SCHEDULING PROBLEM IN DISTRIBUTED HARD REAL-TIME
| COMPUTER SYSTEMS :

A Simulation Approach to Dynamic Task Scheduling
| Using Focused Addressing and Bidding

by
Z. Dilek Duman Tozon -

BS. in Computer Engineering, Bogazici University, 1987

Submitted to the Institute for Graduate Studies’ in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science -
in
Computer Engineering

Bogazici University Library
i -
0

9001100133142
Bogazici University

3
1990




it

ACKNOWLEDGEMENTS

I wish to expfess my deep gratitude to Dog. Dr. Oguz Tosun for his guidance and help. I
would like o thank to Dog. Dr. Selahattin Kuru, and to Dog. Dr. Omer Cerid for their
valuable comments. Thanks to SemaF. Akgun for sharing her experieﬁces with me. My
sincere appreciation goes to Rasim Mahmutogullars for his editorial help, and critical
and detailed reading of my drafl. A very large thanks is extended to my husband for his
genuine understanding. Special thanks go to my baby yet unborn for the constant

encouragement of working more and harder,

Z. Dilek Duman Tuzon




iv

ABSTRACT -

The unique feature, the Lime constrainl, of hard real-time systems makes them
different from the traditional computer systems because iﬁ such systems the required
tasks musl be executed not only functionally correctly but in a timely manner. in this
thesis, the scheduling problem of hard real-time tasi{s in distributed systems is
examined in detail. Previous work on the algorithms proposed for scheduling in hard
real-time systems is reviewed. A heuristic algorithm which considers not only CPU
scheduling but also general resource requirements of tasks is chosen to be evaluated. A
set of heuristics thal can be used by this algorithm is studied through a sequence‘ of
simulations. The - heuristic function which is observed to perform the best is
incorporated in Lﬁe distr'ibute‘d schéduling algorithrﬁ. In this algorithm the
determination of a good destination node for a locally nonguaranteed task, is based on a
technique that combinés bidding and focused addressing algorithms. S.imula,tion studies
are conducted in order to evaluate the performance of the algorithm in a wide range of
application enviroaments. The performance of the algorithm is also compared to that
of three other distributed scheduling algorithms. It is observed that though this
algorithm is sensitive to the characteristics of the environments, it performs well in a

wide range of environments, compared with the other algorithms.



OZET : -

Kal1 gercek zamanl: sistemlerin ozelligi olan sire s1n1r1ax_nas1, bu sistemleri geleneksel
bilgisayar sistemlerinden farkli kilmaktadir, conks bu tor sistemlerde talep edilen
isler yalnizca gorev baklmmdan-dogru olarak degﬂ, ayni zamanda vaktinde yerine
getirilmelidirier. Bu tezde dagitilmis sistemlerde kali gercek zamanli islerin
planlanmasi sorunu ayrintils olarak incelenmekt@dir. Kau gercek zamanli islerin
planlanmasi konusunda simdiye dek onerilmis algoritmalar gozden gecirilmektedir.
Sadece MIB pilanlamasini degil, islerin genel kaynak ihtiyaclarini da dikkate alan bir
bulugsal algoritma degerlendiri‘lmek uzere secilmistir. Bu algoritma tarafindan
kullaniiabilinecek bir grup bulussal fonksiyon, bir seri benzetim calismast ile
incelenmekiedir. En iyi performansst verdigi gozlenen bulugsal fonksiyon dagitiimis
planlama algoritmasinda kullaml_maklamr. Bu algoritmada yerel olarak garanti
edilemeyen is icin hedef .dugUmUn seciminde pey surme ve direkt gonderme
algoritmalarint birlestiren bir teknik esas alinmaktadir. Algoritmanin performansini
gozlemlemek amact ile ¢esitli uygulama sartlart igin b.ehZetivm calismalari
yapilmaktadir. Algoritmanin performansi bé@ka U degisik dagitiimis planlama
algoritmasinin performanslar ile de karsilastiriimaktadir. Bu a.lgoritmanm, uygulama
alaninin ozelliklerine hassas olmasina ragmen, genkils bir uygulama alant i¢inde, diger

algoritmélara kwaéla iyi bir performans gosterdigi gozlenmektedir,



vi

TABLE OF CONTENTS

Page

ACENOWLEDGEMENTS oo iii
ABSTRACT .......... R S e sttt R S iv
L2 E— e e —————— SRR v
LIST OF FIGURES ..o e .............. ix
LIST OF TABLES oooooooeeeoeoeoeeoeeeeeeeenes et .......................................... xi
LIST OF SYMBOLS ..o oo i
L INTRODUCTION. ... ........... e, 1
T1. SCHEDULING..ooooioooeocesccvenns A —— —— R
2.1. Distributed Systems and Scheduling........ninnnonnnnnn. RO 4

2.2, Real-Time SFSIEMS. .c.cooircenvieinnensinsiansns e ——— s R 6

2.3. Scheduling in Hard Real-Time SYstems ..............cc.oiiiiiiiiinnine e 7

111. DISTRIBUTED SCHEDULING ALGORITHMS ....cococovcoee. e et senssees e 10

3.1, Hierarchical Classifialin . .. i insssiasesinsssssssisssssssssssssssssnsssossasses L
3.2. Flat Classification CHALACIRLISLICS oo it e s iaaess s ssn e st s e s s sasseanasesan s w14

3.3. Application of Taxonomy t Some Examples....vnnnininennn 16



vii

TR

IV. LITERATURE SURVEY ON SCHEDULING ALGORITHMS FOR HARD REAL-TIME

SYSTEMS et sataser e esar e s 18
4.1. Literature Survey for Mulliprocessor S¥SIEmSs ... 18
41.1. Static Scheduling Algorithms for Multiprocessor Systems ............. 18

4.1.2. Dynamic Scheduling Algorithms for Multiprocessor

SISEBIIIS ..o i oottt eassress e ar e s et e et e s b st e s Aa e b e s e A s sseRa s A e R e e a8 e ke e R b e R e AR e R SRR bt 21

42. Literature Survey for Distributed Systems............. ........................ e 22

4.2.1. Static Scheduling Algorithms for Di'st'ributed Systems ................ 7‘...22

422, Dynami'c Scheduling Algorithms for Distributed Systems................ 25

V. OVERVIEW OF THE SCHEDULING SCHEME.........cc.coooeennnne s et 27
V1. LOCAL SCHEDTILER .....ooooosooorn T, 31
6.1, Strategy Behind the Local SCheduler ... sseaseesssssenneens 31

6.2. The Basic Algorithm Ijnderlying the Gt;arantee Routine ... 32

62.1. Sthéduling Versus SEArchifng ... ciin s 32

622. Data St.rucﬁlres ....................................................................................... 33

6.2.3. AConstrainton the Search SN 36

6.24. The Basic Algorithm ... 37

6.3. Extension to the Basic Algorithm ...t 38

6.4. The Heuristic Funct.ioﬁ Hesssss 45

6.4.1. Simple A‘Heuristics for Scheduling .........coos RO TSR 15

6.42. Simulation Method and RESUIES ..ot 15

6.4.3. Integrated Simple Heuristic ALGorithIms .. ..o 17

6.4.4. Simulation Results of Using Integrated Simple Heuristics............. 49

6.5. Application Considerations ..., N — 51

6.5.1. On-line Heuristic Scheduling ..o e 51

6.5.2. Scheduling When Tasks Arrh}e inaBatch i, 52



viit

6.5.3. Non-preemptive Scheduling and the Inclusion of Periodic

TABKS i e e s e as b e e A RS r et a St ar S atatan 52

VII. DISTRIBUTED SCHEDULING SCHEME ......cccccooiiiniiiimiinninesissisias s sasinssssesssasessonsossssanss 54
7.1. Generation and Transmission of the Node Surplus. ... 54

7.2. Focused Addressing and Requesting for Bids................. e 35

T30 BIBOINE o ases s eSSt bt taes 57

T4, BId EVAIUBLION . st sese s sssesssssassases 8

7.5, Response 10 TASK AW ...t sssssassssssssssssssasssasaes 59

7.6. Simulation Model. .o e e e e e e 59

FH1. System Model i asesess e 59

TB2. N0 Motlel. .o sassasssesasasasssss 61

7.7. Simulation Results and UbServatinDhs. . i s 53

7.7.1. Effect of Laxity Distribution of Tasks ....oiivnaiinininnnncs 65

772, Effect of Communication Delay .....ininnieannd 66

7.7.3. Effect of System's Communication Network Topology ... 74

7.74. Comparison of Algorithm FB with Algorithms NCandR............ 75

7.7.5. Comparison of Algorithm FB with Algorithm B..... 79

VT, CONCLUSION ..o ST e ——————————— 83
APPENDIX A. LOCAL TASE GENERATOR ... et 55
APPENDIX B. LOCAL SCHEDUILING PROGRAM ...t ssssesasass 89
APPENDIX C. GLOBAL TASE GENERATOR ......ooooe oot emsessasseses s sosseesss s sssssessessesssseess e 9%
APPENDIX D. SCHEDULING PROGRAM USING BIDDING AND FOCUSED ADDRESSING............. 9%
BIBLIOGRAPHY ..o s, 128

REFERENCES N()I LITED \\\\\\\\\ AN 1 32
» N N



X

LIST OF FIGURES -

Page
FIGURE 3.1 Structurs of the hierarchical classifICALDN .........oooooovoooveerorireerreeeeeeeresesesseeees 11
FIGURES.1 Structure of the local scheduler on a node i 28
FIGURE 6.1 = A search tree for a set of four tasks ..., 34
FIGURE 6.2 Basic local scheduling algorithm for guarantee routing..........coienns 38
FIGIIRE6.3 The algorithm of Lhe Limited_Banktmcker ................................................ 40
FIGURE6.4 Data structure used to implement a task ande........... | et ettt 41
FIGURE 55 Miustration of thl_a extended aigorithm by a simplified example ................. 44
FIGURE?.1 Simulation system model 1 ( Fully Connected ) ... T 60
FIGURE72 Simulation systerri model 2 US1Ar )i, 60
FIGURE 73 Effet:t_of task laxity when R=16/600 a,nd Tupoiog}'=FC‘.‘.\\\m\.‘.u.m.mm“m“.‘.t6?'
‘FIGURE 74 Effect of task laxity when R=16/600 and Topology=5 ... 6"
FIGURE75 Effect of task laxity when MD=36 and Topology=FC ..o e sacaannd 68
FIGURE 76 Effectof task laxxty when MD=36 and TopDIoET=S ..o 6%
FIGURE?77 Effect of MD under M_LOAD and L.uxm
FIGURE7S Effect of MD under M_LOAD and H_LAX 5...o.. s 70
FIGURE '?‘9 Effect of MD (details 0F FCONT oo ssssssssssssssssssssssssssssssssssassens 72
4 vFI_GURE 7.10 Effsct of MD (details of S_GNW) e e s st e 72
FIGURE 7.11 Effect of MD under L_LAX and different system 10ads .....c...c..ooooocecvemnornreen 73
FIGURE 7.12 Effectof systém‘s communication network toPology ... 74
- FIGURE 7.13 Comparison of FB, R, and NC when Laxity=H_LAX and Topology=IC ............. 76

FIGURE 7.14 Comparison of FB, R, and NC when Laxity- H_Lf\X and To polog}*—s ............. 7

|
\



FIGURE 7.15 Comparison of FB, R, and NC when Laxity=M_LAX and Topology=FC............ 77
FIGURE 7.16 Comparison of FB, R, and NC when Laxity=M_LAX and Topology=S.............. 77
FIGURE 7.17 Compacison of FB, R, and NC when Laxity=L_LAX and Topology=FC.............. 78
FIGURE 7.18 Comparison of FB, R, and NC when Laxity=L_LAX and Topology=S.............. 78
FIGURE 7.19 Comparison of FB and B wheﬁ R=16/600 and Topolog)':FC.‘..........‘., .................. 80
FIGURE 7.20 Comparison of FB and B when R=16/600 and Topology=S...... e 80
FIGURE 7.21 Comparison of FB and B when MD=36 and Tnpoing}*:FC..‘: ............................ 82

FIGURE 7.22 Comparison of FB and B when MD=36 and Topolog}rﬁ.\.u..‘.m.‘,\.mm;‘..“, ....... 82



b 11

LIST OF TABLES

Page
TABLE 3.1 Ap plicatiop of the taxonomy to some example algorithms ................. s 17
TABLE 6.1 Simulation resultsof using simple RBULISLICS ....coooveiiiiiiiiccec s 48
TABLE 6.2 Simulation resultsof using integrated simple heuristics ... 50

TABLE 7.1 Nodes' local task arrival rates under different system loads.........coccoeeeviviiinn 64



ATET?
ar

Tl

DRIR

IRIR ;

EAT

EAT;
FAYFNTA

Fis

2T

¢

LT
LEAIT)

D

Min L
Min D
Mia L
Min_5

New EATYT
Xew FATTTY;
Ay

Xii

LIST OF SYMBOLS B

arrival time of the task T

worst case computation time of the task T

deadline of the task T

dynamic resource demand ratio for respurceson a node
dynamic resource demand ratio for resource i

earliest available times of resourceson a node

eaﬁliest available time of resource i |

estimated number of instances of task T that node Nj can guarantee

* focused addressing surplus

value of the heuristic function H for the task T
number of tasks in a task set

laxity of the task T

latest bid arrival time of the task T

oo conflict message delay |

minimum computation time first heuristic
minimum deadtine first heuristic -

minimum laxity first heuristic

minimum start time first heuristic

earliest available times of resources on a node if task T is scheduled next

earliest available time of resource 1 if task T is scheduled next

node |



Snr?
K

system local task arrival rate

. resource requirementsof the task T

resource {

system-wide guarantee surplus
a sot.of tasks
earliest start time of the task T

a real-time task

Xiii



L. INTRODUCTION

" Recently, there has been an increased interest in hard reai—time systems and such
systems are becoming more and more sdphis;icated‘ Examples of this type of real-time
systems are command and control systems, flight control systems, and the space shuttle
avionics system. | »

Currently, the field of real-time scheduling is the focus of a great deal of
research interest. This is because of the very frequent use of digital computers in real-
time applications, growing sophistication in real-time software for the last few years,

and an increased necessity in improving system performance and reliability.

In a hard real-time sysiem, the correctness of the system depends not only on
the logical result of the computation, but also on the time at which the results are
produced, Usually, timing constraints are described in terms of deadlines by which
computations of tasks must absolutely be met or the system will be considered to have
* failed. Further, if these real-time timing constraints are not met there may be
potentially catastrophic consequences. Hence, the most critical part of supporting such
new systems is the ability to guarantiee that timing constrﬁints can he met. Because of
the large number of combinations of tasks that might be active at the same time and
because of the continually varying demand patterns on the system, it is generally
impossible te pre-calculate all possible schedules aff~fine to statically guarantee real-
time timing constraints. This study concerns the scheduling algorithms for on-fine

dvnamic guarantee of deadlines, in a hard real-time distributed computer system.

The problem of dete.rmining'an optimal schedule is known to be NP-hard and is
hence impractical for real-time task scheduling. The problem is even harder when, in
addition fo computation times and deadlines of tasks, their active and passive resource
requiremenis are also accounted for. Optimal algorithms with polynomial time
complexity exist only for a few festricted cases, for example, in the case where tasks
having the same processing time and the same deadline are scheduled on two
processors and in the case where there is anly one type of resource. None of these

cases represent practical situations. Moreover, it is impossible to find an optimal



schedule for a dynamic distributed svstem given the inherent communication delay.

All of these factors necessitate a heuristic approach to scheduling.

In many hard real-time systems, tasks are scheduled dynamicaily and hence the
scheduling algorithms used must have low run-time costs. In this study, a non-
preemptive scheduling scheme is evaluated for such dynamic hard real-time
distributed systems. In this scheme in addition to tasks' Liming constraints their active
and passive resource requirements are also taken into account. The scheme has two
components : local scheduling {guaranteeing tasks that arrive dynamically at a node)
and distributed scheduling (guaranteeing locally nonguaranteed tasks at remote

nodes),

The heuristic algorithm developed by Zhao, Ramamritham, and Stankovic [117 is
chosen as the algorithm vnderlying the guaranteé- routine in lacal scheduling and is
implemented with some m(tdificati(ms, The most critical peint in local scheduling is the
heuristic function vsed by the guarantee routine to select the task to be scheduled next,
In order to keep run-time costs low, computationally simple heuristic functions are
evaluated and the one which has the best performance is chosen for further
exﬁlaration, The simulation results veporied in Part VI show that because of the
complexity of the problem, simple heuristics alone ‘do not perform satisfécmrily,
However, an algorithm that ‘uses a linear gombination of simple heuristics in

conjuaction with limited backtracks works very well

As mentioned before, in a hard real-time éystem every task that misses its
deadline can ﬂermusly degrade (he performance of the system. Hence, even a small
performance improvement should be congidered significant in the context of hard

real-time systems,

It should alse be pointed cut that the time complexity of this algorithm for
‘scheduling a set of k tasks is k2, which is very much lower than that of an optimal
exhaustive search algorithm which fakes time proportional to k!. Hence, this is an

attractive approach te overcome the exponential problem of scheduling.

When a task arriving at a node cannot be guaranteed at that node, the
distributed scheduling problem comes into the picture. In that case, the local
schedulers on individual nodes must interact and cooperate {o determine which other
node in the system can guarantes the task, The degree of this conperation depends on

_ References enclosed in brackets refer to the bib;iﬂgraphy,



o

the algorithm used. In this study, an algorithm wh;ch._combmes bidding and focused
addressing algorithms [2] is evaluated. The integrated simple heuristic, which was
ohserved to have the best performance in Part V1, is incorporated in this distributed
scheduling algorithm as the heuristic underiying the guarantee routine on each node.
In the distributed scheme the guarantee mutme is used both in scheduling tasks that -
arrive at 2 node, and in making bids for remote tasks locally nonguaranteed.
Simulation studies are ctonducted on the algorithm to ohserve. how communication
‘delay, task laxity, system load, and system's network topology affect the overall
performance of the system. The performance of the algorithm is also compared with
that of three other algorithms : noncooperative, random scheduling, dnd direct
bidding. From the simulation results reported in Part VIL, it is observed that the
scheme is effective ;ind prax:ticitl in a wide range of applicatiun environments. It réaps
the benefits of both bidding and Focused addressing, and overcomes the bhortcnmmgs
in using each by itself.

The thesis consists of eight parts, including this part. Ig the next part, a general
" informatior about distributed systems and real-time systems is given, and a hard real-
iime task model is introduced. Then, in Part III, a taxonomy of different approaches to
the distributed scheduling problem is presented. Part IV concerns a literature §urvey
on scheduling algorithms in hard real-fime systems, ‘The current literatures for
| multiprocessor systems and for distributed systems are reviewed separately. After this
general study, in Part V, an overview of the scheme of scheduling hard real-time tasks
with general resource requirements in distributed systems is intradﬁced whaose local
scheduling compoenent is discussed in detail in Part VI, and distributed Scheduling
component is .dis.cussed in detail in Part VIL. Part VIII contains the conclusion of the

thesis,

Appendices A through D, contain the listings of some of the simulation
programs which are introduced in Parts VI and VII .One may refer to the diskette for a
complete set of programs develﬂped for this study,

Bibliography givesa hqt of references used i in this study and clted in the text of

the thesis, References not cited are fisted separately



- 11. SCHEDULING

‘This part contains the presentation of the distributed system mbdel adopted throughout
this study and the introduction of the scheduling problem in distributed computer
systems followed by a general informatinn about real-time systems and hard real-time

scheduling. A hard real-time task model is also presented.

2.1. Distributed Systems and Scheduling

A resource is an entity which may be demanded by tasks. It can inciude CPU, 1/0
devices, files, dala structures, elc. A resource which has processing power is called an
aclfve resource, or processar; A CPU or an 1/0 procgssor is an aclive resource, If a
resource has no processing power, it is a passive resource Files are examples of passive

resources, Therefore, a passive resource must be used with an active resource.

A multiprocessor system is a configuration of a set of resources in which the
control is centralized, and processors can communicate with each other without any
significant delay. According to the definition of resources, in a muliiprocessor system
there is at least one active resource, that is, a processor, and zero .or more passive
resources, In a multiprocessor system, the processors are sdentical if they are exactly
the same in terms of the processing power, that is they have the same instruction set
and the same speed, The processors are yaiform if they have only the same instructicn

set, but different speeds.

A a.’fstd[wtea’ system is defined as any configuration of two or more nodes, each
consisting of a multiprocessor system as defined above, with control of the system
being distributed among the nodes. In a distributed system, communication between

nodes occurs aver some communication medium, and the time of communication

- between nodes is ofien assumed to be non-negligible,



Once the system is u)pei‘at.ional, improving response time and throughput of
user processes is largely the responsibility of scheduling algordhms which afe the
operating system components that function continuously o manage the processing
resources in the system. Proper design of such mechanisms has a great impact on
overall system performance. This design problem becomes two-dimensional in the
domain of distributed computing systems since not only the queétion of when to
execule, but also wihers 1o execute a particular task must be addressed. T:>wards this
-goal, many approaches to the problem have been attempted, with variously repofted
results. A taxonomy of these approaches is given in Part 111

- 1f a distributed computer system is to exploit the multiplicity of pmcessofs and
resources in the network it must contain independent fcw! schedufers The local
schedulers must interact and‘coupefate and the degbee to which this OCCUrS Can Vary
widely. ' |

Stankovic in [3] suggests that a good schedulihg algarithm for a distributed
- computer system will necessarily use Aeuristics similar to-those found in “expert
systems”, The task of these heuristics is {o effectively i;tiiize the resources of the entire
distributed system given a complex and dynamically changing environment.

Some implications of using a heuristic function for scheduling should also be
pointed out :

{(a) If an optimal scheduling algorithm can come up with a feasible schedule for a set of
tasks, the heuristic scheduling algoerithm may be able to do the same depending on the

gondness of its heuristic function.

(b} If even an nptimal scheduling algorithm is unable to schedule a set of tasks, then

the heuristic scheduling 2igorithm defmltelv cannot.

{c) When there is no feasible schedule [or a set of tasks, the heuristic scheduling
algorithm will be able to discover that much sooner than an optimal scheduling
algorithm. ‘




2.2. Real-Time Systems

Recently, a2 major area of computer application has been real-time systems. There are
two types of real-time computer systems :

(a) o Hard Real-Time Sytem is one in which tasks have explicitﬁtim’e constraints, such
_as deadlines, so that a task is considered to be of value only if it finishes before its

deadline.

(b) A Sort Real-Time System is one in which tasks have to be executed as quickly as
possible, but there is no explicit time constraint associated with them.

Distributed s;ystem:? are suitable for hard real-time applications, This is not only
hecause often the applicatiohs themselves are physically distributed, but also because .
of the potential that élistributed systems have for providing guod reliability, good

resource sharing and good extensibility, as reported by Stankevic in 3], by Stene and
" Bokhari in (4], and by Kleinrock in [5].

Nuclear power ﬁlants and process control applications are inherently
distributed and have severe real-time constraints and reliability requirements. These
constraints add considerable complication to a distributed computer system. Airline
reservation and banking applications are also distributed, but have less severe real-
time and reliability constraints and are easier to buvild. Examples of the more
demanding real-time systems include ESS (6], REBUS [7], and SIFT (8], ESS is a software
controlled elecironic switching system developed by the Bell System for placing
telephone calls, REBUS is a fault tolerant distributed system for industrial real-time
control, and SIFT is a fault tolerant flight contrel system.

In the future, such real-time systems are expected {o become more and more
complex, have long lifetimes, and exhibit very dynamic, adaptive and even intelligent
behavior, ' | ' o



~J

2.3. Scheduling in Hard Real-Time Systems

In many systems, and especially in embedded systems, danger to human life or simply
damage to equipment makes the violation of a task's deadline unacceptable. It follows
that the main requirement of a hard real-time system is that it should be supplied with
a highly efficient fas{ scheduler which carefully schedules the tasks so that all the
tasks meet their timing requirements.

In a hard real-time scheduling algorithm, a set of tasks is said to be guaranteed
if and only if the algorithm derives a schedule for the set of fasks which meets the
given set of time, résource an.d precedence constraints. In a dynamic system, because
all of the task charactefiqticq are not known a priory, a task is said to be guaranteed by
a ﬁcheduhng algorithm 1f when the task arrives, the schedulmg aigorlthm is capable
af Imdxng aschedule for aﬂ the tasks prevx(umiy guaranteed and the new arrived task

A majer performance metric for dynamic scheduling algorithms is the
guaraniee ratio which is defined as the total number of fasks guaranteed versus the
tatal number of tasks arrived,

A real-lime ‘xéheduling zilgorithm is said to be oplima/ if given a set of tasks it
can always generate a schedule meeting the time, resource and precedence constraints
whenever there isany algorxthm which can do s0. '

For sub-optimal algorithms, one performance metric is the success ratio ie.,
" the total number of task ﬂets guaranteed by this algorithm versus the total number of
task sets guaranteed by an aptimal algerithm.

A ftas& T. in a hard real-time system is characterized by the following
' parameters

(A) The Arrival Time, AT(T) : At this time, the task and the associated task
parameters (specifications) are known to the system,

(B) The (Farliest) Start Time, ST(T) : Only aﬂef this time, can task T be executed.

(C) The Forst Case Computztion Time, C(T) : In any case, the running time of
task Twill not be more than this amount of time. Tasks in real-time system have-to be
_designed so that the difference between their worst case and normal execution times is



not large. Otherwise, when resources are assigned to a task for its worst case exeputiu)n
time, poor resource utilization will result. In this regard, a dynamic scheduling scheme
has advantages since based on the input parameters of a dynamically invoked task, a
lower worst case computation time can be determined (compared to a staiically'
determined worst case computation time). :

(D) The Deadline, D(T) : By that time, task T must complete its execution.

(E) The Laxity, 1{T) : This is the time difference between the earliest termination
‘time of a task T and its deadlins, where earliest termination time of a task is the sum of
its earliest start time and its computation time.

F) The Resource Regéjrgmeats of the task, R(T) : This is a vector, specifying
the resources needed in the execution of the task. It is assumed that a task needs all its
resources throughout its execution, and the resource requirements of a task are ’alwayq "
less than er equal to the total resources in the node of the system. A task will request at
| 1east one active resource and zero or more passive resources,

It is assumed that these parameters are always feasible, that is to say,
£ AT(T) £ ST(T) = D(T)- C&(T),
always holds.

In a hard real-time system, there are two types of tasks | noaperiodic tasks and
partodic fasks A nonperiodic task arrives at any n(»vde dynamically and has to be
~ executed betore its deadline, The existence of a periodic task with period P implies that
one instance of the task should be executed once every P units of time after system
initialization, The i-th instance of a periodic task with period P has deadline being
i*P+]’ where I isthe relative deadline in a period, It is generally assumed that D' £ P.

In addition to reseurce requirements and timing constraints, tasks in real-time
systems are also characterized by their arfordy and precedence consiraints The
priority of a task encodes its level of importance relative to other tasks. There may be
precedence relation among a set of tasks in the system. A task Ty is said to precede
another task Tz if Ty must complete its execution before Ty starts. It is always assumed
that the precedence relation is acyclic. A task is preemptable if it can be preempted in
its execution. Precedence constraints enter the picture when tasks communicate or
when a complex task is viewed in terms of a number of subtasks related by precedence

constrainis,



9

’

This study focuses on tasks that are independent and have equal priority,
because consideration of precedence and priority constraints would add new variables
to the already large number of variables used, and would affect the results of the

simulation studies.




10

I11. DISTRIBUTED SCHEDULING ALGORITHMS

The study of distributed computing has grown io include a large range of applications.
However, at the core of all the efforts to exploit the potential power of distributed
compulation are issues related to the management and allocation of system resources
relative to the computational load of the system.

The notion that a loosely coupled collection of processors could function a5 a
more powerful general-purpose computing Facility has existed for quite some time. A
large body of work has focused on the problem of managing the resources of a system
in such a way as to effectively eiploit this power. The result of this effort has been the
proposal of a variety of widely differing techniques and methodologies for distributed
scheduling. '

In this part, a taxonomy of approaches to the scheduling problem is presenied
in an attempt to bring together the ideas and the common terminology used in this
area, and to provide a classification mechanism necessary in addressing this problem.

~Among existing taxonomies, one can find examples of flat and hierarchical
classification schemes. The taxenomy presented in this part isa hybrid of these twa :
hierarchical as long as pessible in order to reduce the total number of classes, and flat
when the descriptors of the system may be chosen in an arbitrary arder,

3.1. Hierarchical Classification

The structure of the hierarchical purtion of the taxonomy is shown in Figure 3.1,
discussion of the hierarchical portion then follows.




11

focal giobal
) .'/--..,._'.
// .
n‘/ -.\\
-~ .
static dynamic
A #
N i
/H'"' \\‘% ,f' "
d N / A
e .\v.\_ / ™ .
- N A "
optimal sub-optimal - physically physically
\ - distributed non-distributed
e ™. ‘
--“f‘ N“"‘-
- R
// . e
approXimate  heuristic cooperative non-cooperative
$
"~
""" )
"\.'-
.
.
) optimal sub—dptimal
\
N T T —— : et
- ., : " e e,
ennmerative queueing o .
- e B o
; S theo . R
% ~ ¥ approximate heuristic

graph  math.
theory  pgring.

FIGURE 3.1 Structure of the hierarchical classification

(A) Local Fersus Glebal : Al the highest level, one may distinguish between /foca/
and g[o[}zi/s.cheduling, Local scheduling is involved with the assignment of processes
to the time-slices of a single pracessor. Global scheduling is the problem of deciding
where to execuie a process, and the job of local scheduling is {eft to the operating
system of the processer to which the process is ultimately alfocated. This does not imply
'that global scheduling ﬁmst ‘e done by a single central authority, but rather, the
problems of focal and global scheduling are viewed as separate issues, and (at least

_ logically) separate mechanisms are al work solving each.




12

(B) Siatic Scheduling : The next level in the hierarchy (beneath global scheduling)
is a choice between staticand ovnamic scheduling. This choice indicates the time at
- which the scheduling or assignment decisions are made. In the case of ‘static
scheduling, information regarding the total mix of processes in the system as well as
all the independent subtasks involved in a job or task force is assumed to be available
by the time the program object modules are linked into load modules. Hence, each
executable image in a system has a static assignmenﬁ to a pacticular processor, and each

time that process image is submitied for execution, it is assigned to that processor.

