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ABSTRACT

DISCRIMINANT ENSEMBLES AND ERROR ANALYSIS

OF CLASSIFIER FUSION RULES

Each classification algorithm has its own underlying assumption and misclassifies

different patterns and overall accuracy can be increased by a suitable fusion of multiple

classifiers.

The combination is performed over the scores of classifiers, which are mostly

posterior probabilities. Although the aim of classifier fusion is improved accuracy,

there is no guarantee that this will be the case. In this study, we propose a new

combination scheme which uses a subset of the classifier scores instead of using all

of them. We experiment with three different methods for discriminant selection and

combination, using decision trees and feature selection. We see that decision trees are

better in choosing the best subset of features and accuracy is improved especially when

the chosen discriminant outputs are combined with a trained linear model.

In trying to understand the behavior of the fixed rules, we apply the idea of

decomposing a loss function into bias, variance and noise. This study gives a brief

survey of the bias, variance and noise decompositions in the literature for squared and

0/1 loss. We show that they are unable to explain the error behaviour of fusion rules,

especially for minimum and maximum rules. We give the reasons why some fusion

strategies work better than others under the assumptions of uniform or Gaussian noise.

We propose instead a measure based on the area of intersection to explain the behavior

of the fixed rules.
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ÖZET

AYIRTAÇ TOPLULUKLARI VE SINIFLANDIRICI

BİRLEŞTİRME KURALLARININ HATA ÇÖZÜMLEMESİ

Her sınıflandırma algoritması veri hakkında farklı bir varsayımda bulunur ve

farklı örüntüler üzerinde yanlış yapar; bu yüzden uygun bir kaynaşım ile genel doğruluk

arttırılabilir.

Birleştirme, genellikle sonsal olasılık olan sınıflandırıcı sonuç değerleri üzerinde

gerçekleştirilir. Sınıflandırıcı kaynaşım yöntemlerinin amacı doğruluk başarımını arttır-

mak olsa da her zaman başarılı olacaklarının teminatı yoktur. Bu çalışmada bütün

sınıflandırıcı sonuç değerlerini kullanmak yerine, onların altkümelerini kullanan yeni

bir birleştirme tasarısı öneriyoruz. Ayırtaç seçmek ve birleştirmek için karar ağaçları

ve özellik seçme kullanan üç farklı yöntem deniyoruz. Karar ağaçlarının en iyi özellik

altkümesini seçmede daha başarılı olduğunu ve seçilen ayırtaç sonuçları eğitilmiş bir

doğrusal model ile birleştirildiğinde doğruluk başarımını daha da arttırılabildiğini görü-

yoruz.

Sabit kuralların davranışlarını anlamaya çabalarken, hata fonksiyonunu yanlılık,

değişinti ve gürültü bileşenlerine ayırma fikrini uyguluyoruz. Bu çalışmada yazındaki

kare ve 0/1 hata tanımlamalarının yanlılık, değişinti ve gürültü ayrıştırmalarını kısaca

gözden geçiriyor, bu bileşenlerin toplulukların hata davranışını, özellikle en küçük ve

en büyük kuralları kullanıldığında, açıklamada yetersiz kaldığını gösteriyoruz. Bazı

kaynaşım yöntemlerinin, veri kümesinin üstünde birbiçimli veya Gauss gürültü varsayım-

ları altında, ötekilerden daha iyi çalışmasının nedenlerini veriyoruz. Sabit kuralların

davranışını açıklamak için kesişim alanına dayanan bir ölçü öneriyoruz.
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1. INTRODUCTION

People try to automate many processes either to ease life or eliminate errors that

can occur due to carelessness or insufficient knowledge. Machines are used for many

processes in many areas in daily life, i.e. medical operations, signaling systems, etc.

We believe that the past knowledge or experience on a phenomenon can be used

in detecting and identifying possible patterns, which can be used for future predictions.

Many research studies in many fields, including computer engineering, try to construct

systems that can learn from past data of the given problem.

Machine learning is programming computers to estimate the optimal response

from example samples (training data) or past experience (Alpaydın, 2004). The re-

sponse can be the class label in the case of classification, or any numeric value in the

case of regression.

Perfect classification is often impossible, and the more general task is to determine

the posterior probability of each candidate class given the input (Duda et al., 2001).

Discriminant functions can also be used for seperating classes from each other if only

the label, not the posterior probability, matters. Discriminant scores can have different

meanings and ranges depending on the application.

There are many classification algorithms and each has its own underlying as-

sumption about the distribution of the data. These assumptions can either become a

strength when they hold or a weakness if they do not. It is not an easy task to deter-

mine which classification method is suitable to use for a given dataset. Therefore, the

general approach is to construct many classifiers from the training dataset and then

design a strategy to improve the accuracy by suitably combining them (Kuncheva,

2004).
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1.1. Classifier Combination

There is no universal classifier that works as the most accurate in all datasets.

Each classification algorithm has its own inductive bias and makes different assump-

tions about the data. Most of the cases, the different classifiers err on distinct samples.

If they deliver a set of classification results, then a combination method might be ap-

plied to combine these diverse results such that the accuracy of the ensemble is higher

than the accuracy of any individual classifier on the ensemble (Rahman and Fairhust,

2003).

The combination works well only when the individual classifiers misclassify differ-

ent samples, that is, when there is diversity. Otherwise, there can be no improvement

by combination. If the classifiers produce diverse results, then the next question will

be how to combine them. In the literature, there are many proposed methods, each

with its own advantages and disadvantages (Kuncheva, 2004).

In a multiple learner system, the models to be used in the ensemble should be

selected carefully to increase the accuracy. Increasing the size of the ensemble improves

the accuracy only up to a point. If a new expert does not contribute to diversity, it will

only unnecessarily increase the cost of the ensemble in terms of both time and space.

It is therefore essential that given a large set of classifiers, a subset needs to be found.

An algorithm proposed for this purpose constitutes a contribution of this thesis.

1.2. Bias–Variance Analysis

The source of an expert’s error is decomposed into three components. Bias is

a measure of fitness of the algorithm to the data. For instance, if the classes are

not linearly separable, a linear model will have high bias and perform poorly. The

parameters learnt during training will be clearly dependent on the samples in the

training set. The models constructed from different training sets will be different from

each other, unless our model is constant, which means no learning is done. Instable

algorithms such as decision trees, will be more influenced by a change in the training set.
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Variance is the component that accounts for this sensitivitiy. Noise is the unpreventable

component and is the variance of the noise added to the data.

These concepts are helpful in expressing the causes of the error, however, their

evaluations vary with loss functions used. Although these concepts are straightforward,

there is no unique decomposition for 0/1 loss. There are different decompositions pro-

posed in the literature, which are discussed in Section 3.3. Evaluating different combi-

nation rules using the bias–variance decomposition constitutes a second contribution

of this thesis.

1.3. Objectives and Approach

This study is made of two separate sections. In the first section, we are concerned

with developing an ensemble that is constructed with a subset of discriminants instead

of the whole classifier set.

In our methodology, firstly L base classifiers, D1, . . . , DL, from different families

are trained. Then, from L · K discriminants of the base classifiers, where K is the

number of classes, a subset of discriminants, M ≤ L · K, are selected and used. As a

result, a more cost-effective ensemble can be constructed, since only the discriminants

that give us information are used and not all.

The second part focuses on the bias–variance analysis of fusion strategies. The

bias–variance decompositions of the ensembles are evaluated both empirically and the-

oretically for different loss functions, and the link between loss and misclassification

rate is investigated. We are interested in expressing the performance of the ensemble

in terms of bias and variance as the size of the ensemble and the distribution of the

noise is varied.
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1.4. Thesis Organization

This thesis has the following outline. In Section 2, we discuss discriminant en-

sembles. A brief survey of classifier fusion will be given at first. Then the proposed

discriminant based ensemble construction methods are explained, together with case

studies. A comparison with other classifier selection methods are also given. Section 3

concerns with bias–variance analysis of fusion rules. It begins with a summary of the

proposed bias–variance decompositions and ensemble misclassification rate evaluations

in the literature. The applications of the bias–variance decomposition to the ensembles

are theoretically explained. The relation between them and misclassification error is

discussed. Conclusions and possible future work are stated in Chapter 4.
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2. DISCRIMINANT ENSEMBLES

Discriminants are functions that return scores whose values can be used as mem-

bership measures of an input sample. The scores indicate which class the sample most

likely belongs to. A discriminant score can be any value in any range interval. Many

classification algorithms use discriminants for decision and we view each classifier as

being composed of discriminants. Since the classifiers are combined to have a more

accurate classifier, it is possible that only some of the discriminants (a part/subset of

classifier) need to be used in combination. This chapter focuses on why and how to

use discriminants in an ensemble.

2.1. Classifier Ensembles

Classifier combination has been very popular recently. The idea behind is that

any single classifier might not be the optimal classifier, and an ensemble of classifiers

can complement each other and reduce the error (Figure 2.1).

D1 .  .  .D2 DL-1 DL

X

Combiner

D3

Figure 2.1. Ensemble of Classifiers
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2.1.1. Terminology

The following notation is used throughout next section:

• It is assumed that we have L base classifiers (experts, learners, models, . . . ) in a

classifier ensemble:

D = [D1, . . . , DL].

• All base classifiers Dj, j = 1, . . . , L, are trained with the training dataset Xtra.

• Output of any base classifier Dj is a set of discriminant scores for input x, T j
i (x),

i = 1, . . . , K, for example, posterior probabilities.

• Discriminants are selected and their outputs are combined using a trained meta-

classifier by using a validation dataset XvalA.

• The optimal subset D∗ ⊆ D includes n ≤ L of the classifiers for a given test

instance x.

• The optimal subset T ∗ ⊆ T includes M ≤ (K ·L) of the discriminants for a given

test instance x.

• The final output is the class label s that has the highest overal discriminant value:

s = arg max
i

Ti(x) (2.1)

• The misclassification error is calculated when the estimated class does not match

the true class, r:

ERR(x) =











1 if arg maxi Ti(x) 6= r

0 otherwise
(2.2)

2.1.2. Previous Works on Classifier Combination

Classifiers can be categorized into three with respect to their output scores:

• Labels : The classifier returns s, the label of class it assigns to the sample.

