the highest sum for Finnish are shown in Table 5.8 which are the most frequently

encountered tags for most languages. They signify singular or plural, active or passive,

and mark the word as nominal, genitive, or inessive cases.

5.4.6. Quantitative validation using mutual information

In order to validate the explanations created by the proposed explanation model,

we employ µ̂k (Equation 5.8d) and MIk,m (Equation 5.10). We denote the 10 morpho-

logical tags (m) with the highest µ̂k(m) values as Ik. Independently, we calculate the

mutual information gain MIk,m between the probability of each morphological tag m

being in region rij and the probability of entity tag k being the label of region rij. We

call the first 10 morphological tags with the highest mutual information score as Jk.

Ik represents the proposed method’s list of globally important morphological tags,

whereas Jk is a list created by information gain independent of any particular model.

The degree of agreement between these lists gives a quantifiable metric to evaluate

di↵erent explanation methods. We proceed to take the intersection of Ik and Jk for

each entity tag k and report the common morphological tags in Table 5.9 for Finnish

and Turkish. The number of morphological tags that are both in Ik and Jk hints that

the proposed explanation method can correctly predict the morphological tags with

high information gain.

5.4.7. The impact of the absence of a morphological tag

After the rankings of the morphological tags using the average importance values

µ̂k(m) are obtained for each morphological tag m and entity tag k (Tables 5.4 and 5.7),

we consider how this information could be used to improve our model. One idea was

to modify the architecture of the NER tagger so that it pays more attention to the

higher ranked tags compared to the other tags. For example, an extra dimension in the

morphological tag embedding to represent the rank of the corresponding morphological

tag can be exploited by the neural network. However, as the results of the explanation
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method are relevant only in the context of the specific model that is being inspected,

this would result in a new model related to the original model. If the original model was

successful in exploiting the morphological features that are really important to the NER

task, this approach would yield successful. On the other hand, if the original model was

not able to exploit the important morphological tags due to the training regime or the

ine�ciency of the architecture, our method would falsely indicate other morphological

tags instead of the important tags. This approach would yield a model with reduced

performance. So, training a model which exploits the higher ranked morphological tags

reported in our study might not result in an improved performance.

Instead, we decided to test the hypothesis that higher ranked morphological tags

may improve the performance for NER by following a corpus-based approach. For the

‘Location’ named entity tag in Finnish, we chose the top two ranked morphological

tags (‘related tags’) and eight other randomly selected morphological tags which are

not ranked within the first or last 10 positions (‘unrelated tags’). For each of these 10

tags, we created a new version of the dataset so that no morphological analysis contains

the corresponding tag. We then trained and evaluated each of the 10 models separately

in two independent runs. We calculated the averages of the F-measure, precision, and

recall metrics for the ‘Location’ named entity tag using these two runs. Table 5.10

compares the performance of the ‘related tags’ (‘Case=Ine’ and ‘Case=Gen’) and the

‘unrelated tags’ in terms of the di↵erences in these metrics. For each combination

of two ‘related’ and eight ‘unrelated’ tags, we subtract the success rate of the model

in which a related tag is removed from the success rate of the model in which an

unrelated tag is removed. The average, minimum, and maximum values of the resulting

eight di↵erence values are shown in the respective columns. A positive di↵erence in

the average column indicates that the removal of the unrelated tags decreases the

performance of the model less than the removal of the related tag, while a negative

di↵erence indicates the opposite.

The results shown in Table 5.10 are contrary to our expectations. Our hypothesis

that the ‘related tags’ contain a stronger signal for the named entity tag and their

absence would decrease the model performance is not verified. This is verified only for
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the precision metric of the ‘Case=Ine’ tag and the recall metric of the ‘Case=Gen’ tag.

An observation might explain the failure to reject the null hypothesis. An inspection

of the morphological analyses reveals that ‘unrelated tags’ occur less frequently than

‘related tags’. We have observed that there are some morphological tags that co-occur

with each morphological tag and the removal of one of them might be compensated

by the co-occurring tags. However, this mechanism may not hold true for ‘unrelated

tags’ as they have relatively fewer co-occurring morphological tags. This might in turn

result in a higher loss of performance when an ‘unrelated tag’ is removed.

5.5. Conclusions

In this chapter, we introduced an explanation method which can be employed

for any sequence-based NLP task. We introduce a procedure which can be adopted

to any model that implements a sequence-based NLP task by transforming the model

into a multi-class classification model. A case study that uses a joint NER and MD

tagger is presented that demonstrates that the proposed method can be employed to

provide explanations for single input samples to assess the contribution of features to

the prediction. Furthermore, it is shown that an analysis of these explanations across

the corpus can be helpful in assessing the plausibility of a given trained model.

While forming explanations, we treat each feature in a given region as indepen-

dent from each other. However, features may be related to each other in many ways.

Firstly, some morphological tags in a single morphological analysis of a given word are

dependent on each other. For instance, the presence of one tag may strongly signal

the presence of another tag or the order of appearance in the morpheme sequence may

be important. Secondly, this dependence may be observed between features inside and

outside the region. For example, named entities are usually related to the features of

the words to their left and right, such as the morphological tags and the characters of

the surface forms. In future work, we aim to consider such relations by extending our

model to permit perturbation across multiple regions of variable sizes. The dependency

between features can be explored better if our method allows perturbing one or more

of the features to the left or the right of the region associated with a named entity.
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Figure 5.3. Explanation of a NER tagger’s prediction where Nt = 7, Nf = 7, Ny =

7, No = 0. Xi is the ith sentence. Only first seven tokens of the sentence are shown.

They translate to “Je↵ Barr, the chief evangelist of Amazon Web Services, says ...”.

