
AN INTELLIGENT DATABASE INTERFACE

FOR TURKISH

by

Osman Nuri DARCAN

B.S. in Comput.er EngineGring. Bogazici University. 1987

Submitted to the Institute for Graduate Studies in

Science and Engineering in partiai fulfillment. of

the requirements for the degree of

Master of Science

in Computer Engineering

Bogazici University Library

111I11111111111111111111111111111111111 ;! :
39001100132862

Bogazi<;:i University

1991

ACKNOWLEDGEMENTS

I would like to thank to Prof. Dr. Selahattin Kuru for his great help an:d guidance

as the supervisor of this thesis.

I also thank to D09. Dr. Oguz Tosun and D09. Dr. M. Akif Eyler for both their

helpful comments and serving on my thesis committee.

In particular, I wish to express my gratitude to D09. Dr. Sumru Ozsoy for her

invaluable guidance in reviewing many points in the syntax of Turkish

221051

tV

ABSTRACT

In this thesis, a portable natural language interface system for communicating

with databases in Turkish is developed. The system does a two step transformation from a

Turkish query in user's view to an intermediate meaning repl'esentation language D&Q

and finally to a target database languageSQL. It is composed of domain independent run­

time modules for different processing stages, namely la1iguage processing, internal

query generation and translation to SQL. Modules refer to the knowledge base in which

diverse knowledge about the domain and the database are maintained. Two additional

modules, to wita spelling corrector and a history keepel' are incorporated in the system.

A syntactic parser is used in analyzing queries. for the syntactic parser. a

formalization of a subset of Turkish grammar based on the simple principle of general

categorization incorporated with the notion of modifications between words is proposed

and a grammar that consists of a collection of rervrite rllles for the formal

representation of sentences is discussed. A decision tree which works with suffix strip

off approach is used for the morphological parsing of n.ouns. Parse trees produced for

different types of sentences using the formalized grammar are given. Regarding to the

meaning representation, an "intelllgent" meaning representation generator which has

a rule based reasoning capability is designed. The interpretations of some modifica.tion

relations are discussed in details. finally the interpretat.ion. of a fun sent.ence is shown.

The system is tested on an imaginary stude.t1t-cour~<J-l1tstnIi.Y.or database, aU

examples refers to this database. Possible extensions for both the parser and the

meaning representation generator are also proposed a.t the end of the thesis.

v

OZET

Bu tezde, veri tabanlarlyla Tork~e ileti$im kurmaYl hedefleyen, },~1nabi1ir bil'

doga:l dB arabirim sistemi geli$tirilmi$tir. Sistem, bir Tork-;e sorgulama ifadesini once

ara birim aniam temsili dili olan D&Q'ya, daha sonra da hedef veri tabahl dili SQL'e

~evirerek iki ~amah bir donO$torme i$lemi ger~ekle$tirmektedir. Sistem, dil i$ieme, i~

sorgulama ve SQL'e lYeviri gibi birbirinden farkh UIY ~aman111 herbiri i9in kullan1m

alalllndan baglmslz modUllel'den olumutur. Moduller, it;inde kullamm alan! va veri

tab an 1 hakk111da ge$itli bilgilel'in saklandlgl bilgi tabanlna ba.,wururlar. Sistemin

par~as1 olan diger iki ek modul de imla dozelticisi ve tarih kaydedicisidir.

Sol'gulamaiann analizinde sentaktik bir ayrl$t1ncJ. kullanllmaktadlr. Sentaktik

aYlf1Cl i9in, sQzcokler araslnda anlam niteleme nosyonuyla bOtiinie;;tirHmi$ basit genel

kategoriza..o:::yon ilkesi ozerine kurulan bir Torkt;e gramer altkomesi formalizasyonu

onerilmekte ve comlelel'in formel temsillel'i i9in kullanl1an Fellidel1 FflZ018 kllntlJan

komesinden olu$an bil' gramer tartl$11maktadlr. isimlerin morfolojik aYrlstlnlmaslnda

souekleri atarak ~a1t$an bir karar agac1 yakl~lml kullantlmaktadlr. Forme!1estirilmi;;

gramerden yararlanarak farkh tipde cOmleler 19in uretilen ayrl$t1l'ma o.ga9lan

verilmektedir. Anlam temsili baklm111dan da, kurala dayah akll yOrtltme yetenegine

sahip 'aktllt' bir anlam temsili Ureticisi tasarlanml$t1r. BaZ1 anlam niteieme iliskUerinin

yorumlo.nmalarl da ayrlntlh bi-;imde tart1$i1makta.clir. Son olaeak da tam hir comLenin

yorumlanl$l gosterilmektedir.

Sistem, hayali bir ogl'ellci-ders-hoca veri tabo.nl uzerinde denenmi$tir ve tezdeki

tum brnekler bu veri tabanlna dayanmaktadlr. Tezin sonunda do. aYr1$tlr1Cl ve anlam

telllsili uretidsi i~in olas! ge1i$tirmeler uzerinde durulmaktad!r.

vi

T ABLE OF CONTENTS

ACKNOWLEDGEMENTS ... : .. iii

ABSTRACT .. tV

bZtT ... -....................................... y

LIST OF FIGURES ... viii

LIST OFTABLES ... ix

I. INTRODUCTION .. 1

II. NATURAL LANGUAGE INTERFACE SYSTEMS FOR DATABASES ... 5

2.1. Architecture of a Typical NLI System....... 5

2.1.1. Parsing and Meaning Representation ... 5

2.1.2. Query Understanding and Database Query Generation 7

2.1.3. Spelling Correction.. 8

2.2. Portability .. 9

2.3. Lexicons .. 10

2.4. Value Recognition .. 11

2.5. Two Language Problems in NLI ... 12

III. A. MODEL FOR A TURKISH NLI ... 14.

3.1. Design Objectives .. 14

3.2. Components of the System .. 15

3.2.1. Analyzer and Translat.or 16

3.2.2. Spelling Corrector and History Keeper .. 18

3.2.3. Knowledge Source .. 19

3.3. Sentences Accepted in Our Model.. ... 22

IV. A SYNTACTIC TURKISH PARSER FOR NLI ... 30

4.1. Parsing Capabilit.ies ... 30

4.2. Formal Representation of Turkish Grammar Used in NU 33

4.3. Two Different Parsings Used f<?r the Analysis of TUl'kish Sentences 43

4.3.1. Morphological Parsing ... 43

4.3.2. Syntactic Parsing .. 45

\711

V QUERY UNDERSTANDING AND DECLARATIVE QUERY GENERATION "." .. "".".".". :53

5.1. Wallace's D &. Q Notation "

5.2. Changes IvladQ in the Original Syntax of D&:Q " " ,,, .. ,,.,, ... ,," 55

:':),3, Internal Query Generat.iun ." """" ,; " ... ,, 57

5.3.1. Basic Algorithm and Simple Sentences " " .. " " ""."." ... " .. 57

53.2 Relation.s .. " ", .. ,

5.3.3. Attribute Names of Entit.ies .. " ". 61

'),3.4. Content Words and Question Pronouns ... " """,, ... 65

5.3.5. More Specific Cases ... 67

SA. A Full Example of Representation Process " "" "",, .. 68

5.5. Conversion to a Declaratiye Language ... 70

VI. IMPLEIvIENTATION .. 72

6.1. Morphological Parser .. 72

6.2. Syntactic Parser ... , 73

6.3. Meaning Represent.ation and Int.ernal Query Generator " 81

6.4. Spelling Corrector .. 84

6.5. Translator ... 86

6.6. Knowledge Source ... 86
["

VII. CONCLlJSION ... 88

APPENDIX A. TURKISH GRAMMAR .. 91

A.1. Turkish Grammar Used in NLI ill Terms of Rewrite Rules 91.

A.2, Representation of the Grammar as a Transition Network 94

APPENDIX B. SYNTAXOFD&Q .. , .. " " 97

B.1, Syntax of Wallace's D&Q." ... , ,.,.,"""""" , .. , 97

B.2. Extensions Made In the Syntax of D&Q .. 98

APPENDIX C. EXAMPLE DATABASE.. ... 99

APPENDIX D. LISTING OF TP'£ NLI IMPLEMENTATION AND DATA FILES 100

DJ. Program Listing ... , ... 100

D .2, Da.ta Files ... 101

BIBLIOGRAPHY , ... 104

REFEHENCES NOT CITED ... 106

viii

LIS1' OF FIGURES

Figure 3.1. An overview of our modeL16

Figure 3.2. Relationships between two verbs " .. .20

Figure 4.1. Suffix order in Turkish .. ,43

Figure 4.2. Decision Tree for Suffix Elimination " 4 4

Figure 4.3. Parse tree for kim kimya. veri,.For· who is giving chemistry'47

Figure 4.4.. Parse tree of ha..agi hoeD kaf' l)'i kimYlJ. ve fizik notu ve.f'1)vr

'which instructor is giving how many chemistry a.nd physics grades' ,48

Figure 4.5. Parse tree for the embedded adjective clause AlJmeteders veren

boeaJarI 'the instructors who teach Ahmet'49

Figure 4.6. Parse tree for l)· ... ikii11J''JIiJocalarlnj}j derslerinigfi'ster 'show

the courses of the good chemistry instructors' ... 50

Figure 4.7. Parse tree for Abmetin notllndan fazla not alan dgrenclleri gd~yer

'show the students who got a grade greater than Ahmet's grade' 51

Figure 4.8. Parse tree for en {ok kar ma!ematik fizik ve kim}"l] no/u var 'At most

how many mathematics, physics and chemistry gt'ade(s) are there' 52

Figure 5.1. Parse tree for kimya. ders/erinigdster 'show the chemistry courses' 59

Figure 5.2. Parse tree for bangi boca CMP£l{7{1 dersioi veri,.vor 'which

i.nstructor is giving the course CMPE100' .. 69

IX

LIST OF TABLES

Table 4.1. Premodifiers31

Table 4.2. Categories of Words ... 33

L INTRODUCTION

Computers are widely used in almost eyeJ)' area of everyday life i11 Turkey.

Computerized data processing is deyeloping yery fast and the use of management

information systems is expanding rapidly in many organizations. To use the information;

stored in the database every user has to learn a query language as a special language for

communicating with the database. As an example, consider the database ogrenci-ders­

hoca 'student-course-instructor', given i11 Appendix C, consisti11g of three basic files

iJjTenci 'student'. del'S ·course'. hoc a. 'instructor' and a relation file karne 'grade

report' I. A user who wishes to know about students lakin g the COUt'se called CMPElOO

should formulate a query in a,gec1arative query language as follows:

$:EliCT sLno
. FROM student
lIHERE

student.sLno = stud_course.sLno
stucLcourse.code = course.code
course.ename = CMPEIOO

However, it is usually the case that most of the people having a good idea of the

information residing in these databases are unable to formulate their question as a

sequence of requests and conditions2 for a particular dat.abase. The need to learn a

complex language becomes the main problem of people who wish to use com.puters.

Therefore. the computerized data processing brings the need for easy database access

in.terfaces for Turkish computer users from top-level man.agers to clerks who need t~)

access the information residing in their computers. The easiest way of communi.cation

for a hum.an is by using his natural language. The user has to translate hIS thoughts

into a non-procedural query language where the use of an ordinary natural1anguage is

possible. In that way the burden of man-system communication will be totally put nnw

the machine. The system will translate the user's request given in his n.aturallanguage

1 Kiu:IJe is named as ,c,Y{I(Lcollrse in t.he example database given in t.he Appen.dix C.
.s/.lf(Lcolll'si;J. will be used for K;..TJ18 in place of g1tuie ";'POl" hereaHer.
2 The connective AND between each line in the list of condit.ions is omitted

z

into a sequence of instructions and conditions to be processed by a database query

interpreter to generate the desired result.

The major advantage of having a natural language interface is not to free users

from needing to know about query languages but the bridging effect bet.ween two views

The fact that the request is expressed In the way users perceive data as opposed to the

way systems store them provides users with easy to use access environment to

databases. This is because phrasing the query in a database query language requires not

only the learning of st.rict templat.es but some understanding of how t.he data is

repr~sented in the database as we~l1. For instance. in a natura11anguage i'pterface, the

question posed earlier may easily be formulated as one of the fol1owing two sentences,

Hsngi ogrenciler CMPE100 dersini sl1ror 'which students are taking the course

CMPEIOO'

ClffPE100 313.11 ogrencileri goster . show the students who take the CMPEIOO'

where the user does not need to know t.he external view of the structure, so called,

conceptual schema of stlldent-coll.l".>"e -teo.,l1er database.

Over the last three decades a considerable amount of work has gone into the

development of English language processing system.s[1] t. Early developm.ents were in

the formalization of the English grammar, in developing syntactic and semantic parsing

techniques and in designing Engiish language question answering systems. In the field

of natural language query systems in English, many systems have contributed to

advancing the state of art. pointing out problems in natural1anguage front-end design,

and some of them has already reached the commercial market. WIth the deveiopments in

the field of artificial intelligence (AI), AI techniques are incorporated with natural

language processing. and intelligent database user interfaces are designed[2,3i.

However, no attempt has been made to develop a natural language interface (NU) for

Turkish.

The aim of this thesis is to develop a portable natural1anguage interface which

will produce a query in a declarative language from a Turkish quest.ion. In designing a

natural language interface, there are problems that need t.o be solved on the front end.

and at the back end, namely parsing of the Turkish question and translating the

question into a query in a declarative database language, respectively. Therefore, before

I References enclosed in brackets refer to the bibliography,

3

we design a natural language interface 1'01' databases., it is necessary to formalize the

Turkish grammar since other than the study carried out hy Meskill[4L which provides a

transformational modo1 for Turkish, no attempt has been made to fnnnalize the Tu,ddsb.

grammar as a set of rules unti1now. In this thesis, we propose a formalism for the

Turkish grammar and focus on designing a domain independentTur.kish parser which is

capable of parsing a subset of the Turkish grammar by accessing domain dependent

information about words and concepts relevant to the database. It will be used in the

Turkish language process~ng component of our natural language interface. We intent to

design a domain independent natural language interface system that translates the

query into an internal representation language, namely an extended version of

Wallace's D&Q [51. The internal query representation will be converted into a query in a

declarative database query language; the query now contains actual values for a

particular database. This final query can be processed by the database management

system to produce the result.

Providing an easy access to databases increases the burden of machine

translation. First of all, as in the above examples; the user's query does not address to the

actual database schema; querying in the user's own view necessitates an extensiv·~

capability in matching user's view onto actual data files and their relevant. field na.mes,

Reducing the requirement for the user to learn about the details of t.he datahase involves

knowledge of the problem domain to map the user's query onto actual values. Secondly.

queries having the same deep structure may be formulated in various ways. Reduction of

the necessity for user to conform a list of artificial syntax in Turkish requires a

powerful parsing mechanism[')]. Question words a.nd reiative clauses are extensively

used in query formulation. Therefore the parser must process any phrase built with any

combination of question words. However question words may cause semantic ambiguity

because they are less descriptive. For instancethe query ilangi 1j~!trenci1er f.~fPElt1(l

tlersioj alIJrof may also be formulated less informatively as kim CitfPEfI.lIl a.lI.vol'

'who is taking CMPEIOO'. Ambiguity is one of the primary problems in natural language

understanding. A good system should clarify the ambiguity and try to recognize the

user's intention correctly. In addition, once the natural1anguage interface is written, it

must be possible to adopt it to provide access to different databases. that is to different

domains, Adaptation can be achieved by separating the domain dependent knowtedge

from the domain independent knowledge. Hence one who is not familiar with the

natural1anguage processing techniques can transfer the system to another domain.

4

As we pointed out above, natural language interface design requires more than

just simple mapping .from the natural language queries into formal representatioll. It

also requires the natural language comprehension capability in representing the

literal content of a natural1anguage query in.to a formairepresentation which involves

developing reasoning on concepts required. Reasoning is the basic part of the deep

comprehension which involves not only linguistic capabilities but also deductions and

analogies on domain specific knowledge. Therefore a natural language interface must

incorporate a knowledge base containing knowledge about at least the natural language ..

the problem domain and the database.

Aside from the introductory chapt.er. this thesis contains six more chapters. In

Chapter II we discuss some main concepts in natural1anguage interface for databases

(NL!). Chapter III gives an overview of the components of our NLI model. its knowledge

base and contains a sample run to demonst.rate t.he capabilities of t.he model. The

syntactic parser for Turkish developed as a component of our NLI and the formalization

of the Turkish grammar are discuss~~ in Chapter IV. Chapter V briefly explains the

syntax of the Wallace's n&Q meaning representation language, introduces some

necessary changes made to it. and discusses representation of constituents of the

Turkish sentences in extended D&Q. In Chapter VI we discuss some implementation

issues. Finally. Chaptet' VII gives the conclusion and general remarks for future

improvement of the NLI as well as the Turkish grammar,

This thesis contains four appendices following the conclusion part; in Appendix

A the Turkish grammar used in NLI is represented in terms of rewrite rules and

transition network separately. Appendix B gives the definition of Wallace's D&Q syntax

and changes made to it.. Appendix C gives the example database used in the

interpretation. Appendix D gives the program listing together with the contents of the

data files.

II. NATURAL LANGUAGE INTERFACE SYSTEMS FOR DATABASES

This chapter starts with a brief discussion of the approaches in desigiling the

ma,ior components of an NLI. Some important issues in NLI design such as portability,

lexicon types" and value recognition are then summarized. Furthermore, two language

problems in NLI are introduced with examples in Turkjsh,

2. L Architecture of t!, Typical NLI System

The major components of a naturallanguage interface system for database are

the parser. the formal query generator and the databa..se access routines. The parser is

the main natural language processing module. It is actually a program that analyzas the

grammar of the naturallanguage query. The formal query generator translates the

parsed query into a form that can be interpreted by the database access rout.ines. This

latter evaluates the query on the database, In addition to these routines. systems in the

literature include additional routines such as spelling correctors [6 .. 71, routines to solv(;

anaphora and elliptic struciures, help modules [2,3], knowledge acquisition routines [gJ,

and editors [2,3i, The difference between general purpose natural1angua~!e systems and

NU systems is that both the query analysis and the formal query generation are

restricted by both the structure of the database and the subject area covered by the

database [5J.

2.I.t. Parsing and Meaning Representation

The Parser analyses the grammar of the sentence. The a.nalysis is based on the

semantics of the subject area or the syntax of the language. In the NLI design, there are

mainly two approaches used in parsing; semantic analysis and a combination of

6

syntactic and semantic analysis. Semantic parsers use a gramma.r t.hat. is specifically

tailored for the applications. In fact all grammars for NLI systems must have semantic

checks since the subject area is restricted to tho database.

A good example of NLI systems that uses a purely semantic approach is LIFER [71:

its grammar includes sentence patterns like "what is < attribute) of < ship >". where

nont.erminal symbols, i.e. < attribute), (ship) must be associated with individual words

and fixed phrases from a set defined for each nonterminal ~'Ymbol in LIFER's lexicon. 111

its pure semantic approach, the grammar has no noun plll'ases or' verb phrases, but

rather a special set of categories for the particular task. For instance, nouns are not

grouped into a single category like NOUN, but they are categorized as SHIP or ATTRIBUTE.

The grammar used in REL [9,101 is simBa1' to LIFER's grammar. REL's grammal'

includes rules consisting of more general categories than LIFER's grammar. For example

REL's grammar has the category NAME instead of SHIP.

PLANES [6J also uses semantic grammars represented as an augmented t.ransition

network. It includes subnets such as PLANTYPE which a.re oriented t.owards the

information held in the database. There are subnets in PLANES grammar for each

different semantic object and each sub net matches only phrases with a specific

meaning. Only the qualifier subnets in the PLANE grammar are synta.x driven.