• Ranks : The candidate labels are returned in the order of their plausibility of
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being the correct class.

• Scores: The classifier returns a vector of K dimensions, whose elements represent

the support values for each class.

In this study, only combination of scores is of concern. There are many com-

bination rules proposed in the literature. Fixed rules do not need any extra training

phase, once the base classifier scores are obtained. There is no cost overhead except

the complexity of the base classifiers. Voting and other rules (i.e. average, sum, prod-

uct, minimum, median and maximum) (Kittler et al., 1998) belong to this group. In

stacking, the final decision is given by a trained meta-classifier on the second-level,

which processes the scores of the base classifiers as its inputs (Wolpert, 1992). It needs

an extra training set for the upper-level learner, otherwise it would be biased with

the training set used by the base classifiers. The mixture of experts architecture con-

structs local models and a gating network which choses the experts with respect to

their location in the input space (Jacobs et al., 1991).

There are other methods based on resampling. The rationale is not combining

different algorithms, but averaging over perturbations of the traning set. In bagging

(Breiman, 1996), the instable classifiers, commonly decision trees, trained by boot-

strap replicates of the training set are combined. In this way, diversity is improved.

AdaBoost (Freund et al., 1996) is an incremental ensemble construction technique

where in each step, a new classifier is trained on the data selectively sampled from the

training set Xtra. The selected data contains the samples which the previous classifier

in the ensemble misclassifies.

Composite models of combination and selection can also be implemented. Kılıç

(2007) proposes a composite system which selects dynamically an optimal subset of

classifiers from an ensemble for a given test input. Only those classifiers competent in

the region of the input are selected and combined to give the final decision.

The sample size of the training set is also influential in deciding which fusion rule

to use. Raudys emphasizes in his recent studies (Raudys, 2006a; Raudys, 2006b) that
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when the training data size is small, fixed rules should be preferable over trainable

rules. Raudys also concludes that if the base classifiers can work well in separate

regions of the input space, a simple rule, such as Behaviour Knowledge Space, can

work successfully with label outputs in case the dataset size is large. Otherwise a

trainable rule using continuous outputs of the base classifier should be preferred.

Diversity is a related notion. Intuitively, learners should be diverse, that is,

they should not err on the same instances otherwise there would be no gain through

combination. AdaBoost is an example of how diversity influences the accuracy of the

ensemble. Although conceptually diversity is needed for multi-classifier system, the

relation between diversity and accuracy is difficult to define precisely (Kuncheva and

Whitaker, 2003).

During combination, most of the rules, particularly fixed rules, assume either that

the scores are posterior probabilities or that they have same the measure levels (same

meanings and ranges). If this is not the case, normalization should be applied (Liu,

2005). But the normalization method should be chosen carefully, otherwise, there will

be information loss (Jain et al., 2005).

During construction of the ensembles, the models must be chosen carefully to

reduce the error. In particular, model combination through averaging reduces variance,

and hence error, but it is valid only if bias does not increase, or if the concomitant

increase in bias is small with respect to the decrease in variance. Consequently it is

essential that only those models which contribute to accuracy are included and the

poorly performing ones are weeded out. Additional to its effect on statistical accuracy,

each additional model means an increase in the space and computational complexity.

A new model may also be sensing/extracting a costly representation which is an extra

burden if the model is redundant. Methods therefore have been proposed to choose a

small subset from a large set of candidate models. L candidate models can constitute

2L possible subsets of it is not feasible to try for all possible subsets unless L is small,

and various algorithms have been proposed to get a reasonable subset of size m < L

in reasonable time (Ulaş et al., 2007).
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A method by proposed Ulaş (2007), ICON (Incremental CONstruction) algo-

rithm, chooses m out of L base classifiers greedily. It starts with the empty set and

incrementally constructs an ensemble where at each iteration, it selects among all pos-

sible classifiers the one that best improves the performance when added to the current

ensemble (Demir and Alpaydın, 2005). The performance evaluation criterion used are

accuracy, Q statistics, correlation coefficient and cross-validation. The procedure is

repeated until no more improvement is observed.

Despite the fact that trained rules have lower bias, fixed rules are mostly preferred

owing to their advantages. (1) Fixed rules have no extra cost of storing and processing.

(2) The training set can be used for completely training the base classifiers, which means

better-trained base classifiers. The second-layer learner needs its own training set and

hence the training data must be divided into two parts, which can cause undertrained

base classifiers. (3) A trained rule requires extra time for training.

An experimental study done by Alkoot and Kittler (1999) shows that, among the

fixed rules, sum and median rules seem more robust to noise. Kuncheva (2002) also

investigates performance of six fusion strategies assuming that the outputs are inde-

pendent and follow either Gaussian or uniform distribution. She concludes that in the

two–class case, the minimum and maximum rules (which are the same for two–class

cases) performs drastically better when the outputs are from a uniform distribution.

Similar conclusions are drawn for Gaussian output distribution. Although in these

studies the base classifiers are assumed to be independent, really they are not. They

have correlations, and that must be kept in mind during the construction of an ensem-

ble (Ulaş et al., 2007). For example, instead of using variants from the same family

(i.e., support vector machines with different polynomial kernels), using members from

different families (i.e. trees and multilayer perceptrons) will result in a more accurate

ensemble.
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2.2. Ensembles of Discriminants

2.2.1. Rationale

The methods previously proposed in the literature focus on construction of clas-

sifier ensembles. They combine the classifiers which maximize the overall accuracy. In

this work, we view a classifier as a set of discriminants, and are interested in construct-

ing an ensemble of carefully selected discriminants.

In the ensemble of classifiers, m classifiers from L candidate classifiers are se-

lected. In the ensemble of discriminants where K is the number of classes, M ≥ K

discriminants from L ·K are chosen (Figure 2.2). We consider a new intermediate L ·K

dimensional space in which we do feature selection and then classification.

D1 .  .  .D2 DL-1 DL

X

Combiner

D3

Figure 2.2. Ensemble of Discriminants

2.2.2. Discriminant Selection

Similar to the classifier ensemble construction, adding a new discriminant to an

ensemble does not necessarily contribute to overall accuracy. An elaborative selection

of a discriminant subset can result in a simpler and more accurate ensemble. Since base
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classifier discriminants constitute a feature space for the second level fusion expert, we

can use feature selection methods. We use three discriminant selection and combination

algorithms:

• Forward subset selection (FSS): This is an incremental algorithm that adds one

discriminant at a time until there is no further improvement in accuracy (Fig-

ure 2.3). There is a linear combiner to calculate the overall output from the

discriminants and this combiner is trained on a set which is different from the

one on which the base-discriminants are trained. The final linear model includes

the discriminants as features in the intermediate space which are enough for a

more accurate classification. The redundant discriminants are weeded out.

1. Given XvalA ∈ R(L·K), initialize T (0) = ∅ and t = 0.

2. do{

j = arg mini ERR(LIN(T (t) ∪ XvalA(i)))

t = t + 1

T (t) = T (t−1) ∪ XvalA(j)

} while(ERR(LIN(T (t))) < ERR(LIN(T (t−1))))

3. Return LIN(T (t−1))

Figure 2.3. Forward Subset Selection Algorithm

• Decision tree (Dt): A decision tree is trained to learn the final output from the

L · K dimensional discriminant values (Figure 2.4). The decision tree acts both

as a feature selector and a classifier. The trained tree gives the final decision for

a given sample.

1. Given XvalA ∈ R(L·K), initialize T (all) = XvalA.

2. Return DT(T (all))

Figure 2.4. Decision Tree Algorithm
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• Dt with linear output (Dt.Lin): A decision tree is trained as above but instead

of using it also for decision, it is used for feature selection only (Figure 2.5). That

is, we first train the tree, take the features it uses, and give them as input to a

linear model. The features used by decision tree indicate which discriminants are

the best at separating a class from the others.

1. Given XvalA ∈ R(L·K), initialize T (all) = XvalA.

2. T (chosen) = FEATURES(DT(T (all)))

3. Return LIN(T (chosen))

Figure 2.5. Decision Tree with Linear Output Algorithm

2.2.3. Features of Discriminant Ensembles

There are some interesting points to note about discriminant ensembles. They are

simple both in terms time and memory. They do not contain any redundancy. Unlike

classifier ensembles which usually need posteriors as base classifiers’ scores, they do not

make any assumptions about the output scores of the base classifier. They also inform

us about which expert is good at discriminating which classes.

A classifier may be accurate for some classes but not all, and it is more desirable

to use it only for classes it is good at. Each classifier has assumptions over the data,

which may hold for some classes but not all. Take the case of a linear discriminant:

In a multi-class case, one of the classes may be linearly separable from the others

but another classes may not be. The output of the linear classifier may therefore be

included in the ensemble of discriminants for that class, but for some other class, a

more complex discriminant should be included in the ensemble. Certain classes may be

handled by a single discriminant, i.e., one classifier can be very successful at separating

it from the others, but more discriminants may be necessary for more complex classes.

In case we know that a classifier will not be used for some classes, the overall

complexity can be decreased, both in terms of memory and time. There is no need to
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store the parameters for the unused discriminants and the unused discriminants need

not be calculated. Let us consider the case of support vector machines. We do not

need to store the support vectors of a class nor do the costly kernel calculations if it is

not used for that class.

For the proposed discriminant selection and combination methods in this thesis,

the base discriminants do not need to be posteriors nor normalized in any manner.

Both the linear model and the decision tree can use inputs in any scale and range, and

no transformation or scaling is necessary, avoiding any risk of distorting values (Jain

et al., 2005).

The ensemble of discriminants also provides knowledge extraction throughout

feature selection. It informs us which base classifiers can be trusted for which classes.

There may be certain base classifiers which are not selected for any class, there may

be ones which are selected for one or few, and there may be ones which are trusted for

many. Certain classes may be easy to separate with one discriminant; more difficult

classes might need to combine a number of discriminants.

2.3. Simulation Results

2.3.1. Datasets

We use 38 datasets from the UCI machine learning repository (Newman et al.,

1998), Delve (Rasmussen et al., 1996). Table 2.1 shows the properties of datasets.

