
SCHEDULING PROBLEM IN DISTRIBUTED HARD REAL-TIME

COMPUTER SYSTEMS:

A Simulation Ap'proach to Dynamic Task Scheduling

Usjng Focused Addressjng and Bjd,ding

by

Z. DUek Duman Tozun '

B.S. in Computer Engineering, Bogazi<;i University, 1987

Sub'mitted to the Institute for Graduate Studies' in

Science and Engineering in partial fulfillment of

the requirements for the degre'e of

Master of Science

in

Computer Engineering

Bogazici University Library

1111 II 1111111 1111 1111111111111111111111 ;!
39001100133142

Bogazi<;i University

1990

Hl

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to DOl;. Dr. Oguz Tosun for his guidance and help. I

would like La thank to DOl{. Dr. Selahattin Kuru. and to Doc;:. Dr. Omer Cerid for their

valuable comments. thanks La SemaF. Akgon for sharing ller experiences with me. My

sincere appreciation goes to Rasim Mahmutogullan for his editorial help. and critical

and detailed reading of my draft A very large thanks is extended to my husband for his

genuine understanding. Special thanks go to my baby yet unborn for the constant

encouragement of working more and harder.

Z. Dilek Duman Tozon

214593

iv

ABSTRACT

The un1que feature, the Lime constraint, of hard real-~ime systems makes them

different from the traditional computer systems because in such systems the required

tasks must be executed not only functionally correcLly but in a timely manner. In this

thesis, the scheduling problem of hard real-time tasks in distributed systems is

examined in detail. Previous work on the algorithms proposed for scheduling in hard

real-time systems is reviewed. A heuristic algorithm which considers not only CPU

scheduling but also general resource requirements of tasks is chosen to be evaluated. A

set of heuristics that can be used by this algorithm is studied through a sequence of

simulations. The heuristic function which is observed to perform the best is

incorporated in the distributed scheduling algorithm. In this algorithm the

determination of a ~ood destination node for a locally nonguaranteed task, is based on a

technique that combines bidding and focused addressing algorithms. Simulation studies

are conducted in order to evaluate the performance of the algorithm in a wide range of

application enviroil.ments. The performance of the algorithm' is also compared to that

of three other distributed scheduling algorithms. It is observed that though this

algorithm is sensitive to the characteristics of the environments, it performs well in a

wide range of environments, compared with the other algorithms.

v

OZET

Kat1 gerr;ek zamanh sistemlerin ozelligi olan sOre S11l1r1amas1, bu sistemleri geleneksel

bilgisayar sistemlerinden farkh kllmaktadlr, r;linko bu ~Or sistemlerde talep edilen

i~ler yalnlzca gorev baklm1ndan dogru olarak degU, ayn1 zamanda vaktinde yerine

getirilmelidirler. Bu tezde daglll1ml;; sistemlerde kall gerr;ek zamanl1 i!?lerin

planlanmasl sorunu aynnllh olarak incelenmektedir. Kall gerr;ek zamanll i~lerin

planlanmas1 konusunda ~imdiye dek oneri1mi~ algoritmalar gozden ger;irllmektedir.

Sadece MIB pianlamasml degil, i!?lerin genel kaynak ihliyar;lannl da dikkale alan bir

bulu~sal algoritma degerlendirilmek OZere ser;ilmi~tir. Bu algoritma tarafmdan

kullanllabilinecek bir grup bulu~sal fonksiyon, bir seri benzetim cal1~masl ile

incelenmektedir. En iyi performansl 'Verdigi gozlenen bulu~sal fonksiyon dagltl1ml~

planlama algoritmasmda kulla1l11maktad1r. Bu algoritmada yerel olarak garanti

edilemeyen i~ ir;in hedef dogomon ser;iminde pey sOnne ve direkt gonderme

algoritmalannl birle;;tiren bir leknik esas almmaktadlr. Algoritmanm performanslnl

gozlemlemek amaCl ile ye~it1i uygulama ;;artlan lr;m benzetim yah~malan

yapllmaktadlr. Algoritmanm performansl b~ka Or; degi;;ik daglt11ml;> planlama

aigorilmaslnln performanslan He de kar;;l1~tlnlmaktadlr. Bu algoritmanln, uygulama

alanmm ozelliklerine hassas olmasma ragmen, geni;; bir uygulama alanl ir;inde, diger

algoritmalara klyasla iyi b.i:r perf(jrmans gosterdigi gozlenmektedir.

Vl

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACf , , , ... , iv

OZET., ,., ... ,", .. ,., .. ,"', ... , .. ,', .. ,.,',., " .. ,."' ... ,."" " ,."."" .. "~ .. "'., ... , .. ".""" ... , .. "' , ,.,,., ,., v

LIST OF FIGURES ... , , ,." ,.,., IX

LIST OF TABLES .. , xi

LIST OF SY~IBOLS., ~ , .. , , ,., ... , , xii

I, INTRODUCTION , , , , 1

II, SCHEDULING, .. , , , , ... , .. : 4

2.1. Distributed Systems and Scheduling ... ; .. 4

2.2. Real-Time Systems , : , , , , , 6

2.3. Scheduling in Hard Real-Time Systems .. 7

III, DlSTRIBlITED SCHEDULING ALGORITHMS, , , , .. , ,., ... 1.0

3,1. Hierarchical Classification , ,,; , , ... , 10

3.2. FlatClassificat.ion Chara.cteristics , ... 14

3.3. Application of Taxonomy to Some Exampi-es .. "' ",,'.'" " .. " "'. " J 6

vii

IV. LITERATURE SURVEY ON SCHEDULING ALGORITHMS FOR HARD REAL-TIME

SYSTE~tS ... : .. 18

4.1. Literature Survey for Multiprocessor Systems .. .18

4.1.1. Static Scheduling Algorithms for Multiprocessor Systems 18

4.1.2. Dynamic: Scheduling Algorithms for Mult.iproc;essor

. Systems ... ; -:-. 21

4.2. Literature Survey for Distributed Systems ... 22

4.2.1. Static: Scheduling Algorithms for Distributed Systems 22

4.2.2. Dynamic: Scheduling Algorithms for Distributed Systems 25

V. OVERVIEW OF TRE SCHEDULING SCHEME ... 27

VI. LOCAL SCHEDULER ... 31

6.1. Strategy Behind the Local Scheduler31

6.2. The Basic Algorithm Underlying the Guarantee Routine32

6.2.1. Scheduling versus Searching32

6.2.2. Data Structures .. 33

6.2.3. A Constraint on the Search ... 36

6.2.4. The Basic Algorithm ... 37

6.3. Extensjon to the Basic Algorithm ... 38

6.4. The Heuristic Function H ... 45

6.1:.1. Simple Heuristics for Scheduling ,1:5

6.4.2. Simulation Method and Results45

6.4.3. Integrated Simple Heuristic; Algorithms47

6.4.4. Simulation Results of Using Integrated Simple Heuristics49

6.5. Application Considerations ... 51

6.5.1. On-li.ne Heuristic Scheduling ... 51

6.5.2. Scheduling When Tasks Arrive in a Batch .. 52

viii

6,5.3, Non-preemptive Scheduling and the Inclusion of Periodic

Tasks"""",,.,,,,,,, '"'''''''''''''''''''''''''''' ,,52

VII, DISTRIBUTED SCHEDULING SCHEME ''''''''''''"''"'''',,,,''.,,', ,','', .. ,'','','' .. ,,',, .. , .. ,,', .. ," ",54

7.1, Generation and Transmission of the Node Surplus "" .. "" "" .. """ .. ,, .. ,,')4

7.2, Focused Addressing and Requesting for Bids .. """.""""."" .. " .. ~"" .. "" .. """""",,55

7.3, Bidding .. '" " .. " ""., "'"'''' "" "'" ." ... ""',,, .. "" ... " ... "" "." " " "., ,. " .. ,." " . .57

7 . .«, Bid Evaluation .,"' .. "., ,', .. " .. ",,"',",' .. ,""", .. ,.,'," "".,,,,., ... ,,,,,,,,-,.,,,,,,,,,,58

7.5. Response to Task Award ... ,'" .. , "', .. "" ... " ".,.,.,""", .. ", ... ,.,.,', .. ,.,,',, ... , ... ,."." ... ,')9

7 ,6. Simula,tion Model " " ,.,."" ... "~ "" .. " .. ''' .. , ... , .. ''' ... , .. ,.'''''.,.,,, .. ')9

7.6.1, Syste m ModeL."" """ ... "".,, ,., .. ,' ".",,,,,.,,.,,,.,,,.,,,,,,,,.,,,,,,,,.,,,,,,,,.,,,,.,')9

7,6.2, Node Mode t" " .. """, "'" ",," "." """,,,,,, ".,," "'''''''''''' "."" ".""", """" ",,"'" ,61

7.7, Simulation Results and Observations .. ""","''', .. , .. ,,, .. ,',, ,,',, .. ,'''''''' .. ,,"", .. ,,"'''' ,,63

7 ,7,1, Effect of Laxity Dist.ribution of Tasks """" ""'''''" "'''''''''",,,,,,65

7.7.2, Effect of Communication De lay,,, ,,,,,,,,, ... ,, .. ,,,,,,, ... ,,.,,,,,,,,,,.,,,,,,,,,,,, ",66

7.7.3, Effect of System's Communication Network Topology ... ""."".""",,,,74

7.7.4, Comparison of Algorithm FB with Algorithms NC and R,,,.,,,,,,,.,,,,,..?5

7.7,5, Comparison of Algorithm FB with Algorithm B"""""""""",,,,,,,,,,,,..?9

V1 II, CONCLTJS ION", '" ".,," '''' "''''''',:" "," ,"","'" " """"" ", "." " .. , .. ,," ,,, " ,""",' " .. ",." .. ,,,,,,, ,83

APPENDIX A, LOCAL TASK GENERATOR """ ... "" ... " ... ,""""" .. "" "." .. " "" .. """ ... " .. ,,,.,,,,,,,,85

APPENDIX B. LOCAL SCHEDULING PROGRAM ".":"." ... ".""".""."" ... "" ... "" .. "" .. " ",,.,, 89

APPENDIX C, GLOBAL TASK GENERATOR " " """" ... "" .. "".".""""""" ,,"",,.,,,,%

APPEN.DIX D, SCHEDULING PROGRAM USING BIDDING AND FOCUSED ADDRESSING"""".",,98

BIBLIOGRAPHY '''' ". ,'.'" """" "'" '" ,,,"" " ''',,'' "'., """""" "., """" '" ,,,' .. "'; .. ,, ,,,' ""."",,,,,, '''' "",,,,,,,, "" 128

REFERENCES NOT CITED" """ ,,'''''''''' " .. ", .. "" " .. ", .. " .. " .. ",,,,, ",," , .. , ... ", '" " .. ,' """"'" """""'" ".;,132

ix

LIST OF FIGURES

FIGURE 3.1 Structure of the hierarchical ciassificat.ion,,,,,,,,,,,""""""",, .. ,""''', , .. .11

FIGURE 5.1 Structure of the local scheduler on a node " .. "" .. " .. "" .. " """" .. " ",, 28

FIGURE 6.1 A search tree for a set of fourtasks""" .. " .. ", .. " .. "" " "." " "34.

FIGURE 6.2 Basic local scheduling algorithm for guarantee routine " 38

FIGURE 6.3 The algorithm of the Limited--Bac:ktracker.. " .. " " " AO

FIGURE 6A Data structure used to implement a task node "."" "" "4.1

FIGURE 6.5 Illustration of the extended algorit.hm by a simplified example ,A"f

FIGURE 7.1 Simulation system modell (Fully Connected) ,""" 60

FIGURE 7.2 Simulation system model 2 (Star) .. , , 60

FIGURE 73 Effect of task laxity when R=l6/600 and Topology=FC , 67

. FIGURE 7,"f Effect of task laxity when R=16/600 and Topoiogy-=-S , 67

FIGURE 7.5 Iffec:tof task laxity when MD=36 and Topology=FC ~ .. , , 68

FIGURE 7.6 Effect of task la.xity when MD=36 and Topology=S ,;' " 68

FIGURE 7.7 Effect. of MD under·~UOAD a.nd L~AX" "." .. , " ",70

FIGURE 7 ,8 Effed of MD under M~OAD and H~AX ,';"' .. " .. ~~ .. , .. ''' .. ''' .. , ''' ''' ,: .. , .. ".70

FIGURE 7,9 Effect of MD (details of Fe_GNW) " " "" ... " , .. , .. 72

FIGURE 7.10 Effect. of MD (details of S_GNW) " .. , : " 72

FIGURE 7.1 1 Effect. of MD under L_LAX a.nd different system loads "" , 73

FIGURE 7.12 Effect of system's c.ommunication network topology " " 7"f

FIGURE 7.13 Comparison ofFB. R. and NC when Laxity:H_LAX and Topology:FC .. " 76

FIGURE 7.14 Comparison ofFB, R. and NC when Laxity:H~AX and T-opology:$ " 76

i
\
i

x

FIGURE 7.15 Comparison ofFB. R. and NC when Laxity-=.1LLAX and Topology-=.fC"",,,,,, .. 77

fIGURE 7.16 Comparison offB. R. and NC when Laxity=M:.lAX and Topology=$""""",, 77

fIGURE 7.17 Comparison offB. R. and NC when Laxity=L_LAX and Topology=FC"""""" .. ,78

FIGURE 7.18 Comparison riffB. R. and NC when Laxity=:LLAX and Topology=$" .. ",,, ,,78

FIGURE 7.19 Comparison offB and B when R-=.16/600 and Topology=FC "~ """"",,,.80
--

FIGURE 7.20 Comparison offB and B when R=16/600 and Topology=$""""" .. "" .. """",,,,, .. 80

FIGURE 721 Comparison of FB a.nd B when MD=36 and Topology=FC""" ... """""""" .. """".82

fIGURE 7.22 Comparison offB and B when MD=36 and Topology=S .. """"""" "'~"'":",, 82

Xl

LIST OF TABLES

Page

TABLE 3.1 Application of the taxonomy to some example algorithms 17

TABLE 6.1 Simulation results of using simple heuristics " "48

TABLE 6.2 Simulation results of using integrated simple heuristics " " ... 50

TABLE 7.1 Nodes' local task arrival rates under different 5ystem loads 64

ATtTJ

aT}

urTl

OkIW

IWIW;

EAT

EA.Tj'

5(T,iJ'

FAS

HtT..l

1:-

ltT}

LOA. tTl

MP

f.JfiaJ.}

LIST OF SYMBOLS

arrival time of the task T

worst case computation time of the task T

deadline of the task T

dynamic resource demand ratio for resources on a node

dynamic resource demand ratio for resource i

earliest available times of resources on a node

earliest. available Ums of resource i

estimated number of instances of task T t.hat. node Nt can guarantee

focused addressing surplus

value of t.he heurist.ic function H for the task T

number oftasks in a task set.

laxity of the task T

latest bid arrival time of t.he task T

no conflict. message delay

minimum computation time first heuristic

minimum deadlin'e first heurist.ic .

minimum laxity first heuristic

minimum start time first heuristic

xu

i~ir",:1:.4.T(T) earliest available ~imesof resources on a.node if taskT is scheduled next.

iVew-:L4 rtT"~ ea.rliest availabl~ time of resource i if task T is scheduled next.

node i

R

R(Tl

Sl;S

Sj

T

system local task arrival rate

resource requirements of the task T

resource i

system-wide guarantee surplus

a set. of tasks

earliest start time of the task T

a real-time task

xiii

1

L INTRODUCTION

. Recently, there has been an increased interest. in hard real-time systems and such

systems are becoming more and more sOphisticated. Examples of this type of real-lime

systems are command and control systems, flight control systems, and the space shuttle

avionics system.

Currently, the field of real-time scheduling is the focus of a great deal of

research interest, This is because of the very frequent use of digital computers in real

time applications, growing sophistication in real-time software for the last few years,

and an increased necessity in improving system performance and reliability,

In a hard real-time system, the correctness of ~e system depends not only on

the logical result of the computation, but also on the time at which the results are

produced, Usually, timing constraints are described in terms of deadlines by which

computations of tasks must absolutely be met or the system will be considered to have

failed, Further .. if these· real-:-time t.iming constraints are not met there may be

potentially catastrophic consequences. Hence, the most critical part of supporting such

new systems is the ability to guarantee that timing constraints can be met Because of

the large numbe.1' of combinati(lns of tasks that might be active at the same time and

because of the continually varying demand patterns on the system .. it is generally

impossible to pre-calculate aU possible schedules (In'-linfJ to staticaUy guarantee real

time timing constraints, This study concerns the scheduling algodthms for on-line

dynamic guarantee of deadlines, in a hard real-time distributed computer system,

The problem of determining an optimal schedule is known to be NP:-hard and is

hence impractical for real-time task scheduling. The problem is even harder when, in

addition to computation times and deadHnes of tasks, their active and passive resource

requirements are also accounted for. Optimal algorithms with polynomial time

complexity exist only 1'(11' a few restricted cases, for example, in the ca..~ where tasks

having the same processing time and the same deadline are scheduled on two

·processors and in the case where there is only one type of resource, None of these

cases represent practical situations. Moreover, it is impossible to find an optimal

2

schedule [or a dynamic distributed system given the inherent. communication delay.

All of these factors necessitate a heuristic approach to scheduling.

In many hard real-time systems, tasks are scheduled dynamically and hence the

scheduling algorithms used must have low run-time costs. In this study. a non

preemptive scheduling scheme is evaluated for such dynamic hard real-time

distributed systems. In this scheme in addition to tasks' timing ~onstrnints their active

a.nd passive resource requirements are also taken into account. The scheme has two

components: local scheduling (guaranteeing taskS that ar:.rive dynamically at a node)

and distributed scheduling (guaranteeing locally non guaranteed tasks at remote
nodes),

The heuristic algorithm developed by Zhao, Ramamritham, and Stankovic [1 t is

chosen as the algorithm underlying the guarantee routine in local scheduling and is

implemented with some modifications, The most critical 'point in local scheduling is the

heuristic function used by the guarantee routine to select the task to be scheduled next.

In order to keep run-tillie costs low, computationally simple heuristic functions are·

evaluated and the one which has the best performance is chosen for further

exploration, The simulation results ":reported in' Part VI show that because of the

complexity of the problem, Simple .. heuristicsal(lne 'do n(lt perf(lrm satisfact(lrily,

However, an algorithm that uses a linear (lombination of simple beuristics in

conJunction with limited backtracks works very welt

As menti(lned before .. in a hard real-time system, every task that misses its

deadline can seriously degra~e .the performance of the SY!dem. Hence, even a small

perf(irmanCe improvement should be cOflsi«ered significant in the context of hard

real-time systems.

It should also be p{linted out that the time co,mplexity of this algorithm for

scheduling a set of k tasks is k2, which is very much lower .than that of an optimal

exhaustive se·arch algorithm which takes time proportional to kL -Hen ce, . this is an

attractive approach to oyer come the exponential problem of scheduling.

Whe·n a task arriving at a node cannot be guaranteed at that node, the

distributed scheduling problem comes into the picture. In that case, the local

scllegulers on individual nodes must interact and c(loperate to determine which other

node in the system can guarantee the tasK, The degree of this co.operation depe.nds.on

R~f~~en C~5 enclosed in brackets refer to the bibliography.

. .,
;)

t.he algorit.hm used. In t.his st.udy, an aigorit.h1ll. wh~c1;tcombin.es bidding and focused

addressing' algorithms [21 is evaluated, The integI"dt.ed simple heuristic, which was

observed to have the best performance in Part VI. is incorporated in this distributed

scheduling algorithm as the heuristic under.~ring the guarantee routine on each node.

In the distributed scheme the guarantee routine is used both in scheduling tasks that

. arrive at a node, and in making bids for remote tasks locally nonguaranteed,

Simulation studies· are 'conducted on the algorithm to observe·. how ('.ommunica.l;ion

. delay, task laxity, system load, and system's network topology affect the overall

performanc~ of the system, The .performance of the algorithm is. also. compared with

that of three other algorithms : noncooperative. random scheduling, and 'direct'
bidding, From the simulation results reported in P~rt. VII," it. is obStJfved that the

. ,

scheme is effective and practical in a wide range of application environments, It reaps

t.he benefits of both bidding and focused addressing, and overco~es the shor~'romings

in using each by itself.

The thesis c(lnsists (If eight parts, including this part. In the next part, a general

. information about distributed systems and real-time systems is' given, and a hard real

time task model is introduced. Then, in Part III.. a taxonomy of different approaches to

the distributed scheduling problem is presented. Part IV· concerns a literature survey

on scheduling algorithms in hard real-time systems, The current literatures for

multiprocessor systems and for distributed systems are reviewed separately, After this

general study .. in Part V, an overview of the scheme of scheduling hard real-time tasks

with general resource requirements in distributed systems is introduced whose local

scheduling component is discussed in detail in Part VI.. and distributed scheduling

component is dis.cussed in detail in Part VII. Part VIII contains the conclusion of the

thesis,

Appendices A through D .. contain the listings of some of the simulation

programs which are introduced in Parts Vi and VII. One may refer to the. diskette for a

complete set of programs de.veloped for this study.

Bibliogl'aphy gives a list {If references used in this mudy and cited in the text of

the thesis. References not cited are listed separately.

I I. SCHEDUL ING

This part contains the presentation of the distributed system model adopted throughout

this study and the introduction of the scheduling pl'Oblem in distributed computer

systems followed by a· general information about. real-time systems and hard real-time

scheduling. A hard real-t.ime task model is also presented ..

2. L Distributed Systems and Scheduling

A 1"(!SOIJ1"C(! is an e.ntity which may be de·manded by tasks. It can include CPU, I/O

devices, files, data stnJctures, etc. A resource which ?~.p~ocessing power is called an

active resource, or proceS .. 'i'l7f, A CPU or .3;1.1 110 pro.c~sS{lr is an active re·source. If a

resource has no .t.1!·ocessing power, it is a plI..'i'Sir-pe re~'i'(l[Jrce. Files are examples of passive

resources. Therefore, a j.1assive resource must be used with an active l·esource.

A mlJltiprocessor system is a configuration of a set of reSOUi'ces in which the

control is centralized .. and processors can communicate with each other without any

significant delay. According to the definition of resources, in a multiprocessor system

there is at least one active resource, that is .. a processor .. and zero .01' more passive

resources. In a multiprocessor system, the processors are identical if they are exactly

the same in terms of the processing power, that is they have the same instruction set

and the same speed. The processors are uniform if they have only the same instnJction

set .. but different speeds.

A dis/dollted system is defjn ed as any configuration of two or more nodes, each

consisting of a multiprocessor system as defined above, with control of the system

being distributed among the nodes. In a distributed system, communication between

nodes {lcc.urs {lver some' communication medium .. and the tiine of communication

. between nodes is often assuIDed to be non-negligible.

5

Once the system is operational. improving response time and throughput of

user processes is largely the responsibility of ~Y::hedu'jng' o,(gorllnmswhich are the

operating system components that function continuously to manage the processing

resources in the system. Proper design of such mechanisms has a great impact on

overall system performance. This design problem becomes two-dimensional in the

domai.n of distributed computing systems since not. only the question of rrhea to

execute. but. also wllere to execute a particula.r task must be addressed. Towards this

goal. many approaches to t.he problem have been attempted. with variously reported

reSUltS. A ta~onomy of these approaches is given in Part II~ .

. If a dist.ributed computer system is to exploit the mUltiplicity of processors and

resources in the network it must contain independent load schetlulers The local

schedulers must interact and . cooperate and the degree to which thiS occurs can vary

widely.

Stankovic in [31 suggests that a good scheduling algorithm for a distributed

. computer system will necessarily use iJellrist.ics similar to' those found in "expert

systems", The task of these heuristics is to effectively utilize the resources of the entire

distributed system given a: complex and dynamically changing environment.

Some implications of using a heuristic function for scheduling should also be

pointed (lut :

(a) If an optimal scheduling algorithm can come up with a feasible schedule for a set of

tasks, the heuristic scheduling .algorithm may be able to do the same depending on the

goodness of its heuristic function.

(b) If even an optimal scheduling algorithm is unable. to schedule a· set of tasks~ then

the heuristic scheduling algorithm definitely cannot.

(t,.~) When there is no feasible schedule for a set of tasks. the heuristic scheduling

algorithm will be able to discover that much sooner than an optimal scheduling

algorithm,

6

2.2. Real-Time Systems

Recently. a major areaof computer application has been real-time systems, There are

two types of real-time computer systems:

(a) .. fOo.n1 Heal-Time s'.r-:'SIem is one in which tasks have explicit time constraints. such

as deadlines. so that a task is considered to be of value only if it finishes before 'its

deadline.

(b) A,'Soft Real-Time System is one in which tasks haye to be executed as quickly as

possible, but there is no explicit time constraint associ~ted with them.

Distributed systems al'e.suitable for hard real-time applications, This is not only

be·cause· ofte.n the applications themselves are· physically distributed, but also because

of the potential that distributed systems have for providing good reliability, good

resource sharing and good extensibility,. as reported by Stanlwvic in [3], by Stone and

Bokhari in (41, and by Kleinrock in [51.

Nuclear power plants and process control .applications are inherently

distributed and have severe real-time constraints and reliability requirements, These

constraints add considerable complication to a distributed compute.r system, Airline

reservation and bankingappIications are also distributed, but have less severe real

time and re1ia~iHty constraints an~ are easier to build, Examples of the more

demanding real-time systems include ES5 [61. REBUS 17L and SlIT [81. ESS is a software

controlled electronic switching system developed by the· Bell System for placing

telephone caUs, REBUS is a fault tolerant distributed system for industrial real-time

contr(ll, and SIFT is afauIt tolerant flight control system:

In the future .. such real-time systems are expected to become more and more

complex, have long lifetimes .. and exhibit very dynamic, adaptive and even inteHige'nt

behavior,

7

2.3. Scheduling in Hard Real-Time Systems

In many systems, and especially in embedded systems, danger to human life or simply

damage to equipment makes the violation of a task's deadline unacceptable. It follows

that the main requirement of a hard real-time system is that. it. should be supplied with

a highly efficient las/:: scneduler which carefully schedules the tasks so that all the

tasks meet their timing requirements.

In a hard real-time scheduling algorithm, a set of tasks is said to be guaranteed

if and only if the algorithm derives a schedule for the set of tasks which meets the

given set of time, resource and precedence constraints. In a dynamic system, because

all of the t.'lSk characteristics are not known a priory, a task is said to be· guaranteed by

a scheduling algorithm if.. when the task arrives, the scheduling algorithm is capable

of finding a schedule fOF all th~ tasks previously guaranteed and the new arrived task.

A ma.ior performance metric for dynamic scheduling algorithms is the

gllaranitltl ratio, which is defined as the total number of tasks guaranteed versus the

total number of tasks arrived,

. ,

A real-time scheduling algor~thm is said to be optimal if giv.en a set of tasks it

can always generate a schedule meeting the time, resource and precedence constraints

whenever there is allY ~lgorithm which can do so.

For sub-opt.imal algorithms .. one performance metric is the slJccess ratio, i.e.,

. the total number (If task sets guaranteed by this algorithm versus the total number of

task sets guaranteed by an optimal algorithm.

A task, T, in a hard real-time system is characterized by the foHowing

parameters;

(A) TAe .A.rriyal Time. AT(T) : At this time, the task and th~ associated task

parameters (specii1cations) are known to the system.

(B) TAt! (Earliest) SlIIrt Time. ST(T) : Only afte-r this time·, can task T be executed.

(e) T.lJo 'orst CIISO Computlltion Timo. C(T) : In ·any case, the running time {If

task Twill not be· more than this amount of time, Tasks in real-time system have·to be

. designed so that the difference between their worst case and normal execution times is

8

not large. Otherwise. when resources are assigned to a task [Ol' its worst case execution ,
time. poor resource utilization will result. In this regard. a dynamic scheduling scheme

has advantages since based on the input parameters of a dynamically invoked task. a.

lower worst case computation time can be determined (compared to a statically

determined worst case computation time).

(D) Tlu: Dt:UJiDe, D(T) : By thattime. task. I must complete its execution.

(E) Tile uz-ily. L(T) : Ihis is the time difference between t.he earliest. termination

time of a task T and its deadline~ where earliest termination time .of a task is the sum of
.. • . • • .1.... P', ,

its earliest start time and itscompu~iliJ-D., ti~e.

(f) TlIe Resource Requirl!.IIle.nts of't..IJc· /JIsk, R(Y) : This is a vector, specifying

the resources needed in the execution of the task, It is assumed that a task needs all its

resources throughout its execution, and the resource requirements of a task are always

less than or equal to the. totall'esources in the· node of the syste·m, A task will request at

lea.."it one active resource and zero or more pa..-.sive reS{lurces,

It is assumed that these 'parameters are always feasible .. that is to say,

. I) :S AT(T) :S ST(n :S D(T) - en) ,

always holds.

In ahaI'd real-tlme system, there are two types of tasks; nonperiodic ,a,;.fs and

periodic ta...',KS. A nonperiodic task arrives at any node dynamically and has to be

executed before its deadline. The existence of a periodic 'task with period P implies that

{Ille instance of the task should be executed once· every P units of time after system

initialization, The i-th instance of a periodic task with period P has deadline being

i'"P-*D' where D' is the relative deadline in a period, It is generally assumed that D':S P.

In addition to resource requirements and timing constraints, tasks in real-time

systems are also characterized by their priority and precedence constrainL.:;; The

priority of a task encodes its level of importance relative to other tasks, There may be

precedence relation among a set of tasks in the system. A task T J is said to precede

allothe·r task T 2, ifT J must complete its execution before T 2 sta1'ts. It is always a....;;sumed

that the precedence relation is acyclic. A task is preemp~ble if it can be preempted in

its execution. Precedence constraints enter the picture when tasks communicate or

when a complex task is viewe·d in terms of a number of subtasks related by preceden ce

constraints,

9

This study focuses on tasks that are independent and have equal priority;

because consideration or"precedence and priority constraints would add new variables

to the already large number .of variables used. and would affect the results of the

simulation studies,

10

Ill. DISTRIBUTED SCHEDUI .. ING ALGORITHMS

The study of distributed computing has grown to include a large range of applications.

However. at the core of all the efforts to exploit the potential power of distributed

computation are issues related to the management and allocation of system resources

relative to the computational load of the system.

The notion that a. loosely coupled collection of, .. processors could function '~ a

more powerful general-purpose computing facility has existed for quite some time. A

large body of work has focused on the problem of mana.ging the resources of a system

in such a way as to effectively exploit this power. The result of this effort has been the

proposal of a variety of widely differing techniques and methodologies for distributed

scheduling.

In this part. a taxonomy of approaches to the scheduling problem is presented

in an attempt to bring together the ideas and the common terminology used in this

area, and to provide a dassi11cation mechanism necessary in addressing this problem.

Among existing taxonomies, one can find examples of flat and hierarchical

classification schemes. The tax~l1lomy presented in this part is a hybrid of these two : . .
hierarchical as lorig as possible in order to reduce the total number of classes, and flat

when the descriptors of the system may be chosen in an arbitrary order. . . .

3.1. Hierarchical Classification

The structure of the hierarchical portion of the taxonomy is shown in Figure 3.1,

discussion of the hierarchical portion then fol1ows.

static

optimal sub-optimal
:,..-

\ . "
//

/./ .

. /
approximate heuristic

.L , --_~
enumr~;ve \··~,· ... , .. , ------q;eueing

\ .'...... theory
, '.

graph math.
theory pgrmg.

dynamic

l-.. /

/ .. ,
! '..'"

j '-

physically

distributed .

cooperat ive

optimal

physically

non-distributed

000-cooperat ive

sub-optimal

fIGURE 3.1 Structure of the hierarchical classification

11

(A) LoclI.I Versus G.lo/Ja./; At the highest level, one may distinguish between local

and globalscheduling, Local scheduling is involved with the. assignment of processes

to the time-slices of a single processor, Global scheduling is the problem of deciding

where to execute a process, and the job of local scheduling is left to the operating

system of the processor to which the process is ultimately aHocated, This does not imply

that global scheduling must 'be done by a single central authority, but rather. the

problems of local and global scheduling are viewed as separate issues .. and (at least

10gicaHy) separate mechanisms are at work solving each.

12

tB) SUlie Selleduliss: The next level in the hierarchy (beneath global scheduling)

is a choice between slal./I.~and ((r-·'O.amkscheduling. This choice indicates the time at

which the scheduling or assignment decisions are made. In the case of static

scheduling, information regarding the total mix of processes in the system as well as

aU the independent subtasks involved in a job or task force is assumed to be a.vailable

by the time the program object modules are linked into load modules. Hence, each

executable image in a system has a static assignment to a particuLar processor. and each

time that process image is submitted for execution. it is assigned to that processor.

(C) OpumaJ Versus Su!Jopti.,aJ: In the case that all information regarding the

state of the system as well as the resource needs of a process are known. an optimal

assignment can be made based on some criterion function. Examples of optimization

measures are minimizing total process completion time. maximizing utilization of

resources in the system. or maximizing system throughput. In the event that these

problems are computationally infeasible, su/;Qplimal solutions may be tried.

