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Boğaziçi University

2007



iii

ACKNOWLEDGEMENTS

First and foremost, I thank my advisor Dr. Haluk Bingöl, for his constant

support during my studies and his incredible insight for knowing when to push me

for more or let me take a break to put things in an order. Under his supervision, I

enjoyed both the freedom and responsibility of conducting an independent research.

I am indebted to Eser Aygün for the numerous mind stimulating conversa-

tions we had together. Many critical ideas about my thesis were sprouted during

these conversations. His recommendations and criticisms made my arguments much

more solid and richer.

I thank all members of the SOSLAB for the insightful discussions we had

and for their feedback during my study. I also acknowledge the productive environ-

ment that I enjoyed in the Department of Computer Engineering and I thank my

colleagues there for their valuable support.

The Department of Foreign Language Education provided me an enjoyable

and peaceful workplace where I could keep my graduate studies ongoing without

any conflicts with my work. I thank all my colleagues and professors working there

for their understanding and kind help.
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ABSTRACT

A CULTURAL MARKET MODEL

Social interactions and personal tastes shape our consumption behaviors

of cultural products. The behavior of an individual is driven by many factors but

at the simplest level we can model his behavior as the outcome of an interaction

between a personal component, which represents his personal tastes, and a social

component, which represents the effect of his peers, family, society and etc. on

his decisions. Identifying the social and personal components and studying their

interaction at an emergent level is an active area of research which borrows methods

and techniques from various disciplines such as computer science, sociology, cognitive

science, economics, and physics.

Constructing computational models and analyzing them is one part of the

research and physicists have already come up with some models which help us to deal

with simple decision models where agents are required to pick one of two alternatives.

This type of problems is called binary decision problems and can be applied to a

variety of real world situations like voting for or against a legislation and buying

or not buying a product. However, in real cultural markets, where many products

compete with each other, the consumption decision is not a binary one because the

people are limited in budget, time, etc. And the agents have to consider all options

before they come to a decision. Therefore, it is not possible to view the decision of

consuming a product or not as a simple binary decision because it is not independent

of other products.
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In this thesis, we present a computational model of a cultural market and we

aim to analyze the behavior of the consumer population as an emergent phenomena.

We conceptualize a cultural market as a set of consumers and a set of cultural items

such as movies, songs, or books where the consumers make decisions to consume

the items or not. The consumers are in social interaction with each other and they

make decisions based on their personal opinions and social pressure together.

Our results suggest that the final market shares of the cultural products

dramatically depend on the consumer heterogeneity and social interaction pressure.

The inequality of the resulting market and the correlation between the initial attrac-

tiveness and final market share of a product exhibits sudden increases and decreases

depending on the values of social interaction pressure.

We also extend our simulations to test the robustness of the observed phe-

nomena with respect to the topology of the social interactions between agents and

other model parameters. Our findings suggest that the relation between the result-

ing market shares and the social interaction does not depend on the actual values of

the parameters such as the number of agents or the properties of the topology but

qualitatively same for a wide range of parameter settings.
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ÖZET

KÜLTÜREL BİR PAZAR MODELİ

Toplumsal etkileşim ve kişisel beǧeniler tüketim davranışlarımızı derinden

etkiler. Bireyin davranışlarını yönlendiren pek çok etken olmakla beraber, en temel

seviyede bu davranışları kişisel ve toplumsal iki bileşenin etkileşiminin bir sonucu

olarak modelleyebiliriz. Kişisel bileşen bireyin beǧenilerini, toplumsal bileşen ise

çevresiyle (arkadaşları, ailesi, toplumun geri kalanı) girdiǧi etkileşimin davranışları

üzerindeki etkisini temsil eder. Bu bileşenleri tanımlamak ve aralarındaki etkileşimin

doǧasını incelemek bilgisayar bilimleri, toplum bilim, bilişsel bilimler, ekonomi ve

fizik gibi pek çok disiplinin katkıda bulunduǧu aktif bir araştırma alanı olmuştur.

Hesaba dayalı modeller kurmak ve incelemek bu araştırmanın bir parçasıdır

ve fizikçiler uzun zamandır bir etmenin iki alternatiften birisini seçmesi gerektiǧi du-

rumları yansıtan modelleri sunmakta ve incelemektedirler. Gerçek dünyada da uygu-

lama alanı bulabilecek bu karar verme problemlerine iki alternatiften birisinin seçimi

söz konusu olduǧu için ikili karar verme problemleri adı verilmiştir. Referanduma

sunulmuş bir konuda evet ya da hayır oyu kullanmak, bir ürünü almaya ya da alma-

maya karar vermek bu modeller kullanılarak incelenebilen durumlardır. Bununla be-

raber kültürel pazarlarda gözlediǧimiz bir durum etmenlerin kararlarının ikili karar

verme problemi olarak ele alınamayacaǧını göstermektedir. Bu da kısıtlı bütçe ve

benzeri sebeplerden dolayı etmenlerin pazardaki her ürünü tek tek deǧil topluca ele

almaları ve ürünlerin kendi aralarında rekabet ediyor olmalarıdır. Bir ürün hakkında

verilen tüketim kararı diǧer ürünler hakkında verilen karardan baǧımsız deǧildir.
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Bu tezde kültürel pazarlar için hesaba dayalı bir model sunuyoruz. Amacımız

bu model yardımıyla makro seviyede gerçekleşen tüketim davranışlarını incelemektir.

Kültürel pazardan kastımız tüketicileri temsil eden bir etmen kümesi ve ürünleri

(ör. kitaplar, filmler, müzik albümleri) temsil eden bir ürün kümesinden oluşan

bir sistemdir. Tüketiciler birbirleri arasında toplumsal etkileşim içindedirler ve bu

etkileşim ile kişisel beǧeniler tüketmeye karar verecekleri ürünleri belirler.

Sonuçlar, ürünlerin pazar paylarının tüketicilerin kişisel beǧenileri arasındaki

benzerliǧe ve toplumsal etkileşimin şiddetine aşırı hassas olduǧunu göstermektedir.

