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ABSTRACT

 

 

SEMANTIC ADVANCED MATCHMAKER (SAM) 
 

 

As the number of available Web services increase finding appropriate Web services 

to fulfill a given request becomes an important task. Most of the current solutions and 

approaches in Web service discovery are limited in the sense that they are strictly defined, 

and they do not use the full power of semantic and ontological representation. Service 

matchmaking, which deals with similarity between service definitions, is highly important 

for an effective discovery. Studies have shown that use of semantic Web technologies 

improves the efficiency and accuracy of matchmaking process.  

 

In this research we focus on one of the most challenging tasks in service discovery 

and composition: Service matchmaking. We make use of current semantic Web 

technologies like OWL and OWL-S to describe services and define ontologies. We 

introduce an efficient matchmaking algorithm based on bipartite graphs. We have seen that 

bipartite matchmaking has advantages over other approaches in the literature for parameter 

pairing problem, which deals with finding the semantically matching parameters in a 

service pair. Our proposed algorithm ranks the services in a candidate set according to their 

semantic similarity to a certain request. Our matchmaker performs the semantic similarity 

assignment implementing the following approaches: Subsumption-based similarity, 

property-level similarity, similarity distance annotations and WordNet-based similarity. 

Our results show that the proposed matchmaker enhances the captured semantic similarity, 

providing a fine-grained approach in semantic matchmaking. 
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ÖZET 

 

 

GELİŞMİŞ ANLAMSAL WEB SERVİS EŞLEYİCİ (SAM)  
 

 

Elektronik ortamda bulunan Web servislerinin sayısı arttıkça belirli bir isteği 

karşılayacak uygun servisleri bulmak da önem kazanmaktadır. Bu probleme ilişkin 

günümüzdeki çözümler ve yaklaşımlar kısıtlı tanımlamalar kullandıkları için ve anlamsal 

tanımlamalardan tam anlamıyla faydalanmadıklarından yetersiz kalmaktadırlar. Servis 

tanımlamaları arasındaki benzerlikleri bulmada kullanılan servis eşleme yöntemi etkin bir 

Web servis bulma işlemi için büyük önem taşımaktadır. Günümüze kadar olan çalışmalar 

göstermiştir ki anlamsal Web teknolojilerinin kullanımı servis eşleme yönteminin 

etkinliğini ve başarısını artırmaktadır. 

 

Bu araştırmada Web servisi bulma ve kompozisyonu konuları için çok önemli olan 

bir konuyu inceliyoruz: Web servis eşlemesi. Bu çalışmada OWL ve OWL-S gibi servisleri 

ve ontolojileri ifade etmede kullanılan güncel anlamsal Web teknolojilerini kullanıyoruz. 

Ayrıca, iki kümeli grafiklere dayanan etkin bir Web servis eşleme algoritmasını 

tanıtıyoruz. Güncel çalışmaların çoğunda da görüldüğü üzere Web servislerinde 

parametrelerin anlamsal olarak eşlenmesi problemi olan parametre eşlemesi için iki kümeli 

grafiklere dayalı çözümler çok daha etkindir. Önerdiğimiz eşleme algoritması belirli bir 

isteğe denk gelen aday Web servis kümesi içinden isteğe en benzer olan servisleri 

sıralayarak çıktı olarak sunmaktadır. Ortaya koyduğumuz Web servis eşleyicisi anlamsal 

benzerlik eşlemesi işlemi için şu teknikleri kullanmaktadır: Kapsama tabanlı benzerlik, 

özellik tabanlı benzerlik, benzerlik uzaklığı notları ve WordNet tabanlı benzerlik. Elde 

ettiğimiz sonuçlar gösteriyor ki ortaya koyduğumuz servis eşleyici anlamsal ilişkilerin 

ortaya çıkarılmasında daha etkin olmakta ve detaylı bir eşleme yapılmasına imkan 

vermektedir. 
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1.  INTRODUCTION 

 

 

1.1.  Motivation 

 

In recent years, Web services became the dominant technology in providing the 

interoperability among different systems throughout the Web. If Web service is used in 

limited business domain or with strict rules with known business partners everything will 

be fine. The problem of finding the right and most suitable Web services for user needs 

emerges when open e-commerce systems are widely used and user requirements 

dynamically change over time. 

 

 Although there are currently proposed technologies for discovery of Web services, 

such as UDDI [5], they do not satisfy the full discovery requirements. This discovery 

process is based on syntactical matching and keyword search that does not allow the 

automatic processing of Web services. To solve the problem of automatic discovery and 

processing of Web services, the Semantic Web [6] vision is proposed. Semantic Web is an 

effort by the W3C consortium [7], and one of its main purposes is to facilitate the 

discovery of Web resources. 

 

 There are different efforts and frameworks for semantic annotation and discovery of 

Web services [10, 11, 12]. For Web service discovery the researchers also propose some 

techniques and algorithms. However, they mostly classify the discovered Web services as 

set-based. They do not focus on rating the Web services using semantic distance 

information [13]. 

 

 The evolution of Web services, from conventional services to semantic services, 

caused service descriptions contain extra information about functional or non-functional 

properties of Web services. The semantic information included in the service descriptions 

enables the development of advanced matchmaking schemes that are capable of assigning 

degrees of match to the discovered services. Semantic discovery of Web services means 
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semantic reasoning over a knowledge base, where a goal describes the required Web 

service capability as input. Semantic discovery adds accuracy to the search results in 

comparison to traditional Web service discovery techniques, which are based on 

syntactical searches over keywords contained in the Web service descriptions [3].  

 

 Improvement in matching process could be gained by the use of ontological 

information in a useful form. With the use of this information, it would be possible to rate 

the services found in discovery process. As in real life, users/ agents should be able to 

define how they see the relation of ontological concepts from their own perspective. 

Similarity measures have been widely used in information systems [14, 15, 16], software 

engineering [68, 69] and AI [17, 18, 19]. So integration of knowledge from these 

techniques can improve the matching process. 

 

By using semantic distance definition information, we aim to get a rated and ordered 

set of Web services as the general result of the discovery process. We believe that this 

would be better than set-based classification of discovered services. In this research, we 

propose a new scheme of matchmaking that aims to improve retrieval effectiveness of 

semantic matchmaking process. Our main argument is that conventional evaluation 

schemes do not fully capture the added value of service semantics and they do not consider 

the assigned degrees of match, which are supported by the majority of discovery engines. 

The existing approach to service matchmaking contains subsumption values regarding the 

concept that the service supports. In our proposed approach, we add semantic relatedness 

values onto existing subsumption-based procedures. Our matchmaker performs the 

semantic similarity assignment implementing the following value-added approaches: 

Subsumption-based similarity, property-level similarity, similarity distance annotations 

and WordNet-based similarity. 

 

1.2.  Outline 
 

In Section 2, we describe enabling technologies for Web services: XML, SOAP, 

WSDL and UDDI. We discuss on the emerging approach SOA (Service Oriented 

Architecture) and point out the weak points in current standards. We will introduce 

semantic Web technologies as an approach to extend capabilities of current SOA 
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technologies. RDF, OWL, OWL-S and some existing semantic Web technologies, as well 

as some semantic web frameworks are presented in this section. We also give a brief 

introduction of bipartite graph matching algorithms and description logics which form the 

basis in our proposed model. 

 

In Section 3, we refer to related work in this field and point out the contributions they 

make, emphasizing how they can be extended in a way to support better results. In section 

4 we state the problem that we focus on in this research. We list the problems in semantic 

service matchmaking that we are seeking answers for.  

 

Section 5 presents our approach to service matchmaking. We give details of our 

proposed approach and introduce the techniques and methods we apply in formalism. 

Section 6 presents the evaluation results of the test runs which we performed on a 

prototype system that we implemented. We present numerical results on test runs and 

discuss these results, clearly demonstrating the advantages of our proposed approach with 

a comparison to a conventional service matchmaker. Finally, Section 7 concludes our 

research with the future directions for extending the capabilities of our service 

matchmaker. 
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2.  Web Services and Semantic Web 

 

 

2.1.  Service Oriented Architecture (SOA) 

 

According to Hashimi [45], in SOA, software applications are built on basic 

components called services, defined in terms of what it does, typically carrying out a 

business-level operation. 

 

A service in SOA is an exposed piece of functionality with three properties [45]: 

 

1. The interface contract to the service is platform independent. 

2. The service can be dynamically located and invoked. 

3. The service is self-contained. That is, the service maintains its own state. 

 

There are basically three functions that must be supported in a service-oriented 

architecture [45]: 

 

1. Describe and Publish service 

2. Discover a service 

3. Consume/interact with a service 

 

OASIS (Organization for the Advancement of Structured Information Standards) 

defines SOA as the following [70]: 

 

“A paradigm for organizing and utilizing distributed capabilities that may be under 

the control of different ownership domains. It provides a uniform means to offer, discover, 

interact with and use capabilities to produce desired effects consistent with measurable 

preconditions and expectations”. 

 

SOA is not only a set of technologies but it actually represents a shift in the way 

software operates. SOA represents systems that are self-contained, loosely-coupled and 

http://en.wikipedia.org/wiki/Organization_for_the_Advancement_of_Structured_Information_Standards
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dynamically invoked. Adopting SOA is essential to deliver the business agility and IT 

flexibility promised by Web Services [47]. 

 

2.2.  Web Services Standards 

 

Web services enable seamless interoperation among applications and organizations in 

a distributed environment, while being platform and language independent. 

 

Distributed programming approaches like CORBA and DCOM have been used to 

implement network enabled applications. However, these technologies depend on binary 

standards and custom interface definition languages. On the other hand, Web services 

depend on textual standards and make use of XML in interface definition, which provides 

platform and language independency. 

 

In a typical scenario, as represented in Figure 2.1, a service requestor communicates 

with a service registry (UDDI) to discover a Web service satisfying his needs [71]. The 

service provider publishes his service in the registry to be discovered by clients. Following 

the discovery phase, the requestor and the provider communicates directly using SOAP, 

which is a communication protocol based on XML. 

 

  

Figure 2.1. Web services architecture [71] 

 

Web services enable both document oriented and RPC (Remote Procedure Call) style 

communication. In RPC style, Web services can be used to invoke operations on the 

provider site, whereas document oriented communication provides arbitrary information to 
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be sent to the receiving party. Web services also can operate both synchronously and 

asynchronously.  

 

Several technologies have emerged in years that enable Web services architecture. As 

our research builds on top of Web service standards and semantic web standards, in the 

following sections we describe these technologies in more detail. 

 

2.2.1.  XML 

 

Extensible Markup Language (XML) provides the description, storage and 

transmission format for data exchanged via Web services. Originally designed to meet the 

challenges of large-scale electronic publishing, XML has also been playing an increasingly 

important role in the exchange of a wide variety of data on the Web and elsewhere [51]. 

 

XML data is expressed in textual format as opposed to binary encoding which makes 

it platform and language independent. These properties of XML make it a good approach 

for communicating in heterogeneous distributed environments. The structure and 

relationships within the data are expressed with a DTD (Document Type Definition) or 

XML schema. XML schema language is used to describe the structure and content of an 

XML document. This ability lets computer programs validate the XML data to ensure that 

it is structured appropriately [52].  

 

XML technology is one of the core technologies that our research builds on. 

Ontology languages like RDF and OWL are represented with XML and benefits from the 

XML standards like namespaces, XML Schema etc. 

 

2.2.2.  WSDL 

 

WSDL is an XML grammar describing Web services as a collection of network 

endpoints, or ports [48]. In WSDL, the abstract definition of endpoints and messages is 

separated from their concrete network deployment or data format bindings. This allows the 

reuse of abstract definitions: messages, which are abstract descriptions of the data being 
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exchanged, and port types which are abstract collections of operations [48]. WSDL is often 

used in combination with SOAP and XML Schema to provide Web services over the 

Internet. A client program connecting to a Web service can read the WSDL to determine 

what functions are available on the server. Any special data types used are embedded in 

the WSDL file in the form of XML Schema. The client can then use SOAP to actually call 

one of the functions listed in the WSDL.  