(Cj Optimal Versus Suboptimal - In the case that all information regarding the
state of the system as well as the resource needs of a process are known, an optimal
assignment can be made based on some criterion function. Examples of optimization
measures are miriimizing' total process completion time, maximiiing utilization of
respurces in the system, or maximizing system throughput. In the event that these
problems are computationally infeasible, subepiimal solutions may be tried.

(D) dpproximate Versas Heoristic : Within the realm of suboptimal solutions to
the scheduling problem, two general categories may be encountered. The first is to use
the same formal computatinonal model for the algorithm, but instead of searching the
entire solution space for an optimal solution, we are satisfied when we find a “"good"
one. Those solutions are categorized as subopiimal-spproximate. The assumption that a
good solution can be recognized may not be so significant, but in the cases where a :

metric is available for evaluating a solution, this technique can be used to decrease the
time required tn find an acceptable solution.

The se::ohd.hmnch beneath the suboptimal category is labeled Aewristic This
branch represents the category of static algorithms which make the most realistic
aésumptions about & pryors koowledge concerning process and system loading
characteristics. It also represents the solutions to the static sx:heduling problem which
require the most reasonable amount of time and nther system resources o perform
their function. The most distinguishing feature of heuristic schedulers is that they

make use of special parameters which affect the system in indirect ways.

(E) Optimal and Subopiimal Approximate Techoigues: Regardless of whether a
static solution is optimal br subnptimal-approximate, there are four basic categories of
task allocation algorithms which can be used to arrive at an assignment of processes to

Processors:

{a) sofution space enumeration and search;



I3

(b) graph theoretic;
(c) mathematical programming;
{d) queueing theoretic.

(F) Dyaamic Schedoling : In the dynamic scheduling problem, the more realistic
assumption is made that very little 8 priors knowledge is available about the resource
needs of a process. In the static case, a decision is made for a procéss image before it is
ever executed, while in the dynamic case no decision is made until a process begins its
[ife in the dynamic environment of the system, ‘ |

(G) Distributed Versus Noadistributed : The next. issue (beneath dynamic
solutions) involves whether the responsibility for the task of global dynamic
scheduling should physically reside in asingle processor ( plrsically nondistributed )
or whether the werk involved in making decisions should be phrsicallvy disiributed
among the processors. o

(H) Coaperative Versus Nonmceaperative : Within the realm of distributed
dynamic global scheduling, we may also distinguish between those mechanisms which |

_involve cooperation between the distributed componenis { cooperative ) and those in
which the individual processors make decisions independent of the actions of the other
processors (nancooperative ). The question here is one of the degree of avionomy
which each processor has in determining how its own resources should be used.

In the nencooperative case individual processors act alone as autonomous
entities and arrive al decisions regarding the use of their resources independent of the

effect of their decision on the rest of the system.

In the cooperative case each processor has the responsibility to .carry out its
own portion of the scheduling task, but all processors are working toward a common
system-wide goal. In nther words, each processor's local operating system is concerned
with making decisions in concert with the other processors in the system in order to
achieve some global goal, instead of making decisions based on the way in whic:h the
decision will affect local performance only.

As in the static case, the taxonomy tree has reached a point where optimal,
suboptimal-approximate, and suboptimal-heuristic solutions may be considered. The

same discussion as was presented for the static case applies here as well.




14

3.2. Flat Classification Characteristics

In addition to the hierarchical portion of the taxonomy already discussed, there are a
‘number of other distingui.shiﬁg characteristics which scheduling systems may’ have,
This section deals with charactensucs which do aot fit umqueiy under any particular
branch of the tree- -structured taxonomy given thus far, but are still important in the
WAy that they describe the behavior of a scheduler. In other words, the following
characteristics could be branches beneath several of the leaves shown in Figure. 3.1,
and in the interest of clarity are not repeated under each leaf, but are pmsenwd here

asa flat extenswn to the scheme given thus far.

It should he m)ted that these attributes represeht. a set of characteristics, and

. any particular scheduling subsystem may possess some subset of this set.

(A) Adapiive Versus Nonadapiive : An adaptive solution to the scheduling problem
is ope in which the algorithms and parameters used to implement the scheauling
policy change dynamically according to the previous and current behavior of the
system in response to previous decisions made by the scheduling system. In contrast to
an adaptive scheduler, 2 nonadaptive scheduler would be one which does not
necessarily modify its basic control mechanism on the basis of the history of system
activity. |

(B) Load Balsncing : The basic idea is to attempt to balance (in some sense) the load
on &ll processors in such a way as to allow progress by all processes on all nodes to
proceed at approximately the same rate. This solution is most effective when the nodes
of a system are homogeneous since this allows all nodes te know a great deal about the
structure of the other nodes. Normalty, information would be passed about the network
periodically or ¢n demand in order to allow all nodes to obtain a local estimate
concerning the global state of the system. Then the nodes act together in order to
remove work from heavily loaded nodes and place it at lightly loaded nodes,

This is a class of solutions which relies -heavily on the assumption that the
information at each node is guite accurate in order fo prevent processes from endlessly
being circulated about the system without making much progress.

(C) Bidding - In this class of policy mechanisms, a basic protocol framework exists
which describes the way in which processes are assigned to processors.-Fhe resulting -




15

scheduler is one which is usually cooperative in the sense that enough information is
exchanged (b_et\veen nodes with tasks to execute and nodes which may be able to
execute tasks) so that assignment of tasks to processors can be made which is beneficial

to all nodes in the system asa whole.

To illustrate the basic mechanism of bidding, the framework and terminology
intreduced by Smith [9] will be used. Each node in the network is responsible for two
roles with respect {o the bidding process : manager and contractor. The manager
represents the task in need of a lacation to execute, and the contractor represents a
node which is able fo do work for other nodes, A single node takes on both of these
refes, and there are no nedes which are strictly managers or contractors alone, The
manager announces the existence of a task in need of execution, then receives Asdls
from the other nodes. A wide variety of possibilities exist concerning the type and

amount of information exchanged in order to make decisions.

A very important feature of this class of schedu.lers is that all nodes generally
have full autonomy in the sense that the manager ultimately has the power to decide
where to send a task from among those nodes which respond with bids. In addition, the
contractors are also autonomous since they are never forced to accept work if they da
not choose to do so. '

(D) Probabilistic : The basic idea for this scheme is motivated by the fact that in
many assignment problems the number of permutations of the available work and the
number of mappingsto pmcéssurs are s large that examining analytically the entire
solution space would require a prohibitive amount of time. Instead, the idea of
randomly (according to some known distribution) choosing some process as the next to
assign is used. Repeatedly using this method, a number of different schedules may be
generated, and then this set isanalyzed to chooss the best from among those randomly .
generated. The fact that an important attribute is used to bias the random choosing
process would lead one to expect that the schedule would be better than one chosen
entirely at random, The argument that this method actually produces a good selection is
based on the expectation that enough variation is introduced by the random choosing

to allow a good solution to get into the randomly chosen set.

"(E) One-Time Assignment Versus Dynamic Reassignment : [f the entities to be
scheduled are ._iobs in the traditional batch processing_sense of the term, then the
single point in time in which a decision is made as to where and when the job is te
execute is considered. While this technique techanically corresponds to a dyhamic

approach, it is static in the sense that once a decision is made to place and execute a job,



16

no further decisions are made concerning the job, This class is characterized as one-
time assignments. In contrast, solutions in the dynamic reassignment class try to
improve on earlier decisions by using information on smaller computation units.

3.3. Application of Taxonomy to-Some Examples

As an illustration of the taxonomy introduced in the preﬁnus sections, some example
hard real-time scheduling algorithms are taken from the published literature, and
their classification characteristics are determined according to the taxonomy. Table 3.1
contains the results,

These example algorithms are discussed in detail in Section 42.1 and in
Section 4.2.Z of Part IV concerning the literature survey on scheduling algorithms for
hard real-time systems.

Since this study is focused on hard real-time distributed scheduling, example
algorithms are chosen from this area of research. One may refer to the work of
Casavant and Euhl, presented in [10], for a more general annotated bibliography of
. scheduling algorithms for general-purpose distributed computer systems,.



17

Developed by

Classification Characteristics

Lo, V.M.

Reported In

f11l

Global,
Static,
Suboptimal,
Appﬁximale,

Efe, K.

(12}

Graph theoretic.

Global, -
Static,
Suboptimal,
Heuristic,

Load-balancing.

Ma.P.Y.R,
Lee E.Y.S,,
and Tsuchiya, ].

13l

Global,
Static,
Optimal,

Ramamrithain, j
and Stankovic, J. A,

(4l

Mathematical Programming.

Global,

Dynamic,

Distributed,
Cooperative,
Suboptimal,

Heuristic,

Bidding,

One-time assignments,

TABLE 3.1 Application of the taxonomy to some exampie algorithms



1V. LITERATURE SURVEY ON SCHEDULING ALGORITHMS FOR HARD
: REAL TIME SYSTEMS -

In this part, the a{gi)rithms-gmposed for scheduling in hard real-time sysiems are
reviewed. Mnst research on scheduling‘ tasks with hard real-time constraints is
restricted Lo uniprocessor and inultiprocessor syétems. As reportef.l by Graham, Lawier,
Lenstra, and Ean in [15], optimal scheduling in 2 multiprocessing environment is an
" NP-hard problem, and hence computationally intractable. The loosely coupled nature
of distributed systems makes the problem even harder. Section 4.1, contains an
overview of the current literature on scheduling algorithms for multiprocessor

svstems, and Section 4.2, surveys work on schedulirig algorithms for distributed
svstems.

4.1. Literature 'Survey for Mulﬁprocessor Systems

4.1.1. Siatic Scheduling Algorithms t'of Multiprocessor Systems:

Xu and Parnasin [16], present an algerithm that finds an optimal schedule on a single
processor for 2 given set of processors such that each process starts executing after its
release time and completes its computation before its deadline, and a given set of
precedence and exclusion relations are satisfied. Exclusion relations may exist between
process segments when some process segments cannot be interrupted by other process
Ségments to prevent errors caused by simultaneous access to shared resources. This

algorithm can be applied to the problem of pre-run-time scheduling of such processes,



19

on asingle processor, in hard real-time systems. Future work is required to generalize
the algorithm for n processors case. V ‘

Garey and Johnson in [17], describe an algorithm to determine if a two-
processor schedule exists so that all tasks are completed in time, given a set of tasks,

their deadlines, and the precedence constraints of all tasks.

Liv and Layland in [18], derive necessary and suffigi.eni conditions for
- scheduling periodic tasks, with preemption pe{rmined. The first algorithm is the Rate
Monotonic Priority algorithm which assigns the highest priority to the task with the
fastest rate, that is, the smallest period. The second algorithm, called Deadline Driven
algorithm, dynamically assigns priorities io the instances of the periodic tasks based on
- their deadlines. The task with the smallest deadline gets the highest priority. Their
results, which hold for uniprocessor systems were extended io include arbitrary task
sets and precedence constraints. ‘ ' o

Houssine Chetto and Maryline Chetto in [19], investigate the problem of
estimating localization and duration of idle times when tasks are scheduled according to
the Earliest Deadline scheduling algorithm asin {111, Their aim is to bring to light new
ideas about preemptive schgduling applied to a set of feal—time-, independent,. pe;‘iodic

tasks that run on a monoprocessor machine.

Teixeira in {20}, develeps a model that considers priority scheduling for a more
general case, where the deadline of a periodic task is not necessarily equal to the
length of its period,

Johnson and Madison in {21], examine single and multiple processor systems
executing real-time tasks. They develop a2 measure of free time to determine whether
new tasks can be admitted and still meet every task’s response specification.

These above schemes are quite inflexible, in that they do not adapt to the
changing state of the system, and do not take into account general resource
requirements of the tasks,

Blazewicz, Drabowski, and Weglarz in [22], present an algorithm for
determining the shortest preemptive schedule in a system with a single resource type
but any number of instances of this type. The authors formulate the determination of
the schedule in the form of a linear programming problem and therefore, the problem
.can be solved in time which is a polynomial in the number of variables. This algorithm

takes an exponential time in the number of resource instances which makes it



20

‘computationally too intensive to be used for on-line scheduling. Moreover, the case of
multiple resource types is not handied.

- However, in the work of Leinbaugh in [23], resource requirements are dealt
with. He developed a heuristic algorithm which, when givé'n the general resource
requirements of each task, determines an upper bound on the response time of each
task. While this approach is 'u'seful at system design time to statically determine the
upper bounds on response times, it cannot be used for nn—lin&scheduliﬁg. because
there is no attempt at Jraamicelf guaranteeing a new task so ‘that it will meet its
- deadline. S

Zhao, Ramamritham, and Stankovic in [1], describe a heuristic algorithm which
takes inte account both of tasks’ active and passive resource requirements, and can be
used in multiprocessor systems. The hevristic function, used to guide the search of a
feasible schedulé if there is one, is composed of three weighted factors which ekplicitly
consider information about real-time constraints of tasks and their utilization of
resources, They alse show that modifying the approéch te use limited backtracking
improves the degree of success. '

L3

According to Lenat [24], heuristics are informal, judgmental rules of thumb
which come in two types -

(a) those that actively guide the system toward plausible paths to follow ;
(b} those that guide the sysiem away from the implausible palhs

In the work of Zhao, et al. [1]. both types of heuristics are used. The heuristic
function used by the algorithm actively directs the scheduling process to a plausible
path, and also, the search space is constrained by looking only at strongly feasible
paths, preventing from looking at implausible imths, As a-result,-even in the worst
case, this algorithin is not exponential,

Zhao, Ramamritham, and Stankevic in {25}, further consider the problem of
scheduling a set of preemiable {asks in a real-time system in which a passive resource
can be used either in shared mode or exclusive mode. They present an algorithm which
uses a heuristic function which is a combipation of Minimum Deadline First heuristic
and Maximum Resource Utifization First heuristic with a third facter to prevent over
preempticm; They show that this algorithm, in cenjunction with limited backtracks,
waorks satisfactorily.



21

4.1.2. Dynamic Scheduling Algorithm_s for Multiprpcessor System; _

It should be noted that in a dynamic system there is no a priori knowledge about any
characteristics of a task until it arrives. Whenever a task ‘arrives, a new schedule
needs to be determined for thé tasks including those which have been in the sysiem,
but have not finished, and the newly arrived one. |

Since static scﬁed_uling problems for multiprocessor systems are similar to

scheduling problems in operations research, they -have been altracked by the
| researches since the 1950's. Various algorithms have been proposed. Some of them
have a small time complexity. If a system can tolerate the time complexity of a static
scheduling algorithm, the algorithm may be used to determine a new schedule
dynamically when a task arrives. But, there are also scheduling algorithms which are
developed specially for dynamic multiprocessor systems. The followings are some

examples of such scheduling algorithms :

Dertouzos in [26], shows that the Earliest Deadline algorithm is opi,imal‘, for a
single processor system with independent preempt‘éble tasks. The proof dependson the
fact ihat for a single processor system, it is always possible to transform a feasible
schedule to one which follows the Farliest Deadline algorithm. This is so because if at
any time the processor execules some task other than the one which has the closest
deadlineg, then it is possible to interchange the order of execution of these two tasks,
that is, execute the task with the closest deadline first and execute the sacrificed task
at a later time when the task with the closest deadline would have been executed: Since
the sacrificed task hasa more distant deadline, making up for its processor time before
the closest deadline certainly does not violale its own deadline.

Further, Dertouzos and Mok in [27], prove that the Least Laxity algorithm is also
optimal for such a system to dynamically schedule hard real-time tasks. They also point
out that the above optimality proof of the Earliest Deadline algorithm does not hold in
the multiprocessor case. They show that for the case when the number of processors is
larger than one, no scheduling algorithm can be optimal without & grivrs knowledge
of deadlines, computation times and start times of the tasks. This implies that heuristic
approaches have to be taken Ior scheduling tasks in such systems.

Jensen, Locke, and T okuda in [28], report that Least Laxity , and Earliest Beadline
scheduling policies perform much better than others in a multiprocessor real-time
system. ’



22

It should also be pointed out that the above dynamic multiprocessor scheduling.
algorithms do not take into account the passive resource requirements of tasks.

4.2. Literature Survey for Distributed SYstel_ns

The architecture of the network and the nature of the application programs being
_presented to a distributed system are often such that the communication between nodes
isa significani factor in the performance of the system. Because of this, the run time
control has to be distributed. Hence, each node in the system is avtonomous and often
has its own local scheduler to handle the {asks assigned toit. The scheduling algorithms
. for multiprocessor systems can be used for the scheduling tasks on a node. However,
how to allocate tasks to nades statically in a static system, and how to transfer tasks

from one node to another at run time in a dynamic system are the new problems.

4.2.1. Static Scheduling Algorithms for Distributed Systems

The static scheduling algorithms for distributed systems are already known to be
difficult even without time constraints on tasks.

For example, as Bokhari reports in [29], if the objective is to minimize the cost of
processing and communication, the problem of assigning tasks in a distributed system
with heterogeneous processors is NP-hard for a system of more than three processors. -

For three processors the system is open.

For two processors, an optimal algorithm is reported by Stone in [30]. This
algorithm considers two kinds of costs in an assignment. One (s the computational cost,
the other is the cost of interprocessor communication. He shows that the pmhleni can
be solved efficiently by making use of the algorithm for finding maximum flows in
commodity networks.



23

Lo in [11], extends Stone's algorithm into a heuristic one for arbitrary number
of processors. Lo also recognizes that the use of total execution and communication
costs as the criteria for optimality has no explicit advantage to concurrency. Therefore
the total completion time of tasks may not be nptimal as it could be. LDF introduces a new
cost, Lhe fnlferference cost o measure the cost if two tasks are éssigned on the saiﬁe
node. Interference costs réﬂec,t the degree of incompatibility between two tasks. For
example, a pair of tasks that are both highly CPU bound would have greater
interference costs than a pair in which one task is CPU bound and the other is 170
bound. Similarly, if t;'wo tasks were involved in pipeiinihg, it would be undesirable that
they are assigned to ﬁhe same processor. This incompatibility would be expressed in a
high interference cost for that pair of tasks. With this metric, Lo's algorithm is able to
make assignments witﬁ greater concurrency and less completion time than the
previous ones. Further, Lo investigates the problem with the goal of minimizing the

| completion time of a task set. An optimal algorithm is reported for the case where all

costs are coastant.

Chu and Lan in ['!31], prapose a heuristic algorithm for task assignmént which
consists of two phases, Phase 1, reduces modules to a number of groups each of which
will be assigned as a single vnit to a processor, This grouping is based on several
factors, such as, precedence relationship, communication costs and accumulative
execution times. In phase 2, an exhaustive search is performed for the assignment of
these groups td processors, such that, the load on the most heavily loaded processor
(pottieneck) is minimized. The algorithm, instead of trying to minimize the sum of
processor loads, searches the assignment that yields the minimum bottleneck. They
show that assignments geherated by such an approach yield goad task respohse time

which is the most important performance measure for real-time systems.

Efe in [12], proposes a heuristic algorithm for static assigniment_ of tasks in a
‘distributed system, His algorithm works as follows :

(a) cluster tasks according to communication costs;

(b) assign each cluster to a processor taking the current processor load into

consideration;

(c) if the results of the assignment in the above step satisfies the load balance
constraint, stop; otherwise,

(d) identify the overloaded and underloaded processors and move some tasks from the
overloaded processor to the underloaded one;



24

(e) repeal from c.

“Although the original goal of Efe’s algorithm is to balance the loads of
processors, the load balance constraint can be replaced with the deadline of the task
set. Consequently, the modified algorithm can be used for the static assignment of tasks
with task-set-deadline. ' '

It should be noted that, the above approaches cannot take into account deadlmeq
of individual tasks, but the algonthms that will be discussed next, do.

Leinbaugh and Yamini in [32], extend the approach in [23} into distributed
cases, In their’model, a task is divided into multiplé segments and the segments of a task
can be executed concurrently on different nodes. In this study, the worst fesponse {ime

‘of each individual task is estimated by taking inte account no(.only the blocking times
caused by other fasks, but alse the communication delays. Their algorithm is useful in a
hard real-time environment to defermine if response times will always be met.

Ma, Lee, and Tsuchiya in {13], and Ma in [33], propose an algorithm to statically
assign fasks for a distributed system taking timing-critical applications into account.
The model introduced, represents an example of an optimum mathematical
programming formulation employing a branch—and—buund technigue to search the
solution space. The goals of the sﬁlution are to minimize interprocessor
communications, balance the utilization of all process&rs, and satisfy all other
engineering application requirements, The model given defines a cost function which
includes interprocessor coemmunication costs and processor execution costs. The
assignment is then represented by a set of zero-one variables, and the total execution
cast is then repreqented by a summation of all costs incurred in the assignment. [n
addition to the above, the, problem is subject to constraints which allow the solution to
satisfy the load balancing and engineering application requirements. The algorithm
then used to search the solution space (consisting of all potential assignments) is
derived from the basic branch-and-bound technique,

Both Efe and Ma, use seurdstic approaches for related scheduling problems. But,
they use the second type of heuristics mentioned in Section 4.1.1. This appreach of only
uéing the second type of heuristics is limited because, in the worst case, the
exponential search problem canndt be avoided.



25

4.2.2. Dynamic Scheduling Algorithms for Distributed Systems

The dynamic scheduling algorithms for distributed syéte-ms should maximize the
guarantee ralio. To achieve this goal, two factors must be recognized :

Al Suppose that tasks demand each resource with equal probability and have the

~ computation time equal to each other, Then, the guarantee ratio-will be proportmnal to

the resource utilizations. Hence, to maximize the gg{_grantee'ratlo, one should maximize
the resource utilizations Since, in practice,. tasks will not always satisfy the above
conditions, this is only a rule of thumb. As reported by Livoy and Melman in {34],in a
‘dynamic distributed system, without any mechanism for coaﬁeration among nodes, it is
very likely that one node will be idle while tasks are queued at some other nodes. Thus,
to maximize resource utilization, it is necessary at run time to transfer tasks ta other

Jess loaded nodes when they cannot be guaranteed locally,

(B) Because of the real-time constraints on tasks, ‘the scheduling algorithim itself
should be 1.s,rery efficient. That is, to maximize the guarantee ratio, one should also
minimize the scheduling delay, This implies that the decisions, such as where to send a
task that cannot be guarainteed focally, must be made efficiently. It is not practical, if
not impossible, to perform a complete search to determine the best node to send a task,

in a network where communication delay is not negligible,

These factors necessitate a2 fAeuristic appreach for scheduling hard real-time tasks in a

dynamic distributed system,

' As reported by Smith in [9], and by Wang and Morris in [35], two approaches
below have been recognized, in the current literature, for dynamically translerrmg
tasks in general distributed systems

(8) source iniliated lask lransfer where a node searches for other nodes to which a
task may be iransferred;

(b) server initiated task lranster where a node searches for other nodes from which
tasks may be transferred.

Ramamritham and Stankovic in [14], adopt the ideas of source/server initiated
task transfer, and suggest particular versions of them for hard real-time systems. In
this work, bidding is implemented as source initiated task transfer, and focused

addressing is implemented as server initiated task transfer, Briefly, in bidding, a node

AT DR T o e e



26

is selected if the node offers the best bid. The communication costs involved in bidding
are high, but selection is made ﬁased on relatively accurate state information of nodes.
On the other hand, in focused addressing, a node contains some state information about
the other nodes, estimates the éurplus of other nodes, and selects a node to send a task to
based on these estimates. Focused addressing entails less communication costs and delay
than bidding, though the use of incomplete, inaccurate and out-of-date state
information, increases the risk of making wrong decisions. Because of these reasons,

the working domain of these schemes are limited. -

Stankovic, Ramamritham, and Cheng in [36], report an approach combining
bidding and focusgd addressing The aim is to reap the benefits of both and to overcome
the shortcomings inherent in using each by itself. They show that the working domain
of the combined scheme covers both domains of bidding and focused addressing.

Turose and Chipalkatti in [37], study analytically the relative performance of
several different decentralized approaches towards load sharing, in order to determine
the level of complexity for load sharing algorithms in a distributed real-time
environment. In their model, it is assumed that tasks arriving at a node have to

4 complete their execution within a fixed amount of time, after their initial arrival to the
system. That is to say, deadlines, are not drawn from additienal deadline distributions.
They develop an approximate analytic system-level model for the entire distr_ibuted
system, and use it to quantitatively study the real-time performance of two simple
approaches towards real-time load sharing. In the first approach, called guas/i-
dynamic load sharing, 2 task which cannot meet its deadline locally is sent to a
probabilistically chosen remote node. The second approach is the probing approach

- which is a simplified form of bidding. In this approach, when a task is to .be
transferred, a node probes some specified number of other nodes chosen at random to
determine if one of them can currently guarantee it. Their performance results show
that, the performance of these simple approaches is substantially better than the case
of no load sharing and often close to that ofa theoretiéally optimum a‘lgorithm.

But, all of these last three algorithms above, consider just CPU scheduling.

General resource requirements of the tasks are not dealt with.

Recently, Ramamritham, Stankovic and Zhao in’ (2], present another version of
the algorithm reported in [36), in which genera/ fask’s active and passive resource

requirements are also taken into account.




27

V. OVERVIEW OF THE SCHEDULING SCHEME

In the design of real-time computer systems, the scheduling problem is considered to
be an important one, and has been addressed by many researches as discussed in
Part 1V. However, most approaches are restricted to CP1] scheduling only. Whereas the
scheduling algorithm, which is chosen to be evaluated in this study, takes general
tasks' passive and active resource requirements into account as well i2]. This part
contains a briel overview of the algorithm, the details are discussed in subsequent
paris.

In this scheduling scheme, the scheduling entity is a task. It is assumed that
tasks may arrive dynamically at any node, and that they are indepeh(lent, non-
preemptable, and have equal priority. The worst case computation time, the deadline,

the resource requirements of the tasks are assumed known when they arrive.

Each node in the distributed system has a focal scheduvler. Each local
scheduler contains a guarantee routine, a bidder, a dispatcher, _and a node surplus
manager. Figure 5.1 shows how these various modules interact with each other.

The local scheduler at a node, invokes the guaraalee routine . when a nevw
task arrives at that node. The guarantee routine decides if the new task can be
guaranteed at this node or not, The guarantee means that no matter what happens
{except failures) this task will execute by iis deadline, and that all préviously
guaranteed tasks will also still meet their deadlines. If the new task cannot be
guaranteed locally, then it becomes a candidate for distributed scheduling. :

The bidder interacts with the local schedulers on the other nodes in order to
perform distributed scheduling. It is responsible for determining where a task that
cannot be locally guaranteed should be sent. It does this through a combination of
focused addressing and bidding.

In focused addressing, a task is sent directly to another node based on its
partial knowledge about the surplus of the other nodes in the system.




28

locsl tazks, gueranteed
tazka from tagks
other nodea ¢ \ {achedute)

Buu'ﬂ h N

| Biapstoher
Boutine {
b)) -‘
‘ requeats to . | resource utilization
nonguaranteed make bida for information of
tazks remote tagks local tasks
A , N L“
————e—e——}  Bidde \ f gg‘hl I
r € rplus [
hids, surplus ) l !lmgg'__,l surplus
regqueat-for-dd ) informations informationa
meazages from of other nodea from other nodea
other nodez
. \ *
tagks bida, node
reguest-for-hid surplus
megsages to information

other nodes - to other nodes

?IGURE 9.1 Structure of the local scheduler on a node

In bidding , the node sends out request-for-bid messages to other nodes. Nodes
with sufficient surplus on resources needed for the task, respond with a bid reflecting
this surplus. Then, the task is sent to the node which offers the best bid. In addition to
sending its tasks to other nodes, the bidder makes bids in response to request-for-bid
messages from the other nodes.

The ﬂspalcbcf is the component thatactually schedules the guaranteed tasks.

It should be pointed out that when a node bids for a task, it does not reserve CPU
time for that task. Reserving CPU time ties up toeo many resources for a long time.
Consequently, when a task finally arrives at a bidder node, the node will attempt to
guarantee it. In case that this guarantee fails, the task will be considered as

nonguaranteeable,

There is a separation o}‘ dispatching and guaranteeing, allowing the dispatcher
gmd the guarantiee routine to run in parallel. The dispatcher is always working with a
set of tasks which have been validated to meet their deﬁdiines and the guarantee
routine operates on the current set of guaranteed tasks plus any newly invoked tasks.




29

One of the assumptions underlying the scheduling algorithm is that nodes can
estimate the resource usage or resource surplus of other nodes. This requires that
nndes keep each other informed about their surplus. This can be done by the aode

surplus manager in the following way :

The node surplus manager on each node periodically calculates the node
surplus. The node surplus provides information about the available time on each
resource in a previous window, by taking into account resource utilization of fewf
tasks, that is to say, the tasks that directly arrived at a node from the external
environment and not from the subnet. This information is used to predict the resource

“availability for the tasks from the other nodes in the near future. The computed nodq
surplus is sent to a selected subset of nodes in the system. The selection isto be based on
the proximity of the nodes, on who sent tasks to this node recently, and on whether the

tasks were guaranteed.
The steps involved in scheduling a newly arrived task are as follows .

(A) When a local task, T, arrives at a node Nj, the local schedxilgr is invoked to try to
- guarantee the newly arrived task on the node. If the task can be guaranteed, it wiﬁ be
put into the schedule which contains all the guaranteed tasks on the node. The details
of thg focal scheduling algorithm is discussed in Part VI

{B) When the local scheduler of node Nj is unable to guarantée- the newly arrived task,
T, it attempts to find another node through focused addressing. This focused node
should have sufficient surplus to guaraniee the task. If a focused node is found, the task
is immediately sent to the node. In addition to sending the task to the focused node, node '
N; sends request-for-bid messages to a subset of the qther nodes, The request-for-bid
message also contains the identity of the focused node, if there is one, indicating that
the bids should be sent to the focused node, - |

(C) When a node receives the request-for-bid message, it calculates a bid indicating the
possibility that the task can be guaranieed on the node, and sends the bid to the focused
aode if there is one, atherwise, to the original node which issued request-for-bid.

(D) When a task reaches a focused node, it first invokes the local écheduler to try to
guarantee the task. If it succeeds, all the bids for the task will be ignored. If it fails, the
bids for the task will be compared and the task will be sent to the node responding with
the "best bid" on condition that the bid is above a certain limit.




30

(E} 1n case there is no focused node, the original node will receive the bids for the task
and will send the task to the node which offers the best bid again on condition that the
bid is above a certain limit.