(D) ApproIl.'ne YeFS6s Htlilristie: Within the realm of suboptimal solutions to

the scheduling problem. two general categories may be encountered. The first is to use

the same formal computational model for the algorithm. but instead of sea.rching the

entire solution space for an optimal solution, we are satisfied when 'We find a "good"

one. Those solutions are categorized as SUboptimal-approximate. The assumption that. a.

good solution can be recognized may not be so significant. but in the cases where a

metric is available for evaluating a solution, this technique can be used to decrease the

time required tl) find an acceptable solution.

The second. branch beneath the suboptimal category is labeled heurislk This

branch represents the category of static algodthms which make the most realistic

a...:;s:umptions about a. priori knowledge concerning proce~ and system loading

characteristics. It also represents the solutions to the static scheduling problem which

req~ire the most teaso nab Ie a.mQunt of time and other system resources to perform

th'eir function. The most distinguishing feature of heuristic schedulers is that they

make use of special parameters which affect the system in indirect ways.

(E)OpLiilUd./I.Dd SulJopJiilUd Appr:osi.,JdJe TecbDiques: Regardless of whether a

static solution is optimal or suboptimal-approximate. there are f04r basic categories Qf

task allocation algorithms which can be used to arrive at an assignment of processes to

processors :

(a) soluti(ln space en.umeration. and search:

13

(b) gm.ph t.heoretic;

(c) mathematical progmmining;

(d) queueing theoretic:.

(F) DyDJl.JR.iC Sc.IJeou.l.iD8: In the dynamic scheduling problem, the more realistic

assumption is made that very Httle a priori knowledge is available about the resource

needs of a process, In the static case, a decision is made for a process image before it is

ever ~xecuted, while in the dynami.c case no decision is made until a process begins its

life in the dynamicenvi:ronment of the system.

(G) D.istr.i/Juteo Versus NOLld.istr.i/Juted : The next issue (beneath dynamic

solutions) involves whether 'the responsibility for the task of global dynamic

scheduling should physicaUy reside in a single processor (pll.rj.icol1.,.f~ noodislribillet/)

or whether the work involved in making dedsions should be ph"Fsical.l.r distributed

among the processors.

(H) CooperatiYe Versus NOLlcooperlltiYe: Within the realm of distributed

dynamic global scheduling, we may also distinguish between those mechanisms which

. involve cooperation between the distributed components (cooperative) and those in

which the individual processors make decisions independent of the actions of the other

processors (noncooperative), The question here is one of the degree of alltonomy

which each processor has in determining how its own reSources should be used,

In the noncooperative case individual processors act alone as autonomous

entities and arrive at decisions regarding the use of their resources independent of the

effect of their decision on the rest of the system.

In the cooperative case each processor has the responsibility to carry out its

own portion of the scheduling task, but aU processors are working toward a common

system-wide goal. In other words. each processor's local opemting system is concerned

with making decisions in concert with the other processors in the system in order to

achieve some global goal. instead of making decisions based on the way in which the

decision will affect local performance only.

As in the static case, the taxonomy tree has reached a point where optimal.

suboptimal-approximate. a.nd SUboptimal-heuristic sl)lutions may be considered. The

sa·me discussion as was presented for the static case applies here as well.

3.2. Flat Classification Characteristics

In addition to the hierarchical portion of the taxonomy already discussed, there are a

. number of other distinguishing characteristics which scheduling systems may: have,

This section deals with chara.cteristics which do not fit. uniquely under any particular

branch of the tree-structured 'taxonomy given thus far, but are still important in the

way that they describe the behavior of a scheduler, In ot11:er words, the following

char-.a.cteristics could be branches beneath several of-the leaves shown in figure -3.1.

and in the interest of clarity ~re not repeated undel' each leaf. but are presented here

as a- flat extension to the scheme given thus far,

It. should be noted that these attributes represent. a set or" cha1"a.cteristiCs, and

any particular scheduling subsystem may possess some subset-of this set,

(A) A.da.ptiyq YtfI"SUS J/(JIIMMptif'i1f: An adaptive solution to the scheduling problem

is one in which the algorithms and parameters uwd to implement the scheduling

policy change dynamically according to the previolls and current behavii>r of the

system in response to previous decisions made by the scheduling system, In contrast to

an adaptive scheduler, a nonadaptive scheduler would be one which does not

necessarily modify its basic cont.rol mechanism on the basis of the history of system

activity,

(B) LOlld Bllla.nciDK: The basic idea is to attempt to balance (in some sense) the load

on aU processors in such a way as to aHow progress by all processes on all nodes to

proceed at approximately the same rate. This solution is most etTective when the -nodes

of a system are homogeneous since this allows all node-s to know a great deal about the

structure of the other nodes. Normally, information would be passed. about the network

periodically or on demand in order to allow all nodes to obtain a local estimate

concerning the global state of the system. Then the nodes act together in order to

re·move work. from heavily loaded nodes and place it at lightly loaded nodes.

This is a class of solutions which relies ·heavily on the assumption that the

information at each node is quite accurate in order to l,revent 111'ocesses from endlessly

being circulated about the system without making much progress.

(C) BiddiDg: In this class of policy mechanisms, a basic protocol framework exists

which describes the -,,?ay in which processes are assigned to processors.,.ihe t"esulting .

15

scheduler is one which is uSl:'ally cooperative in the sense that enough information is

exchanged (between nodes with tasks to execute and nodes which may be ,able to

execute tasks) so that assignment of tasks to processors can be made which is beneficial

to all nodes in the system as a whole.

To iHustrate the basic mechanism (If bidding, the framework and terminology

introduced by Smith [9] wiU be used. Each node in the, network is responsible for two

roles with respect to the bidding process: manager and contractor. The manager

represents the task in need of a location to execute,. and the contractor represents a

node which is able to do :work for other nodes. A single node takes on both of these

niles, and there are no nodes which are strictly managers or contractors alone. The

manager announces the existence of a task in need of execution,. the'n receives bjd...<;

from the other nodes. A wide variety of possibilities exist concerning the type and

amount of information exchanged in order to make decisions,

A very important feature of this class of schedulers is that all nodes generally

have fuB autonomy in the sense that the, manager ultimately has the power to 'de,dde

where to send a task from among those nodes which respond with bids. In addition, the

contractors are also autonomous since they are never forced to accept work if they do

not choose to closo.

(D) ProiJll/Jijislic : The basic idea for this scheme is motivated by the fact that in

many assignment problems the number of permutations of the available work and the

number of mappings to processors are so large that examining analytically the 'entire

solution space would require a prohibitive amount of time. Instead. the idea of

l"dndomly (according to some known distribution) choosing some process as the next to

assign is used. Repeatedly using this method. a number of different schedules may be

generated, and then this set is analyzed to choose the best from among those randomly,

generated. The fact that an important attribute is used to bias the random choosing

process would lead one to expect that the schedule would be better than one chosen

entirely at random. The argument that this method actually produces a good selection is

ba.."C,d on the, expectation that enough variation is introduced by th'e random choosing

to allow a good solution to get into the randomly chosen set.

. (E) One-Time Assignment Versus Dyn.ll.J11ic Reassignment: If the entities to be

scheduled are jobs in the traditional batch processing sense of the term, then the
, .

single point in time in which a decision is made as to where and when the job is to

execute is considered. While this technique technically corresponds to a dynamic

approach, it is static in the sense that once a decision is made, to place and execute a job, ,

16

no further decisions are made concerning t.he job, This class is characterized as one

time assignments, In contrast, solutions in the dynamic reassignment class try to

improve on earlier decisions by using information on smaller computation units,

3.3~ . Application of TaIonomyto·Some KIamples

As an illustration of the taxonomy introduced in the previous sections, some example

hard real-time scheduling algorithms are taken from the published literature, and

their claSsification characteristics are determined according to the taxonomy, Table 3,1

contains the results,

These example algorithms are discllssed in detail in Section 4.2.1 and In

Section 42.2 of Part IV concerning the literature SlJrvey on scheduling algorithms for

hard real-time systems,

Since this study is focused on hard real-time distributed scheduling, example

algorithms are chosen from this area of research. One may refer to the work of

Casavant and Kuh1.. presented in [lot for a more general annotated bibliography of

. scheduling algorithms for general-purpose distributed compu~er systems.

17

Developed by Reported In Classification Characteristics

I I
Lo,V.M. {tlJ Global; I

Static,

SuboptimaL

Approximate ,

I Gr-a.J!h theoretic.

Efe.K. [12] Global.

Stat.ic ..

Suboptimal,

Heuristic,

Load-balancin-.s..

I Ma, P. Y. R., [13J Global.

Lee, E. Y. S., Static,

and Tsuchiya. J Optimal.

Mat.hematical Programming.

Ra.ma.mritham, K .. [14] . Global.

and Stankovic. J A. Dynamic.

Distributed.

Cooperative . .
Subopt.imal.

Heuristic,

Bidding.

One-t.ime assig,nments.

TABLE!U Application of the taxonomy to SQme exampie algorithms

18

·lV. LITERATURE SURVEY ON SCHEDULING ALGORITHMS FOR HARD
ItEAL-TIME SYSTEMS .

. ,

In this part. the algorithms ,proposed for scheduling in hard real-time systems are

reviewed. Most research on scheduling tasks with hard real-time constraints is

restricted to uniprocesSor and multiprocessor systems. As reported.by Graham. Lawier.

Lenstra. and Kan in [151. optimal scheduling ina multiprocessing environm.ent is an

NP-hard problem. and hence computationally intractable. The loosely coupled nature

of distributed systems makes the problem even harder. Section 4.1. contains an

overview of the current literature on scheduling algorithms for multiprocessor

systems. and Section 4.2. surveys work on scheduling algorithms for distributed

systems.

4.1. Literature Survey for Multiprocessor Systems

4.1.1. Static Scheduling Algorithms for Multiprocessor Systems

Xu and Parnas in [161. present ~n algorithm that'finds an optimal schedule on a single

processor for a given set of processors such that each process starts executing after its

release time and completes its computation before its deadline. and a given set of

precedence and exclusion relations are satisfied. Exclusion relations may exist between

process segments when some process segments cannot be interrupted by other process

segments to prevent errors caused by sil~lUltaneous access to shared resour~es. This

algorithm can be applied w the problem of pre-run-time scheduling of such processes,

19

on a single processOr. in hard r.eal-time systems. future work is required to generalize . .

the algorithm for n processors case.

Garey and Johnson in' f171. describe an algorithm to determine if a two

processor schedule exists so that all tasks are completed in time. given a set of tasks.

their deadlines. and the precedence constraints of all tasks.

Liu and Layland in f181. derive necessary and sufficient conditions for

. scheduling periodic tasks. with preemption permitted. The first algorithm is the Rate
. ~

Monotonic Priority algorithm which assigns the highest priority to the task with the

fastest rate. that is. the smallest period. The second algorithm. called Deadline Driven

algorithm. dynamically assigns priorities to the instances of the periodic tasks based on

their deadlines. The task with the smallest deadline gets the highest priority. Their

results. which hQld for uniprocessor systems were extended to include arbitrary task

sets and precedence constraints.

Houssine Chetto and Maryline Chetto in [191. investigate the problem of

estimating localization and duration of idle times when tasks are scheduled according to

the Earliest Deadline scheduling algorithm as in [11 L Their aim is to bring to light new

ideas about preemptive. scheduling applied to a set of real-time, independent, periodic

tasks that run on a monoprocessor machine.

Teixeira in [20]' develops a model that considers priority scheduling for a more

general case, where the deadline of a periodic task is not necessarily equal to the

length of its period.

Johnson and Madison in 121 L examine single and multiple processor systems

executing real-time tasks. They develop a mea.. .. ute of free time to determine whether

new tasks can be admitted and still meet every task's response specification.

These above schemes are quite inflexible, in that they do hot adapt to the

changing state of the system, and do not take into account general resource

re·quirements of the tasks,

Blazewicz.. Drabowski, and Weglarz in [221, present an algorithm for

dete.rmining the shortest preemptive schedule in a system with a single resource type

but any number of instances of this type. The authors formulate the determination of

the schedule in the form of a line~r programming 1H·tlbl~.m and therefore, the problem

.can be solved in time which is a polynomial in 'the number of variables. This algorithm

takes an e.xponential time in the ll\ullbel' (If resource instances which makes it

20

computationally too intensive to be used for on-Hne scheduling. Moreover. the case 'of

multiple resource types is not handled .

. However. in the work of Leinbaugh in [231. resource requirements are dealt

with. He developed a heuristic, algorithm which. when given the general resource

requirements of each task, determines an upper bound on the response time of each

task. While this approach is useful at system design time to statically determine the

upper bounds on response times, it cannot be used for on-Hne-scheduling, because

there is no attempt at t!..f.·'l1u.oul::stll..f.·· guaranteeing a new task so that it will meet its

. deadline.

Zhao, Ramamritham, and Stankovic in (11, describe a heuristic algorithm which

takes into account both of tasks' active and passive resource: requirements, and can be

used in multiprocessor systems. The heuristic function, used to guide the search of a

feasible schedule if there is one, is composed of three weighted factors·which explicitly

consider information about real-time constraints of tasks and their utilization of

re·sources. They also show that modifying the approach to use limited backtracking

improves the degree of success:

According to Lenat [24], heuristics are informal, judgmental rules of thumb

which come in two types;

(a) tiJose that actively gllide the System toward plal/sible paths to follow;

(b) those that gf/ide the System away [rom the implaf/sible paths.

In the work of Zhao, et al. 111. both types of heuristics are used. The heuristic

function used by the algorithm actively directs the scheduling process to a plausible

path .. and also .. the search space is constrained by looking only at strongly feasible

paths .. pre-venting from looking at implausible paths. As a result even in the worst

ca..w, this algoritbm is not exponential.

Zhao, Ramamritham. and Stankovic in [251, further consider the problem of

scheduling a set of preemtable tasks in a real-time system in which a passive resource

can be used either in shared mode or exclusive mode. They present an algorithm which

uses a heuristic function which is a combination of Minimum Deadline first heuristic

and Maximum Resource Utilization First heuristic with a third factor to prevent over

preemption. They show that this algorithm. in conjunction with limited backtracks.
works satisfactorily.

21

4.1.2. Dynamic Scheduling Algorithms for Multiprocessor Systems.

It sho~Jld be noted that in .a dynamic system there is no a priori knowledge about any

characteristics of a task until it arrives. Whenever. a task 'arrives, a new schedule
. ,

needs to be determined for the tasks including· those which have been in the system,

but have not finished. and the 'newly arrived one .

. Since static scheduling problems for multiprocessor systems are similar to

scheduling problems in operations research. they ·have. been attracked by the

reseal'ches since t.he 1950·s. Various algorithms have been Pl'oposed. Some of them

have a small time complexity. If a system can tolerate the time complexity of a static

scheduling algorithm. the algorithm may be used to determine a new schedule

dynamically when a task arrives. But. there are also scheduling algorithms which are

developed speciaHy for dynamic multiprocessor systems. The followings are some

examples of such scheduling algorithms:

Dertouzos in [26J, shows that the Earliest. Deadline algorithm is optimal. for a.

single processor system with independent preemptable tasl;s. The proof depends on the

fact that for a single processor system. it is always possible to transform a feasible

schedule to one which follows the 'Earliest Deadline algorithm. This is so becauSe if at

any time the processor executes some task other than the one which has the closest

deadline. then it is possible to interchange the or~er of execution of these two tasks,

that is, execute the task with the closest deadline first ~nd execute the sacrificed task

at a later time when the task with the closest deadline would have been executed'. Since

the sacrificed task has a more distant deadline, making up for its processor time before

the closest. deadline certainly does not violate its own deadlin~.

Further, Dertouzos and Mok in r27J, prove that, the Least La.xity algorithm is also

optimal for such a system to dynamically schedule hard real-time tasks. They also point

out that the above opt.imality proof of the Earliest Deadline algorithm does not hold in

the multiprocessor case. They show that for the case when the number of processors is

larger than one, no scheduling algorithm can be optimal without a. priori knowledge

of deadlines. computation times and start times Qf the tasks. This implies that heuristic

approaches have to be taken for scheduling tasks in such systems.

Jensen, Locke, and Tokuda in [28J, report that Least. Laxity, and Earliest Deadline

scheduling policies perform much beUer than others in a multiprocessor real-time

system.

22

It should also be p,ointed out that the above dynamic multiprocessor scheduling.

algorithms do not take into acco·unt the passive resource requirements of tasks.

4.2. Literature Survey for Distributed Systems

The archite·cture of the network and the nature of the application programs being

. pr~sented to a distributed system are often such that the communication between nodes

is a significant factor in the performance of the system. Because of this, .the run time

control has to be distributed. Hence, each node in the system is autonomous and often

has its own local scheduler to handle the tasks assigned to.1t. The scheduling algorithms

for multiprocessor systems can be used for the scheduling tasks on a node. However,

how to allocate tasks to nodes statically in a static system, and how to transfer tasks

from one node to another at run time in a dynamic system are the new.problems.

4.2.1. Static Scheduling Algorithms for Distributed Systems
., ~

The static scheduling algorithms for distributed syste.ms are already known to be

difficult even without time constraints on tasks,

For example, as Bokhari reports in [29J, if the objective is to minimize the cost of

processing and communication, the problem of assigning tasks in a distributed system

with heterogeneous processors is NP-hard for a system of more than three processors.

For three processors the system is open,

For two processors, an optimal algorithm is reported by Stone in [301. This

algorithm considers two kinds of costs in an assignment. One is the computational cost,

the other is the cost. of interprocessor communication. He shows t.hat the problem can

be solved efficiently by making use of the algorithm for finding maximum flows in

commodity networks, .

23

Lo in [111. extends Stone's algodthm into a heudstk one fora.rbitrary number

of processors. Lo also recognizes that the use of total execution and communication

costs ~ the criteria for optimality has no explicit advantage to concurrency. Therefore

the total completion. time' of tasks may not be optimal as it could be. Lo introduces a new

cost. the interferen(.-:Q" (.-:t)s/, to measure the cost if two tasks are assigned on the saine

node. Interf~rence costs reflect .the degree of incompatib~Uty between two tasks. For

example. a pair of tasks that are both highly CPU bound would have greater

interference costs than a pair in which one task is CPU bound and the other is lIO

bound. Similarly. if ~\vo tasks were involved in pipelining. it would b~ undesirable that

they are assigned to the same' processor, This incompatibility would be expressed in a

high interference cost for thatpair of tasks. With this metric. Lo's algodthm is able to

make assignments with greater concurrency and leSs compll;.'tion time than the

previous ones. Further. Lo investigates the problem with the. goal of minimizing the

completion time of a task set. An optimal algorithm is reported for the case where all

costs are constant.

I

Chu and Lan in [311, propose a heuristic algorithm for task assignment which

consists oftwo phases. Phase 1.. reduces modules to a number of groups each of which

will be assigned as a single unit to a processor. This grouping is based on several

factors, such as, precedence relationship, communication costs and accumulative

execution times. In phase 2 .. an exhaustive search is performed for the assignment of

these· groups to processors, such that, the load on the mo~t heavily loaded processor

(bottleneck) is minimized. The algorithm, instead of trying to minimize the sum of

processor loads, searches the assignment that yields th'e minimum bottleneck. They

show that assignments generated by such an approach yield good task response time

which is the most important performance. measure for real-time systems.

Efe in [121, proposes a heuristic algorithm for Static assignment of tasks in a

distributed system. His algorithm works as follows:

(a) duster tasks according to com~unication costs;

(b) assign each duster to a processor taking the current processor load into

consideration;

(c) if the results of the assignment in the above step satisfies the load balance

constraint. stop; otherwise.

(d) identify the overloaded and underloaded processors and move some tasks from the

overloaded processor to the underloaded one;

24

(e) repeat from c .

. Although the or~ginal goal of Ere's algorithm is to balance the loads of

processors, the load balance constraint can be replaced with the' deadline of the task

set. Consequently, the modified algorithm can be used for the static assignment of tasks

with task-set·deadline.

It should be noted that .. the above approaches cannot take iqto account deadlines

of individual tasks, bi.t the algorithms that wHl be discussed next do ..

Leinbaugh and Yamini in [321.. extend the approach in [231 into distributed

case:;. In their model. a task is divided into multiple segments and th.e segments of a task

can be executed concurrently on different fl<ldes. In this.study, the worst response time

. of each individual task is estimated by taking into account not only the blocking times

caused by other tasks, but also the communication delays. Their algorithm is useful in a

hal'd real-time environme·nt to determine if response times wiU always be met.

Ma, Lee, and Tsuchiya in [131. and Ma in [331:. propose an algorithm to statically

assign tasks for a distributed system taking timing-c.dtical applications into account.

The model introduced, represents an example of an optimum mathematical

programming formulation employing a branch-and-bound technique to search the

solution space. The goals of the solution are to minimize interprocessor

communications, balance the utilization of all processors, and satisfy all other

engineering a'pplication requirements. The model given defines a cost function which

includes interprocessor communication costs and processor execution coSts.· The

assignment is then represented by a set of zero-one variables, and the total execution

cost is then represented by a summation of all costs incurred in the assignment. In

addition to the above, the. problem is subject to constraints which allow the solution to

satisfy the load balancing and engineering ap1,llication requirements. The algorithm

then used to search the solution space (consisting of aU potential assignments) is

derived from the basic branch-and-bound technique.

Both Ere and Ma .. use bOllrJ: .. tic approacbos for related scheduling problems. But

t~ey use the second type of hem'istics mentioned in Section 4.1 J. This approach of only

using the second type of heuristics' is limited because, in the worst case, the

exponential search problem cannot be avoided.

25

4.2.2. Dynamic Scbeduling Algoritbms for Distdbuted Systems

The dynamic scheduling algorithms for distributed systems should .1l1axi.1l1.ize the

gfla..rantee ra.tio, To achieve this goat two factors must be recognized:

CA)' Suppose that tas~s demand each resource with equal probability and have the

computation time equal to each other, Then, the guarantee rati(~~wi11 be proportional to

the resource utilizations, Hence, to maximize the 'guarantee ratio, one should .1l1Ui111.ize
~. ". ," .. !~: '

tlze resofirce fltil.izations. Since, in practice, tasks wil!" not always satisfy the above

conditions, this is oply a rule of thumb, As reported by Liv~y and Melman in [341, in a

'dynamic distributed system, without any mechanism for cooperation among nod~s, it is

very likely that one node "Will be idle whil~ tasks are queued at soineother nodes, Thus,

to maximize resource utilization, it is necessary at run time to transfer task~ to other

Ie·ss loaded nodes when they cannot be guaranteed locally,

. (B) Because of the real-time constraints on tasks .. 'the scheduling algorithm itself

should be very efficient, That is, to maximize the guarantee ratio, one should also

minimize tlze scheduling delay. This implies that the decisions, such as where to send a

task that cannot be guaranteed locally, must be made 'efficiently, It is not practical, if

not impossible, to perform a complete search to determine the best node to send a task.,

in a network where communication delay is not negligible.,

These factors necessitate ahc!lIristic approach for scheduling hard real-time tasks in a

dynamic distributed system,

As reported by Smith in [9], and by Wang and .Morris in [351, two approaches

below have been recognized .. in the current literature, for dynamically transferring

tasks in general distributed systems:

(a) sOllrce initiated /a...r;i: transfer where a nodese·arches for other nodes to which a

task may be transferred;

(b) server initiated tasi: tra..asJ'er where a node searches for other nodes from which

tasks may be transferred,

Ramamritham and Stankovic in [14], adopt the ideas of source/server initiated

task transfer, and suggest particular versions (If :them for hard real-time systems, In

this work, bidding is implemented as source initiated task transfer, and focused

addressi.!]/{ is implemented as server initiated task transfer, Brieffy, in bidding, a node

26

is selected if the node offers the best bid. The communication costs involved in bidding

are high, but selection is made based on relatively accurate state information of nodes.

On the other hand, in focused addressing, a node contains some state information about

the other nodes, estimates the surplus of other nodes, and selects a node to send a task to

based on these estimates. Focused addressing entails less communication costs and delay

than bidding, though the use of incomplete, inaccurate and out-of-date state

information, increases the risk of mating wrl)n~ decisions. Because of these reasons.

the working domain of these schemes are limited.

Stankovic. Rama.mdtham, and Cheng in [361. report. an approach combining

bidding and focused addressing The aim is to reap the benefits of both and to overcome

the short.comings inherent. in using each by itself. They show t.hat the wQrking domain

of the combined scheme covers both domains of bidding and focused addressing.

Kurose and Chipalkatti in [37]. study analytically the relative performance of

several diffel'ent decentralized approaches towards load sharing, in order to determine

t.he level of complexity for load sharing algorithms in a distributed real-time

environment. In their model. it is assumed that tasks arriving at a node have to

. complete their execution withi~ a fixed amount of time, after their initial arrival to the

system. That is to say, deadlines .. are not d~awn from additional deadline distributions.

They develop an approximate analytic system-level model for the entire distributed

system, and use it to quantitatively study the real-time performance of two simple

approaches towards real-time load sharing. In the first approach, called qllasi-.

dyn3,Olic load snaring, a task which cannot meet its deadline locally is sent to a

probabilistically chosen remote node. The second approach is the probing approach . .

. which is a simplified form of bidding. In this approach, when a task is to be

transferred., a node probes some. specified number of oth~r nodes chosen at random to

determine if one of them can currently guarantee it. Their performance results show

that, the performance of these simple approaches is substantially better than the case

of no load sharing and often dose to that of a theoretically optimu~ algorithm.

But, all of these la..'lt three algorithms above, consider just CPU sch~du1ing.

General resource requirements of the tasks are not dealt with.

Recently, Ramamritham, Stankovic and Zhao in' (2]' present another version of

the algorithm reported in [361, in which general task's active and passive resollrce

reqlliremenL'> are also taken into account.

27

V. ·OVERVIEW OF rHE SCHEDULING SCHEME

In the design of real-time computer systems. the scheduling problem is considered to

be an important one. and has been addressed by many researches as discussed in

Part IV, However. most approaches are restricted to CPU scheduling only, Whereas the

scheduling algorithm. which is chosen to be evaluated in this study. takes general

tasks' passive and active resource requirements into .'account as well I2l. This part

contains a brief overview of the algorithm. the details are discussed in subsequent

parts,

In this scheduling scheme, the scheduling entity is a task, It is assumed that

tasks may arrive dynamically at any node, and that the.y are independent, non

preemptable, and have equal priority, The worst case computation time, the deadline,

the resource requirements of the tasks,are assumed known when they arrive,
-' . ~ .

Each node in the distributed system has a .local sc.IIedu.ler, Each local

scheduler contains a guarantee routine, a bidder, a dispatcher, and a node surplus

manager, FigUi'e 5.1 shows how these various modules interact wit~ each other,

The local scheduler at a node, invokes the gUIlrIl.D/ee rou/iDe .' when a new

task arrives at that node. The guarantee routine decides if the new task can be

guaranteed at this node or not. The guarantee means that no matter what happens

(except failures) this task will execute by its deadline, and that all previously

guaranteed tasks will also still meet their deadlines. If the new task cannot be

guaranteed locaHy, then it becomes a candidate for distributed scheduling,

The bidder interacts with the local schedulers on the other nodes in order to

perform distributed scheduling, It is responsible for determining where a task that

cannot be locally guaranteed should be se·nt. It does this through a combination of

focused addressing and bidding.

In focused iIlddressII18 , a task is sent directly to another node based on its

partial knowledge about the surplus of the other nodes in the system,

requests to
mab bids lor
nmotettsb .

)
bids.

rt-ques1-tor-bid
lMlS~sfrom

o1h.r node,

Bi r

tasb .. bids, ,
I't-quest-fur-bid

lMSHgesto
otMrMdes

surplus
informauot\8

of other nodes

resource utilil!l:lltion
informa1ion of
loes! tub

tlOde
surplt{S

inforft\sUon
-to ot~r nodes

surplus
imormauot\8

from. other Mdes

FIGURE 5.1 Structure of the local scheduler on a node

28

In lIiddis" the node sends out request-for-bid messages to other nodes. Nodes

with sufficient surplus on resources needed for the task. respond with a. bid reflecting

this surplus. Then, the task is sent to the node which offers the best. bid. In addition to

sending its tasks to other nodes. the bidder ma.kes bids in response to request-for-bid

me~es from the other nodes.

Th.e tlispatclu:r is the component that'actually schedules the guaranteed tasks.

It should be pointed out that when a node bids for a task, it does not reserve CPU

time .for that wk.. Reserving CPU time ties up too many resources for a long time.

Conse.quently, when a task fi~aHy arrives at a bidd,er node', the node wiH attempt to

guarantee it. In ,ca..<re that this guarantee fails, the task wiH be considered as

nonguaranteeable.

There is a separation of dispatching and guaranteei1lg, allowing the dispatcher

and the guarantee routine to run in parallel. The dispatcher is always working with a

set of tasks which have been validated to. meet their deadlines and the guarantee

routine operates on the current set of guaranteed tasks plus any newly invoked tasks.

29

One of the assumptions underlying the scheduling algorithm is that nodes can

estimate the resource usage or resource surplus of ot.her nodes. This requires that

nodes keep each other informed about their surplus. This can be done by the' Bode

surplus .IIlJUZlI8cr in the following way:

The node surplus manager on ea-ch node periodically calculates the node

surplus. The node surplus provides information about the available time on each

resource in: a previous window, by taking into account resource utilization of /t}(;:aJ

tasks, that is to say, the tasks that directly arrived at a node from the external

environment and not from the subnet. This information is used to predict the resource

, availability for the tasks from' the other nodes in the near fu.ture. The computed node,

surplus is sent to a selected subset of nod,es iJ;l,the $yst.em. The selection is,to be based on
.', '. '." .';- ,'"

the proximity of the nodes, on who sent tasks to this node recently, and on whether the

tasks were guaranteed.

The steps involved in scheduling a newly arrived task are as follows:

(A) When a local task, T, arrives at a node Ni,. the local sched\iler is invoked to try to

'guarantee the newly arrived task on the node, If the task can be guaranteed, it will be

put into th~ sciledilie which contains all the guaranteed ~ks on the node. The details

(If the local scheduling algorithm is discussed in Part VI.

(B) When the local scheduler of node Nj is unable to guarantee the newly arrived, task,

T, it attempts to find another node through focused addressing: This focused node

should have suiTicient surplus to guarantee the task, If a focnsed node is found,. ,the task

is immediately sent to the node, In addition to sending the taskto ~he focused node, node

Nj sends request~for-bid messages to a subset of the other nodes, The request-for-bid

message also contains the identity of the focused node, if there is one, indicating that

the bids should be sent to the focused node,

(C) When a node receives the request-for-bid message, it calculates a' bid indicating the

possibility that the task can be guaranteed on the node, and sends the bid to the focused

node if there is one, otherwise, to the original node which is..~ued request-for-bid,

(D) When a task reaches a f(lcused node, it first invokes the local scheduler to try to

guamnt.ee the task. If it succeeds. all the bids for the task will be ignored. If it fails. the

bids for the task will be compared and the task will be sent to the node responding with

the "best bid" on condition that the bid is above a certa~n limit.

30

(DIn case there is no focused node, the ol'iginal node will receive the bids for the task

and will send the task to the node whiCh offe('s the best bid again on condition that the

bid is above a certain limit .

. (f) If the focused node cannot guarantee the task. and if there is no good bid available

for the task, it is assumed that no node in the network is able to· guarantee the task. If a

task has sufficient laxity then focused addressing and bidding may be repea.ted. But,

thiswi11 increase the scheduling and communication overheads.

The distributed scheduling scheme is discussed in detail in Part VII.

31

VI. LOCAL SCHEDULER

In this part. the strategy for scheduling tasks on a local node is int.roduced. The

heuristic algorithm developed by Zhao. etai. [11. is chosen as the algorithm underlying'

the guarantee routine on e~h node. and is implemented with some modifications.

, ,Since properly choosing the heuristic function used by the' guarantee routine in

selecting the next task 'to be scheduled. is important for the performance of the
. .

algorithm. a set of heuristics is studied in Section 6.4: from the simulation studies

performed in that section. it is concluded t.hat simple ~euristics do not. perform

satisfactorily because of the ,complexity of the problem. However. an algorithm that

uses a combination of these, simple heuristics works very well compared to an optimal

algorithm that takes exponential time complexity. The heuristic function which has

the best performance will be used as the heuristic for the gua~ntee routine in the'

distributed scheduling scheme described in detail in Part VII. In this scheme the

guarantee routine is used both in scheduling tasks that arrive at a node. and in making

a bid for a remote task which cannot be guat'anteed locally.

6. t. Strategy Behind the Local Scheduler

At any given time, node Ni(i = 1 ... n) has guaranteed a set of tasks Sj and has a full

feasible schedUle for this set (If tasks. A feasible sene-dille is a list of tasks that have

been guaranteed. With :respect to a set (If tasks .. a schedule is.lilll, if it contains all the

tasks in the set. otherwise it is par/iui A schedule (T t .T2 Ts.Ts .. t) is an immediule

extension of the schedule (T t .T2, Ts).

Suppose task T comes to the local scheduler at node Ni. then the following steps

are taken in order to guarantee the newly arrived task T :

(A) The guarantee routine in node Ni is called to decide whether the new task can be

guaranteed or not. The new task T can be guara.nteed on this node if and only if. a new

32

full feasible schedule eXists for tasks in Si 11 (T }. This ensures·that the tasks of Si in the

original feasible schedule remain guaranteed. Also. it ensures that the new task Twill

meet its deadline.

