

SEMANTIC ADVANCED MATCHMAKER

(SAM)

by

Erdem Savaş İlhan

B.S., Computer Engineering, Boğaziçi University, 2004

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2007

 iii

ACKNOWLEDGEMENTS

I would like to thank and state my sincere gratitude to many people, who have

contributed and supported throughout this research. First of all, I would like to thank to

my thesis advisor Assistant Prof. Ayşe Başar Bener for her good advice, guidance and for

giving me the proper motivation during this research. I would also like to thank Assistant

Prof. Pınar Yolum Birbil for her valuable comments and many thanks to all colleagues in

Web Services Research Group.

I should also state my gratitude to my colleagues and managers at work for their

understanding throughout this study.

Finally, I would like to thank to my family and fiancée Gökçe for their endless moral

support and love.

 iv

ABSTRACT

SEMANTIC ADVANCED MATCHMAKER (SAM)

As the number of available Web services increase finding appropriate Web services

to fulfill a given request becomes an important task. Most of the current solutions and

approaches in Web service discovery are limited in the sense that they are strictly defined,

and they do not use the full power of semantic and ontological representation. Service

matchmaking, which deals with similarity between service definitions, is highly important

for an effective discovery. Studies have shown that use of semantic Web technologies

improves the efficiency and accuracy of matchmaking process.

In this research we focus on one of the most challenging tasks in service discovery

and composition: Service matchmaking. We make use of current semantic Web

technologies like OWL and OWL-S to describe services and define ontologies. We

introduce an efficient matchmaking algorithm based on bipartite graphs. We have seen that

bipartite matchmaking has advantages over other approaches in the literature for parameter

pairing problem, which deals with finding the semantically matching parameters in a

service pair. Our proposed algorithm ranks the services in a candidate set according to their

semantic similarity to a certain request. Our matchmaker performs the semantic similarity

assignment implementing the following approaches: Subsumption-based similarity,

property-level similarity, similarity distance annotations and WordNet-based similarity.

Our results show that the proposed matchmaker enhances the captured semantic similarity,

providing a fine-grained approach in semantic matchmaking.

 v

ÖZET

GELİŞMİŞ ANLAMSAL WEB SERVİS EŞLEYİCİ (SAM)

Elektronik ortamda bulunan Web servislerinin sayısı arttıkça belirli bir isteği

karşılayacak uygun servisleri bulmak da önem kazanmaktadır. Bu probleme ilişkin

günümüzdeki çözümler ve yaklaşımlar kısıtlı tanımlamalar kullandıkları için ve anlamsal

tanımlamalardan tam anlamıyla faydalanmadıklarından yetersiz kalmaktadırlar. Servis

tanımlamaları arasındaki benzerlikleri bulmada kullanılan servis eşleme yöntemi etkin bir

Web servis bulma işlemi için büyük önem taşımaktadır. Günümüze kadar olan çalışmalar

göstermiştir ki anlamsal Web teknolojilerinin kullanımı servis eşleme yönteminin

etkinliğini ve başarısını artırmaktadır.

Bu araştırmada Web servisi bulma ve kompozisyonu konuları için çok önemli olan

bir konuyu inceliyoruz: Web servis eşlemesi. Bu çalışmada OWL ve OWL-S gibi servisleri

ve ontolojileri ifade etmede kullanılan güncel anlamsal Web teknolojilerini kullanıyoruz.

Ayrıca, iki kümeli grafiklere dayanan etkin bir Web servis eşleme algoritmasını

tanıtıyoruz. Güncel çalışmaların çoğunda da görüldüğü üzere Web servislerinde

parametrelerin anlamsal olarak eşlenmesi problemi olan parametre eşlemesi için iki kümeli

grafiklere dayalı çözümler çok daha etkindir. Önerdiğimiz eşleme algoritması belirli bir

isteğe denk gelen aday Web servis kümesi içinden isteğe en benzer olan servisleri

sıralayarak çıktı olarak sunmaktadır. Ortaya koyduğumuz Web servis eşleyicisi anlamsal

benzerlik eşlemesi işlemi için şu teknikleri kullanmaktadır: Kapsama tabanlı benzerlik,

özellik tabanlı benzerlik, benzerlik uzaklığı notları ve WordNet tabanlı benzerlik. Elde

ettiğimiz sonuçlar gösteriyor ki ortaya koyduğumuz servis eşleyici anlamsal ilişkilerin

ortaya çıkarılmasında daha etkin olmakta ve detaylı bir eşleme yapılmasına imkan

vermektedir.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES ... viii

LIST OF TABLES ... x

LIST OF ABBREVIATIONS ... xii

1. INTRODUCTION .. 1

1.1. Motivation .. 1

1.2. Outline .. 2

2. Web Services and Semantic Web ... 4

2.1. Service Oriented Architecture (SOA) .. 4

2.2. Web Services Standards .. 5

2.2.1. XML ... 6

2.2.2. WSDL ... 6

2.2.3. SOAP .. 7

2.2.4. UDDI .. 8

2.3. Semantic Web .. 8

2.3.1. Description Logics .. 9

2.3.2. RDF .. 10

2.3.3. OWL ... 12

2.3.4. OWL-S ... 14

2.4. Semantic Web Frameworks ... 16

2.4.1. Jena ... 16

2.4.2. OWL-S API .. 19

2.4.3. WordNet ... 21

2.4.4. WordNet::Similarity ... 22

2.5. Graph Matching ... 24

2.5.1. Graph Matching Terminology .. 24

2.5.2. Bipartite Graph Matching ... 25

3. Related Work .. 29

 vii

4. Problem Statement ... 32

5. Proposed Solution .. 34

5.1. Matching Algorithm .. 37

5.1.1. Subsumption based Similarity Assessment 40

5.1.2. Property-level Similarity Assessment ... 41

5.1.3. Similarity Distance based Assessment .. 42

5.1.4. WordNet based Similarity Assessment ... 45

6. Experimental Results .. 47

6.1. Test Ontology .. 47

6.2. Test Environment .. 54

6.3. Test Results .. 54

6.4. Threats to Validity ... 65

6.5. Comparing SAM with Existing Matchmakers .. 67

7. Conclusions and Future Work .. 70

REFERENCES .. 72

 viii

LIST OF FIGURES

Figure 2.1. Web services architecture [71] ……………………………………...... 5

Figure 2.2 Expressivity mapping between DL and DAML [34] ……………….... 10

Figure 2.3. An RDF graph representing Eric Miller [33] ……………………….... 11

Figure 2.4. OWL-S ontologies [42] ……………………………………………..... 15

Figure 2.5. Jena model interface [29] …………………………………………...... 17

Figure 2.6. Jena ontology internal structure with imports [29] …………………... 17

Figure 2.7. Jena inference architecture [29] …………………………………….... 18

Figure 2.8. Jena transitive inference support [29] ………………………………... 19

Figure 2.9. Bipartite graph ……………………………………………………...... 25

Figure 2.10. Non-weighted bipartite graphs [9] ………………………………….... 26

Figure 2.11. Weighted bipartite graphs [9] ………………………………………... 26

Figure 5.1. SAM matchmaking process ………………………………………...... 34

Figure 5.2. Matchmaking agent components …………………………………...... 36

Figure 5.3. Software components of matchmaking agent ………………………... 36

Figure 5.4. N-ary relation pattern in OWL, representing similarity distance

 Information ………………………………………………………….... 43

Figure 6.1. A section of book ontology …………………………………………... 48

Figure 6.2. Person ontology section …………………………………………….... 48

Figure 6.3. Printed Material ontology section …………………………………..... 49

 ix

Figure 6.4. SimilarityRelation concept and subclasses …………………………... 50

 x

LIST OF TABLES

Table 2.1. OWL namespace declaration ………………………………………...... 13

Table 2.2. OWL ontology description …………………………………………..... 13

Table 2.3. OWL class description ………………………………………………... 13

Table 2.4. OWL individual description …………………………………………... 13

Table 2.5. OWL property description …………………………………………..... 14

Table 2.6. Example demonstrating use of OWL-S API [32] …………………...... 20

Table 5.1. OWL representation of similarity distance ontology ………………..... 44

Table 6.1. Similarity distance values in book ontology ………………………...... 51

Table 6.2. Similarity distance annotation ……………………………………….... 52

Table 6.3. OWL-S document header ……………………………………………... 52

Table 6.4. OWL-S document service section …………………………………...... 53

Table 6.5. OWL-S document profile section …………………………………...... 53

Table 6.6. OWL-S document process section …………………………………..... 53

Table 6.7. Test case 1 …………………………………………………………...... 54

Table 6.8. Test case 2 …………………………………………………………...... 55

Table 6.9. Input parameter matching for test case 1 ……………………………... 56

Table 6.10. Output parameter matching for test case 1 …………………………..... 58

Table 6.11. Final service rank for test case 1 …………………………………….... 59

 xi

Table 6.12. Conventional matchmaker - Input parameter matching for test case 1 60

Table 6.13. Conventional matchmaker - Output parameter matching for test case

 1 ……………………………………………………………………..... 61

Table 6.14. Conventional matchmaker - Final service rank for test case 1 ……...... 61

Table 6.15. Input parameter matching for test case 2 ……………………………... 62

Table 6.16. Output parameter matching for test case 2 …………………………..... 63

Table 6.17. Final service rank for test case 2 …………………………………….... 63

Table 6.18. Conventional matchmaker - Input parameter matching for test case 2 64

Table 6.19. Conventional matchmaker - Output parameter matching for test case

 2 ……………………………………………………………………...... 64

Table 6.20. Conventional matchmaker - Final service rank for test case 2 ……...... 65

Table 6.21. SAM in comparison to other matchmakers ………………………….... 69

 xii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

CORBA Common Object Request Broker Architecture

DAML DARPA Agent Markup Language

DCOM Distributed Component Object Model

DTD Document Type Definition

HTTP Hypertext Transport Protocol

OASIS Organization for the Advancement of Structured Information Standards

OWL Web Ontology Language

OWL-S OWL based Web service Ontology

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RPC Remote Procedure Call

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SWRL Semantic Web Rule Language

UDDI Universal Description, Discovery, Integration

URI Universal Resource Identifier

WSDL Web Services Description Language

W3C World Wide Web Consortium

XML Extensible Markup Language

 1

1. INTRODUCTION

1.1. Motivation

In recent years, Web services became the dominant technology in providing the

interoperability among different systems throughout the Web. If Web service is used in

limited business domain or with strict rules with known business partners everything will

be fine. The problem of finding the right and most suitable Web services for user needs

emerges when open e-commerce systems are widely used and user requirements

dynamically change over time.

 Although there are currently proposed technologies for discovery of Web services,

such as UDDI [5], they do not satisfy the full discovery requirements. This discovery

process is based on syntactical matching and keyword search that does not allow the

automatic processing of Web services. To solve the problem of automatic discovery and

processing of Web services, the Semantic Web [6] vision is proposed. Semantic Web is an

effort by the W3C consortium [7], and one of its main purposes is to facilitate the

discovery of Web resources.

 There are different efforts and frameworks for semantic annotation and discovery of

Web services [10, 11, 12]. For Web service discovery the researchers also propose some

techniques and algorithms. However, they mostly classify the discovered Web services as

set-based. They do not focus on rating the Web services using semantic distance

information [13].

 The evolution of Web services, from conventional services to semantic services,

caused service descriptions contain extra information about functional or non-functional

properties of Web services. The semantic information included in the service descriptions

enables the development of advanced matchmaking schemes that are capable of assigning

degrees of match to the discovered services. Semantic discovery of Web services means

 2

semantic reasoning over a knowledge base, where a goal describes the required Web

service capability as input. Semantic discovery adds accuracy to the search results in

comparison to traditional Web service discovery techniques, which are based on

syntactical searches over keywords contained in the Web service descriptions [3].

 Improvement in matching process could be gained by the use of ontological

information in a useful form. With the use of this information, it would be possible to rate

the services found in discovery process. As in real life, users/ agents should be able to

define how they see the relation of ontological concepts from their own perspective.

Similarity measures have been widely used in information systems [14, 15, 16], software

engineering [68, 69] and AI [17, 18, 19]. So integration of knowledge from these

techniques can improve the matching process.

By using semantic distance definition information, we aim to get a rated and ordered

set of Web services as the general result of the discovery process. We believe that this

would be better than set-based classification of discovered services. In this research, we

propose a new scheme of matchmaking that aims to improve retrieval effectiveness of

semantic matchmaking process. Our main argument is that conventional evaluation

schemes do not fully capture the added value of service semantics and they do not consider

the assigned degrees of match, which are supported by the majority of discovery engines.

The existing approach to service matchmaking contains subsumption values regarding the

concept that the service supports. In our proposed approach, we add semantic relatedness

values onto existing subsumption-based procedures. Our matchmaker performs the

semantic similarity assignment implementing the following value-added approaches:

Subsumption-based similarity, property-level similarity, similarity distance annotations

and WordNet-based similarity.

1.2. Outline

In Section 2, we describe enabling technologies for Web services: XML, SOAP,

WSDL and UDDI. We discuss on the emerging approach SOA (Service Oriented

Architecture) and point out the weak points in current standards. We will introduce

semantic Web technologies as an approach to extend capabilities of current SOA

 3

technologies. RDF, OWL, OWL-S and some existing semantic Web technologies, as well

as some semantic web frameworks are presented in this section. We also give a brief

introduction of bipartite graph matching algorithms and description logics which form the

basis in our proposed model.

In Section 3, we refer to related work in this field and point out the contributions they

make, emphasizing how they can be extended in a way to support better results. In section

4 we state the problem that we focus on in this research. We list the problems in semantic

service matchmaking that we are seeking answers for.