Region ri1 is labeled as a ‘PRO’ entity tag. All possible morphological analyses of first,

second, and third tokens (t) in region ri1 that are used to form feature sets Fit are

shown. Fi1 is the set of morphological tags resulting from the union of all Fit in region

ri1. e
PROF
i1 is the resulting explanation vector.
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Figure 5.4. The change in Fi1 corresponding to every perturbed sentence ⇡r
i1 is depicted.

Crossed out morphological tags are removed from Fi1. Morphological tags which are

not already present are not shown.

Figure 5.5. A NER task for a Turkish sentence (meaning “Ali Sami Yen Stadium had

not yet been relocated.”). The token-level tag predictions for each position are shown

with scores which are denoted with st,o. The correct sequence of the token-level named

entity tags are marked in red. Single token entities are not applicable to multiple token

entities, thus their scores are N/A.
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X  set of sentences to be explained

K  number of classes

for i = 1 to |X| do

for all region j in sentence Xi do

Fij  set of features in rij

⇡ij = {remove(Xi, j, f) : f 2 Fij} [ {Xi}

for all perturbed sentence ⇡
r
ij in ⇡ij do

p
r
ij  vector of probabilities of all labels using predict(⇡r

ij)

�Pij  filled such that rth column is prij � p
;
ij and the last column is

~0

Cij(r, :) vector of zeros, minus ones, and ones representing the per-

turbed sentence ⇡
r
ij

for all label k do

ekFij = argmin||�Pij(k, :)� Cije
k
ij||

2
2 + ||ekij||

2
2

Figure 5.6. The explanation method for sequence-based NLP tasks. predict function

relies on the model to obtain the probabilities for each label k.
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Table 5.5. Three FiNER rules are presented in the order of increasing generality. The

first one acts on single words. The second applies a rule on a single word and requires

the right context to match another rule. The last one is the top rule for the ‘Location’

tag. Options 1, 2, 3, and 6 can also be seen in Figure 5.7 as they lie on paths that

reach a morphological tag while other options do not lead to any.

1 Rule PropGeoLocInt

2 Surface form Field FSep —i.e. any string is allowed

3 Lemma Field FSep —i.e. any string is allowed

4 Morphological tags Field [{NUM=SG} Field {CASE=}[{INE} |

{ILL} | {ELA}]] Field FSep

5 Extra labels Field [{PROP=GEO}] Field FSep

6 Rule LocGeneral2

7 Single word PropGeoGen

8 Right context RC( WSep PropGeoLocInt )

9 Rule Location

10 Option 1 Ins(LocGeneral)

11 Option 2 Ins(LocGeogr)

12 Option 3 Ins(LocPolit)

13 Option 4 Ins(LocStreet)

14 Option 5 Ins(LocAstro)

15 Option 6 Ins(LocPlace)

16 Option 7 Ins(LocFictional)
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Table 5.6. Results of the matching between the proposed explanation method and the

FiNER tagger for the five most-frequently occurring named entity tags.

TP TN FP FN Precision % Recall % F1-measure

%

Location 7 7 0 5 100.00 58.33 73.68

Organization 4 8 1 6 80.00 40.00 53.33

Person 4 8 3 4 57.14 50.00 53.33

Product 2 7 4 6 33.33 25.00 28.57

Time 1 9 7 2 12.50 33.33 18.18

Total 18 49 22 25 45.00 41.86 43.37

Figure 5.7. A subset of the graph that is formed based on the FiNER rules. It

shows the nodes and the connections that lie between the ‘Location’ top rule and the

morphological tags reachable using the rules. We only show the subgraph reachable

from ‘LocGeneral’ in finer detail, while replacing the other subgraphs with triangles.

Morphological tag nodes are represented with a rectangle. Circles represent the internal

rules.
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Table 5.7. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown.

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

Noun 176 181 2 89 0
A3sg 2 180 178 90 0
Verb 8 147 173 90 0
Adj 3 170 176 89 0
P3sg 4 2 169 86 0
PosˆDB 17 160 171 94 0
Punc 20 5 7 13 0
Pos 13 16 4 8 0
Prop 1 1 1 1 0
Acc 12 169 174 93 0
NomˆDB 9 166 170 89 0
Loc 19 177 161 90 0
Adverb 46 14 19 32 0
Conj 28 6 18 23 0
Num 21 13 9 15 0
Pass 59 19 17 38 0
P3pl 14 12 70 42 0
AdjˆDB 15 172 156 85 0
Past 62 153 14 38 0
Card 36 18 16 26 0
Imp 16 7 6 11 0
A2sg 18 8 5 11 0
Ness 11 150 147 79 0
AorˆDB 32 17 164 98 0
Agt 22 9 172 97 0
With 27 158 10 18 0
P1sg 24 30 8 16 0
Almost 6 4 139 72 0
A2pl 41 28 11 26 0
Opt 51 29 13 32 0
NounˆDB 5 3 138 71 0
Equ 37 15 15 26 0
Ord 26 11 12 19 0
*UNKNOWN* 10 165 3 6 0
Pron 56 55 20 38 0
Interj 173 20 32 102 0
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(a) Each row is a heatmap that represents

a histogram of ÊPER(m) corresponding to the

morphological tag m.

(b) Each row is a heatmap that represents

a histogram of ÊLOC(m) corresponding to the

morphological tag m.

(c) The histogram of ÊLOC(Case = Ine) which is the first row of (b).

(d) The histogram of ÊLOC(Case = Nom) which is the second row of (b).

Figure 5.8. The histograms of importance values for various entity tag and morpho-

logical tag combinations. Darker colors indicate higher frequencies. Calculated over

the training corpus in Finnish. All histograms in the figures share the same bin edges.

Edge positions are calculated by �10i/10 and 10i/10 for the negative and positive sides,

respectively, where i 2 {�25, . . . , 13}.
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Table 5.8. The frequency of ranks that are in the first ten of an entity tag for each

morphological tag in Finnish.