 

2.2.3.  SOAP 

 

SOAP provides the definition of the XML-based information which can be used for 

exchanging structured and typed information between peers in a decentralized, distributed 

environment [49]. It uses XML technologies to define an extensible messaging framework 

providing a message construct that can be exchanged over a variety of underlying 

protocols. The framework has been designed to be independent of any particular 

programming model and other implementation specific semantics [50]. 

 

The SOAP specification defines the envelope structure, encoding rules, and 

conventions for representing Web service invocations and responses. The preferred 

transmission method is SOAP over HTTP. The SOAP envelope is the outermost element 

and indicates the start and end of the message. SOAP envelope basically provides the 

necessary encapsulation. 

 

The SOAP header element provides the flexibility to include additional mechanisms 

like security, quality of service and other meta-data related information. Header element 

comes just after the envelope declaration. SOAP body contains the actual transmitted XML 

data. It comes after the header element declarations. The format of the SOAP body is 

defined in the SOAP schema. Fault handling is provided with the SOAP fault element in 

the body. The receiver of the message resolves the error processing the fault tags in the 

body [50].  

 

 

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datatypes
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2.2.4.  UDDI 

 

The Universal Description, Discovery, and Integration (UDDI) protocol represents 

the service registry component in the SOA pattern. It defines a standard method of 

publishing and discovering services in a service oriented architecture. Its development is 

led by the OASIS consortium [59]. 

 

UDDI describes a registry of Web services and programmatic interfaces for 

publishing, retrieving, and managing information about services. The UDDI specification 

defines services that support the description and discovery of businesses, organizations, 

and other Web services providers, the Web services they make available, and the technical 

interfaces which may be used to access and manage those services. UDDI is base upon 

several other established industry standards, including HTTP, XML, XML Schema (XSD), 

SOAP, and WSDL [59]. 

 

2.3.  Semantic Web 

 

As Tim Barners-Lee stated in 1999, “The first step is putting data on the Web in a 

form that machines can naturally understand, or converting it to that form. This creates 

what I call a Semantic Web-a Web of data that can be processed directly or indirectly by 

machines”[35]. 

 

Current Web structure puts emphasize on the applications that process data, not the 

data itself. So, how data is organized and processed varies between applications. This 

prevents a collaborative and autonomous Web to evolve. Semantic Web is a vision to 

change current Web structure and make it data driven. Semantic Web technologies could 

be used in many ways to transform the functionality of the Web [36]: Rich metadata for 

media and content to improve search and management; rich descriptions of Web services 

to improve discovery and composition; common access wrappers for information systems 

to simplify integration of disparate systems; common lingua franca for exchange of 

semantically rich information between active software agents. 
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Semantic Web will basically allow autonomous agents to process heterogeneous data 

on the Web on behalf of a user. In order to achieve this data should be organized in a 

standard and machine interpretable way. This is achieved through the adoption of common 

conceptualizations referred to as ontologies [37]. Several ontologies are being developed 

today, both in academia and industry. These constitute the initial steps towards realizing 

semantic Web vision. Ontology Web Language (OWL) is the most promising standard for 

developing ontologies. We will describe OWL in detail in the following sections. 

 

2.3.1.  Description Logics 

 

Description logics (DL) are a family of knowledge representation languages which 

can be used to represent knowledge on a domain and make use of concepts as the building 

blocks. 

 

Description logics form the basis in the design of ontologies in Semantic Web. OWL 

endorsed by W3C is a language based on DL. In DL, a concept represents set of objects, 

whereas roles link objects in these sets in a binary relation form. The basic reasoning 

problems for concepts in a DL are satisfiability, which accounts for the internal coherency 

of the description of a concept (no contradictory properties are present), and subsumption, 

which accounts for the more general/more specific relation among concepts [67]. 

 

In DLs, a distinction is provided between TBox (Terminological Box) and ABox 

(Assertional Box). TBox represents the information on concept hierarchies and relations 

between them, whereas ABox represents the individuals and their relations to concepts. 

The separation is useful in both modeling an ontology and in processing to achieve 

inferencing. 

 

In [34] the authors provide a mapping between description logics and DAML 

(predecessor of OWL) expressivity in a useful form. The subset of OWL, OWL-DL, is 

defined as SHOIN+(D) according to the below expressivity table. Figure 2.2 lists this 

mapping. 

 

http://en.wikipedia.org/wiki/Knowledge_representation
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Figure 2.2 Expressivity mapping between DL and DAML [34] 

 

2.3.2.  RDF 

 

The Resource Description Framework (RDF) is a language for representing 

information about resources in the World Wide Web. It is particularly intended for 

representing metadata about Web resources [33].  

 

RDF provides a framework that enables the information to be processed by 

applications without loss of meaning. It was first defined by W3C in 1997. In 1999 RDF 

became a W3C recommendation. RDF consists of entities, represented by unique 

identifiers and binary relationships, or statements, between those entities [38]. In terms of 

triple representation, the source of the relationship is the subject, the relationship itself is 

the predicate and the destination of the relationship is called the object. RDF data model 

also distinguishes resources, which are identified by URIs and literals which are simple 
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strings. The subject and the predicate are always resources, whereas object can be either 

resource or literal. 

 

RDF assigns each resource a URI [37]. Figure 2.3 shows a representation of a person, 

Eric Miller, in RDF. Both the nodes in the graph and the arcs between them are associated 

with URIs. Figure 3 represents: 

 

1. Individuals—such as Eric Miller, identified by http://www.w3.org/ 

People/EM/contact#me. 

2. Kinds of things—such as Person, identified by http://www.w3.org/ 

2000/10/swap/pim/contact#Person. 

3. Properties of those things—such as mailbox, identified by http:// 

www.w3.org/2000/10/swap/pim/contact#mailbox. 

4. Values of those properties—such as mailto:em@w3.org as the value of the 

mailbox property (RDF also uses character strings such as “Eric Miller” and 

values from other data types such as integers and dates as property values). 

 

 

Figure 2.3. An RDF graph representing Eric Miller [33] 
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URIs play an important role in RDF as they identify resources. URIs provide a global 

naming convention that can map to a resource on the Web. RDF Schema provides a 

contract between the resource provider and the consumer, guaranteeing the applications to 

work with a RDF instance complying with the schema. It provides means to define 

property domains and ranges, and class and subclass hierarchies [38]. 

 

2.3.3.  OWL 

 

Web Ontology Language (OWL) facilitates greater machine interpretability of Web 

content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing 

additional vocabulary along with a formal semantics [39]. OWL has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The choice between OWL 

Lite and OWL DL depends on the extent to which users require the more expressive 

restriction constructs provided by OWL DL. Reasoners for OWL Lite will have desirable 

computational properties. Reasoners for OWL DL, while dealing with a decidable 

sublanguage, will be subject to higher worst-case complexity. The choice between OWL 

DL and OWL Full mainly depends on the extent to which users require the meta-modelling 

facilities of RDF Schema (i.e. defining classes of classes). When using OWL Full as 

compared to OWL DL, reasoning support is less predictable [39]. 

 

OWL makes an open world assumption, which means that the resources are not 

restricted to a single scope. A certain concept can be defined in an ontology, whereas 

another ontology can redefine it with some differences. However, the system should detect 

any conflicts between assertions in different ontologies. 

 

OWL ontology may include descriptions of classes, properties and their instances. 

Given such ontology, the OWL formal semantics specifies how to derive its logical 

consequences, i.e. facts not literally present in the ontology, but entailed by the semantics 

[40]. A typical OWL ontology begins with a namespace declaration similar to the one in 

Table 2.1. 

 

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#XMLNS
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Table 2.1. OWL namespace declaration 
<rdf:RDF  
    xmlns     ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"  
    xmlns:vin ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"        
    xml:base  ="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"        
    xmlns:food="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#"     
    xmlns:owl ="http://www.w3.org/2002/07/owl#" 
    xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">  

 

OWL depends on constructs defined by RDF, RDFS, and XML Schema data types 

[40]. Assertions about the ontology are represented in owl:Ontology tag. Table 2.2 shows 

an example OWL ontology description. 

 

Table 2.2. OWL ontology description 
<owl:Ontology rdf:about="">  
  <rdfs:comment>An example OWL ontology</rdfs:comment> 
  <owl:priorVersion rdf:resource="http://www.w3.org/TR/2003/PR-owl-guide-20031215/wine"/>  
  <owl:imports rdf:resource="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food"/>  
  <rdfs:label>Wine Ontology</rdfs:label>  
  ... 

 

Concepts are defined with owl:Class tags in OWL. Every individual in the OWL 

world is a member of the class owl:Thing. Table 2.3 shows a simple class description. 

 

Table 2.3. OWL class description 

<owl:Class rdf:ID="Winery"/> 

 

Members of the concepts are referred as individuals and represented as having a type 

of a certain class. Table 2.4 shows an individual description. The CentralCoastRegion is 

declared to be of type Region. 

 

Table 2.4. OWL individual description 

<owl:Thing rdf:ID="CentralCoastRegion" />  
 
<owl:Thing rdf:about="#CentralCoastRegion">  
   <rdf:type rdf:resource="#Region"/>  
</owl:Thing> 
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Properties describe additional information on concepts. Following type of properties 

are defined in OWL: ObjectProperty, DatatypeProperty, Object properties have ranges as 

concepts whereas data type properties have ranges as literals. The domain of the property 

represents the concept that the property is associated to and the range represents the target 

object/literal that the property refers to. Table 2.5 shows a property named 

madeFromGrape, which is a property of Wine class and has range of type WineGrape [40]. 

 

Table 2.5. OWL property description 

<owl:ObjectProperty rdf:ID="madeFromGrape">  
  <rdfs:domain rdf:resource="#Wine"/> 
  <rdfs:range rdf:resource="#WineGrape"/>  
</owl:ObjectProperty>  

 

2.3.4.  OWL-S 

 

OWL-S is an OWL-based Web service ontology, which supplies Web service 

providers with a core set of markup language constructs for describing the properties and 

capabilities of their Web services in unambiguous, computer-intepretable form. OWL-S 

markup of Web services will facilitate the automation of Web service tasks, including 

automated Web service discovery, execution, composition and interoperation [41]. OWL-S 

is indeed a set of top-level ontologies written in OWL specifically for the description of 

Web services. 
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Figure 2.4. OWL-S ontologies [42] 

 

OWL-S is composed of the following top-level ontologies as shown in Figure 2.4: 

Service Profile, Service Model and Service Grounding [42]. Service profile describes 

“what the service does”, providing the capabilities of the service in an interface format. 

Service input, output parameters with the preconditions and effects are described in the 

service profile in a brief form. In service discovery profiles are applied in two ways. On 

one hand, they are used by service providers to publish Web services. These profiles are 

called advertisements. On the other hand, profiles are used by a service requester to 

describe the Web service to be searched for. During discovery this request is compared 

with published advertisements to find suitable services [43]. Additionally, non-functional 

parameters like the service name and description or quality of service information can be 

included in the service profile section. 

 

Service model details the process flow of the service. It uses the control constructs 

such as Sequence, Split, Split + Join, Choice, Any-Order, Condition, If-Then-Else, Iterate, 

Repeat-While, and Repeat-Until as in a conventional process modeling language to define 

composite services. Service model details the information on inputs, outputs, preconditions 

and effects of the service with the types in ontologies they refer to [42]. Service grounding 

specifies how an agent can access the service. It details information on communication 

protocol, message formats and other information such as port numbers etc [42]. The upper 

ontology for services specifies only two cardinality constraints: a service can be described 
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by at most one service model, and grounding must be associated with exactly one service 

[43].  

 

OWL-S defines three classes of processes. Atomic processes (AtomicProcess) are 

directly executable and contain no further sub-processes. From the view of the caller 

atomic processes are executed in a single step which corresponds to the invocation of a 

Web service method. Simple processes (SimpleProcess) are not executable. They are used 

to specify abstract views of concrete processes by hiding certain IOPEs. Composite 

processes (CompositeProcess) are specified through composition of atomic, simple and 

composite processes recursively by referring to control constructs (ControlConstruct) using 

the property composedOf. Control constructs define specific execution orderings on the 

contained processes [43] 

 

2.4.  Semantic Web Frameworks 
 

2.4.1.  Jena 

 

Jena is a Java framework for building semantic Web applications. It provides a 

programmatic environment for RDF, RDFS and OWL, SPARQL and includes a rule-based 

inference engine [29]. It is an open-source framework supported by HP Semantic Labs 

Programme. 

