
USING PADE APPROXIMATION IN SYSTEM MODELLING AND SIMULATION 

WITH STATE-SPACE REPRESENTATION 

by 

Ulku (KOLAGASIOGLU) CEYLAN 

B.S. in Computer and Control Engineering 

Istanbul Technical University, 1987 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of 

the requirements for the degree of 

Master of Science 

in 

Computer Engineering 

Bogazici University Library 

11I111111111111111111111111111111111111 :! 
39001100130973 

Bogazici University 

1992 



iii 

ACKNOWLEDGEMENTS 

This thesis benefitted from the advice and support of many 

people. Here firstly, I want to thank to my first advisor Dr. 

Serdar Biyiksiz for the research of the subj ect and to my 

second advisor Dr. Levent AkJ.n for his valuable effort and 

contribution for the completion of this thesis. Especially, I 

want to thank to my advisor Levent Ak1n for his support for 

spending time on the programs and many other things. 

Also I want greatfully thank to my husband for the 

patience and support he has shown during the long hours spent 

at home in preparing the materials. Without his support and 

understanding I would never have made it. My greatfully thanks 

are also extended to my Sister, my cousin, my mother and my 

mother-in-law for their valuable help. 

I want also thank to my friends Serap Tutar, Birten 

Kurnaz, and Aylin Ergen for their help in typing of thesis. 

Ulku (KOLAGASIOGLU) CEYLAN 



iv 

ABSTRACT 

Today, in a variety of application the statistical 

characteristics of a system response is important in order for 
analysis and model the systems. 

In this study, we mainly made an investigation to the 

system analyzing and modelling methods. Especially, we 

considered Autoregressive Moving Average (ARMA) and Pade' 

approximation methods to find the modelled system transfer 

function coefficients. Theie are several algorithms to 

calculate these coefficients. In our study we used Modified 

yule Walker Algorithm (MYWE) and AKAIKE algorithms for ARMA and 

a new Pade' algorithm developed by Biyiksiz for Pade' 

approximation. 

When these three methods were simulated, it was seen that 

Pade' is mainly less sensitive to the coefficient quantization 

error and arithmetic round-off error accumulation introduced 

by finite word length. On the other hand it is not a good 

approximation for higher orders.It was seen that if the lower 

orders were used, Pade' approximation gave really good results 

compared to the MYWE and AKAIKE. But these ARMA models also are 

not guaranteed to give stable solutions for higher orders. In 

some cases for higher or lower order ARMA models produced good 

results especially for higher orders. But these orders should 

be choosen with one of the methodologies described for model 

order selection. 

An extension of research was done to the state-space error 

sensitivity. When the mentioned errors were investigated for 

different representation types of the state-space approach, it 

was shown that Pade' algorithm was less sensitive to such 

errors especially for some of the representation types. 
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OZET 

BugUn, pek ~ok uygulamada sistem modellemesi ve 

analizi i~in sistem CeVablnln istatistiksel karakteristigini 

bulmak onem ta~lmaktadlr. 

Bu ~all~mada temel olarak sistem modelleme ve analiz 

metodlarlnl ara~tlrdlk. ozellikle, Autoregressive Moving 

Average (ARMA) ve Pade' metodlarlnl sistem transfer 

fonksiyonu katsaYllarlnl bulma yonunden inceledik. Transfer 

fonksiyonu katsaYllarlnl bulmak i~in literaturde pek ~ok 

metod vardlr. Bizim ~all~malarlmlzda ARMA metodunun Modified 

Yule Walker equations ve AKAIKE algori tmalarl, ve Biyiksiz 

taraflndan geli~tirlen yeni bir Pade' algoritmasl incelendi. 

Bu u~ metod denendiginde, Pade' algori tmaslnln 

bilgisayarda kullanllan sozcuk uzunlugundan dolaYl ortaya 

~lkan hatalara kar~l daha az duyarll oldugu gorUldU. ote 

yandan Pade' algori tmasl bazen orij inal sisteme gore kotU 

sonu~lar verdi. DU~uk duzeyde uslU terim kullanlldlglnda 

Pade' algori tmasl diger MYWE ve AKAIKE metodlarlndan genel 

olarak daha iyi sonu~ verdi. ARMA ve AKAIKE'den ise 

genellikle yiiksek dUzeyde UslU terim kullanlldlglnda daha 

iyi sonu~lar allnabildi. Fakat bu duzey numaralarlnln da 

mutlaka geli~tirilen dUzey se9me algoritmalarlndan biri 

kullanllarak se~ilmesi gerektigi gozlemlendi. 

Ayrlca durum uzaYl modellemelerine kar~l her iki 

algoritmanln buldugu transfer fonksiyonlarlnln duyarll1lglnl 

inceledik. Ara~tlrmanln bu klsmlnda ise farkll durum uzaYl 

ger~ekleme tiplerini kar~lla~tlrdlk. Burada elde edilen 

sonu9lar Pade'nin hepsinde olmas bile bazl gergekleme 

tiplerinde hataya daha az duyarl1. bir transfer fonksiyonu 

liretecegini gosterdi. 
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1. INTRODUCTION 

Advances in technology in last few decades have caused 

a revolution in system design. Many functions are implemented 

more practically in digital form. So this development has 

revealed its effect also on the system modelling and 

identification. The primary concern of this study is the 

research work towards an alternate methodology for rational 

linear system modelling and identification. 

In many applications, the underlying descriptive 

signals are inherently continuous-time in nature. If we are to 

employ the considerable powers of the digital computer for the 

processing of such signals, it is necessary to convert these 

signals into a format that is compatible with digital 

computation. Normally, in many practical situations, the given 

measurement can change at any instant of time. These signals 

are called continuous-time signals, to reflect to the 

dependence of signal on time. On the other hand, there exists 

an important class of processes in which the relevant signals 

can change value (or are defined) only at specific instants of 

time. This is usually done by sampling the input signal at 

uniformly spaced time intervals. Such a sequence is called 

a discrete-time signal. 

Discrete time signals and their manipulation are 

inherently well-suited to digital computation and are used in 

describing the digital portions of a control system. Most often 

continuous time signals are involved in describing the plant 

and the interfaces between a controller and the plant its 

controls. Signals are further classified as being of continuous 

amplitude or discrete amplitude. Discrete amplitude (or 

quantized) signals can attain only discrete values, usually 

evenly spaced. For example, an a-bit binary code can report 
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only 256 different values. ~ecause of the complexity of dealing 

with quantized signals, digital control systemdes~gn proceeds 

as if computer-generated signals were not of discrete

character. 

Although, the study of continuous and discrete time 

signals is important and different in its own right, here we 

are concerned with investigating procedures where by a given 

signal U is changed (transformed) into another signal X in 

systematic manner. This information procedure is represented by 

the mathematical notation 

X-TU 

( 1. 1 ) 

X 

Figure 1.1. System input-output relation 

where T represents some wei I-defined rule by which the signal 

U is changed into the signal X. In this representation U is 

interpreted as being the system input signal (or excitation) 

and X as a system corresponding output signal (or response). 

Such signals can be represented basically by two methods: 

1. Definition of signal by means of a mathematical 

formula, that is, a closed form expression. 

2. Displaying graphically the behaviour of signals. 

In many cases, there may not exist a convenient formula 

by which a given signal can be described. One is then forced to 

use a graphical display in such situations or to represent the 
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signal implicity as the solution or output of some relation 

such as differential equations. Most of the time_ it is very 

difficult to obtain the system response calculation in a closed 

form. 

The Laplace transform method converts time- domain 

signal descriptions into functions of a complex variable. This 

complex domain description of a signal provides new insight 

into the analys is of signals and systems. In addition, The 

Laplace transform method often simplifies the calculations 

involved in obtaining system response signals. In working with 

transfer functions, linear differential equations describing 

system operations are transformed into algebraic relations, 

thus eliminating both the necessity of solving the differential 

equations using classical techniques and the tedium of 

convolution integration. 

The Laplace transform of the continuous-time signal 

x( t) is 

.. 
X(s) -f x(t} e-st dt 

-co 

( 1. 2) 

designated by the symbol X(s) and is formally defined by the 

integration operation. The variable s that appears in this 

integrand exponential is generally complex-valued. It is often 

expressed in terms of its rectangular coordinates. 

S-(J+ jw 

(1. 3) 

where a=Re (s) and w=Im (s) are referred to as the real and 

imaginary components of s, respectively. 

For more information one can refer to [1], [2] and [3] 

in references. 

On the other hand, this type of conversion of control 

systems is applicable only for continuous time system. The use 
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of digital controllers revealed another type of research which 

is discrete-time processing of systems and signals. The z 

transform method is an important tool for analyzing linear, 

time-invariant, discrete-time systems. The z-transform plays 

the same role for discrete-time systems that the Laplace 

transform plays for continuous-time systems. In fact, the z

transform provides a bridge between continuous-and discrete

time signal processing because the Laplace transform F*(s) of 

an ideal impulse sampled signal f*(t) is related to the z

transform F(z) of the discrete-time signal f[nT] by the 

transformation z = eaT. This transformation maps the left half 

plane in the complex s-plane into the unit complex z-plane. The 

interior of the unit circle,the unit circle,and the exterior of 

the unit circle in the z-plane have similar meaning for 

discrete-time signals as the left half s-plane, j~ axis, and 

right half s-plane for continuous-time signals. 

Advancements in digital computer technology revealed 

the enormous potential of computers, and motivated extensive 

research to develop sophisticated discrete-time slgnal 

processing techniques. As a result of this advancement, the once 

purely theoretical.methods can be applied in practice. In 1958 

Blackman and Tukey [4] published classic articles describing 

how to estimate power spectra from a finite set of signal 

samples. Techniques were also developed for designing 

discrete-time filters as they are commonly called, to closely 

approximate specified frequency responses. In 1965 Cooley and 

Tukey published an article describing an algorithm, now known 

as the fast Fourier transform (FFT), for very efficiently 

computing Fourier series at a set of uniformly spaced points 

[5]. The FFT changed the approach to digital power spectrum 

estimation and significantly reduced the computation time. It 

also made a frequency-domain approach to digital filtering 

competitive with the time-domain difference equation approach. 

Estimation of the PSD, or simply the spectrum, of 

discretely sampled deterministic and stochastic processes is 

usually based on procedures employing the FFT. This approach to 
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spectral analysis is computationally efficient and produces 
-

reasonable results for a large class of signal processes. In 

spite of these advantages, there are several inherent 

performance limitations of the FFT approach. The most prominent 

limitation is that of frequency resolution, i.e., the ability 

to distinguish the spectral responses of two or more signals. 

The frequency resolution in Hertz is roughly the reciprocal of 

the time interval in seconds over which sample data is 

available. A second limitation is due to the implicit windowing 

of the data that occurs when processing with the FFT. 

These two performance limitations of the FFT approach 

are particularly troublesome when analyzing short data records. 

Short data records occur frequently in practice because many 

measured processes are brief in duration or have slowly time

varying spectra that may be considered constant only for short 

record lengths. In radar applications, for example, only a few 

data samples are available from each received radar pulse. In 

sonar, the motion of targets results in a slowly time-varying 

spectral response due to Doppler effects. 

In an attempt to alleviate the inherent limitations of 

the FFT approach, many alternative spectral estimation 

procedures have been proposed within the last decade. The 

apparent improvement in resolution provided by these techniques 

have fostered their popularity, even though classical FFT based 

spectral estimation has been shown to often provide better 

performance at very low signal-to-noise ratios. Even in those 

cases where improved spectral fidelity is achieved by use of an 

alternative spectral estimation procedure, the computational 

requirements of that alternative method may be significantly 

higher than the FFT processing required to compute periodogram. 

This makes some modern spectral estimators unattractive for 

some real-time implementations. 

A summary of modellimg techniques are given in Chapter 

2. Parametric modelling AR, HA, ARMA and Pade' methods are 

explained in Chapter 3. Chapter 4 summarizes the problems when 
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parametric modelling used. Finally, results are presented in 

Chapter 5 and conclusion is given in Chapter 6. 
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2. SPECTRAL ANALYSIS 

2.1.SPECTRAL DENSITY BASICS 

2.1.1. Random Process characterization 

A discrete random process x(n) is a sequence of random 

variables, real or complex, defined for every integer n. If the 

discrete time random process is wide sense stationary (WSS), it 

has a mean 

~ [x[n]] -~ x 

( 2 . 1 ) 

which does not depend on n and an autocorrelation function 

(ACF) 

Ixx[k] -g [x" [n] x [n+kJ] 

( 2 . 2 ) 

which depends only on the lag between the two samples, not on 

their absolute positions. Also, the autocovariance function is 

defined as 

( 2 . 3 ) 

In a similar manner, two jointly WSS random process x[n] and 

y[n] have a cross-correlation function (CCF) 

Ixy- g' [x" (n) y(n+k)] 

( 2 .4) 

and a cross-covariance function 
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( 2.5 ) 

The autocorrelation matrix is defined as 

rxx [-1] ... Xxx [ (M-1)] 

r xx [0] .. , r xx [ - (M- 2) ] 

". 

r [M-l] r [M-2] .. , xx xx 

( 2 . 6 ) 

The z-transforms of the ACF and CCF, defined as 

Pxx(z) - .E rxx[k] Z-k 

k---

( 2 .7) 

lead to the definition of the power spectral density. When 

evaluated on the unit circle Pxx(z) and.PK~(z) become auto-PSD, 

P~(f)-P_(exp[j2nf]), and cross-PSD, P_(f)=p_(exp[j2nf]), or 

Pxx (f) - .E rxx [k] exp (-21tfk) 
k---

Pxy (f) - E rxy [k] exp (-2nfk) 
k---

( 2 .8) 

The relationship that the auto-PSD is the Fourier transform of 

the ACF as expressed by Eq.(2.8) is sometimes referred to as 

the Wiener-Khinchin [6] theorem. The auto-PSD describes the 

distribution in frequency of the power of x[n] and as such is 

real and nonnegative. The cross-PSD, on the other hand, is in 

general complex. The magnitude of the cross-PSD describes 

whether frequency components in x[n] are associated with large 

or small amplitudes at the same frequency in y[n], and the 

phase of the cross-PSD indicates the phase lag or lead of x[n] 

with the respect to y[n] for q given frequency component. Note 

that both spectral densities are periodic with period one. The 
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frequency interval - ~ ~ f ~ ~ will be considered as the 

fundamental period. When there is no confusion, Pxx(f) will be 

referred to simply as the power spectral density (PSD). 

A process that is frequently encountered is discrete 

white noise. It is defined as having an ACF 

( 2 . 9 ) 

where 5(k) is discrete impulse function. This says that each 

sample is uncorrelated with all the others. using Eq.(2.8), PSD 

becomes 

(2.10) 

to be completely flat with frequency. Alternatively, white 

noise is composed of equipower contributions from all 

frequencies. 

Denoting the system function by H(z) 

-
H(z) - E h [n] z-n 

n---

(2.11) 

.the.following relations for the PSD's follow 

Pxy{z} -H{z} Pxx(z} 

PYX (z) -H* (l/ z*) Pxx (z) 

Pyy (z) -H(z) H* (1/ z*) Fxx(z) . 

(2.12) 

if h[n] is real, H-(l/z-) = H(l/z). The last relationship in 

Eq.(2.12) is particularly important in that it justifies the 

interpretation of Pxx(f) as a PSD. Specifically, the expected 

power of the output process y[n] is ryy[O]. 
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2.1.2 The Ergodicity Of The Autocorrelation Function 

Estimation of the PSD of an arbitrary WSS random 

process requires one to estimate ACF.' A difficulty arises in 

that the ACF is defined as the expectation of xW[n]x[n+k] 

obtained when averaged over an ensemble of realizations. In 

practice, however, only a segment of a single realization is 

available. Thus, it is imperative that a single realization of 

the random process or the infinite data set x[n] for -oo<n<oo 

be sufficient to determine the ACF. A random process which 

has this property is said to be autocorrelation ergodic. In 

general, 

ensemble 

a strictly ergodic process allows one to determine 

averages by replacing them with time averages. 

Hereafter, it will be assumed that the measured process is 

ergodic in the autocorrelation, so that a time average can 

replace an ensemble average. 

2.2.SPECTRAL ANALYSIS HISTORY 

The emergence of spectral estimayion is based on 

Fourier analysis, which typifies a nonparametric approach. In 

this approach no specific model is presupposed in formulating 

the estimation problem. The periodogram defines, in a sense, 

the frequency contents of a signal over a finite time interval. 

In general,the periodogram spectral estimate is obtained as 

the squared magnitude of the values from an DFT performed 

directly on the wide sense stationary time series observation. 

This information may, however, be fairly hidden due to the 

typically erratic behaviour of a periodogram as a function of 

w. 

Traditional spectrum estimation, as currently 

implemented using the FFT, is characterized by many tradeoffs 

in an effort to produce statistically reliable spectral 

estimates. There are tradeoffs in windowing, time-domain 
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averaging, and frequency-domain averaging of sampled data 

obtained from random process in order to balance the need to 

reduce sidelobes, to perform effective ensemble averaging, and 

to ensure adequate spectral resolution [7], [8]. The spectrum 

analysis of a random process is in concept not obtained 

directly from the process x[t] itself, but is based on 

knowledge of the autocovariance function assuming a zero mean 

process as it is explained in section 2.1. In practice, one 

does not usually know the statistical autocovariance function. 

Thus an additional assumption often made is that the random 

process is ergodic in the first and second moments. This 

property permits the substitution of time averages for ensemble 

averages. For an ergodic process, the statistical 

autocovariance function may then be equated to 

T 

r xx ('t) -lim-.!.. fx{ t+'t) x· ( t) dt 
T- 2T 

-T 

with the use of above def~nitions 

P(f} -l)!' g [ 21T[LX( t) exp (- j2pift) dtrl 

(2.13) 

(2.14) 

The expectation operator is required since the ergodic 

property of Rxx(~) does not necessarily imply that the Fourier 

transform of the process x(t) is also ergodic, this means that 

the limit in Eq.(2.14} without the expectation operation will 

not converge in any statistical sense. 

Attempting to estimate P(f) with the finite data sets 

using Eq.(2.14) without taking into consideration the 

expectation operation and the limit operation, can lead to 

meaningless spectral estimates if no statistical averaging is 

performed. 
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2.3. CLASSICAL METHODS 

Spectral estimation techniques based on Fourier 

transform operations are referred to as classical methods. Here 

two of them will be mentioned shortly. These are periodogram 

originally proposed by Schuster, and Blackman-Tukey spectral 

estimator [4]. The principal conclusion which result from the 

study of the classical methods is that the bias of the 

estimator can be reduced if we are willing to accept an 

increase in variance, and vice versa, but both types of errors 

can not be reduced simultaneously. 

The periodogram definition relies on the PSD definition 

given by 

Pxx (f) -lim g [ 1 
M- 2M+l 

M 2] 
n~ x[n] exp (-j21tfn) 

(2.15) 

By neglecting the expectation operator and using the available 

data { x[O], x[l], .... ,x[N-1]} the periodogram spectral 

estimator is defined as 

N-l 2 

P'PBR(f) _l:. :E x[n] exp (j21tfn) 
N. n-O 

(2.16 ) 

It is shown that the periodogram is an inconsistent estimator 

in that even though the average value converts to the true 

value as the data record length becomes large, the variance is 
constant, as given by 

(2.17) 

To circumvent this problem the averaged periodogram as defined 

by 
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X-l 
pI (f) .1:. '" pI (m) (f) 

A VPER K L.t PER 
m-O 

( 2 . 15) 

can be used. For this estimator the data record is segmented 

into non-overlapping blocks, which is then followed by an 

averaging of the periodograms for each block. The variance is 

then reduced by a factor approximately equal to the number of 

blocks averaged 

v.ar [ P I (f)]· Kl v.ar [plp(::' (f) ] I 
AVPER ..... 

(2.19) 

but the bias is increased. A compromise must then be made 

between bias and variance. The confidence interval for the 

average periodogram is given by 

(2.20) 

The poorer estimates of the ACF at higher lags is a 

result of a fewer number of lag products averaged. one. way to 

avoid this problem is to weight the ACF estimates at higher 

lags less or to use the spectral estimator. By using the 

properties of lag windows spectral estimator can be written as 

M 

plBT(f) - E w(k) r/xxexp (-j21tfk) . 
1c:--M 

(2.21) 

This is called as B1ackman-Tukey (BT) spectral estimator. This 

spectral estimator is sometimes called as weighted covariance 

estimator. Again a bias-variance trade-off is evident, with 

the mean being given by 
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~ [P'BT(f)) ... f W(f-~) Pxx(~} d~ 
-'h 

and the variance determined by 

vax [P'BT(f)] ... P:X(f) t W2 (k) 
N k--M 
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(2.22 ) 

( 2 • 23 ) 

The weighting of the ACF estimator will reduce the variance of 

the spectral estimator at the expense of increasing bias 

(unless the process is white noise for which the bias is zero 

for any lag window) . 

The performance of classical spectral estimates at a 

given frequency f may be characterized by the stability-time

bandwidth product inequality 

A.SA.TA.J>l 

( 2 . 24 ) 

where AT is the time interval over which data has been 
measured, Af is the resolution in Hertz, and As is the 

stability factor, defined as ratio of the spectral estimate 

variance over the spectral estimate mean. In order to have a 

stable spectral estimate for a fixed data set of AT seconds 

duration, As must be made small. However, Eq.(2.24) indicates 

this can only be achieved by giving up resolution (accepting a 

large value for Af). Thus I spectral estimation involves a 

trade-off between statistical stability and resolution. 

The conventional Blackman-Tukey and periodogram 

approaches to spectral estimation have the following 

advantages: 

- computationally efficient if only a few lags are 

needed (BT) or if the FFT is used (Periodogram), 

- PSD estimate directly proportional to the power for 

sinusoid process, 
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- A good model for some applications (The model is a 

sum of harmonically-related sinusoids) 

The disadvantages of the conventional Blackman-Tukey 

periodogram approach are 

- suppression of weak signal main-loop responses by 

strong signal sidelobes, 

- Frequency resolution limited by the available data 

record duration, independent of the characteristics of 

the data or its SNR, 

- Introduction of distortion in the spectrum due to 

sidelobe leakage 

- Need for some sort of pseudo ensemble averaging to 

obtain statistically consistent periodogram spectra, 

- The appearance of negative PSD volumes with the BT 

approach when some autocovariance sequence estimates 

are used. 

For more information on classical modelling methods one 

can refer to the references [9], [10], and [11]. 

2.4. PARAMETRIC METHODS 

Recent trends in the area of spectral estimation have 

been towards the developmeht and use of parametric methods. 

Formulation of the problem in this approach is based on a 

"model" and the requirement to estimate the unknown parameters 

of the model given a finite set of the time series observation. 

Thus, spectral estimation, in the context of modelling, 

becomes a three step procedure. The first step is to select a 

model. The second step is to estimate the parameters of the 

assumed model using the available data samples. The third step 

is to obtain the spectral estimate by substituting the 

estimated model parameters into the theoretical PSD implied by 

the model. One major motivation for the current interest in the 
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modelling approach to the spectral estimation is the apparent 

higher resolution achievable with these modern techniques over 

that achievable with the classical techniques explained in the 

previous part. The degree of improvement in resolution and 

spectral accuracy, if any, will be determined by the ability ta 

fit an assumed model with a small number of parameters. Any 

inaccuracy in the model will result in a systematic or bias 

error in the spectral estimate. 

The selection of a model and hence a spectral estimate 

is intimately related to the identification techniques employed 

in linear systems theory. One key feature of the modelling 

approach to spectral estimation that differentiates it from the 

general identification problem is that only the output process 

of the model is available for analysis; the input driving 

process is not assumed available as it is for general system 

identification. This restriction precludes the direct 

application of the myriad of system identification techniques 

to spectral estimation. On the other hand, based on the ability 

to estimate the input process, and both, some system 

identification techniques have been developed. One of these 

techniques is Pade' approximation which is the main subject of 

this thesis. Pade' approximation is also an important 

approximation method because it can be a solution to the 

problem of approximating a high order linear system by a lower 

order model. The exact analysis of most systems of high order 

is both tedious and costly. It is always desirable to replace 

such a high-order system by a system of lower order. On this 

subject there are various methods proposed, but one of the 

drawbacks of this algorithm is that the reduced order system 

may be unstable (stable), even if the higher-order is stable 

(unstable). The details of this approximation method will be 

given in Chapter 3. 

