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ABSTRACT

EFFECT OF 3D TOPOGRAPHICAL SURFACES FOR THE

PERFORMANCE EVALUATION OF WIRELESS SENSOR

NETWORKS

A wireless sensor network (WSN) is a self-organizing network, consisting of tiny

wireless nodes which carry out a sensing and transferring task in collaboration. WSNs

are getting popular because of their ease of deployment, self-organizing capability,

low cost and their wide range of applications. This wide spectrum of applications

raises most of the time application specific research problems in WSN protocol stack

and algorithm design. However, the performance of the most proposed models in

literature, have been evaluated on planar surfaces, assuming a distance based sensing

and 2D freespace communication model, while assuming a random deployment scheme

which commonly takes place in 3D inaccessible terrains.

In this thesis, we investigated the problem of incorporating a realistic modeling

environment into sensor networks. Our motivation has been the non-realistic and con-

tradictive assumptions in WSN performance evaluations, where the formations of the

topographic surface that would normally block the communication and sensing task

are not taken into account. We incorporated a 3D terrain model into the performance

evaluation of a collaborative target tracking application. The evaluation is done on

various artificially generated but realistic terrains, on the performance metrics of mean

error which is a measure of tracking accuracy, number of communicating sensor pairs

and number of detecting sensors. Our simulations show that the performance predic-

tions could be misleading on the paper design, due to non-realistic assumptions with

regards to the WSN deployment region.
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ÖZET

3 BOYUTLU TOPOGRAFİK YÜZEYLERİN TELSİZ

ALGILAYICI AG̃LARIN PERFORMANS

DEG̃ERLENDİRMESİNE ETKİSİ

Telsiz algılayıcı ağlar, veri aktarımı ve algılama gibi işlemleri işbirliği içinde

gerçekleştiren küçük algılayıcı düğümlerinden oluşur. Algılayıcı ağlar, kolay konum-

landırılmaları , kendi kendine organize olabilmeleri, düşük maliyetleri ve geniş uygu-

lama alanlarından dolayı yaygınlaşmaktadır. Bahsedilen geniş uygulama alanları, algı-

layıcı ağların tasarımı sırasında uygulamalara özel bir takım sorunları da beraberinde

getirmektedir. Ancak literatürde var olan çoğu çözüm, bir yandan düzlemsel alan-

larda gerçekleşen mesafe tabanlı algılama ve iki boyutlu bir haberleşme modelini temel

alırken, bir yandan da normalde erişilmez arazilerde gerçekleşen rastgele konumlandırma

senaryosunu temel almaktadırlar.

Bu çalışma algılayıcı ağlarına gerçekçi bir modelleme ortamı dahil edilmesini

içerir. Motivasyonumuz, algılayıcı ağların performans değerlendirmeleri sırasında, topog-

rafik düzlemlerin etkilerinin hesaba katılmaması gibi gerçek dışı varsayımlardır. İşbirliği

içinde gerçekleşen bir hedef izleme uygulamasına üç boyutlu bir arazi modeli dahil

edilmiştir. Algılayıcı ağların yapay olarak yaratılmış arazilerdeki performans değerlen-

dirmesinde üç metrik hesaba katılmıştır; hedef takibindeki ortalama hata, haberleşen

algılayıcı çifti ve hedefi sezen algılayıcı sayısı. Benzetimlerimiz, algılayıcı ağlarının

konumlandırılma alanlarına yönelik gerçek dışı varsayımlardan dolayı, kağıt üstündeki

tasarımların ve performans öngörülerinin yanıltıcı olduğunu göstermiştir.
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1. INTRODUCTION

1.1. Motivation and Purpose

Advances in wireless communications, digital electronics and embedded systems

have led to the development of a new generation of ad hoc networks, namely wireless

sensor networks, (WSN). These devices are low cost, low power and capable of com-

municating wirelessly in short distances. A WSN consists of a number of tiny nodes

deployed inside the phenomenon, which carry out a sensing and transferring task in

collaboration [1]. Recently WSNs have received much attention due to their wide

range of applications including security and surveillance, control of complex systems,

and monitoring of environment. These wide spectrum of applications raise most of the

time application specific research problems in WSN protocol stack and algorithm de-

sign. Some of these problems include power efficient self organization techniques, sleep

scheduling, minimum energy routing, sensing coverage, deployment and target tracking.

These research problems need application-specific approaches for deriving an accurate

analysis on the WSN system. However, the performance of the most proposed models

in literature, have been evaluated on planar surfaces assuming a 2D freespace com-

munication and a distance–based sensing model, with no obstacles or blocking among

nodes and, nodes and the target. In real life, random deployment of a WSN, which

most models assume, takes place in 3D terrains, where blockage occurs and affects line

of sight (LOS) conditions, resulting in a degradation on the communication and sensing

task. Therefore, a more realistic model which considers the 3D terrain effects on both

sensing and communication tasks, needs to be built into sensor network performance

evaluation.

