QUALITY OF EXPERIENCE - DRIVEN DYNAMIC ADAPTIVE STREAMING
OVER HTTP

by
Thsan Mert Ozcelik
B.S., Computer Engineering, Bilkent University, 2012
M.S., Computer Engineering, Bilkent University, 2014

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering
Bogazici University

2021

il

ACKNOWLEDGEMENTS

I would like to thank and express my deepest gratitude to my thesis supervisor
Prof. Cem Ersoy. My Ph.D. years have had many domestic and international trips
between London, Istanbul, Antalya and Bolu while working as a full-time engineer. Un-
der these circumstances and the research problems, his wisdom, courage, and positive
thinking helped me overcome all those challenges. So, this thesis would be impossible
without his tremendous support, knowledge and vision. Specifically, his inexhaustible

energy towards all kinds of problems in 2021 will always inspire me.

I would like to thank my core jury members, Prof. Ozlem Durmaz Incel and Prof.
Tuna Tugcu for taking this journey with me over the years, making super-constructive,
insightful and valuable comments. I would also like to thank the NETLAB family for

their warm friendship and generous support.

And my biggest appreciation to my family for all the support. I am wholeheart-
edly thankful to my wife Selin for her patience and support over the years, without
which I would have stopped my graduate studies multiple times. I would like to thank
my sister Ece, my mother Yiiksel and my father Mahircan for their invaluable support
and love throughout my life. I would also like to thank my parents-in-law Emine and

Fikret Gokkus for supporting and considering me as their own child.

v

ABSTRACT

QUALITY OF EXPERIENCE - DRIVEN DYNAMIC
ADAPTIVE STREAMING OVER HTTP

Dynamic Adaptive Streaming over HTTP (DASH) became the pillar of mul-
timedia content delivery mechanisms in the last decade. Given fluctuating network
conditions, over-the-top content platforms struggle with delivering a high quality of ex-
perience (QoE) and uninterrupted playback sessions. To overcome this difficulty, they
keep multiple quality levels of the same content in a fragmented way. This mechanism
enables players to adapt the video quality to varying network conditions by changing
the video bitrate at the fragment boundaries. To maximize the QoE, adaptive bitrate
algorithms have been widely studied in the literature with promising results. However,
the majority of the state-of-the-art solutions do not take into account the presence of
multiple DASH clients on the shared bottleneck link, whereas the existing studies con-
sidering multiple DASH players in the same network do not consider the diversity of
fragment durations among different video titles, background traffic and users’ privacy.
Those gaps cause QoE fairness and stability problems along with feasibility concerns.
First, to address these problems, we propose a centralized module assisted adapta-
tion mechanism with a lightweight Software-Defined Networking (SDN) integration for
on-demand video streaming. Second, we leverage our proposed SDN-assisted mech-
anism to deliver QoE-driven low-latency live event streaming over HTTP. Third, we
implement a live streaming DASH client with a novel bandwidth measurement heuris-
tic without requiring any extra component to the legacy systems. It reduces the live
delay between the actual event to users’ screens down to 1s. As a final contribution,
we present a deep reinforcement learning framework to adapt the playback speed and

video bitrate to maximize QoE in live streaming.

OZET

DENEYIM KALITESI ODAKLI HTTP UZERINDEN
DINAMIK UYARLAMALI AKIS

HTTP iizerinden dinamik uyarlamali akig (HDUA), son on yilda multimedya
igerik dagitim mekanizmalarinin temel diregi haline geldi. Degisen ag kosullari goz
oniine alindiginda, iist diizey icerik platformlar1 yiiksek deneyim kalitesi ve kesinti-
siz oynatma oturumlar1 saglamakta zorlaniyor. Video servis saglayicilar bu zorluk-
larin distesinden gelmek igin, aym icerigin birden ¢ok kalite diizeyini parcal sekilde
olugtururlar. Bu yontem, video kalitesini degisen ag kosullarina uyarlamaya olanak
saglar. Literatiirde, umut verici sonuclari olan uyarlamali video bit hiz1 algoritmalar:
yer almaktadir. Fakat, bu ¢oziimlerin ¢ogu, paylasilan darbogaz baglantisinda birden
¢ok HDUA istemcisinin varligin1 hesaba katmazken, ayni agda birden ¢cok HDUA oy-
naticisini ele alan mevcut ¢alismalar ise, parcga siiresinin cesitliligini, arka plan trafigini
ve kullanicilarin gizliligini dikkate almamaktadir. Bu bosluklar, gercek hayatta uygu-
lanabilirlik endigeleri ile birlikte birden fazla istemci arasinda QoE dengesi ve stirekliligi
sorunlarma neden olur. Ilk olarak, bu sorunlar ¢ozmek icin, bir Yazilim Tammbh
Ag (YTA) entegrasyonuna sahip, merkezi modiil destekli bir mekanizma Oneriyoruz.
Ikinci olarak, HTTP iizerinden deneyim kalitesi odakli canli etkinlik yaymn icin YTA
destekli mekanizmamizdan yararlaniyoruz. Uclinciisii, eski sistemlere herhangi bir ek-
stra bilesen gerektirmeden yeni bir bant genigligi ol¢iim yontemiyle, gercek etkinlik
ani ile o anin kullanicilarin ekranlarinda gosterilmesi arasindaki gecikmeyi 1 saniyeye
kadar azaltan bir HDUA istemcisi gelistiriyoruz. Son bir katki olarak, canli etkin-
lik yayimnlarindaki deneyim kalitesini artirmak i¢in oynatma hizini ve video kalitesini

uyarlayan derin pekistirmeli 6grenme ortami sunuyoruz.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e iii
ABSTRACT . . . o iv
OZET . . .o v
LIST OF FIGURES ix
LIST OF TABLES s xii
LIST OF SYMBOLS e xiv
LIST OF ACRONYMS/ABBREVIATIONS xvi
1. INTRODUCTION e e 1
1.1. Thesis Overview and Contributions 3
1.2, Thesis Outline. 5

2. BACKGROUND INFORMATION 7
2.1. Dynamic Adaptive Streaming over HTTP 7
2.2. Quality-of-Experience Metrics in Video Streaming 9

3. LITERATURE REVIEW 12
3.1. Related Work on Adaptive Video Bitrate (ABR) Algorithms 12
3.1.1. Server and Network-Assisted Solutions 13

3.1.2. Client-based Solutions 18

3.2. Related Work on Low-latency Live Streaming over HTTP 21

4. CHUNK DURATION-AWARE DASH FOR VOD USING SDN ASSISTANCE 26

4.1. Introduction 26
4.2. Architecture of The SDN-assisted DASH 29
4.3. SDN-assisted central ABR heuristics 31

4.3.1. Chunk-duration aware, start-up delay optimizer among multiple
DASH clients 31

4.3.2. Chunk-duration aware, video quality optimizer among multiple
DASH clients 34

4.3.3. Background traffic-aware, QoE optimizer among multiple DASH
clients. 35

vii

4.4. Performance Evaluation 0L 39
4.4.1. Testbed and Implementation Details 39
4.4.2. The Metrics o 40
4.4.3. Impact of different target start-up delays 42
4.4.4. Impact of light and heavy background traffic 43
4.4.5. Impact of different number of background flows 49
4.4.6. The applicability to arbitrary arrival/departure times 50

4.5, Discussion 52

. DASH FOR LIVE EVENTS USING SDN ASSISTANCE 53

5.1. Introductiono 93

5.2. SDN-supported Low-Latency (LL) streaming over DASH 56
5.2.1. System Overview 56
5.2.2. Central QoE Optimization Heuristic 58

5.3. Experimental Evaluation 62
5.3.1. Testbed and Implementation Details 62
5.3.2. The Metrics 63
5.3.3. Results. o 64

5.4. Discussion 69

. LOW-LATENCY HAS CLIENT USING RULE-BASED ABR HEURISTICS 70

6.1. Introduction 70
6.2. Live Streaming HAS Client 73
6.2.1. Bandwidth Measurement Heuristic 73
6.2.2. ABRRules 74
6.2.3. Adaptive Playback Rate and Target Live Latency 75

6.3. Performance Evaluation, 75
6.3.1. Setup 75
6.3.2. Evaluation Metrics 76
6.3.3. Comparative Results with State-of-the-art Solutions 76
6.3.3.1. Evaluation in measuring the available bandwidth . . . 77

6.3.3.2. QoE implications under 3-second and 6-second target
live latency 78

viii

6.3.3.3. Multiple players with arbitrary arrival times 80
6.3.3.4. Ultra-low latency down to one second and impact of
various chunk duration 81

6.3.3.5. Evaluation with real 4G network traces and higher

video bitrateso 81

6.4. Discussion 83

7. ADAPTIVE LIVE STREAMING USING REINFORCEMENT LEARNING 85
7.1. Introductiono 85
7.2. System Model and Formulation of The Problem 88
7.3. The Proposed RL Framework 90
7.3.1. RL Problem Definition 90

7.3.2. The Proposed Actor-Critic Algorithm 92

7.4. Simulation Results oo 94
7.4.1. Experiment Setup. 94

7.4.2. Training Details and QoE Coefficients 94

743. Results. o 95

7.5. Discussiono 97

8. CONCLUSION e 99
REFERENCES o 102

APPENDIX A: COPYRIGHT INFORMATION 113

Figure 2.1.

Figure 2.2.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

LIST OF FIGURES

DASH Flow between player and content server.

Sample DASH Manifest file.

Classification of Adaptive Video Bitrate solutions in terms of the

deployment component and input criteria.

End-to-end Flow of HTTP Chunked Encoded Transfer of CMAF

segments. . ..o oL Lo

a) Legacy Segment Distribution, b) HTTP 1.1 chunked encoding
CMAF for live streaming.

System Architecture of SDN-Assisted DASH.
Start-up delay optimizer algorithm
Video quality optimizer during playback
Block diagram of the background traffic-aware, QoE optimizer. . .

Background traffic-aware, QoE optimizer

The measured SSIM values for different video bitrates of Animation

and Documentary content.

Start-up Delay Comparison between C'SASDN DASH and state-
of-the-art ABRs.

1X

22

36

41

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Video quality during 10-min Big Buck Bunny session among 8
clients with BOLA, CSASDN, EzplicitSDN in the existence of
light background traffic (rand(0.5..2) Mbps). 44

Video quality during 10-min Big Buck Bunny session among 8
clients with BOLA, EzplicitSDN, and our proposed C'SASDN
approach in the existence of heavy background traffic (rand(2...10)
Mbps). . . o 45

Video quality during 8-min Of Forest And Men session among 8
clients in the existence of heavy background traffic (rand(2..10)
MDbDPS). o 46
The impact of the number of the background flows on VQ. 49
Video quality during 7.5-min Of Forest And Men session among 8
clients with different arrival times in the existence of heavy back-

ground traffic (rand(6..10) Mbps). 51

Performance Comparison in terms of the eMOS between ExplicitS DN
and CSASDN for the arbitrary arrival/leaving experiments. . . . 52

System Overview of SDN-supported Low-latency (LL) Streaming
over DASH. 56

Flow in Central Adaptive Bitrate Heuristic to optimize QoE in live

streaming. Lo Lo 59
Central QoE-aware heuristic 61
Experiment Setup. 63

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 7.1.

Figure 7.2.

Figure 7.3.

QoE Metrics in the baseline low-latency enabled DASH player for
CMAF.

Live delay values and QoE scores for different ABR algorithms over

10 repetitions for 4-client setup (Target live delay of 6 s).

Live latency variations during a 10-minute live session with the

target delay of 6 s from a sample run.

Live delay values and QoE scores for different ABR algorithms over

10 repetitions for 4-client setup (Target live delay of 3 s).

End-to-end Flow of HTTP Chunked Encoded Transfer of CMAF

segments. L Lo L

Measured Throughput by all four approaches in the limited capac-
ity of 2 Mbps and 3 Mbps. L

Live latency variations during a 10-minute live session.

Distribution of the available capacity in each network profile. . . .

Measured Throughput in real 4G traces.

The Proposed System of DRL-based Adaptive Live Streaming over
HTTP Chunked Encoded Transfer of CMAF segments.

The Proposed Actor-Critic Architecture.

Live latency changes over time.

x1

65

67

7

82

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 5.1.

Table 5.2.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

LIST OF TABLES

Comparative evaluation of different approaches in terms of all QoE

metrics over Big Buck Bunny.

All QoE metrics over Of Forest And Men (The state-of-the-art SDN

vs. our proposed approach).

Performance comparison of all the approaches in terms of the avg.

eMOS over Big Buck Bunny.

The avg. eMOS over Of Forest And Men (The state-of-the-art SDN

vs. our proposed approach). L.

All QoE metrics in different ABR mechanisms (Target live delay of
6 8).

All QoE metrics in different ABR mechanisms (Target live delay of
38).

All QoE metrics in all three approaches under the target live delays

of 3 s and 6 s (over 10 repetitions).

All QoE metrics from three simultaneous players with a fluctuating

background traffic (over 10 repetitions).

The impact of chunk duration on QoE in our approach under 1s

target live delay (over 10 repetitions).

QoE metrics from different types of real 4G traces.

xii

30

xiii

Table 7.1. Training Parameters. 94

Table 7.2. Comparison of all five approaches in terms of QoE and live latency. 96

Q

Co

C1

Co

C3

C’di
et(cd;)

=~ ™~

v =

Q(s, a)
SBT(i)

Tothers

Xiv

LIST OF SYMBOLS

Action taken at time ¢

Coefficient for the contribution of the video quality to QoE
Coeflicient for the penalty factor of video stalls

Coeflicient for the penalty factor of video quality switches
Coefficient for the penalty factor of live delay

The details of the particular chunk i

The download end time of chunk i

Number of quality levels in the media presentation description
Reward value gained at time ¢

The size of the downloaded bytes of chunk i

State (i.e., the observation of the environment) at time ¢
The average of the inter-arrival times between the chunks
The advantage function

The measured background throughput at iteration ¢

The average duration of freezes in a session

The number of freezes relative to the total number of segments
The expected sum of future rewards

The entropy component

The number of past throughput measurement values

List of the download times of all chunks in a segment

List of the download times of the network-limited chunks
Number of fragments in a session

Number of playback speed levels

The played quality level for fragment 4

The Q-value function

The smoothed version of BT (i) at iteration 4

The total download times of the chunks in L/L’

The total download times of chunks in L’

XV

V(s) The expected reward before an action is taken in state s
Q@ Learning rate

Qyctor Learning rate of the actor network

Qleritic Learning rate of the critic network

I5; Exploration factor (i.e., entropy weight)

Brps Entropy constant

0l Discount factor

€ The smoothing factor to calculate the background traffic
1 The normalized mean quality level

s Policy as a vector of probabilities of each action

Ty A specific policy defined by policy parameters ¢

P Approximation coefficient for the encoder-limited chunks
o The standard deviation of video quality levels

10) The impact factor of video freezes on the QoE

0 Policy parameters

Vo J(0) The gradient of the expected cumulative reward with respect

to the policy parameters

XVi

LIST OF ACRONYMS/ABBREVIATIONS

4G Fourth Generation

5G Fifth Generation

A3C Asynchronous Advantage Actor Critic
ABR Adaptive Bitrate

ACM Association for Computing Machinery
API Application Programming Interface
ATP Association of Tennis Professionals
CDN Content Delivery Network

CMAF Common Media Application Format
CNN Convolutional Neural Network

DASH Dynamic Adaptive Streaming over HT'TP
DASH-IF DASH Industry Forum

DPI Deep Packet Inspection

DRL Deep Reinforcement Learning

EWMA Exponential Weighted Moving Average
GPU Graphical Processing Unit

HAS HTTP Adaptive Streaming

HDS HTTP Dynamic Streaming

HTTP Hypertext Transfer Protocol

ITU International Telecommunication Union
IP Internet Protocol

LTE Long Term Evolution

MDP Markov Decision Process

MPD Media Presentation Description
MPEG The Moving Picture Experts Group
Mbps Megabits per second

MSS Microsoft Smooth Streaming

MVPD Multi-channel Video Program Distributor

MVQ
NAT
NSP
OTT
PANDA
PSNR
QoE
RL
ReLU
REST
RTT
SAND
SDN
SLA
SSIM
TCP
URL
VMAF
VSp
VoD
eMOS
fps
kbps

Mean Video Quality

Network Address Translation
Network Service Provider
Over-the-top

Probe And Adapt

Peak Signal-to-Noise Ratio
Quality of Experience
Reinforcement Learning

Rectified Linear Unit
Representational State Transfer
Round-trip Time

Server And Network-assisted DASH
Software-Defined Networking
Service-Level Agreement
Structural Similarity Index Metric
Transmission Control Protocol

Uniform Resource Locator

Video Multimethod Assessment Fusion

Video Service Provider
Video-on-Demand

Estimated Mean Opinion Score
Frames per second

kilobits per second

xvii

1. INTRODUCTION

There has been a rapid penetration of Internet Protocol (IP)-based Multichan-
nel Video Program Distributors (MVPDs) devices, game consoles, Smart TVs, and
smartphones and tablets in the last decade. This increase in IP-connected devices with
video rendering capabilities has accelerated advancements in video streaming over the
Internet. This trend is reflected as a growing interest in over-the-top (OTT) service
platforms and content providers such as Netflix, Amazon Prime Video, Youtube, and
Twitch. As of the first quarter of 2021, only two of those providers, Netflix and Ama-
zon Prime Video, have about 500 million subscribers in total all over the world [1].
Unsurprisingly, it makes video content the majority of all Internet traffic. According
to Cisco Visual Networking Index prediction, video streaming traffic will be 81% of
all Internet traffic by 2022 [2]. As in line with this prediction, the Ericsson Mobility
Report forecasts the share of video content over global mobile traffic will be 76% by
2025 [3]. Given highly changing network conditions, considerable diversity in device
capabilities and amount of video content distributed over the Internet, satisfying user
expectations about high-quality, high-resolution, quickly started, and uninterrupted

video service turns out a significant challenge for the content providers.

The crucial success factor for the tremendous growth of video steaming over the
Internet in the last decade is the wide adoption of HTTP adaptive streaming (HAS)
and its standardization as Dynamic Adaptive Streaming over HI'TP (DASH). HAS
eases the traversal through NATs and firewalls and allows the use of existing caching
infrastructure (e.g., content delivery networks) to scale in a cost-effective manner. In
HAS, the multiple versions of the same content at different quality levels are kept at the
OTT back-end side. It enables video players to choose the appropriate video quality and
change it over time to adapt to the varying network conditions. In other words, adaptive
video bitrate selection has become the main knob of OTT applications to maximize

the Quality-of-Experience (QoE) of users under fluctuating network conditions.

Adaptive Bitrate (ABR) algorithms aim to provide an uninterrupted playback
session by adapting the video quality to the varying network conditions to maximize
the users’ QoE. A high QoE in video streaming is not only about high video quality
and resolution but also a quick session start-up time, a low number of video freezes
and video quality switches at the bare minimum. To maximize each particular QokE
criterion, ABR algorithms need to trade off with the other QoE criteria. For example,
the lower video bitrate the ABR algorithm chooses, the less risk of video stalls users
take in case of sudden throughput drops by condemning users to low video quality or
resolution. Similarly, the more content the player buffers before starting the playback,
the less risk of video freezes the player takes by introducing a disturbingly high video
start time. The challenge of ABR algorithms is to balance such trade-offs given the
available throughput estimations and play-out buffer status along with the available
video bitrates. Competing streaming clients on the same shared bottleneck link exac-
erbate the problem. Under these circumstances, the purely client-based adaptive video

bitrate mechanisms may have QoE fairness and stability problems.

DASH and ABR algorithms were initially designed for the previously-stored
videos at multiple quality levels at the content provider site (i.e., Video-on-demand
use case), such as movies, TV shows and original series. In the last few years, live
event streaming over DASH, as a new use-case, has also been growing in popularity as
OTT service providers have procured broadcasting rights of worldwide premium sports
events like English Premier League, ATP Tour Tennis, UEFA Champions League, Ma-
jor League Baseball, American National Football League with 5G infrastructure rolling
out more and more. At that point, Dynamic Adaptive Streaming over HT'TP is con-
sidered the most promising approach for the rapid deployment of the infrastructure of
those live sports events due to its existing wide adoption for VoD use cases. As an
extra goal on top of the existing success criteria of ABR algorithms in the legacy VoD
use cases, a new requirement of low live latency from the actual event to users’ screens
arises in a live streaming scenario. This tendency is echoed by the recent advancements
of the HTTP chunked transfer and the Common Media Application Format (CMAF),

which introduce the possibility to deliver a video segment in small chunks before the

full segment is generated. It can provide live latency of three seconds or less on a con-
ventional DASH player with a small buffer capacity less than the target live latency.
However, legacy ABR mechanisms inaccurately measure the available bandwidth due
to idle times between the video chunks. It is because the download time is affected by
not only the current network status but also idle times at the live encoder end as the
chunks of the segment are being prepared during the segment download. It misleads

ABR decisions and consequently condemns users to a low QoE.

This thesis addresses the above-mentioned issues by (i) utilizing Software-Defined
Networking paradigm (SDN) and proposing a centralized joint optimization module-
assisted adaptive video bitrate mechanism for VoD use-case while not invading users’
privacy and continuously following the available throughput, ii) implementing a bitrate
adaptation mechanism for low-latency live event streaming with a lightweight SDN
assistance while keeping the coexistence with the legacy DASH clients, iii) presenting
live streaming HAS client with a novel bandwidth measurement heuristic over HTTP
1.1 Chunked Transfer of CMAF packages, and iv) presenting a deep reinforcement
learning (DRL) framework to maximize QoE for live streaming without any assumption
about the environment or fixed rule-based heuristics by considering adaptive playback

speed and video quality as two control knobs in a joint optimization problem.

1.1. Thesis Overview and Contributions

In this thesis, we concentrated on DASH systems for both VoD and live event
streaming use cases to maximize users’ QoE. We addressed QoE fairness and stability
problems in the existence of multiple DASH clients and highly fluctuating background
traffic on the same shared bottleneck link by using a lightweight SDN guidance. We
also took the chunk duration diversity among different titles into account, as opposed
to both purely client-based and state-of-the-art SDN-based ABR mechanisms. Further-
more, we extended the same system to support low-latency live streaming scenarios
with SDN-assisted central guidance. Moreover, we proposed a novel bandwidth mea-

surement heuristic for low-latency live streaming through HTTP 1.1 Chunked Transfer

of CMAF packages. Finally, we developed a DRL framework to learn video bitrate and
playback speed adaptation strategy to maximize QoE for live video streaming without
any fixed rule-based heuristics. The main contributions of this thesis are highlighted

as follows:

e Chunk Duration-aware DASH for VOD Using SDN Assistance: With the help of
the global network view provided by the Software-Defined Networking paradigm
(SDN), we propose a centralized joint optimization module-assisted adaptive
video bitrate mechanism which takes the diversity of chunk duration among dif-
ferent content into account. Our system collects possible video bitrate levels and
chunk duration from DASH clients and calculates the optimal video bitrates per
client based on the available capacity and chunk duration of each client’s selected
content. By continuously following the background traffic flows, it asynchronously
updates the target video bitrate levels to avoid both buffer stall events and net-
work under-utilization issues rather than bandwidth slicing which brings about
scalability problems in practice. It also guarantees fair start-up delays for video
sessions with various chunk duration. Our experiments clearly show that our
proposed approach considering the diversity of chunk duration and background
traffic fluctuations can significantly provide a better and fair QoE in terms of
SSIM-based video quality and start-up delay compared to both purely client-
based and state-of-the-art SDN-based adaptive bitrate mechanisms [4]. To the
best of our knowledge, it is the first study in the literature, that considers the
diversity of chunk duration among different video content for a fair and stable
QoE across multiple DASH clients within the same shared network.

e DASH for Low-latency Live Event Streaming Using SDN Assistance: We de-
sign a bitrate adaptation mechanism for live streaming with HT'TP 1.1 Chunked
Transfer of CMAF packages while keeping the coexistence with the legacy DASH
clients. We extend our previously proposed system [4] to achieve a low target
latency for live video streaming. Results show that our proposed mechanism pro-
vides a better QoE while achieving a live latency within the range of three to six

seconds in the existence of varying background traffic.

o Low-latency HAS Client Using Rule-based ABR Heuristics: We developed a live
streaming HAS client with a novel bandwidth measurement heuristic. We con-
ducted experiments on a real player in bandwidth-limited networks. We showed
that our approach followed the live target more closely while achieving a lower
video freeze rate (-94%) and higher video quality (+16%) than the existing ap-
proaches. Moreover, it allowed reducing the live delay down to 1 s without losing
the user’s QoE. Furthermore, it is easily applicable to real-life deployments be-
cause it does not require any change in the traditional OTT and network back-
bone [5].

e Adaptive Playback Speed and Video Quality Selection for Live Streaming Using
Reinforcement Learning: Adaptive video bitrate and adaptive playback speed
techniques are two separate control knobs known in the literature of live video
streaming. As a novelty, we consider these two control parameters in a joint op-
timization problem and propose a deep reinforcement learning (DRL) framework
in which we represent the state space from the key observations of the player, the
action space of the available video bitrates and three playback speed levels, and
a reward function in the form of a combined formula of QoE and live latency.
We construct a neural network to provide the best action for a given state to
map the state space to a joint decision of playback speed and video bitrate levels
for the next video segment. In training, we leverage Asynchronous Actor-Critic
algorithm (A3C), a state-of-the-art reinforcement learning (RL) algorithm, by
introducing another neural network called the critic network, which receives the
action taken by the actor and the state space observations to estimate the maxi-
mum future award. Simulation results through real network traces show that it
outperforms both state-of-the-art DRI-based and rule-based algorithms in terms

of QoE without sacrificing live latency.