If we choose to represent our model as a ratio of two 

polynomials, three separate categories can be distinguished. 

First, an autoregressive (AR), also known as all poles model, 

which is represented by the inverse of a rational polynomial. 
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Second, a moving average (MA), also known as an all zeros 

model, which is represented by a rational polynomial. third an 

autoregressive moving-average (ARMA), also known as both poles 

and zeros model, which is represented by a ratio of two 

rational polynomials. These modelling subjects with Pade' 

approximation is the main idea researched in this study, so the 

details of such modelling techniques and their approximation 

algorithms are given in detail in chapter 3. 

2.5. NONPARAMETRIC METHODS 

Apart from the above methods, there are some other 

nonparametric methods used for spectral estimation such as 

Maximum Likelihood spectral estimation [9] , [10] , [11] , 

Pisarenko Harmonic decomposition [10], [11] and Music technique 

[9], [11]. Here, only Maximum Likelihood spectral estimation 

will be explained shortly. 

2.5.1. MAXIMUM LIKELIHOOD SPECTRAL ESTIMATION (MLSE) 

The maximum likelihood estimation (MLSE or Minimum 

Variance spectral Estimation) falls into the category of a 

nonparametric technique in the sense that no model parameters 

are explicitly computed. The original concept was developed by 

Capon for frequency-wavenumber analysis [12]. A filter model 

analogy will be used to describe this method. The MLSE was 

originally developed for seismic array frequency-wavenumber 

analysis. In this method, one estimates the PSD by effectively 

measuring the power output of narrow-band filters. MLSE is 

actually a misnomer in that the spectral estimate is not 

necessarily a true maximum likelihood estimate of the PSD; it 

may more appropriately be termed the capon spectral estimate 

after its inventor. The name MLSE will be retained here only 

for historic reasons. The difference between MLSE and 
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conventional BT/periodogram spectral estimation is that the 

shape of the narrow-band filters in MLSE are, in general, 

different for each frequency, where as they are fi~ed with the 

BT/periodogram procedures. The filters adapt to the process 

second order statistics for which a PSD estimate is sought. In 

response (FIR)types with p weights (taps), 

(2.25) 

The coefficients are chosen so that at a frequency under 

consideration fo the frequency response of filter is unity ( 

i.e. an input sinusoid at that frequency would be undistorted 

at the filter output) and the variance of the output process is 

minimized. Thus the filter should adjust itself to reject 

components of the spectrum not near fo so that the output power 

is due mainly to frequency components close to f o. To obtain 

the filter, one minimizes the autput variance a~ given by Eq. 

(2.26) subject to the unity frequency response constraint 8 so 

that the sinusoid of frequency fo is filtered without 

distortion). Where R _ is the autocovariance matrix of R~ is 

the autocovariance matrix of x n , and E is the vector 

(2.26) 

(2.27 ) 

E- [ 1 exp (j21tfoA t) •.•. exp (j21t [p-l] foA t) ] T 

(2.28) 

The solution for the filter weights is easily shown to be 

R -1 E A _ _~xx",--__ 
OPT EH R -1 E 

xx 

(2.28) 
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and the minimum output variance is then 

~t 
EH R -1 E 

xx 

(2.30) 

It is seen that the frequency response of the optimum filter is 

unity at f=fo and that the filter characteristics change as a 

function of the underlying autocovariance function. since the 

minimum output variance is due to frequency components near fo, 

then o~'NAt can be interpreted as PSD estimate. Thus, the MLSE 

PSD is defined as 

(2.31) 

To compute the spectral estimate, one only needs an 

estimate of the autocovariance matrix. 

The MLSE and AR PSD have been related analytically as 

follows. See also reference [11]. 

(2.32) 

where P'(~)AR(f) is the AR PSD for an mth order model and P·ML.(f) 

is the MLSE PSD, both based upon a known autocovariance of 

order p. 

Also a general tutorial summary of spectrum analysis 

techniques developed of discrete time series is published by 

Kay, S. M. and Marple, S. T. in reference [13]. 
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3. PARAMETRIC MODELLING TECHNIQUES 

Many discrete-time random processes encountered in 

practice are well approximated by a time series or rational 

function model. The output process of this class of models have 

power spectral densities that are totally described in terms of 

the model parameters and the variance of the white noise 

process. The parameters and white noise variance are obtained 

from the autocorrelation sequence through relationships. In 

this model an input driving sequence urn] and the output 

sequence x[n] that is to model the data are related by the 

linear difference equation. 

If the z domain transfer function of the system is 

considered, the output function is connected to the input 

X(z) -H(z) U(z) 

with cross multiplication, 

. X(z) -H(z) 
U(z} 

( 3 . 1 ) 

x(z) (bozo+blZ-l+b2Z-2+ • .•• +bnz-Il ) -U{z} (aOzo+alz-l+a2z-2+ •... +anz-
Il

) 

( 3 . 2 ) 

by using the shifting operation of z domain, when converted to 

the discrete time expression 

(3.3 ) 
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Then the output can be found : 

p q 

x[n] - - E a [k] x[n-k] + E b [k] u [n-k] 
k-l k-O .. 
x[n] - L h [k] u [n-k] 

k-O 

(3.4) 

A time-series model that approximates many discrete

time deterministic and stochastic processes encountered in 

practice is represented by the filter linear difference 

equation of complex coefficients in which x[n] is the output 

sequence of a causal filter that models the observed data and 

urn] is an input driving sequence.This most general linear 

model is termed as an Auto Regressive Moving Average (ARMA) 

model and is shown in Eq. (3.4). The assumption b[O]=l can be 

made without loss of generality because input urn] can always 

be scaled to account for any filter gain. 

The system function H(z) between the input urn] and the 

output x[n] for the ARMA process of eq. (3.4) is the rational 

function 

H(z)- B(z) 
A(z) 

p 

where A(z) - z-transform of AR branch - E a [k] Z-k 
k-O 

q 

where B(z) - z- transform of MA branch - E b [k] Z-k 
k-O 

( 3 . 5 ) 

It is assumed that A(z) has all its zeros within the unit 

circle of z-plane. This guaranties that H(z) is a stable and 

causal filter. Without this assumption it can be shown that 

x[n] as given by Eq.(3.4) would not be a valid description of 

a WSS (wide sense stationary) random process. 

It is well known that the z transform of the ACF at the 

output of linear filter, P"" (z), is related to that at the 

input, P~(z), as follows: 
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P (z) -H(z) H* (1/ z*) P (z) _ B(z) B* (1/ z*) p (z) 
xx uu A(z)A*(l/z*) UU_ 

(3.6) 

The input driving process u[n] is not generally 

available for purposes of spectral analysis. Many things could 

be assumed input driving process. It could be a unit impulse, 

an impulse train, or white noise. Here it will be assumed that 

the driving sequence is a white noise process of zero mean and 

variance 0", so that P uu(z)=o". 

As it was mentioned above here we consider three types 

of rational parametric modelling approaches. These are 

autoregressive (AR), Moving average (MA) and Autoregressive 

Moving Average approaches. 

3.1. AUTOREGRESSIVE PARAMETRIC MODELLING 

The autoregressive (AR) spectral estimate has received 

the most attention in the technical literature of all the time

series models mentioned before. This interest is due to two 

reasons. First, autoregressive spectra tend to have sharp 

peaks,a feature often associated with high-resolution spectral 

estimates. Second, estimates of the AR parameters can be 

obtained as solutions to linear equations. The AR parameters 

and the autocorrelation sequence are related by a set of linear 

equations. Estimates of MA and ARMA parameters, however, 

require the solution of nonlinear equations. 

The underlying assumption of AR process is the 

availabili ty of the exact autocorrelation function of the 

random process as it was given by its above definition. In 

practice, the autocorrelation is usually not available, so one 

must make an AR spectral estimate based on the available data. 

There are several algorithmic techniques for producing AR 



23 

spectral estimates from data samples. These techniques actually 

make estimates of AR parameters, and from there the AR PSD 

function may be evaluated. These techniques are divided into 

two categories: algorithms for block data and algorithms for 

sequential data. 

The block techniques may be succinctly described as 

fixed-time, recursive-in-order algorithms in the sense that 

they operate on a fixed block of time samples and recursively 

yield higher-order AR order parameter estimates based on lower 

order AR parameter estimates. This is an advantage in the 

situations where the appropriate AR model is not known and many 

different orders must be tried and compared in order to select 

a suitable order. 

conceptually, the simplest procedure to obtain an AR 

spectral estimate from data samples would be to produce 

estimates of autocorrelation sequence from the data using 

correlation formulas described in the previous chapter. These 

autocorrelation estimates would then be used in the Yule-Walker 

equations to yield the AR coefficients and from these the AR 

PSD function. There are also some other techniques that yield 

AR model parameters directly from the data without the need for 

autocorrelation estimates. such as least mean square v. s .. 

information on these can be found in references and names [9]. 

The block data techniques considered in this thesis 

fall into three categories. 

The first one is obtained through the equivalent 

representation of either the autocorrelation sequence or the 

reflection coefficient sequence. The most common method to 

calculate the AR parameters that uses this method is Yule

Walker method which is used in this thesis to calculate AR 

parameter estimates. On the other hand, reflection coefficient 

sequence estimation is used by another method which is the Burg 

algorithm given in [6], [9]. 
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An important category of AR parameter estimation 

method is based on a least squares linear prediction approach. 

Techniques in this category are further distinguished by the 

type of linear prediction used. They perform separate 

maximization of the forward and backward linear prediction 

squared errors [10], [13], [14]. 

Another class of techniques perform combined 

minimization of the forward and backward linear prediction 

squared errors among which is the modified covariance method 

[10], [14]. 

3.1.1 PROPERTIES OF AR PROCESS 

3.1.1.1 Linear Prediction of AR Process 

As all other modelling methodologies this technique is 

based on the problem of linear prediction which is to predict 

the unobserved sample x[n] based on the observed data set (x[n-

1], x[n-2], x[n-3], .... ,x[n-p]). Assuming a predictor that is 

a linear combination of the past samples, 

WH ITt: NOISE + 
DII.IVlNG 

SEquENCE" urn] 
}------------r---~ x[n) 

OBSER.VED 
5€quEN(€: 

Figure 3.1.1. Autoregressive model of random process 
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Figure 3.1.2. Summary of AR modelling technique 

P 

xl en] --:E Uk x [n-k] 
lc-l 

(3.7) 

the prediction coefficients {a" a 2 , ••••• ,ap } are chosen to 

minimize the power of the prediction error ern]: 

(3.8) 

Although x[n] has specifically been chosen to be predicted, the 

optimal prediction coefficients are independent of the value of 

n. This is because x[n] is assumed to be WSS, so that the 

prediction coefficients, which will be a function of the ACF, 

are independent of n.Processing the ortogonality [6] principle 

to minimize p we have 

------~-,-.-.~ 
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r [k] --1:« lrxx[k-l] 
1-1 

or 

2'[x· [n-k] [x(n) _Xl (n) ] ] -0 
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k-l,2, .... p (3.1.3.) 

The minimum prediction error power is found by making use of Eq 

(3.1.4) to yield 

PMIN- ~ [x" (n) (x{n) -.;e{n) ) ) 
p 

PMIN-I",,{O) + E a,le I"" (-k) . 
k-l 

(3.1.4) 

The optimal linear prediction coefficients are just the AR 

parameters, and the resulting minimum prediction error power is 

just the excitation noise variance. This will only be true, 

however, if the order of the AR process and the order of the 

linear predictor are identical. The prediction error filter 

e[n] is 

(a) UfnJ---;-1 f+oCI]Z-;+ ... +acp]z-p11-- ..... x[n] 

j--------~----------l 

I OPTiMAL lINEAt P/2fOICTOl!. I 

I I -~ I Pe.EDICTIO/'l 

I I· . J~.!..-i - e[~~~Ou[n] 
I I 
L ___________________ -..l 

(b) x[n] 

A(z): 1fa{t]z-'+ .... + a[p]z-p 

Figure 3.1.3. Filtering interpretation of linear prediction 
(a) AR model of order p. (b) Prediction error filter 

3.1.1.2. Minimum - Phase Property of Prediction Error Filter 

In defining the AR process it has been assumed that all 

the poles of 1/A(z) are inside the unit circle. This condition 

is necessary to ensure that x[n] is a wss process. Indeed, if 

I' 



ern] -x[n] -x'[n] -x[n] -[-t «xX[n-k]] 
k-l 

p 

-x [n] + E a [k] x[n-k] 
k-1 

-u [n] . 
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( 3 . 1 .5) 

any pole is on or outside the unit circle, the variance of the 

x[n] will be infinite. On the other hand, if the AR parameters 

are obtained by solving the Yule-Walker equations, it is not 

obvious that the poles will be inside the unit circle. That the 

poles are guaranteed to be inside the unit circle follows from 

the observation that the optimal pth order linear prediction 

coefficients are identical to the AR parameters. With the 

latter results it is now shown that the solution of the Yule

Walker equations yields a stable all-pole filter l/A(z) or a 

minimum phase A(z) if the autocorrelation sequence {rKK[O], 

r xx [1], .... ,rxx[p]} is a valid one. By valid it is meant that the 

(p+l)x(p+l) autocorrelation matrix 

Ixx[-p] 

I xx [ - (p-l) ] 

(3.1.6) 

is a positive semi-definite matrix. 

Because of the Yule-Walker equations yields the optimal 

one-step linear predictor for an AR(p) process, the solution 

minimizes 

to: xX [n-k] 2] 
k-O 

(3.1.7) 



2B 

where ao = 1. The minimum prediction error power PMIN can be 

written as 

lh 

P MIN- f I A (exp [j 21t f] ) 12 P xx (f) df 
-lh 

3.1.1.3. The Levinson Algorithm 

(3.1.B) 

The solution of the Yule-Walker equations for an AR(p) 

process was shown to produce the optimal one-step linear 

prediction coefficients. One can use any standard method to 

sol ve the set of linear equations. For instance, Gaussian 

elimination could be used but would require O(p3) operations. 

The Yule-Walker equations, however, are a special set of 

equations which can be solved in O(p") operations by the 

Levinson algorithm. Although appearing at first to be just an 

efficient computational algorithm, it in fact reveals 

fundamental properties of AR process. The concepts of 

reflection coefficient representations and lattice filters all 

have their origins in the Levinson algorithm. To make these 

connections apparent, it becomes necessary to employ a vector 

space approach to optimal prediction 

The Yule-Walker or Wiener-Hopf equations are now 

rederived using a vector space viewpoint. Let the linear vector 

space be composed of random variables with zero mean. The inner 

product is defined as 

<x, y> -g"(x*y) 

(3.1.9) 

so that the squared norm of a vector is 

!xIP-<x,x>-g'(lxP} -var(x} . 

(3.1.10) 
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The linear prediction problem is to find the optimal set of 

coefficients {a[1],a[2], ... ,a[p]} such that 

P 

Xl en] --E a [k] x [n-k] 
k-1 

(3.1.11) 

is the "best" predictor of x[n] given {x[n-1],x[n-2], ... ,x[n

p]}. In anticipation of the result that the linear prediction 

coefficients are equal to the AR(p) parameters, ark] has been 

used to denote the prediction coefficients, the mean square 

error 

(3.1.12) 

is minimized. By the orthogonality principle, the optimal 

predictor is found by requiring the error vector Xl [n]-x [n] to 

be orthogonal to the supspace spanned by {x[n-1], x[n-2], ... , 

x[n-p]} or 

(x[n-k] ,x[n] -x'[n])-o k-l,2, ... . p 

(3.1.13) 

By using Eq(3.1.11) in Eq(3.1.13) and standard properties of 

inner products, we obtain 

p 

<x [n-k] , x en] <E a [1] x [n-1] > - 0 
1-1 

(3.1.14) 

p 

:E a [1] <x[n-k] ,x[n-1] >--<x[n-k] ,x[n] >. 
1-1 

(3.1.15) 

Evaluating the inner products as 

p 

E a [1] g'(x· [n-k] x[n-1]} -- g' (x· [n-k] x[n]) 
1-1 

(3.1.16) 



result in 

p 

1: a[l] I",,[k-l] --I",,[k]k-l,2, •.. ,p. 
1-1 
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(3.1.17) 

To find the minimum prediction error power,we begin with 

P HIN- (x[n] -x[n] ,x[n] -x[nl) 
- (x [n] ,x [n] _Xl [n] ) - (Xl [n] ,x [n] _Xl [n] ) 

(3.1.18) 

But <x' [n], x[n]-x' [n]>=O from Eq(3.1.13), then simply PM'N can 

be obtained, 

p 

PMIN-<x[n] ,x[n] >+1: ark] <x[n] ,x[n-k] > 
k-1 

p 

P MIN-I"" [0] + 1: a [k] Ixx[ -k] • 
k-l 

(3.1.19) 

(3.1.20) 

Eq (3.1.18) and Eq (3.1.19) are. the Yule-Walker equations. The 

solution of Eq. (3.1.18) provides the optimal set of 

coefficients to predict x[n] as a linear combination of {x[n

l],x[n-2], ... ,x[n-p]} (i.e.,the optimal pth order linear 

predictor). If we wish to determine not only the pth order 

linear predictor but also the linear predictors of orders p -

1, P - 2, ... ,1, one possibility is to solve Eq.(3.1.19) for the 

various assumed model orders. The result will be sets of 

prediction coefficients {[a,[l]}, {a,.[l], a,.[2]} , ... , {ap[l] 

,ap [2] , ... , ap[p]}, where aj[i] is the ith coefficients of the 

jth order linear predictor. Clearly, ap[i]=a[i] for i=l,2 ... ,p. 

This procedure, although straightforward, proves to be 

computationally burdensome and is altogether unnecessary. An 

alternative approach is to recursively update the predictor of 

order k-l to order k. This requires that we perform a Gram

Schmidt orthogonalization of the data {x[n-l],x[n-2], ... x[n-p]} 

into orthogonal or uncorrelated random variables. To see how 

this is done, let x',,_,[n] be the optimal (k-1)st order linear 

predictor of x[n] based on the previous k-1 samples or 



k-l 

X k - 1 [n] --)' ak - 1 [i] x[n-i] . 
f.1. 
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(3.1.21) 

The subscript on Xl [n] indicates the number of 

previous samples used in the prediction. Consider a first order 

linear predictor so that k-1=1. Then 

X'l [n] --a1 [1] x[n-1] 

and a,[l] is found by minimizing 

(a) 

(b) 

x[nJ 

I x[nJ -><1 en] 

x;fnJ x[n.-l] 

x[nJ 
I 
I 
I 
I 
I 
I 
I 
I / 
I / 
1/ ___________ __ I 

X2 [n) 

OPTIMAL 
P~EDICTOR 

(3.1.22) 

(3.1.23) 

• ,f> ,b 
x,Cn]=(eo [n-t],x[n] )eo [n-1] 

,I, x[n-1] 
e [n-ll = ---"... 
o I/x[n-1] /I 

,b ,b < eo [IJ-t],x[IJ-2.J )eo [n-t] 

=xCn-2/n-1] 

Figure 3.1.4. vector space interpretation of linear 
prediction (a) First prediction (b) Second order predictor 
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The solution, depicted geometrically in Figure 3.1.4a, can be 

obtained using the orthogonality principle as 

(x[n-l] ,x[n] -xl[n])-O 

(3.1.24) 

which yields 

a [1] __ {x[n-1] ,x[n]} 
1 (x[n-1] ,x[n-1]) 

(3.1.25) 

so that 

Xl en] _ (x [n-1] , x [nl) 
1 (x [n-1] , x[n-ll) 

(3.1.26) 

Now let 

Ib [ ] x[n-1] 
eo n-1 - Ix[n-i] II' 

(3.1.27) 

eo -be n - 1] is a zero-mean random variable with prime denoting 

that it is also unit variance. A quotation mark will henceforth 

denote a random variable that is "normalized" or has unit 

variance. The "0" subscript and "b" superscript are explained 

below. The optimal first order predictor then becomes, from 

Eq.(3.1.26). 

I [n] _ <x[n-l] ,x[n] > x[n-1] 
Xl I[}dn-i] U IGdn-i]11 

X /
1 [n] - <e/~ [n-i] I x[n] > e/~ [n-i] 

(3.1.28) 

It is seen that the optimal first order linear predictor is 

found by projecting x[n] along the x[n - 1] "direction," where 

the "unit vector" along the x[n - 1] direction is e'bo[n -1]. 

Now consider a second order or updated linear predictor 

with k - 1=2: x "I [n]=-a,,[l]x[n-1]-a,,[2]x[n-2]. 

Referring to Figure 3.1.4b,we observe that x[n-2] is in 

general not orthogonal to x[n-1] .. This means that x[n-2] is 

correlated with x[n-1], so that not all of the information 
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provided by x[n-2] about x[n] is new information. The optimal 

predictor ~'[n] can be decomposed into the sum of-two vectors 

in orthogonal directions. One of the directions has already 

been specified by x[n-1]. The second direction will be that 

which is orthogonal to x[n-1]. The optimal second order 

predictor combines the first order predictor with the best 

prediction of x[n] based on the new information provided by 

x[n-2], or 

X/2 En] -X/
1 En] + best prediction of x[n] based on part of 

x[n-2] in new orthogonal direction 

(3.1.29) 

To find the new information of part of x[n-2] orthogonal 

to x[n-1], recall that if we "predict" x[n-2] based on x[n-1], 

the error will be orthogonal to x[n-1]. Let x' [n-2In-1] be the 

prediction of c[n-2] based on x[n-1] and let eb,[n-1] be the 

error. Then,referring to Figure 3.1.4b, we have 

elb-x [n-2] -x' [n-21 n-l] 

-x[n-2]-<e~[n-l],x[n-2]>e~[n-l] . 

(3.1.30) 

x'[n-2In-1] is called the backward prediction since it is an 

estimate of x[n-2] based on the future sample x[n-1]. 

Also,eb,[n-1] is called the backward prediction error of order 

1. The subscript denotes the order of the prediction error or 

number of future samples used in the prediction. The b 

subscript has been added to distinguish it form the usual 

forward prediction error. The (k-1)st order forward prediction 

error, x'[n]-x .. _,[nJ, will be denoted by e"" .. _,[n]. From Figure 

3.1.4b, eb,[n-1] is orthogonal to x[n-1] and so represents the 

new information in x[n-2] about x[n] not already provided by 

x[n-1]. For this reason e b, [n-l] is sometimes referred to as the 

innovation. 

If e b, [n-1] is normalized. 
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,b [ ] e b
1 [n-l] 

e n-l -~~----~ 
3. lIebl. [n-l] I 

(3.1.31) 

then, from Eq.(3.1.29), 

X'2 en] -X'l en] +<e'~[n-l] ,x[n] >e'f[n-l] • 

(3.1.32) 

The evaluation of the inner products will produce the 

equivalent from 

x~[n]--a2[1]x[n-l]-a2x[n-2] . 

In general, if XJc en] -x'Jc-l. [n] +<e/~-l [n-i] ,x[n] >e'tl. [n-l] 

(3.1.33) 

where e'bk _, [n-1] is the backward prediction error if x[n-k] is 

predicted on the basis of {x[n-(k-1),x[n-(k-2)], ... ,x[n-1]}. 

See Figure 3.1.5 for an illustration. 

FORWARD Pl?EDICT/ON 

SAMPLES USED TO PREDICT 

,x{nJ~. X" [nlJ,et en] 

'----~v~-~ 

8ACKWARD PRff)/CTION: 

SAMPLES USED TO PREDICT 

X[I1-5] =* e b [n-O 

" 
Figure 3.1.5. Illustration of forward and backward 

prediction 

Note that e-b
k _,[n-1] has been defined so that the time 

index n-1 refers to the latest sample used in the prediction, 

not to the sample to be "predicted". Us ing Eg. (3.1.43), the kth 

order predictor becomes 
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I [] ~ [ .] [ • ] < e b 
k-1 [n-l] t X [n] > x k n - - L" ak - 1 ~ x n- ~ + --":;:'-=b~-----

1-1 lie k-l (n-l] If! -

(3.1.34) 

Now let 

(3.1.35) 

where kk is termed the kth reflection coefficient. The backward 

prediction error may be written explicitly as 

r k-l 1 
ek~l [n-l] -x[n-k] -l-~ blc- 1 [i] x[n-l-i] J 

(3.1.36) 

where bk_,[i] are the optimal backward prediction coefficients. 

If we define b_,[k-l]=l, the backward prediction error becomes 

k-l 

e b
k _1 [n-l] -)' b k - 1 [i] x[n - 1 - i] . 