Section 5 presents our approach to service matchmaking. We give details of our

proposed approach and introduce the techniques and methods we apply in formalism.

Section 6 presents the evaluation results of the test runs which we performed on a

prototype system that we implemented. We present numerical results on test runs and

discuss these results, clearly demonstrating the advantages of our proposed approach with

a comparison to a conventional service matchmaker. Finally, Section 7 concludes our

research with the future directions for extending the capabilities of our service

matchmaker.

 4

2. Web Services and Semantic Web

2.1. Service Oriented Architecture (SOA)

According to Hashimi [45], in SOA, software applications are built on basic

components called services, defined in terms of what it does, typically carrying out a

business-level operation.

A service in SOA is an exposed piece of functionality with three properties [45]:

1. The interface contract to the service is platform independent.

2. The service can be dynamically located and invoked.

3. The service is self-contained. That is, the service maintains its own state.

There are basically three functions that must be supported in a service-oriented

architecture [45]:

1. Describe and Publish service

2. Discover a service

3. Consume/interact with a service

OASIS (Organization for the Advancement of Structured Information Standards)

defines SOA as the following [70]:

“A paradigm for organizing and utilizing distributed capabilities that may be under

the control of different ownership domains. It provides a uniform means to offer, discover,

interact with and use capabilities to produce desired effects consistent with measurable

preconditions and expectations”.

SOA is not only a set of technologies but it actually represents a shift in the way

software operates. SOA represents systems that are self-contained, loosely-coupled and

http://en.wikipedia.org/wiki/Organization_for_the_Advancement_of_Structured_Information_Standards

 5

dynamically invoked. Adopting SOA is essential to deliver the business agility and IT

flexibility promised by Web Services [47].

2.2. Web Services Standards

Web services enable seamless interoperation among applications and organizations in

a distributed environment, while being platform and language independent.

Distributed programming approaches like CORBA and DCOM have been used to

implement network enabled applications. However, these technologies depend on binary

standards and custom interface definition languages. On the other hand, Web services

depend on textual standards and make use of XML in interface definition, which provides

platform and language independency.

In a typical scenario, as represented in Figure 2.1, a service requestor communicates

with a service registry (UDDI) to discover a Web service satisfying his needs [71]. The

service provider publishes his service in the registry to be discovered by clients. Following

the discovery phase, the requestor and the provider communicates directly using SOAP,

which is a communication protocol based on XML.

Figure 2.1. Web services architecture [71]

Web services enable both document oriented and RPC (Remote Procedure Call) style

communication. In RPC style, Web services can be used to invoke operations on the

provider site, whereas document oriented communication provides arbitrary information to

 6

be sent to the receiving party. Web services also can operate both synchronously and

asynchronously.

Several technologies have emerged in years that enable Web services architecture. As

our research builds on top of Web service standards and semantic web standards, in the

following sections we describe these technologies in more detail.

2.2.1. XML

Extensible Markup Language (XML) provides the description, storage and

transmission format for data exchanged via Web services. Originally designed to meet the

challenges of large-scale electronic publishing, XML has also been playing an increasingly

important role in the exchange of a wide variety of data on the Web and elsewhere [51].

XML data is expressed in textual format as opposed to binary encoding which makes

it platform and language independent. These properties of XML make it a good approach

for communicating in heterogeneous distributed environments. The structure and

relationships within the data are expressed with a DTD (Document Type Definition) or

XML schema. XML schema language is used to describe the structure and content of an

XML document. This ability lets computer programs validate the XML data to ensure that

it is structured appropriately [52].

XML technology is one of the core technologies that our research builds on.

Ontology languages like RDF and OWL are represented with XML and benefits from the

XML standards like namespaces, XML Schema etc.

2.2.2. WSDL

WSDL is an XML grammar describing Web services as a collection of network

endpoints, or ports [48]. In WSDL, the abstract definition of endpoints and messages is

separated from their concrete network deployment or data format bindings. This allows the

reuse of abstract definitions: messages, which are abstract descriptions of the data being

 7

exchanged, and port types which are abstract collections of operations [48]. WSDL is often

used in combination with SOAP and XML Schema to provide Web services over the

Internet. A client program connecting to a Web service can read the WSDL to determine

what functions are available on the server. Any special data types used are embedded in

the WSDL file in the form of XML Schema. The client can then use SOAP to actually call

one of the functions listed in the WSDL.

2.2.3. SOAP

SOAP provides the definition of the XML-based information which can be used for

exchanging structured and typed information between peers in a decentralized, distributed

environment [49]. It uses XML technologies to define an extensible messaging framework

providing a message construct that can be exchanged over a variety of underlying

protocols. The framework has been designed to be independent of any particular

programming model and other implementation specific semantics [50].

The SOAP specification defines the envelope structure, encoding rules, and

conventions for representing Web service invocations and responses. The preferred

transmission method is SOAP over HTTP. The SOAP envelope is the outermost element

and indicates the start and end of the message. SOAP envelope basically provides the

necessary encapsulation.

The SOAP header element provides the flexibility to include additional mechanisms

like security, quality of service and other meta-data related information. Header element

comes just after the envelope declaration. SOAP body contains the actual transmitted XML

data. It comes after the header element declarations. The format of the SOAP body is

defined in the SOAP schema. Fault handling is provided with the SOAP fault element in

the body. The receiver of the message resolves the error processing the fault tags in the

body [50].

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datatypes

 8

2.2.4. UDDI

The Universal Description, Discovery, and Integration (UDDI) protocol represents

the service registry component in the SOA pattern. It defines a standard method of

publishing and discovering services in a service oriented architecture. Its development is

led by the OASIS consortium [59].

UDDI describes a registry of Web services and programmatic interfaces for

publishing, retrieving, and managing information about services. The UDDI specification

defines services that support the description and discovery of businesses, organizations,

and other Web services providers, the Web services they make available, and the technical

interfaces which may be used to access and manage those services. UDDI is base upon

several other established industry standards, including HTTP, XML, XML Schema (XSD),

SOAP, and WSDL [59].

2.3. Semantic Web

As Tim Barners-Lee stated in 1999, “The first step is putting data on the Web in a

form that machines can naturally understand, or converting it to that form. This creates

what I call a Semantic Web-a Web of data that can be processed directly or indirectly by

machines”[35].

Current Web structure puts emphasize on the applications that process data, not the

data itself. So, how data is organized and processed varies between applications. This

prevents a collaborative and autonomous Web to evolve. Semantic Web is a vision to

change current Web structure and make it data driven. Semantic Web technologies could

be used in many ways to transform the functionality of the Web [36]: Rich metadata for

media and content to improve search and management; rich descriptions of Web services

to improve discovery and composition; common access wrappers for information systems

to simplify integration of disparate systems; common lingua franca for exchange of

semantically rich information between active software agents.

 9

Semantic Web will basically allow autonomous agents to process heterogeneous data

on the Web on behalf of a user. In order to achieve this data should be organized in a

standard and machine interpretable way. This is achieved through the adoption of common

conceptualizations referred to as ontologies [37]. Several ontologies are being developed

today, both in academia and industry. These constitute the initial steps towards realizing

semantic Web vision. Ontology Web Language (OWL) is the most promising standard for

developing ontologies. We will describe OWL in detail in the following sections.

2.3.1. Description Logics

Description logics (DL) are a family of knowledge representation languages which

can be used to represent knowledge on a domain and make use of concepts as the building

blocks.

Description logics form the basis in the design of ontologies in Semantic Web. OWL

endorsed by W3C is a language based on DL. In DL, a concept represents set of objects,

whereas roles link objects in these sets in a binary relation form. The basic reasoning

problems for concepts in a DL are satisfiability, which accounts for the internal coherency

of the description of a concept (no contradictory properties are present), and subsumption,

which accounts for the more general/more specific relation among concepts [67].

In DLs, a distinction is provided between TBox (Terminological Box) and ABox

(Assertional Box). TBox represents the information on concept hierarchies and relations

between them, whereas ABox represents the individuals and their relations to concepts.

The separation is useful in both modeling an ontology and in processing to achieve

inferencing.

In [34] the authors provide a mapping between description logics and DAML

(predecessor of OWL) expressivity in a useful form. The subset of OWL, OWL-DL, is

defined as SHOIN+(D) according to the below expressivity table. Figure 2.2 lists this

mapping.

http://en.wikipedia.org/wiki/Knowledge_representation

 10

Figure 2.2 Expressivity mapping between DL and DAML [34]

2.3.2. RDF

The Resource Description Framework (RDF) is a language for representing

information about resources in the World Wide Web. It is particularly intended for

representing metadata about Web resources [33].

RDF provides a framework that enables the information to be processed by

applications without loss of meaning. It was first defined by W3C in 1997. In 1999 RDF

became a W3C recommendation. RDF consists of entities, represented by unique

identifiers and binary relationships, or statements, between those entities [38]. In terms of

triple representation, the source of the relationship is the subject, the relationship itself is

the predicate and the destination of the relationship is called the object. RDF data model

also distinguishes resources, which are identified by URIs and literals which are simple

 11

strings. The subject and the predicate are always resources, whereas object can be either

resource or literal.

RDF assigns each resource a URI [37]. Figure 2.3 shows a representation of a person,

Eric Miller, in RDF. Both the nodes in the graph and the arcs between them are associated

with URIs. Figure 3 represents:

1. Individuals—such as Eric Miller, identified by http://www.w3.org/

People/EM/contact#me.

2. Kinds of things—such as Person, identified by http://www.w3.org/

2000/10/swap/pim/contact#Person.

3. Properties of those things—such as mailbox, identified by http://

www.w3.org/2000/10/swap/pim/contact#mailbox.

4. Values of those properties—such as mailto:em@w3.org as the value of the

mailbox property (RDF also uses character strings such as “Eric Miller” and

values from other data types such as integers and dates as property values).

Figure 2.3. An RDF graph representing Eric Miller [33]

 12

URIs play an important role in RDF as they identify resources. URIs provide a global

naming convention that can map to a resource on the Web. RDF Schema provides a

contract between the resource provider and the consumer, guaranteeing the applications to

work with a RDF instance complying with the schema. It provides means to define

property domains and ranges, and class and subclass hierarchies [38].

2.3.3. OWL

Web Ontology Language (OWL) facilitates greater machine interpretability of Web

content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing

additional vocabulary along with a formal semantics [39]. OWL has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The choice between OWL

Lite and OWL DL depends on the extent to which users require the more expressive

restriction constructs provided by OWL DL. Reasoners for OWL Lite will have desirable

computational properties. Reasoners for OWL DL, while dealing with a decidable

sublanguage, will be subject to higher worst-case complexity. The choice between OWL

DL and OWL Full mainly depends on the extent to which users require the meta-modelling

facilities of RDF Schema (i.e. defining classes of classes). When using OWL Full as

compared to OWL DL, reasoning support is less predictable [39].

OWL makes an open world assumption, which means that the resources are not

restricted to a single scope. A certain concept can be defined in an ontology, whereas

another ontology can redefine it with some differences. However, the system should detect

any conflicts between assertions in different ontologies.

OWL ontology may include descriptions of classes, properties and their instances.

Given such ontology, the OWL formal semantics specifies how to derive its logical

consequences, i.e. facts not literally present in the ontology, but entailed by the semantics

[40]. A typical OWL ontology begins with a namespace declaration similar to the one in

Table 2.1.

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#XMLNS

 13

Table 2.1. OWL namespace declaration
<rdf:RDF
 xmlns ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"
 xmlns:vin ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"
 xml:base ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"
 xmlns:food="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#"
 xmlns:owl ="http://www.w3.org/2002/07/owl#"
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

OWL depends on constructs defined by RDF, RDFS, and XML Schema data types

[40]. Assertions about the ontology are represented in owl:Ontology tag. Table 2.2 shows

an example OWL ontology description.

Table 2.2. OWL ontology description
<owl:Ontology rdf:about="">
 <rdfs:comment>An example OWL ontology</rdfs:comment>
 <owl:priorVersion rdf:resource="http://www.w3.org/TR/2003/PR-owl-guide-20031215/wine"/>
 <owl:imports rdf:resource="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food"/>
 <rdfs:label>Wine Ontology</rdfs:label>
 ...

Concepts are defined with owl:Class tags in OWL. Every individual in the OWL

world is a member of the class owl:Thing. Table 2.3 shows a simple class description.

Table 2.3. OWL class description

<owl:Class rdf:ID="Winery"/>

Members of the concepts are referred as individuals and represented as having a type

of a certain class. Table 2.4 shows an individual description. The CentralCoastRegion is

declared to be of type Region.

Table 2.4. OWL individual description

<owl:Thing rdf:ID="CentralCoastRegion" />

<owl:Thing rdf:about="#CentralCoastRegion">
 <rdf:type rdf:resource="#Region"/>
</owl:Thing>

 14

Properties describe additional information on concepts. Following type of properties

are defined in OWL: ObjectProperty, DatatypeProperty, Object properties have ranges as

concepts whereas data type properties have ranges as literals. The domain of the property

represents the concept that the property is associated to and the range represents the target

object/literal that the property refers to. Table 2.5 shows a property named

madeFromGrape, which is a property of Wine class and has range of type WineGrape [40].

Table 2.5. OWL property description

<owl:ObjectProperty rdf:ID="madeFromGrape">
 <rdfs:domain rdf:resource="#Wine"/>
 <rdfs:range rdf:resource="#WineGrape"/>
</owl:ObjectProperty>

2.3.4. OWL-S

OWL-S is an OWL-based Web service ontology, which supplies Web service

providers with a core set of markup language constructs for describing the properties and

capabilities of their Web services in unambiguous, computer-intepretable form. OWL-S

markup of Web services will facilitate the automation of Web service tasks, including

automated Web service discovery, execution, composition and interoperation [41]. OWL-S

is indeed a set of top-level ontologies written in OWL specifically for the description of

Web services.

