

PROACTIVE CACHING SCHEDULER FOR WEB SERVICES

by

Mehmet Güveniş

B.S., Computer Engineering, Eastern Mediterranean University, 2004

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2007

 iii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Assoc. Prof. Dr. Can Özturan for his

contribution to my education, for showing me useful advices and keeping me motivated

throughout my thesis study.

I thank to Dr. Haluk Bingöl and Assist. Prof. Dr. Güray Yılmaz for participating in

my thesis jury and giving me feedback.

Finally, I would like to thank to my family for their supports and patience that made

this study possible.

 iv

ABSTRACT

 PROACTIVE CACHING SCHEDULER FOR WEB SERVICES

Web services are one the most promising technologies in distributed computing.

Platform independence and easy interoperability features of web services solved many

problems faced with earlier distributed computing technologies. As a result, web services are

essential for communication of objects in distributed world. Nowadays, the main motivation

regarding to web services is composing them to accomplish business applications. There are

many web service composition languages in the literature. On those languages, Business

Process Execution Language (BPEL) is the most effective composition language to provide

interaction among web services.

Despite platform independence and easier interoperability features, web services face

many performance and availability problems. There are two main reasons for this: The first

reason is the propagation delay between clients and server. The second reason is extensive

use of XML in web service operations. Thus, in this study, we aimed to solve performance

and availability problems of web services that BPEL processes use in business applications

by applying a caching mechanism. Our main contribution is to apply a proactive caching

mechnism to web services, so generated cache can be used for future operations. Our

Proactive Caching Scheduler and Daemon Proactive Caching Scheduler performs caching of

web services whose binding information is known. One of the most important aspects of our

study is to apply efficient caching without sacrificing overheads on client side. By this way,

we aimed to decrease the load in web services since it is not necessary to invoke a web

service if its cache is not expired. Our research concludes with experimental tests taken from

real life scenarios. The experiments help us to better understand the applicability and

efficiency of our approach.

 v

ÖZET

WEB SERVĐSLERĐ ĐÇĐN PROAKTĐF ÖNBELLEKLEYĐCĐ VE
PROGRAMCI

Web servisleri günümüzde kullanılan en önemli dağıtık yazılım mimarisidir. Web

servislerinin platformdan bağımsız olması ve kolay entegrasyonu, kendinden önce var olan

dağıtık yazılım mimarilerinde karşılaşılan sorunları çözmede etkili olmuştur. Sonuç olarak,

web servisleri dağıtık mimarinin vazgeçilmez parçası olmuştur. Günümüzde, web servisleri

ile ilgili ana motivasyon, iş akışlarında kullanılmak üzere değişik web servislerini birleştirme

ve entegrasyonunu sağlamaya yöneliktir. Bu konuda en etkili web servis entegrsayonu

Business Process Execution Language (BPEL) dili ile sağlanabilir.

Web servisleri, platformdan bağımsız ve kolay entegre olabilmelerine karşın,

performans ve kullanılabilirlik açısından birçok problemlere sahiptirler. Bu konunun iki ana

nedeni vardır. Birinci neden, web servislerine erişmede istemci sunucu arasında olan network

trafiğidir. Đkinci neden ise, web servisleri işlemlerinde XML bazlı protokollerin ve dillerin

kullanılmasıdır. Bu yüzden, bu tezde, BPEL işlemlerinde kullanılan web servislerinin

performans ve kullanılabilirlik sorunlarına çözüm bulmayı amaçladık. Bu çözüm için de

katkımız, proaktif önbellekleme kullanarak, ileride gereken web servis sonuçlarını önbellekte

tutmak olmuştur. Bu yüzden oluşturduğumuz Proaktif Önbellekleyici ve Hayali Proaktif

Önbellekleyici ve Programcı, ulaşım bilgileri bilinen web servislerine etkili önbellekleme

sağlamayı amaçlamıştır. En önemli amaçlarımızdan biri de, önbelleklemeyi sağlarken istemci

tarafında performans kaybına sebep olmamak idi. Bu sayede, web servislerinin yükünü

azaltmaya çalıştık. Tezin sonunda yaptığımız deneysel testler, yaklaşımımızın etkisini

ölçmeye yardımcı olmuştur.

 vi

TABLE OF CONTENTS

ABSTRACT..iv

ÖZET..v

LIST OF FIGURES...viii

LIST OF TABLES..x

LIST OF ABBREVIATIONS..xi

1. INTRODUCTION..1

 1.1. Motivation...1

 1.2. Outline...2

2. PREVIOUS WORK ..4

 2.1. Introduction to Web Services ...4

 2.1.1. General Definition and Characteristics of Web Services........................4

 2.1.2. Web Services vs. Other Distributed Technologies..................................6

 2.1.3. Web Services and Service Oriented Architecture...................................8

 2.1.3.1. XML..8

 2.1.3.2. SOAP...9

 2.1.3.3. WSDL..9

 2.1.3.4. UDDI..10

 2.1.4. Web Services Composition..10

 2.1.4.1. The Need to Compose Web Services.......................................11

 2.1.4.2. Web Services Composition Standards.....................................12

 2.1.4.3. Web Service Orchestration Engines...17

 2.2. Web Service Caching………………………………………………………….19

 2.2.1. The Importance of Web Service Caching...19

 2.2.2. Important Factors in Web Service Caching...20

 2.2.3. Existing Work In Web Service Caching……………………………...22

 2.3. Summary………………………………………………………........................29

 vii

3. OVERVIEW OF OUR ARCHITECTURE……………………………………….31

 3.1. Platforms and Tools Used in Proposed Architecture………………………...31

 3.2. Proposed Architecture………………………………………………………..32

4. PCS PRE-PROCESSOR…………………………………………………………..36

 4.1. Transformation of BPEL Documents………………………………………...36

 4.2. Generating Executables of Transformed BPEL Documents………………….41

5. PCS AND DAEMON PCS………………………………………………………...42

 5.1. Proactive Caching Scheduler (PCS)………………………………………….42

 5.1.1. Usage of WSIF in BPEL Processes and PCS………………………....42

 5.1.2. Working Principle of PCS…………………………………………….45

 5.2. Daemon Proactive Caching Scheduler (PCS)………………………………....48

 5.2.1. Working Principle of Daemon PCS…………………………………....48

6. EXPERIMENTAL TESTS AND RESULTS……………………………………...51

 6.1. US Weather Forecast Web Service…………………………………………...52

 6.2. Turkish Republic Central Bank Currency Exchange Web Service…………..53

 6.3. Turkish Republic Identity Web Service……………………………………....54

 6.4. E-Bay Item Information Web Service………………………………………...56

7. CONCLUSION..…………………………………………………………………...58

 7.1. Overview……………………………………………………………………...58

 7.2. Future Work…………………………………………………………………..59

APPENDIX A: SOFTWARE CD……………………………………………………..60

REFERENCES………………………………………………………………………...61

 viii

LIST OF FIGURES

Figure 2.1. Orchestration and Choreography..13

Figure 2.2. A schematic view of a BPEL process...15

Figure 2.3. Example “Hello World” BPEL process..17

Figure 2.4. Axis flow architecture...26

Figure 2.5. High level view of the self-pruning cache object.......................................27

Figure 2.6. Overview of Content Delivery Network (CDN)...28

Figure 3.1. Generating executable of BPEL document……………………….............33

Figure 3.2. Execution of BPEL processes with PCS and Daemon PCS.......................34

Figure 4.1. Initial BPEL document...38

Figure 4.2. Transformed BPEL document..40

Figure 5.1 Data types used in WSDL document of currency converter
 web service ...43

Figure 5.2 Extracting Currency Converter Web Service Parameters in PCS.................44

 ix

Figure 5.3 WSIF Binding for currency converter web service on WSDL document

 of PCS..45

Figure 5.4 Service Definition for PCS in WSDL document of PCS………………......45

Figure 5.5 Proactive Caching Scheduler (PCS) mechanism...48

Figure 5.6 Daemon PCS mechanism..50

Figure 6.1 Analyses of US Weather Forecast Web Service...53

Figure 6.2 Analyses of Turkish Republic Central Bank Currency Exchange
 Web Service...54

Figure 6.3 Analyses of Turkish Republic Identity Web Service...................................56

Figure 6.4 Analyses of eBay Item Information Web Service..57

 x

LIST OF TABLES

Table 6.1 Test Environment Used In Experimentation...51

Table 6.2 US Weather Forecast Web Service Input and Output Data.........................52

Table 6.3 Turkish Republic Central Bank Currency Exchange Web Service
 Input and Output Data..54

Table 6.4 Turkish Republic Identity Web Service Input and Output Data..................55

Table 6.5 E-Bay Item Information Web Service Input and Output Data.....................56

Table 6.6 Summary of Complete Experimentation..57

 xi

LIST OF ABBREVIATIONS

API Application Programming Interface

ASP Active Server Pages

B2B Business to Business

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

BPWS4J Business Process Execution Language for Web Services JavaTM Run Time

CDN Content Delivery Networks

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DOM Document Object Model

EAI Enterprise Application Integration

EJB Enterprise Java Beans

HTTP Hypertext Transport Protocol

IBM International Business Machines Corporation

IDE Integrated Development Environment

J2EE Java2 Platform Enterprise Edition

JAXB Java Architecture for XML Binding

JAXP Java API for XML Processing

JAXR Java API for XML Registries

JAX-RPC Java API for XML-Based RPC

JCA Java Cryptography Architecture

 xii

JMS Java Message Service

MD5 Message Digest 5

OMG Object Management Group

PCS Proactive Caching Scheduler

RMI Remote Method Invocation

RPC Remote Procedure Call

SAAJ SOAP with Attachments API for Java

SAX Simple API for XML

SMTP Simple Mail Transport Protocol

SOA Service – Oriented Architecture

SOAP Simple Object Transport Protocol

SQL Structured Query Language

tModel Type Model

TTL Time to Live

TTR Time to Refresh

UDDI Universal Description Discovery Integration

WSCI Web Service Choreography Interface

WSDL Web Services Description Language

WSFL Web Services Flow Language

WSIF Web Services Invocation Framework

XLANG XML Business Process Language

XML Extensible Markup Language

 1

1. INTRODUCTION

1.1. Motivation

Web services are one of the most popular and widely used applications in distributed

computing. Web service technologies are based on XML (Extensible Mark-up Language),

so it is possible to develop applications that all kinds of platforms and systems can use.

Earlier versions of distributed object technologies had problems of integration, scalability

and generic use. On the other hand, platform and implementation independence of web

services solved the problems of integration, scalability and generic use of distributed object

computing. Web service technologies evolved in recent years and are essential structures in

many applications of business world. Thus, composing web services and maintaining

interaction between composed web services has become very important for accomplishing

business goals. There are several web service composition languages in the literature and it

is stated that Business Process Execution Language for Web services (BPEL4WS) is the

most promising and efficient web services composition language [1].

Despite their popularity and implementation independence, serious performance and

availability problems are faced in web services. There are two main reasons for

performance and availability problems in web services. First reason is propagation delays

between client and servers, especially when the web service is not located on LAN (Local

Area Network) of clients. The second reason is the performance degradation due to XML.

Since XML processing is an expensive operation in terms of time and memory, it

influences the performance of web service communication.

In this research, we aimed to solve the performance and availability problems of certain

web services. Our main idea is to develop a caching mechanism to web services that BPEL

processes use in business applications. In our architecture, BPEL processes are deployed in

Oracle BPEL Process Manager and they are executed in Oracle BPEL Process Server. Our

proposed architecture supports web services whose binding information is stated in a

configuration file. Our architecture includes a Proactive Caching Scheduler Mechanism

 2

(PCS) which uses this configuration file to decide whether to invoke a web service or

apply caching based on the expiration information of corresponding web service.

Furthermore, our architecture has a Daemon Proactive Caching Scheduler (Daemon PCS)

which puts web services in a schedule and invokes the web services to refresh the cache as

needed. Our architecture also includes a mechanism that keeps statistical information of

previously invoked web services and this information is used to prune unimportant web

service results when the cache size exceeds a threshold. Our contribution includes solution

of two problems: Performance and availability. We aimed to solve performance problems

of web service invocations since invocation data reside on cache and it is not needed to

invoke a web service every time. Furthermore, our architecture solves the availability

problems of web services since it provides a fault tolerance mechanism in case the web

services may not be reached due to communication problems. Our proposed architecture is

tested and its feasibility is analyzed with real life scenarios.

1.2. Outline

In Chapter 2, previous work related with web services and caching concept in web

services is presented. In the first section, fundamental elements of web services are

discussed. Then, usage of these elements in our architecture is stated. After that, the

importance and necessity of composing several web services are emphasized. In the second

section, previous work of different web service caching techniques are presented. These

techniques are compared with our proposed architecture to reflect the applicability of our

approach.

In Chapter 3, overview of our architecture is presented. First, platforms and tools used

when designing our proposed architecture is stated. Then, brief explanation of our

architecture is made. At the first stage, it is explained how to prepare BPEL processes to be

able to interact with our proposed architecture. Then, core elements of our proposed

architecture is explained briefly. The core elements of our architecture are elaborated in

Chapter 4 and Chapter 5.

