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ABSTRACT

Today, in a variety of application the statistical

characteristics of a system response is important in order for
analysis and model the systems.

In this study, we mainly made an investigation to the
system analyzing and modelling methods. Especially, we
considered Autoregressive Moving Average (ARMA) and Pade'
approximation methods to find the modelled system transfer
function coefficients. There are several algorithms to
calculate these coefficients. In our study we used Modified
Yule Walker Algorithm (MYWE) and AKAIKE algorithms for ARMA and
a new Pade' algorithm developed by Biyiksiz for Pade'
approximation.

When these three methods were simulated, it was seen that
Pade' is mainly less sensitive to the coefficient quantization
error and arithmetic round-off error accumulation introduced
by finite word length. On the other hand it is not a good
approximation for higher orders.It was seen that if the lower
orders were used, Pade' approximation gave really good results
compared to the MYWE and AKAIKE. But these ARMA models also are
not guaranteed to give stable solutions for higher orders. In
some cases for higher or lower order ARMA models produced good
results especially for higher orders. But these orders should
be choosen with one of the methodologies described for model
order selection.

An extension of research was done to the state-space error
sensitivity. When the mentioned errors were investigated for
different representation types of the state~space approach, it
was shown that Pade' algorithm was less sensitive to such
errors especially for some of the representation types.




OZET

Bugiin, pek ¢ok uygulamada sistem modellemesi ve
analizi ig¢in sistem cevabinin istatistiksel karakteristigini
bulmak onem tagimaktadir.

Bu ¢alisgsmada temel olarak sistem modelleme ve analiz\
metodlarini arastirdik. Ozellikle, Autoregressive Moving
Average (ARMA) ve Pade' metodlarini sistem transfer
fonksiyonu katsayilarini bulma ydnlinden inceledik. Transfer
fonksiyonu katsayilarini bulmak igin 1literatlirde pek ¢ok
metod vardir. Bizim'gallgmalarlmlzda ARMA metodunun Modified
Yule Walker equations ve AKAIKE algoritmalarl, ve Biyiksiz

tarafindan gelistirien yveni bir Pade' algoritmasi incelendi.

Bu 1li¢g metod denendiginde, Pade' algoritmasinin
bilgisayarda kullanilan s&zciik uzunlugundan dolayl ortaya
¢ikan hatalara kargi daha az duyarli oldudu gdriildi. Ote
yandan Pade' algoritmasi bazen orijinal sisteme g&re kotil
sonuglar verdi. Dilislik dizeyde 1Usli terim kullanildiginda
Pade' algoritmasi diger MYWE ve AKAIKE metodlarindan genel
olarak daha 1iyi sonug verdi. ARMA ve AKAIKE'den ise
genellikle yiiksek dlizeyde 1lsli terim kullanildiginda daha
iyi sonuglar alinabildi. Fakat bu dizey numaralarinin da
mutlaka geligtirilen dlzey se¢me algoritmalarindan biri

kullanilarak segilmesi gerektigi gdzlemlendi.

Ayrica durum uzayl modellemelerine kargi her iki
algoritmanin buldudu transfer fonksiyonlarinin duyarliligini
inceledik. Arastlrmanln bu kisminda ise farkli durum uzayi
gergekleme tiplerini karsilastirdik. Burada elde edilen
sonuglar Pade'nin hepsinde olmas bile bazi gergekleme
tiplerinde hataya daha az duyarla bir transfer fonksiyonu

liretecegini gésterdi.

-
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1. INTRODUCTION

Advances in technology in last few decades have caused
a revolution in system design. Many functions are implemented
more practically in digital form. So this development has
revealed 1its effect also on the system modelling and
identification. The primary concern of this study is the
research work towards an alternate methodology for rational
linear system modelling and identification.

In many 'applications, the underlying descriptive
signals are inherently continuous-time in nature. If we are to
employ the considerable powers of the digital computer for the
processing of such signals, it is necessary to convert these
signals into a format that 1is compatible with digital
computation. Normally, in many practical situations, the given
measurement can change at any instant of time. These signals
are called continuous-time signals, to .reflect to the
dependence of signal on time. On the other hand, there exists
an important class of processes in which the relevant signals
can change value (or are defined) only at specific inétants of
time. This is usually done by sampling the input signal at
uniformly spaced time intervals.Sucha sequence is called
a discrete-time signal.

Discrete time signals and their manipulation are
inherently well-suited to digital computation and are used in
describing the digital portions of a control system. Most often
continuous time signals are involved in describing the plant
and the interfaces between a controller and the plant its
controls. Signals are further classified as being of continuous
amplitude or discrete amplitude. Discrete amplitude (or
gquantized) signals can attain only discrete values, usually
evenly spaced. For example, an 8-bit binary code can report




only 256 different values. Because of the complexity of dealing
with quantized signals, digital control system design proceeds

as 1f computer-generated signals were not of discrete-~
character.

Although, the study of continuous and discrete time
signals is important and different in its own right, here we
are concerned with investigating procedures where by a given
signal U is changed (transformed) into another signal X in
systematic manner. This information procedure is represented by
the mathematical notation

X=-TU

Figure 1.1. System input-output relation

where T represents some well-defined rule by which the signal
U is changed into the signal X. In this representation U is
interpreted as being the system input signal (or excitation)
and X as a system corresponding output signal (or response).
Such signals can be represented basically by two methods:

1. Definition of signal by means of a mathematical
formula, that is, a closed form expression.
2. Displaying graphically the behaviour of signals.

In many cases, there may not exist a convenient formula
by which a given signal can be described. One is then forced to
use a graphical display in such situations or to represent the



signal implicity as the solution or output of some relation
such as differential equations. Most of the time _ it is very
difficult to obtain the system response calculation in a closed
form.

The Laplace transform method converts time- domain
signal descriptions into functions of a complex variable. This
complex domain description of a signal provides new insight
into the analysis of signals and systems. In addition, The
Laplace transform method often simplifies the calculations
involved in obtaining system response signals. In working with
transfer functions, linear differential equations describing
system operations are transformed into algebraic relations,
thus eliminating‘bbth the necessity of solving the differential
equations using classical technigues and the tedium of
convolution integration.

The Laplace transform of the continuous-time signal
x(t) is

X(s) -_j;x(t)e‘“ dt
(1.2)

designated by the symbol X(s) and is formally defined by the
integration operation. The variable s that appears in this
integrand exponential is generally complex-valued. It is often
expressed in terms of its rectangular coordinates.

S=0+j®
(1.3)

where o=Re{s) and w=Im(s) are referred to as the real and
imaginary components of s, respectively.

For more information one can refer to [1], [2] and [3]
in references.

Oon the other hand, this type of conversion of control
systems is applicable only for continuous time system. The use



of digital controllers revealed another type of regearch which
is discrete~time processing of systems and signals. The =z
transform method is an important tool for analyzing 1linear,
time-invariant, discrete~time systems. The z-transform plays
the same role for discrete-time systems that the Laplace
transform plays for continuous-time systems. In fact, the z-
transform provides a bridge between continuous-and discrete-
time signal processing because the Laplace transform F(s) of
an ideal impulse sampled signal f*(t) is related to the z-
transform F(z) of the discrete-time signal £[nT] by the
transformation z = e*". This transformation maps the left half
plane in the complex s-plane into the unit complex z-plane. The
interior of the unit circle,the unit circle,and the exterior of
the unit circle in the =z-plane have similar meaning for
discrete-time signals as the left half s-plane, jeo axis, and
right half s-plane for continuous-time signals.

Advancements 1in digital computer technology revealed
the enormous potential of computers, and motivated extensive
research to develop sophisticated discrete-time signal
processing techniques. As a result of this advancement,the once
purely theoreticallmethods can be applied in practice. In 1958
Blackman and Tukey'[4] published classic articles describing
how to estimate pbwer spectra from a finite set of signal
samples. Techniéues were also developed for designing
discrete-time filters as they are commonly called, to closely
approximate specified frequency responses. In 1965 Cooley and
Tukey published an article describing an algorithm, now known
as the fast Fourier transform (FFT), for very efficiently
computing Fourier Series at a set of uniformly spaced points
[5]. The FFT changed the approcach to digital power spectrum
estimation and significantly reduced the computation time. It
also made a frequency-domain approach to digital filtering
competitive with the time-~domain difference equation approach.

Estimation of the PSD, or simply the spectrum, of
discretely sampled deterministic and stochastic processes is
usually based on procedures employing the FFT. This approach to



spectral analysis 1is computationally efficient and produces
reasonable results for a large class of signal prbcesses. In
spite o©of these advantages, there are several inherent
performance limitations of the FFT approach. The most prominent
limitation is that of frequency resolution, i.e., the ability
to distinguish the spectral responses of two or more signals.
The frequency resolution in Hertz is roughly the reciprocal of
the time interval in seconds over which sample data 1is
avalilable. A second limitation is due to the implicit windowing
of the data that occurs when processing with the FFT.

These two performance limitations of the FFT approach
are particularly troublesome when analyzing short data records.
short data records occur frequently in practice because many
measured processes are brief in duration or have slowly time-
varying spectra that may be considered constant only for shert
record lengths. In radar applications, for example, only a few
data samples are available from each received radar pulse. In
sonar, the motion of targets results in a slowly time-varying
spectral reSponse due to Doppler effects. .

In an attempt to alleviate the inherent limitations of
the FFT approach, many alternative spectral estimation
procedures have been proposed within the last decade.:The
apparent improvement in resplution.provided by these techniques
have fostered their popularity, even though classical FFT based
spectral estimation has been shown to often provide better
performance at very low signal-to-noise ratios. Even in those
cases where improved spectral fidelity is achieved by use of an
alternative spectral estimation procedure, the computational
requirements of that alternative method may be significantly
higher than the FFT processing required to compute periodogram.
This makes some modern spectral estimators unattractive for
some real-time implementations.

A summary of modellimg techniques are given in Chapter
2. Parametric modelling AR, MA, ARMA and Pade' methods are
explained in Chapter 3. Chapter 4 summarizes the problems when




parametric modelling used. Finally, results are presented in
Chapter 5 and conclusion is given in Chapter 6.



2. SPECTRAL ANALYSIS
2.1.SPECTRAL DENSITY BASICS

2.1.1. Random Process Characterization

A discrete random process x(n) is a sequence of random
variables, real or complex, defined for every integer n. If the

discrete time random process is wide sense stationary (WSsS), it
has a mean

€ [x[n}l-p,

(2.1)
which does not depend on n and an autocorrelation function
(ACF)

k] -& [x* [n]l x[n+k]]

(2.2)

which depends only on the lag between the two samples, not on
their absolute positions. Also, the autocovariance function is
defined as

Coem & [(x* (0] -p5) (x[0+K] ~pt ) |- T (KT -t f7
(2.3)

In a similar manner, two jointly WSS random process x[n] and
y[n] have a cross-correlation function (CCF)

I~ &[x* (n) y(n+k)]

(2.4)

and a cross-covariance function




Cyy (k) = & [(x*(n) ~p*) (y(n+k) -p) J-r o -p% -
(2.5)

The autocorrelation matrix is defined as

r ol r,l-1] - r [ (M-1)]
r,[1] rl0] - r, [-(M-2)]

r, [M-1] r, [M-2] - r,,[0]
(2.6)

The z-transforms of the ACF and CCF, defined as

P (2) =Y rynlKlz*

k=-w

Iay[z]-;z: I, lklz™*

(2.7)
lead to the definition of the power spectral density. When
evaluated on the unit circle P, .(z) and P.(z) become auto-PSD,

P..(f)-P.(exp[j2nrnf]), and cross-PSD, P_(f)=P_ . (exp[j2nf]), or

P (£) =Y 1, [klexp(-2nfk)

k==

B (£)=Y 1, [klexp(-2nfk)

ke

(2.8)

The relationship that the auto-PSD is the Fourier transform of
the ACF as expressed by Eg.(2.8) is sometimes referred to as
the Wiener—Khinchin [6] theorem. The auto-PSD describes the
distribution in frequency of the power of x[n] and as such is
real and nonnegative. The cross-PSD, on the other hand, is in
general complex. The magnitude of the cross-PSD describes
whether frequency components in x[n] are associated with large
or small amplitudes at the same frequency in y[n], and the
prhase of the cross-PSD indicates the phase lag or lead of x[n]
with the respect to y[n] for q given frequency component. Note
that both spectral densities are periodic with period one. The



frequency interval -1 < £ < % will be considered as the
fundamental period. When there is no confusion, P_(£f) will be
referred to simply as the power spectral density (PSD).

A process that is frequently encountered is discrete

white noise. It is defined as having an ACF

T, (k) =628 (k)
(2.9)
where 6(k) is discrete impulse function. This says that each

sample is uncorrelated with all the others. Using Eg.(2.8), PSD

becomes

P (f)=-0%
{2.10)

to be completely flat with frequency. Alternatively, white
noise is composed of equipower <contributions from all

frequencies.
Denoting the system function by H(z)

H(z)-g hinlz™=®

A (2.11)
ftheﬁfoliowing relations for the PSD's follow
- F Hi“{F S 1}&&(2)-H(z)£&x(z)
A P (z)-H*"(1/z*) P, (2)
P, (z)=H(2)H*(1/2*) Py (2) .
(2.12)

if h[n] is real, H"(1/z") = H(1/z). The last relationship in
Eq.(2.12) is particularly important in that it justifies the
interpretation of P, (f) as a PSD. Specifically, the expected
power of the output process y[n] is r, [0].
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2.1.2 The Ergodicity Of The Autocorrelation Function

Estimation of the PSD of an arbitrary WSS random
process requires one to estimate ACF.' A difficulty arises in
that the ACF is defihed as the expectation of xX"[n]lx[n+k]
obtained when averaged over an ensemble of realizations. In
practice, however, only a segment of a single realization is
available. Thus, it is imperative that a single realization of
the random process or the infinite data set x[n] for —o<N<®
be sufficient to determine the ACF. A random process which
has this property is said to be autocorrelation ergodic. In
general, a strictly ergodic process allows one to determine
ensemble averages by replacing them with time averages.
Hereafter, it will be assumed that the measured process is
ergodic in the autocorrelation, so that a time average can

replace an ensemble average.
2.2.SPECTRAL ANALYSIS HISTORY

The emergence of spectral estimavion is based on
Fourier analysis, which typifies é nonparametric approach. In
this approach no specific model is presupposed in formulating
the estimation»problem; The periodogram defines, in a sense,
the frequency contents of a signal:over a finite time interval.
In general,'the periodogram spectral estimate is obtained as
the squared magnitude of the values from an DFT performed
directly on the wide sense stationary time series observation.
This information may, however, be fairly hidden due to the
typically erratic behaviour of a periodogram as a function of
W.

Traditional spectrum estimation, as currently
implemented using the FFT, is characterized by many tradeoffs
in an  effort to produce statistically reliable spectral
estimates. There are tradeoffs in windowing, time-domain
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averaging, and frequency-domain averaging of sgmpled data
obtained from random process in order to balance the need to
reduce sidelobes, to perform effective ensemble averaging, and
to ensure adequate spectral resolution [7], [8]. The spectrum
analysis of a random process is in concept not obtained
directly from the process x[t] itself, but is based on
knowledge of the autocovariance function assuming a zero mean
process as it is explained in section 2.1. In practice, one
does not usually know the statistical autocovariance function.
Thus an additional assumption often made is that the random
process 1is ergodic in the first and second moments. This
property permits the substitution of time averages for ensemble
averages. For an ergodic process, the statistical
autocovariance function may then be equated to

.
. 1 .
I (t) lﬂ—z—TLx(tﬂ)x (tYdt

(2.13)
with the use of above definitions
T 2
p(f)-lim & |-= fx(t)exp(-jzpift) dt
Teees 2T—r :
{(2.14)

The expectation operator ié required since the ergodic
property of R..(t) does not necessarily imply that the Fourier
transform of the process x(t) is also ergodic, this means that
the limit in Eq.(2.14) without the expectation operation will

not converge in any statistical sense.

Attempting to estimate P(f) with the finite data sets
using Eq.(2.14) without taking into consideration the
expectation operation and the limit operation, can lead to
meaningless spectral estimates if no statistical averaging is

performed.
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2.3. CLASSICAL METHODS N

Spectral estimation techniques based on Fourier
transform operations are referred to as classical methods. Here
two of them will be mentioned shortly. These are periodogram
originally proposed by Schuster, and Blackman-Tukey spectral
estimator [4]. The principal conclusion which result from the
study of the classical methods is that the bias o©of the
estimator can be reduced if we are willing to accept an
increase in variahce, and vice versa, but both types of errors
can not be reduced simultaneously.

The periodogram definition relies on the PSD definition
given by

2

M
] 1 ']
P (f)=1im & T3 n_z_M: x[nlexp (-j2n fn)

(2.15)

By neglecting the expectation operator and using the available
data { x[0], x[1],....,%[N-1]1} the periodogram spectral

estimator is defined as
2

N-1
P pen (£) -‘—1]\;7 Y x[nlexp(j2nfn)
"} n-0

(2.16)

It is shown that the periodogfam is an inconsistent estimator
in that even though the average value converts to the true

value as the data record length becomes large, the variance is
constant, as given by

var [Pl (£)] ~ PE(£).
(2.17)

To circumvent this problem the averaged periodogram as defined
by '
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11(—1 :
P/Awm(f)'_fzg Plggz(f) N
-

(2.15)

can be used. For this estimator the data record is segmented
into non-overlapping blocks, which is then followed by an
averaging of the periodograms for each block. The variance is
then reduced by a factor approximately equal to the number of
blocks averaged

var [Py o (£)] = -}-(var [P/® ()],

(2.19)
but the bias is increased. A compromise must then be made
between bias and variance. The confidence interval for the
average periodogram is given by '

2K

+10 log,,

xix(i)
10 10Gyo Paypee (£) - 2
xax(1l-a/2)

2K

-10 log,,

(2.20)

The poorer estimates of the ACF at higher lags is a
result of a fewer number of lag products averaged. One way to
avoid this problem is to weight the ACF estimates at higher
lags less or to use the-spectral estimator. By using the
properties of lag windows spectral estimator can be written as

M
P/ (£) -xz-:x w(k) r’ exp(-j2nfk) .

(2.21)

This is called as Blackman-Tukey (BT) spectral estimator. This
spectral estimator is sometimes called as weighted covariance

estimator. Again a bias-variance trade-off is evident, with

the mean being given by
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1% .
& [Pyr(£)] = [W(E-E) P (E)
7Y
(2.22)
and the variance determined by
2 M
var [Pl (£)] ~ 22 3 o g
N &
(2.23)

The weighting of the ACF estimator will reduce the variance of
the spectral estimator at the expense of increasing bias
(unless the process is white noise for which the bias is zero

for any 1lag window).

The performance of classical spectral estimates at a
given frequency f may be characterized by the stability-time-
bandwidth product inequality

ASATAD1
(2.24)

wherem'AT is the time interval over which data has Dbeen
measured, Af is the resolution in Hertz, and AS is the

stability factor, defined as ratio of the spectral estimate
variance over the spectral estimate mean. In order to have a
stable spectral estimate for a fixed data set of AT seconds
duration, AS must be made small. However, Eq.(2.24) indicates
this can only be achieved b? giving up resolution (accepting a
large value for Af). Thus, spectral estimation involves a
trade-off between statistical stability and resolution.

The conventional Blackman-Tukey and periodogram
approaches to spectral estimation have the following
advantages:

~ Computationally efficient if only a few lags are

needed (BT) or if the FFT is used (Periodogram),

- PSD estimate directly proportional to the power for

sinusoid process,
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- A good model for some applications (The model is a

sum of harmonically-related sinusoids)-

The disadvantages of the conventional Bléckman-Tukey
periodogram approach are

- Suppression of weak signal main-loop responses by

strong signal sidelobes,

~ Frequency resolution limited by the available data

record duration, independent of the characteristics of

the data or its SNR,

- Introduction of distortion in the spectrum due to

sidelobe leakage

- Need for some sort of pseudo ensemble averaging to

obtain statistically consistent periodogram spectra,

- The appearance of negative PSD volumes with the BT

approach when some autocovariance seqguence estimates

are used.

For more information on classical modelling methods one
can refer to the references [9], [10], and [11].

2.4. PARAMETRIC METHODS

Récent trends in the area oflspectral estimation have
been towards the development and use of parametric methods.
Formulation o©f the ©problem in this approach is based on a
"model" and the requirement to estimate the unknown parameters
of the model given a finite set of the time series observation.

Thus, spectral estimation, in the context of modelling,
becomes a three step procedure. The first step is to select a
model. The second step is to estimate the parameters of the
assumed model using the available data samples. The third step
is to obtain the spectral estimate by substituting the
estimated model parameters into the theoretical PSD implied by
the model. One major motivatibn for the current interest in the
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modelling approach to the spectral estimation is the apparent
higher resolution achievable with these modern techniques over
that achievable with the classical techniques explained in the
previous part. The degree of improvement in resolution and
spectral accuracy, if any, will be determined by the ability to
fit an assumed model with a small number of parameters. Any
inaccuracy in the model will result in a systematic or bias
error in the spectral estimate.

The selection of a model and hence a spectral estimate
is intimately related to the identification techniques employed
in linear systems theory. One key feature of the modelling
approach to spectral estimation that differentiates it from the
general identification problem is that only the output process
of the model is available for analysis; the input driving
Process is not assumed available as it is for general system
identification. This restriction precludes the direct
applicatioﬁ of the myriad of system identification techniques
to spectral estimation. On the other hand, based on the ability
to estimate the input process, and both, some system
identification techniques have been developed. One of these
tecﬁniques is Pade' approximation which is the main subject of
this thesis. Pade' approximation is also an important
approximation method because it can be a solution to the
problem of approximating a high order linear system by a lower
order modgl. The exact analysis of most systems of high order
is both tedious and costly. It is always desirable to replace
such a high-order system by a system of lower order. On this
subject there are various methods proposed, but one of the
drawbacks of this algorithm is that the reduced order system
may be unstable (stable), even if the higher-order is stable
(unstable). The details of this approximation method will be
given in Chapter 3.

If we choose to represent our model as a ratio of two
polynomials, three separate categories can be distinguished.
First, an autoregressive (AR), also known as all poles modei,
which is represented by the inverse of a rational polynomial.
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Second, a moving average (MA), also known as an all zeros
model, which is represented by a rational polynomial. third an
autoregressive moving-average (ARMA), also known as both poles
and zeros model, which is represented by a ratio of two
rational polynomials. These modelling subjects with Pade’
approximation is the main idea researched in this study, so the
details of such modelling techniques and their approximation
algorithms are given in detail in chapter 3.

2.5. NONPARAMETRIC METHODS

Apart from the above methods, there are some other
nonparametric methods used for spectral estimation such as
Maximum Likelihood spectral estimation ([9], [10], [111],
Pisarenko Harmonic decomposition [10], [11] and Music technique

[23, [11]. Here, only Maximum Likelihood spectral estimation
will be explained shortly.