 15

Figure 2.4. OWL-S ontologies [42]

OWL-S is composed of the following top-level ontologies as shown in Figure 2.4:

Service Profile, Service Model and Service Grounding [42]. Service profile describes

“what the service does”, providing the capabilities of the service in an interface format.

Service input, output parameters with the preconditions and effects are described in the

service profile in a brief form. In service discovery profiles are applied in two ways. On

one hand, they are used by service providers to publish Web services. These profiles are

called advertisements. On the other hand, profiles are used by a service requester to

describe the Web service to be searched for. During discovery this request is compared

with published advertisements to find suitable services [43]. Additionally, non-functional

parameters like the service name and description or quality of service information can be

included in the service profile section.

Service model details the process flow of the service. It uses the control constructs

such as Sequence, Split, Split + Join, Choice, Any-Order, Condition, If-Then-Else, Iterate,

Repeat-While, and Repeat-Until as in a conventional process modeling language to define

composite services. Service model details the information on inputs, outputs, preconditions

and effects of the service with the types in ontologies they refer to [42]. Service grounding

specifies how an agent can access the service. It details information on communication

protocol, message formats and other information such as port numbers etc [42]. The upper

ontology for services specifies only two cardinality constraints: a service can be described

 16

by at most one service model, and grounding must be associated with exactly one service

[43].

OWL-S defines three classes of processes. Atomic processes (AtomicProcess) are

directly executable and contain no further sub-processes. From the view of the caller

atomic processes are executed in a single step which corresponds to the invocation of a

Web service method. Simple processes (SimpleProcess) are not executable. They are used

to specify abstract views of concrete processes by hiding certain IOPEs. Composite

processes (CompositeProcess) are specified through composition of atomic, simple and

composite processes recursively by referring to control constructs (ControlConstruct) using

the property composedOf. Control constructs define specific execution orderings on the

contained processes [43]

2.4. Semantic Web Frameworks

2.4.1. Jena

Jena is a Java framework for building semantic Web applications. It provides a

programmatic environment for RDF, RDFS and OWL, SPARQL and includes a rule-based

inference engine [29]. It is an open-source framework supported by HP Semantic Labs

Programme.

As we reason on OWL ontologies, in our research we are mostly interested in the

ontology API and inference support that Jena provides. Jena is at the core an RDF

framework and supports ontology formalisms built on top of RDF. However, Jena

Ontology API is independent of the ontology language being processed and provides a

consistent interface. The class names, OntClass and ObjectProperty support this

transparency. Profiles are used to differentiate underlying ontology languages. Thus, in a

daml ontology property name for ObjectProperty is daml: ObjectProperty, whereas it is

owl ObjectProperty in owl [29].

http://www.w3.org/2001/SW/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/TR/rdf-sparql-query/

 17

As seen in Figure 2.5, Jena Model interface operates on the RDF data collection

which is represented as a graph. The bottom layer represents the asserted statements,

whereas the middle layer holds the inferred statements. The inference is performed by the

reasoner and operates on the base graph by use of semantic rules of the underlying

language.

Figure 2.5. Jena model interface [29]

Figure 2.6. Jena ontology internal structure with imports [29]

 18

As Figure 2.6 presents, Jena handles the imported ontologies by unifying them in the

underlying graph model. This helps to reason on multiple ontologies without loss of

information.

Inference in Jena follows the structure in Figure 2.7. The reasoner to be used can be

plugged in and out using the ReasonerFactory. The reasoner works on the base RDF data

and optionally can use additional information in an ontology using bindSchema call.

Figure 2.7. Jena inference architecture [29]

Jena includes the following reasoners in the distribution [29], where other DIG

compliant reasoners can also be used safely:

1. Transitive reasoner: Provides support for storing and traversing class and

property lattices. This implements just the transitive and symmetric properties of

rdfs:subPropertyOf and rdfs:subClassOf.

2. RDFS rule reasoner: Implements a configurable subset of the RDFS entailments.

3. OWL, OWL Mini, OWL Micro Reasoners: A set of useful but incomplete

implementation of the OWL/Lite subset of the OWL/Full language.

4. DAML micro reasoner: Used internally to enable the legacy DAML API to

provide minimal (RDFS scale) inferencing.

 19

5. Generic rule reasoner: A rule based reasoner that supports user defined rules.

Forward chaining, tabled backward chaining and hybrid execution strategies are

supported.

Figure 2.8. Jena transitive inference support [29]

In Jena, if a relation is transitive as in owl:subClassOf, then the relation can be

specified as direct or inferred, which is the default behavior. However, in some cases it

might be desirable to only infer direct relations. Jena supports the flexibility to reason in

both ways.

2.4.2. OWL-S API

OWL-S API provides a Java API to read, write and execute OWL-S service

descriptions. The API supports different versions of OWL-S (OWL-S 1.0, OWL-S 0.9,

DAML-S 0.7) descriptions. OWL-S API also provides an execution engine that can invoke

atomic processes that has WSDL and composite processes that uses control constructs

Sequence, Unordered, and Split [31].

OWLReader and OWLWriter interfaces are provided for reading and writing OWL

document respectively. OWLOntology object stores the read ontology content and it

supports serialization of the ontology to a file through the use of OWLWriter interface.

 20

OWL-S API provides methods that can directly read an OWL-S document to an

internal semantic service representation. OWLKnowledgeBase construct has methods

readService(URI) and readAllServices(URI) that assist reading services found at a certain

URI [32]. Table 2.6 demonstrates the use of OWL-S API to read and write a service

defined in OWL-S.

Table 2.6. Example demonstrating use of OWL-S API [32]
 // create the URI of a known service for us to read in
 URI aURI = URI.create("http://www.mindswap.org/2004/owl-s/1.1/ZipCodeFinder.owl");

 // create a reader using the owl factory
 OWLReader aReader = OWLFactory.createReader();

 // read in the file specified by the URI using the newly created reader
 OWLOntology aOntology = aReader.read(aURI);

 // create an output stream to write the ontology to
 FileOutputStream aOutputStream = new FileOutputStream("write-test.owl");

 // create a writer using the owl factory
 OWLWriter aWriter = OWLFactory.createWriter();

 // write this ontology out to the specified output stream
 aWriter.write(aOntology,aOutputStream);

 // alternatively, we can create a KB object and use that to read in
 // a file or set of files

 // create a kb using the factory
 OWLKnowledgeBase aKB = OWLFactory.createKB();

 // now that we have a kb, we can read in the same file using the
 // read method of the KB. the read method of the kb will create an
 // OWLReader similar to the above example to read in the file. If you
 // are reading in an OWL-S description you can use readService(URI)
 // or readAllServices(URI) to get the service or list of services specfied
 // by the URI.
 Service aService = aKB.readService(aURI);

OWL-S API also provides a validation component named OWLSValidator, which

takes the URI to an ontology, or a OWLKnowledgeBase object to validate [32].

http://www.mindswap.org/2004/owl-s/api/doc/javadoc/org/mindswap/owls/validator/OWLSValidator.html
http://www.mindswap.org/2004/owl-s/api/doc/javadoc/org/mindswap/owl/OWLKnowledgeBase.html

 21

2.4.3. WordNet

WordNet is an online lexical database for English words [62]. The development of

WordNet began in 1985 at the Cognitive Science Laboratory of Princeton University.

WordNet organizes words (nouns, verbs, adjectives and adverbs) into sets of synonyms

called synsets. Semantic relations between synsets are provided with links. These relations

are [62]:

1. Synonymy is WordNet’s basic relation, because WordNet uses sets of

synonyms (synsets) to represent word senses. Synonymy (syn same, onyma

name) is a symmetric relation between word forms.

2. Antonymy (opposing-name) is also a symmetric semantic relation between

word forms, especially important in organizing the meanings of adjectives

and adverbs.

3. Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive

relations between synsets. Because there is usually only one hypernym, this

semantic relation organizes the meanings of nouns into a hierarchical

structure.

4. Meronymy (part-name) and its inverse, holonymy (whole-name), are complex

semantic relations. WordNet distinguishes component parts, substantive parts,

and member parts.

5. Troponymy (manner-name) is for verbs what hyponymy is for nouns,

although the resulting hierarchies are much shallower.

6. Entailment relations between verbs are also coded in WordNet.

WordNet also provides the number of synsets that a certain word is contained in. The

frequency score measure is provided to represent how often a word appears in a specific

sense. WordNet organizes nouns and a verb into hierarchies of is-a relations [63].

WordNet also provides relations beyond is-a, including has-part, is-made-of and is-

attribute-of. In addition to these, each concept is defined by a short gloss, which may

contain an example use of word.

http://en.wikipedia.org/wiki/Princeton_University

 22

The hypernym/ hyponym relationships among the noun synsets enables WordNet to

be interpreted as lexical ontology [63]. Considering WordNet as an ontology, it provides a

basis to evaluate similarity between words. Several work has been performed on assessing

similarity of words considering semantic relations. The next section introduces an open-

source project, which discusses word similarity assessment approaches using WordNet

database.

2.4.4. WordNet::Similarity

WordNet::Similarity is open-source software which makes it possible to measure the

semantic similarity and relatedness between a pair of concepts (or synsets) [63]. It provides

six measures of similarity and three measures of relatedness. The similarity measures are

[64]:

1. Resnik: Depends on the idea that the similarity of two concepts is

proportional to the information they share in common.

Simres(c1,c2) = IC(lsc(c1,c2)) (2.1)

 In equation 2.1, IC means information content, which is simply a measure of

the specificity of a concept. And lcs(c1,c2) means the lowest common

subsumer (LCS) of the two concepts. Resnik can be classified as a coarse

measure, as all pairs of synsets that have the same LCS will have the same

score.

2. Lin: As seen in equation 2.2, Lin measure augment the information content of

LCS with the sum of the individual information contents of concepts.

Simlim(c1,c2) = 2*IC(lsc(c1,c2))/(IC(c1)+IC(c2)) (2.2)

3. Jcn: Jcn takes the difference of the sum of information contents of concepts

and the information content of the LCS.

 23

Simjcn(c1,c2) = 1/ (IC(c1)+IC(c2)-2* IC(lsc(c1,c2))) (2.3)

4. Ich: Leacock and Chodorow rely on the length len(c1,c2) of the shortest path

between two Synsets for their measure of similarity. However, they limit their

attention to is–a links and scale the path length by the overall depth D of the

taxonomy.

Simlch(c1,c2) = log(2*D/len(c1,c2)) (2.4)

5. Wup: Wu & Palmer measure calculates similarity by considering the depths

of the two Synsets in the WordNet taxonomies, along with the depth of the

LCS.

Simwup(c1,c2) = log(2*depth(lsc(c1,c2))/depth(c1)+depth(c2)) (2.5)

6. Random: It just uses random numbers as a measure of semantic similarity of

word senses. Maxrand is the maximum length found in the is–a hierarchy in

which concepts occur.

Measures of relatedness are more general and they are not constrained to is-a

relations [63]:

1. Hso: Measures classifies relations in WordNet as having direction, and then

establishes the relatedness between two concepts A and B by finding a path

that is neither too long nor that changes direction too often.

2. Lesk: Finds overlaps between the glosses of concepts A and B, as well as

concepts that are directly linked to A and B.

3. Vector: Creates a co–occurrence matrix for each word used in theWordNet

glosses from a given corpus, and then represents each gloss/concept with a

vector that is the average of these co–occurrence vectors.

 24

WordNet::Similarity is implemented with Perl and provides modules that implement

the above described similarity and relatedness approaches. It also exposes a Web interface

to be used over HTTP.

2.5. Graph Matching

Graphs are powerful tools useful in various subfields of science and engineering.

When graphs are used for the representation of structured objects, then the problem of

measuring object similarity turns into the problem of computing the similarity of graphs,

which is also known as graph matching [28].

In this study, graph matching is used for finding parameter matching in service and

request pairs. Input and output parameters of services are represented as vertices in the

graph and the matching between them are represented as edges.

2.5.1. Graph Matching Terminology

Graph algorithms and matching theory uses a terminology when defining theorems

some of which are described below:

1. A vertex is matched if it is incident to an edge in the matching. Otherwise the

vertex is unmatched.

2. A maximum matching is a matching that contains the largest possible number

of edges.

3. A maximal matching is a matching M of a graph G with the property that if

any edge not in M is added to M, it is no longer a matching. Every maximum

matching must be maximal, but not every maximal matching must be

maximum.

4. A perfect (complete) matching is a matching which covers all vertices of the

graph. Every perfect matching is both maximum and maximal.

5. An alternating path is a path in which the edges belong alternatively to the

matching and not to the matching.

 25

6. An augmenting path is an alternating path that starts from and ends on free

(unmatched) vertices.

2.5.2. Bipartite Graph Matching

Matching problem is mostly associated with bipartite graphs. Bipartite graphs are a

special class of graphs where the set of vertices can be separated in two disjoint sets U and

V such that no edge has both end-points in the same set.

Figure 2.9. Bipartite graph

As mentioned before, in our matchmaker, service and request parameters can be

represented as vertices of two disjoint sets. Each vertex is connected to every other vertex

in the other set with a weight assigned on the edge. The problem turns into finding the

subgraph, where each vertex is used only once and the sum of weights on the edges of

subgraph is maximum. This problem is called maximum weight bipartite matching.

The problem of maximum bipartite matching, deals with pairing the vertices in the

disjoint sets. The augmenting path algorithm finds a solution by adding an edge to the

matching iterating over the elements of a single set. In a weighted bipartite graph, the

problem turns into finding a matching where the sum of the values of edges is maximal.