Morphological Tag Top Bottom Top+Bottom

Number=Sing 3 7 10

Degree=Pos 5 5 10

Case=Nom 4 5 9

Case=Gen 3 5 8

Case=Par 3 5 8

*UNKNOWN* 2 6 8

Number=Plur 4 3 7

Voice=Act 3 4 7

Abbr=Yes 4 3 7

Case=Ine 3 4 7
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Table 5.9. Common Finnish and Turkish morphological tags that are both in Ik and

Jk.

Finnish

Entity tag Morphological tags Agreement rate

ORG ‘Case=Gen’, ‘Number=Plur’, ‘Number=Sing’,

‘Case=Nom’, ‘Degree=Pos’, ‘*UNKNOWN*’

0.6

TIT ‘Case=Gen’, ‘Case=Par’, ‘Number=Sing’,

‘Case=Nom’

0.4

PER ‘Number=Plur’, ‘Number=Sing’, ‘Case=Nom’,

‘Abbr=Yes’, ‘Degree=Pos’

0.5

TIM ‘Number=Sing’, ‘Case=Ess’, ‘Degree=Pos’,

‘Case=Par’, ‘PronType=Dem’, ‘*UNKNOWN*’

0.6

LOC ‘Number=Plur’, ‘Case=Nom’, ‘Degree=Pos’,

‘Case=Ill’, ‘Case=Ine’, ‘*UNKNOWN*’

0.6

DATE ‘Case=Ess’, ‘Case=Ine’, ‘Degree=Pos’, ‘*UN-

KNOWN*’

0.4

PRO ‘Case=Par’, ‘Case=Nom’, ‘Case=Ela’, ‘Num-

Type=Card’

0.4

MISC ‘Number=Plur’, ‘Number=Sing’, ‘Case=Ela’,

‘Person[psor]=3’, ‘Degree=Pos’, ‘Case=Par’,

‘*UNKNOWN*’

0.7

EVENT ‘Case=Ine’, ‘ Number=Plur’, ‘Voice=Act’ 0.3

OUTSIDE ‘Case=Ade’, ‘ Number=Sing’, ‘Case=Nom’, ‘De-

gree=Pos’

0.4

Turkish

Entity tag Morphological tags Agreement rate

ORG ‘Adj’, ‘P3sg’, ‘Prop’, ‘A3pl’, ‘Nom’ 0.5

LOC ‘Loc’, ‘Dat’, ‘P3sg’, ‘Prop’, ‘Nom’, ‘Gen’ 0.6

PER ‘Adj’, ‘Gen’, ‘Dat’, ‘Nom’ 0.4
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Table 5.10. Comparison between each ‘related tag’ and ‘unrelated tag’ sets using F-

measure and Recall metrics.

Unrelated tags

Related tag Metric
Average %

Di↵erence

Min %

Di↵erence

Max %

Di↵erence

Case=Ine
Precision 0.31 -1.83 2.86

Recall -2.73 -5.44 -0.39

F-measure -1.31 -3.07 -0.21

Case=Gen
Precision -2.34 -4.48 0.21

Recall 0.14 -2.57 2.48

F-measure -1.07 -2.83 0.03
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6. DISCUSSION AND FUTURE WORK

6.1. NER for Morphologically Rich Languages

As introduced in Chapter 3 and Chapter 4, we employ machine learning mod-

els that utilize neural networks to perform named entity recognition. These neural

networks are designed so that their model capacities can be adjusted by setting the

number of dimensions of several variables. For example, increasing the number of di-

mensions (p) of the cell variable of Bi-LSTM module may have a significant positive

impact. However, this also causes the number of parameters to grow exponentially,

e.g. U (i) has p⇥ p parameters in Equation 3.1. Moreover, the number of experiments

required for the ablation study is very high since we repeat each experiment 10 times

to obtain better estimates for the F1-measure. For this reason, we tuned the number of

dimensions of the cell variable and the word embeddings to a number that permitted

the computations within the capacity of our computational resources. We took this

decision hoping that the loss in model capacity would not negatively impact the results

of the ablation study. It might be the fact that some parts of the model, such as mor-

phological disambiguation, can only be e↵ective when the cell dimension is higher than

a certain threshold. If this value is greater than 10, then the results of our ablation

studies would be questionable. This threshold should be investigated further to assess

its impact. Additional computational resources are required to perform experiments

with higher dimensions.

As stated in Section 3.3.1 and 4.1.1.1, we represent words using fixed-length

vectors. We either learn the optimized parameters during training, or start with word

embeddings that are trained using specific algorithms. We experimented with two

algorithms: Word2Vec [34] and fastText [99]. These algorithms represent a word using

its distributional statistics. They hypothesize that it is possible to guess the most

probable word if the words in its proximity are known, i.e. the word in the middle

of five consequent words in a moderate size sentence can be predicted in a significant

number of cases. Based on this distributional behaviour, they determine the optimum
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values for each word representation. After training, models like ours treat the fixed-

length vectors associated with the words as representations of the words in their input

sentence. However, these representations are invariant to their context (the other words

in the sentence). For example, the word representation for the word ‘can’ in English is

the same for both of the sentences: ‘I can climb a tree’ and ‘This soda can is made of

aluminium.’ This causes a loss in the representation capacity of these algorithms. In

recent years, several approaches that provide word representations that are dependent

on the other words present in a given sentence were introduced to address this problem

[125, 126]. These contextual word embeddings greatly enhanced the performance on

many NLP tasks, which suggests that a similar performance improvement is possible in

Turkish. Unfortunately, during our thesis work, we did not have a chance to experiment

with these new algorithms for two reasons: i) we did not have the resources to compute

these new representations ourselves ii) maximizing the F1-measure is not the main

aim of our work. During this time, a study published contextual word embeddings

for Turkish, which used these embeddings to predict NER tags and achieved a F1-

measure of 95.55% [105]. Future work may experiment with these embeddings and test

whether morphological embeddings would further improve the performance when using

contextual word embeddings. This would be an important observation as it is thought

that contextual word embeddings might solve the problem of representing words largely

by capturing the semantic properties of words, but it is not known whether they are

capturing morphological information in a form helpful for improving NER performance.