1.2. Thesis Outline

We organize the thesis as follows: Chapter 2 explains background information

while elaborating various use-cases of OTT applications, DASH standard with the

message flow between clients and video servers, and QoE metrics. Chapter 3 presents
the related work along with a taxonomy of the previously proposed approaches in the

literature. Our main contributions of the thesis are presented in Chapters 4-7.

In Chapter 4, we introduce our SDN-assisted, chunk duration-aware DASH sys-
tem for VoD use cases. We also confront our approach with the state-of-the-art tech-
niques by implementing all methods in a real DASH player and present our extensive

evaluation results.

Chapter 5 presents a low-latency live streaming system over DASH using SDN
assistance after highlighting the challenges of live streaming with CMAF and HTTP
1.1 Chunked Transfer. This chapter also includes comparative evaluation results by

giving insights on the results.

Chapter 6 explains a HAS client with bandwidth measurement heuristics for live
streaming. We also present the evaluation results with real 4G traces by comparing

them with the state-of-the-art heuristics.

Chapter 7 describes a reinforcement learning framework that learns a strategy to
choose adaptive playback speed and video quality for low-latency live event streaming
over DASH. It also presents simulation results to compare our approach with both the

state-of-the-art machine learning-based and rule-based approaches.

Chapter 8 concludes the thesis and presents future works.

2. BACKGROUND INFORMATION

2.1. Dynamic Adaptive Streaming over HTTP

HTTP has become a de facto delivery protocol in the application layer for video
streaming by content providers at scale since the mid-2000s. As elaborated in [6], it
is firstly because the ubiquitous nature of HT'TP allows traversing NATs and firewalls
while leveraging HT'TP to enable to OTT applications to use commodity web servers
and caching infrastructure. Secondly, TCP, the underlying transport protocol, brings
extra reliability against packet drops and inter-flow friendliness (i.e., fairness) to some
extent. Thirdly, it eases scaling up to millions of player clients by leaving the state
management logic at the client-side. Since player clients are able to download video
fragments without requiring content servers to keep track of the state for each video
session, it gives clients the flexibility to switch video destination URLs seamlessly for
adaptive video quality selection, and fault tolerance [7]. In other words, this stateless
design prevents servers from being bottlenecks. In summary, the use of HI'TP in video

streaming has arisen with its simplicity and cost-effectiveness.

In the mid-2000s in HTTP video streaming, the early common practice was for
players to download the content file at the same video quality into a playout buffer and
start playing before the full download. Although this progressive download mechanism
over HT'TP and a fixed video quality representation had all inherited advantages of
HTTP/TCP, it suffered from adapting to different network conditions and device capa-
bilities. Under varying network conditions over time, it used to bring about disturbing
video stalls and a consequent low QoE for end-users. To address this, HT'TP Adaptive
Streaming (HAS) techniques have been adopted since the late-2000s. In HAS, the mul-
tiple quality versions of the same content at the different encoded bitrates are kept at
the server-side. Fach quality version is called representation, in which content is stored
as a series of fragments, each including short-duration content (e.g., 1-15 seconds of

video). Fragment duration and boundaries are the same among all quality versions

of the same content. A manifest file for each content includes available video quality
levels, total content duration, chunk sizes and URLs for each corresponding quality
level and timestamp. Since players download the manifest file at the beginning of each
session and fragments are aligned between one version to other versions of quality lev-
els in the playback timeline, the player can seamlessly switch different quality levels at
the fragment boundary over time within the same session. This flow between DASH
clients and the server is illustrated in Figure 2.1 in which the same content is stored
at k quality levels in a fragmented way, and the first two fragments are started at the
lowest quality. In this example, ABR algorithm bumps the quality up to the next video
bitrate after the initial two fragments. This illustrative figure does not include CDN
nodes for simplicity though these fragments are distributed into CDN nodes from the

origin servers in practice.

. i
/ DASH Content \ Device ﬂptiva Bitrate Algorithm \

Server Player x
Fragments previously encoded and stored Pastn Buffer Target ; L
into N video bitrates: measurements Level Quality
Video Quaity il T Throughput Player
Level 1 ! £ 1 Measurement Metrics
— - --_. _____ " Next Chunk sizes &
) S EpsL o
Video Quality 11 o 1 4 1 5 40 4 :— 4 . . Quality Levels
Level 2 L L S A E [START] Get Manifest File
--------------- gl - e LU Manifest Parser
TS [LOOP] One Request per each
! fragment at target guality
Video Quality | | [WsssmakEcininnnnandhy HTTP Fragment Downloader
Level N 1 P . rh v
F sen | g
Thaagad

- Decoder and Renderer
- T p—— | - BTN |
PO o :
K / /\/“}\J\W"\m_ﬁ
Throughput Fluctuations

g p HTTP GET Request/Response One fragment: The smallest decodable unit

Figure 2.1. DASH Flow between player and content server.

To standardize the manifest file format, multimedia representation and fragmen-
tation details in HAS, Moving Picture Experts Group - Dynamic Adaptive Streaming
over HTTP (MPEG-DASH) was published in 2012 as an International Electrotechni-
cal Commission standard [8]. Note that the MPEG-DASH standard does not dictate

any ABR mechanism (i.e., adaptive video quality selection rule) as it just defines the

guidelines for the manifest file in an XML format, multimedia representation and seg-

mentation as depicted in Figure 2.2 in which it represents four video quality levels

encoded at {250, 500, 1000, 2000} kbps. In addition to DASH, there are other al-

ternative commercial formats in HAS to define the same guidelines between clients

and servers. Microsoft’s Smooth Streaming (MSS) [9], Apple’s HT'TP Live Streaming

(HLS) [10], and Adobe’s HTTP Dynamic Streaming [11] exemplify alternative formats

in HAS.

=TOTF-B"75<NP0 wmiie="urn: mpeg d55h ' sohema Tmpd: Z0TT™

Turation="PT4M5T75" minBufferTi “ET5.08"

mpeg dash:23003:3:audio_channel configuration:2011"
" value="main"/>

"avel . 4D401E" contentT
urn:mpeg:dash:role: 2011

="24000/1001"

"mpda.40.5" contentType="audio" group="2" id="2" lang

andwidth="2009728" height=" samStructureld="1" widch="854">
L DASH vodvxdeo » QualityLeveld mdv</BaselURL
tion bandwidth="1005568" height="480" i mediaStreamStructureld="1" width="254">
DASH vodvideo Qualitylevel3.mdv</Baszel
ndwi 500000 hei 480 3 tr ruct ="1 idth="854
aStreamSty tureId="1" width="854">

Ten" mimeTypes. .
T

Figure 2.2. Sample DASH Manifest file.

In this thesis, we use DASH and HAS interchangeably. In our testbed during all

our experiments, we also keep content manifestation files in DASH format, although

all our proposed techniques are applicable to the other HAS standards such as HDS,

HLS and MSS.

2.2. Quality-of-Experience Metrics in Video Streaming

In this section, we define QoE and explain the terminology about various QoE

metrics in video streaming that are later used throughout the thesis.

As presented

by [12], QoE in video streaming is the measurement of annoyance or delight of the user

10

of a streaming application or service as the end users’ experience and expectation.

Understanding what factors influence perceptual QoE in a particular playback
session is key and a prerequisite to come up with any adaptation technique in HAS as
quality adaptations are aimed to improve users’ experience. QoE influence factors in
HAS are comprehensively surveyed in [13]. These are grouped into three categories,
which are waiting times, the perceptual impact of adaptation, and video quality. First,
waiting times consist of initial start-up delay, stalling frequency and stalling duration.
Second, the perceptual impact of adaptation is implied by the number of video quality
switches during the same session. Third, the most complicated factor, the perceived
video quality refers to the quality of the encoded video stream regarding spatial resolu-
tion, image quality, and temporal scalability. The simplest proxy for the video quality
is the encoding video bitrate. As the video bitrate (i.e., the number of bits to present
the same-duration content) increases, the perceived quality increases, although it is not
a simple linear correlation. To measure the perceived quality more explicitly, the other
approaches leverage either objective mathematical models or estimated quality scores
generated by the user feedback-based subjective studies. Netflix’s Video Multimethod
Assessment Fusion (VMAF) [14], Structural Similarity Index Metric (SSIM) [15], and
Peak Signal-to-Noise Ratio (PSNR) [16] perfectly exemplify the objective methods to
measure the video quality. Both VMAF, SSIM and PSNR compare the encoded video

with the original reference mezzanine files over different features.

In HAS, there are numerous trade-offs between various QoE influence factors.
The trade-off between the video quality and the waiting times is one example. Because
downloading higher quality content requires more time, it increases the risk and the
duration of video stalls. Another example is the trade-off between the number of video
freezes and the number of quality adaptations because frequent changes in video quality
just to avoid stalling events bring about a negative perceptual impact of adaptation.
In the nature of such trade-offs, holistic QoE models are proposed to enable multi-
dimension adaptation to maximize the overall QoE rather than a single QoE factor. In

other words, these models introduce algorithms to estimate the impact of different QoE

11

influence factors into a single holistic metric as defined by I'TU-T Recommendation
P.1201 [17]. As extensively investigated in [18], the most prominent QoE modeling
approach is to run a regression analysis to map multiple QoE influence factors into
an estimated mean opinion score (eMOS) over previously collected subjective study
results. In this thesis, we use the estimated Mean Opinion Score (eMOS) [19] to reflect
the overall QoE perceived by end-users in our evaluation results. It is calculated by

combining the different QoE metrics into a single metric in the linear model as

eMOS =5.67T%u—6.72%x0—4.95%¢+0.17, (2.1)

where p and o denotes the normalized mean quality level and the standard deviation

of video quality levels, respectively as

= —Z?:l % and o = \/Efz(l(% _ “)2. (2.2)

n n—1)

¢ represents the impact of video freezes on the QoE during the session with n segments,
k quality levels and the played quality level @); for segment i. ¢ denotes a continuous
interpolation of the levels of video freeze frequency and duration to measure the effect
of video freezes on QoE, where Fy,.q and Fy,, indicate the number of freezes relative
to the total number of segments and the average duration over all freezes respectively
as

B 7 * max (lnﬁgreq + 17 0) + min (f;avg,ﬁ)

¢= 8

(2.3)

In this thesis, we rely on such holistic QoE models to be able to improve and measure
the users” QoE through a single metric as the combinations of multiple QoE influence

factors.

12

3. LITERATURE REVIEW

This chapter provides a detailed survey on the recent adaptive video bitrate

solutions and low-latency live streaming solutions over HT'TP.

3.1. Related Work on Adaptive Video Bitrate (ABR) Algorithms

Adaptive bitrate mechanisms in DASH have been widely studied in the litera-
ture to provide a better QoE. Our literature survey classifies those mechanisms into
two categories in terms of the deployment component, such as client-side and server-
assisted solutions, as summarized in Figure 3.1. Our literature review in this thesis
mostly discusses the recent studies that focus on network and server-assisted DASH
mechanisms to address the stability in video quality, scalability and fairness issues in
the presence of many DASH players on the shared bottleneck link as our proposed
approaches in Chapter 4 and Chapter 5 are within this category. The detailed survey
of initial studies about the conventional adaptive bitrate heuristics in DASH, which do

not leverage a central coordinator and network assistance, can be found in [6] and [43].

(ABR Mechanisms)

v

4 Server and
C Client-side) 9 Network-assisted]

- Buffer-based: SDN-assisted: [28], [29],
[20], [21], [22] L [30], [31], [32[],][3?5,]
34), (35, [36], [37], 38]

Throughput-based:
23], [24], [25]

Server-assisted:
) [39], [40], [41], [42]

— Hybrid: [26], [27]

Figure 3.1. Classification of Adaptive Video Bitrate solutions in terms of the

deployment component and input criteria.

13

We also explain the existing ABR strategies used in the DASH.js player [27], which
is widely used in both industry and academia in addition to a few purely-client-based

conventional ABR solutions.

3.1.1. Server and Network-Assisted Solutions

Thomas et al. [39] propose the Server and Network-assisted DASH (SAND) archi-
tecture, which points out the need for a bi-directional messaging plane between clients
and other DASH-aware Network Elements. Using these asynchronous messages, it aims
at giving a capability to measure the real QoE of ISP subscribers in a central authority
for QoS reporting and returning network status information from the core network to
clients to be used in their ABR heuristics. Although how to implement the messaging
mechanism between network elements and the controller is not defined and privacy
and scalability aspects are not discussed in this study, it concludes that the optimal
quality for a streaming session is reached 10 times faster when DASH players benefit
from SAND messages in estimating the available bandwidth to choose the video quality

level.

In [28] and [29], Kleinrouweler et al. propose an SDN-assisted central manager to
signal target video bitrates to players. However, their experiments clearly reflect that
using only this approach causes unfairness in the presence of multiple DASH players.
The reason of this unfairness problem is that their proposal allows players to ignore
the target bitrate received from the manager and rely on player’s local bandwidth
estimations. To resolve this unfairness issue, they also propose and implement a kind
of bandwidth slicing on network elements with dedicated queues which are specific to
DASH players. Considering the number of configurable queues is limited on switches,
the scalability problem for the real-life deployment is clear in this study. Nevertheless,
it proves that using SDN-based assistance increases the average video bitrate quality

and reduces the number of switches in the quality level.

14

Bentaleb et al. [30] propose an external SDN-based resource management mod-
ule called as SDNDASH to address fairness and quality stability problems. SDNDASH
periodically selects the optimal quality and bitrate level for each client in a centralized
manner and respectively performs per-client resource allocation in the network. The
communication channel between DASH players and the central control module is based
on HT'TP REST APIs. Hence, the central module is not capable for asynchronously
sending commands to players. Additionally, the optimization problem in SDNDASH
does not take the device display heterogencity into the account. Furthermore, their
experiment results show that SDNDASH does not scale well because of the communi-
cation overhead and attempting per-client optimization. To resolve all these problems,
the same authors propose SDNHAS [31] with the help of per-cluster optimization ap-
proach instead of per-player optimization, in-band communication approach with no
extra signaling overhead and adding device resolution, player status and type of the
requested content to the optimization problem. As the in-band communication chan-
nel between player and the central module, SDNHAS inspects and modifies HTTP
headers in the standard messages for the content and the manifest file between DASH
players and the DASH server by using a commercialized deep packet inspection solu-
tion. However, it leads to privacy concerns and how to implement it for the encrypted
content is an open issue. In SDNHAS, the offline clustering algorithms initially group
the players based on the device resolution and subscription plan; and then perform
per-cluster optimization where the players in the same cluster will receive the equal
bandwidth. Considering that each content has different discrete quality levels even if
its type is the same, the output of the per-cluster optimization heuristics cannot be
close to the available bitrates in some of the players in the same cluster. Hence, it
may cause underutilization issues. Despite these drawbacks, their simulations based
on Mininet with 100 DASH players show that SDNHAS’s scalability as the highest
number of clients in the evaluations of the related studies. Similarly, the same authors
in [44] apply SDN-based bandwidth allocation scheme for DASH flows with a lower

communication overhead in hybrid fiber coax networks.

15

Cofano et al. in [32] and [33] focus on the implementation, classification and
comparison of SDN-based network-assisted strategies in the simultaneous presence of
several adaptive video streaming flows transmitted via a shared bottleneck link, which
are bitrate guidance of the video control plane and bandwidth reservation. By peri-
odically solving the max-min fairness problem on the video control plane, their study
aims at achieving video quality fairness among multiple DASH players. The period for
each run of the optimization module is 30 s while the segment size of the test content
is fixed to 4 s in the study. Because they do not take the segment duration into the
account, it means that their heuristics cannot be responsive for the consecutive 7-8
chunks. This study also does not consider the background traffic. Furthermore, while
implementing the bandwidth slicing approach, the switch used in the testbed is lim-
ited to eight different queues. As like the issue in [29], this limitation can bring about
scalability problems in practice. Despite the possible scalability issues and temporary
unresponsiveness problem, their results indicate that the bitrate guidance of the central
controller module provides the best results in terms of video quality fairness, whereas
bandwidth allocation improves the average video quality depending on the client-side

ABR mechanism.

Bagci et al. in [34] investigate the video quality fairness problem in the ex-
istence of multiple DASH players by proposing both centralized and distributed ar-
chitectures for collaboration between network service provider (NSP), video service
provider (VSP), and DASH players with the help of SDN. Compared to the previous
studies, using a distributed architecture as an alternative to the centralized solution
can be considered a novelty, which requires inter-client collaboration by eliminating
the need for the central optimization module. However, they do not evaluate the com-
munication overhead and the additional processing cost for each player. As another
contribution, this study proposes modifying the TCP receive window (rwnd) behavior
based on the observation that even if the player has a dedicated queue for the video
flow, the player can have the video quality level switches because of the TCP rwnd
fluctuations and its reset. This modified behavior sets rwnd size to an optimal value

specified by the fair-share bitrate mechanism to provide a stable TCP goodput.

16

In [35], Georgopoulos et al. propose an SDN-assisted Qo fairness framework that
monitors the status of all DASH applications in a network and dynamically allocates
fair network resources. It can be evaluated as the first study in the literature which
includes a central optimization logic to find the optimum set of bitrates that ensures
QoE fairness across all DASH clients in the network. This study considers the issue
as a max-min fairness problem. In the implementation, the central module parses
media presentation description (MPD) files requested by the DASH players to retrieve
the target bitrate list and informs the central optimization module. For the encrypted
MPDs, it is not feasible in practice. Finally, even though their testbed is very small with
only three concurrent flows, their real-life implementation with home network devices
indicates that this approach is useful for the better QoE in terms of the fairness across

heterogeneous devices in a network.

In the proposed architecture SABR [36], Divyashri et al. investigate an SDN-
assisted bitrate guidance approach while, at the same time, using the content offloading
into CDN and optimizing the utilization of the CDN caches. The central module in
SABR periodically computes the available bandwidth forecasts to each cache and the
players get all caches’ status with the estimated bandwidth values for each segment
at cach quality level as a map for cach cache. This status information is used in the
player to be able to make an educated guess to decide the next video bitrate. Although
the overhead caused by retrieving the cache status information is not analysed in the
study, roughly it brings about [(number of segments) * (number of caches) * (number
of quality levels) * 4 bytes] overhead per each status response in a streaming session.
Considering this communication overhead and processing cost in clients, its feasibility

in practice remains an open question for a large-scale deployment.

In [40], a lightweight network coordination is used to achieve quality fairness in
the existence of multiple clients by collecting the aggregate statistics across clients and
pushing it to all clients to be used on the client-side ABR heuristics. It requires a
modification on the legacy manifest file by adding explicit video quality information.

Periodically collecting per-fragment quality and buffer occupancy information from

17

clients has a negative influence on the communication overhead. Specifically short-

duration fragments exacerbate the problem concerning the overhead.

Jingyan et al. in [38] propose an online reinforcement learning based algorithm to
resolve the unfairness problem among multiple DASH clients with the help of dynamic
network resources allocation to guide the bitrate selection in the client through rate
limiting in OpenFlow switches according to the controller strategy. Their proposal
relies on the argument that SDN provides a deep packet inspection (DPI) function for
the packets filtered by the HTTP protocol via OpenFlow. However, the highest layer
protocol header that can be tracked is transport layer and OpenFlow does not define
any way to extract the payload itself. Even though DPI-based customized implementa-
tions can allow extracting HT'TP payload, how to handle this for the encrypted content

remains a significant challenge in this study.

Altamimi et al. in [41] introduce a server-side video bitrate adaptation solution
to achieve the fairness of QoE among concurrent DASH users under the same shared
network. The authors leverage reinforcement learning by defining a reward function
representing fairness based on Jain’s index. They also define the state space with the
packet loss at the receiver side and the current video bitrates as the input values for
decision. Their action space for the output consists of the available video bitrates. They
use two neural networks as the standard Actor-Critic network in the training process.
Their solution requires changing legacy DASH servers because they manipulate the
media presentation description (MPD) files at the server-side by pruning the available
bitrates higher than the target quality chosen by their actor network. In this way, they
impose specific bitrates on clients because clients cannot be aware that higher quality

levels actually exist via modified MPD files.

Another server-client cooperation model is presented by Marai et al. in [42] to
improve the bandwidth utilization and fairness without affecting the stability of players
through adaptive video bitrate decisions. The proposed approach aims to achieve a

fair bandwidth share on the bottleneck link at the server-side among multiple clients

18

via their server-side controllers. Their proposed client-side controllers update the video
bitrates to manage the stability of the playout buffer using the measured throughput
and the buffer occupancy, while the server-side controllers converge to a fair bandwidth
share. Their implicit assumption is that video streaming clients can fully consume the
server-side available bandwidth, which is not the case in practice as there can be
multiple bottlenecks on the path down to the clients at the edge. Additionally, since
over-the-top (OTT) applications (e.g., Netflix, Prime Video and Youtube) utilize CDNs
with highly large egress capacities at the server-side today, the recent literature focuses
more on the bottleneck links in the core network or the local links at the edge rather

than the server-side bottleneck links studied in this study.

3.1.2. Client-based Solutions

Purely client-based ABRs are more conventional approaches as more aligned with
the initial motivation of the distributed design in DASH systems since players are able
to choose the video quality independently by relying on their own local knowledge.
Solutions in this category can be classified into three groups in terms of the input types
they benefit from in the algorithm, such as playout buffer occupancy, throughput, and

hybrid of both throughput and buffer level.

Buffer-based solutions rely on the remaining video data in the playout buffer as
the feedback signal. Based on static or adaptive buffer-bounds, they map the current
buffer occupancy to video quality level. For example, when the buffer occupancy is
low, they simply choose lower video bitrates, whereas they go to a higher quality level
in higher buffer occupancy values. One of the first studies that uses only the current
buffer occupancy for the adaptive video bitrate selection in the steady-state without
any capacity estimation is presented by Huang et al. in [22]. They demonstrate
through millions of real video players in a commercial service that their purely buffer-
based solution reduces the video freeze rate by up to 20% compared to Netflix’s default
ABR mechanism without sacrificing the average video quality. As another well-known

purely buffer-based approach, Spiteri et al. introduces BOLA in [20] for the adaptive

19

quality selection without any available throughput estimation. The authors represent
the ABR problem as a utility-maximization problem to maximize the video bitrate and
minimize the video stalls using Lyapunov optimization. Moreover, Huang et al. in [21]
present Stick framework that uses deep reinforcement learning to output the buffer-
bound values to map the buffer occupancy to video bitrate outputs. So, although they
use only the current buffer level at the final phase of the adaptive bitrate selection, they
utilize the past throughput values in the state space of their proposed neural network
in outputting buffer-bound values, unlike conventional purely buffer-based ABRs. In
their reinforcement learning formulation, the reward is a simple linear QoE formula

similar to Equation 2.1 we previously explained.

Throughput-based solutions use the past throughput measurements and the fu-
ture capacity prediction as the main input signals for deciding the video quality to
maximize QoE. FESTIVE [23] introduced by Jiang et al. exemplifies one of the prior
studies that predicts future throughput using the throughput measurement values of the
past fragment downloads. FESTIVE simply uses the harmonic mean of the measured
throughput values during the previous twenty fragment downloads and then performs
a gradual bitrate switching strategy with a delayed update. These gradual quality
switches give players convergence time to a fair throughput use in the same shared
network while avoiding frequent quality oscillations. Hence, it achieves both fairness,
stability and efficiency without any noticeable computation overhead. Moreover, Li et
al. [24] point out the problems of the throughput-based solutions due to the incorrect
bandwidth predictions in the existence of multiple clients on the same bottleneck link.
The authors highlight the challenge for a client to reach its fair-share throughput when
it does not attempt to fetch higher video bitrates along with TCP receive window
fluctuations and resets. To address this challenge, they present a Probe And Adapt
(PANDA) technique to improve network utilization to eventually achieve its fair-share
throughput as a kind of the application-layer equivalent of TCP congestion control.
PANDA bumps up the video quality to the target level until it detects congestion via
the reduction of the measured throughput. Furthermore, Qiao et al. in [25] investigate

the accuracy of the throughput prediction approaches in mobile networks and find out

20

that the conventional prediction techniques like harmonic mean and simple moving av-
erage perform poorly in mobile video streaming, whereas environment-specific Markov
property should be considered in the video bitrate selection in mobile networks. The
authors, then, propose network environment identification based video bitrate adap-
tion for the future throughput prediction by utilizing the environment-specific Markov
property after training an offline Markov model using the traces from each environ-
ment. However, the practicality of such a solution given a huge number of environment

types for real-life deployment remains an open question.

Finally, the hybrid use of both buffer occupancy and throughput as the input sig-
nals in adaptive video bitrate decisions is very common in the industry. DASH.js player
perfectly exemplifies such hybrid models by allowing the customization and the combi-
nation of various throughput and buffer-based solutions. It is a common element in the
testbed of most of the references explained above as a very popular reference player im-
plementation in the literature. It is an open-source implementation by DASH Industry
Forum [27]. We also benefit from DASH.js in our testbed and performance evaluation.
The ABR logic in DASH.js includes a list of rules which are considered before every new
chunk is downloaded. Each one returns a maximum bitrate level, and the minimum
output is decided as the final requested video bitrate. There are mainly two primary
rules to drive the ABR mechanism in the player: abrBola and abrThroughput [26].
The player is forced to choose either of these two primary rules. abrBola is imple-
mented based on [20], which proposes using the buffer occupancy level to choose the
bitrate by forcing lower bitrates when the buffer level is lower and higher bitrates when
the buffer level is higher. As the other primary rule, abr'Throughput is a baseline
ABR logic, which uses the recent throughput history to predict the future throughput.
Once it has a throughput estimate, the rule scales it down by a 90% safety factor
and determines the highest bitrate, which does not exceed the safe throughput. While
the primary rule is the main factor in DASH.js, there are various secondary rules to
support the primary rules, which are Insuf ficient Buf fer Rule, SwitchHistoryRule,
DroppedFramesRule and AbandonRequest Rule. Insuf ficient Buf fer Rule provides
forcing the lowest bitrate if the buffer stalling happens by switching the ABR mecha-

21

nism to the conservative mode. SwitchHistoryRule prevents the player from having
bitrate oscillations for better stability by disallowing the quality switch for the consec-
utive eight segments. Dropped FramesRule does not allow any higher bitrate when
the players drop more than 15% of the frames at some bitrate because it considers the
frame drops as a CPU bottleneck problem. AbandonRequest Rule provides abandoning
the download request and switches to a lower bitrate by monitoring the downloading
progress to observe whether there exists a dramatic drop in the estimated bandwidth
and a rebuffering risk. DASH.js allows implementing custom rules on top of the al-
ready existing mechanisms to extend and/or modify its ABR algorithm. It also gives
the opportunity to disable all built-in rules. In our testbed in this thesis, we benefit
from this feature by implementing our custom rule, which fetches the video bitrate

decision from our central stream tracker modules detailed in Chapters 4 and 5.