The problem is also known as the assignment problem.

A set of algorithms have been proposed to deal with the matching problem in

bipartite graphs. In [9] the author lists them as displayed in figures 2.10 and 2.11:

 26

Figure 2.10. Non-weighted bipartite graphs [9]

Figure 2.11. Weighted bipartite graphs [9]

The primitive (augmenting path) algorithm applies a breadth-first search to find an

M-augmenting path in the following way [9]:

1. Begin the search from M-free vertices in one bipartition of G, say V+.

2. In odd iterations of search use edges that are not in M and in even iterations use

M-edges

 27

3. If the search finds an M-free vertex in V-, then we have an M-augmenting path.

The search time for the above algorithm is bounded with O(mn). If the search

finishes without finding an M-free vertex in V-, then there is no M-augmenting path in G,

therefore M is maximum.

Hungarian algorithm invented and published by Harold Kuhn in 1955, works on

weighted bipartite graphs to find a minimum cost maximum matching [9]. The algorithm

can also be used to find a maximum cost matching by reversing the cost function.

Hungarian algorithm seeks to find a solution for the assignment problem and models it

with a nxm cost matrix, where each element of the matrix represents the cost associated

with assigning a certain job to the specified resource. This algorithm describes to the

manual manipulation of a two-dimensional matrix by starring and priming zeros and by

covering and uncovering rows and columns [72]. The following steps are described by the

algorithm [72]:

1. Create an n x m matrix called the cost matrix in which each element represents the

cost of assigning one of n workers to one of m jobs. Rotate the matrix so that there

are at least as many rows as columns and let k=min(n, m).

2. For each row of the matrix, find the smallest element and subtract it from every

element in its row. Go to step 3.

3. Find a zero (Z) in the resulting matrix. If there is no starred zero in its row or

column, star Z. Repeat for each element in the matrix. Go to step 4.

4. Cover each column containing a starred zero. If K columns are covered, the

starred zeros describe a complete set of unique assignments. In this case, go to 8,

otherwise, Go to step 5.

5. Find a non-covered zero and prime it. If there is no starred zero in the row

containing this primed zero, Go to step 6. Otherwise, cover this row and uncover

the column containing the starred zero. Continue in this manner until there are no

uncovered zeros left. Save the smallest uncovered value and go to step 7.

6. Construct a series of alternating primed and starred zeros as follows. Let Z0

represent the uncovered primed zero found in step 5. Let Z1 denote the starred zero

in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there

 28

will always be one). Continue until the series terminates at a primed zero that has

no starred zero in its column. Unstar each starred zero of the series, star each

primed zero of the series, erase all primes and uncover every line in the matrix.

Return to step 4.

7. Add the value found in step 5 to every element of each covered row, and subtract it

from every element of each uncovered column. Return to step 5 without altering

any stars, primes, or covered lines.

8. This step indicates the algorithm is completed. Assignment pairs are indicated by

the positions of the starred zeros in the cost matrix. If C(i, j) is a starred zero, then

the element associated with row i is assigned to the element associated with column

j.

Examining the steps more carefully, in step 5, for example, the possible situations

are, that there is a non-covered zero which gets primed and if there is no starred zero in its

row the program goes onto step 6. The other possible way out of step 5 is that there are no

non-covered zeros at all, in which case the program goes to step 7 [72].

 29

3. Related Work

Semantic Web services aim to realize the vision of the Semantic Web, i.e. turning the

Internet from an information repository for human consumption into a worldwide system

for distributed Web computing [6]. The system is a machine-understandable media where

all the data is combined with semantic metadata. The domain level formalizations of

concepts form up the main element within this system, which is called ontology [11].

Ontology represents concepts and relations between the concepts; these can be hierarchical

relations, whole-part relations, or any other meaningful type of linkage between the

concepts [4].

 The semantic matchmaking process is based on ontology formalizations over

domains. In the upcoming section we present some of the selective research on the

matchmaking process considering the concepts that we build our research on.

Matchmaking of Web services considers the relationship between two services. The first

one is called the advertisement and the other is called the request [2]. Advertisement

denotes the services description of the existing services while the request indicates the

picture of service requirements [19].

 Traditional approaches to modeling semantic similarity between Web Services

compute subsume relationship for function parameters in service profiles within a single

ontology. In [20] a graph theoretic framework based on bipartite graph matching for

finding the best correspondences among function parameters belonging to advertisement

and request is introduced. On computing semantic similarity between a pair of function

parameters, a similarity function is introduced, determining similar entity, which relaxes

the requirement of a single ontology and accounts for the different ontology specifications.

The function presented for semantic similarity across different ontologies provides an

approach to detect similar parameters. The method is based on a matching process over

weighted sum of synonym sets, semantic neighborhood, and distinguishing features. They

make use of WordNet to capture the similarity between parameter names and also consider

properties of concepts in matchmaking as distinguishing features. However, the method

lacks use of contextual information or user preferences in matchmaking process.

 30

 In [22], a semantic ranking MSC is designed to rank the results of advertisements

matchmaking. MSC stands for the initials of three factors’ second words: Semantic

Matching Degree (to capture the semantic aspects of attributes), Semantic Support (to

describe the interestingness or potential usefulness of an attribute) and Relational

Confidence (to capture the association relationships among attributes). Three categories of

attributes are defined in advertisements matchmaking: Generalizable Nominal Attribute

(GNA) whose values can form a concept hierarchy; Numeric Attribute (NUA), called

quantitative attribute, whose values are numeral; Nominal Attribute (NOA) whose values

are neither numeral nor can form a concept hierarchy. However, in this study, the

presented factors excluding Semantic Matching Degree, are not directly dealing with

assessing service similarity to a certain request.

In [65], the authors introduce a step-by-step matchmaking process. They consider

profile, input-output and non-functional attributes matching in the process. They also

provide ranking of services according to their similarity to a certain request. However, they

consider discrete scales of similarity measures: Exact, plug-in, subsume, intersection and

fail. Although they provide ranking, they apply subsumption based reasoning and do not

consider properties of concepts and contextual information in matchmaking. In [66], the

authors describe capability matchmaking as matching inputs, outputs, preconditions and

effects of services. They focus on the input-output matching. However, only a discrete

scale classification of matching is provided. Besides, contextual information and properties

of OWL concepts are not taken into account.

In [55], authors approach the problem of service similarity in a category-based

approach. They define the following categories: Lexical similarity, which considers the

textual similarity of service names; attribute similarity, which evaluates semantic similarity

between Web service attributes and interface similarity, which considers the input-output

parameter type and name similarity. They define a conceptual model of Web services,

where a Web service is identified with its attributes and operations. Their study mostly

focuses on the attribute similarity and focus on QoS attributes. The input-output parameter

type similarity is only performed by a parameter type mapping table. The properties for

 31

those types defined in ontology are not considered. Besides, contextual information or user

preferences are not considered in the matching process.

 32

4. Problem Statement

The current industry standard for service discovery is UDDI [53]. However, UDDI

has some shortcomings in that it returns coarse results for a keyword-based search and

more importantly it lack semantics. It is basically a framework that supports category-

based search.

Semantic service discovery tries to solve the above problem by utilizing capability-

based search mechanism [25]. Capability based search enables reasoning on service input,

output parameters, preconditions and effects. Service discovery tries to find all services

that satisfy a certain request whereas service matchmaking deals with the relationship

between two services [26]. Service discovery needs support of service matchmaking

process.

The problem that we focus on in this research is to find suitable Web services that

satisfy a certain request by applying a matchmaking process. A conventional matchmaker

as described by Paolucci et al. [27] would distinguish four different relations between two

concepts: Exact, subsume, plug-in and fail. This matchmaker would also determine the

matching degree of a service to the request by the lowest degree of match. Considering the

parameters, if one of them fails to match with request parameters the service would be

considered as a fail to match. However, this scale of discrimination may not be appropriate

in certain situations. The experimental research so far has shown that simple subsumption

based matchmaking is not sufficient to capture semantic similarity [1, 22, 54, 55].

A discrete scale matchmaking methodology may result in false negatives. Some of

the services in the candidate set might be eliminated due to not fitting those discrete scales.

However, semantic relation has many dimensions other than subsumption. Next section

describes those dimensions that we take into account, namely the properties of concepts

and explicit annotations on concept similarity. A complete system should also evaluate all

the candidate services and rank them according to their semantic similarity to a given

request. We believe that considering semantic relations in depth provides a better

matchmaking process.

 33

Contextual information is also important to a matchmaking process. A matchmaking

approach considering only raw OWL ontology definitions would operate without

considering context. Matchmaking should also consider user preferences to be able to fully

capture semantic similarity upon a user request.

Service composition also benefits from semantic Web to support automatic

composition. Compositions can be generated dynamically by utilizing semantic

descriptions of services to organize them in a workflow. In most of the composition

approaches services are added to the composition one by one [56, 57]. As each service is

added a matchmaking step is needed to make sure that the service supports the IOPE

(Input, output, precondition and effect) constraints of the workflow node. Besides, the

selected service’s IOPE affects the matchmaking process for the next workflow node.

Thus, a rich matchmaking framework is needed to obtain successful compositions.

Considering alternative services in a composition is crucial for evaluation. So, a feature-

rich and ranking based matchmaker is crucial for a composition engine.

In this research, we aim to provide an efficient and accurate matchmaking algorithm

using scoring and ranking based on similarity distance information, extended subsumption

and property level similarity assessment in a general semantic Web service discovery

framework.

 34

5. Proposed Solution

In this research, we propose a method that enhances simple subsumption based

matchmaking approaches. Our main motivation is to capture semantic similarity between

services in a more efficient way and eliminate false negatives. We consider service input

and output parameters and perform the matchmaking considering the I/O (Input/Output)

interface of services. Our proposed solution uses decision modules that can be plugged in

and out. We have implemented some of these modules to add semantic relatedness values

onto existing subsumption-based procedures. Our proposed matchmaker agent, SAM –

Semantic Advanced Matchmaker, mainly provides ranking and scoring based on concept

similarity. We also introduce the use of similarity distance annotations in an OWL

document. Similarity distance supports explicitly annotating concept similarity in a

numerical fashion. These annotations might refer to user’s view of ontology and the

similarity degree of concepts according to the user. Similarity distance is actually a method

to represent context information in matchmaking process as described in Section 4.

Figure 5.1 overviews the matchmaking process in SAM. We assume that a

conventional service discovery is performed on a request and as a result we have a relevant

service set to apply matchmaking on. SAM gets the relevant service set and the request as

inputs. The output of SAM is a ranked list of relevant service set. The focus of this study is

the methods and procedures that take place in Matchmaking box described in Figure 5.1.

Figure 5.1. SAM matchmaking process

 35

The components of the proposed architecture are shown in Figure 5.2. Request

service definition and the corresponding relevant services set, which are discovered

through conventional discovery mechanisms, are presented as input to the system.

Matchmaker component organizes the framework for comparing each of the services

in the relevant service set with the request. It communicates with the Scoring Module to

obtain similarity score for each parameter pair for a certain request-service pair. Finally,

matchmaker component generates a bipartite graph for each request-service pair

cooperating with Bipartite Graph Module. Each bipartite graph represents the service and

request parameters with the similarity score assigned on every edge. As we are interested

in retrieving best matching services compared to a request, bipartite graph matching

algorithm will find the maximum weight match in each bipartite graph. This step ends up

with parameter pairings in bipartite graphs representing maximum weight match in each

service and request pair. At the end of the matchmaking process, the services in the

relevant service set are ranked according to their scores in bipartite-graphs, which of

course represent their semantic similarity to the request. SAM Bipartite Matcher module

uses the Hungarian algorithm of Kuhn (1955), as improved and presented by Lawler

(1976). The bipartite matcher engine finds maximum-weight matching in a complete

bipartite graph.

Scoring Module is the part of the system where similarity between concepts is scored

according to several criteria. We propose a plug-in architecture here, so that additional

scoring modules can be plugged in or out. Currently, we implemented three scoring

modules: Subsumption based scoring, similarity distance scoring and WordNet similarity

scoring. Pellet reasoner is used in association with the Scoring Module for inference in

ontology. Details on how these scoring modules work are described in the following

sections.

 36

Figure 5.2. Matchmaking agent components

The main software components of our proposed matchmaking agent are shown in

Figure 5.3. The top layer represents our matchmaker Semantic Advanced Matchmaker

(SAM). OWL-S API models the service, profile, process and grounding ontologies of

OWL-S in an easy to use manner. It is a widely used API in semantic applications. OWL-S

API also presents interfaces for reasoning operations and utilizes Jena constructs at the

back-end. At the bottom of the hierarchy we have Pellet reasoner for OWL reasoning

operations.

Figure 5.3. Software components of matchmaking agent

 37

We believe that a discrete scale (exact, plug-in, subsume, and fail) of service

classification is not sufficient for a matchmaking process. On the other hand, semantic

ranking of services can capture a set of services that are lost in a discrete scale match.

Semantic similarity assessment is a crucial step for the ranking process. In our proposed

architecture, we present value-added similarity assessment approaches between service and

request parameter pairs, which are described below.

5.1. Matching Algorithm

Previous research has shown that bipartite graph matching algorithm is a good fit for

finding matching parameters in a service and request pair [9]. Bipartite graph matching

provides us a solution for parameter pairing problem. We consider the inputs and outputs

as separate cases and partition the service parameters and request parameters to form the

bipartite graph. The similarity assessment process of our matchmaker assigns weights for

each parameter pair on this bipartite graph. A maximum weight match on the final graph

leaves us with the optimum matching parameter pairs and with a score that is sum of the

weights between matched parameter pairs. We repeat this process for each service and

request pair and finally rank the services according to their score from bipartite graph

matching algorithm.