Oluşan pazar payları arasındaki adaletsizlik ve bir ürünün başlangıçtaki çekiciliǧi ile

sahip olduǧu pazar payı arasındaki korrelasyon deǧişen toplumsal etkileşim şiddeti

deǧerlerine göre ani iniş ve çıkışlar göstermektedir.

Elde ettiǧimiz sonuçların belirli parametre deǧerlerine baǧımlı olmadıǧını

göstermek için simulasyonlarımızı deǧişik parametre deǧerleri (ör. etmenler arası

ilişkileri belirleyen topolojik yapılar, etmen sayısı, vb.) kullanarak tekrarladık.

Sayısal sonuçların deǧerleri deǧişmekle beraber modelimizin davranışlarının çok geniş

bir parametre deǧer yelpazesinde niteliksel olarak deǧişmeden tekrarlandıǧını gördük.
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1. INTRODUCTION

1.1. Motivation

Social interaction is an inevitable aspect of our lives and a very strong ingre-

dient of our decision processes. It would not be an exaggeration if one were to say

that most of our decisions at least partially depend on what other people think and

how they behave. Family, friends, colleagues and other social groups may effect our

behaviors significantly. The extent of the society’s influence on our behaviors may

range from daily decisions such as what to wear at work to political decisions such

as which party to vote for in the elections. The importance of the social interaction

has been reflected in the social sciences for many decades and a growing body of

research continues on the intersection of various disciplines including but not limited

to sociology, cognitive sciences, physics and economics (Farrell and Saloner, 1985;

Goldstone and Janssen, 2005; Gordon et al., 2005; Granovetter, 1978; Krauth, 2006,

2005; Markose, 2005, 2006; Schelling, 1973, 1978).

A single individual is already very complex to analyze on its own and the

inclusion of social effects introduce even more complexity to the theoretical and

empirical studies. Statistical physics has a long history of dealing with interact-

ing particles and emergent phenomena. The methods of statistical physics provide

convenient means of abstracting the dynamics in a complex system and avoiding

irrelevant details. Interestingly, some of those techniques are applied to human

populations successfully and offer us new ways to explore the dynamics in social

systems (Durlauf, 1999, 2005; Galam, 1997; Galam et al., 1982; Holyst et al., 2000;

Michard and Bouchaud, 2005; Phan et al., 2004; Phan and Pajot, 2006).
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Economic systems and markets are interesting areas to apply the insights

we get from complex systems approach. We conceptualize a cultural market as a

set of consumers and a set of cultural items such as movies, songs, or books where

the consumers make decisions to consume the items or not. The consumers are in

social interaction with each other and they make decisions based on their personal

opinions and social pressure together. The movie market is an excellent example of

such a system and throughout this text we will develop our arguments based on this

concrete example for pedagogical reasons.

1.2. A Cultural Market

In this section, we will cover some important and defining aspects of a cultural

market and hence outline the scope of our model that will be introduced later in

the text. Two major components of a cultural market are the set of consumers and

the set of cultural items. In our example market that we will use throughout this

study (i.e. the movie market), consumers are the viewers or the customers of the

movie theaters and items are the movies on the market.

1.2.1. Limitations in demand and supply

Consumers have limited budgets to pick for the items they will consume.

This limitation may be due to money (one can not afford to buy tickets for all

movies), time (one can not view all movies on the market in a short period) or some

other reason. We are not interested in the actual reason of the limitation but assume

that it exists.

On the other hand, the supply of the items is unlimited. A movie stays on
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the theaters as long as there are customers who wish to view it or a book can be

re-printed if its sales continues. There is no scarcity on the supply side of the market

thanks to the ”cultural” nature of the items. They can be reproduced as needed.

1.2.2. Social dimension

The decision of a consumer whether to consume an item or not may depend

on various factors which are irrelevant to us for the moment. An important as-

sumption about a cultural market is that one of the factors is the social pressure

exerted on the individual. The decision of others effect the decision of the indi-

vidual. Theoretically, the effect may be both negative or positive but we focus on

the case where it is positive (i.e. if an item is consumed more by the others than

it will have a greater chance to be consumed by the individual). The literature of

psychology and economics have a large set of findings and different reasons for such

effects. For instance, in certain economical settings, the value of an item to the

customers increases as the number of people who have consumed the item increases.

These effects are called network externalities and they are well known and studied

in economics (Farrell and Saloner, 1985). A typical example is the fax machine: As

the number of other people who have bought a fax machine increased, it became

more sensible to buy one because of the possible use of the machine. Conformity

or peer pressure can be listed as other potential sources of social pressure. Again,

the real reason behind the social pressure is irrelevant to us. Our focus will be on

the markets which incorporate a social pressure dimension in some way or other.

Consider our example market, the movie market. Viewing a movie is a social act.

Try to remember the last time you went to a movie alone; usually we do not. Our

decision of which movies we will see depend both on our personal tastes and the

outcome of our interaction with our friends and the rest of the society by means of
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media and advertisements.

1.3. Relevant Studies

Most of the relevant work in computational sociology and statistical physics

(i.e. sociophysics) has focused on a very simple set of decision problems which we

can call binary decision problems. In this set of problems, the agents in a community

are faced with a binary decision such as to vote for or against a legislation or to

buy a particular product or not. (Galam, 1997; Gordon et al., 2005; Granovetter,

1978; Michard and Bouchaud, 2005). The Random Field Ising Model (RFIM) is a

commonly investigated model to analyze situations where heterogeneous individu-

als base their decisions on both an idiosyncratic component and a social component

(Sethna2001, Galam1997, Sethna2005, Phan2004, Phan2006, Michard2005). The

idiosyncratic component represents the agent’s tendency to choose one answer over

another without considering the effect of all social interactions. These values are

assumed to be independent identically distributed (IID) random variables. Social

component represents the effect of the society on the agent and is a measure calcu-

lated for each agent based on its neighborhood (i.e. other agents that it interacts).