 

As we reason on OWL ontologies, in our research we are mostly interested in the 

ontology API and inference support that Jena provides. Jena is at the core an RDF 

framework and supports ontology formalisms built on top of RDF. However, Jena 

Ontology API is independent of the ontology language being processed and provides a 

consistent interface. The class names, OntClass and ObjectProperty support this 

transparency. Profiles are used to differentiate underlying ontology languages. Thus, in a 

daml ontology property name for ObjectProperty is daml: ObjectProperty, whereas it is 

owl ObjectProperty in owl [29]. 

 

http://www.w3.org/2001/SW/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/TR/rdf-sparql-query/
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As seen in Figure 2.5, Jena Model interface operates on the RDF data collection 

which is represented as a graph. The bottom layer represents the asserted statements, 

whereas the middle layer holds the inferred statements. The inference is performed by the 

reasoner and operates on the base graph by use of semantic rules of the underlying 

language. 

 

 

Figure 2.5. Jena model interface [29] 

 

 

 

Figure 2.6. Jena ontology internal structure with imports [29] 
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As Figure 2.6 presents, Jena handles the imported ontologies by unifying them in the 

underlying graph model. This helps to reason on multiple ontologies without loss of 

information. 

 

Inference in Jena follows the structure in Figure 2.7. The reasoner to be used can be 

plugged in and out using the ReasonerFactory. The reasoner works on the base RDF data 

and optionally can use additional information in an ontology using bindSchema call. 

 

Figure 2.7. Jena inference architecture [29] 

 

Jena includes the following reasoners in the distribution [29], where other DIG 

compliant reasoners can also be used safely: 

 

1. Transitive reasoner: Provides support for storing and traversing class and 

property lattices. This implements just the transitive and symmetric properties of 

rdfs:subPropertyOf and rdfs:subClassOf. 

2. RDFS rule reasoner: Implements a configurable subset of the RDFS entailments. 

3. OWL, OWL Mini, OWL Micro Reasoners: A set of useful but incomplete 

implementation of the OWL/Lite subset of the OWL/Full language.  

4. DAML micro reasoner: Used internally to enable the legacy DAML API to 

provide minimal (RDFS scale) inferencing. 
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5. Generic rule reasoner: A rule based reasoner that supports user defined rules. 

Forward chaining, tabled backward chaining and hybrid execution strategies are 

supported. 

 

 

Figure 2.8. Jena transitive inference support [29] 

 

In Jena, if a relation is transitive as in owl:subClassOf, then the relation can be 

specified as direct or inferred, which is the default behavior. However, in some cases it 

might be desirable to only infer direct relations. Jena supports the flexibility to reason in 

both ways. 

 

2.4.2.  OWL-S API 

 

OWL-S API provides a Java API to read, write and execute OWL-S service 

descriptions. The API supports different versions of OWL-S (OWL-S 1.0, OWL-S 0.9, 

DAML-S 0.7) descriptions. OWL-S API also provides an execution engine that can invoke 

atomic processes that has WSDL and composite processes that uses control constructs 

Sequence, Unordered, and Split [31]. 

 

OWLReader and OWLWriter interfaces are provided for reading and writing OWL 

document respectively. OWLOntology object stores the read ontology content and it 

supports serialization of the ontology to a file through the use of OWLWriter interface. 
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OWL-S API provides methods that can directly read an OWL-S document to an 

internal semantic service representation. OWLKnowledgeBase construct has methods 

readService(URI) and readAllServices(URI) that assist reading services found at a certain 

URI [32]. Table 2.6 demonstrates the use of OWL-S API to read and write a service 

defined in OWL-S. 

 

Table 2.6. Example demonstrating use of OWL-S API [32] 
    // create the URI of a known service for us to read in 
    URI aURI = URI.create("http://www.mindswap.org/2004/owl-s/1.1/ZipCodeFinder.owl"); 
     
    // create a reader using the owl factory 
    OWLReader aReader = OWLFactory.createReader(); 
     
    // read in the file specified by the URI using the newly created reader 
    OWLOntology aOntology = aReader.read(aURI); 
     
    // create an output stream to write the ontology to 
    FileOutputStream aOutputStream = new FileOutputStream("write-test.owl"); 
     
    // create a writer using the owl factory 
    OWLWriter aWriter = OWLFactory.createWriter(); 
     
    // write this ontology out to the specified output stream 
    aWriter.write(aOntology,aOutputStream); 
     
    // alternatively, we can create a KB object and use that to read in 
    // a file or set of files 
     
    // create a kb using the factory 
    OWLKnowledgeBase aKB = OWLFactory.createKB(); 
     
    // now that we have a kb, we can read in the same file using the 
    // read method of the KB.  the read method of the kb will create an 
    // OWLReader similar to the above example to read in the file.  If you 
    // are reading in an OWL-S description you can use readService(URI) 
    // or readAllServices(URI) to get the service or list of services specfied 
    // by the URI. 
    Service aService = aKB.readService(aURI); 

 

OWL-S API also provides a validation component named OWLSValidator, which 

takes the URI to an ontology, or a OWLKnowledgeBase object to validate [32]. 

 

 

 

 

http://www.mindswap.org/2004/owl-s/api/doc/javadoc/org/mindswap/owls/validator/OWLSValidator.html
http://www.mindswap.org/2004/owl-s/api/doc/javadoc/org/mindswap/owl/OWLKnowledgeBase.html
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2.4.3.  WordNet 

 

WordNet is an online lexical database for English words [62]. The development of 

WordNet began in 1985 at the Cognitive Science Laboratory of Princeton University. 

WordNet organizes words (nouns, verbs, adjectives and adverbs) into sets of synonyms 

called synsets. Semantic relations between synsets are provided with links. These relations 

are [62]: 

 

1. Synonymy is WordNet’s basic relation, because WordNet uses sets of 

synonyms (synsets) to represent word senses. Synonymy (syn same, onyma 

name) is a symmetric relation between word forms. 

2. Antonymy (opposing-name) is also a symmetric semantic relation between 

word forms, especially important in organizing the meanings of adjectives 

and adverbs. 

3. Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive 

relations between synsets. Because there is usually only one hypernym, this 

semantic relation organizes the meanings of nouns into a hierarchical 

structure. 

4. Meronymy (part-name) and its inverse, holonymy (whole-name), are complex 

semantic relations. WordNet distinguishes component parts, substantive parts, 

and member parts. 

5. Troponymy (manner-name) is for verbs what hyponymy is for nouns, 

although the resulting hierarchies are much shallower. 

6. Entailment relations between verbs are also coded in WordNet. 

 

WordNet also provides the number of synsets that a certain word is contained in. The 

frequency score measure is provided to represent how often a word appears in a specific 

sense. WordNet organizes nouns and a verb into hierarchies of is-a relations [63]. 

WordNet also provides relations beyond is-a, including has-part, is-made-of and is-

attribute-of. In addition to these, each concept is defined by a short gloss, which may 

contain an example use of word. 

 

http://en.wikipedia.org/wiki/Princeton_University
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The hypernym/ hyponym relationships among the noun synsets enables WordNet to 

be interpreted as lexical ontology [63]. Considering WordNet as an ontology, it provides a 

basis to evaluate similarity between words. Several work has been performed on assessing 

similarity of words considering semantic relations. The next section introduces an open-

source project, which discusses word similarity assessment approaches using WordNet 

database. 

 

2.4.4.  WordNet::Similarity 

 

WordNet::Similarity is open-source software which makes it possible to measure the 

semantic similarity and relatedness between a pair of concepts (or synsets) [63]. It provides 

six measures of similarity and three measures of relatedness. The similarity measures are 

[64]: 

 

1. Resnik: Depends on the idea that the similarity of two concepts is 

proportional to the information they share in common. 

 

Simres(c1,c2) = IC(lsc(c1,c2))                 (2.1) 

 

      In equation 2.1, IC means information content, which is simply a measure of 

the specificity of a concept. And lcs(c1,c2) means the lowest common 

subsumer (LCS) of the two concepts. Resnik can be classified as a coarse 

measure, as all pairs of synsets that have the same LCS will have the same 

score. 

 

2. Lin: As seen in equation 2.2, Lin measure augment the information content of 

LCS with the sum of the individual information contents of concepts. 

 

Simlim(c1,c2) = 2*IC(lsc(c1,c2))/(IC(c1)+IC(c2))              (2.2) 

 

3. Jcn: Jcn takes the difference of the sum of information contents of concepts 

and the information content of the LCS. 
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Simjcn(c1,c2) = 1/ (IC(c1)+IC(c2)-2* IC(lsc(c1,c2)))              (2.3) 

 

4. Ich: Leacock and Chodorow rely on the length len(c1,c2) of the shortest path 

between two Synsets for their measure of similarity. However, they limit their 

attention to is–a links and scale the path length by the overall depth D of the 

taxonomy. 

 

Simlch(c1,c2) = log( 2*D/len(c1,c2))           (2.4) 

 

5. Wup: Wu & Palmer measure calculates similarity by considering the depths 

of the two Synsets in the WordNet taxonomies, along with the depth of the 

LCS. 

   

Simwup(c1,c2) = log(2*depth(lsc(c1,c2))/depth(c1)+depth(c2))              (2.5) 

 

6. Random: It just uses random numbers as a measure of semantic similarity of 

word senses. Maxrand is the maximum length found in the is–a hierarchy in 

which concepts occur. 

 

Measures of relatedness are more general and they are not constrained to is-a 

relations [63]: 

 

1. Hso: Measures classifies relations in WordNet as having direction, and then 

establishes the relatedness between two concepts A and B by finding a path 

that is neither too long nor that changes direction too often. 

2. Lesk: Finds overlaps between the glosses of concepts A and B, as well as 

concepts that are directly linked to A and B. 

3. Vector: Creates a co–occurrence matrix for each word used in theWordNet 

glosses from a given corpus, and then represents each gloss/concept with a 

vector that is the average of these co–occurrence vectors. 
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WordNet::Similarity is implemented with Perl and provides modules that implement 

the above described similarity and relatedness approaches. It also exposes a Web interface 

to be used over HTTP. 

 

2.5.  Graph Matching 

 

Graphs are powerful tools useful in various subfields of science and engineering. 

When graphs are used for the representation of structured objects, then the problem of 

measuring object similarity turns into the problem of computing the similarity of graphs, 

which is also known as graph matching [28]. 

 

In this study, graph matching is used for finding parameter matching in service and 

request pairs. Input and output parameters of services are represented as vertices in the 

graph and the matching between them are represented as edges. 

 

2.5.1.  Graph Matching Terminology 

 

Graph algorithms and matching theory uses a terminology when defining theorems 

some of which are described below: 

 

1. A vertex is matched if it is incident to an edge in the matching. Otherwise the 

vertex is unmatched. 

2. A maximum matching is a matching that contains the largest possible number 

of edges. 

3. A maximal matching is a matching M of a graph G with the property that if 

any edge not in M is added to M, it is no longer a matching. Every maximum 

matching must be maximal, but not every maximal matching must be 

maximum. 

4. A perfect (complete) matching is a matching which covers all vertices of the 

graph. Every perfect matching is both maximum and maximal. 

5. An alternating path is a path in which the edges belong alternatively to the 

matching and not to the matching. 
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6. An augmenting path is an alternating path that starts from and ends on free 

(unmatched) vertices. 

 

2.5.2.  Bipartite Graph Matching 

 

Matching problem is mostly associated with bipartite graphs. Bipartite graphs are a 

special class of graphs where the set of vertices can be separated in two disjoint sets U and 

V such that no edge has both end-points in the same set.  

 

 

Figure 2.9. Bipartite graph 

 

As mentioned before, in our matchmaker, service and request parameters can be 

represented as vertices of two disjoint sets. Each vertex is connected to every other vertex 

in the other set with a weight assigned on the edge. The problem turns into finding the 

subgraph, where each vertex is used only once and the sum of weights on the edges of 

subgraph is maximum. This problem is called maximum weight bipartite matching. 