 3

In Chapter 4, the importance and implementation details of PCS Pre-processor are

explained which transforms BPEL documents in such a way that they are able to interact

with our PCS. A simple example is given for the transformation of BPEL documents.

Then, the deployment of BPEL processes to Oracle BPEL Process Server is explained.

In Chapter 5, caching operations of our architecture are explained. Our caching

architecture consists of two parts. The first part is the PCS which interacts with BPEL

processes and decides whether to apply caching or web service invocation. The second part

is the Daemon PCS which schedules web services and refreshes the cache. The working

principle of PCS and Daemon PCS is explained in detail. Then, some problems faced

during caching is described and solution for these problems is emphasized.

In Chapter 6, experimental tests are made using real life scenarios to examine the

applicability and feasibility of our approach. At the end, the efficiency of our approach is

proven since there are significant performance improvements in processing.

In Chapter 7, the research is concluded by presenting the summary of work done and

its contributions to the section. Then, planned future work is discussed to improve and

extend the applicability of our approach.

 4

2. PREVIOUS WORK

In this chapter, previous work related to web services and caching concept in web

services is explained. The chapter consists of two sections. In the first section, a brief

introduction to web services is made. First, definition and general characteristics of web

services are explained. Then, web services and previous distributed computing

technologies are compared to reflect the advantages of web services. After that, web

service components are introduced. Then, the needs of web service composition and its

standards are introduced. Moreover, the effects of web service components and web

service composition in building our caching architecture are specified. In the second

section of the chapter, the concept of caching in web services is explained. First, the

motivation for caching in web services is mentioned. Then, some important factors that

should be considered in web service caching are discussed. After that, different web

service caching strategies are mentioned and the impacts of these strategies in web service

based applications are emphasized. Moreover, existing web service caching strategies and

our proposed caching architecture is compared.

2.1. Introduction to Web Services

2.1.1. General Definition and Characteristics of Web Services

Web services are programmable collections of operations that are accessible over a

network. Communication with web services is made through standardized XML messaging

on a platform and implementation independent manner [2]. It is not necessary to worry

about the implementation details of web services when using them. Web services support

true service oriented architecture and they have open, Internet-oriented standards based

interfaces.

Web services has several characteristics. Web services need not to be deployed on

World Wide Web necessarily; they also can operate on Local Area Networks, on the same

 5

operating system of clients, or on shared memory between processes that reside on the

same computer [3].

Another important characteristic is that a web service’s implementation and

deployment platform details are not specific to a particular program. A web service has a

declared API and some kind of invocation mechanism (network protocol, or data encoding

schemes, and so on), so all clients use this web service through those declared API and

invocation mechanism [3].

Web services are XML based. Web service communication, service description and

discovery are based on XML. Since XML is a universal language, it eliminates the

problems of operating system, programming language, networking or platform binding of

protocols. Thus, it becomes very easy to provide a real interoperable system with XML [4].

Web services are loosely-coupled. In other words, the consumer of the web service is

not tied to that web service directly. The web service interface can change over time but

this does not affect the consuming ability of clients to a web service. Thus, it can be said

that adaptation of changes between web services and clients is done easily with loose

coupling [5].

Web services are able to provide both synchronous and asychnronous operations.

Synchronous operations require the client to bind to a web service and block until it gets a

response from web service before continuing further operations. Asynchronous

communication allows client to get information later, so client can continue on further

processing after web service invocation. Thus, operations for which performance plays an

important role needs asynchronous processing and this feature is avaliable in web services

[5].

Web services support both RPCs and document exchange. In the case of RPC, clients

are able to invoke procedures defined in web services. In the case of document exchange,

communication is performed via XML formatted documents. Thus, it is possible to provide

communication by exchanging simple or complex XML documents via web services [5].

 6

2.1.2. Web Services vs. Other Distributed Technologies

Before web services concept existed, there had been several distributed computing

technologies about information retrieval and data exchange communication. Those

technologies provided the birth and growth of web services, so they are called the building

blocks of web services. The most popular and used distributed object models that have

been are Microsoft’s Distributed Component Object Model (DCOM), Object Management

Group (OMG)’s Common Object Request Broker Architecture (CORBA) and JavaSoft’s

Java/Remote Method Invocation (RMI).

Despite robustness and wide use, Distributed Object Computing had many obstacles in

terms of scalability, interoperability, coupling and platform independence. These obstacles

gave rise to a more independent, scalable and popular technology based simply on XML

messaging between disparate clients and servers: Web services.

Let’s look at the previous Distributed Computing technologies briefly. DCOM [6] was

Microsoft COM’s technology to work on a distributed network. However, DCOM was not

an industrial standard so it could not spread over platforms beyond Windows [7].

Moreover, it was hard to manage the security aspects of DCOM even with two networks

which use Windows [8]. Unlike DCOM, CORBA was not a standard for a particular

company. It was a standard of OMG’s architecture and it was suitable to work on many

areas of use. However, it was a very expensive technology and it was very hard to use, so it

could not spread over much [9]. Java’s RMI was a very popular technology to solve the

integration problems of distributed computing since it was suitable to write applications in

one language and run them in different platforms [10]. However, it could not manage to

solve the problems of specific applications directly [8].

Distributed Object Computing mainly relies on RPC communication. In RPC, two or

more processes can establish communication by one process making calls to a method in

another process, and another process responding to the first process by returning the

computed result to it. This mechanism is easy to understand for programmer, provides

synchronization between processes and hides the complexity of the distributed system

from user. However, it has certain disadvantages. For example, it provides tight coupling

 7

between client and server, so any failure on either side affects the other side. One site can

be blocked in case of a failure or latency of another side. On the other hand, web service

infrastructure also provides messaging or document-centric model of distributed

computing. Document-centric messaging provides a simpler and more flexible interface

[3]. Moreover, document-centric messaging is suitable for loosely-coupled systems, so

when new information is added to a web service, the adaptation to this change is done in

more automatic way. In this way, loosely coupled business operations are able to

interoperate in an automated fashion by simply exchanging messages between each other.

Distributed Object Computing approaches lacked on data encoding. They were capable

of dealing with simple data, but it was not possible to map complex data types in

applications. The main reason for this was the binary encoding format of data in those

approaches. However, web services solve this problem with XML. XML is text-based and

has a hierarchical structure. These properties make representation of complex data

structures easier than the binary data format used in COM and CORBA [3]. Moreover,

validation in XML and XML Schema concepts enable us to describe data types and

perform validation on documents through standardized interfaces.

Web services are able to perform transformation of data between both applications and

business documents, such that they provide application integration of e-business in a more

efficient way. Web services also work on open Internet standards such as HTTP and

SMTP, so they can exploit the features of those standards [3].

The other benefit of web services over existing technologies is perfect interoperability

of SOA (Service Oriented Architecture). With this interoperability, platform-independent

communication model is established. The minimum requirement for communication is the

knowledge and ability of constructing and deconstructing SOAP (Simple Object Access

Protocol) messages and how to send and receive HTTP transmissions [3].

Since web service communication is based on SOAP and SOAP is able to work on

HTTP, it is possible for web services to pass through and operate beyond firewalls without

any external adjustment.

 8

2.1.3. Web Services and Service Oriented Architecture

Web service technology is built on Service Oriented Architecture (SOA). SOA

provides programs and services to be accessed through various interfaces over a network.

In this section, we will discuss the basic elements that construct a web service and SOA.

2.1.3.1. XML

XML (Extensible Mark-up Language) is the main building block of web services and

Service Oriented Architecture. Web service communication is done via XML. As it will be

explained in the following sections, web service protocols like SOAP, WSDL and UDDI

are special XML based structures to define, publish and provide communication in web

services.

XML has many aspects that make it indispensable. The most important aspect of XML

is that, it is platform and language independent [11]. Thus, web services benefit from this

property to provide free distributed systems. Moreover, it is a flexible language, so it is

possible to generate different mark-up languages using XML. Since it is a formatted

language, it is easy to provide searching of any element in XML. Furthermore, XML

documents are sharable, so it is possible to use a data in a format that was created in a

different format [12].

XML is used in many parts of our proposed architecture since web service standards

are based on XML. Furthermore, XML parser is used for our proposed architecture. There

are many XML parsers in the literature. Since Java language is used for the

implementation of our architecture, we needed an XML parser in Java. Java has many

APIs defined to access and use XML in various types of applications, such as Java

Architecture for XML Binding (JAXB) [13], Java API for XML Processing (JAXP) [14],

Java API for XML Registries (JAXR) [15], Java API for XML-Based RPC (JAX-RPC)

[16] and SOAP with Attachments API for Java (SAAJ) [17]. However, Java’s XML DOM

API is used as an XML parser for our architecture. The details of used XML parser are

explained in Chapter 4.

 9

2.1.3.2. SOAP

SOAP (Simple Object Access Protocol) is a lightweight remote method invocation

protocol for the exchange of structured data in distributed computing. SOAP is based on

XML and HTTP, which makes it a programming language and platform independent

protocol for remote method invocation over the Internet and through firewalls [18].

Each SOAP message is composed of an envelope. The SOAP envelope consists of two

parts: SOAP Header, which provides optional attributes about supply directive and control

information, transactions and security, and SOAP Body, which is the XML payload of

SOAP message that is being sent. [19].

SOAP uses many transport protocols, but HTTP is the most popular protocol in SOAP

communication. SOAP envelopes are generally transmitted using HTTP GET and POST

messages, and the response SOAP messages are also encoded in HTTP.

In our study, Apache’s SOAP implementation is extensively used to invoke several

web services that reside in a servlet engine. In our study, we expolited Apache’s SOAP

implementation’s RPCs (Remote Procedure Call) to invoke web services over HTTP.

2.1.3.3. WSDL

WSDL is an XML based language that describes how to interact with a web service.

Basically, it defines the message formats and protocol bindings necessary to interact with

web services.

WSDL is often used with SOAP and XML Schema to provide web services over the

internet. A client program can connect to a web service and read the WSDL of

corresponding web service to determine available functions and data structures of such

service. It is possible to define any data type in WSDL using XML Schema. After getting

desired information from WSDL file, the client is able to call corresponding web service

using SOAP [20].

 10

A typical WSDL file contains details about the binding protocol to corresponding web

service, host and port number of such service, formats of input and output messages,

exceptions that can be thrown and operations that can be performed in corresponding web

service.

WSDL is used extensively in this study. Each web service in our architecture has a

WSDL file and it defines data structures and binding information of corresponding web

services. Thus, once the WSDL file is read by client process, it is possible to communicate

with corresponding web services through SOAP.

2.1.3.4. UDDI

UDDI is the registry that is used to record web services and web service descriptions.

Web services are registered (published) in UDDI registries, so requesters can find

corresponding web services and bind to them [21].

Type Model (tModel) is a mechanism in UDDI to describe and exchange information

about a web service, such as service description, or reference to a WSDL file. It is possible

to search a specific service using tModel. A business can have several tModels and each

tModel can represent a specific web service in order to describe corresponding service.

UDDI is not used in our study since we concentrated on optimizing performance and

fault tolerance of web services in which binding information is known.

2.1.4. Web Services Composition

In this section, web service composition is explained. First, the need to compose

multiple web services is discussed. After that, two general approaches in web service

composition is defined. Then, two most popular web service composition languages

(WSCI and BPEL4WS) are explained.

 11

2.1.4.1. The Need to Compose Web Services

As it is mentioned in Section 2.1.2 and Section 2.1.3, web services define a true SOA

to provide the interoperation of system in a distributed manner. The interoperability of

SOAP, XML, WSDL and UDDI enabled the development of a language and platform

independent communication system. Howewer, these protocols enable the development of

simple web services. In business world, several web services need to be composed together

to run a business operation. B2B (Business to Business) and EAI (Enterprise Application

Integration) applications need to use the composition of different web services in business

environments. Thus, if the implementation of a business operation involves the invocation

of several web services, it is necessary to benefit from web services composition

technology to combine the functionality of several web services [22].

Composition of web services provides abstraction in complex applications since it

aggregates components of such applications in a progressive manner.

In today’s business world, it is very important for business processes to quickly adapt

to customer needs and market conditions. This can only be achieved by incorporating new

customers, parties, or suppliers in business processes. A single standard is needed to

manage both EAI and B2B interactions involving web services. Thus, web services

composition aims to provide an open, standards based approach to connect various web

services together to create higher level business processes [23]. In this way, business

processes can include the functionality of several web services to meet the requiremenets

of customers.

In this thesis, proposed framework is completely based on web service composition.

Thus, there are several business processes that consist of one or more web services and

those web services are interacted with each other to perform a business task.

 12

2.1.4.2. Web Services Composition Standards

There are two main standards for composing multiple web services in business

operations. These standards are Orchestration and Choreography. In this section, these

standards are explained by pointing out their differences. Then, we will explain two widely

used web service composition languages: WSCI and BPEL4WS.

Orchestration and choreography are two methodologies to perform web service

composition. Altough they both provide web service composition, they operate in different

logic.

In orchestration, there is a central process that takes control of both internal and

external web services and coordinates the executions of web services in the process. The

participating web services are independent of each other, so none of the web services

knows which business process it is part of. Moreover, none of the web services know

which other web services are involved in the process. Only the central process knows these

information. Thus, orchestration aims to describe how web services can interact at the

message level, and it performs the workflow and execution order of the interactions [24].