The model in Chapter 3 requires a morphological disambiguator to tag unseen

sentences as it utilizes the disambiguated morphological tag for each word. This re-

quirement is di�cult to satisfy for some languages, since they are often not readily

available. Moreover, even if a disambiguator exists, it is usually di�cult to integrate

into the pipeline of the system due to the restrictive architectural decisions made by

the developer of the disambiguator. This problem is solved partially in Chapter 4 in

which we introduce a NER tagger that jointly learns to disambiguate the morpholog-

ical tags of each word. However, this model still requires a morphological analyzer to

obtain all possible morphological analyses of each word. Future work may integrate a

morphological analyzer to the model in addition to the morphological disambiguator.
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This would eliminate the need for external components, rendering a system that is suit-

able for any language given that a pair of named entity recognition and morphological

disambiguation datasets exists.

In the evaluation phase, we have employed the NER datasets that are frequently

used in the literature [9, 13, 83, 102–104]. They serve as important resources when

performing comparisons. It is useful to compare alternative methods against the same

datasets to assess their relative performances. However, at the very best, they are a

collection of sentences that are sampled uniformly from online news outlets or other

types of written text. This uniformity may prevent new methods from standing out, as

these datasets may not contain enough di�cult-to-predict samples which only models

that exploit more complex signals could e↵ectively utilize. We know that the di�culty

of predicting a named entity depends on both the words that make up the entity and

the given sentence. For example, given the sentence “Real earned two on Friday”,

‘Real’ may seem as mentioning a person with last name ‘Real’. However, if the entity

was composed of two words, i.e. “Real Madrid earned two on Friday”, most people

would recognize ‘Real Madrid’ as an organization entity. On the other hand, if we

changed the first version a little bit, i.e. “Real earned two on Friday’s match”, it would

be possible to guess that ‘Real’ refers to an organization entity. This kind of sentences

are rare in current datasets. If there were datasets that include more challenging

sentences, the methods that employ techniques that discriminate ambiguities better

would perform significantly better than others. Unfortunately, as this is not the case,

the state-of-the-art results in the literature is not improving much compared to other

task challenges in other areas such as computer vision. For example, through 2011

and 2019, we observe only a 3% improvement in the state-of-the-art performance for

NER. This is low when compared with the 75% improvement in ImageNet state-of-

the-art performance. When we compare the state-of-the-art performances of 2016 and

2019, ImageNet’s state-of-the-art improved 10% while NER’s performance improved

2.5%, which means the improvement in ImageNet’s state-of-the-art performance is

only 4 times high. This is an improvement compared to the performance di↵erence

of 25 times of the former time frame. However, this also suggests that the impact of

utilizing obscure signals might be playing a role instead of methods that improve the
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generalization power. For this reason, further work on building a new type of NER

dataset to be used in evaluation would be an important contribution.

Most NER taggers handle the problem in the context of a single sentence. How-

ever, entities are often understood based on their surrounding sentences. This thesis

addresses NER in the conventional approach of dealing with a single sentence. It was

not possible to follow the other path as most NER datasets for MRLs do not retain

the order of the sentences or any other similar information that hint for contextual

proximity. A useful future work would be to build such datasets for MRLs to extend

existing research into multi-level contexts.

6.2. Explaining the predictions of NLP systems

The approach of our explanation method in Chapter 5 can be summarized as

incrementally removing each feature to observe the di↵erence it creates on the output

of the model, then using this information to determine the impact of the features on

the output labels. We focus only on morphological features related to the regions

of the sentence where named entities occur. This introduces two concerns. First,

some features may be interdependent, i.e. the presence of one feature may signal the

presence or absence of another feature. This may interfere with the main mechanism of

our explanation method because the examined model may exploit the clue given by the

feature that is not removed. Thus the removal of a feature may not a↵ect the prediction

probability of a specific label. An example would be to remove the feature that signifies

the noun part-of-speech tag while not removing the features that represent the genitive

or dative cases since only nouns can be marked genitive or dative cases. Instead, the

explanation method should assess the e↵ect of a group of features by removing several

features at once. However, this would introduce a feasibility problem due to the high

number of possible groups among the features. Future work should explore methods

to e�ciently search the space of possible group of features. Instead of an exhaustive

search, one could begin with a single member and employ some heuristic measures with

a stopping criteria to form a group of features. These measures may be feature-feature

and feature-label correlations, or custom metrics such as the change in the confidence
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of the model for a specific label.

In this thesis, we have only considered removing features related to the region of

a named entity. However, many named entity labels are not only dependent on the

region of the named entity. This is apparent from the performance increase provided

by using CRF models to predict the labels instead of models that employ token-level

prediction. Also, using bidirectional LSTMs or RNNs improve the performance com-

pared to using unidirectional sequential models to represent the context. Future work

should also consider features from outside of the region of the named entity to capture

such dependencies which could shed light on the e↵ect of features to the specific label

that we are trying to explain. This could be done while also considering groups of

features as discussed in the previous paragraph.