This thesis covers the problem of incorporating a 3D terrain model into the per-

formance evaluation of a collaborative target tracking application. The evaluation is

done on various artificially generated but realistic terrains.

Collaborative target tracking is important in terms of considering the 3D terrain
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effects on both communication and sensing tasks of the nodes. The goal of this thesis

is to show how the performance metrics of a WSN system, e.g., accuracy in a target

tracking application, in a realistic terrain simulation could deviate from those on a

planar surface simulation. Our simulations show that the performance predictions

could be misleading on the paper design, due to non-realistic assumptions with regards

to the WSN deployment region.

The rest of the thesis is organized as follows: Chapter 2 studies WSN founda-

tions in terms of WSN architecture and applications as well as covering the current

research problems. In Chapter 3, basics for 3D topography generation have been given.

Here, terrain data format, terrain processing, terrain generation methods and gener-

ation tools have been explained. Chapter 4 gives the background on target tracking

application where the 2D and 3D WSN evaluation has been performed. In Chapter 5,

the performance results of simulations have been analyzed. We finally conclude and

define the future work in Chapter 6.
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2. WIRELESS SENSOR NETWORK FOUNDATIONS

2.1. Background

The rapid progress of wireless communication and embedded MEMS technolo-

gies have made wireless sensor networks possible. These wireless nodes are capable

of storing, collecting, and processing ambient information and communicating with

the neighbouring nodes. In the past, sensors were connected with wire lines [2]. To-

day wireless environment is combined with ad–hoc networking technology to facilitate

communication among sensor nodes.

In WSNs, 100s to several 1,000s of sensor nodes are densely deployed throughout

the sensor field, where each sensor independently senses the environment but collabo-

ratively achieves complex information gathering and dissemination tasks like intrusion

detection, target tracking, localization, environmental monitoring, health monitoring

and remote sensing [3]. The nodes are often randomly deployed via scattering of nodes

in the field as shown in Figure 2.1.

Figure 2.1. Sensor nodes scattered in a field

These sensor nodes collect data and route data back to the sink by multihop

infrastructureless architecture. The sink conveys the gathered data to the task manager
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via internet or satellite channel. The sink node, which is also referred to as a collector

node cnode, is often more capable than the other nodes in terms of computation, storage

and energy resources. Multiple WSNs can be integrated into a larger network through

internet or interface of cnodes, as seen in Figure 2.2.

Figure 2.2. WSN topology

The realization of a sensor network architecture is affected by many design issues,

which have not been addressed by previous ad hoc networking techniques. To satisfy

the goals of these new generation ad hoc networks, several design factors should be care-

fully analyzed, such as fault tolerance, mobility, scalability, production costs, operating

environment, sensor network topology, hardware constraints, transmission media, data

throughput, message latency, power consumption, and security. For further information

on these issues, [4, 5] could be taken as references.

Sensor networks have wide range of applications [5]. These applications include:

• Industrial Control and Monitoring

WSNs could be used in industrial safety applications for detection and identifi-

cation of dangerous materials, poisons, etc. Monitoring and control of moving

or rotating machinery is another suitable area for WSNs. With their low energy

requirements, sensor networks are effective means in monitoring the temperature,

lubrication flow and vibration of the components.
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• Home Automation and Consumer Electronic

In smart home applications, one can use a PDA type device and remotely control

the household devices, like television, DVD player, stereo, lights, and locks that

are equipped with a wireless sensor network connection. Other examples are

controlling the temperature of the house, combining multiple events such that,

when a call is received, home entertainment system is turned off and recording a

person’s weight without manual intervention. House security system is another

home application area of WSNs. The WSN integrated security system could be

used to detect unlocked doors, a broken window and in turning off indoor lights

to save energy.

• Security and Military Sensing

WSN security applications can be extended to several military applications. Their

size, camouflage property, distributed control and routing structure (i.e., without

single point of failure), and use of spread spectrum technique in communication,

make them difficult to be detected and destroyed by enemies.

A WSN could be typically used for replacing soldiers or mines in security-sensitive

areas such as borders, tactical fields, etc. WSNs could also be instrumental

in identifying targets of potential attack and locating friendly forces. Seismic

vibration sensors, magnetic sensors, ultrawideband radar sensors could be used

for these applications.

• Asset Tracking and Security Chain Management

An example of asset tracking application is tracking the records of tens of thou-

sands of containers in a large port.

A related application in supply chain management is the identification of location

of items in large warehouses. The result of a lost item is that, it is unavailable

for sale.

• Intelligent Architecture and Environment Sensing

Environmental application areas of WSNs include rain gauge, soil moisture mea-

surements, automation of farming equipment, location determination of animals

within the ranch and sensing of environmental contaminants.

• Health monitoring

“Health monitoring is defined as the monitoring of non-life-critical health infor-
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mation to differentiate it from medical telemetry”, [5]. An application of WSNs

in health monitoring is monitoring one’s pulse and respiration via wearable com-

puters which is then sent to personal computers for analysis. Others include

tracking daily blood sugar, chronic disorders, etc.