2.5.1. MAXIMUM LIKELIHOOD SPECTRAL ESTIMATION (MLSE)

The maximum likelihood estimation (MLSE or Minimum
Variance SPectraI Estimation) falls into the category of a
nonparametric technique iﬁ the sense that no model parameters
are explicitly computed. The original concept was developed by
Capon for frequency-wavenumber analysis [12]. A filter model
analogy will be used to describe this method. The MLSE was
originally developed for seismic array frequency-wavenumber
analysis. In this method, one estimates the PSD by effectively
measuring the power output of narrow-band filters. MLSE 1is
actually a misnomer in that the spectral estimate is not
necessarily a true maximum likelihood estimate of the PSD; it
may more appropriately be termed the Capon spectral estimate
after its inventor. The name MLSE will be retained here only
for historic reasons. The difference between MLSE and
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conventional BT/periodogram spectral estimation is that the
shape of the narrow-band filters in MLSE are, in general,
different for each frequency, where as they are fixed with the
BT/periodogram procedures. The filters adapt to the process
second order statistics for which a PSD estimate is sought. In
response (FIR)types with p weights (taps),

(2.25)

The coefficients are chosen so that at a frequency under
consideration f, the frequency response of filter is unity (
i.e. an input sinuscid at that frequency would be undistorted
at the filter output) and the variance of the output process is
minimized. Thus the filter should adjust itself to reject
components of the spectrum not near £, so that the output power
is due mainly to freguency components close to f.. To obtain
the filter, one minimizes the autput variance o* given by Edq.
(2.26) subject to the unity frequency response constraint 8 so
that the sinusocid of frequency £, is filtered without
distortion). Where R .. is the autocovariance matrix of R_ 1is

the autocovariance matrix of x., and E is the vector

o?-A %R _A
| (2.26)
E¥A-1
(2.27)
E-[ 1 exp(j2nf At)....exp(j2n [b-11£f,AE)1 7
(2.28)

The solution for the filter weights is easily shown to be

R,*E
E*R. IE

xXx

AOPT

(2.28)
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and the minimum output variance is then

At
E¥R_1E

2
0" yv

(2.30)

It is seen that the frequency response of the optimum filter is
unity at f=f, and that the filter characteristics change as a
function of the underlying autocovariance function. Since the
minimum output variance is due to frequency components near f.,
then o%.,.At can be interpreted as PSD estimate. Thus, the MLSE
PSD is defined as

1

Faa (Lol = E*RE

(2.31)

To computé the spectral estimate, one only needs an
estimate of the autocovariance matrix.

The MLSE and AR PSD have been related analytically as
follows. See also reference [11].

1 Ay 1
Py (£) piA P, (£)
(2.32)

lwhere p'e>, _(f) is the AR PSD for an mth order model and P'..(f)
is the MLSE PSD, both based upon a known autocovariance of
order p.

Also a general tutorial summary of spectrum analysis
techniques developed of discrete time series is published by
Kay, S. M. and Marple, S. T. in reference [13],
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3. PARAMETRIC MODELLING TECHNIQUES

Many discrete-time random processes encountered in
practice are well approximated by a time series or rational
function model. The output process of this class of models have
power spectral densities that are totally described in terms of
the model parameters and the variance of the white noise
process. The parameters and white noise variance are obtained
from the autocorrelation sequence through relationships. In
this model an input driving sequence u[n] and the output
sequence x[n] that is to model the data are related by the
linear difference equation.

If the z domain transfer function ¢of the system is
considered, the output function is connected to the input

- X(2)

X(z)=-H(z)U(=2) ~H(z)
Ulz)
Hz) - a,z%+a,z l+a,z %+. ... +a;"”
byz%+b,z'+b,z %+....+b 27"
(3.1)
with cross mﬁltiplication,
.X(z)(boz°+blz‘1+tgz'2+.. ..+bnz-ﬂ)-U(z)(aoz°+a1z'1+azz‘2+-- L ragZz ™)
(3.2)

by using the shifting operation ¢of z domain, when converted to
the discrete time exXpression

me[k]+ng[k-1]+brX[k—2]+....+th[k—n]-aov[k]+alU[k—1]+azUIk;2]+....+anU[k—n]

(3.3)
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Then the output can be found

p q
x[n] -~ - Ea[k]x[n—k] + Eb[k] u[n-k]

k=1 k-0

x[n]= i hik]ul[n-k]
k-0

(3.4)

A time-series model that approximates many discrete-
time determiniétic and stochastic processes encountered in
practice 1is represented by the filter 1linear difference
equation of complex coefficients in which x[n] is the output
sequence of a causal filter that models the observed data and
u[n] is an input driving sequence.This most general linear
model is termed as an Auto Regressive Moving Average (ARMA)
model and is shown in Eq. (3.4). The assumption b[0]=1 can be
made without loss of generality because input u[n] c¢an always
be scaled to account for any filter'gain.

The system function H(z) between the input u[n] and the
output x[n] for the ARMA process of eq. (3.4) is the rational
function

. B(z)
H(z) 2o

P
where A(z)- z-transform of AR branch - E alklzk
k=0

q
where B(z)- z-transform of MA branch = Eb[k] zk
: k-0

(3.5)

It is assumed that A(z) has all its zeros within the unit
circle of z-pldane. This guaranties that H(z) is a stable and
causal filter. wWithout this assumption it can be shown that
%X[n] as given by Eg.(3.4) would not be a valid description of
a WSS {(wide sense stationary) random process.

It is well known that the z transform of the ACF at the
output of linear filter, P..(z), 1is related to that at the
input, P..{(z), as follows:




22

- . . _B(2)B*(1/z")
P (z)=H(z)H*(1/2") P, (2) ‘A(z)A'(l/z‘)ILUQZ)

(3.6)

The input driving process u[n] 1is not dgenerally

available for purposes of spectral analysis. Many things could
be assumed input driving process. It could be a unit impulse,

an impulse train, or white noise. Here it will be assumed that
the driving sequence is a white noise process of zero mean and
variance o®, so that P _.(z)=0%.

As it was mentioned above here we consider three types
of rational parametric modelling approaches. These are
autoregressive (AR), Moving average (MA) and Autoregressive
Moving Average approaches.

3.1. AUTOREGRESSIVE PARAMETRIC MODELLING

The autoregressive (AR) spectral estimate has received
the most attention in the technical literature of all the time-
series models mentioned before. This interest is due to two
reasons. First, autoregressive spectra tend to have sharp
peaks,a feature often associated with high-resolution spectral
estimates. Second, estimates of the AR parameters c¢an be
obtained as solutions to linear equations. The AR parameters
and the autocorrelation sequence are related by a set of linear
equations. Estimates of MA and ARMA parameters, however,
require the solution of nonlinear equations.

The underlying assumption of AR process 1is the
availability of the exact autocorrelation function of the
random process as it was given by its above definition. In
practice, the autocorrelation is usually not available, so one
must make an AR spectral estimate based on the available data.
There are several algorithmic techniques for producing AR
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spectral estimates from data samples. These techniques actually
make estimates of AR parameters, and from there the AR PSD
function may be evaluated. These techniques are divided into
two categories: algorithms for block data and algorithms for
sequential data.

The block techniques may be succinctly described as
fixed-time, recursive-in-order algorithms in the sense that
they operate on a fixed block of time samples and recursively
vield higher-order AR order parameter estimates based on lower
order AR parameter estimates. This is an advantage in the
situations where the appropriate AR model is not known and many
different orders must be tried and compared in order to select

a suitable order.

Conceptually, the simplest_procedure to obtain an AR
spectral estimate from data samples would be to produce
estimates of autocorrelation sequence from the data using
correlation formulas described in the previous chapter. These
autocorrelation estimates would then be used in the Yule-Walker
equations to vield the AR coefficients and from these the AR
PSD function. There are also some other techniques that yield
AR model parameters directly from the data without the need for
autocorrelation estimates. Such as least mean sguare v.s.'
information on these can be found in references and names [9]‘:

The block data techniques considered in this thesis

fall into three categories.

The first one is obtained through the equivalent
representation of either the autocorrelation sequence or the
reflection coefficient sequence. The most common method to
calculate the AR parameters that uses this method is Yule-
Walker method which is used in this thesis to calculate AR
parameter estimates. On the other hand, reflection coefficient
sequence estimation is used by another method which is the Burg
algorithm given in [61, [9].
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An important category of AR parameter estimation
method is based on a least squares linear predictién approach.
Techniques in this category are further distinguished by the
type of linear ©prediction used. They perform separate
maximization of the fofward and backward linear prediction
squared errors [10], [13], [14].

Another class of techniques perform combined
minimization of the forward and backward 1linear prediction
squared errors among which is the modified covariance method
[10], [14].

3.1.1 PROPERTIES OF AR PROCESS

3.1.1.1 Linear Prediction of AR Process

As all other modelling methodologies this technique is
based on the problem of linear prediction which is to predict
the unobserved sample x[n] based on the observed data set (x[n-
1)}, x[n-2], %x[n-3],....,x{n-pl). Assuming a predictor that is
a linear combination of the past samples,

WHITE NOISE +
DRIVING » XN}
scQquence uln] OBSERVED
- SEQUENCE

2.
’ <£>¢_aﬁd<%>4_aa] altl
l e =1 |Z“| ]
R0 23

Figure 3.1.1. Autoregressive model of random process



25

—*Acquire Data

N samples
T seconds/sample

*Select AR Mcaodel

Parameter [P

Estimate AR Parameters
Select one of the fellowing:
= Yule-Walker method
- Burg method
- Covariance method
- Modified Covariance method

rCompute AR PSD Estimate

t—+0Order Closing

Figure 3.1.2. Summary of AR modelling technique

x'[n] -—f: @, x[n-k]
1

(3.7)
the prediction coefficients {a.,,a.,..... ,a.} are chosen to
minimize the power of the prediction error e[n]:

p=&lle [n]P] -&Tlx[n] -2[n]k] .
(3.8)

Although x[n] has specifically been chosen to be predicted, the
optimal prediction coefficients are independent of the value of
n. This is because X[n] is assumed to be WSS, so that the
prediction coefficients, which will be a function of the ACF,
are independent of n.Processing the ortogonality [6] principle
to minimize p we have '

| BsBazicl Duiveasivesi koTOpy !

RS
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g

r(kl1=-Y a,r, [k-1]
=1

or

&lx* [n-k] [x(n) -x'(n)1]-0 k-1,2,....p (3.13)

The minimum prediction error power is found by making use of Eq
(3.1.4) to yield

Py~ € [x™ (n) (x(n)-2(n)))
P
Purn=Toe(0) + Y @, T (k) .
k1
(3.1.4)

The optimal linear prediction coefficients are just the AR
parameters, and the resulting minimum prediction error power is
just the excitation noise variance. This will only be true,
however, if the order of the AR process and the order of the
linear predictor are identical. The prediction error filter

e[n] is
4
u

(a) (e t+alz . +alplzf ~x[n]
T T T e e e — B
Il OFTIMAL LINEAR PREDICTOR [

(b) x{n] " . —“/E?\*l PeEDICTION
11 ] ERRroOR
| + ! elnl=uln]
| |
| |
| ; l
| |
e e e _

Alz)=1+al1]z7+....+ alplz"*

Figure 3.1.3. Filtering interpretation of linear prediction
(a) AR model of order p. (b) Prediction error filter

3.1.1.2. Minimum - Phase Property of Prediction Error Filter

In defining the AR process it has been assumed that all
the poles of 1/A(z) are inside the unit circle. This condition

is necessary to ensure that x[n] is a WSS process. Indeed, if
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eln] =x[n]-x'[n] =x[n] -

D
-y« kx[n—k]}
k=1

D
-x[n]+2:a[k]x[n—k]
k=1

=ulnj].
(3.1.5)

any pole is on or outside the unit circle, the variance of the
X[n)] will be infinite. On the other hand, if the AR parameters
are obtained by solving the Yule-Walker equations, it is not
obvious that the poles will be inside the unit circle. That the
poles are guaranteed to be inside the unit circle follows from
the observation that the optimal pth order linear prediction
coefficients are identical to the AR parameters. With the
latter results it is now shown that the solution of the Yule-
Walker equations yields a stable all-pole filter 1/A(z) or a
minimum phase A(z) if the autocorrelation sequence {r.[0],
r..[11l,....,r..[pl} is a valid one. By valid it is meant that the
(p+1)x{p+1) autocorrelation matrix

r[o] r [-11 ... r,[-p]

‘R,(Dx‘?'fl)_rn[l] I [0] coo I [-(p-1)1

[Pl r,lp-11 ... r,l[0]
(3.1.6)

is a positive semi-definite matrix.

Becausevof the Yule-Walker equations yields the optimal
one~step linear predictor for an AR(p) process, the solution
minimizes

p=&[|x[n]-x'[n))? ]

2

p=-&

P
Y o, x[n-k]
!

(3.1.7)
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where a.,=1. The minimum prediction error power p,., can be

written as

%
pm-f| Alexp[j2nf]) PR (f) df
“w

(3.1.8)

3.1.1.3. The Levinson Algorithm

The solution of the Yule-Walker equations for an AR(p)
process was shown to produce the optimal one-step 1linear
prediction coefficients. One can use any standard method to
solve the set of linear equations. For instance, Gaussian
elimination could be used but would require 0O(p*) operations.
The Yule-wWalker egquations, however, are a special set of
equations which can be solved in 0{p®) operations by the
Levinson algorithm. Although appearing at first to be just an
efficient computational algorithm, it in fact reveals
fundamental properties of AR process. The concepts of
reflection ¢oefficient representations and lattice filters ail
have their origins in the Levinson algorithm. To make these
connections apparent, it becomes necessary to employ a vector
space approach to optimal prediction

The Yule-Walker or Wiener-Hopf equations are now
rederived using a vector space viewpoint. Let the linear vector
space be composed of random variables with zero mean. The inner
product is defined as

{x,y>=&(x*y)
(3.1.9)

so that the squared norm of a vector is

IxP=<x, x> =& xP) =var(x) .
(3.1.10)
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The linear prediction probiem is to find the optimal set of
coefficients {a[1],a[2],...,a[p]} such that i

x' [n] -—i a[k] x[n-k]

k-1
(3.1.11)

is the "best" predictor of x[n] given {x[n-1],x[n-2],...,%Xx[n-
pl}. In anticipation of the result that the linear prediction
coefficients are equal to the AR(p) parameters, al[k] has been
used to denote the prediction coefficients, the mean square

error

p=& (Ix[n] -x'[nl1?) Ix[n)-x'[n]l 2
(3.1.12)

is minimized. By the orthogonality principle, the optimal
predictor is found by requiring the error vector x'[n]-x [n] to
be orthogonal to the supspace spanned by {x[n-1], x[n-2],

L

x[n-pl} or

(x[n-k] ,x[n] -x'[n])=0 k=1,2,....p
(3.1.13)

By using Eg(3.1.11) in Eg(3.1.13) and standard properties of
inner products, we obtain

<x[n-k],x[n]+§5a{l]x[n—l]>-0
-1

(3.1.14)

f&a[l](x[n—k],x{n—l])——(x{n—k],x[n]).
-1

(3.1.15)

Evaluating the inner products as

f: alll &(x*[n-klx[n-1])=- & (x*[n-klx[n])

=1
(3.1.16)
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result in

b
Y alllr, [k-11=-r,[klk=1,2,...,p. ~

1-1

(3.1.17)

To find the minimum prediction error power,we begin with

P yum— (X[n]l-x[n},x[n] -x[n})
- (x[n] , x[n] -x'[n]) - (x'[n] ,x[n]-x'[n])
(3.1.18)
But <x'[n], x[n]-x'[n]>=0 from Eg(3.1.13), then simply p... Can
be obtained,

P
P uzy-<x[n],x[n]>+Y" alkl<x[n],x[n-k}>
k1

(3.1.19)

,
Purv T [01+Y alklr [-k].
1
(3.1.20)

Eq (3.1.18) and Eq (3.1.19) are the Yule-Walker equations. The
solution of Eg.(3.1.18) provides the optimal set of
coefficients to predict x[n] as a linear combination of {x[n-
1]1,x[n-21,...,X[n-p]} (i.e.,the optimal pth order linear
predictor). If we wish to determine not only the pth order
iinear predictor but also the linear prgdictors of orders p -
1, p-2,...,1, one possibility is to solve Eg.(3.1.19) for the
various assumed model orders. The result will be sets of
prediction coefficients {[a,[11}, <{a.f[1}, a.[2]1} ,..., {a.[1l]
,a.121 ,..., a.[pl}, where a,[i] is the ith coefficients of the
jth order linear predictor. Clearly, a.[i]=a[i] for i=1,2...,P.
This procedure, although straightforward, proves to be
computationally burdensome and is altogether unnecessary. An
alternative approach is to recursively update the predictor of
order k-1 to order k. This requires that we perform a Gram-
Schmidt orthogonalization of the data {x[n-1],x[n-2],...x[n-pl}
into orthogonal or uncorrelated random variables. To see how
this is done, let x'...[n] be the optimal (k-1)st order linear
predictor of x[n] based on the previous k-1 samples or
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k-1
X, [n] --; a,, [11x[n-1]. -
-1

(3.1.21)

The subscript on x'[n] indicates the number of
previous samples used in the prediction. Consider a first order

linear predictor so that k-1=1. Then

x/, [n] --a, [1]1x[n-1]

(3.1.22)
and a,[1] is found by minimizing
p,-lIx[n] -x/, (n]lR.
(3.1.23)
’ . :b Ib
(a) x[n] X, (n]=£¢& [n-1],x{n] > & [n-1)
| ¢ b -
xCnl -X,[n] o xCn-1]
_JI & (-1 IxLn-1]1l
x;[n]  x(n-1]
x[nl
(b) |
b l b
e, (n-1 | e, [n-1]
I /
® | / b b
el -1 | , < e, [n-1],x[n-215€, (n-1]
} // X,=[n-2 =X[n-21n-1] -
Xx,Cnl |/
X[U'U )'(2 [ﬂ]
OPTIMAL
PREDICTOR

Figure 3.1.4. Vector space interpretation of linear
prediction (a) First prediction (b) Second order predictor



32

The solution, depicted geometrically in Figqure 3.1.4a, can be
obtained using the orthogonality principle as

(x[n-1),x[n) -x'[n])=0

(3.1.24)
which yields
—_ _(x[n-11,x[n])
2, [1] (x[n-1] ,x[n-1])
(3.1.25)
so that
/ __(x[n-1],x[n])
x'y [n] (x[n-11, x[n-11)
(3.1.26)
Now let
/b 1. x[n-1]
M iy
(3.1.27)

e.”[n - 1] is a zero-mean random variable with prime . denoting
that it is also unit variance. A quotation mark will henceforth
denote a random variable that is "normalized" or has unit
variance. The "0" subscript and "b" superscript are explained
below. The optimal first order predictor then becomes, from
Eg.(3.1.26).

<x[n-1],x[nl> x[n-1]
Ix{n-1]1 bc[n-211

x!', [n] =

x', [n]-<e’®[n-11,x[n]l>e”t [n-1]
(3.1.28)

It is seen thét the optimal first order linear predictor is
found by projecting x[n] along the x[n - 1] "direction," where
the "unit vector® along the x[n - 1] direction is e~ [n -1].
Now consider a second order or updated linear predictor
with kX - 1=2: x.'[n]==-a.[1]x[n~-1]-a.[2]x[n-2]. '

Referring to Figure 3.1.4b,we observe that x[n-2]} is in
general not orthogonal to x[n-1]. This means that x[n-2] is
correlated with x[n-1]1, so that not all of the information
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provided by x[n-2] about x{n] is new information. The optimal
predictor x.'[n] can be decomposed into the sum of two vectors
in orthogonal directions. One of the directions has already
been specified by x[n-1]. The second direction will be that
which is orthogonal to x[n-1]. The optimal second order
predictor combines the first order predictor with the best
prediction of x[n] based on the new information provided by
x[n-2], or

x/, (n]=x', [n]+ best prediction of x[n] based on part of
x[n-2] in new orthogonal direction _
(3.1.29)

To find the new information of part of x[n-2] orthogonal
to x[n-11, recall that if we "predict" x[n-2] based on x[n-1],
the error will be orthogonal to x[nfl]. Let x'[n-2in-1] be the
prediction of c[n-2] based on x[n-1] and let e®,[n-1] be the
error. Then,referring to Figure 3.1.4b, we have

el=x[n-2]-x'[n-2ln-1]

-x[n-21-<e[n-11,x[n-21>e't[n-1].

(3.1.30)

X'[n-2In-1] is called the backward prediction since it is an
estimate of x[n-2] based on the future sample x[n-1].
Alsc,eﬂ[n—l] is called the backward prediction error of order
1. The subscript denotes the order of the prediction error or
number of - future samples used in the prediction. The b
subscript has been added to distinguish it form the wusual
forward prediction error. The (k-1)st order forward prediction
error, X' [n]l-x...[n], will be denoted by e'...,[n]. From Figure
3.1.4b, e*[n-1]1 is orthogonal to x[n-1] and so represents the
new information in x[n-2] about x[n] not already provided by
x[n-1]. For this reason e=[n-1] is sometimes referred to as the
innovation.

If e*,[n-1] is normalized.
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e® [n-1 -
e’i’[n—l] -.___i__]
le? [n-1]1
(3.1.31)
then, from Eq.({(3.1.29),
x/,[n]-x’, [n] +<e’2[n-1] ,x[n] >e’?[n-1].
(3.1.32)

The evaluation of the inner products will produce the
equivalent from
x!,[n] --a, [1]1x[n-1] -a,x[n-2] .
In general, if x,[nl=x',_,[n)+<e’l  [n-1]1,x[n]>e'l  [n-1]

(3.1.33)

where e'"._,[n-1] is the backward prediction error if x[n-k] is
predicted on the basis of {x[n-(k-1),x[n-(k-2)]1,...,x[n-11}.
See Figure 3.1.5 for an illiustration.

FORWARD FREDICTION

SAMPLES USED TO PREDICT
x{n] 2 x, (n], e: (nJ
ey

BACKWARD PREDICTION:
SAMPLES USED TO PREOICT
X[n-5] = e: [n-1]

Figure 3.1.5. Illustration of forward and backward
prediction

Note that e™._,[n-1] has been defined so that the time
index n-1 refers to the latest sample used in the prediction,
not to the sample to be "predicted". Using Eg.(3.1.43), the kth
order predictor becomes |



35

k1 , .. <e? _,[n-11,x[n]>
x'  [n] -—12-; a,,[ilx[n-i]+ Ijrei’k_l —F
(3.1.34)
Now let
k, - - <eb _, [n-1],x[n]>
le?, . (n-1]IP
(3.1.35)

Where k. is termed the kth reflection coefficient. The backward
prediction error may be written explicitly as

[ k-2 ]
ey [n-1]1-x[n-k] -[-; b, [1] x[n—l—i]J
-0

(3.1.36)

where b,_,[i] are the optimal backward prediction coefficients.
If we define b._,[k-1]=1, the backward prediction error becomes

k-1
e?, . [n—l]-; b, lilx[n - 1 - i].
-0

(3.1.37)

substituting Eq.(3.1.35) and Eqg.(3.1.37) into Eg.(3.1.34)
result in

k-1 k1
x! [n] - - Z; ap,[i1x[n - i] - k, g; by, [ilx[n - 1 - 1]

(3.1.38)

which must be identical to

k

x/ [n] -—; a lilx[n - i].
1
(3.1.39)

The optimal prediction coefficients for the kth order predictor
will be the sum of the coefficients for the (k-1) st order
predictor and a correction term due to kb...[i].

The relationship between the backward prediction, is
based on k-1 future samples, and the forward prediction , is
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based on the k-1 samples, an example of which is shown in
Figure 3.1.5. Considering n=0 for siplicity, ‘in forward
prediction we predict x[0] based on {x[-1],x[-2], ..., X[=-(k-
1)]}, while in bacward prediction we predict x[-k] based on
{x[-(k-1), x[-(k-2)1, ;..,x[—l]}. The two problems are nearly
equivalent except for the reversal of time, so that it is not
surprising that the optimal bacward prediction coefficients are
the same as the optimal forward prediction coefficients except
reversed in time and complex conjugated. This relationship is
also apparent if we consider the coefficients of the forward
and backward AR models it is now shown that

by,lil-a*, lk-1-41 1-0,1,...,k-1

(3.1.40)

The optimal backward predictor coefficients are used. An
explicit form for the kth order prediction coefficients

k-1
x'eln]--%" a,, [ilx[n - 1] - k; (x[n-K]
. 1-1
k-2
+y a*, , [k -1-i]x[n - - 1]
5 2

--E (@ [1] +kea®, [k-11) x[n-11-kyx[n-k] .

i=-1

(3.1.41)
For details refer to [6]. Also, it may be expressed as

k

2, [n] --?: a;[ilx[n - 1]
-1

(3.1.42)

and consequently, equating the two expressions yields

o {ak_l[i]+kka*k_1[k—i] i=1,2,...,k-1
ak[l]' s

(3.1.43)
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Equations Eg.(3.1.43) are the model order update relations for
the prediction coefficients for the kth order'predictor. Note
that the new coefficients are computed recursively based on the
coefficients of the previous lower order predictor and the new
reflection coefficient. Also, the a.[k] coefficient is just the
reflection coefficient.