 

The problem of maximum bipartite matching, deals with pairing the vertices in the 

disjoint sets. The augmenting path algorithm finds a solution by adding an edge to the 

matching iterating over the elements of a single set. In a weighted bipartite graph, the 

problem turns into finding a matching where the sum of the values of edges is maximal. 

The problem is also known as the assignment problem. 

 

A set of algorithms have been proposed to deal with the matching problem in 

bipartite graphs. In [9] the author lists them as displayed in figures 2.10 and 2.11: 
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Figure 2.10. Non-weighted bipartite graphs [9] 

 

 

Figure 2.11. Weighted bipartite graphs [9] 

 

The primitive (augmenting path) algorithm applies a breadth-first search to find an 

M-augmenting path in the following way [9]: 

 

1. Begin the search from M-free vertices in one bipartition of G, say V+. 

2. In odd iterations of search use edges that are not in M and in even iterations use 

M-edges 
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3. If the search finds an M-free vertex in V-, then we have an M-augmenting path. 

 

The search time for the above algorithm is bounded with O(mn). If the search 

finishes without finding an M-free vertex in V-, then there is no M-augmenting path in G, 

therefore M is maximum. 

 

Hungarian algorithm invented and published by Harold Kuhn in 1955, works on 

weighted bipartite graphs to find a minimum cost maximum matching [9]. The algorithm 

can also be used to find a maximum cost matching by reversing the cost function. 

Hungarian algorithm seeks to find a solution for the assignment problem and models it 

with a nxm cost matrix, where each element of the matrix represents the cost associated 

with assigning a certain job to the specified resource. This algorithm describes to the 

manual manipulation of a two-dimensional matrix by starring and priming zeros and by 

covering and uncovering rows and columns [72]. The following steps are described by the 

algorithm [72]: 

 

1. Create an n x m matrix called the cost matrix in which each element represents the 

cost of assigning one of n workers to one of m jobs.  Rotate the matrix so that there 

are at least as many rows as columns and let k=min(n, m). 

2. For each row of the matrix, find the smallest element and subtract it from every 

element in its row.  Go to step 3. 

3. Find a zero (Z) in the resulting matrix.  If there is no starred zero in its row or 

column, star Z. Repeat for each element in the matrix. Go to step 4. 

4. Cover each column containing a starred zero.  If K columns are covered, the 

starred zeros describe a complete set of unique assignments.  In this case, go to 8, 

otherwise, Go to step 5. 

5. Find a non-covered zero and prime it.  If there is no starred zero in the row 

containing this primed zero, Go to step 6.  Otherwise, cover this row and uncover 

the column containing the starred zero. Continue in this manner until there are no 

uncovered zeros left. Save the smallest uncovered value and go to step 7. 

6. Construct a series of alternating primed and starred zeros as follows.  Let Z0 

represent the uncovered primed zero found in step 5.  Let Z1 denote the starred zero 

in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there 
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will always be one).  Continue until the series terminates at a primed zero that has 

no starred zero in its column.  Unstar each starred zero of the series, star each 

primed zero of the series, erase all primes and uncover every line in the matrix.  

Return to step 4. 

7. Add the value found in step 5 to every element of each covered row, and subtract it 

from every element of each uncovered column.  Return to step 5 without altering 

any stars, primes, or covered lines. 

8. This step indicates the algorithm is completed. Assignment pairs are indicated by 

the positions of the starred zeros in the cost matrix.  If C(i, j) is a starred zero, then 

the element associated with row i is assigned to the element associated with column 

j. 

 

Examining the steps more carefully, in step 5, for example, the possible situations 

are, that there is a non-covered zero which gets primed and if there is no starred zero in its 

row the program goes onto step 6.  The other possible way out of step 5 is that there are no 

non-covered zeros at all, in which case the program goes to step 7 [72]. 
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3.  Related Work 
 

 

Semantic Web services aim to realize the vision of the Semantic Web, i.e. turning the 

Internet from an information repository for human consumption into a worldwide system 

for distributed Web computing [6]. The system is a machine-understandable media where 

all the data is combined with semantic metadata. The domain level formalizations of 

concepts form up the main element within this system, which is called ontology [11].  

Ontology represents concepts and relations between the concepts; these can be hierarchical 

relations, whole-part relations, or any other meaningful type of linkage between the 

concepts [4].  

 

 The semantic matchmaking process is based on ontology formalizations over 

domains. In the upcoming section we present some of the selective research on the 

matchmaking process considering the concepts that we build our research on. 

Matchmaking of Web services considers the relationship between two services. The first 

one is called the advertisement and the other is called the request [2]. Advertisement 

denotes the services description of the existing services while the request indicates the 

picture of service requirements [19].  

 

 Traditional approaches to modeling semantic similarity between Web Services 

compute subsume relationship for function parameters in service profiles within a single 

ontology. In [20] a graph theoretic framework based on bipartite graph matching for 

finding the best correspondences among function parameters belonging to advertisement 

and request is introduced. On computing semantic similarity between a pair of function 

parameters, a similarity function is introduced, determining similar entity, which relaxes 

the requirement of a single ontology and accounts for the different ontology specifications. 

The function presented for semantic similarity across different ontologies provides an 

approach to detect similar parameters. The method is based on a matching process over 

weighted sum of synonym sets, semantic neighborhood, and distinguishing features. They 

make use of WordNet to capture the similarity between parameter names and also consider 

properties of concepts in matchmaking as distinguishing features. However, the method 

lacks use of contextual information or user preferences in matchmaking process. 
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 In [22], a semantic ranking MSC is designed to rank the results of advertisements 

matchmaking. MSC stands for the initials of three factors’ second words: Semantic 

Matching Degree (to capture the semantic aspects of attributes), Semantic Support (to 

describe the interestingness or potential usefulness of an attribute) and Relational 

Confidence (to capture the association relationships among attributes). Three categories of 

attributes are defined in advertisements matchmaking: Generalizable Nominal Attribute 

(GNA) whose values can form a concept hierarchy; Numeric Attribute (NUA), called 

quantitative attribute, whose values are numeral; Nominal Attribute (NOA) whose values 

are neither numeral nor can form a concept hierarchy. However, in this study, the 

presented factors excluding Semantic Matching Degree, are not directly dealing with 

assessing service similarity to a certain request.  

 

In [65], the authors introduce a step-by-step matchmaking process. They consider 

profile, input-output and non-functional attributes matching in the process. They also 

provide ranking of services according to their similarity to a certain request. However, they 

consider discrete scales of similarity measures: Exact, plug-in, subsume, intersection and 

fail. Although they provide ranking, they apply subsumption based reasoning and do not 

consider properties of concepts and contextual information in matchmaking. In [66], the 

authors describe capability matchmaking as matching inputs, outputs, preconditions and 

effects of services. They focus on the input-output matching. However, only a discrete 

scale classification of matching is provided. Besides, contextual information and properties 

of OWL concepts are not taken into account. 

 

In [55], authors approach the problem of service similarity in a category-based 

approach. They define the following categories: Lexical similarity, which considers the 

textual similarity of service names; attribute similarity, which evaluates semantic similarity 

between Web service attributes and interface similarity, which considers the input-output 

parameter type and name similarity. They define a conceptual model of Web services, 

where a Web service is identified with its attributes and operations. Their study mostly 

focuses on the attribute similarity and focus on QoS attributes. The input-output parameter 

type similarity is only performed by a parameter type mapping table. The properties for 
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those types defined in ontology are not considered. Besides, contextual information or user 

preferences are not considered in the matching process. 
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4.  Problem Statement 
 

The current industry standard for service discovery is UDDI [53]. However, UDDI 

has some shortcomings in that it returns coarse results for a keyword-based search and 

more importantly it lack semantics. It is basically a framework that supports category-

based search. 

 

Semantic service discovery tries to solve the above problem by utilizing capability-

based search mechanism [25]. Capability based search enables reasoning on service input, 

output parameters, preconditions and effects. Service discovery tries to find all services 

that satisfy a certain request whereas service matchmaking deals with the relationship 

between two services [26]. Service discovery needs support of service matchmaking 

process. 

 

The problem that we focus on in this research is to find suitable Web services that 

satisfy a certain request by applying a matchmaking process. A conventional matchmaker 

as described by Paolucci et al. [27] would distinguish four different relations between two 

concepts: Exact, subsume, plug-in and fail. This matchmaker would also determine the 

matching degree of a service to the request by the lowest degree of match. Considering the 

parameters, if one of them fails to match with request parameters the service would be 

considered as a fail to match. However, this scale of discrimination may not be appropriate 

in certain situations. The experimental research so far has shown that simple subsumption 

based matchmaking is not sufficient to capture semantic similarity [1, 22, 54, 55]. 

 

A discrete scale matchmaking methodology may result in false negatives. Some of 

the services in the candidate set might be eliminated due to not fitting those discrete scales. 

However, semantic relation has many dimensions other than subsumption. Next section 

describes those dimensions that we take into account, namely the properties of concepts 

and explicit annotations on concept similarity. A complete system should also evaluate all 

the candidate services and rank them according to their semantic similarity to a given 

request. We believe that considering semantic relations in depth provides a better 

matchmaking process. 
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Contextual information is also important to a matchmaking process. A matchmaking 

approach considering only raw OWL ontology definitions would operate without 

considering context. Matchmaking should also consider user preferences to be able to fully 

capture semantic similarity upon a user request.  

 

Service composition also benefits from semantic Web to support automatic 

composition. Compositions can be generated dynamically by utilizing semantic 

descriptions of services to organize them in a workflow. In most of the composition 

approaches services are added to the composition one by one [56, 57]. As each service is 

added a matchmaking step is needed to make sure that the service supports the IOPE 

(Input, output, precondition and effect) constraints of the workflow node. Besides, the 

selected service’s IOPE affects the matchmaking process for the next workflow node. 

Thus, a rich matchmaking framework is needed to obtain successful compositions. 

Considering alternative services in a composition is crucial for evaluation. So, a feature-

rich and ranking based matchmaker is crucial for a composition engine. 

 

In this research, we aim to provide an efficient and accurate matchmaking algorithm 

using scoring and ranking based on similarity distance information, extended subsumption 

and property level similarity assessment in a general semantic Web service discovery 

framework. 
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5.  Proposed Solution 
 

 

In this research, we propose a method that enhances simple subsumption based 

matchmaking approaches. Our main motivation is to capture semantic similarity between 

services in a more efficient way and eliminate false negatives. We consider service input 

and output parameters and perform the matchmaking considering the I/O (Input/Output) 

interface of services. Our proposed solution uses decision modules that can be plugged in 

and out. We have implemented some of these modules to add semantic relatedness values 

onto existing subsumption-based procedures. Our proposed matchmaker agent, SAM – 

Semantic Advanced Matchmaker, mainly provides ranking and scoring based on concept 

similarity. We also introduce the use of similarity distance annotations in an OWL 

document. Similarity distance supports explicitly annotating concept similarity in a 

numerical fashion. These annotations might refer to user’s view of ontology and the 

similarity degree of concepts according to the user. Similarity distance is actually a method 

to represent context information in matchmaking process as described in Section 4. 

 

Figure 5.1 overviews the matchmaking process in SAM. We assume that a 

conventional service discovery is performed on a request and as a result we have a relevant 

service set to apply matchmaking on. SAM gets the relevant service set and the request as 

inputs. The output of SAM is a ranked list of relevant service set. The focus of this study is 

the methods and procedures that take place in Matchmaking box described in Figure 5.1. 

 

Figure 5.1. SAM matchmaking process 
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The components of the proposed architecture are shown in Figure 5.2. Request 

service definition and the corresponding relevant services set, which are discovered 

through conventional discovery mechanisms, are presented as input to the system. 