Some NLI systems use a combination of semantic and syntactic analysis. The

grammar used by EUFID [11] parser is essentially semantic. The concepts are organized

into a case system. The meaning of a query in EUFID is represented in a tree structure

by connecting cases. Each connection corresponds to con.cept-t.o-concept.linkage. Each

1lode in the tree is a semantic-graph node. The parser uses syn.tactic information "on

demand", that is when such information is necessary to solve semantic ambiguities. In

FRED [21, the approach to parsing is also based on. semantic case analysis. FRED's

grammar is a collection of case f.rames. These case frames are associated with either. t.he

domain specific entities or general entities such as quantifiers. date and tim.e

expressions and arithmetic comparisons. The syntax of acceptahle queries are st.ored in

the case frames. There exist surface case frames which can be atta.ched to case frames to

parse complex sentences. Possi.ble values for cases are recognized by syntactic parsing

of the query. In KID [31. syntactic and semantic analysis proceed incrementally. A rule

in KID grammar consists of both syntactic and semant.l(parts. Syntactica.! analysis

determines the possible modification relationship between phrase constituents a.nd

semantic checks are made on these modification relat.ionships. Similar. to KID, the parser

of TEAM [8] uses syntactic and semantic rules.

7

Semantic grammars suffer from many drawbacks; they embed semantic

information in grarilmatical categories and they make no distinction between domain

specific knowledge and general knowledge [3] , and they are difficult. t.o expand because

they become highly redundant when expanded for more general use since they fail to

capture certain generalizations about the language. It is clear that a parser which uses a

purely syntactic grammar is not sufficient to understand the meaning of the query.

Furthermore, dividing the syntactic and the semantic parsing int.o two completely

separate steps wH11ead to a tremendous increase in the number of possible parses. The

best approach to parser design is to use combination of semantic and syntactic ;;illalysis.

Syntactic categories such as noun phrases and verb phrases can be used for parsing and

only at lower level need the grammar can be tailored to the application.

2.1.2. Query Understanding and Database Query Generation

The formal query'generation is actually a translation process from the output of

the parser into a database query language. In the literature, we distinguish differe.tlL

approaches to query generation; single step translation and multi-step translation.

LADDER [7] is an example of systems that use single step translation in its language

processing component LIFER. In LIFER, each phrase pattern has an expression

associated with it. The expression represents the the meaning of the phrase. Each non

terminal symbol in the phrase pattern has its own production rules and the meaning of

each nonterminal symbol is computed using its production rule. The resulting

expression consisting of meanings of each nonterminal symbol is a call to the database

access routine. TEAM and PLANES resemble each other in that they use two step

transformation. TEAM first produces a logical form and translates it into a formal

data.base query. Similarly, PLANES express the meaning of the nat.ural language query

in interim form, this interim form is then translated into a relational calculus

expression. FRED, EUFID and KID are very similar -in design. Each has a multistep

translation from the natural language to meaning representation. to an intermediate

language and finally to a target database language. for instance. EUFID mapping module

transforms the tree st.ructure output of the analyzer into a string of token(IU.

Semantic-graph nodes are converted into database files and field names. and

connections are cOllverted file-to-file or file-to-field connections of the database. It is

finally translated into the actual DBMS query language. KID uses an approach simiJar to

EUFID. KID conver.ts the meaning representation int.o a wodd model query wh tell

consists of the target list and a list of conditions. Rule-based translation m.echanism is

8

used to translate the world model query into a database query. Rules perform basic

mapping, derivation. generali.zation, and functional joins. FRED slightly differs from

KID and EUFID because it converts the query into an intermediate da.ta.base language.

Query Planner translates the case frame based meaning representat.ion of the query

into a linear string of tokens expressed in the virtual database language V I DELPH I. The

virtual query refers to domain objects rather than actual database files and fields.

Frame-based production rules are used for this translatio11. At the ne}~t step V IDELPHI

query is converted to a DELPHI query. During this cOllversion virtual fields in the

domain file are converted to actual fields. Finally the DELPHI query is transformed t.o the

target database language by applying.a; setof transformation rules expressed in a special

rule-based transformation language Trol1.

Database access routines evaluate the query generated and send back the tuph~s

satisfying the conditions. Some systems [3,61 have also response generators deciding on

how the output should look like.

2.1.3. Speiling Correction

Queries in natural language can contain mi.sspeUed words or words t.hat do not

exist in the lexicons. Some systems include a spelling corrector component which

attempts to deal with unrecognized words. Given that the system detect an ufil'ecognized

word, there are two approaches to correct the spelling error. The first approach is to

enter into a dialogue with the user. When INTELLECT f12J fails to recognize a word it

engages a dialogue with user in which the user is required to correct the spelling or

enter the field where the unrecognized word should appear in the database. It then

searches the dictionary or the database for the unrecognized word. The second a.pproach

is to attempt to guest the misspelt word as LlFERand PLANES do. The spelling corrector

in PLANES is called as soon as the input word is -not found in the dictionary. It tdes to

match the misspeU word against a list of correct words and produces a list of candidates

which consists of words close to the input word. Then, it enters into a dialogue with the

user to confirm one of these ca.ndidates. If no candidates are found or if the user rejects

all the suggested candidates then the user is required to add the word into the dictionary.

\ On the other hand, LIFER records the failpoillts on a failpoint list and attempts to

complete t.he parse by trying other production rules. If a complete parse is found. the

failpoints are ignored. But if an input can not be parsed the list is used by the spe11ing

corrector which substitutes the closest match between the \vords of that category.

9

2.2. Portability

One of the fundamental features of the NLI is application indopBndonce, so caHtiid

pofla!JiljtJ'~ Naturallanguage systems (;an be grouped in. two cat.egories from the point

of view of portability; sjn.~ le domain sJ···stems. those which are built to provide access

for ou1yone domain, and transport.'1.ble J.:r.·:~ite.'l1!>: those which can. he ea..<>Hy adaptahle to

provide access to databases for which they are not written.

A single domain s.yslem is a system whose grammar and query generator

must be completely rewritten for each new application [71. Such a system usually

provIdes useful tools for constructing these components.

Considering transportable s.yste.l11')"', there exist different leye1s of portabilit.ies

depending on how the system is transported and who does this transportation.

A system may be transported by the programmer as it is done in t.ransporting

one of the earliest NLI systems ROBOT [13] to several domain simply by supplying new

rules of grammar and modifying meaning of some words.

Second level of transportability is the one at which the actual user provides

information about the new domain. In REL , the user can. define the entire database or

extend it by adding his own definit.ions and changes. In these two levels of

transportability information about the language and information about the dom.ain and

database structure are intermixed. Transporting such systems to a new domain

requires the changing of the parSIng procedures and the domain

information.

Separation of domain dependent and domain independent information provides

transportability of the third level, where information about the new domain is supplied

through can interactive dialogue with data processing personnel who are not familiar

with natural1anguage processing techniques. TEAM is an example of transportability at

this level where three kinds of information, the lexical information. the conceptual

information and the information about the structure of the database, are required to be

transported to a new database. EUFID, KID and FRED achieve portability ill the same way.

10

For instance. application specific data are supplied t.o EUFID as tables. Application

specific data involve the dictionary, the semantic information and the organization of

the data in tho database. FRED has a domahl dependent kllo''''ledge base which contains

the semant.ic grammar. frame-based product.ion rules and t.ransformation rules. KID has

a world model containing a domain model, linguistic knowledge and database mapping

knowledge. The user has only to update the domain dependent information or supply

new information to transport the system to a new. domain. In addition to that., EUFID, KID

and FRED translate the natural1anguagequery into an intermediate language, which is

then converted into target database language.

2.3. Lexicons

Any nat.urallanguage interface Jlecess.itate a lexicon in which valid sentence

constituent are kept. As we mentioned above an NLI is restricted by the subject area

covered by the database i.e. people (student and instructors) information for the

university database, personnel information for a company and so 011. Considering their

semantics, a nat.urallanguage query includes two kinds of words [5] ; function words,

whose meaning are independent from application and content 'Words, which gain

meaning from the subject area covered by the database. A content 'Word may refer, to an

entity or a property. It may also be a value with which an entity or a property is

associated. Thus, for a portable NL!, new content words must be supplied when the

subject area changes. Thus we must distinguish between lexicons containing these

words. Bt:oadly speaking, there are three different. t.ypes of lexicons 111 NLI [14]: General

entries, st.ructural entries and volatile entries.

General lexical entries are words whose meaning are 111dependent of any

particular domain. Question words such as ko?" 'how many', iJo11gi 'which', alld

"comparative" adjectives such as oz'less', rok 'more' and btJytJk 'big' are some of

examples. They can be practically used for any domain.

Structural entries are terms which make reference to some aspects of the

database. Entries in the structural1exicon are domain dependent. The words that make

r.eference to specific entities or attributes, synonyms for words slIch as ialehe for

(/g-.re11ci'a synonym for student, student', 01' verbs that are specially used in the domail1

11

under consideration. An example of the latter is 31 'take' which may mean ders/llot

almIlk 'take a course' or slllln aJllJa.k 'buy' considering stlJdel1t-COlJrse or sllppliep­

pad-shipmen! databaSes respectively.

Volatile entries are numbers or unknown terms encount.ered during t.he

input. the word C.MPElt.ltJ in our introductory example is a volatile entry and is only

useful for the duration of the session. In most of the nalural1angua.ge interface syst.ems.

the volatile lexicon is not a part of the lexicon and special a.pproachesare used to

recognize values corresponding to volatile entries in natura.l1anguage queries.

2.4. Value Recognition

It is necessary to identify the word ChfP£l{1{1 in our introdu't.tory example as a

noun representing a course name. If this entry is explicitly coded in the lexicon for

future reference, the query system may do false inferences when the course CAIPEllll/

is not offered any longer. There are three basic ways to recogn.ize a value in a. query.

They can be explicitly listed in the dictionary, found in the database itself or recognized

by a pattern or t.ext.

One solution to this problem is t.o use the database itself as a. volatile lexicon[101.

For a question like kim C.AlPElt.lt.l dersini .a.lJYl)r 'who is taking the course CMPElOO',

The natural language processing system may refer to the database t~) check the

existence of a field containing the value C.MPElt.ltJ

An alternative solution to this problem is to infer fields that could contain

unknown terms [14l. An unknown term may be t.reated as an item of line of these fields.

Values can also be recognized by a pattern. Hence it is not necessary to itemize all

instances in the dictionary. For example, a dale may be entered as gun/aY/Yl1

'day/month/year' so an input matching that format is recognized as the d.'lte.

Each of these solutions has disadvantages [141. If aU values are stored 1n the

dictionary it would result in an enormous number of dictionarv entries. Patterns can be , .
used only if users can be enforced to fit the data to the pattern. Especially proper names

are poor choices for patterns. Solution using the database itself is costly and

12

unsatisfactory because of the need for a database search for every unrecognized word.

It can only be accepted as a satisfactory solution if the database is small. In our model we

do not focus on value recognitions, some of the volatile words are stored ill the

dictionary since the number of entries are small. The user is forced to begin a proper

noun entry with a capital1etter.

2.5. Two Language Problems in NL I.

Here are introduced two language problems in NLI, namely conjunctions [l1J and

ambiguities [14] .

The difference between the way the user perceives t.he data. as opposed to the way

the machine stores them brings the conjunction scooping problem in question. The

natural language use of a.nd which usually denotes a conjunction, must be i.nterpreted

in some cases as or which usually denotes a disjunction. Consider the sentence,

kimY8 ve fizik hoca.ia.rl1l1 gaster

'show the chemistry and the physics instructors'

The meaning of ve 'and' must be changed to logical Of'. the phrase kim...va. and fizi1c

. chemistry and physics' must be formally st.ated as kim,Fl.i. or fizi/:' The disjunctive use of

and occurs when it joins two alternative values. Therefore the solution to this problem

is to change and to logical or when the two constituents with the scope of the

conjunction are value for the same field.

Ambiguities may be of two types 11l language understa.nding; semantic

ambiguit.ies and syntactic ambiguities.

Semantic ambiguities which occur when the parsed constituents may have

several possible meanings. Consider the question

ki01 C.JfPElt10 alJyor 'who is taking CMPElOO'

The question pronoun kim 'who' may refer to a student or to an instructor depending on

the context. To resolve this ambiguity, the information gathered in the rest of the

13

sentence must be examined. Determining the intended referent in the database may be

much more difficult when the following que1)7 is considered,

Ahmetin dersierini goster ; show Ahmet's courses'

Ahmet is a proper noun corresponding to a particular name, as in the above example,

but its meaning may be either a student's or a instructor's name depending on the

context. The referent can be determined by observing the database schema provided that

the conceptual database schema reflects the semantics ,of the domain.

Syntactic ambiguities occur when modifiers or modifying phrases' are

physically separated from the term they modify. No words are ambiguous in our

grammar when the set of possible constituents of a phrase are well determined. The

distance between modifiers and the actual word they modify is zero io. our grammar.

14

III. A MODEL FOR A TURKISH NLI

After having discussed some important concepts of NLI design 1n Chapter II; in

the first part. of .this chapter we introduce our design obJectives. Next section gives all

overview of our knowledge based NLI model being designed, with a briefexpianationof ,.­

each component of the design and the knowledge base. We conclude this chapter with a

list of natural1anguage queries acceptable in our model.

3.1. Design Objectives

Our main objective is to design a portable natural language database interface

that will allow a non programmer to easily obtain information from a database. We

formulate our subgoals as follows:

-The system should have a parser for Turkish with a wide range of semantic and

syntactic structures which may appear in a natural1angua.ge query.

-The system should allow querying in conceptual1evel rather than on a factual

leyel.

--The system should free the user from having to know the physical database

organiza.tion.

-The system must correct some spelling errors, and tolerate a range of

non grammatical but correctly understandable requests. Certain kinds of extension.s such

as addition of new words or synonyms, should be possible to perform.

-The system should be transportable to another domain. without- any knowledge

of the program.

3.2. Components of the System

In order to satisfy the subgoals given 1n Section 3.1 .. a· natural langua.ge

interface should make a distinction between different processing phases and maintain

a clearcurseparat10n bet.ween domain independent and domain dependent. parts of the

NUl 151. Our approach to the NLI design is to have general purpose run-time modules for

different processing stages and to supply the domain dependent. kn.owledge as data to

these modules in order to minimize the consequence of cha.nges in the interface

environment that may occur due to the changes in the topic of discourse, in t.he

structure of the database or in the database management system. As shown in Figure 3.1.,

our system consists of four domain independent. run-time mod~l:ps, na.mely the analyzer,

>,·the translator, the spelling corrector and t.he history keeper, and a··!:Dowlf.'dge source.

Considering the above mentioned parts that may vary from one domain to another, th.e

domain dependent knowledge include the synonym dictionary (part of the lexicon), the

semantic relationships dictionary, a dictionary containing semantic definitions of

words, the conceptual database schema in user's view a.nd the domain-to-·database

mapping table. The domain independent knowledge is kept in the basic dictionary.

The analyzer accomplishes parsing of t.he natural query and generates a D&Q

expression which representsthe meaning of the query. The output of the analyzer is the

input for the translator which converlct the D&Q expression into a SQL query. The

spe11.ing corrector attempts to correct a misspelled word by suggesting a list of candidates

that can substitute it and update the lexicon if necessary. The history keeper is a

register which keeps information about the previous query, which may be referred to

in order to provide missing information in. the current query. The knowledge source

provides domain independent and domain dependent knowledge.

HISTORY --+
~EEPER +-

16

Natural lallflU8{le query'"

AHALYSER

Syntactic TN parser
an<J

--t SPELLING

.-l.-C_OR_R_E_C_TOR.

I
I I

Semantic Analyser

L..-I_n_t_e_r_na_l_Q_U_e_r_Y_G_e_l_le_r_a_t_o_r--lI~'1
~-----------------~f--

TRAIlSLAiOR

:ngure 3.1. An overview of our model

I:XOVI.EDGE SOUR.CE

I'
I

LexicQt\S
S~tM:nUc B.€'l~tiQi'I8hlps

SetMfiHc DeHru HOt"lS

COt'lCE'ptu111 DstsbSSE>
Scho?tl;\S

3.2.1. Analyzer and Translator

Processing of a user query is divided into two main phases; syntactic parsing

integrated with the semantic analysis and internal query generation. The analyzer is a

general purpose domain-independent language processor a.nd a meaning representation

generator. The language processor does syntactic and morphological parsing. and

semantic analysis. A phrase in Turkish is a collection of semantically ordered, modified

or unmodified noun phrases. The syntactic parser splits the sentence Into noun phrases

by locating head nouns and their corresponding modifiers. for this process. the

syntactic parser uses a context-free grammar, Rules state the way of linking different

phrase constituents into a noun phrase and specify the way in 'l{hich noun phrases can

be combined. Syntactic parsing is accomplished by matching input sent.ences a.ga.illst

phrase patterns represented as transition networks. Morphological analysis is used tn

decide on the functions of nouns. Semantically ordered phrase constituents are

transformed into a canonical form by substituting for synonyms or abbreviations the

equivalent words found in the conceptual database schema. For insta.nce, the word

ol/I'en ci 'student' will substitute the given input /glebe 'a synonym for student'. The

17

syntactic parser uses the basic lexicon and the synonym dictionary. The seman.tic

analysis is integrated with the syntactic parsing. It checks whether the relations

between the noun phrases and the verb are meaningful. It solves semantic ambiguities

and finds the referent of question pronouns and proper nouns. The knowledge on the

semantic relations is used in this analysis.

The meaning representation process can be visualized as "the sentence tree

produced by the analyzer is traversed bottom up and at each node the descl'iption of the

head noun created or an existing descl'iption is extended or two descriptioj)s are'

combined", However, meaning representation and linguistic analysis are concu,rrent

processes in our model. They proceed incrementaHy. While pc~rsing user's query, the
/

query is also translated into a formal meaning representation language, namely an

extension of D&Q of Wallace. Internal query generator is called after the successful

parse of a constituent. It maps the parsed word onto an entity and attribute name. It

creates the descriptions of the entity when the parsed constituent is mapped to an entity

or extends the existing description of the entity when a word corresponding to a

prop--;::rly of this entity is parsed. Regarding the relations, the internal query generator

consults the conceptual database schein2, tv decide on whether the semantically correct

relation between the noun phrases and the verb are applicable ill the database. Noun

phrases stored in the memory are combined into a nested description accol'ding to the

relatjon involved in the natural language query and in the database schema. Therefore,

the meaning representation process involves the following four decisions:·

(1) Deciding on which relations to take

(2) Deciding on how to modify relation

(3) Deciding on how to combine relations

(4) Deciding on which operations to perform on return fields

The second run-time module in our system is the translator. The translator

transforms the expression represented in the meaning representation language i11to

the database specific target language of a relational database management system,

namely SQL. First by applying a set of database independent t1'ansformation rules, the

query is converted into a general declarat.ive language. Next, domajn objects found in

the query are mapped onto actual database files and fields. The conversion from USC1'

view to actual database files is specified in the domain to database mapping table,

13

3.2.2. Spelling Corrector and History Keeper

The spelling corrector module is called when a word is not found In the lexicon

during the syntactic parsing. This module attempts to find the lexicon entry close to the

input string. The method used to find candidates for an unrecognized word is to split the

word i11to two parts and to attempt to match the first part of the word with the first parts

of the existing words in t.he lexicon. When no matching word is found then. the second

part is tried. The user is asked for candidates one by one un.til one of the suggested

~alldidatcs is accepted. If no candidate is found or all of the candidate are rejected then

the user is asked to enter the function of the unrecognized word and its domain value if

it is a noun. Consider the NLI query

kim hangi derti ali,fTor 'who is ta.k.ing which course (course is misspelled) ,

The parser first notes that the word dert is not in the lexicon and the spelling corrector

is called. It finds that the word deI'S is the most simiiar word to dert and prints th.e

following message;

dert yerine tiers kullantlabilir mi.? ' substitute ilers for de.!'i? '

If the user types e (for evetlyes), the system substitutes deI'S for dert and continues

to parse.

The history keeper component stores descriptions used in th.e last query together

with its form and the result returned for it. When some information is missing in the

query, the history keeper component is referred to in order to fetch its previous value.