3.2. Related Work on Low-latency Live Streaming over HTTP

The studies explained in Section 3.1 about the on-demand video streaming do
not consider the requirement of low live latency from the actual event to users’ screens,
which is critical for live event streaming. Hence, recent additional efforts have focused
on reducing latency in HT'TP live video streaming without sacrificing QoE as the
popularity of live content providers such as Twitch, YouTube Live, and Amazon Prime
Video has been rapidly growing. In this section, research works in both academia and

industry on low latency and QokE in live video streaming over HT'TP are explained.

There is a large group of existing work on reducing end-to-end delay in HT'TP live
streaming. El Essaili et al. [45] presented a prototype with 33 ms fragments using the
chunked transfer to reduce latency without taking into account optimal video bitrate
selection and measuring the overall QoE. Van der Hooft et al. [46] introduced a new
low-latency approach for live streaming based on HTTP/2’s push feature and super-
short segments. It reduces end-to-end latency within the range of eight to ten seconds.
In contrast, it brings about longer video freeze times compared to the legacy HT'TP /1.1

approaches due to encoding overhead of super-short segments and conventional pull-

22

based ABR deficiencies in HT'TP /2 push-based models. Ben Yahia et al. [47] described
another HT'TP /2-based approach by proposing frame discarding to achieve low-latency
video streaming. With the same aim, Wang et al. [48] designed a new ABR algorithm
called BitLat for the Live Video Streaming Grand Challenge [49] in which there exists
a frame-level live video simulator for participants to implement ABR algorithms and
benchmark. BitLat benefited from reinforcement learning to provide adaptive latency

limits and control playback rate for frame skipping to achieve a target latency.

==sp HTTP 1.1 Chunked Encoded POST
% sevs HTTP 1.1 Chunked Encoded GET

Segmentsin
sou: BROADCAST o.lnmn:aumv'ﬂ-“\.
. T Levels
o ABR Live [°° Deliveryand oYY AT
- Live S - aspe [] | A
""0"..[Acquisiti ” Encoder/ |, Content ...:'; CDMs S-=e h’l_m“?."'“
A Packager i, o . 5P)
. LIVE T

Figure 3.2. End-to-end Flow of HT'TP Chunked Encoded Transfer of CMAF

segments.

The straightforward way to reduce the live delay is to shorten the segment dura-
tion. However, it brings about numerous drawbacks such as a dramatic increase in the
number of HTTP requests and responses, a few multiples of the relevant round-trip
times, diminished visual quality, and excessive rates of switches between different video
quality levels. Is there any solution to resolve the latency problem of live streaming
over DASH at scale without sacrificing QoE of end-users? As demonstrated in [50], it
is possible based on HTTP 1.1 chunked encoding transfer and the MPEG CMAF that
was the recently introduced media container standard without having the overhead
of additional HT'TP request-response pairs. A segment in CMAF consists of multiple
small pieces called chunks, i.e., the smallest decodable units. With the HT'TP chunked
transfer, it enables to distribute segments by chunks (e.g., even 100ms content) while
keeping all main advantages of DASH systems such as quality switching at segment
boundaries, leveraging the caches in content delivery networks (CDNs), only one re-
quest for each segment and firewall friendliness. Fig. 3.2 depicts the end-to-end flow of
HTTP chunked encoding transfer of CMAF packages in which chunks are encoded and

packaged by the adaptive bitrate encoder and packager to different quality levels and

23

then immediately transferred to the live origin chunk-by-chunk for the distribution over
CDNs. HTTP 1.1 Chunked Encoded POST standard is used to deliver chunks from
the encoder to the edge servers in CDNs, while players on a large variety of devices pull
chunks through HT'TP 1.1 Chunked Encoded GET at a specific video quality chosen
by their ABR algorithms.

Encoder & Encoder & Live
LNEl Mk‘?“' LIVE Pad(aigw Origin | Decoder ‘
G fin P [T
Dﬂ‘wqtj D [LlLJl_J, i i
B .5 3
L0] i Afull segment i 'D
T 5 T " Pt 4
{ Wait for the whole ! Immediately push ance al .+ PartielWosagmant! |
| segment to be | ! [" one chunk is ready ! Dbwnioad chunkby | '\
|_encoded bo push it ___ r Buffer k segments ta ! : ¥ i cllunk, and push each| ! 0:;:::::
1 i 2 ¥ H (Smallest
i ! o gsetplaig ; : tunkto decoter) decodable it
! I 1 . i I
! ' i ' ! | Vinea ol
¢ ; ¢ : {HTTP 11 HITP 1.1 : : f Startd’e:adm
x . ettt o e Db, . + CHUNKED - CHUNKED o] hunk
! WrTRP1a 1 HTTP L1 | Start decoding ! 'encooep 'encooep ! '—.-"I"—"E-E--‘:'!! -------
il e LI the full segment | 1 ! post 1 GET ! !
Duration End-to-End Segment Duration - Independent End-to-End Latency >
a) b)

Figure 3.3. a) Legacy Segment Distribution, b) HTTP 1.1 chunked encoding CMAF

for live streaming.

Fig. 3.3 reflects how the HTTP Chunked Encoded transfer of CMAF segments
achieves a better low latency against the conventional DASH systems for live streaming.
The encoder in the legacy system waits for a full segment to be encoded to be able
to push to the live origin making at least one segment duration delay in the content
generation. When adding the delay of the buffered segments in players, the time
difference between the moment when the live event is rendered at the client device
and when it happens can go to above four times the segment duration. On the other
hand, since one HTTP request can gradually deliver multiple CMAF chunks on the
fly, chunks can be posted to the edge servers without waiting for the full segment,
while players can be simultaneously pulling chunks of the CMAF segment via HTTP
chunked encoding transfer and immediately starting decoding once even one chunk is

ready on the device.

The HTTP Chunked Encoded transfer of CMAF segments brings extra complex-
ities to conventional ABRs. First, the buffered content duration should be short (e.g.,

less than a few seconds) to limit the delay from the actual event to users’ screens.

24

It prevents buffer-based solutions from achieving a high QoE due to frequent video
quality changes because buffer occupancy bars to increase or decrease the quality are
extremely close to each other. In other words, legacy buffer-based ABR solutions are
not effective in low-latency live streaming. Second, the core logic of the throughput-
based adaptive bitrate algorithms, throughput estimation logic, estimates the available
bandwidth as almost equals to the encoded bitrate in live streaming over chunked en-
coded transfer because they simply divide the segment size by the download time as
pointed out in [51] when the chunks of the segment are being prepared during the
segment download. Therefore, it clearly prevents players from switching up the qual-
ity due to underestimating the available bandwidth because of the idle times between
chunks. There is theoretically no exact way in the standard to determine the total idle
times to be able to calculate the accurate download rate by subtracting idle times from

the total download time of the segment.

There are relatively new workarounds for the ABR problems in HT'TP 1.1 chun-
ked encoding CMAF packages. In ACTE [51], the available bandwidth is estimated by
implementing a sliding window and disregarding the download rate of chunks not close
to the moving average to measure the chunk-level bandwidth. Similarly, the recent
DASH.js [27] version (i.e., v3.1.2) by DASH Industry Forum ignores small-size chunks
and all the chunk download rates lower than the average download rate of the previous
chunks in the same segment. The filtering process removes the download times of those
outliers in the throughput measurement, although it still considers them in the total
segment size calculation. While these workarounds resolve the bandwidth underesti-
mation problem, they induce overestimating the available bandwidth and video freezes,
especially in bandwidth-limited networks. LoL (Low-on-Latency) [52] also emphasizes
the impact of the encoder-side idle times on the inaccurate throughput measurement
and introduces a novel throughput measurement module by parsing the chunk payloads
to identify chunk boundaries based on the headers (i.e., moof box) in fragmented MP4
data. It is aimed at determining the idle periods explicitly using chunk boundary iden-
tifications. It perfectly addresses the throughput overestimation problems, whereas

it can go in the opposite direction with the underestimation. As a follow-up study,

25

Bentaleb et al. in [53] also propose LoL+ to enable the wide deployment of Lol by
introducing a novel adaptive playback speed control mechanism and configurable QoE
objectives rather than the singular QoE. Furthermore, we presented a purely client-
based heuristic to measure the available bandwidth by approximating the idle times
at the encoder side and the active download times of all the chunks limited by only
network status in live streaming over DASH [5]. Moreover, Sun et al. in [54] use
deep reinforcement learning to choose the adaptive video bitrate and playback speed
in HTTP live streaming. Even though the bandwidth measurements are not accurate,
their model adapts to the inaccuracy of the raw measurements to maximize QoE, while
it also skips the content to catch up with the live event in case live latency is increasing.
The main difference of our proposed SDN-aided mechanism in Chapter 5 compared to
these workarounds is to directly use the available bandwidth precisely in choosing the
appropriate video bitrate and be highly responsive to all sudden network fluctuations
via a central network view, rather than any client-side assumptions or heuristic about

the idle times between chunks and inconsistent throughput estimations.

26

4. CHUNK DURATION-AWARE DASH FOR VOD USING
SDN ASSISTANCE

In this chapter, we explain our SDN-assisted, chunk duration-aware DASH system
for VoD use cases, which are for previously stored multimedia files ready to be served

on demand.

4.1. Introduction

In DASH, each encoded version at different qualities is divided into small chunks,
each including short duration content as elaborated in Chapter 2. Each chunk can be
considered as the smallest decodable video stream. Chunk duration and boundaries are
the same among all versions of the same content. Therefore, chunks are aligned between
one version to other versions of quality levels in the video time line so that the player
can smoothly switch different quality levels at the chunk boundary. However, chunk
duration changes depending on the OTT provider and content. Because the displaying
order and the encoding order can highly differ based on the encoding profiles, player
needs to decode the whole chunk to be able to render the first frame of the video content.
Hence, ignoring the chunk duration diversity and downloading the initial fragments at
the same quality level among different clients with different chunk-duration content

negatively affects the fairness and the user friendliness in terms of start-up delays.

The decision to choose the video quality level during and at the beginning of
playback relies on a player’s selection in a fully isolated manner. This selection is the
output of the adaptive bitrate algorithms which conventionally run on the client-side
as explained in Section 3.1.2. Simply, the output of the ABR algorithm is based on
the current buffer occupancy, device capabilities, and the current available throughput
with the player’s local view of the network. Consequently, a purely client-driven adap-
tation logic can bring about unstable playback sessions, frequent video stalls, network

utilization problems and/or selfish decisions, which cause an unfair and disturbing QoE

27

for the other players in the same shared network. In the same manner, a more com-
plicated ABR logic which requires more resources in terms of memory and processing

can be infeasible especially for low-end devices to be implemented on the client side.

To address the problems due to the bitrate adaptation logic fully managed by
clients, a central controller which has a global view of the network and DASH players
can be useful. At that point, as an enabling technology, Software-Defined Networking
(SDN) paradigm can be a perfect match to develop a centralized controller for DASH
players. Although the state-of-art SDN-based mechanisms surveyed in Section 3.1.1
obviously demonstrate the benefit of SDN assistance to a better and fair video QokE
among multiple clients, none of them considers diversity of the chunk duration. All
recent SDN-assisted ABR approaches commonly leverage a target bitrate signaling
where the optimal bitrate for each player is collaboratively computed and informed
to the players. These studies prove the positive impact of SDN assistance to ABR
mechanisms on QoE and fairness. On the other hand, they mostly have open issues in
terms of practicality and real-life deployment such as privacy violation, considerable
communication overhead and incompatibility with legacy systems. In summary, none

of them takes the chunk duration diversity into account.

SDN is proposed to decouple data and control planes in network devices with a
standardized traceability and programmability of the data plane and centralized view
of the global network as the current emerging technology for core networks [55]. SDN
includes three main functional layers, which are infrastructure layer, control layer and
application layer. The infrastructure layer includes forwarding elements also known as
data plane while the control layer provides control and monitor functionality via open
APIs. By using the northbound interface to communicate with the control and moni-
tor functionality of the controller, an SDN-assisted adaptive bitrate logic in a central
manner can be proposed to satisty user expectations about high-quality, uninterrupted
and quickly started video service by offloading ABR computations from clients to a

central control module.

28

In this chapter, we investigate the integration of a privacy-preserving SDN-
assisted central ABR mechanism with DASH players to achieve high quality of experi-
ence for end users while avoiding network under-utilization and unfairness problems in
the existence of the multiple DASH players and other background traffic on the same
bottleneck link. Additionally, since our proposed mechanism effectively and continu-
ously follows the background traffic fluctuations, it is highly responsive for dynamic
network conditions without requiring any bandwidth allocations between background
and DASH flows. Hence, it can be evaluated as a lightweight central assistance with-
out causing any scalability issues in practice. In the same manner, it does not require
any modifications in the legacy DASH content servers and manifest files. Moreover,
considering each player’s sharing only target video bitrate list, chunk durations and
total duration of the video content with the controller at the beginning of the playback
session, our mechanism does not invade the users’ privacy because it does not have
the information of what a user is watching. Furthermore, our proposed model is also
compatible with legacy DASH players by taking their existence into the account as
background traffic.

We implemented our proposed SDN-assisted approach by slightly modifying the
existing DASH.js player [27] and locally establishing a DASH content server with vari-
ous chunk-size content. For performance evaluation, we used the Mininet [56] environ-
ment by mimicking various network conditions and different number of DASH players
and background flows in the shared bottleneck link. We show that our SDN-based
central DASH stream controller implementation exposing chunk duration of each in-
dividual DASH flow and traffic fluctuations of background flows clearly outperforms
the existing purely client-based and the state-of-the-art SDN-assisted mechanisms in
terms of a fair QoE based on the average video quality, the time to first frame (i.e.,
start-up delay), and number of video stalls at the expense of a few number of switches

among all players.

29

4.2. Architecture of The SDN-assisted DASH

— DASH Stream Tracker and Optimizer
decision 4. Send optimal .
changes] | video bitrate X —| Continuously follow byte
= Northbound AP} 0 counters of both background
and DASH flows
. < Device
Statistic Service Manager _]
— *:
SDN Controller @ N
-"'/ =
Fi Content Server
“ = and DASH manifests
Southbound API Firewall
*_—_”\’_— 2. RetunMPDwith 1
=iy = available bitrates,
*/&}’ In #-,___‘_‘_ijkﬁb_ﬂﬂe o = chunk size, duration,
m— o &/ = s
TN S \mf— g _—— URLs for each bitrate
= - N = = | ete. |
[4
f ;

3. Inform chunk
duration, available
bitrates and device DASH Player

capabilities on Phone %

g
" £ / ‘

/ \ ‘\ j' { 1. Request media
fof i
I Firaviall ;..,,,,\ Firavially, o, | | presentation
@ - outer % % L= | | desuiptionfile ‘
— Route+ Ruute{ Routef /]
DASH player) |
(] ey)/ ‘
i f -— |
5. Retrieve the
Pr——
/ Dzib:'a?gﬂ content encoded
User with Background Traffic DASH Players DASH Players DASH Players with bitrate X

Figure 4.1. System Architecture of SDN-Assisted DASH.

As depicted in Figure 4.1, our proposed system consists of 4 layers: DASH
Stream Tracker and Optimizer (STO) as a northbound application, an SDN Controller,
OpenFlow-enabled forwarding planes and DASH players on different-capability devices
which can communicate with the proposed central DASH flow tracker and optimizer
module. The system also includes conventional DASH content and manifest servers,
which keep MPDs as manifest files for each content and video content encoded at dif-
ferent quality levels. A manifest file for each content includes available quality levels,

total content duration, chunk sizes and URLs for each quality level and each chunk.

All messages between DASH players and DASH servers are based on REST APIs
over HT'TP as designed in the legacy systems. In other words, our proposed model
does not require any changes on the standard DASH manifest servers. As different
from the conventional systems, it requires an out-band bidirectional communication

channel between the players and STO. This two-way communication is provided over

30

websockets. It does not violate one of the main advantageous of the DASH that enables

clients to reach DASH server sitting behind firewall and NAT because websocket is a

widely implemented web technology which uses the Port 80 to make the connection ap-

pear to the HIT'TP server [57]. Finally, STO communicates with the SDN controller via

the standard northbound APIs while the controller communicates with the networking

elements via OpenFlow.

When a user attempts to play a specific DASH content, our proposed system

works as follows:

(i)

The player requests the media presentation description file which corresponds to
the desired content from the DASH manifest server.

The server returns the MPD which includes video bitrate levels with resolution
information, total content duration, chunk duration for the requested content.
The player sends the target video bitrate lists, total and chunk duration in ad-
dition to its display capabilities. In this step, user’s privacy is not violated, and
the client device does not share the information of what a user is watching.
STO returns the output of the QoE optimization heuristics for the video bitrate
level to the player. Each time the decision is changed, new video bitrate level
is pushed to the player. On the background, STO collects network statistics
to determine the available capacity on the shared bottleneck link. Leveraging
these statistics and all active DASH players’ information about available video
bitrates, it runs the optimization heuristics to specify a bitrate level for each
player while considering QoE fairness among all DASH players. Because the
system effectively follows the background traffic flows, it is highly responsive for
network fluctuations. The central optimization heuristics are explained in Section
4.3 in a detailed manner

Once the video bitrate level is retrieved from the central optimizer, the DASH

player fetches the content encoded at that bitrate level.

31

The main design principle of the proposed system is simplicity for not causing
challenges in possible real-life deployment scenarios. First, the proposed system does
not require any active network programming for explicit per-client bandwidth allocation
on bottleneck links. It is helpful for not only a simple design but also the overall network
utilization, background and legacy DASH client flows. Second, it just collects video
bitrate list, total and chunk duration from players once at the beginning of each session
and does not require client feedback messages anymore during the playback. From the
central controller to a particular DASH player, the target video bitrate is sent only
when the output of the QoE optimization heuristics for that player is changed due
to any considerable network fluctuations or arrival/exit of DASH players. Hence, the
proposed system does not induce any noticeable overhead because of the out-band
bidirectional communication channel between the players and STO. Thirdly, it does
not expose any deep packet inspection approaches to sniff manifest files to extract video
bitrate alternatives and the relevant video metadata. Therefore, it is totally compatible
with encrypted manifest files over HTTPS. Finally, there is no modification on the
legacy DASH servers, content and manifest files. In the same manner, as a fall-back
mechanism due to any failure in the communication with the DASH STO explained
in Step 3 and Step 4, DASH players continue to work with their purely client-based
conventional ABR mechanisms. With the help of this fall-back mechanism, we aim to

recover any failure and unresponsive state in the system.

4.3. SDN-assisted central ABR heuristics

In this section, we elaborate our proposed SDN-assisted central ABR mechanisms

integrated with the northbound application shown in Figure 4.1.

4.3.1. Chunk-duration aware, start-up delay optimizer among multiple DASH

clients

We first study the fairness of start-up delays among multiple DASH clients with

various chunk duration. By start-up delay, we mean the difference between the times

32

customer clicks on the play button and sees the first frame on the screen. It is affected
by the download time and the processing time of decoding and rendering on platforms.
In this section, we do not focus on the processing time because it is much smaller

compared to the download time and not noticeably affected by the chunk size.

To render the first frame of the chunk, the player needs to download the whole
chunk because the display order is not same with the decoding order, and decoding
the first frame might require the last frames depending on encoding. Consequently,
the diversity in chunk duration among clients affects start-up delays in a significant

manner.

When the playback is started with the lowest quality, the start-up delay is smaller
considering the fact that downloading initial fragments is faster because the size of the
low-quality fragments is much smaller. However, it condemns users to the lowest quality
in the very beginning of the playback during the initial chunks. In this trade-off, our
heuristics relies on customer or OTT app provider preference-based maximum start-
up delay value and chunk duration to compute the initial video bitrates of multiple
DASH clients in the same shared networks. The threshold of the start-up delay can be

assumed as a service-level agreement (SLA) value.

Algorithm in Figure 4.2 targets the optimal initial quality level for each DASH
player while keeping the start up delay smaller than the SLA threshold set by OTT
app provider or user preference. The algorithm starts with the lowest quality and
incrementally increases the quality level until the download time required to fetch the
video fragment at this quality level exceeds up to the target start-up delay. At the end
of each client iteration, the optimal initial quality value is sent to the client and the
last communication time with the client is updated with the current real time. This
is repeated for each client. Even though the chunk duration varies among multiple
clients, the algorithm aims at keeping start-up delays closer to each other for the sake

of a better and fair QoE among the clients.

Input: Total capacity, list of n DASH clients with video quality levels
and chunk duration
Output: Initial quality level for each DASH player
1=20;
per DeviceCapacity = totalCapacity /| n;
repeat
if (client;|lastCommTime] == 0) then
curr Level; = 0;
estimatedDownloadTime; = 0;

repeat
estimated FragmentSize; = chunk Duration; x

videoBitrate|curr Level;] x SLACK_FACTOR,;
estimated Downloadlime; =
estimated F'ragmentSize; [per DeviceCapacity;

curr Level; = currLevel; +1 ;
until estimatedDownloadlime; >

TARGET _MAX_START UP_DELAY
client;[lastCommTime] = currTime;
Send currLevel; to client; as the target video bitrate level;
end

until i >= n;

Figure 4.2. Start-up delay optimizer algorithm.

34

Input: Total capacity, list of n DASH clients with video quality levels
and chunk duration
Output: Next quality level for each DASH player
1=0;
per DeviceCapacity = totalCapacity | n;
repeat
if (client;[lastCommTime] > 0) then
currLevel; = 0;
estimated DownloadTime; = 0;

repeat
estimated FragmentSize; = chunkDuration; *

videoBitrate[curr Level;) * SLACK _FACTOR;
estimated DownloadTime; =
estimated F'ragmentSize; [per DeviceCapacity;
curr Level; = currLevel; +1 ;
until estimated DownloadTime; > chunkDuration;;
if (client;[curr Level] != currLevel;) then
client;[curr Level|] = currLevel; ;
Send currLevel; to client; as the target video bitrate level;
client;[lastCommTime] = currTime;
end
end

until i >= n;

Figure 4.3. Video quality optimizer algorithm during playback.

4.3.2. Chunk-duration aware, video quality optimizer among multiple DASH

clients

If players would continue with the initial video quality computed in Algorithm in
Figure 4.2 based on the principle that downloading time per fragment should be less

than TARGET MAX _START _UP_DELAY , players with various chunk duration

35

would obviously have unfair video quality values during playbacks because players with
smaller chunk sizes would have better video quality while the ones with larger chunk
sizes would have lower video bitrates. Similarly, if TARGET _MAX _START UP_DELAY
is much smaller than the largest chunk duration in the content catalog, a low quality
is chosen for the initial fragment of the players with large chunk duration to be able
to hit the start-up delay SLA value. To resolve the unfairness and under-utilization

problem, we propose Algorithm in Figure 4.3 to update video bitrates during playback.

As very similarly to Algorithm in Figure 4.2, Algorithm in Figure 4.3 simply
chooses the optimal video quality level so that the download time is not greater than
the fragment duration. The motivation is to provide the highest video bitrate without
causing any video stalls. Because each previous video quality level per each client is
cached, the next run of the algorithm returns the same quality level per a particular
client and it is not shared with the client. Hence, the communication channel between
players and our STO is efficiently used to minimize the additional communication

overhead in the system.

4.3.3. Background traffic-aware, QoE optimizer among multiple DASH clients

The algorithms we have explained so far do not take background traffic into
account. Hence, in practice, considering there is mostly varying background traffic,
these algorithms are not sufficient to avoid buffer stalls. In order to avoid video stalls
while providing a better and fair video quality to users, we also propose an SDN-
assisted central mechanism to track all background traffic flows on the bottleneck
link. Algorithm in Figure 4.4 is the combined version of the algorithms in Figure
4.2 and Figure 4.3 by replacing totalCapacity with the available capacity (that is,
totalCapacity - smoothed BackgroundBw) while tracking all background traffic flows.
We periodically run this algorithm in our central optimization module. It is also aware
of the active and ended playback sessions. Therefore, the proposed mechanism is
highly responsive to both the background traffic fluctuations and the possible increasing

available network resources due to the arbitrarily ended playbacks.

36

flew, [eounter] l Total Capacity
e _— += Current Available
flowsy_x Get IP,,,, and Background Throughput
—————>the byte counter Traffic Counter 6 Caleulator Jﬁ
of flowy l
MAX_START UP_DELAY
J —

’,"Chunk duration per client
—_—

Target quality level per client
Quality levels perclient STOtorun . =
Algorithm1&2

", client;[lastCommTime]
\

Figure 4.4. Block diagram of the background traffic-aware, QoE optimizer.