As we stated before the process that differentiates the services is the similarity

assessment process. We consider OWL-S profiles of service definitions and assign

similarity scores for input and output parameter pairs. We present the following value-

added features for similarity assessment: Subsumption based similarity, property-level

similarity, similarity distance information and WordNet similarity assessment.

It is possible that the input or output parameter count of request does not match the

parameter count of the service. A preprocess step is introduced in the matchmaking

process to add dummy parameters to the request or service in the following cases: If the

service output parameter count is more than the request output parameter count an extra

parameter is added to request outputs or if the request input parameter count is more than

the service input parameter count an extra parameter is added to service inputs.

 38

For the above cases, we introduced additional parameters to service or request to

make the parameter count equal and to be able to support perfect bipartite matching. We

ignored the additional output parameter after the matchmaking process. However, for the

inputs we normalize the service similarity score. The idea is to apply a fair matchmaking

so that a service that can provide the results with less input does not get a lower score due

to its parameter count. So, we normalize the score of such a service using the following

equation:

Snew = |Pr|/|Ps|*Sold (5.1)

In equation 5.1, Sold represents the original service similarity score, |Pr| and |Ps|

represent the parameter count of request and service, respectively. Finally, Snew represents

the normalized service score.

An exception case is defined for the output parameters. If the service has less output

parameters than the request, we do not directly eliminate the service with a zero score. We

believe that any piece of provided information is valuable considering the outputs. So we

classify the service as partially satisfying the request. The score for the matched output

parameters are considered in the final evaluation. However, this is not the case for the

input parameters. As a request with insufficient parameter set will not be able to invoke a

certain service.

Another preprocess step in our matchmaking agent is to decompose any parameter

type if it can be represented as a owl:unionOf element. This step ensures that all the

parameters involved in matchmaking are atomic and reasoning on parameter count can be

performed safely. As an example, let us suppose the concept “address” is expressed as a

union of concepts “street” and “home”. If the request requires the parameters street and

home as output and the service provides the parameter address, we may not capture the

exact match between parameter pairs without such decomposition. The matchmaker could

even return a failure to match as the service provides less output then required by the

request.

 39

After the decomposition of request and service parameters, the matchmaker returns a

failure to match for the following cases: If the service has less output parameters then

required by the request or if the request has less input parameters then required by the

service.

After all the services in the candidate set are evaluated against the request, SAM

stores the following information for each service and request pair: Match type (exact,

subsume, plug-in, fail, property-level and ontology distance) for each matching parameter

pair, similarity score (range between 0 and 1) for each matching parameter pair and total

similarity score of service and request matching.

We provide ranking of services according to the above scores and in terms of their

input and output parameters. However, considering both the input and output parameters

we prioritize output matching as the outputs of a service are more important for client of a

matchmaker. The following equation is used for this weighted calculation:

Sfinal = winput*Sinputs + woutput*Soutputs (5.2)

In the above equation, Sinputs and Soutputs represent the similarity score considering only

the input parameters and output parameters respectively. winput and woutput represents the

weights for the input and output similarity scores, where they are fixed to 0.4 and 0.6 after

several runs of matchmaker considering the expected outcome. Finally, Sfinal represents the

final score of similarity considering both the input and output parameters.

Sx,y = wsub*Subsumptionx,y + wword*WordNet x,y (5.3)

Sx,y, in the above equation, represents final similarity score between concepts x and y.

Subsumptionx,y represents semantic score obtained through subsumption, property level

matching and semantic distance. WordNet x,y represents the WordNet score for concept

names. The coefficients for subsumption and WordNet are fixed at 0.9 and 0.1 after

making experimental runs. We plan to apply a neural network training approach to

determine values for coefficients utilizing a large training data in future.

 40

As we have indicated before, a feature-rich matchmaking process is crucial for

capturing semantic similarity between parameter pairs. Following sections describe the

value-added approaches that our matchmaking agent applies in order to evaluate semantic

similarity and rank the services according to the final similarity score.

5.1.1. Subsumption based Similarity Assessment

We make use of OWL-DL constructs subClassOf, disjointWith, complementOf,

unionOf and intersectionOf to assess concept similarity based on subsumption. If two

concepts are explicitly stated to be complement or disjoint, a zero score is directly

assigned. Otherwise, we check for subconcept relation and also assess according to

property level assessment procedure described below.

We wanted to capture similarity values in bipartite graph since it is important to

decompose concepts that include the characteristic of “a union of”. Following this

approach, we always pair and assess score for atomic concepts in matchmaking process.

Considering the input and output parameter matching, the following cases are

favored in subsumption: Request input parameter subsumed by the service input parameter

or service output parameter subsumed by the request output parameter.

The following equation explains the above scoring differentiation for subsumption

relation in parameters:

Sfinal = w*Sx,y (5.4)

Sx,y represents the semantic similarity score between parameters x and y, where w

represents the weight that is adjusted according to the subsumption relation. For the above

described favored subsumption cases we assign 0.6 to w and 0.4 otherwise. Sfinal represents

the final adjusted similarity score between the concepts.

 41

5.1.2. Property-level Similarity Assessment

We believe that in matchmaking it is also important to have properties and their

associated range in measuring the degree of match. Such as, if two concepts have similar

properties (properties having subclass relation) and their range classes are similar, then this

improves their level of similarity.

Our proposed matchmaker checks for property level similarity in a recursive fashion.

A complete similarity assessment is performed for range classes of each matching

property. This means that if the range classes of similar properties have also common

properties, property level matching is again applied to capture similarity at that level.

As the properties of a parent concept are inherited by its child concepts in a semantic

network, property-level matching is crucial to capture semantic similarity between sibling

concepts. Such concepts are not in a subsumption relation. However, since they have a

common parent, it is highly likely that they contain common properties with similar range

types.

As an example, considering the ontology in Figure 6.3, Foreign-Magazine and

ScienceFictionBook concepts are not in a subsumption relation. A conventional

matchmaker would classify these concepts as non-related. However, these concepts have

properties datePublished and publishedBy in common, which refer to concepts Date and

Publisher respectively as ranges. This means both concepts have a publisher and a

publishing date, what makes them similar at a certain degree. In order to calculate the

degree of match, SAM evaluates the similarity of range objects for datePublished and

publishedBy properties associated with concepts Foreign-Magazine and

ScienceFictionBook. In this example ontology, Foreign-Magazine has range Date for

datePublished and Premium-Publisher for publishedBy property. ScienceFictionBook has

also range Date for datePublished and Alternative-Publisher for publishedBy property. As

a result, the similarity degree of concepts Date compared to Date and Premium-Publisher

compared to Alternative-Publisher, gives an idea on how much the concepts Foreign-

Magazine and ScienceFictionBook are similar.

 42

The following equation describes how property-level matching is used in scoring:

Spx,y = wp*∑Sm,n (5.5)

In the above equation x and y represents the concepts that have common properties.

The property-level matching score for the concepts x and y is expressed as Spx,y. Let us

suppose m and n represent associated range classes for each matching property of x and y.

Sm,n represents the similarity score between concepts m and n. wp represents the weight for

property-level matching affecting the total similarity score, where we defined it to be equal

to 0.1 after several runs. Then, Spx,y equals to the adjusted sum of similarity scores for each

m and n. Note that SAM considers object type properties for subsumption. For data type

properties similarity will be simply equal to 0 or 1.

Using property level similarity assessment ranks a service that would normally be

eliminated by a conventional matchmaker. For example, a user request may favour a

particular author for a novel. A service, which returns articles that are written by that

particular author, will have a high score even though the concept of “an article” does not

compare to the concept of “a novel”. Therefore our proposed architecture returns positive

results for concepts that have similar properties as well as the similar concepts.

5.1.3. Similarity Distance based Assessment

Similarity distance represents the semantic similarity between two concepts in terms

of a value in the range as [0,1]. It is an explicit annotation on the ontology, where

contextual information is represented. Similarity distance annotations can be considered as

a user’s point of view on semantic relations of concepts or similarity relations of concepts

in a certain context.

Similarity distance annotations can be introduced into ontology by the ontology

creators or by the user’s of a system dynamically. A system can provide the user with an

interface to assess similarity relations between concepts in a user-friendly way. The user

can classify concepts as being equal, very similar, similar or not related so that the system

can map these relation classes to the range [0,1]. Our implementation does not focus on the

 43

semantic distance annotation step and assumes that the ontology with semantic distance

annotation is given.

In [24], authors make use of semantic distance information by representing

annotations in a custom XML file accompanying the ontology document. We further

improve this approach and apply a standards based approach. We defined a similarity

distance ontology which represents how similarity values between concepts are defined.

Importing similarity distance ontology and annotating the concepts with similarity distance

concept will enable any ontology to represent similarity relation between its concepts. This

way we provide a standard representation and enable an ontology which has similarity

distance annotations to be processed in any OWL processor.

To represent similarity distance information we applied N-ary relation pattern in

OWL, which is used to represent additional attributes on a property [58]. The additional

attribute in our case is the similarity distance value. Figure 5.4 shows how this pattern is

organized:

Figure 5.4. N-ary relation pattern in OWL, representing similarity distance information

 SimilarityRelation concept is introduced as a class with this pattern and the similarity

distance value is represented as the range of hasSimilarityDegree property of this concept.

The similar classes are represented as Concept_1 and Concept_2 in Figure 5.4. The

relations isSimilarFrom and isSimilarTo attach the concepts to the similarity relation and

indeed they are symmetric. Similarity distance ontology is represented below:

 44

Table 5.1. OWL representation of similarity distance ontology

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://127.0.0.1/ontology/similarityOntology.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://127.0.0.1/ontology/similarityOntology.owl">
 <owl:Ontology rdf:about="http://127.0.0.1/ontology/similarityOntology.owl"/>
 <owl:Class rdf:ID="SimilarityRelation">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValuerdf:datatype="http://www.w3.org/2001/XMLSchema#float">
 -1</owl:hasValue>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="hasSimilarityDistance"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isSimilarFrom"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isSimilarTo"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#isSimilarFrom">
 <rdfs:domain rdf:resource="#SimilarityRelation"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isSimilarTo">
 <rdfs:domain rdf:resource="#SimilarityRelation"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:about="#hasSimilarityDistance">
 <rdfs:domain rdf:resource="#SimilarityRelation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:DatatypeProperty>
</rdf:RDF>

 45

The similarity distance formulation is defined as follows:

Sdx,y = Sdx,t* Sdt,k*…*Sdm,y (5.6)

In the above equation, Sda,b ∈ [0,1] for any a and b pair. Sdx,y represents similarity

distance between concepts x and y. The product of similarity distance values on the path

from x and y gives the value for Sdx,y. If the concepts are not subclasses of each other then

we take the path including their first common parent in the hierarchy. If there are more

than one path between two concepts (occurs if a concept has more than one parent) we take

the path with higher score.

Similarity distance assignment approach is not strictly defined. Indeed, we encourage

similarity assignment to be performed in a consistent way, considering the ontology as a

whole. In addition, if similarity distance annotation is not found between two concepts,

then a default distance value is assigned according to the following equation:

Sdx,y = 1/|subClassOf(x)direct| (5.7)

In the above equation Sdx,y represents similarity distance between concepts x and y

and |subClassOf(x)direct| represents the number of elements in set of direct subclasses of

concept x.

5.1.4. WordNet based Similarity Assessment

As described in section 2, WordNet organizes concepts in synonym sets and provide

information on semantic relations between synsets by making use of pointers. In our

architecture we take WordNet as a secondary source of information in addition to the

ontology repository. We aimed at reasoning with these highly structured information

sources in order to get more reliable result sets.

We make use of the previously described Wordnet::Similarity source project to

assess similarity score among words. The path length criterion is used for score

 46

assignment. The parameter types of services are presented as input to Wordnet::Similarity

module.

SAM provides WordNet scoring as a module that can be turned on and off. As we

present parameter type names extracted from service ontologies as input to

Wordnet::Similarity, some types may not correspond to any word name in WordNet.

Ontology designers may not provide concept names that correspond to valid words in

WordNet database. Considering this, some of the concepts might have zero score from

WordNet in matchmaking process according to equation 5.3, while others gain some

considerable score. Therefore, it might be desirable not to consider WordNet scoring in

some matchmaking scenarios. SAM supports this flexibility.

 47

6. Experimental Results

6.1. Test Ontology

The ontology and services we used are retrieved from “OWL-S Service Retrieval

Test Collection version 2.1”. The services in the collection are mostly extracted from

public UDDI registries, providing 582 Web services described in OWL-S and from seven

different domains. The OWL-S Test collection version 2.1 contains 29 queries, each of

which associated with a set of 10 to 15 services [8].

In order to evaluate the performance of our proposed matchmaking agent we

extended the book ontology in OWL-S Service Retrieval Test Collection (OWL-S TC) and

also modified related request and service definitions accordingly [8]. As shown in Figure

6.1, we added subclasses of Magazine, namely Foreign-Magazine and Local-Magazine

classes. We introduced subclasses for Publisher concept, Author and Newspaper concepts.

We also annotated the book ontology with similarity distance information, making use of

similarity distance ontology that we have imported.

The ontology contains information on printed material classification and related

concepts such as authors, publishers, publishing intervals in terms of time and date and

several other concepts. Figures 6.1 to 6.3 are sections from the book ontology.

 48

Figure 6.1. A section of book ontology

As shown above we introduced subclasses for Publisher and Author concepts. This

will provide further differentiation in matchmaking process when considering the above

concepts in parameter types.

Figure 6.2. Person ontology section

 49

Figure 6.3. Printed Material ontology section

 50

Figure 6.4. SimilarityRelation concept and subclasses

As shown in Figure 6.4, we imported similarity distance ontology and introduced

subclasses of SimilarityRelation concept to represent similarity distance annotations. This

way, we can represent semantic similarity values between book ontology concepts.