~ 

(3.1.37) 

substituting Eq.(3.1.35) and Eq.(3.1.37) into Eq.(3.1.34) 

result in 

(3.1.38) 

which must be identical to 

(3.1.39) 

The optimal prediction coefficients for the kth order predictor 

will be the sum of the coefficients for the (k-l) st order 

predictor and a correction term due to kkb_,[i]. 

The relationship between the backward prediction, is 

based on k-l future samples, and the forward prediction , is 
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based on the k-1 samples, an example of which is shown in 

Figure 3.1.5. Considering n=O for siplicity, in forward 

prediction we predict x[O] based on {x[-1],x[-2], ... , x[-(k-

1)]}, while in bacward prediction we predict x[-k] based on 

{x[-(k-1), x[-(k-2)], ... ,x[-l]}. The two problems are nearly 

equivalent except for the reversal of time, so that it is not 

surprising that the optimal bacward prediction coefficients are 

the same as the optimal forward prediction coefficients except 

reversed in time and complex conjugated. This relationship is 

also apparent if we consider the coefficients of the forward 

and backward AR models it is now shown that 

i-0,1, ... ,k-1 

(3.1.40) 

The optimal backward predictor coefficients are used. An 

explicit form for the kth order prediction coefficients 

k-1 

x'k[n] --E ak-1 [i] x[n - i] - kk (x [n-k] 
• .1-1 

k-2 ) +.E a*k-1 [k -l-i] x[n - - 1] 
.1-0 

k-1 --.E (ak - 1 [i] +k",a *"'-1 [k-i] ) x [n-i] -k"..x [n-k] . 
.1-1 

(3.1.41) 

For details refer to [6], Also, it may be expressed as 

and consequently, equating the two expressions yields 

. {ak-1 [i] +k~ "'k-l [k-i] i-1, 2, ... , k-1 
ak [~] -

kk i-k 

(3.1.42) 

(3.1.43) 
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Equations Eq.{3.1.43) are the model order update relations for 

the prediction coefficients for the kth order predictor. Note 

that the new coefficients are computed recursively based on the 

coefficients of the previous lower order predictor and the new 

reflection coefficient. Also, the ak[k] coefficient is just the 

reflection coefficient. 

To complete the recursion of Eq.(3.1.43), we need to 

compute the reflection coefficient sequence. From Eq. (3.1.34), 

(3.1.44) 

Then using Eq.(3.1.37) ,Eq. (3.1.40) and the orthogonally 

principle. The reflection coefficient is found to be 

(3.1.45) 

Note that the reflection coefficients depend on the ACF as well 

as the lower order PEFs. 

The Interpretation of kk is as a correlation coefficient. The 

first step in making this correspondence is to realize that 

(3.1.46) 

, which is the prediction error power for the (k-1)st order 

backward prediction is the same as that for the (k-1)st order 

forward prediction. 

(3.1.47) 

This is the consequence of the hermitian symmetry property of 

the ACF of a wss process. 



From Eq.(3.1.35) and Eq.(3.1.47), 

<eb
Jc_1 

[n-l] ,ef
Jc_1 [n] > 

k .. - -"------::;:....:..-~,,..__.,.........:~----::-
Jc lIefJc_dnll lebJc_1 [n-l] II 

Jvar (e 1
k _:. [n]) vvar (eb

k _:. [n-l] ) 
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(3.1.48) 

Where cov denotes the covariance. kk is bounded by 1 in 

magnitude by the Cauchy-Schwartz inequality. The reflection 

coefficient is readily seen to be the negative of the 

correlation coefficient between the forward and backward 

prediction errors. 

Finally, to complete the development of the Levinson 

algorithm, the simple recursive expression for Pk the 

prediction error power for the kth order linear predictor, 

(3.1.49) 

is derived. From Eq. (3.1.33) and Eq. (3.1.35) the kth order 

linear predictor may be written as 

(3.1.50) 

Adding -x[n] to both sides of this expression produces 

(3.1.51) 

Using standard properties of inner products and Eq. (3.1. 47), we 

have 

p k-~e fk [n] IF 
- <e .t'k_l [n] +kke b k _1 [n-l] , e .t'k_l [n] +kke b k _1 [n-l] > 
-Pk-l +kJc<e Ek _1 [n] ,e bk _1 [n-l] ) 

+k;< et-l [n -1] I ek~l [n] )-kkPk-l 

(3.1.52) 

But from Eq.(3.1.47) and Eq.(3.1.48) 

(3.1.53) 
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which upon substitution in the equation above result 1n 

Eq.(3.1.49). As expected, the prediction error pow~r decreases 

as the order of the predictor increases (assuming that kk ~ 0) 

and is nonnegative since Ikkl<l. 

In summary the Levinson algorithm recursively 

computes the parameter sets {a.[l],p.}, {a~[1],a2[2], p2}, .... , 

{ap[l], a p[2], ..... , ap[p], pp}. The final set at order p is the 

desired solution of the Yule-Walker equations. If x[n] is an AR 

(p) process, then ap[i]= a[i] for i=l,2, ... ,p and pP=02, as 

described in section 3.1.1. The recursive algorithm is 

initialized by 

(3.1.54) 

with the recursion for k=2,3, ... ,p given by 

k-1 

Ixx[k] + E ak - 1 [1] I xx [k-1] 
ak[k] _ - 1-1 

Pk-l 

(3.1.55) 

i-l,2, ... ,k-l 

(3.1.56) 

(3.1.57) 

The reflection coefficients are given by kk = ak[k]. The 

Levinson algorithm is summarized in Figure(3.1.6) The form of 

the algorithm given in Eq. (3.1.55)-(3.1.57) due Toeplitz set of 

equations, who refined the algorithm to take advantage of the 

special form of the right-hand-side vector. It is important to 

note that {a, [1], a, [2], ... , a j [j ], pj}, as obtained from the 

Levinson algorithm is the same as would be obtained by solving 

Eq.(3.1.4) and Eq.(3.1.5) with p = j. The algorithm provides 

the AR parameters for all lower order AR model fits to the ACF 

as well as the desired model. This is a useful property when we 
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do not know a priori the correct model order. Using the 

Levinson recursion, successively higher order mo~els can be 

generated until the modelling error Pk is reduced to a desired 

value. If the process is actually an AR(p) process, then 

a,,+,[k]=a,,[k] for k=l,2, ... ,p and ap+,[p+l]=k,,+,=O. In general, 

for an AR (p) process, ak[k]=kk=O for k>p and hence Pk=P" for 

k>p. This says that the variance of the excitation noise in the 

model is a constant for a model order equal to or greater than 

the true order. Hence the point at which Pk does not change 

would appear to be a good indicator of the correct model order. 

INITIAlI2.E ReCUR~ION 

all] = -'Xx [I}/'Xx Co} 

R1 = (t -I 0 1(1) 12) rK1Jo] 

LEFT OI1.0E't BE k=2 

LEV IN :iON 12.1: C. UR'sION 

°k[k]: -
r. [1<]+ ~f ok lRJ r;x U,-£J 
X~ ~~ f -

ft-1 
qJ-Jil = Gk _f [i]+ Ok [k] O~_t [k-i ] 

1'= 1.2., ..... , k-l 

1.= (1-laKCkJ/2. )~-1 

INCREASE ORDER.B'I1 

n: ORDER = P+f, EXIT 

Figure 3.1.6. Summary of Levinson recursion 
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The property that 

(3.1.58) 

leads to 

(3.1.59) 

k-1 

Ixx[k] + E a.t-l [1] I xx [k-1] 
ak[k] _ - 1-1 

Pk-l 
a k [i] -ak - 1 [i] +ak [k] a" k-l [k-i] i-l, 2, ... , k-l 

P k- (l-Iak[k] p) Pk-l 

(3.1.60) 

which furthermore implies that Pk first attains its minimum 

value at the correct model order. 

Ik) - 1 

(3.1.61) 

for some k, the recursion must terminate since Pk=O . This case 

will only occur, however, if the process consists solely of k 

sinusoids. 

3.1.2. AR PARAMETER AND PSD CALCULATION TECHNIQUES 

There are various methods estimating AR parameters, 

here only a few of them which are related to our research will 

be expressed briefly. 

3.1.2.1. Autocorrelation Method 

As usual, it is assumed that the data { x[O], x[l] 

... ,x[N]} are observed. The AR parameters are estimated by 

minimizing an estimate of the prediction error power 
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p'- ~t x[n] + fa [k] x [n-k] 
n--- k-l 
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(3.1.62) 

The samples of the x(n) process which are not observed (i.e., 

those not in the range 0 ~ n ~ N-1 are set to zero in 

Eq.(3.1.62). The estimated prediction error power is minimized 

by differentiating Eq.(3.1.62). with respect to the real and 

imaginary parts of a [k] , s . This may be done by using the 

complex gradient to yield 

~ t- ( x[n] + t, a [k] x [n-k] ) x' [n-l]-O 1-1,2, ... ,P 

(3.1.63) 

In matrix form this set of equations becomes 

r.xx[O] rxx[-l] ... r xx [ - (p-l) ] a' [1] r'xx[l] 

r.xx[l] rxx[O] ... r xx [ - (p- 2) ] a' [2] r'xx [2J 

" 

~xx[P-1] rxx [p-2] ... rxx[O] a' [p] r'xx [p] 

(3.1.64) 

where 

{ 

N-l-k 

..!. E x· [n] x [n+ k] 
r'xx(k} - N n-O , 

r'*XJ< [-kl 

for k-O, 1, ... . p 

for k--(p-1) ,-(p-2), .... ,-1 

(3.1.65) 

which is recognized as the biased ACF estimator. The matrix in 

Eq.(3.1.64) is hermitian (r",,' [-k]= rW",,[k] ) and Toeplitz, and 

furthermore can be shown to be positive definite. The 

al ternati ve Yule-Walker method is due to the equivalence of the 

autocorrelation method to the use of the Yule-Walker equations 

with a biased ACF estimator. As such, the Levinson recursion 

may be used to solve the equations and the resulting estimated 

poles are guaranteed to be wi thin the unit circle by the 

minimum-phase theorem. 

The estimate of the white noise variance or is found as 



43 

p' MIN' which is given 

p 2 

at2 _pl MIN-+ x[n] + L a
' 
[k] x[n-k] 

L k--1 

n---

o"-P'MIN- ~i.[(x[nJ + t, a' (k) X[n-kJ]x' [nJ 

+(X[nl +t a'[klX[n-kl]t a'· [11x· [n-11] 
k-l 1-1 

(3.1.66) 

From Eq.(3.1.64) the second term in the summation over n is 

zero, leading to the final result that 

P 

O/2_X'xx [0] + E a' [k] X'xx [-k] . 
k-l. 

(3.1.67) 

0'" may also be found in the last step of the Levinson 

recursion as the i'th order prediction power or in the 

alternative form as 

(3.1.68) 

where ki' is the estimate of the i'th order reflection 

coefficient generated wi thin the Levinson recursion,. The 

autocorrelation method given the above formulas are implemented 

in Pascal programs are given in the Appendix A of this thesis. 

The autocorrelation method has been found to produce 

poorer resolution spectral estimates than the other estimators. 

For this reason it is not usually recommended for short data 

records. A variant of this approach is to use the unbiased 

autocorrelation estimator in the Yule-Walker equations. with 

this modification it may be shown that the autocorrelation 

matrix in Eq.(3.1.64) is no longer guaranteed to be positive 

definite.As a consequence, of this spectral estimators exhibit 

a large variance. The use of the unbiased ACF estimator is 

therefore not recommended. 
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3.1.2.2. Covariance Method 

The covariance method was derived for real data as an 

approximate MLE. For complex data the analogous estimator may 
c 

be found by minimizing the estimate of the prediction error 

power 

1 N-l 
p/- ~ 

N-p L..J n-p 

p 

x[n] + La [k] x[n-k] 
k-l 

2 

(3.1.69) 

Note that the only difference between the covariance method and 

the autocorrelation method is the range of summation in the 

prediction error power estimate. In the covariance method all 

the data points needed for computation have been observed. No 

zeroing data is necessary. 

The minimizing of Eq (3.1.55) may be effected by 

applying complex gradient to yield the AR parameter estimates 

as the solution of the equations. 

Cxx [l,l] Cxx [1,2] ... C"",[l,p] a l [1] Cxx[l,O] 

Cxx [2,1] Cxx [2,2] ... Cxx [2 ,p] a l [2] cxx [2,0] 

'. 

Cxx [p, 1] Cxx [p, 2] ... cxx[p,p] a l [p] cxx[p,O] 

(3.1.70) 

where 

N-l 

Cxx [j, k] - N=P ::E x· [n- j] x[n-k] . 
n-p 

(3.1.71) 

the white noise variance is estimated as 

P 
(J/2 - P'HIN - cxx[O,O] + ::E a'[k] cxx[O,k]. 

Jc-l 

(3.1.72) 

iii 
I 
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The matrix in Eq. (3.1.70) is hermitian (cxx[k,j]=(c"x"_[j,k]) and 
-

positive semi-definite. It may be shown to be singular if the 

data consist of p-1 or fewer complex sinusoids. Any equations 

may be solved using the Cholesky decomposition, but the 

estimated poles using the covariance method are not guarantied 

to lie within the unit circle. 

As implied from the definition, c""r[j,k] is readily 

seen to be an estimate of rxx [j -k] , although a different 

estimate than that encountered in the autocorrelation method. 

cx,,[j,k] uses the sum of only N-p lag products to estimate the 

ACF for each lag even though more are available. As an example, 1" 

in the estimation of r",,(O) the biased auto-correlation 

estimator of the autocorrelation method uses all N data points, 

while the covariance method uses only N-p data points in the 

summation. For large data records in which N>p, these "end 

effects" are negligible and consequently, the autocorrelation 

and covariance methods will yield similar spectral estimates. 

A second contrasting feature is that for data consisting of 

pure sinusoids the covariance method may be used to perfectly 

extract the frequencies. This property is not shared by the 

autocorrelation method. Methods to estimate sinusoidal 

frequencies as described more fully are based on the covariance 

method. For detailed information one can refer to [6], [9], 

[14] . 

3.1.2.3. Modified Covariance Method 

For an AR(p) process the optimal forward predictor is 

P 

xl [n] --E a [k] x [n-k] 
.Ic-l 

(3.1.73) 



while the optimal predictor is 

P 

Xl [n] --Ea· [k] x [n+k] 
k-l. 
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(3.1.74) 

Where the a[k]'s are the AR filter parameters. In either case 

the minimum prediction error power is just the white noise 

variance 0:. The modified covariance method estimates the AR 

parameters by minimizing the average of estimated 

(3.1.75) 

where 

~ 
2 

N-l. P 
pI t'-~:E [n] +:E a [k] x[n-k] 

N P n-p k-l 

N-l-P~ P 2 
plb_~ E [n] + E a'" [k] x [n+k] 

N P n-O k-l 

(3.1.76) 

As in the covariance method the summations are only over the 

prediction errors that involve observed data samples. Note that 

an alternative way of viewing this estimator is to recognize 

that pb' is the prediction error power estimated obtained by 

"flipping the data record" and complex conjugating and applying 

a forward predictor to this new data set. In this manner we 

obtain some extra data points and hence more prediction errors 

over which to average. 

forward and backward 

Note that for any set of a[k]'s the 

prediction error estimates will be 

slightly different due to the range of the summation. 

To minimize prediction error power, we can 

differentiate the error power to the real and imaginary parts 

of ark] for k=l,2, .... p. By taking the advantage of the complex 

gradient relationship it yields 
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I [N-l (P l-a ar1] -~ L x[n] + La [k] x [n-k] x· [n-1] 
a N p n-p k-l 

+ NfP (x. [n] + t a [k] x· [n+k] lX[n+1] 1 
n-O k-l 

-0 1-1,2" .. . p 

(3.1.77) 

After some simplification this becomes 

P (N-l N-l-p 1 
~ a' [k] ~ x[n-k] x'" [n-1] + ~ x'" [n+k] x[n+1] 

--(E x[n] x'" [n-1] + Nfl' x'" [n] x[n+1] ) 
n-l' n-O I 

for 1-1,2, .. . p. Letting 

(

N-l N-l-p 1 
cxx[j,k]- [1_] :Ex'" [n-j]x[n-k] + :E x[n+j]x"'[n+k] 

2 N P n-l' n-O 

(3.1.78) 

The equations for finding parameters can be written in 

identical matrix form as 

Cxx [1,1] Cxx [1,2] ... Cxx[l,p] a l [1] Cxx[l,O] 

cxx [2,1] Cxx [2,2] ... cxx [2,p] a' [2] Cxx [2,O] 

'. 
Cxx [p, 1] Cxx [p, 2] ... Cxx [p,p] a' [p] cxx[p, O] 

(3.1.79) 

The estimate of the white noise variance is 

[N-l (l' 1 
OI2- P'MIN- [1_] L x[n] + La' [k] x[n-k] x'" [n] 

2 N P n-l' k-l 

+ NfP (x'" [n] + t a' [k] x· [n+k] )x[nl 1 
n-O k-l 

(3.1.80) 
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finally, 

P 

0/
2 

- CXX[O,O]+ Ea'[k]cxx[O,k] 
k-l 

(3.1.81) 

The modified covariance method appears to yield 

statistically stable spectral estimates with high resolution. 

For more information on this one can refer to [6], [9],[14]. 

3.1.2.4. Burg Method 

In contrast to the autocorrelation, covariance, and 

modified covariance methods, which estimate the AR parameters 

directly, the Burg method estimates the reflection coefficients 

and then uses the Levinson recursion to obtain the AR parameter 

estimates. The reflection coefficient estimates are obtained by 

minimizing estimates of the reflection coefficients 

{k" k,. I •••• k,,} are available, the AR parameters may be estimated 

as follows: 

For k=2,3, .... p, 

{ 

a'k-l [1] +k' ka'*1c-1 [k-1J 

k' k 

for 1-1,2, .. . k-1 

for i-k 

(3.1.82) 

(3.1.83) 

For detailed information one can refer to [6], [9], [12], [13]. 

3.1.3. Model Order selection 

The selection of the model order in AR spectral 

estimation is a critical one. Too low an order results in a 
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smoothed estimate while too large an order causes spurious 

peaks and general statistical instability. Many techniques have 

been derived by statistical analysis of real data. It is 

probable that these model order estimators may be applied 

directly to complex data; however, the extensions to complex 

data are not available. 

For data observed from a pure AR process the model 

order estimators produce acceptable spectral estimates if the 

data record length is not extremely short [15]. It has been 

observed that for noise corrupted data the AR model order 

chosen is usually not sufficient to resolve spectral details. 

Of course, the true AR model for noisy data is of infinite 

order so that this result is not unexpected. It should also be 

emphasized that different estimates of the model order will be 

obtained if different AR parameter estimators are used in 

conjunction with the same model order estimator. No detailed 

studies are available which assess the spectral estimation 

performance of the various AR spectral estimators when the 

model order must be estimated in addition to ~he AR parameters. 

In comparing the strengths and weaknesses of the missing phose 

model order estimators, we should keep in mind that it is the 

quality of the spectral estimate, which is of importance. For 

example, an estimator that underestimates the true AR model 

order for broadband PSDs, which are smooth in appearance may 

well be preferable to one that indicates the true orders of the 

broadband AR process but which, when combined with an AR 

parameter estimator, 

situation is possible 

short. 

gives rise to spurious peaks. This 

if, for example, the data record is 

Nearly all model order estimators are based on the 

estimated prediction error power. The estimated prediction 

error power is guaranteed to decrease or stay the same as the 

model order increases for all the AR parameter estimation 

methods described. Hence we cannot simply monitor the decrease 

in power as a means of determining model order but must also 

account for the increase in variance of a spectral estimate 
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based on an increasing number of parameters. Two methods 

proposed by Akaike adhere to this philosophy. Ttte fist one, 

termed the final prediction error (FPE), estimates the model 

order as the value that minimizes 

FPE[k] - N+k
k 

pI k 
N-

(3.1. 84) 

where P'k is the estimate of the white noise variance 

(prediction error power) for the kth order AR model. It is seen 

that whereas Pk decreases with k, the term (N + k) / (N - k) 

increases with k. The FPE is an estimate of the prediction II 

error power when the prediction coefficients must be estimated 

from the data. The term (N +k)/(N - k) accounts for the 

increase in the variance of the prediction error power 

estimator due to the inaccuracies in the prediction coefficient 

estimates. 

A second criterion, which appears to be in more general 

usage, is the Akaike information criterion (AIC). It is defined 

as 

AIC[k] - N In pIle + 2k. 

(3.1.85) 

As before, the order selected is the one that minimizes the AIC 

is an estimate of the Kullback-Leibler [15] distance between an 

assumed PDF and the true PDF of the data. The method is not 

limited to AR model order determination but may be used more 

generally for - choosing a model among competing models. 

Consequently, the AIC is useful for MA and ARMA model order 

determination.The performance of the AIC and FPE is similar. 

For short data records the use of the AIC is recommended. For 

larger data records ( N ~ 00 ) the two estimators will yield 

identical model order estimates since they are functionally 

related to each other. 
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3.2. MOVING AVERAGE (MA) MODELLING 

MA models are appropriate for processes that have broad 

peaks or sharp nulls in their spectra. Since the MA is based on 

all-zero model of the data,it is not possible to use it to 

estimate PSDs with sharp peaks. Because the MA spectral 

estimator is not a high resolution spectral estimator for 

processes with narrowband spectral features, investigations of 

its properties have been somewhat limited. 

In the following most general ARMA model, without loss 

of generality, we can assume that all a[k] coefficients except 

a[O]=l for ARMA parameters, 

p q 

x[n] --La [k] x[n-k] + L b [k] u [n-k] 
.1::-1 • .1::-0 

(3.2.1) 

then, 

q . 

x[n] - E b [k] u [n-kl 
k-O ' 

(3.2.2) 

and the process is strictly an MA process or order q, and 

(3.2.3) 

This model is sometimes termed an all-zero model and is show in 

Figure (3.2.1). 
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Figure 3.2.1. Moving Average model of random process 

A flowchart of algorithm to estimate the MA parameters from a 

sample sequence is illustrated in Figure below. 

r-. Acquire Data 
H saMples 
T se-conds/s.aMple-

• Select MA model order 
Pal'a.t-.etel' IQ 

· Estimate "-fA parameters 

• Compu te MA PSD Estimate 

---. Order Closing 

Figure 3.2.2. summary of MA modelling technique 

When it is assumed that x[n] is an MA(q) process, the 

problem is to estimate {b[l], b[2], .... b[q],a2
}. For reliable 

estimates of the MA parameters the MLE will be employed. 

Equivalently, we could obtain the MLE I S for {rx " [0] ) , 

r",,[l], ..... , r",.[q]} and calculate PSD using above formula. In 

the following part approximate MLE's for the MA parameters and 

the MA PSD are described. The algorithm, first converts 

the MA(q) process into an AR process and then uses the Yule

Walker equations to estimate the MA parameters. 



3.2.1 MAXIMUM LIKELIHOOD ESTIMATION: DURBIN'S METHOD 

Durbin's method is an approximate MLE. It is derived for 

real data, but the extension to complex data is straightforward 

and is given. The first step is to replace the MA(q) process by 

an approximate AR(L) process. An MA process 

q 

x[n] -Eb[k] u[n-k] 
k-O 

(3.2.4) 

is equivalent to the AR(~) process. 

x[n] -- 'E a [k] x [n-k] +u [n] 
k-l 

( 3 . 2 . 5 ) 

if ark] is the impulse response of l/B(z). This is immediately 

observed if we let 

so that 

1 
A(z) - B(z) 

(3.2.6) 

(3.2.7) 

If the impulse response of l/B(z) has decayed to zero for an 

index greater than L, then an AR (L) process will be a good 

approximation to the MA(q) process. Now instead of considering 

the likelihood function for the data directly, we can use the 

likelihood function for the AR parameter estimates. This is 

because the usual AR parameter estimator is a sufficient 

statistic for the AR parameters for large data record. Let a', 

cr'" be the AR parameter estimates obtained by any of the 

methods of previous part ( i. e. ,any of the approximate MLE 

techniques) using an AR(L) model. For large data records 9'=[ 

afT cr'''] is distributed according to a multivariate Gaussian 

:1 
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PDF with mean 

(3.2.8) 

and covariance matrix 

2 
~T-l 6 N xx 

Ca ,02-
204 aT --
N 

(3.2.9) 

where Rxx is the L x L autocorrelation matrix of the MA(q) or 

equivalent AR(L) process. The determinant of the covariance 

matrix is, 

It may be shown that for large L, 

so that 

204 
det (C ·2) ... _-

a,G NL +1 

(3.2.10) 

(3.2.11) 

(3.2.12) 

Thus the MLE is just 0 12
, which is the estimate obtained using 

the AR(L) model. Assuming that the autocorrelation method has 

been used for real data, autocorrelation function of AR is 

L 

0/2_X/xx [01 + E a l [k1 x/xx [k] . 
Je-l 

(3.2.13) 

, , 

" 



The approximate MLE for the MA filter parameters is 

where 

L-li-j( 

[RlaaJij-_l- :E a / [nla / [n+li-jll 
L+1 n-O 

L-i 

[II J __ 1_~ a l [n] a' [n+i] 
u i L+1,L, 

n-O 

i,j-l,2, .. . q 

i=1,2, .... . q. 
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(3.2.15 ) 

Eq. (3.2.14) is Durbin's method for MA parameter estimation. The 

Levinson algorithm may be used to solve the equations for b. 