Pronoun references or the referent of the demonstrative adjectives can also be

recognized in the same way. As an example, demonstrative adjective 0 'that' in the

phra.<;e () der.~i'that course' can be recognized by referring to the previous description of

deL'S' course' and using the properties of the last description as the current one. Assume

that del'S has the following D &Q description in the history keeper,

the-l-quaHX,[l,ders(ad=kimya))

In representing the meaning of 0 deL'S 'that course', the current description of dt}[.J,'

'course' will be extended with the addition of the selection ad=kim.ya. As another

example. consider the sentence dersini glj5ter 'show his course'. The word ders has the

possessive suffix -/ but its genitive component is'missing in the sentence. It is supplied

by taking the last word in possessive relation with the word dc.'L"S from the- history

keeper. The user is asked to provide the necessary information when the description

does not exist.

19

3.2.3. Knowledge Source

As explained in the Section 3.2.1.. ea.ch stage involved in t.ransforming a nat.ural

.language query into a database language query necessitates different types of

knowledge. Our system has a knowledge source which consists of five different kinds of

information, lexical information, semantic relationships, semantic definitioflS,

conceptual database schema in user's view, and domain t.o database mapping.

1.exical information. consists of Lhe synt.actic propert.y of the words that will

be used in querying and the concept informat.ion. Concept information is called the class

information_. which defines the _kind of concepts to which the wore! refers. There are

two types of lexical information; the basic dictionary which keeps do_main dependent

words such as pronouns, adjectives, con.iunclives, and the synonym dictionary.

which stores domain dependent words which will be used to sUbstit.ute user terms in.

transforming the query into the canonical form.

Info1'.tnf'ltiOll about the user's view of th!;; database is actually a. databa."ic scbc!e_a.

in. user's terms. It jncludes the definition of the structure of ei'ch file in the database.

Each file is about some kind of an object such as del'S 'course', ag,re11ei 'student', 110Cll

'instructor' and the fields of t.he file contain object's properties 1ike kod 'code', ad

'n.ame' kredi 'credit' for the file ders. This dictionary contains three sorts (If

information for each field of a file; file name, type of cla.'~s from which it gets its value

and an indicator for koy fields. This information is used to select the couect meaning of

the query through the knowledge of how the information is stored ill the structure of

ih e da.tabase.

Semantic reiationships dictionary keeps information about the functional

relations between objects and verbs that can take objects as a.rguments. Ob.iects are

entity names or attribute names, Thus, semantic relationship dictionary describes the

correspundellce between different entitles. attributes of entities, and yerbs. Each group

cOHsisls of an act and a list uf obje<.:ts that can meaningfully occul'w-ith that act.

For example, entries for the verb Eli 'take' are;

(al. ders, obj,ect)

(a!, not, object)

(al. ogrenci. subject)

(al. hoca, ablative)

20

Semantic relationships dictionary contains entries representi~g the cooccurence of two

objects as well. i.e. the cooccurence of the words not 'grade' a.nti del's 'course' is also

semantically meaningful provided thatseco;1d object has the case marker locative on it,

e.g.

(not, ders, locative)

figure 3.2. shows an associative network representation of t.he verb al ·la.ke' and ver

'give' through their common argum.ents and a possible relationships hetween.

arguments.

dative

Figure 3.2. Relationships between two verbs: aj'take' and vel" 'give'

21

Dictionary ·of semantic definitions contains entries showing how an

adjective or a noun will modify an entity or a relationship in terms of its attributes. The

need for such a dictionary can be explained on an exam.ple as follows: the meaning of

I~Vj 'good' occuring as the modifier of ders 'course' can not be expressed by extending

the description of def:5: Therefore, the meaning of the compound iyiders 'good course'

must be explicitly stated. /.vi ders' good course' is defil1ed. in terms of its attribute

l1oc;wo 'instructor's id' of the entity ders as iloc811a = 12}1.

Domain to database mapping table includes an entryJor eac.h>field ofa file.

Each entry contains the file name and the field name in user's view and their

corresponding equivalents in the actual database. An example for the file del'S

'course' is the following;

(ders, kod, course, code)

(defs, ad, course, c.-name)

(ders, kredL course, credit)

(ders, hocano, course, instLno)

22

3.3. Sentences Accepted in Our Model

This section gives a list of acceptable natural queries in our model. Each natural

language query is followed by the SQL expression generated for it. The list is intended to

include all the different types of queries that can be processed by our model.

kim CMPEIOO ahyor

SELEL'T sLno
FROM student
WHERE
student.sLno =, stud_course.sL.no
stud_course.code = course.code
cou1'se.cname = CMPElOO

kim CMPElOO veriyor

SELECT instr-11o
FROM instructor
WHERE
instructor.instcno = course jnstr.-11O
course.cname = CMPEIOO

ha.ngi hoca CMPElOO veriyor

SELECT inst1'_no
FROM instructor
WHERE
instructor.instcno = course,instr-11O
course.cname '" CMPEIOO

kim hangi dersi vedyor

SELECT instcno code
FROM instructor course
WHERE
instructor.instr.J1o = coufse.instr-fio

kim 11e veriyor

SELECT inst.Lno code
FROM instructor course
WHERE
instru ctor .insLLllo = course .illstr-fiO

kim ne altyor

SELEc[sLno code
FROM student course'··'
WHERE
student.sLno = stud_course.sLno
stud_course.code = course.code

Mehmet hangi dersleri allyor

SELEc[code
FROM course
WHERE
course .instcno = instructor .lustr-fio
instructor.insLname = Mehmet

eMPEIOO alan ogrencileri goster

SELECT st.J10
FROM student
WHERE
student.sL.uo '" stud __ course.sLno
sLud_course.code '" course.code
course.c..name = CMPElOO

23

Mehmetin derslerini gaster

SELECT code
FROM course
WHERE
course.code = stud_course.code
stud_course .sLno :: student.sLno
student.sLname = Mehmet

Ahmetden del's alanlarl vel'

SELECT sLno
FROM student
WHERE
student.sLno = stmLcourse.sLno
stud_course.code = course.code
course.instr-D.o = instl'uctol'.instLno
instructor.insLname = Ahmet

Ahmetden ders alan kimya agrencilerini gaster

SELECT sLuo
FROM student
WHERE
student.sLno :: stud_coul'se.st-D.o
student.dept = kimya
stud_course.code = course.code
course.instr_no = iustructor:instr_no
instructor.insLname = Ahmet

kim ka~ del's ahyor

SELECT suo count(~)
FROM student course
WHERE
student.sLno = stud_.course.sLno
stUlLcourse.code = course.code

24

kim Ahmetden del's altyor

SELECT sLno
FROM student
WHERE
studenLsLno ~ stud coursc.st no
stud_coul'se.code = course.code
coufse.instLno = instructol'.instl'-11o
instructor.insLname = Ahmet

Ahmetden del's alant vel"

SELECf sLno
FROM student
WHERE
student..sLno = stud_course.sLno
stucLcourse.code = course.code
course .instr _no = instru ctor .in str-fi 0

instl'uctol'.insLname = Ahmet

Mehmetin aldlgl dersleri vel"

SELECf code
FROM course
WHERE
course.code = stud_course.code
stud_course.sLno = student.sLno
student.sLname = Mehmet

Mehmete del's veren hocalan gaster

SELECT instr _no
FROM instructor
WHERE
lnstructof.instLllo = course.inslr-11o
course .code = stud.._course .code
stud_course.sLno = student.st-11O
student.sLname = Mehmet

3ten fazla noHan vel'

SELECT grade sLno
FROM stud_course stud_course
WHERE
stud_course .grade) j

25

50 iie 100 aras11ldaki notlan vel'

SELECT grade sLno
FROM stud_course stud_course
WHERE
stud_course.grade) 50
stud_.course .grade < 100

CMPEIOO dersini veren kimdir

SELECT code
FROM course
WHERE
instructor.instr-.no = course.instr-.no
course.cname = CMPElOO

Ahmetin aldlgl del's nedir

SELECT code
FROM course
WHERE

course.code = stud_course.code
stud_course.sLno = student.sLno
student.sLname = Ahmet

CMPEIOO dersinin hOCasl kimdir

SELECT instr-flo
FROM instructor
WHERE
instructor.instr-fio = course-instr_no
course.C-1lame = CMPEIOO

iyi dersleri goster

SELECT code
FROM course
WHERE

course.C-fiame = CMPEIOO

26

Mehmetin iyi dersledni goster

SELECT code
FROM course
WHERE

course.code = stucLcourse.code
course.Lname = CMPElOO
stud_course.sLno = student.sLno
student.sLname = Mehmet

Ahmet ka~ del's veriyor

SELECT count(*)
FROM course
WHERE
course .instr -fl.O = instru ctor .in.stl'-fl.O
instructor.insLname = Ahmet

Ahmet ka.~ kimya del'si veriyor'-

SELECT count(*)
FROM course
WHERE
instruct.or.instr_no = course.instl'_no
instructor.inst-fl.ame = Ahmet
course.C-fl.ame = kimya

kimyada kal1 ogrenci val'

SELECT count(1<)
FROM student
WHERE
student.dept = kimya

kimya bolomonde ka~ ogrenci val.

SELECT count(*)
FROM student
WHERE
student.dept = kimya

27

Ahmet adl1 hoca hangi dersleri veriyor

SELECT code
FROM course
WHERE
instructor.instr-.1io:: course.instr-Ilo
instructor.insLname:: Ahmet

kimya alan ogrencilerin adlaflnl vel'

SELECT sLname sL.oo
FROM student student
WHFRE
student.st-IlO = stud_course.sLno
stud __ course.code = course.code
course.C-Ilame:: kimya

Mehmet adh ogrencinin numaras1ll1 vel'

SELECT st-IlO
FROM student
WHERE
student.sLname = Mehmet

Mehmet adh ogrencinin notlanll1 goster

SELECT grade sLno
FROM stud_course stud_course
WHERE
stud_course.sLno :: student.sLno
student.sLname = Mehmet

Mehmet adit ogrencinin notlannln ortalamas1ll1 vel'

SELf:(1' avg(grade)
fROM st.mLcourse
WHERE
stud_course.st-Ilo :: student.st-Ilo
student.st-Ilame :: Mehmet

28

CMPElOO derslerinin SaY1S1111 gdster

SELECT count(*)
FROM course
WHERE
course.cname = CMPElOO

en yoksek notu gaster

SELECT max(grade) sLno
FROM stud_course stud_course

kimya hocalanm goster

SELECf instLno
FROM instructor
WHERE
instructor.dept = kimya

kimya ve fizik hocalarlnl gaster

SELECT iustLno
FROM instructor
WHERE

instructor.dept = kimya OR instructor.dept = fizik

29

30

IV. A SYNTACTIC TURKISH PARSBR FOR NLI

After having introduced the model, it is necessary to determine the types of

sentences that natural proc~ssor component of model will deal with and define a formal

representation of these linguistic data so that it can be processed on the computer. In the

first part of this chapter, the types of sentences necessary in formulating database

queries are intuitively introduced. Next, a grammar that consists of a collection of

rerf'Tite rilles [11 for the formal representation of sentences are discussed. In the

remainder of the chapter a simple algorithm for morphological parsing of nouns and

syntactic parsing of sentences using the rules l defined in the previous chapter are

discussed with examples of different sentence types.

4.1. Parsing Capabilities

Since the parser is to be used as a component of a natural language interface for

databases it is restricted to queries about databases. Queries can be formulated as

imperative sentences, or as affirmative sentences about the third perSOll containing at

least one interrogative (question word). Therefore, we restrict our grammar to these two

types of sentences, and our model to the domain of the database. We also include var/yok

'there is/not' type of sentences an.d noun. sentences with the suffix -dir (third pet'son

form of the verb 1.0 be} where to be is the main verb), These four clause forms are the

com.plete set of sentence types that may be used to formulate any database query. Thus,

our parser can analyze the following types of sentences:

_ Imperative sentences .. e.g. C.IWPEIOtJ de.rsil1in ilocaSfl11 glister 'show

the instructor of the course CMPE100'

I the word rule is used to mean rewrite rule hereafter

31

- Affirmative sentences about the third person containing at least one

question word, e.g .. ki.m ki111Ta dersini veriyor 'who is giving the course

C:MPEIOO'

- Sentences with vaIl }·-ok e.g. kSf killl}--a. clers} Ya.L" 'how many CMPElOO

course(s) are there'

__ Noun sentences with the suffix -ti/l', the so called copula, e.g. CMP£lt7P

dorsiain noca,Sl):1.11101r 'who is the instructor of CMPElOO'

It a.lso allows sentences in negative form and passive constt'uction of affirma.tive

sentences.

The last constituent of the sentence determines the type of the sentences, the

remainder of the sentence is called noun phrase. Noun phrases accepted by our parser

consists of three different types:

(A) Proper nouns, e.g. Ahmet, CMPElOO

(B) Question pronouns. e.g. kim 'who'. ne 'what'

(C) Descriptive noun phrases,

Descriptive noun phrases are composed of a noun preceded by zero or more

premodifiers. Permissible premodifiers in our current grammar are given in Table 4.1.

Table -4.l. Premodifiers

IY.ru!.
noun modifier

simple adjective

question adjective

demonstrative adjective

superlative

possessive

Example

CJfP£lL7{! dersi

J"o,ksek not

lungi ogrenci

o del'S

e11 Yllksek not

dfl.f~"io hOCasl

'the course C}fPE1Pf} '

'a. high grade'

, which student.'

'tbat course'

, Ihe highej,.'1 grade'

'the instructor ;][t11& COll'~'i~'

Multiple premodifiers are a.lso accepted provided that the ordering of

premodifiers is grammatically correct. Some examples at'e given below.

kor C.MPE10P ders! 'hOfv mooy DffPElt.ll7course(s)'

o kimya. dersi 'iha.t chemi.>"tr.y course'

en Foksek Cfi-fPE100 notu 'the higne.!o"t CA-fPElllll grade'

HOCa..!lln kor 1)-... ' ogrencisi 'how mi.lO.V good student(s) of th(;~ ill.!o"trudoi

32

Any combination of more than one noun modifier or adjective may be used as a

modifier provided that the last two premodifiers are separated by a conjunctive, e.g.

kOf CAIPE10(1 ve AIATH151 dersi 'flOTV many CMPE100 fwd MATH151 course(s)'

eo yuksek ve eo dU$Uk notlar . the highest and the 1owe tgrades·

However, according to the correct ordering, the following constructions are not

allowed:

CAfPE1{7(J ... voksek not . ClfPE1tJIJ iIZJ{fl grade'

(noun modifier should immediately precede the head noun)

o kar del's . lila.t hmv monT course(s)'

(a demonstrative adjective and a question adjective can not modify the some head noun)

Furthermore, some forms of comparative structures can be used as premodifiers,

e.g.

5teo ho...VIJkUyi. fazla) ·(better,·more) greal .. ~r tban 5'

5 i1e 3 araslodaJd notlar . grades hetrveelJ 5 and 3

Our parser also accepts certain relative clause structures. The first type of

relative clauses is the construction with a verb and pa.riicipie suffixes -eo./'-a.11 , e.g.

dersaJan ogrenci 'the student rf·l10 takesa. 1.,{)lfn.."'iJ

oot verme.,veo hoca 'the instructor who doesoo!A'ive agr'9.titJ

Second type of relative clauses is the construction with t.he suffix -dig, e.g.

(}greoeioio aldlgldersler 'the courses that the studeot takes'

11oca010 ver.l11edigi not 'the grade that the iostrucll..Jr does no/.give'

Relative clauses in Turkish can also be used as the object of a verb:

ldol}'tl dersi alanlan(goster) '(show) tnose rvil.O ta.kethe chemistry course'

nocanJD. Ahmele verdlgi(nedir) '(what is it) tnat tile i115iructorgives tf) A..b.mel

33

4.2. Formal Representation of Turkish Grammar Used in NLI

The major components of a computer system for analyzing the structure of a

Turkish sentence are a set of c_ategories and a lexicon in which each word is assigned to

the categories, a grammar of Turkish which wi11 specify the well formed sentence

structures of the language and a parsing program 116L Syntactic categories and the

formalization of a subset of the Turkish grammar are discussed in the following

paragraphs.

The basic elements of a sentence are verbs and noun phrases. In the lexicon,

words are assigned to word categories, and rules are generalized terms of t.hese

ct:!egories. Therefore before proposin.g rules it. is important to defi:ne these word

categories. Words are categorized in order to simplify the interpretation of their

semantic and syntactic functions. Words are traditionally classified according to their

functions as noun, adjective, pronoun, verb, etc ... Considering their functionality in

communication for a database interface, we further classify words into subcategories.

For instance adjectives are subclassified as question adjectives, demonstrative adjectives.

etc ... The list of the categories is given in Table 4.2. together with examples and thei

notation used in rule definitions.

Table 4.2. Categories of Words

Category Notatiun

Simple noun noun.

Proper-noun propernoun

Pronoun pr0110Uil

Question pronoun qpronoun

Simple adjective adj

Question adjective qualadjques

Demonstrative adjective qualadictem

Qualitative adjective qualadjqual

Quantitative adjective adjquan

Superlative

Conjunctive 'conj

f=xamples

del'S, hoca,ogrel1ci

Ahmet, Mehmet

o

kim, ne, ka~

iyi. koto, zor
hangi, ka~

bu,o

hi~bir, hi~, boton

~ok, az, fazla

en

ve, veya., iie

34

The Turkish grammar that we intuitively use to differe11tiate between correct al1d

incorrect sentences can be formalized as a phrase structure grammar which consists of

a set of phrase structure rules each representing a labelled phrase to be matched against

a sequence of constituents of the input sentence. Each phrase structure rule consists of a

pattern name followed by an arrow and a string of symbols that make it up.

A~BCD

where the symbols on' the right hand-side of the arrow will he substituted in place of

the one on the left hand-side. Each symbol is either a word category or a pattern na~e.

A phrase structure rule specifies what a grammatical sentence can look like.

Together with other rules specifying what other sentences can look like, all of these will

form the grammar of Turkish. Therefore in formalizing the Turkish grammar, we must.

define correct sequence of word categories that will form different structure patterns.

In addition to that, since the result of parsing will be used in representing the meaning

of the sentence, parsing of the syntactic structures must be intermixed with the analysis

of interrelation of words in order to recognize t.he function. of each. The major aim of a.

parser is then not only to analyze the word sequence to check whether the sent.ence is

grammatical or not, but to produce a parse tree representing the relations between

words. In defining phrase structure rules, the notion of a relation must then

incorporate with the categorical notion. The only relation between words mn be a

Dlodifit'otioll. Words can modify t.he verb or each ot.her. A modifier ca·n also be modified

to produce a multi-layered structure. At each level there is a head noun and a sequence

of modifiers. It is then sensible to break down the sentence into phrases each consisting

of a head noun carrying the central assertion of the phrase and a.sequence of modifiers,

each of them providing some fact.ual details to the information in the head. A sentence

can then. be thought of as a combination of phrases whose head modifies the head of the

successive phrase and/or the verb. The head noun as weH as modifiers may be a single

word or a group of words, all of the same type. Therefore the main principie is to write 3

rlJle for

(1) each couple of noun phrases that modify each ot.her

(2) each possible group of one or more words. all of t.he same type.

As mentioned a.bove, the head of the phrase can modify one of the successive

phrases and the verb at the same time, i~ is then necessary t.o distinguish levels of

modifications. The grammar is thus arranged in a hierarchical st.ructure and each level

35

defines a type of modification. The types of modifications can be classified into two

groups as the modifiers of the verb and the modifiers of the successive phrase.

Considering the internal structure of a phrase, it is quite possible that several

types of words modify the head noun. One simply can classify modifiers according to the

position in which each occurs within another. We differentiate three different levels of

modification depending on how close the type of a modifier can be to the head noun

when this latter is modified with at least two different types of modifiers. These four

levels are comparative modifiers. qualitative and quantitative modifiers, adjective

modifiers, and noun modifiers.