Following table lists the similarity distance values assigned in the book ontology:

 51

Table 6.1. Similarity distance values in book ontology

Superclass Subclass Similarity Distance
Publisher Ordinary-Publisher 0.2
Publisher Alternative-Publisher 0.5
Publisher Premium-Publisher 0.3
Author Local-Author 0.3
Author Foreign-Author 0.7

Magazine Local-Magazine 0.3
Magazine Foreign-Magazine 0.7

Newspaper Local-Newspaper 0.3
Newspaper Foreign-Newspaper 0.7

Book Short-Story 0.7
Book Science-Fiction-Book 0.4
Book Novel 0.3
Book Encyclopedia 0.1
Novel Science-Fiction-Novel 0.6
Novel Fantasy-Novel 0.2
Novel Romantic-Novel 0.2

Book-Type Hard-Cover 0.7
Book-Type Paper-Back 0.3

Genre Comic 0.3
Genre Fantasy 0.2
Genre Science-Fiction 0.5

The above similarity distance values are annotated in the ontology as described in

Table 6.2 below. The similarity distance value in super concept SimilarityRelation is

overridden by the annotation. Owl:hasValue construct is used to represent the similarity

distance. The concepts that are described as similar are represented with isSimilarFrom

and isSimilarTo properties using owl:Restriction construct.

 52

Table 6.2. Similarity distance annotation
<owl:Class rdf:ID="Similarity_Author_LocalAuthor">
<rdfs:subClassOf
 rdf:resource="http://127.0.0.1/ontology/similarityOntology.owl#SimilarityRelation"/>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"> 0.3
 </owl:hasValue>
 <owl:onProperty rdf:resource=
 "http://127.0.0.1/ontology/similarityOntology.owl#hasSimilarityDistance"/>
 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=
 "http://127.0.0.1/ontology/similarityOntology.owl#isSimilarFrom"/>
 <owl:allValuesFrom rdf:resource="#Author"/>
 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Local-Author"/>
 </owl:allValuesFrom>
 <owl:onProperty rdf:resource=
 "http://127.0.0.1/ontology/similarityOntology.owl#isSimilarTo"/>
 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

The OWL-S documents describing the services make use of the book and concepts

ontology in OWL-S TC. Table 6.3 represents the header section of an OWL-S document

demonstrating how these ontologies are imported.

Table 6.3. OWL-S document header

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl" />
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl" />
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Profile.owl" />
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Grounding.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/modified_books.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/concept.owl" />
</owl:Ontology>

Below, Table 6.4 presents the service section of an OWL-S document.

 53

Table 6.4. OWL-S document service section

<service:Service rdf:ID="BOOK_PRICE_SERVICE">
<service:presents rdf:resource="#BOOK_PRICE_PROFILE"/>
<service:describedBy rdf:resource="#BOOK_PRICE_PROCESS_MODEL"/>
<service:supports rdf:resource="#BOOK_PRICE_GROUNDING"/>
</service:Service>

Table 6.5 represents the profile section of an OWL-S document, describing how the

inputs and outputs of the service are referred.

Table 6.5. OWL-S document profile section

<profile:Profile rdf:ID="BOOK_PRICE_PROFILE">
<service:isPresentedBy rdf:resource="#BOOK_PRICE_SERVICE"/>
<profile:serviceName xml:lang="en">
…
</profile:serviceName>
<profile:textDescription xml:lang="en">
…
</profile:textDescription>
<profile:hasInput rdf:resource="#_ORDINARYPUBLISHER"/>
…
<profile:hasOutput rdf:resource="#_GENRE"/>
<profile:has_process rdf:resource="BOOK_PRICE_PROCESS" />
</profile:Profile>

Table 6.6 presents the process section of the OWL-S document and represents how

types of input and output parameters are defined.

Table 6.6. OWL-S document process section

…
<process:AtomicProcess rdf:ID="BOOK_PRICE_PROCESS">
<profile:hasInput rdf:resource="#_ORDINARYPUBLISHER"/>
…
<profile:hasOutput rdf:resource="#_GENRE"/>
</process:AtomicProcess>
…
<process:Input rdf:ID="_NOVEL">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/ontology/modified_books.owl#Novel
</process:parameterType>
</process:Input>
…
<process:Output rdf:ID="_GENRE">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/ontology/modified_books.owl#Genre
</process:parameterType>
</process:Output>

 54

6.2. Test Environment

SAM is developed in Java with Eclipse IDE. Java is a good choice considering its

power in open source community and semantic Web projects that are developed in Java

[29, 30, 31, 32]. As described in section 5, SAM makes use of OWL-S API for processing

OWL-S documents and Jena for reasoning on OWL. Apache Web server is used to publish

OWL ontology documents and services described with OWL-S. We also used Protégé

ontology editor to edit and visualize OWL documents.

6.3. Test Results

In order to demonstrate the value-added features of our proposed matchmaker, we

present two test cases for request-service matchmaking. The service and request pairs are

described in Tables 6.7 and 6.8.

Table 6.7. Test case 1

Service Name Inputs Outputs

Request Ordinary-Publisher, Novel,
Paper-Back

Local-Author,
Genre

Service 1 Publisher, ScienceFictionBook Author, Price

Service 2 Book, Alternative-Publisher,
Book-Type

Publisher, Price,
Date

Service 3 FantasyNovel, Author Price, Comic

Service 4 Newspaper, Book-Type, Person Review, Fantasy

Service 5 Publication, Book-Type, Reader Genre, Publisher

 55

Table 6.8. Test case 2

Service Name Inputs Outputs

Request ScienceFictionShortStory,
Foreign-Magazine

Foreign-Author,
Publisher

Service 1 Local-Author, Newspaper Ordinary-
Publisher, Price

Service 2 RecommendedShortStory,
Foreign-Magazine Author, Publisher

Service 3 Novel, Magazine Reader, Author

Service 4 Local-Magazine
Ordinary-

Publisher, Price,
Reader

Results for input parameter matching for test case 1 are listed in Table 6.9.

 56

Table 6.9. Input parameter matching for test case 1

Service Name Parameter Pairing Service Score

Service 1

*Novel to Science-Fiction-Book
(Property Level) :

0.13176
*Ordinary-Publisher to Publisher

(Request Subsumed) :
0.108

0.35964

Service 2

*Novel to Book
(Request Subsumed + WordNet) :

0.266
*Paper-Back to Book-Type

(Request Subsumed) :
0.162

*Ordinary-Publisher to Alternative-
Publisher

(Only Distance) :
0.0108

0.4388

Service 3

*Novel to Fantansy-Novel
(Service Subsumed) :

0.12
*Ordinary-Publisher to Author

(Only Distance) :
0.00018

0.18026

Service 4

*Novel to Newspaper
(Property Level + WordNet) :

0.07225
*Paper-Back to Book-Type

(Request Subsumed) :
0.162

*Ordinary-Publisher to Person
(Request Subsumed) :

0.00211

0.23636

Service 5

*Novel to Publication
(Request Subsumed + WordNet) :

0.155
*Paper-Back to Book-Type

(Request Subsumed) :
0.162

*Ordinary-Publisher to Reader
(Only Distance) :

0.00018

0.31718

 57

Service 2 has the highest score considering input parameters only. The request input

parameter Novel is a direct subclass of service parameter Book. For the input parameter

matching, service parameter subsuming the request parameter is favored considering

equation 5.4. An extra score of 0.5 is also received from WordNet similarity for Novel and

Book parameters. We might not have considered WordNet score, considering that concept

names such as Paper-Back or Book-Type are not included in WordNet database. Even if

that was the case Service 2 still has the highest score. The same favorable case also holds

for Paper-Back and Book-Type concepts as they have direct subclass relationship. The last

parameter pair, Ordinary-Publisher and Alternative-Publisher, has no property in common

and they are sibling concepts. Because of that we just consider their distance in ontology

calculating with the similarity distance annotations according to equation 5.6.

Service 1 has the next highest score although it operates with only 2 input

parameters. We normalized Service 1’s score proportional to 3/2, according to equation

5.1. Novel and Science-Fiction-Book concepts are sibling nodes in ontology and they have

the following common properties: publishedBy, datePublished, timePublished, writtenBy,

hasType and isTitled. We apply property level matching and compare the semantic

similarity for the range types of these common properties. The range types are exact

matches in terms of similarity except publishedBy property. Novel has type Publisher and

Science-Fiction-Book has type Alternative-Publisher respectively. So, a property-level

similarity score for this subsumption relation is added to the parameter pair scores,

considering equation 5.5. The other parameter pair, Ordinary-Publisher and Publisher has

also subsumption relation in the favorable case, where the service parameter subsumes the

request.

Service 5 also demonstrates parameter pairs having WordNet similarity, Novel and

Publication. Ordinary-Publisher and Reader concepts both have the Person concept as

parent. But they do not have a subsumption relation and we calculate their similarity score

by considering the path in ontology between them and the similarity distance annotations

on this path.

 58

Novel and Newspaper concepts in Service 4, has Publication concept as common

parent but they are on different paths in ontology. However, they have common properties

and we consider those property ranges in terms of similarity and add to the final score.

Service 3 is also an example of score normalization in input parameter matching

case. It has the weakest match among all services: A subsumption relation with an

unfavored case, where request parameter subsumes the request and similarity distance

score from Ordinary-Publisher to Author, where they do not have any properties in

common.

The following table lists the results for output parameter matching for test case 1.

Table 6.10. Output parameter matching for test case 1

Service
Name Parameter Pairing Service Score

Service 1

*Genre to Price
(No Match + WordNet) :

0.01429
*Local-Author to Author

(Request Subsumed) :
0.108

0.12229

Service 2
*Genre to Comic

(Service Subsumed + WordNet) :
0.17033

0.17033

Service 3

*Genre to Price
(No Match + WordNet) :

0.01429
*Local-Author to Publisher

(Only Distance) :
0.00018

0.01447

Service 4

*Genre to Genre
(Exact + WordNet) :

1.0
*Local-Author to Publisher

(Only Distance) :
0.00018

1.00018

Service 5
*Genre to Fantasy

 (Service Subsumed + WordNet) :
0.12229

0.12229

 59

Service 4 has a great score advantage considering the exact match for Genre

parameter in outputs. In contrast to input parameter matching, request parameter

subsuming the service parameter is favorable in subsumption relation for outputs. We have

this property is Service 2 and Service 5.

We can see that Service 1 has no semantic similarity for Genre and Price considering

the book ontology. However, we have a score of 0.01429 coming from WordNet database.

For Service 1 and Service 5 we have the same output score and we do rank randomly for

such cases.

Table 6.11. Final service rank for test case 1

Service
Name Service Score

Service 1 0.21723
Service 2 0.27771
Service 3 0.08078
Service 4 0.69465
Service 5 0.20024

Considering both the input and output matching with the equation 5.2, we have the

above ranking in table 6.11. Service 4 has the advantage of exact match in output

parameters. Service 2 has favorable similarity relations in input parameters and it is also

the second in ranking for output parameters. Finally, Service 3 has the weakest match for

both inputs and outputs, which makes it the last in ranking.

To better demonstrate the advantages of using SAM as compared to a conventional

matchmaker, we have also implemented a conventional matchmaker. This matchmaker

does not have property-level similarity matchmaking or similarity distance annotation

capabilities. So, if the concepts do not have a subsumption relation they will have a zero

matchmaking score. If there is a subsumption relation then the following equation will

apply in addition to equation 5.4:

S = 1 / Dx,y (6.1)

 60

In equation 6.1, S represents the subsumption similarity score, where D is the path

length incremented by 1, between the concepts x and y in ontology. Finally, according to

equation 5.4 this similarity score is multiplied by an adjustment factor for subsume or

plug-in cases.

 As shown in table 6.12, we have a loss of fine-grained discrimination between

services. Although Service 1 had property-level matching in SAM, now it loses the

advantage and ranked below Service 4 and Service 5. Service 4 and Service 5 are also

equal in ranking due to similarity distance and property-level matching non-existence.

Table 6.12. Conventional matchmaker - Input parameter matching for test case 1

Service
Name Parameter Pairing Service Score

Service 1
*Ordinary-Publisher to Publisher

(Request Subsumed) :
0.54

0.81

Service 2

*Novel to Book
(Request Subsumed) :

0.54
*Paper-Back to Book-Type

(Request Subsumed) :
0.54

1.08

Service 3
*Novel to FantansyNovel

(Service Subsumed) :
0.36

0.54

Service 4

*Paper-Back to Book-Type
(Request Subsumed) :

0.54
*Ordinary-Publisher to Person

(Request Subsumed) :
0.54

1.08

Service 5

*Novel to Publication
(Request Subsumed) :

0.54
*Paper-Back to Book-Type

(Request Subsumed) :
0.54

1.08

Table 6.13 demonstrates the output parameter matching with a conventional

matchmaker. Although the difference is not as obvious as the case in inputs, we can

observe that Service 1 has lost the advantage of WordNet score, which is a second source

 61

of information in SAM. Service 3 also now gets a zero score as similarity distance and

WordNet is not considered, which means it is totally left out in this match.

Table 6.13. Conventional matchmaker - Output parameter matching for test case 1

Service
Name Parameter Pairing Service Score

Service 1
*Local-Author to Author

(Request Subsumed) :
0.36

0.36

Service 2
*Genre to Comic

(Service Subsumed) :
0.54

0.54

Service 3 No Match 0

Service 4
*Genre to Genre

(Exact) :
0.9

0.9

Service 5
*Genre to Fantasy

(Service Subsumed) :
0.54

0.54

Table 6.14. Conventional matchmaker - Final service rank for test case 1

Service Name Service Score
Service 1 0.54
Service 2 0.756
Service 3 0.216
Service 4 0.972
Service 5 0.756

According to table 6.14 the final ranking changes for Service 5 and Service 1.