To complete the recursion of Eqg.(3.1.43), we need to
compute the reflection coefficient sequence. From Eq.(3.1.34),

<eb, ,[n-1],x[n]>
te?,_, [n-11F

kk--

(3.1.44)

Then using Eq.({(3.1.37) ,Eq.(3.1.40) and the orthogonally
principle. The reflection coefficient is found to be

k-1
T (K1 +Y ey, [ 1, [k-1]
=

K=~ x-1

T o) +; a,,[ilr[-1]
-1
(3.1.45)

Note that the reflection coefficients depend on the ACF as well
as the lower order PEFs.

The Interpretation of k. is as a correlation coefficient. The
first step in making this correspondence is to realize that

le?, , [n-111P
(3.1.46)
, which is the prediction error power for the (k-1)st order

backward prediction is the same as that for the (k-1)st order
forward prediction.

le?, , [n-11P-lef, , [n-1]1B-lef,, [n1F-p,. .

(3.1.47)

This is the consequence of the hermitian symmetry property of
the ACF of a WSS process.
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From Eq.(3.1.35) and Eg.(3.1.47),

_<eb_ [n-1],ef, [n]> .
lef, , (a1l le®,, [n-11l

k=

- cov(e® , [n-1],e%_,[n]) (3.1.48)

yvar (e’ . [nl) \var(e® ,[n-11)

Where cov denotes the covariance. k. is bounded by 1 in

magnitude by the Cauchy-Schwartz inequality. The reflection
coefficient is readily seen to be the negative of the
correlation coefficient between the forward and backward
prediction errors.

Finally, to complete the development of the Levinson
algorithm, the simple recursive expression for p. , the
prediction error power for the kth order linear predictor,

P (1 - kP Prs
(3.1.49)

is derived. From Eq.(3.1.33) and Eg.(3.1.35) the kth order

linear predictor may be written as

x! [nl-x/; ,[n] - ke? _,[(n-1].

(3.1.50)

Adding -x[n] to both sides of this expression produces

e_fjc (n]l-ef_,[nl+ke? ,[n-11.

(3.1.51)

Using standard properties of inner products and Eq.(3.1.47), we
have
p ~le £ [n]F
=<e fk_1 [n] +kk9 bk_l [n-1],e fk_l [n] +kke bk_l [n-1]>
-ppitk<ef [nl, e, [n-11>
+kp<eg, n-11, e, [0l >-k,p, 4
(3.1.52)

But from Eg.(3.1.47) and Eq.(3.1.48)

<e bk_l [n-1],e fk_l [n] >-—kkpk—l

(3.1.53)
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which upon substitution in the equation above result 1in
Eq.(3.1.49). As expected, the prediction error power decreases

as the order of the predictor increases (assuming that k., # 0)

and is nonnegative since |k.i<1.

In summary , the Levinson algorithm recursively
computes the parameter sets {a,[1]),p,}, {a.[1],a.[2], P2},....,
{a.{1], a.[2], ..... , a.[p], p.}. The final set at order p is the
desired solution of the Yule-Walker equations. If x[n] is an AR
(p) process, then a.[i]= a[i] for i=1,2,...,p and p*=c?*, as
described 1in section 3.1.1. The recursive algorithm is
initialized by
r,f[1]

r,[0]
p,-(1 - la, [2]1P) r, (0]

al [1] -=

(3.1.54)
with the recursion for k=2,3,...,p given by
k-1
7, [K] +>: ag, (111, [k-1]
ak[k] - - 1=1
Px-1
(3.1.55)
a,l(il-a,  [il+a,(kla*, , [k-1] i=-1,2,...,k-1
(3.1.56)
pk" (1—|ak [k]P) pk—l

(3.1.57)
The reflection coefficients are given by k. = a.[k]. The

Levinson algorithm is summarized in Figure (3.1.6) The form of
the algorithm given in Eq.(3.1.55)-(3.1.57) due Toeplitz set of
equations, who refined the algorithm to take advantage of the
special form of the right-hand-side vector. It is important to
note that {a,[1], a,[2],...,a,[3],ps}, @as obtained from the
Levinson algorithm is the same as would be obtained by solving
Eq.(3.1.4) and Eqg.(3.1.5) with p = j. The algorithm provides
the AR parameters for all lower order AR model fits to the ACF
as well as the desired model. This is a useful property when we
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do not know a priori the correct model order. Using the
Levinson recursion, successively higher order models can be
generated until the modelling error p. is reduced to a desired
value. If the process is actually an AR(p) process, then
a...[k]=a.[k] for Kk=1,2,...,p and a..[p+1]=k...=0. In general,
for an AR (p) process, a.[k]l=k.=0 for k>p and hence p.=p. for
k>p. This says that the variance of the excitation noise in the
model is a constant for a model order equal to or greater than
the true order. Hence the point at which p. does not change
would appear to be a good indicator of the correct model order.

INITIALIZE RECURSION
a,[1]=-r, (11, (o
Ry = (1-1a,013{2) i Lol

LEFT ORDER BE k=2

LEVINSON kQECURﬁION
-f
,;(x[k]+9§l Gk_f[Q]Gx [/(—‘?]

Qk[k]: - &-'
aLid = Gy [0+ a, [KkI O k-]
= 1.2, e, k=1

Ro=(1-1a,tkI*) i

INCREASE ORDER BY 1

IF ORDER = p+{, EXIT

Figure 3.1.6. summary of Levinson recursion
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The property that

la, [k11 - <1

(3.1.58)
leads to
pk+1$pk

(3.1.59)

k-1

Tolk1+Y ap, (111, [k-1]
ak[k] - 1=-1
Px-1
ak[i]-abi[i]+ak[k]a'b4[k—i] i=-1,2,...,k-1
P (1-lay (KIF) py ,

(3.1.60)

which furthermore implies that p. first attains its minimum
value at the correct model order.

k-1
(3.1.61)

for some k, the recursion must terminate since p.=0 . This case
will only occur, however, if the process consists solely of k
sinusoids.

3.1.2. AR PARAMETER AND PSD CALCULATION TECHNIQUES

There are various methods estimating AR parameters,

here only a few of them which are related to our research will
be expressed briefly.

3.1.2.1. Autocorrelation Method
As usual, it is assumed that the data { x[0], x[1l]

.,X[N]} are observed. The AR parameters are estimated by
minimizing an estimate of the prediction error power
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p’-—lﬁ Y | x[n]+Y alklx[n-k] -
n--w k-1

(3.1.62)
The samples of the x(n) process which are not observed (i.e.,
those not in the range 0 £ n < N-1 are set to zero in
Eqg.(3.1.62). The estimated prediction error power is minimized
by differentiating Eg.(3.1.62). with respect to'the real and
imaginary parts of alk]'s. This may be done by using the
complex gradient to yield

_llv E (x[n]-rzp:a[k]x[n—k] x*[n-1]=0 1-1,2,...,P
=1

(3.1.63)
In matrix form this set of equations becomes
r [0 r,0-1] - r.[-(p-1)1}a/[1] 7, [1]
r[1] I,,[0] - r,[-(p-2)]]a’[2] o r’[2]
I lp-1] rnlp-2]1 - 1,01 Ja’lp] /o [D]
(3.1.64)
where
L Pk ?
. — x*[n] x[n+k] for k=0,1,....p
rl (k)= N'g; :
= [-k] for k=-(p-1),-(p-2),....,-1
| (3.1.65)

which is recognized as the biased ACF estimator. The matrix in
Eg.(3.1.64) is hermitian (r..' [-k]= r"..[k] ) and Toeplitz, and
furthermore cah be shown to be positive definite. The
alternative Yule-Walker method is due to the equivalence of the
autocorrelation method to the use of the Yule-Walker equations
with a biased ACF estimator. As such, the Levinson recursion
may be used to solve the equations and the resulting estimated
poles are guaranteed to be within the unit circle by the
minimum-phase theorem.

The estimate of the white noise variance o is found as
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p' ~ns Which is given

2 -

,2- I -
O =P yry

p
=—| x[n]+Y a' [kl x[n-k]
E k=1

1
olz_p/m_Tv E

D=~

p
+(x[n] +E a’[k] x[n-k] zp: a*[1] x* [n—l]}
=1 -

(x[n] +ki a’ (k) x[n-k] ]x* [n]

-1

(3.1.66)

From Eg.(3.1.64) the second term in the summation over n is
zero, leading to the final result that

P
o=r/ [0]1+Y a'[K]lr/, [-k] .
=1
(3.1.67)

o*' may also be found in the 1last step of the Levinson
recursion as the 1i'th order prediction power or in the
alternative form as

D
Par! (OTT] (2-[K %)
¢ ],-Il &’ 4
{(3.1.68)

where k,' 1is the estimate of the 1i'th order reflection
coefficient generated within the Levinson recursion,. The
autocorrelation method given the above formulas are implemented
in Pascal programs are given in the Appendix A of this thesis.

The autocorrelation method has been found to produce
poorer resolution spectral estimates than the other estimators.
For this reason it is not usually recommended for short data
records. A variant of this approach is to use the unbiased
autocorrelation estimator in the Yule-Walker egquations. With
this modification it may be shown that the autocorrelation
matrix in Eqg.(3.1.64) 1s no longer guaranteed to be positive
definite.As a consequence, of this spectral estimators exhibit
a large variance. The use of the unbiased ACF estimator is
therefore not recommended.
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3.1.2.2. Covariance Method

The covariance method was derived for real data as an
approximate MLE. For complex da;a the analogous estimator may
be found by minimizing the estimate of the prediction error
power

1 N-1 : P 2
pl= —— x[n]l + Y alkl x[n-k] | .
k1

N-p =%
(3.1.69)
Note that the only difference between the covariance method and
the autocorrelation method is the range of summation in the
prediction error power estimate. In the covariance method all
the data points needed for computation have been observed. No
zeroing data is necessary.
The minimizing of Eg (3.1.55) may be effected by
applying complex gradient to yield the AR parameter estimates
as the solution of the equations.

Cxx[lll] cﬂ[llz] Cxx[llp] a/[l] C;“[]-IO]
c, 2,11 ¢,02,2] ~ c,[2,p1]|a’[2] _|ex(2, 0]

Cyu[D:1] i [P, 21 - e (p.pPl||a’[p] Cux [P, 0]

(3.1.70)
where
N1
Coc [T KT = I,l—p- n}; x*[n-71 x[n-k].
(3.1.71)

the white noise variance is estimated as

P
07 = plym = G [0,0] + Y a/[k] ¢, [0,K].
=

(3.1.72)
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The matrix in Eq.(3.1.70) is hermitian {c..[k,jl={(c™.[J,k]) and
positive semi~definite. It may be shown to be sinéular if the
data consist of p-1 or fewer complex sinusoids. Any equations
may be solved using the Cholesky decomposition, but the
estimated poles using the covariance method are not guarantied
to lie within the unit circle.

As implied from the definition, c¢..[Jj,k] is readily
seen to be an estimate of r_..[j-k], although a different
estimate than that encountered in the autocorrelation method.
c..[7,k] uses the sum of only N-p lag products to estimate the
ACF for each lag even though more are available. As an example,
in the estimation of r..(0) the biased auto-correlation
estimator of the autocorrelation method uses all N data points,
while the covariance method uses only N-p data points in the
summation. For large data records in which N»p, these "end
effects" are negligible and consequently, the autocorrelation
and covariance methods will yield similar spectral estimates.
A second contrasting feature is that for data consisting of
pure sinusoids the covariance method may be used to perfectly
extract the frequencies. This property is not shared by the
autocorrelation method. Methods to estimate sinusocidal
frequencies as described more fully are based on the covariance
method. For detailed information one can refer to [6], [9],
[14].

3.1.2.3. Modified Covariance Method

For an AR(p) process the optimal forward predictor is

x' [n] -—i al[k]l x[n-k]

k-1 )
(3.1.73)
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while the optimal predictor is

x'[n] -—f: a*[k] x[n+k]
=1

(3.1.74)

Where the alk]l's are the AR filter parameters. In either case
the minimum prediction error power is just the white noise
variance o.. The modified covariance method estimates the AR
parameters by minimizing the average of estimated

p/__lzl_ (p!f+p'?)
(3.1.75)
where
1F. p 2
[n]+) alklx[n-k]
N pn-p k}-::: '
D 2
E [n]+Y a* [kl x[n+k]
k=1
(3.1.76)

As in the covariance method the summations are only over the
prediction errors that involve observed data samples. Note that
an alternative way of viewing this estimator is to recognize
that p! is the prediction error}power estimated obtained by
"flipping the data record" and comﬁlex conjugating and applying
a forward predictor to this new data set. In this manner we
obtain some extra data points and hence more prediction errors
over which to average. Note that for any set of al[k]'s the
forward and backward prediction error estimates will be
slightly different due to the range of the summation.

To minimize prediction error power, we can
differentiate the error power to the real ahd imaginary parts
of a[k] for k=1,2,....p. By taking the advantage of the complex
gradient relationship it yields
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-1

dp’ 1 P i -
aaf[’l] - N_p[E [x[n] +Y alklx[n-k] ]x [n-1]

II-p k-1

N-1-p
pes

+ Y (x“ [n] +i alk] x* [n+k] ]x[ml]]
k-1

-0

=0 l-1,2,,...p
(3.1.77)

After some simplification this becomes

P N-1 N-1-p
Y a'lkl| Y x[n-klx"[n-11+ Y, x"[n+k]lx[n+1)
=1

n=p n-0

N-1 ' N-1-p
-—(E x[n]x*[n-11+ Y x*[n] x[n+l])

n=-p n-0

for 1-1,2,...p. Letting

1 N-1 . N-1-p .
cxx[]:k] 'm ,g;;x' [n-7lx[n-k]+ n-Eo x[n+j]l x* [n+k]

(3.1.78)
The equations for finding parameters can be written in
identical matrix form as

Cxx[llll cxx[lrzl cxx[lrp] a,[l] Cxx[llo]

Cm[z,l] Cxx[zlzl e Cxx[zlp] a/[2] _ Cxx[zlo]

Cu [P, 1] P, 2] oy [P, Pl |a’ (p] Cyx [P, 0]
(3.1.79)

The estimate of the white noise variance is

-1

12 ol _—1___ 2 ! - .
i [E (x[n] +);1a [k]x[n k])x [n]

a=p
N-1-p P
+ E (x" [n] +E a’[k] x* [n+k) ]X [n]
n-0 k-1

(3.1.80)
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finally,

? - c,[0,0]+ f:a’[k] Cpe [0, K]
1

(3.1.81)

The modified <c¢ovariance method appears to vyield
statistically stable spectral estimates with high resolution.
For more information on this one can refer to [6], [9]1,[14].

3.1.2.4. Burg Method

In contrast to the autocorrelation, covariance, aﬁd
modified covariance methods, which estimate the AR parameters
directly, the Burgvmethod estimates the reflection coefficients
and then uses the lLevinson recursion to obtain the AR parameter
estimates. The reflection coefficient estimates are obtained by
minimizing estimates of the reflection coefficients
{k.,k.,....k.} are available, the AR parameters may be estimated
as follows: '

N-1
r/p (012 Y Ix [l

n-0
a’[1]-k’';
p/-(1-la’, [11B) 2/ (0] .

. (3.1.82)
For k=2,3,...p,

a,[i1+k’ a’™** k-1l for i=1,2,...k-1

a’ [i] =
x k', for i=k

(3.1.83)

For detailed information one can refer to [6]1, [9], [12], [13].
3.1.3. Model Order Selection’

The selection of the model order in AR spectral
estimation is a critical one. Too low an order results in a
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smoothed estimate while too large an order causes spurious
peaks and general statistical instability. Many tecpniques have
been derived by statistical analysis of real data. It is
probable that these model order estimators may be applied
directly to complex data; however, the extensions to complex
data are not available.

For data observed from a pure AR process the model
order estimators produce acceptable spectral estimates if the
data record length is not extremely short [15]. It has been
observed that for noise corrupted data the AR model order
chosen is usually not sufficient to resolve spectral details.
Of course, the true AR model for noisy data is of infinite
order so that this result is not unexpected. It should also be
emphasized that different estimates of the model order will be
obtained if different AR parameter estimators are used in
conjunction with the same model order estimator. No detailed
studies are available which assess the spectral estimation
performance of the various AR spectral estimators when the
model order must be estimated in addition to the AR parameters.
In comparing the strengths and weaknesses of the missing phose
model order estimators, we should keep in mind that it is the
guality of the spectral estimate, which is of importance. For
example, an estimator that underestimates the trueiAR model
order for broadband PSDs, which are smooth in appearance may
well be preferable to one that indicates the true ordefs of the
broadband AR process but which, when combined with an AR
parameter estimator, gives rise to spurious peaks. This
situation is possible if, for example, the data record is
short.

Nearly all model order estimators are based on the
estimated prediction error power. The estimated prediction
error power is gquaranteed to decrease or stay the same as the
model order increases for all the AR parameter estimation
methods described. Hence we cannot simply monitor the decrease
in power as a means of determining model order but must also
account for the increase in variance of a spectral estimate
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based on an increasing number of parameters. Two methods
proposed by Akaike adhere to this philosophy. The fist one,
termed the final prediction error (FPE), estimates the model
order as the value that minimizes

N+k

FPE[k]- N—kp k

(3.1.84)

where p'. 1s the estimate of the white noise wvariance
(prediction error power) for the kth order AR model. It is seen
that whereas p, decreases with k, the term (N + k)/(N - k)
increases with k. The FPE is an estimate of the prediction
error power when the prediction coefficients must be estimated
from the data. The term (N +Kk)/(N - k) accounts for the
increase in the variance of the prediction error power
estimator due to the inaccuracies in the prediction coefficient
estimates.

A second criterion, which appears to be in more general
usage, is the Akaike information criterion (AIC). It is defined
as

AIC(k] - N1ln p/, + 2k,
(3.1.85)

As before, the order selected is the one that minimizes the AIC
is an estimate of the Kullback-Leibler [15] distance between an
assumed PDF and the true PDF of the data. The method is not
limited to AR model order determination but may be used more
generally for -choosing a model among competing models.
Consequently, the AIC is useful for MA and ARMA model order
determination.The performance of the AIC and FPE is similar.
For short data records the use of the AIC is recommended. For
larger data records ( N » o ) the two estimators will yield
identical model order estimates since they are functionally
related to each other.
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3.2. MOVING AVERAGE (MA) MODELLING

MA models are appropriate for processes that have broad
peaks or sharp nulls in their spectra. Since the MA is based on
all-zero model of the data,it is not possible to use it to
estimate PSDs with sharp peaks. Because the MA spectral
estimator is not a high resolution spectral estimator for
processes with narrowband spectral features, investigations of
its properties have been somewhat limited.

In the following most general ARMA model, without loss
of generality, we can assume that all a[k] coefficients except
a[0]=1 for ARMA parameters,

x[n] --kfj a K] x[n-K] +§’% bk uln-k]
1 (3.2.1)
then,
x[n] -kij blk]uln-k]
0 | (3.2.2)

and the process is strictly an MA process or order ¢, and
Pm(f)-ole(f)l2

(3.2.3)

This model is sometimes termed an all-zero model and is show in
Figure (3.2.1).
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WHITE NOISE
DerwinGg
SEQUENCE 1 m
uln] Z 2]
1 _GD bl1] bL2] .blq]
2
x{n]
OBSERVED
SEQUENCE

Figure 3.2.1. Moving Average model of random process

A flowchart of algorithm to estimate the MA parameters from a

sample sequence is illustrated in Figure below.

+ Acquire Data

H sanples
T seconds/sanple

Select MA model order

Parameten IQ

Estimate MA parameters

Compute MA PSD Estimate

— Order Closing

Figure 3.2.2. summary of MA modelling technique

When it is assumed that x[n] is an MA(g) process, the
problem is to estimate {(b[1], b[2},....blg],c*}. For reliable
estimates of the MA parameters the MLE will be employed.
Equivalently, we c¢could obtain the MLE's for <{r..[0]),
r.[1],..... , r..[a]l} and calculate PSD using above formula. In
the following part approximate MLE's for the MA parameters and
the MA PSD are described. The algorithm, first converts
the MA(gq) process into an AR process and then uses the Yule-

Walker equations to estimate the MA parameters.
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3.2.1 MAXIMUM LIKELIHOOD ESTIMATION: DURBIN'S METHOD

Durbin's method is an approximate MLE. It is derived for
real data, but the extension to complex data is straightforward
and is given. The first step is to replace the MA(q) process by
an approximate AR(L) process. An MA process

a
x[n] -E blk]luln-k]
=5

(3.2.4)
is equivalent to the AR(w) process.
x[n] -—Z alk]l x[n-k] +uln]
k-1
(3.2.5)

if a[k] is the impulse response of 1/B(z). This is immediately
observed if we let

1
H(z)=B(z) A(a)
(3.2.6)
so that
1
A(z) BT "
(3.2.7)

If the impulse response of 1/B{z) has decayed to zero for an
index greater than L, then an AR(L) process will be a good
approximation to the MA(gq) process. Now instead of considering
the likelihood function for the data directly, we can use the
likelihood function for the AR parameter estimates. This is
because the usual AR parameter estimator is a sufficient
statistic for the AR parameters for large data record. Let a‘',
o'* be the AR parameter estimates obtained by any of the
methods of previous part (i.e.,any of the approximate MLE
techniques) using an AR(L) model. For large data records 0'=[

a'™ o0'* ] is distributed according to a multivariate Gaussian
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PDF with mean

a -
£(0) -0- 02}
(3.2.8)
and covariance matrix
2

S o

C&,Uz- e r 204

N
(3.2.9)

where R,. is the L x L autocorrelation matrix of the MA(qg) or
equivalent AR(L) process. The determinant of the covariance
matrix is,

4 2
det (C, .2 -2—°(—"—)det'1 (R,
) ’ NL .

N
(3.2.10)
It may be shown that for large L,
det (R, ) ~ o?F
(3.2.11)
so that
: 204
det (Ca'oz) ’W
(3.2.12)

Thus the MLE is just o'?*, which is the estimate obtained using
the AR(L) model. Assuming that the autocorrelation method has
been used for real data, autocorrelation function of AR is

L
o=/ [0] +E a'[klr/ [k].
=1

(3.2.13)
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The approximate MLE for the MA filter parameters is

I__pl-1..1
b'--rR/ _r’,. -

(3,2 .14)
where
; 1 Li-3| , )
[Rad ;=157 ,,2% a’[nla’[n+i-7l] i,7-1,2,...q
1 I-i
/ = / / y '=
[I ZE) 1 L+ln_an [n]a [n+l] 1 1,2' ----- q.
(3.2.15)

Eg.(3.2.14) is Durbin's method for MA parameter estimation. The
Levinson algorithm may be used to solve the equations for b.
Because of the minimum phase property of the autocorrelation
method the_estimated zeros of B(z) will be inside the unit
circle. Many variants of Durbin's method may be generated by
replacing the autocorrelation method of AR parameter estimation
by any of the techniques described in Autoregressive modelling
part.

In summary, Durbin's algorithm for the estimation of the
MA parameters of an MA(qg) process proceeds as follows:

1. Using the data {x[0]),x[1],....x[n - 1]}, fit a large
order AR model using the autocorrelation method. For an AR
‘mddel order of L, where q « L « N, the white noise variance
estimator ¢'* is given by Eg.(3.2.13)

2. Using the AR parameter estimates obtained from step

1 as the data (i.e.,{1,a[l1],a[2],..... ,a[L1}], use the
autocorrelation method with an order of g to find
{b[1},b[2),....,b[g]l} as given by Eqg.(3.2.14).

For complex data the same steps apply if we use the
complex AR parameter estimators. For more information one can
refer to [6], [9]1, [131, [14].
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3.2.2 MODEL ORDER SELECTION

Before describing several model order estimators, it
should be mentioned that the prediction error power which
formed the basis for the AR model order estimators cannot be
applied to MA process. This 1is because it decreases
monotonically with the order of the linear predictor. No
theoretical minimum of the prediction error power of a linear
predictor occurs for an order equal to the MA model order.
Equivalently, the reflection coefficient sequence is not zero
after a certain index but is generally composed of a sum of
damped exponentials.