In Turkish, a grammatically correct sentence with minimal constituents

consists of a noun phrase followed by a verb, therefore the phrase structure of the

major sentence in Turkish for a single sentence is

S -) NphcaseM V ph

where the str'!cture of Nph and Vph must be independently specified.

Considering different types of sentences listed in Section 4.1. the verb phrase. Vph

can be rewritten as

Vph -) verb I

verb ... (-.(vorl -dj) I

vorl }Tok I

(noun I adj I verb ... -en) ... -(iiI'

Our grammar analyzes noun phrases in stages. The analysis of noun phrases is

classified into three different noun phrase levels. These levels are arranged in a

hierarchical manner according to the order of suffix combination of the head. This is .

provided by defining a set of rules for each level of modification. na.mely :Mph. Nphl.

NF where each is defined in terms of the other.

The highest level for a noun phrase is Nph. It describes possible combina.tions of

a noun with one of the case markers, namely nominative, accusative, dat.ive, locative,

ablative abbreviated as case&'. obj. dat. loc and abl respect.ively. The case markers

indicate the role of the noun phrase designated by the verb in which it occurs. We

consider five different roles corresponding to the above listed cases. They a.re

36

subject/agent, object, destination, location and source. The constituent of a simple

noun phrase, Npb can be

- a noun phrase whose head has a case marker

- two or more noun phrases, each with a different case marker

- a null value.

Hence, Mph can be formalized recursively to handle an infinite number of noun

phrases as

NphcaseM ~ NphcaseN NphlcaseM I N'phlcaseM

The next level for a noun phrase, Nph, deals with the highest level of

modification that may occur between two noun phrases, na.mely possessive celation.

a noun phrase whose head noun has a genitive suffix -in on it modifying its successor

noun phrase whose head noun has a possessive suffix -i on it [17) . The structure is

represented by the following rule:

Ilphl(caseM/gen) ~ Nphl gen Nphl(caseM/gen)+poss

This rule states the requirement of a noun ph.rases with genitive property when one

with possessive property has been parsed. Note that this rule allows recursive

applications, it can thus parse nested possessive relations.

Examples:

h()CtlIll11 der.:.i 'instructor's course I course of the i.fistructor'

hO(""9.f110 den.Yoio ogrelldj.Y 'students of the instructor's course'

Combination of two noun phrases with a conjunctive or disjunctive must be

handled at this level. Combination of two Nph Is yields another Nphl as defined in th.e

following rule:

Nphl(caseM/gen)+(poss) ~

Nphl (caseM/gen)+(poss) conj Nphl(c::aseM/gen.} .. (poss)

Example:

hOt-'jJ}'1 ve cler.si 'the instructor and the course'

37

The three rules described above deals with the relations between noun phrases

and the verb. The remainder of this section is devoted to the definition of the internal

structure of noun phrases. Just to remind, the internal structure of a nOU11 phrase

consists of a head noun or a head noun group preceded by a string (If modifiers, the so

called pre modifiers. Considering the difference in modifiability of different 110unlike

words. we introduce the third level NY. The modified head noun together with its

modifiers are considered as a noun phrase simply by adding the following ruieinto the

grammar

Nphl{easeM/gen}+(poss) ~ NF{easeM/gen)+(poss)

Basic constituents of a noun phrase at the third level NF include

- pronouns

- question pronouns

- proper nouns or a group of proper nouns

- noun or a group of nouns.

Although they are all nounlike words, only nouns can be preceded by modifiers. This

leads us to introduce four different options for NY as given below

NI(easeM I gen}+(poss) ~

pronoun(&aseM I gen)+(poss)

qpronouD(easeM I gen}+(poss) I

I
Ng2{easeM I gen}

{ASF I AFS I (CS) (QF) (AF)} Np(cascM I gen)+(poss)

The first two options state that occurrence of a single pronoun or question pronouns is

considered as a noun phrase. The occurrence of several proper nouns is grouped

together under the rule Ng2. These three options define the set of nounlike words that

can not take any premodifiers. The last one covers five different types of modifiers

which may precede the noun or the noun group. They are called premodifiers. The

structure of each modifier category is explained in detail later in this section. Here is

examined the position in which each occurs within another. The grammar is extended

by Ptltting an option for every possible correct order of these premodifiers. There are in

fact three options since some of them are grouped in the same option. These three

.38

different options are adjective modifiers in superlative form ASf, relative clauses in

adjective function AFS occuring singly and a sequence consisting of comparative

modifiers CS, followed by qualitative and quantitative modifiers Of and adjective

modifiers AF. Considering the variety of possible combinations of premodifiers in the

last option, some of them may be absent in certain grammatical constructions but the

correct order is still preserved. Thus, we have }:llf If:iders ' how many good course' (OF.

AF. NP),noti,;viEofders'goodhowmanycourse' (AF, QF, NP), 5tC11 bl1.,vtJ/{ l~vi 110t

'good grades greater than 5 '(CS, AF, NP), but not i,;vi5ten bliyl1k 110t 'good greater

than 5 grade" (CS. Af. NP) and so forth. The brace notation indicates optiollaiity (If

appearance of a constituent in that position.,

Examples:

5 ten btlFUk not, 'the grade (that is) greater than 5',

en i..r-i de rs, . the best course',

ders veren hoea, . professors giving a course'

ka~ Ifi ders, ': how many good course'

Ahmetin notunda.o fada kar fbi) not 'how many (good) grade(s) greater
than Ahmet's grade (are there)'

Possessive com.pounds form the lowest level of modification. This construction

is like possessive relation; t.he difference is that in compounds genitive suffix -ill is

omitted from the first noun although possessive suffix is st.ill attached to the second

noun, Nothing may exist between the two members of a. possessive compoun.d. Any

adjective or another modifier must come before the entire group. They are a.ctually two

nouns that function together to make a single unit, therefore they are considered in a

separate rule Np. The rule handling possessive compounds defines the last level of

internal modification of noun phrases, and it has the foliowing form:

Np(caseM I gen} -7 Ns Ngl(caseM I gen} .. poss

Ngl denotes a string of nouns and it is preceded by Ns. which is a.nother string of one

or more nouns.

Examples:

CJfPE100 dersi 'CMPEIOO course'

fizik dersi . the physics co.urse'

39

A head can simply consists of a single noun. A nesting of an infinite number of nOU11S

can be in the head' provided that the last two are separated by a conjunctive or a

disjunctive. As the elements in both sides of the conjunctive as well as the disjunctive

mllst be identical, parsing of the nested noun necessitates two different sets of rules,

These t\yO sets of rules for nouns and proper nouns a1'e Ngl. Ngnl and Ng2. Ng.n2.

respectively. They have recursive patterns and they are identical in structure.

Ngl{caseM i gen}+(poss) -)- noufl(caseM I gen} .. (poss) I

Ngnl{c;aseM I gen} .. (poss) con,; noun(caseM\ gen)",(po~s}

NgZ{caseM I gen} -) propernoun(c;aseM I gen} I

Ngn2{caseM I gen} conj propernoufl{caseM I gen)

I
Ngnl(caseM I gen} .. (poss) ~ noun(caseM I gen} .. (poss)

Ngnl(caseM I gen}"(poss) non~(r~ft~H' I gen} .. (poss)

I
Ngn2{caseM I gen} -)- propernoufl{caseM i gen}

NgnZ{caseM I gen} propernoun(caseM I gen}

Examples:

Ahmet., Ahmetin 'Ahmet's', Ahmetve.Mehmet: Ahmet and Mehmet' Ahmetin ve
Mehnleti11 'Ahmet's and Mehmet's'

110l ders ve hoc a 'grade course and instructor'

A spec.ialcase of the rules Ngl and Ngnl is Ns and Nsn \vhere t.he noun constituents

can have zero case marker on them, the zero case marker is denoted as casee_

Ns ~ noun cases I N'sn conj noun cases I {]

Nsn ~ nouncases I Nsn flOUO'cases

Examples:

l-'frfP£10t7 dersi 'the course CAlP£lt.7t7'

motemotik fizik ve kimpil dersleri 'motilematics phJi'~"icsOlld chemi.'>cY.J:V courses'

40

There are four different types of premodifiers; simple ad.iectives , ad.iectives in

superlative form. qualitative and question adjectives, comparative sentences. The rules

for constructing each of these premodifier types are given 1n the following paragraphs.

Adjective modifiers are strings of adjectives. The following two rules AF and

ADr~ coyer adjectives occuring singly or as an indefinitely long sequence provided that

the last two are separated by a conjunctive;

AF ---7 adj I ADF conj AF

ADF ---7 adj I ADF adj

Examples:

ipi ders. 'a good course'

Zor ve i.pi ders, 'a difficult Bod good course'

Adjectives in superlative form are compounds consisting of the word en

followed by an adjective. Definition or the <,ule permitting only occurrence of a single

compound and two compounds is represented as

ASF ----7 eo adj I ASf conj ASF

Examples:

eo l)'i ders, , l11e be~"t.course'

eo zor ve eo iyi ders , the mo~"t. difficult Bnd the nes/course'

Question· adjectives, demonstrative . a.djectives.and quantitative

adjectives can not cooccur in the same noun phrase. Therefore they are collected in

the single category qualadj. They may also be preceded by a superlative compound

which consists of the word en followed by a quantitative adjective;

Qf ~ (SupF) qualadj

SupF ~ eo adjqua.n

Examples:

kar del'S. bu del'S,

en rok kilf' del'S

'now-mila}''' course, toiscourse'

'il! most hOff'" man .. vcourse(s) .

41

Comparative sentences CS are embedded noun phrases that modify the head

noun. Comparative forms are rich structurally. One way to handie them is to see

similarities between several possible constructions. Comparative sentences can be

obtained by adjoining a noun phrase to any word which has a comparative meaning.

Words which have comparative meaning include all the m.embers of the category

adjquan. and some of the elements in the category adj. In addition to them we

explicitly state some words that can occur in comparative constructions. They are e$il..

kadar, arasioda.ki. We also treat anysentence consisting of anotln \\Tith the derivational

.suffix -li on it that adjoins a noun pllrase as a comparative sentence ; -;,

CS ~ CSI I CSI conj CSI

CS1 -7 Nphabl adjquan I

Nphabl adj I

Nph{d I 0) { l;.,;-'it I ia.ulii.l'\ il1"il..'>"lndo.ki} I at case .

NphcaseO noun + -ii

Examples:

Al1.melill oottl118. e~"it not . grade <that is) eqllal Ii) Ahmet's s,''1';.uM

J ile 5 aroslodaJ:j notlar 'g1'a.des betrf"eea 3 Bod 5

5tel1JiJzio. ve liMon ilZ notla.r 'grades (which are) g'f"ilkl·tlli.f.r1)"and 1esstlUI-a il7'

AhmetadlJogrenci 'the student aomedAllmet

The major capability of the parser is that it can process embedded constructions

with participles suffixes -eo./'--dik which correspond to relative clauses in English. In its

function, a relative clause can be the modifier of a. noun when it adjoins a. noun 01' it

ca.n modify the main verb of the sentence provided that the verb of the embedded clause

has a case marker other than case0 _ Thus, we differentiate two types of embedded

clauses that we name as adjective clauses and noun clauses.

42

Adiective clauses are embedded sentences with the case marker 0 which

modify a noun, such as

ders veren hoca, , instructor rvilO gives tbe course'

ogrellciain 81dlgl del's . the course that the student takes'

Noun clauses are embedded sentences with non-null case suffix modifying a

verb. For simplicity, we only consider noun clauses as the subject or the object of the

sentence, such as

ders vereni goster . show the one Troo gives the course'

ogrencinin oldlglnedir . what is it thol the student tokes'

The relative clause can have the characteristics of an adjective or a noun

depending on the case marker of the verb. In addition to that. the relative clause itself is

a sentence. It contains a subject, a verb and all the characteristics that identify a.

sentence. We can explicitly state this fact by expanding the phrase structure rules of Nf

and AF. Addition of two more rules allows the parser to process these new consistent

structures;

AFS ~ NphcaseM verb ... {-enl-dik} cases

NF --) NphcaseM verb ... {-enl-dik} caseM

43

4.3. Two Different Parsings Used for the Analysis of Turkish

Sentences

Functional properties of nouns can only be -deterndned fl'om their- suffixes.

Hence syntactical analysis of a sentence requires morphological parsing of its nouns.

Both of these analysis are quite difficult in Turkish. In this study, the attempt is to solve

only a very limited part of these two problems.

4.3.1. Morphological Parsing

One major difference between Turkish and English is in the morphology of

words. Turkish is a suffixing language. Functions are assigned to nouns by suffixation.

Therefore, a syntactic parsing necessitates mOl'phological analysis of nounlike words

for determining their syntactic functions. Thus, we discard the derivational suffixes in

this analysis and consider only three types of inflectional suffixes. i.e. case suffixes - i

-8, -de, -de~, the possessive and genitive suffixes -i and -io respectively and the plural

suffix -ler. Regarding the lexical representation of nouns. forms involving derivational

suffixes are listed in the dictionary while those involving inflectional suffixes are not.

In Turkish, there are rules regulating the order of suffixes. For instance, the genitive

suffix always follows the possessive suffix or any other case suffix. Suffix order in.

Turkish is as diagrammed in Figure 4.1.

Figure 4.1. Suffix Order in Turkish

44

Considering two possible approaches to the actual analysis of words[18,1 9i..

namely affix-stripping and root driven analyses, the former is more appropriate since

the morphological parsing is trivial in our case for the following two reasons. One

reason is that syntactic parsing requires recognition of a few suffixes at the end of

nounlike words. In addition to that, there is a very limited number of lexical entries. In

the affix-stripping approach, parsing processes by stripping suffixes off the word and

attempting to look up the remainder in the lexicon. Our parser proceeds from right to

left by stripping letters. A decision tree is used t.o split the nouns into their root and

suffix constituents. The decision algorithm is given in terms of a decision tree in Figure

4.2.

t llU1U

n

l,l,U,U

\
\
\.

s ~

root +suffl xes

Figure 4.Z. Decision Tree for Suffix Elimination

1e.16

dictionary
(''lOrd 1ook-ttp)

45

Taking into account letter alterations like (pSJ,k) to (b,c,d,g), and buffer

consonant insertion .:.~v, letters of the noun are processed from right to left until a letter

which can not possibly be part of a possible suffix is reached. Then the remaining part

is searched in the dictionary as the root word. The decision tree consists of three levels,

each level corresponding to one type of suffix as indicated on each b1'anch. A correctly

spelled noun whose final letter is not one of ["f',"1","U","o","n","a","e","r"] must exist in

root form and is directly searched in the dictionary, rep1'esented with a downward arrow

-+. Depending on the last letter of the word. suffix stripping process branches to

different nodes of the tree. Each last node of the tree' is a dictionary lookup. for

instance a noun with the last letter r will only be checked for plural property. Going

down in the tree, the parser attempts to match the last two letters of the word with 1e or

1a (remaining part of the plural suffix 1 e ~ r or 1 a ~ r). When the match holds the

rest of the noun must be in the root form. and it is looked up in the dictionary. When the

match does not hold. the parser backtracks. concatenates the two splitted parts of the

word and looks in the dictionary once more.

As another example the noun (Ie r s ~ j,d' n i 'his course' will branch to the

right nodes till the last one and the left node in the last decision point will be followed

since a noun such as de r does not exist in Turkish; dictionary lookup for the root form

de r s 'course' will be satisfied. Our decision tree does not necessitate more than two

dictionary lookups for any noun in Turkish and the average is around one lookup per

noun.

4.3.2. Syntactic Parsing

The top-down parsin.g method is used in processing the natural language queries.

The parsing is represented with a parse tree. Const.ruction of t.he tree is guided by the

types of the modification which can be determined from t.he t.ype of the word or f1'om its

suffixes if it is a noun. Before going into t.he detail of how parsing proceeds, let us

explain the order in which rules are expanded since it is different than the usual way.

Since Turkish is a SOV (Subject Object Verb) ordered language, the verb constituent is

at the end of any correct Turkish sentence. In addition to that. t.he head noun and the

verb (jf an embedded clause are always at the end of each phrase. The last constit.uent

holds lots of information about the structure of the sentence and of each phr-asc.

Therefore, it is more suitable to start parsing from the last. constituent of the sentence.

In the previous section, the right-hand side of the rule defines the ordering of sentence

46

constituents from left to right. During the parsing process. expansion of the rule begins

from its last constituent and continues towards the left.

We start with the major sentence S and the tree is expanded by continually

replacing the right-hand side of the current rule with 011e of the possible left-hand

sides until we rea.ch the first constituent of the phrase matched as the first element of

the. rule. Information gained in the morphological parser has been propagated up on

the tree and it confirms the correctness of the selection.

Using the. rules in our grammar given in Appendix A and the lexicon from

AppendixD, ·we cail illustrate how top-down parser constructs a structural

representation of the following simple sentence

kim kimya vCrJ)'or
who chemistry is-giving

who is giving chemistry

Parsing begins by expanding the major sentence S which will be replaced with Nph

Vph where·Vpb is further expanded to verb ... {iyor}.which can be matched w:th the

last constituent of the input sentence, vcr f- I)"or since vcr is in the category verb,

Having found Vph, now our parser must complete the sequence Nph Vph in the

definition of S, so it looks for Nph, which is replaced by

BphcaseM 'NphlcaseN

and continuing in the same manner the following replacements are done for Nphl

NphlcaseN ~ NF caseN

N f caseN ~ NPcaseN

finally, the following replacement is done,

Nglo ~ noun (kimya)

Noun is a terminal symbol, so it may be matched against the word kimY'li,

Nph in the second rule is again replaced by Nphl. ltim 'who' having the

category qpronoun is parsed by rewrltting NF with

Nf 0 -~ qpronoun (kim)

47

Figure 4.3. shows the parse tree for our example sentence.

NF ~ N"' o ~<y

qp:t'onotm
I

kim

noun

I
kimya

ve1''b +iyor

I
veriyor

Figure 4.3. Parse tree for kim kimJ'"o. ve.l"l)"ol' 'who is giving chemistry'

Semantically related words are grouped on the same branch. of the tree. Levels

corl'espond to the modification levels described in the previous sections. As another

example consider the analysis of the following sentence which yields the parse tree

shown in Figure 4.4. Notice that each branch of the tree shows different t.ypes of

modification.

no.ngi 110 co. ko.r iXi kimyo. ve fjzik noll! vel"l:vor.
which instructor how-many good chemistry and physics grade(s) is-giving

which instructor is giving how many good chemistry and physics grru:ies

qaabdj
I

hangi

Man
I

hoca

qaaladj
I

ka9

adj
I

iyi

48

Figure 4.4. Parse tree of .hangi hoca kBP iTi kim,vB va fizik notu veriTor

'which instructor is giving how many chemistry and physics grade(s)'

It begins parsing by expanditlg S into Nph and Vph. Vph is matched to

ve r -I- iy 0 ras explained in the previous example. The noun phrase N ph is replaced by

Nph Nphl, and Nphl is rewritten by NY. NY is in turn repJaced by CS OF Af Np

where Np parses the noun group Ngt together with their relevant noun qualifiers Ms,

which must immediately precede the noun group. AF andQF parse a group of 011e or

more adjective qualifiers and a quantity qualifier respectively. CS is skipped since it is

optional and no comparative sentence exists. Similarly the last two constituents of the

sentence make another noun phrase Nphl which 1S obtained by replacing the

remaining Nph by Nphl.

As our parser proceeds from left to right, the verb of the embedded sentence can

be easily recognized since it has a special form provided by the suffix - en .. ·· - d i1:. The

embedded noun phrase whose verb is either in adjective function. denoted as At'S, or in

noun function. denoted as NF. is parsed and the embedded noun phrase is considered as

the modifier of the head noun. Figure 4.5. gives an example where the embedded noun

phrase is Ahmete del"S veren 'who teaches Ahmet' is the modifier of the noun hocala.1"l

'instructors' .