(B) If T is guaranteed by node Ni (as stated above) .. the new full feasible schedule

containing tasks in Si U (T } replaces the original one. This schedule determines the'

start' times of the task5,innode Ni, and 'Will not be modified until another ne·w task is

guaranteed by node Nt

(C) If the new task T cannot be guaranteed by node Ni, that is, there is no full feasible

sche.~ule for tasks in Sj U (T), the approach based on bidding and focused addressing is

used to determine if anoth~r ~ode is in a position to g~Jarantee task T. Wh~n such a node

is found, T is sent.to that node. In any case, the current feasible ~chedule of node Nj

remains unchanged.

In the remainder of this llal't, the fii'st step above is .explained. That is, a

heuristic technique for determining whether a node's .current feasible schedule can be

changed in order to' introduce a new task .. is presented.

6.2. The Basic Algorithm Underlying the Guarantee Routine

This section describes the heuristic algorithm underlying guarantee routine. First

scheduling and' searching are compared, then .several data structure·s used are

presented, a constraint on the· search process is .motivated, and finally the basic

alg(lrithm is presented, ,

6.2.1. Scheduling versus Searching

The guarantee routine determines a full feasible schedule for a given set of tasks in the

following way: it begins with an empty schedule and tries to extend it with one task at a

time until a full feasible schedule is derived: This is, in fact, a search problem. The

33

structure of the search space isa sean.~ tree. The root of the ~arch tree is the empty

schedule. An intermediate vertex of the search tree is a partial schedule. A descendant

of a vertex is an immediate extension of the schedule corresponding to the vertex. A

leaf. a terminal vertex. is a full schedule. It should be noted that all leaves will

correspond to feasible schedules. The goal of the algorithm is to search for a leaf that

corresponds to a full feasible schedule. Figure 6..1 shows a search tree for a set of 4

tasks.

An optimal algorithm .. in the worst case, may make an: exhaustive search, which

is computationally intractable.' In order to make the .algorithm computationaHy

tracta~le even in the worst case, a heuristic approach for this search is preferred. That

is, a heur~stic function, H, is ,developed which can :synthesize the various factors

affecting real-time scheduling decisions to actively direct the scheduling process to a

plausible path.

On each level of the search, function H is applied to each of the tasks that

remain to be scheduled. The task with the minimum value of the function H is selected

to extend the turrent partial schedule. As a result ofthe above directed search, even in

the worst case, this scheduling algorithm is not exponential.

6.2.2. Data Structures

The algorithm maintains a vector EAT, to indicate the Earliest Available Times of

resource·s on a node:

EAT = (EATt. EAT2 EATr)

whereEATj, is the earliest time when resource Ri will become available. Initial values

of EATj for all i will be the current time if the running task is preemptable. Otherwise,

EATi will be the time when the running task finishes using it. Each time the partial

schedule is extended, EAT will be updated taking into account the newly added tasks'

resource requirements and completion time.

At each level of the search tree, the· guarantee routine computes ST(n and

NewJ:ATCT) for each task T thatremai11s to be scheduled. STCn indicates the start time

(12.T3.T4)

(II IlT3T4)
()

Schedule ()

Task Set{ Tt. 12. T3~ T4 J

{Tt. T3, T4} (Tt.12.T3)
.___.1".-....... -_

"

\, .
"

"
\.,.
\\

.. ,\.,

(Tl T3T2) (Tl T3T4) (II T412) (II T4T3)
(T-O (12} (T3) (12)

(Tl T3 T2T4)
()

(Tl T4T2T3)
()

{Tl,12,T3}

~--- .

(Tl 12T4T3)
{ }

(Tl T3T4T2)
{ }

(Tl T4T312)
(}

A Partial Schedule: (...)

A Subset of Tasks Remaining to be scheduled: (...)

fIGURE 6.1 A search tree for a set of four tasks

34

.35

of task T if it is scheduled next, Since a task T can run only when all resources it. neeQs
, ,

are available. ST(n is defined as:

ST(n:: MAX(EATl wh~re T needs Ri),

It should be nQted that for a given feasible schedule to remain feasible when .

extended by T.
,

ST(n + en) s Dn)

must hold, where C(T) is the coml,utation time and D(T) i~ the· deadline ofthe task T,

New~T(T) is a vector with the same size as EAT and contains the earliest

available times of resources if task T is scheduled next. In other words, New......EAT(T) wiH

replace the current EAT if task T is scheduled. ltis calCulated as :

New-.EAT(T) =ST(1) .. e(T),

New-EAT(T) should be further updated because in the system model. active resources

are distinguished from passive ones. Since a passive resource must be used with active

ones, no task can use a passive resource until :

time = MIN(Ne.w-EAT<.T.liswhere resource i is an active· re·source)

where i:: 1. '" , r, That is. all New-.£AT(T)is for passive resources should not be less than

t.he minimum New.-£ATi(T) of act.ive resources, Hence, New.-£ATnhs should be furt.her

updated as:

New-EAT(T)j = MAX (New......EAT(T)j .. time') where i = L ... , r.

At each level of the search, the guarantee routine also calculates a vector called

DRDRthe j)y.a8.111ic ReSOl/fCe j)ema.ad Ratio, which indicates the degree to which tasks

that remain to be scheduled will demand resources:

DRDR = (DRDR1 .. DRDR2, ... ,DRDRr)

where DRDRi is defined as ;

!. (e(T), T remains to be scheduled and Uses Rj)
DR DR 1 = MAX (D(T), T remains to be scheduled and uses Rj) - EATj

wherei=L ... ,r.

36

for all the remaining tasks to be schedulable, every DRDRi of a DRDR associate~

with a partial feasible schedule should be less than or equal to one. If that is not the

case, this means that t.h~re is no need to continue the search. it is not possible to find a.

feasible schedule for the remaining tasks with such resource requirements.

EAT,.New-.EATsa.nd DRDR.are updated each time the. partial schedule is extended.

6.2.3. A 'Constraint on the Search

Using the data structures, EAT and DRDR, described above, a constraint can be imposed

on the search for a full feasible schedule,

A feasible partial schedule is said to be strongly feasible if:

(a) DRDR associated with the schedule has DRDRi ;!:; I for i =: L '" ,r, and

(b) all of its immediate extensions are feasible, that is to say, 1'01' each task T that

remains to be scheduled, there wiU not be any deadline violation when the current

feasible schedule is extended by T,

By defi~ition, a full feasible schedule is stro.Q.gly feasible. If a schedule is not

strongly feasible because.one of the conditions fails. then the failed condition will also

fail for all descendants. i.e" the extensions, of the non-strongly feasible schedule.

Hence. none of the descendants of a non-strongiy feasible schedule can be strongly

feasible. On the other hand. the ancestor of a full feasible schedule must be strongly

feasible. otherwise the full schedule itself will not be feasible. Therefore. only strongly

feasible schedules can lead to a full feasible schedule. Considering this fact. the

following constraint on the search for a full feasible schedule can be stated:

F/)r a. padiaJ schedule II) be exleDdible IQ a. full feaJ."lole sl. ... hedule, /be pur/iai

:J."(.:hedule shQuld be slrol1g/..r-·· fe.a:J."ll1/e.

From the viewpoint of the algorithm, this means that it is not necessary to

search through a vertex corresponding to a non-strongly feasible schedule. because a

non-strongly feasible schedule will not lead to a full feasible schedule. Given the above

37

constraint, the search should be confined only to those subtrees whose roots

.. correspond to strongly feasible schedules,

However, in the worst case an exhaustive search 'may still be required, making

the' search computationally intractable, In order to make the algorithm

computationally tractable, even in the worst case, only one ~f the vertices is chosen at

each level in order to expand the search tree. The vertex chosen is the one which

appears to be most capable of leading to a full feasible schedule~ In the next section the

basic algorithm whiCh inco'rporates the heuristic necessary to make this choice. is

discussed,

6.2.4. The Basic Algorithm

The pseudo code for the basic local scheduling algorithm is given in the Figure 6.2.

Beginning with the empty schedUle, the algorithm searches the next level by

expanding the current vertex (a partial strongly feasible schedule) to only one of its

immediate· desce·ndants, If the immediate descendant is also a strongly feasible

schedule, the search continues until a full feasible schedule is met. At this point, the

searching process succeeds and all the tasks are known to be guaranteed,

If at any level, a non-strongly feasible· .schedule is met, the algorithm

announces that the searching (scheduling) process fails and that this set of the tasks

cannot be guaranteed, This implies that the new task we are trying to dynamically

guarantee is not guarante.ed so the·re is no ne·w schedule. The previous schedUle is left

unaffected,

A modification is made on the original algorithm, Instead of calculating

New-EATs just before applying the function H as in the original algorithm, in this

study, it is preferred to calculate them before the if statement which checks the strong

feasibility condition, In this way.< while calculating New-EATs, possible deadline

violations of tasks are detected, and this information is used by the "strongly_feasible"

function in order to decide whether all (If the immediate extensions are feasible or not

(second condition (If strong feasibility),

PROCEDURE Scheduter(VAR guaranteed: boolean);

BEGIN

guaranteed :- true;

schedule :- empty;

WHILE NOT empty(t.asLset) and (guaranteed) DO

END;

. . .
BEGIN

calculate ST 'for each task in t.ask_set.:

calculate New-EA T for each task in t.ask...:..sei;

ca.lculat.e DRDR;·

if not stronglyJeasibfe

THEN guaranteed;- false

ELSE BEGIN

END

apply funct.1on H (.0 each tasK in t.he t.asK_set.;

let. T be t.he task wit.h Hle minimum va.lue of function H;

EAT;- New.-£AT(T);

remove {.ast T from t.asLser.;

append t.ask T to schedule

END

fIGURE 6.2 Basic local scheduling algorithm for gual-antee routine

38

It should be noted that, it is possible to extend the algorithm to continue the

search even after a failure is found, and this extension is discussed in the next section.

6.3. Extension to the Basic Algorithm

The assumptions underlying the use of the heuristic function in the basic algorithm

are:

(a) at each level of the search, there is a certain order among the tasks to be selected;

(b) the order can be identified by a linear function such as function H used in the

basic algorithm,

39

. Though the fiJ.'stassumption is definitely true, the second may not. always hold.

so the original algorithm cannot always guarantee a set of task~ for which there is at

. least one full feasible schedule, To improve the success ratio; the following mea.ns were

considered :.

(a) add some non-linear components to function H;

(b) change the weight of function H dynamicaU.y;

(c) whenever a partial. non-strongly feasible schedule is ~et while schedtiling, try to

ba.cktrack,

Since the first alternative increases the co,mpu4-t!i9ncost on every computation

of function H.. and the second could make the algorithm too complex, the third one is

adopted.

The basic algorithm is extended in the following way:

Each time a non-strongly feasible schedule is found,

(a) a proc.edure called LimitecLBacktracker is invoked to withdraw the task just selected

and added in the schedule, and instead attempt t{i schedule the task with the second

minimum value of function H;

(b) if the first step does not succeed, that is, the schedule is still non-strongly feasible,

recursively backtrack to the immediate ancestor and attempt to schedule the task with

the second value of function H at the ancestor level. Whenever a strongly feasible

schedule is found, the LimiteUacktracker returns "guaranteed" to the calle1',the . .
procedure Scheduler. Otherwise, it continues the tecursive backtrack until either it

has backtracked to the root ofthe sea1'ch t1'ee (the empty schedule), indicating that all

the ancestors have been tried; or until a counter, which counts the number of

backtracks in scheduling this task set reaches a pre-set upper bound. In these cases,

the Limited...Backtracker returns" nonguaranteed
H

•

The pseudo c{lde of the algorithm for the procedure LimitecLBacktracker is

shown in Figure 6.3. The first step in the LimitecLBacktracker is called a pseudo

backtrack because it happens at the current search level and function H is not

recalculated. The second ste·p is called real baCKtraCK. Real backtracks do increase the

computation cost because they requires the recalculations (If the function H at all the

, levels immediately below the vertex in whjch the real backtrack succeeds.

\
I. . \

PROCEDURE ,Limited_Bacttractcer (var guaranteed: boolean);

(Tbis procedure is called wben the partial scbedule is found to be non-st.rongly feasible)

BEGIN

if empty(scbedule}

THEN guarant.eed :- false '

ELSE

BEGIN (fjrs~" pseudo backtrack .1

let TI be theJast task in the schedule;

remove TI from schedule and append it. to t.ask_set;

let T2 be the tast with the second H value pointed to by the second pointer of Tl ;

remove 12 from tast.....set and append it to schedule;

IF not stronglyJeasible

THEN

BEGIN (the real bad:t.rack st.arts .1

guarant.eed :- false;

40

WHILE (NOT empty(scbedule)) and (count.er<maLcount.er) and (not. guaranteed) DO

BEGIN

END

END;

(withdra.\V from the end of the schedule a.H the r.asts, one by one, unt.il a task

having a.non-nil ·second point.er· is met. or there is no t.ask left. in t.be schedule or

tbe partial schedule is guaranteed.)

REPEAT

let TJ be the last. task in tbe scbedule;

remove THrom scbedule and append it. t.o t.ask_set.

UNTIL (Tl's "second pointer" ·0 nil) or (empt.y (scbedule »;
IF Tl's "second point.er" <> nil

THEN BEGIN

let. T2 be t.be task pointed by TI'8 ·second point.er";

EAT :- New....EAT st.ored as old....EAT with T2;

remove T2 from tasLset. and append it. t.o schedule;

IF strongly_feasible THEN 'guaranteed ;- true;

counter ;-counter 1" t

END

END {WHILE)

END

fIGURE 6,3 The algorithm of the· LimitecLBacktracker,

41

It should be noted that, if in the LimitedJSa.cktracker the number of real

backtracks is not limited, then in the worst case, the search process might eventually

expand t.wo vertices from each ancestor, resulting in a computation time proportional

, to 2t , where k is the number of tasks. '

In order to avoid som~ ;e-calculations that may be caused by possible future

backtracks, each scheduled task keeps a pointer to the task with the second minimum

value of function H at that level. In the original algorithm, the ~T values before the

task is scheduled is also recorded, Whereas in this study, it is preferred to record the

New--EAT values of the' task with the second minimum value of function H, instead of

the EAT values, The mo"tivation is to be able to use these New~AT values, when there is

a backtrack which attempts to schedule the task with the second minimt~m value of H,

without having to re-calculate them at that level.

Another modification is the following: an if statement is added at the beginning

of the procedure Limite<LBacktracker, which checks whether the schedule is empty or

not. Because .. a schedule can be found non-strongly feasible (anyone of the two strong

feasibility conditions may not hold) before any task has been scheduled. In this case,

since the schedule is empty, backtracking is not possible,

Therefore, the data structure used to implement a task node has the form shown

in Figure 6.4.

task Id Id

arrival time atr_t

de.adHne de.adllne

start time staf'Lt pohlter to the task with second

computation time comp_t minimum valle of the function H

resotll'e8 I~eqlllreme,nts f'BS-noo..1

I soomlnnode~1 .=4 seem in _lIOO.
pk. to previolls task: prey

next ... ptr, to next task ...
New_EAT values New_EAT

OId-EATptr ... I Old-fAT I t,

recorded New _EAT va lues
jf the task is the one having
set":Ond rnjnjmum value of H

fIGURE 6.4 Datastrudure lJsed to implement a task node

42

The values of AI. urr_1. deu~fJille. (-:tJmp_1. and f'e.>"-Ileet!. are known when a task

arrives. The values for sfurLtand Nelf·:..£4Tare calculated at each level of the search.

The use of seemill and Old1.4.Tplr will be illustrated. by a simplified example. Assume

the following scenario:

(a) let task set he (II, I2, I3), and let schedule be () (Figure 6,5 (a»;

(bJ let the schedule be strongly feasible,. function H is applied to each task in the task
-

set in order.to seJect the task to be scheduled at level one: let T2 be the task with the

minimum value of function R and let 13 be the task with the second minimum value;

(c) T2 is scheduled at level one·(Figure 6.5 (b)); .

(d) as..-mme that the schedule is strongly feasible, then the next task to be scheduled at
. ' . .

le·vel two is selected: let T1 be the task with the minimum value of function H.. and let T3

be the task with the second minimum value;

(e) Tl is scheduled after T2 at, level two (Figure 6.5 (c);

(f) assume that the schedule isfound to be non-strongiy feasible;

(g) Pseudo Backtrack; T1 is removed from schedule, and appended to task set, since

Tl's "second' pointer" is T3, T3 is scheduled, EAT is updated by using the recorded

New-EAT values ofT3 for1.eve1 two without having to recalculate them(Figure 6.5 (d));

(h) assume that the schedule is again non-strongly feasible;

0) Real Backtrack; T3 is removed from schedule and appended to task set, going

back to level one (a.ncestor leveD 12 is removed from schedule and ap.pended to task set

(Figure 6.') (e));

(j) since I2's "second pointer" is 13, 13 is scheduled, EA-I is updated by using the

recorded New-EAIvalues ofT3 for level one (Figure 6.5 (0);

(k) assume that the schedule is still found to be non-strongly feasible, T3 is removed

from schedule and appended to task set, since further backtracks are not possible, the

. task set is said to be nonschedulable.

But, if this real backtrack had succeeded .. the· se·arch would have continued by

recalculating the· function H in order to detect the task to be scheduled at level two.

\
\

· (a)

task Ht T 1

L T3
""'--1 -"""""'.1-1)'---1 "---r-I~-r---I I-

(b)

(d

LrlH
New...EAT ot T3

st level 1

FIGURE 6.5 Illustration of the extended algorithm by a simplified example

\
\

43

seoond pointer of T2 at 1e-w11

(d)

~sks~\ T2

L~~~~'---I ---"I--"---'rl +-t

Ntw-EAT ot T3
t\lEiwll

(e)

tukHt T1 T2

L-I --r--f1.1)r--I -r-11 Tt

~ult

I~~ __ H T3

~=I ~====I ~= I-
(f)

I • l+-lt-
~OM poin~r of T2

t\ lewll

44

FIGURE 6,5 Illustration of the extended algorithm by a simplified example (continued)

\
\

\

45

6.4. The Heuristic Function H

Clearly. at.ea.ch level of the search. effectively and correctly identifying the immediate

descendant 1s difficult but very important for the success of the algorithm. function H

becomes the core of the algorithm. In this section. the heuristics to construct function

H are identified. first some simple heuristics are evaluated, then integrated simple

heuristics are considered. Because of the complexity of the problem, it is not expected

that the use of simple heuristics a19ne wiU result in good performance. The purpose of

evaluating their performance is to identify the candiqates that are worthy of further

exploration.

6.4.1. Simple Heuristics for Scheduling

The following is a list of simple heuristics for scheduling, and corresponding H

functions defined on tliem: '

(a) minimum deadline first (.t4in-D) : H(T) = D(n;

(b) minimum start time first (Min_S) : H(T) = S(n.;

(c) minimum computation time first (Min_C) : H(T) = c(T);

(d) minimum laxity first (Min-L): H(n = D(T)-(S(T)+C(T».

6.4.2. Simulation Method and Results

The purpose of the simulation is to evaluate the perfQ(mance of the different heuristics

used for the funCtion H, In each simulation, tasks are randomly generated. A number of

tasks are collected as a task set. for each task set, an exhaustive search is performed to

determine whether this task set has at lea..<>t one feasible schedule or not. Those task sets

thatare known til be schedulable are input tI) the local scheduling algorithm. Then. for

each heuristic. the· percentage of tasks sets scheduled is observed. This percentage

gives the SUCCQSS mIll) SR of the heuristic.

Since meeting deadlines is very important in real-time systems, the

schedulability of tasks, Le.,whether or not tasks will finish before their respective

deadlines. is considered as the performance metric;.

for this simulation study. a.loca.1 task genernWr program is written which given

task generating pa..r;ameters. generates t.wo hundred schedulable task sets. each of

which consists of six tasks. The listing of t.his program is given in Appendix A. It

should be noted that for a set of six tasks. there are nO permutations. each of which

mayor may not present a full feasible schedule. The program. after having generated a·

task set. performs an exhaustive search to ,see whether there is at least one full feasible

schedule for the task set or not. If not.. the task set. is discarded, and a new one is

generated.

The local task generator generates a· task by specifying its resource

requirements, itS computation time and its deadline, It is assumed that the local node,

has five resources: two active resources and three passive resources. The resource

requirements of a task are chosen randomly with the condition that a task uses at least

one active resource. A task needs a resource with probability 0.5.

The other generating parameters. to be set in the task generator program. are

the mean and standard deviation values of the computation time distribution and of the

laxity distribution of the tasks, The laxity distribution is used to generate the deadlines.

These distributiol).s are assumed to be normal distributions, In order to see the

performance of the heuristics in different levels of s(YletiuJiog diffii.~Jlies; three

different sets of tasks sets are generated by using three different laxity distributions.

which indicate the tightness of the deadlines, Then. the performances of the heuristics

used by the local scheduling algorithm are evaluated for each one of these.

The listing of the local scheduling pl'ogram is given in Appendix B. In this

program. t.he extension I)f t.he basic scheduling algorithm which uses the limited

backtracking concept.· is adopted. That is. in the scheduling process when an infeasible

vertex is met, instead of simply announcing a failure, the task that has the second

lowest value of the functionH is tried to be appended the current feasible schedule. Ie'

t.his attempt fails. the program recursively backt.racks w the immediate ancestor and

attempts to schedule the task with the second value of the function H at. that-level.

47

The number of backtracks is limited by setting up a variable counter which

counts the number of backtracks used in scheduling a set of tasks. If the counter

exceeds a preset maximum value Me (m9.x_t:~i}Unlerl. no further backtracking is

allowed. In this way, even in the worst case, the time complexity of the aigorithm will

. not be exponentiaL The simulation is performed for different values of Me. in order to

show its effect .

. The simulation results of using simple heuristics are presented in Table 6.1. In.

Table 6.Ha) .. Table 6J(b), and Table 6.HC), the computation time distribution is assumed

to be N(200,H102) al1d the laxity distribution is assumed to be NOOO'J002), N(200J002),

and N(400,2002) respectively.

From the table.s, it can easily be seen that as de·adHnes become le·s5 tight, that is,

as the mean of the laxity distribution increases, the difficulty in scheduling decreases,

and the performance of the heuristics increases. It can also be concluded that when

Me, the preset maximum value of backtracks is Zero, that is, when backtracking is not

allowed, none ofthe heuristics performs satisfactorily. incre.asing the value of ¥C, up

to 10 for example, causes a remarkable increase in the performance. But still, the

performances of the heuristics are far from being good. It is also seen that increasing

MC to a higher value than 10 does not make any change on the performance. In the

case where laxity distribution is taken as N(.400,2002) and MC is large, the heuristic

Min-D performs reasonably well, but still does not achieve 100' per cent.

The obse·rvations from this simulation study, ,indicate that some traditional

heuristics used in general operating systems, are not appropriate for tasks with timing

constraints. For example, using Min_C· is equivalent to using the shortest j<ib first

policy which is a heuristic sometimes adopted in nonreal-time scheduling, because it

produces the minimum average· waiting time for tasks .. But this simulation study shows

that this heuristic does not perform satisfactorily in real-time systems.

6.4.3. Integrated Simple Heuristic Algorithms

Givan that no single heuristic perfor.w.s satisfactorily, integrated heuristics need to be

attempted. The integrations are considered as simple as possible in order t(J keep the

MC

0

1

2

3

10

100

MC

0

1

2

3

to

B£URISTICS

Min D Min.-S Min C Min L

84.0% 34.0% 62.5% 48.0%

92JJ% 38.0% 78.0% 56JJ%

92.0% 38.0% 78.0% 60JJ%

94.0% 40JJ% 78,0%' 62JJ%

94.0% 40,0% 78,0% 62JJ%

94,0% 40JJ% 78,0% - 62JJ%

(a..) Computation time distribution of tasks: N(200,1002),

La.xity distribution of tasks : N000.1002);

H£URISTICS

Min D Minj Min C Min L

8ZS1 46JJ% 78.0% 56JJ%

89,0% 49.5% 83.0% 65S~

91.5% 54JJ% 84,0% 68.0% .

"')J.O% 54.5% 86.0% 69,(J%

93.5% 54.5% 86.5% 71JJ%

100 93.5% 54.5% 86.')1& 71JJ%

(b) Computation time distribution of tasks: N(ZOO,1002),

Laxity distribution of tasks: N(200.1002);

Me H£URISTICS

0

1

2

3

10

100

Min D Minj Mine Min-L

93,0% 54.5% 66JJ% 77JJ%

%.5% 60,0% 69,')% 84,,)%

97JJ% 62.5% 70St 87,5%

98.0% 63.5% 71.0% 89,0%

98JJ% 63.5% 71JJ% 90JJ%

98.0% 63.5% 71.0% 90.0%

(d Computation time distrihutiollof tasks: N(200,1002),

La.xity dist.ribut.ion of tasks: N(400,2002);

TABLE 6.1 Simulation results of using simple heuristics

\
\

48

49

run time cost of the algorithm still low. Because Min~ performs much better than any

other heuristics when used alone, it is considered to be the primary heuristic, and the

others become the candidates tQ be combined with Min-D.

Following are the integrated simple heuristics and the corresponding

definitions of H functions:

(b) Min-Dand Min~: H(T) = D(T)+W1l:S(T).

where W is a weight, a.nd will be adjusted for-different conditions.

Min_D and Min_l are -not combined. because the information in Min_l is

similar tQ Min_C a.nd Min-D combined.

6.4A. Simulation Results of Using Integrated Simple Heuristics

The same three sets of t.wo hundred task sets generated for simple heuristics. are used to

eval~ate the performance of the above integrated simple heuristics. Table 6.2 shows

the results.

In the table, the maximum success ratio SR, achieved by a particular H function

is shown. with -the· weight W that makes this possible, This weight that produces the.

maximum success ratio is determined assuming that the success ratio as a function of W

has a single maximal point. Given this as..qumption, starting with a value (If 0.5 for W

and increasing it by 0,) each time, the'maximum of success ratios is determined until

the succe·ss ratio starts to decrease after reaching a peak value. The value (If W that

produced the peak success ratio is ~e one shown in the ·tables.

It is observed that combining Min-D with Min_S improves the performance

substantially, Although, M1n_S does not perfclrm weH when used alone, it outperforms

all others when it is integrated with Min-D, This is because Min_S' by itself does not

consider timing constraints and hence many t .. ",.sks are Hable to miss their deadlines,

Combining Min_S with Min-D removes ihis shortcoming ~f the heuristic.

\
\
\

\

Me

0

1

2

3

10

100

MC

0

I

2

3

10

HEURISTICS

Min D .. W*Min C Min D .. W*Min---.5
y. SR W SR
1.0· 88 J.I% 0.5 88.0%

1.0 94.0% 0.5 94JJ%

1.0 94.0% 0.5 94.0%

0.5 94.0% 0.5 96.0%

0.5 94.0% 0.5 - %0%

0.5 94.0% 0.5 96.(.1%

(a) Computation time distribution of tasks·: N(200,1002), .

laxity distribution of tasks: N000.1002);

HEURISTICS

Min-.D ~ Min C Min-D ... W~Minj

y SR Y SR

1.0 875% 1.0 87.5%

0.5 91.5% 1.5 92.5%

0.5 93.0% 1.') 94.5%

0.5 94.0% . 2.0 %.0%

0.5 94.5% 1.0 97.0%

100 0.5 94.5% 1.0 97.0%

(b) Computation time distribution of tasks: N(200.1002),

La.xity distribution of tasks: N(200,1002);

Me HEURISTICS

Min D Min C Min D Min.-S

• SR " SR

0 0.5 91.0% 1.0 %.5%

1 0.5 94.5% 1.5 9SJJ%

2 05 95.0% 1.0 99.5%

3 0.') 9jJ~ 1.0 100.0%

to Il5 97.0% 0.5 1000%

100 0.) 97.0% 0.5 100.0%

(c.) Computation time distribution of tasks: NCioo.1002),

Laxity distribution of tasks: N(4.00,2002);

TABLE 62 Simulation results of using integrated simple heuristics

50

51

finally. using the heuristic minimum deadline first integrated with minimum

earliest start time first as the function H, along with limited backtracking makes the

algorithm perform very' well, .close to an optimal algorithm that has an exponential

time complexity,

6_5~ Application Considerations

In this section, how the algorithm can be applied to the rollowing cases, is discussed;

(a) on-line heuristic scheduling;

(b) scheduling when tasks arrive in a batch;

(c) non-preemptive scheduling and the inclusion of periodic tasks.

6.5.1. On-line Heuristic Scheduling

As noted before, this heuristic approach is used to decide whether a new schedule exists

for the tasks that have already been scheduled to execute on a node plus the task that

;ustarrived at that node, Now, a technique for making this decision will be presented:

Suppose a tasks are scheduled to execute on a node, Le,. there isa full feasible

schedule for the a tasks, Suppose OJ of these tasks begin execution and then task T

arrives, Because task preemption is not al1ow~d. the m tasks in execution will be

allowed to run to completion, Let EAT be the vector indicating the earliest a:va.ilable

times for all the resources, taking into account the fact that m tasks are in execution,

With this EAT, if a full feasible schedul~ is found for the (a-m) tasks plus the newly

arrived task T. then T can be said to be guaranteed, In this way, this scheduling

algorit.hm can be used to decide whether a task which arrives during the execution of

m tasks on a node can be scheduled to execute on that node,

\
\

52

The method just desc~ibed for on-line scheduling assumes that to decide

. whether the new task Tis schedulable. a full feasible schedule hM to be determined for

(l1-oV+ 1 tasks, that is, the scheduling algorithm has to be executed on the (l1-m)+ 1 . . , .

tasks, given the EAT,

6.5.2. Scheduling. When Tasks Arrive in a Batch

Another issue i~. how to perform on-Hne scheduling when a number of tasks arrive in

a batch. Assume that p taSks have been guaranteed but not yet begin execution., when

q tasks arrive. Augmenting the schedule for the p tasks with the q (> 1.~ tasks becomes

difficult. Suppose the heuristic algorithm is used to determine a schedule for the p+q

tasks~ If such a schedule does not exist, this means that not all of the q tasks are

schedulable, But, a subset of the I{ tasks may be schedulab le, To find out this subset, the

heuristic algorithm has to be repeatedly applied to subsets of the q tasks, The problem

here is to determine which task is to be discarded from a given set before the algorithm

is re-applied,

The best thing to do is the following; when tasks arrive in a batch, each ofth~m

should be considered one by one, in some order, say, earliest-deadline-first. If a full

schedule is found when a task is added, the task is kept in the new schedule. If a full

feasible schedule cann.otbe found for this task., it is non guaranteed, and it becomes a

candidate to be sent to some other node.

6.5.3. Non-preemptive Scheduling and the Inclusion of Periodic
Tasks

This scheduling algorithm is developed assuming that tasks cannot be preempted. Two

rea.."ons for this are as fo11oW5 ;

(A) Suppose the first task in a schedule is dispatched and then a new task arrives. The

requirements of the tasks alld of the. newly arrived task may be such that even if the

53

currently running task is preempted to run the newly arrived task. aU tasks will meet

their deadlines. Whether this is true or not can be checJced easily when only CPU

requirements of the tasks are taken into account as in [361. Inclusion of the general

resource requirements considerably increases the complexity of the check.

(B) Preemption also introduces the need to take into account the consistency of
resources. For exa.mple. if RI is a· file and bot.h TI and T2 modify t.he file. then a.

schedule where T2 preempts T 1 may result in R 1 becoming inconsistent. Hence, once

preemption is allowed, considerations such as this enter the picture-

Primarily for these reasons, in this study, the heuristic scheduling without task

preemption is discussed. It should also be recognized that when preemption is not

permitted, resource utilization may decrease and the number of tasks guaranteed may

also decrease.

Another implication (If doing non-preemptive. scheduling is that a task may not

be schedulable mainly because (If its arrival time. For example, suppose a task T 1 with

deadline 200 and computation time 100 is the first task in a schedule, and begins

execution at time equals zero. At time one, a task T2 with deadline 100 and computation

time 80 arrives. 1fTJ were not1n execution .. T2 may be· schedulable. If it was known that

T2 would arrive at time one, it might be possible to schedule all tasks in the current

schedule plus the 11ew task T2, such that they all finish before their deadlines.

In any dynamic system, such information about future task arrivals will not be

available. Howeve1' .. for an important type (If tasks .. called periodic taSKS; such

information is available and can be used to perform. inteHigent scheduling .. because

periodic tasks 31'e tasks that have to be executed at regular intervals specified by their

periods. In general, each periodic task will be generated at the beginning of its period.

The following technique is advised to be utilized in case (If periodic tasks: if a

nonperiodic ta..<i'.k, arriving before the beginning of the next pe:t;"iod, has a deadline ~n

or beyond the next period, the next periodic task will be generated and. sent to the

scheduler before the non periodic one. Each periodic task has an earliest start time

equal to the beginning of its period so that it cannot be scheduled before that tinle.

Therefore, the definition of 5T needs a slight change with 'the inclusion of periodic

t..'lSks .. it should be l~e.de!1ned as:

51(n = MAX(EATi where T needs Ri, and the earliest-start time of taskT).

The earliest start time for a nonperiQdic task is defined as its arrival time, so that it can

start any time after its arrival.