2.3.2. Training, Validation and Test Set Divisions

Any given dataset is divided firstly into two parts: 1/3 of it is test set, test, and

the remaining 2/3 is training set, trainall. The training is resampled using 5× 2 cross-

validation with stratification. Two equal size random splits of training sets shift roles

as training set and validation set for five times, which gives ten folds of training and

validation sets, X i
tra and X i

val, i = 1, . . . , 10. The validation set X i
val is also divided
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Table 2.1. Properties of the Datasets

name instances inputs classes source

zoo 101 16 7 uci

iris 150 4 3 uci

tae 151 5 3 uci

hepatitis 155 19 2 uci

wine 178 13 3 uci

flags 194 26 8 uci

glass 214 9 6 uci

heart 270 13 2 uci

haberman 306 3 2 uci

flare 323 10 3 uci

ecoli 336 7 8 uci

bupa 345 6 2 uci

ionosphere 351 34 2 uci

dermatology 366 34 6 uci

horse 368 26 2 uci

monks 432 6 2 uci

vote 435 16 2 uci

cylinder 540 45 2 uci

balance 625 4 3 uci

australian 690 14 2 uci

credit 690 15 2 uci

breast 699 9 2 uci

pima 768 8 2 uci
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Table 2.1. Properties of the datasets (continued)

name instances inputs classes source

tictactoe 958 9 2 uci

cmc 1473 9 3 uci

yeast 1484 8 10 uci

car 1728 6 4 uci

titanic 2201 3 2 delve

segment 2310 19 7 uci

thyroid 2800 27 4 uci

optdigits 3823 64 10 uci

spambase 4601 57 2 uci

pageblock 5473 10 5 uci

ringnorm 7400 20 2 delve

twonorm 7400 20 2 delve

pendigits 7494 16 10 uci

mushroom 8124 22 2 uci

nursery 12960 8 4 uci
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randomly into two as X i
valA and X i

valB, where X i
valA is used for training the combiner

and X i
valB is used for model validation of ensemble in each fold. The test results

evaluated at each fold are used in 5 × 2 cross-validation (cv) F tests (Alpaydın, 1999)

for comparison of statistically significant difference between ensemble accuracies.

2.3.3. Base Classifiers

Ten base classifiers are chosen from a possible 19 to decrease the computational

complexity as follows: Whenever there is a hyperparameter (as k of k-nearest neighbor),

the version that has the highest accuracy on XvalB are selected and used. This is

because we notice that when the hyperparameter is varied, the classifiers are very

correlated (Ulaş, 2007) and another one almost never is chosen and keeping them

unnecessarily increases computation.

• c4 (C4.5): The standard C4.5 decision tree algorithm.

• ga (gaussian classifier): This is the parametric classifier where each class is rep-

resented by a Gaussian and a common covariance matrix is shared by all classes.

This is a linear model.

• kn (k-nearest neighbour): Of k = 1, 3, 5, 7, we choose the most accurate.

• lo (logistic classifier): This is the linear logistic discriminator trained to minimize

cross-entropy by gradient-descent. Discrete features are converted to numeric

features by 1-of-n encoding.

• ml (multilayer perceptron): There is a single hidden layer where, with d inputs

and K classes, the number of hidden units can be d, K, d+K, (d+K)/2, 2(d+K).

Of these five, the most accurate one (on the validation set) is taken.

• mu (multinomial tree): This is the multivariate tree where each decision node is

linear (Yıldız and Alpaydın, 2000) and uses all inputs as opposed to a univariate

decision tree, such as C4.5.

• se (selectmax): This simple classifier assigns the class with the highest prior for

any given sample without any evaluation.

• sv (support vector machine): LIBSVM 2.82 (Chan and Lin, 2001) with a lin-

ear kernel (sv1), radial (Gaussian) kernel (svr), and the most accurate of three
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polynomial kernels of degree 2, 3, 4. (sv2, sv3, sv4) are used in the experiments.

2.3.4. Compared Ensembles

In this thesis, the following ensemble techniques are compared:

• Best: We order the base classifiers in terms of accuracy and use the first best 1,

3, 5, 7, 9 of them. This has two variants; Best.Sum uses the fixed sum rule and

Best.Lin uses the trained linear combiner.

• Rnd: We randomly choose 1, 3, 5, 7, 9 base classifiers, with Sum and Lin options.

• All: All the available base classifiers are combined without selection, with Sum

and Lin options.

• Opt: We try all possible subsets (there are 210) and choose the best. It has Sum

and Lin options.

• Icon: The classifier ensembles generated by Icon variants, Acc, Cv, Qstat,

and Corr, are used. They all have Sum and Lin options (Ulaş, 2007).

• Fss: This is the proposed discriminant ensemble technique using Forward Subset

Selection and a linear combiner.

• Dt: This is the proposed discriminant ensemble technique which uses decision

tree.

• Dt.Lin: This is the proposed discriminant ensemble technique which uses deci-

sion tree for feature selection and a linear combiner.

2.3.5. Case Studies

In this section, two datasets, optdigits and nursery, are investigated deeply as

case studies.

2.3.5.1. Optdigits Dataset. Table 2.2 shows the accuracies of base classifiers and the

ensembles on test (Xtest), together with the number of classifiers (# cla), the number of

discriminants (# disc), and the chosen ensembles. Figure 2.6 is the plot of accuracies
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vs the number of base classifiers on test. On this dataset (as many others), using a

linear combiner .Lin does not contribute to accuracy significantly, and therefore only

.Sum results are given to keep the table and figures simpler.

The optimal subset Opt chooses only three out of ten and it is more accurate

than All that uses all ten. Choosing the best m base classifier, Best, with respect to

accuracy and combining them seems to work rather well. The reason is that the base

classifiers are from different families and already complement each other. When too

many base classifiers are added, the accuracy of Best decreases; this is because the

increase in bias surpasses the decrease in variance. Choosing a random subset, Rnd,

works well but more base classifiers are needed. The Icon variants that use diversity

measures, Qstat and Corr, use too many base classifiers, showing that it is best to

use accuracy as the ensemble evaluation criterion rather than an intermediate diversity

measure.
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Figure 2.6. Accuracy vs the number of classifiers on Optdigits test.

Fss uses 21 discriminants from seven base classifiers. It is interesting that it
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Table 2.2. Results on Optdigits. Number of classifiers and discriminants of Dt are

the average of ten folds, and the chosen discriminants are one of ten folds.

Alg test # cla # disc Chosen

se 10.13±0.0 1 10 se

c4 81.76±1.3 1 10 c4

ga 87.39±0.3 1 10 ga

mu 92.98±1.0 1 10 mu

lo 93.90±0.4 1 10 lo

kn5 95.86±0.3 1 10 kn5

ml37 96.34±0.3 1 10 ml37

sv1 97.48±0.2 1 10 sv1

svr 97.67±0.2 1 10 svr

sv2 97.49±0.3 1 10 sv2

Best.3.Sum 98.22±0.2 3 30 sv2 svr sv1

Best.5.Sum 98.19±0.2 5 50 sv2 svr sv1 ml37 kn5

Best.7.Sum 97.75±0.2 7 70 sv2 svr sv1 ml37 kn5 lo mu

Best.9.Sum 97.71±0.2 9 90 sv2 svr sv1 ml37 kn5 lo mu ga c4

Rnd.3.Sum 97.44±0.2 3 30

Rnd.5.Sum 97.83±0.2 5 50

Rnd.7.Sum 97.32±0.3 7 70

Rnd.9.Sum 98.00±0.1 9 90

All.Sum 97.71±0.2 10 100

Opt.Sum 98.22±0.2 3 30 svr sv2 sv1

Acc.Sum 98.22±0.2 3 30 sv2 svr sv1

Cv.Sum 97.67±0.2 1 10 svr

Corr.Sum 97.71±0.2 9 90 c4 svr ga mu sv2 kn5 ml37 lo sv1

QStat.Sum 97.71±0.2 9 90 c4 ga mu lo kn5 ml37 sv2 sv1 svr

FSS 98.87±0.1 7 21 kn5(0,3) ga(0,3) ml37(9) mu(4)

sv1(1,2,5,9) sv2(2,4,5,7,8,9) svr(4,5,6,7,8)

DT 97.62±0.4 5.8 11.9 kn5(5,6) sv1(0,7) sv2(1,2,3,4) svr(8,9)

DT.Lin 98.21±0.3 5.8 11.9 kn5(5,6) sv1(0,7) sv2(1,2,3,4) svr(8,9)
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chooses more than one discriminants for some classes. For example, it uses three

discriminants for class “5”, while Dt uses mostly one discriminant for it. A reasonable

cause for this is that, it uses discriminants of class “5” not only for separating it from

other classes but also for discriminating the other classes from each other. It has more

base classifiers than Acc but uses less discriminants. It outperforms even Opt which

is the best classifier ensemble that can be achieved.
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   svr(9) < 0.24

   sv2(2) < 0.30

   svr(8) < 0.25

   kn5(5) < 0.30

   sv1(0) < 0.15

   kn5(6) < 0.10

Figure 2.7. A decision tree learned by Dt on Optdigits

Dt chooses 11.9 discriminants (where the smallest possible set with ten classes

can be nine discriminants) from 5.8 classifiers on average. It is even more explanatory

than Fss, since it gives the threshold values used and for which classes they are used.

Figure 2.7 shows an example Dt obtained in one of the ten folds. It starts by looking

at the output of sv1 for class “7” and chooses “7” if this value is bigger than 0.46; there

is no more discriminant evaluation for class “7”. Note that we only need to evaluate

the discriminants in our path; for example we see here that only kn5 is evaluated to

distinguish “5” from others. Most classes can be separated from the rest by looking

at the value of a single discriminant; only “1” requires two, (sv2 and kn5). Dt.Lin

improves over Dt, but not significantly. Dt.Lin using the discriminants chosen by

Dt, seems to be a little more stable (smaller standard deviation) and more robust to
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the noise. Because unlike the case for Dt, not a certain discriminant gives the decision

but all discriminants contribute, which means more information is used while making

the final decision.