 

Matchmaker component organizes the framework for comparing each of the services 

in the relevant service set with the request. It communicates with the Scoring Module to 

obtain similarity score for each parameter pair for a certain request-service pair. Finally, 

matchmaker component generates a bipartite graph for each request-service pair 

cooperating with Bipartite Graph Module. Each bipartite graph represents the service and 

request parameters with the similarity score assigned on every edge. As we are interested 

in retrieving best matching services compared to a request, bipartite graph matching 

algorithm will find the maximum weight match in each bipartite graph. This step ends up 

with parameter pairings in bipartite graphs representing maximum weight match in each 

service and request pair. At the end of the matchmaking process, the services in the 

relevant service set are ranked according to their scores in bipartite-graphs, which of 

course represent their semantic similarity to the request. SAM Bipartite Matcher module 

uses the Hungarian algorithm of Kuhn (1955), as improved and presented by Lawler 

(1976). The bipartite matcher engine finds maximum-weight matching in a complete 

bipartite graph. 

 

Scoring Module is the part of the system where similarity between concepts is scored 

according to several criteria. We propose a plug-in architecture here, so that additional 

scoring modules can be plugged in or out. Currently, we implemented three scoring 

modules: Subsumption based scoring, similarity distance scoring and WordNet similarity 

scoring. Pellet reasoner is used in association with the Scoring Module for inference in 

ontology. Details on how these scoring modules work are described in the following 

sections. 
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Figure 5.2. Matchmaking agent components 

 
The main software components of our proposed matchmaking agent are shown in 

Figure 5.3. The top layer represents our matchmaker Semantic Advanced Matchmaker 

(SAM). OWL-S API models the service, profile, process and grounding ontologies of 

OWL-S in an easy to use manner. It is a widely used API in semantic applications. OWL-S 

API also presents interfaces for reasoning operations and utilizes Jena constructs at the 

back-end. At the bottom of the hierarchy we have Pellet reasoner for OWL reasoning 

operations. 

 

Figure 5.3. Software components of matchmaking agent 
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We believe that a discrete scale (exact, plug-in, subsume, and fail) of service 

classification is not sufficient for a matchmaking process. On the other hand, semantic 

ranking of services can capture a set of services that are lost in a discrete scale match. 

Semantic similarity assessment is a crucial step for the ranking process. In our proposed 

architecture, we present value-added similarity assessment approaches between service and 

request parameter pairs, which are described below. 

 

5.1.  Matching Algorithm 
 

Previous research has shown that bipartite graph matching algorithm is a good fit for 

finding matching parameters in a service and request pair [9]. Bipartite graph matching 

provides us a solution for parameter pairing problem. We consider the inputs and outputs 

as separate cases and partition the service parameters and request parameters to form the 

bipartite graph. The similarity assessment process of our matchmaker assigns weights for 

each parameter pair on this bipartite graph. A maximum weight match on the final graph 

leaves us with the optimum matching parameter pairs and with a score that is sum of the 

weights between matched parameter pairs. We repeat this process for each service and 

request pair and finally rank the services according to their score from bipartite graph 

matching algorithm. 

 

As we stated before the process that differentiates the services is the similarity 

assessment process. We consider OWL-S profiles of service definitions and assign 

similarity scores for input and output parameter pairs. We present the following value-

added features for similarity assessment: Subsumption based similarity, property-level 

similarity, similarity distance information and WordNet similarity assessment. 

 

It is possible that the input or output parameter count of request does not match the 

parameter count of the service. A preprocess step is introduced in the matchmaking 

process to add dummy parameters to the request or service in the following cases: If the 

service output parameter count is more than the request output parameter count an extra 

parameter is added to request outputs or if the request input parameter count is more than 

the service input parameter count an extra parameter is added to service inputs. 
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For the above cases, we introduced additional parameters to service or request to 

make the parameter count equal and to be able to support perfect bipartite matching. We 

ignored the additional output parameter after the matchmaking process. However, for the 

inputs we normalize the service similarity score. The idea is to apply a fair matchmaking 

so that a service that can provide the results with less input does not get a lower score due 

to its parameter count. So, we normalize the score of such a service using the following 

equation: 

 

Snew = |Pr|/|Ps|*Sold                 (5.1) 

 

In equation 5.1, Sold represents the original service similarity score, |Pr| and |Ps| 

represent the parameter count of request and service, respectively. Finally, Snew represents 

the normalized service score. 

 

An exception case is defined for the output parameters. If the service has less output 

parameters than the request, we do not directly eliminate the service with a zero score. We 

believe that any piece of provided information is valuable considering the outputs. So we 

classify the service as partially satisfying the request. The score for the matched output 

parameters are considered in the final evaluation. However, this is not the case for the 

input parameters. As a request with insufficient parameter set will not be able to invoke a 

certain service. 

 

Another preprocess step in our matchmaking agent is to decompose any parameter 

type if it can be represented as a owl:unionOf element. This step ensures that all the 

parameters involved in matchmaking are atomic and reasoning on parameter count can be 

performed safely. As an example, let us suppose the concept “address” is expressed as a 

union of concepts “street” and “home”. If the request requires the parameters street and 

home as output and the service provides the parameter address, we may not capture the 

exact match between parameter pairs without such decomposition. The matchmaker could 

even return a failure to match as the service provides less output then required by the 

request. 
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After the decomposition of request and service parameters, the matchmaker returns a 

failure to match for the following cases: If the service has less output parameters then 

required by the request or if the request has less input parameters then required by the 

service. 

 

After all the services in the candidate set are evaluated against the request, SAM 

stores the following information for each service and request pair: Match type (exact, 

subsume, plug-in, fail, property-level and ontology distance) for each matching parameter 

pair, similarity score (range between 0 and 1) for each matching parameter pair and total 

similarity score of service and request matching. 

 

We provide ranking of services according to the above scores and in terms of their 

input and output parameters. However, considering both the input and output parameters 

we prioritize output matching as the outputs of a service are more important for client of a 

matchmaker. The following equation is used for this weighted calculation: 

 

Sfinal = winput*Sinputs + woutput*Soutputs                (5.2) 

 

In the above equation, Sinputs and Soutputs represent the similarity score considering only 

the input parameters and output parameters respectively. winput and woutput represents the 

weights for the input and output similarity scores, where they are fixed to 0.4 and 0.6 after 

several runs of matchmaker considering the expected outcome. Finally, Sfinal represents the 

final score of similarity considering both the input and output parameters. 

 

Sx,y = wsub*Subsumptionx,y + wword*WordNet x,y         (5.3) 

 

Sx,y, in the above equation, represents final similarity score between concepts x and y. 

Subsumptionx,y represents semantic score obtained through subsumption, property level 

matching and semantic distance.  WordNet x,y   represents the WordNet score for concept 

names. The coefficients for subsumption and WordNet are fixed at 0.9 and 0.1 after 

making experimental runs. We plan to apply a neural network training approach to 

determine values for coefficients utilizing a large training data in future. 
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As we have indicated before, a feature-rich matchmaking process is crucial for 

capturing semantic similarity between parameter pairs. Following sections describe the 

value-added approaches that our matchmaking agent applies in order to evaluate semantic 

similarity and rank the services according to the final similarity score. 

 

5.1.1.  Subsumption based Similarity Assessment 
 

We make use of OWL-DL constructs subClassOf, disjointWith, complementOf, 

unionOf and intersectionOf to assess concept similarity based on subsumption. If two 

concepts are explicitly stated to be complement or disjoint, a zero score is directly 

assigned. Otherwise, we check for subconcept relation and also assess according to 

property level assessment procedure described below. 

 

We wanted to capture similarity values in bipartite graph since it is important to 

decompose concepts that include the characteristic of “a union of”. Following this 

approach, we always pair and assess score for atomic concepts in matchmaking process. 

 

Considering the input and output parameter matching, the following cases are 

favored in subsumption: Request input parameter subsumed by the service input parameter 

or service output parameter subsumed by the request output parameter. 

 

The following equation explains the above scoring differentiation for subsumption 

relation in parameters: 

 

Sfinal = w*Sx,y                     (5.4) 

 

Sx,y represents the semantic similarity score between parameters x and y, where w 

represents the weight that is adjusted according to the subsumption relation. For the above 

described favored subsumption cases we assign 0.6 to w and 0.4 otherwise. Sfinal represents 

the final adjusted similarity score between the concepts. 
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5.1.2.  Property-level Similarity Assessment 
 

We believe that in matchmaking it is also important to have properties and their 

associated range in measuring the degree of match. Such as, if two concepts have similar 

properties (properties having subclass relation) and their range classes are similar, then this 

improves their level of similarity. 

 

Our proposed matchmaker checks for property level similarity in a recursive fashion. 

A complete similarity assessment is performed for range classes of each matching 

property. This means that if the range classes of similar properties have also common 

properties, property level matching is again applied to capture similarity at that level. 

 

As the properties of a parent concept are inherited by its child concepts in a semantic 

network, property-level matching is crucial to capture semantic similarity between sibling 

concepts. Such concepts are not in a subsumption relation. However, since they have a 

common parent, it is highly likely that they contain common properties with similar range 

types. 

 

As an example, considering the ontology in Figure 6.3, Foreign-Magazine and 

ScienceFictionBook concepts are not in a subsumption relation. A conventional 

matchmaker would classify these concepts as non-related. However, these concepts have 

properties datePublished and publishedBy in common, which refer to concepts Date and 

Publisher respectively as ranges. This means both concepts have a publisher and a 

publishing date, what makes them similar at a certain degree. In order to calculate the 

degree of match, SAM evaluates the similarity of range objects for datePublished and 

publishedBy properties associated with concepts Foreign-Magazine and 

ScienceFictionBook. In this example ontology, Foreign-Magazine has range Date for 

datePublished and Premium-Publisher for publishedBy property. ScienceFictionBook has 

also range Date for datePublished and Alternative-Publisher for publishedBy property. As 

a result, the similarity degree of concepts Date compared to Date and Premium-Publisher 

compared to Alternative-Publisher, gives an idea on how much the concepts Foreign-

Magazine and ScienceFictionBook are similar. 
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The following equation describes how property-level matching is used in scoring: 

 

Spx,y = wp*∑Sm,n              (5.5) 

 

In the above equation x and y represents the concepts that have common properties. 

The property-level matching score for the concepts x and y is expressed as Spx,y. Let us 

suppose m and n represent associated range classes for each matching property of x and y. 

Sm,n represents the similarity score between concepts m and n. wp represents the weight for 

property-level matching affecting the total similarity score, where we defined it to be equal 

to 0.1 after several runs. Then, Spx,y equals to the adjusted sum of similarity scores for each 

m and n. Note that SAM considers object type properties for subsumption. For data type 

properties similarity will be simply equal to 0 or 1. 

 

Using property level similarity assessment ranks a service that would normally be 

eliminated by a conventional matchmaker. For example, a user request may favour a 

particular author for a novel. A service, which returns articles that are written by that 

particular author, will have a high score even though the concept of “an article” does not 

compare to the concept of “a novel”. Therefore our proposed architecture returns positive 

results for concepts that have similar properties as well as the similar concepts. 

 

5.1.3.  Similarity Distance based Assessment 
 

Similarity distance represents the semantic similarity between two concepts in terms 

of a value in the range as [0,1]. It is an explicit annotation on the ontology, where 

contextual information is represented. Similarity distance annotations can be considered as 

a user’s point of view on semantic relations of concepts or similarity relations of concepts 

in a certain context. 

 

Similarity distance annotations can be introduced into ontology by the ontology 

creators or by the user’s of a system dynamically. A system can provide the user with an 

interface to assess similarity relations between concepts in a user-friendly way. The user 

can classify concepts as being equal, very similar, similar or not related so that the system 

can map these relation classes to the range [0,1]. Our implementation does not focus on the 
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semantic distance annotation step and assumes that the ontology with semantic distance 

annotation is given. 

 

In [24], authors make use of semantic distance information by representing 

annotations in a custom XML file accompanying the ontology document. We further 

improve this approach and apply a standards based approach. We defined a similarity 

distance ontology which represents how similarity values between concepts are defined. 

Importing similarity distance ontology and annotating the concepts with similarity distance 

concept will enable any ontology to represent similarity relation between its concepts. This 

way we provide a standard representation and enable an ontology which has similarity 

distance annotations to be processed in any OWL processor. 