(F) If the focused node cannot guarantee the task and if there is no good bid available
for the task, it is assumed that no noede in the network isable to guarantee the task. If a
task has sufficient laxity then focused addressing and bidding may be repeated. But,

this will increase the scheduling and communication overheads.

The distributed scheduling scheme is discussed in detail in Part VII.




31

VI. LOCAL SCHEDULER

In this part, the stmiegy for scheduling tasks on a local node is introduced. The
heuristic algorithm developed by Zhao, et al. [1], is chosen as the algorithm underlying
the guarantee routine nn each node, and is implemented with some modifications.
. .Since properly choosing the heuristic function used by the guarantee routine in
selecting the next task to be scheduled, is important for the performance of the
aigorithm,'a set of heuris_tic's is studied in Section 6.4 From the simulation studies
performed in that section, it is concluded that simple heuristics do not perform
mtisfactoriljr because of the complexity of the problem. Héwever, an algorithm that
uses a combination of these simple heuristics works very well compared to an optimal
algorithm that takes expone'ntial time complexity. The heuristic function which has
the best pérformancé will be used as the heuristic for the guarantee mﬂtiné in the’
distributed scheduling scheme described in detail in Part VII. In this scheme the
‘guara.ntee routine is used both in scheduling tasks Lha't arﬁire at a node, and in making

a bid for a remote task which cannot be guaranteed locally.

6.1 Strategy Behind the Local Scheduler

At any given time, node N;( i =1 .. n ) has guaranteed a set of tasks S; and has a full
feasibie schedule for this set of tasks. A feasible schedule is a list of tasks that have

been guaranieed, With respect to a set of tasks, a schedule is. /u// if it contains all the
tasks in the set, otherwise it is parteal A schedule ( T To, ... TsTs.1 ) is an ‘mmediate
extension of the schedule (T Tz, .. Ts ). ‘

Suppose task T comes to the local scheduler at node Nj, then the following steps
are taken in order to guarantee the newly arrived task T : ’

{A) The guarantee routine in node Ni is called to decide whether the new task can be
guaranteed or not. The new task T can be guaranteed on this node if and only if, a new




32

 full feasible schedule exists for tasks in $; U { T ). This ensures that the tasks of $j in the
original feasible schedule remain guaranteed. Also, it ensures that the new task T will
meet its deadline.

(B) If T is guaranteed by node Ni (as stated above), the new full feasible schedule
containing tasks in §5; U { T } replaces the original one. This schedule determines the -
start times of the tasks in node Nj, and will not be modified until another new task is
. guaranteed by node Nj. | ' —

(C) If the new task T cannot be guaranteed by node Ni, that is, there is no full feasible
schedule for tasksin 5; U{ T }, the approach based on bidding and focused addressing is
used to determine if another node is in a position to guarantee task T. When such a node
is found, T is sent to that ‘nadé. In any case, the current feasible schedule of node N;j

remainsunchanged.

In the remainder of this part, the first step above is explained. That is, a
heuristic technique for determining whether a node’s current feasible schedule can be
changed in order to introduce a new task, is presented.

6.2. The Basic Algorithm Underlying the Guarantee Routine

This section describes the heuristic algorithm underlying guarantee routine, First
scheduling and searching are compared, then several data structures used are
presented, a constraint on the search process is motivated, and finally the basic

algorithm is presented, -

6.2.1. Scheduling versus Searching

The guarantee routine determines a full feasible schedule for a given set of tasks in the
following way: it begins with an empty schedule and iries to extend it with one task at a
time until a full feasibie schedule is derived. This is, in fact, a search problem. The




33

structure of the search space isa search free The root of the search tree is the empty
schedule. An snfermedrate vertex of the search tree is a partial schedule. A desceaduar
of a vertex is an immediate extension of the schedule corresponding o the vertex. A
Zeaf a terminal vertex, is a full schedule. It should be noted that all leaves will
correspond to feasible schedules. The goal of the algorithm is to search for a leaf that
corresponds to a full feasible schedule. Figure 6.1 shows a search tree for a set of 4
tasks. '

An optimal algorithm, in the worst case, may make an exhaustive search, which
is cumputationally intractable, -In order to make the algorithm computationally
tractable even in the worst case, a heuristic approach for this search is preferred. That
is, a heuristic function, H, is developed which can ;synthés‘:ize the wvarious factors
affecting real-time échedul_i_ng ‘decisions to actively direct the scheduling process to a
plausible path, -

On each level of the se'arch, function H Ais applied to each of the tasks that
remain to be scheduled, The task with the minimum value of the function H is selected
ta extend the current partial schedule, As a result of the above directed search, even in
the warst case, this scheduling algorithm is not exponential,

6.2.2. Data Structures

The algorithm maintains a vector EAT, to indicate the farliest Available Times of

resources on a node ;
EAT = (EAT{.EATa. ... EATy)

where EAT;, is the earliest time when resource Rj will become available. Initial values
of EAT; for all i will be the current time if the running task is preemptable. Otherwise,
EAT; will be the tixile when the running task finishes using it. Each time the partial
schedule is extended, EAT will be updated taking into account the newly added tasks'

resource requirements and completion time.

At each level of the search tree, the guarantee routine computes ST(T) and
New_EAT(T) for each task T that remains to be scheduled. ST(T) indicates the start time




34

Schedule ()
Task Set{T1,T2,T3, T4 }

,/”’":?Q ‘?;\‘\a
et ,e’l“. ™ -, \'*- X
o ///f/- -"/ \'\&, T -
/ - r / , o el
(Tt} (T2) (T3} - (T4)
(T2.T3.T4} .~ (T, T3.T4)  {TLT2.T3} O {TLTZT3}
Ry t : \\\ ) '\‘"\_ ' _‘
[ T T T
/ ) \__\5‘." —-\\—Q-’—_ o | e .
(TIT2) (11T (T1T4)
{T3,T4} {12, T4} {T2.T3}
N N N
\ ., )
\\\ \\' k\‘\k
N N \
\; ' \\.x
\x ~"~,‘ ’ .\..,
(TIT2T3) (TIT2T4) (TIT3T2) (TIT3T4) (TIT412) (TIT4T3)
(T4} (T3} (14} (12} (T3} (T2}
(TIT2T3T4H) (TIT3T2T4) (TIT4T2T3)
0 0 ”, ,
(TIT2T4T3) (TIT3T4T2) (Ti}‘&;TEiTZ)
{1 {3} H

A Partial Schedule : ( ...)

A Subset of Tasks Remaining to be scheduled : ( ...}

F IGUREG.I A search tree for a set of four tasks



.35

of task T if 11, is scheduled next. Smce atask T can run only when all resources it needs
are avallahle ST(T) isdefined as :

ST(T) = MAX( EATi where T needs R;).

It should be noted that for a given feasible schedule to remain feasible when -
extended by T, '

ST(T) + C(T) < D(T)

must hold, where C(T) is the compuiation time and D(T) is the deadline of the task T.

New_EAT(T) is a vector with the same size as EAT and contains the earliest
available times of resources if task T is scheduled next. In other W(rrds, New_EAT(T) will
replace the current EAT if task T is scheduled, It is calculated as

New_EAT(T) =ST(T} « C(T).

New_EAT(T) should be further updated because in the system model, active resources
are distinguished from pasqwe anes, Smce a passive resource must be used with active

ones, no task can use a passwe resource until
time = MIN{ New_EAT(T);s where resource i isan active resource )

where i=1,.., r.That is, all New_EAT(T);s for passive resources should not be less than
the minimum New_EAT;(T) of active resources. Hence, New_EAT(T);s should be further

updated as:

New_EAT(T); = MAX ( New_EAT(T); , time '} wherei=1,..,r.

At each level of the search, the guarantee routine also calculates a vector called
DRDR, the Dynamic Resource Demand Ratio, which indicates the degree to which tasks

that remain tc be scheduled will demand resources :
DRDR_ = { DRDRy, DRDR3, ... . DRDRr}

where DRDR; is defined as :

Z {C(T), T remains to be scheduled and uses Ry)
DRDR - “MAX (D(T), T remains to be scheduled and uses R;) - EAT;

wherei=1,..,r.



36

For all the remaining tasks to be schedulable, every DRDR; of a DRDR associated
with a partial feasible schedule should be less than or equal to one. If that is not the .
case, this means that there is no need to continue the search, it is not possible to find a

. feasible schedule for the remaining tasks with such resource requirements.

EAT, New_EATs and DRDR are updated each time the partial schedule is extended.

6.2.3. A Constraint on the Search

Using the data structures, EAT and DRDR, des‘c.ribed above, a constraint can be imposed
on the search for a full feasible schedule, '

A feasible partial schedule is said to be strongly feasible if :

| (a) DRDR associated with ;he schedule has DRDR; < I for i=1,...r, and

(b) all of its immediate extensions are feasible, that is to say, for each task T that
remains to be scheduled, there will not be any deadline violation when the current
feasible schedule is extended by T. '

By defhgition, a full feasible schedule is strongly feasible. If a schedule is not
strongly feasible because one of the conditions fails, then the failed condition wilf also
fail for all descendants, i.e., the extensions, of the non-strongly feasible schedule,
Hence, none of the descendants of a non-strongly feasible schedule can be strongly
feasible. On the other hand, the ancestor of a full feasible schedule must be strongly
feasible, otherwise the full schedule itseif will not be feasible. Therefore, only strongly
feasible schedules can lead to a full feasible schedule. Considering' this fact, the
following constraint on the search for a full feasible schedule can be stated :

For g partial schedule to be extendible o g full feasible schedule, the pactial
schedule should be strongly feasible.

From the viewpoint of the algorithm, this means that it is not necessary to
search through a vertex corresponding to a non-strongly feasible schedule, because a
non-strongly feasible schedule will not lead to a full feasible schedule. Given the above



constraint, the search should be confined only to those subtrees whose roots
“ eorrespond to strongly feasible schedules. ' ‘

. However, in the vmrsi case an exhaustive search ‘may still be required, making
the " search computationally intractable. In order o make the algorithm
computatiohally- tractable, even in the worst case, only one of the vertices is chosen at
each level in order to expand the search tree. The vertex chosen is the one ﬁvhich
appears to be most capable of leading to a full feasible schedule. In the next section the
basic algb.ril‘.hm which incorporates the heuristic necessary to make this éhoice. is

discussed.

6.2.4. The Basic Algorithm

The pseudo code for the basic local scheduling algorithm is given in the Figure 6.2.
Beginning with the empty schedule, the algorithm searches the next level by
exbanding the current vertex (a partial strongly feasible schedule) to only one of its
immediate descendants, If the immediate descendant is also a strongly feasible
schedule, the search continues until a full feasible schedule is met. At this point, the
searching process succeeds and all the fasksare known {o be guaranteed. '

' If at any level, a non-strongly feasible schedule is met, the algorithm
announces that the searching (scheduling) process fajls and that this set of the tasks
cannot be guéranteed, This implies that the new task we are trying to dynamically
guarantee is not guaranteed so there is no new schedule. The previous schedule is left
unaffected.

A modification is made on the original algorithm. Instead of calculating
New_EATs just before applying the function H as in the original algoerithm, in this
study, it is preferred to calculate them before the if statement which checks the strong
feasibilit;; condition. In this way, while calculating New_EATs, possible deadline
violations of tasks are detected, and this information is used by the "stron gly_feasible”
function in order to decide whether all of the immediate extensions are feasible or not

(second condition of strong feasibility).



38

PROCEDURE Scheduler(VAR guaranteed : boolean); -
~ BEGIN
guaranteed - true;
schedule :~ empty;
WHILE NOT empty( task_'_sgt} and (guaranteed) DO
BEGIN .
calculate ST for each task in task_set;
cafcufate New_EAT for each task in task_set;
calculate DRDR; ,
if no(._étrongly_feasibie |
THEN i;uaranteéd :-F false
ELSE BEGIN )
apply function H to each task in the task;set; A
let T be the task with the minimum value of function H;
EAT :~ New_EAT(T);
remove task T from task_ser;
- append task T to schedule
END
END
END;

FIGURE 6.2 Basic local scheduling algorithm for guarantee routine

It should be noted thdt, it is possible to extend the algorithm to continue the

search even after a failure is found, and this extension is discussed in the next section.

6.3. Exiension to the Basic Algorithm

The assumptions underlying the use of the heuristic function in the basic algorithm

are :
(a) at each levei of the search, there is a certain order among the tasks to be selected:

(b} the arder can be fdentified by a linear function such as function H used in the

basic algorithm.



i

39

- Though the firstassumption is definitely true, the second may not always hold,
so the original algorithm cannot always guarantee a set of tasks for which there is at

‘least one full feasible schedule, To improve the success ratio, the following means were

considered ..
(a) add some non-linear components to function H;

(b) change the weight of function H dynamicaﬂy;

(c) whenever a partial non-strongly feasible schedule is met while scheduling, try to -

backtrack.

Since the first alternative increases the computation cost on every computation

of function H, and the second could make the algorithm too complex, the third one is

adapted,
The basic algorithm is extended in the following way :
Each time a non-strongly feasible schedule is found,

(a) a procedure called Limited_Packtracker is invoked to withdraw the task just selected
and added in the schedule, and instead attempt to schedule the task with the second

minimum value of function H;

(k) if the first step does not succeed, that is, the schedule is still non-strongly feasible,
recursively backtrack to the immediate ancestor and attempt to schedule the task with

- the second value of function H at the ancestor level. Whenever a strongly feasible

schedule is found, the Limited Backtracker returns"'gm;ranteed" to the caller the
procedure Scheduler. Otherwise, it continves the recursive backtrack until either it
has backtracked to the root of the search tree (the em;piy schedule], indicating that all
&e ancestors have been tried; or until a counter, which counts the number of
backtracks in scheduling this task set, reaches a pre-set upper hound. In these cases,
the Limited_Backiracker returns "nonguaranteed”,

.The pseudo code of the algorithm for the procedure Limited Backtracker is
shown in Figure 6.3. The first step in the Limited Backtracker is called a psevdo
backirack because it happens at the current search level and function H is not
recalculated, The second step is called rea/ backirack Real backtracks do increase the

computation cost because they requires the recalculations of the function H at all the

levels imm'ediately below the veriex in which the real backtrack succeeds,

s



40

PROCEDURE ‘Limited_Backtrackér ( var guaranteed : hoolean);
" { This procedure is called when the bartiaj schedule is found to be non-strongly feasible}
BEGIN |
if empty{schedule)
THEN guaranteed - false
. ELSE ‘
BEGIN { first, pseudo backirack }
let T1 be the fast task in the schedule; -
remove T1 [rom schedule and append it to task_set;
let T2 be the task with the second H value pointed tovby the second pointer of T1 :'
remove T2 from task_set and append it to schedule; '
IF not strongly_feasihle '
THEN
BEGIN ( the real backtrack starts }
guaranteed :~ fafse;
WHILE (NOT empty(schéd‘ule)) and {countercmas_counter) and (not guaranteed) DO
BEGIN '
{ withdraw from the end of the schedule a.lll the tasks, one by one, until a task
having a non-nil “second pointer” is met or there is no task left in the schedule or
the partial schedufe is guaranteed.} |
- REPEAT
fet T1 be the last task in the schedule;
remove T1.from schedufe and append it to task_set
UNTIL { TI's “second pointer” <> nif ) or { empty ( schedute ));
IF T1's “second pointer” <> nif . ‘
"THEN BEGIN -
fet T2 be the task pointed by T1's “second pointer™;
'EAT :- New_EAT stored as ofd_EAT with T2;
remove T2 from task_set and append it to schedule;
IF strongly_feasihle THEN guaranteed :- true; '
counter :~counter +1
END
END { WHILE_]
END
END
END;

FIGURE 6.3 The algorithm of the Limited Backtracker.

b

\
L
4



4]

It should be noted that, if in the Limited_Backtracker the number of real »
backtracks is not limited, then in the worst case, the search process might eventually

expand two vertices from sach ancestor, resultmg ina computauon time pmporuonal
"to 2%, where k is the number of tasks.

In order to avoid some re-calculations that may be caused by possible future
backti‘acks, each scheduled iask keeps a pointer fo the task with the second minimum
value of function H at that level, In the original algorithm, the EAT values before the
task is scheduled is also recorded. Whereas in this study, it is preferred to record the
New_FAT values of the task with the second minimum value of function H, instead of
the EAT valﬁes The mativation is to be able to use these New_EAT values, when there is .

a backtrack which attempis to schedule the task with the -:econd minimum value of H,
~ without having to re-calculate them at that level.

Another modification is the following: an if statement is added at the beginning
of the procedure Limited Backiracker, which checks whether the schedule is empty or
nat, Because, a schedule can be found non-strongly feasible (any one of the two strong
feasibility conditions may not hold) before any task has been scheduled. In this case,

since the schedule is empty, backtracking is not possihle.

Therefore, the data structure used to implement a task node has the form shown
in Figure 6 4,

task id _ il

arrival time ' arr_t
deadline - geadline
starttime start_t pointer to the task with second
computation time " comp_t minimum vaue of the function H
reSOUrce reqd irements res_need +
seomin - ——— | seominnode! | ——W
pir. to previous task «g—i— prev
next ——— ptr. to next task
Hew_EAT values Mew_EAT '

OId_EATptr ——— [ OWLEAT | —0

recorded New_EAT values
- if the task is the one having
second minimuny value of H

" FIGURE 6.4 Data structure used to implement a task node



The values of 4l arr i deadline, comp_{ and res_pgeed are known when a task
arrives. The values for stars_sand New FdTare calculated at each level of the search.
The use of seomin and U FATpir will be illustrated, by a simplified example. Assume
‘the following scenario ' '

(a) let task set he { T, T2, T3), and let schedule be () (Figure 6.5 (a));

(b} let the schedule be strongly feasible, function H is applied to each task in the task
set in order to select the task to be scheduled at level one - let T2 be the task with the
minimum value of function H, and let T3 be the task with the second minimum value;

{c} T2 isscheduled at fevel one (Figure 6.5 (b)),

(d) assume that the schedule is strongly feasible, then the next task to be scheduled at
level two is selected : let T1 be the task with the minimum value of function H, and let T3
be the task with the second minimum valve; -

{e) Tl isscheduled after T2 at level two (Figure 6.5 {(c));
(f) assume that the schedule is found to be non-strongiy feasible;

(g) Pseudo Backtrack : Tl is removed from schedule and appénded to task set, since
" Tl's “second pointer” is T3, T3 is scheduled, EAT is updated by using the recarded
New_EAT vafues of T3 for level two without having {o recalculate them(Figure 6.5 (d));

(h) assume that the schedule is again non-strongly feasible;

(i) Real Backtrack : T3 is removed from schedule and appended to task sét, going
back to level one (ancestor level) T2 is removed from schedule and appended to task set
(Figure 6.3 (e));

{j) since T2's "second pointer” is T3, T3 is scheduled, EAT is updated by using the
recorded New_EAT values of T3 for level ene (Figure 6.5 (f));

(k) assume that the schedule is still found to be non-strongly feasible, T3 is removed
from schedule and appended to task set, since further backtracks are not possible, the

. task set is said to be nonschedulable.

But, if this real backtrack had succeeded, the search would have continued by

recalcufating the function H in erder to detect the task to be scheduled at level two.



tagk set

| T1 T2 T3
' 3 =t

[
L
L 4

gcheduls

L,

“{a)

task met

1 | TS
' k——) , : 7 ft———lu-_

.

3

New_EAT of T3
atlewel 1

schedule second pointer of T2
' atlewl 1l -

| T2 |
level 1

(k)

tosk set

—

New_EAT of T3
e N
atlevel 2 atlewel i

5 g
[
-‘
1

oY

gecond pointer of

\?jl‘saj; level 1 -
d A geoonnd pointer of

schedule T2 T1 at lewel 3
ltever :ll T KRt

Tl
b| tnle

level 2

{c)

FIGURE 6.5 Iliustration of the extended algorithm by a simplified example



tark wet

T1

-

i

second pointer of T2 at level 1

FIGURE 6.5 Illustration of the extended algorithm by a simplified example (continued)

gohedule
pee
level §
ey ™
T3 -
. fewl? g
l New_EAT of T3 at level 1
(d)
tagk set |
2k 3¢ Tl T3 T2
L * 3 @ 3 Eh T
[ ——= T+
gecond pointer of T2
i@"{“ . atlevel 1
| ' New_EAT of T3 |
gohedule’ - atievel )
(e}
task et
sk se T1 T2
L__.) » o ‘—"—‘h‘
schedule
l T3
levell i
(£}

44



45

6.4. The Heuristic Function H

Clearly, at each level of the search, effectively and correctly identifying the immediate
descendant is difficult but very important for the success of the algorithm. Function H
becomes the core of the algorithm. In this section, the heuristics to construct function
H are identified. First, some simple heuristics are evaluated, then integrated simple
heuristics are considered, Because of the cump!exi{y of the problem, it is not expected
that the use of simple heuristics alone will result in goad performance. The purpose of

evaluating their performance is to identify the candidates that are worthy of further
exploration. ‘

6.4.1. Simple Heuristics for Scheduling

'

The ~f(hllowing is a list of simple heuristics for scheduling, and corresponding H
functions defined on them

(a) minimum deadiine first (Min_D) : H(T) = D(T);
(b) minimum start time first (Min_S) : H(T) = S(T);
(¢) minimum comphtatian time first (Min_CJ : H(T) = C(T);

(d) minimum faxity first (Min_L) : HT) = DD-(S(T+CT),

6.4.2. Simulation Method and Resulis

The purpose of the simulation is to evaluate the performance of the different heuristics
used for the funciion . In each simulation, {asks are randomly generated. A number of
tasks are collected as a task set. For each task set, an exhaustive search is performed to

determine whether this task set has at least one feasible schedule or not. Those task sets



thatare known to be schedulable are input to the local scheduling algorithm. Then, for
each heuristic, the percentage of tasks sets scheduled is observed. This percentage
gives the swceess ratip SE of the heuristic,

Since meeting deadlines is very important in real-time systems, the
schedulability of tasks, i.e.whether or not tasks will finish before their respective

deadlines, is considered as the performance metric.

For this simulation study, a Iocal task generator program is written which given
task generaling parameters, generates two hundred schedulable task sets, each of
which consists of six tasks, The listing of this pmgfam is given in Appendii{ ATt
should be noted that for a set of six tasks, there are 720 permutations, each of which
may or may not present a full feasible schedule. The program, after having generated a
task set, performs an exhaustive search to see whether there isat least one full feasible
schedule for the task set or not. If not, the task set is discarded, and a new one is
generated, ‘

The local task generator generates a task by specifying its resource
requirements, its computation time and its deadline, It is assumed that the local node,
has five resources : two active resources and three passive resources. The resource
requirements of a task are chosen randomiy with the condition that a task uses at least

ane active resource. A task needs a resource with probability 0.5.

- The other generating parameters, to be Set in the task generator program, are
the mean and standard deviation values of the computation time distribution and of the
laxity distribution of the tasks. The laxity distribution is used to generate the deadlines.
These dxsmbutmns are assumed to be pormal distributions. In order to see the
perfarmance of the heunstu:s in different levels of scheduling difficulites three
different sets of tasks sets are generated by using three different laxity distributions,
which indicate the tightness of the deadlines. Then, the performancesof the heuristics
used by the local scheduling algorithm are evaluated for each one of these.

The listing of the local scheduling program is given in Appendix B. In this
program, the extension of the basic scheduling algorithm which uses the limited
backtracking concept, is adopted. That is, in the scheduling process when an infeasible
vertex is met, instead of simply announcing a failure, the task that has_the second
lowest value of the function H is tried to be appended the current feasible schedule. If
this attempt fails, the program recursively backtracks to the immediate ancestor and
attempts to schedule the task with the second value of the function H at that level.




The number of backtracks is limited by setting up a variable cwunler which
counts the number of backtracks used in scheduling a set of tasks. If ihe counter _
exceeds a preset maximum value MC (max_cownsesd, no further backtracking is
allowed. In this way, evén in the worst case, the time complexity' of the algorithm will

‘not be exponential. The simulation is performed for different values of MC, in on:lei" o
show its effect.

' The simulation results of using simple heuristics are presented in Table 6.1. In.
Table 6.1(a), Table 6:1(b), and Table 6.1(c), the computation time distribution is assumed
to be N(200,1002) and the laxity distribution is assumed to be N(100,1002), N(200,1002),
and N(400,2002) respectively. |

From the tables, it can easily be seen that as deadlines become less tight, that is,
- asthe mean of the laxity distribution increases, the difficulty in scheduling decreases,
and the performance of the heuristics increases, It can also be concluded that when
MC, the preset maximum value of backiracks is zero, that is, when backiracking is not
allowed, none of the heuristics performs satisfactorily. Increasing the value of MC, up
to 10 for example, causes a remarkable increase in the performance, But still, the
performances of the heuristics are far frbm being good. It iz also seen that increasing
MC to a higher value than 10 does not make any change on the performance. In the
case where laxity distribution is taken as N(400,2002) and MC is large, the heuristic
Min_ D ?erf orms reasenably well, but still does not achieve 100 per cent.

The observations from this simulation study, indicate that some traditional
heuristics used in general operating systems, are not appropriate for tasks with timing
consiraints. For example,' using Min_C is equivalent to using the shortest job first

palicy which is a heuristic sometimes adopted in nonreal-time scheduling, because it
| produces the minimum average waiting time for tasks. But, this simulation study shows

that this heuristic does not perform satisfactorily in real-time systems.

6.4.3. Integrated Simple Heurist_ic Algorithms

Given that no single heurisiic performs satisfactorily, integrated heuristics need to be

attempted. The integrations are considered as simple as possible in order (o keep the



MC HEURISTICS
Min_D Min_S Min_C Min_L
0 84.0% 34.0% 62.5% 430%
1 _920% 350% 78.0% 56.0%
2 92.0% 35.0% 73.0% 60.0%
3 . 940% 00% 75.0% 62.0%
10 94.0% 40.0% 73.0% 62.0%
100 _94.0% 40.0% 750% | 620%

(a) Cofnputation time distribution of tasks : N(200,1002),
Laxity distribution of tasks : N(100,1002);

MC _HEURISTICS

Min_D Min_S Min_C Min L _
0 825% 60% 78.0% 56.0%
1 _39.0% 495% 83.0% 65.5%
2 _915% 540% | 340% | 680%
3 93.0% 545% 86.0% 69.0%
10 93.5% 545% 86.5% 710%
100 935% 54.5% _865% 71.0%

(b) Computatinn time distribution of tasks : N(ZOO,IOOQJ.
Laxity distribution of tasks : N(200,1002);

MC HEURISTICS

| _Min_D Min S | Min € Min 1
0 93.0% S45% |- 660% |  770%
1 9.5% 60.0% 69.5% 845%
2 97.0% 625% 705% _875%
3 0% | 635% |  710% 89.0%
10 98.0% 63.5% _71.0% 90%
100 _930% 635% 71.0% 90.0%

~ (c) Computation time distribution of tasks : N(200,1002),
Laxity distribution of tasks : N(400,2002);

TABLE 6.1 Simulation resultsof using simple heuristics

\
\

48



49

run time cost of the algorithm still low. Because Min_D performs much better than any
other heuristics when used alone, it is considered to be the primary heuristic, and the
others become the candidates to be combined with Min_D.

Following are the integrated simple heuristics and the corresponding
definitions of H functions:

(a)Min_DandMin_C:H(T) =D(T)»W*C(T);
{b) Min_Dand Min_S : H(T) = D(T)+W=S(T).
where W isa weight, and will be adjusted for different conditions.

Min D and Min-L are not combined, because the information in Min_L is
similar to Min_C and Min_D combined. |

6.4.4. Simulation Results of Using Integrated Simple Heuristics

The same three sets of two hundred task sets generated for simple heuristics, are used to
evaluate the performance of the above integrated simple heuristics. Table 6.2 shows
the results. -

In the tablé, the maximum success ratio SR, achieved by a pirticular H function
is shown with the weight W that makes this possible. This weight that produces the
maximum success ratio is determined assuming that the success ratio as a function of W
has a single maximal peint. Given this assumption, starting with a value of 0.5 for W
and increasing it by 05 each time, the maximum of success ratios is determined until
the success ratio starts to decrease after reaching a peak value. The value of W that
produced the peak success ratio is ﬂ_le one shown in the tables.

It is observed that combining Min D with Min_S improves the performance
substantially. Although, Min_$ does not perform well when used alone, it outperforms
all others when .ii. iz integrated with Min_D, This is because Min_§ by itself does nat
consider timing constrainis and hence many fasks are liable to miss their deadlines.
Combining Min_$ with Min_D removes this shortcoming of the heuristic,



50

MC | HEURISTICS
_ Min_D-¥W*Min_C Min_D:W*Min_S
v SR ¥ SR

0 10 38 0% 05 88.0%
1 10 | 940% 05 _ 940%
2 1.0 940% 05 940%
3 05 940% 05 %.0%
10 05 940% 05 |- 9%60%
100 0.5 94.0% 0.3 _ 9%.0%

{(a) Computation time distribution of tasks: N(200,1002),
Laxity distribution of tasks : N(100,1002);

MC HEURISTICS

Min D+W*Min € | Min D«W*Min_§

¥ SR v SR
0 10 87.5% 10 87.5%
1 05 915% 15 | e25%
2 0.5 930% | 15 945%
3 05 | 9409 20 %.0%
10 05 945% 10 97.0%
100 05 94.5% 1.0 97.0%

(b) Computation time distribution of tasks : N(200,1002},
Laxity distribution of tasks : N(200,1002);

MC | HEURISTICS
| Min_D+W*Min_C Min_D+¥W*Min_$
Li SR W SR
0 0.5 91.0% 10 | 965%
1 .5 945% 15 93.0%
2 05 95.0% 1.0 _ 995%
3 03 93.5% 1.0 100.0%
10 05 97.0% 05 100 0%
100 05 97.0% 05 100.0%

(c) Computation time distribution of tasks : N(200,1002),
Laxity distcibution of tasks : N(400,2002);

TABLE 6.2 Simulation resultsof using integrated simple heuristics

\

\
|
4



51

Finally, using the heuristic minimum deadline first integrated with minimum
earliest start time first as the function H, along with limited backtracking makes the

algorithm perform very well, close to an optimal algorithm that has an exponential
‘time complexity. '

.. 6.5. Application Considerations

In this section, how the algorithm can be applied to the following cases, is discussed

(2) on-line heuristic scheduling;
(b) scheduling when tasks arrive in a batch;

(c) non-preemptive scheduling and the inclusion of periodic tasks.