2.3.5.2. Nursery Dataset. Similar results are obtained for Nursery dataset, except that

.Lin significantly outperforms .Sum, as shown in Figure 2.8. The overall classifier and

ensemble results are given in Table 2.3.

On this dataset, the base classifiers have accuracies ranging from 33.33 to 99.41

per cent and we see the benefit of subset selection. We see that .Lin should be preferred

when the ensemble is made of classifiers with different accuracy rates. The reason

why .Lin outperforms .Sum is that when the ensemble size increases, .Sum becomes

influenced by the inaccurate base classifiers and overall accuracy degrades, but .Lin

adapts itself and ignores the inaccurate classifiers.
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Figure 2.8. Comparing the two combination methods, fixed .Sum and trained .Lin,

in terms of accuracy vs the number of classifiers on Nursery test.
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Fss uses seven discriminants from six base classifiers, while Dt uses seven dis-

criminants from four classifiers on average. It is simple and has an acceptable accuracy

range. Figure 2.9 shows one of the trees learned on the dataset and has only three de-

cision nodes. It is very simple and interpretable and has 99.96 per cent test accuracy,

which is higher than what we get when all the outputs of all base classifiers for that

fold are used (99.78).

1
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   c4(1) < 0.62

   sv2(3) < 0.97

   sv2(2) < 0.43

Figure 2.9. A decision tree learned by Dt on Nursery

2.4. Overall Results

Table 2.4 gives the comparison of the all ensemble methods in a pairwise manner

on test. The numbers are wins and losses of method in the row over the method in the

column. The number of ties can be found when the sum of wins and losses is subtracted

from 38. A bold entry means that the number of wins/losses over 38 is statistically

significant using the Sign test.

The average number of base classifiers(/discriminants) contained in the ensembles

constructed is given in Table 2.5. The discriminant values are normalized by the class

number to have a common range.
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Table 2.3. Results on Nursery dataset. Number of classifiers and discriminants of Dt

are the average of ten folds, and the chosen discriminants are one of ten folds.

Alg test # cla # disc Chosen

se 33.33±0.0 1 4 se

ga 81.36±0.3 1 4 ga

lo 89.94±1.4 1 4 lo

kn7 90.43±0.3 1 4 kn7

sv1 92.43±0.3 1 4 sv1

mu 92.74±0.4 1 4 mu

c4 92.72±0.5 1 4 c4

svr 95.50±0.4 1 4 svr

sv2 98.70±0.6 1 4 sv2

ml27 99.41±0.2 1 4 ml27

Best.3.Lin 99.81±0.1 3 12 ml27 sv2 svr

Best.5.Lin 99.78±0.1 5 20 ml27 sv2 svr c4 mu

Best.7.Lin 99.78±0.1 7 28 ml27 sv2 svr c4 mu kn7 sv1

Best.9.Lin 99.78±0.1 9 36 ml27 sv2 svr c4 mu kn7 sv1 lo ga

Rnd.3.Lin 99.22±0.2 3 12

Rnd.5.Lin 99.83±0.1 5 20

Rnd.7.Lin 99.36±0.2 7 28

Rnd.9.Lin 99.78±0.1 9 36

All.Lin 99.78±0.1 10 40

Opt.Lin 99.83±0.1 2 8 ml27 sv2

Acc.Lin 99.83±0.1 2 8 ml27 sv2

Cv.Lin 99.83±0.1 2 8 ml27 sv2

Corr.Lin 99.36±0.2 2 8 se ml27

QStat.Lin 96.55±0.3 7 28 ga svr c4 kn7 lo mu sv1

FSS 99.94±0.0 4 7 kn7(3) ml27(0,3) mu(0) sv2(0,2,3)

DT 99.96±0.1 2.5 3 c4(1) sv2(2,3)

DT.Lin 98.47±1.3 2.5 3 c4(1) sv2(2,3)
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Table 2.4. Pairwise comparison of accuracies (wins/losses over 38) of all methods

using 5 × 2 cv F -Test.

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt Dt.Lin

Best 0/0 3/0 8/0 0/1 0/0 0/0 16/0 13/2 9/5 7/2 4/4

Rnd 0/3 0/0 3/0 0/6 0/5 0/2 14/0 8/2 6/4 6/3 6/4

All 0/8 0/3 0/0 0/10 0/8 0/6 13/0 7/4 7/8 5/6 4/7

Opt 1/0 6/0 10/0 0/0 0/0 2/0 17/0 14/1 11/3 10/1 6/1

Acc 0/0 5/0 8/0 0/0 0/0 1/0 16/0 13/1 10/3 8/1 7/3

Cv 0/0 2/0 6/0 0/2 0/1 0/0 15/0 11/2 8/5 7/1 5/4

Qstat 0/16 0/14 0/13 0/17 0/16 0/15 0/0 2/6 5/15 4/9 3/12

Corr 2/13 2/8 4/7 1/14 1/13 2/11 6/2 0/0 4/13 2/5 2/9

Fss 5/9 4/6 8/7 3/11 3/10 5/8 15/5 13/4 0/0 6/2 3/6

Dt 2/7 3/6 6/5 1/10 1/8 1/7 9/4 5/2 2/6 0/0 1/5

Dt.Lin 4/4 4/6 7/4 1/6 3/7 4/5 12/3 9/2 6/3 5/1 0/0

Table 2.5. Average number of base classifiers (/discriminants) contained in different

ensembles.

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt

Sum 3.74 5.26 10.00 3.32 1.89 1.08 4.39 3.55 3.71/1.59 4.69/2.55

Lin 6.05 7.63 10.00 4.39 2.87 1.18 4.39 3.55 4.69/2.55
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Besides their accuracies and complexities, the similarity between the ensembles

found by different methods can show us a relationship between methods used. Given

two ensembles Ei and Ej, we define the similarity between them as the number of

shared base classifiers (or discriminants):

Sim(Ei, Ej) =
|Ei ∩ Ej |

|Ei ∪ Ej |
(2.3)

A similarity score of 1 shows that the two ensembles are exactly the same (they

use the same base classifiers), while a similarity score of 0 means that the two ensembles

have no base classifiers in common.The average similarity between ensembles found by

different methods can be found in Table 2.6.

Analyzing the all the tables contaning test results, similarity scores and aver-

age number of classifiers/discriminants, the overall results can be summarized in the

paragraphs below:

1. With respect to the average number of base classifiers selected during the con-

struction of the ensembles, the following ordering is obtained: Cv < Acc < Opt

< Corr < Fss < Best < Qstat < Dt < Rnd < All.

2. Comparing the three discriminant ensembles, we see that even though there does

not seem to be significant difference between them, on test, Dt.Lin is more

accurate than Fss. On the average, Fss selects fewer discriminants than Dt

variants and they have a low discriminant similarity score of 0.17. A reasonable

explanation for this is that Fss focuses on choosing a feature that decreases the

error over the whole training set, while Dt aims to minimize error over the data

arriving to the current node (subtree) by selecting a convenient feature, and when

we take a union over the features we get a larger set.

3. On the average, Fss results in a smaller ensemble than Dt. It mostly contains

fewer base classifiers and discriminants. As explained above, the reason is that

Fss stops increasing the ensemble when no more improvement is observed, but

Dt can create deeper leaf levels if the current node (subtree) can reduce its error
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Table 2.6. Average Similarity of Base Classifiers (Discriminants) Between Ensembles

Found by Different Methods.

Best All Opt Acc Cv Qstat Corr Fss Dt

Best 1.00 0.37 0.49 0.55 0.33 0.18 0.19 0.40 0.34

0.23 0.22

All 0.37 1.00 0.33 0.19 0.11 0.44 0.36 0.37 0.47

0.16 0.26

Opt 0.49 0.33 1.00 0.65 0.29 0.21 0.23 0.40 0.34

0.23 0.21

Acc 0.55 0.19 0.65 1.00 0.36 0.12 0.15 0.30 0.25

0.20 0.18

Cv 0.33 0.11 0.29 0.36 1.00 0.08 0.10 0.20 0.15

0.15 0.10

Qstat 0.18 0.44 0.21 0.12 0.08 1.00 0.68 0.23 0.26

0.13 0.15

Corr 0.19 0.36 0.23 0.15 0.10 0.68 1.00 0.21 0.21

0.13 0.13

Fss 0.40 0.37 0.40 0.30 0.20 0.23 0.21 1.00 0.34

0.23 0.16 0.23 0.20 0.15 0.13 0.13 1.00 0.17

Dt 0.34 0.47 0.34 0.25 0.15 0.26 0.21 0.34 1.00

0.22 0.26 0.21 0.18 0.10 0.15 0.13 0.17 1.00
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rate with a different discriminant. Consequently, Dt results in bigger and more

variant (distinct classifiers) ensembles.

4. Comparing the Fss and Dt variants, Fss takes much more time to train, which

is an disadvantage since shorter training time would be preferable.

5. Dt.Lin seems to be more accurate than Dt, but using an additional linear

combiner has some obvious disadvantages, such as the need for extra validation

data and training time. We can also use the advantages of Dt being a tree: It

is interpretable and easier to evaluate since only the nodes (discriminants) in our

path must be calculated. We do not need to evaluate the extra linear combiner,

implying faster test performance.

6. Comparing the ensembles of classifiers and the ensembles of discriminants, Acc

is significantly more accurate than Dt. Acc uses fewer classifiers but Fss uses

fewer discriminants. Acc uses all the discriminants of the chosen classifiers which

makes it costly but robust to noise due to redundancy; Fss and Dt use a subset of

the discriminants, are less noise-tolerant, but are simpler and faster. Particularly,

Dt will be more influenced by noise than DT.Lin, since the linear model, if

trained enough, can overcome some noise.

7. Although the classifier and discriminant ensembles seem to contain a comparable

number of base classifiers, in terms of the discriminants, the discriminant ensem-

bles tend to need around half as many base discriminants, cutting by half the

space and time complexity of training/testing. On some datasets, this can be as

low as 20 per cent.