49

Mph

/ \,

'" N~1 .
Nph

dat lo1phlo lOb,

verb+en noun

Ahmete ders veren hocalar1

Figure -4.5. Parse tree for the embedded adjective clause A.h1J1ete ders vereo hocaJan

'the in::oLrucluni w~u teach Ahlllet'

The following three examples given in Figures 4.6. 4.7. and 4.8. show the parse

tree constructions for different types of sentences. The first example includes three

modification levels that. our parser dist.inguishes Le. possessive relation, adjective

modifiers a.nd possessive compounds. Consider the following sentence which involves all

of them,

iFi kiOlFa 110("'3/01'1010 de.rs/erilli §-,)'ster
good chemistry instructors courses show

show the courses of the good chemistry instructors

The noun modifier ,ki1J1J''lJ 'chemist.ry' modifies t.he noun group t.hat consists of t.he

single noun hoco 'inst.ructor', the possessive compound is parsed in Npposs . They form

a noun form NF with the simple adjective modifier 1~vi 'good' . The modified noun phrase

Nphlgen with the genitive property on the head noun is furt.her combined with the

noun phrase Nphlposs+obj which parsed the noun derslenni'courses', into Nphlobj.

Nphlobj constitutes part of the Nphobj which is in turn part. of the the major sent.ence.

Af Ns

I
adj noun o
.1. ~.I
lyt l\lmya

Ng1
~efL+poss

NY ... I poss".J

Np
pose+obj

I
Ng1 ~_.

POSS+OiV1

I
noun nm~.n _ " . verb I 2€'fL +p088 I j,I/J.:;il-;-ob, I

hocalarmm derslerini goster

')0

Figure 4.6. Parse tree for /vi kimy-a iJocalarl111n derslerini g()ster 'show the

courses of the good chemistry instructors'

In Figure 4.7. there is an example of a sentence that consists of an embedded

noun phrase which includes a comparative sentence.

AiJmetin notllndan fazla not alan a/rend1eri gaster
Ahmet's grade greater-than grade who-get students show

show the students who get a grade greater than Ahmet's grade

The comparative noun phrase Ahmetin notllnda.n hula 'greater than Ahmet's grade' is

parsed in CS. It is the modifier of the noun not 'grade'. They form a noun phrase which

then in turn forms an embedded clause with the adjective in verb form ASF. alan 'whQ

gets'. The embedded clause is, in fact, the modifier for the noun atrenci and they form

the noun phrase Nphl.

IIp
o

s

/
..........

'" -..... -~
Vph

I

adj noun ver'b+an noun ,:,erb

I I I I I
Ahmetin notundan fazla not alan ogrencileri goster

51

figure 4.7. Parse tree for Ahmetio ootllolian fazla oot aJao tJg-.rel1CJleFi goster

'show the students who get a grade greater than Ahmet's g1'ade'

52

In Figure 4.8, the last example shows the parse tree of the sentence that consists

of a group of noun modifiers and a question adjective.

£11 pok kaF matenll1tik fjzjk ve kjmya 110tll val'
At most how many mathematics physics and chemistry grades are-t.here

At most how many mathematics physics and chemistry grades are there

In this example 'a sequence of noun modifiers is parsed in Ns by expanding it with the

option Nsn, and OF parses the question adjective kaF 'how many' togethe1' with

intensifier compound ell Fok'at most'.

S
."../

./~- ~
Nph o Vph

-- I
Nphlo

I
NFo

~/

~ / Hp
(I

QF // ~
su~1 Ns Ngl

/~
1'oss /1 I

/'".

Nm 1 I /"'1 Nsn

adiquan qualadj I . noun verb noun noun conl noun
I I I I 1.1 I I

I
en <;ok ka<; matematik fizik ve lnm;..-a notu "'l8:1:'

Figure 4,8. Parse tree for e11 fok kur ma.lematiJ: finK ve kiDlYa. flotu var 'At

most, how many mathematics physics and chemistry grade(s) are there'

S3

V. QUERY UNDERSTANDING AND DECLARATIVE QUERY GENERATION

The previous chapter described a formalism for different types of NLI queries

which is generally based on the modification relation between constituents. Considering

the big difference between natural language 5e11t;;:nces and expressions in a declarative

query language, it is quite difficult to directly translate the NLI query into its

deClarative equivalent. Therefore, these queries will be represented in a meaning

representation language, namely Wallace's D&Q. In the first two sections of this chapter,

we briefly summarize the formal D&Q notation as given by Wallace and some syntactical

changes made to it. The next section concentrates on the interpretation of different

modificatiofi,orelations discussed in the previous chapter in D&Q. Finally, conversion to a

database dependent declarative language is discussed.

5.1. Wallace"s D & Q Notation

In most of the early natural1anguage database interfaces, parsing and meaning

representation are handled by two different modules. In our model meaning

representation is built up while parsing natural language queries. An extended form of

D&Q meaning representation language is found to be appropriate to represent formal

queries. D&Q is powerful enough to represent every valid query and has a feature that is

not normally available In declarative query languages but necessary in representing

the meaning of natural language queries. They are the quantifier hierarchy feature.

formal determiners.

D&Q representation divides sentences into referring phrases, and qualifying

phrases which are called Descriptions and Qualifiers, in other words D and Q

respectively. The simplest case for a 'description in Wallace's notation is a simple

constant, such as ARMET, CMPElOO.

)4

On the other hand, qualifiers are predicate calculus formulas where the

predicate represents' the relation name, and predicate terJllS represent selections. A

selection is a formula composed of an attribute name" a comparison operator, and a

value. For instance, a qualifier for the relation student Jllay look like

student (name =' Ahmet' , dept = 'chemistry')

, After having transformed the qualifier into the following Prolog goal

student(_, 'Ahmet', . chemistry', _).

the later can he evaluated on a database of Prolog facts with each fact representing a

tu pIe of the relation.

To return a value from a simple qualifier. a variable can be used. For instance

student (name = X. dept = 'chemistry')

will unify X to the names of the students whose department is che,-':;ustrJ'~.

To represent each alternative meaning qualifiers can be combined with

logical operators .004 & (equivalent of "and") and or. for instance

the name of the studellt whose departmellt is LllJt (~hemistry and the

CMPE1(J(J "ollrse a.nd the stlldents rrhose lla.me is Ahme! will be represented in

D&Q respectively as

not (student (name = X,dept '" ' chemistry')),

course (code ~ 'CMPElOO') & student (name -= 'Ahmet')

Other than being a sim.ple constant, a description can also include a variable.

Its syntax is

determiner-count-quaH < variable >,<qualifier»

The determiner can be lhe, all.vor Jvha.l depending on whether the tuple in question

is defined or not. Count is an integer number referring to the number of tuples. An.,r.··

or what refer to any group of tuples with one or more elements. where in case of rranl

referents are undetermined. Th e creates a definite description which refers to a. unique

group of tupies.

55

For instance

the student number of Ihe sludent named Ahmet

will be expressed as

the-l-quaHX. student(num ;. X. name ;. Ahmet ».

This description refers to the tuple in the relation student where name has t.he value

Ahmet.

A description can be joined with another description as well as with a qualifier.

Selections of a qualifier may contain a variable. so the selection becomes a function of

that variable. Descriptions and qualifiers can then be joined via these variables to

represent complex queries. The syntax of two possible combinations is given below.

A qualifier can be defined as

<description> is qual « variable >.<qualifler»

and the definition of the description is

<description> is funct(< variable >. <description»

5.2. Changes Made in the Original Syntax of D&Q

The D&Q syntax given in Appendix B.l. is used for meaning representation of

natural language queries. In addition to that. D&Q form.ulas are matched against the

database to retrieve tuples satisfying it. In our model. the syntax of D&Q will be used to

express the meaning of the natural language queries. Then. the formula will be

converted into a declarative database language. 1t is necessary to make som.e changes in

the original syntax of D&Q so that the syntax of the representation language is closer to

the syntax of the declarative database languages:

')6

1) We allow the usage of an attribute more than once in a qualifie1', i.e.

gradelist(grade =X, grade)))

because we need such a construction. Consider the phrase

Grades greater than 5

which can be represented in our syntax as

any-N-qual (X, gradelist(grade=X, grade >5»

The equivalent in Wallace's notation is gradeHst(grade) 5) which is transformed to a

Prolog clause. However, it is difficult to convert such a construction into a declarative

database query sin ce it does not in elude any variable.

2) A selection in Wallace's notation has a strict form, which is

<attribute> < comparison> < variable>

Therefore a selection Eke gnrde.~ 5 where the last component is not a variable as in· the

above example, or X.~, where first component is a variable, are not allowed. In our

model we change the D&Q syntax such that it accepts the above structures. That is, the

syntax will accept either constant values or variables for either side of the comparison

operator.

3) Consider the student relation. Suppose we want to list student. names and st.udent

numbers. This is not possible in D&Q as described by Walla.ce unless we construct two

descriptions on the same relation with different return values, i.e.

what-N-qual(X,student(name=X»

what-N-quaHY,student(num= Y»).

We may combine these two descriptions into a single one by modifying the structure of

the description. We can add a field display field. as we call it, which contains a list of

variables whose values will be displayed. In our new syntax the above description will

look like

what-N-quaHX,[X,Yl ,student(name=X,num= Y».

whose equivalent in a declarative database language is

SELECT student.name , student. num

')7

4) In the interpretation of the formal parameters, an.v and what refer to any gl'OUp

of tuples with one or more elements, where in case of what referents are undetermined,

The difference between rvhat and all}" is not important since they have the same

semantic. The intention in using two different determiners is for efficiency reasons in

implementing the evaluation of the formula against the database, Since our study does

not involve the evaluation of the formula, only the and w.h~1.1 are used in our notation

to refer to definite and indefinite tuples.

5.3. Internal Query Generation

After having briefly introduced the syntax of D&Q and the changes we made to it,

we discuss in the following section how different modifications that we int1'oduced hI
the previous chapter can be represented in extended D&Q.

5.3.1.. Basic Algorithm and Simple Sentences

Remember that a sentence is treated as a sequence of related words where words

are classified in different categories, In intel'pi'eting the query, our .. language

processing components categorize words in three different groups. The query in natural

language is then viewed as a collection of constituents of the following three types in a

syntactically correct order. The natural language quuy for an application wiH

comprise the following:

- na.mes that can map on entity/relationships or attribute names. Entity,

relation.ships and attribute nam.es are words that appear. in the conceptual

database schema and their synonyms.

- content 'Words; these are words that mean something on their own. Possibly a

proper name which is a value of some relation or one of its attributes e.g. Ahmi.'>/,

CMPE1{7()

- function yords; these words' have special meanings in the sentence. For

example a word whose interpretation is a mathematical function such as orla.ia.nUJ

'average' Sa..:Vl 'count'; question pronouns or question adjectives such as ka.r 'how

many', n;Jogj'which',

In top-down parsing as described in the previous chapter, the major sentence S

is extended by continually replacing the right-hand side by a possihle left-hand side.

Query generation is justthe reverse process of parsing. In query generation, each noun

phrase is interpreted as a reference to an entity, a description which involves the entity

name as the predicate of its qualifier. Interactions between each noun phrase of the

query is interpreted either by extending the current description or hy combining it

with an existing description, The algorithm is as follows:

find the word (head noun),

If it is an entity name or relationship name

then create its description,

collect all its relevant internal modifiers,

interpret these modifiers by extending t.he descript.ion

otherwise create the description (.~t.he entity or relationship that. involvp.~

that word

into t.he memory

Interpret the interaction of the current description and the previous ones if

there exist any

To exhibit how a naturallanguage query can be represented in D&Q on the database

described in Appendix C, consider the following simple query whose parse tree is given

in Figure),1.

show the chemistry courses

Nt>hQbj

I
Nphl_

tj -I IJ ~

l-lFob-
I j

Np

/~,

Vph s-} Nph Vph

I

~ ig~"'+Obj Np -} ~1~t)88 loTs

noun noun "'verb
I I I

kim va derslerini goster

figure 5-1. Pat'se tree for ki1l1YO- tlcrsic.Fini gastcr 'show the chemistry courses'

59

After having parsed the word dcrs 'course', which is found to be a en.tity name, the
;.--....

query generator part of the language processor will create the following description

whose qualifier is deI's

the-N-qual (X,[J, ders 0).

Next the parser proceeds to parse the preceding word ki1l1Yu, . chemistry', which is a

noun modifier for the word clers, using

Np -} Ns Nglposs+obj

kimya can simply be mapped onto a particular attribute of the entity defs and the

qualifier deI's will be extended with the addition of the selection ad = kiIl1J·"a. ' na·me =

chemistry'

the -i-qual (X,[l, ders (ad = kimya)).

finally. the verb .!foster' 'show' will update the description by changing the determiner

the to rvhat In addition to that, the identifying attribute of the entity, key field, is

bound to the description variable X which is in the display field. The final

representation of our query will be expressed in D & Q as follows;

wliat-N-qual (X,rXl, ders(kod=X,ad=kimya)).

60

While updating the qualifier dars it is necessary to select the relevant attribute

of the file del":;,'" To deal with the problem of attribute selection., each word in the lexico11

has class knowledge associated with it. That is to say, (lur parser and query generator

distinguish between words not only syntactically but semantically as well, We use

four different classes in Qur example database; person. item. number. and location.

for instance hoca. 'instructor' and ogI'encj'student' belong to class person, whereas

deI's belongs to item and not' grade' belongs to number. Associating a domain value

to a question pronc;ull simplifies ambiguities as well. Consider the following two

sentences,

1:i111 kar ali.voL" 'who is taking how many'

1:i111 .ae aliror 'who is taking what'

It is possible to distinguish between the meanings of these sentences since kar 'how

many' and ne 'what' belong to classes num.ber and item respectivety. Similarly ki111

'who' can be interpreted as hangi oj'renei 'which student' since ogrenci belongs to

class person to which ki111 also belongs.

The conceptual database schema has a class a value associated with each attribute

of a relation. For example the attributes of the entity ders 'course' and their

corresponding class values are as follows;

kod 'code' number

ad 'name' item

bo1um 'department' location

hocano 'instructor's id ' number

The interaction between relation name and noun modifiers is worked out on the

basis ofc1ass knowledge. The class value of the word kimya 'chemistry' is item, and it

can only match with the second attribute, hence l:imFa. is taken as the value of

attribute ad of the entity tiers When the class value matches more than one att.ribute

class. the first attribute name is selected. The user may be asked to clarify the situation

in order not to make a wrong decision.

Ali the internal modifiers extend the current description. The fol1owing

paragraphs explain the interpretations of the thl'ee types of internal modifiers, i.e.

adjective modifiers, question adjectives a·nd comparative sentences.

61

Consider the following sentence which includes the adjective qualifier .I~vi' good'

and a question adjective ha.ngi 'which' .

ha.ngi 1) ... i kim,va. deI'sieI'i Va.I' 'which good chemistry courses are there'

After having interpreted the noun modifier kiJJ1,f'i.l the following description

has been created;

the -i-qual (X,[L ders (ad = kimya)).

Remember that the meaning of ljTj deI's 'good course' is defined in the semantic

definitions dictionary as a deI's 'course' with 11OCElno = 1234 'instructor's id = 1234', the·

parser will refer to the special dictionary to get the meaning of iyi 'good' as the

modifier of deI's and it will extend the description with includes the qualifier ders by

inserting the selection hocano = 12J.fwhich then yields the following description,

the-I-qual (X, [] ,del's (ad = kimya, hocano = 1234»

Function words are treated in the same way. Different parts of the description are

modified depending on the semantic of the function word. To illustrate that, consider

the same sentence and the following description of deI'S;

the-I-qual (X, [] ,del's (ad = kimya, hocano = 1234»

The question adjective hangi 'which' modifying the word deI'S 'course' will replace the

determiner the and the count 1 with what and N respectively and insert the key

field variable X of deI'S into the display field to yield

what-N-qual (X, [Xl, ders (kod=X, ad = kimya, hocano = 1234))

On the other -hand, the interpretation of the question pronoun Kaf' how many' in the

noun phrase ka.r deI's' how many course(s)' will be to insert the "count" function cnt

into the description to yield

what-N-qual (X, [cnt(X)] . ders (kod=X, ad = kimya. homno = 1234)

Mathematical functions that can be used in the representation a.nd t.heir symbols are

cnt, tot, ma.x. min. avg for count, total, maximum. mini.mum and average

respectively.

Comparative sentences comprise a word with comparative meaning and a noun

phrase. Therefore, comparative sentences are treated as a pair consisting of a value and

a comparison operat.or. The word at. the end of the comparative sentence determines the

62

operator. As a simple example consider comparative sentence 5den {ok 'greater than S­

i.n the phra.se 5den rok notlar 'grades greater than 5'. Assume that karJJe

. 'stud_course', which includes not 'grade' as one its attributes, has the following

description;

the-I--qual (X. fl. karne 0)

Its interpretation is to add the selection flot.~ 5 into the qualifier kOl'LU} 'stud_course'

which then yields

the-i-qual (X, [] ,karne (not>))

The comparison operator requires identical elements on both sides. Notice that no!

'grade' has a class value number which can easily be compared with the num.eric value

5. A tricky case may appear when the comparative sentence modifies a noun from a

different class. In such cases, the count is taken into account simply by applying the

math.ematical function cnt.

5.3.2. Relations

To handle relations between two noun phrases. it is necessary to combine

descriptions. Fortunately, descriptions can be combined in D&Q with is funct or is

qual.

If there are two noun phrases with interpretation Desc1 and Desc2 having th.e

formats, the-N2-qual(X1.Dsl.QualO and the-N2-qual(X2.Ds2.Qua12) respect.ively, t.hen the

overall interpretation will be

the- N2-qual(Xl,Dsl ,Quall) is q.uaHY .the-N2-quaHX2,Ds2,QualZ»

One of the selections of the qualifier Qua.l2 contains the variable Y assigned to the field

with which the entities associated with Quail and QualZ can be joined.

63

It is quite possible to have the relationship file to serve in a sense to connect the

other two entity files toget.her. Assuming that Desc1 and Desc2 a.re the two basic

descriptions, and Desc3 is the f'eiationsl1ipsfile, the general i1ltel'pl'etation will be in the

form

Desc1 is qual (y, Desc3 is qual (Z, Desc2))

where interaction between two descriptions is provided by two variables X and Z.

There are two possible relations that may occur between two noun phrases. Two

noun phrases are either relaj.ed over the verb 0;[they are in a possessive relation.-

For the case of relation over the verb two noun phrases may modify each

other over the verb. The t.ype of the modification is distinguished from the verb. The

relation that we express in D&Q is sUbject-oDject relation. It is expressed as the join

of two entities.

Consider the natural language query

'which instructor is giving the course CMPElOO·.

As diagrammed in Figure 3.2. tiers 'course' with the case marker objectiveis the ob;ect
and noco. 'instructor' with case marker 0 is the subject of the sentence. The verb of

the phrase VtJI' 'give' can take ders and hoca as its object and sllbject .. respectitively.

We can express this relation by joining the eritity files noca and ders. Hoca becomes

the description of ders which can be interpreted with is qual qualifiers.

what-l-quaHY,[Yl,hoca(hocano=Y)) is qua1(A,

the-l-quaHX.fLders(ad=CMPElOO,hocano=A)))

For the case of possessive relation, consider the entities ders 'course' and

boca instructor' and the possessive rela.tion

boca010 dersi 'course of the instructor'.