Several techniques for MA model order determination are
now described. None of the techniques have been thoroughly
tested so that a comparison of théir relative merits is not
available. For an MA process is defined as

AIC(i) - Nlno® +21
(3.2.16)

where i is the assumed MA model order and o', is the MLE of the
white noise variance based on an ith order model. For possible
model orders the AIC is computed and‘the model order yielding
the minimum is chosen. If Durbin'é algorithm is used to
estimate the MA parameters, then all ﬁhe lower order MA models
are available. ¢'? can be found by filtering the data with an
estimate of the ith order inverse MA filter 1/B(z), which is
guaranteed to be stable, and estimating the power at the
output. A second approach which relies on the statistical
properties of Durbin's method is to examine Q.. versus i. It
can be shown that if the MA(i) model is correct, then

Qm" Xi-i .

(3.2.17)
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Hence, if Q... is computed versus i, the appropriateness of each
model can be tested by comparing Q... to a threshéld. A large
value of Q.. indicates that the model order 1is probably
incorrect. Assume that it is desired to test the
appropriateness of various model orders at a 95% significance
level. Thresholds for the orders are computed from

Pr{y%;>a,}-0.005
(3.2.18)

If Q... for a given i falls below the computed threshold a,, that
value of i can be considered as a candidate for the correct
model order. If several values of i produce Q.. which fall
below the threshold, it is not clear which model order should
be chosen. It is also possible that all values of i may produce
Q... that exceed their respective thresholds. This type of test
may not produce a good indication of model order. It should be
noted that the Q... are readily available from the Levinson
solution of Eg.(3.2.14). Specifically, for an ith order model

Quzy~ (L+1) | £,, [0] +21: b;[k]f,,[0k] |-1
k=1

(3.2.19)

where the b,[k]'s are the MA filter parameter estimates
obtained from the Levinson recursion and

-k
/ -1 / /
r!,, [k] ———L+1§a [n]la’[n+k] .

(3.2.20)
A third model order selection method tests the adequacy

of an MA(i) model by testing whether the ACF samples for k > i
are zero. Let

£ o[£l 1411 2/ l142] w 2l [14M]7

(3.2.21)
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Then the C, is the covariance matrix for r''.. based on the
assumption that x[n] is an MA(i) process. The thréshold value
is chosen to ensure with high probability that if the MA(i) is
correct, the test will indicate this. It is not known how M
should be chosen nor how the correct model among competing MA
models may be chosen.

3.3. AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODELLING

The autoregressive Moving Average (ARMA) model has more
degrees of freedom than that the Autoregressive model (AR).
Unlike the extensive repertoire of linear algorithms available
to produce AR parameters and PSD estimators, there have been
few algorithms produced for ARMA parameters and PSD estimators.
This is due to primarily to the nonlinear nature reguired of
algorithms that must simultaneocusly estimate the MA and AR
parameters of the ARMA model. The nonlinear equations
demonstrate the difficulty of estimating the ARMA parameters,
even when the Lautocorrelation sequence 1is exactly known.
Iterative optimization technigques based on maximum likelihood
estimation (MLE) and related concepts are often used to solve
nonlinear techniques [6], [9].
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Figure 3.3.1. (a) ARMA model of random process
(b) summary of ARMA modelling technique
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These methods generally estimate the AR and then MA
parameters separately, rather than jointly, as required for
optimal parameter estimation. The AR parameters typically
estimated first, independently of the MA parameters, by some
variant of the Modified Yule-Walker equations. The MA
parameters are then estimated assuming the AR parameters are
known or have been previously estimated.

3.3.1 MAXIMUM LIKELIHOOD ESTIMATION

The MLE of the ARMA PSD is

ol (f) - 9+D (1] exp(-j2mE) + - +b/[gl exp (-j2nfQ)?
e L+a’[1] exp (-F2nf) + « +a’ [pl exp (-F2n £D)|?

(3.3.1)

where {a'[1], a'[2],....,a'[p], b'[1], b'[2],...,b'[g),0c* } are
the MLEs of the ARMA parameters. This follows from the
invariance principle. To obtain these MLEs we must maximize the
likelihood function p(x[0], x[1],..., x[n=-11; all], al2],....,
afpl, bl[1l], b[2],...,b[g]) over the unknown parametérs. This
maximization will involve solving a set of highly nonlinear

equations, even with several simplifying assumptions.

To derive the exact likelihood function is somewhat
involved and lends little insight into a partial estimation
procedure. An approximate likelihood function will be derived
based on the following assumptions

1. The data are real and Gaussian.

2. The data record N is large.

3. The poles and zeros are not close to unit circle.

The basic approach to determining an expression for the
approximate likelihood function is to use an AR(») model of the
ARMA process as described in previous section. Then the
likelihood function already derived for an AR process can be
applied to an ARMA process. Let the ARMA précess be modeled as
an AR(w) process with filter coefficients {c[1],c[2]),...}. A
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finite model order approximation [i.e., an AR(L) model] will be
a good approximation to the infinite order model if c[i] = 0
for i > L. This requirements is equivalent to requiring that
the impulse response of the filter with system function 1/B(z)
be approximately zero for i > L. The approximate likelihood
(actually, the c¢onditional 1likelihood) function could be
written as

p(xl,x[0],...,x[L-1];a,b,0?)

L L 2
1 1 ' .
" (2mo?) ®D7z| 2022:; x[n]+3 C[J]X[n—_j])]

J-1

(3.3.2)

where x = [x[0] x[1] .... X[N - 1]J]°. a,b are the vectors of
the AR and MA filter coefficients, respectively, which depend
on the c¢[j]'s. Note that for Eq.(3.3.2) to apply it was
required that N be large and that the poles not be close to the
unit circle. Now to maximize the likelihood function over a, b
we must minimize

| N-1 L 2
s, (a,b)=Y" (x[n] +y, c[j]x[n—j])
J-1

n-1
(3.3.3)

S. is highly nonlinear in b but a quadratic function of a. As
an example, consider an ARMA (1, 1) process. Then,

clFl=(al1]l-b[1]) (-b[21]})7? F21
(3.3.4)
so that,
‘N-1 L 2
S, (a,b) -E x[n] +Z (al1]-b[1]) (-b[2])7* x[n-7]
n-L F=1
(3.3.5)

Because S, is quadratic in a, differentiation with respect to
a and substitution of that unique value of a into S, will
reduce S,»to only a function of b. The resultant S, will be
nonlinear in b and hence differentiation will produce a set of
equations which if solved may only produce a local minimum. It
is also possible to differentiate 8. with respect to a and b
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and solve the resulting nonlinear equations using a Newton -
Raphson approach. This method is discussed as the Akaike
estimator. -

Assuming that S. can be minimized to produce a',b’ then
the estimate of o* is

1N—1 L
82-%3 |x[nl+}° ¢l7lx[n-7]
3

n-L -1

(3.3.6)

where the ch]'s are found as the impulse response of the
filter with -system function A'(z)/B'(z). It is seen that
unfortunately in the ARMA case no simple set of Yule-Walker
type equations result for the MLE. The use of the modified Yule
- Walker equations for the estimation of the AR parameters as
discussed before bears no resemblance to the MLE and hence
cannot ‘be expected to yield good estimates.

3.3.2. AKAIKE METHOD

The approximate MLE of the parameters of a real ARMA
process can be determined as the minimum of a highly nonlinear
function. In this section a Newton-Raphson iteration is
employed to minimize this function. This approach, which was
originally proposed by Akaike [16}, is 1like all nonlinear
optimization schemes, iterative in nature and therefore not
guaranteed to converge. If convergence does occur, the minimum
found may not be the global minimum. It is important to begin
the iteration with an estimate that is close to the true
parameter value, so that hopefully the global minimum will be
found. For large data records local minima are not a problem
[17], in that the log-likelihood function is approximately
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quadratic in the ARMA parameters and therefore characterized by
a single minimum. The approximate MLE of the ARMA filter
parameters is obtained as the values that minimize

i

-1 - anp
0(a,b) -5, (a, b) -fI(f) T

Y]

(3.3.7)

Akaike proposed using a Newton-Raphson iteration to find a zero
of

[(60/da) T (8Q/db) 71T, or

o0
Qrea| |8xer| __ da
|Bea) (B2 (80 29| g
% a-ak,.b-bk

{(3.3.8)

a.,b. are the kth iterates of the AR and MA filter parameter
vectors, respectively. H(a,b) is the Hessian of Q, which is
defined as

0 e
dada T 8aabT_[pxq pxq]
20 0 |lgxp gxp
obdaT obobT

H(a,b) -

(3.3.9)

the required partial derivatives are approximately
where

iN—lkl—l
'y, [kl - ]}_‘5 y[nly[n+kl]

N-lkka

! 1k] --11\7 Y zinlzln+lkl]

k=0

(3.3.10)
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0 % ol (R d -
3alkd 2§a[1]rw[k 1] k 1,2,...,“p
90 N piilel [I-i -
510 zlz_:ob[l]rzz[l i] 1=1,2,...,q9
o0 corl [ k-=1,2,...,p
dalk]oalll 2Ty k-1 1=1,2,...,p
PO oy i k-1,2,....,q
SBTRIOBTI] ~ 2% = k1] 1=1,2,...,q
30 o _ k-=1,2,...,p
JaTkob[I] 2T ve k-] 1-1,2,...,q
(3.3.11)
and
N-k-1
L Y ylnlzln+kl  for k=0
rl [k]- Nk-o
yz N-1
—-1-2 y[n] z[{n+k] for k<0
Nk-O
(3.3.12)
The sequences y[n], z[n] are defined as
-1 H(z)
yi{nl-z {B(Z)}
_-1) H(z)A(z)
z[n] z {—_—Bz(z) }
(3.3.13)
where
N-1
H(z) -E x[n] z-®
n=-0
(3.3.14)

It is of interest to observe that the y[n], z[n]
sequences are estimates of the processes arise in the
derivation of the CR bound. Of course, this is not purely
coincidence but can be shown to be a property of MLEs. Since
the y[n], z[n] sequences are generated as the outputs of
recursive filters, the initial conditions need to be specified.
Akaike's approach sets these initial conditions equal to zero
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on the premise that for large data records any transient
introduced will be negligible. Clearly, this will not be the
case when the zeros are near the unit circle since then the
impulse response will be long.

The Akaike estimator may not yield minimum-phase filter
estimates during the course of the iteration. If any iterate of
the MA parémeters causes B(2) to have a zero outside the unit
circle, then due to the instability of 1/B(z), the y[n], z[n]
sequences will grow large. We must therefore monitor the
stability of the 1/B(z) filter. An approach to this problem
would be to replace any zero outside the unit circle, say z, by
its conjugate reciprocal or 1/z,”. However, a non-minimum phase
filter would appear to be a deficiency of the algorithm, so
that any ad hoc measure might lead to questionable results.
Note that without the minimum-phase constraint it is possible
to drive Q(a, b) to zero by making B(z) arbitrarily large.
Assuming that B'(z) is minimum-phase, an alternative means of
computing o'*, rather than to use Q(a’,b’), is to use the
approximately equivalently expression

1N—1
0/2___2 uIZ [n]
Nn-O
(3.3.15)

where

ITml = -1} H(2Z) A/ (2)
u'(nl=2z {——357;7——}

(3.3.16)

and the initial conditions of the recursive filter are
arbitrarily assumed to be zero. In computing the new iterate of
the ARMA parameters as per Eqg.(3.3.8), we can avoid the
"inversion of the Hessian by rewriting the equations as

%
=3 Ay da

Hlag By Dy Hag i) bk] |90
ob

(3.3.17)
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and solving a set of simultaneous linear equations for new
iterate. The Hessian is assured to be invertibleNSince it is
positive definite. A Cholesky decomposition can be used to
solve Eq.(3.3.17). As mentioned previously, for good results it
is necessary to provide a good set of initial estimates of the
ARMA filter parameters. Any of the techniques described in this
sections AR modelling estimates can be used for this purpose.

3.3.3. MODIFIED YULE-WALKER EQUATIONS

The ARMA estimation methods described in this section
and the next are ad hoc in nature. They have arisen from the
difficulties associated with the highly nonlinear MLE. Unlike
the iterative techniques these methods are direct, relying on
the modified Yule-Walker equations, but suboptimal. They do
have the advantage that they are computationally simple.

Since these relationships hold when the ACF is known
exactly, a reasonable approach is to replace the theoretical

ACF samples by estimates and then solve the equations for the
AR filter parameters. The MA parameters are subsequently found
in a separate step. This leads to the following estimator for

the AR filter parameters:

1,000 Iol-11 -~ r,[-(M1)1]1a’[1] 2/ [g+1]]

I, [1] Lo [0] o r[-(M-2)]11la/[2] _ ' lg+2]

rxx[M_ll rx::[M"Z] rxx[O] a,[p] r’xx[q+p]_
(3.3.18)

The ACF estimator may be either the biased or unbiased
-estimator. In general, a will not be minimum-phase. Note that
the matrix is Toeplitz since the elements along any NW to SE
diagonal are the same, although not hermitian. Also, the matrix
is not guaranteed to be nonsingular. Once the AR parameters
have been estimated and x[n] filtered by A'(z) to produce an
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approximate MA process, any of the methods of section 3.2 may

be used to estimate the MA parameters.

The MYWE can be solved in an efficient manner using an
extension of the Levinson recursion. The extension is implicit
in the work of Trehch [20], who showed how to invert a
nonhermitian Toeplitz matrix.Recursive algorithm is initialized
by

I lg+l]
a 1 -——xx__.__
(1] r.lal
r,lg-1]
b [1] -2~
U= T
p,~(1-a,[11b,[1]) r, [d]
(3.3.19)
with the recursion for k = 2,3,....,p given by
k-1
Ila+kl+Y &, [11r,, [g+k-1]
ak [k] - 1-1
Px-1
(3.3.20)
a,lil=a, ,[i1+a, [kl by , [k-1] i-1,2,....,k-1
; (3.3.21)
If k = p, exit; if not, continue.
‘ k-1
Loelg-K1+3 by (111, [q-k-1]
by [k] -~ =
Pi-1
(3.3.22)
b [1]=b,, [1] +b, [k] @, , [k-1] I=1,2, 0 0cveanns L k-1
(3.3.23)

P x- (1—ak [k] bk[k] ) Px-q
(3.3.24)
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The solution is al[k] = a.[k], k=1,2,....,p. It 1is
interesting to note that if g = 0 so that the MYWE reduce to
the VYule-Walker equations, the algorithm reduces to the
Levinson recursion. In this case, b.[i] = a".[i], making the
computation of b.,[1] and the recursion Eqg.(3.3.22) and
Eg.(3.3.23) redundant. Upon examination of Eq.(3.3.20) and
Eg(3.3.21), it is apparent that for the solution to exist it is
required that p, # 0 for i = 0,1,...,p - 1, where p, = r.[q].
This is also obvious if we note that [20]

p-1
-0

(3.2.275)

The statistics of the AR filter parameter estimator

obtained from the MYWE have been derived for large data records

and for real Gaussian data by Gersh [18]. He has shown that the

estimator is asymptotically (as N-=) unbiased or g[(a' ]=a and
that the covariance matrix is

c,=&l(a’-&a’) (a’-&(a')) T]== R"léRR"
p q

(3.3.26)

where R',, is given in Eq.(3.3.18) with the ACF estimates
replaced by their true values and ‘

R- kf;(1 F_1—1_——) ¢y Ry [K]

(3.3.27)
and

g-|k|

oy 3 PLA1bLisk]

(3.3.28)
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I [kl rglk-1] - ry[k-p+i]
R
£y lktp-1] r . lk+p-2] = 1 [K]

(3.3.29)
Note that in the pure AR case in which g=0, it follows that

®-c, R, [0]=R,,

gu-Ru
(3.3.30)
so that Eq.(3.3.26) becomes
0? _-1_0%_-
Ca-NTprx"—ﬁRxx
(3.3.31)

Also, it can be shown that for pure AR process the use of MYWE,
which involves higher order samples of the ACF, produces poorer
estimates than those obtained using the Yule Walker equations

[8].

The performance of the MYWE approach varies greatly.
-For some processes the estimates will be quite accurate, while
for others they will be very poor.

The statistical properties of the spectral estimator
based on the MYWE have been derived by Sakai and Tokumaru [19].
The results indicate that large variabilities are to. be
expected for frequencies where actual PSD is small.

3.3.4. LEAST SQUARES MODIFIED YULE-WALKER EQUATIONS

In an attempt to reduce the variance of the MYWE
estimator has suggested utilizing more of the available
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equations. Later, Cadzow [20] applied this idea to the spectral
estimation problem. Since for an ARMA(p,Qq) procesé

p
Ty [K1=-Y alllr,, [k-1] k2g+1

1-1

(3.3.32)

the choices of the p equatiohs corresponding to k= g+1,

g+2,...,9+p in Eq.(3.3.19) is an arbitrary one. It can be shown

that there is information in the ACF at higher order samples
To use this information, assume that the highest sample of the
ACF that can be accurately estimated is r..[M], and consider the
following theoretical equations:

rlg+1l] [ r, (@) r,lg-1]1 -~ r_ lg-p+1]) al1]
r,[g+2] o r,lg+1]l r,lql -« r,lg-p+2])]||a[2]
I [M] I [M-1] r,[M-2] - r, [M-p] |lalp]
or
I=-Ra
(3.3.33)

R is of dimension (M - q) x p. Assuming the theoretical ACF is
réplaced by an estimate the equations will no longer be
satisfied. To account for estimation errors in the ACF the
equations should be expressed as

r’=--R'a+e
(3.3.34)
where r', R’ corfespond to the estimators of r, R and the error
term e is zero if r'= r, R' = R. It is recommended that the

unbiased ACF estimator be used in Eq.{3.3.34) since then the
average equation error is zero, or

&(e) =&(f) +&(R’) a=r+Ra=0.
(3.3.35)
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The form of Eq.(3.3.34) immediately suggests the use of a least
squares (LS) estimator. LS estimator of the AR pafameters is

aI__ (RIHRI) —1R/Hr/

{3.3.36)
where
[/ gl 1/, lg-1]1 ~ ¢/ [g-p+1]]
o . 'y la+1l '/ lal - rylg-p+2]
T/ [M-1] 1/, [M-2] -~ !, [M-P]
(3.3.37)
r’ = [r’m[q+1] r’lg+2] « ! [M] T]
(3.3.38)

This estimator of the AR parametérs of an ARMA process is
. sometimes referred to as an equation error modelling approcach.
Henceforth it will be termed the last squares modified Yule-
Wwalker equation (LSMYWE) estimator. It should be emphasized
that no optimality properties of the LS approach apply to this
problem. This is because R'is not a constant matrix nor does
have the statistical properties necessary to claim optimality.
Because R'"R’ is usually positive definite it is invertible by
typical routines such as the Cholesky decomposition or myriad
of other techniques developed for LS problems. In general,
a'will not be minimum~phase. The set of equations given by
Eq.(3.3.33)

rﬁm--féa[kirG“Ln—k]+e[n] nx>g+1
‘ k=1
(3.3.39)
are similar in structure to the AR time series model
x{n]-—fba[k]x[n—k]+u[n]
k1

(3.3.40)
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The LSMYWE estimator can therefore be interpreted as the
implementation of the covariance method or linear prediction
aprplied to the "data" sequence {r'..[ga - p + 1}, r..lg-p+2]
;oo T [M]}. This suggests application of other AR
techniques to ARMA estimators.

3.3.5. MODEL ORDER SELECTION

For an ARMA time series the reflection coefficient
sequence is infinite in extent so that the prediction error
power 1s always decreasing. This is in contrast to an AR time
series, in which the prediction error power first reaches its
minimum at the correct model order. Hence model order
determination approaches based on the linear prediction error
power cannot be used for an ARMA process. Some methods that
have been proposed for ARMA model order estimation are now
described. The AIC as described in section (3.1.3) for AR model
order determination and in section-(3.2.2) for MA model order
selection can also be used for the real ARMA case if we define
[15]

AIC(i,7)=N 1n ¢/i+2(i+7) "
(3.3.41)

where is the assumed AR model order, j is the assumed MA model
order, and o%; is the MLE of ¢® obtained under the assumption
that x[n] is an ARMA(I,j) process. As usual, the AIC is
computed for all model orders of interest and the orders that
minimize it are chosen. Another approach is to filter x[n] with
the estimated inverse filter A'(z)/B'(z) to generate an estimate
u'[n] of the white noise process. If the correct order has been
chosen, u'[n] will be approximately white noise and hence the
estimated ACF should be approximately zero for all lags except
the zeroth one. It can be shown that if an ARMA(i,j) model is
correct, then for a real process
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M / 2 -
(o0

=i/, l0]
(3.3.42)
is distributed according to a x*..; random variable
r'..[kK] is the biased estimator of the ACF of u'[n] given by

N-1-k

/K] -—%—T E u/ [n] u’/ [n+k]

n-0

(3.3.43)

M should be the effective impulse response length of the filter
with system function B(z)/A(z). If the model is incorrect, Q
will be large. We might compute Q over several possible model
orders and discard models that had inflated Q's. If all the
models but one had inflated values, then by the process of
elimination the remaining model could be chosen. Otherwise,
further tests would be necessary. Finally, a model order
selection rule based on the modified Yule - Walker equations
has been proposed for AR model order determination of an ARMA

process by Chow [21]. If we examine the i x i matrix R'.., where

r,,lg+1] r, [dqd] v Ty lg-1+2]
x{_réx[?+2] I}x[?+1] T I&x[q:i-S] (i % 1)
z&x[é+i] z&x[q;i—ll -; I}x[éwl]
(3.3.44)

for an assumed model order of i, then for i > p, the true AR
model order, the matrix will be singular. This follows from the
medified Yule - Walker equations

P
Y alllz, [k-1]=-1,,[X] k2g+l
=1

(3.3.45)
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which imply that the columns of R'.. will be linearly dependent.
As an example, if i = p + 1, then R, . =[r'... I, . 5 ol 8
where r', = [r.[k] r..lk +1]...r..[k + p]]°. The columns r’', are
linearly dependent since

p

;a[i]rm_i-o
=0
(3.3.46)

which follows from the modified Yule - Walker equations. We can
monitor det (R'..) until it becomes sufficiently small for some
i. Note that we need to know g or at least be able to assume
that g is not larger than some value d.... In the latter case
..~ 15 Used in Eqg.(3.3.44) and the actual value of g can be
determined by filtering x{n] by A’'(z) once p has been
determined and the AR parameters estimated.
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3.4. INPUT-OUTPUT IDENTIFICATION APPROACHES

A class of suboptimal ARMA estimation algorithms have
been proposed which rely on estimation of the driving white
noise u[n]. If uln] were known, we would have knowledge of the
input as well as the output. Then the many estimators developed
for system identification which require only the solution of
linear equations could be used.

Specifically, if wé examine the autocorrelation function,
it becomes clear that the nonlinear nature of the Yule-Walker
equations is due to the unknown cross-correlation between the
input and output. If however, we Kknew u[fn], the ARMA parameters
could be estimated as the solution of a set of 1linear
equations. Pade' approximation 1is one of these methods
developed. It has an important place in the literature because
of the fact that systems which have higher order transfer
function can be realized with Pade' approximation. The detailed
information on Pade' approximation is given below.

3.4.1. PADE' APPROXIMATION METHOD

A number of methods for the reduction in order of high-
order systems have been proposed, based on expanding the system
transfer function G(s) into a continued fraction and truncating
it to get the reduced-order transfer function R{s) [22]}, [23],
[24]. Others have proposed a method of reduction based on the
fitting of the time-moments of the system and its reduced
model. sShamash [24] has shown that for the case of rational
transfer functions, the continued fraction methods were a
special case of the time-moments method, which is equivalent to

the Pade approximation method. The continued fraction and time-
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moments techniques have a number of very useful advantages,
such as computational simplicity, the fitting of the time-
moments, and the steady-state values of the output of system
and model are the same for inputs of the form a,t'. However,
they do have a very serious disadvantage and that is the fact
that the reduced-order model may be unstable even though the
original high-order system is stable. Shamash [25] introduced
a method of reduction based on the retention of poles of the
high-order system in the reduced model, and the concept of Pade
approximation about more than one point. The method preserves
stability in the sense that the model is stable if the system
is stable. A novel method of reduction based on the Routh
stability criterion which was used to compute the denominator
of R(s) was introduced. The numerator of R(s) is computed by
expanding the numerator of the system transfer function into a
sum and product of continued fractions, which are then
truncated. The method was applied the reduction of single-
input/single-output systems.