2.5. Conclusions and Future Work

In this study, we compare mainly two construction methods. In an ensemble of

classifiers, we choose a subset from a larger set of base classifiers. In an ensemble of

discriminants, we choose a subset of base discriminants, where a discriminant output

of a base classifier by itself is assessed for inclusion in the ensemble.

A greedy, forward, incremental classifier/discriminant ensemble finds ensembles

that are small, as accurate as the optimal ensemble, and does this in polynomial time.



28

Instead of using all the classifiers in an ensemble, using a subset of them can provide

us an easier and more accurate ensemble. A collection of discriminants, either by an

incremental method or a selection method, can generate us a simpler ensemble.

The discriminant ensemble has the advantage that not all discriminants of chosen

classifiers are used. Just as not all base classifiers may not be needed for a given dataset

and it is better to weed out those not needed to keep complexity in check, it may not

be necessary to use a base classifier for all classes. Considering a classifier not as a

single entity but as a collection of discriminants, one for each class, we can choose a

subset of the discriminants thereby using a base classifier for some classes but not all.

The corresponding discriminant is included, when the inductive bias of that classifier

matches for a class, otherwise it is not used. This makes the whole ensemble much

simpler, faster, and interpretable.

In this thesis, two major discriminant ensemble construction methods are pro-

posed; one is an incremental construction method (Fss), the other is a construction

method by discriminant selection (Dt). The incremental method results in smaller en-

sembles than the selection method, but the selection method seems more interpretable.

The test results show that although there is no significant difference, Dt.Lin is the

most accurate among them.

As a future work, other discriminant selection algorithms, such as genetic al-

gorithms, can be implemented. Besides incremental methods, decremantal methods

such as Backward Subset Selection or hybrid methods such as Floating Search can be

used. Also cost–conscious construction methods can be proposed to get more simpler

ensembles (Demir and Alpaydın, 2005). Although no transformation or normalization

preprocessing is needed for discriminant ensembles, it might be interesting to inves-

tigate the influence of any normalization or other preprocessing on the accuracy of

ensemble.
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3. ERROR ANALYSIS OF CLASSIFIER FUSION RULES

This chapter is dedicated to error analysis of fusion rules. Fusion rules are used

for improving the accuracy. But they err, too. 0/1 loss is usually used to evaluate the

performance of classification algorithm. The concepts of bias, variance and noise in

squared loss are also extended to 0/1 loss. This chapter focuses on bias-variance-noise

decomposition of error of fusion rules. We see that such a decomposition is insufficient

and we introduce the concept of the area of intersection as a measure of performance

evaluation for fusion rules.

3.1. Introduction

Combining the decisions from multiple classifiers has recently become very popu-

lar (Kuncheva, 2004). The combination can be done using a fixed fusion rule (Kittler et

al., 1998) or by a trained combiner (Wolpert, 1992). There are many methods to train

the base classifiers and a trainable combiner if it is used. How to train a combiner and

how to make use of the available dataset for training depends on the conditions and

the assumptions made (Duin, 2002). A trained combiner is more flexible but requires

training, data put aside for its training, storage for its parameters, and more computa-

tion during test. In this study, we investigate fixed fusion rules and the ones we focus

on are the average, minimum, median, and maximum rules on two-class problems.

We assume that there is an ensemble of L independent classifiers which in parallel

produce their posterior probability estimates for given instance x:

P̂ j
1 (x) + P̂ j

2 (x) = 1, j = 1, . . . , L (3.1)

where P̂ j
i (x) denotes the estimate by classifier j for the true posterior probability for

class ωi: P (ωi|x). If the classifiers do not generate posterior probabilities, their outputs

are suitably normalized and transformed to the same range (Jain et al., 2005). The

fusion rules, F(), given in Table 3.1 are used to combine the classifier estimates to
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Table 3.1. Classifier Fusion Rules Used

Rule Fusion Scores
Assuming P1 > 0.5

Misclassification If

Average P̂i = 1
L

∑L
j=1 P̂ j

i P̂1 ≤ 0.5

Minimum P̂i = minj P̂ j
i P̂1 ≤ P̂2

Median P̂i = medianjP̂
j
i P̂1 ≤ 0.5

Maximum P̂i = maxj P̂ j
i P̂1 ≤ P̂2

calculate the overall estimate P̂i(x) ≡ P̂ (ωi|x):

P̂i(x) = F(P̂ 1
i (x), P̂ 2

i (x), . . . , P̂ L
i (x)) (3.2)

For an instance x, if the true posterior P1(x) > 0.5, then the Bayes optimal class is ω1

and it will be misclassified if P̂1(x) < 0.5.

Some fusion rules work on hard labels (majority voting), and some work on

soft continuous output scores (average, product, maximum, median, minimum). For

majority voting, the scores of the classifiers must be converted into hard labels: P j
1 (x) =

1, P j
2 (x) = 0 if P̂ j

1 (x) > 0.5, and P j
1 (x) = 0, P j

2 (x) = 1, otherwise. Then, voting chooses

the class which receives the maximum number of votes. The average and product rules

take the sum and product of the scores as their names indicate and label the instance

with the class which has the maximum average or product value. The other three rules,

minimum, median, and maximum, order the scores for each class and choose the score

using order statistics, assigning the instance to the class with the maximum score. In

this study, we do not analyze majority voting and product rules because their fused

outputs are not probabilities and do not permit the type of analysis we do. Table 3.1

lists the rules used in this study and when a misclassification error occurs.
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3.2. Previous Work of Analysis of Fusion Rules

The accuracy of fusion rules have previously been investigated: Chen and Cheng

(2001) analyzed the asymptotic performance behavior of the ensemble as the number

of classifiers increases. Alkoot and Kittler (1999), Kuncheva (2002), and Kittler and

Alkoot (2003) investigated the effect of noise in classifier outputs on the fusion rules.

In those studies, as we do here in this study, it is assumed that the noise added to

a classifier comes from a uniform distribution or Gaussian (normal) distribution, and

the performance of the fusion rule is evaluated either theoretically or empirically while

parameters of the distributions and the size of the ensemble is varied.

Alkoot and Kittler (1999) experimentally investigate the performance of the fu-

sion rules in case the posterior estimates are from normal or uniform distributions.

They realize the experiments by adding independent and identically distributed (iid)

noise to a fixed posterior value, p. They perform experiments by simulating base clas-

sifiers such that the base classifiers’ decisions come from either a normal distribution,

N(p, σ2), or a uniform distribution, U [p − b, p + b]. In other words, they add either

normal noise with a predetermined σ and 0 mean, or uniform noise with a predeter-

mined b and 0 mean to the fixed p value. If the obtained scores exceed either 0 or 1,

they are clipped. They observe how the performance of the fusion rules change as the

size of the ensemble (L), the base posterior (p) or the distribution spread parameter

(σ or b) changes. They conclude that the performance of the ensemble improves with

increasing L and there are borders where the success of the strategies changes. They

order the fusion strategies with respect to their performance, and note that the order

changes when the distribution spread parameter exceeds a boundary value. For uni-

form distribution this boundary value depends on the base posterior , p, we add the

noise to. For normal noise, there is a constant boundary value, C, whose value depends

on the number of classes and ensemble size.

The study of Chen and Cheng (2001) focuses on asymptotic behavior of average,

median and majority rules. They assume that the estimates can come from any distri-

butions and they theoretically demonstrate how the success of the rules changes when
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the size of ensemble, L, goes to infinity. The median and maximum rule show the same

performance while the average rule might behave differently depending on whether the

distribution is symmetric or not.

There is also a case study of Kittler and Alkoot (2003) which compares sum with

vote fusion in ensembles. They conclude that as long as the estimates follow a normal

distribution, the sum rule will outperform the majority vote. But if they have heavy tail

distributions, which means a significant mass at the tails, it is possible that vote gives

better accuracy. They also note that the vote can outperform the sum rule, if either

the margin between the two posterior probabilities are small or if the ensemble size is

small even in case of large margins. They also draw attention to the fact that there

can be much difference between real and theoretical results, since most assumptions

such as identical and independent classifiers do not hold in practice.

Table 3.2. Theoretical Misclassification Error Rates of Fusion Rules

Method Pe ∼ N(0, σ2) Pe ∼ U [−b,+b] with (p − b < 0.5)

Single classifier Φ( 0.5−p

σ
) 0.5−p+b

2b

Minimum/Maximum 1
2
( 1−2p

2b
+ 1)L

Average Φ(
√

L(0.5−p)
σ

) Φ(
√

3L(0.5−p)
b

)

Median/Vote
∑L

j−
L+1

2

(

L

j

)

Φ( 0.5−p

σ
)j [1 − Φ( 0.5−p

σ
)]L−j

∑L

j−
L+1

2

(

L

j

)

( 0.5−p+b

2b
)j [1 − ( 0.5−p+b

2b
)]L−j

Oracle Φ( 0.5−p

σ
)L ( 0.5−p+b

2b
)L

In this work, we start from the study by Kuncheva (2002) which shows how the

fixed rules behave under noise for two–class case. It is assumed that each classifier

output is generated by adding iid 0 mean noise to the true posterior probability, where

the noise is uniform or Gaussian, where p ≡ P1(x) and P̂ j
1 ≡ P̂ j

1 (x):

P̂ j
1 = p + ǫj , j = 1, 2, .., L (3.3)

where ǫj is either uniform, U [−b, +b], where b denotes the spread, or Gaussian N(0, σ2)

with variance σ2. The estimate for ω2 is then taken as 1 − P̂ j
1 .

These noisy estimates are combined using the fusion rule to calculate the overall
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estimate for the two classes:

P̂1 = F (P̂ 1
1 , P̂ 2

1 , . . . , P̂ L
1 )

P̂2 = F (1 − P̂ 1
1 , 1 − P̂ 2

1 , . . . , 1 − P̂ L
1 ) (3.4)

Although she follows a similar experimental setup with them, unlike the study of

Alkoot and Kittler (1999), she does not clip the observed scores, P̂ j
i , when they exceed

0 or 1. If they exceed 0 or 1, she claims that they still give us their “support” for classes.

Kuncheva theoretically calculates what the misclassification rate is and demonstrates

how the misclassification error, Pe, is influenced when the size of the ensemble and the

parameters of the noise distributions are changed. How a classification error occurs and

the overall formulas of theoretical errors are given in Tables 3.1 and 3.2, respectively.