This relation will be expressed as

the-l-quaHYJLhoca. (hoca.no=-Y») is qual(A.

the-l-qual(XJLders(kod=X,hocano=A)))

64

The order of the relation is important in expressing possessive relations, because the

, noun on the right is' qualified by its predecessor. When the relation, dersif] flOC8.H

'the instructor of the course' is to be formalized. the expression would look like

the-l-quaHX.ll,ders(hocano=X)) is qual (A.

the-l-qua1(A,[l,ders(hocano=A) »

In our example database ders 'student' and l)grenci 'student' ar~ two entity files that

may be related over the relationship file karne'stud~course~. The D&Q interpretation of

the possessive relation , - ~.

is thus

dersin ogrencisi 'the student of the course'

the-l-qua1(Y,[], ders(kod= Y» is quat(C.

the-l-quaHZ,f], karne(num=Z,kod=C» is quatfR.

the-l-qua1(BJLogrenci(num=BH))

For example

ogr'Qll(:,il1ill dersil1ia hocasl 'the instructor of the course of the student'

the nested possessive relation can be expressed as follows keeping possessives in correct

order,

the-l-qua1(XJLogrenciCnum=X» is quaHA.

the-l-quaHYJJ. karne(num=A,kod:Y» is quaUB.

the-l-qual(Z,[J. ders(kod=B.hocano=Z» is quaHC.

the-l-qual(C,[J,hoca (hocano=C)))))

5-3.3. Attribute Names of Entities

In the previous examples. all constituents were ent.ity names. They can easily be

combined without any complication. However. when an attribute is encountered i.t can

be represented in the form.al description of the entity if the attri.bute name is unique in

the database. Our generator keeps the attribute name in the memory until a possessive

relation is encountered with the attribute name appearing as one of the constituents,

Consider the following sentence

de.rslerln iutM,.I'l111 . .f'(iSlCJ' 'show the names of the courses'

After having parsed the word dt'rs 'course' , the possessive relation between ders and ad

name' can be interpreted. The query generator defines the description of deI's as

fo1J.mvs.

the-l-quaHX,l Lders(ad=X)}

However, in interpreting the query

derslerin notia.nnl g-oster 'show the grades of the courses'

oot 'grade' is not an attribute of the relation of ka..I'oe 'stud_course', and it is unique.

The query generator defines the description of ka..I".t18 as

the-l-quaHX,[l,karne (not=X»

To Lnterpret the relation lmf.l19 may be joined with der.':>~ Having the bi.f'flC d:;scz-ir'ion

with 1101 we can now express the relation between karllea~d dt)l"sas the following

the--N-quaHZ,[],del's(kod=Z) is qual (Y,

what-N-quaHY'[Xl.karne (kod .. Y,not=X))

5.3.4. Content Words and Question Pronouns

Remember that a content word is a p-roper name which is a value of some

relation or one of its attributes e.g. Alllnef, O~fP£!O(/. The way of ha..ndlingcontent

words which function as noun modifiers has been explained before. More sophisticated

cases may occur, for instance, a content word may be the first constituent of the

possessive relation. An example of this is

CIJIP£lt)OO.fl hoc-asi 'the instructor of CMPElOO'

The description of hoca. 'instructor' is already in the database, When the parser needs to

relate the word CAfPE100 having the possessive property with the word hoc9 , it should

determine the appropriate relation name for the latter. The dictionary is looked up for

this, The dictionary contains the following information a.bout the functional

(ver defs object)

(ver not object)

(ver ogrenci dative)

(ver hoca subject)

66

where the second constituent appears as the subject with. case marker 0. CAfPEltl{l

belongs to the same domain as ders 'course' which is in slIhject-ob/ed relationship with

hoell. Thus, hoc.;]. can be interpreted as the subject of the action ver whose object is

CMPE10o. After creating the following description for deI'S

the-l-quaHXJl. ders())

the resolution of the possessive relation is reduced to a simple combination of two

relations hoea. and deI's.

Question pronouns are handled exactly in the same way. Consider the following

sentence with the question pronoun kim 'who "

kim CAfPE100 a.lIrOI' 'who is taking CMPEI00'

The pronoun kim will be understood as the subject of the verb aJ'take' after refering to

our semantic relationships dictionary. OgI'enci'student' which is the subject of the

verb, will replace kim. Hence the above query will be reduced to the simple relation of

dcrenci ders. The only difference is that djTe11Ci has to be displayed.

Similarly the following query

kim n8 alIror 'who is taking what'

will be treated as dgI'enci ders relation where both constituents should be displayed .

. The other two constructs that may be interpreted by our formal query generator

are two forms of participles. They are treated as possessive relations. In fact

hOC011IO verdI/i ders'the course given by the instructor', and

ders veren hoc~o. 'the instructor who gives a course'

have the same semantics as

hOC311IO dersi 'the course of the instructor', and

dersin 110£'3S1 'instructor of the course'

67

The order of the subject-object relation, which is the most important semantic concept,

is also preserved in possessive relations.

In handling noun relative clauses, the referent of the participle is found in

semantic relationship dictionary. For instance

iIoco.nln verdigini' (that is) given by the instructor'

is converted to

./zoca.nln rreniigi ders'the course given by the instructor'

since verdigini has an case marker ohjectiveand the first item with object function

found in semantic relationships dictionary is tiers 'course' for the verb ver 'give'.

The interpretation of the latter is already discussed.

5.3.5. More Specific Cases

Consider the following sentence

kim.yo. ve fizik ders/eriaI' goster'show the chemistry a.nd physics courses'.

Although kimJ"a. ve fiziJ:: 'chemistry and physics' modify t.he head noun del'S 'course'

with the conjunctive ve between them. no reference to tiers can be found satisfying

kim}.ra. and fI'zik at the same time. We can express this in terms of two different.

modifiers connected with &, where the symbol & denotes the connective "and" to yield

what-N-quaHX,[Xl,ders (kod=X,ad=kimya)) &what-N-qual(Y,[YJ,ders(kod=Y, ad=fizik))

Alternatively, kimya and fizik can be considered as alternative values of the

function which contains a.d 'name' as its constant parameter. In thi.s case, the two

descriptions kimra a.nd fizil;: will be combined as kimya ~<. fizik which in turn is

combined with ders description via is Cunet to give

kimya& fizik is functCY,what-N-quaHX,ders (kod=X,acl=Y»)

Sentences may contain noun phrases with case value dative (-e hali) or case

value ablative (-den ham. They have to be converted into a canonical form which

contains the noun phrase as its object .or subject. This conversion is accomplished by

consulting the semantic relationships dictionary.

68

In the sentence,

Hoca-dan ders alan ogrenciler 'students who take courses from the ins/nldor

the word hoea 'instructor' with the case marker ablative modifies the verb al 'take'

whose object is del's 'course'. SUbject-object relationship between hoc;] and ders is

defined in the dictionary under the verb vel' 'give'. Therefore hOI. ... ;,uian is transform.ed

to ilO(-a.nlL1 vert/igi The new form of the above sentence is

iloea..alO venJigi dersi alan ogrendler 'students who take the course ~jvel1 b~'v the

il1St[U ctor'

and it is reduced to two simple relations, and which can be represented as explained

previously.

S.4. A Full Example of Representation Process

Let us illustrate query understanding with the example whose parse tree is

shown in Figure 5.2. Numb.ers show the sequence in which. descriptions are created or

modified. After having parsed the noun ders 'course', the desc1'iption of del'S (0

the-I-qual (X,[l, ders 0)

is created. The noun qualifier CA-fPEU10 will be understood as t.he value of the attribute

ad 'name' for del'S and the description wiIi be updated (2) as

t.he-I-qual (X.[l, ders (ad=CMPElOO))

Parsing iw(-o 'instructor' will produce its description (3) as

the-I-qual (YJL hoca ()

and the question adjective hangi 'which' will modify hom by changing the determiner

the to rrltal and it will put the keJ'- field of ilO(..";J, lltJt::a.1lI)· inst.ructor's id', into the

display field(4). Thus the description will be

what-N-qual (Y'[Y], hoca(hocano=Y))

qu:al:adj

h
i.

ang1

t\Oun
I

hoca

Npobj

/~
Ns ® N~p088.+obj

I \0
t\Oun fI.OUf~

I I
CMPE100 dersini

verb
I

veriyor

Figure 5.2. The parse tree for bangi boca CA-fPEJOO dersini veriyor 'which

instructor is giving the course CMPEIOO'

69

The last step in translation. (l) is to set the relation between boca. and ders. They wiH

be combined with is qual to yield,

what-l-quaHY,lYl.hoca(hocano=Y)) is quaUA,

the-l-quaHX,l],ders(ad=CMPElOO,hocano=A)))

70

5.5. Conversion to a Declarative Language

Using the previously described interpretations, the analysis of the Turkish query

luwgi nocaJar Cj~fPEj{l{) deFsini Vefl);-Or

,\'ould give the following D&Q interpretation

what-l-qua1(Y,[Y],hoca(hocano=Y)) is qua,1(A,

the-l-qua1(X,[],ders(ad=CMPElOO,hocano=A»)

The next step is to convert this representation to an expression in a declarative query

language. The language used is SQL. Its structure consists of a set of display values and

file names and a list of logical expressions connected with reserved words SELECT, FROM

and WHERE. Display values are in the form of

filename • fieldname

and logical expressions are

file name.fieldname comparison-operator file name.fieldname I constant

The converter relates each D&Q formula to a set of display values and a list of

logical expressions. D&Q expressions are transformed into the declarative language by

applying a set of rules. There are mainly two different groups of t'ules, each converting

a different part of the whole expression; one for qualifiers and one for descriptijns: The

former converts selections in qualifiers into a list of logical expressions where each

expression is of the form given above. For insta.nce

... ders(.. , ad =CMPE 100) ..

is converted to del'S. ad = CMPElOO

For selections containing a variable the value of the variable is substituted if it is

bound. otherwise it is bound to this value. In convert.ing

hoca (hocano = Y)

Y will get its value as i1ol'l1 .. 110C3.110 to be used for late1' references.

71

Description converter deals with display values. After ha.ving all the selections

in the qualifier converted, values of variables in the display field are added into the set

of display values for description whose determiner is wiua, i.e. boca.bocano in olJr

example.

Combined descriptions are converted by adding a join expression into the list. of

logical expressions. For instance is qual is converted by adding X= y, more specifically

ders.hocano = hoca.hocano

Our example query will then look like

SELECT hocano

FROM hoca.

WHERE

ders.ad= CMPElOO

hoca.hocano = ders.hocano

The decla.rative query obtained after the first step is still in use.t··s view. It will

then be converted to actual fields specified in the domain database mapping table. This

transformation is a simple mapping. Using the entries given below,

(hoca, hocano, instructor, instr-flo) hoca. hocano --) instructor. instr_no

(ders, ad, course, cname) ders. ad --} course. C-flame

(ders, hocano, course, instr-flo) ders. hocano --) course. instr-flo

Database dependent representation of our example .query is then,

SELECT instr _no

fROM instructor

WHERE

course.cname = CMPE100

instructor,instr-110 = course.instr-llo

VI. IMPLEMENTATION

OUf model has been implemented on a IBM compatible PC AT with 640 KB memory.

Turbo Prolog 2.0 [20,221 is used as the implementation language. The system runs as five

different modules. the morphological parser. the syntactic parser, the query generato:'.

the spelling corrector and the translator.,

Modules are combined into a single, stand-alone project MYfEZ using t.he mociJ.1Jar

programming feature of Turbo Prolog. Modules communicate with each ot.her using the

predicates in global predicates and global database sections. All of the five modules above

have been. implemented.

Below we give a brief overview of the clauses used in implementing fiye modules.

and discuss the main issues in design together with the knowledge source storage.

6.1. Morphological Pars~r

The morphological parser contains one rule for each node of the decision tl'~,~

givi:n in Figure 4.2. The module is called with the dause C_li which gets the nuun lo be'

. parsed and relurns its properties. There can be four properties associated with a noun,

We use a parameter for each type of property rather than a single parameter wi.th

different values for each possible combination of the properties. These properties aro it:; .

lype, its domain, its geniti\re property ami its case Yalue, represented as T. D. fp. and

fit. respectively. Values for these parameters are strings consisting of one or tWit

characters, For instance T can be bound to "n" for a common noun, to up" for a pronoun.

to "qp" for a question pronoun, or Fh can have the values "fIJ" ,"o","t" ,"1" ,"f","tl " denntili~;

different case properties such as subject, object, dative, locative, ablative and gen ttlyC,

respectiveJy

The structure of the predicate C_W is

The input parameter W supplies the noun to be parsed to C.W. It calls the root node

clause C--R to check if the ending of the noun in question corresponds to one of the

possible endings of suffixes.

Each leyel of the tree is represented by a group of mor~ than one clause with the

same name, differentiated with their first constant parameters. Parameters correspond

to the possible end letters, e.g. i,u ,n,r ,a,; or e for the first level.-for instance, the clause

for the first level is c_nf and it has the following structure:

c-D.f(-i-, To. L. RW. D. Typ. £p. -0"):­

chJesU-y". To. L. RW. D. Typ. Fp).

This clause of the c-D.f is satisfied when the last letter of the noun is "i" , and it will

bound the last parameter Fh to "0", the objective case. Clauses cor.-responding to other

levels are ch-=:-est. chJ'3stl. ch-l'estZ. and chJest3. The predicate, ch-l'cstl

bounds Fp to "t2" if the noun has the possessive property. The first parameter of the last

clause is unbound. and it does dictionary look up at that level when no suffix elimination

is no longer possible.

Dictionary look up for a noun is done with predicate ch_Yord. It checks for the

plurality, and calls the predicate find_noun which returns its type Typ. its domain D,

and the canonical form RW of the word for synonyms.

6.2. Syntactic Parser

Our syntactic parser is wr.itten as a set of production rules. Each r.ule accepts a

list of words. parses head words in the list, and returns the remaining part of the list

together with the information gained at this part of the parsing process.

The verb phrase in our major rule.Jor instance. is written in Prolog as

Vph([VILJ ,[V] . L) :- verh(V), asscrta(v(OJ] ,V. [] ».

74

The value of V is returned together with the remainder of the sentence L provided that

it is a verb. Information is propagated in the parsing process. Either they are passed as

values for the pa.rameters or they are kept in the mem.ory. In order to handle the

relation over the verb. a database fact which has the form,

·v(type. object. verb. subject)

is inserted for each verb parsed in the sentence. This is done by the clause Vph.

Each rule contains parameters to hold the necessary information at that levei as

wel1. The predicates which parse a noun. group must return the information about the

noun group together with its functions. Consider the predicate Ng. for instance. It h?s

the form

NgH,. NDL. Conj. T. f'p. Fh. RNgI..)

whe.re I~ 1S the only input. parameter containing the current input string, and NUL is a

list which returns a group of one or more nouns parsed in that clause. Each noun is kept

in the list as a noun-domain pair in the form e{no·un,domain). The word group has its

functions; its type T, it') possess';ve property fp, and its case val.ue Fh. (;onj is bound

to the cOl1jul1ctive if t.he group c111lsists of more than oue noun. In addition to these, t.he

last output parameter RNgL returns the remaining part of the input string.

Assuming that the clause Ng is called with L bound to A1l1Jletili dt'fSl/.1i ve izO(..'O.$lfll 'the

course and the instructor of Ahmef output parameters will get the following bindings:

NDL :: [e(ders,"i"),e(hoca,"p") J

Conj ;: "ve"

Ts "n" (common noun)

Fp s "tZ" (existence of-possessive property bounds Fp to tZ)

Fh:: "" (no genitive property or case marked

There exist.':; a separate clause to parse the last two levels of modifiel's, namely

premodifiers and noun modifiers. Similar to the clauses that parse nouns. they have an

lnput list. Land a-ll output listRL containing the sentence being parsed. two parameters

QL to return the modifiers parsed, and Conj a possible conjunctive betweell them. The

structures of It"f and OF are

AfO, T. L. QL. Con';' fq, RL) Qf(_, L. QL, Fq, RL)

In a.ddilion to these parameters, some clauses include input parameters used to

distinguish between different types. For instance. the parameterT in Af is bound to I) or

to 1 depending 011 whether the adjective expected is a simple one or it is in verb form.

75

respectively. Since different subcategories of modifiers are parsed using the same clause

there also exists an output parameter Fq in which the type of the parsed modifier is

returned.

Reminding that our parser is implemented as a transition network parser, let us

illustrate our basic approach in handling rules on the following two rules

A -) BC

A -7 DD

B can be implemented as

BHnput,information-gained,remainder):- .;"

parsing-B(input.rest>,

before_be rest,remainder).

with two before_b clauses,

before_b(input.remainder):-

c(input.remainder).

before_b(input,remainder):-

d(in put.remainder).

In this approach, we do not throw out the' information gained in parsing B in

case C fails, but use it to handle rules where there are many candidat.e right-hand sides

having common parts for the same left-hand side. It is used for grouping successive

words and for parsing premodifiers. As an example of the implementation of the

syntactic parser as a transition network consider the main rule NF which is in the

form,
NF{caseM I gen} .. (poss) ~

pronoun(caseM I gen} .. (poss)

I
Ng2(caseM I gen}

I
opronoun. .' I

.& - lcaseM I gen}+(poss)

{ASf I AfS I (CS) (Qf) (Af)} Np(caseM I gen} .. (poss)

Remember that the rule NY parses four different types of nounlike words.

namely pronouns, question pronouns, proper nouns, and nouns. Note that a sequence of

proper nouns and nouns are allowed and' a sequence of premodifiers may only precede

76

nouns. Thus, four options exist for the rule NF, instead of using four rules for each type

of noun like words we implement NF as a single rule,

NF(L.VL.DL.Conj.T.Fp.Fh.RL):­

Ng(L.NDL.Coni.T.Fp.Fh.RNgL).

b-Rp(RNgL.DL.T.Fp.RNpL).

b-HfNp(RNpL.DL.T.Fp.Fh.RL).

-
It consists of the predicate Ng to parse a nounlike word or a sequence of nounlike words

and two more clauses b-Hp and b-RfNp which are satisfied according to the type of

nounlike word parsed in the predicate Ng.

Ng([WI L].DL.Conj.T.Fp.Fh.RL):-

C_ \V fYl.RW .D,T ,F p,Fh),

b-Hg(T,L.NDL.Conj.Fp.Fh.NRL).

apwad(e{RVI.D),NDL.DL).

The first clause C_W is the clause in the morphological parser which returns all

functional and domain information about the input noun in W. After having parsed the

nounlike word there may be different possibilities depending on the value returned in

T. Our program includes different b.-Ng predicates for each possibility differentiated by

the value of T. For instance, a noun can be followed by a conjunctive and by another

noun group having similar functional properties. The clause that satisfy this is the

following.

b-Hg(T. [We.WILL DL~ Conj. Fp. rh. NRL):-

con.i(Wd.

C_WCW. RW. D. T. fp. fh).

Ngn(T. L. NDL. Fp. fh. RL).

apwad(eCRW.D). NDL. DL).

Notice that, this time, C_W is called with determined T. fp and Fh values. In case the

clause eonj(Wc) is satisfied, C_W must also be satisfied so that two successive nouns of

the same type are separated with a conj.unctive. Theoretically, an infinite number of

noun qualifiers can be parsed by recursively calling the clause Nga. The final nou n list

is obtained by appending the currently parsed noun to the list of nouns returned by

77

Ngn. However. the existence of a noun is not necessary in order to satisfy the clause. It

returns an empty list and bounds RL to the input list when no noun is found. The

following two clauses handle this situation

Ngn(T. [WILL DL. Fp. Fh • RL):­

C_W(lI. RW. D. T. Fp. Fh).

Ngn(T. L. NDL. Fp. Fh. RL).

apwad(c(RW.D). NDL. DL}.

Ngn(_. L. [1. _. _. L).

We use the same principle for the grouping of other words. e.g. adjectives and

comparatives. The list of clauses which handles a sequence of adjectives is

Af(_.O,lWILl,QL.Conj. "a" .RL):­

find_adj(lV ,RW),

b-AF(H s· L.AQL.Conj ,RL).

append(RY .AQL.QL).

b--AF("s" ,F.I" c.WILl.QL,W c,RL):-

conj(Yic).

find_adj(W .R").

ADF(1." s" .F.L.AQL,RL).

append(RW .AQL,QL).

ADF(O,"s" .FJ\VIL1.QL.RL):­

find_ad j (W .RW).