Algorithm in Figure 4.5 exposes TCP fairness by expecting available bandwidth
being evenly shared among DASH clients in the long run. In cases such as highly
varying round-trip time (RTT) values among the clients, re-initiating TCP connections
frequently, and very different initial values of CWND), relying on TCP fairness does not
work properly. However, our approach focuses on the clients on the same bottleneck
in the shared network at the edge. Hence, the clients will be geographically close
to each other and consequently their RTTs will not be very different. Second, we
expect that all DASH servers of the same OTT application (e.g., Netflix) have the
same initial CWND values considering these servers are consistently configured by
the same business logic. Even if the OTT app uses the CDN servers from a third-
party stakeholder, the stakeholder will also have the same configuration for the initial
CWND size value among all its CDN servers. Third, in the case of the persistent
HTTP connection with keep-alive option, we observe that consecutive HI'TP requests
for the consecutive chunks are going through the same TCP connection. Considering
the player sends the requests with this way, we do not encounter re-initiating TCP
connections very frequently. Based on the three points above, TCP fairness makes
sense in our case. Even in the worst case due to the different initial CWND size values
or connection re-establishments, it eventually provides sharing the bandwidth evenly

among the clients.

Figure 4.4 depicts the block diagram and sequence in our central optimization
module. Because each DASH player connects to the central module via a separate
communication channel, IP addresses of connected DASH players are known and kept
in a hash set of the DASH clients (DC'). When each player stops streaming, it closes

the connection and it is removed from DC' store. Additionally, statistics of each flow

37

are retrieved with the help of SDN. In Algorithm in Figure 4.5, accepting these values,
the total background traffic is calculated by summing the used bandwidth of all flows
not in the hash set of DASH player IP addresses at any time. The historical values of
used bandwidth by background flows are kept in a sliding window. It stores the last M
values. The algorithm relies on the average of these values in the window to smooth

the estimated background traffic to avoid higher number of quality switches.

The smoothed background traffic is based on Exponential Weighted Moving Av-
erage (EWMA) [58] as

SBT(i) = (1 — €) x SBT(i — 1) + ¢ x BT(3), (4.1)

where BT'(i) and SBT(i) are the measured background throughput and its smoothed

version at the iteration i respectively, and € is the smoothing factor. For €, we select

2

. 711 as the simple moving average. This value is helpful to

the mostly used value
minimize fluctuations in video quality although it causes reacting with more latency to
network fluctuations especially for the larger M values. To be able to react much faster
to highly varying background traffic, alternatively an adaptive smoothing factor can
be used depending on the current trend of the measured throughput value. A sample

application of such a dynamically selecting smoothing factor can be seen in Sobhani et

al. [59].

As the final step, the available capacity for DASH players is simply calculated by
subtracting the smoothed background traffic from the total capacity of the bottleneck
link.

38

Input: Total capacity, byte counters of all flows (flows) on the bottleneck link, list of n clients, the background
traffic values (fifoQueueO fBackground BwV alues)

Output: Next quality level for cach DASH player

i =0, k=0 ,currBackgroundBw = 0 ;

for each flowy in flows do
if flow[dstIP] is not in the list of IP addresses of DASH clients AND flowy,.getByteCount() >

[lowy,[lastByteCount] then
timeDif [= flowy.get DurationSec() — flowy[last Duration];
[lowy|curr Bw| = (flowy.get ByteCount () — flowy[last ByteCount]) = 8 /timeDi f f;
curr BackgroundBw = curr BackgroundBw + [low[curr Bw] ;
Jlow[last Duralion] = [lowg.gel DurationSec();
flowg[last ByteCount] = flowy.get ByteCount();

end
end
if fifoQueueO fBackground BwV alues,;,. < M then

add currBackgroundBw to fifoQueueO f Background BwValues ;

SUMN £ foQueucO f BackgroundBuValues+ = curr Background Bw ;
end

else
oldest BwValue = fifoQueueO f Background BuV alues.remove() ;
add currBackgroundBuw to fifoQueueO f Background BuwValues ;

SUMN.fifoQueueO BackgroundBuwValues = SUM i oQueucO BackgroundBuVatues + curr Background Bw — oldest BwValue ;

end
smoothed Background Bw = Sum. s foqueuco f BackgroundBuwVatues | M

per DeviceCapacity = (totalCapacity - smoothed BackgroundBw) | n;
repeat

curr Level; = 0, estimated DownloadT'irne; = 0;
if (client;[lastCommTime| == 0) then
repeat
estimaledFragmentSize; = chunkDuralion; = videoBilrale|curr Level;] * SLACK_FACTOR;
estimated DownloadTime; = estimated FragmentSize; [per DeviceCapacity;
curr Level; = currLevel; +1 ;

until estimatedDownloadTime; > TARGET -MAX _START UP_DELAY;
end
else

repeat
eslimaled FragmenlSize; = chunk Duration; = videoBilrale[curr Level;] * SLACK_F ACTOR;
estimated DownloadTime; = estimated FragmentSize; /per DeviceCapacity;
currLevel; = currLevel; +1 ;

until estirnated DownloadTime; > chunk Duralion;;

end
if (client;[curr Level] != currLevel;) then

client;[curr Level] = curr Level; ;
Send curr Level; to client; as the target video bitrate level;
client;|lastCommTime| = currTime;

end
until i >=n;

Figure 4.5. Background traffic-aware, QoE optimizer algorithm.

39

4.4. Performance Evaluation

In this section, we perform extensive experiments to compare our proposed mech-
anism with the purely client-based and the state-of-the-art SDN-assisted mechanisms

in terms of QokE.

4.4.1. Testbed and Implementation Details

To implement th chunk-size aware SDN-assisted DASH (CSASDN) architecture
as illustrated in Figure 4.1, we use DASH.js [27] for the players, Floodlight [60] for the
SDN controller, Mininet [56] for the data plane, Firefox [61] for the browser and iper f
[62] for generating background traffic. Because Mininet end hosts run the TCP/IP
stack of the Linux kernel, our setup considers TCP slow-start behavior as the same

with the real-life deployment.

We first expose the Custom Rule interface of the DASH.js reference player for the
ABR decision so that it shall be able to communicate with STO via a websocket, which
allows a two-way asynchronous communication. After the connection is established, we
disable all built-in ABR rules in the player to evaluate the performance of CSASDN.
On the STO-side, we attach a websocket server on top of the Floodlight controller,
which has a bidirectional communication channel to each player. Third, our network
topology is generated by Mininet using Open vSwitches [63]. The testbed includes 8
Mininet-based DASH players competing for the 30Mbps total shared capacity in the
same bottleneck link. We run each DASH player in a new instance of the Firefox
browser on an Ubuntu machine with a quad-core CPU running at 2.60GHz and 16GB
RAM. To avoid the CPU bottleneck in the testbed, we benefit from the blank decoder
capability of the Firefox browser by setting use-blank-decoder to true. We also
run our iper f-based background traffic generator script in Mininet hosts for highly
varying time intervals with a given maximum traffic amount. To mimic a fluctuat-
ing background traffic, both traffic amount and time are randomized while the total

background traffic is capped with the given input value.

40

In our DASH server, we store two different types of content, namely Big Buck
Bunny and Of Forest And Men with various chunk-size versions such as 2, 6, 10 and
15s [64]. The total duration of the Big Buck Bunny content is 596 seconds encoded us-
ing H.264 at 20 different quality levels {47Kbps, 92Kbps, 138Kbps, 186Kbps, 232Kbps,
278Kbps, 367TKbps, 464Kbps, 555Kbps, 646Kbps, 829Kbps, 1Mbps, 1.3Mbps, 1.5Mbps,
1.8Mbps, 2.1Mbps, 2.5Mbps, 3.2Mbps and 3.7Mbps}. Similarly, Of Forest And Men
is 453 seconds encoded using H.264 at 19 quality levels {/6Kbps, 89Kbps, 128Kbps,
177Kbps, 218Kbps, 255Kbps, 321Kbps, 474Kbps, 506Kbps, 573Kbps, T80Kbps, 1Mbps,
1.2Mbps, 1.5Mbps, 2.1Mbps, 2.4Mbps, 2.9Mbps, 3.3Mbps, 3.6Mbps and 3.9Mbps}. Be-
cause we have 8 DASH players in the experiments and the maximum available repre-

sentation is about 3.7Mbps, we set the total capacity in the simulations to 30Mbps.

In this testbed, we compare our proposed approach C'SASDN with the other
ABR heuristics such as BOLA as a purely client-based ABR [20] and the ExplicitS DN
as a state-of-the-art SDN-based approach [29]. FEuzplicitSDN is implemented as a
northbound application by dividing the bandwidth evenly among the players and in-
forming these values to the players. For BOLA, we use the default implementation in
DASH.js. Both competitors are also strengthened by DASH.js built-in secondary rules.
Our evaluation in terms of the QoE metrics explained in Section 6.3.2 is based on the

following four categories:

(i) Impact of different target start-up delays

)
(il) Impact of light and heavy background traffic
(iii) Impact of the number of background flows

)

(iv) The case of the players with arbitrary arrival/departure times
4.4.2. The Metrics
In order to evaluate QoE among different approaches, we benefit from various

metrics such as the perceptual video quality, number of switches in the quality, number

of stalls and start-up delays.

41

0.9

c

>

Z 08l .
2{

»n 0.7 B
N —e— Big Buck Bunny

¥ —— Of Forcsts And Men
06| |

| | | |
0 1.000 2,000 3,000 4,000
Video bitrate (in Kbps)
Figure 4.6. The measured SSIM values for different video bitrates of Animation and

Documentary content.

For the perceptual video quality, we rely on the StructuralSIMilaritylndex
metric (SSIM) [15] as an objective method. We select this metric since it is widely
used in the literature and it is successful to represent the non-linear relation between
the perceived video quality and its bitrate level. The measured SSIM values of Big
Buck Bunny and Of Forests And Men for different video bitrates are shown in Figure
4.6. As depicted in the figure, though the video bitrate gradually improves the video
quality, the increasing pattern is not linear. Moreover, the correlation highly changes
depending on the content. For example, the perceptual quality difference among video
bitrates is much more visible in O f ForestsAndMen whereas the quality values are

very close to each other especially for higher video bitrates in Big Buck Bunny.

To measure the average video quality of a particular session, we use the following
metric as the average of SSIM-based quality values of each chunk during the session
with n chunks as

VQS'essi,on = Z?zl SSIMChunki '

4.2

z (12)
As the factors with the negative impact on QoE, we also follow the number of stalls and
the number of quality level switches during the session. The number of video stalls is
simply the number of occurrences when the playback buffer is empty while the number

of the switches is the total number of quality drops or jumps during the session. In our

42

performance evaluations, we also use the estimated Mean Opinion Score (eMOS) [19]
to better reflect the overall QoE perceived by end users. It is calculated by combining

the different QoE metrics into a single metric in the linear model provided in Equation

(2.1).

4.4.3. Impact of different target start-up delays

T Avg. Initial
20 B Video Quality
7
: Dash.js 0.952
]
g Explicit SDN 0.957
% 10+ . N CSASDN DASH
& 0.948
= (with t=3s)
=
e b‘ NN CSASDN DASH
ol —— | 0.957
! ! L L L (with t=6s)
DASH.js Explicit CSA CSA CSA
CSASDN DASH .
(w/BOLA) SDN SDN SDN SDN 0.961
(with t=9s)

(t=3s) (t=6s) (t=9s)

Figure 4.7. Start-up Delay Comparison between CSASDN DASH and
state-of-the-art ABRs.

We begin with the performance comparison in terms of start-up delays between
our proposed approach (CSASDN DASH) and other ABR heuristics such as BOLA
and ExplicitSDN. Big Buck Bunny content is used for all experiments in this subsec-

tion with the setup configuration explained in Section 5.1.

First, we evaluate the impact of different TARGET _MAX _START UP_DELAY
on the start-up delays in our proposed approach. As the SLA value set by OTT app
provider or users, we choose three different values: 3s, 6s and 9s. With a different
input value of TARGET_MAX _START UP_DELAY , each experiment is repeated
five times and we collect start-up delays from 8 different clients with various chunk
duration in each experiment. The mean values in the box plot in Figure 4.7 clearly
show that the measured start-up delays in our proposed approach converge to the
specified target values despite the diversity of chunk duration and sizes. The reason of
the slight difference between the exact target SLA value and the real start-up delay is

that the nominal bitrate represented in the video manifest files and the real encoded

43

bitrate does not fully match because of the variable bitrate encoding. Additionally,
as expected, the initial video quality increases as the target start-up delay increases
because the algorithm choose a better quality level when a larger download time is

given as the constraint.

Second, start-up delays are measured by applying the same methodology for the
other heuristics. Because they do not take the chunk size variability into account
and download the initial fragments with the same video bitrate levels, they can bring
about extremely high start-up delays (e.g., about 21 seconds). As depicted in Figure
4.7, the other heuristics have a very high variance of start-up delays since the larger
fragments have larger delays while the smaller ones have much smaller start-up delays.
The results also reflect that there is no noticeable video quality difference in the first
fragments between CSASDN and the other heuristics whereas it provides better and

fair start-up delay values.

4.4.4. Impact of light and heavy background traffic

We conduct experiments to observe the overall QoE metrics over time during
the whole video session for different clients with various chunk duration for different
background traffic scenarios. Based on the experiment results, we compare the per-
formance of CSASDN with BOLA and ExplicitSDN in terms of the QoE metrics.
We benefit from both Big Buck Bunny and Of Forest And Men content with the setup
configuration explained in Section 5.1. In each scenario, in total, there exists 16 clients

in the same shared network as 8 DASH clients and 8 background flows.

44

0971 | t)s)rriﬂ_:ﬂ_é'd o | 4 ool =W 1t & . . T,
<t 1t
- 09} 1 09f 1t 1
2 096} 1
Z
= 085 1 085t s 1
=
» 095 B
i 0.8} 1 o8} 1t ,
M % Jomp S S Jensp 2 0) e R
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 60O 0 100 200 300 400 500 GOO
Time (s) Time (s) Time (s) Time (s)
——Client1 (2s) ——Client3 (6s) Client5 (10s) —e— Client7 (15s)
——Client2 (2s) ——Client4 (6s) —+—Client6 (10s) —+—Client8 (15s)
(a) BOLA
— T T T — T T T T T T T T T T T T T
0-966 0.97 4 0971 I B
o 09e2p M‘[U H 1 0-966 UH W 7 0966] H M i m H]
3z 0962 10962} 1t g
2 0958} g
I 0.958| 1 0958 1 g
=
g 09m | 0.9ma 1 0954} 1 f
0.95 4 0.95F 4 0951 - B
. ,
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) Time (s) Time (s) Time (s)
—— CSASDN Clientl (2s) —o— (CSASDN Client3 (6s) CSASDN Client5 (10s) —o— (CSASDN Client7 (15s)
—— (CSASDN Client2 (2s) —— CSASDN Client4 (6s) —— CSASDN Client6 (10s) —— CSASDN Client8 (15s)
—o— ExplicitSDN Clientl (2s) —o— EzplicitSDN Client3 (6s) —e— ExplicitSDN Client5 (10s) —e— ExplicitSDN Client7 (15s)
— ExplicitSDN Client2 (2s) —+ ExplicitSDN Client4 (6s) —+ ExplicitSDN Client6 (10s) —+ ExplicitSDN Client8 (15s)

(b) CSASDN and ExzplicitSDN experiments
Figure 4.8. Video quality during 10-min Big Buck Bunny session among 8 clients

with BOLA, CSASDN, ExplicitSDN in the existence of light background traffic
(rand(0.5..2) Mbps).

First, we follow the video quality values over time for each session streaming
Big Buck Bunny content under a very light background traffic randomly generated
by 8 background flows. The total background traffic amount is capped to 2Mbps.
In each 10min experiment, we commonly apply a different ABR mechanism to all 8
DASH clients with various chunk duration. Figure 4.8 shows video quality values on
each client over time for BOLA, ExplicitSDN, and CSASDN. Figure 4.8(a) reflects
video quality values in case of BOLA while Figure 4.8(b) depicts values from both
CSASDN and ExplicitSDN experiments. CSASDN explicitly outperforms BOLA
and FxplicitSDN in terms of video quality at the expense of a few more switches
compared to ExplicitSDN. The existence of multiple DASH players in the same
network dramatically affects BOLA by causing very low quality especially for larger

chunk sizes in spite of the frequent switches as reflected in Figure 4.8(a).

0
097} 1 095 Y 1 095t 4 10.95] m 1 IR
<2
= 096 1 09 1 09f 1 09) 1
[
5 0951 1 ossf 1 ossf Jo.ss —
=
z
% 091 1 osf 4 08f 1 08f 1
0.93 1 B - . .
L omy 4 0me 4B]
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 60O 0 100 200 300 400 500 GOO
Time (s) Time (s) Time (s) Time (s)
——Client1 (2s) ——Client3 (6s) Client5 (10s) —e—Client7 (13s)
——Client2 (2s) ——Client4 (6s) —+—Client6 (10s) ——Client8 (13s)
(a) Clients with BOLA
N T
0.95 paansarn 4095 B
0.94] i 4 oo} 4 IREE)]
<3
- 094 N
g 091p 1 091p ,
%
]
= L 4
Z 0ssf 1 o0ssf 4 098
@
0.85 41 085 4 0921 40.94 b
. .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 60O 0 100 200 300 400 500 GOO
Time (s) Time (s) Time (s) Time (s)
——Client1 (2s) —=—Client3 (6s) Client5 (10s) —e—Client7 (13s)
——Client2 (2s) ——Client4 (6s) ——Client6 (10s) ——Client8 (13s)
(b) Clients with FxplicitSDN assistance
0965 1 097 1 0.965 | s qupurgunsa - . HW 1
Z o0o6f " 0.96 | g JH m H HM
= 0.965 - B r B
Z 0955} g 0.955 | g
z L 4
@
0.95 1 096 1 0951 e *
. I
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) Time (s) Time (s) Time (s)
——Client1 (2s) —=—Client3 (6s) Client5 (10s) —e— Client7 (15s)
——Client2 (2s) ——Client4 (6s) —+—Client6 (10s) —+—Client8 (15s)

Figure 4.9. Video quality during 10-min Big Buck Bunny session among 8 clients

(c) Clients with CSASDN

45

with BOLA, ExplicitSDN, and our proposed C'SASDN approach in the existence
of heavy background traffic (rand(2...10) Mbps).

Second, we apply the same procedure under a more realistic background traf-

fic scenario by generating a random traffic between 2Mbps and 10Mbps for random

intervals. Figure 4.9(a), 4.9(b) and 4.9(c) depict video quality values over time for
BOLA, ExplicitSDN, and CSASDN, respectively. The fairness problem is obviously

observed with the purely client-based ABR mechanism BOLA because a client suffers

from the lowest vido quality while,at the same time, some other clients stream with

the highest video quality as reflected in Figure 4.9(a). Because ExplicitSDN does not

follow the background traffic fluctuations, its central assistance always informs DASH

players about the same quality level. However, when the background traffic increases,

the buffer levels in the DASH players drop and the DASH.js players switch to their

46

built-in mechanism with the conservative mode by progressively choosing the lowest
available bitrates. Hence, as shown in Figure 4.9(b), clients with FxplicitSDN can
have hard quality drops in the existence of a heavy background traffic. In parallel, as
the background traffic decreases, FExplicitSDN does not update the quality decisions
to increase. So, CSASDN is better in terms of the video quality over time by actively

following the background traffic and triggering the quality level switches.

TT |7

0.9F 7

o
g
&

SSIM-based VQ

%
T

0100 200 300 400 0 100 200 300 100 0 100 200 300 400 0 100 200 300 400

Time (s) Time (s) Time (s) Time (s)
—e—Client1 (2s) ——Client3 (6s) Client5 (10s) —e— Client7 (15s)
——Client2 (2s) ——Client4 (6s) ——Client6 (10s) —e—Client8 (15s)

(a) Clients with FxplicitSDN assistance

-1 || mmmﬂ

0.9

SSIM-based VQ

0.88 -
.
0 100200 300 400 0 100200 300 400 0 100 200 300 400 0 100 200 300 400
Time (s) Time (s) Time (s) T'ime (s)
—e—Client1 (2s) —o—Client3 (6s) Client5 (10s) ——Client7 (15s)
——Client2 (2s) ——Client4 (6s) ——Client6 (10s) ——Client8 (15s)

(b) Clients with CSASDN
Figure 4.10. Video quality during 8-min Of Forest And Men session among 8 clients

in the existence of heavy background traffic (rand(2..10) Mbps).

Third, by replacing the content in the setup with Of Forest And Men, we compare
the video quality values over time between ExplicitSDN and C'SASDN under a heavy
background traffic as the same with the previous scenarios. As shown in Figure 4.10(a)
and 4.10(b), the results are aligned with the previous experiments with Big Buck
Bunny. With this new content, the contribution of our proposed approach is much
more visible because video quality difference between two consecutive quality levels
and bitrates in Of Forest And Men is higher compared to Big Buck Bunny as we
already presented in Figure 4.6. To sum up, CSASDN is much better in terms of

utilization of the network resources by enabling higher video bitrates.

47

Table 4.1. Comparative evaluation of different approaches in terms of all QoE metrics

over Big Buck Bunny.

VQsession AVG. # | AVG. # AVG.

MIN | MED | MAX | SWITCHES | STALLS | TTFF (mns)
Client1-2 (2s) 0.9627 | 0.9656 | 0.9697 57 0 1136
DASH.js | Client3-4 (6s) 0.9368 | 0.9491 | 0.969 53 1.4 2677
(BOLA) | Client5-6 (10s) | 0.8674 | 0.9037 | 0.9292 34 3.3 3658
Client7-8 (15s) | 0.8951 | 0.8985 | 0.9209 29 4.6 7205
Client1-2 (2s) 0.9493 | 0.9499 | 0.9499 4 0 3923
Explicit Client3-4 (6s) 0.9488 | 0.9490 | 0.9499 10 0.6 5922
SDN Client5-6 (10s) | 0.9493 | 0.9496 | 0.95 7 0.7 13662
Client7-8 (15s) | 0.9494 | 0.9497 | 0.95 5 1.4 16540
Client1-2 (2s) 0.959 | 0.9592 | 0.96 8 0 6568
CSASDN | Client3-4 (6s) 0.9609 | 0.9617 | 0.9625 15 0.6 6206
DASH Client5-6 (10s) | 0.9615 | 0.962 | 0.9626 14 1.2 6586
Client7-8 (15s) | 0.9621 | 0.9627 | 0.9633 11 2.4 6957

Table 4.2. All QoE metrics over Of Forest And Men (The state-of-the-art SDN vs.

our proposed approach).

VQsession AVG. # AVG. # AVG.

MIN | MED | MAX | SWITCHES | STALLS | TTFF (ms)
Client1-2 (2s) 0.8876 | 0.8876 | 0.8892 6 0.6 4364
Explicit | Client3-4 (6s) | 0.8836 | 0.8871 | 0.89 7 1 6356
SDN Client5-6 (10s) | 0.8796 | 0.884 0.89 6 1.2 9772
Client7-8 (15s) | 0.8853 | 0.89 0.89 6 1.6 10589
Client1-2 (2s) 0.9086 | 0.9099 | 0.9105 8 0.2 2101
CSASDN | Client3-4 (6s) | 0.9139 | 0.9159 | 0.9182 8 0.2 3350
DASH Client5-6 (10s) | 0.9144 | 0.9149 | 0.9182 9 0.4 5254
Client7-8 (15s) | 0.9133 | 0.9157 | 0.916 7 1.6 6218

48

Table 4.3. Performance comparison of all the approaches in terms of the avg. eMOS

over Big Buck Bunny.

BOLA | ExplictSDN | CSA-SDN
Client1-2 (2s) 4112 1072 4.257
Client3-4 (6s) 2.959 4114 4.273
Client5-6 (10s) 1.203 1156 4.208
Client7-8 (15s) 1.159 4175 4.169
Avg. of All Clients | 2.359 4.129 4.226

Table 4.4. The avg. eMOS over Of Forest And Men (The state-of-the-art SDN vs.

our proposed approach).

ExplictSDN | CSA-SDN
Client1-2 (2s) 4.421 4.721
Client3-4 (6s) 4.339 4.833
Client5-6 (10s) 4.349 4.739
Client7-8 (15s) 1.192 1517
Avg. of All Clients 4.401 4.702

Finally, we evaluate the performance by relying on not only SSIM-based video
quality values but also the other QoE metrics. Each experiment we previously presented
is repeated five times for both Big Buck Bunny and Of Forest And Men. Start-up
delays (i.e., TTFF - time-to-first-frame), number of stalls and number of switches are
also collected from each session. All average QoE metrics are summarized in Table 4.1
and Table 4.2. CSASDN obviously provides a better VQgession among sessions with
fair start-up delays while not causing more buffer stalls and a considerable increase
in quality switches compared to the state-of-the-art SDN-based and the purely client-
based approaches. To compare the performance over a combined QoE metric, we
also compute eMOS values in all experiments. The average eMOS values in playback
sessions with various chunk duration are presented in Table 4.3 and Table 4.4. The
results of eMOS in Table 4.3 show that our proposed CSASDN approach outperforms
both BOLA and ExplicitSDN over Big Buck Bunny in terms of the average eMOS.
As depicted in Table 4.4, the performance of our approach compared to ExplicitS DN
is clearly better also in the content Of Forest And Men.

49

4.4.5. Impact of different number of background flows

We observe the impact of number of background flows on the QoE metrics in
both our proposed approach and ExplicitSDN. In the experiments, we rely on the
content Of Forest And Men with various chunk-size versions. In this section, we
exclude BOLA because the purely client-based ABR mechanisms obviously under-
perform SDN-assisted approaches based on our previous experiments and the literature

detailed in Section 3.1.2.

For each ABR approach, we run three experiments with different number of
background flows: 8, 12 and 16 with the same maximum background traffic capped to
10Mbps in the same setup explained in Section 6.3.1. Each experiment is repeated five
times. The total number of DASH players is 8 same as in the previous experiments.
In other words, there totally exists 16, 20, 24 clients in the experiments, respectively.
Although the number of the background flows changes, we keep the cap of the total

background traffic the same.