Because of the minimum phase property of the autocorrelation 

method the estimated zeros of B(z) will be inside the unit 

circle. Many variants of Durbin's method may be generated by 

replacing the autocorrelation method of AR parameter estimation 

by any of the techniques described in Autoregressive modelling 

part. 

In summary, Durbin's algorithm for the estimation of the 

MA parameters of an MA(q) process proceeds as follows: 

1. Using the data {x[O]),x[l], .... x[n - 1]}, fit a large 

order AR model using the autocorrelation method. For an AR 

model order of L, where q < L < N, the white noise variance 

estimator 0,2 is given by Eq.(3.2.13) 

2. Using the AR parameter estimates obtained from step 

1 as the data (i.e.,{1,a[1],a[2], ..... ,a[L]}], use the 

autocorrelation method with an order of q to find 

{b[lLb[2], .... ,b[q]} as given by Eq. (3.2.14). 

For complex data the same steps apply if we use the 

complex AR parameter estimators. For more information one can 

refer to [6], [9], [13], [14]. 
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3.2.2 MODEL ORDER SELECTION 

Before describing several model order estimators, it 

should be mentioned that the prediction error power which 

formed the basis for the AR model order estimators cannot be 

applied to MA process. This is because it decreases 

monotonically with the order of the linear predictor. No 

theoretical minimum of the prediction error power of a linear 

predictor occurs for an order equal to the MA model order. 

Equivalently, the reflection coefficient sequence is not zero 

after a certain index but is generally composed of a sum of 

damped exponentials. 

several techniques for MA model order determination are 

now described. None of the techniques have been thoroughly 

tested so that a comparison of their relative merits is not 

available. For an MA process is defined as 

AIC(i) - N In 0/2i + 2i 

(3.2.16) 

where i is the assumed MA model order and cr'1 2 is the MLE of the 

white noise variance based on an ith order model. For possible 

model orders the AIC is computed and the model order yielding 

the minimum is chosen. If Durbin's algorithm is used to 

estimate the MA parameters, then all the lower order MA models 

are available. cr l2 can be found by filtering the data with an 

estimate of the ith order inverse MA filter 1jB(z), which is 

guaranteed to be stable, and estimating the power at the 

output. A second approach which relies on the statistical 

properties of Durbin I s method is to examine QMIN versus i. It 

can be shown that if the MA(i) model is correct, then 

( 3 . 2 . 17) 

! ! 
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Hence, if QMIN is computed versus i, the appropriateness of each 

model can be tested by comparing QMIN to a threshold. A large 

value of ~'N indicates that the model order is probably 

incorrect. Assume that it is desired to test the 

appropriateness of various model orders at a 95% significance 

level. Thresholds for the orders are computed from 

(3.2.18) 

If QMIN for a given i falls below the computed threshold a" that 

value of i can be considered as a candidate for the correct 

model order. If several values of i produce QMIN which fall 

below the threshold, it is not clear which model order should 

be chosen. It is also possible that all values of i may produce 

QMIN that exceed their respective thresholds. This type of test 

may not produce a good indication of model order. It should be 

noted that the QMIN are readily available from the Levinson 

solution of Eq.(3.2.14). Specifically, for an ith order model 

QMIN- (L+1) (faa [0] + t b i [k] faa [Ok] )-1 
k-l 

(3.2.19) 

where the b,[k]'s are the MA filter parameter estimates 

obtained from the Levinson recursion and 

L-k 

II""" [k] --l-E a l [n] a' [n+k] . 
L+l n-O 

(3.2.20) 

A third model order selection method tests the adequacy 

of an MA(i) model by testing whether the ACF samples for k > i 

are zero. Let 

I" -[II [i+l] I' [i+2] ... II [i+MJ]T xx xx xx xx 

(3.2.21) 



58 

Then the C, is the covariance matrix for r"xx based on the 

assumption that x[n] is an MA(i) process. The threshold value 

is chosen to ensure with high probability that if the MA(i) is 

correct, the test will indicate this. It is not known how M 

should be chosen nor how the correct model among competing MA 

models may be chosen. 

3.3. AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODELLING 

The autoregressive Moving Average (ARMA) model has more 

degrees of freedom than that the Autoregressive model (AR). 

Unlike the extensive repertoire of linear algorithms available 

to produce AR parameters and PSD estimators, there have been 

few algQri thms produced for ARMA parameters and PSD estimators. 

This is due to primarily to the nonlinear nature required of 

algori thms that must simultaneously estimate the MA and AR 

parameters of the ARMA model. The nonlinear equations 

demonstrate the difficulty of estimating the ARMA parameters, 

even when the autocorrelation sequence is exactly known. 

Iterative optimization techniques based on maximum likelihood 

estimation (MLE) and related concepts are often used to solve 

nonlinear techniques [6], [9]. 

, I 

I 
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Figure 3.3.1. (a) ARMA model of random process 
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(b) summary of ARMA modelling technique 
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These methods generally estimate the AR and then MA 

parameters separately, rather than jointly, as ~equired for 

optimal parameter estimation. The AR parameters typically 

estimated first, independently of the MA parameters, by some 

variant of the Modified Yule-Walker equations. The MA 

parameters are then estimated assuming the AR parameters are 

known or have been previously estimated. 

3.3.1 MAXIMUM LIKELIHOOD ESTIMATION 

The MLE of the ARMA PSD is 

pi (f)- o i211+b'[1]exp(-j21tf} + ... +b'[q]exp(-j21tfq)12 

ARMA Il+a'[l] exp(-j21tf) + ... +a'[p] exp(-j21tfp)12 

(3.3.1) 

where {a' [ 1 ], a' [ 2 ] , .... , a' [p ], b' [ 1 ], b' [ 2 ] , ... , b ' [ q] 10" } are 

the MLEs of the ARMA parameters. This follows from the 

invariance principle. To obtain these MLEs we must maximize the 

likelihood function p(x[O], x[l], ... , x[n-1]; a[l], a[2], .... , 

alp], b[l], b[2], ... ,b[q]) over the unknown parameters. This 

maximization will involve solving a set of highly nonlinear 

equations, even with several simplifying assumptions. 

To derive the exact likelihood function is somewhat 

involved and lends little insight into a partial estimation 

procedure. An approximate likelihood function will be derived 

based on the following assumptions : 

1. The data are real and Gaussian. 

2. The data record N is large. 

3. The poles and zeros are not close to unit circle. 

The basic approach to determining an expression for the 

approximate likelihood function is to use an AR(oo) model of the 

ARMA process as described in previous section. Then the 

likelihood function already derived for an AR process can be 

applied to an ARMA process. Let the ARMA process be modeled as 

an AR(oo) process with filter coefficients {c[1],c[2], ... }. A 
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finite model order approximation [i.e., an AR(L) model] will be 

a good approximation to the infinite order model -if c[i] ~ 0 

for i > L. This requirements is equivalent to requiring that 

the impulse response of the filter with system function l/B(Z) 

be approximately zero for i > L. The approximate likelihood 

(actually, the conditional likelihood) function could be 

written as 

p(xl,x[o], .. . ,x[L-1] ;4,b,02) 

- ( 2~(N_L)/2[-~t(X[n]+tc[j]x[n-j])2l 
21to 20 n-L 07-1 

( 3 . 3 . 2 ) 

where x = [x[ 0] x[ 1] .... x[N - 1] r. a,b are the vectors of 

the AR and MA filter coefficients, respectively, which depend 

on the c[j)'s. Note that for Eq.(3.3.2) to apply it was 

required that N be large and that the poles not be close to the 

unit circle. Now to maximize the likelihood function over a, b 

we must minimize 

N"-l (L )2 
8" (a,b) -L x[n] +L c[j]x[n-j] 

n-1 j-1 

(3.3.3) 

52 is highly nonlinear in b but a quadratic function of a. As 

an example, consider an ARMA (1, 1) process. Then, 

c [j] - (a [1] -b [1] ) (-b [1] ) j-1 

(3.3.4) 

so that, 

8" (a,b) -~ [x[nJ + t (a [1] -b [1] ) (-b [1] ) j-1 x[n_ j ]]2 
Il-L j-1 

( 3 . 3 . 5 ) 

Because 52 is quadratic in a, differentiation with respect to 

a and substitution of that unique value of a into 52 will 

reduce 52 to only a function of b. The resultant 52 will be 

nonlinear in b and hence differentiation will produce a set of 

equations which if solved may only produce a local minimum. It 

is also possible to differentiate 52 with respect to a and b 
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and solve the resulting nonlinear equations using a Newton -

Raphson approach. This method is discussed as the Akaike 

estimator. 

Assuming that 52 can be minimized to produce a',b' then 

the estimate of 0 2 is 

N-l (L )2 
62_ ~L x[n] +L 8[j]x[n-j] 

Il-L j-1 

(3.3.6) 

where the c' [j ] I S are found as the impulse response of the 

filter with system function A'(z)/B'(z). It is seen that 

unfortunately in the ARMA case no simple set of Yule-Walker 

type equations result for the MLE. The use of the modified Yule 

- Walker equations for the estimation of the AR parameters as 

discussed before bears no resemblance to the MLE and hence 

cannot 'be expected to yield good estimates. 

3.3.2. AKAIKE METHOD 

The approximate MLE of the parameters of a real ARMA 

process can be determined as the minimum of a highly nonlinear 

function. In this section a Newton-Raphson iteration is 

employed to minimize this function. This approach, which was 

originally proposed by Akaike [16], is like all nonlinear 

optimization schemes, iterative in nature and therefore not 

guaranteed to converge. If convergence does occur, the minimum 

found may not be the global minimum. It is important to begin 

the iteration with an estimate that is close to the true 

parameter value, so that hopefully the global minimum will be 

found. For large data records local minima are not a problem 

[17], in that the log-likelihood function is approximately 
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quadratic in the ARMA parameters and therefore characterized by 

a single minimum. The approximate MLE of the ARMA filter 

parameters is obtained as the values that minimize 

1 
"2 

O(a,b) -..!8 (a,b) - J I(f) lA(f)1
2 
df 

N 2 _.1 lB{f) 12 
2 

(3.3.7) 

Akaike proposed using a Newton-Raphson iteration to find a zero 

of 

(3.3.8) 

ak,bk are the kth iterates of the AR and MA filter parameter 

vectors, . respectively. H(a,b} is the Hessian of Q, which is 

defined as 

CPo 
aaaa T 

H(a,b)-
CPo 

abaa T 

fJ20 
aaab T Jp x q 

CPo lq x p 

abab T 

p x ql 
qxp 

the required partial derivatives are approximately 

where 

. N-Ikl-l 

II yy [k] -1:. :E y en] y [n+1 k I] 
N k-O 

N-Ikl-l 

II zz [k] _1:. :E z en] z [n+1 k I] 
N k-O 

( 3 . 3 .9) 

(3.3. 10) 



--

and 

oa [Jt~ [1] -2r/yZ [k-1] 

k-1, 2, ... , p 

1-1,2, ... , q 

k-1, 2, ... ,p 

1=1,2, ... ,p 

k-1, 2, ... , q 
1-1,2, •.. ,q 

k-1, 2, •.• ,p 

1-1,2, ... ,q 

N-k-l 

1:. E y[n] z [n+k] fOI k~O 
N pO 

I' yz [k] - N-l 

..! E y[n] z [n+k] fOI k<O 
N k - O 

The sequences yen], zen] are defined as 

where 

yIn] -z-~{ H(z) } 
B(z) 

z [n] _z_~{H(Z) A (z) } 
B2 (z) 

N-l 

H(z) -.E x[n] z-n 
n-O 
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(3.3.11) 

(3.3.12) 

(3.3.13) 

(3.3.14) 

It is of interest to observe that the y[n], z en] 

sequences are estimates of 

derivation of the CR bound. 

coincidence but can be shown 

the processes 

Of course, this 

to be a property 

arise in the 

is not purely 

of MLEs. Since 

the yen], zen] sequences are generated as the outputs of 

recursive filters, the initial conditions need to be specified. 

Akaike's approach sets these initial conditions equal to zero 
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on the premise that for large data records any transient 

introduced will be negligible. clearly, this wilr not be the 

case when the zeros are near the unit circle since then the 

impulse response will be long. 

The Akaike estimator may not yield minimum-phase filter 

estimates during the course of the iteration. If any iterate of 

the MA parameters causes B(z) to have a zero outside the unit 

circle, then due to the instability of l/B(Z), the y[n], z[n] 

sequences will grow large. We must therefore monitor the 

stability of the l/B(Z) filter. An approach to this problem 

would be to replace any zero outside the unit circle, say Z1 by 

its conjugate reciprocal or 1/z1*' However, a non-minimum phase 

filter would appear to be a deficiency of the algorithm, so 

that any ad hoc measure might lead to questionable results. 

Note that without the minimum-phase constraint it is possible 

to drive Q(a, b) to zero by making B(z) arbitrarily large. 

Assuming that B'(z) is minimum-phase, an alternative means of 

computing 0'2, rather than to use Q(a',b'), is to use the 

approximately equivalently expression 

where 

ul [n] _Z-l{H(Z) AI (z) } 
B' (z) 

(3.3.15) 

(3.3.16) 

and the initial conditions of the recursive filter are 

arbitrarily assumed to be zero. In computing the new iterate of 

the ARMA parameters as per Eq. (3.3.8), we can avoid the 

inversion of the Hessian by rewriting the equations as 

CO] ca 
cQ 
ab 

(3.3.17) 
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and solving a set of simultaneous linear equations for new 
-

iterate. The Hessian is assured to be invertible since it is 

positive definite. A Cholesky decomposition can be used to 

sol ve Eq. (3.3.17). As mentioned previously, for good results it 

is necessary to provide a good set of initial estimates of the 

ARMA filter parameters. Any of the techniques described in this 

sections AR modelling estimates can be used for this purpose. 

3.3.3. MODIFIED YULE-WALKER EQUATIONS 

The ARMA estimation methods described in this section 

and the next are ad hoc in nature. They have arisen from the 

difficulties associated with the highly nonlinear MLE. Unlike 

the iterative techniques these methods are direct, relying on 

the modified Yule-Walker equations, but suboptimal. They do 

have the advantage that they are computationally simple. 

Since these relationships hold when the ACF is known 

exactly, a reasonable approach is to replace the theoretical 

ACF samples by estimates and then solve the equations for the 

AR filter parameters. The MA parameters are subsequently found 

in a separate step. This leads to the following estimator for 

the AR filter 

Ixx[O] 

I xx [1] 

I xx [M-1] 

parameters: 

I xx [-1] ... r xx [ - (M-1) ] 

Ixx[O] ... Ixx[ - (M-2)] 

" 

Xxx [M-2] .. , rxx[O] 

a' [1] 

a' [2] 

a' [p] 

x'xx [q+1] 

r'xx[q+2] 

r'xx[q+p] 

(3.3.18) 

The ACF estimator may be either the biased or unbiased 

estimator. In general, a' will not be minimum-phase. Note that 

the matrix is Toeplitz since the elements along any NW to SE 

diagonal are the same, although not hermitian. Also, the matrix 

is not guaranteed to be nonsingular. Once the AR parameters 

have been estimated and x[n] filtered by A'(z) to produce an 
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approximate MA process, any of the methods of section 3.2 may 

be used to estimate the MA parameters. 

The MYWE can be solved in an efficient manner using an 

extension of the Levinson recursion. The extension is implicit 

in the work of Trench [20], who showed how to invert a 

nonhermitian Toeplitz matrix. Recursive algorithm is initialized 

by 

(3.3.19) 

with the recursion for k = 2,3, .... ,p given by 

k-1 

Xxx [q+k] + E ak - 1 [1] Xxx [q+k-l] 
a

k 
[k] __ 1-1 

Pk-l 

(3.3.20) 

i- 1,2, .... ,k-1 

(3.3.21) 

If k = p, exit; if not, continue. 

k-1 

Xxx [q-k] + E b k - 1 [1] Xxx [q-k-l] 
b

k 
[k] __ 1-1 

Pk-l 

(3.3.22) 

i-1,2, ........ ,k-1 

(3.3.23) 

(3.3.24) 
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The solution is ark] = a,,[k], k=I,2, .... ,p. It is 

interesting to note that if q = 0 so that the MYWE reduce to 

the yule-Walker equations, the algorithm reduces to the 

Levinson recurs ion. In this case, b k [i] = a W

k [i], making the 

computation of b,[I] and the recursion Eq.(3.3.22) and 

Eq. (3.3.23) redundant. upon examination of Eq. (3.3.20) and 

Eq(3.3.21}, it is apparent that for the solution to exist it is 

required that Pi:F 0 for i = O,I, ... ,p - 1, where po = rxx[q]. 

This is also obvious if we note that [20] 

de~ 

(3.3.25) 

The statistics of the AR filter parameter estimator 

obtained from the MYWE have been derived for large data records 

and for real Gaussian data by Gersh [18]. He has shown that the 

estimator is asymptotically (as N~) unbiased or ~(a']=a and 

that the covariance matrix is 

(3.3.26) 

where R'xx is given in Eq.(3.3.18) with the ACF estimates 

replaced by their true values and 

(3.3.27) 

and 

(3.3.28) 
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xxx[k] Xxx [k-l] ... Xxx [k-p+l] 

Rxr[k] 
Xxx [k+l] Xxx [k] Xxx [k-p] - ". --: 

Xxx [k+p-l] Xxx [k+p-2] ... xxx[k] 

(3.3.29) 

Note that in the pure AR case in which q=O, it follows that 

8l- coRxx [ 0] - Rxx 

Rxx-Rxx 

so that Eq.(3.3.26) becomes 

(3.3.30) 

(3.3.31) 

Also, it can be shown that for pure AR process the use of MYWE, 

which involves higher order samples of the ACF, produces poorer 

estimates than those obtained using the Yule Walker equations 

[ 8 ] . 

The performance of the MYWE approach varies greatly. 

For some processes the estimates will be quite accurate, while 

for others they will be very poor. 

The statistical properties of the spectral estimator 

based on the MYWE have been derived by Sakai and Tokumaru [19]. 

The results indicate that large variabilities are to, be 

expected for frequencies where actual PSD is small. 

3.3.4. LEAST SQUARES MODIFIED YULE-WALKER EQUATIONS 

In an attempt to reduce the variance of the MYWE 

estimator has suggested utilizing more of the available 
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equations. Later, Cadzow [20] applied this idea to the spectral 

estimation problem. Since for an ARMA(p,q) process 

p 

xxx[k] --.:E a [1] Xxx [k-l] k~q+l 
l-l 

(3.3.32) 

the choices of the p equations corresponding to k= q+l, 

q+2, ... ,q+p in Eq.(3.3.19) is an arbitrary one. It can be shown 

that there is information in the ACF at higher order samples . 

To use this information, assume that the highest sample of the 

ACF that can be accurately estimated is rxx[M], and consider the 

following theoretical equations: 

Xxx [q+ 1] . Xxx(q) Xxx [q-l] ... X xx [ q-p+ 1] ) a [1] 

Xxx [q+2] Xxx [q+1] Ixx[q] , .. Xxx [q-p+2] } a [2] 

!" '. 

Xxx[M] Xxx [M-l] XXX [M-2] .. , Xxx [M-p] a [p] 

or 

I--Ra 

(3.3.33) 

R is of dimension (M - q) xp. Assuming the theoretical ACF is 

replaced by an estimate the equations will no longer be 

satisfied. To account for estimation errors in the ACF the 

equations should be expressed as 

x'--R'a+e 

(3.3.34) 

where r', R' correspond to the estimators of r, R and the error 

term e is zero if r'= r, R' = R. It is recommended that the 

unbiased ACF estimator be used in Eq.(3.3.34) since then the 

average equation error is zero, or 

g"( e) -g"(:f) +g"(R') a-I+Ra-O. 

(3.3.35) 
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The form of Eq. (3.3.34) immediately suggests the use of a least 

squares (LS) estimator. LS estimator of the AR parameters is 

(3.3.36) 

where 

x/xx [q] I/xx[q-l] ... x/xx [q-p+l] 

RI -
x/xx [q+l] Xl"" [q] ... x"" [q-p+2] 

". 

x/xx [M-l] II"" [M-2] ... x/xx [M-p] 

(3.3.37) 

(3.3.38) 

This estimator of the AR parameters of an ARMA process is 

sometimes referred to as an equation error modelling approach. 

Henceforth it will be termed the last squares modified Yule

Walker equation (LSMYWE) estimator. It should be emphasized 

that no optimality properties of the LS approach apply to this 

problem. This is because R'is not a constant matrix nor does 

have the statistical properties necessary to claim optimality. 

Because R'HR' is usually positive definite it is invertible by 

typical routines such as the Cholesky decomposition or myriad 

of other techniques developed for LS problems. In general, 

a'will not be minimum-phase. The set of equations given by 

Eq.(3.3.33) 

p 

xl",,--E a [k] xl"" [n-k] +e [nJ 
k-l 

n~q+l 

are similar in structure to the AR time series model 

p 

x[n] --E a [k] x [n-k] +u [n] 
k-l 

(3.3.39) 

(3.3.40) 
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The LSMYWE estimator can therefore be interpreted as the 

implementation of the covariance method or linear prediction 

applied to the "data" sequence {r'xx[q - p + 1], r'xx[q-p+2] 

, .... , r'_[M]}. This suggests application of other AR 

techniques to ARMA estimators. 

3.3.5. MODEL ORDER SELECTION 

For an ARMA time series the reflection coefficient 

sequence is infinite in extent so that the prediction error 

power is always decreasing. This is in contrast to an AR time 

series, in which the prediction error power first reaches its 

minimum at the correct model order. Hence model order 

determination approaches based on the linear prediction error 

power cannot be used for an ARMA process. Some methods that 

have been proposed for ARMA model order estimation are now 

described. The AIC as described in section (3.1.3) for AR model 

order determination and in section'(3.2.2) for MA model order 

selection can also be used for the real ARMA case if we define 

[15] 

AIC(i,j) -N In (J/~j+2 (i+j) 

(3.3.41) 

where is the assumed AR model order, j is the assumed MA model 

order, and 0"\, is the MLE of 0
2 obtained under the assumption 

that x[n] is an ARMA(I,j) process. As usual, the AIC is 

computed for all model orders of interest and the orders that 

minimize it are chosen. Another approach is to filter x[n] with 

the estimated inverse filter A' (z) IB' (z) to generate an estimate 

u'[n] of the white noise process. If the correct order has been 

chosen, u'[n] will be approximately white noise and hence the 

estimated ACF should be approximately zero for all lags except 

the zeroth one. It can be shown that if an ARMA(i,j) model is 

correct, then for a real process 
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O-NL X uu k N ( I [))2 
Jc-l XIUU [0] 

(3.3.42) 

is distributed according to a X"M-1-j random variable 

r'_[k] is the biased estimator of the ACF of u'[n] given by 

N-l-k 
II [k] -1.. ~ u l [n] u' [n+k] 

uu N L.J 
n-O 

(3.3.43) 

M should be the effective impulse response length of the filter 

with system function B(z)/A(z). If the model is incorrect, Q 

will be large. We might compute Q over several possible model 

orders and discard models that had inflated Q's. If all the 

models but one had inflated values, then by the process of 

elimination the remaining model could be chosen. Otherwise, 

further tests would be necessary. Finally, a model order 

selection rule based on the modified Yule - Walker equations 

has been proposed for AR model order determination of an ARMA 

process by Chow [21]. If we examine the i x i matrix R'xx, where 

Rxx-

Ixx [q+1J 

Xxx [q+2] 

", 
(i X i) 

(3.3.44) 

for an assumed model order of i, then for i > p, the true AR 

model order, the matrix will be singular. This follows from the 

modified Yule - Walker equations 

p 

E a[l] Xxx [k-l] --Ixx[k] k~q+l 
1-1 

(3.3.45) 
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which imply that the columns of R· ...... will be linearly dependent. 