6.5.1. On-line Heuristic Scheduling

As noted before, this heuristic appfnach is used to decide whether a new schedule exists
for the tasks that have already been scheduled to execute on a node plus the task that
just arrived at that node. Now, 2 technigue for making this decision will be presented ;

Suppose 2 tasks are scheduled to execute on a node, ie., there isa full feasible
schedule for the z tasks. Suppose mof these tasks begin execulion and then task T
arrives. Because task preemption is not allowed, the m tasks in execution will be
allowed to run to completion. Let EAT be the vector indicating the earliest available
times for all the resources, taking into account the fact that mtasks are in execution.
With this EAT, if a full feasible schedule is found for the (z-m) tasks plus the newly
arrived task T, then T can be said to be guaranteed. In this way, this scheduling
algorithm can be used to decide whether a task which arrives during the execution of

m tasks on a node can he scheduled to execute on that node.



52

The msthod just described for on-line scheduling assumes that to decide
. whether the new task T is schedulable, a full feasible schedule has to be determined for

{ #-m)+1 tasks, that is, the scheduling algorithm has to be executed on the (z-m+1
tasks, given the FAT. '

6.5.2. Scheduling When Tasks Arrive in a Batch

Ancther issue is how to perform on-line scheduling when a number of tasks arrive ih
a batch. Assume.that Yy tasks have been guaranteed but not vet begin execution, when
g tasksarrive, Augmenting the schedule for the piasks with the g (>1} tasks becomes
difficult, Suppose the heuristic algori;hm is used to determine a schedule for the p+g
tasks, If such a schedule does not exist, this means that aof a// of the ¢ tasks are
schedulable. But, a subset of the § tasks may be scheduiahle\ To find out this subset, the
heuristic algorithm has to be repeatedly applied to subsets of the g tasks. The problem
here is to determine which task is to be discarded from a given set before the algorithm

is re-applied.

The best thing to do is the following : when tasks arrive in a batch, each of them
should be considered one by one, in some order, say, earliest-deadline-first, If a full
schedule is found when a task is added, the task is kept in the new schedule. If a full
feasible schedule cannot be found for this task, it is nonguaranteed, and it becomes a
candidate to be sent to same other node.

6.5.3. Non-preemptive Scheduling and the Inclusion of Periodic
| Tasks

Thisscheduling algorithm is developed assuming that tasks cannot be preempted. Two
reasons for this are as follows

(&) Sﬁppusé the first task in a schedule is dispatched and then a new task arrives. The
requirements of the tasks and of the newly arrived task may be such that even if the



53

currently running task is preempted to run the newly arrived task, all tasks will meet
their deadlines. Whether this is true or not can be checked easily when only CPU
requirements of the tasks are taken into account as in [36]. Inclusion of the general

resource requirements considerably increases the mmpiéxity of the check,

(B) Preemption also introduces the need to take into account the consistency of
resources. For cxample if Ry is a file and both T] and T2 modify the file, then a

schedule where Tg preempts Ti may result in Ry becoming inconsistent. Hence, once

preemption is allowed, considerations such as this enter the picture.

Primarily for these reasons, in this study, the heuristic scheduling without task
preemption is discussed. It should also be recognized that when preemption is not

permitted, resource utilization may decrease and the number of tasks guaranteed may
also decrease.

Ancther implication of doing non-preemptive scheduling is that a task may not
be schedulable mainly because of its arrival time. For example, suppose a task Ty with
deadline 200 and computation time 100 is the first task in a schedule, and begins
execution at time equals zero. At time one, a task T2 with deadline 100 and computation
time 80 arrives, If Ty were not in execution. T2 may be schedulable, If it was known that
T2 would arrive at time one, it ﬁ:ight be possible to schedule all tasks in the current
schedule plus the new task Ty, such that they all finish before their deadlines.

In any dynamic éystem, such information about future task arrivals will not be
available. However, for an important type of fasks, called periodic fasks such
information is available and can be used to perform intelligent scheduling. because
periodic tasks are tasks that have to be executed at regular intervals specified by their
periods, In general, each periodic task will be generated at the beginning of its period,
The following technique is advised to be utilized in case of periodic tasks: if a
nonperiodic task, arriving before the beginning of the next period, has a deadline in
“or beyond the next peried, the next periodic task will be generated and sent to .the.
scheduler hefore the nonperiodic one, Each periodic task has an eardiest start time
equal {o the beginning of its period so that it cannot be scheduled before that time,
Therefore, the definition of ST needs a slight change with the inclusion of perwdn.

tasks, it should he redehned as:

ST(T) = MAX{ EAT; wheré T needs Ry, and the earliest stact time of task T).

The earliest start time for 2 nonperiodic task is defined as its arrival time, so that it can

‘start any time after its acrival.



o4

VII. DISTRIBUTED SCHEDULING SCHEME

In this part, the strategy for écheduling tasks dvnamically in a distributed hard real-
time system is presented. The distributed scheduling algorithm developed by

Ramamritham, Stankovic, and Zhao [2], is chosen as the algorithm to study on, and is
implemented with some modifications.

Since the local scheduling algorithm, explained in Part VI, with the heuristic
function minimum deadline first integrated with minimum start time first ;

Min D« W*Min_5,

has been shown to be highly successful, it is incorporated in the distributed scheduling
scheme as the local scheduling algorithm underlying the guarantee routine on each
nade,

The performance of the overall system heavily depends on how distributed
“scheduling is done, that is to say, on how the node to send a task which cannot be
guaranteed locally, is detected. In this part, the details of the distributed scheduling
algorithm are considered first. Then a sequence of simulation studies is performed in
order to ohserve how the system performs under different conditions. The
performance of the algorithm is also compared with that of three other algorithms,

7.1. Generation and Transmission of the Node Surplus

The purposebf generation and transmission of node surplus from a node is to help
other nodes ta correctly make the decision about which node a task should be sent to
during focused addi'essing and which nodes the request-for-bid messages should be .
sent to during bidding. vainu'sly, it is neither ﬁractical nor possible to et nodes have
precise state information about other nodes because of §he communication delay

involved,



55

The notion of the surplus of a node, as used in this distributed scheduling
algorithm is its ability to guarantee tasks from the other nodes. A node's surplus is in
reality a vector, with one entry per resource on that node. Each entry indicates the

total amount of time, in past window, during which a resource is not used by the foca/
tasks.

Each node periodically calculates its node surplus and sends it to a subset of the
remaining nodes, A node sorts other nodes accerding to the number of tasks received
from them that were guaranteed on this node in a past time window.Then, according to
this sorted node list, a node selects a subset of nodes to send information on its own
current node surplus. The subset is chosen such that nodes in the subset will
potentially use this infermation in deciding whether or not to send a task to this node,

' Therefore, the nodes, which recently sent more tasks to this node, will more likely tol be

selected,

I' Broadcasting the node surplus information in large network is not suggested,
because it causes heavy traffic and therefore can increase communication overheads.
Because of the fact that communication takes non-negligible time" delay, and that
resource re_quiremehts of tasks from different nodes may be different, the surplus
informaiioxi from a node may' not always be useful for some other nodes. Sending a
node’s surplus information to a subset of other nades, reduceé the communication
" traffic. and lets a node send its surplus information only to thase nodes where its
| surplus information is potentially needed. These nodes will typically be those that have
tasks which require the resources that are less utilized by the local tasks on the

sending node,

0f course, if the network is small, the surplus information can be sent to all the

cther nodes.

7.2. Focused Addressing and Requesting for Bids

When atask. T, arrivesata node Nj, the local scheduler is invoked to try to schedule the
newly arrived task on the node. If it is impossible to schedule the task locally, node Ni's
hidder comes into the picture which is responsible for doing focused addressing and

requesting bids.



56

Forj=1, . n and j # i, the bidder on node Nj estimates ES(T, j) which is the
number of instances of task T that node Nj can guarantes.

This estimation is made according to the node surplus information available on
node Ni and provides a good indication of the likelihood of a site being able to
guarantee a given task.

For example, assume that the computation time of task T is 250 time units,
Suppose, node Nj is estimated to have a minimum surplus of 400 time units on each of
the resources needed by T.Then, the surplus of Ng with respect to the resources needed
by task T is 400, and the estimated number of instances of task T that node Ng can
guarantee is 400/250 which is 1.6 .

In the original algorithni {2, it is suggested to coniinue the process as below:

Node Nj sorts other nodes according to their ES(T, i), in descending order. The
first k nodes are selected to participate in focused addressing and bidding. Thé value of
k is decided such that the sum of ES(T, |) of the k nodes is larger than or equal to 5685,
the System- Wide Guarantee Surplus This is a tunable parameter of the system. If the
first node Ny among the k nodes has its ES(T, {) larger than FAS, the focused Addressing
Surplus another tunable parameter, node Ny is the focused node. The task is
immediately sent to that node. The remaining k-1 nodes are sent request-for-bid
messages in parallel, to handle the case where the focused node cannot guarantee the
task,

Whereas, in this study, it is preferred to modify this process as follows:

The node Nj, having the maximum value of ES(T, i) is selected as the focused
node on condition that ES(T, j) is larger than FAS. The task {s immediately sent to node
Nj. and request-for-bid messages are sent to each one of the remaining nodes in

parallel.

The purpose of this modification is to, increase the chance of being guaranteed
of task T at another node, in case that it cannot be guaranteed at the focused node. Since
in focused addressing, out-of-date state information of the nodes is used, there is a risk
of making wrong decisions. Consequently, a task T may not be guaranteed, not because
there are no nodes that can gi:arantee it, but because the nodes that can guarantee it,
are not sent request-for-bid messages. By sending request-for-bid messages to all the
other nodes, this risk can be tolerated. But, it should also be kept in migd that, this
method is preferable as long as the network is small. Because when there are too many



57

nodes in the network, there will be too many transmitted messages which will increase
the communication overhead. -

A request-for-bid message includes information about the deadline, the
computation. time and the re‘soufce requirements of the task as well as the latest bid
arrival time, that is, the time by which bids should reach the focused or requesting
node {o be eli-gible for fuﬁher'cunsidgraﬁon. The latest bid arrival time for a task T,
LBA(T), is estimated as follows: |

LBA(T) = D(T) - C(T) - (TD + SD),

- where D(T) is the deadline of T, C(T) is the computation time of T, TD isthe network-wide
average {ransmission delay between two nodes, and 5D is the average scheduling delay
on a node, Thus, on the average, before LBA(T) there will be sufficient time to send the
task to a bidder node, for it to be scheduled there and then be executed before its
deadline,

7.3. Bidding

When a node receives a request-for-bid message, it calculates a bid for the task
provided that there is encugh time for bidding. Each request-for-bid message contains
a deadline for response (latest arrival time of a bid). If the responding node estimates
that it cannot deliver the bid to the requesting node on time, it does not bid, Therefore,
only viable bids will reach the requesting host and the communication everhead is
reduced,

The 474 is purely a number which indicates the number of instances of the

task the bidder node can guarantee. The calculation is done in two steps:

First, an upper bound of the bid, Max-Bid is cafculated by the below formula:

Task Deadline - Estimated Earliest Arrival Time of the Task
Task Computation Time

Mazx-Bid =



58

The earliest arrival time of the task to the bidder node is estimated in an
optimistic manner to he the sum of current time, the minimum message delay in
transmitting the bid, and the minimum delay in sending the task to this node. Max-Bid

is the best possible bid that this node can make assuming ideal availability of resources
that the task needs.

In the second step, the actual bid is calculated by performing a binary search
between zero and Max-Bid. In each step of the binary search, a given number of
instances of task T are temporarily inserted into the current schedule of this node, and
the guarantee routine is called to see if the inserted instances can also he guaranteed.
At the end of the search, the maximum number of instances of the remote task T that
this nede can actually guarantee without endangering previously guaranteed fasks, is
obtained, This number, if above a predefined limit, becomes the bid. The bid is sent to
the node which was selected for focused addre-ssinlg if there is one, Otherwise, the hid is
sent to the original node which issued the request-for-bid message. The inserted
instances of the remote task are removed from the schedule on a bidder's node.
Therefore, the schedule on the bidder’s node is not affected by the bid it makes. This
implies that a node does not reserve the resources needed by the tasks for which it bids
since a node will typically bid for multiple tasks and multiple bids will be received for a-
task, reservation of resources will result in pessimistic bids and therefore may reduce
the system performance.

7.4. Bid Bvaluation

. When a node receives a hid for a given task, and the bid is higher than a certain
fimit, high-bid (HE), the node awards the task to the bidding node immediately and all
other bids for this task, that arrived earlier or may arrive later, are discarded. If all the
" hids, that have arrived, for a given task are lower than the high-bid, the node
postpones making the awarding decision until the latest bid arrival time of the task. At
that time, the task will be awarded the highest bidder if any. All the bids that érrive
Iater will be discarded. i -



59

7.5. Response to Task Award

, When the awarded task arrivesat the highest bidder, the local scheduler on that
node is invoked to see if the task can be guaranteed. It should be noted that the state of
the node may change after making a bid and since resources needed by the task were
not reserved, the task may or may not be guaranteed. If the task is not guaranteed, it is
rejected. . ‘ ' _ - -

7.6. Simulation Model

In this section, the simulation model on which a sequence of simulation studies are
conducted, is introduced. The results and abservations of these studies are preseated in
Section 7.7.

7.6.1. System Model

The system model is assumed fo be physically distributed and composed of a
network of five nodes (multiprocessors) each of which has its own local memary. All
internode distances are considered to be the same. '

The nodes in a network can be physically connected in a variety of ways,
. namely cammunication tapolagies In order to see the performance of the algorithni in
different cenditions, the simulation studies are performed en two different network

communication topologies:

(A) Fully Connected Communication Network : In such a network, each node is
directly linked with all other nodes in the system. The basic cost of this configuration
isvery high, since a direct communication line must be available between every nodes.
The basic cost grows as the square of the number of nodes. In this environment,



60

however, messages hetween the nodes can be sent very fast. The first simulation system
model with such communication topology is shown in Figure 7.1.

(B) Star Lommunicativn Network. : 1o a star network, one of the nodes in the
system is connected to all other nodes. None of the other nodes is connected to each
other. The basic cost of this system is linear in the number of nodes. The
communication cost is also low, since a message from Nodey to Node; requires at most
two transfers. This speed may be somewhat misleading, however, since the central node
may hecome 2 bottleneck. Consequently, even though the number of message transfers
needed is low, the time required to send these messages may be high. Figure 7.2 shows
the second simulation system model with such communication topology. In this inodel,

the central node, S, is completely dedicated to the message switching task.

-

node

FIGURE 7.2 Simulation system model 2 { Star )



61

Messages pass through a communication line in a pipe-lined fashion with only
0ne message occup?ing a channel at a given time, in a given.directioﬁ. When a
message is in a line, if there is another message that needs to be transmitted, the latter
" message must wait until the first has left. This situatioﬁ is called a wwaflict The total
time for transmitting 2 message from one node to another without any conflict is
denoted as zo wn[?'it.‘tmmge delay (MD). 1n star network, since a message from one
node to another passes through two communication lines; the time taken by a message
to pass through a line, without any conflict, is half of the message delay.

The delay involved in transferring a task through the network is assumed to be
the message delay plus 10 per cent of the computation Limé of the task. That is, it is
assumed that transferring a task requires higher communication overheads than a
message, and this overhead is proportional to the computafion time of the task. Again
in star network, the time taken by a task to pass through one communication line is
half of this amount.

In the simulation program, since the network is sufficiently small, a node sends
its surplus information to all the other nodes in the system, When the network is large,
the node surplus information should be sent to anly a subset of selected nodes, Nodes
that potentially need such information should be selected. A good selection policy will
reduce the number of messages {ransmitted in the network, while letting the nodes

obtain such information if needed.

" The message traffic created by the transmission of sui‘plus information as well
as all other messages generated in the course of scheduling is also taken into account
in the simulation model. '

These two network topologies and the communication protocof just described are
chosen for simulation in order to observe the effect of the communication overhead on
the performance of the algorithm.

| 7_.6.2. Node Model

It is assumed that a stream of tasks arrives locally to each node as a Poisson
pracess, The nodes are considered to be heterogeneous in the sense that each node may



62

have a different arrival rate of local tasks, but homogeneous in the sense that a task
submitted to any other node in the network can be executed there. The fact that local
task arrival rates on different nodes may be different, results in differences in the
loads of the nodes. In the simulation studies, the term srstem local task arrival rate, R,
is used to refer to the sum of the local task arrival rates of all the nodes in the system. .

In the simulation niodel, two of the five nodes (node A and node B) are assumed
to have equal loads which are higher than the remaining three nodes. Given the
system arrival rate, R, the lecal task arrival rate for each node is considered to be as

follows:

(a) for nodes A and B :4'1‘3?31{;' '
(b) for node C: 0.125R,; | |
' (c) for nodes D and E : 0.0625R.

Fach node is assumed to contain five resources which may be demanded by
tasks, including two active resources {processors) and three passive resources. A
resource can be serially shared by tasks. The resource requirements of a task are
determined randemly, provided that a task needs a resource with probability 0.5.
Mareover, each task requires at least one of the active resources and zero or more

passive resources,

Both the computation time and faxity of tasks are considered fo be nafmaﬂy
distributed.

Since the dispatcher has to be invoked each time any task completes execution,
the run-time cost of the dispatcher is included in the computation time of every task.

The simulation médel also assumes that the schédule-r tasks such as the Asdder
and the Jfocal schedvler are executed on a co-processor dedicated to scheduling.

The mode! is based on the assumption that there is a communication module
executing on a co-processer which is respoensible for rec_eiving communication from
local sources as well as from other nodes. Based on the type of communication, this
module stores received information in the appropriate data structures so that they will
* be looked at when different tasks execute.

The purpose of using such co-processors (or system processors) is to offload the
scheduling algorithm and the other operating system overhead from the application



tasks both for speed and so that this overhead does not cause uncertamty in execuung
already guaranteed tasks.

7.7. Simulation Results and Ol_)servatibns

The distributed scheduling algorithm explained in the previous sections, is
implemented and tested under different conditions, using the simulation model
presented in Section 7.6. Appendix D contains the listing of the simulation ﬁrogram
implementing this algorithm, Since the algorithm uses a technigue that combines
bidding and focused addressing, the term £8 will be used to describe this algorithm.
Before presenting the simulation results, a general information about What kind of

simulation studies are performed will be given, discussions on the observations then
follow.

In the simulation studies, the computation itime distribuiion of tasks is
considered to be normally distributed having a mean of 200 and a standard deviation of
100, denoted as N(200G, 1002

The cases with three different laxity distributions are tested in order to study
the effect of tasks laxity distributions on the performance. These cases are :

(a) Zow laxity (L_LAX) : laxity distribution of tasks is N(300,1502);
{(b) Mediom laxity (M_LAX)" laxity distribution of tasks is N(450,1502);
(c) High laxity (H_LAX) : laxity distribution of tasks is N(600,1502).

In order to observe the changes in system's performance under different
system loads, the simulation is performed under light, moderate and heavy system
loads: ' '

(a) Light load (L_LOAD) : system arrival rate, R, is 8 tasks per 600 time units;
(h) Moderate load | M_L{}AD} : system arrival rafe, R, is 16 tasks per 600 time units;

{c) Heavy foad (H_LOAD) :system arrival rate R, is 24 tasks per 600 time units,




64

Consequently, the local task arrival rates for each node, under these different.
system loads are as shown in Table 7.1. '

SYSTEM LOAD LOCAL TASE ARRIVAL RATE
NODEA | NODEB | NODEC | NODED | NODEE R
L_LOAD 34600 34600 14600 | 05/600 | 05/600 | 87600
M_LOAD 67600 6/600 27600 14600 1/600 | 167600
H_LOAD 94600 9/600 37600 | 15/600 | 15/600 | 24/600

TABLE 7.1 Nodes' local task arrival rates under different system loads

Three different cases for task laxity distributions and three different cases for
system load, result in a combination of nine different cases, each of which has a
specified task laxity distribution and a specified system task arrival rate. Hence, nine
groups of tasks are generated by the global task generator program in order to be used
during the simulation studies, The listing of the global task generator program is given
in Appendix C,

The performance of the a;léorithm istested under different no conflict message
delay, MD, values as well. The purpose is to examine how communication delay affects
the system performance. |

In the simulation studies, the performance of the algorithm FB, is also compared
to that of three other algorithms explained below ;

(a) Noncoaperative scheduling algorithm (NC): In this algorithm, whenever a
task cannot be guaranteed locally, the task is discarded. No attempt is made to send the
task t0 other nodes,

“th) Rapndom scheduvling algerithm (R): In thisalgerithm, when a task cannot be
guaranteed by the local node at which it arrives, the node randomly selects another
node and directly sends the task to that node. The advantage of this algorithm is that, it
uses ti:e minimum communication overhead to determine where to schedule a task in
the network. The disadvantage is that, it is easy to send a task to an improper node
because of the randomness.

{c) .Bidding {B): This algariihm, whenever a task fails, do not select a focused node to
send the task, as in the algorithm FB, but sends a request-for-bid message to the other
" nodes, and then sends the task to the nede which offers the best bid. If there is no good



65

bid available for the tdsk it is assumed that no node in the network is able to guarantee
the task. '

The listings of the simulation pi‘ograms which implement these three
scheduling algorithms are not given because of the space [imitations. One may refer to

the diskette for the program files.

In order {o observe the effect of different network topologies an the
performance of the algorithms, all these simulations are performed on hoth of the
below communication network topologies, explained in Section 7.6.1 - ’

(a) Fully connected communication tepology (FC);

(b) Ster communication tapology (5)..

7.7.1. Effect of Laxity Distribution of Tasks

The purpose of this study is to examine how the differences in the laxity distribution of

tasks, affect the performance of the distributed scheduling algorithm FB.

The term perceﬁta;e of nonguaranteed tasks dencted as “% NG,” is used to

indicate the system performance.

Three different laxity distributions (L_LAYX N(300,1502), M_LAX : ‘N(450,1502 ),
and H_LAX : N(600,1502)) are tested as follows :

fﬁ) under moderate systeh {oad where system arrival rate (R) is 16 tasks per 600 time
units, and with different no conflict message delay values (Figure 7.3 and Figure 7.4
show the simulation results for fully connected nefwork topelogy and for star netwark
topology respectively); |

(b) under three different system loads (L_LOAD : R=8/600, M_LOAD : R=16/600, H_LOAD :
R=24/600}, with a constant no conflict message delay (MD) value which is taken to be 36
time units (Figure 75 and Figure 76 show the simulation results for fully connected

network topology and for star network topology respectively).



66

From the simulation results, it is easily observed that the task laxity does affect
the system performance. '

As seen from Figures 7.3, 74, 75 and 76, when the mean of fasks' laxily

distribution increases, the percentage of tasks nonguaraxiteed decreases significantly.

From Figure 7.3, it is observed that when laxity increases from L_LAX to H_LAX,
the percentage of tasks nonguaranteed decreases by an amount betweéen nine and 14
per cent, for different values of MD. But as seen from Figure 7.4, on star topology this
decrease is not very significant for high values of MD. For example, when MD is 96,
there is only a decrease of three per cent en the number of nonguaranteed tasks. This
implies that, when message delay is very large, the increase in laxity does not affect
the system performance on star cemmunication fopology, as much as it does on fully
connected communication toepology. |

Figures 75 and 7.6 show that, increasing the {ask laxity, decreases the
percentiage of tasks nonguaranteed under each one of the different system loads, on
both of the communication topologies. This decrease is more obvious when the system
load is light or moederate than when the system foad is heavy. This reflects the fact that,
when the system arrival rate is high, there are so many tasks to be scheduled in the
system that increasing the mean of the task laxity distribution does not result-in a
significan{ increase in system performance.

7.7.2. Effect of Communication Delay

In this section, how the communication delay affects the system performance of the
algorithm FB, is examined. In the simulation studies, the term percentage of guaranteed

tasks, denoted as “% G is used o indicate the system performance.

The first set of simulation studies with different no conflict message delay (MC)
values, is performed under moderate system load (R=16/600), on twe groups of tasks
having different laxity distributions, One group of tasks is generated by using a low
laxity distribution (N(300,1502)), and the other by using a high laxity distribution
{N(600,1502)). The performance observations of these two groups, with different MD
values are shown in Figures 7.7 and 7 8.



% NG

2B

S I R o S 4

L]

L

3

L]

.
_.."/' . ——
- —,:'o‘/
— * ’_‘,-" '
o ¥ ../('
———e : =
. e n
—p o= =
."/. <
_/"/ 'b_.l/
o Pl : el
] ,/. .
|| B o= f— : e ~f
Z ) 16 s 36 &b 96

MESSAGE DELAY

FIGURE 7.3 Effect of task laxity when R=16/600 and Topolagy=FC

=
A N
; ',-"'. o d ,“'.l
)
e
- kL
e
- g o '_v'
- -~
4 < -
- }3.‘.-' !.'
'.’,. = \."_.r
g
t £
- - V)
—— .-"—:} ".’
L o C,..
|
- | ol -
. e
W n ] 3 +—— { {
2 b 16 6 36 &6 96

MESSAGE DELAY

FIGURE 7.4 Effect of task laxity when R=16/600 and Topalogy=S

67

1# LLAX

O MLLAX
- H {AX

*- L {AX
O M_LAX
|- H {AX




R NG

20 e

} 8‘ . /" - ,.-' -

*- [ LAX
O M_LAX
W—H_[AX

1 - ﬁ' ...f R

M_LOAD
SYSTEM LOAD

L_LOAD

FIGURE 7.5 Eifect of task laxity when MD=36 and Topology=FC

% NG

2 (.} ...f::‘;ga-" ...',-' a

16 o 7

M_LOAD
SYSTEM LOAD

H_LGAD

*- [_LAX
- M_LAX
- H_IAX

FIGURE 7.6 Effect of task laxity when MD=36 and Topology=5

68



69

Before discussing the simulation results, the terms used in the figures need to
be defined :

TG - Total Number of Tasks Guaranteed in the System

Total Number of Tasks Generated in the System > foo,
GL Total- Number of Tasks Guaranteed Locally 100

“ Total Number of Tasks Generated in the System

Total Number of Tasks Guaranised Network Wide
GNW

= “Total Number of Tasks Generated in the System 100.

When the above resulls are obtained on fully connected system model the term
"FC_" and when they are obtained on star system model the term "S_" precedes the
ahove terms. '

As seen from Figures 7.7 and 7.8, as the value of MD increases, the performance
of the system degrades. When laxity is low (Figure 7.7), this decrease in the percentage
of total guaranteed tasks starts at MD=6 time units, whereas when laxity is high
(Figure 7.8), it starts at MD=26 time units. This reflects the fact that, when tasks’ laxities
are less tight, the overhead of long communication delays can be tolerated to some

extend,

It is easily observed that, the effect of the communication overhead, is more
abvious on star system model than it is en .fully connected one. On star topology, as MD
increases, the decrease in the percentage of total guaranteed tasks is faster. For

example, when laxity is high (Figure 738}, an increase in MD from 16 to 96 time units,
" resultsin 4 decrease in the percentage of total guaranteed tasks by an amount of 25 per
cent an star topology. However, this amount is enly nine per cent on fully connected
topology. This is because of the fact that, as MD increases from 16 to 96 time units,
although there is just a two per cent increase in the percentage of tasks guaranteed
lacally, the percentage of tasks guaranteed network wide, that is to say at a remote node
by focused addressing and hidding, decreases by Il per cent on fully connected
tepology, but by 27 per cent on star topelogy. So, increase in MD decreases the locally
nonguaranteed tasks’ chance of being guaranteed at remote nodes, more significantly



70

on star topology than it does on [ully connected tppoldgy, This implies that the.

communication network topology of a system, is also an important factor in tolerating

‘high communication delays.

100 1
90 &

FC_TG
S_TG
FC_GL
5_6L
FC_GNW

S_ONW

gy >
“-—-‘_‘_\ ?:_:‘_t-‘;’
70 ' ) _ O 3 —— b:b-'ﬂ
—  g—
60 EJ——'—T-.__—._EL_—-—
RG 50
40
30
\ﬁ?\“\x\
:}Q \ o ‘“""N. e
< ™~ e
10 \\a'*_""‘ ——— B
& B * et
0 ' -+ ) = f H mﬂs
2 & 16 26
' MESSAGE DELAY
FIGURE 7.7 Effect of MD under M_LOAD and L_LAX
100 © < e S ———
90
a0
[P — Q= E—
6
"G W
40
ey D—— o
30 . === g S
———— &\
20
10
G t t t
2 & i6 26

MESSAGE DELAY

FIGURE7 8 Eifect of MD under M_LOAD and H_LAX

\
i,



71

As mentioned before, in Figure 7.7, the lines "FC_GNW" and "S_GNW" indicate the
percentage of tasks guaranieed network wide, on two different topologies, under
maderate load and low laxity. Figures 7.9 and 7.10, further present the details about how
these tasks guaranteed at remote nodes are actually guaranteed. Figure 7.9 shows the
results for fully connected system model, and Figure 7.10, for star system model. ‘

According to the distribuied scheduling algorithm FB, there are three possible
ways for a task to be guaranteed network wide :

{A) When a task cannot be guaranteed locally, the local scheduler, if it finds a node
having sufficient surplus to guarantee it, sends the ta’sk to that node through focused
addressing. Hence, a task can bhe guarahteed at the focused node. This first way of
guarantee is named as guaranteed by focvsed addressing and denoted as "G_FA"
in the figures, ’

(B) The local scheduler, in addition to sending the task to the focused node, sends
" requesi-for-bid messages to the remaining nodes, to handle the case where the task
cannot be guaranteed at focused node, If this happens, the focused node evaluates the
bids arrived for this task, and sends the task to the best bidder, if there is any, so that
the task has a chance of being guaranteed at this "second step” node. This way of
guarantee is called guaranteed by focused addressing and bidding and denoted
as "G_FAB" in the figures.

{C) In case that there is no focused node having sufficient surplus to guarantee the
task, the local scheduler starts the bidding process, and then sends the task {o the node
which offers the best bid. Sc¢ a task can be guaranteed at the bidder node. This third way
of guarantee is named as guaranleed by direct bidding and denoted as "G_B" in the

figures,

As seen from Figures 7.9 and 7.10, there is no task guaranteed by focused
addressing and bidding (FABR), when MDz46 time units on fully connected topelogy, and

when MDz: 16 time units on star topology. Because when communication delay is high, it
is very difficult to find encugh time to attempt to schedule a task which is not
guaranteed at focused node, at a second step node, This effect of MD, is much more

obvious on star system model.