In this section, we will adopt the notation of Michard and Bouchaud (2005)

to summarize the RFIM model and the key findings relevant to our case. In RFIM,

each agent i is faced with a binary decision problem. The decisions of the agents

are denoted by Si = ±1. The decision of an agent depends on three factors:

• Idiosyncratic, personal opinion φi ∈ R. Higher φ values correspond to stronger

a priori tendencies to decide Si = +1.

• Global and time-dependent value F (t) ∈ R which represents a global informa-
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tion (e.g. price of the product) available to all agents affecting the decision

process. In physical literature this value is called the polarization field because

of the application of RFIM to magnetization phenomena.

• Social factor which represents the effect of the decisions of other agents on an

agent. It is calculated as
∑

j∈νi
JijSj where νi is the set of all neighbors of

agent i. The value Jij is a measure of the influence of agent j on agent i and

it is assumed that Jij > 0 for all i and j reflecting the conformist nature of

the agents. This setting tells us that if an agent j decides Sj = +1 then it

reinforces the agent i to have the same decision (i.e. Si = +1) if agent j is in

the neighborhood of agent i and vice versa.

An agent i choose its decision Si(t) at time t as follows.

Si(t) =





0 if
(
φi + F (t) +

∑
j∈νi

JijSj

)
≤ 0,

1 otherwise.

The average value of the all agent’s decisions is called the average opinion,

〈S〉, and calculated as follows.

〈S〉 =
N∑

i=1

Si/N

where N is the total number of agents.

In case of no social interaction (i.e. Jij = 0 for all i and j), the effect of
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increasing the polarization field F (t) from −∞ to +∞ manifests itself as a gradual

change in the average opinion 〈S〉 (see Fig. 1.1). Introduction of social pressure

changes the situation dramatically. A mean-field approximation (i.e. setting Jij =

J = 1/N for all i and j) reveals that there exists a critical point Jc and for values J

greater than Jc, a gradual change in polarization field F (t) results in abrupt changes

in average opinion. As we increase the polarization field slowly, the average opinion

remains at levels close to 〈S〉 = −1 for even high values of F (t) but after a certain

point abruptly jumps to the level 〈S〉 = +1. The same behavior is also shown with

decreasing polarization field.

last decades (see [25] for a review). In physics, natural
-dimensional regular lattices,

random (Erdos-Renyi) graphs have been studied as well. −10 −5 0 5 10
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Figure 1.1. Average opinion as a function of external polarization field. Figure

taken from Michard and Bouchaud (2005).

Around the proximity of the critical value Jc, the number of agents changing

decisions at a given time period shows a scaling behavior. Most of the time few

agents change their decisions but once in a while a large number of agents change

their behaviors leading to abrupt changes in the average opinion value.
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How can we extend these findings to cases where more than one decision is

to be made? Specifically, the cultural markets we intend to focus on can hardly

be conceptualized as involving binary decision problems. One may propose that

consuming an item or not is a binary decision on its own and carry out the analyses.

But this view excludes the fact that consumption of an item is not independent of

the decisions about the other items. All items are in competition with each other

(because of limited demand) and due to this fact we simply can not view the decision

process for each item independent from each other.

Salganik et al. (2006) presents an insightful experimental study which pro-

vides us empirical evidence that social influence has an effect on the consumption

decisions of people. In the experiment, the subjects are faced with a web based ap-

plication and they can listen to and rate as many songs as they like among 48 songs

of previously unknown bands. After they listen to and rate a song they are offered

the opportunity to download the song. The study reports the results of two different

experimental conditions. The first one is called the independent condition in which

the subjects only see the names of the songs without any other information and

make their decisions independently from the other subjects. The second condition

is called the social influence condition and in this case, the number of people who

have downloaded each song previously is also given to the subjects and they can

make use of this information in their decisions. Any significant difference between

the number of downloads of the songs (which the authors call the success of a song)

between the two cases can be attributed to the availability of social information

since there is no other experimental difference between the two settings.

The key finding of the study is that the availability of the social information

significantly affects the way people behave. In the social influence condition, the final
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variation in the success outcomes of the songs is found to be higher than it is in the

independent condition. This suggests that in the social influence case, some songs

are downloaded many more times than they are in the independent case. Another

measure they report is called the unpredictability of a song and is calculated by the

calculating the average difference between the success values of a song over different

realizations of the same condition (i.e. the experimental condition is repeated several

times with different subjects). If a song tends to get the same outcomes over different

realizations then its unpredictability value is low. As a result, the social influence

condition leads to higher unpredictability values for the songs.

It is natural to ask if it is possible to come up with a computational model

that will reflect the effect of social influence on the behaviors of people. The RFIM

seems like a good starting point but it is only directly applicable to binary decision

problems. To our knowledge, only one study has attempted to generalize the RFIM

to multiple decision problems (Borghesi and Bouchaud, 2006). The authors of this

study report some analytical results for their generalized model but their analysis

was not publicly available during the writing of this thesis.
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2. METHODOLOGY

2.1. The Model

Our model intends to capture the essential dynamics in a community of

consumers and the effect of social pressure on the consumption of cultural items.

Consumers are the people in the community, items are the cultural products that the

people consume (e.g. movies, albums, books). Consumption of an item corresponds

to paying for and enjoying that item (e.g. buying a book to read or a ticket to see

a movie).

The model consists of N agents and M items. We index the agents by Roman

labels (i, j) and the items by Greek labels (α, β) unless noted otherwise. An agent

i represents a consumer in the community and an item α represents a cultural item

on the market.

Liking Matrix : Each agent has a predetermined (and time independent)

liking value for each item. These values are stored in a N×M liking matrix denoted

by L = (liα) where liα ∈ R. The value liα corresponds the idiosyncratic personal

taste of agent i for the item α. A positive liking value liα indicates that, without

considering any other factor, agent i is inclined towards consuming item α.

Consumption Matrix : We assume that an item can be consumed by an agent

only once (i.e. no one sees a movie twice or buys a second copy of a book). The infor-

mation of which agent consumed which item so far is held in a N ×M consumption
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matrix denoted by C = (ciα) where

ciα =





1 if agent i has consumed item α,

0 otherwise.

