AN INTELLIGENT DATABASE INTERFACE

FOR TURKISH

by

Osman Nuri DARCAN

B.S. in Computer Enginecring, Bogazici University, 1987

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fullillment of
the requirements for the degree of
Master of Science
in Computer Engineering
Bogagzici University Library

||II JINVAATIIDL =

Bogazi¢i University

1991

tf

ACKNOWLEDGEMENTS

I would like to thank to Prof. Dr. Selahattin Kuru for his great help and guidance
as the supervisor of this thesis.

I also thank to Dog. Dr. Oguz Tosun and Dog. Dr. M. Akif Eyler for both their
helpful comments and serving on my thesis committee.

In particular, I wish to express my gratitude to Dog. Dr. Sumru Ozsoy for her

invaluable guidance in reviewing many points in the syntax of Turkish

iv

ABSTRACT

In this thesis, a portable natural language interface system for communicating
with databases in Turkish isdeveloped. The system does a two step transformation f roma
Turkish query in user's view to an intermediate meaning representation Ianguagé D&G
and finally to a target database language SQL. It is composed of domain independent run-
time modules for different processing stages, namely language processing, internal
query generation and translation to SQL. Modules refer to the knowledge base in which
diverse knowledge about the domain and the database are maintained. Two additional

modules, to wit a spelling corrector and a history keeper are incorporated in the system.

A syatactic parser is used in analyzing quelzies. For the syntactic parser, a
formalization of a subset of Turkish grammar based on the simple principle of general
categorization incorporated with the notion of modifications between words is proposed
and a grammar that coansists of a collection of rewrde rufes for the formal
repreéentation of sentences is discussed. A decision tree which works with suffix sérse
off approach is used for the morphological parsing of nouns. Parse trees produced for
different types of sentences using the formalized grammar are given. Regarding to the
meaning representation, an "intelligent” meaning representation generator which has
a rule based reasoning capability is designed. The interpretations of some modification
relations are discussed in details. Finally the interpretation of a full sentence is shown.

The system is tested on an imaginary stwdeai-courss-rasirucior database, all
examples refers to this database. Possible extensions for both the parser and the

meaning representation generator are also proposed at the end of the thesis.

v

OZET

Bu tezde, veri tabanlariyla Torkce iletisim kurmayi hedefleyen, fasinabilir bir
dogal dil arabirim sistemi gelistirilmistir. Sistem, bir Turkc¢e sorgulama ifadesini énce
ara birim anlam temsili dili olan D&Q'va, daha sonra da hedef veri tabahi dili SGL'-’:
‘cevirerek iki asamals bir donustirme islemi gerceklestirmektedir. Sistem, dil isleme, i¢
sorgulama ve SQL'e ¢eviri gibi birbirinden farkls u¢ asamanin herbiri i¢in kullanim
alanindan bagimsiz modillerden olusmustur. Moduller, i¢inde kullanun alani ve veri
tabant hakkinda cesitli bilgilerin saklandig:r bilgi tabanina basvururlar. Sistemin
parcast olan diger iki ek modul de imla dizelticisi ve tarih kaydedicisidir.

Sorgulamalarin analizinde sentaktik bir ayristiricy kullanilmaktadir. Sentakiik
ayirict igin, sizciukler arasinda anlam niteleme nosyonuyla bitinlestirilmis basit genel
kategorizasyon ilkesi uzerine kurulan bir Turkce gramer altkumesi formalizasyonu
onerilmekte ve cumlelerin formel temsilleri icin kullantlan reniden yazma kurallars
kumesinden olusan bir gramer tartisiimaktadir. Isimlerin morfolojik ayrisurilmasinda
sonekleri atarak calisan bir karar agaci yaklasimi kullaniimaktadir. Formellestirilmis
gramerden vararlanarak farkls tipde cumleler igin Uretilen ayristirma agaglar:
verilmektedir. Anlam temsili bakimindan da, kurala dayali akil yurtdtme yetenegine
sahip ‘akilly’ bir anlam temsili oreticisi tasarlanmistir. Bazt anlam niteleme iliskilerinin
yorumlanmalars da ayrintils bicimde tartistimaktadir. Son olarak da tam bir cimlenin

vorumlanisi gosterilmektedir.

Sistem, hayali bir dgreaci-ders-Aoca veri tabany tzerinde denenmistir ve tezdekt
“tum Grnekler bu veri tabanina dayanmaktadir. Tezin sonunda da ayristicict ve anlam

temsili ureticisi icin olasi gelistirmeler Uzerinde durulmaktadir.

Vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.cooooioiecieeeeeesee e, AT, ettt ettt iii
AT R AT o e LAV

DZET ettt b s e

LISTOF FIGURESttt ettt et bbbttt a s viii

LISTOFTABLES ..ottt ettt es sttt iX

LINTRODUCTION ..ottt ettt ettt ettt senns 1

I1. NATURAL LANGUAGE INTERFACE SYSTEMS FOR DATABASEScoovvoiiiccri 5

2.1 Architecture of aTypical NLISYStem. ..o 3

2.1.1. Parsing and Meaning Representation ..., 3

2.1.2. Query Understanding and Database Query Generation ... 7

2.1.3.Spelling Correction ..o 5

2.2 . POLIabIlify ..o 9

2.3 LeXICONS. oo OO 10

2.4, Value RecogitiON ..o e It

25.Two Languagé Problemsin NLI ... s 12

HI.AMODELFOR ATURKISHNLI........cooviiiei, et 14

3.1 DESIEI OB T IVES oo 14

3.2.ComponentS of the SYSIEIM ..o, 19

32.1. AnalvzerandTranslator SRV 16

3.2.2 Spelling Corrector and History Keeper.................. e e 18

323 Knowledge SOULCE ..o i5

3.2 . Sentences Accepied in Our Model........... et e e e 22

IV. ASYNTACTIC TURKISH PARSER FOR NLT ..o 30

4.1, Parsing Capabilities ... 30

42 Formal Representation of Turkish Grammar Used in NLT ... 33

4.3. Two Different Parsings Used for the Analysis of Turkish Sentences........... 43

4.3.1. Morphological PArsing ...t 43

432.5vntactic PArsSing ..o 45

Vil

V. GUERY UNUERSTANDING AND DECLARATIVE QUERY GENERATION ... 93
3.1 Wallace's D& Q Notation ... DR e, e o 53

5.2. Changes Made in the Original Syntaxof D&Q .. 59

5.5. interaal Query Generation OO OSSRV PSP URUTEUUUPPOU 57

5.3.1. Basic Algorithm and Simple Sentences ..o 57

532 Relabions . 62

5.3.3. Attribute Names of EAtities ... 54

5.3.4. Content Words and Question Pronounsooivivinenionnn, 65

5.35. More Specific Cases. ... 67

S5.4. A Full Example of Representation Process..........ooiiinn e e 68

5.5. Conversion to a Declarative LAanguage ..., 70

VI IMPLEMENTATION ..ottt bbb e e 72
6.1, Morphological Parser ..o 72

B.2. SYNLACHC PaISET oot ettt e 73

6.3, Meaning Representation and Internal Query Generator ... b 81

6.4, SPelling COrreCiOr ..ottt 84

B3, TraRSIALOL et 86

6.6. Knowledge Source.......ooooinn. e ee et esste st it e s b et e et sternapentareesed ST 86

/1. CONCLUSION ..o et ettt e ettt et e 83
APPENDIX A, TUREISH GRAMMAR ..o s 91
A.l. Turkish Grammar Used in NLI in Terms of Rewrite Rules......c.ooin, 9

AZ. Representation of the Grammar as a Transition Network........oocien 94
APPENDIX B.SYNTAXOF D&Q.....coiioieriiceecen e SRR 97
B.1l. Syntaxof Wallace'sD&Q ... e PO R a7

B2 Extensions Made in the Syntax of D&Q ..o s 98
APPENDIX C EEAMPLE DATABASE oo e e 99
_ APPENDIY D. LISTING OF THE NLT IMPLEMENTATION ANDDATAFILES ... 100
D.1. Program Listing........ocovvciiiniiicerereene, et 100

D2 DaL8 FIlES it e 101
BIBLIOGRAPHY Lottt eb e e 104

viit

LIST OF FIGURES

Figure 3.1 Anoverview 0f our model . oo e e i6
Figure 3.2. Relationships between two F@IBS oo 20
Figure 4.1, Suffixorder in Turkish ... e e 43
Figure 4.2. Decision Tree for Suffix ElmMInation. ... 44
Figure 4.3. Parse tree for £im £imya verdvor' who is giving chemistey ... 47

Figure 4.4, Parse tree of Aangs Aoca kar [vf Fimya ve £k noty verivor

‘which instructor is giving how many chemistry and physics grades'........ 48
Figure 4.5. Parse tree for the embedded adjective clause dAmete ders veren

Hocalars ‘the instructors who teach Ahmet ., 49
F igure 4.6, Parse tree for (57 kemya Aocalarinm derslerin goster 'show

the courses of the good chemistry instructors' ...t et s 50
Figure 4.7. Parse tree for AAmetin notundan fazla avi alan ggrenciers goster

‘'show the students who gota grade greater than Ahmet's grade’ 51
Figure 48 Parse tree for en gok kag matemalik fizik ve kimra ooty var At most

how many mathematics, physics and chemistry grade(s) are there' ... 52
Figure 5.1. Parse tree for £imyra :fers!en}u'gastgr 'show the chemistry courses ... 59

Figure 5.2. Parse tree for Aangrs Aoca CMPEIVO dersinf verivor which
instructor is giving the course CMPEIO0" ..., 59

LIST OF TABLES

Table 4.1, Premotdifiers. e 31
Table 4.2, Cate gories 0F WOrdS ..o oo 33

X

I. INTRODUCTION

Computers are widely used in almost every area of everyday life in Turkey.
Compuierized data processing is developing very fast and the use of management
- information systems is expanding rapidly in many organizations. To use the information:
stored in the database every user has to learn a query language as a special language for
communicating with the database. As an example, consider the database 6grenci-ders-
hoca ‘student-course-insiructor’, given in Appendix C, consisting of three basic files
ogrencs ‘student’, ders ‘course’, Aoca 'instructor and a relation file £arne 'grade
report’ ! A user who wishes to know about students taking the course called CMPE100
should formulate a query in a declarative query language as follows :

SELECT st_no
.FROM student
WHERE
student.st_no = stud_course.st_ne

stud_course.code = course.code
course.c_name = CMPEL00

However, it is usually the case that most of the people having a good idea of the
information residing in these databases are unable to formulaie their guestion as a
sequence of requests and conditions? for a particular database. The need to learn a
complex language becomes the main problem of people who wish to use computers.
Therefore, the computerized data processing brings the need for easy database access
interfaces for Turkish computer users from top-level managers w clerks who need t
access the information residing in their computers. The easiest way of communication
for a human is by using his natural language. The user has to translate his thoughts
into a non-procedural query language where the use of an ordinary natural lapguage is
possible. In that way the burden of man-sysiem communication will be totally put nnw

the machine. The system will translate the user's request given in his natural language

U Karne is named as sfud_course in the example database given in the Appendix C.
stud _coarse will be used for Zarme in place of gradk repost hersafter.
2 The connective AND between each line in the list of conditions is pmitted

into a sequence of instructions and conditions to be processed by a database query

interpreter to generate the desired result,

The major advantage of having a natural language interface is not te free users
from needing to know about query languages but the bridging effect hetween two views.
The fact that the request is expressed in the way users perceive data as opposed to the
way systems store them provides users with easy to use access environment to
databases. This is because phrasing the query in a database query language requires not
only the learning of strict templates but some understanding of how the data is
represented in the database as well. For instance. in a nalural language i%;}terface, the

quesiion- posed earlier may easily be formulated as one of the following two sentences,

Hangi ogrenciler CMPEIOO dersini altyor 'which students are taking the course
CMPE100

CMPEIOU alan ogrencilers goster ' show the students who take the CMPELOO

where the user does not need to know the external view of the structurs, so called,

conceptual schema of studeni-course -teachor database.

Over the last three decades a considerable amount of work has gone inin the
development of English language processing systemsl[1]!. Early developments were in
the formalization of the English grammar, in developing syntactic and semantic parsing
. techniquesand in designing Engiish language gquestion answering svstems. In the field
of natural language query svstems in English, many systems have contributed to
advancing the state of art, pointing out problems in natural language front-end design,
and some of them has already reached the commercial market. With the developments in
the field of artificial intelligence {AI), Al techniques are incorporated with natural
language processing, and intelligent datahase user interfaces are designed{2.3}
However, no attempt has been made to develop-a natural language interface (NLI) for
Turkish.

The aim of this thesis is to develop a portable natural language interface which
will produce a query in a declarative language from a Turkish question. In designing a
natural language interface, there are problems that need to be solved on the front end.
and at the back end, namely parsing of the Turkish gquestion and translating the

question into a query in a declarative database language, respectively. Therefore, befors

! References enclosed in brackets refer to the bibliography,

we design a natural language interface for databases. it is necessary Lo formalize the
Turkish grammar since other than the study carried out by Meskili{4]. which provides a
transformational mede! for Turkish, no attempt has been made to fermalize the Turkish
grammar as a set of rules until now. In this thesis, we propese a formalism for the
Turkish grammar and focus on designing a domain independent Turkish parser which is
capable of parsing a subset of the Turkish grammar by accessing domain dependent
information about words and concepts relevant to the database. It will be used in the
Turkish language processing compenent of our natural language interface. We intent o
design a domain independent natural language interface system that translates the
query into an internal representation language, namely an extended version of
Wallace's D&Q [5]. The internal query representation will be converted into a query in a
declarative database query language; the query now contains actual values for a
particular database. This final query can be processed by the database management
system to produce the result.

Providing an easy access to databases increases the burden of machine
translation. First of all, as in the above examples; the user's query does not address to the
actual database schema; querying in the user's own view necessitates an extensive
capability in matching user's view onto actual data [iles and their relevant field names.
Reducing the requirement for the user (o learn about the details of the database involves
knowledge of the problem domain to map the user's query ontn actual values. Secondly,
queries having the same deep structure may be formulated in various ways. Reduction of
the necessity for user to conform a list of artificial syntax in Turkish requires a
powerful parsing mechanisml5]. Question words and reiative clauses are extensively
used in query formulation. Therefore the parser must process any phrase built with any
combination of question words. However question words may cause semantic ambiguity
because they are less descriptive. For instance the query Aangr vgrenciler CMPEIO?
dersinf alrvor may also be formulated less informatively as Lrm CMPEIGG afrvor
‘who istaking CMPEIOQ'. Ambiguity is one of the primary problems in natural tanguage
understanding. A good system should clarify the ambiguity and try to recognize the
user's intention correctly. In addition, once the natural 1anguage interface is written, il
must he possible to adopt it to provide access to different databases, that is to different
domains. Adaptation can be achieved by separating the domain dependent knowledge
from the domain independent knowledge. Hence one who is pot familiar with the

natural language processing techniques can transfer the system to another duomain.

As we pointed out above, natural language interface design requires more than
just simple mapping from the natural language queries into formal representation. It
also requires the natural language comprehension capahility in representing the
literal content of a natural language query into a formal representation which involves
developing reasoning on concepts required. Reasoning is the hasic part of the deep
comprehension which involves not only linguistic capabilities but also deductions and
analogies on domain specific knowledge. Therefore a natural language interface must
incorporate a knowledge base containing knowledge about at least the natural language,

the problem domain and the database.

Aside from the introductory chapter, this‘ thesis contains six more chapters. In
Chapter 11 we discuss some main concepts in matural language interface for databases
(NLI). Chapter III gives an overview of the components of pur NL1 model, its knowliedge
base and contains a sample run to demonstrate the capabilities of the model. The
syntactic parser for Turkish developed asa component of our NI and the formalization
of the Turkish grammar are discussed in Chapter IV. Chapter V briefly explains the
syntax of the Wallace's D&Q meanding representation language, introduces some
necessary changes made to it, and discusses representation of constituents of {he
Turkish sentences in extended D&Q. In Chapter VI we discuss some implementation
issues. Finally, Chapter VII gives the conclusion and general remarks for futurs

improvement of the NLI as well as the Turkish grammar.

Thisthesis contains four appendices following the conclusion part; in Appendix
A the Turkish grammar used in NLI is represented in terms of rewrite rules and
transition network separately. Appendix B gives the definition of Wallace's D&{ svniax
and changes made to it. Appendix C gives the example database used in the
interpretation. Appendix D gives the program listing together with the contents of the
data files.

i1. NATURAL LANGUAGE INTERFACE SYSTEMS FOR DATABASES

This chapter starts with a brief discussion of the approaches in designing the

major components of an NLI. Some important issues in NLI design such as pertability,

lexicon types: and value recognition are then summarized. Furthermore, two language -

problems in NLl are introduced with examples in Turkish.

2.1. Architecture of 2 Typical NLI System

The major components of a natural language interface system for database are
the parser, the formal query generator and the database access routines. The parser is
the main natural language processing module. It isactually a program that analyzes the
grammar of the natural language query. The formal query generator translates the
parsed query into a form that can be interpreted by the database access routines, This
latter evaluates the query on the database. In addition to these routines, systems in the
literature include additional routines such as spelling correctors [6,7], routines to salve
anaphora and elliptic structures, help medules [2,3], knowledge acquisition reutines [&],
and editors {2.3]. The difference between general purpose natural language svsiems and
NLI systems is that both the query analysis and the formal query generation are
restricted by both the structure of the database and the subject area covered by the
database [5].

Z.1.1. Parsing and Meaning Representation

The Parser analyses the grammar of the sentence. The analysis is based on the
semantics of the subject area or the syntax of the language. In the NLI design, there are

- mainly two approaches used in parsing; semantic analysis and a combination of

f

syntactic and semantic analysis. Semantic parsers use a grammar that is specifically
tailored for the applications. In fact all grammars for NLI systems must have semantic

checks since the subject area is restricted to the database.

A good example of NLI systems that uses a purely semantic approach is LIFER (7]
its grammar includes sentence patterns like "what is < attribute > ef « ship ", where
nonterminal symbols, i.e. <attribute >, < ship > must be associated with individual words
and fixed phrases from a set defined for each nonterminal svmbeol in LIFER's lexicon. In
its pure semantic approach, the grammar has no noun phrases or “verb phrases, hut
rather a special set of categories for the particular task. For instance, nouns are not
grouped into a single category like NOUN, but they are categorized as SﬁIP or ATTRIBUTE.

The grammar used in REL [9,10] is similar to LIFER's grammar. REL's grammar
includes rules consisting of more general categories than LIFER's grammar, For example
REL's grammar has the category NAME instead of SHIP.

PLANES [6] also uses semantic grammars represented as an auvgmented transition
network. It includes subnets such as PLANTYPE which are oriented towards the
information held in the database. There are subnets in PLANES grammar for each
different semantic object and each subnet matches only phrases with a specific

meaning. Only the qualifier subnets in the PLANE grammar ace syntax driven.