As an example, if i = p + 1, then R·xx=[r· .... , r·.. r· .... ,_"'], 

where r' k = [r ... ,,[k] r",,[k +l] ... r",,[k + p]]T. The columns r' 1 are 

linearly dependent since 

(3.3.46) 

which follows from the modified Yule - Walker equations. We can 

monitor det (R'_) until it becomes sufficiently small for some 

i. Note that we need to know q or at least be able to assume 

that q is not larger than some value ct. ... ". In the latter case 

ct._ is used in Eq.(3.3.44) and the actual value of q can be 

determined by filtering x[n] by A'(z) once p has been 

determined and the AR parameters estimated. 
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3.4. INPUT-OUTPUT IDENTIFICATION APPROACHES 

A class of suboptimal ARMA estimation algorithms have 

been proposed which rely on estimation of the driving white 

noise urn]. If urn] were known, we would have knowledge of the 

input as well as the output. Then the many estimators developed 

for system identification which require only the solution of 

linear equations could be used. 

Specifically, if we examine the autocorrelation function, 

it becomes clear that the nonlinear nature of the Yule-Walker 

equations is due to the unknown cross-correlation between the 

input and output. If however, we knew urn], the ARMA parameters 

could be estimated as the solution of a set of linear 

equations. Pade' approximation is one of these methods 

developed. It has an important place in the literature because 

of the fact that systems which have higher order transfer 

function can be realized with Pade' approximation. The detailed 

information on Pade' approximation is given below. 

3.4.1. PADE' APPROXIMATION METHOD 

A number of methods for the reduction in order of high

order systems have been proposed, based on expanding the system 

transfer function G(s) into a continued fraction and truncating 

it to get the reduced-order transfer function R(s) [22], [23], 

[24]. Others have proposed a method of reduction based on the 

fi tting of the time-moments of the system and its reduced 

model. Shamash [24] has shown that for the case of rational 

transfer functions, the continued fraction methods were a 

special case of the time-moments method, which is equivalent to 

the Pade approximation method. The continued fraction and time-
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moments techniques have a number of very useful advantages, 

such as computational simplicity, the fitting of the time

moments, and the steady-state values of the output of system 

and model are the same for inputs of the form a 1 t1. However, 

they do have a very serious disadvantage and that is the fact 

that the reduced-order model may be unstable even though the 

original high-order system is stable. Shamash [25] introduced 

a method of reduction based on the retention of poles of the 

high-order system in the reduced model, and the concept of Pade 

approximation about more than one point. The method preserves 

stability in the sense that the model is stable if the system 

is stable. A novel method of reduction based on the Routh 

stability criterion which was used to compute the denominator 

of R(s) was introduced. The numerator of R(s) is computed by 

expanding the numerator of the system transfer function into a 

sum and product of continued fractions, which are then 

truncated. The method was applied the reduction of single

input/single-output systems. 

3.4.2. THEORY OF THE PADE' APPROXIMATION 

A pade approximation is the ratio of two polynomials 

60nstructed from the coefficients of the Taylor series 

expansion of a function. Since it provides an approximation to 

the function throughout the whole complex plane, the study of 

Pade approximants is one of the mathematical approximation 

theory. It has wide applicability to those areas of knowledge 

that involve analytic techniques. 

Let f be a formal power series. padel approximants are 

rational functions whose expansion in ascending powers of the 

variable coincides with f as far as possible, that is, up to 

sum the degrees of the numerator and denominator. The numerator 

and the denominator of a Pade approximant are completely 

determined by this condition. 
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Let F(s) = Pm(s)1 Qn(s), where Pm(s) and Qn(s) are 

polynomials with real coefficients and nominal degrees m and n, 

respectively (that is, the actual degree may be lower). Then 

[min] is a full Pade approximant of F(s) if the power expansion 

of [min] is identical to that of F(s) up to and including terms 

of order sm+n. In this case, we define F(s) = [min]. If the 

matching of terms is of lower than s_n, then it is a partial 

Pade approximant. 

The relation between the coefficients of the Taylor 

series expansion of a function and the values of the function 

is both a profound mathematical question and an important 

practical one. It is basic to the study of mathematical 

analysis, and to the practical calculation of mathematical 

models of nature throughout much of physical and biological 

science. If the Taylor series expansion converges absolutely, 

then it uniquely defines the value of a function which is 

differentiable an arbitrary number of times. Conversely, if a 

function is differentiable an arbitrary number of times, it 

uniquely defines the Taylor series expansion. Practically, we 

are approximating the function by longer and longer 

polynomials. This approach, however, has undesirable 

limitations for practical calculations. 

If we try to explain the Pade approximant by mathematical 

formulas; suppose that we are given a power series :Ec,z' 

representing a function f(z), so that 

-
(3.4.1) 

A Pade approximant is a rational fraction 

(3.4.2) 
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which has a Maclaurin expansion which agrees with 

autocorrelation function as far as possible. Notice that in 

Eq.(3.4.2) there are L + 1 numerator coefficients and M + 1 

denominator coefficients. There is a more or less irrelevant 

common factor between them, and for definiteness we take b o=l. 

This choice turns out to be an essential part of the precise 

definition, and Eq.(3.4.2) is our conventional notation with 

this choice for boo So there are L+1 independent numerator 

coefficients and M independent denominator coefficients, making 

L+M+1 unknown coefficients in all. This number suggests that 

normally the [LIM] ought to fit the power series Eq.(3.4.1) 

through the orders 1, z, za, ... Z~-. In the notation of formal 

power series, 

(3.4.3) 

Cross multiplying Eq.(3.4.3), we find that 

(bo+b1 Z+ . .•. +b~ II) (CO+c1 Z+ • •. ) 

-ao+al.z+, .• +aLz L+O(ZL+m+l.) 

(3.4.4) 

Equating the coefficients of Z~"", z~ ... a, ... ,z~ ....... , we find 

(3.4.5) 

If j < 0, we define ~ = 0 for consistency. Since bo = 1, Eq. 

(3.4.5) become a set of M linear equations for the M unknown 

denominator coefficients 

C L ,,-tl C L - M-t2 C L - M-t3 cL bM C L -tl 

CL-M+2 CL - M+3 C HXM+4 C L +1 bM- 1 C L +2 

CL - M+3 CL - M+4 CL - M+S 
... CL +2 bM- 2 -- C L -t3 

cL CL +1 CL +2 
... CL +M-tl bl. CL-tM 

(3.4.6) 
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from which the b" may be found. The numerator coefficients, ao , 

a" ... ,a~, follow immediately from Eq.(3.4.4) by equating the 

coefficients as l,z, Z2, •••• ,z~. 

ao-co' 
a1-c1 +b1 co' 
aa-ca+bl c 1 +baco, 

(3.4.7) 

Thus Eq. (3.4.6) and Eq. (3.4.7) normally determine the Pade 

numerator and denominator and are called the Pade equations; we 

have constructed an [LIM] Pade approximant which agrees with 

I:c,z' through order Z~-M. Because the starting point of these 

manipulations is the given power series, we do not ever need to 

know about the existence of any function f(z) with I:c,z' as its 

Maclaurin series as in Eq.(3.4.1). Of course, we expect that a 

well-chosen sequence of Pade approximants will normally 

approximate a function f(z) with the Maclaurin expansion I:c,z·,. 

but it is important to distinguish between problems of 

convergence of Pade' approximants and problem of construction 

of Pade' approximants. Given the power series, Eq.(3.4.7) shown 

how the Pade' approximants are constructed. 

Every power series has a circle of convergence Izi = R. 

If Izl< R, the series converges, and if Izi > R, it does not.If 
R=~ the power series represents an analytic function (Function 

analytic everywhere is called entire) and the series may be 

summed directly for any value of z to yield the function f(z). 

If R = 0, the power series is undoubtedly formal. It contains 

information about f(z), but just how this information is to be 

used is not immediately clear. However, if a sequence of Pade' 

approximants of the formal power series converges to a function 
g(z) for zeD, then we may reasonably conclude that g(z) is a 

function with the given power series. If the given power series 

converges to the same function for Izi < R with ° < R < ~, then 

a sequence of Pade approximants may converge for zeD where D 

is a domain larger than Izl < R. We will then have extended our 
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domain of convergence. This is frequently a practical approach 

to what amounts to analytic continuation. The method of 

expansion and reexpansion due to Weierstrass is more suited to 

principle than practice. 

There is one feature of the calculation of Pade 

approximations to be emphasized at the start-these calculations 

require more numerical accuracy than one might at first expect. 

The Pade approximant exploits the differences of the 

coefficients to do its long-range extrapolation, and so the 

differences must all be accurate. For more information one can 

refer to [26], [27]. 

3.4.3. APPLICATION OF PADE ' APPROXIMATION TO SYSTEM 

IDENTICIATION 

Al though ARMA methodologies are sophisticated and through 

forms of system identification and modeling; one always hopes 

for a more simplified approach. The aim of our work has been 

this goal. ARMA modelling normally ends up to be a higher 

ordered rational transfer function model from which the linear 

system identification is based upon [14]. The question arises, 

is there a reduced order model based on or related to an ARMA 

which will' yield as good if not better results? If so, then the 

reduced order model will replace the ARMA model to estimate 

further a prior output forecasting from the identified system. 

Pade ' approximations are such a rational form of modelling to 

which this end is met. 

In employing the Pade ' approach, one has to assume two 

possible approaches. These are: 

(1). a. achieve ARMA model 

b. reduce to series expansion, 

c. locate dominate poles of series to assure 

stability, 

d. calculate Pade ' table coefficients; 
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(2). a. determine system impulse 

b. locate dominate poles of response series 

c. calculate Pade'. 

Thus far, the prior work on which more research work is 

currently based upon is approach (2) [25]. In approach (1), 

there is an added step to achieve ARMA, whereas in prior work 

only order reduction was desired for a known rational model 

[25] . 

One of the methodologies is employed by Shamash this 

approach, Shamash tries to fit a reduced order model by 

allowing retention of dominant poles [25]. 

Lets have a look at this methodology briefly. Also this 

methodology is expressed in Figure (3.4.1). 

FO~M ARHA FO~M H (&) 

H(z) 
(NONR.ATIONAL) 

MODEL \<-\ - k 
(0 ) (b) H(Z):: (;-o hI( 2 

lOCATESTASIL 12.ING 

POLES OF H(2.) 

FORf'o\ RECu(ED ORCER 

[8]-- STA!.LE MODEL iN t---.-[B) 

PACE \ APPROX. Q(2) Cd) (c.) 

Figure 3.4.1. Pade' approximation Shamash approach 

3.4.3.1. Pade' Approximation and Dominant .Mode Reduction (First 

Approach-Shamash Approach): 

Consider the following high order system transfer 

function 



G(8) _ dO+d1 s+d2s 2+ ... +dn_1 Sn-1 

(S+Sl) (S+S2)'" (S+Sn) 

_ dO+d1S+d2S2+ .. ·+dn_1SD.-l 

eO+els+e2s2+ ... +enS n 
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(3.4.8) 

G(s) can be expended into a power series about s=O of the form 

(3.4.9) 

where 

'Vk>O 

(3.4.10) 

with 

(3.4.11) 

The e 1 are directly proportional to the time-moments of 

the system, assuming the system is asymptotically stable, and 

throughout this section we' will refer to them as the time

moments [28]. 

Assume that a reduced model R( s), of order k, is required 

which retains the pole at s = - s" say. Let 

(3.4.12) 
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The orders of the numerator of R(s) and G(s) have been assumed 

to be one less than the denominators to simplify the notation. 

Then for R( s) to be a Pade approximant of G( s) we have 

Eq. (3 .4 . 7 ) . 

ao-boco 
a1-bo+b1cO 

O-bOC2k_2+bl c2k- 1 +"·+Ck - 1 

O-bOc2k- 1 +b1 C2k- 2 +···+Ck 

(3.4.13) 

But since R(s) is to have a pole at s = -s" then using the 

concept of Pade approximation about more than one point, the 

last Eq.(3.4.13)is replaced by the following equation 

(3.4.14) 

Hence these equations can be solved for the coefficients b 1 ,a1 

(i=0, ... ,k-1) of Eq.(3.4.13). 

Now suppose that the reduced order model R(s) is required 

to retain the k dominant poles (the k poles nearest the origin) 

of the high-order system. Further suppose that the k dominant 

poles are known. R(s) can then be written as 

(3.4.15) 

where the b 1 (i=0,1, ... ,k-1) may be computed in terms of 

8" ••• / S k_ 

Then if R(s) is to approximate G(s), in the Pade sense, 

about s=O, then the a 1 (i=0,1, ... ,k-1) may be determined using 

the first k equations of (3.4.13) 
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So far it has been assumed that the dominant poles of the 

system are known, which in most cases is not necessarily true. 

This where Koening's theorem, and its generalization are of 

great use, since by using them we can determine the number of 

dominant poles and their locations vary easily. 

THEOREM 3.1 

Let 

(3.4.16) 

be meromorphic for lsi < R , and in this disc let it have just 

one simple pole s=r. If 

Irl<oR<R 

(3.4.17) 

then 

(3.4.18) 

THEOREM 3.2 

Let f(s), given in Eq.(3.4.16), be meromorphic for lsi 

< R, and let it have exactly p poles r=" r 2 , ••• , r .. , not 

necessarily distinct in this disc. Let 

(3.4.19) 

and let 

(3.4.20) 
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Finally, let the dominator of the [v, p] Pade' approximant 

be 

(3.4.21) 

Then, 

(3.4.22) 

(3.4.23) 

For the case when p=l, theorem p=l, theorem 2 reduces to 

theorem 1. 

Thus to reduce a high-order transfer function, it is 

first expanded into a power series, then theorems 1 and 2 are 

used to determine the numerator dynamics of the reduced order 

transfer function. The amount of computation involved in using 

this method is the same as that required for ordinary Pade' 

approximation except perhaps more coefficients of the series 

Eq. (3.4.11) may have to be computed. 

It should be noted that common poles and zeros in G(s) 

are automatically cancelled when using this method of 

reduction, and have no effect on the reduced model. 

form, 

In this case when the system is described in state-vector 

x'-Ax+Bu 

y-Cx+Du 

(3.4.24) 
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The system transfer function is given by 

G(s) -C(sI-A} -lB+D 

- (CA-1B+D) +CA-2Bs+CA-3B 2 + ... 

(3.4.25) 

where 

Vi>O 

(3.4.26) 

Hence the reduction algorithm may be applied to expansion 

Eq. (3.4.25), where the coefficients are determined using 

Eq. ( 3 • 4 . 26 ) . 

If the system being modelled is unstable, then it is 

important that the reduced model should be unstable as well. 

Hence the unstable model of G (s) must be retained in the 

reduced model. Koenig's theorem, and its genera~ization, may be 

used to compute the unstable modes as follows: 

Given G(s), the following transformation is made 

z-l s---
z+l 

(3.4.27) 

to get G(z). The unstable poles of G(z) in the form 

(3.4.28) 

Then applying Theorems 1 and 2 Eq. (3.4.28) we get all the large 

magnitude poles of G(z), which in this case will be the poles 

outside the unit circle. Having computed the unstable poles, 

the coefficients of R(S} are computed as before [25], [29]. 
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3.4.3.2. Pade' Approximation Without Dominant Mode Reduction 

(Second Approach- Biyiksiz Approach) 

This approach is based on research by Biyiksiz [30], 

where upon direct Pade' approximation of a reduced order model 

Q (z) is util ized in the system identification. Fig. (3.4.2) 

depicts this approach 

oeTAIN SYStEM Q(~) LOC.ATE' 5TABIL FORM ~EDUC.e 0 

121"'6 POU~ S OF 
ORDER ST.o,BLE 

DIREC.Tl'l AS HoOeL IN PAl)l:' , 
, ,-k q(Z) APPROXIMATION q( )= ~akz 

(b) I 
(C) 2 k (0) Q{z) 

RANDoM NOISE Xn UNKNOWtJ Yn .. CROSS 
Ge-"-IEItAToR, S'{s TE M H(z) ~ 

Xn __ CORRELATION 

(0.1 ) (0.2) I (0.3) 

I N-1-k 

-Ry X (k) = 1 / N Ii~ 0 '1 n+ k )( n ; k = 0, 1, ... , N /2 

Figure 3.4.2. Pade' approximation Biyiksiz approach 

Step (a) in Figure (3.4.1) is elaborated in Figure (3.4.2), The 

computation in Figure (3.4.2) has shown less computational 

effort than method 1, step (a). 

The Pade' approximation Q (z) approach in its basics 

implies the following 
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N-l 
q' (Z) - L q' xZ-k .. Q' (Z) - A' (z) IB' (z) 

k-O 

I+J~N 

(3.4.29) 

and q' (z) - Q' (z) z 0 , from which the coefficients a'. , b'j 

of Q'(z} are determined from 

a' _b' q' o 0 0 

a' _b' q' +b' ,../ 1 0 1 ll.:ll 

O-b' Oq'2Jc-2 +b'l q'2Jc-3 + ... +q' k-l 

O-b'Oq'2k-l +b'l q'2k-2+"'+Qk 

(3.4.30) 

When a Q' (z) is realized, the following has been 

observed: 

1. When q'(z} is stable, Q'(z) need not be stable or 

2. When q' (z) is stable Q' (z) may be stable and thus (1) 

and (2) yield untrue, reduced order, models of q(z}. Case (1) 

is the more important real world problem. As a guideline it has 

been observed that unlike achieved ARMA model a Pade' 

approximation result in an unstable model even if the real 

system is stable or vice versa. This is especially true if the 

initial part of the system step xn=hn+un response has a large 

overshoot. To overcome this, Shamash has implemented some 

rather novel methods based on Koenig's theorem, and its 

generalization [25], [29],[31J,[32]. Basically, the two ways of 

approaching stability are (1) locate stabilizing poles at z = 

o or z = ~ of q' (z) or (2) locate k dominate poles. When (1) is 

applied a trial and error approach results. When (2) is applied 

a longer computation results but stabilization is guaranteed. 

Biased on Konig's theorem, and its generalization, an idea of 

the k dominate poles may be achieved [25]. Thus 
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lim (a k- ak+l) _~ .... z 
1c- (a k+1- ak+2) k 2 

lim (~k+l-~k+2) -a .... z 
1c-- (~k+2-~k+3) k 3 

(3.4.31) 

for p poles assumed in reduced model Q (z) = A I ,_. (z) /B I .J-' (z). As 

an alternative to limiting approach to determine Zp , one may 

assume a reduced model form as 

AI (z) 
OI[v,J-l)-OIJ_l(Z)- I v 

B v (z) J-l 

AI v(z) 
J-l 
)' bjz-j 

~ 
(3.4.32) 

v = a 11 and for successive iterations of v I .j)' j 

coefficients may be evaluated, in conjunction with q'k terms, 

by convergence to b ' j values as v ~ 00. 

(c) Once b ' j terms are known, one now has 

(3.4.33) 

from which a ' • terms may be evaluated. This then completes step 

(c). Before concluding here, it should be mentioned that 

possible errors introduced by the procedure in Fig (3.4.2) may 

be reduced as N is increased or use of elaborate noise 

generator algorithms for best white noise simulation. 
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3.4.3.3 Simualtion Algorithm to Achieve Pade' model 

The following algorithm in Fig.(3.4.3) was utilized to 

simulate the Pade' modelling and identification process. This 

was based on an ARMA model for a system of higher order versus 

an assumed lower orderPade' model. Fig. (3.4.3) summaries the 

Pade' approximation simulation algorithm used in the programs 

written. 

GENERATE NO/oS£: Xn 

! 
INPUT TO SYSTEM nn 

To OBTAIN OUTPUT Yn 

! 
PERFOR.H AN OUTPUT -INPUT 

C R.OSSCOI(.R.E 1..4 TI ON TO O/3TAIN 

hk 

! 
K-I-k 

Ryx (!<)=- 11K r Yntk x Ii 
n=o 

hk={1/(J/]Ryx (k),((fx'L=1) 

k= 0,1 1 ••• ", K/2, (K even) 

! 
lOC.4T£ STA81121NG POLES 

OF H(z} FOR POLES (0,00) 

! 
IFROM STABLE ~~DtJCED ORDER. PAOE' MODEL Q(2.) I 

Figure 3.4.3. summary of Pade' approximation 
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Figure (3.4.3) thus establishes the a forementioned simulation 

algorithm. 

Pade' Simulation: 

Basically the simulation takes on the foolowing approach: 

(1) assume a high order ARMA system model, 

(2) achieve the system impulse response hk through 

nonparametric crosscorrelation, 

(3) form the Pade' model Q(z), 

(4) compare the true system impulse hk to qk = Z-·[Q(Z)]. 

(5) form an opinion for the goodness of the Pade' model 

verses the ARMA model based on (4). 



f 
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3.5. STABILITY OF DISCRETE - TIME SYSTEMS 

stability can be defined in a variety of ways. We will 

use the following definition : A system is stable if and 

only if its output is bounded for every bounded input. 

This definition is particularly suited to linear systems. 

For linear systems it is not necessary to test for a bounded 

output with every bounded input. It is only necessary to 

examine the pulse response of the system. The condition that 

the pulse response must satisfy for a time-invariant system is 

presented in the following theorem. 

THEOREM 3.3. 

A linear I time-invariant I discrete-time system wi th pulse 

response g[nT] is stable if and only if 

-
( 3 . 5 . 1 ) 

Proof: 

Let us assume that g[nT] satisfies Eq.(3.5.1) and that 

f[nT] is any input signal with property that If[nT]1 < L < 00 

for all n. Then the output is 

.. 
y[nT] - L g[kT] f[nT-kT] 

k-- ... 

(3.5.1) 
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so that 

ly[nT] I ~ E Ig[kT] I If [nT-kT] I ~ L E Ig[kT] I 
k--- k---

(3.5.3) 

Therefore, if g[nT] is absolutely summable, then any bounded 

input causes a bounded output. 

On the other hand, let us assume that g[nT] is not 

absolutely summable. We can choose f[nT] as 

t[nT] -sign (g[rT-nT]) 

where r is an integer and 

Sign(X)-{ ~ 
-1 

for x)O 

for x-o 
for x<O 

Obviously, If(nT) I ~ 1. With this choice 

-
y[rT] -.E g[kT] sign (g[kT] ) -.E Ig[kT] 1-00 

k-- m k---

(3.5.4) 

(3.5.5) 

(3.5.6) 

Consequently, the system is stable only if g(nT) is absolutely 

summable. 

For causal systems with rational pulse transfer functions 

our definition of stability leads to the following frequently 

used criterion. 

COROLARLY 3.4. 

A causal system with a rational pulse transfer function 

G(z) is stable if and only if all the poles of G(z) are inside 

unit circle. 

Proof: 
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If all the poles of G(z) are inside the unit circle, 

then the region of convergence for 

• 
Z{g[nT]} -:E g[nT] z-n 

n-o 

( 3 . 5 .7) 

includes the unit circle. Therefore, this series converges 

absolutely for Izl = 1 so that 

• 

(3.5.8) 

and that system is stable according to Theorem 3.3. 

On the other hand, if G(z) has any poles on or outside 

the unit circle, then the unit circle is not is the region of 

convergence. In this case, the series diverges for same Zo with 

I Zo 1= 1 so that 

- -
00-:E g [nT] zon~ E [g [nT] I 

n-O n-O 

( 3 . 5 . 9 ) 

and the system is not stable according to the above theorem. 

There are various methods developed for determining the 

locations of the poles of a rational pulse transfer function 

relative to the unit circle, such as the modified schur-Cohn 

test the Nyquist criterion and root locus method. In this study, 
the satisfaction of the above condition is checked via a pascal 

program which finds the poles of the transfer function found by 

ARMA or PADE. This program is given in Appendix A. 