An example to web service orchestration language is BPEL4WS (Business Process

Execution Language for Web Services).

On the other hand, choreography is a more collaborative approach that allows each web

service to know when to execute its corresponding operations and whom it will interact

with during the composition process. Thus, choreography is associated with exchange of

messages that occur between several web services [24]. An example to web service

choreography language is WSCI (Web Services Choreography Interface).

Orchestration differs from choreography in that it is a more centralized approach that

has one central party to control the process flow between multiple web services. On the

other hand, choreography is more collaborative approach which controls exchange of

messages of multiple parties, and there is no centralized party in the conversation [24] [25].

Figure 2.1 shows the graphical representation of orchestration and choreography.

 13

Figure 2.1. Orchestration and Choreography [24]

The Web Service Choreography Interface (WSCI), as stated in [26], is an XML based

interface description language that represents the flow of messages between several web

services in composed interactions. It aims to define the behaviour of several web services

in terms of dependencies by using messages exchanged, correlation, sequencing rules,

exception handling and transactions [26]. An important aspect of WSCI is that, it only

defines the behavior between different web services, so it does not define an executable

business process [24]. Thus, there are several interfaces for each party of WSCI and there

is no single process to control the whole interaction [24] [25]. WSCI aims to construct a

general choreography interface that provides interoperability between different layers.

Thus, WSCI is designed to act as a gateway between different standard layers [27].

BPEL is an XML-based programming language that is primarily used to define

business processes. Those business processes are generally cooperated with different web

services and BPEL engine provides the cooperation between various business processes

and web services. It supports web services technology stack, including SOAP, WSDL,

UDDI, WS-Reliable Messaging, WS-Addressing, WS-Coordination and WS-Transaction

[28].

BPEL is the composition of IBM’s graph-based Web Services Flow Language (WSFL)

and Microsoft’s block structured XLANG. BPEL4WS supports modeling two types of

processes: executable and abstract processes. An abstract process is a business protocol

Web
service

Web
service

Web
service

(b) web services choreography (a) web services orchestration

collaboration

Web
service

Web
service

process flow

Web
service

 14

specifying the message exchange behavior between different parties without revealing the

implementation details of any of them. An executable process specifies the interaction and

message exchanges between partners by maintaining information such as the execution

order, fault and exception handling mechanisms of interaction [3].

Although it is a new language, BPEL has become the most popular web service

composition language in business world since it allows us both to define abstract processes

and write executable specifications of processes [29]. Moreover, BPEL has rich tools on

which business processes can be executed (by BPEL servers) and developed (by BPEL

designers) [30].

BPEL can be used within and between companies. Within companies, BPEL is used to

provide EAI in a standard form and extend the integration with existing systems. Between

enterprises, BPEL is used to enable easier and more effective integration among different

business partners. Thus, BPEL is the key technology in environments where several web

services are used in a cooperative manner [30].

With BPEL, it is possible to specify the exact order of web service invocations in a

business process. Web service invocations can be either sequentially or parallel. Interaction

between different web services can be provided by conditional behavior of BPEL such

that, a web service invocation can depend on the result returned from a previous web

service’s invocation. BPEL also supports variable declaration, looping and exception

handling. Thus, it is possible to define a business process in an algorithmic manner in

BPEL [30] [31].

A BPEL process looks like another web service that is composed of existing services

for its client’s perspective. BPEL processes communicate with other processes and web

services through partner links. Partner links show how to make a bond between a BPEL

process and an existing web service [32]. BPEL processes interact with external processes

and web services by invoking their corresponding methods that reside in their port types.

Port types are defined in WSDL document of web services. The schematic view of a BPEL

process is shown in Figure 2.2 [30]. As it can be observed from Figure 2.2, the example

BPEL process establishes communication with external parties through partner links. So,

 15

each web service interaction needs a partner link to be communicated. Moreover, the

corresponding methods of external partners of the process are invoked through their port

type structures. So, each BPEL process need to use one or more port types offered by web

services to invoke external methods and get corresponding result from web services. Thus,

it can be said that partner links are like bridges between BPEL processes and external

parties, and port types are like doors of external parties that BPEL processes use for

business operations. The order of web service invocations can also be seen in Figure 2.2.

Figure 2.2. A Schematic view of a BPEL process [30]

With BPEL, it is possible to interact with external processes and web services. This is

maintained by Web Services Invocation Framework (WSIF). WSIF is a simple Java API

for invoking web services. It provides interaction of web services through their WSDL

descriptions. Thus, it is possible to provide integration among web services without

worrying their implementation details. WSIF is an Apache technology and was originally

developed by IBM alphaWorks as a part of its Web Services Toolkit [33]. Thus, WSDL is

the core of the integration framework for accessing various web services using many

platforms. The only condition is that the corresponding service should be described using

WSDL. Since WSDL includes the binding information to a web service, it can include the

provider to show how to bind the corresponding service using WSIF. WSIF defines and

comes packaged with various providers for various types of languages and protocols [34].

BPEL Process as web services

invoke

invoke

invoke

port
type

receive

reply

Partner link
Web

service 1

port
type

Partner link
Web

service 2

port
type

Partner link
Web

service 3

Client
port
type

Partner link

 16

To explain the functionality of BPEL, a simple “Hello World” BPEL process example

from Oracle web site’s BPEL designer tutorial [20] is explained. The example shows the

basic features of BPEL process, as well as its interaction with a web service. The process

receives a request from the client that executes it. Then, it invokes a simple “Hello World”

web service. After that, it receives the result returned from web service and returns it back

to the client that executed the process. Figure 2.3 depicts the example.

As it can be observed from Figure 2.3, the name of the process and its corresponding

namespaces are defined in <process> tag. The namespaces specify information such as

XML schemas and namespaces of external parties. Two partner links are defined that

BPEL process uses to interact with external services or processes. The partner link

partnerLinkA is for the client that executes the BPEL process, and the partner link

HelloWSPartnerLink is for the “Hello World” web service. After defining partner links,

two variables are defined that are accessible throughout the process. The variable inputVar

is used as parameter to be sent to “Hello World” web service, and the variable outputVar is

the output that will be returned from “Hello World” web service. After defining partner

links and variables, the invocation of “Hello World” web service is performed. First, the

request is taken from the client that executes the process by <receive> activity. As it can

be observed, the client’s partner link (partnerLinkA) and port type (tns:MyPortType) are

used when receiving the request from client. After the BPEL process receives the request

from client, it invokes the “Hello World” web service with the <invoke> statement. The

BPEL process uses “Hello World” web service’s partner link (HelloWSPartnerLink) to

establish communication with it. Moreover, the process invokes the operation defined in

“Hello World” web service’s port type (partnerNS:MyPortType) with input parameter

inputVar and gets the desired result with output parameter outputVar. The web service

operation is HelloOperation. This means that corresponding web service’s operation

named HelloOperation is invoked in the when the <invoke> statement is executed. Partner

links, port types and operations are defined on WSDL structure of “Hello World” web

service. Upon getting the desired result from “Hello World” web service, the response is

returned back to client that invokes the BPEL process. Interaction of BPEL process

between its client and “Hello World” web service is performed in <sequence> activity.

This specifies that the operations are performed in sequence.

 17

<?xml version="1.0" encoding="UTF-8"?>
<process name="HelloBPELProcess"
 targetNamespace="http://www.mycomp.org/HelloWorld"
 xmlns:tns="http://www.mycomp.org/HelloWorld"
 xmlns:partnerNS="http://www.mycomp.org/OrchestrationProject1"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <!-- Define the partnerLinks -->
 <partnerLinks>
 <!-- PartnerLink specifying the relation with the client invoking this BPEL process. -->
 <partnerLink name="partnerLinkA"
 partnerLinkType="tns:ClientPartnerLinkType"
 myRole="ServiceProviderForClient" />
 <!-- PartnerLink specifying the relation between this BPEL process and Hello Web Service. -->
 <partnerLink name="HelloWSPartnerLink"
 partnerLinkType="partnerNS:HelloWSPartnerLinkType"
 partnerRole="HelloServiceProvider" />
 </partnerLinks>
 <!-- Define variables used in this BPEL process -->
 <variables>
 <variable name="inputVar" messageType="partnerNS:requestMessage"/>
 <variable name="outputVar" messageType="partnerNS:responseMessage"/>
 </variables>
 <!-- The logic for the BPEL process starts here -->
 <sequence>
 <!-- Receive the request. -->
 <receive name="Start"
 partnerLink="partnerLinkA"
 portType="tns:MyPortType"
 operation="operationA"
 variable="inputVar"
 createInstance="yes">
 </receive>
 <!-- Invoke the Hello Web Service partner. -->
 <invoke name="InvokePartner"
 partnerLink="HelloWSPartnerLink"
 portType="partnerNS:MyPortType"
 operation="HelloOperation"
 inputVariable="inputVar"
 outputVariable="outputVar"/>
 <!-- Return the response back to the client. -->
 <reply name="End"
 partnerLink="partnerLinkA"
 portType="tns:MyPortType"
 operation="operationA"
 variable="outputVar"/>
 </sequence>
</process>

Figure 2.3. Example “Hello World” BPEL process [20]

2.1.4.3. Web Service Orchestration Engines

In order to execute BPEL processes, an orchestration engine is required. For our

architecture, we needed an orchestration engine that deploys BPEL processes in its server

 18

and executes them. There are many BPEL orchestration servers in the literature. These

orchestration servers operate either in J2EE and .NET platforms. For example,

ActiveBPEL is an open source BPEL orchestration engine implemented in Java. It reads

BPEL process definitions (and other inputs such as WSDL files) and creates

representations of BPEL processes. The engine takes care of persistence, queues, alarms,

and many other execution details [35]. IBM’s WebSphere Process Server is another BPEL

engine that runs on top of Java EE Platform. It can operate in many platforms such as

Linux and z/OS [36]. IBM AlphaWorks BPWS4J is IBM’s another BPEL engine

implemented in J2EE platform to execute business processes written in BPEL [37]. On the

other hand, there are BPEL engines that run on .NET platform such as Microsoft BizTalk

Server. Microsoft BizTalk Server enables developers to transfer BPEL documents into a

BizTalk orchestration server o r vice versa [38]. Moreover, OpenStorm Service

Orchestrator [39] is the most widely used orchestration server that is used both in J2EE and

.NET platforms.

Oracle BPEL Process Manager is used for deployment and execution of BPEL

processes for our proposed architecture. Oracle BPEL Process Manager provides a user-

friendly and reliable solution for designing, deploying, and managing BPEL business

processes [40] [41]. Oracle BPEL Process Manager executes standard BPEL processes.

Moreover, it enables long-running process flows to be maintained in a database, so that

these processes can be stored in case of a failure. Oracle’s BPEL Process Manager is an

open standard that reduces the cost and complexity of deploying and managing business

processes by providing audit trails, process history and reporting information. It also

provides a flexible binding framework to orchestrate web services, Java/J2EE components,

portals, JCA interfaces and JMS (Java Message Service) destinations [40] [42]. Oracle’s

BPEL Process Manager supports both synchronous and asynchronous messaging and

advanced exception management. It is possible to use WSIF (Web Services Invocation

Framework) for invoking external Web services with Oracle’s BPEL Process Manager. For

example, WSIF can be used with Oracle BPEL Process Manager to invoke an EJB

(Enterprise Java Bean) or an external web service that returns the social security number

for a customer. Thus, external web services or EJBs can be treated as any other service that

has a WSDL interface [40].

 19

Oracle’s JDeveloper is used to construct example BPEL documents which serve as the

input of our architecture. Oracle’s JDeveloper is a free IDE used to develop Java and web

services [43]. Moreover, it offers rich visual tools to construct BPEL documents. It is also

possible to debug, optimize, and deploy Java applications and web services via

JDeveloper.

2.2. Web Service Caching

2.2.1. The Importance of Web Service Caching

As it is mentioned in Section 2.1, web service protocols became a key component for

implementing distributed applications running on different platforms. Furthermore,

composing web services provide business applications to be linked together across

enterprise networks. However, like many technologies, web services also suffer from

performance and availability problems.

Brian Goodman [44] mentions about three factors that affect the performance and

availability of web services. The first factor is the time for a client to make a request to the

web service through a distributed network. A web service must serve many clients that

make a request to it. The second factor is the time it takes to handle the message. As it is

known, web service protocols are based on XML. Web service communication requires

parsing of XML documents. XML parsing and schema validation are expensive operations

in terms of time and memory. Thus, using XML as a high- level data format creates

overheads in terms of application performance [45]. The third factor is the time it takes

web service itself to be executed. Since business applications require involvement of

several web services, a web service itself may need to call other web services.

Jussi Myllymaki et al. [45] stated that, despite platform and implementation

independence of web services, they suffer from performance problems. The performance

problems are mainly due to latencies in wide area network connections. Thus, long round-

trip propagation delays between client and server causes high latencies for information

access in distributed applications [46]. Moreover, the system availability declines as the

 20

layers and elements (such as network routers, gateways, application servers etc.) grow in a

network.

As a result, delays in wide area connections and the use of XML as a high- level data

format causes performance and availability problems in web services. Caching is an

important and efficient mechanism to solve these problems since it prevents full interaction

of clients and web services every time information is needed from a web service. Thus,

caching strategy provides a universal mechanism for improving performance in web

services. Thus, in this thesis, we aimed to construct a generic caching mechanism that can

be used in many web services to solve performance and availability problems.