 

To represent similarity distance information we applied N-ary relation pattern in 

OWL, which is used to represent additional attributes on a property [58]. The additional 

attribute in our case is the similarity distance value. Figure 5.4 shows how this pattern is 

organized:  

 

 

Figure 5.4. N-ary relation pattern in OWL, representing similarity distance information 

 
 SimilarityRelation concept is introduced as a class with this pattern and the similarity 

distance value is represented as the range of hasSimilarityDegree property of this concept. 

The similar classes are represented as Concept_1 and Concept_2 in Figure 5.4. The 

relations isSimilarFrom and isSimilarTo attach the concepts to the similarity relation and 

indeed they are symmetric. Similarity distance ontology is represented below: 
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Table 5.1. OWL representation of similarity distance ontology 

<?xml version="1.0"?> 
<rdf:RDF 
  xmlns="http://127.0.0.1/ontology/similarityOntology.owl#" 
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
  xmlns:owl="http://www.w3.org/2002/07/owl#" 
  xml:base="http://127.0.0.1/ontology/similarityOntology.owl"> 
  <owl:Ontology rdf:about="http://127.0.0.1/ontology/similarityOntology.owl"/> 
      <owl:Class rdf:ID="SimilarityRelation"> 
         <rdfs:subClassOf> 
             <owl:Restriction> 
                 <owl:hasValuerdf:datatype="http://www.w3.org/2001/XMLSchema#float">   
                 -1</owl:hasValue> 
                 <owl:onProperty> 
                     <owl:DatatypeProperty rdf:ID="hasSimilarityDistance"/> 
                 </owl:onProperty> 
             </owl:Restriction> 
         </rdfs:subClassOf> 
         <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
         <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:allValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
                <owl:onProperty> 
                    <owl:ObjectProperty rdf:ID="isSimilarFrom"/> 
                </owl:onProperty> 
            </owl:Restriction> 
         </rdfs:subClassOf> 
         <rdfs:subClassOf> 
             <owl:Restriction> 
                 <owl:allValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
                 <owl:onProperty> 
                     <owl:ObjectProperty rdf:ID="isSimilarTo"/> 
                 </owl:onProperty> 
             </owl:Restriction> 
         </rdfs:subClassOf> 
    </owl:Class> 
    <owl:ObjectProperty rdf:about="#isSimilarFrom"> 
        <rdfs:domain rdf:resource="#SimilarityRelation"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:about="#isSimilarTo"> 
        <rdfs:domain rdf:resource="#SimilarityRelation"/> 
    </owl:ObjectProperty> 
    <owl:DatatypeProperty rdf:about="#hasSimilarityDistance"> 
        <rdfs:domain rdf:resource="#SimilarityRelation"/> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/> 
    </owl:DatatypeProperty> 
</rdf:RDF> 
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The similarity distance formulation is defined as follows:  

 

Sdx,y = Sdx,t* Sdt,k*…*Sdm,y              (5.6) 

 

In the above equation, Sda,b ∈ [0,1] for any a and b pair. Sdx,y represents similarity 

distance between concepts x and y. The product of similarity distance values on the path 

from x and y gives the value for Sdx,y. If the concepts are not subclasses of each other then 

we take the path including their first common parent in the hierarchy. If there are more 

than one path between two concepts (occurs if a concept has more than one parent) we take 

the path with higher score. 

 

Similarity distance assignment approach is not strictly defined. Indeed, we encourage 

similarity assignment to be performed in a consistent way, considering the ontology as a 

whole.  In addition, if similarity distance annotation is not found between two concepts, 

then a default distance value is assigned according to the following equation: 

 

Sdx,y = 1/|subClassOf(x)direct|            (5.7) 

 

In the above equation Sdx,y represents similarity distance between concepts x and y 

and |subClassOf(x)direct| represents the number of elements in set of direct subclasses of 

concept x. 

 

5.1.4.  WordNet based Similarity Assessment 
 

As described in section 2, WordNet organizes concepts in synonym sets and provide 

information on semantic relations between synsets by making use of pointers. In our 

architecture we take WordNet as a secondary source of information in addition to the 

ontology repository. We aimed at reasoning with these highly structured information 

sources in order to get more reliable result sets. 

 

We make use of the previously described Wordnet::Similarity source project to 

assess similarity score among words. The path length criterion is used for score 
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assignment. The parameter types of services are presented as input to Wordnet::Similarity 

module. 

 

SAM provides WordNet scoring as a module that can be turned on and off. As we 

present parameter type names extracted from service ontologies as input to 

Wordnet::Similarity, some types may not correspond to any word name in WordNet. 

Ontology designers may not provide concept names that correspond to valid words in 

WordNet database. Considering this, some of the concepts might have zero score from 

WordNet in matchmaking process according to equation 5.3, while others gain some 

considerable score. Therefore, it might be desirable not to consider WordNet scoring in 

some matchmaking scenarios. SAM supports this flexibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47

6.  Experimental Results 
 

 

6.1.  Test Ontology 
 

The ontology and services we used are retrieved from “OWL-S Service Retrieval 

Test Collection version 2.1”. The services in the collection are mostly extracted from 

public UDDI registries, providing 582 Web services described in OWL-S and from seven 

different domains. The OWL-S Test collection version 2.1 contains 29 queries, each of 

which associated with a set of 10 to 15 services [8].  

 

In order to evaluate the performance of our proposed matchmaking agent we 

extended the book ontology in OWL-S Service Retrieval Test Collection (OWL-S TC) and 

also modified related request and service definitions accordingly [8]. As shown in Figure 

6.1, we added subclasses of Magazine, namely Foreign-Magazine and Local-Magazine 

classes. We introduced subclasses for Publisher concept, Author and Newspaper concepts. 

We also annotated the book ontology with similarity distance information, making use of 

similarity distance ontology that we have imported. 

 

The ontology contains information on printed material classification and related 

concepts such as authors, publishers, publishing intervals in terms of time and date and 

several other concepts. Figures 6.1 to 6.3 are sections from the book ontology. 
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Figure 6.1. A section of book ontology 

 
As shown above we introduced subclasses for Publisher and Author concepts. This 

will provide further differentiation in matchmaking process when considering the above 

concepts in parameter types. 

 

 

Figure 6.2. Person ontology section 
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Figure 6.3. Printed Material ontology section 
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Figure 6.4. SimilarityRelation concept and subclasses 

 
As shown in Figure 6.4, we imported similarity distance ontology and introduced 

subclasses of SimilarityRelation concept to represent similarity distance annotations. This 

way, we can represent semantic similarity values between book ontology concepts. 

Following table lists the similarity distance values assigned in the book ontology: 
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Table 6.1. Similarity distance values in book ontology 

Superclass Subclass Similarity Distance 
Publisher Ordinary-Publisher 0.2 
Publisher Alternative-Publisher 0.5 
Publisher Premium-Publisher 0.3 
Author Local-Author 0.3 
Author Foreign-Author 0.7 

Magazine Local-Magazine 0.3 
Magazine Foreign-Magazine 0.7 

Newspaper Local-Newspaper 0.3 
Newspaper Foreign-Newspaper 0.7 

Book Short-Story 0.7 
Book Science-Fiction-Book 0.4 
Book Novel 0.3 
Book Encyclopedia 0.1 
Novel Science-Fiction-Novel 0.6 
Novel Fantasy-Novel 0.2 
Novel Romantic-Novel 0.2 

Book-Type Hard-Cover 0.7 
Book-Type Paper-Back 0.3 

Genre Comic 0.3 
Genre Fantasy 0.2 
Genre Science-Fiction 0.5 

 
 

The above similarity distance values are annotated in the ontology as described in 

Table 6.2 below. The similarity distance value in super concept SimilarityRelation is 

overridden by the annotation. Owl:hasValue construct is used to represent the similarity 

distance. The concepts that are described as similar are represented with isSimilarFrom 

and isSimilarTo properties using owl:Restriction construct. 
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Table 6.2. Similarity distance annotation 
<owl:Class rdf:ID="Similarity_Author_LocalAuthor"> 
<rdfs:subClassOf   
  rdf:resource="http://127.0.0.1/ontology/similarityOntology.owl#SimilarityRelation"/> 
<rdfs:subClassOf> 
    <owl:Restriction> 
        <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"> 0.3   
        </owl:hasValue> 
        <owl:onProperty  rdf:resource=    
        "http://127.0.0.1/ontology/similarityOntology.owl#hasSimilarityDistance"/> 
    </owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
    <owl:Restriction> 
        <owl:onProperty rdf:resource=  
         "http://127.0.0.1/ontology/similarityOntology.owl#isSimilarFrom"/> 
        <owl:allValuesFrom rdf:resource="#Author"/> 
    </owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
    <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Local-Author"/> 
        </owl:allValuesFrom> 
        <owl:onProperty rdf:resource=  
         "http://127.0.0.1/ontology/similarityOntology.owl#isSimilarTo"/> 
     </owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 

 

The OWL-S documents describing the services make use of the book and concepts 

ontology in OWL-S TC. Table 6.3 represents the header section of an OWL-S document 

demonstrating how these ontologies are imported. 

 

Table 6.3. OWL-S document header 

<owl:Ontology rdf:about=""> 
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl" /> 
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl" /> 
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Profile.owl" /> 
<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Grounding.owl" /> 
<owl:imports rdf:resource="http://127.0.0.1/ontology/modified_books.owl" /> 
<owl:imports rdf:resource="http://127.0.0.1/ontology/concept.owl" /> 
</owl:Ontology> 

 

Below, Table 6.4 presents the service section of an OWL-S document. 
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Table 6.4. OWL-S document service section 

<service:Service rdf:ID="BOOK_PRICE_SERVICE"> 
<service:presents rdf:resource="#BOOK_PRICE_PROFILE"/> 
<service:describedBy rdf:resource="#BOOK_PRICE_PROCESS_MODEL"/> 
<service:supports rdf:resource="#BOOK_PRICE_GROUNDING"/> 
</service:Service> 

 

Table 6.5 represents the profile section of an OWL-S document, describing how the 

inputs and outputs of the service are referred. 

 

Table 6.5. OWL-S document profile section 

<profile:Profile rdf:ID="BOOK_PRICE_PROFILE"> 
<service:isPresentedBy rdf:resource="#BOOK_PRICE_SERVICE"/> 
<profile:serviceName xml:lang="en"> 
… 
</profile:serviceName> 
<profile:textDescription xml:lang="en"> 
… 
</profile:textDescription> 
<profile:hasInput  rdf:resource="#_ORDINARYPUBLISHER"/> 
… 
<profile:hasOutput rdf:resource="#_GENRE"/> 
<profile:has_process rdf:resource="BOOK_PRICE_PROCESS" /> 
</profile:Profile> 

 
 

Table 6.6 presents the process section of the OWL-S document and represents how 

types of input and output parameters are defined. 

 

Table 6.6. OWL-S document process section 

… 
<process:AtomicProcess rdf:ID="BOOK_PRICE_PROCESS"> 
<profile:hasInput  rdf:resource="#_ORDINARYPUBLISHER"/> 
… 
<profile:hasOutput rdf:resource="#_GENRE"/> 
</process:AtomicProcess> 
… 
<process:Input rdf:ID="_NOVEL"> 
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"> 
http://127.0.0.1/ontology/modified_books.owl#Novel 
</process:parameterType> 
</process:Input> 
… 
<process:Output  rdf:ID="_GENRE"> 
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"> 
http://127.0.0.1/ontology/modified_books.owl#Genre 
</process:parameterType> 
</process:Output> 
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6.2.  Test Environment 
 

SAM is developed in Java with Eclipse IDE. Java is a good choice considering its 

power in open source community and semantic Web projects that are developed in Java 

[29, 30, 31, 32]. As described in section 5, SAM makes use of OWL-S API for processing 

OWL-S documents and Jena for reasoning on OWL. Apache Web server is used to publish 

OWL ontology documents and services described with OWL-S. We also used Protégé 

ontology editor to edit and visualize OWL documents. 