However, as we have more test scenarios and more services in the relevant set, the

difference will be more obvious and a fine-grained scoring as in SAM will be needed for a

clear differentiation.

Table 6.15 lists the input parameter matching for test case 2. The exact match in

parameter Foreign-Magazine ranks Service 2 top in input matching. Service 2 also has

property level matching as Science-Fiction-Short-Story and Recommended-Short-Story are

sibling nodes in ontology and share common properties. Service 4 has a property level

matching for parameters Foreign-Magazine and Local-Magazine as they are sibling nodes

 62

in ontology. Besides, Service 4’s score is adjusted with a ratio of 3/1 according to request

input parameter count.

Table 6.15. Input parameter matching for test case 2

Service
Name Parameter Pairing Service Score

Service 1
*Foreign-Magazine to Newspaper

(Property Level) :
0.07065

0.07065

Service 2

*Foreign-Magazine to Foreign-Magazine
(Exact) :

0.9
*Science-Fiction-Short-Story to

Recommended-Short-Story
(Property Level) :

0.19764

1.09764

Service 3

*Foreign-Magazine to Magazine
(Request Subsumed) :

0.378
*Science-Fiction-Short-Story to Novel

(Property Level) :
0.12587

0.50387

Service 4
*Foreign-Magazine to Local-Magazine

(Property Level) :
0.12748

0.25495

As listed in table 6.16, Service 2 ranks top in output parameter matching due to an

exact match with the Publisher parameter. Service 3 has both WordNet and similarity

distance matching which puts it into second place in ranking. Service 4 has a slight

advantage over Service 1 as it has the parameter Reader which shares a common parent

with parameter Foreign-Author in ontology.

 63

Table 6.16. Output parameter matching for test case 2

Service
Name Parameter Pairing Service Score

Service 1
*Publisher to Ordinary-Publisher

(Service Subsumed) :
0.108

0.108

Service 2

*Foreign-Author to Author
(Request Subsumed) :

0.252
*Publisher to Publisher

(Exact + WordNet) :
1.0

1.252

Service 3

*Foreign-Author to Author
(Request Subsumed) :

0.252
*Publisher to Reader

(Only Distance + WordNet) :
0.03625

0.28825

Service 4

*Foreign-Author to Reader
(Only Distance) :

0.00018
*Publisher to Ordinary-Publisher

(Service Subsumed) :
0.108

0.10818

Table 6.17. Final service rank for test case 2

Service Name Service Score
Service 1 0.09306
Service 2 1.190256
Service 3 0.3745
Service 4 0.16689

As shown in the above table, we have the final ranking of services in the order:

Service 2, Service 3, Service 4 and Service 1. This ranking aligns with the input and output

parameter rankings.

As we compare the input parameter matching with a conventional matchmaker, Table

6.18 clearly shows that Service 1 is now left out as we do not have property-level matching

anymore. This way we lose the connection between Foreign-Magazine and Newspaper

concepts in Service 1 inputs. This is also the case in Service 4.

 64

Table 6.18. Conventional matchmaker - Input parameter matching for test case 2

Service
Name Parameter Pairing Service Score

Service 1 No match 0

Service 2
*Foreign-Magazine to Foreign-Magazine

(Exact) :
0.9

0.9

Service 3
*Foreign-Magazine to Magazine

(Request Subsumed) :
0.54

0.54

Service 4 No match 0

 Table 6.19 shows that we have no differentiation for Service 1 and Service 4

anymore. This is because similarity distance annotations are not considered and Service 4

loses its advantage and importance in matchmaking. Besides, we do not have a fine-

grained matchmaking as the previous cases.

Table 6.19. Conventional matchmaker - Output parameter matching for test case 2

Service
Name Parameter Pairing Service Score

Service 1
*Publisher to Ordinary-Publisher

(Service Subsumed) :
0.54

0.54

Service 2

*Foreign-Author to Author
(Request Subsumed) :

0.36
*Publisher to Publisher

(Exact) :
0.9

1.26

Service 3
*Foreign-Author to Author

(Request Subsumed) :
0.36

0.36

Service 4
*Publisher to Ordinary-Publisher

(Service Subsumed) :
0.54

0.54

The final rank with a conventional one points out that we do not have a separation for

Service 1 and Service 4. It also shows that we do not have a fine-grained differentiation.

 65

Table 6.20. Conventional matchmaker - Final service rank for test case 2

Service Name Service Score
Service 1 0.324
Service 2 1.116
Service 3 0.432
Service 4 0.324

The above test runs demonstrate that matchmaking in SAM provides fine-grained

differentiation for services, taking into account context information with similarity distance

annotations. Besides, SAM can capture semantic similarity observing common properties

in concepts. The advantages of SAM as compared to a conventional matchmaker will be

far greater, when we have more complex service sets with a great number of services

having parameters referring to several ontologies.

6.4. Threats to Validity

SAM addresses several challenges in the Web service matchmaking process. In this

section we describe these challenges, describing how SAM overcomes them.

Considering input or output parameter matching, number of parameters in the request

or service interface may not be equal. As mentioned in section 5, SAM applies

normalization to similarity score if the input parameter count of a service is less than the

request parameters.

The above case indeed raises an issue of imperfect matching. Although the service

might satisfy the request with less input parameters, the interface of the service and request

does not match perfectly. However, SAM does not make any classification of match type

like perfect or imperfect. It just evaluates the amount of similarity score and provides a

relative ranking between candidate services. But considering the parameter pairing SAM

provides a match type with the similarity score. As mentioned before, the interpretation of

scores and similarity distance information by the user is not considered in SAM. We

assume that an automated system can provide the user with an interface to assign similarity

distance values in a user-friendly way.

 66

Bipartite graph matching in SAM does not differentiate between alternative

maximum weight matching for a certain service and request pair. Indeed, a service and

request pair might have more than one maximum weight matching, where some of them

might be preferred to others. Such as a maximum weight matching that has equally

distributed weights over parameter pairs can be preferred over a maximum matching,

where the total weight is assigned only on a single parameter pair and remaining pairs have

zero score. SAM graph matching module can be extended to consider this case and choose

the best maximum weight matching in parameter pairing.

As SAM applies fine-grained similarity scoring with property-level matching some

side-effects might occur. Although properties of two concepts might be similar, in some

extreme cases the concepts might not have so much in common. This can result in

introducing false positives in SAM matchmaking process. A validation step could be

included after property-level matching to overcome this problem.

WordNet similarity score is considered as a second source of information. However,

some parameter types defined in ontologies may not correspond to valid WordNet entries.

In order to provide a fair matchmaking process WordNet scoring is enabled or disabled in

SAM.

Matching and ranking involves the consideration of priorities. The similarity

equations that are described by SAM make use of coefficients that represent priorities.

Such as the output similarity score being prioritized over input similarity scores, as the

outcome of a service is much more important for a request. Another example is the

WordNet score having a less priority than the ontology based similarity distance score.

SAM is tested and evaluated on the book ontology provided with the OWL-S TC

library. We presented two test scenarios with 9 services and two requests. Testing SAM

with different ontologies and services may better demonstrate the value-added features of

it. The coefficients in presented equations will converge to certain values as SAM is tested

with different ontologies. However, the relative ratio of the coefficients will be very

similar to current values. Current coefficient values are adjusted considering the book

 67

ontology and changing these values might affect the ranking of services. As stated, further

testing will make SAM much more reliable.

6.5. Comparing SAM with Existing Matchmakers

As described in section 3, web services matchmaking has been an active research

area. Several matchmakers have been introduced with prototype implementations. Each of

these studies focus on certain aspects of matchmaking. In this section we will discuss the

advantages and disadvantages of SAM in comparison to other matchmaker proposals.

In [55], authors Jian Wu and Zhaohui Wu, introduce the study “Similarity-based Web

Service Matchmaking”. They present four similarity assessment methods as part of their

matchmaker. As in SAM, they make use of WordNet but for a different purpose. SAM

benefits from WordNet as a second source of information base for service parameter type

similarity assessment. In their proposed matchmaker, WordNet is used to assess the

similarity of service profile categories and parameter names instead of parameter types.

Their approach deals with lexical similarity more than semantics. They consider the

parameter type similarity through a data type similarity lookup table. SAM makes use of

ontologies for parameter type similarity, which we believe is a better method considering

semantics and standards. One advantage of their study is the consideration of QoS attribute

similarity. However, SAM has the advantage of subsumption similarity assessment with a

level down to properties of concepts and makes use of similarity distance information

considering as the context in matchmaking.

In [73], one of the best known systems Larks is presented. The authors define an

agent capability description language named Larks and deal with the problem of

matchmaking. Their matchmaking algorithm makes use of this specialized language as

opposed to SAM, where standard semantics technologies like OWL and OWL-S are

employed. Besides, Larks has a discrete scale of similarity classification. On the other

hand SAM assigns similarity scores and ranks the services. Larks ignore a service if one of

the attributes is in a fail state. SAM just considers the total score a service retrieves, not

eliminating and leaving the choice to the consumer. Besides, SAM makes use of WordNet,

property-level matching and similarity distance information that Larks does not include.

 68

In [74], Lei Li and Ian Harrocks introduce a service matchmaker prototype which

works on DAML-S definitions. Their matchmaking algorithm uses a discrete scale of

match as in Larks: Exact, plug-in, subsume, intersection and fail. One advantage over

SAM is that their matchmaker provides service profile category match, where SAM

assumes that the category match is performed and a candidate service set is presented.

However, SAM has many advantages over Li and Harrocks’s matchmaker such as

property-level matching, WordNet scoring and use of similarity distance information to

consider user preferences in matching.

In [54] authors introduce a matchmaking approach based on a custom capability

description (OSDL) and query language (OSQL). However, different from other

matchmakers they also consider property-level matching. They categorize the similarity of

two concepts as equal, inherited (subsumption), property relation (one concept is a

property of another) and mixed relation (a transitive relation where one concept is a

property of another which is subsumed by a third concept). In their definition similarity of

concept X to concept Y is not always equal to the reverse case. They argue that the

similarity of subsuming concepts depends on the number of properties they possess. In

SAM the similarity relation is symmetric. Besides, SAM does not consider concepts being

properties of each other in matchmaking. We suspect that the property of a concept should

contain similarities to the concept itself. SAM considers concepts having similar

properties. Both SAM and their matchmaker focus on interface similarity but SAM

introduces value-added approaches like similarity distance and WordNet scoring in

addition.

Considering the above comparisons we can conclude that SAM contributes value-

added approaches in matchmaking. Similarity distance information is used in a standard

context improving MS-Matchmaker [24]. Property-level matching and WordNet scoring

are all combined in a service ranking matchmaker. The following table summarizes this

comparison.

 69

Table 6.21. SAM in comparison to other matchmakers

Feature /

Matchmaker
SAM

MS-

Matchmaker
Larks

Li &

Harrocks

Wu &

Wu
OSDL

Subsumption + + + + + +

Service

Interface

Matching

+ + + + + +

Constraints - - + - - -

Property

Level

Matching

+ - - - - +

Similarity

Distance
+ + - - - -

WordNet + - - -
+

(lexical)
-

Nonfunctional

Matching
- - - - + +

Service

Category

Matching

- + + + + -

OWL-S + - - - - -

 70

7. Conclusions and Future Work

We proposed a novel advanced matchmaker architecture, which introduces new

value-added approaches like semantic distance based similarity assessment, property level

assessment and WordNet similarity scoring. Instead of classifying candidate Web services

in a discrete scale, our matchmaking agent applies a scoring scheme to rank candidate Web

services according to their relevancy to the request.

The ranking property enables to include some of the relevant Web services in the

final result set whereas they would have been discarded in a discrete scale classification.

Additionally, our proposed matchmaking agent improves subsumption- based

matchmaking by utilizing OWL constructs efficiently and by considering down to a level

of concept properties in the process. An improvement at this point can be to consider

similarity between properties in addition to similarity of property range objects.

 We also introduced semantic distance annotation in ontology to represent relevancy

of concepts to the user in a numerical way. Semantic distance annotations improve the

relevancy of returned Web service set as they actually represent user’s view of ontology.

WordNet similarity measurement is also presented as a value-added feature, which acts as

a secondary source of information, strengthening the power of reasoning.

Considering the value-added approaches that SAM introduces in matchmaking, we

can conclude that in a service discovery architecture SAM will improve the precision and

accuracy of the discovery process. As a result businesses can find partners in a distributed

environment easily and with alternatives considered. This will lead to better collaboration

among partners and improvement of business processes.

We think that preconditions and results of a service can also be considered for a

complete matchmaking process. At that point, use of SWRL (Semantic Web Rule

Language) in both service advertisements and request description will enhance the

capabilities of our matchmaking agent. Current architecture of SAM supports such a rule

based extension.

 71

Non-functional attributes of Web services can also be taken into account in

matchmaking process. QoS attributes of a Web service can be of great concern to a

consumer. So, extending our matchmaking algorithm to include QoS attributes can be

another improvement.

SAM currently presents a relative ordering of services as the output with similarity

scores compared to a certain request. In order to eliminate some services with ignorable

similarity scores a threshold value can be introduced. We leave this to the client agent that

makes use of SAM. However, such a threshold can also be implemented in SAM as a cut-

off score in order to classify only a subset of candidate service set as relevant.

Another improvement will be to add context aware decision-making capabilities,

enabling our matchmaking agent to reason based on user profiles, preferences, past actions

etc. The architecture that we have presented can be considered as a basis for the

development of context-aware agent.