2.2.2. Important Factors in Web Service Caching

Web service caching provides important performance improvements and solves

availability problems and the problems of load in servers. However, many factors should

be considered when providing caching in web services. This section mentions which

factors must be taken into account for an efficient cache mechanism.

Douglas B. Terry [47] mentions that, an efficient caching mechanism should be

transparently deployable and generally applicable. Transparent deployment means that the

solution must not change the implementation of parts of client, server or the

communication protocol between them. Moreover, since the growth of web services is so

fast, the solution should not be based on a specific web service. Thus, the solution should

be scalable and general enough to be applied to all web services. In our study, web services

do not need to be adjusted to our proposed architecture as long as their binding information

is known. Thus, our caching mechanism is a generic implementation that is applicable to

all web services whose binding information is known.

Matt Powell [48] explains the important factors that should be taken into consideration

when building a caching mechanism in web services. It is discussed that dynamism of web

services plays an important role in caching. For instance, if the data returned from a web

service is always different, it is not helpful to apply caching. However, just because data is

dynamic, it does not mean that caching should not be applied to a web service. If even a

 21

portion of the response is relatively static, caching can be used to increase the web server’s

performance. Our proposed solution maintains the balance of caching and web service

invocation according to the dynamism of web services.

In many situations, web services deal with user-specific data. This feature decreases the

usefulness of caching, but caching still can provide advantages in these situations. For

example, consider a web service that has a number of users. The performance can be

improved if the caching is performed for each user, particularly if the user calls the web

service multiple times. Thus, we can avoid the web service call every time the

corresponding data is needed by multiple users.

Caching operation is not limited to simply caching of responses. It is possible to cache

any sort of application data or resources in a web service response. The cached data can be

stored in a dataset, and it can be used in further call operations of web services.

Caching can be very useful if it is possible to predict the future operations and

resources in a web service interaction. If a web service includes two operations and it is

more likely that the second operation will follow the first one, web service can proactively

prepare the execution steps of the second operation once the first operation is performed,

so once the first operation is performed and second operation is called, the second

operation is executed faster.

The expiry duration of web service data is also very important when designing caching

strategies. Sometimes it is easy to determine when the data should be removed from the

cache since a process that updates data may run at regular intervals. However, there may

be situations where data in a web service needs to be updated at relatively random

intervals. In both cases, the key is to find out the optimal time interval that the cache will

be updated. Finding optimal time provides a balance between harm done getting old data

against the performance improvements provided by returning cached data [48].

The caching in web services is done mostly in client-side, so it is important for servers

to notify clients when the data will expire. Thus, the web service may add a field to the

XML response that specifically states the expiration time of the data. If other pre-built

 22

solutions perform caching, they usually provide mechanisms for indicating an expiration

time. For instance, when using HTTP caching, the expiration time of data is specified in

HTTP headers, so caching can be applied on client side until the expiry period finishes.

2.2.3. Existing Work In Web Service Caching

There has been an extensive research done about building caching mechanisms on

web services. In this section, previous work done on web service caching is discussed,

along with some obstacles to applying caching techniques in web services.

HTTP caching is one of the most popular caching mechanisms on Internet. HTTP

caching prevents the browser to download a page that was accessed before, provided that

the page is not changed. It simply works as follows: The specific web source sends a Last-

Modified (or ETag, which is opaque validation data rather than a date) header to client.

Upon downloading, the client also caches the page. When the client requests the page

again, it sends an If-Modified-Since (or for ETag, If-None-Match) header with the

validation info it got to server. If the header is matched with server, the page is not

changed, so server sends back a response code for Not Modified with an empty body. This

tells the client to use the cached version of the page. If the client's version is out of date,

the cache is not used, so the server will render the page [49], [50].

Jussi Myllymaki et al [45] and Matt Powell [48] propose using HTTP caching on web

services. It is mentioned in [45] that, since SOAP requests use HTTP as the transport

protocol and HTTP caching is done on the Internet, it might be possible to extend the

existing HTTP caching mechanism (proxy caches and HTTP headers) with SOAP support.

However, it is also mentioned that SOAP uses HTTP POST for transport, so SOAP method

call parameters and message headers that contain expiration information are not visible to

an HTTP proxy. Thus, the clients are not able to intelligently determine how to cache

responses to HTTP POST requests [48]. Thus, despite its benefits, the applicability of

using HTTP caching on web services is limited and not adequate.

 23

Cache coherence is an important concept in applying caching not only to web services,

but to web. Cache coherence concept is used to deal with integrity problems when several

clients use data stored on local caches resource that is shared between several clients [51].

The benefit of cache coherence concept arises when different clients maintain caches of a

common memory resource by providing integrity on shared memory resource between

multiple clients. Cache coherence models are typically based on one of three mechanisms:

expiration times, polling and invalidations [45].

For expiration times, different methods are studied for estimating a document’s time-

to-live (TTL) or time-to-refresh (TTR) values on the web [52]. By this way, it is concluded

that these values can be used to determine the future TTL and TTR values of the

corresponding document on web, so cache refresh time of the document can be determined

by using these values.

In polling, a client contacts the server periodically, when the document is expired, or

when a request is made to determine if a refresh is needed. Some protocols, such as HTTP,

have tools such as If-Modified-Since request modifier, and those tools provide explicit

support for making polling cheaper than a full retrieval of any document [45]. Thus, more

frequent polling provides stale data to be refreshed and hence provides stronger coherence.

In [53], combinations of client polling and server respond have been studied, and it is

concluded that server can pre-emptively respond to client according to some known values,

such as TTR of the client. Thus, a pre-emptive refresh of the cache is maintained in the

client before the next refresh time for the client.

Invalidation is used to eliminate stale data by requiring that a server inform all clients

that cached its data whenever some of the data has changed and must be refreshed or

invalidated. It is stated that this method has disadvantages such as requiring the server to

do extra bookkeeping and causing extra cost of client-server communication especially

when server has many clients to inform [45]. In our architecture, expiration information of

web services are kept in a configuration file, so extra client-server communication

overhead is not needed. However, our architecture is less dynamic than invalidation

technique since expiration information is not taken from server automatically.

 24

Jussi Myllymaki [45] mentions about providing database support for web service

caching. In [45], web services are called by stored procedures or user defined functions.

Two tables are used in the database for caching: First table stores the most recent cache for

web service responses. The second table stores the stale cache in case desired result does

not exist in the first table and the corresponding web service could not be called due to a

network failure or other reason. Thus, there is a close integration with the database engine,

and this close integration permits efficient coupling of database data (relational and XML)

with web services and appropriate query planning and execution just like with any other

SQL query. Thus, this provides a persistent database cache for web services. Our

architecture shows similarities with Myllymaki’s approach since cached information is also

kept in a database. However, Myllymaki mostly concentrated on getting data even if the

corresponding web service is temporarily not available and this caused extra space

overhead on client side.

In [48], ASP.NET’s caching capabilities are discussed. ASP.NET has a rich cache

support and this support can be used to make any job easier when providing caching

capabilities for XML web services. Basically, there are three different approaches of

caching in ASP.NET:

· ASP.NET Output Caching: It is used to cache the output of the particular page, so

that this cached output can be used in future requests of the same page. The output cache

provides a way to inform ASP.NET that response built for a particular page can be

returned to any further requests for that page. Thus, instead of executing the ASPX script

for future requests, the response from the previous request is immediately returned.

· HTTP Response Caching: It is used to cache the response returned from an HTTP

header. Thus, ASP.NET allows user to set the HTTP headers so that client applications and

HTTP proxies know how to cache the HTTP response that user sends. However, as

mentioned before; since SOAP requests are POSTed on HTTP, this feature is limited.

· Application Caching: It provides generic caching capability for a complete

ASP.NET application. It is possible to use the cache to store any sort of random data in its

collection. It is also possible to set expiration criteria for the data that is stored using

application caching.

 25

In [54], a particular form of ASP.NET Output Caching is discussed. It is possible to

add a tag to the page to indicate that the corresponding page will be cached. The duration

and location of the cache can be specified. The following example illustrates the tag that

can be added to the page as follows:

<%@OutputCache Duration="60" Location="Any" %>

As it is seen, the tag indicates that the corresponding page will be cached for 60

seconds. The location of the cache may be Any (by default), Client, Server or Downstream

(a proxy before the page reaches to the client).

It is possible to cache an ASP page according to the value of a parameter. As an

example, the tag:

<%@ OutputCache Duration="60" VaryByParam="product_id" %>

indicates that caching is applied according to the value of a parameter named “product_id”.

For the first load of page, the result is returned from server. For future calls of page; if the

value of the parameter “product_id” is not changed within 60 seconds, the result is

returned from cache; otherwise, the page is loaded from server.

Brian Goodman [44] mentions about methods of caching to accelerate web services. It

discusses the basics for rolling a caching object. In this work, it is discussed to use a Java

development environment with Apache’s Axis implementation of the SOAP protocol and a

web application server, such as IBM WebSphere. The main goal is to apply caching by

independent from web service. Figure 2.4 illustrates the proposed architecture.

Apache’s first SOAP implementation included a provider. The provider is used to

decode the SOAP envelope into an object form and method. Then, the decoded object is

instantiated and returned result is grouped in a SOAP envelope. In Axis, similar procedure

is performed through handlers. Apache’s Axis provides an architecture that there are

handlers that are used to define transaction flows. As it is seen from Figure 2.4, flows of

request and response are defined through handlers. Each handler can affect the current

preceding and following SOAP envelope. These handlers are united to constitute a larger

service. The pivot handler in Figure 2.4 is used to indicate the point at which request

 26

becomes a response. In the paper, it is mentioned that the cache can be inserted to the pivot

handler.

Figure 2.4. Axis flow architecture [44]

The cache object is illustrated on Figure 2.5. It is a self-pruning cache that stores

entries, as needed, but prunes them at their expiration times. Depending on the

implementation, the cache could afford the ability to keep popular cached objects around

longer than the infrequently used ones. In order to cache a response from a web service, it

is needed to generate a unique key. The unique key is used to index the cache and it is

generated from the service and the arguments. In a web service invocation situation; as

soon as there is a unique key, it is checked to see if there is an item in the cache. If so, the

cached response is returned. In this case, the SOAP body is cached. If there is no item in

the cache, the invocation is made and the result of invocation is stored. In this situation, the

cache stores items for a fixed time and there is a thread that repeatedly checks the

expiration times of items. If the expiration times of items are finished, the thread will prune

the stale items. Like Goodman’s approach, our architecture uses unique indexing key

generated from web service and its arguments, so each web service call can be

differentiated from each other. However, in our architecture, cached values are not pruned

in their expiration times. Instead, they are invoked again so the cached information will be

web service client

web service

request handler

Pivot handler

Axis servlet

request handler

response handler

response handler

 27

proactively available for future requests. Furthermore, our architecture prunes web service

results according to the frequency of their previous invocations.

Figure 2.5. High level view of the self-pruning cache object [44]

Athena Vakali and George Pallis [55] cover Content Delivery Networks (CDNs),

which is a new trend in web applications and caching concept on web. In CDNs, the

content is distributed to cache servers located close to users, resulting in fast, reliable

applications and web services for users. There are three parts in CDN topology:

· Surrogate servers (distributed among the world) that cache origin servers’ content.

· Routers and network elements that take content requests and forward them to the

optimal surrogate server.

· An accounting mechanism that keeps logs about content requests to the origin

servers.

In CDN topology, client-server communication is composed of two parts: one is

between the client and the surrogate server, and other is between the surrogate server and

the origin server. This topology is used to maximize network bandwidth, increase

Pruning thread

Cache object

Struct

Expire time

Object

Key

Hashtable

 28

availability of servers and copy content to provide correctness of data. Figure 2.6 depicts

the topology and overview of CDN.

Figure 2.6. Overview of Content Delivery Network (CDN) [55]

There are 3 types of content outsourcing mechanisms in CDNs. These mechanisms are

as follows:

· Cooperative push-based: Content is proactively pushed from the origin server to

surrogate servers. Initially, the content is pre-fetched to surrogate servers and then,

surrogate servers cooperate to reduce the replication and update cost. This method is

similar to the method used in our caching architecture. However, in our case, web service

content is pushed into database. Cooperative push-based approach is more generalized than

our approach since it supports many clients to share cached information. However, it is

slower than our architecture since it involves the overhead of accessing surrogate servers.

· Uncooperative pull-based: Client requests are forwarded to the closest surrogate

server. If the requested cache is not found on the surrogate server, the request is forwarded

either to a peer surrogate server of the underlying CDN or to the origin server.

Clients in
Australia Clients in

U.K.

Clients in
China

CDN Content
Distributor

Origin
server in

U.S.

Surrogate
server in

U.K.

Surrogate
server in

China

Surrogate
server in

Japan

Surrogate
server in
Australia

Clients in
Japan CDN

 29

· Cooperative pull-based: Client requests are forwarded through DNS redirection to

their closest surrogate server. If the requested cache is not found, surrogate servers interact

with each other to find the intended objects and add them to their caches. Thus, there is a

close cooperation among surrogate servers.