2.2. Performance Evaluation of WSNs

As discussed in previous sections, the performance evaluation of WSN research

problems are mostly modeled on planar surfaces. This section aims to give a back-

ground on the proposed techniques for these WSN research problems. All of the works

defined below are evaluated on 2D surfaces.

2.2.1. Coverage and Deployment

Sensor network layer design, e.g., physical layers [6, 7, 8], media access layer

[9], network layer [10, 11, 12], has been a popular research problem in recent years.

Although these issues have been largely investigated, application layer protocols remain

still an unexplored area. One should consider application-specific issues during the

algorithm design of a WSN protocol, e.g., a coverage degree is required for every point

in the monitoring task while for target tracking only certain regions should be covered

with a certain degree.

Coverage and deployment are among the primary research challenges in sensor

network design. The coverage problem is defined as, how well the sensing field is mon-

itored by sensors while the deployment problem is to decide on a deployment strategy

to meet the coverage requirements of the sensing field [2].

Deployment problems are discussed in [13, 14]. In [13], the model for WSN

evaluation assumes all sensors are identical and able to communicate with the base

station, while the deployment algorithm tries to maximize the coverage area. In [14],

the probability of detecting a target passing a predefined region determines how well

the deployment is done.
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Coverage problems have also been widely discussed and formulated in various

ways in literature. Circle covering and art gallery problem are computational geometry

approaches for evaluating the coverage problem in WSN. Circle covering is the problem

of arranging a fixed number of circles that fully cover the plane while minimizing the

radius of circles. Art gallery problem [15] is the problem of deciding on the number of

guards such that every point in the art gallery is monitored by at least one guard.

Some works consider energy efficiency while monitoring the coverage as in [16,

17, 18]. In [19], authors study placement of sensors with a full coverage and minimal

energy consumption. The heuristic authors developed, divides the sensor nodes into

mutually exclusive sets such that a set provides a complete coverage. Only one set is

active and consumes power at any moment. In [20], implications to network planning

of performance of the sensor networks have been analyzed, depending on three coverage

measures. Area coverage is the fraction of area covered by sensors, node coverage is

the fraction of sensors that can be removed without reducing the covered area, and

detectability is the capability of sensor network to detect an object moving in the

network.

In [21], sensing coverage and breach path is determined by applying the Neyman-

Pearson detection model. The authors analyze the breach probability of the weakest

breach path, besides the deployment strategy in a surveillance wireless sensor network

(SWSN). Here, the security level of an SWSN is associated with the breach probability

which is defined as “the miss probability of an unauthorized target passing through

the field”. For simplification, the area to be monitored is modeled as a 2D connected

grid. At each node of the grid, detection probability is calculated and the weakest

path is derived through calculating the miss probability of the path using Dijkstra’s

shortest path algorithm. This probability is then used to estimate the required number

of sensors for a given area and a false alarm rate.
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2.2.2. WSN Terrain Modeling

In the literature, only a few researchers have considered terrain effects when

attacking the problems of WSN, such as routing, localization and sensing coverage. In

[22], the authors optimize the number of sensors for a given area and determine their

placements for a target detection system. The aim is to minimize the cost by reducing

number of sensors, yet provide sufficient sensor coverage by taking into account the

environmental effects (obstacles, such as buildings, trees, etc.) and redundancy due to

failures.

An inter-related issue to the target detection is the localization problem. In many

senses, localization is a fundamental problem in WSN. First, when collecting data from

sensors, their location must be stamped in order to output meaningful results. Second,

in target detection systems, the exact position of the sensor which communicated the

data associated with the sensed target, must be known. Besides, most of the com-

munication protocols rely on the knowledge of sensor positions, where the location of

the sensors is not predetermined since they are mostly dropped from an airplane in

a remote terrain. Work done in [22], assume that the localization of the sensors has

been successfully computed in order to realize a target detection scenario. Instead of

utilizing a binary detection model which depends on the range of sensors, probabilistic

detection is used with the function eαd where d is the distance and α is the detection

quality of the signal. The deployment area is modeled as a grid where sensor at a

grid point i is supposed to detect a target at a grid point j, whose probability is pij.

Without a terrain pij and pji would be equal, but in the presence of terrain they are

not equal, since “a sensor at a lower elevation is unlikely to detect a target at a higher

elevation, but a sensor at a higher elevation can detect a target at a lower elevation”,

[22]. Here, obstacles are modeled by altering detection probabilities of grid pairs, oc-

clusion either leads to zero detection probability or reduces it. Line equations are used

in this work in order to determine the LOS. However, terrain structure is modeled only

through random obstacles.