Friendship Matrix : Agents are connected to each other by directed friendship

links. The topology of the friendship network is kept in a N ×N adjacency matrix

called the friendship matrix and denoted by G = (gij) where

gij =





1 if agent j is connected to agent i,

0 otherwise.

An agent j is said to be a friend of agent i if gij = 1.

Social Component Function: Social pressure is defined as the effect of the

behavior of others on an agent’s consumption decision. We decide to model the

social pressure by the ratio of the number of friends of agent i who consumed item

α to the total number of friends of agent i. An agent i will be more inclined towards

consuming an item α if its friends have already consumed the item. This view

of social pressure is in accordance with our previous discussions in Sec. 1.2. We

calculate the social component function f(i, α) to represent the effect of the social

interactions on the perception of item α by agent i. The formal definition of the

social component function is given below.
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f(i, α) =

∑N
j=1 gijcjα∑N

j=1 gij

(2.1)

Opinion Matrix : It is a common assumption that an agent’s decision to

consume (or not to consume) an item can be modeled by two distinct components.

One of them is the idiosyncratic (personal) component and the other is the social

component (Borghesi and Bouchaud, 2006; Brock and Durlauf, 2001; Galam, 1997;

Michard and Bouchaud, 2005). The final decision of whether to consume an item

or not depends on the combination of these two components. We have already

presented and defined the idiosyncratic and social components represented by the

liking matrix and social component function correspondingly. The final opinion

about an item α that an agent i uses in its consumption decision is calculated by

integrating these two components. We can represent the opinions of all agents about

all items in a N ×M opinion matrix denoted by O = (oiα). It is possible to view

an opinion about an item as the perceived attractiveness of that item. For any item

α that has not been consumed by agent i the opinion is computed as follows:

oiα = γf(i, α) + (1− γ)liα (2.2)

where the value γ ∈ [0, 1] is the social pressure parameter which determines the

strength of the social pressure on the decision process. The case γ = 0 corresponds

to a pure-individualistic community where no agent cares about what others are

doing (hence basing their decisions solely on their idiosyncratic liking values), γ =

1 corresponds to a pure-social environment where all decisions are based on the

behaviors of others. As stated previously, an agent is inclined towards consuming
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items that are consumed by others in a social environment.

2.2. Dynamics

The model advances in discrete time periods. During each period, agents

form their opinions and at the end of the period they decide on which items they will

consume synchronously. Consumption of item α by agent i is reflected by updating

the consumption matrix (i.e. ciα = 1). Once the period is over, the simulation

clock ticks and next period is run by using the updated consumption and opinion

matrices.

We further simplify the model and assume that the agents’ consumption

rates are constant and same for all set to one item per period (e.g. each person goes

to exactly one movie per week). The decision of which item will be consumed by

agent i is defined in a straightforward manner:

αconsumed = max
α

oiα, with the constraint that ciα = 0. (2.3)

The constraint ciα = 0 is required in order to make sure that an item is consumed

only once by an agent. In case of several items with the same maximal opinion

values, one of them is picked randomly.

2.3. Initial Configuration

A particular configuration of our model at a given time t can be described

fully by the triplet Γt = (G,L,Ct). Note that G and L do not have the subscript t

because they are time independent and set to their initial configurations as will be
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explained above. The social component function f and the opinion matrix O are

not considered as part of the configuration because their values can be computed

by using the former three matrices as needed. The initial configuration Γ0 is the

configuration at t = 0 and it is configured as follows.

• G = (gij) such that the underlying topology is a bidirectional ring lattice with

a coordination number of k.

Figure 2.1. A ring lattice topology with 10 vertices and k = 2. Figure generated by

Pajek (Batagelj and Mrvar, 2002).

• L = (liα) such that liα is a random variable that comes from a normal distri-

bution with mean µα and standard deviation σα.

As a simplification of the model we assume that the overall preference of items

does not change from one item to another on the average hence no item has

any intrinsic superiority in terms of liking values over another item a priori.

In order to reflect this assumption we set the µα = 0 for all α. Since the

consumption decisions depend on the relative ordering of the opinion values,
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any other non-zero µα values will lead to exactly the same results (as long as

they are equal to each other for all α).

The value σα is called the intra-item liking deviation of item α and denotes

the standard deviation in the liking values of agents for the same item. As

a simplification for the model, we assume all items have the same intra-item

deviation and let σα = σintra for all α where σintra is a model parameter.

• C0 = (ciα) such that ciα = 0 for all i, α. Initially, no items are consumed.

2.4. Remarks

2.4.1. Constant rate of consumption assumption

Because of the constant and uniform consumption rate, exactly N items are

consumed during each period. It is trivial to see that the simulation will come to

an end when all agents consume all items (i.e. ciα = 1 for all i and α). With the

aforementioned initial configuration, we see that the simulation can run at most M

steps. The problem of when to decide to stop the simulation is addressed in the

next subsection.

2.4.2. Terminating condition

In our model, a cultural item is available on the market until the end of the

simulation. In real world however, not all items stay available in the market for an

indefinite time period. Considering the movie market example, not all movies are

shown in the theaters long enough to allow all consumers to see them. There is

a continuous entrance and exit of movies. In order to keep our model simple, we

ignore this fact but decide to terminate the simulations after a definite number of
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iterations (T ). In other words, our model is limited to a simplified version of the

real world where M items are put on the market at the same time and none of them

leaves the market until the simulation ends.

2.4.3. Dispersion of quality values of items

We have seen that the liking values liα are chosen from a normal distribution

with mean 0 (µα = 0 for all α) and standard deviation σintra. The fact that the

expected average value of the liking values of an item over all agents is 0 does not

imply that the sample mean of its liking values will be zero for a particular realization

of the model. Let 〈lα〉 denote the sample mean of the liking values of item α over

all agents. We call 〈lα〉 as the quality of item α and calculate it as follows.

〈lα〉 =
N∑

i=1

liα/N (2.4)

The Central Limit Theorem states that the distribution of the quality values will

follow a normal distribution with mean 0 and standard deviation σintra/
√

N (Ross,

2002). In the limit N → ∞ the deviation of the quality values approaches to 0.