Some NLI systems use a combination of semantic and syntactic analysis. The
grammar used by EUFID {11] parser is essentially semantic. The concepls are organized
into a case system. The meaning of a query in EUFID is represented in a tree siructurs
by connecting cases. Each connection corresponds to concept-to-concept linkage. Each
node in the tree is a semantic-graph node. The parser uses syntactic information “on
demand”, that is when such information is necessary to solve semantic ambiguities. In
FRED {21, the approach to parsing is also based on semantic case analysis. FRED's
. grammar isa collection of case frames. These case frames are associated with either the
domain specific entities or general entities such as guantifisrs, date and tims
expressions and arithmetic comparisons. The syntax of acceptable queries are stored in
the case frames. There exist surface case frames which can be attached w case frames
parse complex sentences. Possible values for cases are recognized by syntactic parsing
of the query. In KID {3], syntactic and semantic analysis proceed incrementally. A rule
in KID grammar consists of both syntactic and semantic paris. Syntactical analysis
determines the possible modification relationship between phrase constituents and
semantic checks are made on these modification relationships Similar to ¥1ID, the parser

of TEAM [8] uses syntactic and semantic rules.

Semantic grammars suffer from many drawbacks;, they embed semantic
information in grammatical categories and they make no distinction between domain
specific knowledge and general knowledge [3], and they are difficult to expand because
they become highly redundant when expanded for more general use since they fail to
capture certain generalizations about the language. It is clear that a parser which uses a
purely syntactic. grammar is not sufficient to understand the meaning of the guery..
Furthermore, dividing the svntactic and the semantic parsing into two completely
separate steps will lead to a tremendous increase in the number of possible parses The
best approach to parser design is to use combination of semantic and syntactic analysis.
Syntactic categories such as noun phrasesand verb phrases can be used for parsing and
only at lower level need the grammar can be tailored to the application.

2.1.2. Query Understanding and Database Query Geperation

The formal query generation is actually a translation process from the output of
the parser into a database query language. In the literature, we distinguish different
approaches to query generation; single step translation and multi-step translation.
LADDER [7] is an example of systems that use single step translation in its language
processing component LIFER. In LIFER, each phrase pattern has an expression
associated with it. The expression represents the the meaning of the phrase. Each non
terminal symbol in the phrase pattern has its own production rules and the meaning of
each nonterminal symbol is computed using its production rule. The resulting
expression consisting of meanings of each nonterminal symbol is a call 1o the database
access routine. TEAM and PLANES resemble each other in that they use two step
transformation, TEAM first produces a logical form and translates it into a formal
database query. Similarly, PLANES express the meaning of the natural language query
in interim form, this interim form is then translated into a relational calculus
expression. FRED, EUFID and KID are very similar-in design. Fach has a multistep
translation from the natural language to meaning representation, (o an intermediate
language and finally to a target database language. For instance, EUFID mapping module
transforms the tree structure output of the analyzer into a string of token(IL).
Semantic-graph nodes are converted into database files and field names, and
connections are converted file-to-file ur file-to-field connections of the database. IL is
finally translated into the actual DBMS quéry language. KID usesan approach similar to
EUFID. KID converts the meaning representation inte a world model guerv which

consists of the target list and a list of conditions. Rule-based translation mechanism is

used to translate the world model query into a database query. Rules perform basic
mapping, derivation, generalization, and functional joins. FRED slightly differs from
KID and EUFID because it converts the query into an intermediate dzfzbase language,
Query Planner translates the case frame based meaning representation of the guery
into a linear string of tokens expressed in the virtual database language V/DELPHI. The
virtual query refers to domain objects rather than actual database files and fields.
Frame-based production rules are used for this translation. At the next step V/DELPHI
guery is converted to a DELPHI query. During this conversion virtual fields in the
domain file are converted to actual f jelds. Finally the DELPHI query is transformed to the
target database language by applyin g.@set‘of transformation rules expressed in a épeciai

rule-based transformation language Troll.

Database access routines evaluate the query generated and send back the tuples
satisfying the conditions. Some systems [3,6] have also response generators deciding on
how the output should look like.

2.1.3. Speiiing Correction

Queries in natural language can confain misspelled words or words thal do not
exist in the lexicons. Some systems include a spelling correcinr component which
attempts to deal with unrecognized words. Given that the system dstect an unrecognized
word, there are two approaches to correct the spelling error. The [irst approach is to
enter into a dialogue with the user. When INTELLECT {12} fails i» recognize a word it
engages a dialogue with user in which the user is required to correct the spelling or
enter the field where the unrecognized word should appear in the database. It then
searches the dictionary or the database for the unrecognized word. The second approach
isto attempt to guest the misspelt word as LIFER and PLANES do. The spelling corrector
'in PLANES is called as soon as the input word is not found in the dictionary. It tries to
match the misspelt word against a list of correct words and produces a list of candidates
which consists of words close to the input word. Then, it enters into a dialogue with the
user to confirm one of these candidates. If no candidates are found or if the user rejects
all the suggested candidates then the user is required to add the word into the dictionary.
On the other hand, LIFER records the failpoints on a failpoint list and attempts te
complete the parse by trying other production rules. If a camplete parse is found, the
failpoints are ignored. But if an input can not be parsed the list is used by the spelling
corrector which substitutes the closest match between the words of that category.

2.2. Portability

One of the fundamental features of the NLI is application independence, so called
poriabdity. Natural language systems can be grouped in two categories from the point
of view of portability; single domarn systems, those which are built to provide actess:
for only one domain, and fransportzble systems, those which can be easily adaptable to

provide access to databases for which they are not written.

A single vomain system is a system whose grammar and query generafor

must be completely rewritten for each new application [7). Such a system usually

provides useful tools for constructing these components.;

Considering fransportable systems, there exist different levels of portabilities

depending on how the system is transported and who does this transportation.

A system may be transported by the programmer as it is done in transporiing
one of the earliest NLI systems ROBOT {13} to several domain simply by supplying new
rules of grammar and modifying meaning of some words.

Second level of transportability is the one at which the actual user provides
information about the new domain. In REL , the user can define the entire database or
extend it by adding his own definitions and changes. In these two levels of
transportability information about the language and information about the domain and
database structure are intermixed. Transporiing such systems to a new domain
requires the changiong of the parsing procedures and the domain
information.

Separation of domain dependent and domain independent information provides
transportability of the third levél, where information about the new domain is supplied
through'an interactive dialogue with data processing personnel who are not familiar
with natural language processing techniques. TEAM is an example of transporiability at
this level where three kinds of information, the lexical information, the conceptual
information and the information about the structure of the database, are required to be
transported to a new database. EUFID, KID and FRED achieve portability in the same way.

16

For instance, application specific data are supplied to EUFID as tables. Application
specific data involve the dictionary, the semantic information and the organization of
the data in the database. FRED has a domain dependent knowledge base which contains
the semantic grammar, {rame-based production rules and transformation rules. KID has
a world model containing a domain model, linguistic knowledge and database mapping
knowledge. The user has only to update the domain depen&ant information or supply
new information to transport the system to a new domain. In additicn te that, EUFID, E¥ID
and FRED translate the natural language .query into an intermediate language, which is

then converted into target database language.

2.3. Lexicons

Any natural language interface necessitate a lexicon in which valid sentence
constituent are Kept. As we mentioned above an NLI is restricted by the subject area
covered by the datahése ie. people (student and instructors) information for the
uﬁiversity database, personnel information for a company and so on. Censidering their
semantics, a natural language query includes two kinds of words [3] ; fuaction weords,
whose meaning are independent from application and centent werds, which gain
meaning from the subject area covered by the database. A content word may refer to an
entity or a property. It may also be a value with which an entity or a property is
associated. Thus, for a portable NLI, new content words must e supplied when the
subject area changes. Thus we must distinguish between lexicons conlaining these
words. Broadly speaking, there are three different types of lexicons in NLI [14]: Gesneral

entries, structural entries and volatile entries.

General lexical entries are words whose meaning are independent of any
particular domain. Question words such as fag, 'how many', Aangs ‘which', and
"comparative” adjectives such as az 'less’, ¢od 'more’ and bouyut 'big' are some of

examples. Theyv can be practically used for any domain.

Siructural entries are terms which make reference to some aspects of the
database. Eniries in the structural lexicon are domain dependent. The words that make
reference to specific entities or attributes, synonyms for words such as rfa/ebe for

sgrencsasynonym for student, student’, or verbs that are specially used in the domain

11

under consideration. An example of the latter is 2/ ‘take which may mean ders/no!
almak 'take a course' or satrn almak 'buy' considering student-course or supplier-

part-shipment databases respectively.

Volatile entiries are numbers or unknown terms sancountered during the
input, the word CMPEIOO in our introductory example is a volatile entry and is oaly
. useful far the duration of the session. In most of the natural language interface systems, .
the volatile lexicon is not a part of the lexicon and special approaches ars used (o

recognize values corresponding to volatile entries in natural language queries.

2.4. Value Recognition

It is necessary to identify the word CAPFIEH invur int.mdtf‘étory example as s
noun representing a course name. If this entry is explicitly coded in the lexicon for
future reference, the query system may do false inferences when the course LAPEIO#
is not offered any longer. There are three basic ways to recognize a value in 4 gquery.
They can be explicitly listed in the dictionary, found in the database itself or recognized

by a pattern or text,

One solution to this problem is to use the datahase itself as a volatile lexicon{10].
For a question like £im CMPFIO0 dersins altyor 'who istaking the course CMPE100".
The natural language processing system may refer to the database to check the
existence of a field containing the value CAPFI00

An alternative solution to this problem is to infer fields that could contain

unknown terms {14]. An unknown term may be treated as an item of one of these fields. -

Values can also be recognized by a pattern. Hence it is not necessary to itemize all
instances in the dictionary. For example, a afe may be entered as gun/ay/vil
‘day/month/year’ so an input matching that format is recognized as the #afe

Each of these solutions has disadvantages [14). If all values are stored in the
dictionary it would result in an enormous number of dictionary entries. Patterns can be
used only if users can he enforced to fit the data to the pattern. Especially proper names

are poor choices for patterns. Solution using the database itself is costly and

12

unsatisfactory because of the need for a database search for every unrecognized word.
It can only be accepted as a satisfactory solution if the database is small. In cur model we
do not focus on value recognitions, some of the volatile words are stored in the
.dici;icinary since the number of entries are small. The user is forced to begin a proper

noun entry with a capital letter.

2.5. Two Language Problems in NL1

Here are introduced two language problems in NLI, namely conjunctions {11] and

ambiguities [14] .

The difference between the way the user perceives the data as opposed to the way
the machine stores them brings the conjunciion scooping problem in guestion. The
natural language use of and which usually denotes a conjunction, must be interpreted

in some cases as or which usually denotes a disjunction. Consider the sentence,
kimya ve fizik hocalarins goster
‘'show the chemistrv and the physics instructors’

The meaning of ve 'and' must be changed to logical or, the phrase fimra and 7fzdl
‘chemistry and physics’ must be formally stated as £émya or /274 The disjunctive use of
and occurs when it joins two alternative values. Therefors the solution to this problem
is to change and to logical or when the two constituents with the scope of the

conjunction are value for the same field.

Ambiguities may be of two types in language understanding; semantic

ambiguities and syntactic ambiguities.

Semantic ambiguities which occur when the parsed constituents may have

several possible meanings. Consider the question
kim CMPEIOO altyor ‘who is taking CMPE100'

The question pronoun £im 'who' may refer to a student or to an instructor depending on

the context. To resolve this ambiguity, the information gathered in the rest of the

13

sentence must he examined, Determining the intended referent in the database may be

much more difficult when the following query is considered,
Ahmetin derslerini goster "show Ahmet's courses’

Almet is a proper noun corresponding to a particular name, as in the above example,
but its meaning may be either a student's or a instructor's name depending on the
context. The referent can be determined by observing the database schema provided that

the conceptual database schema reflects the semanticsof the domain.

Syntactic ambiguities occur when modifiers or modifying phrases are
physically separated from the term they modify. No words are ambiguous in our
grammar when the set of possible constituents of a phrase are well determined. The
distance between modifiers and the actual word they modify iszero in our grammar.

14

I11. A MODEL FOR A TURKISH NLi

After having discussed some important concepts of NLI design in ChapterII; in

the first part of - this chapter we introduce our design objectives. Next section givesan -

overview of our knowledge based NLI model being designed, with a hrief-:e}:planatidn‘o}f

each component of the design and the knowledge hase. We conclude this chapter with a

list of natural language queries acceptable in our model.

3.1. Design Objectives

Our main objective is to design a portable natural language database intertface
that will allow a non programmer to easily obtain informaticn from a database. We

formulate our subgoals as follows :

-The system should have a parser for Turkish with a wide range of semantic and

syntactic structures which may appear in a natural language query.

-The system should allow querying in conceptual level rather than on a factual

level.

-The system should free the user from having to konow the physical databass

organization.

-The system must correct some spelling errors, and tolerate a range of
nongraminatical but correctly understandable requests. Certain kinds of extensions such

as addition of new words or synonyms, should be possible to perform.

-The system should be transportable to another domain withoul-any knowledge
of the program.

15

3.2. Components of the System

In order to satisfy the subgoals given in Section 3.1, a natural languags
interface should make a distinction between different processing phases.and maintain
. a clear-cut.separation between domain independent and domain dependent pa.rts-t‘):f the
NLI[15]. Our approach to the NLI design is to have general purpose run-time modules for
different processing stages and to supply the domain dependent knowledge as data to
these modules in order to minimize the consequence of changes in the interface
environment that may occur due to the changes in the topic of discourse, in the
structure of the database or in the database management system. Asshown in Figure 3.1,
our system consists of four domain independent run-time modules, namely the analyzer,
=-the translator, the spelling corrector and the history keeper, and a-~Zpowledge source.
Considering the above mentioned parts that may vary from one domain to another, the
domain dependent knowledge include the synonym dictionary (part of the lexicon), the
semantic relationships dictionary, a dictionary containing ssmantic definitions of
words, the conceptual database schema in user’s view and the domain-to-database

mapping table. The domain independent knowledge is kept in the basic dictionary.

The analyzer accompﬁshes parsing of the natural query and generates a D&Q
expression which representsthe meaning of the querv. The output of the analyzer is the
input for the translator which converts the D&Q expression into a SQL query. The
spelling corrector attempts to correct a misspelled word by suggesting a list of candidates -
thatl can substitute it and update the lexicon if necessary. The history keeper is a
register which keeps information about the previous query, which may be referred to
in order to provide missing information in the current query. The knowledge source

provides domain independent and domain dependent knowledge.

16

Maiural langusge guery

!

ANALYSER —7P| SPELLING
4 CORRECTOR
Syntactic TN parser :
o T
HISTORY ___} Semantic Analyzer .
— . g ENOWLEDGE SOURCE
EEEPER ; :
\ Internal Query Generator | || Lexicons
Q___'_ " Semantic Relationships
DEQ : - Semasttic Defindtions
l EXpression . Conceptual Databage
Schama
TRARSLATOR Q—_———- Domain-to-Detabase
Mapping Table

l YL gusry

Figure 3.1. An overview of our model

3.2.1. Analyzer and Translator

Processing of a user query is divided into two main phases; syntactic parsing
integrated with the semantic analysis and internal query generation. The analyzer is a
general purpose domain-independent language processor and a meaning representation
generator. The language processor does syntactic and morphological parsing, and.
semantic analysis. A phrase in Turkish is a collection of semantically crdered, modified
or unmodified noun phrases. The syntactic parser splits the sentence into noun phrases
by locating head nouns and their corresponding modifiers. For this process,' the
syntactic parser uses a context-free grammar. Rules state the way of linking different
phrase constituents into a noun phrase and specify the way in which noun phrases can
be combined. Syntactic parsing is accomplished by matching input sentences against
phrase patterns represented as transition networks. Morphological analysis is used
decide on the functions of nouns. Semantically ordered phrase constituents are
transformed into a canonical form by substituting for synonyms or abbreviations the
equivalent words found in the conceptual database schema. For instance, the word

vgrencs student will substitute the given inpul fafefpe 'a synonym for student’. The

svatactic parser uses the basic lexicon and the synonym dictionary. The semantic
analysis is integrated with the syntactic parsing. It checks whether the relations
between the noun phrases and the verb are meaningful. It solves semantic ambiguities
and f{inds the referent of question pronouns and proper nouns. The knowledge on the

semantic relations is used in this analvsis.

The meaning repreéentatinn process can be visualized as "the senfence {ree
produced by the analyzer is traversed battom up and at each node the description of the
head noun created or an existing description is extended or two descriptions are
combined”. However, meaning representation and- linguistic analysis are cancurrent
- processes in our model. They proceed incremeptaﬂy; While parsing user's query, the
query is also translated into a formal meanin'/g representation language, namely an
extension of D&Q of Wallace. Internal query generator is called after the successful
parse of a constituent. It maps the parsed word onto an entity and attribute name. It
creates the descriptions of the entity when the parsed constituent is mapped to an entity
or extends the existing description of the entity when a word corresponding to a
propurty of this entity is parsed. Regarding the relations, the internal query generator
consults the conceptual database schema ¢ decide on whether the semantically correct
relation between the noun phrases and the verb are applicable in the database. Noun
phrases stored in the memory are combined into a nested description accoerding to the
relation involved in the natural language query and in the database schema. Therefore,

the meaning representation process involvesthe following four decisions:
(1) Deciding on which refations to take

(2) Deciding on how to modify relation

(3) Deciding on how to combine relations

(4) Deciding on which operations to perform on return fields

- The second run-time module in our system is the transtator. The translator
transforms the expression represented in the meaning representation language into
the database specific target language of a relational database management system,
namely SQL. First by applving a set of database independent transformation rules, the
query is converted into a general declarative language. Next, domain objects found in
the query are mapped onto actual database files and fields. The conversion from user

view to actual database files is specified in the domain to database mapping table.

1%

3.2.2_Spelling Corrector and History Keeper

The spelling corrector module is called when a word is not found in the lexicon
during the syntactic parsing. This module attempts to find the lexicon entry close to the
input string. The method used to find candidates for an unrecognized word is to split the
word into two parts and to attempt to match the first partof the word with the { irs; parts
of the existing words in the lexicon. When no matching word is found then the semmi. v
part is tried. The user is asked for candidates one by one until nne of the suggested
candidates is accepted. If no candidate is found or all of the candidate are rejected then
the user is asked to enter the function of the unrecognized word and its domain value if

it is a noun. Consider the NLI query

kim hangi derti aliyor "who istaking which course (course is misspelled)’

The parser first notes that the word deré is not in the lexicon and the spelling corrector
is called. It finds that the word ersis the most similar word to Jers and prinis the

following message;

dert verine ders kullanilabilir mi ? ' substitute dersfor ders?’

If the user typese { for evet/yes), the system substitutes #ers for Jert and continues
to parse.

The history keeper component stores descriptions used in the last query together
with its form and the result returned for it. When some information is missing in the
query, the history keeper component is referred to in order to fetch its previous value.
Pronoun references or the referent of the demonstrative adjectives can also be
recognized in the same way. As an example, demonstrative adjective » 'that" in the
phrase o dersi'that course’ can be recognized by referring to the previous description of
ders ‘course’ and using the properties of the last description asthe current one. Assume

that ders has the following D &Q description in the history keeper,

the-1-qual(X [],ders(ad=kimya))

In representing the meaning of o ders ‘that course', the current description of ders
‘course’ will be extended with the addition of the selection ad=kimya. As another
example, consider the sentence dersins goster 'show his course’. The word ders has the
possessive suffix -/ but its genitive component is'missing in the sentence. It is supplied
by taking the last word in possessive relation with the word sy from the history
keeper. The user is asked to provide the necessary information when the description
does not exist.