Exploiting caching under CDNs is a simple idea since surrogate servers are equipped

with caches. Two main ideas have been proposed in [55] about this issue. The first

approach is called Web Prefetching, in which client’s future requests are deduced and pre-

fetched to cache. This approach prevents overheads related with bandwidth and reduces a

significant part of latency. The second approach is called Surrogate Server Cache

Segmentation, in which each cache of surrogate server is partitioned logically into several

domains to provide a flexible memory management. It is proposed that intelligent cache

segmentation on surrogate servers will increase cache hits and reduce accessing costs.

Segura-Devillechaise and Jean-Marc Menaud [56] mentioned using aspect orientation

to achieve dynamic adaptation and using this dynamic adaptation to cache web services.

The paper concludes that information systems should tailor a cache to their needs and

experiments showed that the required adaptation is dynamic, motivated by a variability that

could not be anticipated before. Therefore, it is stated that aspect orientation has the

potential to support this dynamic adaptation.

Justin Reabow et. al. [57] concentrated on solving availability problems in web

services during network disconnections, rather than concentrating on performance

problems. In order to perform this, cache architecture is built that accesses and modifies

WSDL descriptions of web services to customize a cache control on web services.

Moreover, studies have been performed to provide support to mobile users for web

services.

2.3. Summary

In this chapter, we tried to emphasize the importance of web services and caching

conecpt in web services. In the first section, we stated the most important aspects of web

 30

services that makes them more prefferable compared to previous distributed system

technologies. Then, we desribed Service Oriented Architecture (SOA) and its elements that

constitute the main parts of web services. Furthermore, we explained the importance of

composition of different web service applications to perform business applications. We

also explained BPEL4WS, which constitutes the input element of our study. In the second

section, we mentioned about caching in web services. We tried to emphasize the

importance and need of caching concept in web services. Then, we tried to decide when

and where to cache in certain applications. Moreover, we gave previous work done about

web service caching in different platforms and compared different approaches with our

caching architecture. As a result, it is obvious that caching is an essential operation in

Internet-based applications, so web services need caching extremely in large business

applications.

 31

3. OVERVIEW OF OUR ARCHITECTURE

In this chapter, our proposed framework is described as an overview. First, features of

platforms and tools of our proposed architecture are emphasized. Then, the main parts of

our architecture is described.

3.1. Platforms and Tools Used in Proposed Architecture

As it is mentioned in Chapter 2, web services need to interact in distributed

applications efficiently. This interaction can be maintained with web service composition.

In order to design an efficient and generic caching architecture for web services, we

needed a web service composition language that can include involvement of several web

services. In Chapter 2, WSCI and BPEL are observed as the most popular web service

composition languages. On these two languages, BPEL is chosen for our proposed

architecture since it is more popular and a flexible language to define business processes.

Furthermore, since web services are platform independent, we needed a web service

composition language that can be used on every platform. Since BPEL is completely XML

based [58], it can be used on every platform. Thus, the input elements of our proposed

architecture are BPEL processes that exploit web services and other BPEL processes to

accomplish business operations.

It is mentioned in Chapter 2 that, BPEL documents are XML-based documents that

define to run business operations. Moreover, in order to run BPEL documents, we needed

an orchestration engine. There are many orchestration engines available and they are

briefly mentioned in Chapter 2. On those orchestration engines, Oracle’s BPEL Process

Manager and Oracle’s BPEL Process Server is used to deploy and execute BPEL processes

in our architecture. Thus, BPEL documents are deployed on Oracle’s BPEL Process Server

as executeble processes. Then, those BPEL processes are executed on Oracle’s BPEL

Process Manager.

 32

3.2. Proposed Architecture

In this section, we describe our proposed architecture. The first step of our architecture

is to transform BPEL documents into executable processes and deploy them in Oracle’s

BPEL Process Server. Then, the core elements of our architecture and their interaction

with deployed BPEL processes are explained. There are basically four core elements in our

proposed architecture. The first element is the Proactive Caching Scheduler Pre-processor

(PCS Pre-processor) which transforms BPEL documents in such a way that they are ready

to interact with our caching architecture. The second element is Proactive Caching

Scheduler (PCS) which fully interacts with BPEL processes and decides to cache or invoke

them. The third element is the Daemon Proactive Caching Scheduler (Daemon PCS) which

schedules and applies caching operation to invoked web services. The fourth element is a

trace program that analyzes data collected from PCS and Daemon PCS and keeps

statistical information about those data.

At first stage of our architecture, BPEL documents are simple XML documents. In

order to run a business process, BPEL documents must be transformed into executables

and executed in a BPEL engine. Figure 3.1 demonstrates how BPEL documents are

transformed into executable processes. At the first stage, we have an XML based BPEL

document that performs a specific task. This BPEL document may involve invocation of

several other BPEL documents, Enterprise Java Beans (EJBs) and external web services. In

order for BPEL documents to interact with our architecture, they must be modified to

include elements of our architecture. So, in our architecture, each BPEL document is

parsed by our PCS Pre-processor. Our PCS Pre-processor parses the corresponding

documents, finds the statements where web service invocations are made, and replaces

those invocations with the invocation to our PCS. Thus, instead of calling web services

directly, BPEL processes will be able to call our PCS as a web service with specified

parameters. PCS Pre-processor is implemented in Java and Java’s XML DOM API is used

to parse corresponding BPEL documents. Since BPEL documents show the features of

XML documents, they could be used as natural XML documents during parsing process.

After BPEL processes are parsed by our PCS, they must be compiled and deployed to a

BPEL engine for execution. The Oracle BPEL Process Manager includes an Ant utility

 33

called obant, which you can use to configure complex compilation and deployment

scenarios. Obant is a like an envelope around standard Ant, which sets the environment

and then invokes the standard Ant compiler to compile BPEL documents [59]. After

corresponding BPEL processes are compiled with obant utility, they are deployed to server

as .jar files and are ready for execution.

Figure 3.1. Generating executable of BPEL document

Generation of business processes from BPEL documents are depicted on Figure 3.1.

The BPEL processes are interacted with our PCS and Daemon PCS as they interact with

web services. Figure 3.2 demonstrates the execution of BPEL processes with our

architecture. At the top part of the figure, there are BPEL processes which were

transformed and deployed on Oracle BPEL Server as explained on Figure 3.1. These

processes interact completely with our PCS. Our PCS is invoked in each web service

invocation statement of BPEL processes. PCS serves each web service as they are invoked

through BPEL processes. PCS consist of procedures. Each procedure serves a different

web service. These procedure names and their parameters are defined in WSDL document

of our PCS. Procedure names are also defined in WSDL documents of web services. Thus,

based on specific web service, corresponding procedure is invoked in PCS with specified

parameters instead of invoking web services themselves. PCS checks if corresponding web

PCS Pre-processor

Application (BPEL code)

Generated BPEL code
G

BPEL Compiler

Jar Executable
G

 34

services are invoked before. If the web service is not invoked before, it is invoked with

specified parameters and its result is stored in cache. If the web service is invoked before,

its last invocation time is checked. If the time is expired; the web service cache is expired,

so the corresponding web service is called with specified parameters and the result of

invocation is stored in cache. If the expiration time is not expired, the result is returned

from cache. Thus, PCS serves each web service invocation and determines whether or not

the cache has expired or not.

Figure 3.2. Execution of BPEL processes with PCS and Daemon PCS

Daemon PCS is used to perform a schedule of web services and apply caching with

respect to the schedule generated. It reads web service expiration information from a

configuration file and specifies the times where corresponding web services’ cache are

expired. Then, using a background thread; it invokes each web service as their expiration

BPEL PROCESS

 (JAR EXECUTABLE)

BPEL PROCESS

 (JAR EXECUTABLE)

PCS

DAEMON

PCS

DATABASE

ENGINE
Web

Server

TRACE

PROGRAM

 35

time finishes. This operation is performed periodically, so it is possible to keep fresh

information and use it whenever it is needed by our BPEL processes.

Our architecture use a database engine to store cached information from previous

invocation of web services, so that cached information can be used as long as they are not

stale.

When designing a caching mechanism for web services, we considered that caching

web service invocation continuously results overhead in space. In order to solve this

problem, we implemented a trace program that keeps statistical information about

previously invoked web services. Our trace program utilizes this statistical information to

compare the importance of web services based on their invocation frequency. When the

size of the cache exceeds a specified threshold, our trace program prunes web services that

has low invocation frequency. Thus, we managed to balance the process of caching and

disk size optimization throughout the study.

 36

4. PCS PRE-PROCESSOR

This chapter explains the operations of the architecture that are done at compile time.

The procedure of how to transform BPEL documents in such a way that they can be able to

interact with our PCS is explained. Then, the details of transformation of BPEL documents

are emphasized with an example. After that, the procedure of how BPEL documents are

transformed into executable processes is explained.

4.1. Transformation of BPEL Documents

BPEL documents are XML-based documents that provide to run a business task. Since

a pre-processor provides more transportable code between different machine architectures

[60], a pre-processing engine that provides interaction with our PCS is required. To be able

to interact with our proposed architecture, we implemented a pre-processor program that

traverses BPEL documents and perform some manipulations on their structure.

In order to transform BPEL documents, it is needed to use XML access models to be

able to perform traversing, reading and manipulation inside the code. DOM and SAX are

two strong models that are language independent and supported by numerous languages to

access XML. DOM (Document Object Model) is a model that defines a standard way of

accessing and manipulating XML based documents. The DOM presents an XML

document as a node tree-structure. The elements, attributes and text are presented as nodes

using DOM [61]. SAX (Simple API for XML) is another parser model to access XML and

it handles XML information as a stream of data. The stream is unidirectional, so; unlike

DOM, it is not possible to re-access previously accessed data without re-parsing. However,

since DOM reads all content of the document as a node tree in memory, it is slower than

SAX, especially when the corresponding XML document is large.

Our pre-processor is implemented in Java. Java’s XML DOM API is used during the

construction of pre-processor. The PCS pre-processor traverses each BPEL document,

finds the statements where web service invocations are done and replaces those invocations

with the invocation to our PCS. Thus; instead of calling external web services, our PCS

 37

acts as a web service itself and it is executed when a web service needs to be invoked in

the BPEL process. Figure 4.1 and 4.2 illustrate an example of a currency converter BPEL

document.

Figure 4.1 presents the example of the BPEL document before involvement of our PCS

Pre-processor. The BPEL document starts with a <process> statement. Namespaces of

XML schemas and currency converter web service are defined with the <process>

statement. Then, two partner links are defined: one for the client that executes the BPEL

process (ThesisService) and other for the currency converter web service (Currency). After

that, two variables are defined. The variable CurrencyRequest is the input variable of

currency request web service. The variable CurrencyResponse is the output variable that is

returned from currency converter web service.

After defining partner links and variables, the web service interaction is done in the

<sequence> statement. First, the value of the input variable is assigned with <assign> tag.

For our example, “US DOLLAR” is assigned as the input variable. Then, the web service

is invoked. The <invoke> statement is used to invoke the intended web service. The input

and output variables of <invoke> statement are CurrencyRequest and CurrencyResponse

variables respectively. The partner link, port type and operation name of <invoke>

statement are partner link, port type and operation of currency converter web service

respectively. Since partner links describe how to logically tie a BPEL process to an

existing web service, it can be said that the <invoke> statement is logically tied to currency

converter web service. Since the port type and operation are port type and operation of

currency converter web service, the BPEL process will use the port type and operations

defined in currency converter web service. As a result, it can be said that BPEL process

defined on Figure 4.1 will invoke currency converter web service on the <invoke>

statement.

 38

<?xml version="1.0" encoding="UTF-8"?>
<process name="Thesis"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:cur="http://oracle.com/service/currency/"
 xmlns:prc="http://oracle.com/bpel/Thesis/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://oracle.com/bpel/Thesis/">

 <partnerLinks>
 <partnerLink myRole="ThesisService"
 name="Thesis"
 partnerLinkType="prc:ThesisLT"
 partnerRole="ThesisCallBackService"/>

 <partnerLink name="Currency"
 partnerLinkType="cur:CurrencyLT"
 partnerRole="CurrencyService"/>
 </partnerLinks>

 <variables>
 <!-- input for the Currency web service -->
 <variable messageType="cur:CurrencyRequestMessage"
 name="CurrencyRequest"/>
 <!-- output from the Currency web service -->
 <variable messageType="cur:CurrencyResponseMessage"
 name="CurrencyResponse"/>
 </variables>

 <sequence>
 <pick createInstance="yes">
 <onMessage operation="thesisoperation"
 partnerLink="Thesis"
 portType="prc:ThesisPT"
 variable="FactorialRequest">

 <sequence>
 <assign name="assign1">
 <copy>
 <from expression="string('US DOLLAR')"/>
 <to part="myInput"
 query="/myInput/cur:MyCurrency"
 variable="CurrencyRequest"/>
 </copy>
 </assign>

 <invoke inputVariable="CurrencyRequest"
 outputVariable="CurrencyResponse"
 operation="currencyoperation"
 partnerLink="Currency"
 portType="cur:CurrencyPT"/>
 </sequence>
 </onMessage>
 </pick>
 </sequence>
</process>

Figure 4.1. Initial BPEL document

Figure 4.2 illustrates the transformed BPEL document after PCS Pre-processor is

executed. The changed and added parts are shown in bold. At the first step of

transformation process, our PCS web service’s namespace is added to the namespace

 39

declarations part of the document, so this namespace can be used in the usage of our PCS

throughout the BPEL document. Then, partner link information of our PCS is added to the

partner links section of the document since the BPEL process will use our PCS in web

service invocations. The core part of transformation is done in the <invoke> statement of

the BPEL process. The <partnerlink> element of <invoke> statement changes with the

partner link of our PCS, because the corresponding BPEL document will be logically tied

to our PCS. The <portType> element is also changed and it represents the port type of our

PCS, because PCS’s operations will be used after the invocation process. It is important to

notice that the <operation> element is not changed since our PCS has the operation named

currencyoperation in the port type of its WSDL document. Thus, based on the

currencyoperation operation of CachingSchedulerPT port type in CachingScheduler

partner link, our PCS web service is invoked instead of the currency converter web service.