 

6.3.  Test Results 
 

In order to demonstrate the value-added features of our proposed matchmaker, we 

present two test cases for request-service matchmaking. The service and request pairs are 

described in Tables 6.7 and 6.8. 

 

Table 6.7. Test case 1 

Service Name Inputs Outputs 

Request Ordinary-Publisher, Novel, 
Paper-Back 

Local-Author, 
Genre 

Service 1 Publisher, ScienceFictionBook Author, Price 

Service 2 Book, Alternative-Publisher, 
Book-Type 

Publisher, Price, 
Date 

Service 3 FantasyNovel, Author Price, Comic 

Service 4 Newspaper, Book-Type, Person Review, Fantasy 

Service 5 Publication, Book-Type, Reader Genre, Publisher 
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Table 6.8. Test case 2 

Service Name Inputs Outputs 

Request ScienceFictionShortStory, 
Foreign-Magazine 

Foreign-Author, 
Publisher 

Service 1 Local-Author, Newspaper Ordinary-
Publisher, Price 

Service 2 RecommendedShortStory, 
Foreign-Magazine Author, Publisher 

Service 3 Novel, Magazine Reader, Author 

Service 4 Local-Magazine 
Ordinary-

Publisher, Price, 
Reader 

 
 
 

Results for input parameter matching for test case 1 are listed in Table 6.9. 
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Table 6.9. Input parameter matching for test case 1 

Service Name Parameter Pairing Service Score 

Service 1 

*Novel to Science-Fiction-Book 
(Property Level) :  

0.13176 
*Ordinary-Publisher to Publisher 

(Request Subsumed) :  
0.108 

0.35964 

Service 2 

*Novel to Book  
(Request Subsumed + WordNet) : 

0.266 
*Paper-Back to Book-Type  

(Request Subsumed) :  
0.162 

*Ordinary-Publisher to Alternative-
Publisher  

(Only Distance) :  
0.0108 

0.4388 

Service 3 

*Novel to Fantansy-Novel  
(Service Subsumed) :  

0.12 
*Ordinary-Publisher to Author  

(Only Distance) :  
0.00018 

0.18026 

Service 4 

*Novel to Newspaper  
(Property Level + WordNet) :  

0.07225 
*Paper-Back to Book-Type  

(Request Subsumed) :  
0.162 

*Ordinary-Publisher to Person 
(Request Subsumed) :  

0.00211 

0.23636 

Service 5 

*Novel to Publication  
(Request Subsumed + WordNet) : 

0.155 
*Paper-Back to Book-Type  

(Request Subsumed) :  
0.162 

*Ordinary-Publisher to Reader  
(Only Distance) :  

0.00018 

0.31718 
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Service 2 has the highest score considering input parameters only. The request input 

parameter Novel is a direct subclass of service parameter Book. For the input parameter 

matching, service parameter subsuming the request parameter is favored considering 

equation 5.4. An extra score of 0.5 is also received from WordNet similarity for Novel and 

Book parameters. We might not have considered WordNet score, considering that concept 

names such as Paper-Back or Book-Type are not included in WordNet database. Even if 

that was the case Service 2 still has the highest score. The same favorable case also holds 

for Paper-Back and Book-Type concepts as they have direct subclass relationship. The last 

parameter pair, Ordinary-Publisher and Alternative-Publisher, has no property in common 

and they are sibling concepts. Because of that we just consider their distance in ontology 

calculating with the similarity distance annotations according to equation 5.6. 

 

Service 1 has the next highest score although it operates with only 2 input 

parameters. We normalized Service 1’s score proportional to 3/2, according to equation 

5.1. Novel and Science-Fiction-Book concepts are sibling nodes in ontology and they have 

the following common properties: publishedBy, datePublished, timePublished, writtenBy, 

hasType and isTitled. We apply property level matching and compare the semantic 

similarity for the range types of these common properties. The range types are exact 

matches in terms of similarity except publishedBy property. Novel has type Publisher and 

Science-Fiction-Book has type Alternative-Publisher respectively. So, a property-level 

similarity score for this subsumption relation is added to the parameter pair scores, 

considering equation 5.5. The other parameter pair, Ordinary-Publisher and Publisher has 

also subsumption relation in the favorable case, where the service parameter subsumes the 

request. 

 

Service 5 also demonstrates parameter pairs having WordNet similarity, Novel and 

Publication. Ordinary-Publisher and Reader concepts both have the Person concept as 

parent. But they do not have a subsumption relation and we calculate their similarity score 

by considering the path in ontology between them and the similarity distance annotations 

on this path. 
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Novel and Newspaper concepts in Service 4, has Publication concept as common 

parent but they are on different paths in ontology. However, they have common properties 

and we consider those property ranges in terms of similarity and add to the final score. 

 

Service 3 is also an example of score normalization in input parameter matching 

case. It has the weakest match among all services: A subsumption relation with an 

unfavored case, where request parameter subsumes the request and similarity distance 

score from Ordinary-Publisher to Author, where they do not have any properties in 

common. 

 

The following table lists the results for output parameter matching for test case 1. 

 

Table 6.10. Output parameter matching for test case 1 

Service 
Name Parameter Pairing Service Score 

Service 1 

*Genre to Price  
(No Match + WordNet) :  

0.01429 
*Local-Author to Author  

(Request Subsumed) :  
0.108 

0.12229 

Service 2 
*Genre to Comic  

(Service Subsumed + WordNet) : 
0.17033 

0.17033 

Service 3 

*Genre to Price  
(No Match + WordNet) :  

0.01429 
*Local-Author to Publisher  

(Only Distance) :  
0.00018 

0.01447 

Service 4 

*Genre to Genre  
(Exact + WordNet) :  

1.0 
*Local-Author to Publisher  

(Only Distance) :  
0.00018 

1.00018 

Service 5 
*Genre to Fantasy 

 (Service Subsumed + WordNet) : 
0.12229 

0.12229 

 



 59

Service 4 has a great score advantage considering the exact match for Genre 

parameter in outputs. In contrast to input parameter matching, request parameter 

subsuming the service parameter is favorable in subsumption relation for outputs. We have 

this property is Service 2 and Service 5. 

 

We can see that Service 1 has no semantic similarity for Genre and Price considering 

the book ontology. However, we have a score of 0.01429 coming from WordNet database. 

For Service 1 and Service 5 we have the same output score and we do rank randomly for 

such cases. 

 

Table 6.11. Final service rank for test case 1 

Service 
Name Service Score 

Service 1 0.21723 
Service 2 0.27771 
Service 3 0.08078 
Service 4 0.69465 
Service 5 0.20024 

 

     
Considering both the input and output matching with the equation 5.2, we have the 

above ranking in table 6.11. Service 4 has the advantage of exact match in output 

parameters. Service 2 has favorable similarity relations in input parameters and it is also 

the second in ranking for output parameters. Finally, Service 3 has the weakest match for 

both inputs and outputs, which makes it the last in ranking.  

 

To better demonstrate the advantages of using SAM as compared to a conventional 

matchmaker, we have also implemented a conventional matchmaker. This matchmaker 

does not have property-level similarity matchmaking or similarity distance annotation 

capabilities. So, if the concepts do not have a subsumption relation they will have a zero 

matchmaking score. If there is a subsumption relation then the following equation will 

apply in addition to equation 5.4: 

 

S = 1 / Dx,y                (6.1) 
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In equation 6.1, S represents the subsumption similarity score, where D is the path 

length incremented by 1, between the concepts x and y in ontology. Finally, according to 

equation 5.4 this similarity score is multiplied by an adjustment factor for subsume or 

plug-in cases. 

 

 As shown in table 6.12, we have a loss of fine-grained discrimination between 

services. Although Service 1 had property-level matching in SAM, now it loses the 

advantage and ranked below Service 4 and Service 5. Service 4 and Service 5 are also 

equal in ranking due to similarity distance and property-level matching non-existence. 

 

Table 6.12. Conventional matchmaker - Input parameter matching for test case 1 

Service 
Name Parameter Pairing Service Score 

Service 1 
*Ordinary-Publisher to Publisher  

(Request Subsumed) :  
0.54 

0.81 

Service 2 

*Novel to Book  
(Request Subsumed) :  

0.54 
*Paper-Back to Book-Type  

(Request Subsumed) :  
0.54 

1.08 

Service 3 
*Novel to FantansyNovel  

(Service Subsumed) :  
0.36 

0.54 

Service 4 

*Paper-Back to Book-Type  
(Request Subsumed) :  

0.54 
*Ordinary-Publisher to Person  

(Request Subsumed) :  
0.54 

1.08 

Service 5 

*Novel to Publication  
(Request Subsumed) :  

0.54 
*Paper-Back to Book-Type  

(Request Subsumed) :  
0.54 

1.08 

 

Table 6.13 demonstrates the output parameter matching with a conventional 

matchmaker. Although the difference is not as obvious as the case in inputs, we can 

observe that Service 1 has lost the advantage of WordNet score, which is a second source 
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of information in SAM. Service 3 also now gets a zero score as similarity distance and 

WordNet is not considered, which means it is totally left out in this match. 

 

Table 6.13. Conventional matchmaker - Output parameter matching for test case 1 

Service 
Name Parameter Pairing Service Score 

Service 1 
*Local-Author to Author  

(Request Subsumed) :  
0.36 

0.36 

Service 2 
*Genre to Comic  

(Service Subsumed) :  
0.54 

0.54 

Service 3 No Match 0 

Service 4 
*Genre to Genre  

(Exact) :  
0.9 

0.9 

Service 5 
*Genre to Fantasy  

(Service Subsumed) :  
0.54 

0.54 

 

Table 6.14. Conventional matchmaker - Final service rank for test case 1 

Service Name Service Score 
Service 1 0.54 
Service 2 0.756 
Service 3 0.216 
Service 4 0.972 
Service 5 0.756 

 

According to table 6.14 the final ranking changes for Service 5 and Service 1. 

However, as we have more test scenarios and more services in the relevant set, the 

difference will be more obvious and a fine-grained scoring as in SAM will be needed for a 

clear differentiation. 

 

Table 6.15 lists the input parameter matching for test case 2. The exact match in 

parameter Foreign-Magazine ranks Service 2 top in input matching. Service 2 also has 

property level matching as Science-Fiction-Short-Story and Recommended-Short-Story are 

sibling nodes in ontology and share common properties. Service 4 has a property level 

matching for parameters Foreign-Magazine and Local-Magazine as they are sibling nodes 
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in ontology. Besides, Service 4’s score is adjusted with a ratio of 3/1 according to request 

input parameter count. 

 

Table 6.15. Input parameter matching for test case 2 

Service 
Name Parameter Pairing Service Score 

Service 1 
*Foreign-Magazine to Newspaper 

(Property Level) :  
0.07065 

0.07065 

Service 2 

*Foreign-Magazine to Foreign-Magazine 
(Exact) :  

0.9 
*Science-Fiction-Short-Story to 

Recommended-Short-Story  
(Property Level) :  

0.19764 

1.09764 

Service 3 

*Foreign-Magazine to Magazine  
(Request Subsumed) :  

0.378 
*Science-Fiction-Short-Story to Novel 

(Property Level) :  
0.12587 

0.50387 

Service 4 
*Foreign-Magazine to Local-Magazine 

(Property Level) :  
0.12748 

0.25495 

 

As listed in table 6.16, Service 2 ranks top in output parameter matching due to an 

exact match with the Publisher parameter. Service 3 has both WordNet and similarity 

distance matching which puts it into second place in ranking. Service 4 has a slight 

advantage over Service 1 as it has the parameter Reader which shares a common parent 

with parameter Foreign-Author in ontology. 
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Table 6.16. Output parameter matching for test case 2 

Service 
Name Parameter Pairing Service Score 

Service 1 
*Publisher to Ordinary-Publisher  

(Service Subsumed) :  
0.108 

0.108 

Service 2 

*Foreign-Author to Author  
(Request Subsumed) :  

0.252 
*Publisher to Publisher  

(Exact + WordNet) :  
1.0 

1.252 

Service 3 

*Foreign-Author to Author  
(Request Subsumed) :  

0.252 
*Publisher to Reader  

(Only Distance + WordNet) :  
0.03625 

0.28825 

Service 4 

*Foreign-Author to Reader  
(Only Distance) :  

0.00018 
*Publisher to Ordinary-Publisher  

(Service Subsumed) :  
0.108 

0.10818 

 

Table 6.17. Final service rank for test case 2 

Service Name Service Score 
Service 1 0.09306 
Service 2 1.190256 
Service 3 0.3745 
Service 4 0.16689 

 

As shown in the above table, we have the final ranking of services in the order: 

Service 2, Service 3, Service 4 and Service 1. This ranking aligns with the input and output 

parameter rankings. 