19

3.2.3. Knowledge Source

Asexplained in the Section 3.2.1., each siage invoived in transforming a natural
language query into a database language query necessitates different types of
knowledge. Qur system has a knowledge source which consists of five different kinds of
information; lexical information, semantic = relationships, semantic definitions,

conceptual dafabase schema in user'sview, and domain to database mapping.

Lexical informaiion consists of the syntactic property of the words that will
he used in queryving and the concept information. Concept informatioa is called the class
information, which defines the kind of concepts to which the word refers. There are
two types of lexical information; the basic dictionary which keeps domain dependent
words such as pronouns, adjectives, conjunciives, and the synonvm dictionary,
which stores doemain dependent words which will be used to substituie user ierms in

transforming the query into the canonical form.

Information about the user's view of the database is actually a database schema
in user's terms. It includes the definition of the structure of edth file in the database.
Each file is about some kind of an object such as dess 'course’, dgrenct 'student’, hoca
‘instructor’ and the fields of the file contain object's properties like £fod 'code’, ad
‘name’ Lredi ‘credit’ for the file ders. This dictionary contains three sorts of
information for each field of a file; file name, type of class from which it gets its value
and an indicator for key fields. This informaticn is used to select the correct meaning of
the query through the knowledge of how the information is stored in the structure of

the database.

Semantic relaiionships dictionary keeps information about the functionat
relations between objects and verbs that can take objects as arguments. Ohjects ars
entify names or atiribute names Thus, semantic relationship dictionary desceibes the
correspondence between different entities, attributes of entities, and verbs. Fach group

consisis of an act and a list of objects that can meaningfully occur with that act,

For example, entries for the verb a/ 'take’ are;
(al, ders, object)
(al, not, ohject)
(al, ogrenci, subject)

(al, hoca, ablative)

Semantic relationshipsdictionary contains entries representing the cooccurence of two

objects as well, i.e. the cooccurence of the words zof ‘grade’ and o2rs ‘course’ is also

semantically meaningful provided that secoad object has the case marker locativs on it,

e.g.

(not, ders, locative)

Figure 3.2. shows an associative network representation of the verb #/ 'take” andver

‘give’ through their common arguments and a possible relationships between

arguments,

et
subject s . N
whaee ,f'&i‘enm
@‘ff ‘-P"‘?
-

ahlative
27
L "“f-‘) .
obiect]
i ’/ object \hf:‘ J
o
1
not

ocative.~
&
&
ders &
L
o

object obiject //
\ ;"f subject
(Fer |/
. /
e

dative

Figure 3.2 Relationships between two verbs: a/ 'take' and rer 'give'

Z1

Dictionary -of semantic definitions confains entries showing how an
adjective or a noun will medify an entity or a relationship in terms of its atpributes. The
need for such a dictionary can be explained on an example as fellows: the meaning of
£¥7 'good’ eccuring as the modifier of ders ‘course’ can not be expressed by extending
the description of ders Therefore, the meaning of the compound fp7 ders ‘good course '
must be explicitly stated. /¥/ ders good course' is defined in terms of its attribute

Aocany 'instructor’s id' of the entity ders as hocans = 1234,

‘Domain to database mapping table includes an entry for each field of a file.
Fach entry contains the file name and the field pame in user's view and their
corresponding equivalents in the actual database, An example for the file ders

‘course’ is the following ;
(ders, kod, course, cnde)‘
(ders, ad, course, c_name)
(ders, kredi, course, credit)

{ders, hocano, course, instr_no)

22

3.3. Sentences Accepted in Our Model

This section gives a list of acceptable natural queries in our model. Fach natural
language query is followed by the SQL expression generated for it. The list is intended to
include all the different types of queries that can be meessed by cur model.

kim CMPE100 aliyor

SELECT st_no

FROM student

WHERE
student.st_no = stud_course.st_no
stud_course.code = course.code
course.c_name = CMPE100

kim CMPEL0Q0 verivor -

SELECT instr_no

FROM instructor

WHERE
instructor.instr_no = course.instr_no
course.c.name = CMPE100

hangi hoca CMPE100 verivor

SELECT instr_no

FROM instructor

WHERE
instructor.instr_no = course.instr_no
course.c_name = CMPE100

kim hangi dersi veriyor

SELECT instr_no code
FROM instructor course
WHERE
igstructor.instr_no = course.instr_no

kim ne veriyor

SELECT instr_no code
FROM instructor course
WHERE

instructor.instr_no = course.instr_no
kim ne altyor

SELECT st_no code

FROM student course™

WHERE
student.st_no = stud_course.st_no
stud_course.code = course.code

Mehmet hangi dersleri aliyor

SELECT code

FROM course

WHERE
course.instr_no = instructor.instr_no
insiructor.inst_name = Mehmet

CMPE100 alan 6grencileri goster

SELECT st_no
FROM student
WHERE
student.st_no = stud..course st_no

stud_course.code = course.code
course.c..name = CMPEL100

23

Mehmetin derslerini goster

SELECT code

FROM course

WHERE
course.code = stud_course.code
stud_course st_no = student.st_no
student.si_name = Mehmet

Ahmetden ders alanlari ver

SELECT st_no

FROM student

WHERE
student.st_no = stud_course st_no
stud_course.code = course.code
course.instr_no = instructor.instr_no
instructor.inst_name = Ahmet

Ahmetden ders alan kimya 6grencilerini goster

SELECT st_no

FROM student

WHERE
student.st_no = stud_course st_no
student.dept = kimya
stud_course.code = course.code
course.instr_no = instructor.instr_no
instructor.inst_name = Ahmet

kim kag dersaliyor

SELECT st_no count(*)

FROM student course

WHERE
student.st._no = stud_course.st_no
stud_course.code = course.code

PEESRREEL Y

IR " Test koTORHauEs! |

24

kim Ahmetden dersaliyor

SELECT st_no .

FROM student

WHERE
student.st_no - stud courscst na
stud_course.code = course.cade
course.instr_no = instructor.instr_no
instructor.inst_name = Ahmet

Ahmetden ders alant ver

SELECT si_no

FROM student

WHERE
student.st_no = stud_course st_no
stud_course.code = course.code
course.instr_no = instructor.instr_no
instructor.inst_name = Ahmet

Mehmetin aldig1 dersleri ver

SELECT code

FROM course

WHERE
course.code = stud_course.code
stud_course.st_no = student.st_no
student st._name = Mehmet

Mehmete ders veren hocalari goster

SELECT instr_no

FROM instructor

WHERE
instructor.instr_no = course.instr_no
course.code = stud_course.code
stud_course.st_no = student.st_no
student.st_name = Mehmet

Sten fazla notlar: ver

SELECT grade st_no

FROM stud_course stud_course
WHERE

stud_course.grade > 5

imzi(}i ONiVERSITESI KOTOPHANESI

23

50 ile 100 arasindaki notlari ver

SELECT grade st_no
FROM stud_course stud_course
WHERE
stud_course.grade > 50
stud_course.grade < 100

CMPE100 dersini veren kimdir

SELECT code

FROM course

WHERE
instructor.instr_no = course.instr_no
course.c_name = CMPE100

Abmetin aldig: ders nedir

SELECT code

FROM course

WHERE
course.code = stud_course.code
stud_course st_no = student.st_no
student.st_name = Ahmet

CMPE100 dersinin hocast kimdir

SELECT instr_no

FROM instructor

WHERE
instructor instr_no = course.instr_no
course.c_name = CMPE100

ivi dersleri goster

SELECT code
FROM course
WHERE
course.c_name = CMPE100

26

Mehmetin iyi derslerini goster

SELECT code

FROM course

WHERE
course.code = stud_course.code
course.c_name = CMPE100
stud._course.st_no = student.st_no
student.st_name = Mehmet

Ahmet kag ders veriyor

SELECT count(*)

FROM course

WHERE
course.instr_no = instructor.instr_no
instructor.inst_name = Ahmet

Ahmet kag kimy'a dersi veriyor’

SELECT count(=)

FROM course

WHERE
instructor.instr_no = course.instr._no
instructor.inst_name = Ahmet
course.c_name = kimya

kimyada kag 6grenci var

SELECT count(*)

FROM student

WHERE ,
student.dept = kimya

kimya bslumunde kag 6grenci var

SELECT count(=)
FROM student
WHERE

student.dept = kimya

Ahmet adls hoca hangi dersleri veriyor

SELECT code

FROM course

WHERE
instructor.instr_no = course.instr_no
instructor.inst_name = Ahmet

kimya alan ogrencilerin adlarini ver

SELECT st_name st_no

FROM student student

WHERE
student.st_no = stud_course.st_no
stud_course.code = course.code
course.c_name = kimya

Mehmet adli 6grencinin numarasing ver

SELECT st_no
FROM student
WHERE
student.st_name = Mehmet

Melimet adli 6grencinin notlarini goster

SELECT grade st_no

FROM stud_course stud_course

- WHERE

stud_course.st_no = studeni.st_no
student.st_name = Mehmet

Mehmet adli 0grencinin notlarinin ortalamasinl ver

SELECT avg(grade)

FROM stud_course

WHERE
stud_course.st_no = student.st_no
student.st_name = Mehmet

28

CMPE100 derslerinin sayisini goster

SELECT count{=)
FROM course
WHERE
course.c_name = CMPE100

en yiksek notu gaster

SELECT max(grade) st_no
FROM stud_course stud_course

kimya hocalarini goster

SELECT instr._no
FROM instructor
WHERE

instructor.dept = kimya

kimya ve fizik hocalarint goster

SELECT instr_no
FROM instructor
WHERE

instructor.dept = kimya OR instructor.dept = fizik

29

IV. A SYNTACTIC TURKISH PARSER FOR NLI

After having introduced the model, it is necessary to determine the types of
sentences that natural processor component of model will deal with and define a formal
representation of these linguistic data so that it can be processed on the camputer. In the
first part of this chapter, the types of sentences necessary in formulating database
queries are intuitively introduced. Next, a grammar that consists of a collection of
rewrite rules [1] for the formal representation of sentences are discussed. In the
remainder of the chapter a simple algorithm for morphological parsing of nouns and
syntactic parsing of sentences using the rules! defined in the previous chapter are

discussed with examples of different sentence types.

4_1. Parsing Capabilities

Since the parser is to be used as a component of a natural language interface for
databases it is restricted to queries about databases. Queries can be formulated as
imperative sentences, or as affirmative sentences aboutthe third person containing at
Jeast one interrogative (question word), Therefore, we restrict our grammar o these two
tvpes of sentences, and our model to the domain of the databhase. We also include varvof
'there is/not' type of sentences and noun sentences with the suffix -dir (third person
form of the verbio be where s e is the main verb). These four clause forms are the
complete set of sentence types that may be used to formulaie any database query. Thus,

our parser can analyze the following typesof sentences

_ Imperative sentences, e.g. (MHWPEIOO dersinin hocasins goster 'show
the instructor of the course CMPE100'

! the word rule isused to mean rewriie rule hereaf ter

— Affirmative sentences about the third person containing at least one
question word, e.g. Xim Limya dersini veriyor 'who is giving the course
CMPELO0’

~Sentences with var yok eg. kag kimya dersi/ var ‘how many CMPEL0G
course(s) are there’ "

- Noun sentences with the suffix -7 the so called copula, e.g. CHWPEIOO
dersinin hocas: kimdir'who isthe instructor of CMPE10G"

It also allows sentences in negative form and passive construction of affirmative

sentences.

The last constituent of the sentence determines the type of the sentences, the
remainder of the sentence is called noun phrase. Noun phrases accepted by our parser

consists of three different types:

(A) Proper nouns, e.g. Ahmet, CMPE100

(B) Question pronouns,e.g. £7m 'who', ne ‘what' _
{C) Descriptive noun phrases,

Descriptive noun phrases are composed of a noun preceded by zero or more

premodifiers. Permissible premodifiers in our current grammar are given in Table 4.1,

Table 4.1. Premodifiers

Type Example

noun modifier CHMPEIO? dersi - 'the course CHPEION

simple adjective Fuksek not ‘a high groade’

guestion adjective fangr ogrenci ' which student’
demonstrative adjective o ders ‘that course’

superlative 2 yiiksek not ' the Aighest grade’
possessive : dersirr hocast ‘the instructor of 88e course’

-

Multiple premodifiers are also accepted provided that the ordering of

premodifiers is grammatically correct. Some examples are given helow.

kag CMPETO0 dersi ‘how many CMPEIO0course(s)’
o kimya dersi ‘that chomisicy course’
en yvuksed CMPEIOU notu ‘the highest CMPEIO0 grade’

Hocanin kag (¥4 6grencisi ‘how many good student(s) of the insirvcior
4 ¥4

Any combination of more than one noun modifier or adjective may be used as a

meodifier provided that the last two premodifiers are separated by abcnnjunciive, e.g.
kag CHMPEIO0 ve MATHI51 dersi ' how many CHMPEIOO and MATHISI course(s)

en yuksek ve en dosik notlar ‘the highest and the fowestgrades'

However, according to the correct ordering, the following constructions are not

allowed:

CMPEIOO poksek not "CHPEIO? Agh grade’

(noun modifier should immediately precede the head noun)

o kag ders ' ‘that kow many course(s)
(a demonstrative adjective and a question adjective can not modify the some head noun)

Furthermore, some forms of comparative structures can be used as premodifiers,

e.g.
Sten burik(ivi, fazla) ‘(better, more) greaterthan 5
Jile 3 arasundaks notlar ' grades between Jand 3

Our parser also accepis certain relative clause structures. The first type of

relative clauses is the construction with a verb and pariiciple suffixes -22-24, e.g.

ders alzn 6grenci ‘the student who fakes s courss
not vermeyenhoca 'the instructor who does nof give g grads

Second type of relative clauses is the construction with the suffix -J£ e.g.
ogrencinin aldigrdersler ‘the courses fhal the student takes

hocanin vermedigr not ‘the grade fhat the fnstrucior dpes not give’

Relative clauses in Turkish can also be used as the abject of a verh:
£im jd dersi alanlari(goster) (show) those who dakethe chemistry course'

focanin Ahmete verdigr(nedir) (what is it) fdar the nsirucior grves to Ahmet

33

4.2. Formal Representation of Turkish’ Grammar Used in NLI

The major componex&ts of a computer system for analyzing the structure of a
Turkish sentence are a set of categories and a lexicon in which each word is assigned to
the categories;, a grammar of Turkish which will specify the well formed sentence
structures of the language and a parsing program [16]. Syntactic categories and the
formalization of a subset of the Turkish grammar are discussed in the following
paragraphs,

The basic elements of a sentence are verbs and noun phrases. In the lexicon,
words are assigned to word categories, and rules are generalized terms of these
cetegories, Therefore before proposing rules it is important to define these word
categories. Words are categorized in order to simplify the interpretation of their
semantic and syntactic functions. Words are traditionally classified according to their
functions as noun, adjective, pronoun, verb, etc... Considering their functionality in
communication for a database interface, we further classify words into subcategories.
For instance adjectives are subclassified as question adjectives, demonstrative adjectives,
etc... The list of the categories is given in Table 4.2. together with examples and thei

notation used in rule definitions.

Table 4.2. Categories of Words

Category Notation Examples
Simple noun noun ders, hoca, agrenci
Proper-noun propernoun Ahmet, Mehmet
Pronoun pronoun o’

Question pronoun gpronoun kim, ne, kag

Simple adjective adj ivi, koto, zor
Question adjective qualadjqyes hangi, kag
Demonstrative adjective qualadjgen bu, o

Qualitative adjective qualadjgyal
Quantitative adjective adjquan
Superlative -
Conjunctive conj

higbir, hig, butun
cok, az, fazla
en

ve, veva, tle

34

The Turkish grammar that we intuitively use to differentiate between correct and
incorrect sentences can be formalized as a phrase structure grammar which consists of
a set of phrase structure rules each representing a labeiled phrase to be matched against
a sequence of constituents of the input sentence. Fach phrase structure rule consistsof a

pattern name followed by an arrow and a string of symbeols that make it up,

A— BCD

where the symbols on' the right hand-side of the arrow will be substituted in place of

the one on the left hand-side. Each symbol is either a word category or a pattern name.

A phrase structure rule specifies what a grammatical sentence can fook like.
Together with other rules specifying what other sentences can look like, all of these will
form the grammal‘ of Turkish. Therefore in formalizing the Turkish grammar, we must
define correct sequence of word categories that will form different structure patierns.
In addition to that, since the result of parsing will be used in representing the meaning
of the sentence, parsing of the syntactic structures must be intermixed with the analysis
of interrelation of words in order to recognize the function of each. The major aim of &
parser isthen notonly to analyze the word sequence to check whether the sentence is
grammatical or not, but te produce a parse tree representing the relations between
words. In defining phrase structure rules, the notion of a relation must then
incorporate with the categorical notion. The only relation between words can be a
modification. Words can modify the verb or each other. A modifier can also be modified
to produce a multi-layered structure. At each level there is 2 head noun and a sequence
of modifiers. It is then sensible to break down the sentence inio phrases each consisting
of a-head noun carrying the central assertion of the phrase and a sequence of modifiers,
each of them providing some factual details to the information in the head. A sentence
can then be thought of as a combination of phrases whose head modifies the head of the
successive phrase and/or the verb. The head noun as well as modifiers may be a single
word or a group of words, all of the same type. Therefore the main principle isto write &

rule for
(1) each couple of noun phrases that modify each other
(2) each possible group of one or more words, all of the same type.
As mentioned above, the head of the phrase can modify one of the successive

phrases and the verb at the same time, it is then necessary to distinguish levels of

modifications. The grammar is thusarranged in a hierarchical structure and each level

defines a type of modification. The types of modifications can be classified into two
groups as the modifiers of the verb and the modifiers of the successive phrase.

Considering the internal structure of a phrase , it is quite possible that several
types of words modify the head noun. One simply can classify modifiers according te the
position in which each occurs within another. We differentiate three different levels of
modification depending on how close the type of a modifier can be to the head noun
when this latter is modified with at least two different types of modifiers. These four
levels are comparative modifiers, qualitative and quantitative modifiers, adjective

modifiers, and noun modifiers.

In Turkish, a grammatically correct sentence with minimal constituents
consists of a noun phrase followed by a verb, therefore the phrase structure of the

major seantence in Turkish fora single sentence is

S — Nph Vph

caseM

where the structure of Nph and Vph must be independently specified.

Considering different types of sentences listed in Section 4.1. the verb phrase, Vph

can be rewritten as

-

VYph — verb |
verb + { -fror) -} |

var| rok |

{ noun |adj | verb + ~22} + -dir

Our grammar analyzes noun phrases in stages. The analysis of noun phrases is
classified into three different noun phrase levels. These levels are arranged in a
hierarchical manner according to the order of suffix combination of the head. This is .
- provided by defining a set of rules for each level of modificatinon, namely Nph, Nphl,

NF where each is defined in terms of the other.

The highest level for a2 poun phré,se is Nph. It describes possible combinations of
a noun with one of the case markers, namely nominative, accusative, dative, locative,
ablative abbreviated as cases, obj, dat, loc and abl respectively. The case markers
indicate the role' of the noun phrase designated by the verb in which it occurs. We

consider five different roles corresponding to the above listed cases. They are

subject/agent, object, destination, location and source. The constituent of a simple

noun phrase, Nph can be
- a noun phrase whose head has a case marker
- two or more noun phrases, each with a different case marker

- a null value.