0.92F B — 2,200 B
22,000 |
s 09 | £ 1500
H —e— EaplicitSDN 2 800 - o —e— EaplicitSDN
3 ‘\\\\ CSASDN = 1600 CSASDN
= o088 ~ 1 = “
:%b g LA00f]
0.86] > 1.200) |
'<=>b 1.000 o
. [e
1 1 1 1 1 < ’ 1 1 1 1 1
3 10 12 14 16 3 10 12 14 16
Number of the background flows Number of the background flows

Figure 4.11. The impact of the number of the background flows on VQ.

Figure 4.11 shows the effect of the number of the background flows on the av-
erage video bitrate and the corresponding average V (Qsession- 1t obviously reflects
that CSASDN is not affected by the increase in the number of the flows whereas
FExplicitSDN is proportionally choosing a lower quality even though the total back-
ground traffic is not changed. It also proves that CSASDN is successful in detecting
background flows, following the total traffic generated by them and computing the

50

available capacity for the DASH players. Moreover, EzplicitSDN explicitly causes a
network under-utilization problem while the number of flows increases because it does
not track the diversity of the background flows in terms of the amount of the generated
traffic. Furthermore, we collect the other QoE metrics from the experiments. CSASDN
has the similar QoE metrics with the previous experiments shown in Table 4.2 among
all different number of the flows. In other words, our proposed approach provides a

better quality while not inducing any video freezes as the number of flows increases.

4.4.6. The applicability to arbitrary arrival/departure times

DASH clients in the previous experiments started and ended streaming at the
same time just to be able to easily repeat the same setup configuration for the sake
of simplicity. In the real-world scenarios, clients mostly join and leave the system
at different times. In this subsection, we conduct experiments to show that our pro-
posed approach is applicable to the real-world cases by handling arbitrary arrival and

departure times of the clients.

1
0 100 200 300 400 50
Time (s)

—o— Client1 (2s) —o— Client2 (2s)
Client3 (6s) —e— Client4 (6s)
Client5 (10s) ——Client6 (10s)

—e—Client7 (15s) =+ Client8 (15s)

(a) BOLA

1
0 100 200 300 400 50
Time (s)
—e— Client2 (2s) —o— Client2 (2s)
Client3 (6s) —— Client4 (6s)
—e—Client5 (10s) —»— Client6 (10s)
Client7 (15s) —— Client8 (15s)

(b) ExplicitSDN

o1

T T T T 0.95 . . T T T
0.95 o
0o 00f g pee? 0.9 -}-_..?.__-.3
g 0-85 0.85
T 08 0.8 0.8
- 0.75 0.75
2 ‘ 0.7
% 07 ®0¢11111) ‘ 07
1 | 0.65 0.65
0.6 .\.ﬁ lj 0.6 0.6
I I I I I I I I I I

0 160 200 300 400 50
Time (s)

—e— Client1 (2s) —o— Client2 (2s)

—e— Client3 (6s) Client4 (6s)

——Client5 (10s) —e— Client6 (10s)

Client7 (15s) « Client8 (15s)

(¢) CSASDN

Figure 4.12. Video quality during 7.5-min Of Forest And Men session among 8 clients
with different arrival times in the existence of heavy background traffic (rand(6..10)

Mbps).

We use Of Forest And Men content with the setup configuration explained in
Section 5.1. In each experiment, there exists 16 clients as 8 DASH clients and 8 back-
ground flows competing for the 30Mbps total shared capacity on the same bottleneck
link. The total background traffic amount is capped to 10Mbps with a lower bound
of 6Mbps. We commonly apply a different ABR mechanism per each experiment to
all 8 DASH clients with various chunk duration. Streaming on each client is started
10s later than the previous one. We follow the SSIM-based video quality values over
time for cach session streaming under a heavy background traffic randomly generated
by 8 background flows. At the end of each experiment, we also compute eMOS of the
playback session based on the mean and standard deviation of video quality, and video

freezes.

Figure 4.12 reflects the video quality values of all 8 sessions over time in both
approaches. The gradual video quality drop in the first 70 seconds is common in
all the approaches because clients arrive one by one with 10-second intervals and the
available bandwidth per each client decreases over time. As of 70th second, all clients
have started playback sessions and then, SDN-based approaches achieve a more stable

video whereas BOLA has highly fluctuating and lower video quality. The results also
show that C'SASDN is slightly better than ExplicitS DN in terms of the SSIM-based

52

video quality because FxplicitSDN does not follow the active background traffic and
it evenly distributes the available bandwidth among all background and DASH flows.
Moreover, the gradual quality increase in the last 70 seconds due to the ended playbacks
proves that our proposed approach successfully detects leaving clients and updates

target bitrate levels of the continuing clients.

The computed eMOS values of each playback session in all the approaches are
used to generate the box plots in Figure 4.13. Because eMOS in BOLA varies 0.2 to
4.2 with the average of 2.51, the figure does not include the eMOS values of BOLA for
the better visualization. The average eMOS in our proposed approach is 4.38 while it
is 4.15 in EzplicitSDN. To sum up, it shows CSASDN outperforms the competitors

in terms of QoK in the case of arbitrarily arriving and leaving clients.

4.6 | N

eMOS

2 1
*

1 1
Explicit CSA
SDN SDN

Figure 4.13. Performance Comparison in terms of the eMOS between EzplicitSDN
and CSASDN for the arbitrary arrival/leaving experiments.

4.5. Discussion

We presented an SDN-assisted, chunk duration-aware DASH system for VoD
use cases, by assuming that multimedia content is encoded and packaged offline as
ready to be served on demand. Hence, we did not take into account the impact of
real-time encoding and packaging process on users’ QoE and the available throughput
measurement. In the next chapter, we address this gap when the content is being
prepared while streaming, and explain how to address those challenges in live event

streaming scenarios through our proposed SDN-assisted solution in this chapter.

93

5. DASH FOR LIVE EVENTS USING SDN ASSISTANCE

In this chapter, we introduce a low-latency live streaming system over DASH
using SDN assistance after highlighting the challenges of live streaming with CMAF
and HT'TP 1.1 Chunked Transfer.

5.1. Introduction

The demand for video streaming services is driven by the growing investment
of over-the-top (OTT) service platforms not only on Video-on-Demand (VoD) use
cases but also live streaming. Amazon Prime’s procuring broadcasting rights of world-
wide premium sports events such as English Premier League, ATP Tour Tennis, and
American National Football League [65] perfectly exemplifies a huge interest of OTT
platforms on live streaming. One of the success factors for this penetration is the wide
adoption of DASH. However, DASH has been originally developed for VoD use cases
to provide a high QoE with uninterrupted video streaming based on adaptive video
bitrates over highly varying network conditions and heterogeneous devices. Hence,
OTT services face challenges to deliver low-latency live streaming over DASH due to
large playback buffer and segment duration, whereas it is expected to beat satellite
and terrestrial cable latencies in the broadcast world characterized by a 5 to 10 sec-
ond latency [66]. In the conventional DASH systems, players buffer a few segments to
start playback (e.g., three 10-second segments in Apple HLS which causes a 40-second
playout delay between the user and the live signal). It brings about a spoiler effect.
How would you feel if you had experience of hearing from a neighbour or receiving
a message from a friend cheering about the goal that you cannot see for the next 30

seconds?

Is simply combining the conventional standard of HT'TP 1.1 chunked encoding
transfer with the new packaging approach of CMAF enough to reduce the live latency

without causing any QoE degradation? The answer is no. The core logic of the stan-

54

dard adaptive bitrate algorithms, throughput estimation logic, estimates the available
bandwidth as almost equals to the encoded bitrate in live streaming over chunked en-
coded transfer because they simply divide the segment size by the download time as
pointed out in [51] when the chunks of the segment are being prepared during the
segment download. Therefore, it clearly prevents players from switching up the quality
due to under-estimation of the available bandwidth because of the idle times between
chunks. There is theoretically no exact way in the standard to determine the total idle
times to be able to calculate the accurate download rate by subtracting idle times from
the total download time of the segment because the HT'TP protocol does not provide
the beginning time of each chunk download while the response for the relevant segment

is progressing.

In this chapter, we address the ABR problems due to the under-estimation of
the available bandwidth in HTTP 1.1 chunked encoding CMAF by leveraging a cen-
tral controller that has a global view of the network and DASH players in the shared
network at the edge. We benefit from the Software-Defined Networking (SDN) con-
cept which enables a standardized traceability and programmability of the network
elements. We propose an SDN-supported adaptive bitrate mechanism with a central
module which communicates with both the SDN controller and DASH players via a
separate communication channel to provide the highest possible video quality without
causing any video stalls. It resolves the network underutilization issue in the HTTP
chunked encoding CMAF by centrally monitoring all the background flows to calcu-
late their capacity consumption on the bottleneck link. Then, it accurately measures
the remaining bandwidth for the DASH players and returns the optimal bitrates to
the players based on the target live latency, available video bitrate list and segment
duration shared by the players at the beginning of the live streams. Hence, it can be
considered as a lightweight SDN integration as it does not require any active network
programmability to avoid any scalability issues. In case of any failure in connecting to
the SDN-aided central controller, DASH clients rely on their purely client-based con-
ventional ABR mechanisms as in line with the distributed nature of DASH systems.

While providing the low-latency live streaming, we achieve a better QoE without sac-

95

rificing perceptual video quality and coexistence with the legacy players in a reliable

manner.

Our work differs from all the studies in the literature survey in Section 3.2 in
many essential aspects, such as utilizing CMAF, considering background traffic, work-
ing on the HT'TP 1.1-based pull models of the legacy players over the existing CDN
infrastructure, and not sacrificing QoE to reduce latency. Our work in this chapter is
also not the first to propose leveraging SDN for video streaming systems to improve
QoE. Previously we introduced an SDN-assisted DASH mechanism for VoD use cases
over the legacy systems with the long segment duration over the standard HT'TP 1.1
GET and POST requests [4]. In the same manner, Bentaleb et al. [31] implemented an
external SDN-based network management module to resolve fairness and quality sta-
bility problems in the existence of multiple DASH clients in the same shared network.
With a similar approach, using the active network programming with the bandwidth
slicing per player, Kleinrouweler et al. [29] proposed a target video bitrate signaling
from a central module to reduce the number of switches in video quality. Furthermore,
Go et al. [37] implemented an SDN-based framework for IP Video Surveillance net-
works to centrally execute video bitrate adjustments by utilizing the network statistics
messages available in OpenFlow, a standard protocol for the communication between
the data plane and the SDN controller. Moreover, Jiang et al. [38] introduced an
SDN-based dynamic network resources allocation to guide the video bitrate selection
of clients through rate limiting in OpenFlow. However, none of them considers the

low-latency requirement for live streaming and CMAF packages over DASH.

o6

5.2. SDN-supported Low-Latency (LL) streaming over DASH

5.2.1. System Overview

ULL Live Stream QoE Optimizer

Central ABR
Algorithm

LA ST

?;::Tcit:f }‘_ DASH Client W
Estimator k. il

A *
1 Vo
|

i

i LY
WM “1— DASH Client IP Addresses
‘.‘ \\\ \‘ =2 - Total Available Capacity
T i *3 - Available Bitrate (Video Quality) Levels for each client
SDN Controller ", 5 s =4 —Target Bitrate for each client
’ . A LI Y

Figure 5.1. System Overview of SDN-supported Low-latency (LL) Streaming over
DASH.

The system of SDN-supported LL live streaming is depicted in Fig. 5.1. It mainly
consists of DASH clients, OTT live stream provider and a central QoE optimizer on top
of the SDN Controller. All communication between DASH players and OTT content
providers are based on HI'TP REST APIs in the standard. Being different from the
legacy systems, it exposes a bidirectional communication channel between the clients
and the central QoE optimizer. To keep one of the main advantageous of the DASH
that enables clients to reach the DASH server sitting behind the firewall and NAT, it is
implemented using websocket that is a widely implemented web technology that uses

Port 80 to make the connection appear to the HI'TP server.

As the same with the conventional DASH systems, the OTT live stream provider
serves the content at different quality levels and a manifest file called multimedia
presentation description (MPD) for the content which includes available quality levels,

segment duration and URLs for each quality level and each segment to enable clients

o7

to switch video quality at segment boundaries. All the details about the MPD data
model and the initialisation flow are detailed in [67]. Segments are carried in CMAF
chunks using HTTP 1.1 chunked encoding transfer. Video quality level for segments
is signaled by the central algorithm on top of DASH Client Tracker and Available
Capacity Estimator. The live latency target is also set by the central controller. Each
player is subscribed to DASH Client Tracker and informs available quality levels. The
capacity estimator continuously monitors all the flows leveraging SDN Northbound
APIs and getting the network statistics. Then, it estimates the available network
capacity for DASH players in each shared network. The available capacity and all
the DASH client information such as quality levels and segment duration of the live
stream are inputted to the central ABR heuristic. We periodically run the heuristic
for each shared network to calculate the possible highest quality level of each DASH
client. Finally, the target quality level is returned to each client via the DASH Client

Tracker.

The key design principle of the system is simplicity to avoid any blocking issue
in possible real-life deployment scenarios. First, it does not require any active network
programming for explicit per-client bandwidth allocation on bottleneck links. It is
helpful for not only a simple design but also the overall network utilization, background
and legacy DASH client flows. Second, it just collects the video bitrate list, and chunk
duration from players once at the beginning of each session and does not require client
feedback messages anymore during the playback. From the central controller to a
particular DASH player, the target video bitrate is sent only when the output of the
QoE optimization heuristic for that player is changed due to any considerable network
fluctuations or arrival/exit of DASH players. Hence, it does not induce any noticeable
overhead because of the out-band bidirectional communication channel between the
players and the central QoE optimizer. Third, it does not expose any deep packet
inspection approaches to sniff manifest files to extract video bitrate alternatives and the
relevant video metadata. Therefore, it is totally compatible with encrypted manifest
files over HTTPS. Fourth, DASH players keep working with their purely client-based

conventional ABR mechanisms as a fallback mechanism in case of any failure in the

o8

communication with the central QoE optimizer. It is a kind of recovery mode as in
line with the distributed nature of DASH systems. Finally, there is no modification on

the legacy DASH servers, content and manifest files.

5.2.2. Central QoE Optimization Heuristic

The central QoE optimizer aims at finding the available capacity for all the DASH
clients on the bottleneck link to calculate the highest available video quality level per

client while achieving the low live latency and avoiding video stalls.

The live delay refers to the difference between the time when the event happens,
and the user sees it. Our system allows the target value of the live delay to be config-
ured. It can be considered as a kind of service-level agreement (SLA) value. By low
latency, we mean a typical value under 10s. This target limits the maximum duration
of the buffered data on the player. Hence, such a small buffer complicates ABR tasks
due to the risk of video stall events in case of even a single suboptimal decision under
fluctuating background traffic. If players conservatively chose the lowest video quality
to avoid the risk of draining the buffer in this challenging context, an undesirable QoE

for end-users with network under-utilization issues would be inevitable.

The primary enabler in providing a high QoE during the live event without con-
demning users to the lowest quality or frequent and prolonged video stall events is to
calculate the background traffic accurately to determine the available capacity for the
clients. Fig. 5.2 illustrates the sequence to find the available capacity periodically. As
each client connects to the central module via a separate communication channel, IP
addresses of connected DASH players are known and kept in a hash set of the DASH
clients (DC'). When each player stops streaming, it closes the connection, and it is
removed from the DC store. Additionally, statistics of each flow are retrieved with
the help of SDN. By accepting these values, the total background traffic is calculated
by summing the used bandwidth of all flows, not in the hash set of DASH player IP

addresses at any time. The historical values of used bandwidth by background flows

99

arc kept in a sliding window. It stores the last K values. The algorithm relies on the
average of these values in the window to smooth the estimated background traffic to

avoid a higher number of quality switches.

1Ps, and met.adata 2. Use EWMA to estimate the background traffic (bt).
of DASH Clients | Subtract bt from total capacity on the bottlenecklinkto | perapata

. pass the avorﬂt:.f.!?!.e caparcity fﬂrD.ffH r]ien“tf | l lTA“G ET_LIVE_DELAY

b
 Quality level per dient

1. Check eachf!owwhéther!he destinationisin the DC.If it | i 3. Run the heuristics !r;n;turn !hetargetq‘f:ahty!eve{per
i Is not, pass the byte counter of the flow tothe background | | client by inputting streaming metadata of available quality |

|
e ' | velspenolent lentodiemesy et et ety

Figure 5.2. Flow in Central Adaptive Bitrate Heuristic to optimize QoE in live

streaming.

The smoothed background traffic is based on Exponential Weighted Moving Av-
erage (EWMA) as

SBT(i) = (1 — €) x SBT(i — 1) + ¢ x BT(3), (5.1)

where BT'(i) and SBT(i) are the measured background throughput, and its smoothed
version at the iteration i respectively, and € is the smoothing factor. For €, we select

the most used value as the simple moving average. This value is helpful to

) R
minimize fluctuations in video quality, although it causes reacting with more latency
to network fluctuations, especially for the larger K values. To be able to react much
faster to highly varying background traffic, alternatively, an adaptive smoothing factor
can be used depending on the current trend of the measured throughput value. A
sample application is presented to select a smoothing factor dynamically in the study

introduced by Sobhani et al. [59]. A comprehensive evaluation study among various

alternatives of the throughput prediction strategies can also be found in [68].

As the final step before the QoE-aware heuristic, the available capacity for DASH
players is calculated by subtracting the smoothed background traffic from the total ca-
pacity of the bottleneck link. Then, the central mechanism with a QoE-aware heuristic

accepts it, the target live delay, and all the DASH clients metadata of segment duration

60

and available quality levels (i.c., video bitrates) explained in Algorithm in Figure 5.3
as the input. The algorithm starts by selecting the lowest quality for the current frag-
ment. It then increments its quality level by 1 until the total download time exceeds
the sum of the segment duration and the previously buffered data duration. It provides
to choose the desired video quality level so that the total download time per segment is
not greater than the segment duration plus the buffer duration. Since players can also
buffer data less than the target live latency at the beginning, it relaxes the download
time for half the target live delay to be able to achieve the highest video bitrate with-
out causing any video stalls. The algorithm repeats this procedure over all the DASH
clients in each run. It is periodically triggered. The previous video quality levels of
all the clients in each run are also cached. Therefore, if the next run of the algorithm
returns the same quality level per a particular client, it is not shared with the client
again as the client continues with the latest update from the central module. Hence,
the communication channel between players and the central module is efficiently used

to minimize the communication overhead in the system.

Input: Available capacity for DASH streams (availableCapacity), target
live delay (target LatencyFromSLA), list of n DASH clients with
available video quality levels [0,..., marQuality Level], and
segment duration

Output: Next quality level for each DASH player

1=0;

per DeviceCapacity = availableCapacity | n;

repeat

currLevel; = 0;

estimated DownloadTime; = 0;

while estimated DownloadTime; < segment Duration; do
curr Level; = currLevel; + 1 ;

if currLevel; > maxQualityLevel then
break

end
estimatedSegmentSize; =
segment Duration; X videoBitrate|curr Level;];
estimated DownloadTime; =
estimatedSegment Size; /per DeviceCapacity;
end
curr Level; = currLevel; - 1 ;
if (client;[currLevel] != currLevel;) then
client;[curr Level| = currLevel; ;
Send currLevel; to client; as the target video bitrate level;
end
t=1+1;

until i >= n;

Figure 5.3. Central QoE-aware heuristic.

62

5.3. Experimental Evaluation

In this section, we conduct extensive experiments to confront our proposed SDN-
supported LL Streaming mechanism with the purely client-based approaches in terms

of QoE in the context of CMAF packages and HI'TP 1.1 Chunked Encoding transfer.

5.3.1. Testbed and Implementation Details

We leverage DASH.js [27] for the players, Floodlight [60] for the SDN controller,
Mininet [56] for the simulation of the network plane, and iPerf [62] for generating
background traffic. The testbed includes 4 Mininet-based DASH players competing for
the 20 Mbps total shared capacity under the same bottleneck link as shown in Fig.
5.4. Under the same bottleneck link, it also consists of 5 hosts to generate background
traffic. Latency on the local links in the Mininet is set to 10ms with 20 Mbps down-link
capacity. We run each DASH player in a new instance of the Firefox browser on an
Ubuntu machine with a quad-core CPU running at 2.60 GHz and 16 GB RAM. We
also run our i Per f-based background traffic generator script in Mininet hosts for highly
varying time intervals with a given maximum traffic amount. Both traffic amount and

time are randomized to mimic fluctuating background traffic.

We use the test live-streaming content served by the live simulator running on the
DASH-IF server [27]. It generates content with CMAF chunks and pushes them over
HTTP 1.1 Chunked Encoding. Each segment is eight seconds long and encoded into
four quality levels for video at {0.3, 0.6, 1.2, 2.4} Mbps and one bitrate level for audio
at 37 kbps. Chunk duration can be set to any floating number. Our local Mininet
environment with lots of hosts is connected to the test server via the last-mile ISP

with the minimum guaranteed capacity of 50 Mbps.

In this setup, we compare the SDN-supported LL Live-streaming mechanism
with ACTE, and the low-latency mode enabled DASH.js [69], which has various ABR

heuristics. Our evaluation is based on the QoE metrics explained in Section 6.3.2. In all

63

Host 3 \
/ Host2 b aSHPlayer Hosis

Host1 DASH piayer 24
DASH Player E]I ;
’

DASH Player
®
@ Y
-
S Y H Host5._.9
: 2 S Non-DASH Traffic|

* 5} *I‘..:: [_’L_ T ,

*: 20 Mbps
@10ms link
latency

DASH IF Live Stream

Test [of tent
Fs

— el O Last-mile
O | @i ottleneck link
71N - @20 Mbps

SDN Controller e @ 50 Mbps
\Snared Local U

Area Network

Figure 5.4. Experiment Setup.

the experiments, players under test have a catch-up feature with the adapting playback
rate to pull the player back to the optimum live edge using the default support in
DASH.js. In other words, the player can keep itself pretty tightly to a target latency by
controlling the playback rate relying on the assumption that variations in the playback

rate of 10% or less are not perceptually noticeable enough to end-users.

5,000

kbps
=
(S
T
|

Live Delay (s)
D
s
T
|

=3

=~
T

I

1,500 |
750 fb 4 6l i

| |
0 100 200 300 400 500 6O 0 100 200 300 400 500 60
Time (s) Time (s)
—eo— Measured Throughput —e— Chosen Video Bitrate —e— Available Capacity —e—Live Delay
(a) (b)

Figure 5.5. QoE Metrics in the baseline low-latency enabled DASH player for CMAF.

5.3.2. The Metrics

We first collect the average live latency for each session. It represents the total
time from capturing to rendering. The relevant field in the dash.js reference player per

each second is periodically retrieved. Then, the average live latency is simply calculated

64

in Equation 5.2 as follows,

_D o 2321 dt
avg — T

where d; indicates the live delay

(5.2)

at time ¢t during the total T-second live stream.

As the other factors with the negative impact on QoE, we follow the duration and
number of freezes and the number of quality level switches during the session. The
number of video freezes is simply the number of occurrences when the playback buffer
is empty while the number of the switches is the total number of quality drops or jumps
during the session. The duration of the video freeze is the total time of a particular stall
from the freeze to re-starting. In our performance evaluations, we also calculate the
estimated Mean Opinion Score (eMOS) [19] to better reflect the overall QoE perceived
by end users. It is calculated by combining the different QoE metrics into a single

metric in the linear model provided in Equation (2.1).
5.3.3. Results

We conduct three categories of the experiments in the context of low-latency

streaming with CMAF and HTTP Chunked Transfer to see:

(i) Network under-utilization issue in purely client-based legacy ABRs,
(ii) Comparison between our proposed SDN-supported LL mechanism and the legacy
ABRs over 3 s target live delay,
(iii) Comparison between our proposed SDN-supported LI mechanism and the legacy

ABRs over 6 s target live delay.

First, we run experiments with one client in 5 Mbps available capacity by setting
the live latency target to 6 s, and using 0.5 s chunks. The player on the client has
DASH.js 2.3 with the default configuration which estimates the throughput over the
full segment size divided by the download time, that is the difference between the times

when the segment was fully received and the request was sent. Figure 5.5 reflects the

65

measured throughput, chosen video bitrate by the player, and available capacity in
addition to the live delay during a 10-minute live stream. Although it achieves the low
latency target, it cannot switch up the video quality by sticking to the quality level of
604 kbps video bitrate despite having higher-quality options of 1.2 Mbps and 2.4 Mbps,
and a dedicated 5 Mbps link without any other background flow. It underestimates
the available capacity about 800 kbps as almost equal to the encoded bitrate because
the download time from the client point of view includes lots of idle times as the
chunks of the segment are being prepared during the segment download. This case
clearly shows the network under-utilization problem in the default ABR behavior on
the legacy players for HT'TP 1.1 Chunked Encoded CMAF by condemning users to a

lower quality in spite of the existence of available resources for a better video quality.

T
16} .
z 4+ |
5 o14f 1
= 55| = |
e 12| N b 9] .
Z 3
= ol | = 3f g
= 10 <
¢
5 8 1 25| .
<
= o6l . B 5| |
1 1 1 1 1 1
ACTE DASHjsv3 SDN-LL ACTE DASHjsv3 SDN-LL
(a) Avg. Live Delay values (b) eMOS-based QoE

Figure 5.6. Live delay values and QoE scores for different ABR algorithms over 10
repetitions for 4-client setup (Target live delay of 6 s).

66

R Client1 30 b
—o— Client2

Client3
—e— Client4

30

Live Delay(s)

1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 3500 600 0 100 200 300 400 500 600

Playback Timecline (s) Playback Timecline (s)
(a) ACTE (b) SDN-LL DASH

Figure 5.7. Live latency variations during a 10-minute live session with the target

delay of 6 s from a sample run.