 

As we compare the input parameter matching with a conventional matchmaker, Table 

6.18 clearly shows that Service 1 is now left out as we do not have property-level matching 

anymore. This way we lose the connection between Foreign-Magazine and Newspaper 

concepts in Service 1 inputs. This is also the case in Service 4. 

 



 64

Table 6.18. Conventional matchmaker - Input parameter matching for test case 2 

Service 
Name Parameter Pairing Service Score 

Service 1 No match 0 

Service 2 
*Foreign-Magazine to Foreign-Magazine 

(Exact) :  
0.9 

0.9 

Service 3 
*Foreign-Magazine to Magazine  

(Request Subsumed) :  
0.54 

0.54 

Service 4 No match 0 
 

 Table 6.19 shows that we have no differentiation for Service 1 and Service 4 

anymore. This is because similarity distance annotations are not considered and Service 4 

loses its advantage and importance in matchmaking. Besides, we do not have a fine-

grained matchmaking as the previous cases. 

 

Table 6.19. Conventional matchmaker - Output parameter matching for test case 2 

Service 
Name Parameter Pairing Service Score 

Service 1 
*Publisher to Ordinary-Publisher  

(Service Subsumed) :  
0.54 

0.54 

Service 2 

*Foreign-Author to Author   
(Request Subsumed) :  

0.36 
*Publisher to Publisher  

(Exact) :  
0.9 

1.26 

Service 3 
*Foreign-Author to Author  

(Request Subsumed) :  
0.36 

0.36 

Service 4 
*Publisher to Ordinary-Publisher  

(Service Subsumed) :   
0.54 

0.54 

 

The final rank with a conventional one points out that we do not have a separation for 

Service 1 and Service 4. It also shows that we do not have a fine-grained differentiation. 
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Table 6.20. Conventional matchmaker - Final service rank for test case 2 

Service Name Service Score 
Service 1 0.324 
Service 2 1.116 
Service 3 0.432 
Service 4 0.324 

 

The above test runs demonstrate that matchmaking in SAM provides fine-grained 

differentiation for services, taking into account context information with similarity distance 

annotations. Besides, SAM can capture semantic similarity observing common properties 

in concepts. The advantages of SAM as compared to a conventional matchmaker will be 

far greater, when we have more complex service sets with a great number of services 

having parameters referring to several ontologies. 

 

6.4.  Threats to Validity 
 

SAM addresses several challenges in the Web service matchmaking process. In this 

section we describe these challenges, describing how SAM overcomes them. 

 

Considering input or output parameter matching, number of parameters in the request 

or service interface may not be equal. As mentioned in section 5, SAM applies 

normalization to similarity score if the input parameter count of a service is less than the 

request parameters. 

 

The above case indeed raises an issue of imperfect matching. Although the service 

might satisfy the request with less input parameters, the interface of the service and request 

does not match perfectly. However, SAM does not make any classification of match type 

like perfect or imperfect. It just evaluates the amount of similarity score and provides a 

relative ranking between candidate services. But considering the parameter pairing SAM 

provides a match type with the similarity score. As mentioned before, the interpretation of 

scores and similarity distance information by the user is not considered in SAM. We 

assume that an automated system can provide the user with an interface to assign similarity 

distance values in a user-friendly way. 

 



 66

Bipartite graph matching in SAM does not differentiate between alternative 

maximum weight matching for a certain service and request pair. Indeed, a service and 

request pair might have more than one maximum weight matching, where some of them 

might be preferred to others. Such as a maximum weight matching that has equally 

distributed weights over parameter pairs can be preferred over a maximum matching, 

where the total weight is assigned only on a single parameter pair and remaining pairs have 

zero score. SAM graph matching module can be extended to consider this case and choose 

the best maximum weight matching in parameter pairing. 

 

As SAM applies fine-grained similarity scoring with property-level matching some 

side-effects might occur. Although properties of two concepts might be similar, in some 

extreme cases the concepts might not have so much in common. This can result in 

introducing false positives in SAM matchmaking process. A validation step could be 

included after property-level matching to overcome this problem. 

 

WordNet similarity score is considered as a second source of information. However, 

some parameter types defined in ontologies may not correspond to valid WordNet entries. 

In order to provide a fair matchmaking process WordNet scoring is enabled or disabled in 

SAM. 

 

Matching and ranking involves the consideration of priorities. The similarity 

equations that are described by SAM make use of coefficients that represent priorities. 

Such as the output similarity score being prioritized over input similarity scores, as the 

outcome of a service is much more important for a request. Another example is the 

WordNet score having a less priority than the ontology based similarity distance score. 

 

SAM is tested and evaluated on the book ontology provided with the OWL-S TC 

library. We presented two test scenarios with 9 services and two requests. Testing SAM 

with different ontologies and services may  better demonstrate the value-added features of 

it. The coefficients in presented equations will converge to certain values as SAM is tested 

with different ontologies. However, the relative ratio of the coefficients will be very 

similar to current values. Current coefficient values are adjusted considering the book 
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ontology and changing these values might affect the ranking of services. As stated, further 

testing will make SAM much more reliable. 

 

6.5.  Comparing SAM with Existing Matchmakers 
 

As described in section 3, web services matchmaking has been an active research 

area. Several matchmakers have been introduced with prototype implementations. Each of 

these studies focus on certain aspects of matchmaking. In this section we will discuss the 

advantages and disadvantages of SAM in comparison to other matchmaker proposals. 

 

In [55], authors Jian Wu and Zhaohui Wu, introduce the study “Similarity-based Web 

Service Matchmaking”. They present four similarity assessment methods as part of their 

matchmaker. As in SAM, they make use of WordNet but for a different purpose. SAM 

benefits from WordNet as a second source of information base for service parameter type 

similarity assessment. In their proposed matchmaker, WordNet is used to assess the 

similarity of service profile categories and parameter names instead of parameter types. 

Their approach deals with lexical similarity more than semantics. They consider the 

parameter type similarity through a data type similarity lookup table. SAM makes use of 

ontologies for parameter type similarity, which we believe is a better method considering 

semantics and standards. One advantage of their study is the consideration of QoS attribute 

similarity. However, SAM has the advantage of subsumption similarity assessment with a 

level down to properties of concepts and makes use of similarity distance information 

considering as the context in matchmaking. 

 

In [73], one of the best known systems Larks is presented. The authors define an 

agent capability description language named Larks and deal with the problem of 

matchmaking. Their matchmaking algorithm makes use of this specialized language as 

opposed to SAM, where standard semantics technologies like OWL and OWL-S are 

employed. Besides, Larks has a discrete scale of similarity classification. On the other 

hand SAM assigns similarity scores and ranks the services. Larks ignore a service if one of 

the attributes is in a fail state. SAM just considers the total score a service retrieves, not 

eliminating and leaving the choice to the consumer. Besides, SAM makes use of WordNet, 

property-level matching and similarity distance information that Larks does not include. 
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In [74], Lei Li and Ian Harrocks introduce a service matchmaker prototype which 

works on DAML-S definitions. Their matchmaking algorithm uses a discrete scale of 

match as in Larks: Exact, plug-in, subsume, intersection and fail. One advantage over 

SAM is that their matchmaker provides service profile category match, where SAM 

assumes that the category match is performed and a candidate service set is presented. 

However, SAM has many advantages over Li and Harrocks’s matchmaker such as 

property-level matching, WordNet scoring and use of similarity distance information to 

consider user preferences in matching. 

 

In [54] authors introduce a matchmaking approach based on a custom capability 

description (OSDL) and query language (OSQL). However, different from other 

matchmakers they also consider property-level matching. They categorize the similarity of 

two concepts as equal, inherited (subsumption), property relation (one concept is a 

property of another) and mixed relation (a transitive relation where one concept is a 

property of another which is subsumed by a third concept). In their definition similarity of 

concept X to concept Y is not always equal to the reverse case. They argue that the 

similarity of subsuming concepts depends on the number of properties they possess. In 

SAM the similarity relation is symmetric. Besides, SAM does not consider concepts being 

properties of each other in matchmaking. We suspect that the property of a concept should 

contain similarities to the concept itself. SAM considers concepts having similar 

properties. Both SAM and their matchmaker focus on interface similarity but SAM 

introduces value-added approaches like similarity distance and WordNet scoring in 

addition. 

 

Considering the above comparisons we can conclude that SAM contributes value-

added approaches in matchmaking. Similarity distance information is used in a standard 

context improving MS-Matchmaker [24]. Property-level matching and WordNet scoring 

are all combined in a service ranking matchmaker. The following table summarizes this 

comparison. 
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Table 6.21. SAM in comparison to other matchmakers 

Feature / 

Matchmaker 
SAM 

MS-

Matchmaker
Larks 

Li & 

Harrocks 

Wu & 

Wu 
OSDL 

Subsumption + + + + + + 

Service 

Interface 

Matching 

+ + + + + + 

Constraints - - + - - - 

Property 

Level 

Matching 

+ - - - - + 

Similarity 

Distance 
+ + - - - - 

WordNet + - - - 
+ 

(lexical) 
- 

Nonfunctional 

Matching 
- - - - + + 

Service 

Category 

Matching 

- + + + + - 

OWL-S + - - - - - 
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7.  Conclusions and Future Work 

 

 

We proposed a novel advanced matchmaker architecture, which introduces new 

value-added approaches like semantic distance based similarity assessment, property level 

assessment and WordNet similarity scoring. Instead of classifying candidate Web services 

in a discrete scale, our matchmaking agent applies a scoring scheme to rank candidate Web 

services according to their relevancy to the request.  

 

The ranking property enables to include some of the relevant Web services in the 

final result set whereas they would have been discarded in a discrete scale classification. 

Additionally, our proposed matchmaking agent improves subsumption- based 

matchmaking by utilizing OWL constructs efficiently and by considering down to a level 

of concept properties in the process. An improvement at this point can be to consider 

similarity between properties in addition to similarity of property range objects. 

 

 We also introduced semantic distance annotation in ontology to represent relevancy 

of concepts to the user in a numerical way. Semantic distance annotations improve the 

relevancy of returned Web service set as they actually represent user’s view of ontology. 

WordNet similarity measurement is also presented as a value-added feature, which acts as 

a secondary source of information, strengthening the power of reasoning. 

 

Considering the value-added approaches that SAM introduces in matchmaking, we 

can conclude that in a service discovery architecture SAM will improve the precision and 

accuracy of the discovery process. As a result businesses can find partners in a distributed 

environment easily and with alternatives considered. This will lead to better collaboration 

among partners and improvement of business processes. 

 

We think that preconditions and results of a service can also be considered for a 

complete matchmaking process. At that point, use of SWRL (Semantic Web Rule 

Language) in both service advertisements and request description will enhance the 

capabilities of our matchmaking agent. Current architecture of SAM supports such a rule 

based extension.  
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Non-functional attributes of Web services can also be taken into account in 

matchmaking process. QoS attributes of a Web service can be of great concern to a 

consumer. So, extending our matchmaking algorithm to include QoS attributes can be 

another improvement. 

 

SAM currently presents a relative ordering of services as the output with similarity 

scores compared to a certain request. In order to eliminate some services with ignorable 

similarity scores a threshold value can be introduced. We leave this to the client agent that 

makes use of SAM. However, such a threshold can also be implemented in SAM as a cut-

off score in order to classify only a subset of candidate service set as relevant. 

 

Another improvement will be to add context aware decision-making capabilities, 

enabling our matchmaking agent to reason based on user profiles, preferences, past actions 

etc. The architecture that we have presented can be considered as a basis for the 

development of context-aware agent. 
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