There is also the danger of invalidating the input format while removing fea-

tures. In this thesis, the input consists of the surface forms of a sentence along with

the possible morphological analyses of the words it embodies. When we remove a

morphological feature from an analysis, we risk modifying the analysis so that it is

no longer conforming to the rules of expressing a morphological analysis in the rel-

evant scheme. For example, the removal of morphological feature ‘P3sg’ (‘the noun

is possessed by the third singular’) invalidates the morphological analysis of a noun

because every noun should have a possessive marker. This could cause the model to

misinterpret the morphological analysis as it might expect the analysis to conform to

a certain syntax. Instead, it would be better to determine an appropriate approach

for meaningfully removing a single or a group of features. For example, the correct

way of removing a possessive marker such as ‘P3sg’ is to replace it with ‘Pnon’ which

indicates no possession. However, this is not an easy task for our case as a modifi-

cation in the morphological analysis is usually reflected in the surface form, e.g. we

should also remove a ‘-sı’ su�x from the word ‘arabası’ (‘his/her car’) if we remove the

morphological feature ‘P3sg’. This di�culty stems from the textual representation of

natural language. In comparison to visual input, textual input has no physical analogy.

Visual medium is composed of lines, corners, simple shapes, color gradients, shadows,

and others. These are all observed in the nature with the naked eye, and thus gov-
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erned with the laws of optical physics. On the other hand, written text is composed

of symbols. The shapes that make up these symbols typically do not bear similarity

to the things they represent, i.e. the graphical representation of the word ‘person’ is

unrelated to the figure of ‘person’ in the minds of people. There are some exceptions to

this observation in some writing systems, i.e. the Chinese character meaning ‘person’

or ‘man’ looks like a walking man. But in general written text is an arbitrary encoding

of meaning. So they are very dependent on each other, i.e. they must follow certain

rules of the language. When we change a letter in an English word or add a strike to

a Chinese character, the meaning may change in unexpected ways. In contrast, visual

input is more robust in the sense that changing specific features (pixels) in the input

does not invalidate the input. Invalidation is only a danger when large portions are

modified to contain random noise or an object which does not conform to the optical

rules imposed by the camera and the prejudices of human vision. As a result, the

family of explanation methods that merely remove a feature from or nullify a feature

in the input to explain the outcome of a model aligns better with visual input. Further

work on automatically determining which parts of a textual input should be modified

would be very interesting and valuable.

The evaluation of explanation methods is challenging. The main problem is

rooted in the di�culty of defining what makes an explanation high-quality. The di�-

culty arises because every explanation is built based on a reduced model of the inner

workings of the model. As the model itself is based on an approximate view of the

problem that it aims to solve, the connection between the explanation and the problem

is weak. Suppose that an experienced engineer needs to model a bridge to determine

whether it would collapse under certain loads. The input to the model is the current

number of automobiles on the bridge, load readings at several locations on the bridge,

and a detailed blue-print of the bridge in machine-readable format. The explanation

of a positive output of this model could be a heat-map on the blueprint indicating

the parts that are under high-load. This explanation may be a suitable high-quality

explanation since it can be tied to an analytical view of the bridge that can be evalu-

ated using the actual measurements. Nonetheless, only people with domain expertise

can read it and assess its plausibility. Furthermore, although the explanation seems
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plausible to an engineer, it might be the case that the model in question is paying

more attention to the number of automobiles on the bridge than the information that

the blue-print of the bridge conveys. If this is the case, the explanation method is not

faithful because it portrays the model as if it is employing an approach that people

with domain-knowledge would use while it is instead just focusing on the number of

automobiles on the bridge. As we examined this example explanation method, we have

touched upon three aspects of an explanation of high-quality: readability, plausibility,

and faithfulness [127].

The evaluation of the explanation method we propose is examined according

the above described criteria, namely readability, plausibility, and faithfulness. Recall

that an explanation in our case is simply a list of features and their corresponding

importance values. The readability is high since it explicitly presents the language

features. To evaluate the plausibility of explanations, we calculated the average of

the importance values of each feature for every named entity tag. The rankings of

the average scores for each morphological feature with respect to its importance for

in predicting each entity tag types are shown in Table 5.4 and 5.7 for Finnish and

Turkish respectively. When we observe the top and bottom features in these tables,

we see that the explanations lead us to plausible explanations in some of the named

entities, e.g. features related to location semantics are the top ones for location named

entity. Additionally, the analysis that was done by processing the rules of FiNER NER

tagger supports the plausibility claim as the top morphological features presented in

Table 5.4 matches the ones that are found to lead to named entities in FiNER rules.

Our evaluation does not address the faithfulness aspect. However, we believe that our

explanation method (EXSEQREG) can be considered faithful. We expect a model to

employ every feature in the input. Furthermore, EXSEQREG focuses on the changes

that are induced by removal of only a subset of all features (morphological feature tags).

The features that do not induce a change in the probability are easily recognizable as

they would have an importance value of zero. If, instead of the current approach,

EXSEQREG was a method that learns to output its own explanations using the input

and output of the model, unfaithfulness would be a risk.
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7. CONCLUSION

In this thesis, we introduce a NER tagger that incorporates morphological infor-

mation to improve the performance for morphologically rich languages. Our experi-

ments show that disambiguated morphological analyses can be utilized for this purpose

to surpass state-of-the-art performance levels for Turkish, Czech, Hungarian, Finnish,

and Spanish. It is shown that augmenting word representations with morphological

and character embeddings is responsible for this improvement. We also show that it

is possible to perform morphological disambiguation jointly in a single neural network.

This eliminates the dependency for an external morphological disambiguator, making

it easier to port the NER tagger to other languages.

The second thread of this thesis proposes a model-agnostic explanation method

for explaining sequence-based NLP tasks. This method is an adaptation of an expla-

nation method to the NLP context. This method formalizes the concept of a region

within an input sample and its relation to an output label. Our method lends itself

to extensions to accommodate additional NLP tasks with di↵ering input and output

formats. Finally, as this formalization can be used for further research, it has the

potential to facilitate further research on explanation methods for NLP.