Second, we compare our approach with the competitors over 0.5 s chunk and 6
s target delay in the existence of background traffic. As the competitors, we choose
ACTE and the default dynamic strategy (DY NAMIC') [70] of DASH.js v3 as the com-
bination of the mechanisms of insufficient buffer rule, BOLA [20] and its throughput-
based ABR for low-latency mode which ignores the download times of the chunks
higher than the average download time of the previous chunks in the same segment.
The buffer-based decision mechanisms in (DY NAMIC') are also similar to the bitrate
adaptation method for seamless on-demand video streaming introduced by Le et al.
in [71]. In each 10-minute live-streaming experiment, there exist four homogeneous
players with the same behavior under the shared bottleneck link of 20 Mbps by gener-
ating random traffic between 5 Mbps and 14 Mbps for random intervals. Each interval
duration with a random traffic amount capped to 14 Mbps is within the range of 15 s
to 30 s, i.e., background traffic flows change in periods from 15 s to 30 s. We calculate
eMOS as a proxy of the combined QoE and the average end-to-end live delay at the

end of each session.

Given that we have four clients in one run, and there exist 10 repetitions, there
are 40 different 10-minute live streaming sessions for each ABR mechanism. The box
plots in Figure 5.6 depict the statistical distribution of the eMOS and the average live
delay values from 40 sessions per ABR strategy. Figure 5.6(a) reflects that our proposed

67

Table 5.1. All QoE metrics in different ABR mechanisms (Target live delay of 6 s).

Avg.Live | Avg. Duration | Avg. Num. | Avg. Num. Avg. Video Avg.
Delay (s) | per Stall (s) Stalls Switches | Quality Level (1-4) | eMOS (0-5.84)
Client 1 5.91 0 0 8.4 2.91 3.47
DASH.js v3 Client 2 5.95 0 0 7.9 2.97 3.58
(DYNAMIC) | Client 3 5.89 0 0 8.8 3.01 3.61
Client 4 5.96 0 0 9.1 2.96 3.56
Client 1 9.44 0.52 13.3 2 3.91 3.32
Client 2 10.2 0.55 15.2 2 3.95 3.38
ACTE
Client 3 8.28 0.64 11.6 2 3.87 3.31
Client 4 8.77 0.59 12.3 2 3.85 3.40
Client 1 6.01 0.25 0.8 11.5 3.13 3.84
SDN-LL Client 2 6.04 0.43 0.7 11.1 3.15 3.82
DASH Client 3 6.03 0.27 0.8 12.3 3.36 3.85
Client 4 6.08 0.41 1.1 10.8 3.24 3.78
= lr) 3k i
>
= 127 . .
)]
=a | z
G
Lol 1
£ i = |
ﬁ o
2Lk ! ! ! - L L L
ACTE DASH.js v3 SDN-LL ACTE DASH.js v3 SDN-LL
(DYNAMIC) DASH (DYNAMIC) DASH
(a) Avg. Live Delay values (b) eMOS-based QoE

Figure 5.8. Live delay values and QoE scores for different ABR algorithms over 10
repetitions for 4-client setup (Target live delay of 3 s).

mechanism and DY NAMIC on DASH.js can approach to the target live delay of 6 s,
whereas ACTE cannot get closer to the target delay due to frequent and long video
freezes because it ignores low throughput measurements in case of highly fluctuating
background traffic. Therefore, it cannot prevent draining buffer. In the same manner,
Figure 5.7 includes all live latency snapshots during an example live stream session
from the four clients when ACTE and SDN-LL DASH are applied. It is clear that
SDN-LL DASH consistently provides the target latency, although ACT'E suffers from
a high variance of the end to end latency values. In some periods, as observed in
Figure 5.7 (e.g., from 100 s to 300 s), ACTFE can gradually decrease the live delay to
catch up the target delay after video stalls by leveraging the adapting playback rate

68

feature. Figure 5.6(b) shows that our proposed SDN-LL DASH approach is better
than the competitors in terms of the eMOS as well. It also points out that ACTE has
fairness issues, as seen in the broad range of the average values, whereas the other two

approaches do not manifest such an issue.

Table 5.2. All QoE metrics in different ABR mechanisms (Target live delay of 3 s).

Avg.Live | Avg. Duration | Avg. Num. | Avg. Num. Avg. Video Avg.

Delay (s) | per Stall (s) Stalls Switches | Quality Level (1-4) | eMOS (0-5.84)
Client 1 2.96 1.02 0.5 7.9 1.26 0.96
DASH.js v3 | Client 2 3.22 0.81 1 9.3 1.15 0.82
(DYNAMIC) | Client 3 3.24 0.97 0.4 8.1 1.22 0.97
Client 4 2.99 0.80 0.6 9.1 1.16 0.88
Client 1 12.42 0.53 26.3 2 3.92 1.91
ACTE Client 2 11.31 0.66 20.2 2 3.87 1.78
Client 3 11.75 0.47 22.8 2 3.86 1.71
Client 4 11.38 0.54 20.3 2 3.87 1.86
Client 1 3.45 0.27 6.1 10.5 3.34 2.49
SDN-LL Client 2 3.58 0.11 5.7 10.7 3.27 2.63
DASH Client 3 3.39 0.15 5.8 11.0 3.32 2.52
Client 4 3.40 0.22 5.1 10.2 3.21 2.47

Table 5.1 represents all QoE metrics for each client when a different mechanism
is applied. The average values are calculated over 10 repetitions per client. SDN-LL
DASH provides a better overall QoE based on the average eMOS score even though
DY NAMIC can avoid any video stall event using its insufficient bandwidth rule and
choosing lower video bitrates. SDN-LL DASH enables a better video quality on average
at the expense of one short video stall in a few cases. In summary, the results conclude
that our proposed mechanism outperforms in terms of the combined QoE metric eMOS

while, at the same time, achieving the SLA live target delay.

Finally, we conduct the previous experiment configuration in a more aggressive
target delay by setting it to 3 s. Table 5.2 shows all QoE components among all three
approaches. As a combined QoE metric calculated over all the different QoE factors
such as the number and the duration of video stalls, the number of quality switches,
the average video quality, the average eMOS scores over all the experiments conclude
that our proposed mechanism outperforms the competitors. While ACTE has more

dramatic video freezes and consequently it does not manage to reach the live latency

69

target of 3 s, DASH.js v3.0 conservatively keeps the video bitrate low and achieves the
target delay. As shown in Figure 5.8(a), our SDN-supported LL approach provides
3.45 s live latency on average without sacrificing the video bitrate and the other QoE
metrics over all the clients during all the sessions. Figure 5.8(b) indicates that the
eMOS value at the first quartile of the 40 sessions in our approach is better than even

the third quartile eMOS scores of the competitors.

5.4. Discussion

We presented how we utilized our SDN-assisted solution previously detailed in
Chapter 4 for live event streaming use case over HTTP chunked transfer of CMAF
packages. Although results demonstrated it provides a better QoE compared to the
state-of-the-art solutions, it would require a dedicated SDN northbound application,
which does not exist in the legacy systems. Deploying such an extra central compo-
nent is not perfectly in line with the nature of the distributed design of DASH systems.
Though it does not rely on active network programming of SDN and just uses the
network statistics collection through a lightweight integration, it may still make the
real-life applicability questionable. To address this concern around the real-life de-
ployment challenges with SDN integration, in the next chapter we propose a purely
client-based approach and eliminate the need for SDN assistance, while achieving a

high QoE and low latency for live event streaming scenarios.

70

6. LOW-LATENCY HAS CLIENT USING RULE-BASED
ABR HEURISTICS

In this chapter, we present a HAS client with bandwidth measurement heuristics

for live streaming without any central component assistance.

6.1. Introduction

The popularity of video streaming services is increasing with the growing in-
vestment of over-the-top (OTT) service platforms, considering both Video-on-Demand
(VoD) and live streaming use cases. One of the success factors for this growth is the
wide adoption of HTTP adaptive streaming (HAS). HAS eases the traversal through
NATSs and firewalls and allows the use of existing caching infrastructure (e.g., content
delivery networks) to scale in a cost-effective manner. In HAS, the multiple versions
of the same content at different quality levels are kept at the OTT back-end side. It
allows video players to choose the appropriate video quality based on the client-side
decision to adapt to the varying network conditions. Each encoded quality version
is divided into small segments, including short-duration content (e.g., 1-10 seconds of
video). Segment duration and boundaries are the same among all versions of the same
content. Therefore, segments are aligned between one version and other versions of
quality levels in the video timeline so that the player can smoothly switch to different

quality levels at the segment boundary when network conditions change [43].

HAS clients have been originally designed for VoD use cases without any latency
requirements. Hence, OTT services face challenges to deliver low-latency live streaming
with HAS due to large playback buffer and segment duration, whereas it is expected to
beat satellite and terrestrial cable latencies in the broadcast world characterized by a
5 to 10-second latency [66]. The encoder in the legacy system waits for a full segment
to be encoded to be able to push to the network making at least one segment duration

delay in the content generation. Additionally, the legacy players buffer a few segments

71

to start playback (e.g., three 10-second segments in Apple HLS). When adding the
delay of the buffered segments in players to the encoder-side delay, the time difference
between the moment when the live event is rendered at the client device, and when it
happens can go to above four times the segment duration. It causes a spoiler effect as
an unpleasant user experience (e.g., hearing from a neighbor cheering about a goal in

a football match that you cannot watch for the next 40 seconds).

© 2021 IEEE OTT Backend Device
Adaptive Bitrate
Segment 2 being encoded ... Segment 1 ithm
LIVE ldes Quality Lew |1 : --------------------------- - Algort
H L. G B REE E! PRI I oy e
ideo Quality Level Iz o Bandwidth : Player
Encode [3 s G EEE [] &= |
h 1 4 -
& B E i [One Regquest par Segmant Measurement v osssiiic
Packager - o [

e e

cern T e Downlonder | [Decoder |
A @ = mmmh

I
1
Rt Segment
Segment 2 being dewnloods ’_ tiod L

ide Cuality Lovel N.

wssdp HTTP L1 Chunked Encoded POST Segments at N Differant Quality Levels [S .
@ =ees HTTP L1 Chunked Encoded GET on the live origin £ S MY Shioin: ne codubisantt: |

Figure 6.1. End-to-end Flow of HT'TP Chunked Encoded Transfer of CMAF

segments.

One solution to reduce the live delay is to shorten segment duration. However, it
has numerous drawbacks, such as a dramatic increase in the number of HT'TP requests
and responses, a few multiples of the relevant round-trip times, and excessive rates of
switches between different video quality levels [72]. To avoid these drawbacks, HTTP
1.1 chunked encoding transfer and the MPEG Common Media Application Format
(CMAF) as the recently introduced media container standard are presented [50]. A
segment in CMAF consists of multiple small pieces called chunks, i.e., the smallest
decodable units. With the HT'TP chunked transfer, it enables the distribution of
segments by chunks (e.g., even 100 ms content) while keeping all main advantages
of HAS systems. Fig. 6.1 depicts the end-to-end flow of HT'TP chunked encoding
transfer of CMAF packages in which chunks are encoded and packaged by the adaptive
bitrate encoder and packager to different quality levels. Then, the packager output
is immediately transferred to the live origin chunk-by-chunk for the distribution. So,
chunks can be posted to the network without waiting for the full segment. Players

can be simultaneously pulling chunks of the CMAF segment at a specific video quality

72

chosen by their ABR algorithms in return to one HT'TP 1.1 Chunked Get request for

the whole segment.

While HTTP chunked encoding transfer of CMAF packages reduces live latency, it
brings about QoE degradation. The pillar of the ABR algorithms, bandwidth measure-
ment logic, calculates the available bandwidth as almost equal to the encoded bitrate
in live streaming over chunked encoded transfer because they divide the segment size
by the download time. The download time is affected by not only the current network
status but also idle times at the live encoder end as the chunks of the segment are being
prepared during the segment download. However, there is theoretically no exact way
in the standard to determine the total idle times to be able to calculate the accurate
download rate because the HT'TP protocol does not provide the beginning time of each
chunk download. Hence, it stops players from switching up the video quality due to
the bandwidth underestimation. To mitigate this problem, ABR for Chunked Transfer
Encoding (ACTE) [51] measures the available bandwidth implementing a sliding win-
dow and disregarding the download rate of chunks not close to the moving average. In
this chapter, we propose a novel bandwidth measurement heuristic and implement a
HAS client which accurately measures the available capacity and chooses the optimal
video quality level while, at the same time, avoiding video freezes in low-latency live
streaming of CMAF packages. We take into account all chunks in measuring the avail-
able bandwidth after approximating the idle times at the encoder side. It allows us to
calculate the active download time of the segment limited by only the network status.
Then, we exploit a throughput-based ABR algorithm fed with the accurate bandwidth
measurement. It is also supported by a conservative mode, which immediately goes to
the lowest quality in case of any video stall. Using our real HAS client implementation
and live streaming testbed, we perform extensive experiments with various network
conditions. The experiments enable us to compare our heuristic with the existing ap-
proaches in terms of live latency, average video quality, the number and the duration
of video freezes, and the number of the video quality switches during live streaming
events. Moreover, this testbed proves that our client can achieve down to one-second

live latency without sacrificing QoE.

73

6.2. Live Streaming HAS Client
6.2.1. Bandwidth Measurement Heuristic

We keep the sizes and the download timings of all the /N chunks for a segment in a
list as follows: L = {cdy, cdy, ..., cdy, ..., cdy }, where L denotes the list of the chunks in
the same segment. For each chunk, our knowledge is limited to the download end time
and the size of the downloaded bytes by the protocol, represented as et(cdy) and s(cdy),
respectively. To calculate the network throughput while downloading a segment, we
cannot purely use the total segment size and the total download time since some of the

chunks are not network-limited as there exist idle times at the live encoder side.

We first calculate the average of the interarrival times between the consecutive
chunks in the segment as follows:
et(cdy) — et(cdy)

tang = e (6.1)

Second, we consider the chunks downloaded faster than the average time as the network-

limited chunks and add them to a separate list (i.e., L'), as
L = {cd;}, s.t. et(ed;) — et(edi—y) < taug, Ved; € L. (6.2)

So, the chunks in L’ are assumed as not affected by any considerable idle time at the
encoder side. Then, we calculate an approximation coefficient over the chunks in L to
be later used to estimate the time passed in the network for the other chunks, not in
this list but L. It is denoted as p. It is calculated by dividing the total download time

of the chunks in L' by the total size of those chunks as

T/

p= m,where T = ch-ey et(cdi) _ 6t(Cdi_1), (6.3)
cd;eL’ 7 i

74

Third, we estimate the time spent in transmission for the other chunks using p

and their sizes as

Tothers = chie(L/L/) s(ed;) X p. (6.4)

Finally, we approximate the throughput using the effective download time spent in the

transmission and the total segment size, as

chieL s(cd;)

BW = .
1T’ + Tothers

6.2.2. ABR Rules

ABR mechanism in our implemented HAS client relies on two modes: throughput-
based video bitrate selection and a conservative mode. With the motivation of achiev-
ing the highest video quality without causing any video stalls, we choose the highest
video bitrate among the available bitrates less than the available throughput. In case
of any video stall, we go to the conservative mode to quickly recover the video freeze

by choosing the lowest available video bitrate regardless of the measured bandwidth.

We keep the historical values of the available bandwidth calculated after each
segment download. It stores the last K values. In our implementation, we use the
default K value in the DASH.js, which is 4. The algorithm uses the average of these
values in the window to smooth the available capacity information to avoid a higher
number of quality switches, hard and sudden quality drops/jumps. In the throughput-
based selection mode, the available capacity for the next video segment download is

based on Exponential Weighted Moving Average (EWMA) in Equation 5.1.

75

6.2.3. Adaptive Playback Rate and Target Live Latency

Our HAS client has a catch-up feature with the adapting playback speed to pull
the player back to the target live edge. The player can keep itself tightly to a target
latency by controlling the playback rate relying on the assumption that variations in the
playback rate of 25% or less are not perceptually noticeable enough to end-users [73].
So, it speeds up or slows down the playback rate within the range of (0.75, 1.25) based
on the delta between the target latency and the current live latency. To determine the
actual value within this range, we relied on the default implementation in the DASH.js

player, which uses a sigmoid function.

6.3. Performance Evaluation

6.3.1. Setup

We leverage DASH.js [27] for the players, and Mininet [56] for the simulation of
the network plane. We fit our bandwidth measurement implementation into DASH.js
with its throughput-based ABR. We use the test live-streaming content served by the
live simulator running on the DASH-IF server [27]. It generates content with CMAF
chunks and pushes them over HI'TP 1.1 Chunked Encoding. Each segment is eight
seconds long and encoded into four quality levels for video at 0.3, 0.6, 1.2, 2.4 Mbps
and one bitrate level for audio at 37 kbps. Chunk duration can be set to 0.1, 0.5, and 1
second. Our local Mininet environment with four hosts is connected to the remote test
server via the last-mile ISP with the minimum guaranteed capacity of 50 Mbps. To
be able to conduct the experiments with various bottleneck capacities, we change the
last-hop capacity on the bottleneck node being shared by the four hosts in the Mininet
environment. We also run our iperf-based background traffic generator script in one
of four hosts for varying time intervals to mimic real-life network fluctuations. We
randomize time interval of each background flow within the range of 30 to 60 seconds
by getting inspired by the test set in ACM MMSys’20 Grand Challenge [74]. In each

interval, we set a random traffic amount between given minimum and maximum values

76

for the iperf flow. Each network profile used is detailed in the evaluation categories
below. In this setup, we compare our approach with the bandwidth measurement

heuristics of ACTFE, LoL, and the low-latency mode enabled DASH.js.
6.3.2. Evaluation Metrics

We track the average live latency for each session. The live delay represents
the total time from capturing to rendering. We also collect all the QoE experiments
used in the evaluation of a conventional HAS client introduced in [75]. We calculate
the normalized mean video quality (MVQ) during a live streaming session with m
segments, k available quality levels and the played quality level @); for segment 7. In
our case, the played quality level); is mapped to the video quality index in the DASH
manifest within the range of available quality levels. MVQ is formulated as

Normalized MV Q = leTl% (6.6)
As the other factors with the negative impact on QoE, we follow the duration and
number of freezes and the number of quality level switches during the session. The
number of video freezes is the number of occurrences when the playback buffer is empty
while the number of switches is the total number of quality drops or jumps during the
session. The video freeze duration is the total time of a particular stall from the
freeze to restarting. To obtain those metrics systematically, we implemented a metric

collector script on top of the existing DASH.js player logs.
6.3.3. Comparative Results with State-of-the-art Solutions

In this section, we confront our live streaming HAS client with ACTFE, LoL, and
DASH.js in terms of the accuracy in the bandwidth measurements. For a fair com-
parison of the bandwidth measurement heuristics over QokE implications, we apply the
same ABR algorithm and the adaptive playback rate mechanism with the bandwidth

measurement modules of ACTE and DASH.js under the same conditions, i.e., the

77

same network characteristics and same live video parameters. We cannot include LoL
to QoE-based experiments because its bandwidth measurement module is not open-
source from their publicly available obfuscated player bundle to apply it to the same

setup.

’+ Our Proposal —+- ACTFE -=-DASH.js LoL —+— Actual Throughput ‘

S P

2,000 | cosaseseseoss 1 2,000 | |
By e T ™,

1,000 L— L L . \ . i 1,000 ‘ ; ‘ ! i ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time (s) Time (s)

Measured Throughput (kbps)

(a) 2-Mbps Link without background traffic (b) 3-Mbps Link with 1..1.5 Mbps background

traffic
Figure 6.2. Measured Throughput by all four approaches in the limited capacity of 2

Mbps and 3 Mbps.

6.3.3.1. Evaluation in measuring the available bandwidth. First, we set the link ca-

pacity to 2 Mbps on the last hop in the Mininet environment to mimic the bandwidth-
limited networks without any background traffic. Then, we separately run each ap-
proach and archive the throughput measured by all the four approaches per each seg-
ment download. Each 8-second video segment includes 500ms of chunks. As shown
in Fig. 6.2(a), our proposed heuristic measures the available throughput accurately,
whereas ACTE and DASH.js reference client overestimate it. ACTE and DASH.js
reference clients aggressively filter out chunks in the throughput measurement process
by assuming that their greater download time is due to the encoder-side idle times.
Since they can ignore the chunks affected by a limited network capacity, it turns out
a throughput overestimation problem. Conversely, LoL manifests an underestimation
problem as it can over-calculate the download duration. Second, we set the last-hop

link capacity to 3 Mbps by adding background traffic, which fluctuates between 1 Mbps

78

and 1.5 Mbps. So, the available capacity is varying between 1.5 Mbps and 2 Mbps.
In this experiment, the same background traffic pattern is applied to each approach
separately. As shown in Fig. 6.2(b), the measurement in our proposed heuristic closely
follows the available throughput, whereas AC'T'E and DASH.js reference client highly
overestimate it. While LoL does not have any overestimation problems, it is not as

close as our approach to the actual available throughput.

6.3.3.2. QoE implications under 3-second and 6-second target live latency. We repeat

the previous experiment ten times for each approach by setting the target live latency
to 3 seconds and 6 seconds in the available throughput of 2 Mbps. To investigate the
impact of the bandwidth measurement heuristics of our approach, ACT E and DASH.js

on the QoE, we collect all the metrics explained in Section 6.3.2 for a 10-minute live

session.
’ —+— ACTFE —e— Our Proposal ‘
36 M T T T T

@
%
= 20
A
[}
2
3

3

| | | | | 1 | | | | | 1
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Playback Timeline (s) Playback Timeline (s)
(a) The target delay of 3 s (b) The target delay of 6 s

Figure 6.3. Live latency variations during a 10-minute live session.

So, in total, we have the metrics from sixty sessions as combinations of ten repe-

titions, two different target latency values, and three mechanisms.

79

Table 6.1. All QoE metrics in all three approaches under the target live delays of 3 s

and 6 s (over 10 repetitions).

Target Avg. Live | Avg. Duration | Avg. Num. | Avg. Num. | Normalized
Live Latency (s) | Delay (s) | per Stall (ms) Stalls Switches MVQ
‘ ‘ 3s ‘ 16.2 £ 1.93 ‘ 315+ 5 ‘ 34.8 + 0.28 ‘ 70.4 £ 0.34 ‘ 0.62 + 0.002 ‘
DASH.js
‘ ‘ 6 s ‘ 6.71 £ 0.08 ‘ 320 £ 11 ‘ 244 £ 042 ‘ 69.4 £ 1.12 ‘ 0.62 £ 0.008 ‘
‘ ‘ 3s ‘ 18.6 £+ 2.34 ‘ 260 + 81 ‘ 34.2 + 0.27 ‘ 69.4 + 0.33 ‘ 0.62 + 0.002 ‘
ACTE
‘ ‘ 6 s 7.13 £ 0.87 ‘ 272 £ 95 ‘ 25.2 £ 0.54 ‘ 72.6 £2.24 ‘ 0.63 = 0.01 ‘
‘ Our ‘ 3s ‘ 3.03 £ 0.02 ‘ 151 £ 78 ‘ 2.4 +0.33 ‘ 4 £0.17 ‘ 0.73 £ 0.001 ‘
| Proposal | 6s 5.87 £ 0.03 | 0 | 0 | 44043 | 073+ 0.004 |

Table 6.1 summarizes all the QoE data collected from those sessions. It reflects
that our proposal outperforms the others in terms of all the QoE metrics in both
cases. Note that the player waits for one-second content to rebuffer to be able to
continue to the playback in each video stall as the DASH manifest file requires 1
second of minimum buffer duration. Because the others cause a high number of video
stalls due to the bandwidth overestimation and the selection of the higher qualities,
they cannot get closer to the target live latency. Similarly, the conservative mode is
triggered more frequently in the others to recover stalls. So, as they select the lowest
quality more often, the mean video quality during a session is less than our approach.
Furthermore, the reason their performance is worse in the target latency of 3 seconds
than the 6-second target latency is that since the buffered video data is less in smaller
target values, it is more likely to run out of the video buffer in case of the bandwidth
overestimation. Fig. 6.3 presents live latency values during a typical session for ACTFE
and our approach. As similar to the results in Table 6.1, it indicates that our approach
can consistently achieve the target latency during the session, whereas ACTE cannot
keep the player tightly to the target. Although the adaptive playback speed feature
attempts to pull the player back to the target by slightly increasing the playback rate
after each video stall, numerous stalls refrain the player from maintaining the live delay
target in ACTE. DASH.js results are not included in the figure for clarity because
they are almost identical to ACTFE.

80

6.3.3.3. Multiple players with arbitrary arrival times. We conduct experiments by us-

ing three live streaming players and fluctuating background traffic in the same shared
network. We set the last-hop link capacity to 10 Mbps, and add a random background
traffic within the range of 5 to 5.5 Mbps. Streaming on each player is started 30 s later
than the previous one. We also set the target live latency to 6 s. Then, we collect
all the metrics from the three players for 10-minute live sessions. In each 10-minute
experiment, all the players apply the same approach. Table 6.2 summarizes all the
QoE data collected from those sessions with the mean and 95% confidence interval val-
ues. Results are in line with the previous tests that our proposal outperforms ACTFE
and DASH.js reference client. The others are about 30 seconds far away from the live
event on average because of higher video freeze rates. In comparison, our proposal can
achieve about 8 s live latency even in the existence of heavy background traffic and
multiple players. Furthermore, the average normalized video quality is still better in
our approach because the others go to the lowest quality more frequently to recover
from video freeze events.
Table 6.2. All QoE metrics from three simultaneous players with a fluctuating

background traffic (over 10 repetitions).