The instance will be misclassified if the true probability p ≥ 0.5 , but P̂1 < 0.5 (or

equivalently, if P̂1 ≤ P̂2).

Since the classifiers are assumed to be independent from each other, for the oracle

and median (which gives the same results with vote for two–class case) rules, she

evaluates the misclassification error by means of binomial distribution: An individual

classifier classifies either accurately or inaccurately. She calculates the misclassification

by considering all possible cases of misclassification. For the average rule, she uses the

fact that the average score performs a normal distribution for both normal and uniform

noises, when L is big enough. For the minimum and maximum cases, no evaluation

can be performed for the normal noise case. But for the uniform noise, she addresses

an evaluation from a previous example (Mood et al., 1974). Kuncheva concludes that

the maximum and minimum rules outperform the other rules in uniform distribution

case.

In this study, we go one step further in analyzing the performance of fusion

rules by using a loss function and splitting it into bias, variance, and noise. We use

both squared loss and the more appropriate 0/1 loss functions and the bias/variance

decomposition for these loss functions. We give the reason why maximum and minimum



34

rules perform more accurately than the other fusion rules in the uniform case. We show

that in th case of squared loss, the classification error of any instance increases and in

the case of 0/1 loss, it seems to behave differently (increases, decreases and remains

unchanged) depending on the decomposition and rule used, whereas in reality the

misclassification rate, which is our real criterion, decreases. We give its causes. We

therefore conclude that squared and 0/1 loss are not the appropriate loss functions to

analyze the beaviour of fusion rules. We propose another measure, namely the area of

intersection, which explains the behavior of fusion rules.

3.3. Bias, Variance and Noise Decompositions

In this section, we review the bias-variance-noise decompositions in the literature.

3.3.1. Squared Loss

The bias-variance-noise decomposition is originally for the squared loss, defined

for regression. Let us assume that the true function is given as y = P (x) + ǫ where

ǫ ∼ N(0, σ2). We calculate the estimate P̂ (x) for y, using a set {(xi, yi)}
N
i=1, and the

expected error is Σi(yi − P̂ (xi))
2.

For a given unseen instance {(x′, y′)}, the estimate P̂ (x′), the expected square

loss (mean square error) can be decomposed as:

E[(P̂ (x′) − y′)2] = (E[P̂ (x′)] − P (x′))2 + E[(P̂ (x′) − P̂ (x′))2] +

E[(y′ − P (x′))2] (3.5)

The first term in the righthand side of Equation 3.5 is the squared bias and

shows the average goodness of fit of the model to the given data; for example, a linear

model may have high bias if the underlying problem is not linear. The second term

is variance and accounts for the sensitivity of the algorithm to the instances in the

training set. We expect nonparametric models such as trees to have high variance,
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whereas simple models such as linear models to have small variance. The last term is

noise and represents the variance of the noise added to the data and is unpreventable

even if the optimal model is used.

If the problem is regression, then using squared loss is reasonable. But for mini-

mum or maximum rules, squared loss is not a meaningful criterion.

3.3.2. 0/1 Loss

For classification problems, more appropriate than the squared loss is the 0/1 loss

where the loss of misclassification is 1 if there is a prediction error, i.e., label(P̂ (x′)) 6=

label(y′), and is 0 if the prediction is correct. The expected 0/1 loss then corresponds

to the probability of making a prediction error.

The bias-variance-noise decomposition for squared loss has similarly been pro-

posed for 0/1 loss by several authors, as we review below.

3.3.2.1. Kohavi-Wolpert’s Decomposition. The decomposition proposed by Kohavi

and Wolpert (1996) is reminiscent of the case for squared loss:

bias =
1

2

∑

i

(Pi(x) − P̂i(x))2

variance =
1

2

(

1 −
∑

i

(P̂i(x))2

)

=
1

2

∑

i

P̂i(x)(1 − P̂i(x))

noise =
1

2

(

1 −
∑

i

(Pi)
2

)

=
1

2

∑

i

Pi(x)(1 − Pi(x)) (3.6)

Bias, as in the squared loss, compares the estimated posterior with the optimal poste-

rior. Variance is high if the estimated posteriors are close to 0.5: It is maximum for the

two-class case, when P̂1(x) = P̂2(x) = 0.5. Noise similarly is high if the true posteriors
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are close to 0.5.

3.3.2.2. Breiman’s Decomposition. Let us say α denotes the actual class and a denotes

the estimated class:

α = arg max
i

Pi(x) a = arg max
i

P̂i(x) (3.7)

The decomposition proposed by Breiman (1999) focuses on comparing the posteriors

of α and a:

bias = (Pα(x) − Pa(x))P̂a(x)

variance =
∑

i6=a

(Pα(x) − Pi(x))P̂i(x)

noise = 1 − Pα(x) (3.8)

Bias occurs only when the optimal classifier and the trained classifier disagree: a 6= α.

Variance is a measure of how much the estimated posteriors vary over the other classes.

We note that if α = a and P̂a(x) = 1, there will be no bias and variance, although the

trained classifier is not same as Bayes optimal classifier. Noise measures how much the

optimal class posterior deviates from 1, that is, the uncertainty of the Bayes classifier.

We note here that the misclassification error and the 0/1 loss classification error

(bias/variance decomposition) are two closely related but different measures. Although

in 0/1 loss, the expected error probability of instances in the dataset almost always is

non-zero because of the irreducible noise component, it is possible to have no misclas-

sification error.

3.3.2.3. Domingos’ Decomposition. Domingos (2000) proposed a general decomposi-

tion for any kind of loss function. If the loss function L(t, ŷ) is the measure of the cost

of predicting the common choice ŷ instead of t, where y∗ is the optimal value y is the
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estimate of any random classifier, then the general decomposition can be defined as;

bias = L(y∗, ŷ)

variance = E(L(ŷ, y))

noise = E(L(t, y∗)) (3.9)

Using 0/1 loss, we get:

bias = 1(α 6= a)

variance =
∑

i6=a

P̂i(x)

noise = 1 − Pα(x) (3.10)

But unlike the previous decompositions, Domingos’ error definition is not a simple sum.

error = c1 ∗ noise + bias + c2 ∗ variance (3.11)

where c1 and c2 takes values depending on the used loss functions. For two-class and

0/1 loss case, Eq. 3.11 becomes:

error = P1P̂2 + P2P̂1 (3.12)

3.4. Bias/Variance Analysis of Fusion Rules

3.4.1. Squared Loss

We first investigate the bias and variance decomposition of fusion rules for squared

loss. We have L iid classifiers, all trying to estimate p value for ω1 sampled as P̂j = p+ǫj ,

j = 1, 2, ..., L. ǫj is either uniform, U [−b, b], or Gaussian, N(0, σ2).
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3.4.1.1. Average Rule. For the average rule, have:

E[(1 − P̂ )2] = E[(P̂ − P̂ )2] + (P̂ − p)2 + E[(1 − p)2]

= E[(p + ǫ − p − ǫ)2] + (p + ǫ − p)2

+E[(1 − p)2]

= E[(ǫ − ǫ)2] + (ǫ)2 + E[(1 − p)2] (3.13)

where ǫ is the average of the noise in the fold, ǫ is the average of the average noises

for all folds. We can easily see that E[ǫ] is 0, since we assume that noise comes from a

symmetric (uniform or normal) distribution with mean 0. Also we have;

σǫ =
σǫ

L
(3.14)

3.4.1.2. Order Rules. For the minimum, maximum and median rules, we use order

statistics (see Appendix for a review). Let us say that P̂(j) are ordered as P̂(1), P̂(2), . . . , P̂(L)

in ascending order. Then the rule chooses P̂(k) where k = 1, L+1
2

, L, for minimum, me-

dian and maximum rules respectively (assuming that L is odd). Then the expected

square loss is:

E[(1 − p̂(k))
2] = E[(p̂(k) − p̂(k))

2] + (p̂(k) − p(k))
2 + E[(1 − p)2]

= E[(p + ǫ(k) − p − ǫ(k))
2] + (p + ǫ(k) − p)2 + E[(1 − p)2]

= E[(ǫ(k) − ǫ(k))
2] + (ǫ(k))

2 + E[(1 − p)2] (3.15)

which decomposes as variance + squared bias + noise. We see that except for noise,

the loss depends on ǫ(k). If we can calculate σ2
ǫ(k)

and ǫ(k), we can calculate the expected

square loss. Towards this, we need to be able to evaluate the first and second moments.

For the first moment (expected value), we have

E[ǫ(k)] =
∫ ∞

−∞
fǫ(k)

(ǫ)ǫdǫ (3.16)
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=
∫ ∞

−∞

L!

(k − 1)!(L − k)!
F (ǫ)k−1(1 − F (ǫ))L−kf(ǫ)ǫdǫ

which, after some manipulation, reduces to:

E[ǫ(k)] =
L!

(k − 1)!(L − k)!

L−k
∑

i=0

(

L − k

i

)

(−1)i

∫ ∞

−∞
(F (ǫ)i+k−1)f(ǫ)ǫdǫ

=
L!

(k − 1)!(L − k)!

L−k
∑

i=0

(

L − k

i

)

(−1)i

(

F (ǫ)k+1

k + 1
ǫ

∣

∣

∣

∣

∣

∞

−∞

−
∫ ∞

−∞

(

F (ǫ)i+k

i + k

)

dǫ

)

(3.17)

To calculate the variance, we need the second moment as well, because Var(ǫ(k)) =

E[ǫ2
(k)] − E[ǫ(k)]

2.

E[ǫ2
(k)] =

∫ ∞

−∞
fǫ(k)

(ǫ)ǫ2dǫ

=
L!

(k − 1)!(L − k)!
∫ ∞

−∞
F (ǫ)k−1(1 − F (ǫ))L−kf(ǫ)ǫ2dǫ (3.18)

which, again, after some manipulation, can be written as:

E[ǫ2
(k)] =

L!

(k − 1)!(L − k)!