We publish the NER tagger as open source software which has received positive

feedback from the software development industry. Numerous correspondences have

occurred with respect to integrating them into NLP systems. In addition to the open

source platforms that make this work available, it will also be served on an NLP

platform being developed at Bogazici University.
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83. Ševč́ıková, M., Z. Žabokrtský and O. Kr̊uza, “Named entities in Czech: annotat-

ing data and developing NE tagger”, International Conference on Text, Speech

and Dialogue, pp. 188–195, Springer, 2007.
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88. Prószéky, G. and L. Tihanyi, “Humor: High-speed unification morphology and its

applications for agglutinative languages”, La Tribune des Industries de la Langue,

Vol. 10, pp. 28–29, 1993.

89. Erjavec, T., “MULTEXT-East Version 4: Multilingual Morphosyntactic Specifi-

cations, Lexicons and Corpora.”, International Conference on Language Resources

and Evaluation (LREC), 2010.

90. Rebrus, P., A. Kornai and P. Vajda, “The annotation system of HunMorph”,

http://real.mtak.hu/id/eprint/24283, 2006.

http://real.mtak.hu/id/eprint/24283


110

91. Farkas, R., D. Szeredi, D. Varga and V. Vincze, “MSD-KR harmonizáció a Szeged

Treebank 2.5-ben [Harmonizing MSD and KR codes in the Szeged Treebank 2.5]”,
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Table A.1. The ranks of µ̂k(m) for each entity tag in Finnish. The morphological tags

that are in the first 10 for at least one entity tag are shown. (1/3)

Morphological Tag O
R
G

T
IT

P
E
R

T
IM

L
O
C

D
A
T
E

P
R
O

M
IS
C

E
V
E
N
T

O
U
T
S
ID

E

m
ed
ia
n

st
d
.
d
ev
.

Number=Sing 89 1 89 89 89 88 89 2 3 89 89 42
Case=Nom 88 89 3 82 88 11 1 89 1 1 3 39
Voice=Act 3 83 5 80 79 6 12 83 84 85 12 30
VerbForm=Fin 6 79 9 61 8 12 8 78 12 86 8 26
*BLANK* 63 42 41 40 44 78 63 27 37 29 44 18
Mood=Ind 8 81 70 52 9 14 9 81 16 88 9 27
Number=Plur 4 85 4 86 3 23 78 1 89 75 4 35
Case=Gen 87 87 88 79 2 7 88 13 87 2 87 37
Degree=Pos 2 88 85 2 87 1 82 84 6 3 82 41
Person=3 20 84 7 54 17 33 76 66 28 83 20 19
Tense=Pres 10 9 16 68 10 13 14 76 14 87 14 32
Case=Par 17 86 87 85 6 86 2 85 7 14 7 28
Tense=Past 12 80 76 21 15 45 10 72 78 12 15 26
Style=Coll 14 74 2 9 21 32 16 50 32 22 16 22
VerbForm=Part 23 65 57 76 39 3 33 73 8 36 33 27
Case=Ine 84 15 24 4 1 89 5 87 85 35 24 35
Case=Ill 33 14 77 75 5 87 3 82 31 34 31 29
PartForm=Past 25 69 60 77 74 5 29 65 10 33 29 26
Case=Ela 83 62 68 67 4 19 4 86 42 32 42 24
VerbForm=Inf 13 31 21 49 84 8 84 12 86 77 84 25
Voice=Pass 27 70 56 55 19 4 79 71 27 31 27 25
Person=1 9 8 73 69 11 26 6 75 29 78 11 28
Case=Ade 86 37 69 66 7 30 11 80 82 4 69 26
Person=0 40 82 13 53 72 31 74 15 77 30 72 23
Connegative=Yes 22 63 20 7 26 15 23 6 17 84 22 32
Polarity=Neg 37 36 12 50 34 47 30 32 49 28 34 8
InfForm=1 19 35 63 24 14 35 83 14 88 27 63 7
Person[psor]=3 55 34 38 60 76 43 18 3 81 26 55 18
PronType=Dem 43 33 22 87 40 44 71 53 46 25 43 21
Person=2 30 32 11 11 24 16 77 57 22 37 24 16
Case=All 54 75 81 65 12 36 13 79 2 23 13 22
AdpType=Post 21 73 80 73 66 22 25 22 79 21 66 25
PartForm=Pres 50 10 23 20 29 25 41 60 43 13 41 17
Derivation=Minen 31 3 83 83 22 29 15 7 19 20 22 28
NumType=Card 16 68 30 88 82 21 87 77 5 6 30 32
Case=Ess 35 28 55 3 13 2 26 63 34 7 34 23
Case=Tra 53 12 17 51 70 28 43 9 38 8 43 16
Typo=Yes 28 76 64 5 83 24 40 64 13 9 40 29
Mood=Cnd 77 67 19 23 36 53 39 20 26 10 36 21
PronType=Ind 24 24 74 78 77 20 24 58 47 11 47 25
Mood=Imp 34 23 8 8 25 17 75 16 23 5 25 6
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Table A.2. The ranks of µ̂k(m) for each entity tag in Finnish. The morphological tags

that are in the first 10 for at least one entity tag are shown. (2/3)

Morphological Tag O
R
G

T
IT

P
E
R

T
IM

L
O
C

D
A
T
E

P
R
O

M
IS
C

E
V
E
N
T

O
U
T
S
ID

E

m
ed
ia
n

st
d
.
d
ev
.