These figures also show that, at high message delays, guaranteeing by direct

* bidding (B), becomes difficult as well. No task is guaranteed by direct bidding when
MD=96 time units for fully connected system model (Figure 7.9), and when MD266 time

units on star system madel (Figure 7.10).This reflects the fact that at high

L



communication delays the message traffic required by bidding process creates an

nverhead.

3

Y

=]
ay}

M

O~

-‘*‘{L

o}
36 66 - 146
MESSAGE DELAY ‘

96 176

FIGURE 7.9 Effect of MD {details of FC_GNW)

"~

~

o——1n

186

s

G_NW
G_FA
G_FAB
6B

-
-

G_NW
G_FA
G_FAE
6B

{m|
0

36 £66
MESSAGE DELAY

146

FIGURE 7.10 Effect of MD (details of S_GNW)

186




73

The system performance on fully connected topology is not as sensitive to MD as
it is on star topology. For example, on star topology, there is no task guaranteed
network wide when MD=96 time units, whereas, on fully connected one, at MD=96 time
units, the percentage of tasks guaranteed network wide is five. Moreover, this

percentage remains positive for much higher values of MD, and finally becomeszero at
MD=18%6 time units.

In order to observe the effect of the communication delay under different
system loads, a set of simulations is performed. In these studies, tasks’ laxity distribution
is chosen to be low laxity (L_LAX : N(300,1502}), and the performance of the algorithm
is tested under light, moderate, and heavy system toads (L_LOAD : R=8/600, M_LOAD :
R=16/600, and H_LOAD R=24s-’600). on both of the fully connected and star system
models (FCand S). The results obtained are presented in Figure 7.11.

1t is observed that, as MD increases from two to 95 time units, the decrease in the
percentage of guaranteed tasks is:

{a) under light load : six per cent for FC topology, and 10 per cent for S topology;
{(b) under moderate load : 14 per cent for FC topolngy, and 19 per cent for S topology;

(¢} under heavy load : 22 per cent for FC topology, and 24 per cent for S topology.

:‘ vy
g7 =] = o 2 b sy
[r % \‘- e
34 — ) . e '
9 D= % o | FC_LLOAD
S N -
85 "\“\D \‘\m. - - @ S_L_LOAD
57 & \“\_ T~ — .
2% ___b_\\\x‘ ~E:._,_~\” u. & FC_M _LOAD

%6 79 T g > ,

76 g k=g | O~ 5_M_L0AD
73 ~ ) g -
o | e N O] 4 FC_H_L0AD
- - o Y '
67 : e F Ny 4 S H {O0AD
61 ‘ Ta
58 : - ' ==
7] } ! ¢ — + —d

z & - 16 26 36 B 9

- MESSAGE DELAY

FIGURE 7.11 Effect of MD under L_LAX and different system loads



74

Hence, according to these results, it can be concluded that the effect of MD on.
the system’s performance becomes more significant as the load of the system becomes

heavier, and also, this effect is more explicit on star system model than it is an fully
connected one,

7.7.3, Effect of System’'s Communication Network Topology

In order to abserve the effect of system’s network topelogy on the performance of the
- algorithm FB, the algnrithm is tested on both of fully connected and star system models,
under light, moderate, and heavy system foads (L_LOAD K R=8/600, M_LOAD : R=16/600,
and H_LOAD : R=24/600), for each of the three different laxity distributions of tasks
(L_LAX : N(300,1502), M_LAX : N(450,1502), and H_LAX : N(600,1502)), The resulis
obtained are as shown in Figure 7.12. During these simulation studies, no conflict
message delay, MD, value of the systém istaken to be 36 time units,

100 z«F:._:M, . _
% TR " '
\:“"‘\.‘_‘\H‘\‘ "““‘-.
a2 %\‘“ﬁ e &
e W e ®- FC_H_LAX
a0 il ey -
¢ “T‘H‘::E&\‘\ \\k\\ \““\ 0- S_H——LAX
a4 {".\:.‘:‘\\ ‘\‘\\\ ‘\'\:‘"\. = \.\\
. S BN B FC_M_LAX
56 80 =g B S
% 6 S TR o osruax
76 i Sh
. u\\\n\ - Mg | W FCLLAX
S B Y
68 Ny
4 5
60 t f t t t i
L_LOAD M_LOAD - H_LOAD

SYSTEM LOAD

FIGURE 7.12 Effect of system's communication network topology



75

me the simulation studies, it isobserved that when the system load is light, the
performance of the algorithm FB is the same on both of the topologies, for each of the
cases. But, when the system load is moderate, the differsnce between the performance
' bof fully connected system model and that of the star system ﬁxodel is five per cent at
H_LAZX, 10 per cent at M_LAX, and five per centat L_LAX. Further, when the system load
is heavy, this difference isseven per cent at H_LAX, nine per centat M_LAX, and 12 per
centatL_LAX. Hence, as the system load becomes heavier, and tasks' deadlines become
more tight, the algorithm FB pecforms better on fully connected topology than it does
on star mpolbgy. ' .

It should also be added that, as mentioned in Section 7.7.2, the performance of
the algorithm FB, on fully connected topology. is not as sensitive to communication
overheads as it is on star topelogy.(see Figure 7.11),

7.7.4. Comparison of Algorithm FB with Algorithms NC and R

In order to compare the performance of the algorithm FB to the performances of the
noncooperative scheduling algorithm, NC, and of the random scheduling algorithm, R,
three cases with different task laxity distributions (L_LAX : N(300,1502),
M_LAX : N(450,1502), and H_LAX : N(a00,1502)) are tested. The results are shown in
Figures 7.13 through 7.18, In each case, the performances of the algorithms NC, R, and
FB, are ohserved under light, mederate, and heavy system loads (L_LOAD : R=8/600,
M_LOAD : R=16/600, and H_LOAD : R=24/600). During these simulation studies, the
system's message delay, MD, is taken to be 26 time units. The performances of the
algorithms FB and R are evaluated on both fully connected (Figures 7.13, 7.15, 7.17) and
star (Figures 7.14, 7.16, 7.18) system models.

As seen from the figures, in most cases the performance of the algorithm FB is
. much better than the lower bound offered by the algorithm NC. The percentage of
guaranteed tasks of the algorithm FB is higher than that of the algorithm NC, by an
amount betwean five and 24 per cent on star system model, and by an amount between
five and 27 per cent on fully connected one. This proves the fact that distributed
scheduling improves the performance of a hard real-time system.



[y —

47
94
91
5
B2
7
G 9
7
7
&7
54
61
58

o5

L_LOAD

FIGURE 7.13 Comparison of FB, R, and NC when Laxity=H_LAX and Topology=FC

97
G4
31
a8

s

e

79
76

2

-5
bi

64 1

ol

53

55

LLOAD

FIGURE 7.14 Comparison of FB, R, and NC when Laxity=H_LAX and Topology=$

[HEARY

85 1
".

————— .

M_LOAD
SYSTEM LOAD

MLOAD
SYSTEM LOAD

H_LOAD

* FB

& N

2R

| NC

* B

76



94

88

5]

: a2

o 79
76
73
70
67
64
61
89
55

L_LOAD

FIGURE7.15 Ccsmparisdn of FB, R, and NCwhen Laxity-M_LAX and Tepology-FC

55

LLOAD

FIGURE 7.16 Comparison of FB, R, and NC when Laxity=M_LAX and Topology=$

M_LOAD
SYSTEM LOAD

M_LOAD H_LOAD

SYSTEM LOAD

* 8
.o_ R
W NG

H_LOAD

- B
2R

o N

77



&G

FIGURE 7.17 Comparison of FB, R, and NC when Laxity=L_LAX and Topology=FC

67
64

61

St

a9

L_LOAD

M_LOAD
SYSTEM LOAD

.,
A

- B
.o- F‘,

B- NC

H_LOAD

4 B
O R

8- NC

78

M_LOAD
SYSTEM LOAD

FIGURE 7.18 Camparison of FB, R, and NC when Laxity=1._LAX and Topofogy=S

L

\



79

In all cases, on fully cdnnected topology, the performance of the algorithm FB
is better than that of the algorithm R. This s expected in most cases, since the decisions
about to which node to send the tasks locally nonguaranteed, are made by using the

network wide surplus information in the algorithm FB, whereas in the algorithm R,
they are made randomly. ' ' '

Except one case, the performance of the algorithm FB is better on star topology
as well, But, at the point where the system load is heavy (H_LOAD) and tasks’ deadlines
are tight (L_LAX), the performance of the algorithm R is observed to be higher than
that of the algorithm FB, by an amount of two per cent. Since the algorithm FB requires
much more communication than the algorithm R, when the system load is heavy the

non-negligible message delay MD, which was taken to be 26 tlme units, results in a
performance lower than that of the algorithm R, '

When the system load is light, ne performance difference is observed hetween
the algorithms FB and R. This reflects the fact that when the load is light. most of the
nodes have encugh s{lrpius so that any node selected randomly is as good as any other
node,

7.7.5. Comparison of Algorithm FB with Algorithm B

In erder to compare the performance of the algerithm FB which ccambineé focused
addressing and bidding, with that of the algorithm B which uses bidding only. a set of
simulation studies is performed. First, under mederate ':yqtem load (M_LOAD : R=16/600),
the performance of the algorithms is evaluated with different no conflict message
delay valves, for each of the three different laxity distributions (L_LAX : N(300,1502),
M_LAX : N(450,1502), and H_LAX : N(600,1502)), on both of fully connected and star
network topologies, Figures 7.19 and 7.20 qhow the simulation results for fully

cannected and star system models respectively. Supperted b‘y these results, it is easily
cancluded that the algorithm FB performs better than B.

As seen from Figures 7.19 and 7.20, the communication overhead does have an

explicit effect on the performance of both of the algorithms.



100 ?

~“"—-
9% O———0= -
4 . T T
96 Loy Sy
94 O
. - B R o
g0 > IR " 'E‘.‘ ‘._\ .
BB S ~- <
Bt SR "
84 T B “‘-\
a2 & R D
B} SN S
., = \

78 e
76 - e
7 4 ~._‘7~~~‘\ -.‘
72 ha=ty
0 t : t i } } |

2 & 1% 5 36 66 G5

MESSAGE DELAY

&0

-
o
-
o
&

-

B_H_LAX
FB_H_LAX
B_M_LAX
FB_M_LAY
B_L_LAX
FB_L_LAX

FIGURE 7.19 Comparison of FB and B when R=16/600 and Topology=FC

92

G}

55

B

B

353
» A

B

78

76

74

e

)
{ } .

70

[

5 16 26
MESSAGE DELAY

B_H_LAX
FBE_H 1 AX
B_M_LaX
FE_M_LAX
B_L_LAX
FE_L_LAX

FIGURE 7.20 Comparison of B and B when R=16/600-and Topology=5



81

When MD is small, the performance of the algorithm B is close to that of the
algorithm FB. As MD increases, the difference between the performances of the two
schemes increases. For sxample, on fully connected system model, although the
performances of the twn algorithms are the same at MD=16 time units, at MD=96 time
units, the percentage of guaranteed tasks by the algorithm FB is higher than that of
the algorithm B, by an amount of 13 per cent at H_LAX, six per cent at M_LAX, and five
per centat L_LAX Thisdifference is not so significant on star system model, because in

this model, the performance of the algorithm FB also decreases explicitly at MD=96 time
units.

Hence, it i5 observed that the performance of the algorithm FB is not as
sensitive fo MD as that of the algorithm B, This is because bidding always requires more
message traffic, Also, the overhead of processing‘ the request-for-bid messages and
bids, affects the lperforman‘ce of the algorithm B at high MD values, Although the
algorithm FB also uses bidding scheme, it has the advantage of being able to send a
Jocally nonguaranieed task immediately to a focused node, using network wide surplus
information of the previsus window, This feature prevents the algorithm FB from
decreasing in performance as much as the algorithm B dees, at high communication
delays.

As a result, it is concluded that the algorithm FB, compared to the algorithm B,
performs well over a large range of no conflict message delays.

Further, the performances of these two algorithms are compared under heavy,
maoderate, and light system loads { L_LOAD : R=8/600, M_LOAD : R=16/600, and
H_LOAD : R=24/600 }, with low, medium, and high laxity distributions of tasks, at a
constant no conflict message delay which is taken te be 36 time units. The results
obtained are presented in Figure 721 for fully connected system mode-l, and in
. Figure 722 for star system model These ohservations show that the algorithm FR
performs better than the algorithm B under different system loads aqd ‘tasks’ laxities,

on both of the network topologies.



£ &

"“:559:::::3::_@

52

o5, c::'__
92 | |
- B _H_LAX
BE
- FB_H_LAY
84
B B_M_LAX
B0
) O FB_M_LAX
KL
. — | B_LAX
72
A
65 FB_L_LAY
£}
B0 1 ; t t 1 {
L_LOAD H_LOAD H_LOAD
- SYSTEM LOAD
FIGURE 7.21 Comparison of FB and B when MD=36 and Topology=FC
100 Qe
a6 B O
- {. ™ ' \Q,"\‘ﬁ_‘_“(
2 1y = '
TN *- BE_H LAX
a9 g *
R g, N O FB_H_LAX
B4 R e
N L W B M LAX
81:5 LS R :
i R O FB_M_LAX
Y “\__ _‘“-‘.\ e - \-..,\ .
B O o | W BLLAY
i “\K T, T
: e o & FB_L_LAX
68 R
: ‘\\‘ \\“‘. .
&4 A
- i ] £, [] "“
f:,O { T ¥ t T {
LLOAD FM_LOAD H_LOAD

SYSTEM LOAD

FIGURE 7.22 Comparison of FB and B when MD=36 and Topology=S



83

VII1. CONCLUSION

In a hard real-time processing or control environment, sach task mﬁsi be completed
within a specified amount of time after being requested. If any task Tails to complete in
time, the entire system fails. Hence, one of the most important steps in designing a
real-time computer system is to supply it with an efficient task scheduler. In a real-
time context, efficiency is essential both for achieving the best use of the computer
and for adhering with severe timing constraints relating to task executions.

Considerable research effort has been contributed to the subject of scheduling
algorithms for hard real-time systems for decades. However, for most ap plications, the
problem is often hard. For most cases, the problem of determining a static optimal
schedule for a mulliprocessor system is known to be NP-Complete. The problem is
further complicated when dynamic distributed systems are dealt with, in which tasks
can arrive dynamically at any nodes and the communication delaﬁf among the nodes is

inherent and non—negligiﬁle. o

-In this thesis, the prdhleni of dynamic scheduling of hard real-time tasks with
resource requirements in distributed computer systems is »con'side-red, A heuristic
scheduling approach for solving the problem is studied. Needless to mention, since
heuristics are built into the algorithm, it is not optimal, Heuristics are necessary given
the computaiicmaﬂy‘hard nature of the scheduling problem. An aptimal algerithm, in
the worst case, may make an exhaustive search which is computationally intractable.

In order {0 make the algorithm computationally tracta'ble even in the worst case, a
heuristic approach has to be taken, That is, on each level of the search, a heuristic
function is applied to each of the tasks that remain to be scheduled. The task with the
minimum value of this heuristic function is selected to extend the current schedule,

Therefore, even in the worst case, the algorithm is nof exponential.

The simulation studies performed on this algorithm, in Part VI, with different
sets of tasks indicate that combination of sjmple heuristics with small number of
backiracks perforins very close to the optimal algorithm that uses exhaustive search.
Hence, this is an atiractive approach to on-line schedufing in dynamic real-time

systems.



84

The heuristic function is invoked & i (i=1,..k, k being the size of the task set)
times, resulting in @ time complexity of k2. Pseudo backtracks do not increase the
computational complexity. Moreover, the computation cost increased by real
backtracks cannot effect the total complexity, so long as the upper bound of real
backtracks is pre-set to less than k% The time complexity k? of the algorithm is fairly
low compared to that of an exhaustive search algorithm which takes time pmpoi‘tit)nal
o k! The other features of the algorithm are that it takes both tasks' active and passive

respurce requirements into account, is dvnamic, and is distributed.

~ Of course, there is the question of cost versus performance of the heuristics
proposed in Part VI The 1mpmved performance that results from the use of complex
mechanisms, such. as bm,ktmukmg. may be offset by the computational overheads
introduced by such mechanisms. Such overheads may be tolerated if a separate
specially designed coprocessor is used for scheduling. In case such a processor is not -
used, one should use the simplest algorithm appmpi‘iate for the application under
consideration. '

This introduces the issue of selection of heuristics appropriate for a given
situation. For example, as observed in the course of discussions of the simulation
results, in Part VI, simple (single} heuristics may suffice if the deadlines of tasks being
scheduled are not very tight.

The cooperation among the nodes, needed when a node is unable to guarantee a
task, occurs through a combined scheme of bidding and focused addressing as
explained in Part VII. It should be pointed out that bidding and focused addfessing
techniques are refined forms of the traditienal qource—ihitiated and server-initiated
scheduling techniques. The combined scheme functions satisfactorily in ﬂpﬁ,e of
imprecise and incomplete global state infermation of the system.

The results of the simulation studies show that in a wide range of application
environments (defined by task characteristics, system loads, communication delays,
system network topologies, etc.), this scheme is effective and practical, and has a
performance better than the other three algorithms that it is compared with : bidding
only, random scheduling, and noncoeaperative scheduling algorithms. It is observed
that the system perfermance improves when.bidding is used in conjunction with
focused addressing. In fact, focused addressing is an intelligent form of random
scheduling in that it takes into account node’s surplus information in choeosing a noede
to send a task, By using a scheme that incerporates focused addressing and bidding, the

henefits of both schemes are reaped.



&

APPENDIX A. LOCAL TASK GENERATOR

progrom tosk_gsnerstion;

{Thiz prograom uszing the preset generating poromeiers, generates a number of
task sets so that each of them has ot leasi one full feasible scheduls.
‘Those scheduiobie task zets  will be used gz input doto by the  Local
Schaduler FProgrom which checks the performance of various heuristics.}

const
number_of _task _sets = 200, {rumber of task sets io be generated}
number_of _tasks = 6, {numbar of taske in one task set}
mu_compt = 200; . . ~ ' _
sigcompt = 100; {mzan ond standard deviation of tasks' computation time)}

mafoxiiy = 4DB
sig.laxity = Eﬁﬂ {macn qnd stardard deviation of tasks' laxity distribution}

r=35 .  {rumbar of rascurces on a node}
re =7, '
type . .
- taskset = arroyll, .rnumber_of_tosks, 1. .rrl] of irteger; -
var .
Tset : taskset; ‘ {contains specifications of tasks in a task set}

count © intager;
schedulable ;| boolean;
tagksfile . text;

procedure generate_toask-set(var T:lasksei);
{create a task set, by generating ta~k spaccftcat:ons for each task in it}
var
counter,i,j : integer;
. n o oreal;
begin '
for i:=1 to numberof_tasks do -
for ji=1 to P42 do TI1,j1:=0; ‘ {initialize task set}
counter:=1; {generate computation times for each task}
rapaat
r:=0;
for 1'=1 io 12 do n: —n*ﬁﬂﬁﬂﬂﬂ
ri: =5 ig_compt¥(r~6rtmucompt;
I truncin’»0
then begin
Tloounter, r+13 miruncing;
colirier: =countert]

- @yl
until countersnumber.of_tosket1;
counter:=1; . {generate laxities and calculate deadlines using them}
repeqgt
n=0;

for t"1 to 12 do n:=n+RAHDOM;
tii=sig.axityk(n-6rtmu_iaxity;
if truncin»0



86

then beagin

Tlcounter,r+21:=truncin T lcounter  r+1];
counter: =courter+

and
unti! counter=rumber_of_tosks+1; _ ‘
for i:=1 to number.of_tasks do {gererate resource requirements)

repeat .
for- J:=1 to v do
if RANDOM<=0.5
then TLi,j1.=1
glse Ti1,j):=0 :
until £(TII, 13<#ﬂ3 or {Tl] 2}<7ﬂ§)
and; {generata_ia,k.sei}
procedurs exhaust;vﬁ.sﬁarcth taskset; var zcheduioble: baalean}
{perform an exhaustive search which checks all the posatblﬁ permutaf:ons
of the task set, one by ona, until a full feasible schedule is found. [f there
iz not any full feazible schedule, the task set is nonschedulobie.}
label stop;
type

- egtoorray = arrayll, .rl of inieger;

var
fi,i,j,k,01,mn ;: integar;
EAT,EATI,EAT] EATK,EAT1 ,EATM : eat_array;
paszdead! ine : boclean;

procedure init;

var
z: t..r;
begin
for z:=1 to r do
begin
EATiIz):=0;
EATjIz).=0;
EATkI{z]:=0;
EATI(z):=0;
EATmiz]: =0
&l
ard; {init}

procedure schedule(T:taskset;tt: integer;var EAT:eat_array;var pass:boolean);
var
ma, min, Z, startlt @ integer;
Hew EAT . sat_areoy;
begin :
may =0
POsS -fqtse,
for z:=1 to r do Hew ERTIz1:=0;
for z:=1 to r do
if Titt,z1<>0
then 1 EATIz] =max
then max:=EAT(z];
start t.=max;
min:=9999;
for z:=1 to r do
begin
if Titt,zi<»0
then bagsn
Mew EATIz1:=start t4T1tL,r+1];
if Hew EATIz1>TItt,r+21 then pa;s:=twue
and
zlse Mew EATIz]:=EATI(Z];

i

\
|

\



if {{z=1) or Cz=20 ‘
then if New ERTIz)<=nin
then min:=New_EARTIz)
and; ) -
if not pass
then begin
for 2:1=1 to r do
11 New ERTIz)<min
then EATIz):=min
else ERTIz):=New ERTIx];
end '
end; {schadule}

bagin {axhaustive_search} —
init;
for i:=1 to number of_tasks do
begin
for ii:=1 to r do EATILii):=0;
schedule(T, i ,EAT,passdead] ine’;
if not passdaadiing then
begin
for ii:=1 to r do EATILii):=EATIii};
for j:=1 to rumbar_of_togks do
i1 14>] then
begin
for ji:=1 to r do EATLI ) =EATILii];
scheduledT, j ,EAT,passdead] ine’;
if not passdeadiine then
begirn o
for 1i:=1 to r do EATJ LI :=ERTLIi];
for k:=1 to number_of_tasks do
if k4rid and (k<2j) then
begin
for ii:=1 to r do EATLii1:=EATjLii];
schedule(T ,k,EAT,passdead] ine’;
if not passdeadline then
bagin
for 1i:=1 to r do EATKITi:=EATLii];
for |:=1 to numbar_of_tasks do
I €1421) and €14>) ) and (14>k) then
begin
for ii:=1 to r do EATIii):=EATKIii];
schedule(T, | EAT,passdead} ine’;
if not passdeadiine then
begin .
for ii:=1 o0 r do EATILiil:=EATIii];
for m:=1 to numbar_of.tasks do
if (meziy and (m<>}3 and (m<>k) and (m<>13 then
begin
for- ii:=1 4o v do EATIii]1:=EATILii];
schadulel{T,m,EAT  passdaad] ine’;
if not passdeadiing then
begin :
for {i:=1 to r do EATmIi1]:=EATLii];
for ni=l {0 runber oftazks do
1 Cnsxly and (nerj s and {nisk?
and tri21 0 and {n<rm3 then
bagin
for 11:21 Lo r do EATL1i):=EATMLii];
zchadula(T,n,EAT ,passdaad] ina’;
| f not passdead!|ine then
begin

87



88

scheduiablie:=true;
goto stop
end
and
end
end

and;
stop © end; {exhaustive_search}

procedure write tosk zet(T: {askset ),
{write task zpecificotions of the schedulable task set into g file}
var
ci,e2 : integer;
begin
for cl:=1 io rumber.of.tasks do
begin
for ¢2.:=1 to r+2 do
griteiiazksfiia, Teatlel,c21:55;
writelnitasksfile)
£ .
and; {write_task-set}

begin {main}
rardomize;
_ ossignl{tasksfile, tasks.dat’);
rewrite(taskefile);
count =0,
repeat : :
generate_task_set(Tsetl; {generate a task set}
zcheduloble:=faize;
axhoustive searchiTset, schadulable’;
{parform axhaustive saarch to check if this generatiad tosk sei hos ot laost
one full feasible schedule or not}
i f schedulable
‘then begin
write tosb.set(Tzel),
count: =eounitl;
writein ' count = ' ,count 27
vl - ,
untii countsnumbarof task zetis;
closeltasksfiie) -

end. {main}



89

APPENDIX B. LOCAL SCHEDULING PROGRAM

progrom loeol_echedul ing;

{This program, given a rumber of schedulable task sets, determines the
performance of the local scheduling aigorithm. For each of the simple and
integraled heuristic functions H, the rumber of task seis scheduled by the
aigorithm is calculoted.} A .

const
HC = 3; ' {max counter used in real backtracking}
ro=3; {number of rescurces on each nodel
rr = 7; ‘ '
rumber_of _iosk_sets = 200; frumber of task sets to be processed}
rumbsr_of _tazks = 6; {rumber of taskz in one taszk =zet}
number.of zim_types = 6; {rumber of different heuristic funciions}
iype

resourcear = array [1..r] of integer;
realor = array [1..r] of real;
bool.ar = pockad orray [1..r] of boolaan;
01d-EATpirtype = “01d-EATiyps;

. BidEATiYpe = record A

GId_EAT : resource.ar;
link : Oid.EATpirtyps

st
nodeptir = “nodetyps;
zaominptir = ‘sseminpiriyps;
sacminpirtype = record
secminnode | nodeptr;
nextsecmin : secminptr
. ‘eﬁd;
rodetype = record
id : =ztringl2l; _
arr.t,deadl ine,start.t,comp_t @ integer;
res.need . bool.ar;
secmin : secminptr;
prauv, naxt : nodaptr;
Mew EAT : resource.or;
Oid_EATpir : OiIdEATpirtype
and;
st type =1..number of-sim.igpes;
task_szets.range = 0. .number of._task.sets;

uar : v
try @ 0..5; : ' '
guorantesd. tosk.ssis pravious.valus : iozk seiz_ronge;
active ;| bool.ar;

neincraaze | boolean;

gim-type @ st-iyps;

W real;

procedure init;



90

begin
aotivellli=true;activel2) =true;
aotiveldl:=false;activeld ] =false;activelS]:=false;
and; {init}

{indicate active and passive resources}

procedure get_tasks(uar infile: text;var firsi_task_pir: nodeptr’;

{read task_set's specifications from the input file,and create a task queue}
var

ii,i : integer;
P,q : hodeptir;
rincoarray [1..rr] of integer;
bagin _
naw(q?
q previEnil;g” . secmin: -n:i B
q” Q{d_EHTptr =nil; flrst_task_pir =q;
Cfor jii=1 1o number_gf,tasks do
bagin
newipl;
with p* do
bagin
2ir(ii:2, idy siart =,
rext.=nil;preav =q;secmin;=nil;
4. EATptr =nil;
for 1:=1 1o rr do readlinfile,rnlily;
readininfile’;
deadi ine: =rn!r+2],
comp.t: =rnlr+il;
for i:=1 {0  do
if rreli142 O then res_need{il.=trus
elze res.neadlil . =false;
for i:=1 to r do Hew ERT[i]:=0
. ard; :
q°.next.=p;q:5p
erd .
end; {get._tasks}

procadure delete queuslvar fr:nodeptr);
var
n,pn . nodeptr;
begin
prii=fri;n:=pn” next;
repeat
disposaiph’;
phi=n; ,
if nirnt! then ni=n' . next
until prenil
and; {delete quaus}

procedure scheduler(sim-type:st_type;var guaranised:boclean;l:real;
yor- {irzt task_pironodeptr: EAT resourcs o))

war

ampty, passdaad! ine @ boolean;

zchedule, s, f,pir,sz : nodepir;

temppir : sEﬁmrnpfr

DROR : real.ar;

counter integer;

procedure caleulats ST,
raicuiate the stort txme of the task if it is scheduled next}
var

max, i . integer;

p : nodeptr;



91

begin
poafirst task ptr" nexti;
while pirnil do
bagin
mox ;=0
for i: —1 to r do
if p*.res.needlil then if EATLil>=max than max =EATIi];
p*.start t =may;
pr=p” next
&nd
end; {calculate ST}

procedure eal eyl ote DRORCvor OFRDF :real.ary,
{calculate Dynamic Resource Demand Rotio, which indicates the degree to which
tozks that remain 4o be scheduled will demard resources}

Y
" fraction,tot_comp_t, max,i : integer;
P : nodepir;
begin
for i:=1 o r do
begin
tot_comp.t.=0;
mox :=0;

p:=first_task_ptr* _ next,
while psrnil do

begin
if p*.resneedlil
then begin
tot.,camp...: tot _comp. i+p” ramp_
if o deodl iner=max than max:=p” . deadl ine
and;
po=p”.next
&nd;

fraction: =max-EATLi];
if fraction=) then DRORLI1:=0
aize if max=0 then DRORIi1:=0
e«i{=ze DRDRAIIY: -tot_comp_t/fractfon
and
and; {caloulate_DROR}

function stranqlu_teusible(DRDR real_ar):boolemn;
var
i 1 integer;
bagin
‘strongly_feasible:=true;
for i:=1 to r do if DRDR[|]>-1 then :tronglu-feus:ble =fulse;
if possdead] ine then strongly.feasiblai=false
- .and; {:tronglg_tea\ibIEs

procedure caloulate New ERT;
{calculate the EAT values of the task if it is =cheduled next}

var

minéi 1 integer;
P nodeptr;
bagin

p.—ti»;t-ta:k.ptr‘ next;
passdecd! ine:=faise;
while {pieni) ard {not pussdgadlin:‘ do
begin
mini=maxint;
for i:=1 topr do

begin



92

it p".res_needli] then beqin
£ New EATLi l:=p" .start_t+p".comp_t;
if p*.New ERTIi I>p" . deadl ine
than possdaad! ina:=true
end
. alse p*.New EATIIiI:=EATILil;
if activelil then it p*.New EATIil<=min
then mini=p" New EATI[i]
and; :
for 1:=1 to r do
If p” New_EATLi l<minr then p~ .New_EATIi1:=min;
p:=p°® .next
end ’
end; {caloulate_New ERT) _
procedure calculate_minH(uar ptr:nodeptr; ,lm_tgpe st type U.real ),
{detect which tosks, omong the tasks that remain to be scheduled, have mtnlmum
- ond zecond minimum walues of the function H}
var :
temp,i : intagar;
zacondmih,min,H . real;
zecpointer,q | nodeptr;
£ac | sacminptir;
p,Pp ¢ DId.ERTpirtype;
bagit
min:smaxint; secondmin:=maxint;
pir:=nil; g:=first_task pir” .next;
while qirnil do
begin
case 51m_iupe of
: Hi=g*.deadiine;
: H‘-q stort_t;
: H:=q" .comp_t;
: H: -q .degd! ine-(q” start. itq" eomp-i)
: H:=q".dead! ineti¥q” . comp.i;
. H:=q".deadl inetll*q" . start. .t

gx:nus»ht.om...