54

VII. DISTRIBUTED SCHEDULING SCHEME

In this part. the strategy for scheduling tasks dynamically in a distributed hard real

time system is presented. The distributed scheduling algorithm developed by

Ramamritham. Stankovic. and Zhao [21. is chosen as the algorithm to study on. and is

implemented with some modifications.

Since the local scheduling algorithm, explained in Part VI, with the heuristic

function minimum deadline first integrated with minimum start time first:

has been shown to be highly successful, it is incorporat~d in the distributed scheduling

scheme as the· local scheduling algorithm underlying the guarantee routine on e·ach

node.

The performance of the overall system heavily depends on how distributed

. scheduling is done, that is to say, on how the node to send a task which cannot be

guaranteed locally, is detected. In this part, the details of the distributed scheduling

algorithm are considered first. Then a sequence of simulation studies is performed in

order to observe how the syste.m performs under different conditions. The

performan ee of the algorithm is also compared with that of three other algorithms.

7.1. Generation and Transmission of the Node Surplus

The purpose of geileration and transmission of node SUrl11us from a node is to help

other nodes to cor~ect1y make t.he decision about which node a task. should be sent to

during focuse·d addressing and which nodes the request-for-bid messages should be.

sent to during bidding: Obvioosly .. it is neither practical nor possible to ~et nodes have

precise state information about other nodes becaus~ of the communication delay

involved.

55

The notion of the surplus of a node. as used in this distributed scheduling

algorithm is its ability to guarantee tasks from the other nodes, A node's surplus is in

reality a. vedor, with one ent.ry pel' resource on that. node, Each ent.ry indicates the

total amount of time. in past. window. during which a resource is not used by the local .
. tasks,

Each node periodicalJy calculates its node surplus and sends it to a subset of the

remaining nodes, A node sorts other nodes according to the number of tasks received

from them that were guaranteed on this node in a past time window::Then, according to

this sorted node list .. a node selects a subset of nodes to send information on its own

current node surplus, The subset is chosen such that nodes in the subset will

potentially use this information in deciding whether or not t(l se1:ld a task t(l this n(lde,

. Therefore, the nodes, which recently sent more tasks to this node, will more li.kely to be

selected,

. Broadcasting the node surplus information in large n~twork is not suggested,

because it cause·s heavy traffic' and therefore can increase communication overheads,

Because of the fact that communication takes non-negligible time' delay'. and that

resource requirements of tasks from different nodes may be different the surplus

information from a n(ide may not always be useful for some other nodes, Sending a

node's surplus information to a subset of other node~, reduces the communication

traffic, and lets a node send its surplus information only to those nodes where its

surplus information is potentially needed, These nodes will typicaIly be those that have

tasks which require the resources that are less utilized by the local tasks on the

sending node,

Of course .. ifthe network is smalt the surplus information can be sent to aH the

other nodes.

7.2. Focused Addressing and Requ'esting for Bids

When a task, T, arriyesata node Nj, the local scheduler is inyoked to try to schedule the

newly arrived task on the node, If it is impossible to schedule the· task locally, node Nj's

bidder comes into the picture which is responsible for doing focused addressing and

requesting bids.

56

for j := 1 .. ". nand j f. i. the bidder on node Ni estimates ES<T. j) which is the

number of instances of task T that node Njcanguara-ntee.

This estimation is made according to the node st!rplus information available on

node Ni and provides a. good indication of the likelihood' of a site being able to

guara-ntee a given task ..

for example, assume that the computation time of task T is 250 time units.

Suppose., node· Ns is estimated to have a minimum surplus of 400 time units on each of

the resources needed by LThen, the surplus of Ns with respe.ct to the resources needed

by task T is 400, and the estimated number of instances of task T that node Ns can

guarantee is 4001250 which is 1.6 .

In the original algorithm l2t it is suggested to continue the process as below;

Node Ni sorts other nodes according to their ESU .. j), in descending order. The

first k nodes are selected to participate in focused addressing and bidding. The value of

k is' decided such that the sum of ES(T, j) of the k nodes is larger than or equal to SGS ..

the SysteDl- l/7ide (lllOrOlltee SlIrplll • .r;, This is a tunable parameter of the syste·m. If the

first node Nt among the k nodes has its ES(T .. f) la1'ger than f AS, the FoclIsed Addressing

Sllrpllls,. another tunable parameter, node Nf is the focused node. The task is

immediately sent to that node. The remaining k-I nodes are sent request-for-bid

messages in paralle.1, to handle the case where the focused node cannot guarantee the·

task.

Whereas, in this study, it is preferred to modify this process as follows:

The node Nj. having the maximum value of ES<T. j) is selected as the focused

node on condition thatES<T, j) is larger than FAS, The task is immediately sent to node

Nj. and request-for-bid messages are sent. to each one of t.he remaining nodes in

para-HeL

The purpose of this modiilcation is to)ncrease the chance of being guaranteed

of task T at another node .. in case that it cannot be guaranteed at the focused node. Sin ce

in focused addressing,out-of..,date state information of the nodes is used, there is a risk

(If making wrong decisions. Conseque.ntly, a task T may not be guaranteed, not because

there are no nodes that can guarantee it, but because the nodes that can guarantee it,

are not sent request-for-bid messages. By sending request-for-bid messages to aU the

other n(ldes .. this risk can be tolerated. But .. it should also be kept in ~ind that, this

method is preferable as long as the network is small. Because whe·n there are too many

57

nodes in the network. there will be too many transmitted messages which will increase

the communication overhead ..

A request-for-bid me~sage includes information about the deadline, the
. .

computation time and the resource requirements of the task as well as the latest bid

an-ivaI time .. that is, the time by which bids should reach th.e focused or requesting

node to be eligible for further-consideration. The latest bid arrival time for a task T,

LBA(T), is estimated' as follows:

LBA(T) = DCn - en) - nD + SD),

where NT) is the deadline ofT, en) is the computation time ofT, TD is the network-wide.

average transmission delay between two nodes, and SD is the average scheduling delay

on a node. Thus, on the aVel"age, before LBAn) there will be sufficient time to send the

task to a bidder node, for it to be scheduled there and then be executed before its

deadline.

7.3. Bidding

When anode receives a request-for-bid message, it calculates a bid for the task

provided that there is enough time for bidding. Each request-for-bid message contains

a deadline for response Oatest arrival time of a bid). I1~ the responding node estimates

that it cannot deliver the· bid to the requesting node. on time· .. it does not bid. Therefore.,

only viable bids will reach the requesting host and the communication overhead is

reduced.

The bid is .purely a number which indicates the number (If instances of the

task the bidder node can guarantee. The calculation is done in two steps:

first, an upper bound (If the bid, Max-Bid is calculated by the below formula:

. Task Deadline - Estimated Earliest Arrival Time of the Task
Max-BId = Task COJnpotation 'Time

58

The earliest arrival time of the task to the bidder node is estimated in an

optimistic manner to be the sum of current time, the minimum message delay in

tr-ansmitting the bid, and the minimum delay in sending the task to this node. Max-Bid

is the best possible bid that this node can make assuming ideal availability of resources

that the task needs.

In the second step, the actual bid is calculated by performing a binary search

between zero and Max-Bid. In each step of the binary search, a given number of

instances of task T are temporarily inserted into the curl."ent schedUle of this node, and

the guarantee routine is called to see if the inserted instances can also be guaranteed.

At the end of the search, the maximum number of instances of the remote task T that

this node can actually guarantee without endangering pl'eviously guaranteed tasks, is

obtained. This number, if above a predefined limit, becomes the bid. The bid is sent to

the· node which was selected for focused addressing if there is one. Otherwise, the bid is

sent to the original node which issued the request-for-bid message. The inserted

instances of the remote task are removed from the schedule on a bidder's node.

Therefore .. the schedule on the bidder's node is not affected by the bid it makes. This

implies that a node does not re·serve the reS(I\lrCeS nee·ded by the tasks for which it bids

since a node will typically bid for multiple tasks and multiple bids wiH be received for a

task, reservation of resources will result in pessimistic bids and therefore may reduce

the system performance.

7 A. Bid Evaluation

When a node. receives a bid for a given task .. and the bid is higher than a certain

limit, high-bid (HID, the node awards the task to the bidding node immediately and all

other bids for this task, that arrived earlier or may arrive later, afe discarded. If all ~he
. bids .. that have arrived, for a given task are lower than the high-bid, the node

postpones .making the awarding decision until the latest bid arrival time of the task. At

that time, the task will be awarded the highest bidder if any. All the bids that arrive

later will be discarded.

59

7.5. Response to Task Award

When the awarded task arrives at the highest. bidder, t.he local scheduler on t.hat

node is invoked to see if the task can be guaranteed. It. should be noted that the state of

the node may change after making a bid and since resources needed by the task were

not reserved, the task mayor may not be guaranteed. If the task is not guaranteed, it is

rejected.

7.6. Simulation' Model

In this section, the simulation model on which a sequence of simulation studies are

conducted, is introduced, The results and observations of these studies are presented in

Section 7],

7.6. L System Model

The system model is assumed to be physically distributed and composed of a

network of five nodes (multiprocessors) each of which has its own local memory, All

internode distances are considered to be the same,

The nodes in a· network can be physically connected in a variety of ways,

. namely com1111loicatioo topolosies. In order to see the performance of the algorithm 1n

different conditions,. the ·simulation studies are performed on two different network ..
communication topologies;

(A) Fully CODDee,tetl CO.lll.llll!DicIltioD Net"or~ ; In such a network, each node is

directly linked with all other nodes in the system, The basic cost of this configuration

is very high, since a direct communication I1ne must be available between every nodes.

The basic cost grows ·as the square of the number of nodes, I~ this environment,

60

however. messages between the nodes can be sent very fast. The first simulation system

model with such communication topology is shown in Figure 7.1.

(B) Star Co •• uBicalioB lelFork. : In a star network. one of the nodes in the

system is connected to aU other nodes. None of the other nodes is connected to each

other. The basic cost of this system is linear in the number of nodes. The

communicat.ion cost. is also low. since a. message from Nodel to Nodej requires at. most.

two transfers. This speed may be somewhat misleading. however. sinte the central node

may become a bottleneck. Consequently. even though the number of message transfers

needed is low. the time required to send these messages may be high. Figure 7.2 shows

the second simulation system model with such communication topology. In this model.

the central node. S. is completely dedicated to the message switching task,

FIGURE 7.1. Simulation system model 1 (Fully Connected)

FIGURE 7.2 Simulation system mode12 (Star)

6f

Messages pass through a communication line in a pipe-lined fashion with only.

one message occupying a cha.nnel at a given time, in a given direction. When a

messa.ge is in a line, if t.here is another message that needs to be transmitted, the latter

message must wait until the first. has left. This situation is called a conDit-:/. The total

time for transmitting a message from one node to another without any conflict is

denoted as nQClJnDklmessa&edelar (MD).ln star network, since a message from one

node to another passes through two communication lines; the time taken by a message

to pass through a line, without any conflict, is half of the message delay.

The delay involved in transferring a· task through t.he network.is assumed to be

the message delay plus 10 per cent of the computation time of the task. that is, it. is

assumed that transferring a task requires higher. communication overheads than a

message, and this overhead is propol,tional to the computation time of the task. Again

in star network, the time taken by a task to pass through one communication line is

half of this amount.

In the simulation program, since the network is sufficiently smaH, a node sends

its surplus information toaB the other nodes in the system, When the network is large,

the node surplus information should be sent to only a subset of selected nodes, Nodes

that potentially need such information should be selected, A good selection policy will

reduce the number of messages transmitted in the network, while letting the nodes

obtain such information if needed,

. The· message· traffic cre·ated by the transmission of sUi'plus info1'mation as weH

as all other messages generated in the course of scheduling is also take·n into account

in the simulation model,

These two network topologies and the communication protocol just described are

chosen for simulation in order to observe the effect of the communication overhead on

the performance of the algorithm.

7.6.2. Node Model

It is assumed that a stream of tasks arrives locally to each node as a Poisson

process. The nodes are considered to be heterogeneous in the sense that each node may

62

have a different arrival rate of local tasks, but homogeneous in the sense that a task

submitted to any other node in the network can be executed there.The fact that local

task arrival rates on different nodes may be different, results in differences in the

loads of the nodes. In the simulation studies, the term sJ"-slem locallask arrival rale, R.
is used to refer to the sum of the local task arrival rates of all the nodes in the system: .

In th~ simulation model, t~o of the five nodes (node A and node B) are assumed

to have equal loads which are higher than the remaining three nodes. Give~ the

system arrival rate, R. the local task anival rate for each node is-considered to be as

follows:

(a) for nodes A and B : O.375R;

(b) for node C : OJ25R;

(c) for nodes D and r: : OJJ625R

Each node is assumed to contain five resollrces .which may be demanded by

tasks .. including two active resources (processors) and three passive resources. A

resource can be serially shared by tasks. The resource requirements of a task are

determined randomly, provided that a task needs a. resource with probability 0.5.

Moreover, each task requires at lea..~ (lne of the active resources and .zero or more

passive resources.

Both the CODlPlltatio.n tiDle and laxity of tasks are considered to be normally

distributed.

Since the· dispiltc.her has to be invoked e·ach time any task completes exec\ltion ..

the nl1l-time cost of the dispatcher is included in the computation time (If every task.

The simulation model also assumes that the scheduler tasks such as the bidder

and the·loc.1isc.hedllier are executed on a c(I-processor dedicated t(l scheduling.

The model is ba.."led on the assumption that there is a CODlDlIl.nicatio.n D10dllle,

executing on a co-processor which 1s responsible for receiving communication from

local sources as well as from othel' nodes. Based on the type of communication, this

module stores received information in the appropriate data structures so that they will

be looked at when different. tasks e?tecute.

The purpose of using such co-processors (or system processors) is to offload the

scheduling algorithm and t.he other operating system overhead from the application

. \

-

· :" .. ,
0,)

tasks poth for speed, and so that this overhead does not cause uncertainty in executing

already guaranteed .tasks.

7.7. Simulation Results and Observations

The distributed scheduling algorithm explained m the previous sections, is

implemented and tested under different conditions, using the simulation model

presented in Section 7.6. Appendix D contains the listing of the simulation program

implementing thi~ algorithm. Since the algorithm uses a technique that 'combines

bidding and focused addressing, the term ED will be used to describe this algorithm.

Before presenting the simulation results, a general information about what kind of

simulation studies are performed will be given, discussions on the ohserYations then

follow.

In the simulation' studies, the computation time distribution of tasks is

considered to be normally distributed having a mean of 200 and a standard deviation of

100, denoted as N(200,1002)

The cases with thl'ee different laxity distributions are tested in order to study

the effect of tasks laxity distributions on the performance. These case·s are· :

(a) Lor J.u:ily (L_LAX) : laxity distribution of ~ks is NOOO.15(2);

(b) lIediulll J .. riJy (M~AX): laxity distribution of tasks is N(450.1502);

(c) RigA JJlIilr (ILLAX) : laxity distribution of tasks is N(600,1502),

In order to observe the changes in system's performance 'under different

system loads, the simulation is performed under light. moderate and heavy system

loads:

(a) LigDt load (LLOAD) : system arrival rate, R, is 8 tasks per 600 time units;

(b) .l/Odl1IlItl1 JOlld CM.i,OAD); system arrival rate·} R is 16 t..1Sks per 600 time units;

(el Hoavy 106.11 (ILLOAD) : system arrival rate .. R.. is 241asks per 600 time units.

64

Consequently, the local task arrival rates for each node, under these different.

system loads are as shown in Table 7,1,

SYSTEM: LOAD LOCAL TASK ARRIVAL RATE

NODE A NODEB NODEe NODED NODEE R

L_LOAD 3/600 3/600 1/600 0.5/600 0.5/600 8/600

M~OAD 6/600 6/600 21600 1/600 1/600 16/600

H~OAD 91600 9/600 3/600 1,)/600 1,j/600 24/600

TABLE 7.1 Nodes' local task arrhal rates under different system loads

Thre·e different ca..<;(tls for task laxity distributions and three dil1erent cases for

system load .. result in a combination of nine different cases .. each of which has a

specified task laxity distribution and a specified syst~m task arrhral rate, Hence .. nine

groups of tasks are generated by the global task generator. program in order to be used

during the simulation studies. The listing of the global task generator program is given

in Appendix C.

The pe.rforman ce of the algorithm is tested unde.r different no conflict message

delay .. MD.< values as well. The purpose is to examine how communication delay affects

the system performance,

In the simulation studies, the performance ofilie algorithmFB, is also compared

to that of three other algorithms explained belo'w :

(a) NOllcooperative sc.1JedulillS a/sorit.hm (NC); In this algorithm, whenever a

task cannot be guaranteed locally.< the task is discarded. No attempt is made to send the

task HI other nodes,

. (b) .Kll1ldom sc.1Jeduli.ll8, a.1sorit.IJm (R): In this algorithm.< when a task cannot be

guaranteed py the local node at :which it arrives, the node randomly selects another

node and directly se·nds the task to that node, The adYantage of this algorithm is that, it

uses the minimum communication oyerhead to determine where to schedule a task in

the network. The ~isadvantage is that, it is ea..qy to send a task to fln improper node

because of the randomness.

(c) BiddillS (B); This algorithm, whenever a task fails.< do not select a focused node to

send the task, as in the algorithm FB, but sends a reque~t-for-bid message to the other

nodes, and then sends the task to the node which offers the best bid. If there· is no good

65

bid available for the task, it is assumed that no node in the network is able to guarantee·

the task.

The listings of the simulation programs which implement these three

scheduling algorithms are not given because of the space limitations. One may refer to

the diskette f01' the program files,

In order to observe the effect of different network topologies on the

performance of the algorithms, aU these simulations are performed on both of the

below communication network topologies, explained in Section 7,6.1 :

(a) Fu.lJy conncctcd cO.ll1.1l1unication topoJoKY (Fe);

(b) SbLr CODlDlU.D.iCJltiO.D tOPO/OKY (Sl..

7.7.1. Effect of La:lity Distribution of Tasks

The purpose ofth1s study is to examine how the differences in the laxity distribution (If

tasks, affect the performance of the distributed scheduling algorithm FB.
1

The· term percentage ofnongll8fanteed tasks, denoted as "% NG," is used to

indicate the system performance,

Three different laxity distributions (LUX : N000,1502), M.lAX : N(450,1502),

and ILLAX : N(600 ,1502» are tested as foUows :

(a) under moderate system load where system arrival rate (R) is 16. tasks per 600 time

units, and with different no conflict message delay yaIues (Figure 7.3 and Figure 7.4

show the simulation results for fuUy connected network topology and for star network

topology respectively);

(b) under three different system loads (LLOAD : R=8/600, ~LOAD : R=16/600, ILLOAD :

R=24/600), with a constant no cqnfIict message delay (MD) vaIue which is taken to be 36

.time units (Figure 7,) and Figure 7,6 show the simulation results for fuIly connected

network. topology and 1.'(11' sial' n.etwork topology respectively).

66

From the simulation results, it is easily observed that the task laxity does a.ffect

the system performance.

As seen from Figures 7.3.. 7A, 7:5 and 7,6 .. when the mean of tasks' laxity

distribution increases, the percentage of tasks nonguaranteed decreases significantly.

from figure 7.3.. it is observed that when laxity increa.."\8s from LlAX to lLLAX,

the percentage of tasks non guaranteed decreases by an amount between nine and 14

per cent, for different values of MD. But as seen from Figure 7A, on star topology this

decrease is not very significant for high values of MD, For example, when MD is 96,

there is only a decrease of three per cent on the number of nonguaranteed tasks. This

implies that, when message delay is very large .. the increase in laxity does not affect

the· syste·m performance on· star communication topology'. as much as it does on fuBy

connected communication topology,

Figures 7.5 and 7,6 show that .. increasing th'e task laxity, de· creases the

percentage of tasks nonguaranteed under each one (If the· different system loads .. on

both of the communication topologies. This deCl"ease is mOl"e obvious when the system

load is light or moderate than when the system load is heavy, This re11ec15 the fact that,

when the syste.m anival rate is high, there are so many tasks to be scheduled in the

system that increasing the mean of the task laxity distribution does not result -in a

significant increase in system performance.

7.7.2. Effect of Communication DeJay

In this section .. how the communication delay affects the system performance of the

algorithm fB, is examined, In the. simulation studies .. the term percentage ofgllara.ateed

ta....,.ks, den(lted as "% G," is used t(l indicate the system performance,

The first set of simulation studies with different no conflict message delay (Me)

values, is performed under moderate system load (R=16/600), on two groups of tasks

having different laxity distributions. One group of tasks is generated by using a low

laxity.distribution (NOOI),1502n. and the other by using a high laxity distribution

(N(600J502), The perfoi-mance observations of these tW(I groups, with different ~D

values are showllin Figures 7.7 and 7 $,

~ NG

28
26
24
·...,'f LL

20
18
16
14
1'''' ..:.

r--
~---------------------------------------.. /--.... ~•
--------.-.--.--------.-- .-.. --.-------:;;-.:-;-------:=--O ... ---
--·------------------------·------~~··~/o---~----

t--------------------..-----.............. -.. /./)
..... "... ~ .. '"

+------------~-.-.. -... -.~.~?~/-/-----------7·~· --------
+------------="'~ ... -t--·--------.-_-~L--__ ..:::......_---_--:.- ./

1~ .~.-----()_--O.-:---------·o---- ...•
6 ,./. ~./""

7 .7'
4 / -
? () </-./. ~ ~''''/'
~~ • .<- I

2 6 16 26
MESSAGE DELAY

36 66 96

FIGURE 7.3 Effect of task laxity when R=16/690 and Topoiogy=FC

28 E /;!>
26~-----------------------------------=~<~ .. 7'·-/ .
'/41 ~ .. , .' /' .. ;1'-
~,... ~_..../ .. /
LL .".... _---=v- ,l'

<--. ------ ,/ 20 +-----------------A--_--::-=--=--"'<=---/if' ./
J,. l 18--1---

16 +---,.-----,.-........ /........ .'-' ---
........ ~.... .;(f .. '/' /'

~ NO 14 +-------.... -/-;> ••. .<:.-----.... -.... ,/

12 /". .~ <--_.-' ---f)':-/--- ./

l~ .~------ "L _/'/
6 -- " ,.,/ .---.-.___--::-==-----=-=-.-.-.-. ----------
4 ... J)"'/ ------~ ... ------------------
') /_ .. _ ------------------
~ •.........• •. '-.... -./_., --l------+--------\------I

2 6 16 26 36 66 96
I"IESSAGE DELAY

fIGURE 7:4 Effect of task laxity when R=16/600 and Topology=S

67

-+- L-LAX

-<>- I"UAX

.- H-LAX

.• - L-LAX

-<>- tLLAX

•• HJ.AX

% NG

36 ,----

34
;32
30
28
26
24
'I')
~-<-

20

+----------------:-+
~/

c.cc.c--- ... Q
18
16
14
12+--------7~--~~--~-----
10 .. / (j/ ./
8 .~..... _rP"'#'-~ /

6 ~:., .cc~_cc- //
4 o~c;·· .cCC /"

2 J ___ --=----'---
O. --- I

LlOAD t1iOAD H.J.OAD
SYSTEf'll0AD

.. - liAX

-<)- M_lAX

··--HiAX

FIGURE 7,)' Effect of task laxity when MD=36 and Topology=FC

36 .,..----------------~ .•
,/

34+-----------------/~7~
32+-------------,~.,~--

30+----·-----------~/~~--/~ ... ~
2..,,~+---·---------.-/~~~ .. -/~.·~.
Lb +--------------.,.,:.----,...:-----r"

, •••• .1' c......... ~
24+------------.~'~.~~-~/--

~~+------~~~~-~-.~-~·---/~(-l---
}'i NG la , .. ,:/

16 +-~----~~-----~------t:?-'" ,..10

'"

14 ·-----,/~7 /

I
,.., .It to'

1
-(') .,i~·' ,/
(I _..,/.,r /./

1" ._11
6 7 1

. _c---/'
~ ({ . .-_-c-".-:
L T .. ~ ... o •. c-C . I

MiOAD .liOAD
SYSTEl"llOAD

HiOAD

-+- liAX

-<)- MiAX

-.- J-tJ.AX

FIGURE 7,6 Effect of task laxity when MD~36 and Topology==S

68

69

Before discussing the simulation results, the terms used in the figures need to·

be defined:

. TG = Total Number of Tasks Guaranteed in the System
Total Number of .Tasks Genel"ated in the System x 100,

. .
GL = Total· Number of Tasks Guarante·ed LocaBy x 100,

. Total Number of Tasks Generated in the Syste.1l).

GNW ::: Total Number of Tasks Guaranteed Network Wide tOO
Total NlJmber of Tasks Generated in the System x ,

When the above results are obtained on fully connected system model the term

uFC_u and when they are obtained on star system model. the term uS_u precedes the

above terms.

As seen from Figures 7.7 and 7.8, as the value of MD increa..~s, the performance

of the syste.m degrade.s. Whe·n laxity is low (Figure 7.7.) .. this decrease. in the percentage

of total guaranteed tasks starts at MD=6 time units, whereas when laxity is ·high

(Figure 7.8) .. it starts at MD=26 time units. This reDects the fact that, when tasks' laxities

are le·ss tight, the ove·rhead of long communication delays can be tolerated to some

extend,

It is easily observed that, the effect of the communication overhead, is more

obvious on star system model than it is on fully connected one. On star topology .. as MD

increa!les, the decrea..'W in the percentage of total guaranteed wks is fa!lter. For

examllle, when laxity is high (Figure 7.8), an increase in MD from 16 to 96 time units,

results in a decrease in the percentage of total guaranteed tasks by an amount of 25 per

cent on star topology. However .. this amount is only nine per ce·nt on fully connected

topology. This is because of the fact that, as MD. increases from 16 to % time units,

although there is just a two per cent inC1"ease in the percentage of tasks guaranteed

locally, the percentage of tasks guaranteed network wide, that is to say at a remote node

by focuse.d addre.ssing and bidding, de·cre·a..~·s by 11 per cent on fully connected

topology, but by 27 per cent on star topology. So, increase in MD decrease·s the 10caHy

nongua1"anteed tasks' chance of being guaranteed at remote nodes, more significantly

70

on star topology than .it does. on fully connected topology, This implies that the.

communication network topology of a system. is also an important factor in tolerating

. high communication delays,

~ G 50 +----------------------

40+---------------------------

6 16 26
I"lESSA6E DELAY

36 66

FIGURE 7,7 Effect of MD under ALLOAD and LLAX

96

100 0----' -----<0 tSC~. ~.-======4.~==::___:_---
---..,!- -------. V-' ___ ."" _

................ . ---.
"'~.---

90
'0._

80~------------------------~'~>-'Z~,-
~"O

~ I----~--~--~---~----"
30~~-====~~=====~== ~

. .---~ ------.
----~ ""'--:---20 +-----.-------------..:: ,, __ :---- . -A

"tIr> ..

o+----+---~+----~----r-----+----~

6 16 26
t'lESSAGE DRAY

36 66

FIGURE 7,8 Effect of MD under M.J..OAD and H_LAX

\.

96

-<)- !LTG

.• - FC...:.Gl

'0- S_Gl

71

As mentioned before. in figure 7.7. the lines "FC_GNW" and "S_GNW" indicate the

percentage of tasks guaranteed network wide .. on two different topologies, under

moderate load and low laxity. Figures 7.9 and 7.10, further present the details about how

these tasks guaranteed at remote nodes are actually guaranteed. Figure 7.9 shows the

results for fully connected system model, and figure 7.10, for star system model.

According to the distributed scheduling algorithm FE, there are three possible

ways for a task to be guaranteed network wide:

(A) When a task cannot be guara.Qteed locally .. the local scheduler, if it finds a node

having sufficient surplus to guarantee it, sends the ta'sk to that node through focused

addressing. Hence .. a task can be guaranteed at the focused node. This first way (If

guarantee is named as KUlUlUlteed IIy focused Ilddressil1K and denoted as "GJA"

in the figures.

(B) The local sche·duler, in addition to sending the task to the focused node, sends

. request-for-bid messages to the remaining nodes, to handle· the case where the task

cannot be guaranteed at focused node. If this happens, the focused node evaluates the

bids arrived for this task, and sends the task to the best bidder, if there is any, so that

the task has a chance of beitlg guaranteed at this "second step" node. This way of

guarantee is called KUllFll11teed IIy focused Ilddressil1K Il11d IIiddil1K and denoted

as "GJAB" in the figures.

(C) In case that there is no focused node having sufficient surplus to guarantee the

task, the local scheduler starts the bidding process, and then sends the task to the node

which offers the best bid. So a task can be guaranteed at the bidder node. This third way

of guarantee is llame·d as KUll.rll.l1teed IIy direct IIiddi.DK and denoted as "G-B" in the

figures.

As seen from Figures 7.9 and 7.10, theTe is n{1 task. guaranteed by focused
addressing and bidding (F ABt when Mfu66 time units on fully connected topology, and

when MIT.:: 16 time units 011 star topology. Because when communication delay is high, it

is very difficult to find enough time to attempt to schedule a task which is not

guarantee.d at focl.Jsednode, at a second step node. This effect of MD, is much more·

obyiou5 {In star system model,

These figures afso show that, at high message· delays, g~Jaranteeing by dire·ct

. 'bidding (B), becomes difficult as weH. No task is guaranteed by direct bidding when
Mfu96 time units for fully connected system model (figure 7.9), and when Mfu66 time

units on star system model (Figure 7JO).This reflects the fact that at high

72

communication delays the message tmffic required by bidding process creates an

overhead,

30 I
28.--•. ·-, -----------------------

" ,.,t: \
..::.\..1 '

24 ..
22r------·~",r_-----------------------

" 20+------~~r--------------------",
18r--------'~·.~-----------------------
16r-------~-~·~,---------------------% G ,
14+----------~~------------------"',
12 0----0, 0-----0'~....'
10 o~)~..h
8 ' 0" '. ""0_... _

t- _ '...... .---
6 .--Ih...,.,,,,, 0.... 0 '::::

4 "', '-., '--"~' ~------. --...... ...-..... "0
-§ -..... '-. ~
20 ~~-[]--[];:;:::-~----- --=-0,--

~-., ,
+---+---t---+--+I---=:::::-=-.~O--O--O~
'::. 6 16 26 36 66 96 146 176 186

t1ESSAGE DELAY

FIGURE 7,9 Effect of MD (details of Fe_GNW)

30 I
28.-.---------~~-------~-----------....
26 --"',--------------------
24+----\~\-'-------------------~---------
..... ' ... +-----'\;-------------------------
;~+--_4\\~----------------
18+----~~--------------------------

16 ----~l----------------------.-----
~ G '\
14:\
12 _-0---. ___ ·------------------

0- \ ---.....

l~ £1:s~~~L·-...... ,,:,.,,::---.. ~-::-"'"-.-... --------
4
6 f \.,/ __ "'Q::s,
.' v ~

2 \! --o--o.::-'-.-.. -~'<::-.. ,----·---
o .--.--.~Ll--.. '[]--O---O--o

2 6 J6 26 36 66 96 146 176 186

t'lESSAGE DELAY

FIGURE 7.10 Effect of MD (details (If S_GNW)

.- G...NW

-0- GJA

.•. GJAB

'0- G-B

•. GJM

·0· G_FA

.• - GJAB

73

The system performance on fully connected topol!Jgy is not as sensitive to MD as

it is on star topology, For example, on star topology, there is no task guaranteed

network wide when MD:!.:96 time units. whereas, on fully connected one, at MD=% time

units, the percentage of tasks guaranteed network wide is five: Moreover, this

percentage remains positive for much higher values of MD. and finally becomes zero at

MD=186 time units,

In order t(l (lbserve the effect (If the communication delay under different

system loads, a set of simulations is performed, In these studies, tasks' laxity distribution

is chosen to be low laxity (L_LAX : N(300.1502)). and the performance of the algorithm

is tested under light. moderate, and heavy system loads (L_LOAD : R=8/600. M_LOAD :

R=16/600, and H~OAD : R=24/6(0), on both of the fully connected and star system

models (FC and $), The results obtained are presented in figure 7.1 L

It is observed that, as MD increases from two to % time units, the decre(l.:)~ in the

percentage of guaranteed tasks is :

(a) under light load: six per cent for Fe topology, and 10 per cent for S topology;

(b) under moderate load: 14 per cent for FC topology. and 19 per cent for S topology;

(d under heavy load: 22 per centfor.FC topology, and 24 per cent for S topology,

55~----~----~~----4-----~------+-----~

,",
.:. 6 16 26 36 66 96

. . l"lESSAGE DELAY

-.- FC_LLOAD

.()- S_LLOAD

-.- FC_1'L_1.0AD

-c- SJ'UOAD

.... - FCJLLOAD

-A- SJtlOAD

FIGURE 7.11 Effect (If MD under LLAX and different system loads

74

Hence, according to these results, it can be concluded that the effect of MD on.

the system's performance becomes more significant as the load of the system becomes

heavier, and also, this effect is more e.xplicit on star system model than it is on fully

conne.cted one,

7.7.3~ Effect of System's Communication Network T!)pology

111 order to observe the effect of system's network topology on the performance ~f the

algorithm FB, the algorithm is tested on both of fully connected and. star system models,

under light, moderate, and heavy syste·m loads (LlOAD.: R=8i600, 1LLOAD : R=16i600,

arid lLLOAD i R=2ii600), for each of the three different laxity distributions of tasks

(LLAX : N(300J502), M-LAX : N(450,1502l .. and H~AX : N(600,1502n. The reslllts

obtained are as shown in Figure 7.12. During these si~ulation studies, no contliet

message delay, MD, value of the system is taken to be 36 time· units.