PronType=Rel 78 27 37 63 28 74 35 56 73 41 37 16
Number[psor]=Sing 49 39 14 58 30 73 45 51 72 60 45 11
AdpType=Prep 26 72 82 17 68 72 21 18 80 61 68 25
Derivation=Lainen 41 2 78 71 16 71 22 70 18 62 22 26
Degree=Sup 38 58 66 70 31 70 19 61 25 63 31 4
NumType=Ord 11 6 75 59 33 84 81 4 9 64 33 32
Clitic=Ko 59 56 61 47 58 68 37 36 70 65 59 11
Clitic=Kaan 56 55 53 13 38 67 70 54 68 66 56 19
Degree=Cmp 82 54 26 81 46 66 46 44 67 67 46 12
Derivation=Sti 81 53 59 84 37 65 68 52 65 68 65 11
Derivation=Inen 79 4 71 62 27 34 73 19 21 69 71 24
PronType=Int 44 40 15 15 56 64 69 55 64 70 56 19
Number[psor]=Plur 52 64 65 28 75 63 44 21 62 71 62 20
Clitic=Ka 73 51 42 43 53 62 58 34 61 72 58 13
Person[psor]=2 58 50 29 46 32 61 31 23 60 73 32 16
Clitic=Han 80 49 10 16 20 60 54 48 58 59 54 15
Clitic=S 51 48 31 33 52 59 49 49 57 57 51 9
Mood=Pot 39 13 32 32 67 58 27 10 56 40 39 17
Case=Abe 75 47 36 19 50 27 64 35 55 56 55 13
Reflex=Yes 76 46 49 48 45 57 66 46 54 39 54 5
Case=Acc 65 45 43 29 47 56 62 43 53 42 53 8
Clitic=Pa 72 44 47 41 65 55 65 39 52 43 65 5
PronType=Rcp 71 43 39 45 55 54 48 38 66 44 55 5
Derivation=Ja 46 78 33 25 80 52 28 62 59 45 46 17
Derivation=Vs 48 7 44 74 48 75 47 68 69 46 48 25
Derivation=Ton 42 25 28 26 35 39 32 37 35 47 35 8
Clitic=Ko,S 45 26 67 37 49 51 42 45 50 48 49 9
Clitic=Pa,S 70 41 58 31 51 50 60 47 71 50 60 7
Case=Com 69 52 45 30 54 46 57 42 51 52 54 8
Derivation=Ttain 68 57 46 72 57 37 55 41 41 53 55 12
Clitic=Han,Ko 66 59 50 42 59 49 51 40 44 54 51 7
Style=Arch 74 22 34 56 60 48 50 28 48 55 50 14
PartForm=Neg 64 29 40 39 61 38 52 33 45 74 52 16
Derivation=U 62 30 51 36 62 42 56 26 40 58 56 11
Clitic=Han,Pa 60 61 52 34 63 41 59 31 39 51 59 11
Derivation=Llinen 61 60 54 35 64 40 61 29 36 49 61 10
Derivation=Tar 67 19 48 38 42 80 53 30 76 17 53 22
*UNKNOWN* 1 77 84 1 86 85 86 88 83 76 84 32
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Table A.3. The ranks of µ̂k(m) for each entity tag in Finnish. The morphological tags

that are in the first 10 for at least one entity tag are shown. (3/3)

Morphological Tag O
R
G

T
IT
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E
R
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IM
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E
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R
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E
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T
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ID

E

m
ed
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n

st
d
.
d
ev
.

Abbr=Yes 7 5 1 22 78 82 85 74 4 82 7 32
PronType=Prs 32 21 18 44 43 83 34 25 63 15 34 24
InfForm=3 57 20 27 14 71 81 36 17 20 16 36 25
Foreign=Yes 5 11 86 27 23 69 17 5 11 81 17 30
Clitic=Kin 29 18 6 6 81 79 7 8 33 18 29 27
Case=Ins 15 17 79 64 69 9 20 59 24 79 24 27
PartForm=Agt 36 16 62 12 41 77 72 69 30 19 41 28
Case=Abl 85 71 72 18 18 18 38 67 75 38 72 22
Person[psor]=1 47 66 25 57 73 76 67 24 74 24 67 21
InfForm=2 18 38 35 10 85 10 80 11 15 80 35 27
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Table A.4. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown. (1/5)

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

Noun 176 181 2 89 0
A3sg 2 180 178 90 0
Pnon 181 179 181 181 0
Nom 180 178 180 180 0
Verb 8 147 173 90 0
Adj 3 170 176 89 0
P3sg 4 2 169 86 0
PosˆDB 17 160 171 94 0
Punc 20 5 7 13 0
A3pl 7 10 162 84 0
Pos 13 16 4 8 0
Prop 1 1 1 1 0
Acc 12 169 174 93 0
Zero 50 173 166 108 0
P2sg 177 174 179 178 0
Gen 179 175 177 178 0
NomˆDB 9 166 170 89 0
Dat 178 176 175 176 0
Loc 19 177 161 90 0
Adverb 46 14 19 32 0
VerbˆDB 40 149 45 42 0
Conj 28 6 18 23 0
Num 21 13 9 15 0
Pass 59 19 17 38 0
P3pl 14 12 70 42 0
AdjˆDB 15 172 156 85 0
PastPart 47 53 40 43 0
Past 62 153 14 38 0
Det 88 54 146 117 0
Inf2 23 162 23 23 0
Postp 64 21 152 108 0
Card 36 18 16 26 0
Pron 56 55 20 38 0
Imp 16 7 6 11 0
Abl 174 168 165 169 0
PresPart 48 56 160 104 0
A2sg 18 8 5 11 0
Ness 11 150 147 79 0
Caus 39 154 154 96 0
AorˆDB 32 17 164 98 0
Prog1 92 57 65 78 0
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Table A.5. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown. (2/5)