4

if Hi=min then begin
sacondmin:=min;
min:=H;
secpointer=ptr;
ptri=q

, et

aise if Hi=secondmin then begin

secondain.=H;

secpointer:=q
atd;
q:=q" .naxt
ehd,;
if =ecpointar O nil
then begin
nawuisecy;

sec’ . secminnode:=secpointer;

sec” . nextsecmin:=ptr” secmin;

ptr" . secmin:=sec;

newip);

for i:=1 to r do p”.OId_EATIi 1:=secpointer” Hew ERT(i];
op:=secpointer” 01d-EATpir,

g link:=pp;
secpointer” . 01dEATpir =p
end

end: {ecaloulateminH}



93

procedure update ERT(pointer nodeptr);

ireplace EAT values by New ERT values of the task just scheduled}
Lar
i ¢ inleger;
bagin
for i:=1 to r do EATIi 1:=pointar” Haw EATLi];
end; . jupdate EAT}

procedursa delete_from_task_set(pointer: nodeptr’;
ére@cve the task to be scheduled from the task queus}
egin .
poinier” prev’ nexi:spointsr” next;
if pointar” next<inil then begin -
pointer” rexi” prev.spointer” prey;
pointer® .next:.snil
ahd; :
pointer® prev:=snil
end; {delete_from_task_set}

procedure add_to_schedule{var s:nodeptr;pointer:nedeptr};

bagin , '
pointar” prav:=g; {add the task to be scheduled to the schedule queue}
s* . next:=pointer; ' ’
£:=pointer

~end; {odd._to_schedule}

procedure dalete_from_schedulelvar 5, pointer nodeptr’;
begin
paintar:=g; {remove the last tosk scheduled from the schedule queus}
£:=pointer” .prev; :
pointer® . prav.=nil;
£° . next:=nil -
and: {dajete_from scheduls}

procadure pul_back to_tazk setipoinier: nodepir’;
{add the task, removed from szcheduls queus, to task queus}
¥ x i .
p @ rodepir;
begin
pr=first tagk pir” nexi;
p*.previ=pointer; poinier” . next:@=p;
firgt_tagk_pir’ rext spointer
pointar® preyv.=first_tosk.pir
end; {put.bock.to_tosk_set}

procadura gat 01d_EAT(pointar nodapir’;

{zince there is g backirack attempiing to schedule the task which has second
minioum value of the function H, EAT volues should be replaced by Hew EAT of
this {ask which was recordsd az Old_EAT} .

o

i ¢ integer;

p : Old_EATpiriyps;
begin

p:=pointer 01dEATpir;
for 1:=1 to r do EATLI1:=p”.OI4.EATIi};
pointer” OId_EATptr:=p”.link;
disposelip); p:=nil;

end; {get DId_EAT}

procedure schedule second.minimum; ) '
{zchedule the tosk which has second minimum value of function H}



M

begin
tempptri=ptr" secmin;
pir®.secain:=tempptr® .nextsecmin;
pir:=tampptr® . sacminnoda;
dispose(temppir); tempptiri=nil;
delate_from_task.setipir);
add_to_schedulels, ptr);
get OHd_ERT(ptr);
calculata ST,

- caloulate New ERT;
caiculate DROR{DROR?

end; {schedula_second.minimum}

g:ngedure limi ted_backiracker{var guarantead:boclean); . -
gin _
if schedule™ .next=nil
then guaranteed:=false
zlse begin L {perform Pseudo Backtrack}
delete_from schedulels,ptr);
put bock _to_task _setiptr;
zchedule sacond minimum;
if not sirongiy_feasziblelORDR)
than bagin , © {perform Real Backirack})
guaranteed:=false; ' -
. ampiy:=fgize;
while {nol smpiy) ond (counter<HC)
and (not guaranieed’ do
bagin
repent
dalete_from.schedulals,piry;
put_back_to_task_seti{ptr)
until (ptr”.secmindinil) or (s=schedule’;
if ptr*.secminsinil
then begin
schedule_sscond_minimum;
.if strongly_feasible(DROR >
then guaranteed:=irus;
end
alza anply =irus;
cohter: =counter+
end {while}
end
etid )
end; {limited_backiracker}

begin {scheduler} _
naw(s); s* .naxt:=nil, s".prav:=nil;
" . zecmin:=nil; schedule:=s; counter:=0; guaranteed:=true;
empiy:=false; f:=first_task_pir;
while {(f* next<nily and guoranisad do
bagin
caloulatle BT,
caleyiate Hew EAT,
caleulate DRORCDRDR Y,
if not strongly_feasible(ORDR)
then |imited backiracker(guaranieed)
elge bagin
calculateminHiptr, sin_type, lJ,
update EAT(pir2;
dalstafrom-tazk.zetlptrl;
add_to-schedulels, pird
erd



B

end; {while}
delete.quevalschedula?
and; {schaduler}

procedure check tosk_sets(uor guaranteed task_sets:iask_setz _ronge;
var
i : integer;
infile ;. text;
EAT : resource.or;
guaranissed | boolean;
first_ tosk_ptr : nodeptr;
count_tosk _setz ; task_setz _range;
begin
aszigninfile, tasks. dat's; reset{infila’;
guoranised task _seiz =0 couni_tosk saiz: =
reapeat
for j:= 1o r do EATII):=0;
get_task={infile, firsi_task.pir);
scheduler{sim_tuype, guaranteed, i, first_task_ptr EAT);
if guarantsad
then guareniead_tosk. seis: -gunrmteed_tazk_setsﬂ
else delete_queus(first_task_ptrJ;
count _task sels: =count_task _sets+i
until count_task setsshumber.of_task_sets;
clogsel(infile’
‘wrd; {check_tosh _seis})

begin {main}

W:=0; init;
for sim. tuﬁe =1 {o number.of.:am_tupes do
if sim_type<d
then begin
check_task_setcéguaranteed_task_setc)
writeln;

writein('ST = ',sim_tgpe:1,‘ HUMBER OF GUARAMTEED TASK SETS =
guaranteed_task_setz:3)
end ‘
elze begin
tryi=1; Wo=0.5;
pravious_value:=0; -
noincregse =falze;
ahsck_iask_ssts(guaranteed_iask.sets3;
writein; -
writeinl'5T = ' 5im_tgpe 1,"H=" M 3:1,
" HUMBER OF GUHHHHTEED TAEK SETS = guaran*eed_task sats5:37;
if {guaranteed-tosk.sets=runbear-cf_ task.sais)
or fguarantaed task.sets<prﬁusou*.yatue) '
then noincrease:=true
s{=za bagin
Wi=b+0.5;
if guaranteed_task_aets-pﬁeuiou:.yalua
then try:=try+1
else try:=1;
if try*4 then noincrease:=trus;
praviousyalue: sguarantasd taosk setis
end
untl! noincreasse
end
and, {main}



96

APPENDIX C. GLOBAL TASK GENERATOR

© progrom gen.iosk_queyss;

{This progrom, given the preset generating parameters, generates tasks that
artive locally to each node of the system model, and creates task queues which
will be used os input doto by the simulation progrome which study the
performance of wvarious distributed scheduling algoirithms.}

type
string_type = ztringl5];

yar
tasksfiie : taxi;

procedure gen_tasksich:char;sigcompt, micompt,sig-loxity,

mi-laxity: intager; lonbda.arrt . real 3;

cofnst ’
r =5
rr = 8,
ZIM_TIME

2300,

toskiype = arroy [1..rr] of integer,
-
T : taskiyps; ,
counter, i, arr.t : integer;
n o real; '
=top : boolean;

bagin
for j:=1 4o rr do Tlil:=0;
counter:=1;
arr_t =0,
stop:=falze,
repeat
Tir+31:=arr.t;
repeat

n:=0;
for i:=1 to 12 do n:=n+RANDOH;
n:=zig.compt¥(n—6rmu_compt
until truncini:g;
Tir+11:=truncin; ‘ {gener‘qte computation time}
repeat
fi:=0;
for- i:=1 to 12 do n:=n+RAMDOM;
n:=sig.laxity*(n-6rmu_faxity;
until truncin»0;
Tir+21:=T[r+3 14T [r+1]+truncin’; {generate deadlire}
repagt
for 1:=1 tor do A
if RAMDOM<=0.5 then Tlil:=1
alze TLi]:=0
until ((TL114200 or (TI12142003; : {gererate resources requirements}



97

if TIr+21 » SIM_TINE
then stop:=true

else begin
for i:=1 to r~+3 do writal{tasksfile T{i]: 5;
writeinftazksfile,’ ' ,ch:1, counfer)

courter: -cauntﬁr+1 :
' ar*r_t'-tlﬂunr*(ar*r‘_t-ln(HHHDOHJ/ lambda_arrt 3 {gnnarate arrival time}
end
untif stop
end; {gen_tasks}

procedure create dota_file(fl string_typs;ch:char;
sige, muc,sig.t ,mul: intager;
{ombda_arri real 7; . -
bagin 4 ‘
azsignitiasksfile,fiJ;
rewitel{tasksfile);
gen.tasksich,sigc, mic, gig,mu_i, lanbdo_arri’;
closel{tasksfiles
end: {eracte_datafila}

begin {main}
randomiza; )
{generatﬁ task queue: for the nodes A through E}
creaise data_file('f.dat’,"A’, 100,200, 150,300, 1/1007;
creaie.data_fiieﬁ'ﬁ.dat‘,'ﬁ‘ 100 2013 15!3 308 171605,
cregle_data_file{ 'C.dat’,’'C", 130 200 150,300, 1/3005;
creqgte data.filed’D.dat’,'D’, 150 Zﬁﬂ iﬁﬂ 308 41500;'
create data file(’E.dot’ ,'E’, 130 200, 150,300, 176005 -
end. {main}



98

APPENDIX D. SCHEDULING PROGRAM USING BIDDING AND FOCUSED

ADDRESSING

This part contains the listing of the distributed scheduling program which uses a
technigue which combines bidding and focused addressing schemes, First, the listings
of the include filesare given, the listing of the main program then follows.

Listing of Include File SCH.PAS

procedure get_nodad{var pointaer:nodeptr);
war
i integer;
begin
rewipoiniary; _ " {initialize a task node}
with pointer” do
bagin
next:=nil;
prav:=niti;
zecmin:=nil;
d_EATpir:=nil;
are.t:=0;
dead! ine:=0;
gltari i =0
comp..t:=0;
for i:=1 10 r do
bagin
res.needlil:=false;
Hew EATILi):=0
ahd '
arid
end; {getnode}

procedure copy-infolnewnode,oldnode:nodeptr);
begin '
newnode” | id:=oldnode” . id;
rewnode”  arr_t:=oldnode” .arp-t;
nawnoda” . comp-t:=oldnode” . compt;
newnode* . deadl ine:=oldnode™ . dead! ine;
newnode” .res_need:=cldnode” .res_need;
newnode” . Hew_EAT : =01 dnode™* . Hew EAT
end; {copy-info}

procedure get.iosksivar flrsi_task:nodeptr);
var

p,4q @ nodapir; )

e oareay 11 .re] of integar;

ch ; char; :



99

i integer;
begin :
get_nodelqs; {create a task gueue}
first task:=q; '
while nol ecf({infile’ do
begin
newipy;
with p* do
begin
start_t:=0;
next:=nil;
prey:=q;
secmin:=nil;
Oid_EATptr:=nil;
for i:=1 to rr do reoad{infile,rnlil’,
readlinfile,ch, id?;
readin{infiie);
arr_limrnlr+3],;
dead! ine:=rnir+21;
comp..t =rnir+il;
for i:=1 i0 r do
if rnliler O then rez resdlil:=trus
alse res.naedlil:=falzse;
for i:=1 to v do Hew EATII1:=D
and;
q° . next;=p;
q:=p
el
end; {get_tasks}

procedure schedular{q,D(:nodepir EAT . resource_ar; var guaranteed:boolean;
var first_task_pir,scheduls nodepir;quantity: integer);

{check whether g newly arrived task can be guaranised or not}
Yo

passdead! ine, empty @ boolsan;

5,1,p,pp,pir,ss : nodeptr;

tempptr @ secminptir;

OROA © real._ar;

counter,i : integer;

procedure calculate 87,
var
©omox,i : integer;
p : rodepir;
begin )
p:=first_task.ptr® . next; {ealeulate start time)}
whila p<rnil do :
bagin
max.=p” arr.t)
for i:=1 io r do
if p".resreedlil
than {f EATII I>=max
then mox =EATII];
p”.start L =max;
poEn® et
sl
end; {ealculate 5T}

procadure calcul ate DRORCvar DROR:real _ary; .
{caleulote the degras to which tasks to be scheduled will demand rescurces}
vor : '

fraction,tot_comp_t,max,{ : integer;



P nodeptr;
bagin
for 1:1=1 to r do
bagin
tot_comp_t:=Q;
max =0,

pi=firsttaskptr” next;
while pianil do
bagin :
if p*.rax_naedlil
then begin
ot compt:=tot comp t+p”.comp_t;
if p*.dagd] iner=may
then max:=p°.dead|ine
end; .
p:=p” . next
ard; :
fraction:=smox~ERTI(i 1;
if fractior=0
then DRORLI1:=0
elze if mox=0 then DRORLI1:=0
elze DRORLi 1:=tot comp_t/fraction
and
end; {calculate_DRDR}

function strongiy_feazible(ORDR real _ar):boolean;
var

i : integer;

begirn
© stronglyfeasible:strus;

for i:=1 to r do

if DRORLI 17=1 then strongly_feasible:=falss;

if pasedead|ine then strongly-feasible:=false

snd; {ztrongly feazibie}

procgdure oaloulate eu EAT,
{calcuiots EAT voluss cf the task if it iz scheduled next}
v

min,i : integer;
p : nodaptr;
begin

p:=first_task ptr® nexi;
paszdead! ing:=faizs;
while (pirnily and {not passdead|ine’ do
bagin
'min:=maxin£;
. for i:=1 tor do
begin
ifp* rﬂs.needtal
then beg;n
" Haw EATI1 ]1:=p" . start i4p” camp.t
if p* . Hew_ERTIi1>p”.daadl ine .
then possdead! ine:=true
end v
else p* .Mew EATLi1:=EATLi];
if actlvelll
then if p° Haw_EﬁT[l]<=m|n
" then min: =p* Hew EATIi]
end;
for i:=1 to r do
if p” Hew_EATIi lmin
then p* Hew EATLi l:=min;

100



104

‘p:=p“.next
‘ and
end; {calcuiate New EAT}

procedure caloculiate-min H(var pir:nodeptr);
{detect the tasks having minimum and second minimum values of H}
const . .
W =105
var
temp,i @ intager;
secondmin,min,H : real;
secpointer,q : nodepir;
sec : secminptr; ' .
p,pp : Old_ERTptriype; . -
begin
mini=maxint;
secondmin:=maxint;
ptri=nil;
g:=first_task_ptr® next;
while gqonil do :
beagin
H:=q".deadline + W # g, stari_t;
if Hesmin
then begin
secondmin.=min;
miti.=H;
secpoinisr =pir;
ptri=q
end
elze |1 Himsacondmin
then begin
secondmin:=H;
secpointer.=q
: &yl
g:=q" .next
end; -
if secpointer 47 nil
then begin
hawisec; '
sec” . secminnode:=secpointer;
sec” nextsecmin:=ptr” . secmin;
pir”.secmin:=sec;
rewi{ps,
for i:=1 o r do
p” O1d_EATLi }:=secpointer” . Hew EATII];
pp:=sacpointer” Old_EATpir;
p* . link:=pp;
secpointer” Otd_EATptr=p
ardd
and;. {calculate_min H}

procedurs updaie;EﬂT(ﬁain{aﬁ:nadgptr};

S ygr

i : intager;
begin , :
for {:=1 to r do EATLI 1:=pointer” Hew EAT(i];
end; {update EAT}

procadure delste-from-iosk set{poinier:nodepir);
bagin o

pointer” . prev” . next:=poinier® nexti;

if pointer”.nextiinil



then begin
pointer” next® prev.=pointer® prev;
pointer” .next:=nil
and;
pointer® prev:=ni|

cend; {delete_from_task._set}

procadure add_io_schedulelvar s:nodepir;pointer: nodeptr);
begin .

poiniar” . prey =s;

£° .next:=pointer;

£:=poinier
end; {odd_to_schedule}

procedure delate_from.schadulelvar s, pointer: nodaptr);
begin ‘ ‘

pointer =g

Z:=painier” pray;

pointer” . prev:=nil;

s” .next:=nil
erd; {delete_from_schedule}

procedure put_back_to_task.seti{pointer:nodeptr);
var .

P nodeptr;
begin
p=first_task pir” . next;
p*.prev:=pointer;
pointar’ next: =p,; '
first task pir” . next: =pointer;
pointer” . prev:=first_task pir
end; {put.back to_task _set}

procedure get.Qid.EHT(painteﬁ:nadeptr);
var _

p: OId_EATpiriype;

i 1 integer,

 bagin

p:apointar” . 0ld _EATptr;
for 1:=1 to r do EATLI):=p" . OId_EATII];
pointer”  OId.EATptr:=p” | ink;
digposein); -
go=nil -

end; {get DId_EAT}

procedure initial valugs;

bmgin
comtar =,
empty:=falze;
guarantiesd: =true;
get nodei{s);
schedula:=z;
get_node(f’;
first_tosk. ptr.=f

end; {initial_values}

procedure form-tasks.qusue;
var , '
i:inieger;
begin :

p=00" .rext,

102

while pirnil do {copy dispatcher queue (DOY to tasks gqueus}



103

begin
get_nodelpp);
copy—infalpp,pd;
T .naxti=pp;
PRt previ=f;
T -ppl
pi=p® next ‘
and; :
for l'-1 to quantity do {add new task (or multiples of it) to tasks_queue}
begin :
get_nodelppl;
copy_infolpp,qy;
f* . nexti=pp;
pp”.prev.=f;
f.=pp
end;
end; {form_tasks_queus}

procedure calculations;
begin
colculate 37;
calculate_Mew EAT;
caloulate _DRORCORDF >
end;

begin {schedular}
initial valuss;
form_tazgkz_quaus;
fi=first_task _ptr;
ghile ¢f" . nexidnil) and guaranteed and (not empiy’ do
begin
caleulations;
if rnot siranglg_feq51ble(ﬂﬁﬂﬁ)
then if schedule” . naxisnil
then emply.=tirue :
alse bagin : {Pseudo Backirack}
delete_from_schedule(s, pir); :
put.back.io.task.set(ptr7
tempptr  =pir" . secwin;
pir* . secmin:=temppir” . nextsecmin,
ptr:=temppir” . secminnode;
dispozaltemppiry; temppir:=nil;
deleie from_togk setiptr);
add_to_scheduled(s piry;
get OId EAT(pir;
calculations;
(if riot strongly _feosiblalDRDR> '
then begin ' " {Real Backtrack}
. guaranteed:=false; o
emply =folse;
while {not emptg) and {counter<iiC) and
thot guaranteed’ do
" begin
rapeat
‘delete_from.schedulais,pir);
plit back o togk _gaiiptr)
urtil {pir”.secmini<snil) or 4s=schedule)
i ptr® . gaceminiinil
then bagin
tampptr =ptr’ .zecmin;
pir® . secmin:=temppir® nextsecmin;
pir =temppir” . secminnode;



104

dispose{tempptr);
tempptri=nil;
delete_from_task_set{ptr),;
add_to_schedulals,ptr);
get O1d_ERAT{ptr2;
caloulations;
if strongly_feasible(BROR?
then guaranteed:=true;
end :
alse amply:=trus;
counter :=countert!
and {whila}
© end
' and
else begin
caloulateomin Hipiry,;
updata ERT{pir;
dalata_from_task_setiptr);
add_to_schedulel{s,ptr?
ahd
end;
if emply then guaranieed:=faise
end; {schedulor}

Listing of Include File BID.PAS :

procedure indicate_linelnodeid,dest char;var bid_orr,no: integer);
bagin
detecti_indexinodsid desi noj;
case no of ' ' C
1: bid_arr:=linad;
2: bidagrr:=line3; -
3: bid_grr:=1lineZ;
4: bidarr:=linel
end
end; {indicate.line}

procedure calculate MAXBID;
var ,
i,min-tosk_serndingdelay,mox,estimated stari_t | integer;
bagin _ ,
min-iash _sending deloy: =b” comp_t div 10imezzoge_delay;
{ caleulote sariiest eztimated arrival time}
B arr d e locktmeesage del apmintask. sending.delay;
- for =1 1o r do ’ '
if regl EATLI 14clock : '
then temp EATII]:=ciock
sige temp EATLI 1 =real EATI]];
max:=b".arr-i;
for 1:=1 o r do
T b".res.nesd{i]
than if tanp EATLi Iy=max than max:=temp ERTIiI;
eztimgted ztori_t:=max;
MAYBID:=(b”" .dead| ine~estimated starti_t3 div b*.comp_t
and; {ealculate MAXBIDY

procedure binary.search. for BiD;
o _
low,hi,mid : integer;
guaranteed : boolean;



105

begin
BiD:=0;
tow:=1;
hi=lRXBID;
while (lowt=hi? do
bagin
mid:={lowthid div 2;
schedularib, Dy, temp_EHT guaranteed, TQ2, bQ mid>;
de!etequeuexTQE)
TQ2" rext i=nil;
delatequeuai{sQy;
30° .nexti=nil;
if guaranteed
then begin
Bil:=mid;
tow:=mid+
end
alse hi=mid-1
and
and; {binary_search_for BiD}

prccedure bidding.C;

1: send_bid{b”.id,1B0_4,1,BID,lined’,
2: send bidib” . id, IB0.3,2,B10,{ine33;
3: send. bid(b".id, IB0-2,3,BI0,1ineZy;
4: send.bid(b”.id, |B0_1,4,BID,linet’

end; {bidding.C}

procedure bidding.g;
war
bn,pbn, bid.nods : bid_nodeptr;
bagin
gaibidnodedbidnoda’;
bidunode” . {_id:=b" . id;
bidnode”  valus: =BI0;

coza no of
1: begin
bid.node” . ind:=1;
if nodeid<s'R’

then bidnode” dest: -pﬁ&d(nodesd?
eise bid_node* .dest:='E’
© end;
Z: begsn ,
bid.nada“,ind:=2;v
If thodeid="A’) or (nodeid='B") ‘
ther bid.hode”  dast: —suecfsuccfsucc(nadﬁid)))
‘elze bid node” dést: =pred(predinodeid’’
£rd;
: begxn :
bidnode”. ind:=3;
if {nodeid="'0"3 or {nodeid="E’
then bid.rode” .dest: =predipred{pred{(nodeid’)}
alse bid.node” .dest: =succlsuccinodeidy)

-

end;
4 b&gsn /
bid_rode”, ind: =4;
if nodaid:'E’

ithen bidunode”  dest =succinodeid)
elze bidnode” .dest:='R’



end
end;
update_l ineimessage delay, linel);
bid_rnoda® .arr:=linal;.
:n:ert_inta.u_s!ﬂﬂcb;d_ncdeﬁ
end; {bidding.5}

Listing of Include File BIDEVAL.PAS :

procedure sending_tosk{var b:inc_bids nodepir;
FFBO, task_queue nodeptr;ch:char var |ine: integer’;
var :
p : nodepir;
delay : integer;
begin
find..the_task<h, RFBQ,pd;
it pinil
than begin
deloy . =p" .comp.t div 10+messoge. deloy;
if TOPOLOGY="%"
then p”. idi=chip” . id;
sandip, task_qusus, | ine,dalay);
delete_toskip)
' erd
grd; {serding_task}

procedure nonguaranieed(var b:inc_bids_ﬁcdeptr;ﬁFBQ:nodeptr);

uqr
: nodapir;
bagsn
find.the_task({b FFBG,pJ;
if pirnil
" then begin
iasks_nonguaranteed: =tasks nonguoronteed+i;
delete taskip)
ehd; ;nonguaranteed}

p’"@:ﬁdﬂt"ﬁ b;d.ava!uatmg(!ﬂq mc_b;ds.nadeptr
FFEQ, Hew_TO1, Mew_T02, Hew_TO3, Hew_ T4 nodeptr
chi,ch2,ch3,chd:char;
war i;ne? isneZ llﬁﬁ? linad: ;nfeger)
var
okay : boolaon;
b inc bhids nodepir;
i, latest bidarr,max,no @ intager;

procedura sandar{no: intagar?,

bagin
© o pase no of.
. nohguarantesdih,RFBQ2;
1: sending-taskib, RFBQ,Nam_Ini,ehi,linaibg
2: sending-taski{b,RFRQ, New TO2, ch2, | ined);
2 sending-task{b, RFBQ,New_T03,ch3, | ined);
4: sending-task{b, RFBQ,New T04,chd, | ined)
and

. and; {sender}

begin {bid-svaluating}

106

b:=1B0" .naxt; {evaluate bids arrived at the !neamfng Bids Queua}



7

whila bOnil da

with b* do
begin
if c!ack—iatﬁ.t_bfd.arr
then begin
maax =0,
fio =0y,
for {:=1 10 4 do
bagin
if Carr=lilimciock) and (bids[t]>may)
then begin
max:=bidslil;
rig s
end
£
senderﬁna)
ard
a{za begin
ckay:=trus;

for {:=1 ic 4 do

if €arrs£:lnﬂbar(arrs£x3>clock) then okoy:=falze;

if okay .
than begin

max:=0,
o=,
for i:=1 10 4 do
begin
if bidslilrmax
then begin
max:=bidsli};
no ;=i
end
end;
zander{nc?
atid

alge if (bidel11>HB) and (arrsl1l<=ciock) :

ard
el

{hery zender{i)
alge if (bidslZI>HEBY and farrs{2l<=clock’

than sender{2)
gise if {bidsl317HB} and iarrstﬁj =ciock s
then senderii’
gize if ibidsi415HBY and farrzidli=ciock’
- then sarderid) '

alse b:=b” .naxt

and; {bid_avaluating}

Listing of Include File FROMS PAS :

procedure ¢Eﬁd_HFBHS_fP0m_u,

var
ch : chor;
- q : nodeptr;

stop . boolson;
begin

stop: ﬂfafsa,

repeat

{trgﬁsfer.rgquast for bid messages qusued at the ceniral node}

=S FFBM" .next
if £g4rnil’ and (q arr_t~ﬁ!ock)



108

then begin

S_IFFBM" .naxt: .=q" naxt,; {gmt maz=zage from queue)
if q”.nextsmnil
thar bagin .
q”.next” . prey:=S_IRFBH;
q°.next: =nil
and;

qt.prev:=nil,;
ch:=g".idl{1]1;
q”.id:=copytq”.id,2,37;
cose ch of
‘A’ transfer_node{q,A_IFFBH, | ineSA, mezsage_delay’;
‘B’ tronzfer_node(q,B_.I1FFBH, | ineSB, mezsage_delayd;
'C°: transfer_-node{q,C_IFFEN, | ineSC,message_delay);
‘B’ tronsfer_node(q,D_IFFBY, | ine3D, message_deliay);
'E’: troansfer_node(q,E_IRFBM, | ineSE, message_delay’
end
end
glse stop:=true
until stop
and; {send FFEMs_from.S}

procedure send BiDs_from.5;
var . :
bty 1 bid-nodeptr;
ziop . boolsan;
bagin :
stop:=false; {transfer bid informations queusd at the central node}
repeat ' '
brii=E BI0G" . rext;
if bnnily and (e arr=ciock)
then begin ' :
§.BI1D0” .next:=bn" .next; : {get bid node from gueue}
if bn® . .nmxtirnil S
then begin
bn* .next” . prev:=5.B100,
bn* .next:.=nj|
end,
b’ . prav:=nil;
case bnt.dest of
‘A’ send_bid{bn”.t_id,A_1B0,bn". ind,bn”" .value, | ineSA3;
‘B’ send bidibn® 1 id,B_IB0,bn" . ind,bn" .value, [ ineSB);
‘C send.bidibn®, 1.id, CoIB0,bn" . ind,bn” value, | ineSCH;
‘D' zend bidibn® . t.id,D.1B0,bn" . ind, bn" .ualue, lineS0J;
'E': send. bidibn” . 1 id,E_IBG,bn" . ind,bn” value, | ineSE>
end; ,
disposatbn)
end
zlze stop:=irus
_until =top
and; {send BiDs_from 5}

procedure send_toaskz_from.5;

var
ch : char;
q ! hodepir;

siop © boolean;

deloy @ integer; _
begin , .
stopi=falza; {transfar tasks quausd at the ceniral node)
repeat

q:=5. 70" . next;



if {qeenil) and
then begin

5.T0" .naxt:=q" .next;
if g°.next<rnil

(q*.ur#_t=clnek)

109

{get task node from task queue}

then begin
C gt .next” . prev:=5_T0;
q" .next:=nil
ard;
q”.pravi=nil;
deloy:=q° ,comp_t div 10+imessagedelay;
ch:=q“.§d£33; .
q°.id:=copycq”.id, 2,37
casse ch of
‘A transfer_node(q,H.iasks_ptr | ineSh, delay);
‘B’ tronzfer_node(g, B losks ptr, | inesB, defay);
g P trqnsfer_nadeiq,E_tasks_ptr,tinesc,desag);
0 troarefernodadq, O taskspir, | ineSD, delays;
'E': tronzfer_nodel(q,E.taskz_pir,|ineSE, deiay) -
ehd '

and

slze ziop ={rus

until stop

end; i{sand_tasks from.S}

Listing of The Main Program :

progrom biddingand_focused. addressing; ‘

{This program tries io schedule real-time tasks in o distributed sgstem modnl
 Yhenever a iazk comnot be guaranieed by the local node ot which it arrives, it
is sent to a remote node by means of focused addressing and bidding scheme.}

)
[}
"
0o~

X

=232
LY

G =t 2
B8
O |
RNanwas
o

v
w

5§ﬂ.TlHE = 2500
TOPOGLOGY = 'L
meszogedeiay = 2

£,

window_langht = 500;

gindows = 3;

typs
id-type = ziringl
string-type = str
resource_ar = arr
“regal_gr = artoy [
boolor = packed
Oid_EATpiriype =

43;
ingi51;

{humber of resources on each node}

{max count used in real backtacking}
{ouerage transmission delay between nodes}
{overge scheduling deioy on a bidder node}

{high bid}

{simulation time}

{ C* for FULLY COMHECTED,'S' for STAR}
{system’s no conflict message delay}
{pariod for surplus sxchangs}

{rumber of windows}

ay. [1..r1 of integer;

i..r1 of real;

array [1..r] of booleon;

“01d-EATtupe;

D!d_EﬁTtgpa = racord
{d_EAT : rescurce.or;
irk ﬂid_EﬁTptrtgpe

H |
|
arid;

hodeptir = nadetgpe,

secminptr = “secw

lnptrtgpe

5&;ﬁ;np*rtgpe = recotd
secminnode | nodepir;
nexizecmin ; secminpir



110

end; .
nodatype = record
id @ id-type; ‘
art_t,decad! ina,stort L, comp_t : intagar;
resneed ;. bool_ar;
foond | char;
secmin . secminpte;
pray, next : nodeptr;
New_EAT : resource-ar;
Oid_ERTptr : OId_ERTpirtype
end;
bidnodeptr = “bid_nodetype;
bid.nodetype = record '
toid @ id-type;
arr value, ind : integer;
dest : char,;
prev next : bidonodeptr;
and; :
inc.bids nodeptr = "inc_bids_nodetype;
ine.bids_nodetype = record
' t_id : id-type;
latest_bid_arr : integer;
bids,arrs @ array [1..41 of integer;
prav, next @ incobids_nodepte;

inc.suwrpius nodeptr = " inc.zurplus.nodetype;
Ine_surplus_nodetype = record
: n-id,dest : char;
are 1 integer;
SUPp | Pesource.ar;
prav,next | inc.swplus.hodeptir;
end;-

!

ndrange = ‘RT.UOEY;

raportarray = arraygll, .2, ndorange, 1,31 of integer;

infoarray = arrayll. .eindows] of resowce.ar; {husy times)
surplus.aarray = arraylndronge] of resourcear; {fraction of fres times})

var
infTile ! text;
aotive | boolar;
larange © set of char;
S_BiDQ : bidnodepir;
A-EART,B_EAT,C_EAT,D_EAT,E_ERT : resource.ar;
A_1BQ,B{BQ,C1BQ,D.IBO,EIBD : incbids.nodepir;,
A-tasks pir,A_disp, A_IRFBN,A_RFBQ,B_tasks_pir,B_disp,B_IRFBN,B_RFRQ,
C-tasks_ptr,C_disp, C_IRFBN,C_RFBQ, D_tusks_ptr,D_disp, D_IRFBN, D_RFBQ,
E-tasks_pir,E.disp,E_IRFBN,E_RFBQ,S.TQ, 8_IRFBN : nodaptr;
linefB, | ineRC, | inaRD, 1ineRE, | ineBA, 1 ineBC, 1 ineBD, | inaBE, | ineCA,
1inatR, 1 inelD, | ineCE, { ineDR, 1 ineDB, { inaDC, | inelE, | inekR, | ineEB,
1ineEG, | ineED, clock, tasks.guarantesad, task=_disp-local ly,
tasks_dispne_wide, tasks_nonguarantesad, | inefS, | inelS, | IneCs,
{inaDS, | iraES, | inaSA, 1 inal8B, 1 ina8C, 1 inaSh, | inaSE : intager;
A_report,B_report,Creport,D_report, E_report : report_grray;
A surplus,B_surplus,Csurplus, D surplus, E_surplus | surplus_array;
A-info,Boinfo,Clinfo, Do info, E_info : info_array;
A_ISIQ,B_1S1Q,C.t510, D ISR, E_1S10, 51510 incsurplus_hodeptr;

procadure inii;
i 1 ndoranga;

i, 1§ ; intsger;
begin



111

activelll:=true; activel2l:=true; {set initial values}

activel3li=false; activeldl:=false; activeldl:=false;
clook:=-1; ' .

linafB:=0, [inefAC:=0; |inefAD:=0; |inefE:=0;

lineBA:=0; 1ineBC:=0; |ineBD:=0; |ineBE.=0;
lineCA:=0; {inaCB:=0; |ineCD:=0; |ineCE:=0;
lineDA:=0; |ineDB:=0; |ineDC:=0; l|ineDE:=0; .