Hence, Nph can be formalized recursively to handle an infinite number of noun

phrases as

Nph cem = NP oo NpRL o | Rphlcysem

The next level for ‘a noun phrase, Nph, deals with the highest level of
modification that may occur between two noun phrases, namely possessive relation,
a noun phrase whose head noun hasa genitive suffix -£z on it modifving its successor
noun phrase whose head noun has a possessive suffix - on it [17) . The structure is
represented by the following rule :

—> Nph}

Nph 1 (casek{lgcn} gen th l{caseldfgen} +poes

This rule states the requirement of a noun phrases with genitive property when one
with possessive property has been parsed. Note that this rule allows recursive

applications, it can thus parse nested possessive relations.

)

Examples:
hocanta derst ‘instructor’s course / course of the instructor

Aocanin dersinin ogrencess 'students of the instructor’s course’

Combination of two noun phrases with a conjunctive or disjunctive must he
handled at this level. Combination of two Nphls vields another Nph1 asdefined in the

following rule :
Nphl{caseM/gen)*(poss) -
Nphl {caseM/gen)+ (poss) conj thl{caseﬁ/genh(puss)

Example :

hocayt ve dersi 'the instructor and the course’

The three rules described above deals with the relations between noun phrases
and the verb. The remainder of this section is devoted to the definition of the internal
structure of noun phrases. Just to remind, the internal structure of a noun phrase
consists of a head noun or a head noun group preceded by a string of modifiers, the s¢
called premodifiers. Considering the difference in madifiability of different nounlike
words ; we introduce the third level NF. The modified head noun together with its
modifiers are considered as a noun phrase simply by adding the following rule into the
grammar

Nph 1.{ca'sel’«tl!gen)+(poss) — Hf{casehl!gedh(pnss}

Basic constituents of a noun phraée at the third level NF include
- pronouns

- question pronouns

- proper nouns bor a group of proper nouns

- noun or a group of nouns.

Although they are all nounlike words, only nouns can be preceded by modifiers. This
leads us to introduce four different options for NF as given below

Nr(caseM | gen}+{poss) —
Pronoun .. ceM | gen)+(poss) I

v qpronounc,. oM | gen}+(poss)

Ngz{caserd | gen}

(ASF | AFS | (CS) (QF) (AF)I NB(, o | gon)+(poss)

The first two options state that occurrence of a single pronoun or question pronouns is
considered as a nbun phrase. The occurrence of several proper nocuns is grouped
tngéther under the rule Ng2. These three options define the set of nounlike words that
can not take any premodifiers. The last one covers five different types of modifiers
which may precede the noun or the noun group. They are called premodifiers. The
structure of each modifier category is explained in detail later in this section. Here is
examined the position in which each occurs within another. The grammar is extended -
by putting an aption for every possible correct order of these prémndif iers. There are in
fact three options since some of them are grouped in the same option. These three

3%

different options are adjective modifiers in superlative form ASF, relative clauses in
adjective function AFS occuring singly and a sequencé consisting of comparative
modifiers €S, followed by qualitative and quantitative modifiers QF and adjective
modifiers AF. Considering the variety of possible combinations of premodifiers in the
last option, some of them may be absent in certain grammatical constructions hut the
correct order is still preserved. Thus, we have fa¢ /rrders ' how many good course’ (QF,
AF, NP), not frr Lag ders 'good how many course’ (AF, OF, NP), Sten buvek ivi not
‘good grades greater than 5 (CS, AF, NP), bul not [y Sten buyvuk not 'geod greater
than 5 grade " (CS, AF, NP) and so forth. The brace notation indicates optionality of
appearance of a constituent in that position-.y,, ' '

Examples :
Jten buvuk not, ‘the grade (that is) greater than 5,
en [¥f ders " the best course’,
ders veren hoca, "professors giving a course'
kFac I¥r ders ~ how many good course’

Abmetin notundan fazla kae ((vi) not 'how many (good) grade(s) greater
than Ahmet's grade (are there)'

Possessive compounds form the lowest level of modification. This construction
is like possessive relation; the difference is that in compounds genitive suffix -ir is
omiited from the first noun aithough possessive suffix is still attached to the second
noun. Nothing may exist between the two members of a possessive compound. Any
adjective or another modifier must core before the entire group. They are actually two
nouns that function together to make a single unit, therefore they are considered ina
separate rule Np. The rule handling possessive compounds defines the last level of

internal modification of noun phrases, and it has the following form:
Hp{casell | gen) —> Ns Ng ltcaseu | gen}+poss

Ngl denotesasiring of nounsanditis preceded by MNs, which is another string of one
Or More nouns.
Examples :

CMPEINO derss ' CMPEL00 course'

Lizik derse "the physics course’

A head can simply consists of a single noun. A nesting of an infinite number of nouns
can be-in the head provided that the last two are separated by a conjunctive or a
disjunctive. As the elements in both sides of the conjunctive as well as the disjunctive
must be identical, parsing of the nested noun necessitates two different sets of rules.
. These two sets of rules for nouns and proper nouns are Ng!, Ngnl and Ng2, Ngn2,

respectively. They have recursive patterns and they are identical in siructure.

1. i
ﬂglitaseiﬁ i gen}+ (poss} — DOVD(axeM | gen}+{pass} -
Ngnl[caseM | gen}+{poss) conj BOUR(cogel | gen)s{poss}

Ngz{caseﬁ | gen} — propernoun ., .M | gen) |

Ngnz{casem | gen) conj Propernoun o gen)

i
Ngnl{caseld | gen}+(poss) — BOUD . ceM | gen)+(poss)

-

Ngn l[caseﬂ | gen}s{poss} ° OB e | gen)+{poss}

Hgnz{caseM | gen} - propernuun{casem i gen}

Ngnz{caseld | gen) PTOPEIDIOUD . M| gen)

Examples :

Abmet Abmetin 'Ahmet's', Ahmet ve Mebméz.' Ahmet and Mehmet' 4dhmetinr ve
Mehmetin ‘Ahmet's and Mehmet's'

notders ve foca 'grade course and instructor

A specialicase of the rules Ngl and Ngal is Ns and Nsn whers the noun constituents

can have zero case marker on them, the zero case marker is denoied as cases.

{ Do
Ns —> noun casesl Nsn conj noun cases!
Nsn — noun .. | Nsn CULE. S
Examples:

CMPEIOU dersi 'the course CMEEIOU

matematik Zzik ve kimya dersleri’ mathemalics physics and chemistry courses'

40

There are four different types of premodifiers; simple adjectives , adjectives in
superlative form, qualitative and question adjectives, comparative sentences. The rules

for constructing each of these premodifier types are given in the following paragraphs.

Adjective modifiers are strings of adjectives. The following two rules AF and
ADF cover adjectives occuring singly or as an indefinitely long sequence provided that

the last two are separated by a conjunctive;
AF — adj | ADF conj AF

ADF — adj | ADF adj

Examples :
£vF ders, 'a good course'
zor ve (v ders, 'a difficult and good course’
Adjectives in superlative form are compounds consisting of the word ga

followed by an adjective. Definition oi the rule permitting only occurrence of 2 single

compound and two compounds is represented as

ASF — 2o adj | ASF conj ASF

Examples:
en Iy ders, "the bestcourse'
en zor ve en 1y ders "the most difficult and the pestcourse’

Question: adjectives, demoanstirative adjectives, and quantitative
adjectives can not cooccur in the same noun phrase. Therefore they are collected in
the single category qualadj. They may also be preceded by a superlative compound
which consists of the word ezfollowed by a quantitative adjective;

QF — (SupF) quaiadj
SupF — e¢n adjquan

Examples :
Kag ders, bu ders, ‘bow maay course, thiscourse’

en gok kag ders ‘at most how manFcourse(s)’

4]

Comparative seatences CS are embedded noun phrases that modify the head
agoun. Comparative forms are rich structurally. One way to handie them is to see
similarities between several possible constructions. Comparative sentences can be
obtained by adjoining a noun phrase to any word which has a comparative meaning.

Words which have comparative meaning include all the members of the category

- adjquan, and some of the elements in the category adj. In addition to them we

explicitly state some words that can occur in comparative constructions. They are es/Z
kadar, arasindaki We also treat any sentence consisting of a noun with the derivational

- .suffix -/ on it that adjoins a noun phrase asa comparative sentence ; -
¢S — ¢s1 | ¢S1 conj CS1

C51 — Nph_,, adjquan |
Nph,,, adj |
NpB(gar | casen) { esit | faddar| arascndaki } |

Nphcaseg noun + -4/

Examples:
Ahmetin notuna esit not ‘grade (that is) eguad i Abmets gradé
3 e arasindaks notlar ‘grades befwesn Famd 3

Sten fazla ve I0dzn az notlar 'grades (which are) grater than Fand foss than 10

Abmetadirogrenci ‘the student named Abmet

The major capability of the parser is that it can process embedded constructions
with participles suffixes -ea-~dik which correspond to relative clauses in English. In its
function, a relative clause can be the modifier-of a noun when it adjoins a noun or it
can modify the main verb of the sentence provided that the verb of the embedded clause
has a case marker other than cases. Thus, we differentiate two types of embedded

clauses that we name as adjective clauses and noun clauses.

42

Adjective clauses are embedded sentences with the case marker @ which
modify a noun, such as

ders veren hoca, "instructor who givesthe course’
ogrencinin aldigr ders ' the course thal the student takes'

Noun clauses are embedded sentences with non-null case suffix modifying a
verb. For simplicity, we enly consider noun clauses as the subject or the abject of the
sentence, such as

ders versns goster ‘show the one who LIves the course’
dgrencinin a[:ﬁgxnedib ‘what is # that the studont takes'

‘The relative clause can bhave the characteristics of an adjective or a noun
depending on the case marker of the verb. In addition to that, the relative clause itself is
a sentence. It contains a subject, a verb and all the characteristics that identify a
sentence. We can explicitly state this fact by expanding the phrase structure rules of NF

and AF, Additicn of two more rules allows the parser to process these new consistent

structures;
NF —> Nph .y Verb + (-ea|-dik} cageM

4.3. Two Different Parsings Used for the Analysis of Turkish

Sentences

Functional properties of nouns can only be detern:iined from their- suffixes.
Hence syntactical analysis of a sentence : requires morphological parsing of its nouns.
Both of these analysis are quite difficult in Turkish. In this study, the attempt is to solve
only a very limited part of these two problems.

4.3.1. Morphological Parsing

One major difference between Turkish and English is in the morphology of
words. Turkish isa suffixing language. Functions are assigned te nouns by suffization.
Therefore, a syntactic parsing necessitates morphological analysis of nounlike words
for determining their syntactic functions. Thus, we discard the derivational suffizes in
this analysis and consider only three types of inflectional suffixes, i.e. case suffixes -4
-¢, -de, -don, the possessive and génitive suffixes -7 and -z respectively and the plural
suffix -/er:Regarding the lexical representation of nouns, forms involving derivationai
suffixes are listed in the dictionary while those involving infiectional suffixes are not.
In Turkish, there are rules regulating the order of suffixes For instance, the genitive
- suffix always follows the possessive suffix or any other case suffix. Suffix order in
Turkish is as diagrammed in Figure 4.1.

gemtw‘b

———'—’"_"'—\-\-,_‘\
“rase maxkex

Figure 4.1. Suffix Order in Turkish

44

Considering two possible approaches to the actual analysis of words(18,19],
namely affix-stripping and root driven analyses, the former is more appropriate since
the morphological parsing is trivial in our case for the following two reasons. One
reason is that syntactic parsing requires recognition of a few suffixes at the end of
nounlike words, In addition to that, there is a very limited number of lexical entries. In
the affix-stripping approach, parsing processes by stripping suffixes off the word and
attempting to look up the remainder in the lexicon. Our parser proceeds from right to
left by stripping letters. A decision tree is used to split the nouns into their root and

suffix constituents. The decision algorithm is given in terms of a decision tree in Fxgure
4.2

root+suffives

,,.wf/ff
/ /

i1,0,u

~m

lecstive ,e

gentlive

JA-S

b‘«‘\g r
v

=%

:‘w
g

W&Sﬂ- i W, a Lu

aﬁ;@ufiy\ ae
6 K

: Blatin \I ol
(g SFIE B h‘”f{'."{"-.‘?-‘

n y dt vy 7

i | | dictionary
1 {word look-up)

PHSSESFTVE @

i0,0,u

le,la

[=]

- Figure 4.2. Decision Tree for Suffix Elimination

45

Taking into account letter alterations like (p,gtk) te (b.cdg), and buffer
consonant insertion <, letters of the noun are processed from right to left until a letter
which can not possibly be part of a possible suffix is reached. Then the remaining part
is searched in the dictionary as the root word. The decision tree consists of three levels,
each level corresponding to one type of suffix as indicated on each branch. A correctly

spelled noun whose final letter is not ane of ["i","¢","u","0","n","a","e","r"] must exist in

root form and is directly searched in the dictionary, represented with a downward arrow
—*. Depending on the last letter of the word, suffix stripping process branches te

different nodes of the tree. Fach last node of the tree’is a dictionary loekup. Far
‘instance a noun with the last letter r will only be checked for plural praperty. Geoing
down in the tree, the parser attempts to match the last two leiters of the word with /e or
/a (remaining part of the plufal suffix /e +r or fa +r). When the match holds the
rest of the noun must be in the root form, and it is looked up in the dictionary. When the
maich does not hold, the parser backtracks, concatenates the two splitied parts of the
word and looks in the dictionary once more.

.

As another example the noun ders+ i+ a7 ‘his course’ will branch to the
right nodes till the last one and the left node in the last decision point will be followed
since a noun such as Ze r does not exist in Turkish; dictionary lookup for the root form
ders ‘course’ will be satisfied. Qur decision tree does not necessitate more than {two
dictionary lookups for any noun in Turkish and the average is around one lookup per

noun,

| 4.3.2. Syntactic Parsing

The top-down parsing method is used in processing the natural language queries. -
The parsing is represented with a parse tree. Construction of the tree is guided by the
types of the modification which can be determined from the type of the word or from its
suffixes if it is a noun. Before going into the detail of how parsing proceeds, let us
explain the order in which rules are expanded since it is different than the usual way.
Since Turkish isa SOV (Subject Object Verb) ordered language, the verb constituent is
at the end of any correct Turkish sentence. In addition to that, the head noun and the
verh of an embedded clause are always at the end of each phrase. The last constituent
holds lots of information about the structure of the sentence and of each phrase.
Therefore, it is more suitable to start parsing from the last constituent of the sentence.

In the previous section, the right-hand side of the rule defines the ordering of sentence

46

constituents from left to right. During the parsing process, expansion of the rule begins

from its last constituent and continues towards the left.

We start with the major sentence S and the tree is expanded by continualiy
replacing the right-hand side of the current rule with one of the possible left-hand
sides unti! we reach the first constituent of the phrase matched as the first element of
- the . rule. Information gained in the morphelogical parser has been propagated up on-
the tree and it confirms the correctness of the selection.

Using the rules in our grammar given in Appendix A and the lexicon from
Appendix - D, .we can rillustrate how top-down parser constructs a structural -

representation of the following simple sentence

kim kimya veriror
who chemistry is-giving

who is giving chemistry

Parsing begins by expanding the major sentence § which will be replaced with Hph
Vph where Vph is further expanded to verb + {iyor},which can be matched with the
fast constituent of the input sentence, ver + fFor since ver is in the category verb.
Having found Vph, now our parser must complete the sequence Nph Vph in the
definition of S, so it looks for Nph, which is replaced by

Nph Nphi

caseM caseN

and continuing in the same manner the following replacements are done for Nphl

Nphl —> NF

caseN caseiN
NF caseN — NpcaseN
Npcasen > N8loien

Finally, the following replacement is done.

Ngl, —> opoun (kimya)

Noun is aterminal symbol, so it may be matched against the word Limrz.

Nph in the second rule is again replaced by Nphl. £7Zm 'who' baving the

category gpronoun is parsed by rewritting NF with

NF, —> gpronoun (kim)

Figure 4.3. shows the parse tree for our example sentence.

s
&
yd

VAN
Nph, j

Nphl, Nphilg
| |
NE, NE,
l
Nfo
Ngi,
I

Jpronou - noun

|

kim kimysa

Figure 4.3. Parse tree for &/m &imya veriFor 'who isgiviag chemistry'

Vel

vert +iyor

verivor

Nph, — Nph, Nphl,
Nph, — Nphi,
Nphi,—> NE,

NE, — Npo

HPO — Ngla

Semantically related words are grouped on the same branch of the tree, Levels

correspond to the modification levels described in the previous sections. As another

example consider the analysis of the following sentence which yields the parse tree

shown in Figure 4.4. Notice that each branch of the tree shows different tvpes of

modificaticn.

hangl hoca kac Ivi kimya ve [izik notu verfror.
which instructor how-many good chemistry and physics grade(s) is-giving

which instructor is giving how many good chemistry and physics grades

4%

/ ""'-n..__‘__
T
— H‘"‘b—____ ,
Hph .
/ : * Vph
Hg{ho
Nphl, H;;hlo
I
HPO I'H:D
QF Np, GQF AF p,
] O
Hgl, /Hs Hgiposs
Nen
qualadj noun qualadj edi woun comj noun naiun verb {+ iyor
hangi hoca keg ivi kimys ve [fizik now veriyor

Figure 4.4. Parse tree of bLangs hoca kac [vi kimya ve fizik notv veriyor

‘which instructor is giving how many chemistry and physics grade(s)’

It begins parsing by expanding S into Nph and Vph. ¥Yph is matched to
Ver+iyosr as expiained in the previous example. The noun phrase Nph is replaced by
Nph Nphl, and Nphl is rewritten by NF. NF is in turan replaced by CS OF AF Np
where Np parsesthe noun group Ngi, together with their relevant noun gualifiers Ns,
which must immediately precede the noun group. AF and QF parse a group of one or
more adjective qualifiers and a quantity qualifier respectively. €S is skipped since it is
optional and no comparative sentence exists. Similarly the last two constituents of the
sentence make another ncun phrase Nphl which is obtained by replacing the
remaining Nph by Npht.

As our parser proceeds from left to right, the verb of the embedded sentence can
be easily recognized since it has a special form provided by the suffix -en -d7&. The
embedded noun phrase whose verb is either in adjective funclion, denoted as AFS, or in
noun function, denoted as NF, is parsed and the embedded noun phrase is considered as
the modifier of the head noun. Figure 45. gives an example where the embedded noun
phrase is Ahmete ders veren 'who teaches Ahmet' is the modifier of the noun Auvcalary

‘instructors’.

49

’ (s} 71
Hzobj
’/\ .h"""--___
~
N
,
Hph
/ _\ -
Mgt
Nph 4 Hehl, obj
. : verhten noun
Ahmete ders Veren hocalart

Figure 4.5. Parse tree for the embedded adjective clause dbhmete ders veren hocalar:

‘the instruclors who teach Ahmet’ : -

The following three examples given in Figures 46. 47. and 4.8. show the parse
tree constructions for different types of sentences. The first example includes three
modification levels that our parser distinguishes ie. possessive relation, adjective
modifiers and possessive coxﬁpounds. Consider the following sentence which involves all
of them,
iyf kimya Aocalarinin dersleriar goster
good chemistry instructors courses show
show the courses of the good chemistry instructors

The noun modifier £impa chemistry’ modifies the noun group that consisis of the
single noun foca 'instructor’, the possessive compound is parsed in Nppogs. They form -
anoun fofm NF with the simple adjective modifier s/¥7 'good’ . The modified noun phrase
Nphlgen with the genitive property on the head noun is further combined with the
noun phrase Nphlgggg. opj Which parsed the noun wersferins courses, into Nphlgpj.