3.4.2. THEORY OF THE PADE’ APPROXIMATION

A pade approximation is the ratio of two polynomials
constructed from the coefficients of the Taylor series
expansion of a function. Since it provides an approximation to
the function throughout the whole complex plane, the study of
Pade approximants is one of the mathematical approximation
theory. It has wide applicability to those areas of knowledge
that involve analytic techniques.

Let £ be a formal power series. rPade' approximants are
rational functions whose expansion in ascending powers of the
variable coincides with £ as far as possible, that is, up to
sum the degrees of the numerator and denominator. The numerator
and the denominator of a Pade approximant are completely
determined by this condition.
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Let F(s) = P.(s)/ Q.(s), where P_(s) and Q.(s) are
polynomials with real coefficients and nominal degfées m and n,
respectively (that is, the actual degree may be lower). Then
[m/n] is a full Pade approximant of F(s) if the power expansion
of [m/n] is identical to that of F(s) up to and including terms
of order s™". In this case, we define F(s) = [m/n]. If the
matching of terms is of lower than s™", then it is a partial
Pade approximant.

The relation between the coefficients of the Taylor
series expansion of a function and the values of the function
is both a profound mathematical gquestion and an important
practical one. It 1is basic to the study of mathematical
analysis, and to the practical calculation of mathematical
models of nature throughout much of physical and biological
science. If the Taylor series expansion converges absolutely,
then it uniquely defines the value of a function which is
differentiable an arbitrary number of times. Conversely, if a
function is differentiable an.arbitrary number of times, it
uniquely defines the Taylor series expansion. Practically, we
are approximating the function by 1longer and 1longer
polynomials. This approach, however, has undesirable
limitations for practical calculationé.

If we try to explain the Pade appfoximant by mathematical
formulas; suppose that we are given a power series xc.z'
representing a function f£(z), so that

f(z) -Z; c,zi

(3.4.1)
A Pade approximant is a rational fraction

L
8o+8yZ+. ... +a&;Z

L -
[/ by+b,z*. .. .+bz¥

(3.4.2)
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which has a Maclaurin expansion which  agrees with
autocorrelation function as far as possible. Notice that in
Ea.(3.4.2) there are L + 1 numerator coefficients and M + 1
denominator coefficients. There is a more or less irrelevant
common factor bhetween them, and for definiteness we take b.=1.
This choice turns out to be an essential part of the precise
definition, and Eg.(3.4.2) is our conventional notation with
this choice for b.,. So there are L+1 independent numerator
coefficients and M independent denominator coefficients, making
L+M+1 unknown coefficients in all. This number suggests that
normally the [L/M] ought to fit the power series Eg.(3.4.1)
through the orders 1, 2z, 2z?,...2"". In the notation of formal

power series,

L
a,ta. Z2+....+a,2
0 1 1 +O(zL+M+1)

f(z)=Y c,z1-
£z f\—‘: = py+b.z*. ...+bz"

(3.4.3)

Cross multiplying Eq.(3.4.3), we find that

(byg+byz+....+byz¥) (cy+cyz+. . .)
-ay+a,z+. .. +a,z t+0(zt™1)
(3.4.4)
Equating the coefficients of z-,z"*,...,2"", we find
byCr st by €124t byC, 1 -0,
bM¢L—M+2+bM—‘1CL—M+3 + 4Dy Cpp=0,

byCy, +Dy 1Cpq ++DyCpyp=0.

(3.4.5)

If j < 0, we define ¢, = 0 for consistency. Since b, = 1, Edg.
(3.4.5) become a set of M linear equations for the M unknown

denominator coefficients

Crs+1 Cr-ma Crms = Cr || Dy Cr+a
Crmvz Cr-as3 Cmama ™ Crea |[Pw-1 Cr+2
Bya|==|Crss

Cr-ma Cr-wma Cr-ms = Crs2

(3.4.6)

Cr  Cruaa Criz ™ Cramall b, | | Cran
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from which the b,, may be found. The numerator coefficients, a.,
a,,...,8, follow immediately from Eg.(3.4.4) by éduating the
coefficients as 1,z, 2*,....,2".

aO-COI

a,=c,+b,c,,
a,~c,+b,c,+b,c,,

min(L, M)

ap=c.+ ;: bicp 4.
-1
(3.4.7)

Thus Eqg.(3.4.6) and Eqg.(3.4.7) normally determine the Pade
numerator and denominator and are called the Pade equations; we
have constructed an [L/M] Pade approximant which agrees with
Tc,2' through order z-". Because the starting point of these
manipulations is the given power series, we do not ever need to
know about the existence of any function f(z) with Tc,z' as its
Maclaurin series as in Eqg.(3.4.1). Of course, we expect that a
well-chosen sequence of Pade approximants will normally
approximate a function £(z) with the Maclaurin expansion Zc,z°, .
but it is important to distinguish between problems of
convergence of Pade' approximants and problem of construction
of Pade' approximants. Given the power series, Eq.(3.4.7) shown
how the Pade' approximants are constructed.

Every power series has a circle of convergence |z!| = R.

If |zl< R, the series converges, and if |z} > R, it does not.If
R=w the power series represents an analytic function (Function

analytic everywhere is called entire) and the series may be

summed directly for any value of z to yield the function £(z).
If R = 0, the power series is undoubtedly formal. It contains
information about f(z), but just how this information is to be
used is not immediately clear. However, if a sequence of Pade'
approximants of the formal power series converges to a function
g(z) for z & D, then we may reasonably conclude that g(z) is a
function with the given power series. If the given power series
converges to the same function for [z| < R with 0 < R < », then
a sequence of Pade approximants may converge for z & D where D
is a domain larger than |z| < R. We will then have extended our
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domain of convergence. This is frequently a practical approach
to what amounts to analytic continuation. The method of
expansion and reexpansion due to Weierstrass is more suited to
principle than practice.

There 1is one feature of the calculation of Pade
approximations to be emphasized at the start-these calculations
require more numerical accuracy than one might at first expect.
The Pade approximant exploits the differences of the
coefficients to do its long-range extrapolation, and so the
differences must all be accurate. For more information one can
refer to [26], [27].

3.4.3. APPLICATION OF PADE' APPROXIMATION TO SYSTEM
IDENTICIATION

Although ARMA methodologies are sophisticated and through
forms of system identification and modeling; one always hopes
fér a more simplified approach. The aim of our work has been
this goal. ARMA modelling normally ends up to be a higher
ordered rational transfer function model from which the linear
system idéntification is based upon [14]. The gquestion arises,
is there a reduced order model based on or related to an ARMA
which willlyield as good if not better results? If so, then the
reduced order model will replace the ARMA model to estimate
further a prior output forecasting from the identified system.
Pade' approximations are such a rational form of modelling to

which this end is met.

In employing the Pade' approach, one has to assume two
possible approaches. These are:
(1). a. achieve ARMA model
b. reduce to series expansion,
¢. locate dominate poles of series to assure
stability,
d. calculate Pade' table coefficients;
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(2). a. determine system impulse

b. locate dominate poles of response sefies

c. calculate Pade'.

Thus far, the prior work on which more research work is
currently based upon is approach (2) [25]. In approach (1),
there is an added step to achieve ARMA, whereas in prior work
only order reduction was desired for a known rational model
[25].

One of the methodologies is employed by Shamash this
approach, sShamash tries to fit a reduced order model by
allowing retention of dominant poles [25].

Lets have a look at this methodology briefly. Also this
methodology is expressed in Figure (3.4.1). '

FORM ARMA FOR™M  H(x)
MODEL H(z) _______>(NON£ATION?L) e [A]—e
(a) ) Hz)= Zh z
LOCATE STABILIZING FORM REDUCED ORDER
_— POLES OF H gy —=[B]— 5TA§LE MopeL i —=[8]
@ Pape’ APPROX. Q) ()

Figure - 3.4.1. Pade' approximation sShamash approach

3.4.3.1. Pade' Approximation and Dominant Mode Reduction (First
Approach-Shamash Approach):

Consider the following high order system transfer

function
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G(s) dy+d,s+d,8?++d,_, s -
(s+3,) (g+s,) ~(5+3,)

2 n-1
_ dy+d,s+dys*+-+d,_; S

2 n
€yte,9+e, 8%+ +e,8
(3.4.8)

G(s) can be expended into a power series about s=0 of the form

- R
G(8) - tc,8+C,8%+

(3.4.9)
where
d
Cp=—
=)
1 k
Ck-—(;— dk" ejCk_j I} Vk')O
0 -
(3.4.10)
with
(3.4.11)

The e, are directly proportional to the time-moments of
the system, assuming the system is asymptotically stable, and
throughout this section welwill refer to them as the time-
moments [28].

Assume that a reduced model R(s), of order k, is required
which retains the pole at s = - s,, say. Let

2 k-1
as,+a,8+a,8“++aq, .8

2 k1. ok
by+b,s+b,s%+by ,, 8% +s

(3.4.12)
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The orders of the numerator of R(s) and G{(s) have been assumed
to be one less than the denominators to simplify the notation.
Then for R(s) to be a Pade approximant of G(s) we have
Eq.(3.4.7).

ay=b,Cy
a1‘bo+b1co

0=y Cop 5+ Dy Cap g+ Cpy
0=DyChp 1Dy Capp++Cy

(3.4.13)

But since R(s) is to have a pole at s = -s,, then using the
concept of Pade approximation about more than one point, the
last Eg.(3.4.13)is replaced by the following equation

0=by-b, 8, +b, 87—+ (-1) *s/*

(3.4.14)

Hence these equations can be solved for the coefficients b.,a,
(i=0,...,k-1) of Eq.(3.4.13).

Now suppose that the reduced order model R{s) is required
to retain the k dominant poles (the k poles nearest the origin)
of the high-order system. Further suppose that the k dominant
poles are Known. R{s) can then be written as

k-1
ao+als+---+ak_ls
(s+5,) (s+85,) +- (s+35;)

R(s) =

k-1
g+, S+e+ay .S

by+b,s+wtb, 8% t+gk
(3.4.15)

where the b,(i=0,1,...,k-1) may be computed in terms of
[ S -

Then if R(s) is to approximate G(s), in the Pade sense,
about s=0, then the a,(i=0,1,...,k-1) may be determined using
the first k equations of (3.4.13)



84

So far it has been assumed that the dominant poles of the
system are known, which in most cases is not neceséarily true.
This where Koening's theorem, and its generalization are of
great use, since by using them we can determine the number of
dominant poles and their locations vary easily.

THEOREM 3.1

Let

- 24
£(8)=c,+c,s+Cc,8%+-, ¢y realh c,#0

(3.4.16)

be meromorphic for Isl < R, and in this disc let it have just
one simple pole s=r. If

IrlKkoR<R
(3.4.17)
then

C
V ar+0{c'*)
Vil

(3.4.18)

THEOREM 3.2

Let f(s), given in Eg.(3.4.16), be meromorphic for |[sl
< R, and let it have exactly p poles r=,, r.,...,r., not
necessarily distinct in this disc. Let

0< Izl < Iz, | < Izl s< lx | <oR<R

(3.4.19)
and let

P (s)-(1-z7's) (1-131s) - (1-1;ts)

- 1+2,8+8,8%+-+a,8"

(3.4.20)
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Finally, let the dominator of the [v,p] Pade' approximant

be i
K,(s)-1+a{Vs+a;V +.ra s P
(3.4.21)
Then,
a(V) v
1 -0 iO(O )
(3.4.22)
K,(s)-¥ (8)+0(a")
(3.4.23)

For the case when p=1, theorem p=1, theorem 2 reduces to
theorem 1. '

Thus to reduce a high-order transfer function, it is
first expanded into a power series, then theorems 1 and 2 are
used to determiné the numerator dynamics of the reduced order
transfer function. The amount of computation involved in using
this method is the same as that required for ordinary Pade’
approximation except perhaps more coefficients of the series
Eg. (3.4.11) may have to be computed.

It should be noted that common poles and zeros in G(s)
are automatically cancelled when using this method of
reduction, and have no effect on the reduced model.

In this case when the system is described in state-vector
form,

x'=Ax+Bu
y=-Cx+Du
(3.4.24)
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The system transfer function is given by

G(s)=-C(sI-A)1B+D
- (CA"1B+D) +CA"2Bs+CA~3B%+.-
‘-cb+cls+c§+cgs3+m
(3.4.25)

where

Co= (CA_, B+D)
c;=CA_ ;.,1,B, Vi>0
(3.4.26)
Hence the reduction algorithm may be applied to expansion

Eq.(3.4.25), where the coefficients are determined using
Egq.(3.4.26).

If the system being modelled is unstable, then it is
important that the reduced model should be unstable as well.
Hence the unstable model of G(s) must be retained in the
reduced model. Koenig's theorem, and its generalization, may be
used to compute the unstable modes as follows:

Given G(s), the following transformation is made

_z-1
zZ+1 .
(3.4.27)
to get G(z). The unstable poles of G(z) in the form
G(z) -dy+d,z71+d,z7%+.
(3.4.28)

Then applying Theorems 1 and 2 Eq.(3.4.28) we get all the large
magnitude poles of G(z), which in this case will be the poles
outside the unit circle. Having computed the unstable poles,
the coefficients of R(s) are computed as before [25], [29].
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3.4.3.2. Pade' Approximation Without Dominant Mode Reduction

(Second Approach~ Biyiksiz Approach)

This approach is based on research by Biviksiz [30],

approximation of a reduced order model

where upon direct Pade’
Fig. (3.4.2)

Q(z) is utilized in the system identification.

depicts this approach

FORM REDUCED

OBTAIN SYSTEM Qg LOCATE STARIL OROER STABLE
- OE -2
[2ING POLES OF
DIRECTLY AS - g | MODEL IN PADE'
’ r -k
q(z)= > a,z (2) o | Af"PQOXiMAT\ON
K (a) Qe2) ()
RANDOM NOISE | x | UNKNOWNS | Yn | CroSS ,
GENERATOR, ™ SYsTeEM Hy) X CORRELATION =0
n
(a41) (a.2) l " (a.3)

q = 1/% Ryx (k)

N=-1-k

Ry (k1= 1N 2 Yo Xn 5 k=01, ooy N2

Figure 3.4.2. Pade' approximation Biyiksiz approach

Step (a) in Figure (3.4.1) is elaborated in Figure (3.4.2). The

computation in Figure (3.4.2) has shown less computational

effort than method 1, step (a).

The Pade' approximation Q(z) approach in its basics-

implies the following
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N-1
q'(z)=-Y" g ,z7% ~ Q' (2) - A/(2)/B/(z)

k=0

I -i
Y a',z
-t

B R— T+J2N
E bl .z7
3
)
(3.4.29)
and q'(z) - Q'(z) = 0 , from which the coefficients a', , b',
of Q'(z) are determined from
a'y=bl @,
aﬁ'b%qﬁ+bﬁqﬁ
O-b%quQ+bquk4+m+qu
0-b/o@’yx 1 #0183 2+ + 0
(3.4.30)

When a Q'(z) 1is realized, the following has been
observed: .
' 1. When g'(z) is stable, Q'{(z) need not be stable or

2. When g'(z) is stable Q'(z) may be stable and thus (1)
and (2) vield untrue, reduced order, models of g(z). Case (1)
is the more important real world problem. As a guideline it has
been - observed that unlike achieved ARMA model a Pade'
approximation result in an unstable model even if the real
system is stable or vice versa. This is especially true if the
initial part of the system step x.=h.+u, response has a large
overshoot. To overcome this, Shamash has implemented some
rather novel hethods based on Koenig's theorem, and its
generalization[25], [291,[31],[32]. Basically, the two ways of
approaching stability are (1) locate stabilizing poles at z =
0 orz=wo0f gq'(z) or (2) locate k dominate poles. When (1) is
applied a trial and error approach results. When (2) is applied
a longer computation results but stabilization is guaranteed.
Biased on Konig's theorem, and its generalization, an idea of
the kK dominate poles may be achieved [25]. Thus
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g -
lim—X -q,~z,
Je-vee glk-\» 1

1im (@ k_a.hl)

-B,~z
k “2
ke (@ = 0y,5)

lim (Bk+1- pk+2) '6

-Z
ke (Byi2=Buis) ks
(3.4.31)
for p poles assumed in reduced model Q{(z) = A',_.(2)/B'__..(z2). As
an alternative to limiting approach to determine z. , one may
assume a reduced model form as
; p A’ _(z)
Q'Mv,Jg-1]=0 J-1 (z) -T—(—T
V-1 z
Al (2) Al (z)
- J-1 .- g-1 ]
-0 -1
(3.4.32)

v = 0,1 ... and for successive

iterations of v, .b',
coefficients may be evaluated,

in conjunction with g', terms,
by convergence to b', values as v > o,

(c) Once b', terms are known, one now has

Z:a’iz‘i |
Q/I'J(z) -

g:bjz‘J
(3.4.33)

from which a', terms may be evaluated. This then completes step

(¢). Before concluding here, it should be mentioned that

possible errors introduced by the procedure in Fig (3.4.2) may

be reduced as N is increased or use of elaborate noise

generator algorithms for best white noise simulation.
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3.4.3.3 simualtion Algorithm to Achieve Pade' model

The following algorithm in Fig.(3.4.3) was utilized to
simulate the Pade' modelling and identification process. This
was based on an ARMA model for a system of higher order versus
an assumed lower order Pade' model. Fig. (3.4.3) summaries the
Pade' approximation simulation algorithm used in the programs

written.

GENERATE NOISE X,

INPUT TO SYSTEM ki,

To OBTAIN OUTPUT Ya

PERFORM AN OUTPUT ~INPUT

CROSSCORRELATION TO OBTAIN
h
K

] K-{-k
Ryx(k)='/K ﬂZ=° Yark *n

hy=(1/62] Ryx (K), (G1)
k=01, .....,K/2,(Keven)

LOCATE STABLIZING POLES
OF H(z) FOR POLES (6,00)

FROM STABLE REDUCED ORDER PADE' MODEL Q(2)

Figure 3.4.3. summary of Pade' approximation
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Figure (3.4.3) thus establishes the a forementioned simulation

algorithm.

Pade' Simulation:
Basically the simulation takes on the foolowing approach:

(1) assume a high order ARMA'system model,

(2) achieve the system impulse response h, through
nonparametric c¢rosscorrelation,

(3) form the Pade' model Q(z),

(4) compare the true system impulse h. to q. = 27°[Q(Z)].
(5) form an opinion for the goodness of the Pade' model

verses the ARMA model based on (4).
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3.5. STABILITY OF DISCRETE - TIME SYSTEMS

Stability can be defined in a variety of ways. We will
use the following definition : A system is stable if and
only if its output is bounded for every bounded input.

This definition is particularly suited to linear systems.
For linear systems it is not necessary to test for a bounded
output with every bounded input. It is only necessary to
examine the pulse response of the system. The condition that
the pulse résponse must satisfy for a time-invariant system is
presented in the following theorem.

THEOREM 3.3.

A.linéar, time~-invariant, discrete~time system with pulse
response g[nT] is stable if and only if

Y lg[nT] <=
(3.5.1)

Proof:

Let us assume that g[nT] satisfies Eg.(3.5.1) and that
f[nT] is any input signal with property that [f[nT]| < L < ®
for all n. Then the output is

y(nT] =Y glkT] f[nT-kT]

Koo
(3.5.1)
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so that

lylnTl| < Y |glkT) || £[nT-kT]| < LY |g[kT]|

K=o K=-o

(3.5.3)

Therefore, if g[nT] is absolutely summable, then any bounded
input causes a bounded output.

On the other hand, let us assume that g[nT] is not
absolutely summable. We can choose f[nT] as

FPinT] =gign (glrT-nT])

(3.5.4)
where r is an integer and
: 1 for x>0
sign({x)-{ 0 for x=0
-1 for x<0
(3.5.5)
Obviously, l£f(nT)l <€ 1. Wwith this choice
ylzTl =} glkT] sign(glkT]) =Y |glkT]|=
k= ke
| (3.5.6)

Consequently, the system is stable only if g(nT) is absolutely
summable. |

For causal systems with rational pulse transfer functions
our definition of stability leads to the following frequently
used criterion.

COROLARLY 3.4.

A causal system with a rational pulse transfer function
G(z) 1s stable if and only if all the poles of G(z) are inside
unit circle.

Proof:
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If all the poles of G(z) are inside the unit circle,

then the region of convergence for

z{glnTl}-} glnTl z™=
n=-0
(3.5.7)

includes the unit circle. Therefore, this series converges
absolutely for |zl = 1 so that

Y, lg[aT]|<e
n=-0
(3.5.8)

and that system is stable according to Theorem 3.3.

On the other hand, if G(z) has any poles on or outside
the unit circle, then the unit circle is not is the region of
convergence. In this case, the series diverges for same z, with
lz.l= 1 so that

=Y gn7] 25" lg [nT]]

n-0 n-0

(3.5.9)

and the system is not stable according to the above theorem.

There are various methods developed for determining the
locations of the poles of a rational pulse transfer function
relative to the unit circle, such as the modified Schur-Cohn
test the Nyquist criterion and root locus method.In this study,
the satisfaction of the above condition is checked via a pascal
program which £inds the poles of the transfer function found by
ARMA or PADE. This program is given in Appendix A.

For more information one can refer to [33], [34], [35].
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3.6. STATE SPACE MODELLING

Systems that can be described by difference or
differential equations are types of dynamical systems. For a
dynamical system a set of variables called the state of the
system can be found that contains all the information about the
past behaviour of the system necessary to calculate its future
state and a output given its present and future output. So
state-space representation means representing an nth order,
linear, difference or differential equation by a first-order,
linear,matrix difference or differential equation describing
the evolution of an n-dimensional state vector and an equation
relating the present output to the present state and input.
These equations are called as the state equation and output
equation or sometimes simply as a state space representation.
Different structures for realizing n-th order, linear
difference or differential equations are examined from the
state-space point of view. '

The mathematical time-domain models used to describe

isampled—data systems are almost always finite-order difference
‘equations and differential equations whose solution exists and

unigue. The behaviour of these systems for t>t, can be uniquely
determined if an appropriate set of initial conditions at time
t, is specified.

A system whose input v(t) and output y(t) are related by
the constant-coefficient, linear, differantial equation

dN

dtN Y(t) +b1 —t—N_-IY[t] + Laae + .bN_V(t)
dN dN-
- a, ac, v(t) + al_c_i?"‘—f v(E) + ..... + a, v(t)

(3.6.1)
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has the transfer function

Y(s) _ @sY+ asVl+ ... +ay

G(s) =
(s) V(s) s¥+ b, s¥l+ ... + by

(3.6.2)

The transfer function G(z) given by Eqg.(3.1.43) can be put in
the form

N N-1
agzV+a, z¥t+. .. +ay

N N-1
z%b zV+. ... +by,

G(z)=

(3.6.3)

Therefore, each of the structures which can be applied for the
transfer function G(s) when z is replaced by s. Each delay
element labeled z™ becomes an element labeled s which is an
integrator. The outputs of the integrators can be chosen as the
state variables. To maintain the correspondence between the
continuous and discrete-time systems, we will choose the state
variables so that x.(t) corresponds to x.[nT]. The input to the
kth delay élement x.[nT+T] becomes the input to the kth
integrator and so must be relabeled x.' This transformation
is shown for the type 1 direct form realization in Figure
(3.6.2). Clearly, the state and output equations for the
continuous-time struéture obtained by the simple transformation
described in the pre\}ious paragraph can be determined from the
equations for the original discrete-time structure simply by
replacing v[nT] by v(t), y[nT] by y(t), x(t), and x[nT+T]) by
x'(t).