1IneER: =0, 1ineEB:=0; 1ineEC:=0; |insED:=0; .
linefS:=0; 1ineBS:=0; |ineC5:=0; lineDS:=0; |ineES:=(;
lineSA:=0; |ine8B:=0; |ineSC:=0; |ineSD:=0; |ineSE:=0;
tasks_guaranteed:=0; tasks_disp_locally:=0; -
taskz_disp rw wide:=0; tasks nonguaranteed:=0;

for i:=1 o r do '

in
AEATLIY:=0;, BEATLi):=0; CEAT(IT:=0; DEATLi]:=0; E.EATLi}:=0
ardd; - :
for i:=1 {0 Z do
for j:='f' to 'E’ do
for {i:;=1 10 3 do
bagin :
Areportii,j,iil:=0; B.reportii,j,iil:=0;

Craportfi,j,iil:=0; Doreportli,],ii):=0; Ereportli,j,iil:=0

arid
end; {init}

{$i =ch.pas}

procedure init_foc;

war

i : echar;

i,it : intager;
bagin

lwrange:=['a’..'e"];
for ii:=1 to windows do
for i:=1 to.r do
bagin
flinfolii,il:=0; B_infolii,il:=0; :
Coinfolii,il:=0; D_infolii,il:=0; E_infolii,il:=0
end; '
for j:='" 1o 'E’ do
for i:=1 to r do .
in :
Azurplugl],11:=0; B surpluslj,il:=0; .
Csurplusglf,i1:=0;, D_surpluslj, i1:=0; Esurplusl(j,il:=0
&t
erd; {initfoc}

procedure getting_tasks(f!:string-type;ch:.char;var itask.queue:nodeptr);
begin ‘
aszigniinfiis, f17;
rasetiinfile’; .
gat taskz(tazk gueus’;
.. clozalinfilel
end; {getiing-tasks}

procedure get bid._nodelvar bn:bid-nodeptry;
begin , ' :
newibnl;
bri" . nexti=nil;
bn* .pravi=nil
erd; {get_bid node}



procedure get_inc_bids_nodelvar b:inc_bids_nodeptr;

var
i integer;
bagin
newih);
Tor i:=1 to ¢ do
begin
b . bidsiil:=0;
b*. arralil:=d
=
b* nexti=nii;
b* pravi=nil
end; {get_inc_bids_node}

procedure getlincsurplusnodelvar s

bagin
new(s);
=" nexti=nil;
s . praviEnil
end; {get_inc_surplus_node}

—surplus_nodeptr);

procadure daieted inu_bads_nadefuur b: |nc_btds_nadeptr)

war
bb : inclbhids_nodeptr;

beqin ,

bb:=h;

br=bb" next;

bb™ . prav® .next:=h;

if b<nil then b .previ=bh® prev;

disposeibb?
and; {delate.inc hidsnoda)

procedure getling_nodes{var DQ,RFRO, IRFEM nodeptr;

begin
gat_nodalDd);
get_nodedRFBEQY;
gat node(IRFBNY;
getdinebidsrodal 1BQD;
get_inc_surplus.noded IS0}
-end; {gettingnodes)

procedure get taskslinitialize.all;

bagiﬂ
init;
|n|t_fne

gett;ng_iasks( fi.dat’, ‘A’ A-tasksptir’;

gettfng_nadasiﬂ.d;sp,ﬁ.ﬁFBQ,ﬁ-lHFBﬂ ﬁ_isﬁ,ﬁ_!ﬁlﬂﬁ

getting_tosks('B.dat’,'B’' ,B_tasks_pir);

getitng_nadesiB.disp,B_RFBQ B_iRFBH,B_I1B0,B_I5107;

getting.tasks('C.dat’, 'L’ C_tqskf_ptr;

gﬁtt|ng_nada:(ﬁ_d159,E.RFEG,C.!HFBH c_180,C- 12107,

getting_ taszks('D.dat’, ‘D’ ,D_tasks pir);

gﬁtflng_nodes(D_dlsp,D_HFBQ D_IRFBﬂ,D_lBQ,D_leQ};

getting_ tasks('E. dat’, 'E' E_tasks.pir);

gnftfng_nodﬁs(E.d:dp,E.HFBQ E_iBFBﬂ E_I1BOQ,E_1S10);

get_node(5_T0,;

get_node(S_IRFBEI);

get bid_node(S 21007,

gat.tnc.surp!u;.nmdaﬁa-lﬁiﬂ)
snd; lget-tosks_initializeall}

112

war 1BQ: ine.bidsonodapte;var 1510: incsurpluz.nodaptr);



113

procedure deletequeuelvar ptr:nodeptr);
var
pointer : nodeptr;
bagin
repeat
pointer:=ptr;
ptri=painter” next;
dispose(pointary;
painter:=nil
until pir=nil
end; {deletequeue}

procedure insert_into_gqueuedqq, queus:nodeptr);
war
ppointer pointer : nodeptr;
begin
ppointer: =queLia;
poiniar =guaus” next;
while {pointerinil) and {pointer”.arr_ti=gq" arr_t; do
bagin .
ppointar:=pointer;
pointer =pointer” next
ard;
if pointer4>nll then begin
posnter .prev.=aq;
qq” . next:spointer
7
ppointer® nexti=qq;
aq” .prav:=ppointer
end; {inseri_into.queus}

procedurse update_llnﬁ(delag integer;var {ine:integer);
begin
case TOPOLOGY of
'CTif linetclock then |ine:=clock+delay
alse |ina:=linat+dalay;
'S if line<clock thern ine:sciocktdmiay div 2
else {ine:={inetdelqy div 2
end .
end; {update_line}

procedure inseri-inta-lﬁiﬁ(s,lslﬂ:inc_surp!us_nadeptr);

var
ppointer pointer : incsurplus.nodeptr;
i : integer;

begin

ppointar:=1810;
pointer =180 .nexi;
while {pointer<inil) and (pointer” . arr<=g" .arr’ do
begin
ppointer: =pointer;
pointer:=poinier” . naxt
erud;
if pointeriinil
then bagin :
pointar”  prayv.=z;
g” .next =poinier
&nd;
ppainter rexti=s;
.pray; —ppaznter
end {insert_into_1510}



114

procedure s_surplusis, 1510 incsurplus_nodeptr;var |ine: mteqer)
bagin

updtate_! i ne\messgge_.de tay, line;

= arrizling;

mseri_mtn_l"-‘xm\s s
end; {s_surplus}

procedure send.surplus(surplus:surplus_array;nodeid, dest char;
181G: inc_surplus._nodeptr var line: integer?;
var
. -5 incsurplus.nodepir;
bagin o
get_mc:_surplus_mde(s?
£’ .n.id:=nodeid;
£* deast =dexi;
s".surp:'-'surp!usimdaidl;
s surplus(s, 1810, 1ine)
end;  {send_surplus}

procedure sendingsurpius Losurplus:surpius_array;id, di,d2,d43,d4:char;
1810.1,1810.2, 18103, 15104 inc.surplus_nodepir;
var |inal,line2, line3,lined: integer),;
begin ,
send.surplus(surplus, id,d1, 15101, 1inel);
serd_surplus(surplug, id,dZ, 15102, | ire2);
send_surplus(surplus, id,d3, 158103, 1ine37;
send_surplusi{surplus, id d4,1810.4,1ine4>
end; bendmg_surplus_f 3

procedure seﬁdmg_surpius S{surplus: surplus_arroy;
id,d1,d2,d3,d4 :char;var line: integer);
. begin ' ,
serd_surplus(surplus, id,d1 a-lSiQ lined;
zend.surplusisurplus, id, d2 s_;s;a, § me)
ssrsdjwplusisur-pms,id 43,8.18140, 1 me?:
gargdsurplus(surplus, id, 44 s-isitz,iinﬂ
erd; {zending_surplus.3}

procadure surplusaxchorgs;
o
i,ono : integer;
begin
who=ciock div window_langht;
for i:21 o r do
begin _
fsurplusi’'fA’, i ):=window_lenght-A_infolwno,i];
Bsurplus('B’,il:=¢indow_langhi-B_ infolwno,il;
Ceurplusi’'C’, il =pindow Jenght-C_infolwno,i];
O surplusl’0’,il:=window_lenght-O_infolwno,il;
Esurpluzl'E’ i l:mwindow-_ienght~E_infolwno,i]
ard;
caza TI’JPULGG"/ of
'C’:bagin
sending-surplus_C(A_surplus,’'A’,’'B’,'C’, D', 'E’,B_ISI0,
c_1sig,0_1510,E. iSIQ,lmeFlB linefC, | inefD, | ineRE);
.-,endmg.surp!us_MB_:urpius ‘e','c','D’','E", 'ﬁ' C..ISHJ,
D 1810,E_1514,A.1510, lmeBC !meBB imeBE imeBﬂ}
8 nd;rzg_aurp!u'.sic...urpius,'t‘ ‘9‘ ‘E','A°,'B Do !...m
E_1510,A_1510,B.1510, 1 ineCD, lmei'JE !meCFl imeCB)
sending.surp!us.ﬂ(ﬂ.surp!us,'H'A,'E',‘ﬂ’,'B‘,'C',E_lS!G,
, A-1510,B.1810,C.15140, | ineDE, 1 ineDA, 1 ineDB, | ineDCJ;
sendingsurplus.LIE surplus, 'E’, 'R’ ,'B’,'C’,'D' ,A_ISI14,



B.1S10,C.1S1Q, 01510, 1 ineER, 1 inekB, | inekC, 1 inekD)
and; :
‘8 tbegin
sanding_surplus S(A_surplus,'A’,'B’,'C','D",'E’ , | ineASY;
sending.surplusS(B_surplus, 'B8','C’',’'D",'E’, A", lineBS),
sending.surpius.S(C.surplus,'C’,’D’,'E’,’'A",'B’, 1 inel57;
sending.surplus_S(0_surplus,'D’,'E*, ‘A’ ,'B*,C*,1inel5),;
sending_surpius_S(E_surplus, 'E’,'A’,'B’,'C",'D’,1ineES>
end s
and
end; {surplus_exchange}

procedure find_de!ete_iﬂc_hids_nodeitask_id:id_igpe;iBﬂ:inc_bids_nadeptr?;

5.5 d -

b : inc_bids nodeptr;
begin

b:=1B0" .next;

while (b<*nil) and (b".t_id<rtask_id’ do

b:=b”.next; ‘

if b4rnil then delete_inc_bids node(b)

end; {find_deiste_inc_bids_node}

procedurs check.foc_pdd{q:nodepir;nodaid,chi,chl, ch3, chd:char;
var fochode:char; surplus: surplus_array;
: yar possible:boolaany;

const

FAZ = 0.5;
v
max . real;

i,time,ind : inieger;
factor @ arroylt. .41 of real;

function freetime(q:nodeptr;res_surp:resource.ar’: integer;
LA™~ :

i,ft. . integer;
begin -
fi:swindow_{enght; -
for i:=1 1o r do

If g°.ras.nasdli]

then if ftyres surplil
then ft:=res surplil; .

_ frestime: =11

end;, {frestime}

begin

115

possible:=irue; {check whether there is g node for focused addressing}

factori1l:.=fragtimalg, surpluslichil);
factor(2):=freetimelq, surplusich2]);
foctor (3] :=frestinel(q, surplusich31j;
factor (41 :=frastimel{q, surplusichdi]’;
A1 g* . compotrwindow_ienght
thah Lima:=uirdow-langht
size time:=q", comp.t;
{31 to 4 do
if factor{iidxg 4
then factorlil:=factorlil/time;
ird:=0; '
mx =,
for 1:=1 10 4 do
if factor(ilrmax
then begin
max:=foctor{il;



116

ind:=i
: end;
iT max>FAS
than caga ind of
1. foonode:=chi;
2: Toonoda:=ch2;
3: focnode:=chy;
4: Tochode:=chd

and
alsa bagin
pnssibie =fgqls=e,
q*. foo.nd:='X"
and

and; {check_foc_add}

- procedure transfar. nhodelq, queus: ﬂodeptr var 1ine: 1nfeger delag integer;
bagin

update.] ine(delay, line’,

q".arr-ti=|ine;

insert_into_queua(q, queua’
erd; {ironsfer_node}

procedure send(q,qusus:nodeptr;var line:integer;delay: integer),
var '
qq : nhodeptr;
bagin
get.nodelqq),
copy-infolaq,q;
qq° . focnd:=q" . focnd,
tronsfer.nodeiqq, queue, | ina, delay)
end; {zend}

procedure creqte_an_tnc.b:ds_node(taek_;d id_type; latest integer;
var 1B4,b: mr'-._bsd"..nodepir)
uar :
bb,bbb . inc_bids nodepir;
bagin :
get_inc bids. nodelb’;
b* .t id:=task_id;
b . latest _bid grr ={atest;
bh:=1B0;
bbb:=bb* . next;
whii e bbbirnil do
bagin
bb:=bbb;
bbb =bb" .next
ard;
bb” . reaxt:ab;
b*.prev.=tb
and; {create_an_inc_bids_node}

function upc(ch:char’:char;

begin
upe:=chri{ord(chiord('a’ Hord('A’ 73
end;
function lweich:char:char;
begin
Jwe: -chr(ord(ch)—ord( A )+ord4 a'J
end;

pracedure‘add_to_RFBﬂéq,BFBQ:nodeptr;nadeid:char);



17

var
'qq : hodeptr;
begin
gat_nodalqq);
copy-infolqq, q¥;
qq". foo.nd:=q". foc.nd;
insert_into_gueualqq, RFBQD
end; {add_to_RFBQ}

procedure send RFBM_C{q, IRFBM_1, IRFBM_2, |RFBM_3, | RFBM_4 :nodeptr;
chi,ch2,ch3,chd:char,var linet,line2,line3, ined: integer’;
begin ' ‘
send({qg, IRFBM_1, 1 inet, meszoge_dalay’;
serd{q, IRFBM_2, | ineZ,message_dalay’;
send(q, IRFBM_3, | ine3, message_delay’;
send(q, IRFBM.4, | ined ,message_delay)
end; {send_RFEM_L}

procedure send_RFBH.a{q nodeptr chi,ch2,ch3,chd: Phar var line:integer);
bagin

Lidi=chitg”,
send(q,S_IHFBﬂ,line,message_delag};
q°.idl1]:=chZ;

:endtq,S_SRFBﬂ tine messagﬁ_delag)
q”.idi{1]:=ch3; ,
5ehd(q,6_iEFSﬂ jine message_deiag)
g".idl11:=ch4;

sem!{q, .;-iRFBH {ine, massoge_delay)
end; {send_ﬁFBﬂ_B}

procadure datsci_indaxind,dast:chor;var ind:integer);
begin
if Lsuccindi=dest) or 4nd=subc{succfsucc£succ(deet))7})
thay ind:=4
aglza if {succisuccind’i=dazl) or ind=succ(succ(succfdest)/)7
than ind:=3
ajze i{ (syuccisuccisuccind))isdest) or
trnd=succisucc(desii’’
than ird:=2
else ind:=1
end; {detect_index}

procedure form.on_inc bids nodadid:id tups; | integer;
foc_|BQ: incbidsnodepir;nd, fnichar);

vor
ind : integer;

b lnﬁ.b;ds_nodaptr,

Cbegin ,
create.on.. 1nc_bxd=_node(|d,l,fcc 180,b7; {create an incoming bids node}
delect_indexind, fn, indy; {at the focused node}
b“.bids[ind]:=-1; {no bid is expected from the sender node}

b*.arrslind] =1
end {form_on_inc_bide_node}

procadure staﬁt.fgc.add_ﬁéq,foc_Iﬁ,iﬁFBﬂ1 IFFEMZ, |RFEN3  nodeptr;
i integer; foc.1B0: inﬁ.bid’_nodeptr
var 1fn, {bni, IbnZ, 1bn3: integer;
ﬁé fri, brd bﬁt,bnz shary;

bagin
" formoon-inc.bids.rode{q”. id, 1, foc 1B0,nd, fn);
q". fochd:=fn;



118

send{q, IRFBM1, Ibnl,messaga.delay);

=end(q, IRFBNMZ, Ibn2, massaga_delay?;

send{q, IRFBM3, Ibn3, message_delayd; -

sand{q, foc T, | fn, (q" . comnp_t div 1D Mmessage_daloy)
end; {stqrt_fue_gdd_r‘

procedure start_foc_add_S(q nodeptr I:integer; var foc_[BO: inc bids_nodeptr;
' . var |ine:integer;nd, fr,bn1,bn2,bn3:char);
begin

form_on_inc_bids_node(q".id, |, foc_I1BO,nd, fn; ;

q‘.foc_nd:=fn; :

q*.id:=bni+q”. id; ‘

send(q,B.lﬁFBﬂ l:ne,message.delag)

Lidi1):=bn2;
fand{q,s iHFBH line, mezsage_deloyd,;
q”.id{1):=bn3;
send(q,s_lHFBﬂ ltna mecsage_delqu}
.idi1l:=fn;

send(q,S.IQ line, 4q comp_t div 1ﬁ)+message_delag)
and; {itart_foc_add.S}

procedure start _foc _addiq, foc_TO1, foc 1062, foc TO3, for _Tﬂ4 IRFBH_1,
IRFBM. 2, IRFBM_3, IFFBM.4 nodaptr;
var foc.1BO1, foc iBO2, foc1BO3, focIB04: inc bids nodepir,;
var 1inet, imei' 1ine3, ined: integer;
nd, fn,chi,chz, ch3 chd:char; latest: integer);
begin
q”. idl1):=iwelq” . idl117;
if friechd
then
case topology of
L' start_foc_add C{q, foc.TQ1, IRFBH_2, IRFBH_3, IRFBEN_4, Iateat
foc 1BQ1, linet, lmez line3, lme4 nd fri,chz, chS ch43
'8 start_foc_add_scq,lqtest,foc_lBQ1,linei,nd,fn,chZ,chS,ch4)
end . '
aize
if fr=ch2
then
case topology of
'C': start_foc_add C(q, foc_T0Z, |FFBM.3, (RFBM.4, IRFBM.1, !atﬁat
foc 1B0O2,1ine2,1ine3, lined, linel, nd, fn,ch3, ch4 ch1)
8 stqri.iac_add_ﬁiq,!atest,fac_lBGZ,line!,nd,fn,chz,ch4,ch17

el
zige
i frmch3
then
coza topology of
T ztortSfoc_add C(q, foe TO3, IRFBN_4, |RFBM..1, IRFBM.2, latest,
- foc.iB03, ine3, | ingd, linal, lineZ,nd, fn,chd, chi,ch2’;
‘8': starifoc.odd S4q, iotest, focIBO3,linel, nd, fn,chd,chi, ch2) -
ard ; , :
elza

coze topology of

' start_foc_add. £4(q, foc_T04, IRFBM_1, IRFBM.2, IRFBM_3, latest,
foc_1BO4, lined, linel,iineZ, line3,nd, fn,ch1,chz,ch3);

'8’ stari_foc_add 5(q, latest, foc_|BO4, linel, nd, fn,ch1,ch2,ch3)

et :

end; {stori_foc_add}

procadure start_bidding(q,RFBQ, IRFBM_1, IRFBM.2, IRFBN_32, IRFBM_4 :nodeptr;
nd,chl,ch2, ch3, chd char;var 180 inc_bids_nodeptr;
var linel, lineZ, line3, | ined; intager; latest: integer’;



119

var
b : inc.bids_nodeptr;
begin ,
areotie.an inz bids rodein” . id, latest, 1BG,b%;
add 1o AFEQLq, FFEO, nd);
case TOPOLOGY of
T s&rﬁ.ﬁFBﬁ.ﬁ(q,iﬁFBﬁ-i IRFBM.2, IRFBN.3, IRFBM.4, ch1 a:hz,eh" 3,chd,
!ine? linez i;nﬁ I;na4}
‘8 rsend RFBN.S{q,chi, ch2, ehS chd, linall
and
and; {sturt_bldd%ng}

procedure schedul ing

{nodeid:char;real _EAT:resource_ar;var FFEQ,D0: nodnptr

var [BQ, fac-!BQ! foc {BOZ, foc.!BQd foc |BO4 inc_bids _nodeptr;

TQ,fec.IQi,foc.IﬂZ,fac.IﬂS,faa_Iﬂ4,tﬂFBﬂ-1,lﬂFBH.2;lBFBﬁ_3,

|RFBM 4 nodeptr;chi, ch2,ch3, chd  char;

var linet,line2,1ine3, | ined: integer;

var repori report array; surplus surplus_array);
Var ) .
q : nodeptr;
focnode,ch ¢ chor;
i,latast dim : integer;
50,702 : nodeptr;
EAT : resource_ar; .
siop, guaraniesd, possible | boolean;

begin

siop:=false;
repeat,

q:=T0" .next;

if 1g4nil) and (q”.arr-t=clock)

then E
begin :
TO" .next =mg* n&xt {gat task from task gqueue}

if g .rextimnil then begin
q”.raxt” . prav:=T];
g".nexi=nii
ahid;
q".praiEnil;
for 1:=1 to » do
it reql EAT{il<clock then EATIIl:sciock
: alse ERTIil:=real ERTIi];
if g*.idl1] in lwronge then begin
chi=upedq™. idl11);
if qQ°. focnd=nodeid
then dim:i=1
alse dim:=2
and
e!se begin
chi=q*. idl1]};
dim:=3
=nd;
reportly, ch,diml:=reportii,ch,diml+l;
Sghedulnrtq,ﬂu ERT guurunteed TQZ,80, 1)
if guaronteed
then
begin
taskz.guaranised: =tasks_guoronised+i;
reporil2, ch,diml =reporil2,ch,diml+i;
if g=.idl1] in lwrange :
then find-delete_inc_bids node(q”.id, B0,
deletequeus(D0y,; {delete Dispatcher Queue}



120

p:=5Q; .{Schedule'ﬂueue becomes DO}
dispose{T42); . |

TQ2:=nil
and
alse
begin
loteszt:=q” .dead| ine-g° comp_t—(TU+oDJ
if latests=clock
then tasks.nonguaranteed “tqskc_nanguarantEﬁd+1
elze
begir
q”.Hew EATI1]:=]latest; :
for i:22 1o r do q° .Hew EATIi]:=0;
if q*.idl1)=nodeid .
then {if the task is local send it to another node}
begin
check..foc.addi{g,nodeid, ch! ch2,ch3,chd, focnode,
surplus, poﬁasb!a)
if poszible
then stort_foc_addig, fac.IQi foe 102, foc T0O3,
foc_TO4, IFFEM.1, |FFBH.2, IFFBH.3, !HFBM_A
faﬁ_lsﬂi,fat-iﬁﬂi,fac.iEQ?,faa_§9ﬂ4,iine?,
line2, 1ine2, linad, nodeid, focnode, chi,chz,
chZ, chd, latest)
ez stort bidding(q,AFBQ, IRFBM_1, IRFBM.2,
_IPFBM_3, |PFEN.4, nodeid, chi chz ch3 ch4
JEQ,!ine? I;nez | Hre3, itne4 !atest/
and
eize if ({q".idl1] in lwrange’ and {(nodeid=q”.foc_nd’>
then add_to_RFBO(q,FFEQ, nodaid) {iry bidding}
else tasks_nonguaranteed:=tasks_nonguaranteed+{
erd; .
deletequeus(T02>; TU2Z".next:=nil;
deietequeue(SQ’, 50" .next: =nil;
disposeiq’; q:=nil
and
end
size stop:=trus
untii siop
end; {schedul ing}

procedure update_infoip:nodeptr;var info:info_array’;
vor
i,start, termingtion,wno, duration, limit : integer;
begin :
start:sclock;
duration:=p”.comp.t;
termination: =£tart+durat;ah
who:=(gtart div w:ndow_lenght)+1;
while duration<:0 do
begin
fimit: -wnc*wxﬁdaw-iahghi
if term;na*ton’=iam1t
then begin
. for =1 tor do
i1f p* . resnesdli]
thenr infolwno, t]"tnfoiwno i M4duration;

duration:=0
&
alse bagin
for i:=1 to r do

if p*.res needlil



121

then infolwno,il:=infolwno,il+limit-start;
starti=timit;
duration:=teraination-1limit;
wno 1=uno+ |
-and
and
end; {updata-info}

mrocedure dispatchinglhodeid:char;DU:nodeptr;
var reaal ERT:resource_ar;var info:infolartay?;
. ‘
P,PP : nodepir;
I 1 integer;
bagin.
ppi=00;
pi=ppt . hext;
while p(}nii do
if p*.start_t=clock
then begin -
if nodaid=p®.idl1}
©  then begin
tasks_disp_local ly: —tasks.dtsp.!ocallg+1
{increment rumber of tasks d;spatchad tocal y}
update_infalp, infol
erd
‘eize tosks disp_rw_wide: =tq’ks_disp_ﬁw_w|de+1
{increment rumber of tasks dispatched network_wtde}
for {:=1 to r do real_EﬂT{tl'"p‘ Hew EATLi1;
pp” . next:=p” next; .
if p”.next<rnil then p’.next”  prey.=pp;
dizposeip’;
pospp” next
end '
elze begin
PP=p,;
pi=p® . naxt
end
and; {dispatching}

procedure send bid(task_id: id_type; |BG: inc bids.nodepir;
index,BI0: integer;var |ine: integér);

uapr
g incbidgnodeptr,
i intager; v
bagin

update_| inelmessage.dalay, liney;
if tosk_id(2] in lwrarge thaen task_id: -copg(task_sd 2,35;

p:=1B0" .next; {zearch the node in fh# tncoming Bids Queue}
whtfe (p47nll) and (p Aid<rtask_idy do
Copimpt newt;
if pernil

then begin

p”,arrsiénde%1:=line;
p* . bidslindex1.=BID
- ernd;
end; {:end.btd}

procedure inseri_into 3 BID0chn:bid nodeptir);
var

ppointar, pointer : bid.nodaptr;
begin -

ppointer:=5_B1D0;