Nphigpj constitutes part of the Nphopj Which isin turn part of the the major sentence.

50

thoibj 5
l Yph
thlobj
..
e
™
Nphil
! gen H!phigmmm
NE .\
s Fposshabj
Np Np
pogetobi
Ng Ipozs+ob§
| | gen +pozg
. non o L. verb
adj noun, noun gon +posz ‘ puegzobi

ivi kimya hocslerinin dersierini gister

Figure 4.6. Parse tree for 7v/ kEimypa hocalarinin derslerini goster ‘shaw the

courses of the good chemistry instructors’

In Figure 4.7. there is an example of a sentence that consists of an embedded

noun phrase which includes a comparative sentence,

Adbmetin notundan fazla not alan ogrencilers go-rter
Ahmet's grade greater-than grade who-get students show

show the students who get a grade greater than Ahmet's grade

The comparative noun phrase dhmetin notundan fazla 'greater than Ahmet's grade’ is
parsed in CS. It isthe modifier of the noun sof ‘grade’. They form a noun phrase which
then in turn forms an embedded clause with the adjective in verb form ASF, afan 'who
gets'.'The embedded clause is, in fact, the modifier for the noun dgrencs and they form

the noun phrase Nphl.

g
""'-.
/ -"""'-
=
H]‘i>h o Jph
Nplhlﬂbi
14 oij
,.a-""”d#--.-h""-...
AFS Hp
l obj -
3
Hph o ™
I-Ip‘hig
; WE,
/ \\\
S‘IS I'Ipa
CS}
/ ey
Np‘h sb ™ ‘ Hglobj-
Hzi
HP}E}E& 2lp
Nphi Hph
P gan p. ;:tloss +ab

adj noun vert+an poun | verb

o

Ahmetin notundsn fazlanot alan ofrencileri gbster

Figure 4.7. Parse tree for Abmetin notundan fazla not alan ogrencilers goster

'show the students who geta grade greater than Ahmet's grade’

Y

In Figure 4.8, the last example shows the parse tree of the sentence that consists
of a group of noun modifiers and a question adjective .
Lo cok kag matemalik fizik ve kimya notu var

At most how many mathematics physics and ciremisiry grades are-there

At most how many mathematics physics and chemistry grades are there

In this example a sequence of noun modifiers is parsed in Ns by expanding it with the
option Nsm, and QF parses the question adjective far 'how many’ together with

intensifier compound ea gof'at most'.

- S\
Nph, Vph
|
Nphie
|
NF,

0
1}3 \
~ /"
Ngl
Supk : J,r' : poss

(11

adjquan qualadj noun nnun conj noun houn verb
1

| | i
kag matemank Imk ve kimva notu var

Figure 4.8. Parse tree for ea ¢of &ay matematik fizik ve &imya ootu var Al

most, how many mathematics physics and chemistry grade(s) are there’

V. QUERY UNDERSTANDING AND DECLARATIVE QUERY GENERATION

The previous chapter described a formalism for different types of NLI queries
which is generally based on the modification relation between constituents. Considering
the big difference between natural language sentences and expressions in a declarative
query language, it is quite difficult to directly iranslate the NLI query into its
declarative. equivalent, Therefore, these queries will be represented in a meaning
representation language, namely Wallace's D&Q. In the first two sections of this chapter,
we briefly summarize the formal D&Q notation as given by Wallace and some syntactical
changes made to it. The next section concentrates on the interpretation of different
modification relations discussed in the previous chapter in D&Q. Finally, conversion to a

database de péndent declarative language is discussed.

5.1. Wallace's D & Q Notation

In most of the early natural language database interfaces, parsing and meaning
representation are handled by twe different modules. In our model meaning
representation is built up while parsing natural language queries. An extended form of
D&0 meaning representation language is found to be appropriate to represent formal
queries. D&Q is powerful enough to represent every valid query and has a feature that is
not normally available in declarative query languages but necessary in representing
the meaning of natural language queries. They are the quantifier hierarchy feature,
formal determiners.

D& representation divides sentences into referring phrases, and gqualifying
phrases which are called Descriptions and Qualifiers, in other words D and Q
respectively. The simplest case for a description in Wallace's notation is a simple
constant, such as AHMET, CMPE100.

4

On the other hand, qualifiers are predicate calculus formulas where the
predicate represents the relation name, and predicate terms represent selections. A
selection is a formula composed of an attribute name, a comparison cperator, and a
value. For instance, a qualifier for the relation stwdent may look like

student (name ='Ahmet’, dept="chemistry')
- After having transformed the qualifier into the following Prelog goal
student(_, ‘Ahmet’, ‘chemistry’, _).

the later can he evaluated on a database of Prolog facts with each fact representing a

tuple of the relation.
To return a value from a simple qualifier , 2 variable can be used. For instance

student (name =X, dept = ‘chemistry')

-

will unify X to the names of the students whose department is chemisiry.

To represent each alternative meaning qualifiers can be combined with
logical operators nof & (equivalentof "and") and or For instance

the name of the student whose department is met chemistry and e
CMPEI00 course and the students whose pname is Ahmed will be represented in
D&Q respectively as

not (student (name =X,dept = chemistry')),
course (code = 'CMPE100') & student (name = 'Ahmet’)

Other than being a simple constant, a description can also include a variable.
Its syntax is

determiner-count-qual{< variable »><qualifier>)

The determiner can be tbe, anF or what depending on whether the tuple in question
is defined or not. Count is an integer number referring to the number of tuples. 4o
or what referto any group of tuples with one or more elements, where in case of whas
referents are undetermined. 74 e creates a definite description which refers to a unique
group of tuples. ‘

3

For instance

the student 'ﬂumber of the student named dhmet |
will be expressed as

the-1-qual(X, student(num =%, name =Ahmet)).

This description refers to the tuple in the relation studené where name has the value
Abhmet. ‘

A description can be joined with another description as well as with a qualifier.
Selections of a qualifier may contain a variable, so the selection becomes a function of
that variable. Descriptions and qualifiers can then be joined via these variables to
represent complex queries. The syntax of two possible combinations is given helow.

A qualifier can be defined as
«description> is qual (<variable >,;q_ualif1er>)
and the definition of the description is

«description> is funct(<variable > «escription>)

5.2. Changes Made in the Original Syntax of D&Q

-~ The D&Q syntax given in Appendix B.1. is used for meaning representation of
natural language queries. In addition to that, D& formulas are matched against the
database to retrieve tuples satisfying it. In our model, the syntax of D&Q will be used to
express the meaning of the natural language queries. Then, the formula will be
converted into a declarative database language. It is necessary to make some changes in
the original syntax of D&Q so that the syntax of the representation language is closer to

the syntax of the declarative database languages:

36

1) We allow the usage of an attribute more than once in a qualifier, i.e.

gradelist(gradé =X, grade »5)

because we need such a construction. Consider the phrase

Grades greater than 5

which can be represented in our syntax as

any-N-qual (X, gradelist(grade=X, grade »5))

The equivalent in Wallace's notation is gradelist(grade > 5) which is transformed to a-

Prolog clause. However, it is difficult to convert such a construction inte a declarative

database query since it does not include any variable.

Z) A selection in Wallace's notation has a strict form, which is

<attribute> < comparison > < variable>

-~

Therefore a selection like grode » 7 where the last component is not a variable as in the
above example, or & 27, where first component is a variable, are not allowed. In our
model we change the D&Q syntax such that it accepts the ahove structures. That is, the
syntax will accept either constant values or variables for either side of the comparison

aperator.

3) Consider the student relation. Suppose we want to list student names and student
-numbers. This is not possible in D&Q as described by Wallace unless we construct two

descriptions on the same relation with different return values, ie.

what-N-qual(X student(name=X))
what-N-qual(Y,student(num=Y)).

We may combine these two descriptions into a single one by modifying the structure of
the description. We can add a field display field, as we call it, which contains a list of
variables whose values will be displayed. In our new syntax the above description will
look like

What—N—qual(X,[X,Y],5tudent(name=X,num=Y)).

whose equivalent in a declarative database language is

SELECT student.name , student. num

4) in the interpretation of the formal parameters, a2y and waas refer to any group
of tuples with one or more elements, where in case of what referents are undetermined,
The difference between what and asy is not important since they have the same
semantic. The intention in using two different determiners is for efficiency reasons in
implementing the evaluation of the formula against the database. Since our study does
not involve the evaluation of the formula, only f#e and what are used in our notation

to refer to definite and indefinite tuples.

5.3. Internal Query Generation

After having briefly introduced the syntax of D&Q and the changes we made to it,
we discuss in the following section how different modifications that we introduced in

the previous chapter can be represented in extended D&Q.

5.3.1. Basic Algorithm and Simple Sentences

Remember that a sentence is treated as a sequence of related words where waords
are classified in different categories. In interpreting the query, our. language
processing components categorize words in three different groups. The query in natural
language is then viewed as a collection of constituents of the following three typesin a
syntacticaily caorrect order. The natural language query far an application will
comprise the following : ’

- pames that can map on entity/relationships or atiribute names. Entity,
relationships and attribute names are words that appear in the conceptual

database schema and their synonyms.

- content words; these are words that mean something on their own. Possibly a
proper name which is a value of some relation or one of its attributes e.g. 4&mee,
CMPELIO0

- function words; these words have special meanings in the sentence. For

example a word whose interpretation is a mathematical function such as vrta/ama

‘average saFs count’: question pronouns or question adjectives such as £a¢ how
many', bangsr which'.

In top-down parsing as described in the previous chapter, the major sentence §
is extended by continually replacing the right-hand side by a possible left-hand side.
Query generation is just the reverse process of paréing. In query generation, each noun
phrase is interpreted as a reference to an entity, a description which involves the entity
name as the predicate of its qualifier. Interactions between each noun phrase of the
query is interpreted either by extending the current description or hy combining it

with an existing description. The algorithm is as follows:

Find the word (head noun),
If it isan entitv name or relationship name
then create its description ,
collect all its relevant internal modifiers,
interpret these modifiers by extending the description
otherwise create the descriplion ¢! the entity or relationship that involves
that word
into the memory

Interpret the interaction of the current description and the previous ones if

there existany

To exhibit how a natural language query can be represented in D&Q on the database
described in Appendix C, consider the following simple query whose parse tree is given
in Figure 5.1

kimya derslerini goster

show the chemistry courses

39

H‘Phox,j Yph 5—3 Hph Vph
1*111!110}J].
H‘Fobj.
Np
ohi
i3
™
" |
Hs Niglooss vob; Hp — 3 Hgfppp Hs
noun noun verd

kimya derslerini gister

Figure 5.1. Parse tree for £imypa dersierins goster show the chemistry courses’

After having parsed the word ders 'course’, which is found to be a eatity name, the
guery generator partof the language processor will create the following description
whose gualifier is ders

the-N-qual (X,[], ders (}).

Next the parser proceeds to parse the preceding word £Limra, ‘chemistry’, which is a

. noun modifier for the word ders using

Hp _} Ns Hglposs+0bj

kimya can simply be mapped onto a particular attribute of the eniity ders and the
qualifier ders will be extended with the addition of the selection &/ = £dmyr2 " name =

chemistry'

the -1-qual (X [], ders (ad = kimya)).
Finally. the verb goster show' will update the description by changing the determiner
the to what In addition to that, the identifying attribute of the entity, key field, is

bound to the description variable X which is in the display field. The final

representation of our query will be expressed in D & Q as follows;

| what-N-qual (X,[X], ders(kod=X ad=kimya}).

While updating the qualifier dors it is necessary to select the relevant attribute
of the file ders To deal with the problem of attribute selection, each word in the lexicon
has class knowledge associated with it. That is to say, our parser and query generator
distinguish between words not only syntactically but semantically as well. We use
four different classes in our example database; person, item, number, and location.
For instance Aoca 'instructor’ and ogrencs'student’ belong to class persen, whereas
ders belongs to item and no/ grade’ belongs to nember . Associating a domain value
to a question proncun simplifies ambiguities as well. Consider the following twa

sentences,

kim kac aliyor 'who istaking how many’

kim ne altpor ‘'who istaking what'

It is possible to distinguish between the meaningé of these sentences since £y 'how
many' and ze'what' belong to classes number and item respectively. Similarly &7m
"who' can be interpreted as fangs dgrencs 'which student’ since 6grenci belongs to
class person to which £7m also belongs.

The conceptual database schema has a class a value associated with each attribute
of a relation. For example the attributes of the entity Jers ‘course’ and their

corresponding class values are as follows;

kod ‘code’ number
ad ‘name’ item

bolum 'department’ location
hocano C'instructor's id’ number

The interaction between relation name and noun modifiers is worked out on the
basis of class knowledge. The class value of the word £4mra ‘chemistry' is item, and it
can only match with the second attribute, hence Zr/mra is taken as the value of
attribute a¢ of the entity ¢ers When the class value maiches more than one atiribute
class, the first attribute name is selected. The user may be asked to clarify the situation

in order not to make a wrong decision.

All the internal modifiers extend the current description. The foliowing
pabagmphs explain the interpretations of the three types of internal modifiers, ie.

adjective modifiers, question adjectives and comparative sentences.

61

Consider the following sentence which includes the adjective qualifier /37 good'

and a question adjective Aaags which',

hangl (¥f kimya dersfers var 'which good chemistry courses are there’

After having interpreted the noun modifier £Limra the following description
has been created;

the -1-qual (X[}, ders (ad = kimya)).

Remember that the meaning of /7 ders 'good course’ is defined in the semantic
- definitions dictionary as a ders 'course’ with Aocano = /127¢ 'instructor's id = 1234, the .
pa.rse:i~ will refer to the special dictionary to get the meaning of /y/ ‘good as the
modifier of ders and it will extend the description with includes the qualifier ders by

inserting the selection focano = /1234 which then yields the following description,

the-1-qual (X,1], ders (ad = kimya, hocano = 1234))

Function words are treated in the same way. Different parts of the description are
modified depending on the semantic of the function ward. To illustrate that, consider

the same sentence and the following description of ders;

the-1-qual (X,[] , ders (ad = kimya, hocanc = 1234)}

The question adjective Aaags 'which' modifying the word ders 'course’ will replace the
determiner £A¢ and the count / with whas and N respectively and insert the key
field variable X of ders into the display field to vield

what-N-gual (X, [X], ders (kod=X, ad = kimya, hocano = 1234}}

On the other hand, the interpretation of the guestion pronoun fa¢’ how many' in the
noun phrase far ders ' how many coursels) wiil be toinsert the "count” function cnt

into the description to vield

what-N-qual (X, [ent(X)], ders (kod=X, ad = kimya, hocano = 1234))

Mathematical functions that can be used in the representation and their symbols are
cnt, tot, max, min, avg for count, ifotal, maximum, minimum and average

respectively.

Comparative sentences comprise a word with comparative meaning and a noun
phrase. Therefore, comparative sentencesare treated as a pair consisting of a value and

a comparison operator. The word at the end of the comparative sentence determines the

b2

operator. Asa simple example consider comparative sentence jden cok 'greater than 5
in the phrase JSden ¢ok notlar 'grades greater than 5. Assume that fLarse
'stud_course’, which includes sof 'grade’ as eone its attributes, has the following

description;

the-1-qual (%, [l karne ()}

Its interpretation is to add the selection nof » Finto the gualifier farwe 'stud_course’
which then yields

the-1-qual (X, [] , karne (not>5))

The comparison operator requires identical elements on both sides. Notice that saws
‘grade’ hasa class value number which can easily be compared with the numeric value
7. A tricky case may appear when the comparative sentence modifies a noun from a
different class. In such cases, the count is taken into account simply by applying the
mathematical function ent.

5.3.2. Relations

Te handle relations between two noun phrases, it is necessary to combine
descriptions. Fortunately, descriptions can be combined in D& with is funci or is
qual.

If there are two noun phrases with interpretation Descl and DescZ having ths
formats, the-N2-qual{X1,Ds1,Quall) and the-N2-qual(X2,DsZ,Qual2} respectively, then the
overall interpretation will be

the-N2-qual(X1,Dsl Ouall) is qual(Y the-N2-qual(%2 DsZ Qual2))

One of the selections of the qualifier Qual2 contains the variable Y assigned to the field

with which the entities associated with Quall and QualZ can be joined.

63

It is quite possihle to have the relationship file to serve in a sense to connect the
other two entity files together. Assuming that Descl and Desc? are the two basic
- descriptions, and Desc3 is the relationshipsfile, the general imérpretation will be in the

form
Descl is qual (Y, Desc3 is qual (Z, Desc2))
where interaction between two descriptions is provided by two variablesX and Z.

There are two possible relations that may occur hetween two noun phrases. Two

noun phrases are either related over the verb or they are in a pnssessive relation.

For the case of relatinn over the verb two noun phrases may modify each
other over the verb, The type of the modification is distinguished from the verb. The
relation that we express in D&Q is susject-object relation. It is expressed as the join
of two entities,

Consider the natural language query

hangr Boca CMPEIUG dersind veriror
‘which instructor is giving the course CMPE100",

Asdiagrammed in Figure 3.2. dess course’ with the case marker obsecisveis the phrect
and boca'instructor’ with case marker @ isthe sebsect of the sentence. The verb of
the phrase ver 'give' can take dersand hoca as its vbject and subject , respectitively,
We can express this relation by jeining the entity files hocaand ders. Hoca becomes
the description of ders which can be interpreted with is qual qualifiers.

what-1-qual(Y,[Y] hocalhocano=Y)) is qual{A,
the-1-qual(X,[] ders(ad=CMPE100 hocano=4A)))
For the case of possessive relation, consider the entities ders 'course’ and
hoca instructor’ and the possessive relation

focanin derss ‘course of the instructor’.

This relation will be expressed as
the-1-qual(Y [],hoca (hocano=Y))) is gqual(A,
the-1-qual(X,{},ders(kod=X hocano=A)))

o4

The order of the relation is important in expressing possessive relations, because the
_noun on the right is qualified by its predecessor. When the relation, dersin hocass

‘the instructor of the course’ is to be formalized. the expression wonld look like
the-1-qual(X,[],ders(hocano=X)) is qual (A,
the-1-qual(A [l ders(hocano=A)))
In our example database ders 'student’ and vgrepcs ‘student are iwo entity files that

- may be related over the relationship file farze 'stud_course’. The D&Q interpretation of
. the possessive relation = T

dersin ogrenciss 'the student of the course’

is thus
the-1-qual(Y], ders(kod=Y)) is qual(C,
the-1-qual(Z,[], karne(num=7 kod=C)) is quat(B,

the-1-qual(B,[],0grenci(num=B))))

For example
ogrencinin dersinin hocase 'the instructor of the course of the student’
the nested possessive relation can be expressed as foﬁows keeping possessives in correct
arder,
the-1-qual(X,[l,6grencilnum=X)) is quat{A,
the-1-qual(Y[], karne(num=A kod-=Y)) is qual{B,
the-1-qual(Z,[], ders(kod=B,hocano=Z)}) is qual{C,
the-1-qual(C,[],hoca (hocano=C)))})

5.3.3. Attribute Names of Entities

In the previous examples, all constituents were entity names. They can easily be
combined without any complication. However, when an atiribute is encountered it can
be represented in the formal description of the entity if the attribute name is unique in

the database. OQur generator keeps the attribute name in the memory until a possessive

relation isencountered with the attribute name appearing as one of the constituents.