The input parameter of invocation is the CurrencyRequest variable. At the end of the

invocation, the result is returned asynchronously to the process and it will be assigned to

the CurrencyResponse output variable.

After PCS Pre-processor traverses the web service invocations and replaces them

with the invocation to PCS, it adds an additional <invoke> element to the BPEL

document. This <invoke> element invokes ProcessCounter operation of PCS. Notice that

the input and output variables (ProcessCounterRequest and ProcessCounterResponse) for

ProcessCounter operation are also defined at the variables section of the BPEL document.

Moreover, the name of the BPEL document is assigned to the input variable

(ProcessCounterRequest) just before invocation of ProcessCounter operation to be sent as

an input parameter. The ProcessCounter operation of PCS stores the statistical information

about previous web service invocations. It stores which web services are invoked at what

order in which BPEL processes. Thus, it becomes possible to measure the invocation

frequency of previously invoked web services. In order to exploit this statistical

information, a trace program is implemented that read these data and prune less frequently

invoked web service information from cache when the cache size exceeds a specified

threshold. This is very important because it is not possible to keep cached information

forever. With the trace program, we aimed to minimize the overheads in disk capacity.

Moreover, when the cache size is too large, the time to fetch data from cache can be long

 40

and caching would not be utilized effectively. Thus, we aimed to keep the web service

invocations that are more frequently invoked. By this way, the cache size is kept balanced.

Figure 4.2 Transformed BPEL document

<?xml version="1.0" encoding="UTF-8"?>
<process name="Thesis"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:cur="http://oracle.com/service/currency/"
 xmlns:prc="http://oracle.com/bpel/Thesis/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://oracle.com/bpel/Thesis/"
 xmlns:cacsch=“http://oracle.com/service/cachingscheduler”>

 <partnerLinks>
 <partnerLink myRole="ThesisService"
 name="Thesis"
 partnerLinkType="prc:ThesisLT"
 partnerRole="ThesisCallBackService"/>

 <partnerLink name="Currency"
 partnerLinkType="cur:CurrencyLT"
 partnerRole="CurrencyService"/>

 <partnerLink name="CachingScheduler"
 partnerLinkType="cacsch:CachingSchedulerLT"
 partnerRole="CachingSchedulerService"/>
 </partnerLinks>

 <variables>
 <!-- input for the Currency web service -->
 <variable messageType="cur:CurrencyRequestMessage"
 name="CurrencyRequest"/>
 <!-- output from the Currency web service -->
 <variable messageType="cur:CurrencyResponseMessage"
 name="CurrencyResponse"/>
 <!-- input for the ProcessCounter operation of PCS -->
 <variable messageType="prcnt:ProcessCounterRequestMessage"
 name="ProcessCounterRequest"/>
 <!-- output from the ProcessCounter operation of PCS -->
 <variable messageType="prcnt:ProcessCounterResponseMessage"
 name="ProcessCounterResponse"/>
 </variables>
 <sequence>
 <pick createInstance="yes">
 <onMessage operation="thesisoperation"
 partnerLink="Thesis"
 portType="prc:ThesisPT"
 variable="FactorialRequest">
 <sequence>
 <assign name="assign1">
 <copy>
 <from expression="string('US DOLLAR')"/>
 <to part="myInput"
 query="/myInput/cur:MyCurrency"
 variable="CurrencyRequest"/>
 </copy>
 </assign>

 41

Figure 4.2. Transformed BPEL document (continued)

4.2. Generating Executables of Transformed BPEL Documents

After the corresponding BPEL documents are transformed by PCS Pre-processor,

they need to be compiled and deployed to server as executable processes. Oracle BPEL

Process Manager’s obant utility is used to compile BPEL documents and deploy them to

Oracle BPEL Process Server. The obant is a wrapper around standard Ant utility, which

sets the environment and then invokes the standard Ant Java task [59]. After that,

corresponding BPEL processes can be executed in Oracle BPEL Process Server.

 <invoke inputVariable="CurrencyRequest"
 outputVariable="CurrencyResponse"
 operation="currencyoperation"
 partnerLink="CachingScheduler"
 portType="cacsch: CachingSchedulerPT"/>

 <!—Assign the name of BPEL process to input parameter -->
 <assign name="Process_Counter_Assign">
 <copy>
 <from expression="string('Thesis.bpel')"/>
 <to part="myInput"
 query="/myInput/prcnt:ProcessName"
 variable="ProcessCounterRequest"/>
 </copy>
 </assign>

 <invoke inputVariable="ProcessCounterRequest"
 operation="processcounteroperation"
 outputVariable="ProcessCounterResponse"
 partnerLink="CachingScheduler"
 portType="cacsch:CachingSchedulerPT"/>
 </sequence>
 </onMessage>
 </pick>
 </sequence>
</process>

 42

5. PCS AND DAEMON PCS

In this chapter, the core part of proposed architecture is described. First, web services

Invocation Framework (WSIF) is explained that provides invocation of web services on

BPEL processes. Then, usage of WSIF in our architacture is explained. After that, the logic

behind PCS and its functionality over BPEL processes is stated. The proposed operations

and behaviour of PCS according to web service expiration times are explained. Then, the

function and necessity of Daemon PCS is explained. By this way, the effectness of our

architecture when executing BPEL-based business applications is emphasized.

5.1. Proactive Caching Scheduler (PCS)

5.1.1. Usage of WSIF in BPEL Processes and PCS

As it is stated in Chapter 4, BPEL processes are parsed by PCS Pre-processor to be

able to interact with our PCS and deployed to Oracle BPEL Process Server. Then, the PCS

web service starts to operate when a web service invocation is occurred in BPEL

processes. Invocation of PCS in BPEL is accomplished by WSIF (Web Services

Invocation Framework).

In our architecture, WSIF is closely integrated with WSDL structures of web services

that will be invoked on BPEL processes. The only condition to use WSIF is to know the

WSDL structures of web services. In our architecture, BPEL processes invoke our PCS as

a web service, so by knowing WSDL structures of our PCS, WSIF is used to access the

data types and binding information of our PCS. Thus, it becomes possible to invoke our

PCS through WSIF.

In order to invoke our PCS through BPEL processes, we need data defined in BPEL

processes to send variables to our PCS and get corresponding results back to BPEL

processes. However, since BPEL documents are XML based and our PCS is Java based,

we needed a mapping between XML and Java. To provide this mapping, automated Java to

 43

XML bindings are used to convert XML Schema types to Java types automatically. For

this purpose, Oracle BPEL Process Manager supports default Java-to-XML bindings

through the use of XML façades [34] for WSIF. XML façades are a set of Java interfaces

and classes which you can access and modify XML data stored in BPEL variables in an

easy way using get/set methods. In this manner, it is not required to change XML content

directly since the XML is hidden behind the façade and you can manipulate the data

through regular Java interfaces. This concept is known as XML serialization. The idea

behind XML façades is to provide support for mapping of data types between XML and

other high level languages [34]. In our architecture, data types defined in WSDL structure

of our PCS are mapped to their equivalent Java types by producing Java classes from XML

schemas.

Most of the simple data types can be mapped to either primitive or object types from

XML to Java. In addition to this, complex types can also be mapped to their corresponding

Java types. In this study, many considered web services’ WSDL documents have complex

data types defined in their <types> element. For example, below fragment shows the data

types used on the WSDL structure of the currency converter web service:

<types>

<xs:schema elementFormDefault="qualified"

 targetNamespace="http://oracle.com/service/currency/">

 <xs:complexType name="CurrencyInput">

 <xs:sequence>

 <xs:element name="MyCurrency" type="xs:string" />

 <xs:element name="Name_of_BPEL" type="xs:string" />

 <xs:element name="Name_of_WS" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

</types>

Figure 5.1 Data types used in WSDL document of currency converter web service

The XML façade for this complex XML type provides an interface and a class through

which the elements (MyCurrency, Name_of_BPEL, Name_of_WS) using Java getter

methods. The XML façade also allows modifying the corresponding element data using

 44

setter methods. Thus, the XML façade for the variable in Figure 5.1 (CurrencyInput)

consists of an interface (ICurrencyInput) and a class (CurrencyInput) which provides the

following methods:

· getMyCurrency() and setMyCurrency()

· getName_of_BPEL() and setName_of_BPEL()

· getName_of_WS() and setName_of_WS()

As a result, variables are defined in the WSDL structure of corresponding web service

and they are mapped using XML façades. Thus, we extracted currency converter web

service’s variables in our PCS as shown in Figure 5.2.

public String getCurrency (CurrencyInput myInput)

{

 String currencyType = myInput.getMyCurrency(); // get Currency from BPEL document

 String bpelName = myInput.getName_of_BPEL(); // get Name_of_BPEL from BPEL document

 String wsName = myInput.getName_of_WS(); // get Name_of_WS from BPEL document

 ...

}

Figure 5.2 Extracting currency converter web service parameters in PCS

After defining the mapping of variables between WSDL documents and our PCS, we

need to define the WSIF binding for currency converter method in our PCS. The WSIF

binding of web services are defined in the <binding> element of WSDL structure of PCS.

The WSIF binding information presents the way to bind to an external web service by

specifying web service’s encoding information, XML serialized data, supported operations

and methods. The WSIF definition of our PCS for currency converter web service i s

presented on Figure 5.3.

As it can be seen from Figure 5.3, first the type mapping from XML to Java is defined.

The input parameter XML type CurrencyInput is mapped to the

com.oracle.service.currency.CurrencyInput Java class. In addition, the WSDL operation

currencyoperation is mapped to the Java method getCurrency() which is located in PCS.

 45

<binding name="JavaBinding" type="tns:CachingSchedulerPT">

 <java:binding/>

 <format:typeMapping encoding="Java" style="Java">

 <format:typeMap typeName=”cur:CurrencyInput”

 formatType=”com.oracle.service.currency.CurrencyInput”

 </format:typeMapping>

 <operation name="currencyoperation">

 <java:operation methodName="getCurrency"/>

 <input/>

 <output/>

 </operation>

</binding>

Figure 5.3 WSIF Binding for currency converter web service on WSDL document of

PCS

After defining the Java binding, the service used in PCS is defined. The service

provided in the Java class is defined in this section. For currency converter web service

example, the Java class of our PCS is defined in the service definition as shown in Figure

5.4. As a result, the currency converter web service will use the getCurrency() method

defined in com.oracle.cachingscheduler.CachingSchedulerJava Java class. (Figure 5.3

and Figure 5.4)

<service name="CachingScheduler">

 <port name="JavaPort" binding="tns:JavaBinding">

 <java:address className="com.oracle.cachingscheduler.CachingSchedulerJava"/>

 </port>

</service>

Figure 5.4 Service definition for PCS in WSDL document of PCS

5.1.2. Working Principle of PCS

In section 5.1.1, the importance and usage of WSIF when building PCS is explained.

This section explains the steps that PCS takes when executing with several BPEL

processes. The PCS makes decisions based on certain criteria whether to invoke a web

service or return its result from cache. The schematic view of PCS is depicted in Figure

 46

5.5. The steps performed in PCS are also explained in the following paragraphs with

respect to Figure 5.5.

1. At first step, there are one or more BPEL processes deployed on Oracle BPEL

Process Server. Our PCS starts executing when a web service invocation is performed from

those BPEL processes. Thus, as it is explained in Chapter 4, our PCS is invoked when a

web service invocation is made by BPEL processes.

2. The PCS starts executing by extracting the web service name and its corresponding

parameters from the <invoke> statement of BPEL processes. It is important to note that,

web service name and its parameters are defined in the WSDL structure of each web

service as inputs and they are also initialized in BPEL process. After <invoke> operation is

performed, these values are passed to PCS, so that they can be used in PCS. Then PCS

combines web service name and its parameters, and creates an MD5 (Message Digest 5)

hash of them. Thus, MD5 hash uniquely identifies the name and parameters of the

corresponding web service. MD5 hash is used to check whether the corresponding web

service has been called previously with the same parameters or not.

3. Moreover, there is a database which stores information about previously invoked

web services. It contains previously invoked web service’s name, MD5 hash (web service

name and i t s parameter values), the result returned from the web service and input

parameters provided when that web service was invoked. Thus, constructed MD5 is

compared with the MD5 in the database to check if the corresponding web service was

called previously with the same parameters.