Although the model assumes no a priori superiority of an item over another, we

should expect to see different item quality values for particular realizations of the

model for finite and small N .

Relaxing the assumption of µα = 0 and assigning nonzero values to the means

can introduce significant differences between the quality values of the items even in

the case of large N . If the dispersion of the µα values is large enough the a priori

ordering of items can dominate the idiosyncratic and social components. Following

the work of Borghesi and Bouchaud (2006), we keep the assumption of equal a priori
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average liking values leading to a normal distribution of quality values with mean 0

and standard deviation σintra/
√

N as explained above. The next subsection discusses

the effect of increasing σintra and hence the dispersion of the quality values of the

items.

2.4.4. Interpreting the model parameters

The model parameters γ and σintra regulate the characteristics of the commu-

nity in terms of susceptibility to collective behavior and herding effect. The social

component f(i, α) takes values between 0 and 1 and the magnitude of its effect

on the final consumption decision is regulated by the social pressure γ. Idiosyn-

cratic component liα is a normally distributed random variable and in practice the

range of values it can take is regulated by the standard deviation of the distribution

σintra. One may think of γ as a measure of the collective nature of the community.

Smaller γ corresponds to individualistic communities and bigger γ corresponds to

more collectivistic communities. The standard deviation σintra on the other hand is

a measure of the heterogeneity of the community. Higher values of σintra corresponds

to more heterogeneous communities where the liking values of the agents are widely

dispersed for the same items. Lower values of the standard deviation correspond

to the more homogeneous communities where the liking values of the agents vary

less for the same items. However, we should note that, neither the idiosyncratic nor

the social component has an intrinsic scale: After all, they are just real numbers on

their own and obtain a meaning when contrasted to each other to reach a decision.

The relative magnitudes of the social pressure γ and the standard deviation σintra

to each other determine the extent of the social effect on the individual decision and

we will further dwell on this issue in our simulations.
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2.5. Quantities of Interest

Market Share: We define the market share of an item α as the ratio of

consumers who have consumed that item so far. It is denoted by 〈cα〉 and calculated

as follows.

〈cα〉 =
N∑

i=1

ciα/N (2.5)

This quantity is a monotonically non-decreasing function of time for all items. At

any time step, either one or more agents consume the item α and 〈cα〉 increases,

or no agent consumes the item and 〈cα〉 remains the same. As argued above, at

the end of simulation all 〈cα〉 values will be equal to 1. By observing the quantity

intermediate steps, we can gain insight about how the simulation advances.

Item quality : Item quality is already defined as the average liking value of

an item over all agents and denoted by 〈lα〉 for an item α. It’s formal definition is

given in Eq. 2.4.

Total consumption: We can calculate the total consumption (i.e. number of

total consumptions) easily as:

N∑
i=1

M∑
α=1

ciα = TN

where N is the number of agents and T is the number of steps that the model has

run so far.

Market Inequality : Inequality of a market represents the difference between
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the market shares of the cultural items. As a measure of the inequality, we calculate

the Gini index of the market shares of all items. The market inequality is denoted

by I and defined as follows.

I =
(
∑M

α=1

∑M
β=1 |〈cα〉 − 〈cβ〉|)/M2

(2
∑M

α=1〈cα〉)/M
(2.6)

which can be interpreted as the expected difference between the market shares of

two randomly chosen items normalized to scale between 0 and 1 (Salganik et al.,

2006). A perfectly equal market where all items have the same market shares will

have an inequality value of 0; that is the Gini index of a perfectly equal market.

Quartile difference: The market inequality value is a symmetrical measure

according to the quality values of the items. It does not differentiate whether it is

the low quality items that receive unfairly high market shares or the high quality

items. An important question that we would like to answer is that whether there

is a general trend favoring the high quality items in terms of market shares or vice

versa. We employ a very simple measure that is used in economics which we call the

quartile difference. First we divide the items into four quartiles according to their

quality values. The items with the top 25% quality values are placed in the upper

quartile U and the items with the bottom 25% quality values are placed in the lower

quartile L. Quartile difference Q is simply the difference between average market

shares of the two items in these two quartiles.

Q =
∑
α∈U

〈cα〉 −
∑
α∈L

〈cα〉 (2.7)

Since the quartile difference is a signed value, the minimal value it can take
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is -1 and this occurs in the extreme case in which all items in the lower quartile have

market shares of 1 and all the items in the upper quartile have market shares of 0.

Similarly, the maximal value it can assume can be computed as +1.
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3. RESULTS AND DISCUSSIONS

All results reported in this chapter are based on values obtained by averaging

over 100 independent runs of the simulation with the same parameters unless noted

otherwise.

3.1. Social Interaction

For pedagogic reasons, we first introduce a special case of our cultural model

with the social pressure γ set to zero. In this section, we aim to introduce our

techniques of analyses by applying them to a relatively simple example of the model

and to provide the no-social interaction case as a base model to which we will

contrast our future findings.

It is natural to ask if the quality of an item determines its market share at

the end or not. A reasonable expectation about a cultural market is that items

with high quality values should get higher market shares on the average. In other

words, one might expect the quality to be a reliable indicator of the final market

share of an item. A scatter plot of the market shares versus qualities will answer

whether this expectation holds or not. As a starter, we let γ = 0 and σintra = 1

which corresponds to a pure-individualistic community where all agents base their

consumption decisions solely on their personal tastes. We keep the number of agents

N and the number of items M fixed to 100 in this set of experiments. The sensitivity

of the results on these parameters will be investigated separately. Since there is no

social interaction, the underlying topology has no effect on the results because its

possible effects are ruled out with the zero social pressure parameter (i.e. γ = 0).
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We let the model run for 5, 20 and 50 steps (i.e. T ∈ {5, 20, 50}). In Fig. 3.1, we

see the scatter plot of quality versus market shares of the items for three cases.

Let us first consider the case with T = 5 given in Fig. 3.1(a). The relation

between the quality and market share has a linear form. A quadratic equation does

not provide a better fit than a linear equation (i.e. both fits have the same r-square

r2 = 0.21). A linear relation also holds for the other two cases with T = 20 and

T = 50 given in Fig. 3.1(b) and 3.1(c) correspondingly.