60~----~-----+------r-----;------r----~

LLOAD M-LOAD
SYSTEl"1 lOAD

.+- FLJLLAX

-0- S.JLlAX

.- fCr--UAX

0- S..JtiAX

-j,- fC.J..J.AX

-lJ.-- S.J..J.AX

FIGURE 7.12 Effect of system's communication network topology

75

From the simulation studies, it is observed that when the system load is light, the

performance of the alg'orithm FB is the same on both of the topologies, for each of the

cases, But, when the system load is moderate, the differ~nce between the performance

of fully connected system model and that of the star sy~tem model is five per cent at

H_LAX, lO per cent at }"LLAX, and five per cent at L_LAX. Further. when the system load

is heavy, this difference isseven per cent at ILLAX, nine. per cent at M~AX, and 12 per

centatL~AX, Hence. as the system load becomes heavier. a.nd tasks' deadlines become

more tight. the algorithm FB performs better on fully connected topology than it does

on star topology,

It should also be added that. as mentioned in Sectio'n 7.7.2, the performance of

the algorithm FB, on fully connected topology .. is' not as sensitive to communication

overheads as it is on star topology. (see figure 7.11).

7.7 A. Comparison of Algorithm FB with A~gorithmsNC and R

In order to compare the performance of the algorithm FB to the performances of the

noncooperative scheduling algorithm, NC.. and of. the random scheduling algorithm, R,

three cases with different task laxity distributions (LLAX : N(300,1502),

ALLAX ; N(.450.J502) .. and ILLAX : N(600,1502)) are tested. The results are shown in

Figures 7.13 through 7.18. In each case, the performances of the algorithms NC, R, and

FB, are observed under light, moderate, and heavy system loads (LLOAD : R=8/600,

M-LOAD : R=16/600 .. and ILLOAD : R=24/60tl). During these simulation studies, the

system's message delay, MD. is taken to be 26 time units, The performances !)f the

algorithms FB and R a·re evaluated on both fully connected (Figures 7.13,7.15.7.17) and

star (Figures],14. 7.16, 7.18) system models.

As seen from the figures, in most cases t.he performa.nce of the algorit.hm FB is

. much bet.ter than the lower bound offered by the algorithm NC, The percentage of

guamnteed tas~s of the algorithm FB is higher thttn that of the algorithm NC, by an

amount between five and 24 per centon star system model. and by an amQunt between

five and 27 per cent on fully connected one, This proves the fact that distributed

scheduling improves the performance of a hard real-time system,

100 f~oc==:-:::===::::::=====-: .. :------:-----97 --~ --
94 -----~~~:-... =.,~.,.~---
91 '. ". -..... '-."

.... ,

g~ i-:--.-"-.;:-.... -,-.. o;:-"'-_-_-_-_ -_ -_ -_ -_ -_ -_-._-_-_-"_~.:..~ •. _'.-..... ;.:'_<:'> ,,._:::-~-~-... ...::. .. -. ..,..-.,-......

82 - ,...
79 """ ,.'0

n 6 76 +-_____ ._,.-" .. ,._._-----------
........

73+--·-----~~·-·----------

~~ r-------····- --- -.
64~.------~-------

61r-----~--------

58,-------------------
55r----------r------~

L.J.OAD r-l.J.OAD
SYSTEt-ll0AD

H.J.OAD

. ... FE:

.0- R

.• Nt

fIGURE 7.13 Comparison of fB, R. and NC when Laxity=ILLAX and Topology=fC

1000--. . 9", .~ .f --.:::.:::::::-

94 11 . ~"~
91.::......... ..~ 88

",.::::;"
85~'---~~-·-----~~'~· ... -----
82 - ... " : ''"S~l1.~

79 ~ % 13 ~ .. _____ ,,-.. 0 76 -.-
,7~-------'~------------~
{,J J=-=-_="..--, ___ _ 70. -l-----.----- - ----=:;::::::
67~----------------------------==-.
64~-~----------------------
61 ~-----------------------
58~-------------------------
55~------------,--------------;

l.J.OAD hlOAD
SYSTEt1l0AD

H.J.OAD

.. - FB

-<)- R

.- NC

fIGURE 7.14 Comparison off B .. R, and NCwhen Laxity=ILLAX and Topology=S

76

% G

"100 r
97¢~~~_-_-----------------------
94 ./-.---.=-~~-'"C------------------ . -- ------.. 91 -r;:-----~-~---.----.---
qS ~--- ",
~~...... .,. ~ "" "',
Ct"\J __ ~~~---

82 ____ ...2-""" "'''-<;:;--.::," ---
79 -..... --"""

-.. "'~~
7b
~ , ~ ,
70 t------------~_ •. ''''''' __ :-_-___ -_--_------
67t------~----------~-_=-----
64r-----------------------~ .
61 • 58 +-----.----.,--------
55t--------------T-.-------------,
L-LOAD I"I-LOAD

SYSTEl"l LOAD
H-LOAD

.• - FB

·0- R

.- tiC

FIGURE 7.15 Comparison of FB, R, and Nt: when Laxity=~ and Topology=FC ..

100 T·-------------------
q70~---------------------------
94~~~q~~-----------
91 8., ""'-"'.... --.......... ~
88 "" ~~. i71C:
.... ,,1 ". ""'....:::.-----.. 82 --... ____ .
79t----~ ----------~~.~--~-~ --- --'- ... 76t--------~~~',--,-------~-'~'___~~

73+----------~~~------------~~~
70t---------------·~-~_-_-----------
67+-------·----------~-~~~~------

~--Ev4 -.----- --~.
61 ------------------
58
55t--------------+-----------~

L-LOAD !'"I-LOAD
SYSTEM LOAD

I-1-LOAD

'.- fB
-O-R

.- tiC

fIGURE 7 J6Comparison of FB .. R, and NC when Laxity=M....LAX and Topology=S . .

77

100,,----
97 0.......... .-------------------
94 t----..... l>>;;~--------------·-----.. ·---·------·------.. -.. ·-.----.-----.--.--....
91 .----=~:--~----.--------------
~ .. "' 8li~, --.. -----

85 t-~--- '>. .. ::'-O<i.. -------
~~ --------::~:'''<;~~:-~:~--... -~:~~~~:.........~-:~~=~
76 t-------'-,..c-- ~ "17•.. , c~ _____ 0

70 " ..
67 t-.----------... .=.'

~1 .. ".,<:,
~ .
55+----------,r--------~{

L-.lOAD t'1-.l0AD
SYSTEN LOAD

-.- FB

-0- R

-.- He

FIGURE 7.17 Comparison of FB, R, and NC when Laxity=LLAX and Topology=FC

% G

100 TI--------
97 (>.;:::------.. ---------- ---------.. -------
94 t-..-::,..,,- ------
91.

'oj ' ..

8\..1 - ~...... "',
8~ '....... ' , ...
82
79
76
73
70
6"1 i

64
61
58
55
L-.lOAD

........ '<> -

ttiOAD
SYSTEN LOAD

H-.lOAD

..- FB

-0- R

-B- He

FIGURE 7JS Comparison (If FD, R. and NC when Laxily=L_LAX and Topology=S

78

79

In all cases. on fully connected topology. the perfol'mance of the algorithm FE

is beUer than that of the algorithm R. This is expected in most cases, since the decisions

about. to which node to send the tasks locally nonguaranteed, are made by using the

network wide surplus informa~ion in the algorithm FB. whereas in the algorithm R.
the~r are made mndomly.

Except one case .. the performance (If the algorithm FB is better on star topology

asweH. But .. at the point whe.re the system load is heavy (lLLOAD) and tasks' deadlines

a.re tight (UAX) .. the perform~nce of the algorithm R is observea to be higher than

that of the algorithm FB, by an amount oftwo per cent. Since· the algorithm FB requires

much more communication than the algorithm R, when the system load is heayy, the

non-negligible message delayMD, which was taken to be 26 time units .. .results in a

performance lOWel" than that of the a~gorithm R,

When the· system load is light, no perfo.rmance diffe.rence is obse.ryed between

the algorithms FB and R This ret1ects the fact that when the load is light. most of the

nodes have enough s{l1'!)lus so that any node selected randomly is as good as any other

node,

7.7 .5. Comparison of Algorithm PB with Algorithm B

In orde.r to compa.re the perfo.rmance of the algorithm fB which combines focused

addressing and bidding .. with that of the algorithm B which uses bidding only. a set of

simulation studies is performe.d, First .. under moderate system load (~OAD : R=l6/600),

the pe.rfo.rmance of the algorithms is evaluated with diffe.rent no cont1iet message

delay yalues .. fo.r each of the th.ree different laxity distributions (LLAX : N(}OOJ502),

1UAX : N(.450..1502) .. and H~AX : N(600..1502)), on both of fully connected and star

netwo1'k topologies, figures 7.19 and 7,20 show the· simulation re·sults for fully . '

connected and star system models respectively, Supported by these results, it is easily

conduded that the algorithm fB perfo.rms better than B.

As seen from Figures 7.19 and 7.20 .. the communication overhead does haye an

explicit effect on the pe.rformance of both (If the algorithms,

2 6 16 26
t1ESSA6E DElAY

36 66 96

.• B-H-.lAX

.0- FB-H-.lAX

.• - B-.l1-LAX

.[J- fB...1'l-LAX

-.- B-L-LAX

-lJr m-.l-LAX

80

FIGURE 7.19 COml)arison ofFB and B wh~n R=16/600 and TQPology=FC

100 [J.~.:--__ 0 .__--0.: ..

9B r~---........::.'···'"'·"'":----'" -.- .-----96 --··-.....:.::.,0:;----··--:::,....-.. -.-------...... ---. --------.. .
_ 0·--__ _ __ ------94 .-~. ~-=::-

CI'-' '. -~"=;--- -
7L ~ \ ...
C)() --"1 ~ . ":>0 ' •..... . . ···::-A.,~ \\,
88 ---.:.. ... :: <" .'.:.... --\--"'<-.\-----...... . ,..... \ "

86 +------~ ".,.'0 ... , \, \"
n (j 84 ------~<;----'.~"<:- \-0·---

E =------ ~s~~~
~~ -------- -=s:~-:::-~;

2 6 i6 26 36 66 96
I1ESSAGE DELAY

.• - B-H-.lAX

.(>- FB-H-LAX

.• - B-.l'l-LAX

'0- FB-.l1-LAX

. .- B_LLAX

-l:J.- FB-.l-.lAX

FIGURE 7,20 Comparison ofFB and B when R=16/60fJand Topology=S

81

When MD is small. the performance of the illgodthm B is close to that of the

algorithm FB. As MD increases, the difference between. the performances of the two

schemes increases. For example. on fully connected' system model. although t.he

performances of t.he t.wo algorit.hms are the same at. MD-=16 time units. at. MD-=96 time

units. the percentage of guamnteed tasks by the algorithm FB is higher than that. of

the algorithm B. by an amount of 13 per cent at. H_LAX. six per cent a.t ~LAX, and five

per cent at. L_LAX. This difference is not. so significant on star system model, because in

this model. t.he performance of the algorit.hm FB also decre~ses explicitly at. MD=96 time

units.

Hence, it is obseryed that the performance (If the algorithm FB is not as

sensitive to MD as that (If the algorithm B, This is bycavse bidding always requires more

message traffic. Also .. the overhead of processing the request-for-bid meSSllges and

bids .. affects the· performance of the algorithm B at high MD values. Altho\Jgh the

algorithm FE also uses bidding scheme., it has the advantage of being able t(l send a

locally nonguaranieed task immediately to a focused node .. using network wide surplus

information of the previous window. This feature prevents the algorithm fB from

decreasing in performance as muchas the algorithm B doe·s .. at high communication

delays.

As a result, it is concluded that the· algorithm fB, compared to the algorithm B ..

l1erforms well over a large range (If no connict message delays.

Further .. the performances of the·se· two algorithms are compared under heavy,

moderate, and light system loads (UOAD : R=8/600, M-LOAD : R=16/600 .. and

ILLOAD ; R=24/600), with low .. medium .. and high laxity distributions of tasks, at a

constant no conf1ict message delay which is taken to be 36 time units. The results

obt''l.ine·d are pre.se.nted in figure 7.21 for fully connecte·d syste.m model.. and in

. figure 7.22 for star system model. These (lbservations show that the alg(lrithm FB

performs better than the algorithm B under different system l('ads and 'tasks' laxities,

on both of the network topologies.

100 o-",=- -n-=.--·----·---------·------·-----------\ --v-_-==-_ -0---0 .
r' 'I --.-- --~_
Yo -";';;:-:'-==:'-U .-~;-----_-__ -.--.--------

~-":;::..:; _ . .::.:::-:---- ~
92 c-----.~:!- - • --0-=-------=-0.--------

88 +----------.--'~~:~~~~;::~~::,~~--
84 +----------.----... ----'ll..----.~-..::~,~-------- ::-----___ ;------___ ---[1-:::--:::::----_

i. --_ tl,-- --_. --. --.~.

% 6 ~: +~-.. ~~.~~~-~~-~~-.------_ -_ -_ -_ -_ -_ -_ -_-_--_-=-:-_'&w.:::::.~i:-:~~~

72 +----.-------.-----.--------

68 1-------------------.---------.-.----

64 1--.---.----.---------------.----------

60+------r-----1.------+------r-----1---~

LLOAD t-LLOAD
S'ISTEt-l LOAD

H.iOAD

-.- BJi.iAX

-0-- mJi..1AX

-. B.J'1..1AX

'0- FB.J1..1AX

-A- B..1..1AX

-A- fB..1..1AX

FIGURE 721 Comparison offB and B when MD=36 and Topology=fC

SYSTEt-j LOAD

+- ttJLLAX

-0- fB_HiAX

.- tLtLLAX

-0- FBJ-l.iAX

-A- B.i.iAX

-l!.- HLL.iAX

fIGURE 7,22 Comparison of fB and B when MD=36 and Topology=S

82

83

VIII. CONCLUSION

In a hard real-time processing or control environment, each task must be completed

within a specified amount of time after being requested, If any task-rails to complete in

time, the entire system fails, Hence, one of the most important steps in designing a.

real-time computer system is to supply it with an efficient task scheduler. In a real

time context, efficiency is essential both for achieving the best use of the computer

and for adhering with severe timing constraints relating to task executions,

Considerable research effort has been contributed to the subject of scheduling

alg~rithms for hard real-time systems for decades, However, for most applications, the

problem is often ha.rd, For most cases, the problem of determining a static optimal

schedl,lle fora multiprocessor system is known to be NP-Complete, The problem is

further complkated when dynamic distributed systems are dealt with, in which tasks

can arrive dynamically at any nodes and the communication delay among the nodes is

inherent and non-negligible ...

. In this thesis .. the problem of dynamic scheduling of ~lard real-time taskS with

resource reqljirements in distributed compute·r systems is considered, A heljristic

scheduling approach for solving the problem is studied, Needless ·to mention, since

heuristics are built into the algorithm} it is not optimal, Heuristics are necessary. given

the computationally' hard nature of the scheduling problem, An (I~timal algorithm, in

the 'Worst case, may make· an exhaustive search which is computationally intractable·,

. In order to make the algorithm computationafly tractable eyen in the worst case, a

heuristic approach has to be taken, That is, on each level of the search, a heuristic

function is applied to each of the tasks that remain to be. scheduled. The task with the

minimum value· of this he·uristic function is selected toexte·nd the current schedule,

Therefore, even in the worst case, the algorithm is not exponential.

The. simulation studies performed on this algo.rithm .. in Part VI, with different

sets of tasks indicate that combination {If simple heuristics with small number of

backtracks performs very dose to the optimal algorithm that uses exhaustive search,

Hence .. this is an attractive approach to oll-line schedulillB in' dynamic real-time

systems.

84

The heuristic function is invoked r. i (i=l..",k, k being the sile of the tusk sot.)

times, resulting in a time complexity of k2, Pseudo backtracks do not increase the

computational complexity, Moreover, the' computation cost increased by real

backtracks cannot effect the total complexity, so long as the upper bound of real

backtracks is pre-set to less than k2, The time complexity k2 of the algorithm is fairly

low compared to thatof.an exhaustive search algorithm which takes time proportional

. to kL The other feat.ures of the algorithm are that it takes both tasks' active a.nd pas:sive

resource requirements into account, is dynamic, and is distributed.

, Of course, t.here is the question of cost. versus performance of the heuristics

proposed in Part VI. The improved performance that. resultS' from the use of complex

mechanisms, such. as backtracking, may be offset by the computational overheads

introduced by such mechanisms. Such overheads may be tolerated if a sepat'ate

specia.lly designed cop,rocessor is used for' scheduling, In case such a processor is not. .

used. one should use the simplest algorithm appropriate for the application under

consideration.

This introduces the issue of selection of heuristics appropriate for a given

situation, For example, as observed in the course (If ,discussions of the simulation

results .. 1n Part VI.. siml1le (single) heuristics may suffice if the deadlines of tasks being

scheduled are 110t very tight.

The cooperation among the nodes, needed when a node is unable to guarantee a

task.. occurs through a combined scheme of bidding and focused addre.ssing as

explained in Part VII. It should be pointed out that bid~1ng and focused addressing

techniques are refined forms of the traditional source-initiated and server-initiated

scheduling techniques, The combined scheme functions satisfactorily in spite of

imprecise. and incomplete global state information of the system,

The results of the simulation studies show that in a wide range of application

e1wiron1l1ents (defined by task characte1'istics, system loads .. communication delays,

system network. topologies, etc,), this scheme is effedive and practical, and has a

performance better than the other three algorithms that it is compared with: bidding

only, random scheduling, and noncooperative scheduling algorithms. It is observed

that the system pe.rfo1'mallce improves when, bidding is used in con.junction with

focused addressing. In fact, focused addressing is an intelligent form of random

scheduling in that it takes into account node's surplus information 1n choosing a node

to send a task, By using a scheme that incoq.lorates focused addressing and bidding, the

benefits (If both schemes are reaped,

85

APPENDIX A. LOCAL TASK GENERATOR

pr'ogr'aJIl task-genet"'Ot i on;
{This progr-am using the pr-eset gerler-ating par'ameter's, gener-ates a number- of
task sets so that ear-..h of them has at least one full . feasible scMdul.e .

. Those sc:hedulable task sets will be used as input data by the Local
Scheduler Program which checks the performance of various heuristics.}

const
nuw,ber-af_task-sets = 200;
number-Df_ta5ks • 6;

Unm.ber of task sets to be generated}
{number of' tasks in one tasl-.. set}

mu..compt = 200;
slg-COmpt = 100;.
mY_lax; ty - 400;

{mean and standard da<J i oti on of tasks' ~ompu tat i on time}

sig..laxl ty = 200; {mean arid standard deviation of tasks' laxi ty distribution}
r' = 5; {number of r'esources on a' node}
rr = 7;

type
·taskset = ar~ay{1 .. number-af_tasks, 1 .. rr] of ip.teger;

var'
Tset : taskset;
count : intQgQr;
schedulable : boolean;
tasksfile: text;

{contains specifications of tasks in a task set}

procedure genera te_task-set< var- T:taskset);
{erea te a task set, b'J generat i ng task spec i f i cat ions for each task in it}
var-

counter, i,j : integer;
n: real;

begin
for- i:=1 to number-af_tasks do

forj :-1 to r+2 do nl,j J:=O;
counter: = 1;

rapeat
,,:=0;
for i:=l to 12 do n:=n+P~tiOOM;
n:=sig-eompt*(n-6)+mu-eompt;
If trunc(n)'O

{ini tial ize task set}
{gener-ate computation times for each task}

then begin
T(c~JnterJr+11:·trunc(n);
counter-:=counter+l

arid
un! j I counter-number--af _tasks+1;
counter:=1; {generate lax! ties and calculate deadl ines using them}
r'epeat

n:=O;
for i:= 1 to 12 do n:=n+RANDOM;
n: =5 i 9_1 ax i b:J*(n-6)+mu_1 ax i itJ;
if kunc(n »0

then beQin
T(counter,r+21:=trunc(n)+Tlcounter,r+11;
counter':=courlter+1

GrId
urlt I I counter-=number -Df _tasks+ 1;

86

for i :=1 to number-Df_tasks do {generate resource requirements}
repeat

for- j :=1 to r do
If RANDOM<=0,5

then Tti,j1:-r
else Ttl,j]:=0

urltll «Tfl) 11<>0) or (T(I,21<>0»
end; {generate_task-Set}

procedure exhaust i ve...search<T ; taskset; var sc:hedu I ab Ie: boo I eon) ;
{perform an exhaustive search which checks all the possible permutations
of the task $et, one by one; unti I a full feasible schedule js four.d, If there
is r~t any ful I feasible schedule, the task set is nonschedulabie,}
label stop;
type

eat-array .. array [" ,rl of Integer;
var

ii, I ,j ,k, I,m,n : ir,f.egar';
EAT,EATI,EATj,EATk,EATI,EATm : eat-array;
passdeadline : boolean;

proc:edur'e In it;
var

z : 1. ,r;
begin

for z:=1 to r' do
begin

EAT I Iz] :=0;
EAT] [z1 :-0;
EATktzl ;=0;
EATI fzl ;=0;
EATm[zl:-0

end
~md; {ini t}

pr'ocedure schedu I e(T : ta$kset; t t: integer; var EAT: eat-array; var pass: boo lean);
var
"~/min/zJstart~t ; Integer;
tieIJJ..£AT ; eat...arrOlJ;

beglr,
max: =0;
pa •• :=fal"i
for z:=l to r do Mew..£AT[zJ:=O;
for z:=1 to r do

if HH,z]<>O
then if EAT[zl>=max

then max: =EAT[z] ;
start_t : ""max;
min:=9999;
for z:=1 to r do

begin
if TtU,zJ<>O

then begin
New-EAT Iz) :=star'Lt+T[tt,r-+11;
if Hew-EAT[z]>T(tt,r+21 then pass:=true

end
else NeIJJ...EATf z 1 : =EAH z 1 ;

if «z=1) or (z=2»

Grid'

then if New-EATtzl<=min
then min:=New-EATlzl

" .
if not pass

.then begin
for z:=l to I" do

If New-EATlzl<mln
then EAT[zl:=min
else EAT[zl:-New-EATtzl;

end
end; {schedule}

begin {exhaustive-sem'ch}
in it;
for i :=1 to number..DLtasks do
begin
for II:z1 to I" do EATliIJ:=O;
scnedule(T/i/EAT/passdeadline);
i f not passdQad 1 1 nti than
begin
for 11:=1 to r do EATI[jil:=EATliil;
for j :=1 to number-OLtai:ks do
If 10j then
begin
for il:-1 to I" do EATtiil:-EATi(iil;
schedule(T/j/EATJPassdeadline);
i f not passdead I i Me then
begin
for 11:-1 to r do EATJtlll:=EATtiil;
for k:=1 to ~Jmber-Of_tasks do
if (k<>i) and (k<>j) then
begin

for 11:-1 to I" do EAT[iil:-EATj[iiJ;
schedule(T}k/EAT}passdeadline);
if not passdeadline then
begin
for II :=1 to r do EATkCl i 1 :=EATU i 1;
for 1:-1 to number..f.)f_tasks do
If (I<>i) and (/<>j) and (/<>k) then
begin

for 11:=1 to I" do EAT[lil:=EATk[ij1;
schedule(TJ'/EATJpassdead/ine);
I f not passdeadl ine then
bP-9 in
for 11:=1 to r do EATI[ijl:=EAT£jjJ;
for m:=1 to numbQr-Of_tasks do

If (m<>i) and (m<>j) and (m<>k) and (m<>I) then
beQin
for 11:-1 to I" do EAT[iil:-EATlllil;
sc~dul.(TJmJEATJpassdeadline);
if not paudaad Ii,.,. then
begirl

for 11:=1 to r do EATm[II1:=EAT[ji 1;
for n:-1 to ~Jmber-..f.)f_tasks do
If (n<>I) and (n<>j) and (n<>k)

and (n<>I) and (n<>m) then
b09 1n

for- I I:M1 to r- do EAT!1 j1:aEATm[j 11;
schadula(T/n,EAT,pa •• daadl ina);
If not passdeadl ine then
begin

87

schedulable:=true;
goto stop

end
Qnd

end
end

end
. end

lind
end

end
end

end
end;

stop ; end; {e-xr.OIJstive..sel7'ch}

procedure wriie_iask-set(T:taskset);
{write task specifications of the schedulable task set int.o a fi!e}
var

c 1, c2 : I n teget"' j
begin

for c:1 :=1 to number....oLtasks do
begin

for c2:=1 to r-+2 do
wri te(tasksfi Ie, Tset [c1,c21 :5);

writeln(tasksfile)
end

end; {write_task-set}

be~in {main}
r-arldom i ze;
assign(tasksfile, 'tasks_dat~);
rewrite(tasksfile);
count::O;
repeat

88

generate_task-set(Tset); {generate a task set}
schedulable:-false;
exhaust i ve-search(Tset, schedu I able);
~form .xhaustiv. Harch to ch.ck j f this generated ta»k set has at I.ast.
one full feasible sche~Jle or r~t}

if sc:hedulable
·then begin

wrl te_task..seHTset);
count: =t'..ount.+ 1;
wy-iteln('cour,t = ',count:2)

end
until count=numb.r....of_task~tsi
c:lose(tasksfile)

end. {main}

89

APPENDIX B. LOCAL SCHEDULING PROGRAM

progt"'QlJ) I oca I ~c:hedu I i rig;
{ThIs program I given a number of schedulable task sets7 deter~jnes the
performanr-..e of the loca I sc:fl,:>..du I j ng a I gor j t.hm. For each of the simp I e and
integrated heuristic functions HI the number' of task sets sc.-heduled by the
algorithm is calculated.}

const
Me = 3;
r - 5;

{max counter used in real backtracking}
{number of resources on each node}

r-r' = 7;
number-af_t~-sets = 200;
number-af_tasks • 6;
number-Df-slm_types = 6;

{number of task sets to be processed}
{number of tasks in one task set}

{~Jmber of different heuristic functions}

type
resource-ar = array ft .. r] of integer;
reaf..or ::: array L 1..rl of real j
boo l..or ::: packed array '1 .. r J 0 f boo I ear,;
Old-EATptrtype = ~Old-EATtype;
Old-EATtype = record

Old-EAT : resoUt'Ce-ar;
link ~ Old-EATptrtype

ertd;
rlOdeptr ::: ~nodetype;
~ecmlnptr • "~ecminptrtype;
seem i nptrtype = recor-d

seem i nnode nodeptr;
nextsecmin sec1l'linptr

'end' I

rJOdetype ::: record
ld '; str'/ng[21;
arr·_t/deadljnelstart_t/co"~_t Integer;
res...need :' boo l....at";
Sec.lI'f j n : secm I np.ir' ;
prQV I naxt ~ nodQptr;
New"£AT : resourc:e-ar;
Old-EATptr : Old-EATptrtype

end; , ,
st_type =1 .. number-Df-sim-types;
task-sets-range = O .. number-Df_task-sets;

VQf'
tt--y : O .. 5; , '
guaranteed_task-setsJpr.vi~Js-walue t~sk-s.ts-rangei
active : bool-ar;
no i nct'sOH ~ boo I ~arf j
zim_type : st_vJPe;
W : real;

pr'ocedur'e in it;

90

begin {indicate active and passive resources}
activet11:=true;activet21:=true;
acti~1e[3]:=false;active[4]:=false;active[5]:=false;

Qt'ld; {ini t}

procedure get_t~sks(var infiJe:text;var first_task-ptr:nodeptr);
{r-ead task-se t . s spec i fica t ions from the i rlput f i I e ~ and crea te a task qt..leue}
var

ii, i : integer;
p,q : nodeptr;
rn : array Il __ rrl of integer;

bllgln '
new<q) ;
qb.prev:=niJ;q~.secmin;=niJ;
q'- .OId-EATptr:'=ni I; firsLtask-ptr:=q;
for il:=1 to number-Of_tasks do

beoin
new(p);
with ph do

begin
str<il:2/Id)istart~t:·O;
next:=nil;prev:=q;secmin:=niJ;
Old..EATptr:=nil;
for I :=1 to rr do r-ead(infl le,rnfi D;
readln(ir,fi Ie);
deadline:=rn[r+21;
comp_t: =rrl Ir-f 1];
for i :=1 to r do

i f rn [i 1 -(} 0 ,then res.JJeed [i] : = true
else res.JJ~ed(il:=false;

for- 1:=1 to r do New~ATtil:=O
end;

q".next:=p;q:=p
end .

end; {get_tasks}

procedure delete~ueue<var fn:nodeptr);
var

n ~ pr, : rlOdep tr ;
begin

pn:=fn;n:=pnh.next;
repeat

dlspose(pn); .
pn:=n;
if nOrli I ther, n:=nh .. ne-.d

ur,ti I pn=ni I
erld; {delata....qJJQUQ}

pr'ocedure schedu I er<s i lfI_type: st_ type; var guaran teed: boo lean; W: r'ea I .;
var flr5t_task-ptr:rJOdeptr; EAi:r~ourc:e...ar);

vat'
empty, plN»dead I j rna : boo I eon j
schedule~sJf/ptrJss : nodeptrj
tempptr : secminptr;
OADR : real.....Cll";
counter : integer;

procedure ca I cu I ate...sT;
{calculate the start time of the task if it is scheduled next}
var

lfIa;< J i : i r, teger· ;
p : nodeptr;

begin
p:=first_tasK-ptrh ,next;
whi Ie poni I do
begin

mcr~:=O;
fori:=1tordo

j f p" .r·es....YIeedli 1 t.her. if EAT[i l>=max t.hen max:=EAT[i 1;
p",start_t:=max; .
p: =p" . next

end
end; {calculate~}

procedure calculate-DROR(var DROR:real-ar);

91

{calculate Dynamic Resource Demand Ratio, which indicates the degree to which
tasks t.hat remain t.o be scheduled wi II demand resources}
var

fraction~tot-eOff.p_t~mcrx,1 : Integer;
p : nodeptr;

begin
for i :=1 to r do
begin

toLcomp_t:=O;
mcrx:=O;
p:=1Irst_task-ptr".next;
'JJhl Ie pOn! I do
begin

if p".res....need[i]
t.hen begin

tot-eOffIP_t.: =t.ot-eoll'lp_t+p" . comp_t;
If p".deadllne>=max then max:=p".deadline

end;
p:=ph ,next

end;
fract.ion:-max-EATlil;
if fract I 00=0 t.hen OROR £11 : =0

else if max=O then DRDR£i]:=O
el~e DADA[il:-tot-comp_t/fraction

end
end; {cal cu I ate-DROR}

fund i on ztrong I y_feas i b I e(OROR: rEta L..ar): boo lean;
\-'at'

i ~ integer;
begit"l

'strongly_feasible:=true;
for- i :=1 to r do if. DRDR[i]>=1 then strongly_feasible:=false;
if pc~dQQdlinQ th~) ~trongly_fQQ~iblQ:=fQl~Q

. ,end; {stronQly_feasible}

pt'oc:edure ~a I C:lt I ateJiew-ERT J
{CQI~~late the EAT values of the task if it is scheduled next}
var .

min,l : integer;
p : nocleph';

begin ,
p:=flt"st_task-ptr'" .next;'
passdeadl ine:=false.;
whl hi (p~nnll) Qtid (not PQ:iSd~adllt'\~J do
begin

11\ in: =l1\ax 1t"lt;
fot" i :'= 1 to t' do
begin,

if p~.res:....need(i] then beQin
p"' . New..EATl i 1 :=p"' .stat'Lt+p"' .comp_t;
if p"'.New..EATtil>p"'.deodline

than p~sdaadlinQ:=truQ
end

else p"'.NewJEATril:=EATtil;
if octivetil then if p"'.Hew-EATtil<=min

then min:=p"'.New-EATtil
end.:
for i:=1 to r do

If p~.New..EATII}<mln then p~.New..EATII]:=mln;
p:=p".next

end .
etrd; {colculoteJNew-EAT}

procedure calculate-mln-H(var ptr:nodeptr;slm_type:st_type;W:real);