In [23], WSN is used to determine a sniper’s location and bullet’s trajectory by



9

measuring the arrival of acoustic events in a terrain environment. According to a clas-

sification, the sensors eliminate multipath effects, and only consider LOS signals. A

WSN is also utilized in a snow monitoring application for avalanche probability esti-

mation [24]. The project is currently developing models for mountainous terrains and

running simulations on the terrain maps to determine the optimal node placement. In

[25], environmental effects such as obstruction of sensor signals from the terrain is taken

into account when performing localization in WSN. In order to avoid miscalculation

of distance of acoustic signals, when LOS is obstructed, cameras are placed on beacon

nodes to detect which sensor pairs have LOS and which do not, and thus determin-

ing which signals must be taken into account when performing localization. Another

localization related work has been done in [26]. Here localization is performed by

taking into account the anisotropic network topology and complex terrain properties.

The Multidimensional Scaling (MDS) technique which is a dissimilarity analyzer, can

determine spatial structures in the data. MDS analyzes the dissimilarity of distance

information between sensors and deduce their coordinates.

2.2.3. WSN Modeling in 3D

Many existing results on WSN algorithms in Section 2.2.1 are evaluated on planar

networks, however in real life, random placement of nodes take place in inaccessible

terrains. Therefore, three dimensional settings must be considered to reflect real life

situations, [27].

In [2], a solution for 3D coverage problem is tackled at polynomial time. A

field is said to be α-covered if every point in the sensing field is at least covered by

α sensors assuming that the sensing range of a sensor is modeled by a 3D ball. α-

coverage is related with how many neighbouring balls intersect a sensor’s ball. In [3],

the deployment problem in 3D is analyzed. For energy efficiency, minimum number of

sensors serve as an optimality measure for WSN. An optimality measure is the average

number of spheres that contain a point in the field. Work in [28] also tries to solve

the coverage and coverage hole problem in 3D. The goal is to minimize the number

of sensors and guarantee no coverage hole in the target area which means that every
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point in the area is covered by at least one sensor. 3D space coverage for tactical

underwater sensor networks is analyzed in [29]. Sensors are initially deployed in water

via buoys. They can be lowered to various depths to maximize 3D space coverage. The

optimization problem is defined as maximizing the space covered by each node and

average distance between node pairs.

2.3. Target Tracking

Target tracking, which is defined as the processing of measurements obtained

from a target to get an estimate of its current state is another research challenge in

WSNs. Target tracking has its applications in Command, Control Communications,

Computer Intelligence, Surveillance and Reconnaissance (C4ISR) in military, [30]. The

spatial coverage, and multiplicity in the sensing task, which comes from the distributed

nature of WSNs, facilitate the tracking of targets in coordination to improve the target

localization accuracies. Targets to be tracked could be either vehicles or people travers-

ing across the range of many sensors in the phenomenon. The tasks associated with

tracking, namely the detection, classification, and tracking of moving, low-observable

events require non-local collaboration among sensors [31], which in turn brings new

challenges with it such as, sensor information fusion, communication, sensor manage-

ment and decision making.

Data fusion, in other words, aggregation of network data in WSNs, reduces track-

ing errors. Sensor collaboration based on sensor selection saves bandwidth by prevent-

ing redundant packets and data requests wandering in the network, thus prevents link

failures and increases the network lifetime. In data fusion, raw signals that are sam-

pled at individual nodes, are not directly communicated to other nodes. Instead the

summary of statistics are stored locally and these statistics which are small in size are

relayed to other nodes upon request.

The main problem in the collaborative target tracking is to answer, who should

sense at any given time, what has to be sensed and who the information must be

transmitted to. An answer to these problems, in the observation of non-local moving
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events, would to wake up the sensors in the region where the event has been predicted to

move into, or where there has been considerable physical change. For low-observable

events, the collaboration can include dynamic selection of sensors’ data, in order to

make data fusion and thus improve detection accuracy. These issues are also important

in terms of network efficiency. At a given time many sensors make observations and

flood the network with information packets. This necessitates smart decisions on who

should sense at any given time.

In collaborative target tracking, not all sensors provide useful information as to

target state estimation. In the process of incrementally updating the target estimate

by adding in the measurements of neighbouring sensors, a decision has to be made

as to selecting an optimal subset and optimal way of adding in these measurements

into the current belief. The criteria for deciding on the optimal subset mostly uses the

sensor position, sensing modality information without communicating data regarding

the measurements at sensors [31].

As discussed before, the task of tracking brings the energy optimization problem

with it. Scarce energy resources, e.g., limited battery leads to low detection probability

and false alarms, resulting in over–flow data wandering in the network. Therefore a

target tracking application should take energy efficiency as the primary concern in the

algorithm design. One approach to conserving energy-efficiency is to perform the signal

processing tasks only that are relevant to the current query. When there is no query

the node stays in the stand-by mode. Also, the node does not publish the processed

information unless it is asked for it.

In [31], the target tracking problem is presented as an information optimization

problem. This approach has been applied to sensor querying and data routing. This

enables a sensor to make a decision on sensing and communication based on the infor-

mation gain and cost. The information gain is represented in Figure 2.3.