ADF<O." s".F .L.AQL.RLl.

append(RW.AQL.QL).

The clause AF parses the first adjective and calls the clause h __ AF parses the conjunctive

and the second adjective whose existence is mandatDry. The sequence of indefinite

number of adjectives are parsed in the clause ADY which recursively calls itself.

The clause Ng which parses a single noun or a group of nouns corresponds to

Ngt and Ng2 depending on the value ofT. and Ngn corresponds to Ngnl and NgnZ.

78

Referring back to the clause Ng, a pronoun or a question pronoun, denoted by

up" and "qp" respectively. might be parsed as well in Ng. Pronouns are not allowed to

be connected with a conjunction at this leveL and therefore b_Ng clauses

corresponding to these cases are

b_Ng("p" .LJ1. un ._._.L).

b_Ng("qp· .LJL"H ._._.1.).

After having found the noun group by using the rule fig, we have to check t.he

.rest of the sentence for noun modifiers and premodifiers.Parsing:of possibl.e noun

modifiers and premodifiers are implemented in t.wo predicates, namely b-'lp and

b-HfNp. respectively. Each call includes the list of head nouns in DL. This is because

when a modifier is found. It will modify the head nouns in the same clause.

The clause bJp is called to parse a group of noun modifiers when the input parsed in

. the clause Ng is a noun. it has the form

b-'lp(l.. DI., "nH• HtZ". RI.):­

Ns("n". L. QNL. Conj. RL).

nqquantify(DL. QNL. RL).

The clause Ns has a structure 'similar to AF.

The clause b~fNp which parses the premodifiers of a noun, it corresponds to

the following option in the rule NF.

NF(caseM/gen)+(poss) ~ (ASF I AFS I (CS) (On (AF)) Np{caseM I gen}+(poss).

The structure of the rule bjifNp is as follows

b-.NfNp(L.DL,_._._.RL):­

AF(O.-,-.L.AQL.ConjA.Fp.RAfL).

quantify(Fp •. DL,AQL,ConjA).

QF(O.RAFL,QQL,fql.QRL) ,

quantify(fq l.DL,QQL. " ").

CS(O,QRL.DL,RL).

The AF is written as

Af{_.O.lWIL1.QL.Conj. "aM .RL):­

find __ adj(W.RW),

b_AF("s", nn .L.AQL.Conj.RL).

append(Rll,AQL,QL) .

79

The list of simple adjectives can be collected in the predicate b_~. Notice that AF is

optional in the rule and optionality for the rules is provided with an extra para.m.eter.

which is the the first paraIlleter of each claus~:, Addition of two more clauses to the end

of AF predicates list does this. They are

Af(O.O.L.lI. HM

.un .L).

AfO.O.LJl. UM ... M ,L):-faii.

AF is satisfied when the first parameter is 0, that is, it is skipped by returning t.he whole

input list. It fails when the first parameter is 1.

Adjective clauses AfS are implemented by adding t.wo more clauses for Af. When

an adjective in verb form is parsed with the clause c~iv, the verb is considered as the

main verb of the coming noun phrase and it is parsed with Nph. The structure of AFS

which is used to parse participle constructed wit.h the suffix - ell, is,

Af(_.!.[WILLQL.Conj,"." .RL):-­

c_adjv(W ,R\f ,"1 U).

Nph(RALJR\V1._.RL).

Actua.lly Nf is called from Nph 1 to parse the noun gr.oup and its modifiers. The

clause Nphlls defined as follows

Nph HMv" .L, VL.DL.Conj .OldDL,f p .Fh.RL):­

~IF(L. VL.DL,Conj.f p .fh,IRL).

bJlphHRV" .IRL.VL.DL.Conj.Fp.fh.RL).

80

Noun groups parsed at lower levels modify either another head .tloun or the verb at the

Nphl1evel depending on the information carried in fp and Fh parameters.

The predicate b_Nphl is written for the case where the currently parsed noun

phrase has the possessive property "tZ" on it. A noun phrase with the genitive property

is expected. The clause b_Nphl is defined as

bJiphl("y" .L.VL.DL.Conj. "tZ" .Fh.RL):­

verbquantify(Fh;VL.DL,Conj) •

NphlCv" .L. VL.DL.NConj.DL.fp."U H .RL).

gen quantify(DL.NDL.N conj).

The first predicate verbquantify qualifies the verb in VL according to the

function in fh. Next, it attempts to parse a noun with the genitive property. In case of

success, possessive relation between two nouns is represented by combining their

descriptions in genquantify.

Finally two noun phrases with a conjunctive in between is parsed with lhe rule

b....NphHHyU -lYlcILLVL.DL.Conj.Fp.Fh.RL):­

verbquantify(Fh. VL.DL.Conj).

conj(Wd.

N ph H "v" .L. VL.DL.NConj.DL.F p .Fh.RL).

The clause verbquantify modifies the verb by adding t.he modifier into the

database predicate v(OJ1 .V. []). if the noun has case ma.rker ob/ective or 0. The

modification is implemented in two steps. The structure of the clause verbquantify is

verbquantify(Fh,[VIL1.DL.Co.nj) :.­

add_case_ verb(N ,Fh. V .DL).

The clause add_case_verbCN.Fh.V.DL) retracts the existing datahase predicate for the

verb V. and calls the clause append_case to insert the ne",,' form of the database

predicate. There are separate clauses for different possibilities rising from the type of

the verb. its voice and the function of the modifier. The structure of add_case_verb is

add_case_verb(N.Fh.V.DL):-

retract(v(N .Co. V .Sub»"

append_case(N.Fh.DL.V.Co.Sub).

81

The clause append_case which handles the noun with case marker 0 on it (denoted

with .. .,) modifying the main verb in passive voice is

appen«Lcase(O:" ,DL.V,Co,Sub):-

passive(V) •

assert(v(N .DL.V .Sub».

6.3. Meaning Representation and Internal Query Generator

Before we discuss clauses used in meaning representation, let us see how

descriptions are stored in the memory. Descriptions and qualifiers are kept as database

facts. As the implementation is in Turbo Prolog, the form of all database facts must be

predefined:' Hence we use two domain definitions for descriptions and qualifiers, namely

desc and qual. There are separate domain functors for each type of descriptions and

qualifiers. The domain definition for the qualifier type

relation name(list of selections}

is q2(Rname.attrL).

The attrL parameter is a list consisting of elements defined as

aUtermtype symbol termtype)

where a termtype can be one of the following

tUstring) , t2(string.string) , var(string)

since a value or a relation name can be used. For instance the qualifier ders(kod = 1231)

is implemented in Turbo Prolog as

q2(ders. [at(tHkod),"=",tH1234»J)

The description determiner--count-quaHvariable. displa.y list, qualified) has

the general structure as

d2(determiner,count.variable.display list. quail

82

The description for de.!:." with the general syntax

what-l-quat' (X,lXl. ders(kod =X))

can be written in Prolog as

The ma.jor drawba.ck of Turbo Prolog is that free variabies can not be inserted

into memory. To tackle this problem, we use an extra domain fUllctor vat" containi.ng

the:variable name. We introduce two different functors as 03 and q4 to handle a

combination of descriptions and qualifiers using is funet and is qua.l respectively.

for example, the description is funct (variable, deSCription) is implemented as

d3 (desc;. yarC -X-), dcsc)

and description is qual(yariable. qualifier) is implemented as

A meaning representation module consists of a clause for ea.ch main task. These

are the tasks of asserting the head noun, converting content words. question pronouns

to canonical forms, handling noun and adjective qualification. and creating relations.

The predicate asq asserts the description of. the head noun into the memory. It

checks if the head noun is a relation name using the user view of the conceptual data

schema, and it asserts a description for each relation name. The assertion has the form

d2(theJ. ,var("X") JLq2(ders'[t1 (kod)," =" .yar("X")]}

for ders, for example.

Conversion of content words is accomplished by the predicate con vcrt. It gds as

input the content word together with its domain. its case marker. its type. and the verb

of the sentence and returns the relation name. The description of the relation is either

modified or inserted into the memory. The program contains separate clauses for the

conversion of content words. question pronouns, and adjective or nouns ill verb form.

They use the semantic relationships information about the verb and its possible objects

to get the relation name.The clause used to convert kim..FY 'chemistry' in kim kimya

alLyor . . who is taking chemistry' is

eonvertC"Jl", "0" ,[alJ.[e(kimya,Hi")l,DL):­

con_n_obj("o" ,[all,e(kimya,"i"),DL).

83

where con-D._obj bounds DL to e(ders," iN) due to the following fact,

ss(al,ders, "i","o")

Referent of noun. clauses are determined in the clause con __ ve.rb_obj. It has

the form

cOD-verb_obj("nn". ·0". e(at"i">. N):­

find_vO,"o". at N).

The clause find_v which uses the semantic relationships dictionary. This is defined as

finLv(l._.To,e(N.Dn)):­

ss(To.N,Dn. HaM)

In the above example, the referent of the noun phrase a.la.nloa is determined and N is

bound to oj'reo ci due to the fol1owin.g fact

ss(aLtigrenci, "p","aU

)

The three predicates used in relation handling are fJ". dofe, and connect.

Using these three c1a.uses, we can create all possible combination of descriptions. fJ"

determines the common fields of the two fields. The decision is based on the conceptual

schema of the database. doJe fet.ches the named descriptions and calls t.he clause

connect to form a combined descript.ion.

To handle the relation over the verb when both object. and subject arguments

are filled in, fJ" is called to relate these arguments. The type parameter is used to

determine the order of the relation. For instance, deI'S veren noca. 't.he instruct.or

who gives a course' and 110C30111 verdiji del'S 'the course taught by the instructor'

have the same object and subject values, but the order of combination is different. Here

are the two database facts for these noun phrases respectively,

v(l,dees,vee ,hoca)

v{2,ders.vee,hoca)

The entry for 11011gi 110ca deI'S venfor 'which instructor is giving a cour~. will

have the type value 1'0.

The possessive relation is handled by the predicate gcnquantify which simply

calls Lx after having converted the content. w-ords appearing in the possessive relation.

Function propagation is carried out using a different parameter in every

relevant clause; but descriptions are kept in the memory rather than using a list that

contains current descriptions. Although memory access takes time, it is a...<;sumed that

implementation as a list will he slower since the required description may be an~,n"here

in the list. In addition, the list impleJnentatioll will1llake the program code larger.

6.4_ Spelling Corrector

The spelling corrector mainly consists of two sets of rules, one set of rules for

asserting a lexical item into the dictionary, and one for comparing the unrecognized

input with the entries in the dictionary. The clause corr controls the spelling

correction. It consists of two"rules in the following form

t;O.r.r.(_.Str ,Clist, W2 ,n):-

slr .Jength (Str ,Len gth),

J~1=Length/2,

fro n 15tr(L 1.Str ,Bste ,Este).

ch_cr(Bstr,}:str .LI. lf2,l);Clist).

corr(I.Str ._.Str.D):-

writer' Gorevini giriniz) P),

readln (Fune) .1.11.

write(" Esanlamhsi val" ID,1 ? (e/h))").

readln(Answer).

adding(Str,luDC,D,Answer),

85

The parameter Str keeps the misspelled word. Its correct form is returned in Wl. The

parameter Clist contains the list of possible categories that the word in Str may belong

to .

Assert.ion is handled in the clause adding. Separate clauses exist for different

functions of the word. The structure of the clause adding used to add a· new adjective is

adding(Str, "a", , "h"):- assc:rt(adj(Str ».

To add a noun, its class value is also required from the user. For synonyms, the 110un for

which the unrecognized input is the synonym asked from the user, and synonyms are

added into the synonym dictionary.

Before adding a word into the dictionary, the spelling corrector tries to find a

word close to the misspelled one in the dictionary. The spelling corrector is called wit.h. a

list of possible categories that the word may belong to. Different clauses are called from.

ch_cr depending on the entries in the list elist. There are four different clauses"

namely. ch-D., ch_s, ch_p, ch_v to correct the spelling of a noun, adjective, pronoun

and verb respectively. They are similar in structure and they use the clause cO,mper in

which the comparison is handled. For example, the clause for correcting the misspelled

adjectives, ch_s is defined as

ch._s(Bstr,£str.Ll. HU):_

adj(WO.

frontsr(Ll,W1.Bw.Ev).

comper(LI,Bw.Bstr,:Ev,:Estr,WZ).

What this clause does is simply to get. an adjective from the dict.io nary , to split it into two

parts and to compare the first and the second parts of both words. The clause comper

handles the comparison and returns the correct form after the word found is confirmed

by the user. Its structure is

comper(_, Bv .Bstr .Ew ,Iste. W 1):­

Bw=Bstr.

concat(Dw,Ev.Wl),

concatCBstr ,Estr. W2).

write(W2 ... yerine ". Wt, .. kullanIlabilir mi ?)).

readln(Ansver),

Answer="e".

86

6.5. Translator

Conversion to a declarative language query is implemented using an algorithm

similar to the one given in Wallace's book. It is written in Turbo Prolog, and it works for

... the extended D&Q syntax. The output of the query generator is used as the input for the

converter. The input of the converter is a single description consisting of one or more

combined descriptions related to each other through variables. Starting from the inner

qualifier all the combined descriptions and qualifiers are converted to simple

declarative database language queries. As Turbo Prolog does not allow free variables in

the memory, the input description does not contain any free va.riable. In place of using

a free variable X, we use a bound term var.tnat contains X as its argument. Unification is

handled explicitly by keeping a table for variables. Every entry in the table consists of

the variable name and its value. Every time we have to unify two variables we copy the

value of the "bound" variable into the value field of the "free" variable. Unification fails

if either of both variables contain different values or they do not have any values.

6.6. Knowledge Source

Dictionaries and tables are held as data.base facts. There a1'e djfferent predicates

for each category of words. For instance facts containing noun-like words have two

arguments, the word and its type, each of which is stored as a single character string.

The basic lexicon has the predicates noun,pronoun, adj, verb,conj,quanadj, e.g.

nounC'kimya","i")

pronoullC'kim" ,"p")

adj("iyi")

verb("ver")

87

Except for qualadj's, where a third object is used to distinguish between them, it allows to

use the same code for four different types of qual's.

qual(" ka9" ," q ,;) ,

qualC'bu","d")

This approa.ch facilitates the database search tremendously by providing a self

contained index at the level of functionality.

For synonym dictionary ,the two synonym words and their function are kept in

the same database "fact". The first word is the canonical one which will be returned

when the second is referred to, e.g.

syn("ogrenci" ,"talebe" ,"11")

The conceptual data schema is stored as entity a.nd field pairs including a

"marking" object to denote the key fields of each relation:

r(HdersH,llkodl1,"ill,"kH)

r("ders" ,"hocano" ,"n" ,_}

The semantic definitions dictionary keeps the noun and the modifier pair

together with their interpretation. There is an entry for each definition. For instance,

the entry for l:vi ders is

spsC'ders" ,"iyi" ,"hocano" ," 1234" ,":")

Semantic relationships are also kept as database facts. Each fact consists of two

related objects, the class value of the second object and the type of the relation. The fact

representing that the verb oj 'give' may have the word ders 'course' as object, is stored

as

ss(I'al tl ,'Idersl' J II ill ,"0 11
)

Finally, the domain to database mapping table is also stored as a list of facts.

fr(,'ders", "kod" , "course", "code")

frC'ders", "ad", "course", "c-llame")

frC'ders", "kredi", "course", "cr~dit")

frC'ders", "hocano", "course", "instLno")

88

VII. CONCLUSION

In this thesis, we have developed a model for a portable natural language

database interface system in Turkish. Our model has a two step transformation from

natura,llanguage to an intermediate meaning representation language and fill ally to a

target database language. We have distinguished two different processing phases, and

separated domain dependent and independent parts of the NL!. Our design principle is to

have domain independent run time modules for different processing stages and to

supply the domain dependent knowledge as a knowledge base to these modules. The

language processjng component is a general purpose syntactic parser based on the

simple principle of general categorization incorporated with the llotion of modVication

between words. The grammar is arranged in a hierarchical structure and each level

defin.es a type of modification. Each syntactically identified noun phrase must pass

semantic checks to decide on whether it is meaningful with the act determin.ed by the

verb. A domain dependent knowledge about the semantic relationships is supplied to the

model for that purpose. This knowledge is used to determine the referents of question

pronouns as well. The output of the linguistic component is processed in two stages. In

the first stage, a general purpose meaning represehtatio.n generator is used. The

meaning of the sentence is represented In the meaning representation languagE.' D&Q.

The database schema is used in this process to dete1'111ine the applicability of the

representation in the database. The meaning representation generator is not a simple

generatol'. It has a rule based reasoning capability. It can make analogies based on the

domain dependent knowledge to understand queries formulated in user's view as well as

selecting the appropriate entity or attribute names for each content word as well as less

descriptive words. The D&Q expression is translated into a declarative query language by

a.pplying a. set of database independent transformational rules, and domain objects are

mapped onto actual database files and fields.

Considerin.g pros and cons of two different. pal'sing t.echniques, namely semantic

grammar-based parser and syntactic parser, we combine syntactic and semantic analysis

in our work. Application of the semantic. processing to the output of the syntactic parser

makes the linguistic component domain independent and avoids the disadvantages of a

pu rely sema.n ti c parser.

=~== .. -

89

The main advantage of our model is that it consists of separate general purpose

run time modules. Each run time module can separately be used. For instance syntactic

parser can be used in text translation. Syntactic analysis of Turkish is a very broad

subject. We attempt to solve. in this work only a limited part of the Turkish grammar. The

syntactic parser in our work is sufficiently potent to process a lal'ge enough subset of

Turkish necessary to parse queries in the NL!. It may be extended by adding more phrase

rules and categories to cover a wide range of Turkish grammar. Necessary additions are

verb tenses such as past tense and future tense, verb forms for all persons, and the

category of adverbs. The 'correct sequences of noun phrases with different case"marker

must be incorporated into the syntactic parser[41. In its current state, no restrictions

such as subject and verb agreement and comma restriction are handled. The design of

the morphological parser plays an important role in the overall design of the syntactic

parser since Turkish is a suffixing language. In our design, the affix stripping

approach is used in determining all combinations of inflectional suffixes provided that

nouns are listed in the dictionary in drived form rather than two separate lists

containing';' roots and derivational suffixes. Our morphological parser is sufficient for

our purpose, but it must be extended to handle exceptions in word formation.

Furthermore, vowel harmony is not considered since it does not change the meaning of

the word.

The model uses the D&Q language of Wallace as the meaning representation

language. D&Q is found to be the most suita.b1e for our purpose since qualifier hierarchy

can be easily implemented in P&Q. The syntax of the intermediate representation

language is somewhat modified in order to make it closer to the syntax of the declarative

database languages. The meaning representation generator can handle a wide range of

simple queries. However, it must be elaborated to handle complex sentences whose

interpretations are nested queries. The current processi.ng capability can only answer

questions that require a single pass over the database.

The meaning representation and parsing are concurrent processes in our desi.gn,

Once a constituent is parsed its meaning is represented in D&Q. which makes the

backtracking impossible. A solution to that is to separate syntactic and semantic analysis

from the meaning representation process. That is. the parser will produce an output

such as a parse tree. The meaning representation generator will generate a D&Q

expression from the output of the parser. This is time consuming when the query 1S

syntactically correct but its meaning can not be expressed in the database.

-

90

Portability is the most importa.nt concern nowadays in database design.

Portability is achieved with the intermediate meaning representation. The domain

dependent knowledge is supplied in the form of tables and tables are easy to change.

Consequently, our model can be easily ~.dapted to other domains simply by

reconstructing the knowledge source.

In its current state, our system has no editor. However an editor like the

kno'wledge acqHisition component of TEAM or more generally, a component like the

world editor of the KID is necessary in order to facilitate both data entry and the

adaptation of the model to a new discourse.

Although our model incorporates some intelligence in question translation, it. is

not an intelligent database assistant in the sense of generating clarifying dialogues in

order to help th,e user to form correct natural language queries and to correct

misconceptions about the database. The system can be further developed by adding to it.