92

{detect which tasks, 'amor,Q ·the tasks that remain to be scheduled, have minimum
and second minimum values of the function H} .
var'

temp} I : Integer;
secondmih}min}H : real;
secpolnter}q : nodeptr;
DC : Hcmlnptr;
P,W : Old...fATptrtype;

begin .
m j n: -max I nt; 5e'condm in: -max I nt;
ptr:=nll; q:=flrst_task-ptrA,next;
IJJhlle q<>t)i I do

begin
case slm_tuPe of

1 H:=qk,deadline;
2 H:=qk,start_t;
3 H:=qh,comp_t;
4 H:-qk,deadline-(qh,5tart_t+qh,comp_t);
5 H:=qh,deadfine+W*qh,cOK~_t;
6 H:=qk,deadline+W*qh,start_t

end;
if H<=mln then begin

secondlfti n: =m in;
lftin:=H;
secpointer:=ptr;
ptr:=q

end
else if H<=secondmin then begin

q:=q"' ,tiext
end,;

i f ~oh'lter 0 ni I
then begin

secorJdi, in: =H;
secpo i ntar: =q

GrId;

f\Qw(sac) ;
sec"'.secminnode:=secpointer;
sec"'.t1extsecmin:=ptr"'.secmin;
ptr".secmin:=sec;
new(p);
for 1:=1 to r do ph,Old-EAT[ll:=secpointerh,New-EAT[il;
pp:=secpointerh,Old-EATptr;
p" , I ink:=pp;
secpotnter".Old-EATptr:=p

end
et)d; {calculate-min-H}

~t"'oc:edure update...EAT<po inter: nodep tr);
{t'eplace EAT values: by Ne,u....EAT values of the task Just scheduled}

i : integer;
beQin

for 1:=1 to r do EAT(i]:=pointQrh,Hew-EATli];
end; {update..EAT}

procedure delete_from_task-set(point.r:nodeptr);
{remove the task to be scheduled from tt~ task queue}
begin

pointerh,prevh,next:·pointer",next;
if polnter",next{)nil then begin

polnter",r~th,pr~J:=pointerh,prev;
pointer",next:=nil

end.:
pointer~.prev:=nil

end; {de I ete_from_task-set}

93

prOQedt~ add_to-sch~tle(var $:nodeptr;pointer:nodeptr>;
begin

pointer" ,prev:=s; {add the task to be scheduled to the schedule queue}
s"", next: =po Inter;
s:=pointer

"end; {add_to-schedule}

pro~Jre delete_from-schedul~(var s,pointer:nodeptr);
begin "

pointer:=s; {remove the last task scheduled from the schedule queue}
s:=pointer" .prev;
pojnt~r",prev;=njl;
s" .r,ext:=ni I "

end; {delete_frOlli~chedule}

pro~e put-back_to_task-set(pofntlr:nodeptr);
{add the task, removed from "schedule queue} to task queue}
vat""

p : nodeptr;
begin

p:=first_task-ptrn.next;
ph,prev:=pointer; pointerh,n~At:=p;
(irlJt_task-ptr~ ,next:=pointer;
pointer" ,prev;=firsi_task-ptr

end; {put...back_to_task..set}

procedure get-Dld-EAT(pointer:nodeptr)j
{since there is a backtrack attempting to schedule the task which has second
minimum value of the fUnction H, EAT values should be replaced by New-EAT of
th i 1S tQ1Sk wh i ch IJJQ1S recorded Q1S 0 I d-EAT}
var

i : integer;
p : Old-EATptrtype;

begin
p:=pointer".Old-EATpir;
for I :=1 to r' do EAHi l:=p" .Old-EATli 1;
pointerh.Old-EATptr:=p". link;
dizpose(p); p:=nil;

end; {get-Dld-EAT}

pr'ocedure schedule-s:econd-mlnimum; "
{schedule the task which has second minimum value of functior. H}

begin
tempptr:=ptr~.secmin;
ptr~.secmin:=tempptr~.tlextsecmin;
ptr:=tQmpptr~.»Qcmiru,odQ;

dispose(tempptr); tempptr:=nil;
de I ete_fr·om_task..set (ptt,);
add~to..schedule<s,ptr);
get-Old-EAT(ptr);
ca I c:u I ate-ST.:
calc:ulate-NeW-EAT;
co I cu I ate...DROR(DROR)

end; {sc:hedu I e..set::ot,d..m it' i mum}'

pt'ocedure I Imi ted-hacktt'OCker(var gUOt'anteed:boolean);
begin

if schedule~.next=nil
then o;Juaranteed:=false

94

else begin {perform Pseudo Backtrack}
delete_from-schedule(s/ptr);
put-b~Jk_t~_task-set(ptr);
3chedule-second-minimum;
if not strongly-feasible(OAOR)

end

then beglrl {perform Real Backtrack}
guaranteed;=false;
5mpty:-false;
whi Ie (not. empty) and (countl!Y'<t1C)

and (not guar'arlteed) do
begin

r'epeat
delete_from-schedule(s,ptr);
put-back_to_task-Set(ptr)

until (ptr~.secmin<>nil) or (s=schedule);
if ptr"'.secmin<>nil

then begin
schedule..second-R,inimum;
. if strong I y_f eas i b I eWROR)

then guaranteed:~t~;
end

elsa ampty:=true;
counter:=counter+1

end {wh; Ie}
end

end; {Iimited-backtrac~~}

begin {scheduler} .
MI»(S); s'" .Mxt:=ni I; s" .prav:=ni I;
s"'.secmin:=nil; sdhedule:=s; counter:=O; gJaranteed:=true;
e"~ty:=false; f:=first_task-ptr;
wf-,; Ie U" ,next':)ni I> ar,d glJClranteed do
begin

C:Q I c:u I ate...sT i
calculate-Hel»-EAT;
calculateJDROR(OROR);
if not strongly-feasible(OROR)
then limited-backtracker(guaranteed)
else beain

calculate-min-H(ptrlsim_type/W);
update-EAT(ptr);
del.t._from_task-s.~(ptr)j
add_to-sc+~dule(s/ptr)

eM

end; h\lh i Ie}
de I e t.e...queue(schedt.~ Ie)

end; {scheduler}

procedure check_task-sets(var guaranteed_task-Sets:task-sets-range);
var

j : integer-;
IMlle : text;
EAT : resource...ar;
9IJ(U"anteed : boo lean;
ffrst_task-ptr : nodeptr;
count_task-sets : task-seis-range;

begin
assiqn(infi/e, 'tasks_dat'); reset(;nfi'e);
guararlteed_task-Se!s: =0; c:ount_task-Seb: =0;
repeat

for 1:=1 to r do ERTCil:=O;
get_tasks(infi/eJfirst_task-Ptr);
schedu/er(sim_typeJguaranteedJU,flrst_task-ptr,EAT);
i f guaranteed

then guaranteed_task-3ets:-guaranteed_ta~k-3et~+1
else delete~ueue(first~task-ptr);

count_task-Sets:=count_task-sets+1
until count_task-sets=number-af_task-sets;
c:loHOnfi Ie)

. end; {~..ck_t~...sets}·

begin {main}
U:=O; jn; t;
for sim_tupe:=1 to number-af-sim_types do
if sim_type<5
ther, begin

chec:k_task-sets(guaranteed_task-sets);
wri teln;
write/n('ST = . Jsim_type:1, • t~ER OF GUARANTEED TASK SETS = .

guarantp~-d~task-sets:3)
end

elH begin
tr1J:=l; U:=O.5;·
previous~alue:=O;
noincrease:=false;
repeat
c:hec:k_task-Sets(guaranteed_task-sets);
IJJri Urln;·
write/nCST = · Islm_type: 11' U = · 1£4:3: 1,

I HUMBER OF GUARAHTEED TASK· SETS = I, guaranteed,..task..sets: 3);
if (guarantGGd_tcUoK.JPetFnumbQr...of_task-SGts)

or (guaranteed_task-sets<previous~Jalue)
then noinerease:=true
el~e begin

U:=U+O.5; .
if guaranteed_task-sets=previous_value

then try:=try+1
else try:=l;

If try>4 then noinc:rease:=true;
previous_value:=guaranteed_task-sets

end
until noincrease

end
end. {main}

95

96

APPENDIX C. GLOBAL TASK GENERATOR

pro~'am gen_tQSk~eues;
{This program, given the preset gener-ating par-ameters, generates tasks that
arrive locall'::J to each node of the system model J and creates t.ask queues which
wi II be used as input data by the simulation pr-ogr-all'ls which study the
performance of various distributed scheduling algorit.hms_}

type
strin9-type = striogCS];

var-
tasks:f i f e : text;

pr-o~Jre gen_tasks(ch:charjs/g-eomptJmu-r-amptJsig_'axitYJ

const
"~_laxity:lntQgQrilambda-arrt:rQaJ?;

r = 5;
rr • 8;
SIM_TlME = ~O;

type
task type = array 11 .. rr 1 of j nteger·;

var-
T : t.a»k typ& ;
coun ter Ii, orr..:. t : integer;
n : real;
~top : boolean;

begin
for i:-1 to rr do T(i1:=O;
counter: = 1 ;
ar-y·_t:-D;
stop:=false;
repeat

T Cr+3 J : =at"r _t;
repeat

r.:=o;
for- 1:=1 to 12 do n:=n+RANOOM;
n:=sig-eompt*(n-6)+mu-compt

until trunc(n»O;
T(r+l1:=trunc(n);
repeat

n:=O;
for. i:=l to 12 do n:=n+RANDOM;
n:=s:ig_'axity*(n-6)+mu_'axity;

untl I tr-unc(n»O;
Tlr+21:=TCr+31+T[r+l1+trunc(n);
repeat.

for- I :=1 to r do
if RAMOOM<=0.5 then Tlil:=1

eh;e TO] :=0
urlt i I «T[1100) or (7[2 J (0»;

{generate computat i on ti me}

{generate deadlir~}

{gEmer·ate resources r·equ; r-ements}

if TIr+2J > SIM_TltlE
thet'\ stop:=true
else.begin .

for i :=1 to r+3 do wri f.a<toiikdi lEi, n j 1 :5);
writeln<tasksfile,' ',ch: 1,counter);
count~r:=countEr+1;

97

arr _t : = trlJnc (arr _t-I n(RANOOt1) /1 ambda-.arrt) {genera te arr j va I time}
end

unti I stop
end; {gen_tasks}

procedure create..data_fi le(fl :strin9_t'Jpe;ch:char;
si9-C,IIIU-c,si9_1,1IIU_I:integer;
lambda..arrt:reol);

begin
asslgn(tasksflle,fl);
remriie(tasksflle';
~_tasks(ch,s i 9-C,1fIU-C, s j 9-1 ,lJIU_1 , lambda..arrt) j
close(tasksfile)

end; {craata-data_file}

bP.-gir. {main}
random l:ze;
{generate task ql~JeS for the nodes A through E}
cr·eate-data_file('R.dat', 'R', 100,200, 150/300,1/100);
create..dato_fiie('B.dat·,'B' ,100,200,150,300,1/100);
create-data_file('C.dat', 'C', 100,200, 150,300/ 1/300);
creat.e...t.fat.a_fi leCO .dot' , '0' 1 100,200 .. 150/300,1/600);
c~eate..data_file('E.dat','E·, 100,200, f50,300, 1/600) -

end. {main}

98

APPENDIX D. SCHEDULING PROGRAM USING BIDDING AND FOCUSED

ADDRESSING

This part contains the listing of the distributed scheduling program which uses a

technique which combines bidding and focused addressing schemes. First, the listings

of the ip.clude files are given, the listing of the main program then follows.

Listing of Include file SeH.PAS :

pr'ocedure geLnode(vat' po'inter' :nodeptr);
vor

I : I nte~et";
begin

ne.w(po i ntel"');
with poirltel"''' do

bGgin
ne-.d:=ni I;
pt"flv:=nl t;
s~in:·nj I;
Old-EATptl"';=nll;
aff_t:=O;
deadllne:=O;
stat"t_t.: =0;
comp_t:-O;
fOt" i ;=1 to r' do

end

begin
re£-needlil:=fqlse;
Mew...EAT r i J : =0

end

end; {get..rlode}

procedure copy-jnfo(newr~deJoldnode:nodeptr);
begin

newnodeh,id:-oldnodeh,id;
ne~~de~,arr_t:=oldnode~,arr_t;
~wrlC/dQh ,comp_t: =0 I dnrAe" ,comp_t;
nel.llnode" ,dead I ine:=oldnode",deadl jne;
newnode",resJleed:=oldnodeh,t"es-need;
newoode",New-EAT:=o/dnode",tiew-EAT

end; {copy_info}

pr·oc:edUr·e geLtasks(var' f I r's Ltask: nadeptr') ;
val'"

p,q : nodeptr;
rn ; arr-a~ [1"r-r-l of int.g.r;
ch ; char-;

{initialize a task node}

99

i : integer;
begin

getJ/Ode(q) ;
firsLian:=qj

{create a task queue}

U/hi Ie not eof(inii Ie) do
begin

r~lY(p);
with p,. do

begin
starLt.:=O;
next: =n iI ;
prev:=q;
secmin:=ni I;
Old..EATptr:=ni /;
for i:=1 to rr do read(jnfile,rnIi]);
read(infile}ch}id);
readln(inti 'e';
arr _t :.srn (r+31 j
dead line: =rrllr-+21 ;
comp_t:=rnrr+l1;
for j:-1 to r do

if rn£iJ<) 0 tr~ resJ~ed(jJ:=true
else res-need£il:=false;

for 1:=1 to r do Hew-EATlll:=O
erld;

q" ,next:-p;
q:=p

end
end; {geLtcr~s}

procedure schedular(q,DQ;nodeptr;EAT:re~Jrce-Orj var guaranteed:boolean;
val" first_task-ptr,schedule:nodeptr;quantity:integer);

{check whether a newly arrived task can be guaranteed or not}
val"

passdeadllne,empty ; boolean;
s,f,p,pp,ptr}$$: nodeptr;
tempptr : ~ecmjnptr;
DADA : real...arj
counter,l : integer;

procedure ca I cu I ate...51 ;
var

max, i : i nteger-.;
p : nodeptr;

begin
p:=first_task-ptrk.next;
whi I., poni I do

begin
lTIax:=p'" .arr ... t;
for i:"'1 to I" do

if p"'.res-needlll
than if EATli])=max

then·max:=E~T[jl;
p start_t:=lTIax;
p;i!lP" ,MXt

end
end; {calculate-ST}

{calculate start t.ime}

proeedur'e co I cu I ate..DAOR(var DRDR: rea Lor-); .
{co I cu I aa the dagree to wh I eh truoks to be sehsdu 1 Gld wi 1 I· demand resources}
var

fraction, tot-eOlTlp_t,max} i. : integer;

p : nodeptl".:
begin

for i: = 1 to l" do
ilQgin

tot-eomp_t:-O;
It\Qx:=O;
p:=fil"st_tQsk-ptl"~.next;
\\!hI Ie p0til I do

begin
If p'" .t"u.J"teedt 11

then begin
to Lcomp_t : =tot...comp_t+p" ,comp_t i
j f p", dead I i ne"-max

then max:=p" ,dead I ioe
erld;

p:=p"',next
end;

f ract ion: "'IrlOx-EATl j 1;
i f fract i orFO

then ORDR (j 1 : =0
else If max-O then ORDR[ll:-O

else DADR (U : =tot..comp_t/fract ion
end

end; {calculate-DRDR}

function strongly_feasible(DRDR:real-Or):boolean;
var

i : int.eger;
begirt

stronglu_feasible:=true;
for ;:=1 to r do

if OROR(11)=1 then strongly_feasible:=false;
if passdeadline then strong'y-feasibfe:=fa/se

end; {strongly_feasible}

proe&dur. eafeulat.Jiew~j
tea I au f ate EAT va f W!s of the task If it Is schedu I ed next)

VOl"
minJi : int~g~r;
p : nodeptr;

begin
p:·first_~.-ptr",~xt;
passdeadl ine:=false;
IJJhi Ie (ponll) and (not. passdeadl'ne) do

be9ln
. min:=maxlnt;

for i:=1 to I" do
begirt

if p",res-needlij
t~..n begin

p"',Hew-EAT(I}:=p"',start_t+p"',comp_t;
if p" .tiew...EATCi l>p" . dead I ioe

then passdeadline:=true
end

else p"',New-EAT[il:=EATCIJ;
if active[j]

end;

then if p Hew-EATCil<=min
then min:=p".New-EAT[ll

for i :=1 to I" do
If p" . Hew-EAT[i 1 <lTJin

then ph . tiew-EATC j 1: =m i nj

100

p:=p" .next
. end
end; {calculateJietiAT}

procedure calculate...minJf(var ptr:nodeptr);
{detect the tasks having minimum and second minimum values of H}
const

1" = 0.:5;
var

temp~ i : int.eget';
seCOtldmln,min,H : real;
secpointer1q : nodeptr;
sec : secminptr; .
P.PP : OldJEATpt.rtype;

begin
min:=II\\.1Xint;
secondmin:=maxint.;
ptr~=ni I;
q:=first_task-pt.r~.next;
!»hi fa qoni I do

begin
H:=qh.deadline + W * qh.start_t;
If H{=min

then begIn
secondmin:=mln;
min:=H;
secpo Inter: =ptr';
pt.r:=q

end
~Ise If H<=secondmin

then ~-9in
secondmin:=H;
secpointer:=q

end;
q:=q'" .ne-xt

end;
jf 5ecpointer (> nil

then begin
YI8lJJ(sec) ;
$ec"'.$ecminr~e:=secpojnter;
secb.nextsecmin:=ptr"'.secmin;
ptr"'.secmin;=sec;
new(P1;
for i;=l tordo

ph.Old-ERTCll:=secpointerA.New-EATII];
pp;=secpointer"'.OldJEATptr;
p".1 ink:=pp;
secpolnter"'.OldJEATptr:=p

end
end;. {calculateJdn.J-I}

procedure updaLaJEAT(po Inter: nodeptr';
. ·var

I : I n tag.,.. ;
begin .

for 1:=1 to r do EAT£ll:=pointer"'.NewJEATtfl;
end.;, {updateJERT}

pr~dur~ d.l.tc_froul_iask-Sti(poinier:nodepir);
bagin ,

pointer· ... prev" .next:=pointerA
• next;

if pointer"'.next<>nil

101

then begin
pojnterA.next~.prev:-pointerA.prev;

pointer~.next:=niJ
and;

pointer".prev:=nil
. end; {delete_from_task..set}

procedure add_to..schedu J e(var s: nodep tr; po Inter: nodep tr') ;
bfl91rl

polntern.pr.v:·~i
sh.next:=polnter;
s:lIIpolnter

end; (add_to-SChedule}

procedure delete_from-SCheduJe(var s,poirlter:nociQptr);
begin

po inter': JlS;
s:-polnter".pr~);
pointer" .prev:=ni I;
s" .ne'-<t:=ni I

er~; {deJete_from-scneduJe}

procedure put-back_to_task..set(pointer:nodeptr);
vat" .

P : nodeptr;
begin

p:=1Ir~t_task-ptr·.next;
pA.prev:=polntp-r;
poinlerh.rtext:=p;
first_task-ptrA.next:=pointer;
pointerh.pr~J:=first_t.ask-ptr

end; {put-back_to_task..set}

procedure get....o I d..EAT (po j nter : nodeptr) ;
var

p': Old..£ATpt.rtype;
i : integer;

. beg/rl
p:=polntar".Old..EATptr;
for I ;·1 to r do fAll I J:=p" .Old..EAlll J;
po/rlter'" . Old...EATptr-:=p" .1 ink;
dispoft(p);
p:=nll

end; {get....old...EAT}

procedure / nit i a 1..JJa ',Jeg;
bflgln

c:ounter::Q;
etr!pty:=false;
guaranteed:-true;
get..node(s);
:l;chadula:=:;;
get-node(f);
fj~st_task-ptr:=f

er~; {initial_values}

procedure form_tasks-QUeue;
vat"'

i: integer';
begin

102

p: =OQ~ . ne-.d;
whl Ie pOonl I do {copy dispatcher queue (OQ) to tasks queue}

begin
ge t_node(pp) ;
copy-Info(pp~p);
f'" .naxt:=pp,;
pp" .prev:=f;
f:=pp;
p:=p".next

end;

103

for i:=1 to quantity do {add new task (or mv/tip/es of it) to tasks-QYeue}
begin

get..r.ode(pp);
copy_info(pp,q);
f".next:=pp;
pp" .prev:=f;
f:=pp

end;
end; {for'm_tasks-Queue}

procedure calculations;
begir,
calculate~;
calculate-Hew-EAT;
calo~late-DROR(DPDA)

end;

beg I n {schedu I ar}
ird tlaLvalues;
f ot"fl_tasks...qusue;
f:=first_task-ptr;
while (fh.next<>nil) and Quaranteed and (not empty) do
begin .

ca I cu h:lt Ions;
I f not strongly-feasible(DADA)
then if scheduleA.next-nil

then empty: = true
else begin . {Pseudo Backtrack}

del ete_from-schedufe(s, ptr);
put-back_to_task-set(ptr);
te"~ptr:·ptr".secmln;
ptr".secmin:=tempptr".nextsecmin;
ptr:=tempptr".secminnode;
dispose(tempptr); tempptr:=nil;
de I ete_from_task-set(ptr);
add_to-schedule(s,pt.r);
get-Dld-EAT(ptr);
calculations;
if riot .trongly_fea.ible(DRDR)
then begin . {Real Backtrack}

. guararlteed:=false;
emptf:.l:-false;
whi'Je (not ell'lpty) and (counter<T1C) and

(not guaranteed) do
begin
repeat

'delete_from-SChedule(s,ptr);
put-back_to_ta.k t(ptr)

'unt; I (ptr" .seclJ.ir.oni I) or (s=schedule);
If ptr'" ,seemlnonll

then begin
t.mpptr:=ptr ... ~ecmin;
ptrb.secmin:=tempptrb . nextsecm in;
pt.r:=tempptr".secminnode;

dispose(tempptr);
t.empp t.r : -n i I ;
delete~from_t.ask-set(ptr);
add_to-schedule(»,ptr);
get_OldJEAT(ptr);
calculat.ions;
if strongly_feasible(DROR)

then guaranteed:=true;
end

end

else empty:=true;
counter:=~#)tet'+l

and {wh i Ie}
end

else begin
calculate-minJH(ptr);
updata-EAT(ptr);

end;

de I ete_from_t.ask-set.<pt.r);
add-to-schedule(s,ptr)

end

if empty then guaranteed:=false
end; {schedu, I ar}

listing of Include File BID.PAS ;

procedure indicate_ljne(nodeid/dest:c~ar;var bi d-arrJ no: integer);
bagin

detect_lndex<nodeldJdestJno>;
case no of '

1: bid-arr:=1 ine4;
2: bid-arr:=line3;
3: bid~:=1 ine2;
4: bid-Orr:=line1

end
endj' {indicate_ljne}

procedure calculqte-HAXBIO;
a,.tar

i J m I n_task..send I ng...de I ay J max Jest IlTlOted..starLt : j nteger ;
begin .'

iii I rt-t~,...:!Jend f rl9...de lay: -b'" ,c:omp_t d l v 10+1Ii~sage...de I OIJ;
{ calculate ear'l iest estimated arrival time}
b" ,art'" _i.: -e f oak+IliHZaga.-de f QfJ+m I n-tazk...sGnd i y,gA lay;
for I :-1 to r do

if reaL_EAT[j l<c:lock
then temp"'£AT Ill:·c lock
else temp-EATLll:=real-EAT£ll;

max:=b" ,arr_t;
for I :-1 to r do

If bR ,res-need£ll
then i f t,Qmp-EATl i] >=max than max: =tamp...EAT [j];

e$tilT~ted-start_t:=max;
t1RXBIQ:=(b",deadline-estimated..start_t) div b",comp_t

end; {calculate~ABfD}

procedure bina~J-$6arC~,_for-BIO;
var

lowJhijmld integer-;
9'.laranteed : boo lean;

104

beQin
BIO:=O;
low~=l;
hi :=MAXBIO;
\\!hi Ie (lo~\I~=hi) do

begin
mid:=< 10\\.I+hi) div 2;
$Chedu I ar'(b I WI temp..EAT I gtlarctt"lteed l TQ21 SQI ml d);
de I etequeue(TQ2);
TQ2" .next:-ni I;
deletequeue(SQ);
SQ" .next:=ni I;
i f guaranteed

then begin
81O:=mld;
10\IJ:=mld+1

end
else hi :=mid-1

et"ld
end; {binary-sem'ch_for-BIO}

,

pt'OcedUf'e b i dd I ng.£;
begin

C(:b-e no of
1: send-bid(bh .ld,IB0-4, 1/BIO,ljr~4';
2: send-bid(bh.id,IBQ-3,2,BIO,I ine3);
3: send-bid(b~.id,IBQ-2,3,BIO,llne2);
4: send-bid(bA .id,IBO-1,4J BIO,line1)

et"ld
end; {b I dd i t19-C}

procedure blddlng-B;
var

bn,pbn,bidLnode : bld~ptri
begin

. get-bid-node(bld-node);
bid-nodeh.t_id:-bh.id;
bid-node".value:=BIO;
caR no of

1: begin
bid-node h .ird:=1;
if nodeido 'A'

end;

therl bid-nogeh.dest:=pred(nodeid)
else bid-nodeA.dest:='E'

2: bP-Qin
b j d-f'lOdil" • irld: =2 j
If (nodeld='A') or' (nodeid='8')

then bid-nodeh.dest:=succ(succ(succ(nodeld»)
,el~ bld-nodeh.dest:-pred(pred(nodeid»

erd;
3: begin

bid-nodeh. ind:=3;
if (nodeid='O') or '(nodeid='E')

end;

then bidJlOdeh.dest:=pred(pred(pred(nodeid»)
else bid-nodeh.dest:=succ(succ(nodeid»

4: begin ,
bld-node h ,ird:=4;
if nodeldo 'E'

then bid.JlOdeh,dest:=succ(nodeid)
else'bid-nodek,dest:='A'

105

end
end;
update_/ine(message-delaY,/ine1);
bid-nodQ~.arr:=linQ1;
insert_into-S-BIDQ(bid-node);

erld; {bldding-S}

Listing of Include File BIDEVALPAS :

procedure sending_task(var b:inC-bids-OOdeptr;
RFBQJtask~eue:nodeptr;cfl:c~;var line:integer);

"lot'
P : nodeptr;
delay : integer;

begin
f Ind_the_tQSk(b~ RFSQI p);
if ponil

then begin
de/ay:=p" .comp_t dlv 10+message-delay;
i f TOPOLOOf/=' S'
t~~j p~.id:=dh+p".ld;

send(p,task.queue,line,delay);
delete_t..ask(p)

end
end; {serld i n9-task}

procedure nonguaranteed(var b:inc-bids-nodeptr;RFBQ:nodeptr);
'Jar

p : nodeptr;
begirt

firld_the_task(bJPFBQJP);
if ponl I
. therl beg i r,

tasks-nonguaranteed:-tasks-nonguaranteed+1;
de I ete_task(p)

end
end; {nonguaranteed}

pror-...,dI.w-", bid...&lvaluatir,g' IBQ: irlC...bidli~tr-;
PFBQ, f1eIJJ_TQ 1 J NeIJJ_TQ2 J NelJJ_TQ3, t1elJJ_TQ4: nodeptr';
ch1,ch2,ch3,ch4:char; .
var I ine1, I ine2 J I lne3, I ine4: integer);

Vt.1I"
okQY : boo I eat);
b : inc:...bicL~J,o(h~ptr;
i~latestjbi~#ma~Jno integer;

pt"oced!Jt"e sender(tw: lnteget">;
begin

·~,.se no of.
0: nongooranteed(bIRFBQ);
1: sQnding_tQsk(b~RFBQ~NQw_TQ1Ich11Iine1);
2: senciin9-task(bIRFBQINem-TQ2lch21Iine2>;
3: set1ding_task(bIRF8QINew_TQ3,ch3,line3);
4: sendin9-task(bIRF8QJNem-TQ4~ch4~line4)

Enid
end; {sender}

106

begin {bicLe,.'aluating}
b:=IBQ" .next; {evaluate bids arrived at the Incoming Bids Queue}

whi Ie bOni I do
with b" do

begin
I f c: I ock= I atlad..b j d-arr
trlfln beg i n

max;=O;
no:=O;
for' i ;=1 to 4 do

Cff:...gfr,
If (arrs[I)<-clock) and (bids[il>max)
then begin '

max:=bids £l 1;
no:-I

end
end;

sender(oo)
end

else begin

end

Okay: =tr-ue;
for- j :=1 to <4 do

if (arrs£iJ-O)or(ar-r-s[iJ>clock) then Ok~J:afalsej
if okay .
than begin

11'10'..<:=0;
00:=0;
for- (:a1 to 4 do

begin
i fbidsl I]>max
then begin

max:=bids[i];
no:=;

end
erld;

sender(no)
end

al •• if (bld.£11>HB) and (arr.l11<=c:lock)
then sender(1)

end

else if (blds£Zl>HB) and (ar-r-sLZ1<=clock)
than· Hnder(Z)
else if (blds(31>HB) and (arrsf31<=clock)

then sender(3)
else If (blds[41>H8) and (at"rs[41<=clock)

then sender (4)
else b:=b",next

Qnd i {b i d-eval uat i ng}

Listing of Include File FROMS.PAS :

pr'Ocedur-e send-RFBMs_froll'l-S;
vat"

ch : ef/ar' ;
.. q : nodeptr;

stop : boo I Qar'j
begin

107

stop:-(alsa; {transfer request for bid messages queued at the central node}
repeat

q:=S_IAFBM~,next;
If (q<>nil) and (q",arr_t=clock)

108

then begin
S_IRFBW .next:-q" . next; {get mes~age from queJ.Ie}
if q"'. nextor, i I

thay, bag I n
q" .next".prev::S_IPEBM;
q'" .next:=ni I

erld;
q" .prev:=ni I;
ch:=q id£ 11;
q id:-copy(q ... idj2 j3)j
case ch of

'A': transfer-node(qjA_IAFBt1jlineSAjmessage-delay);
'B': transfer-node(qjB_IRFBM)lineSB)message-delay);
'C': transfer-node(q,C_'AFBt1,lineSC,message-delay);
'0': transfer-node(q)D_lRFBMJlineSDjmessage-delay);
'E': transfer-node(qjE_'AFBMjlineSEjmessage-delay)

erld
end

else. stop: = true
unti I st.op

end; {end..FIFBt1s_from-S}

pror-Adure send..BIDi:_from-S;
. var

brl .: b i d-nodeptr;
:stop : boo I eon;

begin
stop: =1 a I se; {transf ar bid I n10rmat i ons queued at the cen t.ra I node}
repeat

bn:=S..BIOQ n8xt;
if (bnoni I) and (br(,orr=cloc:k)

then begin
S-BIDO".next:=bn".next; {get bid node from queue}
j 1 00" .ne-)(t<>ni I

then begin
bn".next".prev:=S..BIOQ;
bn" .next:"nll

end;
00" .prev:=ni I j
cas. br,".dest of

'A': send-bid(bn".t_id/A_IBOjbn".irdjbn".vqlue/lir~SA);
'B': send-bid(OO".t_idjB_IBQ,bn".ind,bn".value,lineSB);
'C': send-bid(bn h

• t_idjC_lBQ,bn". indjbn'" .value} I ineSC);
'0' ":send-bid(bn". t_idj 0;..1 BQ,bn" . ind,bn" .valueJ l'ineSO);
'E'; serJd-bid(bn".t_id}E_IBQ}bn". ind,br,".value, I ineSE)

end;
d j $pOse(br,)

end
else stop:=true

. urlt i I :stop
Gnd; {sund..BIDs_from-S}

procedure send_tQ~ks_from.-S;
var

ch : d-tari
q ; nodeptr;
stop : boolean;
delay; Integer;

beglrf
stop:=fahiQj
r·epaat

q:=S_TQ'" ,next;

{transfer t~ks qlJGUed at thli centra I node}

if (q<>nil) and (q~.arr_t=clock)
then begin

109

S_TQA.next:=qA.next; {get task node from task queue}
if q" .next<>ni I

then begin
q".nextk.prev;=S_TQ;
q" .next:=ni I

end; ,
q" .prev:=ni I;
delay:-q" .comp_t div 10+message...delay;
ch:=q" .Id(11;
q". id:=cop1J(q" . id,2,3);
caSe ch of. ,

'A': transfer-node(q,A_tasks-ptr,lineSA,delay);
, B': transfernode(q, B_tasks...ptr, ! i neEt'S I de lay) j
'C': transfer~ode(q,C_tasks...ptr,lineSC/del~J);
'0'; tran.fer-node(q,O_tasks-ptr,IineSO,delay);
'E': transfer-rtode(q,E_!asks...ptr,lineSE,delay) ,

end
end

else stop:-true
until stop

end; !.send_tasks_from....s}

Listing of The Main Program. :

program bidding-and_focused-addressing;
{This program tries to scheaJle real-time tasks in a distribut~d syst~ model.