As dictated by the dynamics of the model, prolonging the simulation leads

to an increased amount of total consumption and market shares. However, not

all items increase their shares by the same amount. The slope of the best fitting

lines differ significantly between the three cases (0.10, 0.28, and 0.40 for T = 5,

T = 20, and T = 50 correspondingly). A steeper slope indicates that items with

higher quality values increase their market shares at higher rates when compared

to others. The quartile difference Q helps us to quantify this trend. In Fig. 3.2(a),

quartile difference values are plotted against different simulation lengths. Until the

point T = 50, we observe a gradual increase supporting our findings. After peaking

somewhere around T = 50 (which happens to be T = M/2), Q starts to decrease

and terminates at 0 when T = M = 100 as anticipated. We can cross check this

finding by comparing the rate of increase in the market shares of high quality and

low quality items. In Fig. 3.2(b), we see the market share of two items increasing

as the simulation continues. The solid and dashed lines belong to the items with

the highest and lowest quality values correspondingly. The series are obtained by

averaging the data of highest quality and lowest quality items separately over 100

runs. The rate of the market share increase is clearly higher for the highest quality

items until a certain point around T = 50 as we expected. But after that point
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(a) Simulation length T is 5 steps
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(b) Simulation length T is 20 steps
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(c) Simulation length T is 50 steps

Figure 3.1. Relation between quality 〈lα〉 and market share 〈cα〉 for different

simulation lengths. Observed data (circles), and linear fit (dashed line).
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the rate of increase for the highest quality items starts to decline while the rate of

increase for lowest quality items starts to rise. This is an indication of a ceiling

effect: As the high quality items are consumed by more and more agents, their

market share increase rate gets lower because a smaller number of agents have the

opportunity to consume them.

As we already noted before, the simulation length (i.e. number of steps that

the simulation will run for) is an important parameter and should be set carefully

with keeping in my mind the actual market to be modeled. As Fig. 3.2(c) suggests,

the market inequality does not change abruptly for differing values of simulation

length but rather decrease gradually. Similarly quartile difference Q shows a gradual

increase for the region 0 ¿ T ¿ M . We have no reason to expect that different

values of T will cause any qualitative changes in our results for the region 0 ¿ T ¿
M . Therefore, we set T = 20 during the next set of experiments for simplicity of

analyses.

3.2. Introducing Social Pressure

In the previous subsection, we looked at the dynamics of a community with-

out any social interaction (i.e. γ = 0). An interesting extension will be introducing

social pressure (i.e. γ > 0). To keep things simple for the moment, we create two

parameter settings: One with γ = 0.3 corresponding to a low social pressure envi-

ronment and one with γ = 0.7 corresponding to a high social pressure environment.

The underlying topology is set to a fully connected graph which corresponds to a

ring lattice with a coordination number k = N − 1. We can see the scatter plot of

the market share versus qualities at the end of the simulations (T is set to 20) in

Fig. 3.3(a) and Fig. 3.3(c). Another way to look at the effect of social pressure is to
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(b) Market shares 〈cα〉 of highest (solid)

and lowest (dashed) quality items as a

function of simulation length T .
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(c) Market inequality I as a function of

simulation length T .

Figure 3.2. Effect of simulation length T on (a) Quartile difference Q, (b) Market

share increase, and (c) Market inequality (N = 100, M = 100, k = 99, σintra = 1,

γ = 0 for all cases).
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compare the market shares obtained in low and high social pressure environments

to the ones obtained in Community with no no social pressure environment which is

our base model. Using the same liking matrix L at the start of the both simulations

allows us to compare the market shares of the same item that it obtains under dif-

ferent social pressure environments. Figures 3.3(b) and 3.3(d) provide us the scatter

plots of the market shares obtained in low and high social pressure environments

(i.e. γ = 0.3 and γ = 0.7) versus market shares obtained in our base case (i.e.

γ = 0) correspondingly.

Low social pressure environment has similar results with the no social pres-

sure environment. The best fitting quadratic and linear fits are similar for the

market share versus quality in Fig. 3.3(a) and the data points are scattered around

the y = x line in Fig. 3.3(b) indicating that the effect of setting γ = 0.3 has no or

limited effect on the final market shares of the items. In low social pressure envi-

ronment the consumption decisions remain fairly intact compared to the no social

pressure environment.

High social environment leads to a significant change in the consumption

decisions. The relation between the quality and market share of an item is no longer

linear as it can be seen in Fig. 3.3(c). A quadratic fit deviates significantly from the

linear fit and suggests that items with high quality values obtain improportionally

higher market shares at the cost of items with lower quality. The same effect is

also visible in the scatter plot of market shares obtained in no social and high social

environments in Fig. 3.3(d). The data points are not scattered around the y = x line.

The items which obtain high market shares in the no social environment obtain even

higher market share in the high social pressure environment and the items which

obtain low market shares in the no social pressure environment obtain even lower
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(a) Market share versus quality for

low social pressure (γ = 0.3).
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(b) Low social pressure (γ = 0.3)

shares versus no social pressure

(γ = 0) shares.
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(c) Market share versus quality for

high social pressure (γ = 0.7).
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(d) High social pressure (γ = 0.7)

shares versus no social pressure

(γ = 0) shares

Figure 3.3. The effect of introducing social pressure on market shares. Circles are

the data points in all cases. For (a) and (c), solid line is the best quadratic fit and

dashed line is the best linear fit. For (b) and (d), solid line is the best quadratic fit

and dashed line is the y = x line.



28

market shares in high social environment.

3.3. Interaction between Intra-Item Deviation and Social Pressure

For the moment, we know that for two different values of social pressure (i.e.