By a linear, finite~dimensional, discrete-time, dynamical
system we will mean a system with input v(t.), output y(t.), and
state x(t,) having a state equation of the form

(3.6.4)
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and an output equation of the form

Y(t,)-c(t,) x(t,)+D(t,) v(L,)
(3.6.5)
where
x(t,.) is an N-dimensional column vector
v(t,.) is an m-dimensional column vector
y(t.) is an r-dimensional column vector
A(t.) is an N X N nonsingular matrHx
B(t.) is an N X m matrix
C(t.) is an r X N matrix
D(t.) is an r X m matrix
and
E, >t for n,>n,
(3.6.6)

~SDIAT]

v[nT] + «nT+7] [ x(nT] ++  ylaT

—— —>8In7] Z = r———C[nT]

AlnT] kK—

Figure 3.6.1. Pictorial representation of the state
and output equations for a uniformly sampled, linear, discret-
time sytems

We will use uniform sampling and let t.=nT. In this case,

the state and output equations can be represented pictorially
by the block diagram in Figure (3.6.1).

wWwhen t.=nT and A, B, C, and D are constant matrices in



98

Eg. (3.6.4) and Eq.(3.6.5) we say that system is a time-
invariant, linear, discrete-time system. In this case the state
equation becomes

x{(nT+T)=-Ax(nT) +Bv(nT)
(3.6.7)
and the output equation becomes
Y(nT) = Cx{(nT) +Dv(nT)
(3.6.8)

A closed form for the state transition matrix and
solution of the state and output equations can be obtained by
Z-transform methods. We will define the one-sided Z-transform
of an r X s matrix function f£[nT] as the r x s matrix.

F(z) -f: £(nT) z72
n=0
(3.6.9)

The elements of F(z) are Jjust the transforms of the
corresponding elements of £[nT]. Taking the transform of both
sides of the state equation (3.6.7) gives

ZX(z)-zx(0) -AX(z) +BV(Zz)

(3.6.10)
so that
X(z)=(zI-A) 1zx(0) + (zI-A) 1BV(z)
(3.6.11)
From Eqg.(3.6.8) we see that
Y(z)=-CX(z)+DV(z)
(3.6.12)

In many applications, and in all system identification methods
one is primarily interested in the pulse transfer functions
between the input and outputs of a system. Letting x(0)=0 and
substituating Eq.(3.6.11) into Eq.(3.6.12), we find that
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Y(z)=({C(zI-A) 1B+D lv(z)
{3.6.13)

The matrix

G(z)=~C(zI-A) 1B+D
(3.6.14)
is known as the pulse transfer function matrix for the system
since 1its ijth elements is the transfer function between the
ith output and jth input For systems with a single input and
single outputs, G(z) reduces to the ordinary scalar transfer
function Y(z)/Vv(z).

3.6.1. STATE SPACE REPRESENTATIONS FOR CONSTANT-COEFFICIENT,
LINEAR, DIFFERENCE EQUATIONS

In this section we again examine structures for realizing
a system that has the pulse transfer function

N
Y az*
G(Z) - k-ON
1+Y bz ™*
k1
(3.6.15)
or difference equation
N N
x[nT] =Y aulnT-T] - byx[nT-T]
¥-0 k1
(3.6.16)

which is given before in Eq.(3.1.38) relating its input and
output. By assigning state variables to the outputs of the
delay elements in the block diagrams for the structures, we
derive different state space representations for the difference
Eg.(3.6.16). A reason for studying a variety of realizations is
to find those that are insensitive to coefficient truncation,
finite word length arithmetic, and other deviations from the
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ideal in actual hardware. These problems are discussed later.

3.6.1.1. Type 1 Direct Form Realization

Type 1 direct form realization in Figure (3.6.2) has its
input and output related by Eg.(3.6.16). As shown in Figure
(3.6.1), we will choose the state variables x.[nT],...,x.[nT]
as the outputs of the delay elements. From the block diagram we
see that

X, [nT+T) =x, [nT)
x, [nT+T) -x, [nT)

Xy [n’J:T'+T] =x,[nT]
Xy [nT+T] =-byx, [nT] -by %, [nT] —-b,x, [nT] +v[nT]

(3.6.17)

] T :
EEZ}—’ * igf ylnT]
+
a, a, Ay a,
“(+ z"! z”!
vﬁﬂjjrr/ %vﬁﬂj X, {nT] x,{nT])
_61 —6N-1 -bN
4
+ +
)

Figure 3.6.2. Type 1 direct form realization of G(z)
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and
y[nT] -aux, [nT] +ay, ,x, [nT] +-+a,x,[nT] )
+a, [x[nT] -byx, [nT] -by_ ,x, [nT] --m-b,x, [nT] ]
(3.6.18)
or
ynT] = (ay-auby) X, [nT] +ay. ~aghy.,) x, [nT] +-
+(a,-a.b,) x,[nT] +a,v[nT]
(3.6.19)

Putting Eq.(3.6.17) and Eg.(3.6.18) into matrix form, we see
that this structure can be described by the state equation

[ x, [nT+T] | o 2 0~ o1[al? | [o
x, [nT+T] 0 0 10 0|[x[T] 0
: - : d ; +{i|vInT]
Xy [NT+T]| |0 O ~ 0 1 ||x,,[T]] |O
| Zy[nT+T] | _'bN ~byy - ~b, xylT] (1)
{3.6.20)
and output equation
x, [71]
x, [nT]
yit] ~[ay-ayby aN-1-ayby, ~ a;-ayb] =~ |[+ayv[t]
.XN[nﬂ.
(3.6.21)

These equations have the desired forms of Egq.(3.6.7) and
Eq.(3.6.8).

3.6.1.2 Type 2 Direct Form Realization

The structure called the type 2 direct form realization
shown in Figure (3.6.3) has its input and output related by the
difference Eq.(3.6.17). If we choose the state variables as
shown in Figure (3.6.3), then it follows that
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y[nT] -x,[nT] +a,v[nT]
nd (3.6.22)
X, [nT+T) =-byy [nT) +ayv[nT] =-byx, [nT] + (ay-a.by } v LA 7]
X, [nT+T) =x, [nT] -by_,x,[nT) + (ay.,-ayby.,) vInT]

Xy [DT+T) =y , [NnT) -b,x,[nT] + (a,~ayb,) vInT]

Xy[nT+T) =x, | [nT]) -b,x,[nT] +a,-a,b,) vInT)

(3.6.23)

vinT]

[ ylaT]

Figure 3.6.3. Type 2 direct form realisation of G(z)

Putting Eq.(3.6.22) and Eq.(3.6.23) into matrix form, we
see that the type 2 direct form realization is described by the
state equation
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[ %, [nT+7] | [0 0 - 0 -by|[xI7 | o1 -
x, [nT+T] 10 - 0 -by,|lx[T] 0
i =i i i : +ilv[nT]
Xyy INT+TT( 10 0« 0 1 0 -b, | |x4,[T]]| |O
xy[nT+T1| [0 0 -~ 0 1 -b ||xy[7] | L.
(3.6.24)
and output equation
x, [nT)
yltl=[0 « 0 1] : [|+a,vI[t]
: Xy [nT]
(3.6.25)

3.6.1.3 ' standard Form Realization

Another structure that can be used to realize the
difference Eq.(3.6.4) is shown in Figure (3.6.5). This is
sometimes called the standart form realization. The procedure
to choose the parameteres a.,...a, and 8,,...,8. to obtain the
proper input-output relationship. Figure (3.6.4) is as follows
from the block diagram it is clear that

x, [nT+T] =, [nT} +a, vInT]
X, [nT+T] =x,,,+e , vInT] for 1 <ks N-1

Xu[nT+T] =-B 2, [nT] -B,.,x, [nT] --B,x, [nT] +& ,v[nT)
(3.6.26)
and
y[nT] -x, [nT] +e,v[nT]
| | (3.6.27)
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From Eq.(3.6.27) we see that

y[nT+T] -x, [nT+T] +a,v[nT+T]
(3.6.28)
and using the expression for x,[nT+T] from Eq.(3.6.26) that
y[nT+T] -x, (nT) +&,v(nT) +a,v(nT+T)
' (3.6.29)

Similarly

y[nT+2T] = x, [nT] +a,vInT] +e,vInT+T] +a,vInT+2T]

ynT+ (N-1) T} - x,[nT] +a, ,vInT] +a, ,vInT+T] +-
+a,v[nT+(N-1) T]
' (3.6.30)

and

yvinT+T] =-B ox, [nT] =B, [0T] —-PB,x, [nT]
+o yv[nT] +-+a,v[nT+NT]
' (3.6.31)

Replacing n by n+N, the desired difference Eqg.(3.6.16) becomes

yInT+T] =-b,y [nT+ [N-1) T] -b,y [nT+ (N-2) T---byy [nT]
+a)MnT + T] +-+a,vnT]
(3.6.32)
Substituting the expressions for y[nT],....¥[nT+(N - 1)T] given
by Eg.(3.6.27), Eg.(3.6.29), and Eq.(3.6.30) into Eq.({(3.6.32)
we get
y[nT+T] =-b, {x,[nT] +ay ,vInT] +ay, ,v[nT+T] +-
+0,v[nT+(N-1)T]}
~b, {Xy , (nT) +aty_ ,vInT] +-+a,vinT+(N-2) T] }

-by{x[nT] +a,vnT]}
+a, v[nT+T] +-+a,vInT]

(3.6.33)



Equating the <coefficients of x.[nT},...,X.[nT]
vinT]},...,v[nT+NT] in Eq.(3.6.31) and Eq.(3.6.33), we see that

the standart from realization parameters must be

B =Dy for k-1,...,N
(3.6.
and
Cy=ag
®,=a,-b e,
&,=a,-b,0,-b, &,
0 ymay Dyt —Dy 0y =Dy 0y g
(3.
vinT]
XN K1 =y >
+5 0 (7] "C o)
-1 | Xyin L X tni Aty N
(} G At Z :!t/'y[hf]
+
—ﬁkf -[a/
+
)

Figure 3.6.4.

The set of equations in Eg.(3.6.35) is equivalent to

AL A e | S S s e S e

Standard form realization of G(z)
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and

34)

6.35)
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alfa o 0 0 0],
a, b, 1 0 0 o,
a, -b2 b1 o,

|8 ] _bN by.y byy bys - by 1] &

(3.6.36)
so that
] 1 0 o o 014,
o, b]. 1 0 a,
qz-la b, a,
| & ] Dy by-1 Dy Byes - by 1] 18 N}
(3.6.37)

Eg.(3.6.35) provide a convenient iterative solution to
Eq.(3.6.37). Putting Egq.(3.6.26) and Eq.(3.6.27) into matrix
form, we f£ind that the standart form realization has the state

equation
x[am+T | 1o 1 0. 01[x0 | [e ]
xz [nT+T] 0 0 10 0 Xz (T) ‘az
: - i i i i +| 3 vinT]
Xy [NT+T] o o 0 1| xp,(T) L'
xh[nzwzﬂ_ _"LW -by ., - -b, "bL X, (T) ] oy |
(3.6.38)

and output equation

x, (nT)

y(nT)=-[1 0 « 0] ; +o,v(t)
Xy (nT)

(3.6.39)
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3.6.1.4 Parallel Type Representation

Another state space representation can be obtained by the
partial fraction technique. This method results in a parallel
form structure. First, let us assume that G(z) has N simple

poles located at p.,,...,p.. Then G(z) can be expressed as
Y d
G(z)=dy+y, —=
k-1 27Dy
(3.6.40)
where‘

dy=1lim G(z) =-a,
z‘.

(3.6.41)
and
d,=lim (z-p,) G(z) for k=1,...,N
2Py .
(3.6.42)
Therefore
| Z Vi{z)
Y(2)=G(z) V(z)=a,V(z)+) d
(z)-G(z) V(z) =a, kz; =
(3.6.43)
Letting
X}(z)-lﬁfﬂ- fer k=1,...,N
Z-P v
(3.6.44)

Y(z) becomes

N
Y(z)=a,V(z)+Y, d X, (2)
1

- (3.6.45)
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The time-domain equivalents of (3.6.44) and (3.6.45) are

Xy (nT+T) -p,x, (nT) +v(nT) for k-1,...,N
(3.6.46)
and
N
y(nT) =Y dpx, (nT) +a,v(nT)
k1
(3.6.47)

Putting Eq.(3.6.46) and Eq.(3.6.47) into matrix form, we f£ind
that the difference Eq.(3.6.16) can be represented by the state
equation

x, [nT+T] P, 0 0~ 0f]x0() 1]

x, [nT+T] 0 p, 0« 0| x(T) N

. . v([nT]
2, [nT+TI| |0 0 0 pul| (T 1J

HX (3.6.48)
‘and output equation
x, [nT]
ylnTl~[d, d, ~ d " [.HT] +ayvit]
Xy [nT]
(3.6.49)

This is known as the normal form representation of (3.6.16). In
this representation the "A" matrix is diagonal so that the
state variables are uncoupled. The partial fraction technique
can still be used if G(z) has some poles that are not simple.
To illustrate the method, let us assume that G(z) has a poles
of order r at p, and simple poles at p..,,...,P.. Then G(z) can
be expressed as

xr dk N dk

E (z-Dpy)

G(z)=dy+y —M= —__+
° k-1 (Z'pl)r_hl k-r+1

(3.6.50)



here
dy~=1lim G(z) =a,
Z~x
(3.
and
. 1 dk—l
%ig TN for 1s<ksr
dk-
lim(z-p,) G(2) for r+1<k<N
Z"'pk
(3.
Therefore
X
V(z) Viz)
Y(z)=G(z)V(z)=a,V(z)+y d ——22 ___+ d,—=~
(3.
Letting
k v{z)
X (z)=-———Mm=2L for 1sksr
k (z-p,) r-k+1
(3.
and
x (2 -2 for  re15ksN
Tk
(3.
Y(z) becomes
N
Y(z)=a,V(z) +Y, dpX, (z)
k=1
(3.

Notice that

V(z)

X, (2)
b,

(3.

109

.51)

.52)

.53)

.54)

.55)

.56)

.57)



110

and

Xk+1 (Z)
Z=-p,

X (z2)= for 1<ksr-1

(3.6.58)

The time domain equvialents of Eg.(3.6.55), Eq.(3.6.56),
Eq.(3.6.57), and Eq.(3.6.58) are

b %, [nT) +x,,, [nT] for 1<ksr-1
X, [nT+T) ={ Py, [nT] +v[nT] for k=r
pX, [nT] +v[nT] for r+1sks<N

(3.6.59)
and
N
y[nT} =Y dyx, [nT] +a,v[nT]
k1
(3.6.60)
-or
[ x, [a7+71 | [P, 1 0 d x, [nT] o
X, [nT+T) 0O ppb 1 0 - 0 | X, [nT] 0
: H J 0 H .
Xy, [0T+T] o - 0 ppb 1 | Xy o [nT1] 0
X, [nT+T] o - 0 p | X, [nT] 1
S D L I L I il L B e R R e +--={vin]
X,,, [nT+T] ! Dpy O 0 x,,, [nT] 1 ‘
X, [nT+T) ! 0 po, O 0 x,., [nT] 1
: 0 '
Xy [AT+T] Poo 0 Dyy 0| X4,lnT] i
| xy[nT+T] | | i o 0 pyj| xylnm1 |+ 7
(3.6.61)
x, [nT]
y[nTl-[d, ~ dy) ¢ [|+&a,vInT]
X, [nT]

(3.6.62)



x [nT] [nT]
. - . _ X;}; _ xyﬁTﬂ
VA + Z Z
+ + +
Pr Ao P1
dr d%J Cﬁ
l
vin7] + /\ -1 ‘ ]
+ s
+ £ ’ — y[nT]
I i i
/I)‘-f-f
() 2" dy
,;{ ‘
Ay
a
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Figure 3.6.5. Parallel form realization of transfer

function G(z)
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The r ¥ r block in the upper left-hand corner of the "A"
matrix 1s called a Jordan Dblock. The block diagram
corresponding to this system realization is shown in Figure
(3.6.6). This structure is called a parallel form realization
for obvious reasons.

3.6.1.5. Cascade Form Realization

The cascade form realization is frequently used in
practice. This structure results when G(z) is expressed as the
product of low-order rational factors and is realized as a
cascade of sections corresponding to these factors. This
structure is particularly appropriate when G(z) has zeros on or
near the wunit circle. To illustrate one form of cascade
realization and the corresponding state space representation,
let us assume that a, is not zero in Figure (3.6.2).

vinT] a, I -1 x[nT] q, Tﬁ' ‘Z—’ x,[nT]
+

A A
+ +
_ [T y[nTJ
= P L q,
+
Py

Figure 3.6.6. Cascade form realization of transfer
function G(z)
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Then G(z) can be factored and written as

Z-q,
G(z)=a
011-1 Z-Dy

(3.6.63)

When each first-order rational factor of Eg.(3.6.63) is
realized by a type 1 direct form section and the output and
input addres of adjacent sections are combined, we obtain the
structure shown in Figure (3.6.6). Choosing the state variables
as shown in this figure we find that

X, [nT+T] -p, x, [nT] +a,v[nT]
(3.6.64)

X, [nT+T) -px, (0T -q, %, [0T) +Xx,_, [nT+T'] for 2sks<N
’ (3.6.65)

and

v{(nT) =-x,(nT+T) -gx,(nT)
(3.6.66)

Starting with k=2, using Eq.(3.6.64), and recursively
evaluating Eqg.(3.6.65) we also find that

k1
x, [nT+T] =px, [nT] +El (p-aq;) %, [nTl +a,v[nT] for2sksN

(3.6.67)
and
N
y [nT] 'E (p-ay) X, [nT] +a,vnT]
k1
(3.6.68)
or equivalently
-xl [nr+T] | [ j o 0 o0 ()“x1 [nT] | -aoq
x,[nT+T] | |py;-qy D, O 0 x,[nT] | |a,
; -l i ; + i |vinT]
Xy.y (AT+T] | |Dy-qy Pp-ay ~  Pyy O |Xy, [0T]| &,
.XN[nT"'T] } | P19 P-%  Py1~9va pM_xN[nT] 1 180]

(3.6.69)
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and

x, [nT]
yInTl-[p,-@, ~ Py@y| ¢ [|*aVInT]
Xy [nT]
(3.6.70)
In practice, the state variables would most likely be
calculated recursively by Eq.(3.6.65) rather than'directly from
Eg. (3.6.68). This corresponds to calculating the outputs of
the addres in Figure (3.6.6) sequentially from left to right.
If G(z) has any complex poles or zeros, the cascade form
realization shown in Figure (3.6.6) requires complex
arithmetic. The parallel form realization shown in Figure
(3.6.5) also requires complex arithmetic when G(z) has complex
poles. The need for complex arithmetic is frequently eliminated
by combining complex conjugate terms into low-order sections
with real coefficients. These sections are then implemented as
direct or standart form realizations. Various other structures
have been suggested for realizing rational pulse transfer
functions. In particular, there has been recent interest in
realizations using various types of ladder structures. These
will not be discussed further here. There are actually an
infinite number of realizations for G(z). Some have basically
different structures while others differ simply by scale
factors. In general, an input-output relationship does not
uniquely describe the internal structure of a system. If a
realization is described by the equation

x[nT+T] -Ax[nT] +Bv[nT]
(3.6.71)
and

y[nT]=Cx[nT] +Dv[nT]
(3.6.72)
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then for any NxXN nonsingular matrix F the transformation

x[nT] =Fx! [nT]
(3.6.73)

results in a new realization described by the equations

x/ [nT+T] =A’x' [nT] +B/v[nT]

(3.6.74)
and
y{nT) =¢/x/ [nT] +D'v[nT]
(3.6.75)
where
Al-pF-lar
B/-F-iB
c-cr
(3.6.76)
and
D/-D
(3.6.77)

For more information one can refer to [14], [33].
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4. PROBLEMS OF PARAMETRIC MODELLING

In this Chapter, some of the practical problems that must
be taken into account when a pulse transfer function is
actually implemented digitally will be investigated. These
problems are all a result of the fact that numbers must be
quantized and represented as finite bit binary words in digital
machines. Because all digital technology operatés with only a
finite number of bits. The gquantization process is an
irreversible nonlinear ©operation. The effects of the
gquantization process can be operated in three categories.

1. Quantization errors are initially introduced when the
analog input signal is sampled and converted into a sequence of
binary numbers. This is called as input quantization. This
effect can be modelled simply by adding noise to the ideal
samples.

2. When the coefficients are quantized for
implementation, the resulting filter must be checked to insure
that its frequency response is still acceptable. Some small
changes in the coefficients of a polynomial can cause large
changes in the 1location of its roots when the roots are
clustered near the unit circle. The changes are larger for
higher order polynomials. This effect is particularly important
in recursive filters since their frequency responses and
stability are very sensitive to the position of poles near the
unit circle.

3. A third type of gquantization error is introduced by
the rounding of products or sums of products to the original
machine word length. This is known as finite word Ilength
arithmetic round-off errors.All these errors can be result in
an unstable system response which is explained in section 3.5.
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All these errors can result in an unstable system
response by causing the poles going outside of the unit circle
which is explained in section 3.5.

4.1, INPUT QUANTIZATION ERRORS

The process of approximating a sample of a continuous-
time signal by a finite digit binary number is known as analog-
to-digital conversion. The binary number generated by an
analog-to-digital éonverter (ADC) is almost always in a fixed
point format. The two's complement format is frequently chosen
since 'subtraction can be performed by adding the two's
complement of the subtrahend to the minuend eliminating the
need for a separate subtracter. The nominal two's complement
representation of any number n with -A< X < A

x/A--bO+E b2
n-1i

(4.1.1)

where b, can have only the values 0 or 1. For positive x b, =
0 and for negative n b, = 1. Therefore, b, is called as the sign
bit. |

In an actual digital machine only a finite number of bits
can be used to represent any number. If the numbers are
represented by< using two's complement format, by simply
truncating the series in Eq.(4.1.1), we can obtain the K+1 bit

approximation

k
(%] .~A (-b0+2 b 2 _,,)
n-1

(4.1.2)
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which can be represented by the binary word (b., b.,...,b.)
in the machine. Any number of this form must be "an integral
multiple of g=Aa2"

The quantity g is called the quantization step size. The
relationship between [x]., and x is illustrated in Figure
(4.1.1). It can be seen that the truncation error, e. = x -
[x]., must lie in the semi-open interval [0,q). Since the
truncation error has a positive bias that can accumulate in a
sequence of arithmetic operations, truncation is wusually
avoided.

Rounding x to the nearest integral multiple of g is a
better method of approximating x by a K + 1 bit binary number.
The rounded number can be represented as

x
[x ]z"A[_bo + E b2 %+, 27%
o1

(4.1.3)

The relationship between [x]. and x is shown in Figure
(4.1.1). For A(l-2™")=A~-q/2 £ X < A, b, = 0 and b, = b, =
= b. +, = 1. In this case, the last term b...2™ on the right-hand
side of Eq.(4.1.3) will cause an overflow into the sign bit if
né overflow detection is used. The overflow causes}a jump to
the value -A as shown on the bottom right of Figure (4.1.2). An
advantage of using two's complement arithmetic is that if the
total sum of a set normalized numbers is in the range [-1,1),
then, even though partial sums overflow or underflow, the
correct total sum will be obtained. Therefore, overflow and
underflow detection is commonly omitted. The round-off error
e.=x-[x]. is confined to the interval [-g9/2,9/2) except in the

small overflow region.

In both round-off and truncation, numbers are quantized
to a set of uniformly spaced levels. In some special
applications like pulse code modulation voice transmission,
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EXJt J/
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Figure 4.1.1. Truncation of two's complement numbers

signals are quantized to nonuniformly spaced levels to more

accurately represent the signal amplitudes that occur most
frequently.

Nonuniform quantization can be achieved by first passing
the signal through an instantaneous nonlinearity and then into
a uniform gquantizer.The instantaneous nonlinearity is often
called a compander. In the remainder of this chapter we assume
that uniform quantizatibn is used.