, ~lhenever a task cannot be guaranteed by the local node at which it arrives, it
is sent to a remote node by means of focused addressing and bidding scheme.}

c:onst
r' = 5;
rr = 8;
t1C = 3;
TO = 46;
SO = 4;
HB = 2;
SIM_TIME = 2500;
TOPOLOGV = I C' ;
mesSQge...delay = 26;
window_lenght - 500;
wiridows :: 5;

type
id_tupe = strlno£41;
strir~_type = stringt5J;

{number of resources on each' node}

{max count used in real backtacklng}
{average transmission delQlJ betJJJeen nodes}
{averge schedu ling de" ay on a bidder node}

{high bid}
~imulatjOrt time}

{'C' for FULLV COHHECTEO,'S' for STAR}
{system's no conflict message delay}

{period for SIArp/U5 exchange}
{number 0 f windows}

resource...ar = arrOlJ· 11 .. r 1 0 f integer;
. , reaLelr = array r 1. .rlof r·eal;

boo l...ar = packed arrOlJ r 1 . . r ~ of boo I ean;
Old..EATptrtype = '·Old...EATtype;
01 d..EAT type = record

Old..EAT : resour~e-Cr';
I irlk : Old..EATpt.rtype

arid; ,
nodeptr = bnodetype; ,
secminptr = "secmirlPtrtype;
secm i np trtype = record

secm I nnode nodeptr;
nextsecmln secmI nptr

end; .
node type = re~'d

id : iiLtype;
arr_t~dQadllnQ~~tart_t~comp_t integer~
res..J"Ieed : boo l...ar;
foc..J"ld : chQr;
secmin : secminptr;
pt'ev,next': nodeptr;
NewJEAT : resource-Or;
OldLEATptr : Old-EATptrtype

end;
bid..J"lodeptr =·~bld..J"lodetype;
b i d..J"lOdetype ... record '

t_id : iiLtupe;
arr,Yalue,lnd: Integer;
dest : chQt';
prev~next : bid..J"lodeptr;

end;
I nc..b i d..'-J"Iodep tr = "I nc.-b i ds..J"Iodetype;
Inc..bids..J"Iodetype = record

t_Id : ItLtype;
IQtest..bid-Ort' : integet';
bids~arrs : array (1 .. 41 of Integer;
pt'E!v. next : I nc..b I ds..J"lOdeph';

end;
i nc....;surp l U$..J"Iodep tr • ", nc....;sl~p I us...nodetype;
I nc..surp I us....J'l\."\CIe type = record

nd-rm)Qe = 'A' .. tEt;

n_id,dest : char;
Qrr : Integer.:
surp : resource...ar;
prev~next : Inc-sl~plus..J"lOdQptr;

end;

110

.'epot'l . ..at't'ay ... art'ay { 1 .. 2, nd...range, 1 .• 31 of Integer;
in fo...arrQY = array t 1. ,\\I i ndO\\lS 1 of resource-Or;
surplYS-Ot'ray = Qrraytnd...l"'ange] of resource.Jlr;

{busy times}
{fraction of free times}

vat"
infi Ie : text;
active : bool-Or;
I \\IrQnge : set of char.:
s..B I DQ : b I d..J"lodep tt"';
A-EAT,BJEAT,C-EAT,OJEAT,E-EAT : resource-Or;
A_IBQ,B_IBQ,C_IBQ,D_IBQ,E_IBQ : IncJbids..J"lodeptr;
A-taskS-ptr.R-Oisp,A-IRFBM. AJRFBQ,B-taskS-ptr,B-di sp, B_1 RFBM, B-AFBQ,
C-tasks..p tr • C-rll sp. C_I RFBM. CJRFBQ. D-tQsks..p tr , D-rll sP. 0_1 RFBM. DJRFBQ.
E_taskS-ptr, E_d i sp ~ E_I RFBM, EJRFBQ, s..TQ, s..,1 RFBM : nodeptr;,
lineAe, llneAC, , ineRD. I ineAE, I ineSA, I ineBC,' ineBD, I ineBE, , ineCA,
I ineCB~ I ineeD, IlneCE, IlneDA, I ineDB, I ineDe, I ineDE, I ineEA.1 ineEB.
lit~C,lineED,clock,tasks-guaranteed.tQSks-dlsp_locally,
taskS-di~W-mide,tQskS..J"longUQrQnteed,lineAS,line8S,llneCS.
!inaOS.linaES~linaSA,linQSB~linQSC~lin~lO.linQSE : intagar;
ALfeport>B...I"'eport>C~port,D-report,E-report : report~arrQy;
A.....surp I US. B-slrp I us. C-Surp I us. O-surp I us. E-sut'p I us : surp I US_Qt't'OY;
A-info~B_info .• c.:..it1fo,D-inf'o .• E_info : info-Ot'ray;
A_I S I Q. B_1 S I Q, C:"'IS IQ, D_I $1 Q, E_I S 1 Q, S_I S 1 Q : I nc-sut'p I uS..J"Iodeptt';

pt'ocedut'e I nit.;
vat"

j : nd.J'Qt"lge;
I" I I ~ Int.eger;

begin

111

activell1:=true; acti~el21:=true; {set initial ~alues}
acti\~l31:=false; Qcti~el41:=fQlse; QCti~et51:=false;
c 10\.."",,:=-1;
I inaAB:=O; I ineAC:=O; I inaAO:=O; I ineAE:=O;
lineBA:=O; lineBC:=O; lineBO:=O; lineBE:=O;
lineCA:=O; IlneCB:=O; lineCO:=O; lineCE:=O;
lir~DA:=O; liOQOB:=O; lir~DC:=O; lineOE:=O;
IlneER;=O; IlneEB;=O; IlneEC:=O; IlneEO;=O;
I ineAS:=O; IlneBS:=O; IlneCS:=O; IlneOS:=O; IlneES:=O;
I i neSA: =0; I ineSB:=O; I ineSC:=O; I ineSO:=O; I ineSE:=O;
tasks-9uaranteed:=O; tasks-dlsp_locolly;=O;
t.asj.:,s-Ci I sp....nIJJ-'JJ I de: =0; t.asks....nongJQrant.eed : =0;
for' i :=1 to r do .

beQin
A...EATt I J ;=0; 8...EAT{I] :=0; C..EATt 11:=0; D...EAT[i] :=O;E...EATt I] :=0

~nd;
for i :-1 to 2do

for J:-'A' to 'E' do
for j j ;=1 to 3 do

begin
A-report[i,J,iil:-O; B-reportll,J,iil:-O;
C-report(I,J,il]:=O; D-report(I,J, 111:=0; E-report[I,J, 111:=0

.nd
end; {Inl t}

{$I sc:h,pag}

proCP~Jt"e Inlt_foc;
var'

J ; char;
I, I I : Integer;

begin
Iwrange;=['o'" 'e'1;
for i i ;-1 to wi~ do

for 1:=1 tordo
begin

A-infotii,il:-0; B_Info[il,I]:-O;
C_Info[1 i l i 1:=0; D_info£i II i J:=O; E_Info[1 II i]:=0

er.d;
for j:='A' to 'E' do

for 1:=1 to r do·
begin

A-surplus(JI 11:=0; S-surplus(jjll:=O;
C-surplus[L i 1 :=0; D...sIJrplus£L 11 :=0; E...sIJt"plus(L i J :=0

Grid
~; On/t_foe}

proc~dure gettlng_tasks(fl:strlng_type;ch:char;var task~ueue:nodeptr);
beoirl

05~ign(lnflle/fl';
reset(infi Ie); .
get_t.a~.(task ql 4IIue j;

. clou(Inflle)
'end; {getting_task~}

procedure get-bld....node(var bn:bld....nodeptr);
begin

nelJ.i(bn);
br,," . rlG'd : =1"1 j I ;
bn~.pr.v:=njl .

erid; {get-bid....node}

procedl..u'e ge L i nc-h i dS...!'Iode(vor b: i nc-h i dS...!'Iodep tr);
\)Qt'

I : it"! teger ;
bag in -.

new(b);
fot' i :=1 to 4- do

begin
b" .blds(I] :=0;
b'" .Qt"rs[i 1 :-0

flt'\d;
b" .next:=nll;
b" .prev:=ni I

end; {get_inc..bids..node}

procedt~re get_inc-surpl\.~s..node(VQr s: inc-surplus..J'''!odeptr).:
begin

new(s);
s" .next:=ni I;

. $" .pt'E!V:=ni t
end; {get_inc-s~'plus-node}

pt'Ocedut'e delete_inc..bids-node:<vQt" b: inc..bids...nodeptr');
!,..tar

bb : I nc:..b I ds...nodeptt';
begin

bb:=b;
b:=bb" . next;
bb".~'ev".next:=b;
if b~}nil then b".prev:=bb".prev;
dispose(bb)

~nd; {~I~t~_incJbid$-nod~}

procedure geHing..nodes(VQt" DQ~RFBQ~ IRFBM:nodeptr;

112

vat' . I BQ: i nc..b i ds..nodeptr; vat' I S I Q: i nc..:SUrp I USJ"Iodep tr);
begin

QQ t...nodQ(OQ);
get..node(RFBQ) ;

. ge t...node(t RFBM);
ge +'_1 ncJb i ds...rtOda(I·BQ);
ge+'_1 nc:-s~"p I uS..J."IOde(I S I Q)

, 'end; {geHing...nodes}

procedt~ ,get_tasKs-in! tlaHz8..a11;
begin

inH:
init:'foc;
gettit'\g-tasks('A,dat' ,'A'jA_tasks-ptr);
getting-nodes(A-disPJA-AFBQJA_IAFBt1,A_IBQJA_ISIQ);
gettin9-tasks('B.dat','B' ,B_tasks-ptr);
getting...node5(B-di5p,B-AFBQ,B_IAFBMJB_IBQ,B_ISIQ);
geHing_tasks('C.dat', 'C',JC_tasks-ptr'; ,
gatting.JiOdas(C...dfs:p,C-AFBQJC_fAFBf1,C_fBQ,C_ISIQ);
gettin9-tasks('O.dat', 'O'/O~tasks-ptr);
gett i ng..nodes(O..J.i i sp, O-RFBQ, 0_1 RFBt1, 0_1 BQ, O_IS I Q);
getting_tasks('E.dat', 'E',E_tasks-ptr);
getting..nodes(E..J.iisp,E-RFBQ,E_IRFBM,E_IBQ,E_ISIQ);
geLnode(S-TQ, ;
get..node(S_1 RFBt1);
get-bid-rlode(S-BIOQ);
gat_inc-surplus-node(S_ISIQ)

end; {g.t_ta~k~_initlatj%&-all}

procedure deletequeue(var ptr:nodeptr);
var

pointer : nodeptr;
bQgin

repeat
po inter': =ptr';
ptr:=pointer" . next;
d I spoSe(po Inter);
pointer:=ni I

unti I ptt''''ni I
~1d; {deletequel~}

procedl~re i nsert_ i n to_queue (qq~ queue: nodeptr).:
vat'

ppointerJPointer : nodeptr;
begin

ppointer:=queue;
po inter: -queue" . next;
while (pointer<)nll) and (pointer".arr_t<=qq".arr_t) do

begin
ppoint.er:-pointerj
po inter; =po inter" .next

&rid;
If pointer<'nil then begin

pointer".prev:=qq;
qq" . next: -po j nter

end; .
ppo I n t.er·' . next. : :qq;
qq".prev:=ppointer

end; {insert_into-queue}

procedure update_line(deloy:integer;vdr line:integer);
begin

C05e TOPOLOGY of
'C';jf Ilr~<clock then Ilne;=clock+deloy

else Ilne:=1 ine+delay;
'5':;f line<clock then I;ne:-clock+delay div 2

else I ina:=1 ine+delay div 2
end

end; {update_I ine}

pro~Are insert_into_ISIQ(sJ1SIQ:inc-SUrplus-MOdeptr);
vat'"

ppointerJPointer : inc-surplus-nodeptr;
i : integer;

begin .
ppointr:=ISIQj
pointer;=ISIQh.r~xt;
!»hlle (pointer<)nil) and (pointerb.arr<=s".ar~) do

begin
ppolnter:=polnter;
pointer:=pointerh.next

erld;
if pointer{)ni I

then begin
po!nter".pr.v;-s;
s next:=pointer

end;
,ppolnter".naxt:=s;
s'" . prev: =ppo i nar

erld; {insert_into_ISI'Q}

113

pt'ocec;:lure s...surp I us(s ~ I S I Q: i nc...sut'p I USJ'lodeptt'; vor line: i nteQer) ;
begin

update_line(mess~ge_delay~!ine);
s" ,at'r:=llnQ;
insert_intO-ISIQ(s, ISI(P ,

et)d; {s...surplus} .

procedure send...surplu:i(surpIU:i::;;urplus....array;nodeld,dest:char;
ISIO: incJurplusJIOdeptr;var I ine: integer>;

vat'"
, s : I nc..surp I USJlOdeptr;

begin '
get_inc-SUrpJus-node(s);
sh,n_id:=nrJdeid;
s" ,dest:-dest;
s",surp:=surplus[rlOdeidl;
s-SUrplus(s,ISIO,line)

end j ~end....surp I us}

prot"'JI_dure send i ng..surp I us"£(surp t us: surp I us....arroIJ;, i d, d 1 , d2, d3, d4: char;
ISIU-1,ISI0-2,ISI0-3,ISIQ_4:ir~-SUrplusJ'lodeptr;
vat'" I ine1 J r ine2,1 ine3,1 i,r,e4: integer);

begir,
sendLsurplus(surplus,ld,d1,ISIQ_1,llne1);
send..surp I us (surp I us, id,d2, ISI0-2, I ir182);
send....surplus(surplus,id,d3,ISIQ-2,li~..3);
send..surplus(sur'plus,ld,d4, ISIQ_4, lirJe4)

end; {send i ng..surp I us...c}

procedure sendinQ-SurpJus~(surplus:surp"JS....array;
id,d1,d2,d3,d4:char;var line: integer);

begin
send..surplus(surplus,ld,d1,S_ISJO, line);
9r1d..surplus(surplus, id,d2,S_'SIQ,1 ina);
serd..surplus(surplus,jd,d3,S_ISIQ,ljr~);
Hnd..:surpll.ts(surplus j id,d4,S_ISIQ, line)

end; (unci I ng..5Urp I us-Sj

pr'ocedure surp I uS.Nxchar,ge;
var

i ,1JJr1O : integer';
begin

1JJr1O:=cloc~ dlv wlndow_langht;
for i :=1 to r do

begin
A..surplus£'A',il:=window_'enght-A_info£wno,il;
B~Jt"'Plu.t'B' ,il:=window_langht-B_info[wno,i1;
C..surplus('C' ,i l:=window_lenght-C_info[lJJrlO, iJ;
O..surplus['O',il:=window_lenght-O_info(wno, il;
E-sUf'plus('E',il:-wlndow_lenght-E_lnfolwno,ll

erld;
cao TOPOLOGY of

'C' :begin ,
send i ng-surp/us-C(A-surp I us, 'A', 'B', 'C', '0', 'E' ,8_ISIQ,

C_ISIQ,O_ISIO,E_ISIO, I ineftB, I ineAC, I ineAD, 1 ir,eAE);
sending-surplus-C(B-surplus,'B','C', '0', 'E','A' ,C_ISIQ,

O_ISIOJE_ISIQJA_ISIQ,/ineBC, lineBDJ lineBE,lineBA);
sending..surplus..£(C:..surplus, 'C', '0', 'E', 'A' ,'B',D_ISIO,

E_ISIQ,A_ISIO,B_ISIQ,lineCD, lineCc, I ineCA, I ir~CB);
sending..surplus-C(O..surplusJ '0'" 'E' , 'A' , 'B' , 'C' ,E_ISIO,

A_ISIQJB_ISIQ,C_ISIQ,I ineDE, lineDA, lineDBJljr~DC);
send i ng-surp I us-C(E-surp 1 us, 'E', 'A', 'B', 'C', 'D',A_ISIQ,

114

end;
'S' :begin

~and.ing ~urplus-S(A-sIJ~lus 'A' 'B' 'c' '0' 'E' lineAS)' -- -r J J I J J} J

end

sending..surplus'-s(B..surplus,'B', 'C' ,'0', 'E', 'A' IlineBS);
send ing..surp lus...s(C..,$urp I us, 'C' , '0' I 'E' , 'A' I 'B' , I ineCS),;
sendjr~~Jrplus-S(O..surplusl'O' ,'E', 'A' I 'B' I 'C'/ljr~OS);
sendlng...surplus-S(E..surplusl 'E' J 'A' I 'B' I 'C' 1'0' I lineES)

end

erid; {surp I us-exchange}

procedure f i nd....de I ete_1 rlc...b I dSJ"lode<tasK_1 d: i d_t.ype; I BO: j nc...b i dSJ"Iodeptr)';
vat"

b : j nc...b i dSJ"IOdept.r;
begin

b:=IBO" . next.;
wh I I e (bOn i I)' and (b". t_i do task_i d), do

b:=b" .rlext;
if b<>nil then delete_inc-hidsJ"lOde(b)

end; {fjnd-delete_inc~id~-node}

proCQdur·~ checK_foc-OOd(q:nodeptr;nodeid,ch1,cra,ch3,ch4:char;
var focnode:char;surplus;surplus-Orray;
Vat" possible:boolean);

cor~t
FAS = 0.5;

vat"
mO'.:< : real;
I, time, ind : inteoer;
factor; array[1 .. 4] of real;

function freetlme(q:nodeptr;res...surp:resource-Or);;nteger·;
vat'"

;, ft: Integer;
bP-9in

H:·w j ndow ... J enght;
for 1:=1 to r do

If q"'.res-naQd[il
then if ft>res-SUt"p[ll

then ft:=res..surp[j];
fr'eetime:=ft

end; {freetime}

begin

115

possjble:=true; {check whether there Is a node for focused addressing}
factor(11:=frQQtimQ(qJ~Jrplu_(ch11);

factor [21 ;=.fr·eetlme(q,surplus(ch2]);
foc{or[3];=freetlme(q,surplus[ch3]';
factor[4J:-freetime<q/~plU5[ch4J>i

. If q'" .comp_Vwindow_lenght
'then tima:-wlndow_lenght
elH tlme:-q" .cOll'IP_t; ,

lor i:-1to4do
If laetor!l100

then fact~{ll:=factor[il/tlme;
irJd:=O; , . ,
ifl(Jj~ ~ iii) ;
for 1:-1 to 4 do
If factor!! l>max
t.~ begin

max:=lactorli 1;

ind:=i
erld;

i f II'IQx>FAS
t.h~iU"\ C::QSi;Q indo f

1: focnode:=chl;
2: focnode:=ch2;
3: f ocnode: =ch3;
4: fOCt10de: =ch4

end
else begin

posslbte:=false;
q".foc..nd:a·X·

end .
end; {check_foc-JJdd}

. procedure ·trar~fer-node(q/queue:nodeptr;var line:integer; delay:integer);
beoirl

t.lpdate_1 ine(delay/llrte);
q" . Qff_t:=/ ine; .
insart_into~e(qjqueue)

end; {transfer -node}

procedure send(qjqueue:rlOdeptr;var line: integer;delay: inieger);
var .

qq : nodeptr;
begin

get-node(qq' ;
copy_info(qqjq);
qq" .foc-nd:=q" .foc-nd;
transfer-node(qq/queue/'ine/defay)

ertd; {urtd}

procedure creaie...an_inc..bids-node<task_id: id_type; latest: integer;
Vat" IBQ/b: inc..bids..nodeptr);

vat'
bb/bbb : inc..bids.JlOdeptr;

begin
get_inc..bids-node(b);
b"'.t_id:=task_id;
b".latest..bld...arr:=latest;
bb:=IBQ;
bbb:-bb;' . next;
whi Ie bbb<>nli do

bP.-gin
bb:=bbb;
bbb:=bb"'.next

~rtd;
bb" .n.xt:-b;
b".prev:=bb

end; {create...an_inc..bi~-node}

function upc(cn:cnar):char;
begin

upc:=chr(ord(cr,)-ord('o')+ord('A' »
end;

function lwc(ch:chor):char;
begin

Iwc:=chr(or'd(ch)-ord('A')+ord('o'»
end;

procedureodd_to-RFBQ(qJ~FBQ:nodeptr;nodeid:char);

116

V\.1r
. qq : nodep t.r ;

beg it)
ge t.J'\Oda (qq) ;
copy-info(qqJq);
qq~.foc~)d:=q~.foc~)d;

lnsart._int.o~eUQ(qq~RFBQ)
et"ld; {add_to-RFBQ}

procedure send-RFBM-C(q; IRFBM_1, I AfBM-2, I AfBM-2, IRFBM_4:nodeptr;
chl,ch2,ch3,ch4:char;var Ilne1,llne2, Ilne3, Ilne4: integer');

begin
send(q, I AFBM_1 , I ine1 , message-de lay);
send(q,IRFBM-2,line2,message-delay);
send(q,IRFBM-3, I ir,e3,message-delay);
send(q,IRF~1_4,ljne4,message-delay)

end; {send..RFBM-C}

pr·ocedure send-AFBM-B(q:nodeptrjch1,ch2,ch3,ch4:char;var line:integer);.
begin

qA.id:-ch1TqA,id;
send(q, S_I RFBM, I ine, message-de lay);
q". id[11 :=ch2;
send(q,S_IRFBM, I Ine,message-delay);
q". id[1] :=ch3;
send(q,S_IAFBM,line,message-delay);
q". idll] :=ch4;
set"!d(qjS_IRFBMj I ineJMssage..deliJIsl)

et"ld; {urtd...AFBM-B}

procedure de tect_ i ndex(nd, dil.t : char j var i nd: i·nteger) j
begin

if (succ(nd)=dest) or (nd=su~c(succ(succ(succ(dest»»))
then ind:-4
else j f (succ(succ(nd))=dest) or (rtd=succ(succ(succ(dest»»

than iOO:=3
else if (succ(succ(succ(nd»>-dest) or

(nd=succ(succ(dest»)
th4m ind:=2
else ind:=1

erld; {detect_index}

procedure form-an_inc-bids-node(jd:ld_type;l:integer;
foc_IBQ:lncJbids-nqdeptr;nd,fn:char);

var
ind : integer;
b : i nc..b i d • ...nodilptr·;

begin .

117

. create-an_inc.-bidsJ",ode(id, I, foc_'BO,b); {create an incoming bids node}
detect_index(nd,fn,ir~);

b" .bids[ind] :=-1;
b" .arrs! ind] :=-1

{at the focused node}
{no bid is expected from the sender node}

end; {form-Dn_inc..bidsJ"~de}

procedure siart_foc-Ddd-C(q,foc_TO,IRFBM1,IAFBM2,IRFBM3:nodeptr;
l:lnteger;foc_IBQ:lnc-bids-nodeptr;
var Ifn,/bn1,lbn2/Ibn3:integer;
r!fJ, ft'!,tm1 ,tmZ,~:~M1-);

begin
for1l'l-an_'inc..bidsJ"lode(q'·. id, I, ioc_IBCLnd, in);
q".foc...nd:=fn;

send(q, IRFBM1, Ibnl.message_delav>;
send(q~ IRFBM21 Ibn21 message-de lay);
send(qIIRFBt13~ Ibn3/message-delay);
$Qnd<q~ foc_TO .• IfnI <q'" .comp_t div to)+mtiSag~...rlalay)

end; {stort_foc-add-C}

procedure start_foc-Odd-S(q:nodeptr;l: integer; var foc_IBQ;inc-bids-nodeptr;
. . var I jne: integer;nd, fn,bn1,bn2 /bn3:char);
begin

form-an_inc-bids-node(q".id,l,foc_IBQ,nd/fn);
q~.foc-nd:=fn;

q" . i'd:=bn1+q". id;
send(q/S_IAFBM I I ine,message-delay);
q" . idr11 :=bn2; ,
!:.eI"!d(q,S_'AFBM, I ine,lfJessage-delay);
qh . i d! 11 : =003; .
send(q,5_1 RFBM,I ine,message-delay);
q" • j d [11 : -fn j
send(q,S_TO,line,(q".comp_t div 10)+messoge-delay)

end; {start_foc...add...5}

. procedure starLfoc.-add(q, foc_TO 1, foc_TQ2J foc_T03, foc_T04, I RFBtL 1,
I RFBM...2, I AFBM....3, I PtFBM..4 : nodaptr i

begir.

var foc_IBQ1, toc_tBQ2, foc_IBQ3, foc_IBQ4: I nc-bIds...l'lodeptr;
var line1,line2,line3,line4:integer;
nd, fn,ch1,ch2,ch3,ch4:char; latest: integer);'

q" . idt 11 :=II»c(q" . idl1]);
if fn=ch1

then
case topology of
'C': starLfoc-Odd..£(q, foc_T01, tRFBM...2, IRFBM....3, IRFBtL4, latest,

foc_IBQ1, I ine1J I ine2, I ine3,line4,nd, fnJch2,ch3,cM);
'5': start_foc-add...5(q,latest/foc_IB01,1 ine1 /ndJfn / ch2,ch3,cM)
end

else
if fn-ch2

then
case topology of
·C'; start_1oc-add-C(qJ foc_TQ2 J IRFBM-3 J tAfBH_4,IAFBM_1, lotest J

foc_IBQ2 J I ine2 J I ine3, line4, I ine1 Jnd,fn,ch3,ch4,ch1);
'5': start_foc....add-S(qJ latest, foc_IBQ2" I ine1 JndJ fn,ch3,cM ,chD
erid

alse
If fr,-ch3

thlin
cau topology of

118

'C': :Jtart_foc-add..£<q, foc_TQ3,IAFBt1_4,IAFBfL1,IRFBt1...2, latest,
foc_IBQ3,1 ine3, I ine4,1 ine1, I ine2,rld,fn,cM,ch1,ch2);

'S': ~tart_foc-add-B(q,latest,foc_IBQ3Jljne1,ndJfn,ch4Jch1,ch2)

end;

erid '
al"

catse Wpologt,J of
'C': starLfoc-add..£(q, foc_TQ4, IRFBM_1, IRFBtL2, IRFBM-2, latest,

foc_IBQ4,line4, linel1 I ine2,line3,nd,fn,ch1,ch2,ch3);
'5': starLfoc...add-S(q, latest, foc_IBQ4, Iine1,nd, fn,chl,ch2,ch3)
erid

{star Lfoc:..add}

procedura sL::lrt-hidding(q,AFBQ,IRFBM_1, IPFBM-2, IRFBt1-2, I AFBM_4: nodeptr;
nd, c:h 1 ,c .. h2, ch3 J , .. h4: c.·har'; var' I BQ: i nc...;.b i ds_nodeptr';
var I ;ne1,1 ine2, I ;M3, I ine4: inteQer; latest: integer);

.... '(lr

b ; inc..bjds..nodeptr;
begin

~Gate....an~iM-bidli...r!OdG(q" ~ jdJ latelit,IBQJb);
add_to-RFSQ<G,AFBQ,nd);
case TOPOLOGY of .

'C' : serld..RFBM.-C(q, I RFBM_1, I AFBM...2 J I AFSM...,"3, I RFBM-4, ch 1 J 6h2, c:h3 J ch4 ,
. . I ine1, I ine2, I ine3, I irle4);

·s· ~send..RFB~LS(q~ch1 .• ch~Jch3,ch4~ I itiel)
Elt'ld

end; {stat't-blddltig}

procedure schedu ling

'Jar

(nodeid:char';real-EAT:resource-ar;var AFBQ,DQ:nodeptr;
'Jar 100, foc_1 00 1 , foc_IBQ2, foc_IOO3, foc_IBQ4:'inc..b·ids..nodeptr;
TQ, foc_TO 1 J foc_Tca, foc_TQ3, foc_TQ4, IRFBtL1 J IAFBt1..2J I RFBt1...3J
I RfBM_4: nodeptr; ch 1 ,ch2,ch3,ch4:c:har';
var I ine1, I ine2, I ine3, I ine4: integer;
var report: r·eport-arr·aYi surp I us: surp I us-array);

q nodeptr;
f ocriOde J ch : char i
i,latest,dim ; integer';
SQJTQ2 : nodeptr;
EAT : resource-ar;
st~,guaranteed,possib/e boolean;

begin
st~:=false;
r'epeat

q:=TQ" ,next;
if (q<>nil) and <q",arr_t=clock)

then
begin

119

TQ",next:-q" ,neXt; {get ta5k from ta~k queue}
if q",next<>nil then begin

q'" • prel"l:=ni t;
for I :=1 to t' do

qh,nexth,prev:=TQ;
q" ,next:-nll

end;

if real-EATtil<clock then EAT[il~=clock
. else EATlil:=real-EATli1;

if q". id£ 1] in hl.lt'ange then begin
ch:=up,c(q id£ 11).;
if q foc-nd=nodeid

then dim:=l
QI5Q dim:=2

end
else begin

cn:-q", id[11;
dim:=3

end;
report[1,ch,diml:=report[1,cn,diml+1;
schedu I at"'(q, OQ,EAT, 9uaranteed, TQ2,8Q, 1);
i f guoran teed .

thet'l
be9in

tas!<.s....gl,JfJranteed : =tas~,s....gl,JfJranteed+1 ;
t"flPor-t £2 J cn J d i IT! 1 : =reportl2, ch ,d i IT! J+ 1;
j f q", idl 11 in Iwranga .

then find-delete_inc-bids-node(qh.id, 18Q);
deleieqlJeue(OQ); {del.et.e Dispat.cher Queue}

120

DQ:=SQ; {Schedule" Queue becomes DQ}

end

dispose(TQ2);
TQ2:=ni I

Qt1ci

else
begin

latest:=qh.deadline~qh.comp_t-(TD+SO';
if latest<=clock
then tasks-nonguaranteed:=tasks-nonguaranteed+1
else
begin"

qh .tiew-EAT111 :=Iatest;
for ;:=2 to r do qh.NEWJ-EAT[j]:=O;
If q" . idf 11=nodeid
then {if the task is local send it to ar~ther node}
begin
check_foe-add(q#nodejd~ehl#eh2#eh3/ch4,focnode,

surplus,possible);
if pouible

.then starLfoc....add(q, foe_TOll foc_TQ2, foe_103,
"foe_TQ4, I AFBM_1 , IAFBM...2, IFlFBM-3, IAFBM_4,
foe_IBQf, foe_IBQ2, foc_IBQ3, foc_IBQ4, I ir,e1,
line2,ljnQ3Jline4/nodejd,focnode,c~1/ch2,
eh3/eM/latest)

else start.-b j dd j ng(q, AFBQ, I"FlFBM_1, I AFBM...2 J

"" I AFBM-3, I AFBM_4, node j d, ch 1 ,ch2, ch3, ch4 I
IBQ,llne1,line2,llr,e3/IIne4,latest)

else If «q".idll1 In Iwrange) and (nodeid=qh.foc-nd»
then add_to..P.FBQ(q,AFBQJnodeid) {try biddinQ}
else tasks~Aaranteed:=tasks-nonguaranteed+1

end;
deletequeue(TQ2); TQ2"'.r,ext:=nil;
deletequeue(SQ); SQ" .next:"'f)j I;
dispose(q); q:=nil

.end

else stop:=true
urlti f stop

end; {sc-hedu ling}

pr~Jre update_Info(p:nodeptr;~Jar info:info-array);
'Jar

I ,start,t.ermlnatlon,'JJoo,duration, f Imi t : integer;
begin

star·t:=cI ock;
dUt"'ati or,: =p" .c:omp_t;
terminatjon:=start+~Jratjon;
IAtr~: :a:(start d i IJ IJJ i ndolJ.l_1 enghO+ 1;
while duratlon-OO do

begin
limit:=wno*window_langht;
if termination<=1 jmi t .

then begin
for' I :=1 to r' do

If p".res-need[il
then info [Uff,O, iJ:=info(wno,i J+dur'atiorl;

duration:=O
end

QI~e begin
for' I :=1 to r do

jf ph.res-need[j]

end

then info[wno,il:=info[wno,i l+limit-stort;
stat"'t:=1 1m! t;
dt.u"'ation:=termination-I im! t;
wno:=wno+1

I!fId

Qtrd; {updatQ_info}

~"'ocedt.~re dispatching(hodeid:char;DQ:nodeptr;
... 'ar rea I...EAT: t"'esource...CIr; vat"' in f 0: in fo:....array) ;

. ,,~"lI"

p~pp : nodeptr;
I : integer;

beoit)
pp:=DQ;
p~=pp'" . next;
whi Ie poni I do .

if p'" .start_t=clock
then begin

if nodeid=p idltl
then begin

tasks-disp_locafly:=tasks-disp_loca//y+1)
{incr-ement number of tasks dispatched local h::!}
update_lnfo(p, Info)

end
else tasks-d i Sp..1'lw...JJJ ide: =tasks-d j Sp..1'lW..JJJ j de+ 1 ;
{increment number of tasks dispatched network..JJJide}

for i:=l t~ r do real-EAT£il:=p".New-EAT{i1;
pp" .ne-xt:=p'" .ne-xt; .
if p next<>nil then p next prev:=pp;
dispose(p);
p:=pp" . next

end
e/~ begin

pp:=p;
p:=p",next

end
end; {dispatching}

procedure send-bld(task_ld:id_type;/BQ:inc-bids..1'lodeptr;
indexJBIO: integer;var fine: integer);

!Jar'

P : I nc-b I dt:Jlodeptr; .
i : integer;

begin
update_I ine(message-delay, I ine);
if ta»k_idl2J· in Iwr'~ thQn ta»k_id:=copy(ta»k..:id,2,3)j

121

p:=/BQ next; {search the node in the Incoming Bids Queue}
while (p<>nil) and (p t_id<>task_id) do

p:-p" .nextj
if p<>rd I

than begin
p'" ,OffS! indexl :=1 ina;
p" .bidsf indexl :=BIO

end;
end; {send..bid}

prOi~dure In~ert_into-B-BIOQ(bn;bid..1'lodeptr);
var'

ppointer,pointer : bid-nodeptr;
begin

ppointer:=S-BIOQ;

poi nter:=S-B IDQ" . next.:
whi Ie (polnt.erOn! I) and (point.e.""' .arr<-bt"t"' .at"''') do

begin
ppoint~r:=point~r;
pointer:=pointer"'.next

end;
if po int.er,on ! I

then begin
pointer prev:=bn;
bn tiext:=pointer

end;
ppoint.er next:=bn;
bn".prev:=ppointer .

end; {insert_into-B-BIDQ}

procedure bidding(nodeid:char;real-EAT:resourcs-Dr;IRFBt1}OQ:nodeptr;
180-1, 18Q..2; 18Q...3, 180-4: inc-hids ... nogeptr;
var 1 ine1~ I ine2} I ine3} I ine4: integer);

"Jar .
b : nodep t.t' ;
SQ~ TQ2 : nodeptr.:
st.op~ fit's+' : booleQf'l;
temp...EAT : resol..trt:e_Qt';
HAXB I O~ BID ~ I at.est.-h Id..at'r ~ b Id..at't'l no I t"lteget';

{$i bid.pa$}

begin
. stop:=false;

t'epeat.
b:=IRFBW' ,tiext;
if «b{)nil) Qt"td (b"',arr_t=clock»

then begin

122

I RFBf1" • next: _b A
• rtext i

if b" .nS'xt<>ni I
. {get tasJ<. from IRFBf1 queue}

t.herl beg i n
b".next".pr~J:=IRFBM;
b~' .next:=ni I

end;
b" ,prev:=nll;
j f b". idf1 1 in Iwrange then b". id:=b". foc ... nd+b" ,ld;
ir~jcate_line(nodejdJb".idi11Jbjd-Drr~no';
latest-hld-Drr:=bh .Mew-ERTll1;
iJpdat.e_1 i ne(message...de I ay} b i d-Dff);
i f TOPOLOG'-/=' S· then b i d-Dff: =b i d-Drr·+1TIessage...de I alJ d i v 2;
j fl atesLb i d-Dr-r> =b i d-Drr

ther. begin
cal cui ate-MAXBID;
binar'J-Search_for-BIO;
case TOPOLOGY of

'C' :biddir,g-C;
'S' :bidding.-S

end
erld;

djspo~(b)

end
else stop:=true

unti I stop
end; f.biddlr,g}

pr'~e delete_task(voy' p:r.odeptr·';
var

pp : nodep tr·.:
begin

pp:=p;
p:=pp'" . next;
pp prev~.next:=p;
if p<>nil then p prev:=pp~.prev;
dispos:e(pp)

end; {delete_task}

procedure find_the_tosk<var b:inc-bids-nodeptr;AFBQ:nodeptr;var p:nodeptr);
begin .

p:=AFBQ" . next;
UIhlle (pord I) and (ph. idob". t_id) do p:2p/' . next;
j f p=ni I then b:=b" . next

else delete_inc-blds-y~(b)
end; {find_the_task} .