Avg.Live | Avg. Duration | Avg. Num. | Avg. Num. | Avg. Normalized
Delay (s) | per Stall (ms) Stalls Switches Video Quality
DASH.js | 29.49 + 1.49 272 £ 18 27.5 £ 0.49 52 £ 1.5 0.66 £ 0.01
ACTE | 30.46 &+ 1.68 246 £ 26 29.2 + 0.34 54 £ 1.3 0.66 £ 0.01
Ours 7.97 £ 0.29 242 + 31 16.1 £ 0.92 33+24 0.76 + 0.03

Table 6.3. The impact of chunk duration on QoE in our approach under 1s target live

delay (over 10 repetitions).

Chunk Avg.Live | Avg. Duration | Avg. Num. | Avg. Num. | Avg. Normalized
Duration | Delay (s) | per Stall (ms) Stalls Switches Video Quality
0.1s 1.17 + 0.01 51 £ 16 1.8 £0.01 7.8 + 0.89 0.73 £ 0.002
0.5s 1.46 £ 0.02 172 £ 56 26.1 + 1.10 21 £29 0.78 + 0.01
1s 2.57 £ 0.35 241 £ 39 36.6 £ 1.85 27 + 2.4 0.76 £ 0.01

81

6.3.3.4. Ultra-low latency down to one second and impact of various chunk duration.

We push the limits by setting the target latency to 1s, and perform new experiments to
observe the impact of chunk duration in our approach. We set the total capacity of the
bottleneck link to 5 Mbps by generating a random background traffic between 2 Mbps
and 3 Mbps. We use three different chunk durations. Table 6.3 highlights the mean
and 95% confidence interval values of all the QoE metrics. Despite fluctuating available
capacity, our HAS client achieves 1.17 s live delay on average during 10-minute live
streaming events, while the chunk duration is 100 ms. As the chunk duration decreases,
the number of stalls is dropping and consequently the live delays are going down. This
is because fewer data suffices for players to be able to start rendering when the smallest

decodable units are getting shorter.

6.3.3.5. Evaluation with real 4G network traces and higher video bitrates. We apply

real 4G traces using traffic control command tc [76]. After merging all different trace
logs with the same-type vehicle into common network profiles [72], we generate three
network profiles: 25-min, 57-min, and 84-min sessions with an average bandwidth of
{22.8, 31.9, 29} Mbps and standard deviation of {14.6, 17.2, 17.3} Mbps from a train,
tram, and bus respectively. The histograms of the distribution of the available capacity
for each network profile are depicted in Fig. 6.4. Similar to the existing CMAF-based
live streaming services, we also set up our DASH and content servers. We use the
Big Buck Bunny with a segment duration of 8 s, and a chunk duration of 200 ms
encoded with FFmpeg [77] (through NVENC H.264 on Nvidia GTX 950M GPU) into
five quality levels of {1, 2, 4, 8, 15} Mbps at 30 fps with the minimum buffer duration
of 1 s in the manifest file. We loop 10-min original content nine times and stream to
cover the longest network profile of 84 minutes. We fix the bandwidth to 100 Mbps at

the server side and set the target live latency to 3 s at the player side.

82

Train 00

350

Tram

00
Z

g 200
150
0o

1t Il..._.._.,- gl
[1 | ¥ 4@ S e M 0

L 0 a0 L] 80 o0
Available Throughput (Mbps) Auailsble Throughput (Mbps)

750

Frequency
2 g
Frequency
8

]
&

_ hllllllll._
0 w0 20 k] 40 50 &0 L

Movailatie Throughput (Mops)

o

Figure 6.4. Distribution of the available capacity in each network profile.

First, we compare all three approaches in terms of accuracy in bandwidth mea-
surement. Fig. 6.5 depicts the bandwidth measurements in DASH.js and our approach
and the real throughput during the first 5 minutes under each network profile. It clearly
shows that our approach closely follows the available capacity in all three different net-
work profiles, whereas the default measurement module in DASH.js overestimates.

ACTE is not included in the figure for clarity as it estimates higher than DASH.js.

Second, we investigate how these bandwidth measurements affect QoE metrics
under three network profiles. As shown in Table 6.4, the others underperform our
approach in terms of live latency as the bandwidth overestimation problem induces
more frequent and longer lasting video stalls in the others. So, our approach gets closer
to the target live latency under highly variable network conditions at the expense of
a few more quality level switches without considerably sacrificing video quality. It is
also reflected in the lower standard deviation of the latency in our approach. Due to
some temporary connection interruptions in the real 4G network traces, the maximum
latency can reach up to about 50 seconds, while it is recovered down to the target
latency with the help of an adaptive playback rate by speeding up the playback in all

three approaches.

33

’+ Our Proposal —— DASH.js —— Actual Throughput ‘

00 20 40 60 8 100 120 140 160 180 200 220 240 260 280 300
é (a) Train
] 104
?5/ 10 T T ‘M T T ‘\ T T Ak \m‘T T
sl Pl o L P i,)
B 6|
=
RN ¢ E@g' ril .*f*; ‘_‘ o T Rt TR :
2 i PR o Tl
& 0 1 I I I I 14 I I I I W(' ’—'.....':' ‘“‘l
% 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
S
=

(b) Tram

L L ’ { L L L L L
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Time (s)

(c) Bus
Figure 6.5. Measured Throughput in real 4G traces.

6.4. Discussion

We provided a purely client-based solution to achieve both low latency and high
QokE for live events streaming over HTTP. Our extensive experiments through a real
player under various network traces showed that our approach allowed reducing the live
delay down to 1 s without losing the user’s QoE. Furthermore, it is easily applicable
to real-life deployments as it is aligned with the stateless design of DASH systems and

it does not require any change in the traditional OTT and network backbone.

Table 6.4. QoE metrics from different types of real 4G traces.

84

Trace | Max. Live | Avg. Live | Std. Live | Num. | Total Stall Num. Normalized

Type | Delay (s) | Delay (s) | Delay (s) | Stalls | Duration (s) | Switches MVQ
‘ ‘ bus ‘ 12.01 ‘ 3.07 ‘ 0.57 ‘ 87 ‘ 36.6 ‘ 40 ‘ 0.97 ‘
‘ DASH.js ‘ train ‘ 43.74 ‘ 196 ‘ 5.26 ‘ 127 ‘ 90.8 ‘ 47 ‘ 0.93 ‘
‘ ‘tram ‘ 34.61 ‘ 5.37 ‘ 5.96 ‘ 971 ‘ 248.6 ‘ 69 ‘ 0.85 ‘
‘ ‘ bus ‘ 19.26 ‘ 3.16 ‘ 1.15 ‘ 205 ‘ 68.3 ‘ 15 ‘ 0.96 ‘
‘ ACTE ‘ train ‘ 46.22 ‘ 5.27 ‘ 6.55 ‘ 345 ‘ 137.3 ‘ 22 ‘ 0.88 ‘
‘ ‘ tram ‘ 54.54 ‘ 6.56 ‘ 9.61 ‘ 933 ‘ 269.6 ‘ 58 ‘ 0.91 ‘
‘ ‘ bus ‘ 5.09 ‘ 3.02 ‘ 0.09 ‘ 42 ‘ 184 ‘ 141 ‘ 0.96 ‘
‘ Ours ‘train ‘ 42.14 ‘ 4.68 ‘ 5.05 ‘ 136 ‘ 76.7 ‘ 72 ‘ 0.89 ‘
‘ ‘ tram ‘ 9.78 ‘ 3.08 ‘ 0.46 ‘ 98 ‘ 47.6 ‘ 155 ‘ 0.91 ‘

85

7. ADAPTIVE LIVE STREAMING USING
REINFORCEMENT LEARNING

In this chapter, we present a reinforcement learning framework that learns a
strategy to choose adaptive playback speed and video quality for low-latency live event

streaming over DASH.

7.1. Introduction

Live event streaming is growing in popularity as over-the-top (OTT) service
providers are procuring broadcasting rights of worldwide premium sports events like
English Premier League, ATP Tour Tennis, Major League Baseball, American Na-
tional Football League with 5G infrastructure rolling out more and more. At that
point, DASH is the most promising approach for the rapid deployment of the infras-
tructure of those live events due to its existing wide adoption for Video-on-Demand

(VoD) use cases.

In DASH, the multiple quality versions of the same content at different encoding
bitrates are kept at the OT'T back-end side. Each version is split into small segments.
Segment duration and boundaries are the same among all versions of the same content.
It enables players to choose the appropriate video quality and switch based on the

client-side decision to adapt to the varying network conditions [78].

DASH has been initially designed for VoD to serve previously-stored videos.
Hence, legacy DASH players struggle to achieve low latency and a high QoE simulta-
neously in live sports events. The live latency in this context means the time difference
from capturing to rendering a particular moment of the event. The challenge of DASH
players is to catch up terrestrial cable latencies in the broadcast world characterized
by a 5 to 10-second latency [66] while maximizing viewers’ QoE. They buffer a few
segments to start playback (e.g., three 10-second segments in Apple HLS, which causes

36

about a 40-second lag between a viewer’s screen and the event). Any stall during the
stream also adds to this delay. Such delays ruin the viewer’s QoE with a high risk of
the spoiler effect. To mitigate, adaptive playback speed, in addition to adaptive video
bitrates, is used by relying on the assumption that variations in the playback speed of
10% or less are not perceptually noticeable to viewers [73]. So, the player speeds up
or slows down the playback rate within the range of (0.9, 1.1) to keep itself close to a

target latency.

In this chapter, we consider adaptive playback speed and video quality decision
as a joint optimization problem. We implement Deep Reinforcement Learning (DRL)
framework to learn video bitrate and playback speed adaptation strategy to maximize
QoE for live video streaming without any assumption about the environment or fixed
rule-based heuristics. We also aim to keep live latency low without skipping any con-

tent. We compare our approach with state-of-the-art solutions under real 4G traces.

The MPEG CMAF packaging through HTTP 1.1 chunked encoding transfer,
the recent advancement in content packaging and delivery, allows DASH to achieve
low latency in live streaming. A segment in CMAF consists of multiple small pieces
called chunks, i.e., the smallest decodable units. With the HT'TP chunked transfer, it
enables to distribute segments by chunks (e.g., even 100 ms content) while keeping all
main advantages of DASH systems such as quality switching at segment boundaries,
leveraging the caches in content delivery networks (CDNs), only one request for each

segment and firewall friendliness.

Numerous studies in the literature propose ABR mechanisms to choose the ap-
propriate video quality level and update it depending on changing network conditions
to maximize viewers’ QoE. For example, Pensieve [79] uses DRL to select video bitrates
to achieve a high QoE in DASH after training a neural network model with the observa-
tions collected by players in VoD use cases. In [80], Mao et al. deploy enhanced version
of Pensieve into Facebook’s web player and runs more than 30 million video streaming

sessions that have their RL-based ABR mechanisms. Inspired by Pensieve, TCLiVi [81]

87

uses the same DRL framework for live streaming to decide the video quality level and
the target buffer level that players aim to maintain as the minimum content duration
required by the player. The buffer level is a proxy for the slow and fast playback speeds,
which slows down the payback to avoid a video freeze and speeds up the video player
to reduce latency, respectively. CBLC [82] also uses DRL to decide the latency limit to
skip content to catch up to the live edge while choosing the video quality and the tar-
get buffer level. However, none of them consider CMAF packaging over short-duration
chunks and directly choose playback speed as the output of the DRL process. Instead,
they select playback speed via hand-crafted thresholds of the delta between the target
buffer and the current buffer duration. Furthermore, DASH.js [27] introduces adaptive
playback speed heuristics independent from the video bitrate selection in their ABR
algorithms. For example, STALLION [83] benefits from DASH.js for playback speed
adaption as it drives only video bitrate selection to strive for low-latency live stream-
ing. So, it does not solve a joint decision problem of playback speed and video quality

level.

OTT Backend \ Device /| e s
Player S

Segments being encoded ...

Eresninioaf }
........ i Actor Network for the joint decision

Encoder |video quali 1 Pastn A Apext chunkbpast n LiveBgutfer |
LIV » Level 2 . i . Delays Level |

& 1
_______________ = - — - n
Packager S |
One Reguest per Seg at Measuremaent Metrics M‘r speed

target quality + Tt Dosriaada |
wnloader

Videe Syl |

l"ElB — —
S N T

sssde HTTP 1.1 Chunked Encoded POST ; e
afsne= HTTP 1.1 Chunked Encoded GET i One CMAFchur:lir'Tf_iTallesf demdahle:.mit

Figure 7.1. The Proposed System of DRL-based Adaptive Live Streaming over HTTP
Chunked Encoded Transfer of CMAF segments.

Our main contribution is to perform a joint inference of playback speed and
video bitrate selection after training the system to learn a strategy to obtain a high

QoE with low latency via our DRL framework. To achieve this, we make the following

38

contributions: 1) we represent the state space from the key observations of player,
the action space of the available video bitrates and three playback speed levels, and
a reward function in the form of a combined formula of QoE and live latency; 2) we
construct a neural network to provide the best action for a given state to map the state
space to a joint decision of playback speed and video bitrate levels for the next video
segment. To train the model, we utilize Asynchronous Actor-Critic algorithm (A3C), a
state-of-the-art reinforcement learning (RL) algorithm, by introducing another neural
network called the critic network, which receives the action taken by the actor and
the state space observations to estimate the maximum future award (i.e., the action
value). As the value estimator, the critic network is later used to evaluate the action to
accelerate to train the actor network; 3) we implement a playback simulator to emulate
the adaptive playback speed and video quality selection in live events over DASH. We
leverage this simulator in the training process to experience 8 hours playback in only
10 seconds using real 4G traces in one epoch; 4) we perform extensive experiments to

confront our approach with both state-of-the-art DRL-based and rule-based solutions.

7.2. System Model and Formulation of The Problem

In this study, the considered multimedia delivery system between DASH clients
and servers supports HTTP chunked encoding transfer of CMAF packages. Chunks
are encoded and packaged to different quality levels at the server-side. The packager
output is immediately transferred to the live origin chunk-by-chunk for distribution.
So, chunks can be posted to the network without waiting to encode the whole segment.
Note that the content representation and data flow are fully compatible with legacy
DASH systems as players are informed about the available video quality levels via the
manifest files fetched at the beginning of each session. At any time, players download
only one quality representation and they can switch the quality level at the fragment

boundaries.

Players can be simultaneously pulling chunks of the CMAF segment at a specific

video quality chosen by the inference module as shown in Fig. 3.2, while the content is

39

being encoded at the OTT backend side. Our objective during this real-time process
is to maximize QoE subject to the live latency target by choosing the played video
quality level and playback speed for each video fragment. As the contributors to
QoE during a live event streaming process are the played video quality, video quality
fluctuations, video freezes, and end-to-end latency between capturing and rendering the
event moment, we define QoE model as the weighed sum of these four sub-objectives.

This objective can be mathematically expressed as the following:

T
max g QoL
t=0

pt,qt
b > FD .
where QOEt=(co*qt—cl*maa:(O7((uf fery +))—(FD* qt)) (7.1)
bt BWt
—co x (|ge — qi—1|) — c3 x live_delay;)
s.t.

pe € {0.9,1,1.1}, ¢ € {available video bitrates}, (7.2)
bUffGT’t < T’live_targety (73)

where pq, q;, buf fer,, and BW, represent the playback speed, the played video quality
level, the remaining video duration in the playout buffer, and the measured available
throughput at time step ¢, respectively. co 123 are the coefficients to set the impact of
each sub-objective on the overall QoE in Equation 7.1. FD is the fragment duration
as a static value during T-second live streaming. Tjve targer is the target live latency
as a kind of service-level agreement value assigned by the OTT application provider.
Constraint (7.2) limits the range of the available playback speed and video quality
values, while Constraint (7.3) makes sure players can only buffer content shorter than

the target live latency.

The inference module in Fig. 7.1 outputs the adaptive video quality ¢, and play-

back speed p; given an input set of observations (e.g., the past bandwidth measure-

90

ments, the remaining buffer size, the current live latency, the next available video
segment sizes). The decision mechanism within the inference module relies on a neural
network with the policy parameters. The neural network’s training process and its
design to generate those parameters are elaborated in the proposed RL framework as

discussed in the next section.
7.3. The Proposed RL Framework
7.3.1. RL Problem Definition

We model the interactions between an agent and the environment in time-varying
network and player conditions as a Markov Decision Process (MDP) represented by a
sequence of states, actions, and rewards. State s; at a specific time ¢ is the observation
of the environment which is enough to determine the next state s;y;. The action is
taken by the agent to lead to a state transition. In our problem, the agent is our
inference module that controls adaptive playback speed and video quality. The reward
ry is the immediate feedback signal of the environment as a result of the a; at time step

t.

In our RL task, given a MDP we aim to find a policy, i.e., a mapping from states
to actions, that maximizes the expected sum of future rewards. The policy function
7w S+ A chooses the action a; € A given the current state s, € S, that gains r;. The

expected sum of future rewards is represented as

o0

Gr=>Y A'n, (7.4)

t=0
where v € (0, 1] is the discount factor to trade-off present and future rewards and t = 0
is the current time. We explain our state and action spaces, and reward function as

follows:

91

State space: We use the playing video bitrate, bandwidth measurement, the
download time of the last segment, the remaining buffer size, the current live latency,
the next available video segment sizes, and the number of the remaining segments until

the end of the live events as the observation signals to determine the next state.

Action space: It includes k * P combinations, where k is the number of the

available video quality levels, and P is the number of playback speed levels.

Reward Function: We represent r; in the form of a combined QoE expression
used by [81]. It is aimed to balance four sub-objectives relying on the coefficients
of each QoE contributor such as the played video bitrate, video stall duration, the
quality switch compared to the quality of the previous fragment, and latency between

capturing and rendering the segment of live event as

ry =co * VQ; — ¢y x stall_duration,
(7.5)

— o x |[VQy — VQi_1| — c3 * live_delay,

where V (); is the video bitrate at time step ¢, and cg ;2,3 are the coefficients to set the

impact of each sub-objective on the overall QoE.

Environment: The system model of live streaming via DASH in time-varying net-

work conditions in Section II serves as the environment of the proposed RL framework.

92

7.3.2. The Proposed Actor-Critic Algorithm

ACtor Input Layer Hidden Layer Output Layer
Network

ay

State of 7 features

Policy parameters

Training-only

Critic
Network

State of 7 features

Critic parameters

Critic

St

Ty

Environment

Figure 7.2. The Proposed Actor-Critic Architecture.

As shown Fig. 7.2, we use an actor-critic architecture. The actor outputs the
policy 7 for any state s, a vector of probabilities of each action alternative across k x P
combinations. As the state space is at a tremendous scale due to continuous discrete
values of input features, we utilize a neural network to approximate the policy my with a
limited number of adjustable policy parameters represented as #. First, using the policy
gradient theorem [84], we train the policy for the optimal 6 parameters to maximize

the expected future reward expressed in Equation 7.4. Then, we follow the gradient

93

Vg J(0) of the expected cumulative reward with respect to the policy parameters as

Vo J(0) = VoEr, (G (7.6)
=K., [Vologm(s,a)A™(s,a) + BVeH (me(s))],

where A™(s,a) = Q™ (s,a) — V™ (s). Note that V(s) is the expected future reward
before any action is taken in state s, whereas Q(s,a), the Q-value, is the expected
reward in state s after action a is performed. A™(s,a), the difference between them,
is an indicator of how bad or good is a particular action given a particular state. It
is also called the advantage value. Inspired by Pensieve [79], we also use an entropy
component H(-) with the exploration factor 5 in Equation 7.6 to trade off exploitation
against exploration to obtain better policies as a standard approach in RL. During the
training process, the policy parameters of the actor network are updated in each step

in the direction of the gradient as

0 < 0+ aVyJ(0), where « is the learning rate. (7.7)

The learning agent empirically calculates the Q-value in our simulated environment
after performing a sampled action of playback speed and video quality in the actor
network output. As Equation 7.7 needs the estimation of the advantage value that
depends on V(s), we use the critic network to approximate V(s). To train the critic
network, we use a multi-step Temporal Difference learning by getting inspired by [85].
So, the critic network gets the action taken by the actor network and estimates V'(s)

that is later used to update the policy parameters depending on the advantage value.

Once we generate the policy parameters after training two neural networks, we
deploy only the actor network with the policy parameters to players. In the inference
module, we continuously feed the instantaneous state space information to decide the

video quality per each segment and playback speed level over time.

94

7.4. Simulation Results

7.4.1. Experiment Setup

We extend Pensieve’s simulator by adding new features to emulate adaptive play-
back speed and the real-time nature of content streaming in which the player is not
allowed to download future content even if the network capacity and the play-out buffer
capacity allow. To mimic the environment, we use real network traces [79] collected in
Norway from different-type vehicles such as train, tram, metro, bus, car and ferry. Our
test video is encoded to k = 6 different quality levels at {300, 750, 1200, 1850, 2850,
4300} kbps, and each video fragment is four seconds long, while each live event has
a total duration of 20 minutes. Our player simulator supports P = 3 playback speed
levels at {0.9, 1, 1.1}. So, in our action space, we have k* P = 18 discrete alternatives
for the joint decision of playback speed and video quality. We set the player buffer

limit to one fragment. So, our target live latency is 4 s.

7.4.2. Training Details and QoE Coefficients

Table 7.1. Training Parameters.

Parameter Value
Qgeior (learning rate) 0.001
Qeritic (learning rate) 0.0001
B (entropy weight) 4 t0 0.2

Beps (entropy constant) || 0.000001

7 (discount factor) 0.99

batch size 48

All the hyper-parameters used in training are shown in Table 7.1. All of them
are kept static during the training process except for 5. We start with § = 4 and
gradually reduce it to 0.2. The entire training process took about 200,000 epochs to
converge. In each step, seven features of the state space explained in Section III are
forwarded to the input layer. At the same time, eight past throughput measurements

and the next available video segment sizes are first passed into a standard 1D-CNN.

95

Then, we have a hidden layer of 128 neurons where the results of the input layer go
through a fully connected network with the activation function of ReLU. Input and
hidden layers have the same structure in the actor and critic networks, as depicted in
Fig. 7.2, whereas the output layer differs. We use the softmax function in the output
layer of the actor network that gives the probability distribution over 18 combinations
of playback speed and video bitrate. In contrast, the critic network has a linear neuron
in the output layer for the expected future reward. We use TensorFlow to implement
and train these networks. We use 80% of the network traces for the training data and

keep the rest as an independent validation set.

In the training process, the coefficients of each QoE contributor in the reward
function in Equation 7.5 are chosen as the same with TCLiVi [81] for a fair comparison,
while cq, ¢1, ¢, and c3 are set to 1, 1.5, 0.005, and 0.02 respectively. These can be
straightforwardly adapted to reflect the different QoE preferences, and the training
process can be repeated using the updated reward function and the same parameters
in Table 7.1. E.g., if reducing live delay is more critical, the penalty factor of the
relevant component (i.e., ¢3) can be increased. Rather than a generic QoE formula

among users, a personalized QoE metric can be also applied as detailed in [86].

7.4.3. Results

Our approach is compared to the following state-of-the-art algorithms: (1) TC'LiVi
uses DRL-based adaptive video bitrate and target buffer selection that is later used
to choose the playback speed. (2) Pensieve uses DRL-based adaptive video bitrate
with a fixed playback speed for VoD use case. For a fair comparison, we re-train its
model by replacing the reward function with the same QoE formula as in Equation 7.4
used by TCLiVi and our approach. (3) DASH.js is a commercial player developed by
DASH Industry Forum that supports low-latency mode with adaptive playback speed.
We use a throughput-based ABR version in our comparative analysis. (4) Baseline

uses a throughput-based ABR with a fixed playback speed.

96

Table 7.2. Comparison of all five approaches in terms of QoE and live latency.

5-minute 20-minute
Live Sessions Live Sessions

Avg. Total Avg. Live | Avg. Total Avg. Live

Reward (QoE) | Latency (s) | Reward (QoE) | Latency (s)
Our Approach | 35.8 £ 5.6 6.7 £ 0.2 154.9 £ 12.7 6.3 £ 0.1
TCLiVi 22.7+£54 5.5 £ 0.2 93.1 £12.3 6.1 £0.1
Pensieve 21.0 £4.3 6.9 £ 2.1 81.5 £ 32.3 78 £ 1.0
DASH.js 292 +£94 59 +£0.2 119.4 + 26.2 6.1£0.1
Baseline 30.1 £94 11.3+ 04 132.3 £ 328 13.9+ 0.3

We run each approach under the same network traces in 15 5-min and 20-min
live sessions. Table 7.2 summarizes the QoE scores and live delays with the mean and
95% confidence interval values over all the sessions. It clearly shows that our approach
outperforms the others in terms of the total reward in the form of a QoE score without
sacrificing the live latency considerably. Baseline gives a better QoE score across the
others despite a higher live latency due to the fixed adaptive playback speed because
the QoE formula favors more on the video quality compared to the live delay. As
DASH.js uses an adaptive playback speed on top of Baseline to catch up to the live
event, it achieves a lower live latency. T'C'LiVi follows the live events more closely
at the expense of 40% less QoE than our approach because it is more conservative
in video quality selection. As the total event duration increases, our approach also

catches up with the live latency achieved by T'C'LiVi.

We investigate live latency changes over time in cach session. Fig. 7.3 depicts
representative sessions from each trace group to dive deep into the performance over
20-min sessions. It confirms that our policy learned how to adapt the playback speed
as a catch-up feature to pull the player back to the target live edge. It also highlights
the impact of adaptive playback speed in TC' LiVi, DASH.js and our approach. After
video stalls, they can recover the live latency, whereas Baseline and Pensieve get stuck

at higher live latency values. Fig. 7.3(c) and 7.3(f) perfectly exemplify this situation

97

in which Baseline and Pensicve cannot recover the live latency once they go away

because of any video stall.