4. If the web service is invoked before with the same parameters, the next operation is

decided based on corresponding web service’s expiration time. In our architecture, each

web service’s expiration time is stored in a configuration file (for example, if the value of a

currency converter web service is changed on every five minutes, then the expiry time of

currency converter web service is stated as 5 minutes). So, if the corresponding web

service is previously invoked with the same parameters, the time of its last invocation time

is taken from database and compared with current time. If the difference between current

time and last invocation time exceeds the expiry time which is taken from configuration

 47

file, that means cache of corresponding web service is expired and the value is a stale

value. In this case, web service is invoked with the same parameters and its returned value

is updated in database (Step 6). Thus, new refreshed value will be in the cache for future

use.

5. If the difference of current time and last execution time does not exceed the

expiration time of the corresponding web service, it means that the result of the web

service does not need to be refreshed by invoking the web service, so the result can be

taken from database and returned to corresponding BPEL process. In that way, calling of

the web service is avoided every time a BPEL process needs it, since its result exists in the

cache.

6. If the corresponding web service was not called with same parameters previously, it

is called with specified parameters. In this case, our PCS calls the web service via SOAP

RPC. However, any method can be used in this part of the study. Thus, the method of web

service invocation depends on the programmer. After calling the web service, the returned

result is stored into database with its properties (name of the web service, its MD5 hash,

result, date obtained the result and its input parameters) for future use.

7. After PCS performs its operation based on the expiry information of corresponding

web service, the result of web service is returned to the BPEL process. Thus, BPEL

process can use this result in its business operations.

The PCS also stores which web services are called on which BPEL processes in an

ordered manner, so that it becomes possible to generate a trace of executed web services

and BPEL processes. This trace information can then be used to determine the importance

values of web services and BPEL processes, so these importance values can be used to

give extra priority to those web services and BPEL processes. However, trace information

of previous web service calls are used to make optimizations regarding the disk capacity.

Our system uses the tracing information and decides which web service record to remove

when the disk capacity exceeds a specified threshold. Since it is not possible to cache

forever, we are avoiding keeping unnecessary information on database. Moreover, since

 48

 MD5

cache size is kept small with necessary data, the time to return cached data will not be

long.

Figure 5.5 Proactive Caching Scheduler (PCS) mechanism

5.2. Daemon Proactive Caching Scheduler (Daemon PCS)

5.2.1. Working Principle of Daemon PCS

In this section, working principle and the idea behind Daemon PCS is explained. The

Daemon PCS performs a schedule for all possible web services and provides proactive

caching of available web services in a background manner. The schematic view of PCS is

MD5

Search DB and find last
invocation time of

corresponding WS

Call WS

Get result and store to DB

Store invocation information of

WS and BPEL processes

Retrive result from cache

BPEL PROGRAM
...

<invoke>

Call PCS Return result

Create MD5 hash of WS name
and parameters

No Match Find Match

Expired

Not
Expired

PCS

1

2

3

4

5

6

Compare

7

 49

depicted in Figure 5.6. The steps performed in Daemon PCS are also explained in the

following paragraphs with respect to Figure 5.6.

1. The Daemon PCS begins execution by taking all web services’ addresses and their

corresponding expiration and availability information from a configuration file. Expiration

information shows the time that corresponding web service’s result is changed.

Availability information shows the available times that corresponding web service

operates. For example, currency exchange web services may not operate at weekends since

stock markets don not operate at weekends. Thus, it can be said that currency exchange

web services are available during midweek and they are not available at weekends. The

Daemon PCS collects this information from a configuration file and performs next steps

according the information of the configuration file.

2. After obtaining corresponding web services’ expiration and availability

information, the Daemon PCS performs a daily schedule of each web service by

calculating the times that those web services will be invoked during a day. For example, if

the web service that returns the temperature of a city has an expiry time of 30 minutes, this

web service is put in a schedule and it is invoked 48 times (every 30 minutes) in a day.

3. Each web service is invoked based on the created schedule by Daemon PCS when

its expiration time comes.

4. After getting the results of web service invocation, each web service’s result value

is stored in database, so in most of the time, database will hold refreshed values for web

services. In this way, when many BPEL processes are executed, they can use database to

get the corresponding web service result by avoiding invocation of the same web services

over and over, which exposes a performance and availability problem. Thus, results from

web services can be obtained faster and without adding extreme load to servers.

For the implementation of our Daemon PCS, Java’s Timer class is used to schedule

several recurring web services periodically in a day. Java’s Timer utility is introduced in

Java 2 Standard Edition, Version 1.4.2. The java.util.Timer and java.util.TimerTask classes

are the composition of the Java timer framework and they make easy for programmers to

 50

DAEMON PCS

schedule simple tasks. Before this framework was introduced in the Java 2 SDK, Standard

Edition, Version 1.3, developers had to write their own scheduler, which required to work

with threads and the complexities of the Object.wait() method. Java’s Timer class is a

facility for threads to schedule tasks for future execution in a background thread. Tasks

may be scheduled for one-time execution or for repeated execution at regular intervals [62]

[63]. In other words, Java’s Timer class performs the similar functionality of UNIX

scheduler (cron) facility [63] [64]. However, the scheduling framework of Java’s Timer

utility is more flexible than cron. As an example, there may be scenarios such that a web

service needs to be invoked at 8:00 AM on weekdays and 9:00 AM on weekends. Using

cron, we need two crontab entries (0 8 * * 1,2,3,4,5 and 0 9 * * 6,7) [63]. However, Java’s

Timer facility provides a more elegant solution since it is easier to control such restrictions

in future scheduling automatically.

Scheduling and caching with Daemon PCS is a flexible and performance friendly

process since it uses a background thread to schedule web services. Thus, since there is

only one thread running as a background process, it does not add much performance

overhead into the system.

Figure 5.6 Daemon PCS mechanism

CONFIGURATION FILE

 Web Service Expiration Availability

 information information

Create schedule of Web
services

Serve each Web service
based on created schedule

Get results of Web
service invocations and

store to DB

Read WS
info

1

2

3

4

 51

6. EXPERIMENTAL TESTS AND RESULTS

In this chapter, experimental work related to our architecture is presented. There are

many web service applications that business applications and web sites use in daily life.

We tried to select popular web service applications for our test environment. Our selected

web service applications can be grouped as two: Applications that have expiration times

such as temperature or currency exchange web services; and applications that don not have

expiration times (or expiration times are very long), such as Turkish Republic Identity web

service and eBay Item web service. At the end of experiments, results gathered with and

without our architecture are compared to test the efficiency of our study.

In our test scenarios, we have prepared a BPEL document for each web service and

invoked our PCS with the operation name of corresponding web service. Thus, our PCS

understands which web service to serve based on the passed operation name from BPEL

processes. Furthermore, in order to get accurate and consistent results, we tested each web

service 10 times by executing each web service’s BPEL process 10 times and computed

the average of execution time. We left some time gap between each experimental test in

order not to create extreme load in web service side. The test environment is illustrated on

Table 6.1. For the software environment, Java 2 Platform SDK 5.0 and Java Runtime

Environment 5.0 are used for the construction of our PCS Pre-processor, PCS and Daemon

PCS. Furthermore, Oracle BPEL Process Manager 10.1.2 is used for deployment and

execution of BPEL processes throughout the study.

Table 6.1 Test environment used in experimentation

Hardware and Network Environment Software Environment

Toshiba Satellite A30-151 Notebook

Pentium IV 3.06Ghz CPU, 1GB RAM

Windows XP Professional Version 2002 SP2

256 Kbps. ADSL Connection

Java 2 Platform SDK 5.0

Java Runtime Environment 5.0

Oracle BPEL Process Manager 10.1.2

 52

6.1. US Weather Forecast Web Service

Our first external web service example is US Weather Forecast web service. The US

Weather Forecast web service gives the temperature and weather information of cities in

the United States. The URL for US Weather Forecast web service is located in

http://iwin.nws.noaa.gov/iwin/us/traveler.html w e b site [65]. The web service gets the

name of the city as input parameter and returns name of city, the city’s estimated

highest/lowest temperature values and its weather forecast (sunny, windy, rainy etc.) In

our test environment, our BPEL process gets the name of the city to be searched as a

variable and invokes our PCS with the name of the city as the parameter. Our PCS

performs invocation of web service based on the expiration time of the web site. As an

example, we gave 60 minutes to the expiration time of temperatures of cities. After

performing its operation (invoking the web service or getting the result from cache), PCS

passes the result to BPEL process. The passed result is stored in a different variable that is

declared in the BPEL process. Table 6.2 shows an example of sent input variable and

gathered results from US Weather Forecast web service.

Table 6.2 US Weather Forecast Web Service input and output data

INPUT OUTPUT
Name of City Name of City HI/LO Weather

DENVER DENVER 69 / 35 SUNNY

Figure 6.1 shows the tests done in US Weather Forecast web service execution times

with and without our arcitecture. As it can be observed, the execution with our architecture

is 4-5 times faster than the execution without our architecture.

 53

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Execution

T
im

e
 (

m
s

)

Execution time without PCS

Execution time with PCS

Figure 6.1 Analyses of US Weather Forecast Web Service

6.2. Turkish Republic Central Bank Currency Exchange Web Service

Our second external web service is Turkish Republic Central Bank Currency Exchange

web service. Turkish Republic Central Bank web site lists the exchange values for many

currencies among the world. The currency exchange information is held in

http://www.tcmb.gov.tr/kurlar/today.xml web site. The web service gets the name of the

currency as input and returns the exchange of corresponding currency in terms of Turkish

Lira. The web service parses the URL http://www.tcmb.gov.tr/kurlar/today.xml and finds

the corresponding Turkish Lira exchange for input currency. In our test environment, our

BPEL process gets the name of the currency to be searched as input and invokes our PCS

with the name of the currency as the parameter. Our PCS performs invocation of web

service based on the expiration time of the web site. As an example, we gave 30 minutes to

the expiration time of refreshness of currency exchange web site. Table 6.3 shows an

example of sent input variable and gathered result from Turkish Republic Central Bank

Currency Exchange web service. As it is seen from Table 6.3, it is possible to obtain forex

buying, forex selling, banknote buying and banknote selling of currencies.

 54

Table 6.3 Turkish Republic Central Bank Currency Exchange Web Service input and
output data

INPUT OUTPUT
Currency Type Forex Buying Forex Selling Banknote Buying Banknote Selling

US DOLLAR 1.4501 1.4571 1.4491 1.4593

Figure 6.2 shows the tests done in Turkish Republic Central Bank Currency Exchange

web service execution times with and without our arcitecture. As it can be observed, the

execution with our architecture is 3-5 times faster than the execution without our

architecture.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Execution

T
im

e
 (

m
s

)

Execution time without PCS

Execution time with PCS

Figure 6.2 Analyses of Turkish Republic Central Bank Currency Exchange Web Service

6.3. Turkish Republic Identity Web Service

Turkish Republic identity web service is our first web service example that does not

have an expiration time since the data returned from this web service are static. The web

service is located in http://tckimlik.nvi.gov.tr/kpspublic.asmx web site. The web service is

implemented in .NET environment, but it is possible to invoke it in any platform. By using

this web service, we can get information about a person with his/her Turkish Identity

Number, get Turkish Identity Number of a person with his/her personal information, as

 55

well as cities and districts of Turkey. For our experimental test, we tried to get the personal

details of a Turkish citizen by using his Turkish Identity Number. Thus, our BPEL process

holds the Turkish Identity Number of a person and passes this number to our PCS. Our

PCS invokes the web service with passed Turkish Identity Number information as input

parameter. The web service returns the name, surname and birth date of corresponding

person. Since the information in web service does not change, we do not need our Daemon

PCS to proactively refresh cached information. As it is mentioned in previous chapters, our

architecture removes less used information from cache. This property of our architecture is

useful especially in web services that hold huge amount of data, such as Turkish Republic

identity web service. In this way, we are avoided to face the disk capacity problems since it

is not possible to hold all information in Turkish Republic Identity web service. Table 6.4

shows an example of sent input variable and gathered results from Turkish Republic

Identity web service. We did not put real values of Turkish identity number, name and

surname in Table 6.4 in order not to reveal any information about a specific person in this

thesis report.

Table 6.4 Turkish Republic Identity Web Service input and output data

INPUT OUTPUT

Turkish Identity Number Name Surname Birth Date

99999999999 Hasan Çelik 1982

Figure 6.3 shows the tests done in Turkish Republic Identity web service execution

times with and without our arcitecture. As it can be observed, the effectness of caching

results in the execution of 3-5 times faster than the execution without our architecture.

 56

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Execution

T
im

e
 (

m
s
)

Execution time without PCS

Execution time with PCS

Figure 6.3 Analyses of Turkish Republic Identity Web Service

6.4. E-Bay Item Information Web Service

 The last external web service in our experimental work is t h e eBay I tem

Information web service. As it is known, eBay is one of the most popular web site for

shopping in internet. eBay has rich API tools for accessing many of its web services. In our

experimental work, the eBay Item Information web service takes a unique item id as input

parameter. It searches this item id in its database and returns the name and current price of

corresponding item. Thus, our example BPEL process holds the item id information and

passes it to our PCS as parameter. Our PCS invokes eBay Item Information web service

and passes the item id information as input parameter. In order to make invocation to eBay

Item Information web service, eBay SOAP API must be used. Table 6.5 shows the input

and output parameters of eBay Item Information web service.