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

P1sg 24 30 8 16 0
A1sg 52 159 157 104 0
Almost 6 4 139 72 0
LocˆDB 30 171 22 26 0
CardˆDB 31 22 24 27 0
Rel 25 167 159 92 0
A1pl 44 144 25 34 0
Narr 45 138 38 41 0
Inf1 87 52 42 64 0
Fut 86 25 144 115 0
NegˆDB 85 61 77 81 0
Cop 170 139 39 104 0
A2pl 41 28 11 26 0
Able 80 63 82 81 0
Acquire 71 50 36 53 0
Pers 54 65 80 67 0
Opt 51 29 13 32 0
ByDoingSo 84 66 81 82 0
CausˆDB 83 67 74 78 0
P1pl 82 135 148 115 0
Recip 60 68 30 45 0
PCAbl 81 152 64 72 0
PCDat 79 69 145 112 0
WithˆDB 175 157 33 104 0
Cond 43 31 35 39 0
Inf3 55 70 51 53 0
Ques 168 62 31 99 0
PresPartˆDB 42 24 141 91 0
NounˆDB 5 3 138 71 0
Equ 37 15 15 26 0
Inf2ˆDB 76 51 60 68 0
Become 172 44 55 113 0
RecipˆDB 53 134 21 37 0
Reflex 169 35 83 126 0
While 93 34 41 67 0
NarrˆDB 171 33 155 163 0
FitFor 34 156 149 91 0
PCAblˆDB 109 37 57 83 0
AfterDoingSo 149 36 34 91 0
Ord 26 11 12 19 0
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Table A.6. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown. (3/5)

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

Ly 68 143 27 47 0
EDTag 142 43 79 110 0
ETTag 135 49 84 109 0
P2pl 140 46 95 117 0
Desr 57 161 117 87 0
Without 73 140 50 61 0
WithoutˆDB 139 48 118 128 0
Interj 173 20 32 102 0
Neces 72 47 119 95 0
PCDatˆDB 63 45 120 91 0
Since 137 145 48 92 0
JustLikeˆDB 136 71 121 128 0
Related 74 64 44 59 0
PassˆDB 150 73 122 136 0
Real 151 126 123 137 0
When 77 125 124 100 0
Prog2 152 124 125 138 0
AgtˆDB 70 123 126 98 0
AsIfˆDB 67 137 47 57 0
FeelLike 153 151 127 140 0
JustLike 165 122 140 152 0
PCIns 164 121 130 147 0
GenˆDB 167 119 150 158 0
WithoutHavingDoneSo 163 112 128 145 0
InBetween 29 26 129 79 0
NotState 75 118 116 95 0
Time 162 117 134 148 0
RelˆDB 161 27 142 151 0
DemonsP 160 111 132 146 0
PersP 159 115 29 94 0
AsLongAs 158 114 133 145 0
OrdˆDB 157 113 115 136 0
PCNomˆDB 156 127 85 120 0
RealˆDB 155 120 113 134 0
Dim 154 164 137 145 0
Adv 61 136 26 43 0
Dup 143 133 153 148 0
DatˆDB 134 132 46 90 0
Inf 69 146 135 102 0
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Table A.7. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown. (4/5)

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

InsˆDB 102 83 96 99 0
ActOf 101 110 97 99 0
PCAcc 99 81 151 125 0
WithoutBeingAbleToHaveDoneSo 98 80 98 98 0
DistˆDB 97 79 99 98 0
A3sgˆDB 113 78 100 106 0
QuesP 114 77 101 107 0
*BLANK* 115 76 102 108 0
HastilyˆDB 116 75 103 109 0
Percent 131 90 104 117 0
EverSinceˆDB 130 74 105 117 0
Adamantly 129 91 106 117 0
EverSince 128 93 107 117 0
A3plˆDB 127 108 108 117 0
Stay 126 107 109 117 0
FutˆDB 125 106 110 117 0
Repeat 124 105 111 117 0
Prog1ˆDB 123 104 112 117 0
RangeˆDB 121 103 59 90 0
NotAbleState 118 102 63 90 0
StayˆDB 117 101 58 87 0
ReflexˆDB 166 100 78 122 0
ReflexP 105 99 76 90 0
ActOfˆDB 119 98 73 96 0
QuesˆDB 120 97 72 96 0
WhileˆDB 122 128 71 96 0
RatioˆDB 100 82 69 84 0
InBetweenˆDB 138 94 68 103 0
Prog2ˆDB 141 95 67 104 0
DupˆDB 148 96 66 107 0
DistribˆDB 147 39 61 104 0
SinceDoingSoˆDB 94 72 131 112 0
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Table A.8. The ranks of µ̂k(m) for each entity tag in Turkish. The morphological tags

that are in the first 20 for at least one entity tag are shown. (5/5)

Morphological Tag O
R
G

L
O
C

P
E
R

m
ed
ia
n

st
d
.
d
ev
.

Ins 38 163 167 102 0
Agt 22 9 172 97 0
Neg 35 141 168 101 0
Pres 49 155 158 103 0
With 27 158 10 18 0
Aor 58 32 163 110 0
FutPart 91 148 143 117 0
PCNom 90 58 43 66 0
ZeroˆDB 33 59 37 35 0
Demons 89 60 75 82 0
AbleˆDB 146 40 62 104 0
Quant 145 38 53 99 0
BecomeˆDB 65 41 54 59 0
AsIf 66 142 28 47 0
*UNKNOWN* 10 165 3 6 0
AcquireˆDB 144 42 56 100 0
AblˆDB 133 129 136 134 0
PCInsˆDB 132 131 86 109 0
Dist 112 130 87 99 0
RelatedˆDB 78 116 49 63 0
SinceDoingSo 111 23 52 81 0
FitForˆDB 110 92 88 99 0
PCGen 95 109 89 92 0
ESTag 108 89 90 99 0
Range 107 88 91 99 0
Hastily 106 87 92 99 0
Ratio 104 86 93 98 0
WhenˆDB 96 85 94 95 0
Distrib 103 84 114 108 0
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