γ = 0.3 and γ = 0.7) we get two different market dynamics. Now it is time to ask the

two obvious questions: What is the response of our model to varying degrees of social

pressure? How can we extend our findings for communities with varying degrees of

heterogeneity? The model parameter γ regulates the extent of social pressure and

intra-item liking deviance σintra regulates the heterogeneity of the agents in the

community. Until now, we set σintra = 1 but this choice is arbitrary. Smaller choices

for σintra will lead to more homogeneous communities in the sense that the liking

values of the agents for the same items will be closer to each other. Higher choices

on the other hand, will correspond to more heterogeneous communities because the

liking values of the agents for the same items will deviate more.

In order to come up with answers to the two questions we ask, we calculated

the market inequality I and the quartile difference Q of the markets at the end of

20 steps for different pairs of γ and σintra values. Fig. 3.4 and Fig. 3.5 visualize the

differing values of I and Q correspondingly.

In Fig. 3.4(a), we see the effect of increasing social pressure (γ) on the market

inequality (I) for different values of intra-item liking deviation (σintra). As we have

already seen previously, higher γ values lead to higher I values but the characteristic

of the effect depends on intra-item liking deviation σintra. The interaction between

the γ and σintra is given as contour plot in Fig. 3.4(b). Each point on the plane has

a color associated with the resulting market inequality value for the corresponding
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σintra γ pair. Darker colors represent low I, brighter colors represent high I values.

In both figures, we see that the I values show a sharp increase from low values (e.g.

I = 0.2) to high values (e.g. I = 0.8) at critical values of γ. However the specific

value of the critical γ value depends on σintra.

The market inequality I is a measure of how varied the final market shares

are. It does not tell us anything about the dependence of market shares on quality.

In Sec. 3.2, we have seen that higher social pressure γ result in increased market

shares for the high quality items. In Fig. 3.5, we can see the details of the effect of γ

on the quality-market share relation. Figure 3.5(a) visualizes the effect of increasing

social pressure γ on the quartile difference Q for different values of intra-item liking

deviation. Figure 3.5(b) presents the contour plot of quartile difference values as a

function of γ and σintra. Similar to the inequality value, the quartile difference also

shows a sharp increase at a critical value of γ and the specific value of γ depends

on σintra. However, at higher levels of social pressure the quartile difference starts

to decrease. The turning point for the quartile difference (i.e. the γ value that it

starts to decrease) is again dependent on σintra. This is an interesting observation

because after the turning point the inequality value continues to increase while the

quartile difference starts to decrease.

Interpreting the results for inequality and quartile difference values together

we conclude that there exists a critical region of γ and for values less then the

critical region the inequality and quartile difference values are in accordance with

each other. High quality items gain higher market shares as we increase the social

pressure and this fact is reflected in increased inequality and quartile difference

values. But once the critical turning point in social pressure is passed, the relation

between the quality and market share starts to weaken (hence quartile difference
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value starts to decrease), but some items still continue to arbitrarily high market

shares at the cost of others (hence the inequality value continues to increase). The

positive correlation between the quality and market shares disappears suddenly as

reflected by the decrease in quartile difference value.

3.4. Effect of Number of Agents

We assumed, in the limit N →∞, there are no a priori advantages of items

over others in terms of quality values and let the sample mean of the liking values

liα determine the actual quality values for realization with finite N . One possible

consequence of this assumption is that as we increase the number of agents in the

system the standard deviation of the realized quality values of the items will have

narrower distribution as the standard deviation is shown to be σintra/
√

N due to

the Central Limit Theorem. In order to see the effect of increasing the number of

agents we set N four different values (i.e. N ∈ {100, 500, 1000, 5000}) and run the

simulations for these set of N . The inequality and quartile difference values obtained

are plotted in Fig. 3.6.

3.5. Effect of Topology and Local Interactions

So far our choice of topology has been a ring lattice with a coordination

number of N − 1 which corresponds to a fully connected graph. Translation of this

setting to the real world is that every agent knows every other agent and in statistical

physics this corresponds to the mean-field approximation (Phan and Pajot, 2006).

Obviously, this is a very strong assumption. Phan and Pajot (2006), stresses the

importance of local effects on related binary decision models and it is possible that

different network topologies can have different effects on the resulting market shares.
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Figure 3.5. Quartile difference Q as a function of social pressure γ and intra-item

liking deviation σintra.
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Figure 3.6. Effect of number of agents N (line series) on (a) the inequality, (b)

quartile difference (k = N − 1 for all N and σintra = 1 for both cases).



34

Ring topology with varying k: A trivial extension of the model along the

topology dimension is to keep the ring topology intact but let the number of neigh-

bors k have different values ranging from 2 to N − 1. In Fig. 3.7, we can see

interactions between the social pressure and number of neighbors on the inequality

and quartile difference values for N = 100 and σintra = 1. For this set of simulations

number of independent runs is set to 20 for time limitations. Apparently, the mean

field approximation (i.e. setting k = N − 1) provides good estimates for k > 30.

Even for lower values of k, the interaction pattern between the number of neighbors

and social pressure remains qualitatively same but results in relatively lower values

of inequality and quartile difference.

In real social communities we expect the number of neighbors of an agent to

be very smaller than the total number of agents (i.e. k ¿ N). In order to analyze

this situation, we run another set of simulations in which we set the number of

agents to a bigger value (i.e. N = 1000) and keep the number of neighbors at lower

levels (i.e. k < 100) (Again, the results are averaged over 20 independent runs).

The results of those simulations are given in Fig. 3.8. Note that the maximal value

of k is still 100 but this time this corresponds to only 10% of all community. Again

the actual values of inequality and quartile difference are lower compared to the case

with N = 100 but the pattern of the interaction between k and γ seems to remain

qualitatively intact.

When the community is fully connected (k = N − 1), the social component

of the decision process acts as a signal indicating the percentage of agents who

have consumed a particular item. If at any time step, an item has been consumed

by many agents then the probability that it will increase it market share in the

next time step is high. When we relax the assumption that the community is fully
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(b) Quartile difference as a function of number of neighbors k and

social pressure γ.

Figure 3.7. Inequality I and quartile difference in ring topology for differing values

of social pressure and average number of neighbors (N = 100 and σintra = 1 for

both cases).
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(b) Quartile difference as a function of number of neighbors k and

social pressure γ.