122

pointer:=S_R|DQ" .next;
while (painter(>nll\ and (pointev“ arr<=bn® arr) do
begin
ppointar: -pnlntar
pointer:=pointer” .next
and;
if pointeronil
then begin
pointer” .prev:i=shn;
bn" . nexti=pointer
and;
ppaintar® next:=bn;
bn® .previ=ppointer .
end; {insert_into_S_RIDQ}

pracedure biddinginodeid:char;real EAT resource_ar; |FFEN ,D00:nodeptr;

1801, iBﬂ_z,lBﬂ.d 1804 1nc_b1ds_nodeptr'
' oy iiﬂ§1 line2,1ine3, lined: integer);
var

b ! nodeptr;

33,702 : nodeptr;

siop, Tirst : boolaan;

temp EAT : resource.ar;
HAXBID,BID, latest bidarr,bidarr,no @ Integer;

{$1 bid.pas}

bagin
" zlopi=Talse;
repeat
Bi=1RFBN" naxt;
it (Chenil ) and B arr_t=clock )

then begin .
IRFBN" . next =b* rext; : - {get task from IRFBM queus)
if b”.nextirnil
then begin
b* .next® . prev:={FFEH,
b”.next:=nil
and;
b*.previ=nil;

if b”,idl1] in lwrange then b”.id:=b", fsc.nd+b‘.id;
indicale_linelnodeid,b”. idit1],bid arr,no’;
lgtest bid.grr:.=b”, Hew.EﬁTi!)
update-lxnefmessage.dﬁiag,bid_arr;,
if TOPOLOGY="3" then bid_orr:=bid_orr+message_deloy div 2
if latest. bid_arrs=bid_arr
then begin

calculate MAXEID,

binory_search.for BI0;

caze TOPOLOGY of

‘L' ibidding.C;
' :biddingS
end
end;
dizspoeeih)
and
elze siop:=trus
~until stop

erd; {bidding}

proedursa dasgtg,ia;kivqr pnodenir;
var



123

PP hodeptr;

bagin
PR=R,
p:=pp“.naxt;

PR prev. nexti=p;
if p<mil then p° prau =pp". pray;
dlepasexpPB

and; {delete_task}

procedurs find-the_task(var b:inc.bidz.nodeptr;RFB0:nodepir var pinodeptr);
begin
pr=FFED” rext;
while (pinil) and (p*.iderb* 1id7 do p: =p”  nexi;
if penil then b:sh”. hEAt
zlze delete_inc bids rodelbl
and; {find.the_task}

{$i bideval pas}
procedure updatingsurpluz_info;

procadurs update.surplus-:nfoiiﬁlﬂ inc_surplus_rodeptr;nodeid:char;
var surplus:surplus _nrragJ
var
£,82 | inc_surplusnodeptr;
begin :
£:={E10" . next;
while s<'nil do
if 2" . arr=ciock
then begin
surplusis” .n.idl:=g" .surp;
55:=¢g;
s:=gg" next;
22" . prey”  next =
if s<:nil then £° .prev.=ss” prey;
dizsposel(zs};
zz:=ni |
end .
alza g:=2" naxt
end; {update surplus_info}

begin
updata_iu#p!us_mmiﬁ iuia,‘ﬂ JAsurplus);
updgte.surplus.infolB 510, ' B’ ,Bsurplus’,;
updata.surpIus_iﬁfaiﬂ_tSIﬂ,'E',C.surpius?;
update surplus_infolD_1510,'D" D surplusy;
update surplus-infolE18i0,'E’ Esurplus)
and; {updaflﬂg.:urp!aﬁ_infa}

proceaduye fu!lg_cannecied_*opo!ogg,
begin
repaat
clock:=clock+i;
if (clock mod window.lenghti=1
then if clocksrd
then surplus_eychange;
schedul ingd’'A’ ,AEAT ,A_RFB(, A disp,A.IB0, B !BQ,C_IEQ,D_IBQ,E_IBQ,
f_tasks _ﬁir g task;.ptr E_taak*.ptr D-toskz pir E_toskz_pir,
B_IFFBH,C_IRFBH,D_IRFBH, E_IRFBH,'B",'C*, D', 'E", | inefB,
linéﬁC,1in&ﬁﬂ,lihﬂﬂE,ﬂ_report,ﬂ.surplus);
“dispatchingt A’ ,A-disp,A-EAT, A.infol;
bidding('A' ,A_EAT,A_IRFBM,Adisp,B_1B0,C_1EQ,D_1B0,E_IEG, | ineAB,



124

1ineRC, 1ineRD, 1 ineREY; ,
bid-evaluating{A_1BQ, R_RFBQ, B_tasks_ptr,C_tasks_ptr,D_tasks_pir,
E.tasks_ptr, "B, 'CY, "D, 'EY, LineRB, 1 ineRC, | ineRD, | ineRE);
schadul ingd'B* ,B_ERT,B_RFBO,B.disp,B_1B0,C_1BG,D-1BOQ,E_I1BQ,R-1EQ,
B_tasks_pir,C_tasks_ptir,D_ tasks_pir, E_tasks.pir, A tasks.ptr,
C_IRFBN, D_IRFBM,E_IRFBN,A_IRFBN, 'C*, 'D', 'E", 'R’, l ineBL,
lineBO, | ineBE, | ineBR,B_report, B_surplus)“
dispatehlng( B B_disp,B_ERT B_info), -
biddingl'B’ B_EHT B_IRFBN B.ﬁasp4t_lBQ,D_!BQ E_IBQ,A_IBQ, | ineBC,
IxﬂeBD !1neBE {ineBRY;
bid_evaiuutinqxa_!eu B_BFBQ,C_tﬁﬁkq.ptP D_tasks.ptr, E_tasks_ptr,
A.tasks.ptr,'C*,'D’,'E', 'R, lineBC, | inaBD, 1 ineBE, 1 ineBRY;
scheduling(‘t‘,C_EHT,C_BFBQ,C_disp,t_!auén_!BQ,E_lBQ,H_lBQ,B_lBQ,
C_tasks pir, D tasks_pir, E_tasks_pir,A_tasks_ptr,B_ tasks_ptr,
O_IRFRN, E_IRFBN, R_|RFEM,B_IRFRHN, 'D*, 'E","A*, "B’ 1inelD,
I ineCE, !ineCR IineCB C_report C.:urplus)
disputch;nqx ¢ C_ﬁitp G_ERT C_infa);
bidding{'C’ E_ERT C_IRFBN C_disp,n_!BQ E_IBQ,R.1BQ,B..1BQ, | inelD,
i:netE | inaCH, ltnetﬁ)
bld_euutuut:ngxt_iaﬂ E_BFBQ D lasks_ptr, E_tasks_ptr R.lasks_ptr,
B_tasks_ptr,'D','E’, ‘B‘ ‘B, {inetD, | ineCE, 1 ineCH, 1 inelR),
schaduiing(‘n‘,D_ERT,D_RFBQ,D_disp,B_iBQ,E_lBQ,R-!B&,B-lBQ,C_iBﬂ,
D_tasks_ptr, E_tasks_ptr,A_tasks.pir,B_tasks_ptr,C_tasks_ptr,
E_IRFBM, A_IRFBN, B_IRFBN,C_IRFBY, 'E*,"R*, 'B", "0, 1 ineDE, -
PinaDR, | ineDB, | inelC, Drepory, Dsurplus);
dispatching('0" ,D.di=p,0_EAT,D.info);
biddingl'D' \D_ERT D_IRFBN D.disp,E_1BQ,A_IRQ,B.1BQ,C.1BQ, | InelE,
linaDR, | inaDB, 1 inaDC);
bid_evaluating{D.1BQ,D_RFBQ,E_tasks_pir, A tasks pir Botesks_ptr,
Ctasks_pir, 'E', "R, "B, 'Y, TineDE, VineDR, 1ineDB, 1ineDD);
schedul ing('E" ,E_EAT E_RFBQ,E_disp, E_-1B0,A.1BQ,B.I1BQ,C.1BQ,D..1BQ,
E-tnsks.pt»,ﬂ_tnsks_ptr;a_tusks.ptr,E_tasks_ptr,n_tasks_ptr#
R..|RFBN,B.IRFBN,C_IRFBN,D_IRFBN, 'R*, '8, "0, 'D’, lineER,
{in=ER, imeEL imeEB E..r-epcsrt E..sm*pms\
dlsputch:hg{‘E E.dssp,E_EﬂT E.infay;
bidding{‘E’ E_EHT E_IRFEH E_d!sp4H_iBQ,B_iBQ¢L.iBQ;D_iBQJl:naER
!ineEB lzneEt l:neED)
b:d_evn!unt:ng(E_iBQ E_RFEQ, R_tnskb_ptr B-tasks.ptr,C.tasks_ptr,
D_otasks_ptr, 'R, 'B*,'C', "D, lineER, | ineER, | insEC, | ineED);
updutlng_surplus_infa; .

unti] clock=8IN_TINE
end; {ful ly.connected._topologyl

{$i fromS.pas}

praeedure send_surpiu\_tnfns_jram_b

: zne;surplus_nadeptr;
stop @ boolean;

begin .

siop:=false; {transfer surplus informations queued gt ithe central node}

repeat

2:=5_1510" .nexi;
if Cs<onily and (5”. arr=ﬁ!ark7
than begin - ,
2. 3;1&” nﬁxf =5" rext; {get surpius Info from queus}
if 8" . nextirnil
then bagin
LB LrExt” previ=EL1510;
£" .naxt:=nil
ard;
2 .prey:=nil;



case §*.dest of
'R is_surplus(s,A_IS10Q, | inaSRY;
‘B is_surplus(s,B_IS81Q, | ineSE);
s surplusis,CLISIQ, | inaSC);
D s surplusis,D1SIQ, ineSD);
'E'issurplus(s, E-ISIQ, | ineSE)
and :
end
eize stop:=trus

until stop
end; {serd_surplus_infos_from_S}

procedure transters_from.S;
hegin
send_surplus_infos_from 3,
zend_PFBHs.from.3;
zand B0z from &
zend. togkz_from. 5
end; {tronsfers_from.5}

procedure ziar_topoliogy;

% nodaptr;

: ; Ine bids nodeptr;

begin
#:=nil; z:=nil;
repeal

clock: =clock+t; .
if {clock mod w;rsdaw_!enghtﬁ—i
then if clockds1
then surplus_exchange;

schedul ing{ 'R’ ,A_EAT ,A_RFEQ, ﬂ_di.-.p,ﬂ_lBQ B.IEQ,C{1BG,D.1B0,E_1BO,
H_tasks_ptr H,K,%,%,%,%,%,%,'B,'C",'D",'E’, linefiS, lmnﬁ:,
{ineAS, !oneﬁs ﬂ_repart ﬂ.surpius)’

dispatching’ A’ ﬁ.msp,ﬂ_EﬁT Alinfo>;

bidding('A’ H_EﬂT A_IRFENH, A _di=p,z,2,2,2, lmﬂvﬂq,lmeﬂs linefig, !meﬁs;,

bad...evamqtmg{ﬁ_isﬂ ﬁ_ﬁFBL's 3_1'6,5_7& S_TQ §.10,°B*,°C’, "D’ 'E'
linefiS, linefs, linefAS, | inefS’;

schedul ing(! B B_EHT B_RFE], B.dnsp,B_.IBQ,C_lBQ,D_IBQ,E_IBQ,H_IBQ,
B_tasks.ptr*,x,x,x,x,x,x,x,x,‘C‘,'D‘,'E‘,‘ﬂ‘,lineBS,HneBs,
lineB5, | ineB5,B_report,B_surplucy;

dispatchingl{'B’, B..dt’p,B_EﬁT B_infos;

bidding{'B’ ,B.EAT,B.IRFEN,B.disp,z,2,2 z,imess 1ineBS, | ineBS, | ineBSY;

bld_evalw:f;ngiE-lEQ,B.HFSQ,s_TQ,ﬁ_Tﬁ,u_TQ,s_TQ e 'D' ‘E’, 'ﬂ‘
{ineBS, HineBE, | ineBS8, | ineB3)

schedul ing?d’ ct ,C-EAT ﬁ.ﬁFﬁ&,E.dxsp,ﬁ.iEﬁ 0_1B0,E- iEﬂ Fi_!Bﬂ B_IEG,
,_tqsks.ptr w,%,%,4,4,%,%,%,'0','E' 'R, 'B' linals, linafa,

- VineCE, 1 inels C_:*epcsrt £.surp¥us7
dispatching(’ C C_disp,E_EﬂT C.infoJ;

biddings'C',C_EAT,C_IAFEM,C.disp,z,z,2,z, | ineCs, ineCs, | ines, | inaCs);

bfﬂ.&ua!uating{ﬁ_i&a,ﬁ_PFEQ,y_TQ,.:_TQ, 8.10,5.10,'0D°,E", A7, 'B'
irals, 1irels, | ineCs, | ineCS3,

- =chadul ingl’ o B.£F£T D.EFBB,B_d;sp,ﬁ-SSQ E.1B0,A.1B0, B_IBQ c.1eg,
U_iask,s.ptr KK, KK, %,%,%,'E 'R, BT, DY, lmﬁﬁ lmeﬂs
| inalE, inals, C!_.rgpart ﬁ.surpfu#) ‘

dis‘;:atching( D D.dlsp,ﬂ_EﬁT D_infol;

bidding<’'D’ D.EFIT D.IRFEM,D.disp,z,2,2z,2,1ineDS, 1 ineDS, | ineDS, | ineDSH;

bfd.aw%uqtmgiﬂ-&ﬂ Q_ﬁﬂ'aﬂ,4_TQ,S_TQ,u_TQ,y.TQ, E','A ‘ ,'B, 'E’
VireDS, | inaD8, | ineD5, | ineDSy;

schadul ing('E’ ,E_EAT ,E_FFBQ, Eﬂdl.p,E 1BG,A_1BG,B-IBO,C_iEq,D_IBQq,
E_taskﬂ..ptr',x,x,x,x,x,x,x,x,‘B‘,‘B‘,'C‘,__'D‘,IineES,lineES,
{ineES, | ingES,E_report, E_surplus);

125



126

dispatching('E' E.disp E.EAT, E_info;
bidding{'E’, E_ERT E.IRFBH E_disp, W2, E, 7, LineES, | ineER, | ineES, lineEQ}
btd_euuluutinuiE_!BQ E_RFBQ,S;TQ Q_TQ S_IQ S_TQ ‘R, ‘B‘ ‘c, ‘D‘
inmES, | inaES, 1 inaES, | inaES);
trunsfere_from_s
updating_surpius_infa;
until clock=SIM_TINE
and; {star_topology}

procadure p»int.repurt(repert repor toarray);

war
dim : 1..3;
rnd : ndorange;
hagin
writel tasksarrived - :'3;
for nd:='fA" to 'E’ do
begin
for dim:=1{ 10 2 do
writelreportit, nd,diml:37;
writal’ ;"7
end; ‘

wr;fein wriie’ tasks_dispatched: * y;
for nd:='A" {0 'E’ do
begin -
for dim:=1 {6 3 do
writelreporiiZ, nd,diml 37,
writel’ ",
and;
writein
end; {print_repori}

procedure printrep;

bagin

writeln;

writeln{'HODE A : logal ;o from B . fromC . fromD . from E '3
printrepori(Areport); ' ) :

wriiein; ' ' :
yritein('HODE B - from A : local : fromC : fromD : from E :'J;
print_raport(B_repori’; ’ '

writelin; : ;

writeln( 'HODE C : from A : fromB : local : fromO : from E :'J;
print repori(C report),; :

writelin; '
writein( 'HODE O : from A : fromB : fromC : local : fromE :'J;
prtnt.reportﬁﬂ.report}

writeln; ‘ , '
writelnt 'MODE E : from A fromB : framC : from U : loecal @'
printrepori(E report)

end; {print-rep}

function calelii:integer): integer,;
Uar . .
j : ndrange;

n ; integer;
begin

n:=0;

for j“'ﬁ' to 'E’' do

ni=ntAreportZ,j, 11 14B.reportl(2, ], stl+c.rﬂporf!2 j, il
+0reporti2, j, 11 HEreportiz, j itl
calo:=n
end; fcalc)



127

procedure writing.the_resul ts;

var
nby_foc, n by.foc.bid, nbybid © integer;

bagin
print_rep;
nby_tooi=calelll;
nby_foe bidi=calel2?; -
nby_bid:=calce(3»tasks_disp_local ly;
writelin; , :
writein( HUMBER OF TASKS ', (tasks_guoranteed+iasks nonguaronteed):5);
wr-itein( 'HUMBER OF TASKS GUARAMTEED : ', tasks_guaranteed:35;
writeind ' MUMBER OF TASKS DISPATCHED LOCALLY ', tasks disp_localiy:33;
writein( MUMBER OF TASKS DISPATCHED HETUORK WIDE ', tosks disp rw wide:57;

writein’ BY FOC_MODE. " ,nby._foc:37;
writeing' : BY SECOMD.STEP.MODE ' ,n by foc bid:57;
writeing’ ’ BY DIRECT BIODING ' ,n by bid:55;

writein{ 'MUMBER OF TARSKS MOMGUARAMTEED :°, tasks_nonguaranteed:57;
end; {writing_the_resulis} :

bagin imain}
writein '
gei taskz_initializeail;
cose TOPOLOGY of
Lo ful iy connecied _lopology;
B istar topology;
&
#riting-therasulis
end, {main}



"~

Safl

|

9,

BIBLIOGRAPHY 128

BIBLIOGRAPHY

Zhao, W., Ramamritham, K., and Stankovic, [A., "Scheduling Tasks with
Resource Requirements in Hard Real-Time Systems™ /JFFF Transactions on
Software Engineering Vol. SE-13, No.5. pp. 564-576, May 1987.

Ramamritham, K., Stankovic, J.A., and Zhao, W., "Distributed Scheduling of Tasks
with Deadlines and Resource Requirements,” [EEF Transactions on Compulers

Vol. 38, No. &, pp. 1110-1123, August 1959,

Stankovic, ‘JAA., “A Perspective on Distributed Computer Systems," JZFF
Transactions va Eomputers Vol. C-33, No. 12, pp. 1102-1115, December 1984,

- Stone, H., and Bokhari, $. H., “Control of Distributed Processes,” ZEE Lomputer,
" Vol. 11, No.7, pp. 97-106, July 1975 :

Eleinrock, L., "Distributed Systems," fvmmunications of the A0M Vol. 28, No. 11,
pp. 1200-1213, November 1983,

Babclay, D.E., Byrne, E. R, and Ng, F. E., "A Real-Time Database Management
System for No5 ESS," Bell Syt Tech. /, Vol. 61, No. 9, November 1982,

Ayache, . M, Courtiat, J. P, and Diaz, M., "REBUS, A Fault Tolerant Distributed
System for Industrial Contrel,” ZFF Irapsactions on Cemputers Vol, C-31,
July 1982,

Melliar-Smith, P, M., and Schwartz, R. L., “Formal Specification and Mechanical
Verification of SIFT,” JFEF Transactions on Computers, Vol. C-31, July 1982,

Smith, R.G., "The Contract Net Protucol: High Level Communication and Control
in a Distributed Problem Solver,” JEEF Transactions on Computers, Vol. (-29, No.
12, pp. 1104-1113, December 1980,



11

11

12

Iz,
L)
]

4.

15.

16.

17.

19,

BIBLIOGRAPHY , 129

Casavant, Thomas L., and KEuhl, Jon G, “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems,” [EEF Transactions on Soltware
£ngineering Vol SE-14, No. 2, pp. 141-154, February 1988,

Lo, V.M., “Heuristic Algorithms for Task Assignment in Distribuied Systems,”
[FEF Transactions on Computers Vol. £-37, No. 11, pp. 1384-1397, November 1988,

Efe, K., "Heuristic Models of Task Assignment Scheduling in Distributed
Systems.” JZEE (omputer,Vol. 15, pp5i-35, lune 1982,

Computer Systems,” [EEF Transactions on Computers Vol. C-31, No. 1, pp. 41-47,
Januvary 1982, | ‘

Ramamritham, K., and Stankovic, JA., “Dynamic Task Scheduling in Distributed
Hard Real-Time Systems,” JFEF Software Vol. 1, No. 3, pp. 63-75, July 1984,

Graham, RL., Lawier, EL., Lenstra, LK., and Ean, AHGR., "Optimization and -

Approzimation in Deterministic Sequen cing and Scheduling: a Survey,” Annals
af Discrete Mathematics 5, 1979,

Xu, ], and Parnas, D.L., "Scheduling Processes with Release Times, Deadlines,
Precedé-nce_. and Exclusion Relations,” /JEEF Transactions on Software
Lngineering Vol. 16, No.3, pp. 360-369, March 1990, -

Garey, MR.. and Johnson, DS., “Scheduling Tasks with Nonuniform Deadlines on
Two Processors,” Journal of the ACM Vol. 23, No. 3, pp. 461-467, July 1976,

Liv, CL., and Layland, J. “Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment,” jouraal of‘tée"Atl‘/IZ Yol. 20. No. 1, pp. 46-61,
January 1973,

Chetto, H. and Chetto, M., "Some Results of the Earliest Deadline Scheduling
Algorithm,” JZEE Transactions on Software fngineering Vol 15, No, 10, pp,
1261-1269, October 1989,

Teizeira, T.. "Stalic Priority Interrupt Scheduling,” Proceedings of the Seventh
Texas Conterence on (omputing Systems, November 1978,

Johnson, H, and Madison, MS., “Deadline Scheduling for a Real-Time
Multiprocessor,” NTIS (N76-15843), Springfield, VA, May 1974.



22,

27.

™~
(=]

29,

3
A

BIBLIOGRAPHY . 1.3_0

Blazewicz, ]., Drabowsl_{i,'M.. and Weglarz, J., “Sc__heduling Multiprocessor Tasks to

‘Minimize Schedule Length,"” ZEZE Irsnsactivnson Computers Vol C-33,No. 5, pp.

3%9-393, May 1956.

Leinbaugh, D.W. “Guaranteed Response Times in a Hard Real-Time
Environment,” JEEF Traasactions on Software Fagineering Vol SE-6, Ne. 1, pp.
85-90, Januvary 1980, '

Lenat, Douglas B., “The Nature of Heuristics,” Artificial Intelligence 19,1982,

Zhao, W., Ramamritham, K., and Stankovic, JA.. "Preemptive Scheduling Under
Time and Resource Constraints,” JFF Transactions an Computers, Vo, C-36, No.
8, pp. 949-960, August 1987,

Dertouzos, M., “Control Robotics: The Procedural Control of Physical Process,”
Proc. of the [FIP Congress, 1974,

Dertouzos, M., and Mok, AK., "'Multiprocessof On-line Scheduling of Hard Real-
Time Tasks,” JZEE Trapsaclions on Software fngineering Vol. 15, No. 12, pp.
1497-1506, December 1989, . '

Jensen, ED., Locke, CD., and Tokuda, H., "A Time-Driven Scheduling Model for

" Real-Time Operating Systems,” Proceedings af  [FF Real-Time Systems

Svmposivm, December [985,

Bokhari, S.H., “On the Mapping Problem,” JZEE Transactions on Computers, Vol.
£-30, No. 3, pp. 207-214, March 1951.

Stone, H. "Mulliprocessor Scheduling with the Aid of Network Flow
Algorithms,” /EEF Transactions on Software Fngineering Vol. SE-3, Na. I, pp.
£5-93, [anuary 1977,

Chu, W.W, and Lan, MT., "Task Allocation and Precedence Relations for
Distributed Real-Time Systems,” JEEF Transactionson Computers Vol. C-36, No. 6,
np. 667-679, June 1987,

Le-iﬁbaugh_. D.W., and Yamini, M., "Guaranteed Response Times in a Distributed
Hard Real-Time Environment,” JFFF Transactions on Saftware Fongineering Vol.
5E-12, Ne. 12, pp. 1139-1143, December 1986,



(S
L

34.

36,

BIBLIOGRAPHY ' ' 131

Ma, RP., "A Model to Solve Timing-Critical Application Problems in Distributed
Computer Systems,” JEEE fomputer, Vol. 17, pp. 62-68, January 1984,

Livay, M., and Melman, M. “Load Balancing in Homogeneous Broadcast
Distributed Systems,” Procesdings of ACM Compuier Network Performance

Srmposiem, April 1982,

Wang., Y., and Mbrris, R. “Load Sharing in Distributed Systems,” /[FEEF
Transactions on Computers Vol. C-34,No. 3, pp. 204-217, March 1985,

Stankovic, [.A. Ramamritham, K., and Cheng. S., “Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-Time Systems.” /ZZ£F
Transactions on Computers, Vol. C-34, No. 12, pp. 1130-1143, December 1983.

Eurese, JF., and Chipalkatti, R, “Load Sharing in Soft Real-Time Distributed
Computer Systems,” JZEF Iransactions on Computers Vol. C-36, No. 8, pp. 993
1000, August 1987, ' "



REFERENCES NOT CITED o 132

REFERENCES NOT CITED

Bach, Maurxce ] 7he [)engﬂ of the UNIY Operating .S‘ys‘tem London : Prentice/Hall
Inierﬂ.manai Inc., 1984,

Casavant, Thomas L., and Euhl, Jon G., "Effect of Response and Stability on Scheduling
in Distributed Computing Systems,” J[EEEF . Transactions on Soft;mre
Lagineering. Vol. 14, No, 11, pp. 1578-1588, November 1988,

Eager, Derek L., Lazowska, Edward D, and Zahorjan, John, “Adaptive Load Sharing in
Homogeneous Distributed Systems,” JEEF Traasactions on Softwéare Engineering,
Val. SE-12. No. 5, pp. 662-675, May 1985,

Lewis, T.G., and Smith, B.]. Computer Principles anode]/mg and Simulation. Houghton
Mifflin Company, 1979,

Liestman, Arthur L., and Campbell, Roy H., “A Fault-Tolerant Scheduling Problem,” /FEE
Iransactions on Seftware fngineering, Vol. SE-12, No. 1I, pp. 1089-1093,
November 1984,

Lorin, Harold. Aspects of Distributed Computer Systems. John Wiley & Sons, Inc., 1985,

Maekawa, M., Oldehoeft AE,, Oldehoeft RR. Operating Systems: Advanced (oncept The
Benjamin/Cummings Pub. Co., 1957

Pasquale, Joseph, "Using Expert Sysiems to Manage Distributed Computer Systems,” ZZFE
Hotword, pp-. 22-28%, September 1955,

Peterson, James L., and Silberschatz, Abraham. Operwiing Srstem (vaoepls Reading,
Massachuites : Addison-Wesley Pub. Co., 1985.

Schrott, Gerhard, "A Generalized Task Concept for Multiprocessor Real-Time Systems,”
Mivroprovessing amid Microprogramming 20, pp. 85-90, 1987,



tra

REFERENCES NOT CITED | 13:

Stankovic, John A. "Decentralized Decision Making for Task Reallocation in a Hard
Real-Time System,” ZZZF Tramsaciins oo Lomputers Vol. 38, No. 3, pp. 341-355,
March 1989 - :

Stankovic, 'johh A, "Stability and Distributed Scheduling Algorithms,” JEEF
Transactions on Sofiware Fngineering, Vol, SE-11, No, 10, pp. 1141-1152, October
- 1985,

Tanenbaum, Andrew . Computer Networks, London ; Prentice/Hall International, Inc.,
1981..



	OTEZ348001
	OTEZ348002
	OTEZ348003
	OTEZ348004
	OTEZ348005
	OTEZ348006
	OTEZ348007
	OTEZ348008
	OTEZ348009
	OTEZ348010
	OTEZ348011
	OTEZ348012
	OTEZ348013
	OTEZ349001
	OTEZ349002
	OTEZ349003
	OTEZ349004
	OTEZ349005
	OTEZ349006
	OTEZ349007
	OTEZ349008
	OTEZ349009
	OTEZ349010
	OTEZ349011
	OTEZ349012
	OTEZ349013
	OTEZ349014
	OTEZ349015
	OTEZ349016
	OTEZ349017
	OTEZ349018
	OTEZ349019
	OTEZ349020
	OTEZ349021
	OTEZ349022
	OTEZ349023
	OTEZ349024
	OTEZ349025
	OTEZ349026
	OTEZ349027
	OTEZ349028
	OTEZ349029
	OTEZ349030
	OTEZ349031
	OTEZ349032
	OTEZ349033
	OTEZ349034
	OTEZ349035
	OTEZ349036
	OTEZ349037
	OTEZ349038
	OTEZ349039
	OTEZ349040
	OTEZ349041
	OTEZ349042
	OTEZ349043
	OTEZ349044
	OTEZ349045
	OTEZ349046
	OTEZ349047
	OTEZ349048
	OTEZ349049
	OTEZ349050
	OTEZ349051
	OTEZ349052
	OTEZ349053
	OTEZ349054
	OTEZ349055
	OTEZ349056
	OTEZ349057
	OTEZ349058
	OTEZ349059
	OTEZ349060
	OTEZ349061
	OTEZ349062
	OTEZ349063
	OTEZ349064
	OTEZ349065
	OTEZ349066
	OTEZ349067
	OTEZ349068
	OTEZ349069
	OTEZ349070
	OTEZ349071
	OTEZ349072
	OTEZ349073
	OTEZ349074
	OTEZ349075
	OTEZ349076
	OTEZ349077
	OTEZ349078
	OTEZ349079
	OTEZ349080
	OTEZ349081
	OTEZ349082
	OTEZ349083
	OTEZ349084
	OTEZ349085
	OTEZ349086
	OTEZ349087
	OTEZ349088
	OTEZ349089
	OTEZ349090
	OTEZ349091
	OTEZ349092
	OTEZ349093
	OTEZ349094
	OTEZ349095
	OTEZ349096
	OTEZ349097
	OTEZ349098
	OTEZ349099
	OTEZ349100
	OTEZ349101
	OTEZ349102
	OTEZ349103
	OTEZ349104
	OTEZ349105
	OTEZ349106
	OTEZ349107
	OTEZ349108
	OTEZ349109
	OTEZ349110
	OTEZ349111
	OTEZ349112
	OTEZ349113
	OTEZ349114
	OTEZ349115
	OTEZ349116
	OTEZ349117
	OTEZ349118
	OTEZ349119
	OTEZ349120
	OTEZ349121
	OTEZ349122
	OTEZ349123
	OTEZ349124
	OTEZ349125
	OTEZ349126
	OTEZ349127
	OTEZ349128
	OTEZ349129
	OTEZ349130
	OTEZ349131
	OTEZ349132
	OTEZ349133