For more information one can refer to [33], [34], [35]. 
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3.6. STATE SPACE MODELLING 

Systems that can be described by difference or 

differential equations are types of dynamical systems. For a 

dynamical system a set of variables called the state of the 

system can be found that contains all the information about the 

past behaviour of the system necessary to calculate its future 

state and a output given its. present and future output. So 

state-space representation means representing an nth order, 

linear, difference or differential equation by a first-order, 

linear,matrix difference or differential equation describing 

the evolution of an n-dimensional state vector and an equation 

relating the present output to the present state and input. 

These equations are called as the state equation and output 

equation or sometimes simply as a state space representation. 

Different structures for realizing n-th order, linear 

difference or differential equations are examined from the 

state-space point of view. 

The mathematical time-domain models used to describe 

sampled-data systems are almost always finite-order difference 

equations and differential equations whose solution exists and 

unique. The behaviour of these systems for t~to can be uniquely 

determined if an appropriate set of initial conditions at time 

to is specified. 

A system whose input v(t) and output y(t} are related by 

the constant-coefficient, linear, differantial equation 

(3.6.1) 



has the transfer function 

G(s) _ Y(s) 
V(s) 

N N-l aos + a 1 8 +. .. + aN 
N b N-l b S + 1 8 + •.• + N 
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( 3 .6. 2 ) 

The transfer function G(z) given by Eq.(3.1.43) can be put in 

the form 

(3.6.3) 

Therefore, each of the structures which can be applied for the 

transfer function G(s) when z is replaced by s. Each delay 

element labeled z-' becomes an element labeled s-' which is an 

integrator. The outputs of the integrators can be chosen as the 

state variables. To maintain the correspondence between the 

continuous and discrete-time systems, we will choose the state 

variables so that xk(t) corresponds to xk[nT]. The input to the 

kth delay element xk[nT+T] becomes the input to the kth 

integrator and so must be relabeled xk' This transformation 

is shown for the type 1 direct form realization in Figure 

(3.6.2). Clearly, the state and output equations for the 

continuous-time structure obtained by the simple transformation 

described in the previous paragraph can be determined from the 

equations for the original discrete-time structure simply by 

replacing v[nT] by v(t), y[nT] by y(t), x(t), and x[nT+T) by 

x' (t) . 

By a linear, finite-dimensional, discrete-time, dynamical 

system we will mean a system with input v(tn ), output y(t n ), and 

state x(tn ) having a state equation of the form 

(3.6.4) 
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and an output equation of the form 

(3.6.5) 

where 

x{ t n) is an N-dimensional column vector 

v{ t n) is an m-dimensional column vector 

y{ t n) is an r-dimensional column vector 

A( t n) is an N X N nonsingular matrHx 

B{ t n) is an N X m matrix 

C{ t n) is an r X N matrix 

D{ t n) is an r X m matrix 

and 

for 

( 3 . 6 .6) 

D[nT] 

vV 
+ y[n i!1 ______ ~x[nr+TJ -f x[nTJ 

8[nT] z f-- C[nT]~ 
TJ 

+ 

A[nT] ~ 

Figure 3.6.1. Pictorial representation of the state 
and output equations for a uniformly sampled, linear, discret
time sytems 

We will use uniform sampling and let tn=nT. In this case, 

the state and output equations can be represented pictorially 

by the block diagram in Figure (3.6.1). 

When tn=nT and A, B, C, and D are constant matrices in 
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Eq. (3.6.4) and Eq.(3.6.5) we say that system is a time

invariant, linear, discrete-time system. In this case the state 

equation becomes 

z(nT+T} -Ar(nT} +Bv(nT} 

( 3 . 6 .7) 

and the output equation becomes 

Y(nT) - Cx(nT) +Dv(nT) 

( 3 • 6 .8) 

A closed form for the state transition matrix and 

solution of the state and output equations can be obtained by 

z-transform methods. We will define the one-sided z-transform 

of an r x s matrix function f[nT] as the r x s matrix. 

F(z) - E £(nT) Z-ll 

n-O 

(3.6.9) 

The elements of F(z) are just the transforms of the 

corresponding elements of f[nT]. Taking the transform of both 

sides of the state equation (3.6.7) gives 

zX(z) -zz( 0) -AX'(z) +BV(z) 

(3.6.10) 

so that 

Z(z) - (zI-A) -lZZ (O) + (zI-A) -lSV(Z) 

(3.6.11) 

From Eq.(3.6.8) we see that 

Y(z) -CZ(z) +DV(z) 

(3.6.12) 

In many applications, and in all system identification methods 

one is primarily interested in the pulse transfer functions 

between the input and outputs of a system. Letting x(O)=O and 

substituating Eq.(3.6.11) into Eq.(3.6.12), we find that 



99 

Y(z} - [C(zI-A) -lS+D ] V(Z) 

(3.6.13) 

The matrix 

G(z) -C(zI-A} -lS+D 

(3.6.14) 

is known as the pulse transfer function matrix for the system 

since its ijth elements is the transfer function between the 

ith output and jth input For systems with a single input and 

single outputs, G(z) reduces to the ordinary scalar transfer 

function Y(z}/V(z). 

3.6.1. STATE SPACE REPRESENTATIONS FOR CONSTANT-COEFFICIENT, 

LINEAR, DIFFERENCE EQUATIONS 

In this section we again examine structures for realizing 

a system that has the pulse transfer function 

or difference equation 

N 

.E akz-k 

G ( z) - ---:.;k_-O'-N---

l+Eb~-Jc 
Jc-l 

N N 

x[nT] - E aku [nT-T] - E b0[nT-T] 
1c-O 1c-l 

(3.6.15) 

(3.6.16) 

which is given before in Eq. (3.1.38) relating its input and 

output. By assigning state variables to the outputs of the 

delay elements in the block diagrams for the structures, we 

derive different state space representations for the difference 

Eq. (3.6.16). A reason for studying a variety of realizations is 

to find those that are insensitive to coefficient truncation, 

finite word length arithmetic, and other deviations from the 
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ideal in actual hardware. These problems are discussed later. 

3.6.1.1. Type 1 Direct Form Realization 

Type 1 direct form realization in Figure (3.6.2) has its 

input and output related by Eq.(3.6.16). As shown in Figure 

(3.6.1), we will choose the state variables x,[nT], ... ,xN[nT] 

as the outputs of the delay elements. From the block diagram we 

see that 

Xl [nT+ T] -X2 [nT] 
X 2 [nT+T] -X3 [nT] 

XN- l [nT+T] -xN[nT] 
xN[nT+T] --b~l [nT] -bN-l~ [nT] -···-blxN[nT] +v[nT] 

+ 

+ + 

0, 

'------.J 

+ 

(3.6.17) 

+ + t---~ 
y[nT) 

+ 

x,[nT 

Figure 3.6.2. Type 1 direct form realization of G(z) 



and 

or 

y[nT] -a~ [nT] +aN-l~ [nT] +···+al XN [nT] 
+aO [x[nT] -b0l [nT] -bN-1X2 [nT] - .. ·m-bl x n [nT] ] 

y[nT] - (aN-aobN) Xl. [nT] +aN-l-aObN_l) ~ [nT] + ... 
+ (al -aOb l ) xN[nT] +aO v[nT] . 
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(3.6.18) 

(3.6.19) 

Putting Eq.(3.6.17) and Eq. (3.6.18) into matrix form, we see 

that this structure can be described by the state equation 

Xl [nT+T] 0 1 o ... 0 Xl [T] 0 
X2 [nT+T] 0 0 1 o ... 0 X2 [T] 0 

- : + ; v[nT] 

XN-1 [NT+T] 0 0 0 1 XN-l [T] 0 

xN[nT+T] -bN -bN- l ... -b 1 xN[T] 1 

(3.6.20) 

and output equation 

(3.6.21) 

These equations have the desired forms of Eq. (3.6.7) and 

Eq. (3 . 6 .8) . 

3.6.1.2 Type 2 Direct Form Realization 

The structure called the type 2 direct form realization 

shown in Figure (3.6.3) has its input and output related by the 

difference Eq.(3.6.17). If we choose the state variables as 

shown in Figure (3.6.3), then it follows that 



~nd 

102 

(3.6.22) 

Xl [nT+T] --byY [nT] +aNv[nT] --bN'CN[nT] + (aN-aObN ) V [n T] 

Xz [nT+T] -Xl [nT] -bN_l x N [nT] + (aN-l-aObN-l) v[nT) 

XN-l [nT+T] -XN- 2 [nT] -b2x N [nT] + (a2 -aOb 2 ) v[nT] 

XN [nT+ T) -XN- 1 [nT) -blxN[nT] +a1-aOb1) v[nT) 

v[nrJ 

ON °N_' 0 , 

+ + 
-1 Z-1 + Z 

x/nT] 
+ 

-bN -b
N

_1 -61 

(3.6.23) 

0 0 

+ 

+ 
y[nTJ 

Figure 3.6.3. Type 2 direct form realisation of G(z) 

Putting Eq.(3.6.22) and Eq.(3.6.23) into matrix form, we 

see that the type 2 direct form realization is described by the 

state equation 
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Xl [nT+T] 0 o ... 0 -bN Xl [T] 0 
X 2 [nT+T] 1 o ... 0 -bN- 1 ~[T] 0 

-; + i v[nT] 

XN-1 [NT+T] 0 o ... 0 1 0 -b2 XN-1 [T] 0 

K:N[nT+T] 0 o ... 0 1 -b1 xN[T] 1 

(3.6.24) 

and output equation 

Xl [nT) 1 
y[t]-[O ... 0 1] : +aOv[t] 

xN[nT] 

(3.6.25) 

3.6.1.3 Standard Form Realization 

Another structure that can be used to realize the 

difference Eq.(3.6.4) is shown in Figure (3.6.5). This is 

sometimes called the standart form realization. The procedure 

to choose the parameteres a o , ••• a N and B" • •• ,B N to obtain the 

proper input-output relationship. Figure (3.6.4) is as follows 

from the block diagram it is clear that 

Xk [nT+ T] -Xk+l +« k v [nT] for 1 S; k S; N-1 

(3.6.26) 

and 

y [nT] -Xl [nT] +«0 v[nT] 

(3.6.27) 
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From Eq.(3.6.27) we see that 

y[nT+TJ --"1. [nT+TJ +cx o v[nT+TJ 

(3.6.28) 

and using the expression for x,[nT+T] from Eq. (3.6.26) that 

y[nT+TJ -x2 (nT) +cx1v(nT) +cxov(nT+T) 

Similarly 

and 

y[nT+ (N-l) TJ - xN[nTJ +CXN- 1 v[nTJ +CXN- 2 v[nT+TJ + ••• 

+cxov[nT+ (N-l) T] 

y[nT+T] --~ 01 [nT] -~N-lxa [nT] -"'-~lxN[nT] 

+CX Nv[nTJ +",+cx o v [nT+NT] 

(3.6.29) 

(3.6.30) 

(3.6.31) 

Replacing n by n+N, the desired difference Eq.(3.6.16) becomes 

y [nT+T] --b1y [nT+ [N-l] T] -baY [nT+ (N-2) T-oo·-bwr[nT] 

+aan:nT + TJ + ... +aMv[nTJ 

(3.6.32) 

Substituting the expressions for y[nT], .... y[nT+(N - l)T] given 

by Eq.(3.6.27), Eq.(3.6.29), and Eq.(3.6.30) into Eq.(3.6.32) 

we get 

y[nT+T] --b1 {xN[nT] +CXN- 1 v[nT] +CX N- 2 v[nT+T] + ... 

+(Xov[nT+ (N-l) T]} 

-ba {XN-1 (nT) +CXN- 1 v[nT] +"'+«0 v[nT+ (N-2) T) } 

-bN{x [nT] +cx o v[nT] } 

+ao V [nT+T] + ... +aNv[nT] 

(3.6.33) 
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Equating the coefficients of x, [nT] , ... , xN[nT] and 

v[nT], ... ,v[nT+NT] in Eq.(3.6.31) and Eqo (3.6.33),-we see that 

the standart from realization parameters must be 

and 

V[ (l7] 

+ 

+ 

«o-ao 

«l-al-b l «0 

for 

« 2 - a2 - b 2 « 0 - b 1 ex 1 

0<1 

k-l,o 0 .,N 

(3.6.34) 

(3.6.35) 

0<0 

+ 
-1 

Z 
x,[nTJ + \--__ 

+ y[nTJ 

Figure 3.6.4. Standard form realization of G(z) 

The set of equations in Eq.(3.6.35) is equivalent to 
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aD 1 0 0 0 0 "0 
a l b 1 1 0 0 0 "1 
a 2 -b2 bl 0 0 0 a 2 

aN b N b N- 1 bN- 2 bN-3 .,. b 1 1 aN 

(3.6.36) 

so that 

"0 1 0 0 0 o -1 aD 

Ul b 1 1 0 0 0 a 1 

a 2 -b2 b 1 1 0 0 a 2 

(3.6.37) 

Eq.(3.6.35) provide a convenient iterative solution to 

Eq.(3.6.37). Putting Eq.(3.6.26) and Eq.(3.6.27) into matrix 

form, we find that the standart form realization has the state 

equation 

Xl [nT+T] 0 1 o ... 0 Xl () "1 
X 2 [nT+T] 0 0 1 0 0 X 2 (T) U 2 

+ v[nT] 

XN-l [NT+T] 0 0 0 1 XN- l (T) U N- l 

xN[nT+T] -b -b '" N /'1-1 -b2 -bi XN(T} UN 

(3.6.38) 

and output equation 

Xl (nT)] 
y(nT) -[1 0 ... 0] : +ao v( t) 

xN(nT} 

(3.6.39) 
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3.6.1.4 Parallel Type Representation 

Another state space representation can be obtained by the 

partial fraction technique. This method results in a parallel 

form structure. First, let us assume that G(z) has N simple 

poles located at P., ... ,PN' Then G(z) can be expressed as 

(3.6.40) 

where 

do-lim G (z) -ao 
z-

(3.6.41) 

and 

dk-lim (Z-Pk) G(z) for k-1, ... , N 
Z~Pk 

(3.6.42) 

Therefore 

(3.6.43) 

Letting 

x (z) _ V(z} 
1r: Z-Pk 

for k-l"",N 

(3.6.44) 

Y(z) becomes 

N 

Y(z) -ao V(z} + E d~k(z) 
'/c-l 

(3.6.45) 
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The time-domain equivalents of (3.6.44) and (3.6.45) are 

for k-l, ... ,N 

(3.6.46) 

and 

N 

y(nT) - E dkKk(nT) +aov(nT) 
.lc-l 

(3.6.47) 

Putting Eq.(3.6.46) and Eq.(3.6.47) into matrix form, we find 

that the difference Eq. (3.6.16) can be represented by the state 

equation 

Xl [nT+T] Pl 0 o ... 0 Xl () 

~I v[nT] 

~ [nT+T] 0 P2 o ... 0 X 2 (T) 
+ 

xN[nT+T] 0 0 o ... PH xN(T) 

Hx 

and output equation 

Xl [nT] 

X 2 [nT] 
y[nT] -[dl d,. ... d~ +aov[t] 

xN[nT] 

(3.6.48) 

(3.6.49) 

This is known as the normal form representation of (3.6.16). In 

this representation the "A" matrix is diagonal so that the 

state variables are uncoupled. The partial fraction technique 

can still be used if G(z) has some poles that are not simple. 

To illustrate the method, let us assume that G(z) has a poles 

of order r at p, and simple poles at p_" .. "PN' Then G(z) can 

be expressed as 

~ dk + ~ 
G{z}-do+L.J (z-p )r-k+l L.J 

k-l 1 k-r+l 

(3.6.50) 



here 

and 

Therefore 

do-lim G(z} -ao z·· 

1 d k - 1 
1 im---,-".-..,---
Z.1>,. (k-l)! dZ k - 1 

lim (Z-Pk) G(z) 
Z-Pk 

r 

for l~k~r 

for r+l~k~N 
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(3.6.51) 

(3.6.52) 

Y(z) -G(z) V(z) -ao V(z) +:E dx V(z) k + L dx V(z) 
,k-1 (z-P1 ) x- +1 x-x'" 1 z-P,k 

(3.6.53) 

Letting 

X 1c (z) ___ V---=.(_z,,-} -
(z-P

1
) x-hl 

for l:s:k:s:r 

(3.6.54) 

and 

x (z) _ V{z) 
k Z-Pk 

for r+l~k~N 

(3.6.55) 

Y(z) becomes 

N 

Y(z) -ao V(z) +:E dxX,k (z) 
k-l 

(3.6.56) 

Notice that 

x (z) _ V(z) 
x Z-Pl 

(3.6.57) 
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and 

for ls:ks:r-l 

(3.6.58) 

The time domain equvialents of Eq.(3.6.55), Eq. (3.6.56), 

Eq.(3.6.57), and Eq.(3.6.58) are 

{

P1Xk [nT] +Xk+l [nT] for ls:ks:r-l 

x k [nT+T] - p1xr [nT] +v[nT] for k-r 

P0k [nT] +v[nT] for r+l s:kS:N 

and 

N 

y[nT] -E d.0"k[nT] +aov[nT] 

. or 

Xl [nT+T] 

X:;; [nT+T] 

Pi l. 0 ... 

Op1l 0· .. 

XN-l [nT+ T] 0 .. . 

xN[nT+T] 0 .. . 

Xr+l [nT+T] 

Xr+2 [nT+T] 

XN-l [nT+T] 

xN[nT+ TJ 

k-l 

o 
o 

(3.6.59 ) 

(3.6.60) 

o 
o 

XN-l [nT] 0 

xN[nT] 1 

---------- + --- v[n) 

Xr+l [nT] 1 

xr+2 [nT] 1 

XN-1 [nT] 1 

xN[nT] 
1 

(3.6.61) 

(3.6.62) 
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-I 
Z 

-t Z ~~ 

+ 

p, 

venT] + 
Z -1 I---.-----l d. r+f 1------. '--__ .-l 

+ y[nT] 

Figure 3.6.5. Parallel form realization of transfer 
function G(z) 
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The r x r block in the upper left-hand corner of the "A" 

matrix is called a Jordan block. The block diagram 

corresponding to this system realization is shown in Figure 

(3.6.6). This structure is called a parallel form realization 

for obvious reasons. 

3.6.1.5. Cascade Form Realization 

The cascade form realization is frequently used in 

practice. This structure results when G(z) is expressed as the 

product of low-order rational factors and is realized as a 

cascade of sections corresponding to these factors. This 

structure is particularly appropriate when G(z) has zeros on or 

near the unit circle. To illustrate one form of cascade 

realization and the corresponding state space representation, 

let us assume that a o is not zero in Figure (3.6.2). 

+ + 
vfnr] Z-' x/nT] 

CIt 
-1 x [nT] 

q2 °0 Z 
+ ... + 

P, ~ 

Figure 3.6.6. Cascade form realization of transfer 
function G(z) 
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Then G(z) can be factored and written as 

(3.6.63) 

When each first-order rational factor of Eq. (3.6.63) is 

realized by a type 1 direct form section and the output and 

input addres of adjacent sections are combined, we obtain the 

structure shown in Figure (3.6.6). Choosing the state variables 

as shown in this figure we find that 

(3.6.64) 

xJ,:[nT+T] -p~Jc[nT] -qJc-l. xJc_l.[nT] +x.k_,,.[nT+T] for 2~k~N 

(3.6.65) 

and 

(3.6.66) 

starting with k=2, using Eq.(3.6.64), and recursively 

evaluating Eq.(3.6.65) we also find that 

and 

or 

k-l 
xk[nT+T] -p.0",k[nT] +E (Pr-qr)xr[nT] +aov[nT] for2~k~N 

equivalently 

Xl [nT+T] 

X2 [nT+T] 

XN-1 [nT+T] 

xN[nT+T] 

r-l. 

N 

Y [nT] - E (P,k-q,k) x,k [nT] +ao v[nT] 
.k-l. 

P l 0 0 0 Xl [nT] 

Pl-Ql P2 0 0 X2 [nT] 

Pl- q l P2 -% ... PN-l 0 XN-1 [nT] 

Plql P2 -Q2 '" PN-l - qN-l PN xN[nT] 

(3.6.67) 

(3.6.68) 

(3.6.69) 
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and 

(3.6.70) 

In practice, the state variables would most likely be 

calculated recursively by Eq. (3.6.65) rather than directly from 

Eq. (3.6.6B). This corresponds to calculating the outputs of 

the addres in Figure (3.6.6) sequentially from left to right. 

If G{z) has any complex poles or zeros, the cascade form 

realization shown in Figure (3. 6.6) requires complex 

ari thmetic. The parallel form realization shown in Figure 

(3.6.5) also requires complex arithmetic when G(z) has complex 

poles. The need for complex arithmetic is frequently eliminated 

by combining complex conjugate terms into low-order sections 

with real coefficients. These sections are then implemented as 

direct or standart form realizations. Various other structures 

have been suggested for realizing rational pulse transfer 

functions. In particular, there has been recent interest in 

realizations using various types of ladder structures. These 

will not be discussed further here. There are actually an 

infinite number of realizations for G(z). Some have basically 

different structures while others differ simply by scale 

factors. In general, an input-output relationship does not 

uniquely describe the internal structure of a system. If a 

realization is described by the equation 

%[nT+T] -Ar[nT] +BV[nT] 

(3.6.71) 

and 

y[nT] -ar[nT] +Dv[nT] 

(3.6.72) 
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then for any NxN nonsingular matrix F the transformation 

% [nT] -1!1C' [nT] 

(3.6.73) 

results in a new realization described by the equations 

and 

where 

and 

%' [nT+T] -A'X' [nT] +S'v[nT] 

y[nT] -C'%'[nT] +D'v[nT] 

A'-,-1AF 
B'_,-1S 
c'-a 

D'-D 

(3.6.74) 

(3.6.75) 

(3.6.76) 

(3.6.77) 

For more information one can refer to [14], [33]. 
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4. PROBLEMS OF PARAMETRIC MODELLING 

In this Chapter, some of the practical problems that must 

be taken into account when a pulse transfer function is 

actually implemented digitally will be investigated. These 

problems are all a result of the fact that numbers must be 

quantized and represented as finite bit binary words in digital 

machines. Because all digital technology operates with only a 

finite number of bits. The quantization process is an 

irreversible nonlinear operation. The effects of the 

quantization process can be operated in three categories. 

1. Quantization errors are initially introduced when the 

analog input signal is sampled and converted into a sequence of 

binary numbers. This is called as input quantization. This 

effect can be modelled simply by adding noise to the ideal 

samples. 

2 . When the coefficients are quantized for 

implementation, the resulting filter must be checked to insure 

that its frequency response is still acceptable. Some small 

changes in the coefficients of a polynomial can cause large 

changes in the location of its roots when the roots are 

clustered near the unit circle. The changes are larger for 

higher order polynomials. This effect is particularly important 

in recursive filters since their frequency responses and 

stability are very sensitive to the position of poles near the 

unit circle. 

3. A third type of quantization error is introduced by 

the rounding of products or sums of products to the original 

machine word length. This is known as finite word length 

arithmetic round-off errors.AII these errors can be result in 

an unstable system response which is explained in section 3.5. 
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All these errors can result in an unstable system 

response by causing the poles going outside of the unit circle 

which is explained in section 3.5. 

4.1. INPUT QUANTIZATION ERRORS 

The process of approximating a sample of a continuous

time signal by a finite digit binary number is known as analog

to-digi tal conversion. The binary number generated by an 

analog-to-digital converter (ADC) is almost always in a fixed 

pOint format. The two's complement format is frequently chosen 

since subtraction can be performed by adding the two's 

complement of the subtrahend to the minuend eliminating the 

need for a separate subtracter. The nominal two's complement 

representation of any number n with -A< x < A 

xl A--bo+ E b n2-n 
n-l 

(4.1.1) 

where b n can have only the values 0 or 1. For positive x be = 
o and for negative n be = 1. Therefore, be is called as the sign 

bit. 

In an actual digital machine only a finite number of bits 

can be used to represent any number. If the numbers are 

represented by using two's complement format, by simply 

truncating the series in Eq.{4.1.1), we can obtain the K+1 bit 

approximation 

(4.1.2) 
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which can be represented by the binary word (b o , b" ... ,b k ) 

in the machine. Any number of this form must be-an integral 

multiple of q=A2-

The quantity q is called the quantization step size. The 

relationship between [x] ... , and x is illustrated in Figure 

(4.1.1). It can be seen that the truncation error, e ... = x -

[x]..., must lie in the semi-open interval [0, q). Since the 

truncation error has a positive bias that can accumulate in a 

sequence of arithmetic operations, truncation is usually 

avoided. 