The uncertainty in estimation is modeled by a Gaussian distribution, in the el-

lipsoids. The dashed ellipsoids represent the updated beliefs after incorporating mea-
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Figure 2.3. Sensor selection based on information gain

surements either from S1 and S2, while the solid ellipsoid represents the current belief.

Although the area of uncertainty is reduced by the same amount in both of the cases,

S2 has the longer principal axis in the uncertainty distribution, therefore S1 is selected

over S2.

In [32], a location-aware data routing approach that limits the scope of collabo-

rative signal processing to relevant subset of nodes has been adapted. Location aware

routing means, routing of information in a WSN should be based on geographies rather

than the nodes. In other words, the geographic location of the nodes determine the

routing rather than arbitrary node identities. The relevant nodes are selected from

those which conserve networks resources, e.g., energy and bandwidth. The phenomenon

of interest is divided dynamically into spatial cells. Within each cell, the cell manager

coordinates the tasks. The tracking task consists of five steps which is explained in

Algorithm 1. The location-aware routing restricts data distribution to regions, directly

affected by the data.

In [33] authors proposed similar solutions to energy-efficient target tracking.

Moreover, they also handled the multiple target tracking problem. Similarly, they
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Algorithm 1 Target tracking algorithm [32]

1: Cells that are near to the potential target are put on alert.

2: If the target is detected, the cell becomes active.

3: Tracking is done on the target of the desired type, which includes target location,

speed and direction estimation for future predictions.

4: Target related data is sent to other cells based on the predictions.

5: The alerted cells, where the target is detected, begin tracking task and the process

repeats.

divided the region into geographic locations, named cells, and predicted target motion

from one cell to another. The cells which the target is predicted to move into are acti-

vated for detecting potential targets. The nodes in the activated cells run the five-step

algorithm in Algorithm 2.

Algorithm 2 Target tracking algorithm [33]

1: Perhaps all the nodes in the activated cells detect the target, and store the timing

of detection together with the detection data. The nodes who detected the target

report their energy detector outputs to the manager node.

2: At the following time instants, the manager node tries to localize the target based

on the energy outputs of the nodes. The simplest algorithm for localization, is to

base the location on the highest signal. There are more sophisticated algorithms for

localization at the cost of higher complexity.

3: The manager node uses information of target positions from the signal outputs, to

predict the future target positions.

4: The predictions form the cells the target is most likely to move into. These cells

are activated for potential target motion.

5: One of the potential cells is activated since now the target is in that cell, others go

into stand-by mode for energy conservation.

Authors also considered multiple target tracking problem, which is divided into

two cases: 1) The targets occupy different cells in time and space. In this case, Al-

gorithm 2 is applied for each track. 2) The restriction of targets in time and space

is too restrictive. In such a case, classification algorithms are needed to operate on

spatial-temporal target signatures. This necessitates priori statistical knowledge about
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types of targets.

In [34], authors proposed a hierarchical multiple target tracking algorithm that

is robust against false alarm rates and low detection probability. The target tracking

algorithm is capable of initiating and terminating the tracking task. The observations

in nodes are first fused locally and then transmitted to super nodes, thus reducing

the network communication. The sensor network model is based on a 2D surveillance

region. Putting some of the nodes into dormant state by sleep schedule [35] is another

trend for energy efficient target tracking applications. In [36] nodes that are far away

from targets go to sleep and save energy while guaranteeing accurate tracking and

timely delivery.

In [30], the performance of a collaborative target tracking based on maximum

mutual information-based sensor selection has been evaluated with regards to Kalman

and Information filter. Mutual information between the target state and the observa-

tion measures how much the current observation tells about the current target state.

The maximum mutual information based sensor selection algorithm for the distributed

data fusion architecture is depicted in Figure 2.4. The algorithm defined in Figure 4.1

is a more refined form of this one.

The authors defined a mutual information gain, J . If J is sufficiently large, then

the sensor shares its information with the neighbouring nodes, otherwise it does not

transmit. To decide whether its own mutual information is sufficiently high, a sensor

should also know the neighbouring sensors’ mutual information. This can be estimated

from the neighbouring sensors’ characteristics (e.g., standard deviation of target range

observations, standard deviation of target bearing observations, communication trans-

mission power) and position information. The work also adapts an Information Con-

trolled Transmission Power adjustment (ICTP) scheme in which the communication

transmission power of a sensor is regulated according to its information content. Upon

the simulations, authors showed that the proposed method gives better results than

Kalman and Information filter, in terms of energy usage for the desired target localiza-

tion accuracies. They also compared the performance of the sensor selection algorithm
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Figure 2.4. Target tracking algorithm according to maximum mutual information

based sensor selection

with regards to minimum Mahalanobis distance based selection and random selection

and showed the proposed method has achieved better performance in terms of mean

error at a given channel capacity and energy exhausted at a given mean error.