Consider the {ollowing sentence
dersierin adlarins goster show the names of the courses’

After having parsed the word ders ‘course' , the possessive relation between dess and a0/
napme’ can be interpreted. The query generator defines the description of ders as

follows,

the-1-qual{¥,{] ders(ad=X))

However, in interpreting the query

derslerin notlarins goster show the grades of the courses’
ot 'grade' is not an attribute of the relation of Larne 'stud_course’, and it is unique.

The query generator defines the description of farme as
the-1-qual(Z,[lkarne (not=X))
To interpret the relation £Larne may be joined with dees Having the Lurge description
with #of we can now express the rela;ion between Larneand dersas the followin
the-N-qual(Z,]ders(kod=Z) is qual (Y,
what-N-qual(Y,[X]karne (kod=Y, not=X})

5.3.4. Conient Words and Question Pronoups

Remember that a content word is a proper name which is a value of some
relation or one of its attributes e.g. Asrmet, CHMPEIOU. The way of handling conient
words which function as noun modifiers has been explained before. More sophisiicated
cases may occur, for instance, a content word may be the first constitugnt of the

possessive relation. An example of this is
CMPEIOOun hocast 'the instructor of CMPE109

S
Th

.’L‘

description of Aoca 'instructor’ is already in the database. When the parser needs to
relate the word CHPF700 having the possessive property with the word Aeca, it should
determine the appropriate relation name for the latier. The dlcuona'" is looked up for
this. The dictionary contains the following information about the [unctional

he verh ver 'give 3 courss,

L&

ips hetwsen possjble ohiec

I

-4
2

frasiy
o

of t

,~,..

relations

m

4

66

(ver ders object)
(ver not object)
(ver ogrenci dative)
(ver hoca subject)

- where the second constituent appears as the subject with . case marker @. CHMPEIGO
- belongs to the same domain as ders ‘course' which is in subjeci-pbject relationship with
Loca:Thus, Aoca can be interpreted as the subject of the action ver whose object is
- CMPE100. After creating the following description for ders

~the-1-qual(%,[], ders())

the resolution of the possessive relation is reduced to a simple combination of two

relations Aoca and ders.

Question pronouns are handled exactly in the same way. Consider the following

sentence with the question pronoun £7m'who’,

kim CMPEI00 alryor ‘who is taking CMPE100 o
The pronoun £/m will be understoond as the subject of the verb a/'take’ after refering to
our semantic relationships dictionary. dgrencs 'student’ which is the subject of the

verb, will replace £/7m . Hence the above query will be reduced to the simple relation of

ogrenci ders The only difference is that Jgrencs has to be displayed.
Similarly the following query
£im npe alryor'who istaking what'
Will be treated as odrencs ders relation where both constituents should be displayed.

“ The other two constructs that may be interpreted by our formal query generator

- are two forms of participles. They are treated as possessive relations. In fact
hocanin verdrgsl ders'the course given by the instructor’, and

ders veren hoca'the instructor who gives a course'

have the same semantics as
hocanin derss 'the course of the instructor’, and

dersin Aocasr 'instructor of the course’

The order of the subject-object relation, which is the most impertant semantic cencept,

is also preserved in possessive relations.
In handling noun relative clauses, the referent of the participle is found in
‘semantic relationship dictionary. For instance

focanin verdigins (that is) given by the instructor’

is converted to

hocanin verdigs ders 'the course given by the instructor'

‘since verdigins has an case marker objectrve and the first item with: of/ect function
found in semantic relationships dictionary is ers ‘course’ for the verb ver 'give'.

The interpretation of the latter is already discussed.

5.3.5. More Specific Cases

Consider the following sentence

kimya ve f1zik derslerins goster'show the chemistry and physics courses’.

Although £/imyave fizi& 'chemistry and physics' modify the head noun ers 'course'
with the conjunctive ve between them, no reference to o2rs can be found satisfving
kimya and fizik at the same time. We can express this in terms of two different

modifiers connected with &, where the symbol & denotes the connsctive "and" to vield
what-N-qual(X [X] ders (kod=X, ad=kimya)) & what-N-qual(Y [Y] ders(kod-Y, ad=fizik)}

‘Alternatively, kimya and fizik can be considered as alternative values of the
function which contains #4 'name' as its constant parameter. In this case, the two
'descripticns kimya and fizik will be combined as kimya & fizik which in turn is

combined with ders description via is functto give

kimya & fizik is funct(Y what-N-qual(X ders (kod=K,ad=Y)))

Sentences may contain noun phrases with case value dative (-e hali) or case
value ablative (-den hali). They have to be converted into a canonical form which
contains the noun phrase as its object or subject. This conversion is accomplished by

consulting the semantic relationships dictionary.

68

In the sentence,
Hocadan ders alan ogrenciler 'students who take courses from the iostructor

the word Aocz ‘instructor’ with the case marker ablative modifies the verb a/ 'take’
whose object is ders'course’. Subject-object relationship between Aoca and obrs is
defined in the dictionary under the verb ver 'give'. Therefors Aocadan is transformed

to Aocanin verdigl The new form of the above sentence is

hocanin verdigi ders/alan trenciler 'students who take e wourse given By the

msiructor’

and it is reduced to two simple relations, and which can be represented as explained

previously.

5.4. A Full Example of Represeniation Process

Let us illustrate query understanding with the example whose parse tree is
shown in Figure 5.2. Numbers show the sequence in which descriptions are created or

modified. After having parsed the noun ders ‘course’, the description of Jers (1)
the-1-qual (X,[], ders ())

is created. The noun qualifier CHPEI00 will be understood as the value of the atiribute

ad ‘name’ for ders andthe description will be updated (2} as '

the-1-qual (X,[], ders (ad=CMPE100))

Parsing foca 'instructor’ will produce its description (3) as
the-1-qual (Y.[], hoca ())
and the question adjective Zazgr 'which' will modify #oczz by changing the determiner

the to what and it will put the £er fleld of fivca focane instructor's id', into the

display field(4). Thus the description will be

what-N-qual (Y [Y}, hoca{ hocano=Y))

.,
//’i"ﬁﬂ\\ :
Hphy, @ Hph
lehi H%;hg ;
i 0 [obi
A
QF ® Np,
| SR ok
// Y
Ny Ns @ B p0z2 4 obj
® o

. qualad] mim mltm m,un

hangi hoca (MPEIOD dersini veriyor

Pigure 5.2. The parse tree for Aangi hoca CMPEI00 dersini verivor which

instructor is giving the course CMPE10('

verb

69

The last step in translation (3) is to set the relation hetween foca and ders. Thev will

be combined with is qual toyield,

what-1-qual(Y,[Y], hoca(hocano=Y)) is qual(A,

the-1-qual(X,[].ders(ad=CMPE100,hocano=A)))

5.5. Conversion to a2 Declarative Language

lising the previopsly described interpretations, the analysis of the Turkish query
fangs hocalar CHPEICO dersinf veriyor
would give the following D&Q interpretation
what-1-qual(¥,[¥] hecalhocano-Y)) is Quai(ﬁ,
the-1-qual(X,[],ders(ad=CMPE100,hocanc=4A)))
The next step is to convert this representation to an expression in a declarative query
language. The language used is SQL. Its structure consists of a set of display values and

file names and a list of logical expressions connected with reserved words SELECT, FROM
and WHERE. Display valuesare in the form of

filename . fieldname
and Ingical expressions are
file name.fieldname comparison-operaior file name.fieidname / constant

The converter relates each D&Q formula to a set of display values and a list of
logical expressions. D&U expressions are transformed into the declarative language by
applying a set of rules. There are mainly two different groups of rules, each converting
a different part of the whole expression; one for qualifiers and one lor descriptiins: The
former convertis selections in qualifiers into a list of logical expressions where each

expression is of the form given above. For instance

...ders(.., ad=CMPE100}..
is converted to ders.ad = CMPE100

For selections containing a variable the value of the variable is substituted if it is

bound, otherwise it is bound to this value. In converting

hoca (hocano=Y)

Y will get its value as Aoca. hocane to be used for later references.

Description converter deals with display values. After having all the selections
in the qualifier converted, values of variables in the display field are added into the sei
of display values for description whose determiner is whal ie. Aocahocano in our
example.

Combined descriptions are converted by adding a join expression into the list of

logical expressions. For instance is qual is converted by adding X=Y, more specifically

ders.hocano =hoca hocano
Our example query wili then look like

SELECT hocano
FROM hoca
WHERE

ders.ad= CMPE100

hoca.hocaneo =ders.hocano

The declarative query obtained after the first step is still in user’s view. It will
then be converted to actual fields specified in the domain database mapping table. This

transformation is a simple mapping. Using the entries given below,
(hoca, hocano, instructor, instr_no) hoca . hocano -->instructor . instr_no
{ders, ad, course, c_name) ders. ad --> course . c_name

(ders, hocano, course, instr_no) ders. hocano --> course . instr_no
Database dependent representation of our example guery is then,

SELECT instr_no
FROM instructor -
WHERE
course.c_name = CMPE100

instructor.inste_no = course.instr_no

VI. IMPLEMENTATION

Our model has been implemented on a IBM compatible PC AT with 640 KB memory.
Turbo Prolog 2.0 {20,22] is used as the implementation language. The system ruas as five
different modules, the mofphuiogical parser, the syntactic parser , the query generator,
~ the spelling corrector and the translator,

Modules are combined into a single, stand-alone project MYTEZ using the modular
programming feature of Turbo Prolog. Modules communicate with each other using the
predicates in global predicates and global database sections. All of the five modules ahove

have been implemented.

Below we give a brief overview of the clauses used in implementing five modules.

and discuss the main issues in design together with the knowledge source storage.

6.1. Morphological Parser

The morphological parser contains one rule for each node of the decision tree
given in Figure 4.2. The module is called with the clause C_W which gets the noun o be
parsed and returns its properties. There can be four properties associated with a nous.
We use a parameter for each type of property rather than a single parameter wiih
different values for each possible combination of the properties These properties are its-
{ype, its domain, its genitive property and its case value, represented as T, D, Fp, and
Fir, respectively. Values for these parameters are strings consisting of one or two
characters. For'instance T can he bound to "n" for a common noun, to "p" fora pronons,
to "qp" for a question pronoun, or Fh can have the values "g","0","t","1","f","t1" denoting
different case properties such as subject, object, dative, locative, ablative and geniteve,

respectively

73

The structure of the predicate C_W is
C_W(¥,RV.D T Fp, Fh)

The iaput parameter W supplies the noun to be parsed to C_W. It calls the root node
clause c©_n to check if the ending of the noun in question corresponds to one of the

possible endings of suffixes.

Each level of the tree is represented by a group of more than one clause with the
same name, differentiated with their first constant paramsters. Parameters correspond
to the possible end letters, e.g. i,u,n,r.a,70r e for the first level-For instance, the clause
for the first level is c_nf and it has the following structure:

c_nf("i", To, L, RW, D, Typ, Fp. “0"):-
ch_rest("y", To, L, RW, D, Typ, Fp).

This clause of the c_nf is satisfied when the last letter of the noun is "i" , and it will
bound the last parameter Fh to "o", the objective case. Clauses corresponding to other
levels are ch_rest, ch_costl, ch_rest2, and ch_rest3. The predicate, ch_rest2
bounds Fp to "t2" if the noun has the possessive property. The first parameter of the last
clause is unbound, and it does dictionary look up at that level when no suffix elimination

is no longer possible .

Dictionary look up for a noun is done with predicate ch_wogrd. It checks for the
plurality , and calls the predicate find _noun which returnsits type Typ, itsdomain D,

and the canonical form RW of the word for synonyms.

6.2. Syntactic Parser

Our syntactic parser is written as a set of production rules Fach rule accepts a
list of words, parses head words in the list, and returns the remaining part of the list

together with the information gained at this part of the parsing process.

The verb phrase in our major rule, for instance, is written in Prolog as

Vph(IVIL] ,IV], L) :- verb(V), asserta(v(0,[] .V, 1[]).

The value of V is returned together with the remainder of the sentence L provided that
itisa verb. Information is propagated in the parsing process. Cither they are passed as
values for the parameters or they are kept in the memory. In order to handle the
relation over the verb, a database fact which has the form,

- vitype, object , verb, subject)
is inserted for each verb parsed in the sentence. This is dene by the clause Vph.

- Each rule contains parameters (o hold the necessary information at that levei as
well. The predicates which parse a noun group must return the information about the
poun group together with its functions. Consider the predicate Ng, for instance. It has
the form

 Ng{L.NDL, Conj, T, Fp.Fh, RNgL)

where L is the oaly input parameter containing the current inputstring, and NDL s a
list which returnsa group of vne or more nouns parsed in that clause. Fach noun is kept
in the list as a noun-domain pair in the form e{necun,domain}. The word group has its
functions: its type T, its possesssve property Fp, and its case value Fh. Conj is bound
to the conjunctive if the group ctrasists of more than one noun. In addition to these, the
fast outpul parameter RNgl returns the remaining part of the input string.
Assuming that the clause Ng is called with L bound to Admetia dersins ve Locasins "the

course and the instructor of Ahmet’ nuiput parameters will get the following bindings .

NDL =[e(ders,"i"),e(hoca,"p")]

Conj ="ve”

T="n" (common noun)

Fp="i2"(existence of possessive property bounds Fp to t2)

Fh="" (nogenitive property or case marker)

There exists a separate clause to parse the last two levels of modifiers, namely
premodifiers and noun modifiers. Similar to the clauses that parse nouns, they have an
saput list L and an outpul List BRL containing the sentence heing parsed, two parameters
1L to return the modifiers parsed, and Canji 2 possible conjunctive between them. The
structures of AF and QF are |

AF(:, T, L, QL, Conj, Fq, RL)Y QF(_, L, 6 QL, Fg, RL)

In addition to these parameters, some clauses include input parameters used to

distinguish between different types. For instance, the parameter T in AF is hound to 0 oy

to 1 depending on whether the adjective expected is a simple one or it is in verh form,

respectively. Since different subcategories of modifiers are parsed using the same clause
there also exists an output parameter Fq in which the type of the parsed modifier is

returned.

Reminding that our parser is implemented as a transition network parser, let us
illustrate our basic approach in handling ruleson the following two rules

A — BC

A—> BD

B can be implemented as
B{input,information-gained, remainder):-
parsing Blinput,rest),

before_b(rest,remainder).

with two before_b clauses,
before_b(input,remainder):-
c{inputi,remainder). -
pefore_b{input,remainder):-

d(input,remainder).

In this approach, we do not throw out the information gained in parsing B in
case C fails, but use it to handle rules where there are many candidate right-hand sides
having common parts for the same left-hand side. It is used for grouping successive
words and for parsing premodifiers. As an example of the implementation of the
syntactic parser as a transition network consider the main rule NF which is in the
form,

NF

" {caseM | gen}+(poss) —

) . H
Promoun . ceM | gen}+{poss) | Apronoun . ceu | gen)+{poss)

Ngz{caseM | gen} ‘
{ASI“ l AFS ' (CS) (QF) (AF)} Np{c“en l gen}+(poss)

Remember that the rule NF parses four different tvpes of nounlike words.
namely pronouns, question pronouns, proper nouns, and nouns. Note that a sequence of

proper nouns and nounsare allowed and a sequence of premodifiers may only precede

nouns. Thus, four options exist for the rule NF, instead of using four rules for each type
of nounlike words we implement NF as a single rule.

NF(L,VL,DL,Conj.T.Fp.Fh RL):-
Ng(L.NDL.Conj.T.Fp.Fh RNgL),

b_Np(RNgL.DL.T.Fp.RNpL),
b_NfNp(RNpL.DL.T.Fp.Fh RL).

It consists of the predicate Ng to parse a nounlike word or a sequence of nounlike words
- and two more clauses b_Np and b_NfNp which are satisfied according to the type of
nounlike word parsed in the predicate Ng.

Ng([¥| L1,DL.Conj,T.Fp.Fh RL):-
C_W(¥.RY.D.T.Fp.Fh),
b_Ng(T,L.NDL,Conj.Fp.Fh,NRL),
apwad(e(RW,D),NDL.DL).

The first clause C_W is the clause in the morphological parser which returns all
functional and domain information about the input noun in W. After having parsed the
nounlike word there may be different possibilities depending on the value returned in
T. Our program includes different b_Ng predicates for each possibility differentiated by
the value of T. For instance, a2 noun can be followed by a conjunctive and by another
noun group having similar functional properties. The clause that satisfy this is ths

following,
b_Ng(T, [Wc,W|L], DL, Conj, Fp, Fh, NRL):-
conj(We),
C_W{(W.R¥,D, T Fp,Fh),
Ngo(T, L, NDL, Fp, Fh, RL),
apwad(e(RW,D), NDL, DL).
Notice that, this time, C_W is called with determined T, Fp and Fh values. In case the
clause conj{Wc) is satisfied, C_W must also be satisfied so that two successive nouns of
the same type are separated with a conjunctive. Theoretically, an infinite number of

noun gualifiers can be parsed by recursively calling the clause Ngn The final noun list

is obtained by appending the currently parsed noun to the list of nouns returned by

Ngn. However, the existence of a noun is not necessary in order to satistv the clause. [t
returns an empty list and bounds RL to the input list when no noun is found. The

following two clauses handle this situation
Nga(T, [WIL], DL, Fp, Fh , RL):-
 C_W(W,RW,D,T,Fp,Fh),
Ngn(T, L, NDL, Fp, Fh, RL),
apwad(e(RW,D}, NDL, DL).
Ngo(_, L, I, _, _,L).
We use the same principle for the grouping of other words, e.g. adjectives and
comparatives. The list of clauses which handles a sequence of adjectives is
AF(_,O,IW!L],QL,Coni,“a" .RL):-
find adj(¥W RVW),
b_AF("s","" L,AQL,ConjRL),
append(RW, AQL,QL).
b_AF("s" F,[Wc,WILLQL W¢,RL):-
conj(Wc),
find adj(W,RW),
ADF(1,"s" F, L .AQL.RL),
append(RW, AQL,QL).
ADF(0,"s" F,[WIL],QL,RL):-
find_adj{W,RW),
ADF(0,"s™ F,L,AQL,RL),
append(R¥,AQL,QL).
The clause AF parsesthe first adjective and calls the clause b_AF parsesthe conjunctive

and the second adjective whose existence is mandatory. The sequence of indefinite

number of adjectives are parsed in the clause ADF which recursively calls itself.

The clause Ng which parses a single noun or a group of nouns corresponds to

Ngl and Ng2 depending on the value of T, and Ngn corresponds to Ngnl and NgnZ.

78

Referring back to the clause Ng, a pronoun or a question pronoun, denated by
"p”and "gp” respectively, might be parsed as well in Ng. Pronouns are not allowed to
be connected with a conjunction at this level, and therefore b_Ng clauses

corresponding to these cases are
b_Ng("p" L.I}],""._._, L).
b_Ng("qp~,L.I1,""._._. L).

After having found the noun group by using the rule Hg, we have o check the

.. rest of the sentence for noun modifiers and premodifiers. Parsing:of possible noun

- modifiers and premodifiers are implemented in two predicates, namely b_Np and
b_NfNp, respectively. Each call includes the list of head nouns in DL. This is becauss
when a modifier is found. It will modify the head nouns in the same clause,

The clause b_MNp is called to parse a group of noun modifiers when the input parsed in
_the clause Ng isa noun, it hasthe form
b_Np{(L, DL, "n", "i2", RL):-

Ns("n", 1, ONL, Conj, RL),

nqgquantify(DL, QNL, RL).