(1) a menu based knowledge acquisit.ion component,

(2) capability to work with more than one database, and

(3) more flexible and robust dialogue capabilities.

91

APPENDIX A. TURKISH GRAMMAR

In first part of this appendix, w,r~ give the Turkish grammar used in NLI 111 terms

of rewrite rules. Next its representation asatransition network is given.

A.I. Turkish Grammar Used in NtI in Terms of Rewrite Rules

Notational conventions used are as follows;

J~HS --) RHS
AlB
A{BIC}D

OnRHS

in AX
[]

The rules:

The left-hand side is defined by the right hand side
An A or B may occur 011 the right-hand side
This denotes that an A on the RHS foilowed by a B or C then aD

terms starting with lowercase letters are dictionary looK-ups
the ones with an uppercase letter represent another rule
terms in italic are constants
terms preceded by a minus sign are suffixes
parenthesis denotes optionality of a term

x is the grammatical function of a 110un phrase A·
nothing

S -7 NphcaseM Vph

Vph -~ verb I

verb + (-J~vorl -tlj) I

Vtlr! yokl

(noun I ad; I verb + -en) + -tlir

Nphl{cageM/gen) ._-> Nphl «en Nphl{cueM/gen) ... poSK

92

Nphl(caseM/gen)+(poss) -----) Nph 1 (caseM/gen}+(poss) conj Nphl(caseM/gen}+{puss)

Nphl -----) NY-(caseM I gen}+(poss) ... lcaseM I gen}+(poss)

Nf(caseM I gen}+(poss) -----)

pronoull(caseM I gen}+(poss) I

I
qpronoun{caseM I gen}+(poss)

I
Ng2(caseM I genJ

{ASf I AfS I (CS) (Qf) (Af)} Np(caseM I gen}+(poss)

Np(caseM Igen} ~ Ns Ngl(caseM Igen}+poss

Ngl(caseM I gen}+(poss) -----)

noun(easeM I gen}+(poss}
I

Ngnl(caseM I gen}+(poss) conj noun[caseM I gen}+(poss)

Ng2{caseM I gen} ~ propernoun{caseM I gen} I

, Ngn2{caseM! gen} conj propernoun{caseM I gen}

Ngnl{caseM I gen}+(poss) ~ noun{caseM I gen)..-(poss)'

Ngnl{caseM I gen}+(poss) noun[easeM I gen}-t-(poss)

Ngn2(caseM! gen} --7 propernouD(caseM I gen}

Ngn2{caseM I gen} propernoun(caseM I gen}

Ns -----) noun I Nsn conj noun I [] case. case.

Nsn -----) noun case. I Nsn nouncaseJJ

Af -----) adj I ADf conj Af

ADf -----) adj I ADf adj

ASF -----) en adj I ASF CODJ ASF

QF ~ (Supf) qualadj

Supf --7 ell adjquan

CS ~ cSll CS1 conj CS1

CSI -7 Nphab1 adjquan I

Nph(dat I cases) (e.sit I k.:um.r I 91llS1fl(m.ki) I

Nphab1 adj

Nphcases noun + -Ii

AfS ---) NphcaseM verb + {- eni - dik} cases

Nf -7 NphcaseM verb ... (-elll -dik} caseM

93

A.2. Representation of the Grammar as a Transition Network

cstestor'J' Terb ~

category aclj+4i'.r.

parB~ll,h

category eO:llj

94

cafe-gory noaD

(1
, " 8--i_0:m:_'-·8

cate-gory nonD

n
~~ j([m.p / ---"'""" (Bgnl ____ • (HgAlIdoB.e)

,------- "------..... '/

95

96

category ad;

n
~ jum.p rJ:~
~.~ ----t ~~:~)

jum.p

. "\ categorr adjqa:sD. /. " 8
/ ------ 8 --------...)d ---,

·~UPf eD ~ Supf'/en} ------..... ~ ~~)

(0 catt"goI'Y qaaladj ~-~
QF • QF '40~/

/ -
puse So:pF \.8 /' ~ ./ catego:ry qo:abdj

QF/So:pF

~-....... \ parse CSI /------.......

~ .\::'~ \ e.L .~--? parse CSl '--A':-\ (l!Q'L4!'gox.,- eOD.J , -- parse CSI
CS/CSl) ;, CS/CSlIe) .

--------'

97

APPENDIX B. SYNTAX OF D&Q

This appendix gives the full syntax of D&Q as it is defined in \Vallace's book. Two

major changes made in the syntax are listed separately.

B.l. Syntax of Wallace's D&Q

LHS "- RHS

<Non Terminal>

AlB

A{BIC)D

nil

The full syntax of D&Q is:

QUALIFIER "
"

QUALIFIER " ..

QUALIFIER "
"

QUALIFIER ..
"

DESCRIPTION " ..

DESCRIPTION "
"

DESCRIPTION
DESCRIPTION
SELECTION

COMPARISON

DETERMINER

COUNT ..
"

CONSTANT

INTEGER

PREDICATE

ATTRIBUTE

V.t\.RIA.BLE

The left-hand side is defined by the right-hand side.

On the RHS, nonterminals are put in angled brackets.

An 'A' or 'B' may occur here on the RHS.

This is an 'A' on the RHS followed by a 'B' or 'C' then a 'D'.

Nothing

<PREDICATE> I <PREDICAlt> (<SELECTIONS».

<QUALIFIER> { & lOR} <QUALIFIER> I not <QUALIFIER>.

<DESCRIPTION> is qual(<V ARI ABLE> , (QU ALiFIER».

true I fail.

<CONSTANT>.

<DETERMINER>-<COUNT>-qual (<VARIABLE> ,<QUALIFIER».

<DESCRIPTION> is funct (<VARIABLE>, <DESCRIPTION»),

<DESCRIPTION> {& lOR} <DESCRIPTION>.

<ATIRIBUTE> <COMPARISON> <VARIABLE> (,<SELECnONS>lnil).

= I -I I < I > I <= I >=.

the I any I what.

<INTEGER> I <VARIABLE>.

is a PROLOG atom or integer.

is a PROLOG integer.

is a PROLOG atom.

is a PROLOG atom.

is a PROLOG variable.

B.2. Extensions Made in the Syntax of D&Q

The extensions we made in the syntax of D&Q mainly concern the definitions of the

DESCRIPTION and SELECTION, their new structures are as follows

DESCRIPTION·' <DETERMINER>-<COUNT>-qual (<VARIABLE>,< DISPLAYLIST>,

<QUAliFIER» .

SELECTION"- {<ATTRIBUTE> I <VARIABLE» <COMPARISON> { <ATTRIBUTE> !.

<VARIABLE>} (, <SELECTIONS > I nil).

99

APPENDIX C. EXAMPLE DATABASE

In this appendix, we give the actual database definition and its represel1L:~".ion in

user's own view.

The actual files and fields in the database are as follows:

STUDENT sLno I SLtlame I dept I birth

INSTRUCTOR instr _00 instr_name dept office

COURSE code c_name credit i nstr _no

STUD_COURSE sLno code grade

where the sLno. code, instr._no. sLno. and code are keyfields for student.

i.nstructor. course. and stud_course respectively.

The user's own view is

ogrenc.i(num. ad. boiUm. dogum)

hoca(hocano. ad. bolum. oris)

ders(kod. ad, kredi. hocano)

karne(num. kod. not)

100

APPENDIX D. LISTING OF rHE NLI IMPLEMENT ArION AND DATA

FILES

This appendix gives the list of source file names that exist in the program. diskette

and the data files used for the implementation.

D.l. Program I .. isting

The program diskette contains the following source codes of the five modules:

CW.PRO : morphological parser

SYN .PRO : syntactic parser

QG.PRO : query generator

CORR.PRO : spelling corrector

SQI.LIST .PRO : translator

The global predicates are listed in the file GLOBDf.F.PRO.In addition to these source files

the prograt} diskette contains an executable file KEYBTR.COM which contaith the

following key assignments for a Turkish keyboard.

q ---) 1

x-·_} -0

J -... > 0

? -' -} g

One has to run the keybt..r.com and combine source files and globdef.pro into a sht.nd­

alone project in Turbo Prolog 2.0.

D.l. Data files

Basic Lexicon

noun("orta.1ama" ,"n")
noun("saYl" ,"n")
noun("topla.m" ,"n")
1l0ull("yan" ,"n")
nounC'kimya","i")
llounC'fizik" ," i")
pronC'o")
pronC'onlar")
pronC'bu")
pronC'bunlar")
adj("zor")
adj("boyok")
adj(" kiir;ok")
adj("~ok")
adj(HiyiH)
adj("koto U

)

verb("ver")
verb(" gaster")
verb("yaz")
verb("al")
qpron("kim")
qpron(,'hangi")
qpron(,'hangisi")
qpron("ka~")
qpron("ne")
qualadj("bu" ,"d")
qualadj("o" ,"d")
qualadj("hangi" ,"q")
qualadj("ne" I"q")
qualadj(" katr" ,"q")
qualadj("hi~bir" ,"h")
qualadj("hi(,"h")
qualadj("boton" ,"h")
qualadj("her" ,"h")
conj("ve")
conj("yeya")
conj("ile")
q uanadj(" [azla")
quanadj("az")
qualladj("\:ok")
comp("boyOk" ,")")
comp(" kor;ok" ," (")
comp("e~it" I" =")
comp("aynl" ,"=")
comp("kadar" ,"=")
comp("r;ok" I")")
comp("az" ," <")

101.

.::,.

comp("al~ak"," <")
comp("yuksek" ,",")
comp("iyi" ,">")
comp("koto" ,",")
comp("do~Ok","<")
COlllp(" fazla"," >")

Conceptual Database Schema in User's View

r("ogrenci" ,"num" ,"i" ,"k")
r("ogrenci" ,"ad" ,"i" ,"")
r("ogre11ci" ,"bolO111",''1'' ,"")
rC'ogrenci" ,"dogum" ,"n" ,"")
rC'hoea" ,"hoeano" ," i" ,"k")
r(Uhoca" JUadll j"i" ,1111)
r("hoea" ,"boltim" ,"1" ,'''')
r("hoca" ,"of is" ,''1'','''')
r(UdersH

J IIkodu .1Iilf ,"kll)
r(UdersU ~ "adlt

; II in ,lIl1)

r(Hders","kredill,lInll,tlll)
r(lIders ll ,lIhocano" ,"i", 1111)
rC'karne" ,"nuin" ,"i" ,"k")
r("karne" ,"kod" ,"i" ,"k")
r("karne" ,"not",Un" ,1111)

Synonym LeIicon

SYll("num","numara","ll","ll" }
(

II II II II II H II ") syn num, no , n , 11 ,
sYll("ogrenci" ,"talebe" ,"p" ,"n")
s\1n(lfadtl ,"isimll ,Uill/llnll)
syn("ofis" ,"odall ,"f' ,lInU)
syn("not" ,"derece" ,"n"," n")
syn("hoca" ,"ogretmen" ,"p" ,"n")

Dictionary containing semantic definitions

sps(Unot" ,l1iyiU," not" ,lIj" ,tI>=")
spsC'-del's" ,"iyi" ,"hocanum" ," 1234"," =")
spsC'hoca" ," iyi" ,"ad" ,"Ahlllet" ,"=")

Sem.antic Relationships Lexicon

(" 111 ltd It II· II II II' 55 a , ers, 1 , 0,
ss(ua.l" J II not" ,II n II ,II 011)
ss("al l1 ,"hocau ,"pH II1S")
ss(HalU l"ogren Citl,Hp II ~J1a")
ss('lver" ,tldersH ,lIi" ,"0")
ss("ver ll ~"nof' JII nil 1110

11
)

ss("ver" ,"hoca" ,"p" ,"a")
ssC"ver"," tigrenci"," p" ,"t")
ss("nof' ,"dersll ,$till ~HSU)
ss(" not"," del'S" ," i"," p")
ss("ders" ,"bolOm" ,"i" ,"p")

102

Domain to Database Mapping Table

fr("ogrenci" ," num" ,"student" ,"sLno")
fr("ogrenci" ,"ad" ,"student" ,"sLname")
fr("ogrenci" ,"bolom" ,"student" ,"dept")
fr("ogrenci"," dogum" .. "student" ,"birthday")
fd"hoca" ,"hocano" ,"instructor" ,"instLno")
fr("hoca" ,"ad" ," instructor" ,"instLname")
fr(,'hoca" ,"bolom" ," instructor" ,"dept")
fr("hoca" ,"of is" ,"instructor" ,"office")
fr(,'ders" ,"kod" ," course" ," code")
fr(,'ders" ,"ad" ," course" ," cname")
frC'ders" ,"kredi" ," course" ," credit")
ff(,'ders" ,"hocano" ," course" ,"instLno")
fr("karne" ," num" ,"stud_course" ,"sLno")
frC'karne" ,"kod" ,"stud_course" ," code")
f1'{ "karne" ,"not" ,"stud_course" ," grade")

104

BIBLIOGRAPHY

1. E. Charniak. D. McDermott, "Introductiol1 to Artificial Intelligence, "., Addisoll-

1res1er, 1985.

2. G. Jakobson, C. Lafond, E. Nyberg, and G. Piatetsky-Shapiro. " An Intelligent

database Assistant," IEE££fPERT, pp. 65-77. Summer 1986.

3. H. Ishikawa, Y. Izumida, T. Yoshino, and A.Makinouchi. "KID Designing A

Knowledge-Based Natural Language Interface," IEEE EXPERT, pp. 57-70 ,Summer

1987.

4. H;,1. ~.1.~ski1L" A Transformational Analysis of Turkish Syntax" J..fol/IiJn·'Pt.:l:!{~~7.e[s,

1970.

5. M. Wallace, "COMMUNICATING WITH DATABASES IN NATURAL LANGUAGE," £llis

HorwoodSeriesin Artificial Intelligence, 1983.

6. D. L. Waltz. "An English Language Question Answering System for a Large

Relational Database," COO1D1l/oicalionsofACAf. Vol. 21 No. 7.pp. 526-539,July 1978

7. G. G. Hendrix, E. D. SacerdotL D. Sagalowicz, and]. Slocum .. "Developing A Natural

Language Interface to Complex Data," A{,if,f Transactions on lJataba.<'''8 Systems', Vol.

3, No.2, pp. 104-147, OcLober.1977.

8.B. J. Grosz. "TEAM: A Transportable 'Natural Language Interface System" PFOC.

Conf Applied A/ail/FalLangua.ge Interfa.ce, pp. 39-45, 1983.

9. B. H. Thompson. F. B. Thompson "Rapidly Extendable Natural Language."

Proceedings of AC.Al 78 Annual Conference, New York. pp.173-182 .1978

10. F. B. Thompson,P. C Lockermann, B. H. Dostert and R. Devedll "REL "RAPIDLY

EXTENSIBLE LANGUAGE SYSTEM," in Proceedings of the 24th ACM NaiiomJi

{,onfe.rence, New York. 1969, pp 399-417 ..

105

11. 1t Templeton. J. Burger "Problems in Natural Language Interface to DBMS with

Examples From EUFID," Proc. C011E. Applied iVatllralla11gllage ProcessioK- Santa

Monica. pp ,3-16 February 1983

12. Artificial Intelligence Corp. "INTELLECT Query System User's Guide," 500 Fifth Ave,

Waltham. Mass. 02254,1980.

13. . L. R. Harris. "The ROBOT System; Natural Language Processing Applied to Database

Query Proceedil1gsofACAf78AnnllalConferelu.~ New York. pp. 165-172; 1978.

14. Sj.Kaplan , "Designing A Portable Natural Language System" ACAf Transactio11s 00

lJatabase Srstems, Vol. 9, No. L March 1985.

15. B. K.Boguraev, K.S. Jones, "How to Drive a Database Front End Using General

Semantic Information," Proc. ConE. Applied Nalllrai language Pn)('~essing; Santa .

Monica, pp. 81-88 february 1983 .

16. N. Sa~er, "~b.tural Language Information Processing," Addison-Wesler, 198~~.

17. J. Hankamer, "Parsing Nominal Compounds in Turkish," in lrforpnolagy 3... .. a.

Complltationai Problem UCLA Occasional Papers 7, ed. Karen Wallace, UCLA pp.l23-

143,1988.

18. J,Hankamer. "Morphological Parsing and the Lexicon", in Lexical Representation

and Processing, ed. W. M. Wilson, AfITPress; 1988.

19.].Hankamer, "Finite State Morphology and Left to Right Phonology", Proceedings of

the West Coast Conference on Formal Linguistics, VoL 5, Stanford University, 1986

20. Turbo Prolog Reference Manual. Version 2.0 Borland Inter01Jliona.l, Inc ... 1988.

21. Turbo Prolog User's Guide, Version 2.0 Borland In/ernationa.L Inc', 1988.

lIJ6

L p, C.Culicover. "Sy ntax,"Second Edition. AcmleJl1ic iross fllc. 1982

2. T.Winograd, ";Language as a Cognitive Process," Vo1.1 Syntax, AddisoJ.1- Jfe.::.ieJ': 1983

3. TN. Gencan "Dilbilgisi" Kaflna! YO .. Y'lflJon, 1979.

4. R Underhill "Turkish Grammar" .MIT Press .. 1976.

5. C. J Date" An lntroduciion to Database Systems",. Vol. 1, Fourth Edition, Addi.,'on­

l[losJoy Camp<l.11}Z 1986

	KTEZ187001
	KTEZ187002
	KTEZ187003
	KTEZ187004
	KTEZ187005
	KTEZ187006
	KTEZ187007
	KTEZ187008
	KTEZ187009
	KTEZ188001
	KTEZ188002
	KTEZ188003
	KTEZ188004
	KTEZ188005
	KTEZ188006
	KTEZ188007
	KTEZ188008
	KTEZ188009
	KTEZ188010
	KTEZ188011
	KTEZ188012
	KTEZ188013
	KTEZ188014
	KTEZ188015
	KTEZ188016
	KTEZ188017
	KTEZ188018
	KTEZ188019
	KTEZ188020
	KTEZ188021
	KTEZ188022
	KTEZ188023
	KTEZ188024
	KTEZ188025
	KTEZ188026
	KTEZ188027
	KTEZ188028
	KTEZ188029
	KTEZ188030
	KTEZ188031
	KTEZ188032
	KTEZ188033
	KTEZ188034
	KTEZ188035
	KTEZ188036
	KTEZ188037
	KTEZ188038
	KTEZ188039
	KTEZ188040
	KTEZ188041
	KTEZ188042
	KTEZ188043
	KTEZ188044
	KTEZ188045
	KTEZ188046
	KTEZ188047
	KTEZ188048
	KTEZ188049
	KTEZ188050
	KTEZ188051
	KTEZ188052
	KTEZ188053
	KTEZ188054
	KTEZ188055
	KTEZ188056
	KTEZ188057
	KTEZ188058
	KTEZ188059
	KTEZ188060
	KTEZ188061
	KTEZ188062
	KTEZ188063
	KTEZ188064
	KTEZ188065
	KTEZ188066
	KTEZ188067
	KTEZ188068
	KTEZ188069
	KTEZ188070
	KTEZ188071
	KTEZ188072
	KTEZ188073
	KTEZ188074
	KTEZ188075
	KTEZ188076
	KTEZ188077
	KTEZ188078
	KTEZ188079
	KTEZ188080
	KTEZ188081
	KTEZ188082
	KTEZ188083
	KTEZ188084
	KTEZ188085
	KTEZ188086
	KTEZ188087
	KTEZ188088
	KTEZ188089
	KTEZ188090
	KTEZ188091
	KTEZ188092
	KTEZ188093
	KTEZ188094
	KTEZ188095
	KTEZ188096
	KTEZ188097
	KTEZ188098
	KTEZ188099
	KTEZ188100
	KTEZ188101
	KTEZ188102
	KTEZ188103
	KTEZ188104
	KTEZ188105
	KTEZ188106