Rounding x to the nearest integral multiple of q is a 

better method of approximating x by a K + 1 bit binary number. 

The rounded number can be represented as 

(4.1.3) 

The relationship between [x]r and x is shown in Figure 

(4.1.1). For A(1-2-K -')=A-q/2 ~ x < A, b o = 0 and b, = b:z = ... 

= b k +, = 1. In this case, the last term b K +,2- k on the .right-hand 

side of Eq.(4.1.3) will cause an overflow into the sign bit if 

no overflow detection is used. The overflow causes, a jump to 

the value -A as shown on the bottom right of Figure (4.1.2). An 

advantage of using two's complement arithmetic is that if the 

total sum of a set normalized numbers is in the range [-1,1), 

then, even though partial sums overflow or underflow, the 

correct total sum will be obtained. Therefore, overflow and 

underflow detection is commonly omitted. The round-off error 

er=x-[x]r is confined to the interval [-q/2,q/2) except in the 

small overflow region. 

In both round-off and truncation, numbers are quantized 

to a set of uniformly spaced levels. In some special 

applications like pulse code modulation voice transmission, 
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Figure 4.1.1. Truncation of two's complement numbers 

signals are quantized to nonuniformly spaced levels to more 

accurately represent the signal amplitudes that occur most 

frequently. 

Nonuniform quantization can be achieved by first passing 

the signal through an instantaneous nonlinearity and then into 

a uniform quantizer.The instantaneous nonlinearity is often 

called a compander. In the remainder of this chapter we assume 

that uniform quantization is used. 

Let us now assume that the input to the quantizer (i.e., 

analog-to-digital converter) is a random variable X with the 

probability density function fK(x). In addition, let us assume 

that X can be quantized to any integral multiple of the 
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quantization step size q so that overflow and saturation do not 

occur. Then it follows that the probability density function 

for the round-off error is 

-A 
I 

/ 
/ 

/ 

/ 

3q 

2q 

I I 
3q 
T 

-A+3q 

-A+2q 

-A+q 

--A 
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... 
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/ 

X 

A 
I I A-~ I 2-

I 
I 
I 
I q 

-t ~-2 
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I I 
I I 
I I 
I I 
LJ 

Figure 4.1.2. Rounding of two's complement numbers 

for -q/2~e<q/2 

elsewhere 

(4.1.4) 

If N is an integer and X is uniformly distributed over [-Nq,Nq] 

then we find from Eq. (4.1.4) that the round-off error is 

uniformly distributed over [-Q/2,Q/2], that is 

for -q/2~e<q/2 

elsewhere 

(4.1.5) 
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In this case, the round-off error has zero mean and variance 

q"/12. If f,,(x) is moderately broad relative to q, then the 

round- off error is still almost uniformly distributed over [

q/2,q/2). We can argue similarly that the truncation error is 

almost uniformly distributed over [O,q). In the remainder of 

this chapter we will always assume that numbers are quantized 

by rounding. 

If a signal x(t) is sampled and quantized, then 

[x [nT)] r-X [nT) -e [nT) 

(4.1.6) 

where e[nT] is the round-off error sequence. Theoretical 

analyses and numerous simulations have shown that, when the 

probability density function for x(t) is moderately broad 

relative to q and the frequency spectrum of x(t) is 

sufficiently broad so that a number of quantization levels are 

normally crossed from sample to sample, e[nT] can be closely 

approximated by a white noise sequence uncorrelated with x[nT] 

and uniformly distributed over [-q/2, q/2) [34] , [36]. With 

these assumption, e[nT] has zero mean, variance q"/12, and the 

sampled power spectral density 

(4.1.7) 

In summary, the effect of analog-to-digi tal conversion can 

usually be modeled by simply adding a zero mean white noise 

sequence of variance q"/12 to the original unquantized 

discrete-time signal. 

The steady-state output component due to e[nT] is a zero

mean wide-sense-stationary (WSS) sequence with power spectral 

density given by 

(4.1.8) 
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where H(z) is the transfer function of the filter. Here the 

effect on the output of coefficient inaccuracy and round off 

accumulation has been ignored, since their effect on the 

response to e[n] is much smaller than that due to the response 

to x[n]. 

To relate q to the word length of the digital filter, 

scaling of the input may need to be considered. For example, if 

the input has been scaled such that IXnl~l and quantization is 

at the input of a fixed-point filter with at-bit quantizer, 

then q=2--'. Scaling is usually not important in floating-point 

filters. When it is used, the input signal spectrum and q2 are 

scaled by the same factor. 

The mean-squared value of the error at the output due to 

input quantization can be obtained by integrating the power 

spectral density given by Eq.(4.1.8). It is equated to 

~fH(Z) H(..!.) q2 dz 
2~J x 12 Z 

(4.1.9) 

and can be evaluated, either numerically or algebraically, by 

a computer program or a table [34], [37]. 

One can also bound the output component due to input 

quantization. It is easily seen that the output due to e[n] is 

bounded in absolute value by ~nlhnlq/2, where h n is the impulse 

response of the filter. Although this bound can be approached 

with a particular input sequence, it is extremely unlikely for 

the e[n] to take on these values. 

4.2. THE EFFECT OF COEFFICIENT QUANTIZATION 

Here, we will try indirectly to investigate the effect 

of coefficient quantization on the frequency response of a 

digital filter by examining its effect on the location of the 

poles and zeros of the filter. 
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Suppose that the pulse transfer function of the desired 

filter has the form 

where 

and 

G(Z}_A(Z) 
B(z} 

N N 

B (z) = 1+ L: bkz-k= IT (1-PkZ-i) 
k ~ ~=~ 

(4.2.1) 

(4.2.2) 

( 4 . 2 .3) 

If the filter is realized using one of the direct forms 

discussed in Chapter 3, then the denominator coefficients 1, 

b" ... ,b... will appear directly in the required difference 

equations. To obtain a rough estimate of the accuracy with 

which these coefficients must be represented to maintain 

stability, let us assume that G(z} is a narrow-band low-pass 

filter. Then the poles of G(z), P.~ ... ,PN' will be clustered 

inside the unit circle close to the point z = 1. Therefore, we 

can write that 

(4.2.4) 

If a single coefficient b~ is changed to b'r = b r +0, then the 

new denominator will be N 

B' (z) -1+ E bkz-k+az-r-B (z) +az-r 

k-~ 

(4.2.5) 

As 0 is increased in magnitude, roots of B' (z) will eventually 

move outside the unit circle. In general, the roots will cross 

the unit circle at different points. It is particularly easy to 

check for roots crossing at z = 1. From Eq.(4.2.6) we can see 

that if 
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( 4 . 2 .6) 

then B' (z) will have a zero at z = 1. substituting Eq.(4.2.4) 

into Eq.(4.2.6), we find that 

(4.2.7) 

Thus only a small coefficient perturbation is required to cause 

instabili ty. From Eq. (4.2.7), we can see that the accuracy 

requirements are more severe when the filter order N is large. 

Similar results can be obtained for other common types of 

fil ters that have poles clustered near points on the unit 

circle. 

In addition to maintaining stability, we must insure that 

the poles and zeros of the implemented filter are sufficiently 

close to those of the desired filter so that its frequency 

re-sponse is acceptable. Changes in the zeros of B (z) for 

incremental changes in its coefficients can be examined by 

using the total differential rule 

( 4 . 2 .8) 

The partial derivatives can be calculated from the polynomial 

and factored forms for B(z) in Eq.(4.2.3) using the rule 
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(4.2.9) 

When B(z) has only first-order zeros, we find from Eq.(4.2.8) 

and Eq.(4.2.9) that 

(4.2.10) 

If B(z) has a tightly clustered set of zeros and Pk and Pi are 

in this set, then P~1-' is close to 1 so that the product in 

Eq.(4.2.10) will be small and its reciprocal large. In this 

cases small changes in the coefficients of B (z) will cause 

large changes in its zeros. This effect becomes more pronounced 

as the number of zeros in the cluster increases. The same 

argument applies to the numerator A(Z). However,the frequency 

response of a filter is significantly more sensitive to changes 

in poles near the unit circle than to changes in zeros. 

Changes in the zeros of B(z) when a single coefficient 

is varied can also be examined by using the root locus method. 

The right-hand side of Eq.(4.2.5) can be considered to be the 

characteristic polynomial for a single loop negative feedback 

system with the open loop gain 6z-' IB (z) . 

The accuracy requirements become greater as the filter 

poles cluster closer together. For low-pass filters the poles 

cluster near z=l, and for high-pass filters they cluster near 

z=-l. For band-pass filters they cluster near Z= e"jwoT where We 

is the center frequency of the filter. If the bandwidth of the 

filter is W, then a measure of the tightness of the clustering 

is W/w.. The clustering becomes tighter as this ratio 

decreases. If the filter bandwidth W is held fixed and the 

sampling rate w. is increased, then we see that the poles 

become more tightly clustered and the accuracy requirements 

increase. 
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The results of this section can be assumed up by saying 

that a direct form implementation of a practiccfl recursive 

digi tal filter of order greater than two should usually be 

avoided. Sometimes even for a third-order filter the accuracy 

requirements for a direct form realization can be significant. 

A solution to the problem is to realize the filter by 

paralleling or cascading first-and second-order sections. The 

cascade form is most often chosen so that the zeros as well as 

the poles can be directly controlled. 

4.2.1. COEFFICIENT QUANTIZATION ERROR CALCULATION FORMULAS FOR 

ARMA 

Auto correlation coefficients errors: 

Iyy[k] - ( ~)(~Y[k]Y[k+j]) 

Iyy [k] -I'yy [k] + ~(~ (y[k+ j] ey[k) +ey[k+j)Y [k) +eY[k+J)eY[k))) 

(4.2.10) 

Error introduced at transfer function coefficients 

because of the error introduced at auto correlation and 

transfer function recursion coefficients: 

(4.2.11) 
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(4.2.12) 

P'l-Pl +(1-a1 [1] b 1 [1] e:ryy[qJ)-(e:~[l] a 1 [1] +e:a1 [1] b[ll )(Iyy [q] +e:ryy[qJ) 

(4.2.13) 

k-1 

Zyy [q+kI + L aJc- 1 [1] Zyy [q+k-1J 
aJc [k] ,.- 1-1 

Jc-l 

(4.2.1) 

pI k- P k+ (l-a k [k] b k [k] ) e:Pk--l- (e:ak[k] b k [k] +e:bk [k1 a k [k] +e:ak[k) e:bk [k1) (p k-l +E PJ. 
(4.2.16) 
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4.3. FIXED POINT FINITE WORD LENGTH ARITHMETIC EFFECTS 

Suppose that in a particular digital computer numbers are 

stored in a fixed point format using words of K+1 bits 

including th~ sign bit. When two of these numbers are added, 

the sum can be represented by K+1 bits except when an overflow 

occurs. When two of the numbers are multiplied using a fixed 

point algorithm, the full accuracy product contains 2K+1 bits. 

The typical operation performed in implementing a digital 

filter is a sum of products. The sum can be carried out using 

the full 2K+1 bit products rounded to a fewer number of bits. 

The total sum must then be rounded to K+1 bits for storage. 

This process is known as finite word length arithmetic. 

The accuracy of the stored total sum depends on the 

number of bits retained in the product for addition as well as 

the number of bits used for storage. suppose that products are 

rounded to less than 2K+1 but more than K+1 bits and that the 

resulting numbers correspond to multiples of the arithmetic 

quantization step size q.. Let us assume that the stored 

numbers correspond to multiples of the storage quantization 

step size q.. Suppose that we wish to calculate the sum of 

products 

N N 

s-E arPn-E en 
n-l n-l 

(4.3.1) 

where an and b n are Kth bit numbers. The rounded products can 

be written as 

(4.3.2) 

where lenl~q./2. Thus, the computed sum can be written as 
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N N 

Sl-1:fcnl r -s+L,en 
n-1 n 1 

(4.3.3) 

We will assume that numbers have been scaled so that the 

probabili ty of overflow is negligible. The computed sum rounded 

to K+1 bits for storage can be written as 

N 

S2- S1+V-S+ E en+v 
n-l 

where Ivl <q./2. From eq.(4.3.4) we can see that 

(4.3.4) 

(4.3.5) 

When the full accuracy 2K+1 bit products are used, e"=O for 

n=l, ... ,N so that 

(4.3.6) 

If the products are rounded to the storage accuracy of K+1 bits 

before addition, the resuHxing sum has K+1 bits and can be 

stor~d directly, so v=o and 

(4.3.7) 

The bounds given by Eq. (4 . 3 . 5 ) , ( 4 .3 . 6), and ( 4 . 3 .7) are 

achievable worst case bounds. When N is greater than or equal 

to two, the composite bound decreases from Nq./2 to q./2 as the 

number of bits retained in products increases from K+1 to 2K+1. 

A less conservative estimate of the noise introduced by 

fini te word length arithmetic can be obtained by an approximate 

statistical approach. When products are rounded to more than 

K+1 and less than 2K+1 bits in such a way that the quantization 

errors e" ... ,eN and v in Eq. (4.3.4) can take on 16 or more 

values, simulations have verified that these errors can be 

adequately modeled as zero mean, uncorrelated random variables 



wi th en uniformly distributed over (-q./2, q./2) and v uniformly 

distributed over (-q./2, q./2). Under these assumptions, the 

variance of en is q.:Z/12 , the variance of v is q.:Z/12, and it 

follows from Eq. (4.3.4) that the total quantization noise 

variance is 

(4.3.8) 

When the full accuracy 2K+1 bit products are used, e,= ... =en, 

so that 

(4.3.9) 

If products are rounded to the storage accuracy of K+1 bits, 

then v=O and 

(4.3.10) 

4.3.1 NOISE IN THE OUTPUT OF A RECURSION FILTER CAUSED BY 

FIXED POINT FINITE WORD LENGTH ARITHMETIC 

The noise introduced be finite word length arithmetic can 

be analyzed by replacing each rounded term by its original 

value plus an error term limited in magnitude to half the 

quantization step size. In this section we will use the 

approximate statistical approach discussed in section 4.3 and 

assume that the different rounding errors are zero mean, 

uncorrelated random variables each having variance q:Z/12 where 

q is appropriate quantization step size. 

The output of a finite tap nonrecursive filter is a 

weighted sum of inputs. Therefore, the error in the calculation 

of the present output introduced by finite word length 

arithmetic does not propagate into the calculation of future 

outputs. The resulting output noise can be characterized by the 
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appropriate equation in section 4.3. 

The output of a recursive filter is a weighted sum of 

present and past inputs and past outputs. In this case, the 

rounding errors propagate into the calculation of successive 

outputs. To illustrate this effect, let us assume that the 

pulse transfer function given in Eq. (4.2.1) is implemented 

using a type 0 direct form realization. If x(nT) is the filter 

input and y(nT) is its output, then the ideal input output 

relation is 

]I N 

y(nT) - 1: axX(nT-kT) -1: y(nT-kT) 
k-O bk 

(4.3.11) 

We will assume that a k , b k , and x(nT) have already been 

quantized to the required word lengths and that these effect 

can be analyzed separately. We will assume that overflows do 

not occur. To simplify the analysis slightly, we will assume 

that products and the total sum are both rounded to multiples 

of q. Then the computed and stored output y.(nT) is 

H N 

Y1 (nT) -:E [a,r-(nT-kT)] r - :E [bkYl (nT-kT) ] r 
k-O k-l 

(4.3.12) 

The rounded products can be written as 

(4.3.13) 

and 

(4.3.14) 

Therefore, 
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M N 

Y1 (nT) - 1: a0(nT-kT) - 1: bkY1 (nT-kT) +e (nTt 
k-O k-l 

(4.3.15) 

where 

M N 

e (nT) - 1: ek (nT) - 1: f k (nT) 
k-O k-l 

(4.3.16) 

The filter with the roundoff errors is illustrated in Fig. 

(4.3.1). Assuming that the roundoff errors are zero mean, 

uncorrelated random variables each with variance q2/12, we find 

that 

_x[._n_T}_-r-----i Z -f .t----.-

E{ e 2 (nT) } _ (M+N+~) q2 
~2 

-1 
Z 

,----_ y,[nT] 

(4.3.17) 

Figure 4.3.1. Noise in a type 0 direct form recursive 
filter realization caused by fixed point finite word length 
arithmetic 
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Taking the z-transform of Eq.(4.3.15) yields 

Y1 (z) - Y{z} + V(z} 

(4.3.18) 

where 

Y(z)-X(z)A(z}/B(z} 

(4.3.19) 

and 

V(z} -E(z) /B(z} 

(4.3.20) 

Thus the computed output y,[nT] is the sum of the desired 

output y[nT] and a noise signal v[nT]. Assuming that e[nT] is 

a white noise sequence, then by using the average power 

spectral density formula, the output noise power is 

E{v2 (nT)} - q2 (M+N+1) -.!..f 1 dz 
12 27tJ B(z)B(z-l) z 

(4.3.21) 

where the unit circle can be taken as the contour of 

integration [38], [39], [40]. 

The output noise power in parallel and cascade form 

realizations can be determined using the same approach. The 

output noise power study is given for parallel and cascade form 

and direct form realizations is given the below part. 

4.3.2. FIXED POINT FILTERS 

We shall consider first the direct form of realization 

and then use the result to treat parallel and cascade forms. 

Direct Form: It is seen before that the actual output 

sequence y[n] is given by 

M 1 

y[n] - E (bk):br[n-k] - E (ak) ty[n-k] +en 
Jc:-o Jc:-l 

(4.3.22) 
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where (ak)~ and (bk)~ are t-bit fixed-point representations of 

the coefficients ak and bk and en denotes the roundoff error in 

the calculation of y[n]. From the section 4.2 (error 

calculation for approximation) , we have (ak)~=ak+ak and 

(bk)~=bk+Bk where a k and 13k are the coefficient errors. 

The error of the nth sample of the output is given by the 

difference between the actual output y[n] and the ideal output 

w[n] we have 

where 

L 

en--E aJcen_Jc+un 
.Ie-l 

M L 

un;' E ~ i?C[n-k] - E (I Jcw[n-k] +en 
.Ie-O .Ie-l 

(4.3.23) 

(4.3.24) 

Suppose x[n] is zero mean and WSS. with aoutocorrelation 

function R=(n) and power spectral density S=(z). Then w[n] is 

zero mean and WSS. with power spectral density S_(z) given by 

(4.3.25) 

It can be shown that urn] is also zero mean and WSS with the 

autocorrelation function given by 

(4.3.26) 

where 

L M 

A (z) - E (I JcZ -
k and B (z) -:E ~ JcZ -

k 

.Ie-l k-O 

(4.3.27) 
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0 2 =2--2
"/3 is the variance of a random variable uniformly 

distributed in the interval (-2-~, 2-~) and· 1l and v are, 

respectively, the number of b k and a k that are neither 1 nor O. 

For simplicity, they may be taken to be (M+l) and L, 

respectively. The error en is zero mean and WSS with 

1 
See (z) - D(z) D(l/ Z) Suu<z) 

_ C(z)C(l/z) S (z)+ (iI+v)a2 

D(z) D(l/ z) xx D(z) D(l/ z) 

(4.3.28) 

where D(z) is the denominator of the transfer function given by 

L 

D(z) -1+ E a~-Jc 
1;-1 

(4.3.29) 

and 

C(z)-B(z}-H(z}A(z} 

(4.3.30) 

The mean-squared value of en is then 

(4.3.31) 

Suppose there is no coefficient rounding error; then the first 

term in Eq.(4.3.26} and Eq. (4.3.28) is absent and the result 

is as to be expected. Suppose there in no round off error; then 

the second term of Eq. (4.3.28) is absent. Thus we see that the 

error at the output of the filter consists of two components; 

one is due to roundoff accumulation and the other to the 

rounding of the coefficients to t bits. The component due to 

roundoff accumulation is uncorrelated with both the input x[n] 

and the ideal output w[n]. From Eq. (4.3.23), and Eq. (4.3.24) we 

can arrive at the block diagram shown in Figure (4.3.2), which 

will facilitate our discussion of the parallel and cascade 

realization forms. It is interesting to note that Eq.(4.3.28) 

can be written down almost by inspection of Figure (4.3.2) 



H 
Wn 

Xn 

C 
75 

Gn 1-
(Whlte) D 

Figure 4.3.2. Round-off 
representation in a filter 
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error accumulation 

Parallel Form: For the parallel form of filter 

realization, H(z) is written as 

]{ 

H{z) - k Hi (z) 

(4.3.32) 

where 

(4.3.33) 

Eq. (4.3.33) includes the possibility of a real pole or 

constant by setting a 2i =b,i=O or a'i=a2i =b'i=O. The parallel form 

of implementation is shown in Figure (4.3.3) where K 

intermediate outputs Wi [n] i=l, 2, ... ,K, are calculated from 

x[n] and then summed to form the final output w[n]. 

suppose the actual coefficients for the ith branch are 

(boi ) ... , (b,i ) ... , (a,i ) ... , and (a:zi )... are related to the ideal 

coefficients by (boi ) ... =boi +Boi ' (b,i ) ... =b11 +B'i' (a,1 ) ... =a'i+a'i' and 

(a2i ) ... =a:zi+aal' Let Yi[n] be the actual output of the ith branch 

and e n1 the erro~:-
(4.3.34) 
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x 

Figure 4.3.3. Round-off error accumulation for parallel 
form 

By using Figure (4.3.2) we can draw a block diagram as 

shown in Figure (4.3.3») from which one quickly arrives at an 

expression for the power spectral density of the output error 

where 

Bi (z) = BC1 + .a ,1 Z- ' 

A i (Z) = OC,iZ-'+ OC:: 1 Z-:: (4.3 36) 

and Vi may both be taken as 2. The mean-squared value of en can 

be computed by using Eq.(4.3.31) and Eq.(4.3.35). 

Cascade Form: To realize the digital filter in the 

cascade form, H(z) is written as 

K 

H{z) -en Hi (z) 

(4.3.37) 
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where c is a constant which shall be taken as 1 for simplicity, 

and 

(4.3.38) 

x I---~+ ... H· I 

Cl Ci CK 
D1 Dj . DK 

Em .L En; 1. tnK _1 
(White) D1 (Wh/{e) D; (White) DK 

Figure 4.3.4. Round-off error accumulation for 
cascade form 

Notice that the numerator N, {z} different from that in Eq. 

{4.3.33}. Suppose {b,,) ... ,{b2,} ... , {a,,} ... , and (a2')t are the actual 

coefficients. Again we have (b" }t=b"+J3,,, (b", ) ... =b+",+J3:>1' 

{a,'}t=a,,+ oc 'lI and (a2'}t= a2,+oc21 . By using Figure {4.3.2} , arrive 

at the block diagram shown in Figure (4.3.4) where 

Ci (z) -Bi (z) -Hi (z) Ai (z) 

Bi (z) -~liZ-l+~2iz-2 

Ai (z) - «liz -1+«2iZ - 2 

(4.3.39) 

The power spectral density of the actual output y[n] can 

be determined easily from Figure (4.3.4) by neglecting terms 

involving fourth or higher powers of sigma. From the expression 

so obtained, the power spectral density of the ideal output 

w[n] is subtracted. The remaining part is the power spectral 

density of the error en. The result is 
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[ 
~ +v K II +V K 1 

+02 K K + -1 ~i i H (z}H (liz) 
Dx{Z) DK (l/ z) ~ Di (z) Di (1/ z) }]1 j j 

(4.3.40) 

Both ~i and Vi can be taken as 2. The mean-squared value of en 

can be computed by using Eq.(4.3.31) and Eq.(4.3.40). 
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V. RESULTS and DISCUSSION 

V.1. RESEARCH METHODOLOGY 

In this study, the given system is considered as an 

unknown box, and by using the below denoted parametric 

modelling techniques transfer function in the z domain the 

response is got and the obtained transfer functions are 

compared with the original one. White noise input and some 

other necessary input sequences such as impulse and step 

inputs are used as driving input at necessary conditions. For 

modelling cases, Pade' algorithm and ARMA Modified Yule

Walker (MYWE) ARMA algorithm was chosen. The obtained input

output couples were used in the calculation of the transfer 

function for these algorithms. Two programs were written in 

Pascal programming language. One is used to find ARMA 

coefficients by using MYWE, the second one is for Pade' 

algorithm. These programs are given in Appendix A. For ARMA 

case, when the results were get, it was seen that Modified 

Yule-Walker algorithm were not producing the results as good 

as expected, sometimes it was producing unstable system 

responses. Another methodology was chosen for ARMA which was 

AKAIKE algorithm. This algorithm is constructed on the 

results obtained from MYWE algorithm because AKAIKE algorithm 

requires an initial estimate of the coefficients and then 

calculates more accurate coefficients. It was expected that 

the results would give higher reliability and accuracy than 

the first algorithms results. The last program for AKAIKE 

algorithm is also given in Appendix A. 