{$i bideval.pa$}

procedure update...surp I us_I nf o(I S I 0: i nc...surp I uS..Jlodeptr ; node j d: char;
var surplus:surplus-arraYl;

SJSS : ; nc...surp I us-nodeptr;
begin

s:=ISIO" . next;
IJJh; Ie soni I do

if s .. . arr=clock
t.hen beg i n

surpI us[s" .n_idJ :=s'" .surp;
ss:=s;
s:=ss" . next;
ss,..pt"ev next;~j
if s<>nil then s".prev:=ss".prev;
dispose(ss);
ss:"ni I

end
els8 s:=s" .rl6lxt

. end; {update..surplus_lnfo}

begin .
update-surplus_lnfo(A_ISIOj 'A'jA-surplus);
updqt~-surplus_info(B_ISIQj'B'JB-surplus);
updaf.e-surp I us_info(C_1S10j 'C'jC-surplus);
update..surplus_info(O_ISIQ,. '0' ,O...surplus);
updat8-SUrplu»_lofo(E_ISIQj 'E' jE-SIJrplu»)

end; {updat. I ng..surp i us_I Mo} .

proc:eduf"-e fl,J I I y....c:ot"It"JeC tecL topo I 09':1;
begin .

repeat
clock:=clock+1;
if (clock mod window_lenght.)=1

then if clock<>1
then surplus-e~~hange;

scheduling('A' ,A-EATJA-RFBQ,A-disp,A_IBQJB_IBQ,C_IBQ,D_IBQ,E_IBQ,
A_t~s...ptf' J 8_tasks...ptr-J C_tasks...ptr J O..-tasks.;.ptr J E_tasks..ptr ,
B_1 RFBMJC_IRFBMJ O_IAFBMJE_IRFBM, 'B', 'C' J '0'; 'E', JirleAB,
I i nQAC, I i rJQAO, I i naAE J A..J"apot" t , A..$Ut"p I us;:) ;

dispatching('A' jA-disp,A-EATjA_info);
bidding(' A' ,A-EAT, A_JAFBH}A-disp, B_IBQ,C_IBQ,D_IBQ, E_I 8Q, I ineAB,

123

I ineAC, I ineAD,.1 ineAD;
b i dJ!!va I uat I ng(1L1 SQ~ A..RFSQ~ S_tasks-p tt' ~ C-tasks-p tt' ~ 0_ tasks-p tt' ~

E_taskS-ptr~ 'S'~ 'C'~ 'D'~ 'E'~lineAS~lineAC~lineAD~ lineAE);
schQduI lng< 'B' ~B..EAT~B..RFBQ~B...disPJB_IBQIC_IBQ~O_IBQ~E_IBQ~A_IBQ~

B-tasks-ptr~C_tasks-ptr~D_taskS-ptrJE_taskS-ptr~A_tasks-ptr~
C-IRFSM.D-IRFBM.E-IRFSM,A_IRFBM, 'C', '0', 'E', 'A', lineSe,
I i neBD, I i neSE, I h"teBA, B...report, B..surp Il..~s); .

dlspatchlt)g('B'~B-dlsp~B-EAT.B_lnfo);
bidding('B'~BJEAT~B-IRFBM~B-dispIC_IBQ~D_IBQ.E_IBQ,A_IBQ, IlneBC,

I IneBD,' ineSE1 I ineBA),; .
bldJ!!valuatlng(B_IBQ,B..RFBQ,C_tasks-ptr,D-tasks-ptr,E_taskS-ptr,

A_tasks-ptr~ 'C', '0' ~ 'E'. 'A' ~ I ineBC~ I ineBO~ ,ineBE, I ineBA);
scheduling('C'~CJEATICJRFBQ~C-disp,C-IBQ~D_IBQIE_IBQ~A_IBQ~B-IBQ.

C_tasks-ptr.D_tasks-ptr.E_tasks-ptr.A_tasks-ptr.B_tasks-ptr.
D_IRFBM"E_IRFBM.ILIRFBM~B-IRFBI'lJ 'D'. 'E' ~ 'A', ·B·. I IneCD,
I I neCE, I I neCA, II neCB, C....report ~ C...sUt'P I us);

dlspatching('C',C-disp,CJEAT,C-lnfo);
biddit'9('C'~C-EAT~C-IRFBM~C...disp,D-IBQ~E_IBQ~A_IBQ,B_IBQ,lineCD,

IineCE,1 ineCA,l ineCB); .
bidJ!!valuating(C~IBQ.C..RFBQ.O_tasks-ptr~E_tasks-ptr.A_tasks-ptr~

B-ta-~S-ptr. '0', 'E'I 'A', 'B·JlineCD~lineCE.lineCA,lineCB);
~'heduling('D',DJEAT.D..RFSQ.D-disp,D_IBQ,E_ISQ,A_IBQ.B_IBQ,C_IBQ.

D-tGSks-ptr,E_tasks-ptr, A-tasks-ptr,B_tasks-ptr, C-tasks-ptrl
E_IRFBM,A_1RFBM,B-IRFBM,C_IRFBM, 'E', 'A' , 'B' , 'C', IIt"teDE, .
I ineDA, I ineDB, I ineDC,.D....report .• D...surplus);

dispatching('D',D...disp,D-EATJD-info);
blddlt)g('D',D..EAT,D-IRFBM,D-dlsp,E_IBQ.A_IBQ~B-IBQ~C_IBQ, IlneDE,

IlneOA, I ineOB, IlneOC);
bld-evall..~ting(D-IBQ/DJRFBQ,E_tasks-ptr,A_taskS-ptr,B-taskS-ptr,

C-tasks-pb'. 'E'. ·A'. 'B' • 'C' .1 ineDE. I it'\eDA.1 it"teOB. I IneDC);
scheduling('E',EJEAT,EJRFBQ,E...disp,E_IBQ,A_IBQ,B_IBQ,C_IBQ,D_IBQ,

E_tasks-ptr,A-tasks-ptr,B-tasks-ptr,C-tasks-ptr~O_tasks-ptr.
A_I RFBM, B_1 RFBM, LI RFBM,tLl RFaM, 'A', 'B', 'C', 'D',tineEA,
I It''teEB, I i MEt, I i neED I E....report, E_~rp Il..-IS);

dispatching('E'~E-disp,EJEAT~E_lnfo);
bldding('E'IE-EATIE_IRFBM,E-disPIA-IBQ1B_IBQ,C-IBQ10_IBQJ I IneEA,

IlneEBI I inefCI I ineED); .
bidJ!!valuatlng(E_IBQJEJRFBQ,A_tasks-ptrJB_tasks-ptrJC_tasks-ptr~

D-tasks...ptf'., 'A', 'B', 'C' J'D', I i.neEAI I ineEB J I ineEt,1 ineEO);
updat I ng-surp Ius-Info;

until ctock=SIM_TlME
end; {fuily-connected-topoiogy}

{$i ff'omS.PQs}

procedure send-sut'plus_infos_from_S;
\.IQf'

s : i nc...surp I us..J"\odep b';
'. stop : boolean,:

begin.

124

stop:=faJse; {transfer surplus informations queued at the central node}
f'tapQOt

~:=S_ISIQh .next;
; f (sOn; I) Qnd (s'" .Qf'f'=clock)

then begin
S_ISICr" , ne-,.d:=s'" ,next; {get surplus· Info from queue}
if $" ,nextord I

then begin
. $" ,next ... pr'sv:=S_'SIQ;.

:s" .nQxt:=ni I
end;

s" ~pt"'ev:=nj I;

case ~ ... ,dest of
'A' :s-surplt~s(s,A_ISIQ, I in~SA);
'B':S-Sl#'plus(s~B_ISIQ, lineSB);
'C' :s-sut'plus(s,C_ISIQ, I ineSC);
'0' :s-surplus(s,O_ISIQ, I ineSO);
'E' :s-sw'plus(s.E_ISIQ, I ineSE)

end '
end

else stop:=tt'ue
lmti I stop

end,: {send-surplus_lnfos_from_S}

proc:edt~re transfer:s-from-S;
begin

send-SUrplus_infos_from-S;
send-AfBMs_from_9;
~.nd-BIDs_from-B;
send_task~_from_S

end; {tranzferz_from-S}

procedJre 3 tar _topo loW;
vat"

x : rtOdeptr;
Z : I nc-bIdz-nodeptr;

beg!rl
x:=nll; z::nll;
r'epeat

.clock:=clock+1;
If (c'oc~ mod window_lenght)=1

then If clocko 1
then surplus..exchange;

scr~duling('A' ,A-EAT, A-RFBQ,A-dlsp, A_IBQ,S_ISQ,C_ISQ,O_I SQ,E_I BQ,
A_tasks-ptr,x,x,x,x,x,x,x,x, 'B', 'C', '0', 'E',IineAS, I ineAS,.
I I neAS, I i neffS, A..repOY't, A--surp 1l.4~) ;

dlspatct"r~('A',A-disp/A-EAT,A_info);
bidding('A',A-EAT,A_'RFBM,A-disp,z,z,Z,Z, lineAS, lineAS, lineAS,linP~S);
~id....evClluClting(A_IBQ;AJlFBQ~S_TQ,S_TQ,S_TQ,S_TQ,'B' ,'C' ,'D','E',

I ineAS, I in(iAS, I ineAS, I ineAS);
scheduling('B',B-EAT,S-RFBQ,S-disp,B_IBQ,C_IBQ,D_IBO,E_IBQ,A_1BO,

B_tasks-ptr,x,x,x,x,x,x,x,x,'C', '0', 'E', 'A', 1 ineBS, I ineBS,
lineBS,lir~S;B-report,B-surpJus);

dlspatching('B',B-disp,B-EAT,B_lnfo); ,
blddir~('B' ,B-EAT,B_IRFBM,B-dlsp,Z,%,%/%,1 ineBS, I I neBS, I IneBS J I I neBS);
~id-evaIIJating<B_IBQJB-RFBQ,S_TQJS_TQJS_TQ,S_TO,'C' J'O'} 'E', 'A',

I ine8S, I I neBS, I ineBS, I ineBS);
sr..:hedul ino< 'C', ,C-EAT ,C..RFSQ,C...disp, C_IBQ,O_ISO, E IBQ, A_IBO,B_IBO,

C_tClsks..ptr,x,x,x,x,x;x,x,x, '0', 'E', 'A', 'B' J Ilr ... CS,.1 ir ... CS,
IlneCS,llneCS,C-report,C-surplus);

dizpatchin9('C' ,C-disp,C-EAT,C_info);
blddlng('C' JC....EAT,C_IAFeHJC....dj~p,z,z,z,z, IlneCS, I ineCS, I ineeS, I ineeS)~
bjd-evaluatln9(C~IBQ/C-RFBQ,S_TQ,S_TQ,S_TQ,S_TO, '0', 'E', 'A', '13',

liMCS, I ineCS, liMeS,' ineCS'; ,
~c:hedu II ng('0' ,D-EAT, O...fIFBQ, D-d i sp, 0_1 BQ, E_I BQ"A_I BQ, B_1 130, C_I BQ,

p_tasks-ptJ',x,x,x,x,x,x,x,x, 'E','A', '8', 'c' I l'ineOS, I ineOS/
II neOS J II rlti)S J D-repod, O..surp I us) ;

dl~patchlng<'D'/D-dlsp,O-EAT,D_info';
bidding('0' ,0-EAT/D_IRFBH,0-disp,%,%,%,Z, I ineOS, I ineOS, I irleOS, I ineDS);
bld-GIJQII.JalinQ(O_IBQ,O..RFBQjS_TQ,S_TCLS_TQ,S_TQ,'E', 'A', '8' I 'e' , '

I ineDS, I irniDS/ I ir~OS, IlrleOS);
_chadu I jng('E' ,E-EAT, E...RFBO,E....d i_p, E_IBO/A_IBO,B_I BO,C_I BO, 0_1 BO,

E_tClsks-ptr/x,x,x,x,x,x,x,x, 'A' I 'e' I 'e' ,'0' ,I ineES, IjneES,
IlneES, Ijne~SJE-report,E-sYrplus);

125

dispatching('E'.E-disp.E-EAT,E_info);
bidding('E'~E-EATIE_IRFBMjE-disP/z/z/z~z/lineES/I in@ES/lin@ES11IneES);
bid_evaluoting(E_IBQ#E-RFBQ/S_TQ1S-TQjS-TQ#S_TQI 'A'/ 'B'I 'e' l '0'/

I in.aES I I It"tlilES., I it"l.aES I I it"l.aES);
transfers-from-S;
updating~Yrplus-info;

l#)til clock=SIM-TI~lE
end; {star_topology}

procedure prlnt-t~eport<report~report-array);
"-"-1t

dim : 1. .3;
nd : nd...range;

begin
write('tasks-arrlved :');
for nd:='A' ta 'E' da
begin

for dim:=1 to :3 do
wr'/ te(repartl1,nd,dim] :3);

mri te(' : ')
end; ,

writeln; write('tasks-dispatched:');
for' nd:='A' to 'E' do

begin ..
far dim:=1 ta :3 do

mrite(repartl2J nd,dimJ::3);
wr j te(. : .);

ersd;
wri telr,

end; {print-repart}

procedure pr j nt-rep;
begirl
mri telrlj
wri teln('NODE A : local
'pr j nt-raporHA-rEPort' j
writeln;
wri teln('riODE B from A
pI" I nt-r·Qport(B-rQpor·t);
wrl telrl;
writeln('NOOE C : from A
print-report(C-report);
wr·j telr,;
mriteln('NODE 0 : from A
pr' i nt....r'epor·t(O..r·eport);
wri telr,;
writeJn('t~ E : frolJl A
print-report(E..r~port)
I.md; {pr i rft-rep }

functi on ca I c:(i i : integer'):i nteger';
vat'

j : nd..range;
n : integer;

begin
n:=O;

fr'om B

local

from B

from B

from B

fr'om C from 0

from C fr'om D

local from 0

from C local

from C from 0

for j :='A' to 'E' do
n:=n+A-report!2,j,iil+B-report!2 J J,iil+C-report[2 J J,ii1

+O-reportC2,J, 'I I 1+E-reportl2,J J i j 1;
calc:=n

erld; {calc}

frOlfI E

from E

from E

from E

local

126

: ');

: ');

: .);

: ');

: ');

pt'ocedure \\It' i t i ng_ the...resu I ts;
\.'l.""

nJby_focJnJby-focJbidJnJbyJbid integer;
bQgit1

print-rep;
nJby_foc:=calc(l);
nJby-focJbid:=calc(2);
nJby-bld:=calc(S)-tasKs-dlsp_locally;
wri teln;
wr i t.e I n(, riUMBER OF Tfl.Sl(.S :', (taskz....guaranteed+tO""'...kz_nonguaranteed): 5);
wrlteln('NUMBER OF,TASKS GUARAt~TEED :',tazks-9uaranteed:5);
mriteln('ffiJMBER OF TASKS DISPATCHED LOCALLY :' Jtasks~jsp_locally:5);
IJJt" i te I n(, NUMBER OF TASKS D I SPAT('11ED MEnJOAK W I DE :' J tas\(.s...d i SP..J'II.IJ.JJ.I i de: 5) ;
mri telnC BY FOCJ10DE, :" ,n...by_foc:5);
wri teln(' BY SECOND...,STEPJiODE :' ,n...btJ-foc...bid:5);
mriteln(' BY DIRECT BIDDlrlG :',n...by...bid:5);
mrlteln('NUMBER OF TASKS MONGUAAANTEED :',tasks-YJonguaranteed:5);

end; {mrjtj09-the...re~~Jts}

begin {main}
writeln;
gEt_tasks_initial ize...al I;
ca--d TOPOLOG'V of

'C';fully...connected_topology;
'S':star_topology;

erJd;
wrltlng_the-y·ezults

end, {main} ,

127

BIBLIOGRAPHY 128

BIBLIOGRAPHY

1, Zhao, W" Ramamritham, K., and Stankovic, J,A., "Scheduling Tasks with

Resource Requiremen~ in Hard Real-Time Systems.,'" IEEE Transactions on

Software Engineering, Vo1. 5£-13, NQ. 5, pp, 564-576, May 1987.

2. Ramamritham, K., Stankovic, lA., and Zhao, W ... 'YDistributed Scheduling of Tasks

with Deadlines and Resource Requh-ements," 1£££ Transactions on Computers,

Vol. 38, No.8, pp. 1110-1123, August 1989.

3. Stankovic, lA., "A Perspective on Distributed Computer Systems," I.£EE
TnJIlSJu.~il}L1sl}L1 /..iJmpule.n; Vol. C-33, No. 12, pp. 1102':'1115, December 1984.

4. Stone, R, and Bokhari, S. R., "Control of Distributed Processes," IEEE C'omp(fier.

Vol. 11, No.7, pp. 97-106, July 1978.

5. Kleinrock, L, "Distributed Systems,"· OJmmllok'.oIDJosoftheACJlVoL 28, No. 11.

pp, 1200-1213. November 1985,

6. Barclay, D. L, Byrne, E. R, and Ng, f. K .. "A Real-Time Database Management

System for No.5 ESS," Bell.f.,r.·"S!:. Ttu.-:h. J. Vol. 61. No.9. November 1982.

7. Ayache.]. M .. Courtiat.]. P., and Dial, M., "REBUS, A fault Tolerant Distributed

System for Industrial Control/"' fEEE Transactions on (,ompllters; Vol. C-31,

July 1982.

8, Melliar-Smith, P. M .. , and Schwartz, R L., "Formal Specification and Mechanical

Verification of SIFT," f£££ Trlf.nSactiol1sol1 Compl/ter.", Vol. C-31.. July 1982.

9. Smith, R.G., "The Contract Net Protocol: High Level Communication and Control

in a Distributed Proble.m Solver," fE££ Tral1sactiol1.-i on Computer.;;, Vol. C-29, No.

12, pp. 1104-1113, December 1980.

BIBLIOGRAPHY 129

10; Casavant, Thomas 1., and Kuht Jon G., "ATaxonomy of Scheduling in Genera~

Purpose Distributed Computing Systems;'"· 1.£££ Transa.ctions on Software

£agiaeeling. Vol. SE-14 .. No.2, pp. 141-154.. Fe.bruary 1988.

1 L Lo, V,M., "HeU1'istic Algorithms for Task Assignment in Distributed Systems:'

JEff Tr;lns.1ctionson CompIIters, Vol. C-37.. No, 11.. P11 .. 1}84-1397 .. Novembe-r 1988,

12. Efe, K., uHeur1stic Models of Task Assignment Scheduling in Distributed

Systems .. " 1.£E£ l'omplIter; Vol. 15, pp,50-56, June 1982.

I'} M~, i,P,; I.~N/. tJr,§". ~nd IS-l(~d1ir~ .. .M., "'A T~k AH(tcat1(1fl Model for IH-stdbuted
C{lml1l.1ter Systems:" 1.£££ Transa.ctio1}S on COlnplJter.s, Vol. C-3L No. L pp. 41-47,

January 1982.

H. Ramamritham .. K., and Stankovic, .LA. .. uDynamic Task Scheduling in Distributed

Hard Real-Time Systems," 1.£££ SoftW<"1re.. Vol. L No. 3.. pp. 65-7), July 1984.

15, Graham .. RL .. Llwier, EL .. Lenstra .. J,K., and Kan .. A.H.G.R., "Optimization and

Approximation in Determi.nistic Sequencing and Scheduling: a Survey," Annal"

o[J)i-;crfJtfJ.Afat.iJ.fJ.01atiC .. rt, 5, 1979.

16. Xu, J., and Parnas, D.L., ."Scheduling Processes wi.th Release Times, Deadlines.

Precedence.. and Exclusion Relations," 1.£££ Transactions on Software

EnginfJfJrins- Vol. 16, No.3, pp. 360-369, March 1990. '.

17. Garey, M.R; and Johnson, D.S., "Scheduling Tasks with Nonuuifonn Deadlines on

Two Processors,"" JOllrnal oJ'tlzfJ ACA{VoL 23, No. 3.. pp. 461-467, July 1976 ..

18. tiu, C.L., and Layland .. J... "Scheduling Algorithms for lvlulth1rogramming in a

HardReal-Time Enyironment.." JOl/rna} oj' t.iJ.fJ"AC.Al Vol. 20 .. No. L pp. 46-61,

Janual-Y 1973.

19. Chetto, H.. and Chetto .. M ... "Some Results (If the Earliest Deadline Scheduling

Algorithm/"' J.£££ Transactions on SOftW."1ffJ Engineeling, V(lL 15 .. No. 10, pp,

1261-1269, October 1989.

20. Teixeira, T, .. "Static Priority Inte·rrupt Scheduling,'" ProcfJediJigs oftlze Seventlz

Texas l'onleren ce on l'ompilting S,:-;te.01s, Noyember 1978.

21. John'son, R, and Madison.. M.S., "Deadline Sche.duHng for a Real-Time
Multiprocessor," NTIS (N76-15843), Springfield .. VA, May 1974.

BIBLIOGRAPJIY 130

22. Blazewicz.].. Drabowski. M .. and Weglarz.].. "Scheduling Multiprocessor Tasks to .

. Minimize Schedule Length." IEEETromsu.-:tiollSl.1D iQmp~/fers. VoL C-35. No.5. pp.

389-393. May·1986.

23. Leinbaugh .. D.W... "Gliaranteed Response Times tn a Hard Real-Time

£l1vitollment," J£££ Transactions on Software Engineering; Vo1. S£-6 .. No.' 1, pp.

8)-90, January 1980.

24. Lenat,'Doug1as B .. , "The Nature of Heuristics," ArtifJcial Intelligence, 19,1982.

25, Zhao, W ... Ramamritham, K" and Stankovic, lA .. , "'!?l'eemptive Scheduling Under

Time· and Resource Constraints," 1£££ Transactions on CO.DJplIters, VoJ. c-36, No.

8, pp. 949-%0, August 1987.

26. De.rtoulOS, M .. , "Control Robotics: The Procedural Control of Physical Process,"

Proc. oline IFIPlongress, 1974.

27. Dertouzos .. M., and Mot, A.K., "Multiprocessol' On-line· Scheduling of Hard Real

Time Tasks, A' 1£££ Ti-a.nsactions on Software Elgineering; Vol. 1), No. 12, pp.

1497-1506, December 1989.

28. Jensen, E.D., Locke, C.D., and Tot-uda,H., "A 'fime-Drive·n Scheduling Model for

Real-Time. Operating Systems," Proceedings .oJ' 1£££ .Real-Time Systems

SY.Dlposillm, Decembel' 1985.

29. Bokhari, S.H., "On the Mapping Problem,'; 1£££ TFEl.11sactions on C011lj1lJters, Vol.

C-30, No.3, pp. 207-214, Mat'cll 1981.

30. Stone.. H., "Multil1rocessor Scheduling with the Aid (If Network flow

Algorithms ' lUI Transactions on Software En!{ineering; Vol. SE-3.. No. 1, pp.

85-93, Janua1"Y 1977.

31, Chu .. W.W .. and Lan, M,T ... "'Task Al1ocation and Precedence Relations for

Distributed Real-Time Syste·ms," 1£££ Tra.llSactiolJS on ComplJters, VoL C- 36, No.6,

pp. 667-679, June 1987.

32. Leinbaugh .. D.W., and Yamini, M ... "Guaranteed Response Times 1n a Distributed

Hard Real-Time Enyironment, A' 1£££ Transactions an Software Engineering; Vo1.

S£-12 .. No. 12,pp, 1139-1143.. December 1986.

BIBLIOGRAPHY 131

33. Ma. RP .. "A Model to Solve Timing-Critical Application Problems in Distributed·
. .
Computer Systems." IEEE' l'bmpu(Qf. Vol. 17. pp. 62-68. January 1984.

34. Livny. M .. and Melman. M .. "Load Balancing in Homogeneous Broadcast

Distributed Systems." Proceetli.l1$s o[At..}fll.ompuler Nelu''VrJ: PeriOr'D13J'lJ..'e

S.ympl}~"'lum, April 1982.

35. Wang, Y., and M(lr1'is, R.. "Load Sha1'ing in Distributed Systems.:" 1.E££

Transa.ctionson Compllters, V(ll. C-34, No, 3, pp. 204-217, March 1985.

36. Stan kovi c. lA .. Ramamritham. K., and Clleng. S .. "'Ev:aluation (If a Flexible Task

Scheduling Algorithm for Distributed Hard Real-Time Systems,." 1.E££

Transacti011s 011 C0.111plltcrs, Vol. C-34, No. 12, pp. 1130-1143, December 1985.

37. Kurose, J.F... and Chipalkatti,R, "Load Sharing in Soft Real-Time Distributed

Computer Systems," 1£££ Transactions on Compllter Vol. C-36, No.8, pp. 9':)3-

1000, Augu'st 1987.

REFERENCES NOT CITED 132

REFERENCES NOT CITED

Bach, Maurice J, T.lJt:' J)t:'."fign of t.IJt:' l!JVIX (Jpt:'rating SY."ftt:'D), L011(1on : Prentice/Hall

International, Inc, .. 1986,

Casavant, Thomas L.. and J{uhl, Jon G., "Effect of Re.spol1se and St...1.bility 011 Scheduling

in Distributed Computing Systems,'"' IEEE· Transactions on Software

Engineering .. Vol. 14, No. 11, pp, 1578-1588, Noyember 1988.

Eager. Derek L, Lazerwska,'Edward D., and Zahorjan, John, "Adaptive Load Sharing in

Homogeneous Distributed Systems," 1.£££ Transactions 011 Softwart:' Entlineerinc ,
Vol. S£-12. No, 5, pp, 662-675, May 1986,

Lewis, T,G" and Smith, RJ Compt/ter Principles of.Afodelling and Simlllation, Houghton

Miftlin Company, 1979,

Liestman, Arthur L .. and Ca:iul'lbell, Roy H., " A Fault-Tolerant Scheduling Problem,'" 1.£££

Transactio11s 011 Software Engineering .. VoL S£-12, No, 11, pp. 1089-1095,

Novembe·rI986,

Lorin, Harold, Aspectso/,j)istri/wted CompllterSyste.l.l1s, John Wiley &.Sons, Inc., 1988.

Maekawa .. ~L Oldehoeft A.E., Oldehoeft RR Operatinc Systems,' Advanced Concept The

Benjamin/Cummings Pub, Co" 1987,

Pasquale, Joseph, "Using Expert Systems to Manage Distributed Computer Systems." IEEE

.Aleiw''lJrk. pp, 22-28, September 1988,

Peter~'Qn, James L, and Silberschatz, Abmham. t!penlliIlS' 5.Fslem t))ocepls. Reading,

Massachuttes : Addison-Wesley Pub. Co .. 1985.

Schrott. Gerhard. "A Generalized Task Concept for Multiprocessor Real-Time Syst.ems,"

AlicftJPrt)l,::QSJ;:illi{Oml Mkroprtlgr.:unmiog; 20, pp. 85-90.1987.

REFERENcEs NOT CITED 133

Sta.nkovic. John A" "Decimtr.a.lized Decision Making for Task R~alll)cat.ion in a Hard.

Real-Time System," IEEE TraoSJu::iio/lSiJ/l Compule~ VoL 38, No, 3, pp, 341-355,

Ma.rch 1989,

Stankovic..John A., '·'Stability and Distdbuted Scheduling Algorithms .. " .f.£££

Transactions on Joftware£ngineering, Vol. S£-I1.. No, 10, 1'P, 1141-1152, October
. 1985,

Tanenbaum .. Andrew S, COJJJpllter NetworKS, London: Prentice./Hall International, Inc.,

1981,.

	OTEZ348001
	OTEZ348002
	OTEZ348003
	OTEZ348004
	OTEZ348005
	OTEZ348006
	OTEZ348007
	OTEZ348008
	OTEZ348009
	OTEZ348010
	OTEZ348011
	OTEZ348012
	OTEZ348013
	OTEZ349001
	OTEZ349002
	OTEZ349003
	OTEZ349004
	OTEZ349005
	OTEZ349006
	OTEZ349007
	OTEZ349008
	OTEZ349009
	OTEZ349010
	OTEZ349011
	OTEZ349012
	OTEZ349013
	OTEZ349014
	OTEZ349015
	OTEZ349016
	OTEZ349017
	OTEZ349018
	OTEZ349019
	OTEZ349020
	OTEZ349021
	OTEZ349022
	OTEZ349023
	OTEZ349024
	OTEZ349025
	OTEZ349026
	OTEZ349027
	OTEZ349028
	OTEZ349029
	OTEZ349030
	OTEZ349031
	OTEZ349032
	OTEZ349033
	OTEZ349034
	OTEZ349035
	OTEZ349036
	OTEZ349037
	OTEZ349038
	OTEZ349039
	OTEZ349040
	OTEZ349041
	OTEZ349042
	OTEZ349043
	OTEZ349044
	OTEZ349045
	OTEZ349046
	OTEZ349047
	OTEZ349048
	OTEZ349049
	OTEZ349050
	OTEZ349051
	OTEZ349052
	OTEZ349053
	OTEZ349054
	OTEZ349055
	OTEZ349056
	OTEZ349057
	OTEZ349058
	OTEZ349059
	OTEZ349060
	OTEZ349061
	OTEZ349062
	OTEZ349063
	OTEZ349064
	OTEZ349065
	OTEZ349066
	OTEZ349067
	OTEZ349068
	OTEZ349069
	OTEZ349070
	OTEZ349071
	OTEZ349072
	OTEZ349073
	OTEZ349074
	OTEZ349075
	OTEZ349076
	OTEZ349077
	OTEZ349078
	OTEZ349079
	OTEZ349080
	OTEZ349081
	OTEZ349082
	OTEZ349083
	OTEZ349084
	OTEZ349085
	OTEZ349086
	OTEZ349087
	OTEZ349088
	OTEZ349089
	OTEZ349090
	OTEZ349091
	OTEZ349092
	OTEZ349093
	OTEZ349094
	OTEZ349095
	OTEZ349096
	OTEZ349097
	OTEZ349098
	OTEZ349099
	OTEZ349100
	OTEZ349101
	OTEZ349102
	OTEZ349103
	OTEZ349104
	OTEZ349105
	OTEZ349106
	OTEZ349107
	OTEZ349108
	OTEZ349109
	OTEZ349110
	OTEZ349111
	OTEZ349112
	OTEZ349113
	OTEZ349114
	OTEZ349115
	OTEZ349116
	OTEZ349117
	OTEZ349118
	OTEZ349119
	OTEZ349120
	OTEZ349121
	OTEZ349122
	OTEZ349123
	OTEZ349124
	OTEZ349125
	OTEZ349126
	OTEZ349127
	OTEZ349128
	OTEZ349129
	OTEZ349130
	OTEZ349131
	OTEZ349132
	OTEZ349133