Let us now assume that the input to the quantizer (i.e.,
analog-to-digital converter) is a random variable X with the
probability density function f.(x). In addition, let us assume

that X can Dbe quantized to any integral multiple Mpf the
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quantization step size g so that overflow and saturation do not

occur. Then it follows that the probability density function
for the round-off error is

[x],

A-q C7J7+ﬁ

A-2q| 4 |

: 7 I

: p '

4 |

v

3q}- ’ |

ol A |

qT— /// |
-A “§_$f > I A
[ L4 A 1 1 L] ul
| % % a3 1
! 7~ g £ X 21
i el X

: // |1 q
| / “’T%‘“Z

t | —-A+2q l|
: - —~A+q II
J A L

Figure 4.1.2. Rounding of two's complement numbers

£, [e+ng] for -q/2<e<qg/2
£, (e) -] 2o, Txlernd
0 elsewhere

(4.1.4)

If N is an integer and X is uniformly distributed over [-Ng,Ng]
then we find from Eqg.(4.1.4) that the round-cff error is
uniformly distributed over [-Q/2,0/2], that is

1/q for -g/2<e<qg/2
fgle) - 0 elsewhere

(4.1.5)
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In this case, the round-off error has zero mean and variance
ag*/12. If f.(x) is moderately broad relative to g, then the
round- off error is still almost uniformly distributed over [-
g/2,49/2). We can argue similarly that the truncation error is
almost uniformly distributed over [0,q). In the remainder of

this chapter we will always assume that numbers are quantized
by rounding.

If a signal x(t) is sampled and quantized, then

x[nT],-x[nT] -e[nT]
(4.1.6)

where e[nT] 1is the round-off error sequence. Theoretical
analyses and numerous simulations have shown that, when the
probability density function for x(t) is moderately broad
relative to g and the frequency spectrum of x(t) is
sufficiently broad so that a number of quantization levels are
normally crossed from sample to sample, e[nT] can be closely
approximated by a white noise sequence uncorrelated with x[nT]
and uniformly distributed over [-g/2,q/2) [34], [36]. With
these assumption, e[nT] has zero mean, variance g*/12, and the
sampled power spectral density
q2

See(z) -E—Z-

(4.1.7)

In summary, the effect of analog-to-digital conversion can
usually be modeled by simply adding a zero mean white noise
sequence of variance g*/12 to the original unquantized

discrete~-time signal.

The steady-state output component due to e[nT] is a zero-
mean wide-sense-stationary (WSS) sequence with power spectral

density given by

H(z) H(—i ) )%

(4.1.8)
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where H(z) is the transfer function of the filter. Here the
effect on the output of coefficient inaccuracy and round off
accumulation has been ignored, since their effect on the
response to e[n)] is much smaller than that due to the response
to x[n].

To relate g to the word length of the digital filter,
scaling of the input may need to be considered. For example, if
the input has been scaled such that [x./<1 and quantization is
at the input of a fixed-point filter with a t-bit quantizer,
then g=2""., Scaling is usually not important in floating-point
filters. When it is used, the input signal spectrum and g* are
scaled by the same factor.

The mean-squared value of the error at the output due to
input quantization can be obtained by integrating the power
spectral density given by Eq.(4.1.8). It is equated to

Ak

(4.1.9)

and can be evaluated, either numerically or algebraically, by
a computer program or a table [34], [37].

One can also bound the output component due to input
quantization. It is easily seen that the output due to e[n] is
boﬁnded in absolute value by z.lh.lg/2, where h, is the impulse
response of the filter. Although this bound can be approached
with a particular input sequence, it is extremely unlikely for
the e[n] to take on these values.

4,2. THE EFFECT OF COEFFICIENT QUANTIZATION

Here, we will try indirectly to investigate the effect
of coefficient quantization on the frequency response of a
digital filter by examining its effect on the location of the
poles and zeros of the filter.
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Suppose that the pulse transfer function of the desired
filter has the form

_A(z)
G(z) B(z)
(4.2.1)
where
M
Az)=Y a,z*
k=0
(4.2.2)
and
N N
B(z)=1+2 bz *=[[ ({-p,z7")
(4.2.3)

If the filter is realized using one of the direct forms
discussed in Chapter 3, then the denominator coefficients 1,
b,,...,b. will appear directly in the required difference
equations. To obtain a rough estimate of the accuracy with
which these coefficients must be represented to maintain

stability, let us assume that G(z) is a narrow-band low-pass

filter. Then the poles of G(z), PpP.,...,P., Will be clustered:
inside the unit circle close to the point z = 1. Therefore, we.

can write that

py-1+e, with lel<«1 for k-1,...,N
(4.2.4)
If a single coefficient b. is changed to b',. = b, +6, then the

new denominator will be N
B/(z)=1+Y, bz ¥+8z7*=B(z) +dz7*
k=1

(4.2.5)

As & is increased in magnitude, roots of B'(z) will eventually
move outside the unit circle. In general, the roots will cross
the unit circle at different points. It is particularly easy to
check for roots crossing at z = 1. From Eg.(4.2.6) we can see
that if
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N N
8--B(1) '—[1+E bk]-_II (1-p;)
k-1 k-1

(4.2.6)

then B'(z) will have a zero at z = 1. Substituting Eg.(4.2.4)
into Eg.(4.2.6), we find that

&
i

=4
&

i
Jo

(4.2.7)

Thus only a small coefficient perturbation is required to cause
instability; From Eq.(4.2.7), we can see that the accuracy
requirements are more severe when thé filter order N is large.
Similar results can be obtained for other common types of
filters that have poles clustered near points on the unit

circle.

In addition to maintaining stability, we must insure that
the poles and zeros of the implemented filter are sufficiently
close to those of the desired filter so that its frequency
response 1is acceptable. Changes in the zeros of B(z) for
incremental changes in its coefficients can be examined by
using the total differential rule

N api
dpi-nzl ———abn dbn
Z-pi

(4.2.8)

The partial derivatives can be calculated from the polynomial

and factored forms for B(z) in Eg.(4.2.3) using the rule
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dp, 0B/db,
ob, 0dB/op,

(4.2.9)

when B(z) has only first-order zeros, we find from Eg.(4.2.8)
and Eqg.(4.2.9) that

- N 1-n
p.
dpi--n-l ud 1
(1-pep;i’) db,
k-1

(4.2.10)

If B(z) has a tightly clustered set of zeros and p. and p, are
in this set, then pup,”" is close to 1 so that the product in
Eq.(4.2.10) will be small and its reciprocal large. In this
cases small changes in the coefficients of B{z) will cause
large changes in its zeros. This effect becomes more pronounced
as the number of 2zeros in the cluster increases. The same
argument applies to the numerator A(z). However,the frequency
response of a filter is significantly more sensitive to changes
in poles near the unit c¢ircle than to changes in zeros.

Changes in the zeros of B{z) when a single coefficient
is varied can also be examined by using the root locus method.
The right-hand side of Eq.{4.2.5) can be considered to be the
characteristic polynomial for a single loop negative feedback
system with the opén loop gain &z7'/B(z).

The accuracy requirements become greater as the filter
poles cluster closer together. For low-pass filters the poles
cluster near z=1, and for high-pass filters they cluster near
z=-1. For band-pass filters they cluster near z= e**" where w,
is the center frequency of the filter. If the bandwidth of the
filter is W, then a measure of the tightness of the clustering
is W/w.. The clustering becomes tighter as this ratio
decreases. If the filter bandwidth W is held fixed and the
sampling rate w, is increased, then we see that the poles

become more tightly clustered and the accuracy requirements
increase.
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The results of this section can be assumed up by saying
that a direct form implementation of a practicdl recursive
digital filter of order greater than two should usually be
avoided. Sometimes even for a third-order filter the accuracy
requirements for a direct form realization can be significant.
A solution to the problem is to realize the filter by
paralleling or cascading first-and second-order sections. The
cascade form is most often chosen so that the zeros as well as
the poles can be directly controlled.

4.2.1. COEFFICIENT QUANTIZATION ERROR CALCULATION FORMULAS FOR
ARMA

Auto correlation coefficients errors:

SMRIEY (z:y[kly[k+j1)
7
r,, (k] "1—1\'7.(; (04 (k] *+€y x4 71 )(Y[k""j] €11 ))

Zyy (k] =2’y [K] +‘}Tr(§: v lk+dle g +eypp y (K] "“—‘ytkmey[m))
(4.2.10)

Error introduced at transfer function coefficients
because of the error introduced at auto correlation and

transfer function recursion coefficients:

) r +1
al [1] -—__Y_Y_[_q_T]_
, . lg
al;[11=- Ty [a+1] +er, 10y

vy [Q] +eryy[q]

rylagrile, (g€, 1oty (D
Iy gl(ry, [l +e; 1q)

al,[1]=a, [1]+

(4.2.11)
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r, lg-1]
b, [1] ~- T2y 9721
[21-- =2
b [1]=- Tyyla-1]+€; 1001

Iyylal e, 1

Iyylg-1] €, ta €, 1g-11Tyy [d]

b, [11=b
1 [1]1=by [1] + ryy[Q'](Iyy[q]+€zyy[ql)

(4.2.12)

p,=(1-a,[11b,[11) 1, [q]
pli=(1-(a, [1]+e, 1yy) (b [1] e, 1) (1), [Ql +e, ta)

p/l_plﬂp(l—al [1]1h, [1] € 1) (b, 1118 [1] +ea, [1]1b1] Wy [q] +e, ra)

(4.2.13)

k-1

1, [g+kl1+Y a, (111, [g+k-1]
ak [k] -— 1=1
k-1
k-1
K] (ryy[q+k] ez,,[qm)+122 (@), [1]1+e,, (5)) (1, [g+k-1] +€z,,,[q+k-11)
a _ -
¥ Pr-1+€p, .

(4.2.1)

p=(1-a, [k1b [k]) Py,
P/k-(l—[ak [X] t€,, 1 ][bk (k] +€p, 1K) ])(pk-1+ePk-1)

p/ =P i+ (1-a [kl by [kl e, - (ea,[k]bk[k] +€p, K] aglkl+e, 1€, 1) (pk—1+€pk_-)'
(4.2.16)
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4.3. FIXED POINT FINITE WORD LENGTH ARITHMETIC EFFECTS

Suppose that in a particular digital computer numbers are
stored in a fixed point format using words of K+1 bits
including the sign bit. wWhen two of these numbers are added,
the sum can be represented by K+1 bits except when an overflow
occurs. When two of the numbers are multiplied using a fixed
point algorithm, the full accuracy product contains 2K+1 bits.
The typical operation performed in implementing a digital
filter is a sum of products. The sum can be carried out using
the full 2K+1 bit products rounded to a fewer number of bits.
The total sum must then be rounded to K+1 bits for storage.
This process is known as finite word length arithmetic.

The accuracy of the stored total sum depends on the
number of bits retained in the product for addition as well as
the number of bits used for storage. Suppose that products are
rounded to less than 2K+1 but more than K+1 bits and that the
resulting nﬁmbers correspond to multiples of the arithmetic
quantization step size gq.. Let us assume that the stored
numbers correspond to multiples of the storage gquantization
step size g.. Suppose that we wish to calculate the sum of

products
N N
S-E anbn—z Ch
n-1 n-1

(4.3.1)

where a. and b. are Kth bit numbers. The rounded products can

be written as

[cn] ~Cntén

(4.3.2)

where |e.l<q./2. Thus, the computed sum can be written as
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N N
S’l-Z(cn'J -S+Z = ~
n-1 z ni
(4.3.3)

We will assume that numbers have been scaled so that the
probability of overflow is negligible. The computed sum rounded
to K+1 bits for storage can be written as

N
5'2-51+V‘-«5'+2 e tv
a1

(4.3.4)

where |v] <q./2. From eq.(4.3.4) we can see that
Is,-S1 < Ng,/2+q,/2

(4.3.5)

When the full accuracy 2K+1 bit products are used, e.=0 for
n=1,...,N so that

IS;‘S' < qs/z

(4.3.6)
If thé products are rounded to the storage accuracy of K+1 bits
before addition, the resuHxing sum has K+1 bits and can be
. stored directly, so v=0 and

IS,-S1 < Ng,/2

(4.3.7)
The bounds given by Eg.(4.3.5), (4.3.6), and (4.3.7) are
achievable worst case bounds. When N is greater than or equal
to two, the composite bound decreases from Nq./2 to gq./2 as the
number of bits retained in products increases from K+1 to 2K+1.

A less conservative estimate of the noise introduced by
finite word length arithmetic can be obtained by an approximate
statistical approach. When products are rounded to more than
K+1 and less than 2K+1 bits in such a way that the quantization
errors e,,...,e, and v in Eq.(4.3.4) can take on 16 or more
values, simulations have verified that these errors can be
adequately modeled as zero mean, uncorrelated random variables



with enlnniformly distributed over (-q./2, 49./2) and v uniformly
distributed over (-q./2, d./2). Under these assumptions, the
variance of e, is q/*/12, the variance of v is g,*/12, and it

follows from Eqg.(4.3.4) that the total quantization noise
variance is

E{(S,-s%)} -NgZ/12 + g¢/12

(4.3.8)
When the full accuracy 2K+1 bit products are used, e.=...=e,,
so that
E{(S,-S)?}~Ng?/12
(4.3.9)

If products are rounded to the storage accuracy of K+1 bits,
then v=0 and

E{(S,-5)2} - g?/12
(4.3.10)

4.3.1 NOISE IN THE OUTPUT OF A RECURSION FILTER CAUSED BY
FIXED POINT FINITE WORD LENGTH ARITHMETIC

The noise introduced be finite word length arithmetic can
be analyzed by replacing each rounded term by its original
value plus an error term limited in magnitude to half the
gquantization step size. In this section we will use the
approximate statistical approach discussed in section 4.3 and
assume that the different rounding errors are 2zero mean,
uncorrelated random variables each having variance g*/12 where
g is appropriate quantization step size.

The output of a finite tap nonrecursive filter is a
weighted sum of inputs. Therefore, the error in the calculation
of the present output introduced by finite word 1length
arithmetic does not propagate into the calculation of future
outputs. The resulting output noise can be characterized by the

A
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appropriate equation in section 4.3.

The output of a recursive filter is a weighted sum of
present and past inputs and past outputs. In this case, the
rounding errors propagate into the calculation of successive
outputs. To illustrate this effect, let us assume that the
pulse transfer function given in Eq.(4.2.1) is implemented
using a type 0 direct form realization. If x{(nT) is the filter
input and y(nT) is its output, then the ideal input output
relation is

M N
y(nT) =Y ax(nT-kT)-Y y(nT-kT)
k-0 by

(4.3.11)

We will assume that a., b., and x(nT) have already bheen
quantized to the required word lengths and that these effect
can be analyzed separately. We will assume that overflows do
not occur. To simplify the analysis slightly, we will assume
that products and the total sum are both rounded to multiples
of g. Then the computed and stored output y.{(nT) is

M N
v, (nT) =Y [ax(nT-kT)] , - ¥ [byy, (nT-kT) ],
k-0 k=1

(4.3.12)
The rounded products can be written as
la,x(nT-kT)] ; =a,x(nT-kT) +e, (nT)
(4.3.13)
and
[by, (nT-kT)] , = by, (nT-kT) +£,(nT)
(4.3.14)

Therefore,
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M N
y, (nT) -E a;x(nT-kT) —E b,y, (nT-kT) +e(nT)
k=0 k1

(4.3.15)

where

M N
e(nT) -E e, (nT) —E £, (nT)
£

k-0

(4.3.16)

The filter with the roundoff errors is illustrated in Fig.
(4.3.1). Assuming that the roundoff errors are zero mean,

uncorrelated random variables each with variance g*/12, we find
that

E{e? (nﬂ}-Mt_l_)_g_z.

12
(4.3.17)
x(n7] 7 ] 77
OO
a1 X
e ln
db Ny +>
Z-1
éN
£ulnT)
4+

Figure 4.3.1. Noise in a type 0 direct form recursive
filter realization caused by fixed point finite word length
arithmetic
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Taking the Z-transform of Eq.(4.3.15) yields

Y, (z)=Y(z)+V(z)

(4.3.18)
where
Y(z)=X(z)A(z)/B(z)
(4.3.19)
and
V(z)=E(z)/B(z)
(4.3.20)

Thus the computed output y.[nT] is the sum of the desired
output y[nT] and a noise signal v[nT]. Assuming that e[nT] is
a white noise sequence, then by using the average power
spectral density formula; the output noise power is

2 _a? 1 1 dz
Elvi(aD) }=37 (MeNed) 2njJ B(z)B(z') =z

(4.3.21)

where the unit circle can be taken as the contour of
integration [38], [39]1, [40].

The output noise power in parallel and cascade form
realizations can be determined using the same approach. The
output noise power study is given for parallel and cascade form
and direct form realizations is given the below part.

4.3.2. FIXED POINT FILTERS

We shall consider first the direct form of realization
and then use the result to treat parallel and cascade forms.
Direct Form: It is seen before that the actual output

sequence y[n] is given by

M 1
yInl =Y (by&ln-k1-Y (ay),y[n-kl+en (4.3.22)
k-0 k-1
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where (a.). and (b.). are t-bit fixed-point representations of
the coefficients a. and b, and ¢, denotes the roundoff error in
the calculation of y[n]. From the section 4.2 (error
calculation for approximation), we have (a.).=a.ta. and
{b.).=b.+8, where a, and B, are the coefficient errors.

The error of the nth sample of the output is given by the
difference between the actual output y[n] and the ideal output
w[n] we have

(4.3.23)

where

. M L
u~Y B x[n-k1-Y a,win-kl+e,
k=0 k-1 .
(4.3.24)
Suppose x[n] is zero mean and WSS. with aoutocorrelation
function R..(n) and power spectral density S..(z). Then w[n] is
zero mean and WSS. with power épectral density S..{(z) given by

S (2) =H(2) H(%)sxx(z)

(4.3.25)

It can be shown that u[n] is also zero mean and WSS with the
autocorrelation function given by
1 1 2
S, (2) =[B(2) -—H(z)A(z)][ 2142 |5 (2) 402 (mew)
(4.3.26)

where

L M
A(z)=Y a,z* and B(z)-=Y B,z*
k-1 k-0

(4.3.27)
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c*=27"** 1is the variance of a random variable uniformly
distributed in the interval (-2, 2™) and pn and v are,
respectively, the number of b, and a. that are neitﬁer 1 nor O.
For simplicity, they may be taken to be (M+1l) and 1L,
respectively. The error &, is zero mean and WSS with

i
D(Z) D(1/2) Suuta)

See(2) =

_c(z)yc(1r/z) (h+v) o
D(z) D17z = B * Bz D(i/z)

(4.3.28)

where D(z) is the denominator of the transfer function given by

L
D(z) -1+E a,z*
=

(4.3.29)
and
C(z)=B(z)-H(z)A(z)
(4.3.30)
The mean-squared value of e, is then
2 1 dz
E{en} mfsee(Z) —E‘
(4.3.31)

Suppose there is no coefficient rounding error; then thé first
term in Eg.(4.3.26) and Eq. (4.3.28) is absent and the‘result
is as to be expected. Suppose there in no round off error; then
the second term of Eq. (4.3.28) is absent. Thus we see that the
error at the output of the filter consists of two components;
one is due to roundoff accumulation and the other to the
rounding of the coefficients to t bits. The component due to
roundoff accumulation is uncorrelated with both the input x[n]
and the ideal output win]. From Eq.(4.3.23), and Eg. (4.3.24) we
can arrive at the block diagram shown in Figure (4.3.2), which
will facilitate our discussion of the parallel and cascade
realization forms. It is interesting to note that Eq.(4.3.28)
can be written down almost by inspection of Figure (4.3.2)
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Wn
H I
Xn
Yn
c
D
€n
€n 1
(White) L)
Figure 4.3.2. Round-off error accumulation

representation in a filter

Parallel Form: For the parallel form of filter
realization, H(z) is written as

K
H(z)=Y H,(z)
E f
(4.3.32)
where
NI(Z) b01+b11/z
H - -
2(2) Dy(2z) 1+a,,/z+a,,/2?
(4.3.33)

Eq. (4.3.33) includes the possibility of a real pole or
constant by setting a.,=b.,=0 or a,,=a.,=b,,=0. The parallel form
of implementation is shown in Figure (4.3.3) where KX
intermediate outputs w.[n}] i=1,2,...,K, are calculated from
%¥[n)] and then summed to form the final output winj.

Suppose the actual coefficients for the ith branch are

(boi)e, (Dus)e, (@), and (a..). are related to the - ideal

coefficients DBY (Doi)e=boit+Bac, (Di).=b.+8., (a.:).=a,+a,,, and

(a.,).=a..+a.,. Let v.[n] be the actual output of the ith branch
and e., the errorv

e. = y.[nl-w,[n] (4.3.34)



137

Hy Wn1
Ynt
< -
by €y
€ | g
(white) | Dy
W
Hi _ m
Xn
Ci
Di
Eni | L
(white) { O
W,
Hy L8
YnK
S
Ox €nn
Enx A
(white) | On

Figure 4.3.3. Round-off error accumulation for parallel
form

By using Figure (4.3.2) we can draw a block diagram as
shown in Figure (4.3.3), from which one quickly arrives at an
expression for the power spectral density of the output error
e.:

X oc(z) || & C (1/2) X +V
Soe(2)=5,,(2) ~ _Dj('z)] - Di(ljz)} ; Di(zp);)i(i/z)
(4.3.35)
where
C.{(z) = B,(z) - H,(z)A,(2)
B.(z) = B, + B,.2™
A(2) = e,277+ ec,,27® (4.3 36)

and v, may both/be taken as 2. The mean-squared value of e, can
be computed by using Eq.(4.3.31) and Eq.(4.3.35).

Cascade Form: To realize the digital £filter in the
cascade form, H(z) is written as

K
H(z) =[] # (=)
-1

(4.3.37)
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where ¢ is a constant which shall be taken as 1 for simplicity,

-

and

N;(z) 1+b,,/z+b,,/2?

Hy(z)~-
i Di(z) 1+a,,/z+a,,/ z?
(4.3.38)
rn
X H, Hi . HK
| G Ci Lk
D1 Dj - Dk
€ny 1 €ni 1 7 Enk | 1
(white) | O (White) | Di (white) | Ox_| -

Figure 4.3.4. Round-off error accumulation for
cascade form

Notice that the numerator N,(z) different from that in Eq.
(4.3.33). suppose (b.,,).,{b.)., (a..)., and (a..). are the actual
coefficients. Again we Thave (b.1)=b.s+8B.., (b.,).=b+.,+B..,
(a,,).=a,,+«,,, and (a.,).= a..t+«,,. By using Figure (4.3.2) , arrive
at the block diagram shown in Figure (4.3.4) where

C,(z)=By(z)-H,(z)A,(z)

By(z) =Py z7 4P, 272

A;(2)~a, 27t +va, 272
(4.3.39)
The power spectral density of the actual output y[n] can
be determined easily from Figure (4.3.4) by neglecting terms
involving fourth or higher powers of sigma. From the expression
so obtained, the power spectral density of the ideal output

w[n] is subtracted. The remaining part is the power spectral
density of the error e.. The result is
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£, (z)Cy(1/2) &
- 1 1 .
S (2) =S, (2) 12-1: D,(2) D, (1/2) jl-ll Hy(z)H,(1/z)
Ted

2 “x*vx = _ B4V, X
+0 Dp(2) Dp(1/ 2) +lz_; 1 D;(z)D;(1/z) j_Illl H,(z)H,(1/2)

(4.3.40)

Both 1, and v, can be taken as 2. The mean-squared value of e,
can be computed by using Eqg.(4.3.31) and Eqg.(4.3.40).
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V. RESULTS and DISCUSSION <

V.1l. RESEARCH METHODOLOGY

In this study, the given system is considered as an
unknown box, and by using the below denoted parametric
modelling techniques transfer function in the 2z domain the
response 1is got and the obtained transfer functions are
compared with the original one. White noise input and some
other necessary input sequences such as impulse and step
inputs are used as driving input at necessary conditions. For
modelling cases, Pade' algorithm and ARMA Modified <Yule-
Walker (MYWE) ARMA algorithm was chosen. The obtained input-
output couples were used in the calculation of the transfer
function for these algorithms. Two programs were written in
Pascal programming language. ©One 1is used to find ARMA
coefficients by using MYWE, the second one is £for Pade'
algorithm. These programs are given in Appendix A. For ARMA
case, when the results were get, it was seen that Modified
Yule-Walker algorithm were not producing the results as good
as expected, sometimes it was producing unstable system
responses. Another methodology was chosen for ARMA which was
AKAIKE algorithm. This algorithm is constructed on the
results obtained from MYWE algorithm because AKAIKE algorithm
requires an initial estimate of the coefficients and then
calculates more accurate coefficients. It was expected that
the results would give higher reliability and accuracy than
the first algorithms results. The last program for AKAIKE

algorithm is also given in Appendix A.