The second concern after finding the transfer 

function was the stability of the obtained transfer 
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function. In order to investigate this problem, a program was 

written. As it is explained in the previous chapters, there are 

several algorithms to understand whether the system is stable 

or not. Mainly all of these algorithms depends on the location 

of the transfer function roots. The program written finds the 

location of the transfer function roots and decides if the 

obtained transfer function is stable. 

Comparison of the obtained results for all of the 

algorithms have been done by setting some comparison rules. 

These are: 

a. The response of the system when t~ for various 

input sequences 

b. stability of obtained transfer function 

c. The values of coefficients 

d. The sensitivity of transfer function towards the 

various error types and the sensitivity of modelling approach 

to the input quantization, coefficient quantization and round

off error accumulation. 

5.2. PRACTICAL RESULTS 

For the comparison of these methods two test cases 

are used. Here in sequence the results obtained will be given. 

5.2.1. FIRST TEST CASE: 

The first test case has the following transfer function: 

Real H(z) _ O. 632z-0. 05014 
z2-0.785z+0.3618 

O. 6532z-1-0. 05014z-2 

1-0.7 85z-1+0. 3618z-2 

( 5 .1) 
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COMPARISON OF METHODS FOR TEST CASE 1 

a. System response: Response of the simulated trnasfer 

functions given in Table 5.1. for impulse and step input are 

shown in Figures (5.1) I (5.2) I (5.3) I (5.4) I (5.5) I (5.6) I 

( 5 . 7) and (5. 8) . 

Table 5.1 Coefficients of the simulated algorithms for 

nominator=2 and denominator=2 

Coefficients REAL PADE' ARMA MYWE AKAIKE 

aO 0 0.00164 -0.0632 -0.2403 

al 0.632 0.60273 0.2061 0.0143 

a2 -0.05014 -0.10930 0.135 0.0256 

bO 1 1 1 1 

b1 -0.785 -0.85725 -0.70923 -0.917 

b2 0.3618 0.35025 0.45068 0.406 

Table 5.2. Location of poles for simulated methods 

POLE 1 POLE 2 

REAL 0.3925 + j 0.4557 0.3925 - j 0.4557 

PADE' 0.4286 + j 0.4081 0.4286 - j 0.4081 

ARMA MYWE 0.3516 + j 0.5721 0.3546 - j 0.5721 

AKAIKE 0.4589 + j 0.4422 0.4589 - j 0.4422 
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Table 5.3. Steady state response of simulated methods 

REAL PADE' ARMA MYWE I AKAIKE 

x[oo] = 1.00877 1.02231 0.46012 0.161078 
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Figure 5.9. Impulse response of higher order ARMA MYWE 

algorithm for test case 1 
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Figure 5.12. step response of higher order ARMA AKAIKE 

algorithm for test case 1 

As it is seen from the tables both ARMA methods MYWE 

and AKAIKE did not give expected results according to the real 

transfer function. On the other hand, that much differences 

real and calculated results are most probably due to the 

improper selection of order. If we use any of the mentioned 

algorithms explained section 3.3.4 a better approximation to 

the real transfer function can be found. Below a higher order 

approximation of ARMA process is given for both MYWE and 

AKAIKE. 

Table 5.4. Steady state response of simulated methods ARMA MYWE 

and AKAIKE for orders (2,B) 

ARMA MYWE AKAIKE 

x[oo] = 0.71B19 0.B011 
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Table 5.5. Coefficients of the simulated method ARMA MYWE and 

AKAIKE for orders (2,8) 

ARMA MYWE AKAIKE 

aO -0.3196 -0.0820 
, 

a1 0.6359 0.6289 

a2 0.1743 0.2647 

bO 1 1 

b1 -0.9723 -0.7598 

b2 1.1305 0.9092 

b3 -0.3892 -0.1358 

b4 0.0872 -0.0197 

b5 0.0046 0.0383 

b6 0.0683 0.0719 

b7 -0.0870 -0.0830 

Table 5.6. Poles of the simulated methods ARMA MYWE and AKAIKE 

for orders (2,8) 

ARMA MYWE AKAIKE 

POLE 1 -0.4353 + j 0.3462 -0.4868 + j 0.3247 
I 

POLE 2 -0.4353 - j 0.3462 -0.4868 - j 0.3247 

POLE 3 0.1671 + j 0.8718 0.1568 + j 0.8569 

POLE 4 0.1671 - j 0.8718 0.1568 - j 0.8569 

-POLE 5 0.4493 + j 0.6119 0.4256 + j 0.6080 

POLE 6 0.4493 - j 0.6119 0.4256 - j 0.6080 

POLE 7 0.6107 + j 0.0000 0.6107 + j 0.0000 
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b. stability of systems: In order to analyze the 

stability of obtained system transfer function for the above 

mentioned algorithms, We considered the above table and the 

location of poles on the z domain. From the table (5.7) it can 

be said that ARMA methodologies have more stable cases than 

PADE' because ARMA methodology uses higher "orders and for this 

reason approximates the real transfer function easily. And most 

of the times PADE' produces stable cases for only very low 

orders. On the higher orders PADE' , methodology easily produces 

unstable system responses, that can be understand by the 

location of poles. 

Table 5.7. Simulation results obtained for methods PADE' I ARMA 

MY WE and AKAIKE at different orders 

I J PADE' ARMA MYWE ARMA AKAIKE 

2 2 1.022316171 o . 47 137 7 01·9 0.161077049 

3 3 UNSTABLE UNSTABLE NOT APPL. 

5 5 UNSTABLE UNSTABLE UNSTABLE 

2 3 2.118566025 0.319512547 -0.59949731 

3 4 UNSTABLE UNSTABLE UNSTABLE 

7 8 UNSTABLE UNSTABLE UNSTABLE 

6 7 UNSTABLE UNSTABLE UNSTABLE 

8 3 NOT APPL. UNSTABLE UNSTABLE 

7 3 UNSTABLE UNSTABLE UNSTABLE 

10 5 NOT APPL. UNSTABLE UNSTABLE 

4 4 UNSTABLE UNSTABLE UNSTABLE 

2 7 UNSTABLE 0.718190263 0.808230014 

3 8 UNSTABLE UNSTABLE UNSTABLE -
4 7 UNSTABLE _UNSTABLE 0.974129734 

2 8 UNSTABLE UNSTABLE UNSTABLE 



.... 
:J 
c.. 
+' 
:J 
0 
II} 
.c .... 
.... 
c 
.... 
c .... ..... 
'I) -0 

E 
.c ... 
-.: 
Q 
co 
0 
-l 

152 

To see the how the system response 'can be effected from 

the finite word length the system response for the different 

data representation bit lengths must be examined. 

The Figure (5.5) shows the logarithmic difference 

between extended precision (80 bits), double precision (64 

bits), real (48 bits) and single precision (32 bits) data 

representation type in Turbo Pascal on the system response for 

different methodologies. 

0 

-5 

-10 

-15 

-20 

-25 

-3{) 

-35 

-4-0 
0 

Word length 

0 Real transfer func_ + Pade' transfer fn. ¢- AR~IA MY'NE function 

b. ARMA AJ<AIKE fn_ 

Figure 5.13 Logarithm of the differences of calculated output 

errors for data representation types 

-It is obvious that if we use single precision data 

representation system response is affected more. But on the 

other hand Pade' approximation is less affected for such data 

representation changes, after the real transfer function. 
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c. Coefficient values One of our criteria was 

comparison of coefficients values. Here, in table (5.8) the 

coefficients found by simulated methods are given. This 

comparison is done at the same order level for all methods as 

taking the difference between the simulated and real 

coefficients. This difference is given in figure (5.14). 

Table 5.8. Coefficients differences between real and simulated 

results 

REAL PADE' ARMA MYWE AKAIKE 

aO 0 0.01064 0.06327 0.24039 

a1 0 0.02926 0.42589 0.61769 

I 
a2 0 0.0519 0.16356 0.07578 

bO 0 0 0 0 

b1 0 0.07223 0.07568 0.13298 

b2 0 0.01559 0.08882 0.04441 

METHODS 

o 00 + 01 ¢ 02 n bO x bl V b2 

Figure 5.14. Coefficients error of simulated methods according 

to the extended data type 
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From figure (5.14) we can say that Pade' has better 

coefficient values than the other for the order (2,2). This 

means that, Pade' method has a better approximation to the real 

transfer function. 

d. Sensitivity to error: Under this subject we will 

analyze mainly the effects of finite word length on the system. 

These effects are theoretically explained in chapter 4. 

1. Input quantization error: This error is directly 

introduced by the quantization of the input signal. As it is 

explained in section 4.2, it can be modelled as q2/12 by simply 

adding a zero mean white noise sequence of variance if/12 to 

the original unquantized discrete-time signal. 

2. Effects of coefficient inaccuracy: As it is 

mentioned in section 4'.2, under this effect the effect of 

coefficient quantization on the frequency response of a 

transfer function is considered by examining its effect on the 

location of the poles and zeros of the filter. The numerical 

algorithms to find zeros and poles of a transfer function 

(mainly roots of a polynomial) are based on some approximation 

techniques, so it is not a good idea to use the approximated 

roots for comparison. Here we compare the effect of finite word 

length on the obtained transfer function coefficients. This 

effect will be calculated by assuming that the solution found 

using the extended precision data type of pascal programming 

language is the true case. Other data types such as single, 

real and double are used to show the effect of short word 

length. See table (5.9). 
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From the figures it is seen that all methodologies 

approximately produces the same amount of error for the same 

order except the AKAIKE algorithm, because of the fact that it 

is based on the ARMA algorithm it is effected double from such 

truncation. It is obvious that Pade' is producing the obtained 

results in a lower order transfer function than ARMA so Pade' 

is effected less relatively to the ARMA if the orders level is 

considered. 

3. The output of system is a weighted sum of present 

and past inputs and outputs. The rounding errors propagate into 

the calculation of successive outputs, according to the 

equation (4.3.21) 

Here we will calculate this propagated error. Assuming 

that round-off errors are zero mean and uncorrolated random 

variables each with variance q:Z/12 , output noi.se power is 

E{v2 [nT)},. q2 (M+N+1) ~f 1 dz 
12 2xJ b(z)bz-1 z 

( 5 . 2 ) 

Where the unit circle is used as the contour of integration 

[34], [39], [42], [43]. 

Table 5.9. Calculated errors for test case 1 in state space 

direct form (all numbers should be multiplied by q:Z) 

I J PADE' ARMA MYWE ARMA AKAIKE 

2 2 -0.918791778 -0.624480090 -0.881202293 

2 3 -0.198390581 -0.041059074 -0.955662787 

7 8 - 7.698239885 -
Z- 7 - 2.266102243 -0.070892356 

-

4 7 - - -0.484446167 
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The round-off errors for test case 1 according to the 

methodologies are given in the table (5.10), the round-off 

errors are calculated only when stable transfer functions are 

obtained. 

, 

The second subject to consider error was the state-

space representations sensitivity according to the various 

(especially cascade and parallel) representation types. As it 

is explained in section 4 especially, cascade and parallel 

state space representation types are less sensitive to the 

round-off errors. So, here we will investigate this on our 

Pade' , ARMA, and AKAIKE modellings. These errors are calculated 

using residu theorem [44], [45]. 

Table 5.10. Output noise power of test case 1 for different 

state space representation types (all numbers should be 

multiplied with q:Z) 

REAL PADE' ARMA MYWE ARMA 

Repr. type AKAIKE 

Direct Form 0.105711 0.918791 0.624480 0.8812 

Parallel form 0.105 0.03222 0.0837 0.04403 

The practical results shows the same thing with 

theoretical formulas. Pade' approximation technique is less 

sensitive to the round-off errors according to the ARMA and 

AKAIKE method for same order levels. 

V.2.2 SECOND TEST CASE: 

The second test case was have the following transfer 

function 

Real H(z)- O.236z 2+O.36z-0.785 
z3-0.3618z 2 +O.9z-0.4596 
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In this second case, for the lower orders Pade' 

approximation has not producing a good results. ARMA 

approximation is unstable but AKAIKE algorithm's result is 

better than other two. The transfer function of the second 

case, as it can easily be seen from all figures above, is have 

a high overshoot and it is reaching its steady-state value in 

a long time of period. This transfer function has a pole very 

close to the unit circle. So it is very easy to carry it by 

approximating outside of the unit circle like in ARMA MYWE 

case. 

Table 5.11. Coefficients of transfer functions of test case 2 

for simulated methods 

REAL PADE' ARMA MYWE AKAIKE 

aO 0 0.06318 -0.15873 0.15315 

a1 0.236 0.12055 0.22340 -0.23252 

a2 0.36 0.41355 0.08721 -0.15971 

a3 -0.785 -0.75204 -0.06013 -0.12042 

bO 1 1 1 1 

b1 -0.3618 -0.32550 -0.30664 0.27452 

b2 0.9 0.84945 0.94307 0.97841 

b3 -0.4596 -0.41215 -0.12085 0.13653 

Here, the step responses is given as a table for 

various orders. From this table, we can say that Pade' 

approximation is not successful for second case. Maybe, the 

reason of that is the transfer functions property. 

COMPARISON OF METHODS FOR TEST CASE 2: 

a. System response: When the impulse signal is applied 

to the systems the responses in figures (5.19), (5.20), (5.21) 

and (5.22) are obtained. And the step response is given in 
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figure (5.23), (5.24), (5.25) and (5.26). 
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Table 5.12. Steady state value of test case 2 for step input 

REAL PADE I ARMA MYWE AKAIKE 

x[oo] -0.17522S -0.2330S1 0.4714 -0.19162 

Table 5.13. Location of poles of test case 2 for simulated 

methods 

POLE 1 POLE 2 POLE 3 

REAL -0.0592+jO.9776 -0.0599-jO.9776 0.4S029+jO.0000 

PADE I -0.0646-jO.950S -0.0646+jO.950S 0.45486+jO.00000 

ARMA MYWE -0.0651-j1.0001 -0.0613-j1.0001 0.13335+jO:00000 

AKAIKE -0.6612+jO.9773 -0.6612-jO.9773 0.1422S+jO.0000 

Here, the step responses, poles and transfer function 

coefficients are give are given in tables (5.11), (5.12), and 

(5~13) for all simulated methods. From these table, we can say 

that Pade l approximation is not successful for the second case. 

This is due to the nature of the transfer function. But AKAIKE 

algorithm reaches some good results at very low orders. It can 

be said that Pade I approximation is not a good method for 

transfer functions which have poles close the unit circle. 
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Table 5.14. Simulation for various orders 

I J PADE' ARMA MYWE ARMA AKAIKE 

2 2 UNSTABLE UNSTABLE -0.185090566 
, 

3 3 -0.253085154 UNSTABLE -0.201624638 

5 5 -0.279122738 UNSTABLE UNSTABLE 

2 3 UNSTABLE UNSTABLE -0.400155232 

3 4 UNSTABLE UNSTABLE -0.254319036 

7 8 0.545654458 UNSTABLE NOT APPL. 

6 7 UNSTABLE UNSTABLE NOT APPL. 

8 3 UNSTABLE UNSTABLE 0.032225702 

7 3 UNSTABLE UNSTABLE 0.0091571770 

10 5 UNSTABLE UNSTABLE UNSTABLE 

4 4 UNSTABLE -0.601602018 UNSTABLE 

2 7 UNSTABLE UNSTABLE -0.385882972 

3 8 UNSTABLE UNSTABLE UNSTABLE 

4 7 UNSTABLE UNSTABLE UNSTABLE 

2 8 UNSTABLE UNSTABLE UNSTABLE 

b. Stability of systems: In order to analyze the 

stability of obtained system transfer function for the 

mentioned algorithms, we considered the table (5.12) and the 

location of poles on the z domain. From the table (5.12) it can 

be said that ARMA methodologies have more stable cases than 

PADE' and most of the times PADE' produces stable cases for 

only very low orders. On the higher orders of PADE' 

methodology easily produce unstable system responses, that can 

be understand by the location of poles. 
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To see the how the system response can be effected from 

the finite word length the system response for the different 

data representation bit lengths were investigated. 

The figure (5.27) shows the logarithm of differences 

between extended and 

representation types on 

methodologies 

do~ble, real and single data 

the system response for different 
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Figure 5.27. Logarithm differences of calculated output errors 

for the data representation types 

It is obvious that if we use single data representation 

system response is effected more. But on the other hand Pade' 

approximation is less effected for such data representation 

changes. 

c. Coefficient values : The coefficients differences 

from the real transfer function is given in Table (5.15) and in 

Figure (5.28) for test case 2. 
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Table 5.15 Coefficients differences between real and simulated 

results 

REAL PADE' ARMA MYWE AKAIKE 

aO 0 0.06318 0.15873 0.15313 

a1 0 0.11544 0.45940 0.46851 

a2 0 0.05335 0.44721 0.51973 

a3 0 0.03295 0.72362 0.66455 I 

bO 0 0 0 0 I 

b1 0 0.36298 0.35871 0.63632 -
b2 0 0.05054 0.04307 0.07841 

b3 0 0.04644 0.33159 0.59602 
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In a similar manner, for the second case Pade' has 

better coefficient values approximation than the others for the 

order (3,3). So, Pade' approximation method simulates the real 

transfer function better. 

d. Sensitivity to error: 

1. Input quantization error: Again this error is 

modelled by simply adding a zero mean white noise sequence of 

variance q2/12 to the original unquantized discrete-time 

signal. 

2. Effects of coefficient inaccuracy: Here a table is 

given to show the effect of finite word length by using single, 

real and double data types as it is explained in the first 

case. 
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The figures shows the same results with the results of 

test case one. It is obvious that Pade' is producing the 

results is a lower order transfer function than ARMA so Pade' 

is· effected less relatively to the ARMA if the orders level is 

considered. 

3. Round-off error accumulation: Here we will calculate 

the propagated error using the formula given in test case one 

with the equation number (5.2). 
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Table 5.16. Calculated errors for approximation types in state

space direct form ( all numbers should be multiplied by q2) 

I J PADE' ARMA MYWE ARMA AKAIKE 

2 2 - - -0.26419273 

3 3 0.289673616 - 0.282533023 

5 5 0.1821913131 - -
2 3 - 0.478756531 0.246597057 

3 4 - - 0.330128270 

8 3 - - 0.283400141 

7 3 - - 0.320590893 

4 4 - 0.244017160 -
2 7 - - 0 .. 490973875 

The round-off errors are calculated only for stable 

transfer functions obtained. Secondly the error sensitivity for 

different state-space the state-space representations is given 

below only for parallel representation type. 

Table 5.17. Output noise power of test case 2 for different 

state space representation types (all numbers should be 

multiplied with q2) 

REAL PADE' ARMA MYWE ARMA 

Repr. type AKAIKE 

Direct Form 0.09641 0.120697 0.100007 0.117722 

Parallel form 0.113 0.1152 0.13312 0.1598 

Here, with these results we can same thing that Pade' 

approximation technique is less sensitive to the round-off 

errors according to the ARMA and AKAIKE method for same order 

levels. 
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6. CONCLUSION 

, 

This study had two major objectives: Firstly, to make a 

literature survey on a new approach of Pade' approximation in 

system modelling and secondly, to analyze the introduced 

approach from the point of view of sensitivity to input 

quantization error, coefficient quantization error and round

off accumulation error. 

Several papers [29], [30], [32], [41] report the 

following drawback for Pade' approximation "Pade I 

approximation can produce stable (unstable) system response 

even if the real system is unstable (stable)". Shamash [32] is 

especially concerned with the solution of the unstability 

problem and suggests a different way to provide stability. This 

approach of Shamash is based on fitting an ARMA model from data 

samples and then reducing it by Pade'. On the other hand, 

Biyiksiz's algorithm obtains the Pade' type reduced order 

transfer function directly from the data samples [30]. Obviously 

Biyiksiz's approach eliminates some of the steps, but this 

approach does not guarantee stability of obtained transfer 

function. Shamash' s approach finds the dominant poles of higher 

order transfer function (generally ARMA type), then by applying 

Koenig's theorem and its generalization expanding it to power 

series, lastly fits a Pade' approximation to this power series. 

By this way it provides a stable (unstable) simulation. 

In this study, in order to find out the advantages and 

disadvantages of Pade' approximation we mainly compared it 

with ARMA approximation techniques. The results of two test 

cases with ARMA is given in Chapter 5. Although we worked on 

several sample functions, here only two of them are documented, 

because they explain the behaviour of the approximation 

clearly. In general, it was observed that a stability problem 

of obtained transfer function always exists. It appears mostly 
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in Pade' cases. On the ARMA side, to obtain better 

approximation not only MYWE but also, AKAIKE method is 

considered. When the right order is selected ARMA approaches 

produced proper results, but for Pade' we could not find any 

research on model order selection. The lack of model order 

selection rules caused to choose the orders by examining all 

the orders. It also created some difficulties in the analsis of 

obtained results. From the results it is seen that when the 

right order is chosen, Pade' model reaches the real transfer 

function at a lower order than the others. 

When the stability problem is eliminated, second concern 

was the sensitivity to error. This was investigated 

respectively at the orders that were assumed as the right order 

for Pade' and ARMA. Three types of error were examined: Input 

signal quantization, coefficients quantization, and arithmetic 

round-off error accumulation. In the examination of the results 

obtained from both methods, it is seen that Pade' approximation 

method is less sensitive to the finite word length effects. 

ARMA methods were relatively more sensitive to error compared 

to Pade'. Comparison is done on system response and 

coefficients values produced by Pade'. It is shown in Chapter 

5 that coefficients produced by Pade' approximation is less 

effected by the change of the word length. The round-off error 

va"lue for direct type representation was greater than ARMA 

transfer function direct representation error. It is seen that 

Pade' has higher sensitivity to round-off error accumulation 

for direct type state-space realization. When the parallel type 

of state-space approach is studied, we observed that Pade' 

method transfer function has also less error accumulation that 

of ARMA. This is especially true when the obtained transfer 

function response has the best approximation to the original 

function. 

As a conclusion, Pade' approximation has some advantages 

and disadvantages which can be summarized as follows: 
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The advantages of Pade' approximation: 

a. It is easy to use. 

b. computationally, it is simpler than other similar 

methods. 

c. The Pade' model is of lower order so the 

mul tiplicative effects of coefficient quantization is 

minimized. 

d. The Pade' model is relatively less sensitive to 

quantization noise caused by the effect in (c). 

e. Normally globally effective Pade' models of second 

order may be achieved which lend themselves as ideal 

candidates for direct form state space realizations. 

f. Pade' model greater than second order are of lower 

order than ARMA models achieved for the same system 

under considerationj therefore, even when the direct 

form is not feasible, the Pade' model will realize 

cascade or' parallel forms with fewer second order 

selections, thus affording less complexity. 

The disadvantages of Pade' approximation: 

a. Because of the lack of model order selection rules, 

user should decide on the order on their own 

experience or examining any other method. 

b. As a result of (a) it can become unstable (stable) 

although the original was system stable (unstable) 

c. Especially, for the systems which has poles very 

close to the unit circle, special care should be 

payed. The reduction of poles can cause unstability, 

because these systems have large magni tude poles with 

negative real parts. 

When Pade' approximation is used both of the advantages and 

disadvantages should be taken into account before applying it 

to the system ~t hand. 

This work can be extended as follows: 

1. A research should be done on order selection method 

of Pade' for Biyiksiz approach. Some criteria should be 

developed to choose the right order. 
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2. The study on state-space modelling technique is done 

only for parallel approach because of the lack of time. so, we 

suggest that a detailed research should be done on various 

state-space representation types to investigate error 

sensitivity. 
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APPENDIX A 

In this appendix, all the programs written along the 

development of this study is given. But ' giving all these 

programs documented causes lots of pages printed, so all the 

programs is given with a 360 KB. 5 1/4' diskette in IBM PC 

compatiable format. Readers can use the program sources and 

compile them by using Turbo Pascal 5.0. A READ .ME file is 

placed on the diskette. This file explaines each source file 

and its function in study. To :explaine the requirements of 

users two files named HARDWARE.TXT and SOFTWARE.TXT is given. 
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