This thesis uses a collaborative target tracking application in the performance

evaluation of a WSN. It makes a comparative performance study between various

terrain types and the 2D target tracking model that we take as reference [30]. Our study

takes the collaborative data fusion part (excluding the maximum mutual information

based sensor selection and ICTP scheme) of this work. The basics of the referenced
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model has been explained in detail in Section 4.2.
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3. 3D TOPOGRAPHY GENERATION

3D terrain generation is achieved with Perlin Noise in 2D in Geofrac environ-

ment, [37]. The resulting heightmap is exported to Terragen terrain format [38], for

visual purposes, e.g., rendering, and further processing by the sensor network simula-

tor program. This chapter aims to give a background information on 3D topography

generation, i.e., background on heightmaps, heightmap processing, terrain generation

and rendering tools that we use, and finally terrain generation methods.

Figure 3.1. A heightmap

3.1. Heightmaps

Heightmaps are 2D representation of terrains in a grid form, consisting of two-

dimensional array of height values. The x and y coordinates are associated with z

values, which represent the terrain height. To simulate a random continuous terrain

at rendering time, points between grid points are interpolated. During processing of

the heightmap, three points with coordinates (x, y, z) define a triangle in 3D space.

Heightmap processing is explained in the next section.

By assigning a color to each height value, a heightmap could be displayed as an
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Figure 3.2. Rendered form of heightmap in Figure 3.1 (rendered in Terragen)

image. Higher points in the terrain (large values) are represented by white, and lower

points (small values) are represented by black as seen in Figure 3.1. The rendered form

of the heightmap can be seen in Figure 3.2.

3.2. Heightmap Processing

The terrain consists of grid points with height values. Each grid square is divided

into two triangles as seen in Figure 3.3. Figure 3.3 denotes the 2D top view of the

heightmap and the triangles.

The LOS between two points is calculated according to the ray-triangle intersec-

tion algorithm in [39, 40]. The function takes 5 vectors as inputs: orig, dir, vert0, vert1

and vert2. The orig is the starting point vector and dir is the unit direction vector

from the start vector to the end vector. Each vector is defined by three coordinates

in 3D space. The x and y, are the grid coordinates with z being equal to the terrain

height plus sensor height (10 cm) or target height (150 cm). The ray-triangle intersec-

tion algorithm returns whether the ray intersects the triangle defined with the vertices

vectors, vert0, vert1, and vert2. The algorithm transforms the origin of the vector and

returns the vector (t, u, v)T where t is the distance to the intersection point and (u, v)

are the coordinates of the intersection.
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The ray-triangle intersection algorithm is applied to every two triangles in each

grid of the rectangle between the source and destination point, e.g., in Figure 3.3 at

most 12 triangles are processed. If the algorithm intersects one of the triangles before

reaching the final triangle, it does not proceed further. An optimization could be

developed in terms of processing less number of triangles, however this has not been

studied in the scope of this thesis.

Figure 3.3. Heightmap grid

3.3. 3D Terrain Generation Tools

• GeoFrac

Geofrac2000 [37], is a shareware program for generating heightmaps of realistic

terrain data and outputting texture maps, 3D and Polygon Meshes. As well as

generating a random terrain, it has various tools for manipulating 2D height-

fields such as sculpting, digging, smoothing, and elevating terrains. These meth-

ods are applied either using sophisticated techniques or manual modifications

via grayscale painting. Random terrains are generated with various methods,

only two of them are discussed here. Perlin Noise (Section 3.4.1) and Midpoint

Displacement (Section 3.4.2).

• Terragen

Terragen [38], is a work-in-progress scenery generator that creates near-photorealistic
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landscape images and animations. It is also capable of creating special effects,

art and recreation on landscape images.

Besides its terrain generation capabilities, Terragen is a rendering program. It

has also export/import options between various formats, e.g., RAW, SGI and

LIGHTWAVE 3D objects. In our study, we only used the file format in heightmap

processing and rendering capability of the program, in order to present the vi-

sual image of the terrain where the target tracking applications run. Previously,

we used Terragen to export the terrain into RAW file format, in order to be

processed by the Matlab simulation program. However we have seen that the

terrain structure degenerate when the heightmap values are converted to 8 bit

unsigned values. We have used Matlab script [41] for processing our terrains in

the Terragen format. The terrain file format is given in Appendix A.

3.4. Terrain Generation Methods

3.4.1. Perlin Noise

In nature many phenomena exhibit fractal behaviour: large and small variations,

[42]. The examples could be seen in the distribution of patchy grass on a field, waves

in the sea, the movements of an ant, the movement of branches of a tree, patterns in

marble, and in winds. Also they have various levels of detail, when carefully noticed. A

common example is the pattern of a mountain range. When it contains large variations

in height, it becomes a mountain, medium variations come out as hills, small variations

come out as boulders and tiny variations come out as stones. The Perlin Noise generates

this pattern by simply adding up noise functions at different scales.