7.5. Discussion

We introduced a novel deep reinforcement learning framework to learn the op-
timal playback speed and video bitrate decisions from experience. Our comparative
evaluation showed that it achieves a better QoE (up to 68%) than both state-of-the-art
rule-based and reinforcement learning-based solutions. In future work, while deploying
the training policy to real-time players, our bandwidth measurement proposal explained

in Chapter 6 could be embedded into the players to improve the overall performance.

I':ve_Sela 3y { :l

E
g’f

[jh\
j.

o 200 400 600 800 1000 1200
(a) Bus

a‘
<15 /
w
)
&3
Lw
- — AN
2z | " A — .

o 200 400 600 00 1000 1200

(b) Train
I . —_—

1”-:12.5-
s / . ; \V‘\A_,/\—\—\—\,,_\
-]
T 15
&} - /"\'—__
TS -
[———
A S —

o 200 400 600 800 1000 1200

(c) Car

-

i
b
)
J
N
]
|

|

ys (s)

|

o 00 00 GO0 a0 1000 1200
(e) Ferry
25
'E 20 4 ’_/—/7
% 15 r,
T f‘\h
¥ = ——— -
(] 200 400 600 B0O 1000 1200
time (sech
—— QOur Approach —— Baseline DASH.js —— Pensieve —— TCLiVI
(f) Tram

Figure 7.3. Live latency changes over time.

98

99

8. CONCLUSION

This thesis focuses on dynamic adaptive video streaming over HT'TP for both on-
demand video services and low-latency event streaming. Our motivation is to maximize
the QoE of end-users through video quality and playback speed adaptations under

highly varying network conditions.

We started by introducing the current state-of-the-art adaptive video bitrate
mechanisms for the on-demand video services and low-latency live video streaming over
HTTP. We presented an extensive survey of ABR algorithms by classifying taxonomy in
terms of their deployed components and input signals after explaining the background

information about DASH standard and QoE considerations in video streaming.

As our first contribution, we implemented a chunk-size aware SDN-assisted DASH
system without reserving network resources to provide a fair and better QoE in the
presence of multiple DASH clients, and background flows in a last-mile bottleneck
shared network. It was the first SDN-enabled DASH mechanism in the literature,
which takes the diversity of the chunk duration among the various clients into account.
It enabled meeting the SLA values for the start-up delay in spite of various chunk
sizes among highly varying content catalogs from different content providers. Unlike
the state-of-the-art solutions, it supported monitoring the background traffic amount
effectively before deciding the adaptive video quality level to improve the perceived
video quality and network utilization while avoiding video stalls. The results of our
extensive experiments revealed that our proposal outperformed the purely client-based
and state-of-the-art SDN-based ABR mechanisms in terms of the overall QoE. Com-
pared to the conventional SDN-based approach, it increased the average video bitrate
by over 90% especially in the case with a high number of background flows while, at
the same time, guaranteeing a fair start-up delay and not causing video freezes even
though it does not require any active network programming for bandwidth slicing. Ad-

ditionally, the experiments reflected that it decreased video quality oscillations by over

100

84% compared to the purely client-based ABR approach. In other words, it ensured
the QoE stability in the existence of multiple DASH flows in the same shared network,
whereas the purely client-based ABR mechanisms had a huge problem in the video

quality stability:.

As another novel contribution to the literature, we presented a low-latency stream-
ing solution to pragmatically enable dynamic adaptive HT'TP live streaming over the
existing infrastructure based on CMAF and HTTP 1.1 Chunked Encoding Transfer.
With the help of lightweight SDN assistance, our system achieves a better QoE while,
at the same time, achieving a low latency within the range of three to six seconds.
In contrast, traditional ABR algorithms either condemn users to low video quality
or struggle with lots of video stall events because the nature of the HT'TP chunked

transfer does not allow them to measure the available throughput accurately.

Different from our SDN-assisted live streaming system, we implemented low-
latency live streaming HAS client with a novel bandwidth measurement heuristic to ease
real-life deployment without introducing any additional component to the legacy DASH
system. We conducted experiments on a real player in bandwidth-limited networks. We
showed that our approach followed the live target more closely while achieving a lower
video freeze rate (-94%) and higher video quality (+16%) compared to the existing
approaches. Morcover, it allowed reducing the live delay down to 1 s without losing
the user’s QoE. Furthermore, it is easily applicable to real-life deployments because it

does not require any change in the traditional OTT and network backbone.

As a starting point for our future research direction, we proposed a deep rein-
forcement learning-based adaptive live streaming solution with two control knobs of
playback speed and video bitrate. We also conducted a comparative evaluation, and
our results concluded that our approach achieves a better QoE (up to 68%) than both

state-of-the-art rule-based and reinforcement learning-based solutions.

As future work, we will investigate the results on the different QoE preferences

101

by testing with various coefficients of each QoE contributor (e.g., increasing penalty
factor for live latency or decreasing the penalty for quality fluctuations). It will also
be interesting to deploy our DRL-based solution into a real DASH player as we did in

our previous proposed systems.

(@}

102

REFERENCES

. Quartz, Amazon’s streaming audience is almost as big as Netfliz’s, 2021,

https://qz.com/2003812/amazon-prime-has-almost-as-many-streaming-

subscribers-as-netflix/, accessed in June 2021.

. Cisco, White Paper: Cisco VNI Forecast and Methodology, 2015-2020, Cisco,San

Jose, CA, USA, Mar. 2016.

Corp., E., Ericsson Mobility Report, 2019, https://www.ericsson.com/4acd7e/
assets/local/mobilityreport/documents/2019/emr-november-2019.pdf, ac-

cessed in June 2021.

Ozcelik, I. M. and C. Ersoy, “Chunk Duration—Aware SDN-Assisted DASH”,
ACM Transactions on Multimedia Computing, Communications, and Applications,

Vol. 15, No. 3, pp. 82:1-82:22, Aug. 2019.

Ozcelik, 1. M. and C. Ersoy, “Low-Latency Live Strecaming over HTTP in
Bandwidth-Limited Networks”, IEEE Communications Letters, pp. 1-1, 2020.

Kua, J., G. Armitage and P. Branch, “A Survey of Rate Adaptation Techniques
for Dynamic Adaptive Streaming Over HT'TP” | IEEE Communications Surveys
Tutorials, Vol. 19, No. 3, pp. 1842—1866, thirdquarter 2017.

Swaminathan, V., “Are We in the Middle of a Video Streaming Revolution?”,
ACM Transactions on Multimedia Computing, Communications, and Applications,

Vol. 9, No. 1s, pp. 1-6, Oct. 2013.

. Sodagar, 1., “The MPEG-DASH Standard for Multimedia Streaming Over the

Internet”, IEEE MultiMedia, Vol. 18, No. 4, pp. 62—67, 2011.

Silverlight, M., Microsoft Smooth Streaming, 2012, https://www.microsoft.com/

10.

11.

12.

13.

14.

15.

16.

17.

18.

103

silverlight/smoothstreaming/, accessed in June 2021.

Apple, HTTP Live Streaming, 2011, https://developer.apple.com/

streaming/, accessed in June 2021.

Adobe, Adobe Http Dynamic Streaming (Hds) Technology Center, 2012, https:

//www.adobe.com/devnet/hds.html, accessed in June 2021.

Barman, N. and M. G. Martini, “QoE Modeling for HT'TP Adaptive Video Stream-
ing—A Survey and Open Challenges”, IEEE Access, Vol. 7, pp. 30831-30859, 2019.

Seufert, M., S. Egger, M. Slanina, T. Zinner, T. Hoflfeld and P. Tran-Gia, “A
Survey on Quality of Experience of HI'TP Adaptive Streaming”, IEFEE Commu-
nications Surveys Tutorials, Vol. 17, No. 1, pp. 469-492, Firstquarter 2015.

Liu, T.-J., Y.-C. Lin, W. Lin and C.-C. J. Kuo, “Visual Quality Assessment: Recent
Developments, Coding Applications and Future Trends”, APSIPA Transactions on
Signal and Information Processing, Vol. 2, p. e4, 2013.

Wang, Z., A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image Quality As-
sessment: from Error Visibility to Structural Similarity”, IEEE Transactions on

Image Processing, Vol. 13, No. 4, pp. 600-612, April 2004.

Winkler, S. and P. Mohandas, “The Evolution of Video Quality Measurement: from
PSNR to Hybrid Metrics”, IEEE Transactions on Broadcasting, Vol. 54, No. 3, pp.
660-668, 2008.

Garcia, M., P. List, S. Argyropoulos, B. Feiten and A. Raake, ITU-T Rec. P. 1201:
Standardized Parametric Packet-based Model for Audiovisual Quality Assessment

in IPTV and Progressive Download Services, 2012.

Juluri, P., V. Tamarapalli and D. Medhi, “Measurement of Quality of Experience of

Video-on-Demand Services: A Survey”, IEEE Communications Surveys Tutorials,

19.

20.

21.

22.

23.

24.

25.

104

Vol. 18, No. 1, pp. 401-418, 2016.

Claeys, M., S. Latre, J. Famaey and F. De Turck, “Design and Evaluation of a
Self-Learning HTTP Adaptive Video Streaming Client”, IEEE Communications
Letters, Vol. 18, No. 4, pp. 716-719, April 2014.

Spiteri, K., R. Urgaonkar and R. K. Sitaraman, “BOLA: Near-optimal Bitrate
Adaptation for Online Videos”, IEEE INFOCOM 2016 - The 35th Annual IEEE

International Conference on Computer Communications, pp. 1-9, April 2016.

Huang, T., C. Zhou, R.-X. Zhang, C. Wu, X. Yao and L. Sun, “Stick: A Harmo-
nious Fusion of Buffer-based and Learning-based Approach for Adaptive Stream-
ing”, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,
pp. 1967-1976, 2020.

Huang, T.-Y., R. Johari, N. McKeown, M. Trunnell and M. Watson, “A Buffer-
Based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service”, SIGCOMM Comput. Commun. Rev., Vol. 44, No. 4, p. 187-198, Aug.
2014.

Jiang, J., V. Sekar and H. Zhang, “Improving Fairness, Efficiency, and Stability in
HTTP-Based Adaptive Video Streaming with FESTIVE”, Proceedings of the 8th
International Conference on Emerging Networking Ezperiments and Technologies,
CoNEXT 12, p. 97-108, Association for Computing Machinery, New York, NY,
USA, 2012.

Li, Z., X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen and D. Oran, “Probe and
Adapt: Rate Adaptation for HI'TP Video Streaming At Scale”, IEEE Journal on
Selected Areas in Communications, Vol. 32, No. 4, pp. 719-733, 2014.

Qiao, C., G. Li, Q. Ma, J. Wang and Y. Liu, “Trace-driven Optimization on
Bitrate Adaptation for Mobile Video Streaming”, IEFE Transactions on Mobile

26.

27.

28.

29.

30.

31.

32.

33.

105

Computing, pp. 1-1, 2020.

Spiteri, K., R. Sitaraman and D. Sparacio, “From Theory to Practice: Improving
Bitrate Adaptation in the DASH Reference Player”, Proceedings of the 9th ACM
Multimedia Systems Conference, MMSys 18, pp. 123-137, ACM, New York, NY,
USA, 2018.

Forum, T. D. I., DASH Ref. Player, Dec. 2017.

Kleinrouweler, J. W., S. Cabrero and P. Cesar, “Delivering Stable High-quality
Video: An SDN Architecture with DASH Assisting Network Elements”, Proceed-
ings of the 7th International Conference on Multimedia Systems, MMSys '16, pp.
4:1-4:10, ACM, New York, NY, USA, 2016.

Kleinrouweler, J. W., S. Cabrero and P. Cesar, “An SDN Architecture for Privacy-
Friendly Network-Assisted DASH”, ACM Transactions on Multimedia Computing,
Communications, and Applications, Vol. 13, No. 3s, pp. 44:1-44:22, Jun. 2017.

Bentaleb, A., A. C. Begen and R. Zimmermann, “SDNDASH: Improving QoE of
HTTP Adaptive Streaming Using Software Defined Networking”, Proceedings of
the 24th ACM International Conference on Multimedia, MM ’16, pp. 1296-1305,
ACM, New York, NY, USA, 2016.

Bentaleb, A., A. C. Begen, R. Zimmermann and S. Harous, “SDNHAS: An SDN-
Enabled Architecture to Optimize QoE in HTTP Adaptive Streaming”, IFEFE
Transactions on Multimedia, Vol. 19, No. 10, pp. 2136-2151, Oct 2017.

Cofano, G., L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia and S. Mascolo,
“Design and Experimental Evaluation of Network-assisted Strategies for HTTP
Adaptive Streaming”, Proceedings of the 7th International Conference on Multi-

media Systems, MMSys "16, pp. 3:1-3:12, ACM, New York, NY, USA, 2016.

Cofano, G., L. D. Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia and S. Mas-

34.

35.

36.

37.

38.

39.

40.

106

colo, “Design and Performance Evaluation of Network-assisted Control Strategies
for HT'TP Adaptive Streaming”, ACM Transactions on Multimedia Computing,
Communications, and Applications, Vol. 13, No. 3s, pp. 42:1-42:24, Jun. 2017.

Bagci, K. T., K. E. Sahin and A. M. Tekalp, “Compete or Collaborate: Architec-
tures for Collaborative DASH Video Over Future Networks”, IEEE Transactions
on Multimedia, Vol. 19, No. 10, pp. 2152-2165, Oct 2017.

Georgopoulos, P., Y. Elkhatib, M. Broadbent, M. Mu and N. Race, “Towards
Network-wide QoE Fairness Using Openflow-assisted Adaptive Video Streaming”,
Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-centric Mul-
timedia Networking, FuMN ’13, pp. 1520, ACM, New York, NY, USA, 2013.

Bhat, D.,; A. Rizk, M. Zink and R. Steinmetz, “SABR: Network-Assisted Con-
tent Distribution for QoE-Driven ABR Video Streaming”, ACM Transactions on
Multimedia Computing, Communications, and Applications, Vol. 14, No. 2s, pp.
32:1-32:25, Apr. 2018.

Go, S. J. Y., C. A. M. Festin and W. M. Tan, “An SDN-based framework for
improving the performance of underprovisioned IP Video Surveillance networks”,

Journal of Network and Computer Applications, Vol. 132, pp. 49-74, 2019.

Jiang, J., L. Hu, P. Hao, R. Sun, J. Hu and H. Li, “Q-FDBA: Improving QoE
Fairness for Video Streaming”, Multimedia Tools and Applications, Vol. 77, No. 9,
pp. 10787-10806, May 2018.

Thomas, E., “Enhancing MPEG DASH Performance via Server and Network As-
sistance”, IET Conference Proceedings, pp. 8 .—8 .(1), January 2015.

Lu, Z., S. Ramakrishnan and X. Zhu, “Exploiting Video Quality Information With
Lightweight Network Coordination for HI'TP-Based Adaptive Video Streaming”,
IEEE Transactions on Multimedia, Vol. 20, No. 7, pp. 1848-1863, July 2018.

41.

42.

43.

44.

45.

46.

47.

48.

107

Altamimi, S. and S. Shirmohammadi, “QoE-Fair DASH Video Streaming Using
Server-Side Reinforcement Learning”, ACM Transactions on Multimedia Comput-

ing, Communications, and Applications, Vol. 16, No. 2s, Jun. 2020.

El Marai, O., T. Taleb, M. Menacer and M. Koudil, “On Improving Video Stream-
ing Efficiency, Fairness, Stability, and Convergence Time Through Client—Server

Cooperation”, IEEE Transactions on Broadcasting, Vol. 64, No. 1, pp. 11-25, 2018.

Bentaleb, A., B. Taani, A. C. Begen, C. Timmerer and R. Zimmermann, “A Survey
on Bitrate Adaptation Schemes for Streaming Media over HTTP”, IEEE Commu-
nications Surveys Tutorials, Vol. 21, No. 1, pp. 562-585, 2019.

Bentaleb, A., A. C. Begen and R. Zimmermann, “QoE-Aware Bandwidth Broker
for HIT'TP Adaptive Streaming Flows in an SDN-Enabled HFC Network”, IFEFE
Transactions on Broadcasting, Vol. 64, No. 2, pp. 575-589, June 2018.

El Essaili, A., T. Lohmar and M. Ibrahim, “Realization and Evaluation of an End-
to-End Low Latency Live DASH System”, 2018 IEEFE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1-5, IEEE, 2018.

Van Der Hooft, J., S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen and
F. De Turck, “An HTTP/2 push-based approach for low-latency live streaming
with super-short segments”, Journal of Network and Systems Management, Vol. 26,

No. 1, pp. 51-78, 2018.

Yahia, M. B., Y. L. Louedec, G. Simon, L. Nuaymi and X. Corbillon, “HTTP/2-
Based Frame Discarding for Low-Latency Adaptive Video Streaming”, ACM
Transactions on Multimedia Computing, Communications, and Applications,

Vol. 15, No. 1, pp. 1-23, Feb. 2019.

Wang, C., J. Guan, T. Feng, N. Zhang and T. Cao, “BitLat: Bitrate-Adaptivity

and Latency-Awareness Algorithm for Live Video Streaming”, Proceedings of the

49.

50.

ol.

52.

93.

54.

55.

108

27th ACM International Conference on Multimedia, MM 19, pp. 2642-2646, As-
sociation for Computing Machinery, New York, NY, USA, 2019.

Yi, G., D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, J. Liu, W. T. Ooi and
Y. Cui, “The ACM Multimedia 2019 Live Video Streaming Grand Challenge”,
Proceedings of the 27th ACM International Conference on Multimedia, MM 19,
pp- 26222626, Association for Computing Machinery, New York, NY, USA, 2019.

Akamai, Ultra-Low-Latency Streaming Using Chunked-Encoded and Chunked-
Transferred CMAF, Mar. 2019.

Bentaleb, A., C. Timmerer, A. C. Begen and R. Zimmermann, “Bandwidth Predic-
tion in Low-latency Chunked Streaming”, Proceedings of the 29th ACM Workshop

on Network and Operating Systems Support for Digital Audio and Video, NOSS-
DAV 19, pp. 7-13, ACM, New York, NY, USA, 2019.

Lim, M., M. N. Akcay, A. Bentaleb, A. C. Begen and R. Zimmermann, “When
They Go High, We Go Low: Low-Latency Live Streaming in Dash.Js with Lol.”,
Proceedings of the 11th ACM Multimedia Systems Conference, MMSys’20, pp. 321—
326, Association for Computing Machinery, New York, NY, USA, 2020.

Bentaleb, A., M. N. Akcay, M. Lim, A. C. Begen and R. Zimmermann, “Catching
the Moment with LoL+ in Twitch-Like Low-Latency Live Streaming Platforms”,
IEEFE Transactions on Multimedia, 2021.

Sun, L., T. Zong, S. Wang, Y. Liu and Y. Wang, “Tightrope Walking in Low-
Latency Live Streaming: Optimal Joint Adaptation of Video Rate and Playback
Speed”, Proceedings of the 12th ACM Multimedia Systems Conference, MMSys '21,
p. 200-213, Association for Computing Machinery, New York, NY, USA, 2021.

Xia, W., Y. Wen, C. H. Foh, D. Niyato and H. Xie, “A Survey on Software-Defined
Networking”, IEEE Communications Surveys Tutorials, Vol. 17, No. 1, pp. 27-51,

56.

o7.

58.

99.

60.

61.

62.

63.

64.

65.

66.

109

Firstquarter 2015.

Team, M., Mininet: An Instant Virtual Network on Your Laptop (or Other PC),
2012, "http://www.mininet.org", accessed in April 2021.

Fette, I. and A. Melnikov, The Websocket Protocol, REC 4180, 2011.

Brown, R. G., “Exponential Smoothing for Predicting Demand”, Operations Re-
search, Vol. b, pp. 145-145, 1957.

Sobhani, A.; A. Yassine and S. Shirmohammadi, “A video Bitrate Adaptation
and Prediction Mechanism for HTTP Adaptive Streaming”, ACM Transactions

on Multimedia Computing, Communications, and Applications, Vol. 13, No. 2, pp.
1-25, 2017.

Community, T. P. F., Floodlight is an Open-Source SDN Controller, Dec. 2012.

Mozilla, Firefor, 2012, "https://www.mozilla.org/firefox/new/", accessed in
May 2021.

Tirumala, A., Iperf: The TCP/UDP Bandwidth Measurement Tool,, Dec. 2017.

Foundation, L., Open vSwitch: An Open Virtual Switch,, Mar. 2016, http://

openvswitch.org.

Lederer, S., C. Miiller and C. Timmerer, “Dynamic Adaptive Streaming over
HTTP Dataset”, Proceedings of the 3rd Multimedia Systems Conference, pp. 8994,
ACM, 2012.

Lindholm, J., “The Netflix-ication of Sports Broadcasting”, The International
Sports Law Journal, Vol. 18, No. 3, pp. 99-101, Mar 2019.

Petrangeli, S., J. V. D. Hooft, T. Wauters and F. D. Turck, “Quality of Experience-

67.

68.

69.

70.

71.

72.

73.

110

Centric Management of Adaptive Video Streaming Services: Status and Chal-
lenges”, ACM Transactions on Multimedia Computing, Communications, and Ap-

plications, Vol. 14, No. 2s, pp. 31:1-31:29, May 2018.

Sodagar, 1., “The MPEG-DASH Standard for Multimedia Streaming Over the
Internet”, IEEE MultiMedia, Vol. 18, No. 4, pp. 62-67, April 2011.

Wei, B., H. Song, S. Wang, K. Kanai and J. Katto, “Evaluation of Throughput Pre-
diction for Adaptive Bitrate Control Using Trace-Based Emulation”, IEEE Access,
Vol. 7, pp. 51346-51356, 2019.

Oztiirk, E., D. Silhavy, T. Einarsson and T. Stockhammer, “Low-latency DASIH-
more than just Spec: DASH-IF Test Tools”, Proceedings of the 11th ACM Multi-
media Systems Conference, pp. 353—-356, 2020.

Spiteri, K., R. Sitaraman and D. Sparacio, “From Theory to Practice: Improv-
ing Bitrate Adaptation in the DASH Reference Player”, ACM Transactions on
Multimedia Computing, Communications, and Applications, Vol. 15, No. 2s, pp.
67:1-67:29, Jul. 2019.

Le, H. T., N. P. Ngoc and C.-T. Truong, “Bitrate Adaptation for Seamless On-
demand Video Streaming over Mobile Networks”, Signal Processing: Image Com-

munication, Vol. 65, pp. 154 — 164, 2018.

van der Hooft, J., S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen and F. De Turck, “HTTP/2-Based Adaptive Streaming of HEVC Video
Over 4G/LTE Networks”, IEEE Communications Letters, Vol. 20, No. 11, pp.
2177-2180, 2016.

Kalman, M., E. Steinbach and B. Girod, “Adaptive Media Playout for Low-delay
Video Streaming over Error-prone Channels”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 14, No. 6, pp. 841-851, 2004.

74.

75.

76.

e

78.

79.

80.

81.

82.

111

TwitchTv, ACM MMSys 2020 Grand Challenge, 2020, https://github.com/

twitchtv/acm-mmsys-2020-grand-challenge, accessed in June 2021.

Claeys, M., S. Latre, J. Famaey and F. De Turck, “Design and Evaluation of a
Self-Learning HTTP Adaptive Video Streaming Client”, IEEE Communications
Letters, Vol. 18, No. 4, pp. 716719, 2014.

LDP, Introduction to Linuz Traffic Control, 2010, https://tldp.org/HOWTO/

Traffic-Control-HOWTO/intro.html, accessed in November 2020.

Bellard, F., FFmpeg, 2001, https://wuw.ffmpeg.org/, accessed in December
2020.

Mondal, A. and S. Chakraborty, “Does QUIC Suit Well With Modern Adaptive
Bitrate Streaming Techniques?”, IEFE Networking Letters, Vol. 2, No. 2, pp. 85—
89, 2020.

Mao, H., R. Netravali and M. Alizadeh, “Neural Adaptive Video Streaming with
Pensieve”, Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pp. 197-210, 2017.

Mao, H., S. Chen, D. Dimmery, S. Singh, D. Blaisdell, Y. Tian, M. Alizadeh and
E. Bakshy, “Real-world Video Adaptation with Reinforcement Learning”, arXiv
preprint arXiv:2008.12858, 2020.

Cui, L., D. Su, S. Yang, Z. Wang and Z. Ming, “TCLiVi: Transmission Control in
Live Video Streaming Based on Deep Reinforcement Learning”, IEEE Transactions

on Multimedia, 2021.

Hong, R., Q. Shen, L. Zhang and J. Wang, “Continuous Bitrate & Latency Control
with Deep Reinforcement Learning for Live Video Streaming”, Proceedings of the

27th ACM International Conference on Multimedia, pp. 2637-2641, 2019.

33.

84.

85.

36.

112

Gutterman, C., B. Fridman, T. Gilliland, Y. Hu and G. Zussman, “Stallion: Video
Adaptation Algorithm for Low-latency Video Streaming”, Proceedings of the 11th
ACM Multimedia Systems Conference, pp. 327-332, 2020.

Xu, J., B. Ai, L. Wu and L. Chen, “Handover-Aware Cross-Layer Aided TCP With
Deep Reinforcement Learning for High-Speed Railway Networks”, IEEE Network-
ing Letters, Vol. 3, No. 1, pp. 31-35, 2021.

Sutton, R. S., A. G. Barto et al., Introduction to Reinforcement Learning, Vol. 135,
MIT press Cambridge, 1998.

Gao, Y., X. Wei and L. Zhou, “Personalized QoE Improvement for Networking
Video Service”, IEEE Journal on Selected Areas in Communications, Vol. 38,

No. 10, pp. 2311-2323, 2020.

113

APPENDIX A: COPYRIGHT INFORMATION

In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Bogazici University’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http:
// www.ieee.orqg/ publications_standards/ publications/ rights/ rights_link.html to learn

how to obtain a License from RightsLink.