Table 6.5 eBay Item Information Web Service input and output data

INPUT OUTPUT
Item Id Item Name Item Price

4503257553
Harry Potter and the Half-Blood Prince

(Book 6)
17.99 ($)

 57

Figure 6.4 shows the tests done in eBay Item Information web service execution

times with and without our arcitecture. As it can be observed, PCS optimizes the execution

time ranging from 6 to 10 times.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

Execution

T
im

e
 (

m
s
)

Execution time without PCS

Execution time with PCS

Figure 6.4 Analyses of eBay Item Information Web Service

Table 6.6 shows the summary of execution times of above 4 external web services

with or without our architecture. As it can be seen, execution time is optimized from 4

ranging up to 10 times in different web service using our architecture.

Table 6.6 Summary of complete experimentation

Description of Web
Service

Execution time without
PCS (ms)

Execution time with PCS
(ms)

US Weather Forecast WS 1600 - 2000 400 - 600

Turkish Central Bank
Currency Exchange WS

1300 - 1500 300 - 450

Turkish Republic Identity WS 1200 - 1500 400 - 500

EBAY Item Information WS 3500 - 6000 700 - 1000

 58

7. CONCLUSION

In this research, an architecture is described to solve the performance and availability

problems of web services. It is aimed to make the right decision of caching and invoking a

web service according to certain specific criterias. In this way, it is aimed to reduce the

load of web services in distributed applications. Moreover, it is aimed to prevent the

caching to overwhelm the disk size on client size by pruning unimportant web service

invocation results.

7.1. Overview

The main parts of web services and usage of these parts in our architecture is stated in

the first section of Chapter 2. Then, the importance of web service composition in

business applications are emphasized and the chosen tools are described in the second part

of Chapter 2. Thus, building blocks of our architecture is explained to reflect the

applicability of our approach in web services.

The general overview of our architecture is presented in Chapter 3. At the first part,

tools used in our architecture is stated. Then, it is explained how to transform the input

elements (BPEL processes) of our architecture to be integrated with our PCS. Then, the

core caching architecture is explained including the integration with BPEL processes.

The elaborated version of Chapter 3 is explained in Chapter 4 and Chapter 5. In

Chapter 4, transformation of BPEL processe are explained with an example. Then,

techniques and logic behind the transformation process is emphasized.

In Chapter 5, the main elements of caching architecture is explained in detail. At the

first section, the working principle and influence of WSDL in invoking web services on

BPEL processes are explained. Then, the working principle our PCS on BPEL processes is

stated. After that, importance and working principle of Daemon PCS is explained in

caching process. The possible overheads in the processing of our architecture and their

proposed solutions are stated.

 59

In Chapter 6, experimental tests are done using our architecture. Web services that

exist in real life scenarios are selected for test environment. Then, experimental tests are

done with and withour involvment of our architecture to prove the efficiency of our

approach. At the end, the applicability and efficiency of our approach is proven with

significant improvements in performance.

Finally, the summary of the research and its contributions are stated in this chapter.

7.2. Future Work

Our PCS stores statistical information about previous invocation of web services. This

statistical information is used to find the frequency of invoked web services and prune web

service invocation data that has less frequency. For the future work, we aim to extend the

aspects of statistical information obtained from web service invocations. As an example, it

may be possible to discover some paths regarding previous web service invocations. Using

discovered paths, we aim to predict the invocation time of web services in a busines

process and apply some pre-fetching of web service invocations before the corresponding

web service needs to be invoked. As a result, further optimizations on the concept of web

service processing can be done.

 60

APPENDIX A: SOFTWARE CD

Listings of software are given in a CD. The CD contains the files containing the

source codes for PCS Pre-processor, Proactive Caching Scheduler, Daemon Proactive

Caching Scheduler, database engine and sample BPEL documents used in experimental

tests. Other than these, there exists another file named “READ.ME”. In the ASCII text file,

the following sections appear.

· Files in the CD: In this section, the names of files together with their contents are

listed

· Hardware Requirements: In this section, the hardware requirements which are

necessary to run the software are noted.

· Software Requirements: In this section, the operating system, the engine and the

libraries etc. that are necessary to compile and run the software are listed.

 61

REFERENCES

1. Wohed P., W. M. P. van der Aalst, M. Dumas and A. H. M. ter Hofstede, “Analysis of

Web Services Composition Languages: The Case of BPEL4WS”, In Proceedings of the

22nd International Conference on Conceptual Modeling (ER), Chicago IL, USA,

October 2003, http://is.tm.tue.nl/research/patterns/download/bpel_er.pdf.

2. Booth D. et a l ., “Web Services Archiecture”, W3C Working Group Note, February

2004, http://www.w3.org/TR/ws-arch.

3. Graham S. et. al, “Building Web Services with Java: Making Sense of XML, SOAP,

WSDL and UDDI”, pp 1-20, 2002.

4. Ort E., “Service-Oriented Architecture and Web Services: Concepts, Technologies, and

Tools”, Sun Developer Network, April 2005,

http://java.sun.com/developer/technicalArticles/WebServices/soa2/soa2.pdf.

5. Chappell D. and T. Jewell, “Java Web Services”, pp. 6-7, March 2002.

6. Microsoft Corporation, DCOM Technical Overview, November 1996,

http://msdn2.microsoft.com/en-us/library/ms809340.aspx.

7. Raj G. S., “A Detailed Comparison of CORBA, DCOM and Java/RMI”, S eptember

1998, http://my.execpc.com/~gopalan/misc/compare.html.

8. Kızıltunç M. K., “Web Hizmetleri”, October 2002,

http://www.teknoturk.org/docking/yazilar/tt000104-yazi.htm.

9. Jong I., “Web Services/SOAP and CORBA”, April 2002,

http://www.omg.org/news/whitepapers/CORBA_vs_SOAP1.pdf.

 62

10. Remote Method Invocation Home,

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

11. Bray T., J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau, “Extensible

Markup Language (XML) 1.0 (Fourth Edition)”, W3C Recommendation, August 2006,

http://www.w3.org/XML.

12. Berglund A . , “Extensible Stylesheet Language (XSL) Version 1.1”, W3C

Recommendation, December 2006, http://www.w3.org/TR/xsl.

13. Java Architecture for XML Binding (JAXB),

http://java.sun.com/webservices/jaxb/index.jsp.

14. Java API for XML Processing (JAXP), http://java.sun.com/webservices/jaxp/index.jsp.

15. Java API for XML Registries (JAXR), http://java.sun.com/webservices/jaxr/index.jsp.

16. Java API for XML-Based RPC (JAX-RPC),

http://java.sun.com/webservices/jaxrpc/index.jsp.

17. SOAP with Attachments API for Java (SAAJ),

http://java.sun.com/webservices/saaj/index.jsp.

18. Gao D., A Java Implementation of the Simple Object Access Protocol, M.S. Thesis,

The Florida State University, College of Arts and Sciences, December 2001.

19. Gudgin M . , “SOAP Version 1.2 Part 1: Messaging Framework”, W3C

Recommendation, June 2003, http://www.w3.org/TR/soap12-part1.

20. Oracle Technology Network, “BPEL Designer Tutorial 1: Developing a Hello World

BPEL Process”, http://www.oracle.com/technology/products/ias/bpel/pdf/orabpel-

Tutorial1-HelloWorldTutorial.pdf.

 63

21. WSDL and UDDI, W3Schools, http://www.w3schools.com/wsdl/wsdl_uddi.asp.

22. Dustdar S. and W. Schreiner, “A Survey on Web Services Composition”, International

Journal of Web and Grid Services, Vol. 1, No. 1, 2005.

23. Peltz C., “Web Services Orchestration, A Review of Emerging Technologies, Tools,

and Standards”, January 2003,

http://devresource.hp.com/drc/technical_white_papers/WSOrch/WSOrchestration.pdf.

24. Peltz C . , “Web Service Orchestration and Choreography. A look at WSCI and

BPEL4WS”, July 2003, http://se2c.uni.lu/tiki/se2c-bib_download.php?id=1262.

25. Peltz C., “Web Services Orchestration and Choreography”, October 2003,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1236471

26. Arkin A. et al., “The Web Service Choreography Interface (WSCI) 1.0”, W3C Note,

August 2002, http://www.w3.org/TR/wsci.

27. Patlak Ç. , Web Service Orchestration Standards, M.S. Thesis, Boğaziçi University,

2003.

28. Andrews T. et al., “Business Process Execution Language for Web Services Version

1.1”, May 2003, ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

29. Leymann F., D. Roller and S. Thatte, “Goals of the BPEL4WS Specification”, August

2003, http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf.

30. Juric M., “BPEL and Java”, April 2005,

http://www.theserverside.com/articles/article.tss?l=BPELJava.

31. May B. and P. Savur, “Business Process Execution Language, Part 1: An

Introduction”, October 2006.

 64

32. Lehmann M., “Your First BPEL Project”, September 2004,

http://www.oracle.com/technology/oramag/oracle/04-sep/o54web.html.

33. Web Services Invocation Framework, The Apache Software Foundation, May 2006,

http://ws.apache.org/wsif.

34. Juric M., “Using WSIF for Integration”, October 2005,

http://www.oracle.com/technology/pub/articles/bpel_cookbook/juric.html.

35. Introduction to the ActiveBPEL Engine, http://www.activebpel.org/info/intro.html.

36. IBM Software - WebSphere Process Server,

http://www.ibm.com/software/integration/wps.

37. IBM AlphaWorks BPWS4J : Overview, August 2002,

http://www.alphaworks.ibm.com/tech/bpws4j.

38. Microsoft BizTalk Server: Home, http://www.microsoft.com/biztalk.

39. Web Service Orchestration Software from OpenStorm, http://www.openstorm.com.

40. Oracle BPEL Process Manager Quick Start Guide 10g Release 3, August 2006,

http://download-east.oracle.com/otn_hosted_doc/soa/docs/books/b28983.pdf.

41. Oracle BPEL Process Manager, http://www.oracle.com/technology/bpel.

42. Oracle BPEL Process Manager Administrator’s Guide Release 10.1.2, April 2006.

43. Oracle JDeveloper, http://www.oracle.com/technology/products/jdev/index.html

44. Goodman B., “Accelerate Your Web Services with Caching”, December 2002,

http://www-128.ibm.com/developerworks/webservices/library/ws-cach1.

 65

45. Myllymaki J. and B. Reinwald, “Database Support for Web Service Caching”, IBM

Research Report, November 2003.

46. Tewari R., M. Dahlin, H. M. Vin and J. S. Kay, “Design Considerations for Distributed

Caching on Internet”, International Conference on Distributed Computing Systems

(ICDCS), pages 273-284, Austin, Texas, June 1999.

47. Terry D. B. and V. Ramasubramanian, “Caching XML Web Services for Mobility”,

Microsoft Research, May 2003.

48. Powell M., “XML Web Service Caching Strategies”, Microsoft Corporation, April

2002.

49. HTTP/1.1: Caching in HTTP,

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html.

50. HTTP Caching for Personalized Content,

http://www.itamarst.org/writings/dynamiccaching.html.

51. Belloum A. and B. Hertzberger, “Maintaining Web Cache Coherency”, Information

Research, September 2000, http://InformationR.net/ir/6-1/paper91.html.

52. Srinivasan R., C. Liang and K. Ramamritham, “Maintaining Temporal Coherency of

Virtual Data Warehouses” 19th IEEE Real-Time Systems Symposium (RTSS'98), 1998.

53. Deolasee P . et al. “ Adaptive Push-Pull: Disseminating Dynamic Web Data” In

Proceedings of the Tenth International World Wide Web Conference, pages 265-274,

Hong Kong, May 2001.

54. M. N. Çankaya, “ASP.NET’de Sayfayı Önbelleklemek”, August 2004,

http://www.yazgelistir.com.

 66

55. Pallis G. and A. Vakali, “Insight and Perspectives for Content Delivery Networks”,

January 2006.

56. Devillechaise S. and J. M. Menaud, “Caching Web Services: Aspect Orientation To

The Rescue”, 2002.

57. Reabow J. and D. Pillay, “Caching XML Web Services to Support Disconnected

Operation”, 2004.

58. König D., “Web Services - Business Process Execution Language 2.0”, Second Annual

OASIS Adoption Forum, October 2005,

http://www.oasis-open.org/events/adoption_forum_2005/slides/Koenig.ppt.

59. Juric M., “A Hands-on Introduction to BPEL”, 2003,

http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html.

60. Marshall D., “The C Preprocessor”, May 1999,

http://www.cs.cf.ac.uk/Dave/C/node14.html.

61. XML DOM Tutorial, W3Schools, http://www.w3schools.com/dom/default.asp.

62. Java’s Timer Class, http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/Timer.html.

63. White T., “Scheduling recurring tasks in Java applications”, November 2003,

http://www-128.ibm.com/developerworks/java/library/j-schedule.html.

64. Haefel M., “EJB 2.1:The Timer Service”, October 2002,

http://www.theserverside.com/tt/articles/article.tss?l=MonsonHaefel-Column4.

65. Deitel H.M., P. J. Deitel and S. E. Santry, “Advanced Java 2 Platform – How to Program”,

2002.