The second concern after finding the transfer
function  was the stability of the obtained transfer
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function. In order to investigate this problem, a program was

written. As it is explained in the previous chapters, there are
several algorithms to understand whether the system is stable
or not. Mainly all of these algorithms depends on the location
of the transfer function roots. The program written finds the
location of the transfer function roots and decides if the
obtained transfer function is stable.

Comparison of the obtained results for all of the
algorithms have been done by setting some comparison rules.
These are:

a. The response of the system when t-« for various

input sequences

b. Stability of obtained transfer function

c. The values of coefficients

d. The sensitivity of transfer function towards the
various error types and the sensitivity of modelling approach
to the input quantization, coefficient quantization and round-
off error accumulation.

5.2. PRACTICAL RESULTS

For the comparison of these methods two test cases
are used. Here in sequence the results obtained will be given.

5.2.1. FIRST TEST CASE:

Thé first test case has the following transfer function:

0.6322z-0.05014

Real H(z) -
z2-0.7852z+0.3618

- _0.65322°%-0.05014z
1-0.7852°1+0.3618z2

(5.1)
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COMPARISON OF METHODS FOR TEST CASE 1

a. System response: Response of the simulated trnasfer
functions given in Table 5.1. for impulse and step input are
shown in Figures (5.1), (5.2), (5.3), (5.4), (5.5), (5.6),
(5.7) and (5.8). |

Table 5.1 Coefficients of the simulated algorithms for
nominator=2 and denominator=2

Coefficients| REAL PADE' | ARMA MYWE | AKAIKE
a0 0 0.00164 | -0.0632 | -0.2403
al . 0.632 0.60273 0.2061 0.0143
a2 -0.05014 | -0.10930 | 0.135 0.0256
0O 11 1 1 1
bl -0.785 | -0.85725| -0.70923 | -0.917
b2 0.3618 | 0.35025 | 0.45068 | 0.406

Table 5.2. Location of poles for simulated methods

POLE 1 POLE 2
REAL - 0.3925 + j 0.4557 | 0.3925 - j 0.4557
PADE' 0.4286 + j 0.4081 | 0.4286 - j 0.4081
ARMA MYWE | 0.3516 + j 0.5721| 0.3546 - j 0.5721
AKAIKE 0.4589 + j 0.4422 | 0.4589 - j 0.4422
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Figure 5.1. Impulse response of Real transfer functions of the
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Figure 5.3. Impulse response of 'ARMA MYWE transfer function for

the first test case
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Figure 5.4. Impulse response of ARMA AKAIKE transfer function
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Tahle 5.3. Steady state response of simulated methods
REAL PADE' ARMA MYWE AKAIKE
xX[e] = 1.00877 1.02231 0.46012 0.161078
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Figure 5.9. Impulse response of higher order ARMA MYWE

algorithm for test case 1
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Figure 5.12. 8Step response of higher order ARMA AKAIKE
algorithm for test case 1

As it is seen from the tables both ARMA methods MYWE
and AKAIKE did not give expected results according to the real
transfer function. On the other hand, that much differences
real and calculated results are most probably due to the
improper selection of order. If we use any of the mentioned
algorithms explained section 3.3.4 a better approximation to
the real transfer function can be found. Below a higher order

approximation of ARMA process is given for both MYWE and
AKAIKE.

Table 5.4. Steady state response of simulated methods ARMA MYWE
and AKAIKE for orders (2,8)

-

ARMA MYWE AKAIKE

X[w] = 0.71819 - 0.8011
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Table 5.5. Coefficients of the simulated method ARMA MYWE and
AKAIKE for orders (2,8)

f ARMA MYWE | AKAIKE

i a0 | -0.3196 ~0.0820

| al | . 0.6359 0.6289
a2 0.1743 0.2647
bOo 1 1
bl | -0.9723 -0.7598
b2 1.1305 0.9092
b3 | -0.3892 ~0.1358
b4 0.0872 ~0.0197
b5 0.0046 0.0383
b6 0.0683 0.0719
b7 | -0.0870 ~0.0830

Table 5.6. Poles of the simulated methods ARMA MYWE and AKAIKE
for orders (2,8)

ARMA MYWE AKAIKE

POLE 1 -0.4353 + j 0.3462 -0.4868 + j 0.3247

POLE 2 -0.4353 - j 0.3462 | -0.4868 - j 0.3247

POLE 3 0.1671 + j 0.8718 0.1568 + j 0.8569

POLE 4 0.1671 - j 0.8718 0.1568 - j 0.8569

-POLE 5 0.4493 + j 0.6119 0.4256 + j 0.6080

POLE 6 0.4493 - j 0.6119 0.4256 - j 0.6080

POLE 7 0.6107 + j 0.0000 0.6107 + j 0.0000
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b. Sstability of systems: In order to analyze the
stability of obtained system transfer function for the above
mentioned algorithms, We considered the above table and the
location of poles on the z domain. From the-table (5.7) it can
be said that ARMA methodologies have more stable cases than
PADE' because ARMA methodology uses higher orders and for this
reason approximates the real transfer function easily. And most
of the times PADE' produces stable cases for only very low
orders. On the higher orders PADE', methodology easily produces
unstable system responses, that can be understand by the

location of poles.

Table 5.7. Simulation results obtained for methods PADE', ARMA
MYWE and AKAIKE at different orders

I J PADE' ARMA MYWE ARMA AKAIKE
2 1.022316171 0.471377019 0.161077049
3 UNSTABLE UNSTABLE NOT APPL.
5 UNSTABLE UNSTABLE UNSTABLE
3| 2.118566025 0.319512547 -0.59%949731
4 UNSTABLE UNSTABLE UNSTABLE
8 UNSTABLE UNSTABLE UNSTABLE
7 UNSTABLE UNSTABLE UNSTABLE
3 NOT APPL. UNSTABLE UNSTABLE
3 UNSTABLE UNSTABLE UNSTABLE

i0 5 NOT APPL. UNSTABLE UNSTABLE
4 UNSTABLE UNSTABLE UNSTABLE
7 UNSTABLE 0.718190263 0.808230014
8 UNSTABLE UNSTABLE UNSTABLE
7 UNSTABLE .UNSTABLE 0.974129734
8 UNSTABLE UNSTABLE UNSTABLE
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To see the how the system response can be effected from
the finite word length the system response for the different
data representation bit lengths must be examined.

The Figure (5.5) shows the logarithmic difference
between extended precision (80 bits), double precision (64
bits), real (48 bits) and single precision (32 bits) data
representation type in Turbo Pascal on the system response for
different methodologies.

0
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0O Real tranafer func. + Pade’ transfar fn. O ARMA MYWE funcltion

A ARMA AKAIKE fn.

Figure 5.13 Logarithm of the differences of calculated output
errors for data representation types

.It is obvious that if we use single precision data
répresentation system response is affected more. But on the
other hand Pade' approximation is less affected for such data
representation changes, after the real transfer function.
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c. Coefficient values : One of our criteria was
comparison of coefficients wvalues. Here, in table {(5.8) the
coefficients found by simulated methods are given. This
comparison is done at the same order level for all methods as
taking the difference Dbetween the simulated and real
coefficients. This difference is given in figure (5.14).

Table 5.8. Coefficients differences between real and simulated
results

REAL PADE" ARMA MYWE AKAIKE
a0 0 0.01064 0.06327 0.24039
o al 0 0.02926 0.42589 0.61769
az2 0 0.0519 0.16356 0.07578
bo 0 ' 0 : 0 0
b1l 0 0.07223 0.07568 0.13298
b2 0 0.01559 0.08882 0.04441
ot
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Figure 5.14. Coefficients error of simulated methods according
to the extended data type
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From figure (5.14) we can say that Pade' has better
coefficient wvalues than the other for the order (2,2). This
means that, Pade' method has a better approximation to the real
transfer function.

d. Sensitivity'to error: Under this subject we will
analyze mainly the effects of finite word length on the system.

These effects are theoretically explained in chapter 4.

1. Input quantization error: This error is directly
introduced by the quantization of the input signal. As it is
explained in section 4.2, it can be modelled as g*/12 by simply
adding a zero mean white noise sequence of variance q*/12 to
the original unéuantized discrete-time signal.

2. Effects of coefficient inaccuracy: As it is
mentioned in section 4.2, under this effect the effect of
coefficient gquantization on the frequency response of a
transfer function is considered by examining its effect on the
location of‘the poles and zeros of the filter. The numerical
algorithms to find =zeros and poles of a transfer function
(mainly roots of a polynomial) are based on some approximation
techniques, so it is not a good idea to use the approximated
roots for comparison. Here we compare the effect of finite word
length on the obtained transfer function coefficients. This
effect will be calculated by assuming that the solution found
using the extended precision data type of pascal programming
language is the true case. Other data types such as single,
real and double are used to show the effect of short word
length. See table (5.9).
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Figure 5.17 ARMA MYWE transfer function : Logarithm of
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From the figures it is seen that all methodologies
approximately produces the same amount of error for the same
order except the AKAIKE algorithm, because of the fact that it
is based on the ARMA algorithm it is effected double from such
truncation. It is obvious that Pade' is producing the obtained
results in a lower order transfer function than ARMA so Pade’
is effected less relatively to the ARMA if the orders level is
considered.

3. The output of system is a weighted sum of present
and past inputs and outputs. The rounding errors propagate into
the calculation of successive outputs, according to the
equation (4.3.21) ‘

Here we will calculate this propagated error. Assuming
that round-off errors are zero mean and uncorrolated random
variables each with variance g*/12, output noise power is

1 1 dz
2njt b(z)bz! =z

E{v?[nT)} -Lf;- (M+N+1)
(5.2)

Where the unit circle is used as the contour of integration
{341, [(39], [42], [43].

Table 5.9. Calculated errors for test case 1 in state space
direct form (all numbers should be multiplied by g*)

I J PADE' ARMA MYWE ARMA AKAIKE

21 2 -0.918791778 | -0.624480090 | -0.881202293

2 3} -0.198390581 | -0.041059074 | -0.955662787

7 8 - 7.658239885 -

z 7 - 2.266102243 | -0.070892356

a4l 7 - - ~0.484446167
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The round-off errors for test case 1 according to the
methodologies are given in the table (5.10), the round-off
errors are calculated only when stable transfer functions are
obtained.

The second subjéct to consider error was the state-
space representations sensitivity according to the various
(especially cascade and parallel) representation types. As it
is explained in section 4 especially, cascade and parallel
state space representation types are less sensitive to the
round-off errors. So, here we will investigate this on our
Pade', ARMA, and AKAIKE modellings. These errors are calculated
using residu theorem [44], [45].

Table 5.10. Output noise power of test case 1 for different
state space representation types (all numbers should be
multiplied with g*)

REAL PADE' ARMA MYWE ARMA

Repr. type AKAIKE
Direct Form 0.105711 0.918791 0.624480 0.8812
Parallel form 0.105 0.03222 0.0837 0.04403

The practical results shows the same thing with
theoretical formulas. Pade' approximation technique is 1less
sensitive to the round-off errors according to the ARMA and
AKAIKE method for same order levels.

V.2.2 SECOND TEST CASE:
The second test case was have the following transfer
function

-

0.2362%+0,362-0.785

Real H(z)=
23-0.36182%+0.92-0.4596
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In this
approximation has

Pade'
ARMA
approximation is unstable but AKAIKE algorithm's result is
better than other two.

case, as it can easily be seen from all figures above, is have

second case, for the 1lower orders

not producing a good results.

The transfer function of the second

a high overshoot and it is reaching its steady-state value in
a long time of period. This transfer function has a pole very
close to the unit circle. So it is very easy to carry it by
approximating outside of the unit circle 1like in ARMA MYWE

case.

Table 5.11. Coefficients of transfer functions of test case 2
for simulated methods

REAL PADE' ARMA MYWE AKAIKE

ad 0 0.06318 -0.15873 0.15315

al 0.236 0.12055 0.22340 -0.23252

az 0.36 0.41355 0.08721 -0.15971

a3 -0.785 -0.75204 -0.06013 -0.12042

bo 1 1 1 1

b1l -0.3618 -0.32550 | -0.30664 0.27452

b2 0.9 0.84945 0.94307 0.97841

b3 -0.4596 -0.41215 | -0.12085 0.13653

Here, the step responses 1is given as a table for
various orders. From fhis table, we can say that Pade’

approximation is not successful for second case.

reason of that is the transfer functions property.

COMPARISON OF METHODS FOR TEST CASE 2:

-

a. System response
to the systems the responses in figures (5.19),

and (5.22)

: When the impulse signal is applied

(5.20),

are obtained. And the step response is given in

Mavbe,
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(5.25) and (5.26).
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Table 5.12. Steady state value of test case 2 for step input

REAL PADE' ARMA MYWE AKAIKE

X[] -0.175228 =0.233081 0.4714 -0.19162

Table 5.13. Location of poles of test case 2 for simulated
methods

POLE 1 POLE 2 . POLE 3
REAL -0.0592+30.9776 | =0.0599-30.9776 | 0.48029+30.0000
PADE' -0.0646-30.9508 | —0.0646+30.9508 | 0.45486+30.00000

ARMA MYWE | -0.0651-3j1.0001 | -0.0613-3j1.0001 | 0.13335+30.00000

AKAIKE -0.6612+j0.9773 | -0.6612-j0.9773 | 0.14228+3j0.0000

Here, the step responses, poles and transfer function
coefficients are give are given in tables (5.11), (5.12), and
(5.13) for all simulated methods. From these table, we can say
that Pade' approximation is not successful for the second case.
This is due to the nature of the transfer function. But AKAIKE
algorithm reaches some good results at very low orders. It can
be said that Pade' approximation is not a good method for
transfer functions which have poles close the unit circle.



Table 5.14. simulation for various orders
I PADE' ARMA MYWE ARMA AKATIKE
2 UNSTABLE UNSTABLE -0.185090566
3 -0,253085154 UNSTABLE -0.201624638
5 -0.279122738 UNSTABLE UNSTABLE
2 UNSTABLE UNSTABLE -0.400155232
3 UNSTABLE UNSTABLE -0.254319036
7 0.545654458 UNSTABLE NOT APPL.
6 UNSTABLE UNSTABLE NOT APPL.
8 UNSTABLE UNSTABLE 0.032225702
7 UNSTABLE UNSTABLE 0.0091571770
10 UNSTABLE UNSTABLE UNSTABLE
4 UNSTABLE -0.601602018 UNSTABLE
2 UNSTABLE UNSTABLE -0.385882972
3 UNSTABLE UNSTABLE UNSTABLE
4 UNSTABLE UNSTABLE UNSTABLE
2 UNSTABLE | UNSTABLE UNSTABLE

stability
mentioned algorithms,

Stability'of systems:

obtained

system transfer

function
we considered the table (5.12)

for
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In order to analyze the
the
and the

location of poles on the z domain. From the table (5.12) it can
be said that ARMA methodologies have more stable cases than
PADE' and most of the times PADE' produces stable cases for
On the of PADE'
methodology easily produce unstable system responses, that can

only very low orders. higher orders

be understand by the location of poles.
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To see the how the system response can be effected from
the finite word length the system response for the different
data representation bit lengths were investigated.

The figure (5.27) shows the logarithm of differences
between extended and double, real and single data

representation types on the systenm respdnse for different
methodologies

20
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O Reo! transfer func. + Poda’ transfer fn. < ARMA MYWE funclion
& ARMA AFKAMKE fn.

Figure 5.27. Logarithm differences of calculated output errors
for the data representation types

It is obvious that if we use single data representation
system response is effected more. But on the other hand Pade’
approximation is less effected for such data representation
changes. '

c. Coefficient values : The coefficients differences
from thé'real transfer function is given in Table (5.15) and in
Figure (5.28) for test case 2.
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Figure 5.28 Coefficients error of simulated methods according

to the extended data representation type

Table 5.15 Coefficients differences between real and simuiated

results
REAL PADE' ARMA MYWE AKATKE
a0 0 0.06318 0.15873 0.15313
al 0 0.11544 0.45%940 0.46851
az2 0 0.05335 0.44721 0.51973
a3 0 0.03295 0.72362 0.66455
bo 0 0 0] 0
bl - 0] 0.36298 0.35871 0.63632
b2 0 0.05054 0.04307 0.07841
b3 0 0.04644 0.33159 0.59602
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In a similar manner, for the second case Pade' has
better coefficient values approximation than the others for the

order (3,3). So, Pade' approximation method simulates the real.

transfer function better.
d. Sensitivity to error:

1. Input gquantization error: Again this error is
- modelled by simply adding a zero mean white noise sequence of

variance g*/12 to the original unquantized discrete-time
signal.

2. Effects of coefficient inaccuracy: Here a table is
given to show the effect of finite word length by using single,

real and double data types as it is explained in the first
case.

‘Word length
o a0 + ail ¢ gl A bi X b2 v b3

Figure 5.29 Real transfer function : Logarithm of coefficient
errors according to the change of word length
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Figure 5.30. Pade' transfer function : Logarithm of coefficient

errors according to the change of word length
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Word length
o af + al ¢ o2 a bl xX b2 v b3

Figure 5.32. ARMA AKAIKE transfer function : Logarithm of
coefficient errors according to the change of word length

The figures shows the same results with the results of
test case one. It is obvious that Pade' is producing the
results is a lower order transfer function than ARMA so Pade!

is effected less relatively to the ARMA if the orders level is
considered.

3. Round-off error accumulation: Here we will calculate
the propagated error using the formula given in test case one
with the equation number (5.2).
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Table 5.16. Calculated errors for approximation types in State-
space direct form ( all numbers should be multiplied by g*)

I J PADE' ARMA MYWE ARMA AKAIKE
2 2 - - -0.26419273
3 3 0.289673616 - 0.282533023

5 5| 0.1821913131 - -

2| 3 - 0.478756531 | 0.246597057
3| 4 - - 0.330128270
8| 3 - - 1 0.283400141
7] 3 - - 0.320590893
4 | 4 - 0.244017160 -

2 | 7 - - 0490973875

The round-off errors are calculated only for stable
transfer functions obtained. Secondly the error sensitivity for
different state-space the state-space representations is given
below only for parallel representation type.

Table 5.17. Output noise power of test case 2 for different
state space representation types (all numbers should be
multiplied with g?)

REAL PADE' ARMA MYWE ARMA

Repr. type AKAIKE
Direct Form 0.09641 0.120697 0.100007 0.117722
Parallel form 0.113 0.1152 0.13312 0.1598

-

Here, with these results we can same thing that Pade’
approximation technique is less sensitive to the round-off
errors according to the ARMA and AKAIKE method for same order
levels.
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6. CONCLUSION

This study had two major objectives:/Firstly, to make a
literature survey on a new approach of Pade' approximation in
system modelling and secondly, to analyze the introduced
approach from  the point of view of sensitivity to input
quantization error, coefficient quantization error and round-
off accumulation error.

Several papers [29], [30], ([32], [41] report the
following drawback for Pade'’ approximation : "Pade'
approximation can produce stable (unstable) system response
even if the real system is unstableA(stable)“. Shamash [32] is
especially concerned with the solution of the unstability
problem and suggests a different way to provide stability. This
approach of shamash is based on fitting an ARMA model from data
samples and then reducing it by Pade'. On the other hang,
Biyiksiz's algorithm obtains the Pade' type reduced order
transfer function directly from the data samples[30]. Obviously
Biyiksiz's approach eliminates some of the steps, but this
approach does not guarantee stability of obtained transfer
function. Shamash's approach finds the dominant poles of higher
order transfer function (generally ARMA type), then by applying
Koenig's theorem and its generalization expanding it to power
series, lastly fits a Pade' approximation to this power series.
By this way it provides a stable (unstable) simulation.

In this study, in order to find out the advantages and
disadvantages of Pade' approximation we mainly compared it
with ARMA approximation techniques. The results of two test
cases with ARMA is given in Chapter 5. Although we worked on
several %ample functions, here only two of them are documented,
because they explain the behaviour of the approximation
clearly. In general, it was observed that a stability problem
of obtained transfer function always exists. It appears mostly
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in Pade' <cases. On the ARMA side, to obtain better
approximation not only MYWE but also, AKAIKE method is
considered.When the right order is selected ARMA approaches
produced proper results, but for Pade' we could not find any
research on model order selection. The lack of model order
selection rules caused to choose the orders by examining all
the orders. It also created some difficulties in the analsis of
obtained results. From the results it is seen that when the
right order is chosen, Pade' model reaches the real transfer
function at a lower order than the others.

When the stability problem is eliminated, second concern
was the sensitivity to error. This was investigated
respectively at the orders that were assumed as the right order
for Pade' and ARMA. Three types of error were examined: Input
signal quantization, coefficients quantization, and arithmetic
round-off error accumulation. In the examination of the results
obtained from both methods, it is seen that Pade' approximation
method is less sensitive to the finite word length effects.
ARMA methods were relatively more sensitive to error compared
to Pade'. Comparison 1is done on system response and
coefficients values produced by Pade'. It is shown in Chapter
5 that coefficients produced by Pade' approximation is less
effected by the change of the word length. The round-off error
value for direct type representation was greater than ARMA
transfer function direct representation error. It is seen that
Pade' has higher sensitivity to round-off error accumulation
for direct type state-space realization. When the parallel type
of state-space approach is studied, we observed that Pade’
method transfer function has also less error accumulation that
of ARMA. This is especially true when the obtained transfer
function response has the best approximation to the original
function.

As a conclusion, Pade' approximation has some advantages
and disédvantages which can be summarized as follows:
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The advantages of Pade' approximation:

a. It is easy to use.

b. Computationally, it is simpler than other similar
methods.

c. The Pade' model is of 1lower order so the

multiplicative effects of coefficient.quantization is
minimized.

d. The Pade' model is relatively less sensitive to
dquantization noise caused by the effect in (c).

e. Normally globally effective Pade' models of second
order may be achieved which lend themselves as ideal
cahdidates for direct form state space realizations.

£. Pade' model greater than second order are of lower
order than ARMA models achieved for the same system
under consideration; therefore, even when the direct
form is not feasible, the Pade' model will realize
cascade or parallel forms with fewer second order
selections, thus affording less complexity.

The disadvantages of Pade' approximation:

a. Because of the lack of model order selection rules,
user should decide on the order on their own
experience or examining any other method.

b. As a result of {(a) it can become unstable (stable)
although the original was system stable (unstable)

c. Especially, for the systems which has poles very
close to the unit circle, special care should be
payed. The reduction of poles can cause unstability,
because these systems have large magnitude poles with
negative real parts.

When Pade' approximation is used both of the advantages and
disadvantages should be taken into account before applying it
to the system at hand.

This work can be extended as follows:

1. A research should be done on order selection method
of Pade' for Biyiksiz approach. Some criteria should be
developed to choose the right order.
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2. The study on state-space modelling technique is done
only for parallel approach because of the lack of time. So, we
suggest that a detailed research should be done on various

state-space representation types to investigate error
sensitivity.
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APPENDIX A

In this appendix, all the programs written along the
development of this study is given. But giving all these
programs documented causes lots of pages printed, so all the
programs is given with a 360 KB. 5 1/4' diskette in IBM PC
compatiable format. Readers can use the program sources and
compile them by using Turbo Pascal 5.0. A READ.ME file is
placed on the diskette. This file explaines each source file
and its function in study. Toiexplaine the requirements of
users two files named HARDWARE.TXT and SOFTWARE.TXT is given.
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