However, random number generators are not enough to create a Perlin Noise, al-

though they are common in computer programs for generating unpredictability. Ran-

dom number generators are generally used for making objects move and behave more

naturally. However, sometimes could output too sharp results [42], so that the resulting

patterns do not look natural.
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In this thesis the landscapes (terrains) are generated with 2D Perlin Noise, since

the landscapes are perfect application areas for 2D Perlin Noise. In the generation

phase, the landscape does not need to be stored anywhere in memory, and the height

of any point can be calculated easily, unlike the subdivision method, (Section 3.4.2.2).

Perlin noise is also suitable for generating textures, e.g., marble, wood, swirly

patterns. A 3D texture could also be defined. The procedure can be thought as a solid

block of material, from which an object can be ’carved’. This allows us to produce

textures which can be applied to any shaped object without distortion.

3.4.1.1. Noise Functions. A noise function is a seeded random number generator. An

integer is the input as a parameter to the generator, and a random number based on

that parameter is the output. It must produce the same output if input the same

parameter. The discrete noise function in Figure 3.4 is obtained by assigning a random

value to every point in the X axis. In Figure 3.5 a continuous function can be defined

that takes a non-integer as a parameter, by smoothly interpolating between the values.

Figure 3.4. Discrete noise

Figure 3.5. Interpolated noise function

3.4.1.2. Background on Noise Functions. There are two basic parameters associated

with a sin wave.
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• The wavelength of a sinusoidal wave is defined as the distance from one peak to

another, whereas the frequency is defined to be 1

wavelength
.

• The amplitude is the height of the wave.

In the noise function of Figure 3.6, the spots are the random values along the

dimension of the function. Here, the amplitude is the difference between the minimum

and maximum values the function could have. The wavelength is the distance from

one spot to the next and the frequency is defined as 1

wavelength
.

Figure 3.6. Noise Wave

3.4.1.3. Generating Perlin Noise. If lots of such smoothed functions with various fre-

quencies and amplitudes are added up, a noise function is created. This is the Perlin

Noise Function as in Figure 3.7. It is obvious that this function has quite variations of

type large, medium and small.

The same technique could be applied in 2D and generate a 2D Perlin Noise as

seen in Figures 3.8 and 3.9. Many computer generated landscapes are made using this

2D noise functions. With 2 dimensional noise, the numbers input are the coordinates.

The noise function defines every (x, y) point. The most common use of this is textures.

The one dimensional example in Figure 3.7 uses twice the frequency and half the

amplitude for each successive noise function added, which is quite common. However,

Perlin Noise functions can also be created with different characteristics by using other

frequencies and amplitudes at each step.
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Figure 3.7. Perlin Noise Function

Figure 3.8. 2D Noise Functions

Figure 3.9. 2D Perlin Noise Function
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3.4.1.4. Interpolation. The values in the noise function needs to be smoothed out, in

order to look like a realistic object – in our case the landscape. A standard interpola-

tion function takes three inputs; a and b, the values to be interpolated between, and

x which takes a value between 0 and 1. Based on the value of x, the interpolation

function returns a value between a and b. It returns a when x equals 0, and it returns

b when x is 1. It returns some value between a and b, when x is between 0 and 1.

There are three interpolation types commonly used, [42]:

Linear Interpolation

Although it is a simple algorithm, it might not give good results.

function Linear Interpolate(a, b, x)

return a*(1-x) + b*x

end of function

Cosine Interpolation

This method gives a much smoother curve than Linear Interpolation, although it might

result in a slight loss of speed.

function Cosine Interpolate(a, b, x)

ft = x * 3.1415927

f = (1 - cos(ft)) * .5

return a*(1-f) + b*f

end of function

Cubic Interpolation

This method gives very smooth results, but much slower than the other two methods

described. The interpolation functionS described above took three inputs, the cubic

interpolation takes five. Instead of a and b, we now need v0, v1, v2 and v3, along with

x as before. These are:
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function Cubic Interpolate(v0, v1, v2, v3,x)

P = (v3 - v2) - (v0 - v1)

Q = (v0 - v1) - P

R = v2 - v0

S = v1

return Px3 + Qx2 + Rx + S

end of function

3.4.1.5. Smoothed Noise. Aside from interpolation, the output of the noise function

can also be smoothed to make it less random looking, and also less square in the 2D

version, [42].

Rather than taking the value of the noise function at a single coordinate, the average

of the value, and it’s neighbouring values could be taken.

In Figure 3.10, the diagram illustrates the difference between smoothed noise, and

the same noise function without smoothing. It is clear that the smooth noise is flatter,

without the extremes of unsmoothed noise, and the frequency is nearly the half. Unlike

in one-dimension, smoothing is more useful in 2D, where its effect is to reduce the

squareness of the noise (Figure 3.11).