 72

REFERENCES

1. Wang, H. and L. Zengzhi, L. Fan, An Unabridged Method Concerning Capability

Matchmaking of Web Services, In Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence, 2006.

2. Klusch, M., B. Fries, M. Khalid, and K. Sycara, OWLS-MX: Hybrid Semantic

Web Service Retrieval, In 1st Intl. AAAI Fall Symposium on Agents and the

Semantic Web, AAAI Press, Arlington VA, 2005.

3. Keller, U., R. Lara, A. Polleres, I. Toma, M. Kifer and D. Fensel, WSMO Web

Service Discovery, http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112/.

4. El-Ghalayini, H., M. Odeh, R. McClatchey, and T. Solomonides, Reverse

Engineering Ontology to Conceptual Data Models, In Proceeding (454) Databases

and Applications, 2005.

5. Universal Discovery Description and Integration Protocol, http://www.uddi. org,

2006.

6. Semantic Web, W3C, http://www.w3.org/2001/sw/, 2006.

7. W3C, World Wide Web Consortium, http://www.w3.org/, 2006.

8. Khalid, M. A., Fries B. and Kapahnke P., OWL-S Service Retrieval Test Collection

Version 2.1, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

Saarbrücken, Germany, 2006.

9. Saip, H. A. B. and C. L. Lucchesi, Matching Algorithms for Bipartite Graphs,

Relatorio Tecnico DCC-03/93.

 73

10. Motta, E., J. B. Domingue, L. S. Cabral and M. Gaspari, IRS-II: A Framework and

Infrastructure for Semantic Web Services, Proceedings of the 2nd International

Semantic Web Conference (ISWC2003), Vol. 2870 of LNAI., Springer, pp.306-

318, Florida, USA, 2003.

11. OWL-S Submission, http://www.w3.org/Submission/OWL-S, 2004.

12. Fensel, D. and C. Bussler, The Web Service Modeling Framework: WSMF,

Electronic Commerce: Research and Applications, Vol. 1, No. 2, pp. 113-137,

2002.

13. Klein, M., B. Konig-Ries and M. Muussig, What is needed for semantic service

descriptions? A proposal for suitable language constructs, Proceedings of

Inernational Journal of Web and Grid Services, Vol. 1, No. 3/4, pp. 328-364, 2005.

14. Voorhees, E., Using WordNet for Text Retrieval, C. Fellbaum(Editor), WordNet:

An Electronic Lexical Database, pp. 285-303, The MIT Press, Cambridge,1998.

15. Ginsberg, A., A Unified Approach to Automatic Indexing and Information

Retrieval, IEEE Expert , Vol. 8, No. 5, pp 46-56, 1993.

16. Lee, J., M. Kim and Y. Lee, Information Retrieval Based on Conceptual Distance

in IS-A Hierarchies, Journal of Documentation, Vol. 49, No. 2, pp. 188-207, 1993.

17. Agirre, E. and G. Rigau, Word Sense Disambiguation Using Conceptual Density,

Proceedings of the 16th Conference on ComputationalLlinguistics, Vol.1, pp. 16-

22, 1996.

18. Hovy, E., Combining and Standardizing Large-scale, Practical Ontologies for

Machine Translation and Other Uses, Proceedings of the 1st International

Conference on Language Resources and Evaluation (LREC), Granada, Spain, 1998.

 74

19. Wang, Y. and E. Stroulia, Semantic Structure Matching for Assessing Web-Service

Similarity, Proceedings of the 1st International Conference on Service Oriented

Computing, Trento, Italy, 2003.

20. Guo, R., D. Chen and J. Le, Matching Semantic Web Services accross

Heterogeneous Ontologies, Proceedings of the 2005 The Fifth International

Conference on Computer and Information Technology (CIT’05), 2005.

21. Paolucci, M., T. Kawamura, T. Payne, and K. Sycara, Semantic matching of Web

services capabilities. In Horrocks, I. And Hendler, J.eds.Proc. of the 1st

International Semantic Web Conference(ISWC), pages333-347. Springer, 2002.

22. Shen, X., X. Jin, R. Bie and Y. Sun, MSC: A Semantic Ranking for Hitting Results

of Matchmaking of Services, Proceedings of the 30th Annual International

Computer Software and Applications Conference (COMPSAC'06).

23. Osman T., D. Thakker, D. Al-Dabass, Semantic-Driven Matchmaking of Web

Services Using Case-Based Reasoning, IEEE International Conference on Web

Services, 2006.

24. Şenvar, M. and A. Bener, Matchmaking of Semantic Web Services Using

Semantic- Distance Information, Lecture Notes in Computer Science by Springer

Verlag, ADVIS 2006, October, 18-20, İzmir, Turkey.

25. Srinivasan, N., M. Paolucci and K. Sycara, Semantic Web Service Discovery in the

OWL-S IDE, Proceedings of the 39th Hawaii International Conference on System

Sciences, 2006.

26. Wang, H. and Z. Li, A Semantic Matchmaking Method of Web Services Based On

SHOIN+(D), Proceedings of the 2006 IEEE Asia-Pacific Conference on Services

Computing (APSCC'06).

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Shen:Xian.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/j/Jin:Xin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bie:Rongfang.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sun:Yunchuan.html

 75

27. Paolucci, M., T. Kawamura, T. R. Payne and K. Sycara, Semantic Matching of

Web Services Capabilities, International Semantic Web Services Conference, 2002.

28. Bunke, H., Graph Matching: Theoretical Foundations, Algorithms and

Applications, in Proc. Vision Interface 2000, Montreal, 2000, 82 – 88.

29. Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net/.

30. McBride, B., Jena: A Semantic Web Toolkit, IEEE Internet Computing, 2002.

31. CMU OWL-S API, http://www.daml.ri.cmu.edu/owlsapi.

32. OWL-S API, http://www.mindswap.org/2004/owl-s/api/doc/.

33. Resource Description Framework (RDF), http://www.w3.org/RDF/, 2004.

34. Castillo, J. G., D. Trastour and C. Bartolini, Description Logics for Matchmaking

of Services, Trusted E-Services Laboratory HP Laboratories Bristol, 2001.

35. Daconta, M. C., L. J. Obrst and K. T. Smith, The Semantic Web: A Guide to the

Future of XML, Web Services, and Knowledge Management, John Wiley & Sons,

2003.

36. Semantic Web Vision, http://www.hpl.hp.com/semweb/sw-vision.htm.

37. Shadbolt, N., and W. Hall and T. B. Lee, The Semantic Web Revisited, IEEE

Intelligent Systems, 2006.

38. Decker, S., P. Mitra and S. Menlik, Framework for the Semantic Web: An RDF

Tutorial, IEEE Internet Computing, 2000.

39. OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/,

2004.

 76

40. OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/, 2004.

41. OWL-S 1.1 Release, http://www.daml.org/services/owl-s/1.1/.

42. OWL-S: Semantic Markup for Web Services, http://www.daml.org/services/owl-

s/1.1/overview/.

43. Balzer, S., T. Liebig and M. Wagner, Pitfalls of OWL-S – A Practical Semantic

Web Use Case, ICSOC, 2004.

44. Jørstad, I., S. Dustdar and D. V. Thanh, A Service Oriented Architecture

Framework for Collaborative Services, Proceedings of the 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise,

2005.

45. Hashimi, S., Service-Oriented Architecture Explained,

http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html, 2003.

46. Pasley, J., How BPEL and SOA are Changing Web Services Development, IEEE

Internet Computing, 2005.

47. Service Oriented Architecture, http://msdn2.microsoft.com/en-

us/architecture/aa948857.aspx.

48. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl,

2001.

49. SOAP Version 1.2 Part 0: Primer, http://www.w3.org/TR/2003/REC-soap12-part0-

20030624/, 2003.

50. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),

http://www.w3.org/TR/soap12-part1/, 2007.

 77

51. Extensible Markup Language (XML), http://www.w3.org/XML/.

52. Chester, T. M., Cross-Platform Integration with XML and SOAP, IT PRO, 2001.

53. Introduction to UDDI: Important Features and Functional Concepts, OASIS,

http://uddi.xml.org/, 2004.

54. Kuang, L., J. Wu, S. Deng, Y. Li, W. Shi and Z. Wu, Exploring Semantic

Technologies in Service Matchmaking, Proceedings of the Third European

Conference on Web Services, 2005.

55. Wu, J. and Z. Wu, Similarity-based Web Service Matchmaking, Proceedings of the

2005 IEEE International Conference on Services Computing, 2005.

56. Sirin, E., B. Parsia and J. Hendler, Composition-driven Filtering and Selection of

Semantic Web Services, In AAAI Spring Symposium on Semantic Web Services,

March 2004.

57. Akkiraju, R., B. Srivastava, A. Ivan, R. Goodwin and T. S. Mahmood, Semantic

Matching to Achieve Web Service Discovery and Composition, Proceedings of the

8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE

International Conference on Enterprise Computing, E-Commerce, and E-Services,

2006.

58. Defining N-ary Relations on the Semantic Web, http://www.w3.org/TR/swbp-n-

aryRelations/, 2006.

59. OASIS-UDDI, http://www.uddi.org/.

60. Business Process Execution Language for Web Services version 1.1, http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/, 2007.

 78

61. Schmitz, D., G. Lakemeyer, G. Gans and M. Jarke, Using BPEL Process

Descriptions for Building up Strategic Models for Inter-Organizational Networks,

In International Workshop on Modeling Inter-Organizational Systems (MIOS),

Springer, LNCS, Larnaca, Cyprus, October 2004.

62. Miller, G. A., WordNet: A Lexical Database for English, Communicating of the

ACM, 1995.

63. Petersen, T., S. Patwardhan and J. Michelizzi, WordNet::Similarity - Measuring the

Relatedness of Concepts, In Proceedings of the Nineteenth National Conference on

Artificial Intelligence (AAAI-04), 2004.

64. Liu, P. Y., T. J. Zhao and X. F. Yu, Application-Oriented Comparison and

Evaluation of Six Semantic Similarity Measures Based on WordNet, Proceedings

of the Fifth International Conference on Machine Learning and Cybernetics,

Dalian, 2006.

65. Yao, Y., S. Su and F. Yang, Service Matching based on Semantic Descriptions,

Proceedings of the Advanced International Conference on Telecommunications and

International Conference on Internet and Web Applications and Services, 2006.

66. Guo1, R., J. Le and X. L. Xia, Capability Matching of Web Services Based on

OWL-S, Proceedings of the 16th International Workshop on Database and Expert

Systems Applications, 2005.

67. Colucci, S., T. D. Noia, E. D. Sciascio, F. M. Donini and M. Mongiello,

Description Logics Approach to Semantic Matching of Web Services, 25th Int.

Conf. Information Technology Interfaces, 2003.

68. Lim, J. E., O. H. Choi, H. S. Na and D. K. Baik, A Methodology for Semantic

Similarity Measurement among Metadata based Information System, Proceedings

of the Fourth International Conference on Software Engineering Research, 2006.

 79

69. Marcus, A. and J. I. Maletic, Identification of High-Level Concept Clones in

Source Code, In Proceedings Automated Software Engineering (ASE'01), San

Diego, CA, November 2629 2001, pp. 107-114.

70. OASIS, www.oasis-open.org.

71. Ma, K. J., Web Services: What’s Real and What’s Not?, IEEE IT PRO, 2005.

72. Munkres' Assignment Algorithm,

http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html.

73. Sycara, K., M. Klusch, S. Widoff, and J. Lu, Dynamic Service Matchmaking

Among Agents in Open Information Environments, SIGMOD Record, Vol. 28,

No.1, March 1999.

74. Li, L. and I. Harrocks, A Software Framework For Matchmaking Based on

Semantic Web Technology, In Proceedings of the Twelfth International World

Wide Web Conference (WWW 2003), 2003.

75. Ilhan, E. S., G. B. Akkus and A. B. Bener, SAM: Semantic Advanced

Matchmaker,The Nineteenth International Conference on Software Engineering

and Knowledge Engineering (SEKE'07), Boston, USA, July 2007.

76. Ilhan, E. S., G. B. Akkus and A. B. Bener, Improved Service Ranking and Scoring:

Semantic Advanced Matchmaker (SAM), 2nd International Working Conference

on Evaluation of Novel Approaches to Software Engineering, Barcelona, Spain,

July 2007.

	
	
	
	
	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ABBREVIATIONS
	
	1. INTRODUCTION
	1.1. Motivation
	1.2. Outline
	2. Web Services and Semantic Web
	2.1. Service Oriented Architecture (SOA)
	2.2. Web Services Standards
	2.2.1. XML
	2.2.2. WSDL
	2.2.3. SOAP
	2.2.4. UDDI

	2.3. Semantic Web
	2.3.1. Description Logics
	2.3.2. RDF
	2.3.3. OWL
	2.3.4. OWL-S

	2.4. Semantic Web Frameworks
	2.4.1. Jena
	2.4.2. OWL-S API
	2.4.3. WordNet
	2.4.4. WordNet::Similarity

	2.5. Graph Matching
	2.5.1. Graph Matching Terminology
	2.5.2. Bipartite Graph Matching

	3. Related Work
	4. Problem Statement
	5. Proposed Solution
	5.1. Matching Algorithm
	5.1.1. Subsumption based Similarity Assessment
	5.1.2. Property-level Similarity Assessment
	5.1.3. Similarity Distance based Assessment
	5.1.4. WordNet based Similarity Assessment

	6. Experimental Results
	6.1. Test Ontology
	6.2. Test Environment
	6.3. Test Results
	6.4. Threats to Validity
	6.5. Comparing SAM with Existing Matchmakers

	7. Conclusions and Future Work
	REFERENCES