The clause Ns has a structure similar to AF.

The clause b_NfNp which parses the premodifiers of a noun, it corresponds to

the following option in the rule NF,

—> (ASF | AFS | (€S) (QF) (AF)} Np(.ocom| gene

NF(caseM/genh(poss) {poss).

The structure of the rule b_NEfKp is as fnllows

79

b_NfNp(L.DL,_ _, _, RL):-
AF(0,_ L. AQL.ConjA Fp RAFL),
quantify(Fp1 DL,AQL.ConjA),
QF(0,RAFL,QQL.Fq1.QRL) .
quantify(Fq1,DL,QQL.""),
CS(0,QRL,DL RL).

The AF is written as
AF(_,¢,[WI{LI,QL.Conj,"a" RL):-

find_adj(W RW),
b_AF("s","",L,AQL.Conj RL),

append(RW,AQL,0L).
The list of simple adjectives can be collected in the predicate b_AF. Notice that AF is
optional in the rule and optionality for the rules is provided with an extra parameter,

which is the the first parameter of each clause, Addition of two more clauses to the end
of AF predicates list doesthis. They are

AF(0,0,L,[1."","",L).
AF(1,0.L.[1,"","" L):-fail.

AF is satisfied when the first parameter is 0, that is, it is skipped by returning the whole
input list. It fails when the first parameteris 1.

Adjective clauses AFS are implemented by adding two more clauses for AF. When
an adjective in verb form is parsed with the clause c_adjv, the verb is considered as the
- main verh of the coming noun phrase and it is parsed with Nph. The structure of AFS

which is used to parse participle constructed with the suffix -ez, is,
AF(_1,I¥|LLOL,Conj,"1" RL):-
c_adjv(W RW¥,"1"),
Nph(RAL.IRW],_RL).

Actually NF is called from Nph1 to parse the noun group and its modifiers. The

clause Nph1 is defined as follows
Nphi1("v",L.VL,DL Conj OtdDL Fp Fh RL):-
NF(L,VL,DL,Conj Fp Fh, IRL),
‘b_Nph1("v" IRL,VL,DL.Conj.Fp,Fh RL}.

80

Noun groups parsed at lower levels modify either another head noun or the verb at the

Nphl level depending on the information carried in Fp and Fh parameters.

The predicate b_Nph1 is written for the case where the currently parsed noun
phrase has the possessive property "t2" on it. A noun phrase with the genitive property
isexpected. The clause b_Nph1 isdefined as

b_Nph1("v" L VL DL,Conj, t2" Fh RL):-
verbquantify(Fh,VL,DL.Conj),
Nphl1("v",L,VL,DL NConiji DL Fp, t1" ,RL},
genguantify(DL NDL Nconij).

The first predicate verbquantify qualifies the verb in VL according to the
function in Fh. Next, it attempts to parse a noun with the genitive property. In case of
success, possessive relation between two nouns is represented by combining their

descriptions in genguantify.

Finally two noun phrases with a conjunctive in between is parsed with the rule
b_Nph1("v" [Wc|L],VL,DL,Conj Fp Fh RL):-
verbquantify(Fh,VL DL Conj),
conj{¥Wc),
Nph1("v* L VL. DL NCon{ DL .Fp Fh RL).

The clause verbgquantify modifies the verb by adding the modifier into the
database predicate v(0.1 ,V. Il), if the noun has case marker sbjecisve or @. The

modification is implemented in two steps. The structure of the clause verbguantify is
verbquantify(Fh,[V|L],DL,Conj):-

add_case_verb(N,Fh, V,DL).

The clause add_case_verb{N Fh,V DL) retracts the existing datahase predicate for the
verb V, and calls the clause append_case to insert the new form of ihe database
predicate. There are separate clauses for different possibilities rising from the type of
the verb, its voice and the function of the modifier. The structure of add_case_verb is
add_case_verb(N,Fh V,DL):-
retract(v(N,Co,V,Sub)),
append_case(N,Fh DL,V ,Co 5ub).

81

The clause append_case which handles the noun with case marker % on it (denoted
with "") modifying the main verb in passive voice is
append_case(0,”" DL,V ,Co,Sub):-
passive(V),
assert(v(N,DL,V.Sub)).

6.3. Meaning Representation and Internal Query Generator

Before we discuss clauses used in meaning representation, let us see how
descriptions are stored in the memory. Descriptions and qualifiers are kept as database
facts. As the implementation is in Turbo Prolog, the form of all database facts must be
predeﬁned\fﬁence we use two domain definitions for descriptions and qualifiers, namely
descand gual There are separate domain functors for each type of descriptions and

qualifiers. The domain definition for the qualifier type

relation name(list of sclections)
is g2{Rname atirL).

The atirL parameter isa list consisting of elements defined as

at(termtype symbol termtype)

where a termtype can be one of the following

tl(string) , t2(siring, string) , var{siring)
since a value or a relation name can be used. For instance the gualifier ders{kod = 1234)
is implemented in Turbo Prolog as

g2(ders, [at(ti(kod)},"=",t1(1234))}]1)

The description determiner-count-qual(variable, display list, qualifier}) has

the general structure as

d2(determiner,count,variable display list, gua/}

The description for ders with the general syntax

what-1-qua! (X,[X], ders(kod =X))

can be written in Prolog as

d2(what,1,var("X"),[var(*Y")],q2(ders, [at(t1{kod)," =" var("X")])}.

The major drawback of Turbo Prolog is that free variables can not be inserted
into memory. To tackle this problem, we use an extra domain functor var containing
the wvariable name. We introduce two different functors as 43 and g4 to handle a
combination of descriptions and gualifiers using is fenct and is qual respectively.
For example, the description is funct (variable, description) is implemented as

d3(desc, var("X"), desc)

and description is gual{variable, gqualifier) isimplementedas

q4(desc, var("X"), guat)

A meaning representation module consists of a clause for sach main task. These
are the tasks of asserting the head noun, converting content words, question pronouns
to canonical forms, handling noun and adjective qualification, and creating relations.

The predicate asq asserts the description of the head noun into the memory. It
checks if the head noun is a relation name using the user view of the conceptual data

schema, and it asserts a description for each relation name. The assertion has the form

d2(the,1,var("X"),I1.q2(ders, [t1{kod),"=" var("X")])

for ders for example.

Conversion of content words is accomplished by the predicate convert. It getsas
input the content word together with its domain, its case marker, its type, and the verb
of the sentence and returns the relation name. The description of the relation is etther
modified or inserted into the memory. The program contains separate clauses for the
conversion of content words, question pronouns, and adjective or nouns in verb form.
They use the semantic relationships information about the verb and its possible objects
to get the relation name The clause used to convert £rmpz ‘chemistry' in Lim &imye

alryor. ' who is taking chemistry’ is
convert("n","0" [all,le(kimya,”1"}],DL):-

con_n_obj("o" [al]l,e(kimya,“i") DL).

83

where con_n_ebj bounds DL to e{ders,"i"} due to the following fact,

ss(al,ders, “"i","0")

Referent of noun clauses are determined in the clause con_verb_obj. It has

the form
con_verb_obj("nfl", “o", e(al,"i"}, N):-

find_v(1,"0", al, N).

The clause find_v which uses the semantic relationships dictionary. This is defined as
find v(1,_.To.e(N.,Dn)):-
ss(To, N.Dn,"a")

In the above example, the referent of the noun phrase afaz/fars is determined and N is

bound to ogrencsidue to the following fact

S

ss(al,ogrenci, "p","a")

The three predicates used in relation handling are f_r, dofr, and connect.
Using these three clauses, we can create all possible combination of descriptions. £ r
determines the common fields of the two fields. The decision is based on the conceptual
schema of the database. do_fr fetches the named descriptions and calls the clause

coanect to form a combined description.

To handle the relation over the verb when both object and subject arguments
are filled in, f_r is called to relate these arguments. The type parameter is used o
determine the order of the relation. For instance, ders veres Aoca 'the instructor
who givesa course' and bocanrn verdigl Jders ‘the course taught by the instructor’
have the same object and subject values, but the order of combination is different. Here

are the two database facts for these noun phrases respectively,
v(1,ders,ver,hoca)
v{(2,ders,ver,hoca)

The entry for hangs hoca ders veriFor 'which instructor is giving a courd® will
have the type value @,

The possessive relation is handied by the predicate gesguantify which simply

calls f_x after having converted the content words appearing in the possessive refation.

Function propagation is carried out using a different parameter in every
relevant clause; but descriptions are kept in the memory rather than using a list that
contains current descriptions. Although memory access takes time, it is assumed that
implementation as a list will be slower since the required description may be anywhere

in the list. In addition, the list implementation will make the program code larger,

6.4. Spelling Corrector

The spelling corrector mainly consists of two sets of rules, one set of rules for
asserting a lexical item into the dictionary, and one for comparing the unrecognized
input with the eutries in the dictionary. The clause cerr conirols the spelling

correction. It consists of L\vo{?ules in the following form
corr{_Str Clist, WZ,D):-
sir_fength(Sir. Length),
Li=Length/2,
frontstr{L1,5tr Bsir Estr),
ch_cr(Bstr,Estr,Ll.WSZ,D,‘i:list).
core{l,Str, _Sir.D):-
write(” Garevint giriniz > "),
readln{(Func),ni,
write(” Esanlamisst var o 7 {(e/h) >"),
readin{Answer),

adding{Sir.¥Func D Answer),

The parameter Str keeps the misspelled word, Its correct form is returned in W2. The
parameter Clist contains the list of possible categories that the word in Str may belong
to .

Assertion is handled in-the clause adding. Separate clauses exist for different
functions of the word. The structure of the clause adding used to add a new adjective is

adding(Sir,"a","","h"}:- assert(adj{Str}).

To add a noun, its class value is also required from the user. For synonyms, the noun for
which the unrecognized input is the synonym asked from the user, and synonyms are

added into the synonym dictionary.

Before adding a word into the dictionary, the spelling corrector tries to find a
word close to the misspelled one in the dictionary. The spelling correcior is called with a
list of possible categories that the word may belong to. Different clauses are called feom
ch_cr depending on the entries in the list Clist. There are four different f:lauses“
namely, chon, ch_s, ch_p, ch_v to correct the spelling of a noun, adjective, pronoun“’
and verb respectively. They are similar in structure and they use the clause comper in
which the comparison is handled. For example, the clause for correcting the misspelled

adjectives, ch_s isdefined as

ch_s{Bstr Estr,L1,""):-
adj(W1),
frontsr(Li,W1,Bw.Ew).
comper(Ll Bw Bstr Ew Estr,WZ2).

What this clause does is simply to get an adjective from the dictionary, to split it into two
parts and to compare the first and the second parts of both words. The clause comper
handles the comparison and returns the correct form after the word found is confirmed

by the user. Its structure is

comper(_ Bw Bstr FEw Este,Wi):-
Bw-Bstr,
concat(Bw,Ew,W1),
concat(Bstr Estr,W2),
write(W2, " yerine ", W1, " kullapnilabilir mi 7>),
readin{Answer),

Apnswer="e".

86

6.5. Translator

Conversion to a declarative language query is implemented using an algorithm

- similar to the one given in Wallace's book. It is written in Turbo Prolog , and it works for

.+ the extended D&Q syntax. The output of the query generator is used as the input for the

converter. The input of the converter is a single description consisting of one or more
combined descriptions related to each other through variables. Starting from the inner
qualifier all the combined descriptions and qualifiers are converted to simple
declarative database language queries. As Turbo Prolog does not allow free variables in
the memory, the input description does not contain any free variable. In place of using
a free variable X, we use a bound term var that contains X as its i—u‘gument. Unification is
handled explicitly by keeping a table for variables. Every eatry in the table consists of
the variable name and its value. Every time we have to unify two variables we copy the
value of the "bound” variable into the value field of the "free” variable. Unification fails

if either of both variables contain different values or they do not have any values.

6.6. Knowledge Source

Dictionaries and tables are held as database facts. There are different predicates
for each category of words. For instance facts containing noun-like words have two
arguments, the word and its type, each of which is stored as a single character string.
The basic fexicon has the predicates noun,pronoun, adj, verb,conj,quanadi, e.g.

noun("kimya","t")

pronoun("kim","p")

adj("iyi")

verb("ver”)

. Except for qualadj's, where a third object is used to distinguish between them, it allows to
use the same code for four different types of qual's.

qual(“kac","q"),

qual("bu","d")

This approb,ch facilitates the database search tremendously by providing a self
contained index at the level of functionality.

For synonym dictionary the two synoaym words and their function are kept in
the same database "fact". The first word is the canonical one which will be returned
when the second is referred (o, e.g. -

syn("ogrenci","talebe”,"n")

The conceptual data schema is stored as entity and field pairs including a
"marking" object to denote the key fields of each relation:

r("ders”, "kod" "i","k")
r("ders", "ad","i".)
r("ders”, "bolom”,"1",_)
r("ders","hocano","n",)
The semantic definitions dictionary keeps the noun and the modifier pair
together with their interpretation. There is an entry for each definition. For instance,

the entry for [y7 ders is

sps("ders”,"ivi","hocano" "1234","=")

Semantic relationships are also kept as database facts. Each fact consists of two
related objects | the class value of the second ohject and the type of the relation. The fact
representing that the verb &/ ‘give’ may have the word Jers 'course’ as object, is stored

(1Y)

ss{"al",

ders”,"i","0")

Finally, the domain to database mapping table is also stored as a list of facts.
fr("ders", "kod", "course", “code")
fr(“ders”, "ad", ‘“course", “c_name")

fr("ders”, "kredi", "course", "credit")

fr(“ders”, "hocano", "course”, “instr_no")

88

VII. CONCLUSION

In this thesis, we have developed a medel for a portable natural language
database interface system in Turkish. Our medel has a two step transformation from
natural language to an intermediate meaning representation language and finally to a
target database language. We have distinguished two different processing phases, and
separated domain dependent and independent parts of the NLI. Qur design principle is to
have domain independent run time modules for different processing stages and io
supply the domain dependent knowledge as a knowledge base to these modules. The
language processing component is a general purpose syntactic parser based on the
simple principle of general categorization incorporated with the notion of modification
between words, The grammar is arranged in a hierarchical siructure and each level
defines a type of modification. Each syntactically identified noun phrase must pass
- semantic checks to decide on whether it is meaningful with the act determined by the
verb. A domain dependent knowledge about the semantic relationships is supplied to the
model for that purpose. This knowledge is used to determine the referents of guestion
pronouns as well. The output of the linguistic component is processed in two stages. In
- the first stage, a general purpose meaning representation generator is used. The
meaning of the sentence is represented in the meaning representation language D&Q.
The database schema is used in this process to determine the applicability of the
representation in the database. The meaning representation generator is not a simple
generator. It has a rule based reasoning capahility. It can make analogies based on the
domain dependent knowledge to understand queries formulated in user's view as well as
selecting the appropriate entity or attribute names for each content word as well as less
descriptive words. The D&Q expression is translated into a declarative query language by
applving a set of database independent transformational rules, and domain objects are

mapped onto actual database files and fields.

Considering pros and consof two different parsing techniques, namely semantic
grammar-based parser and syntactic parser, we combine syntactic and semantic analysis
in our work. Application of the semantic processing to the output of the syntactic parser

. makes the linguistic component domain independent and avoids the disadvantages of a

purely semantic parser.

89

The main advantage of our model is that it consists of separate general purpose
run time modules. Each run time module can separately be used. For instance syntactic
parser can be used in text translation. Syntactic analysis of Turkish is a verv hroad
subject. We attempt to solve in this work only a limited part of the Turkish grammar,. The
syntactic parser in our work is sufficiently potenf. to process a large enough subset of

~Turkish necessary to parse queries in the NLI. It may be extended by adding more phrase
rulesand categories to cover a wide range of Turkish grammar. Necessary additions are
verb tenses such as past tense and future tense, verb forms for all persons, and the
category of adverbs. The correct sequences of noun phrases with different case:marker
must be- incorporated into the syntactic parser(4). In its current state, no restrictions
such as subject and verb agreement and comma restriction are handled. The design of
the morphological parser plays an important role in the overall design of the syntactic
parser since Turkish is a suffixing language. In our design, the affix stripping
approach isused in determining all combinations of inflectional suffixes provided that
nouns are listed in the dictionary in drived form rather than two Separate [ists
containin g’ roots and derivational suffixes. Our morphological parser is sufficient for
our purpese, but it must be extended to handle exceptions in word formation.
Furthermore, vowel harmony is not considered since it dees not change the meaning of
the word.

The model uses the D&Q language of Wallace as the meaning representation
language. D&Q is found to be the most suitable for our purpnse since gualifier hierarchy
can be easily implemented in D&Q. The syntax of the intermediate representation
language is somewhat modified in order to make it closer to the syntax of the declarative
database languages. The meaning representation generator can handle a wide range of
simple queries. However, it must be elaborated to handle complex sentences whose
interpretations are nested queries. The current processing capability can only answer

questions that require a single passover the database.

The meaning representation and parsing are concurrent processes in our design.
Once a constituent is parsed its meaning is represented in D&Q, which makes the
backtracking impossible. A solution to that is to separate syntactic and semantic analysis
from the meaning representation process. That is, the parser will produce an osutput
such as a parse tree. The meaning representation generator will generate 2 D&Q
expression from the output of the parser. This is time consuming when the guery is

syntactically correct but its meaning can not be expressed in the database.

90

Portability is the most important concern nowadays in database design.
Portability is achieved with the intermediate meaning representation. The domain
dependent knowledge is supplied in the forni of tables and tables are easy to change.
Consequently, our model can be easily adapted to other domains simply by

reconstructing the knowledge source.

In its current state, our system has no editor. However an editor like the
knowledge acquisition component of TEAM or more generally, a component like the
world editor of the KID is necessary in: order to facilitate both data entry and the

adaptation of the model to a new discourse.

Although our model incorporates some intelligence in question translation , it is
not an intelligent database assistant in the sense of generating clarifying dialogues in
order to help the user to form correct natural language gueries and to correct

misconceptions about the database. The system can be further developed by adding to it
(1) a menu based knowledge acquisition component,
(2) capability to work with more than one database, and

(3) more flexible and robust dialogue capabilities.

APPENDIX A. TURKISH GRAMMAR

In first part of this appendix, we give the Turkish grammar used in NLI in terms

of rewrite rules. Next its representation asatransition network is given.

A.1. Turkish Grammar Used in NLI in Terms of Rewrite Rules

Notational conventions used are as follows ;

LHS —-—> RHS The left-hand side is defined by the right hand side
AlB An A or B may occur on the right-hand side
A{(BIC}D Thisdenotes thatan A on the RHS foilowed by aBor CthenaP

On RHS terms starting with lowercase letiers are diciionary losk-usps
the ones with an uppercase letter represent another rele
terms in ffalic are constants
terms preceded by a minus sign are suffixes
parenthesis denotes eptionality of aterm

in Ax . xis the grammatical function of a noun phrase A-
[1 nothing

The rules:

S — Nph Vph

caseM
Vph — verb |

verb + { -fror] -ar) |

varl yokl

{ noun |adj | verb + —en} + -dir
Nph

caseM I I'Ighcasei'l Nphlcasehﬁ | Nphicasel\‘!