L−k
∑

i=0

(

L − k

i

)

(−1)i

(

F (ǫ)k+1

k + 1
ǫ2

∣

∣

∣

∣

∣

∞

−∞

−
∫ ∞

−∞

(

F (ǫ)i+k

i + k

)

2ǫdǫ

)

(3.19)

To be able to calculate these, we need to be able to integrate F (ǫ), the cumulative

distribution of the noise, which in our case can be uniform or Gaussian.

For the uniform case, if ǫ ∈ U [a, b], we can calculate both E[ǫ(k)] and E[ǫ2
(k)], since
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Table 3.3. Estimates Chosen by Fusion Rules

Rule Chosen Scores

Average
P̂1 = p + ǫ

P̂2 = 1 − p − ǫ

Minimum
P̂1 = p + ǫ(1)

P̂2 = 1 − p − ǫ(L)

Median
P̂1 = p + ǫ(L+1

2
)

P̂2 = 1 − p − ǫ(L+1
2

)

Maximum
P̂1 = p + ǫ(L)

P̂2 = 1 − p − ǫ(1)

we know F (ǫ).

F (ǫ) =



























0 ǫ < a

ǫ−a
b−a

a ≤ ǫ < b

1 ǫ ≥ b



























(3.20)

E[ǫ(k)] =
L!

(k − 1)!(L − k)!

L−k
∑

i=0

(

L − k

i

)

(−1)i

(

b

k + i
−

b − a

(k + i)(k + i + 1)

)

(3.21)

E[ǫ2
(k)] =

L!

(k − 1)!(L − k)!

L−k
∑

i=0

(

L − k

i

)

(−1)i

(
b2

k + i
−

2b(b − a)

(k + i)(k + i + 1)
+

2(b − a)2

(k + i)(k + i + 1)(k + i + 2)
) (3.22)

Similar calculation can not be performed analytically for ǫ ∼ N(0, σ2), and we use

numerical integration to evaluate the integral of the cumulative distribution function,

Φ(ǫ).
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3.4.2. 0/1 Loss

Now, we can do the same decomposition for 0/1 loss. First we take a quick

glimpse on the rules to use in decomposition in Table 3.3.

Without any loss, we can generalize the order rules as below, for any k;

P̂1 = p + ǫ(k)

P̂2 = 1 − p − ǫ(L−k+1) (3.23)

It must be kept in mind that, for the minimum and maximum rules, the sum of

estimated values for posteriors for the classes mostly will not sum up to 1. Taking

these into account, we can rearrange Kohavi-Wolpert and Breiman definitions for two-

class case for 0/1 loss.

3.4.2.1. Kohavi-Wolpert’s Decomposition. For the average rule, we have;

bias =
1

2

(

(p − p − ǫ)2 + (1 − p − 1 + p + ǫ)2
)

=
1

2

(

(−ǫ)2 + (ǫ)2
)

variance =
1

2

(

1 − (p + ǫ)2 − (1 − p − ǫ)2
)

(3.24)

It must be noted that for the average rule, the bias is 0 and variance does not depend

on ǫ since its average is 0, which is one of our assumptions.

For the order rules (minimum, median and maximum), we have;

bias =
1

2

(

(p − p − ǫ(k))
2 + (1 − p − 1 + p + ǫ(L−k+1))

2
)

=
1

2

(

(−ǫ(k))
2 + (ǫ(L−k+1))

2
)

variance =
1

2

(

1 − (p + ǫ(k))
2 − (1 − p − ǫ(L−k+1))

2
)

(3.25)
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3.4.2.2. Breiman’s Decomposition. For Breiman’s decomposition, our ensemble will

have bias only when the majority of the experiments misclassify the sample (α =

1, a = 2). However we can have variance. When we have bias, then we do not have

variance. For the average rule, we have;

bias = (p − (1 − p))(1 − p − ǫ)

variance = (p − (1 − p))(1 − p − ǫ) (3.26)

and for the order rules, we have;

bias = (p − (1 − p))(1 − p − ǫ(L−k+1))

variance = (p − (1 − p))(1 − p − ǫ(L−k+1)) (3.27)

3.4.2.3. Domingos’ Decomposition. There will not be any bias as long as the majority

of the classifiers classify accurately. But the variance and error must be calculated.

For the average rule, we have;

variance = (1 − p − ǫ)

error = p(1 − p − ǫ) + (1 − p)(p + ǫ) (3.28)

For the order rules, we have;

variance = (1 − p − ǫ(L−k+1))

error = p(1 − p − ǫ(L−k+1)) + (1 − p)(p + ǫ(k)) (3.29)

3.5. Experimental Results

The classification error of the order rules (maximum, median and minimum rules)

and average rule can be investigated in terms of bias, variance and noise decomposition
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Table 3.4. Notation Used in the Loss Figures

Notation Symbol Expression

ave Average Rule

min Minimum Rule

med Median Rule

max Maximum Rule

B × Theoretical Bias

V ∗ Theoretical Variance

N ⊲ Noise

B+V+N + Total Loss

k ◦ Kuncheva’s Misclassification Error

CE - Empirical Misclassification Error

for both squared loss and 0/1 loss. We assume that for a two–class dataset, the true

posterior probability (or score) of p ≥ 0.5 for class ω1, and we have L classifiers,

L = 3, 5, 7, ..., 15. Each classifier returns an estimate of p̂ = p + ǫ, where ǫ ∼ U [−b, b],

or ǫ ∼ N(0, σ2). We observe how misclassification error, bias and variance change if

we change L, p, or the distribution spread parameters (σ and b). We evaluate the bias,

variance and error of the added noise theoretically. When we empirically evaluate the

bias, variance and noise, we see that they match the theoretical ones. We, therefore,

only plot the theoretical results. For the case of normal noise, we numerically evaluate

the variance and bias, since closed-form evaluation is not possible.

3.5.1. Squared Loss

We see the theoretical values for the misclassification error, bias, variance and

noise, for uniform and Gaussian noise in Figure 3.1. Kuncheva’s formulas hold. For

both, increasing L decreases the variance but increases the bias with the minimum and

maximum rules. The empirical results hold almost exactly for both error distributions.

The calculated bias and empirical bias show a little difference for larger L in the normal
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Figure 3.1. Squared Loss, (a) Uniform with b = 0.2 and (b) Gaussian σ = 0.2,

p = 0.6, L increases from 1 to 15.
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distribution, possibly due to approximation by numerical integration.

In Figure 3.2, the impact of the spread of noise on misclassification error, bias and

variance is exhibited for uniform and Gaussian error. The empirical and theoretical

misclassification rate seem to match. The median and average rules do not have any

bias as expected. But the minimum and maximum rules show higher biases with

increasing spread.

As Figure 3.3 demonstrates, increasing the base posterior value does not have

any effect on bias and variance since they do not depend on posterior value but on

the spread of the distribution. Inevitably, the misclassification rate drops down with

increase in posterior value (as it moves away from the boundary of 0.5).

3.5.2. 0/1 Loss

We can, in the same manner, investigate 0/1 loss bias-variance-noise decomposi-

tions for fusion rules. Here we consider only Kohavi-Wolpert’s decomposition; similar

analysis can also be done for the other two decompositions.

Figure 3.4 demonstrates that the average and median rules have 0 bias and vari-

ance components and the size of the ensemble do not have any effect on them. Mis-

classification rate drops down by the ensemble size as expected. With minimum and

maximum rules, bias increases with the size of the ensemble but the variance changes

in different directions. Although they both have the same misclassification rates, we

can not propose the same behavior path for variance-bias decomposition.

Similarly, using median and average rules, the bias and variance are not influenced

by the noise distribution interval, while misclassification increases with larger range, as

shown in Figure 3.5. For the other two rules, bias and variance changes with increasing

range. Bias increases in both of them. With the minimum rule, the variance performs

a parabolic behavior while it continuously decreases with the maximum rule.
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Figure 3.4. 0/1 Loss, Kohavi-Wolpert, (a) Uniform with b = 0.2 and (b) Gaussian
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When we examine Figure 3.6, we notice that the bias is fixed and the posterior

value does not have any influence with any fixed rules, but the variance decreases in

all rules if we increase the base posterior.

When we observe the bias/variance decompositions for 0/1 loss, we conclude

that there is no clear relation between them and misclassification error, and that the

bias/variance decomposition does not help us in understanding the source of the error.

3.6. Intersection Area

In the previous section, we have seen that although conceptually bias-variance

decompositions account for the cause of regression error, the proposed decomposition

do not actually seem to be a good measure of relation between the classification error

and 0/1 loss. They perform distinct patterns. For example, for the two-class cases, the

minimum and maximum rules the give same misclassification error (they are same),

but when we extend the decompositions for fusion rules, we see they perform different

characteristics. The proposed decompositions are not adequate to explain the error of

fusion rules.

Friedman (1997) explains that an additive decomposition of bias and variance on

error is not possible for misclassification error; the two multiplicatively influence the

error rate. He proposes the concept of “boundary bias,” which corresponds to checking

whether the bias component and true posterior are on the same side, and suggests

is the determinant of the classification error rate. If they are on the same side, the

variance inversely influences the classification accuracy. If the bias and true posterior

are on different sides of 0.5, then variance helps reduce the error. This explanation

holds exactly for the fusion rules for which P̂1 + P̂2 = 1, but this is not mostly true for

minimum and maximum rules (which we will discuss next). It does not shed light on

why they are so successful in the case of uniform error but not in the case of Gaussian

error despite the fact that the bias is much higher. The median and average rules do

not have any bias, but they have smaller variances, and therefore have less error.
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Figure 3.6. 0/1 Loss, Kohavi-Wolpert, L = 9, (a) Uniform with b = 0.2 and (b)

Gaussian with σ = 0.2, p increases from 0.5 to 1.



52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
Med, b=0.2, L=1 and p=0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45
Med, b=0.2, L=1 and p=0.6

(a) Theoretical (b) Histogram

Figure 3.7. Uniform Distribution b = 0.2, p1 = 0.6 (blue) and p2 = 0.4 (red)

We propose to explain the success of fixed rules by means of a measure based on

the intersection area between the distributions of chosen scores by the rules. It perfectly

reflects the effects of bias and variances, and shows why and how they work depending

on distribution the estimates show. The fusion scores show skewed distributions that

depend on the size of the ensemble and the spread parameters. Half of the area of

intersection between the scores of distributions of the two classes, is the misclassification

error that occurs.