Figure 3.8. Inequality I and quartile difference in ring topology for differing values

of social pressure and average number of neighbors (N = 1000 and σintra = 1 for

both cases).
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connected, then the social component acts as an imperfect signal and indicates the

percentage of agents who have consumed a particular item in the neighborhood of

a particular agent. Local differences reduce the impact of the positive feedback due

to social interaction but we have not observed a critical point in k where the effect

of social interaction abruptly changes.

Random topology with varying k: Note that the above simulations are run

ring lattice topology which has not any topological heterogeneity (i.e. all agents are

lined up in a regular lattice with equal number of neighbors). In order to introduce

some heterogeneity in the network structure, we repeated our simulations on random

graphs and interpreted k as the average number of neighbors. The results are given

in Fig. 3.9 for N = 100 and Fig. 3.10 for N = 1000.

Although we do not observe a qualitative difference in the interaction be-

tween the average number of neighbors k and the social pressure γ, the actual

inequality and quartile difference values are higher for the random topology for the

same number of neighbors. In order to provide a comparative plot of the inequality

and quartile difference values we set the number of neighbors to 20 (k = 20), intra-

item liking deviation to 1 (σintra = 1) and run the model for two different number of

agent values (i.e. N ∈ {100, 1000}). The results are given in Fig. 3.11 for N = 100

and Fig. 3.12 for N = 1000. The inequality and quartile difference values are almost

same for the two different topologies when the number of agents is 100 (i.e. graph

is closer to full connectivity because k = 20). Increasing the number of agents from

100 to 1000 is reflected with a decrease in both inequality and quartile difference

values in ring topology. Random topology seems to be resilient to such an increase:

The inequality and quartile difference values remain almost intact when switching

from 100 agents to 1000 agents.
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Figure 3.9. Inequality I and quartile difference in random topology for differing

values of social pressure and average number of neighbors (N = 100 and σintra = 1

for both cases.
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(b) Quartile difference as a function of number of neighbors k and

social pressure γ.

Figure 3.10. Inequality I and quartile difference in random topology for differing

values of social pressure and average number of neighbors (N = 1000 and

σintra = 1 for both cases.
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Figure 3.11. Comparison of ring and random topologies for N = 100, k = 20,

σintra = 1.
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Figure 3.12. Comparison of ring and random topologies for N = 1000, k = 20,

σintra = 1.
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4. CONCLUSIONS

We introduced a computational model for a cultural market and analyzed

the effect of social pressure on the consumption decisions by extended simulations.

The case with no-social interaction (i.e. γ = 0) served us as a base model and we

compared our findings with different values of γ with the no-social pressure case.

We observed that in the no-social interaction case the final market share of an item

is largely determined by its quality and the relation between the two is a linear one.

Empirical findings suggested that the introduction of social interaction has

a profound effect on the relation between the quality and market share of an item.

For low values of social pressure (i.e. γ = 0.3), we observed the linear relation

between the quality and market shares remains almost intact. As we increase the

social pressure parameter (γ = 0.7), the linearity was disrupted and we observed

more nonlinear relation in the favor of high quality items.

An interesting finding is that the social parameter γ does not regulate the

collective nature of the model but interacts with the intra-item liking deviation σintra

which represents the deviation among the liking values of the agents for the same

items. We found out that a given market inequality value I can be reproduced by a

set of (γ, σintra) pairs and the interaction between the two parameters remain qual-

itatively intact for different number of agents N and average number of neighbors

k.

We also introduced another measure we call the quartile difference (Q) to

analyze the relation between the quality and market shares of items. To our surprise
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while the inequality in the market shares increase with increasing social pressure γ,

the quartile difference value first increase and than decrease with a peak at a critical

value of γ dependent on σintra. The initial increase is consistent with the market

inequality values: As we increase social pressure, the high quality items gain more

and more market shares at the cost of low quality items and this is reflected in the

increased inequality and quartile difference values. But after the critical γ value is

passed, the positive correlation between the quality and market share deteriorates.

Low quality items starts to gain higher market shares and Q shows a decrease. Note

that we cannot observe this trend just by looking at the market inequality I which

continues to increase as we increase γ. These findings suggest that for higher values

of γ the dynamics of the model gets history dependent and the resulting market

share of an item is determined by the initial conditions of the system rather than

the quality of the item.

The parameter space is wide because there are many parameters that may

affect the results of the simulations. Some of them are limited by our assumptions

about the cultural markets (i.e. T ¿ M) and some should be determined by the

actual market in question: topology (i.e. ring or random), number of agents N ,

number of items M , and the average number of agents k. We carried out extended

simulations to see if our results depend on specific values of the parameters or

robust to different values of the parameters. We concluded that the qualitative

nature of the simulations are robust with respect to different number of agents (i.e.

N ∈ {100, 500, 1000, 5000}) and varying degrees of network connectivity (i.e. for

different values of k < N). The topology on the other hand seems to be affecting the

outcome of the cultural market. The sharp increases in the inequality and quartile

difference were more resilient to varying number of agents in random topology than

the ring topology.



44

An exact analytic solution of the model is very hard to find and we did not

present one in this study. Actually, that is the very reason that most of the previous

studies focused on binary decision problems rather than the more realistic ones like

the cultural market. Nonetheless, an analytical solution for the cultural market is

required in the future.

Studying more realistic topologies for the agent friendship network is also

another interesting dimension to extend the cultural market. We studied the ring

topology as a base model and introduced the heterogeneity by using random topol-

ogy. How the model will behave if another type of network (e.g. scale free, small

world) is introduced is definitely an interesting and non-trivial question and needs

to be addressed in the future studies.

Another important point is to study the accordance between the real world

data and the model output. Unfortunately, during the writing of this thesis no rel-

evant dataset was publicly available. The only dataset known to exist is expected

to become public in the summer of 2007 (Salganik et al., 2006). Nevertheless, the

results of the model are still valuable given the costs of conducting a real world ex-

periment is many times higher than building and analyzing a computational model.

The results and the dynamics of the cultural market model can be of use in deter-

mining the settings of a real world experiment in the future.
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