Nphl{casemgm} —> Nphl gen Nphl{caseM/gen}#pess

92

Nphl {caseM/gen)+{poss) — Nphl {caseM/gen)+{poss) conj Nphl {caseM/gen}+{poss)

— NF{caseM] geh}+(poss)

Nphl{caseh’l | gen}+{poss)
Nr(caseM | gen}+{poss) —

Pronoufic . ceM | gen}+(poss) ’
4proneuf ., oM | gen}+(poss)

|
Ngz{caseh! | gen)
{ASF | AFS | (CS) (QF) (AF)} Ngicneﬁ | gen}+(poss)
Np {caseM | gen} —> Ns Ngi{caseﬂ | gen})+poss

Ngl[caseﬂ | gen}+(poss) —

NOUR(ceM | gen}+{poss)
Ngnl{casel\il | gen)+(poss) COBI BOBR(. .eM| gen)+(poss)

ng{casehﬁ | gen} — Propernoun .., M| gen) !

] Ngnz{caseﬂ | gen} conj propernoung. . .u | gen)

Nvgnl{caseu | gen}+{poss) — ROUVAL . ceM | g‘en}ﬁ?ﬁss)f
Ngnl{caseid | gen)+(poss} 2®P0{caseM | gen)+(poss)
Ngnz{caseM | gen] —? Propernoui . cem | gen}
Ngnz{casem | gen) PTOPELOOUDC ceM | gen)

: L i 1
Ns — noun casesi Nsn conj meun . In

Nsn — nounc“enl Nsn noun ...

AF —> adj | ADF conj AF
ADF —> adj | ADF adj

ASF — ¢z adj | ASF conj ASF

OF — (SupF) qualadj

SuplF — ez adjquan
€S — ¢stl ¢St conj CS1

CS1 — Nph_,, adjquan I

Nph(.1 | cases) Cesit | fadar | arasimdaks ¥ |
Nph ., adj

AFS — Nph verb + {-enl-dif} cases

caseM

NF —> Nph_, . verb + {-enl -dik} cageM

93

94

A.2. Representation of the Grammar as a Transition Network

e T ., ,w""-_ e,
d rae Hph - S pa!«e k' e
lf S \'l _.__.’.Pa e { Sfﬁph/) ~——-—~—~—$ (S/done)
x L ~ v

catedfory vexrh ?

T ' category St’rj'i'dif} .
category nount J4ir y

w2 P .
' 4

parse Hphil

L \} jump

parze ¥ph
category conj

““‘r \ ‘ : ..
|" ,) - |
\ K
& T, parse HE ﬁ
(oot) ey Gomtten)
—) e S

parse Hphi A | _ ,
parse QF parzs AF .
i
parse CS 1 fﬂffcs HH —— ;:—\
;nm.g; jumyp \«_i{’j parae Hp
-~ /"’ jump :
-~ 5”\ parze AFS (IHE 5 parse Hp . ,
“—-‘_——-—‘_"—“’—-—

‘*x N -
e _pazse ASF e N B (WE 740ms
(/HE!ASE) ? Ef&aaﬂ,

.. ., -
\\ “\»\%\&Nv category Ppronoan , e
. T Prmmt esseraen, et et ot e e '__v_,\,..‘—-‘-'""' ,./”"}/
. “8’3?8&!3 EPTOBROTR : e
T e oo e £ 5700 g Sb ﬁ._._«_q,,‘...»""“"

paxas He2

9

al parge Hgl
Q parse Hs @ PSR 1’ Ep/dons
e -

R,

jump

— .

e category nomn ST
d J—r——'\\ Hs /done)

e J N
\ "

& " category conj /’_ T, category sona
category noun Hgiid—-ﬂﬂ)

one

e’

parze Hgnl category conj 7 '}c;tegnry nous
Mgnl/Hgl) —— (‘w

e,

category DYODeInOUn =,
Q’E’j w HgZidone |
Nop _'_',.-o’/"

parge Hgﬁz category conj g, ,)
ﬁtgnz;ngz ————p(Wg2/con.)
e

calegory propermnun
category moun

/”'\

parge Han,

. category properasuan

/‘ -
Nen) _ emp @nne) k '\
categnrr DOER ' .) ,-*“"_—\“‘\
(‘\ l . { Hg‘;h _ﬂf__ﬁ {\I;ignir"dans}

o —
K ;D (ng:n mo;;j
___ o

teg adj o
. category / u.\"

parze ADF \A AT category conj /— T~ category ad ;

[AFZADE 3 AE/conj |
. , g —~

S

category adj

supf

"\‘

__f__;, supk !en\l

96

TR) (ADE fdone)
e

jump

-

category adjgman 7
—p { SupFidone]
o

o

category gualadj ol
+ QF fdone
parge Sapk \ < .
@ " category qualadj

=,

s

parse C51 l\\‘

C51
\-_,___d_,,/’

parse [51

-‘—_‘—\"ﬂh.
()

’""ﬂ,\ category conj T, fzarse C51
C5/C51 | ———»(cs/es51/e }
"—-\-———/

categorf adjguan

Nph
'lcategory adj @; gy R ;(c@

— AT

agif. kadar. arazindsky

o

T parge Hph -~ =

i

categoxy werb +» -Jif ém fverb) “_———*‘bf AFS idone-}
"

ﬁ. ‘.‘-—

categor 1h 2 -7, ~»,, parze Hph ﬂﬂ-

APPENDIX B. SYNTAX OF D&Q

This appendix gives the full syntax of D&Q as it is defined in Wallace's book. Two

major changes made in the syntax are listed separately.

B.1. Syntax of Wallace's D&Q

LHS - RHS
Non Terminal>
AlB

A{BIC}D

nil

The full syatax of D&Q is:

QUALIFIER
QUALIFIER
QUALIFIER
QUALIFIER

DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
SELECTION
COMPARISON
DETERMINER
COUNT
CONSTANT
INTEGER
PREDICATE
ATIRIBUTE
VARIABLE

The left-hand side is defined by the right-hand side.

On the RHS, nonterminals are put in angled brackets.

An 'A’ or 'B’ may occur here on the RHS.

Thisisan 'A’ on the RHS followed by a ‘B’ or 'C' then a 'D’.
Nothing

<PREDICATE> | <PREDICATE> { <SELECTIONS:).
QUALIFIER> { & OR) <QUALIFIER> | not «QUALIFIER:.
<DESCRIPTION> is qual(<VARIABLE:, QUALIFIER>).

true | fail.

«CONSTANT>.

<DETERMINER>-<«COUNT>-qual ¢ <VARIABLE>, «QUALIFIER:).
<DESCRIPTION> is funct { <VARIABLE:, <DESCRIPTION>).
<DESCRIPTION> { & | OR } DESCRIPTION.

<ATTRIBUTE> «COMPARISON> <VARTABLE: { SELECTIONS»|nil}.
S LRI RS REI BE

the | any | what.

<INTEGER> | <VARIABLE>.

is a PROLOG atom or integer.

is a PROLOG integer.

is a PROLOG atom.

is a PROLOG atom.

is a PROLOG variable.

95

B.2. Extensions Made in the Syntax of D&Q

The extensions we made in the syntax of D&Q mé.inly concern the definitions of the
DESCRIPTION and SELECTION, their new structures are as follows

DESCRIPTION - <DETERMINER>-<COUNT>-qual (<VARIABLE> < BISPLAYLIST,
<«QUALIFIER>). ' :
SELECTION - - { <ATTRIBUTE> | <VARIABLE>} <COMPARISON: { <ATTRIBUTE> }

<VARIABLE>} { SELECTIONS>| nif 3,

99

APPENDIX C. EXAMPLE DATABASE

In thisappendix, we give the actual database definition and its representaiion in

user's own View.

The actual files and fields in the database are as follows:

STUDENT [st_no ' st_name [dent{ birth
| | l !

INSTRUETUR’ instr_.na l instr—name | dept | office

| l |

COURSE lcode ‘ c_name ' credit | instr_no

L !

STUD_COURSE l st.no i code i grade - .
l

~where the st_ne, code, instr_mo, st_no, and code are kevfields for student,

instructor, course, and stud_course respectively.
The user's own view is
ogrenci(num, ad, bolum, dogum)
hocalhocano, ad, bolam, ofis)
ders(kod, ad, kredi, hocano)

karne(num, kod, not)

100

- APPENDIX D. LISTING OF THE NLi IMPLEMENTATION AND DATA

FILES

This appendix gives the list of source file names that exist in the program diskette

and the data files used for the impilementation.

Di Program Listing
The program diskette contains the following source codes of the five modules :
C¥.PRO : morphological parser
SYM.PRO : syntactic parser a
QG.PRO : query generator
CORR.PRO :spelling corrector
SQLLIST.PRO : translator
The global predicates are listed in the file GLOBDEF .PRO.In addition to these source files

the prograg diskette contains an executable file KEYBTR.COM which contaifis the -

following key assignments for a Turkish keyboard.
g--—1
£--r 0
J--28
{ g
s
73 g

One has to run the keybtr.com and combine source files and globdef pro into a stand-

alone project in Turbo Prolog 2.0.

104

D.Z. Data files

Basic Lexicon

noun{(“ortalama”,"n")
noun("sayt”,"n")
noyn("toplam","n")
noun(“yvar:s","n")
noun("kimya","i")
noun("fizik","i")
pron("o")
proan(“onlar")
pron{("bu")
proa("bunlar")
adj("zor")
adj("buyuk")
adj("kacuk")
adj("gok”)
adj("iyi")
adj("kotu")
verb("ver")
verb("goster")
verb("yaz")
verh("al")
gpron("kim")
gpron("hangi")
gpron("hangisi")
gpron(“kag")
gpron("ne")
qualadj("bu","d")
qualadj("o","d")
gualadj("hangi","q")
qualadj("ne","q")
gualadj("kag","q")
qualadj("highir","h")
gualadj("hi¢","h")
qualadj("butin","h")
gualadj("her","h")
conj("ve")
conj("veya")
coni("ile")
guanadj("fazla")
quanadj("az")
quanadj("¢ok")
comp("boyik","")
comp("kuguk”," ")
comp(“esit","=")
comp("ayni","=")
comp("kadar","=")
comp("gok”,">")
comp(“az","<")

comp(“algak”, "<")
comp("yuksek",">")
comp("ivi","")
comp(‘koto”,">")
comp("dusuk”,"<"

nonon \

comp(“fazla","

Conceptual Database Schema in User's View

r("ogrenci’," num”,"1","k")
r{"6grenci”,"ad","i","")
o’ 0grenc1",“bOIUm","l","")
r("sgrenci”,"dogum”," n","")
r{("hoca”,"hocano”,"i","k")
r{"hoca" "ad","i","")
r("hoca”, balum" ")
ri"hoca” "ofis","1","")
c("ders","kod","1","k")
r("derc“,"ad";"i","“)
r{"ders","kredi",'n","")
r("ders”, "hocano" ")
r("karne","num","i","k"}
r("karne" "kod","i","k")
r("karne”,"not”, n)

Synenym Lexicon

syn("num”,"numara”,"n","n"}
Qvn(nllm“ IanIl Ilnll Iln)

1o

syn("6grenci”,"talebe”,"p", n)
S‘Tn("ad" lllslmll "= Iln|l)

Syn(Oflsll lloda'll |li" ")

n n Il ” li)

svn("not","derece”,
sy’n(“huca",“ﬁgretmen' "'n")

Dictionary containing semantic definitions

st‘ nﬂt“ u u "n{)t" “5" u) |I}

sps("ders”, 1v1 J'hocanum®,"1234" "=")

sps("hoca 1y1' "ad","Ahmet","="

Semantic Relationships Lexicon
SS(1!! llﬁersﬂ LI A1 ll\

\\(ail\’unotll i [T ll)

Ss(ua‘ln “hoc ’upn ”S")

ss("al""agrenci”,"p","2")

Ss(uvern’uﬁer u'n ",“0”)
Sh(uver"‘"not" " n,l\ u}

ss("ver”,"hoca","p","a")
ss("ver”,"agren cx", Bttt
ss("not","ders”,"1","s")
ss("not”,"ders","i" "p")
ss("ders”, "bolum" "1","p")

102

103

Domain to Database Mapping Table

fr("agrenci”,"num","student”,"st_no")
fr("ogrenci” "ad","student”,"st_name")
fr("agrenci”,"balum”,"student”,"dept")

fr("ogrenci","dogum”,"student” "birthday")
fr("hoca”,"hocano” "instructor”,"instr_no").

"o
~

fr("hoca","ad","instructor”,"instr_name")
fr("hoca","bolum","instructor”,"dept”)

fr("heca","ofis","instructor”,"office")
fr("ders","kod","course”,"code")
fr("ders","ad","course","c_name")
fr{"ders","kredi","course" "credit”)
fr("ders","hocano","course","instr_no")

fr("karne”,"num","stud_course" "st_no")
- fr{"karne","kod","stud_course","code")

[T [T

fr("karne","not","stud_course”,"grade")

10.

104

BIBLIOGRAPHY

E. Charniak, D. McDermott, “Introduction te Artificial Intelligence,”™ dddison-
Fesler, 1985,

G. Jakobson, C. Lafond, E. Nyberg, and G. Piatetsky-Shapiro, " An Intelligent”
database Assistant,” ZZZEEXPERT, pp. 63-77, Summer 1986.

H. Ishikawa, Y. Izumida, T. Yoshino, and A Makinouchi. “"KID Designing A
Knowledge-Based Natural Language Interface,” ZZZZ ZXPERY, pp. 57-70 Summer
1987.

E3. Meskill," A Transformational Analysis of Turkish Syntax” Mowiva Potlichers,
1970.

M. Wallace, “COMMUNICATING WITH DATABASES IN NATURAL LANGUAGE," F#is
Horwood Series in Artificial Intelligencs 1983,

D. L. Waltz. "An English Lahguage Question Answering System for a Large
Relational Database,” Communicationsof ACH . Vol. 21 No.7,pp. 526-539,July 1978

G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum, “Developing A Natural
Language Interface to Complex Data,” ACHM Transactions on Database Systems. Vol.
3, No.2, pp. 104-147, October 1977,

‘B.]J. Grosz, "TEAM: A Transportable ‘Natural Language Interface System” Proc.

Conf Applied Natural Language Interface pp. 39-45, 1983.

B. H Thompson, F. B. Thompsoen “Rapidly Extendable Natural Language.”
Proceedings of ACM 78 Annual Conference New York, pp. 173-182 1978

F. B. Thompson P. C Lockermann, B. H. Dostert and R. Deverill "REL ~ "RAPIDLY
EXTENSIBLE LANGUAGE SYSTEM,” im Proceedings of the 24th ACM National
Conference New York, 1969, pp 399-417.. '

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

105

M. Templeton, J. Burger “Problems in Natural Language Interface to DBMS with
Examples From EUFID,” Proc. Conf Applied Natural Language Processing, Santa
Monica, pp.3-16 February 1983

Artificial Intelligence Corp. “INTELLECT Query System User's Guide,” 500 Fifth Ave,
Waltham, Mass. 02254, 1980.

L. R Harris, “The ROBOT System; Natural Language Processing Applied to Database

Query,” Proceedings of ACM 78 Annual Conference New York, pp. 165-172, 1978,

S.JKaplan , “Designing A Portable Natural Language System” 4CH Trassactions on
Database Systems,Vol. 9, No. 1, March 1985,

B. K.Boguraev, K.S. Jones, “How to Drive a Database Front End Using General

Semantic Information,” Proc. Conf. Applied Natural Language Processing Santa

Monica, pp. 81-88 February 1983 .
N.Sager, “Natural Language Information Processing,” Addison-Fesley, 1987,

J. Hankamer, “Parsing Nominal Compounds in Turkish,”in Morphology as a
Lomputational Problem UCLA Occasional Papers 7 ed. Karen Wallace, UCLA pp.123-
143, 1988,

-J. Hankamer, "Morphological Parsing and the Lexicon”, in Lexical Représentation

and Processing, ed. W. M. Wilson, M/7 Press 1988.

J Hankamer, “Finite State Morphology and Left to Right Phonology”, Proceedings of
the West Coast Conference on Formal Linguistics, Vol. 5, Stanford University, 1986

Turbo Prolog Reference Manual, Version 2.0 - Borlaad laternational [nc. | 1988,

Turbo Prolog User's Guide, Version 2.0 Borfand International, fac., 1988,

)

Lird

A

[

P.Clulicover, "Syntax,” Second Editwon, deadenic Press [nc 1952

£ "

T.Winograd, "Language as a Cognitive Process,” Vol. 1 Syniax, ddison - Wesiey, 1983

TN. Gencan "Dilbilgisi” Lanaat Yayinlary 1979.

R Underhill “Turkish Grammar” M7 Press 1976.

C. I. Date “"An Introduciion to Database Systems”,.Vol. I, Fourth Edition, 4ai/ison-

Wesley Compasy, 1986

	KTEZ187001
	KTEZ187002
	KTEZ187003
	KTEZ187004
	KTEZ187005
	KTEZ187006
	KTEZ187007
	KTEZ187008
	KTEZ187009
	KTEZ188001
	KTEZ188002
	KTEZ188003
	KTEZ188004
	KTEZ188005
	KTEZ188006
	KTEZ188007
	KTEZ188008
	KTEZ188009
	KTEZ188010
	KTEZ188011
	KTEZ188012
	KTEZ188013
	KTEZ188014
	KTEZ188015
	KTEZ188016
	KTEZ188017
	KTEZ188018
	KTEZ188019
	KTEZ188020
	KTEZ188021
	KTEZ188022
	KTEZ188023
	KTEZ188024
	KTEZ188025
	KTEZ188026
	KTEZ188027
	KTEZ188028
	KTEZ188029
	KTEZ188030
	KTEZ188031
	KTEZ188032
	KTEZ188033
	KTEZ188034
	KTEZ188035
	KTEZ188036
	KTEZ188037
	KTEZ188038
	KTEZ188039
	KTEZ188040
	KTEZ188041
	KTEZ188042
	KTEZ188043
	KTEZ188044
	KTEZ188045
	KTEZ188046
	KTEZ188047
	KTEZ188048
	KTEZ188049
	KTEZ188050
	KTEZ188051
	KTEZ188052
	KTEZ188053
	KTEZ188054
	KTEZ188055
	KTEZ188056
	KTEZ188057
	KTEZ188058
	KTEZ188059
	KTEZ188060
	KTEZ188061
	KTEZ188062
	KTEZ188063
	KTEZ188064
	KTEZ188065
	KTEZ188066
	KTEZ188067
	KTEZ188068
	KTEZ188069
	KTEZ188070
	KTEZ188071
	KTEZ188072
	KTEZ188073
	KTEZ188074
	KTEZ188075
	KTEZ188076
	KTEZ188077
	KTEZ188078
	KTEZ188079
	KTEZ188080
	KTEZ188081
	KTEZ188082
	KTEZ188083
	KTEZ188084
	KTEZ188085
	KTEZ188086
	KTEZ188087
	KTEZ188088
	KTEZ188089
	KTEZ188090
	KTEZ188091
	KTEZ188092
	KTEZ188093
	KTEZ188094
	KTEZ188095
	KTEZ188096
	KTEZ188097
	KTEZ188098
	KTEZ188099
	KTEZ188100
	KTEZ188101
	KTEZ188102
	KTEZ188103
	KTEZ188104
	KTEZ188105
	KTEZ188106