Figure 3.7 shows a case where posterior of the first class is 0.6 and its spread

parameter, b, is 0.2. In such a case, we would expect a total misclassification rate of

of 0.25, half of the area, which is the probability value Kuncheva calculates as error.

Figures 3.8 to 3.11 show the fixed rule score distributions when the ensemble

is made of L = 9 classifiers. We see that as L increases, the concentration begins

to shrink, whose shape and location of mass center depends on L, p and b. But for

fixed posterior and spread values, as in the examples, while the ensemble size increases

the variance of the score distribution (as a measure of how much the concantration

shrinks), continuously decreases and is the main reason for the decrease of the mis-

classification error. The area of the intersection gets smaller as the classifiers in the

ensemble increases.

As figures show, if we increase the value of the spread parameter, more misclas-
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Figure 3.8. Uniform Distribution, Max Rule, L = 9, b = 0.2 and p1 = 0.6 (blue)
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Figure 3.9. Uniform Distribution, Med Rule, L = 9, b = 0.2 and p1 = 0.6 (blue)
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Figure 3.10. Uniform Distribution, Min Rule, L = 9, b = 0.2 and p1 = 0.6 (blue)
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Figure 3.11. Uniform Distribution, Ave Rule, L = 9, b = 0.2 and p1 = 0.6 (blue)

sification occurs since the area of intersection gets bigger (variance in terms of square

error loss). The posterior value p is significant because the larger is the difference be-

tween p and 1− p, the less the areas overlap. Increasing the ensemble size contributes

to the accuracy.

With the median and average rules, we see that the distributions are still sym-

metric with respect to their means. They do not move, but shrink around their means

(variance decreases). On the contrary, when we use minimum or maximum rule, the

center of mass moves to the left or right, depending on the rule. They show skewness.

The figures also manifest that the minimum and maximum rules are more accurate

(almost no area of intersection). Next best is the average rule, and the median rule

performs poorly, since it has the biggest area of intersection.

Figures 3.12 to 3.16 show similar behavior for normal error. We see that the

average performs the best because the final score distributions seem almost isolated

from each other. The median rule seems to follow the average rule and both perform

a symmetric distributions. Unlike the uniform distribution case, the minimum and

maximum rules perform the worst. The reason is that for maximum rule, the distribu-

tion becomes positively skewed and for minimum rule, it becomes negatively skewed.

Although the distributions shrink, they have longer tails and the tails constitute a

considerable area of intersection and therefore error. After a certain size, adding more

classifiers to the ensemble does not improve maximum or minimum rule considerably,
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Figure 3.12. Gaussian Distribution σ = 0.1, p1 = 0.6 (blue) and p2 = 0.4 (red)
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Figure 3.13. Gaussian Distribution, Max Rule, L = 9, σ = 0.1 and p1 = 0.6 (blue)

because whereas the distributions shrink, the tails get longer.

Let us see how the area of intersection, Kuncheva’s misclassification error and

the empirical misclassifications change when we only change one parameter at a time

(posterior, spread parameter or ensemble size).

Figure 3.17 shows that adding a new classifier to the ensemble in uniform error,

improves accuracy very quickly. But with Gaussian error, and maximum and minimum

rules, after a certain size (L = 7 for our example), adding a new classifier does not

contribute much to the accuracy, because the tails still have a considerable area of

intersection. Here, we see that for normal case, the intersection area and empirical

misclassification error do not seem to match perfectly. The most probable reason is
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Figure 3.14. Gaussian Distribution, Med Rule, L = 9, σ = 0.1 and p1 = 0.6 (blue)
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Figure 3.15. Gaussian Distribution, Min Rule, L = 9, σ = 0.1 and p1 = 0.6 (blue)
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Figure 3.16. Gaussian Distribution, Ave Rule, L = 9, σ = 0.1 and p1 = 0.6 (blue)
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Figure 3.17. The misclassification error as L changes, p = 0.6, σ = 0.2 and b = 0.2
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Table 3.5. Notation Used in the Error Figures

Notation Symbol Expression

CE - Empirical Misclassification Error

area ∗ 0.5·Area of Intersection

k ⊳ Kuncheva’s Misclassification Error

that for normal case we numerically evaluate the area of intersection.

When we increase the spread parameter (b or σ), we see that the misclassification

error increases as expected. Also when we increase the true posterior, the misclassi-

fication error decreases drastically since the distance between the center of masses of

the score distributions get further and the area of intersection gets smaller.

3.7. Conclusions

In this study, we have investigated how to decompose the bias and variance

components of some fusion rules. We extend squared and 0/1 loss for the fusion rules.

Neither squared nor 0/1 loss seem to explain the error behavior of fusion rules exactly.

They do not show the pattern that describes the classification error of the fusion rules.

A convenient measure of the misclassification can be the area of intersection

between the distributions of the class fusion scores. The variance and bias (center of

mass) of the distribution accounts for the total area of the intersection (long variance

means longer tails and bias, when in case asymmetric distributions, can cause larger

intersection area by shifting the center of mass). We see that it explains the error of

fusion rules.
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Figure 3.18. The misclassification error as spread parameter(b or σ) changes, p = 0.6,

L = 9
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Figure 3.19. The misclassification error as true posterior p changes, L = 9, σ = 0.2

and b = 0.2
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4. CONCLUSIONS AND FUTURE WORK

This study consists of two main parts. In the first part, the idea of discrimi-

nant ensembles is proposed and investigated. Three different discriminant ensemble

construction methods are proposed. Forward Subset Selection (Fss) is an incremental

ensemble construction algorithm. It iteratively adds a discriminant to the ensemble

to greedily improve accuracy. It stops when no further improvement is obtained. The

other two are decision tree (Dt) and decision tree with a linear model (Dt.Lin). In

the first one, the decision tree selects the discriminants and also is the combiner. The

other one uses the discriminants chosen by the decision tree and a linear combiner is

trained on these features.

There are certain differences between those construction methods. Fss takes

longer time to train, while Dt can be trained in a shorter time. With respect to the

ensemble constructed, Fss mostly results in smaller ensembles than Dt.

Compared with the classifier ensembles, discriminant ensembles are simpler and

interpretable. They use just the needed discriminants to improve accuracy. They

give us more information about the classifiers and the classes they are able to classify

efficiently. But discriminant ensembles are less tolerant to noise since there is less

redundancy.

The second part deals with the error analysis of fixed fusion rules. It extends

bias-variance and noise decomposition of the squared and 0/1 loss for fusion rules. We

conclude that these loss functions and their decompositions are unable to explain the

decrease in error with those fusion rule, especially with minimum and maximum rules.

They do not show a pattern which might help us understand the error behavior of such

rules.

We propose the area of intersection and as we show, a new measure based on it

matches with theoretical error values proposed by Kuncheva (2002).
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As future work, for the discriminant ensembles, one can investigate other search

methods, such as backward or floating subset selection, or genetic algorithms. Also

cost–conscious discriminant ensembles, in terms of training time, memory requirement,

vs., can be built. The influence of normalization or transformation of the base classifier

scores on the ensemble is also an open subject. For the part on error analysis, the

expression of suitable new loss functions that account for the behavior of fusion rules

is also yet to be found.
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APPENDIX A: Order Statistics

Let x1, x2, ..., xn be independent, identically, continuously and absolutely dis-

tributed random variables and x(1) ≤ x(2) ≤ . . . ≤ x(n) be the corresponding order of

these variables (David, 1970). Assume f(x) denotes the probability density function

(pdf) and F (x) denotes the cumulative distribution function of x. Then, pdf of the kth

statistics can found as:

fx(k)
(x) =

n!

(k − 1)!(n − k)!
F (x)k−1(1 − F (x))n−kf(x) (A.1)

Using this, the pdfs of the smallest (k = 1), the middle (k = (n + 1)/2), assume n is

odd) and the biggest (k = n) members can be calculated:

fx(1)
(x) = n(1 − F (x))n−1f(x)

fx
(

n+1
2 )

(x) =
n!

(n−1
2

)!(n−1
2

)!
F (x)

n−1
2 (1 − F (x))

n−1
2 f(x)

fx(n)
(x) = nF (x)n−1f(x) (A.2)

In this study, we are concerned with the cases where f(x) is either uniform U [−b, b],

or Gaussian N(0, σ2). The kth order pdf depends on k, n and the spread parameters,

b for uniform distribution (Fig. A.1) and σ for Gaussian (Fig. A.2). We see that for

symmetric distributions, 1st (minimum) and nth (maximum) order probability distri-

bution functions are symmetric to each other with respect to the mean, which is 0 in

our case. As long as f(x) is symmetric, so is the pdf of the (n+1
2

)th order (median).

We also see that as b or σ increases, the pdf spreads and cover a larger range. For

the minimum, the mass is concentrated on the left (pdf is right-skewed) and for the

maximum, the mass is concentrated on the right (it is left-skewed). The pdf of the

median is symmetric around the mean.

We see in Figures A.3 and A.4 that as L increases, pdf shrinks. When L increases,

in uniform distribution, for the minimum, the pdf shrinks and mass is concentrated
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Figure A.1. For the uniform distribution, fx(k)
, k = 1, (n + 1)/2, n when n = 9 and b

increases from 0.1 to 1 by 0.1 (from the highest to the lowest peak)
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Figure A.2. For the Gaussian distribution, fx(k)
, k = 1, (n + 1)/2, n when n = 9 and σ

increases from 0.1 to 1 by 0.1 (from the highest to the lowest peak)
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Figure A.3. For the uniform distribution, fx(k)
, k = 1, (n + 1)/2, n when b = 0.2 and n

increases from 1 to 15 by 2 (from the highest to the lowest peak)
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Figure A.4. For the Gaussian distribution, fx(k)
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on the left; the maximum similarly shrinks and concentrates on the right. The me-

dian shrinks and concentrates around the mean. Similar behavior is observed for the

Gaussian distribution as well.
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