Figure 3.10. Smoothed and unsmoothed noise

3.4.2. Midpoint Displacement

3.4.2.1. Midpoint Displacement in One Dimension. One-dimensional midpoint displace-

ment is a suitable algorithm for drawing the ridgelines, since mountains appear on a

distant horizon, [44]. The pseudocode is shown in Algorithm 3.

Figures 3.12 through 3.14 illustrate generating a fractal through Midpoint Dis-
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Figure 3.11. Smoothed and unsmoothed noise in 2D

Algorithm 3 Midpoint displacement algorithm

1: Start with a single horizontal line segment

2: for all i sufficiently large do

3: for all line segment in the scene do

4: Find the midpoint of the line segment

5: Displace the midpoint in Y by a random amount

6: Reduce the range for random numbers

7: end for

8: end for

placement. In Figure 3.12, the random number range is [−1.0, 1.0], so the midpoint of

the line is displaced by a random amount between [−1.0, 1.0]. In Figure 3.13, the range

is reduced to half and this time, it is [−0.5, 0.5]. The two midpoints are displaced by

the random amounts in this range. Finally in Figure 3.14, the range is [−0.25, 0.25]

and the four midpoints are displaced by four random numbers in this range.

Figure 3.12. Midpoint displacement: first iteration

The roughness of the fractal depends on how much the random number range

is reduced. If it is reduced more during each pass of the loop, the ridgeline will look

smoother. Otherwise, ridgeline will be jagged.
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Figure 3.13. Midpoint displacement: second iteration

Figure 3.14. Midpoint displacement: third iteration

3.4.2.2. Midpoint Displacement in Two Dimensions. We start with an empty 2D ar-

ray of points. Array must be square and the dimension should be a power of two, plus

one (e.g., 33x33, 65x65, 129x129). The four corner points are set to the same height

value. Here, we used a 5x5 array as an example, (Figure 3.15). The four corner “seed”

values are highlighted in black.

Figure 3.15. Midpoint displacement algorithm in 2D

The iterative subdivision routine has two steps, [44]:

The diamond step: Taking a square of four points, we generate a random value

at the square midpoint, where the two diagonals meet. The midpoint value is calculated

by averaging the four corner values, plus a random amount. This gives the diamonds

when multiple squares are arranged in a grid.

The square step: Taking each diamond of four points, we generate a random value

at the center of the diamond. We calculate the midpoint value by averaging the corner

values, plus a random amount generated in the same range as used for the diamond

step. This gives the squares again.
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In the first pass, at diamond step, a value at the center of the array based on the

height of the four corner values is generated. The four corner values are averaged and

added a random value from the range -1.0 to 1.0. This new value is shown in black,

and the existing corner values are shown in gray in Figure 3.15 b.

At square step, the same range is used for generating the random values. There

are four diamonds at this stage; which meet in the center of the array. Four diamond

centers are calculated this time. The corners of the diamonds are averaged to find

the base for the new values. Figure 3.15 c shows the new values in black and existing

values in gray.

In the second pass, we again start with the diamond step. The second pass has

four squares instead of one, unlike the first pass. This time, four square centers are

calculated. Also, the range for generating random numbers is reduced. For example,

the random number range is reduced from (-1.0, 1.0) to (-0.5, 0.5). In Figure 3.15 d,

the four square center values that are calculated at this step are shown in black.

Finally, the square step in the second pass is calculated. With 12 diamond centers,

12 new values are calculated, which are shown black in Figure 3.15 e.

3.5. Terrain Generation with Geofrac

This section demonstrates various terrains under different terrain generation pa-

rameters. Terrains are generated using Perlin Noise function. The harmonics and the

frequency determines the turbulence of the terrain while the amplitude determines the

vertical scale in the heightmap grid points.

Terrains generated with Perlin Noise, are stored as heightmaps in the Geofrac

and exported to Terragen for rendering. Both in the terrain generation and export

phase, the vertical scale (amplitude) can be adjusted, which also affects the topography.

Figures 3.16 through 3.23 are rendered in Terragen for demonstrative purposes.
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Figure 3.16. Terrain generated with Perlin Noise: harmonics=1, frequency=0.15,

amplitude=50

Either decreasing the harmonics or increasing the frequency causes a wiggliness,

sharp peaks in the terrain. The effect of harmonics on the topography could be seen

more clearly on Figures 3.16 through 3.19. Here, while the frequency is set to 0.15,

harmonics increase. As the harmonics increase, the terrain gets smoother, as in Figure

3.19. At a fixed harmonics value, terrain gets peaky as the frequency is increased as

demonstrated in Figures 3.19 through 3.22.

The effect of the amplitude on the topography of the terrains can be seen in

Figures 3.21 and 3.23. Both of the terrains have been created by the same harmonics

and frequency values. However, the former looks much smoother than the latter. It

comes from the fact that they have different vertical scales, although the turbulence is

the same. It is clear that Figure 3.23 is much more natural looking than Figure 3.21.

The high frequency values when combined with a small vertical scale, resulted in small

ledges on the surface in Figure 3.23, whereas the outcome of the high frequency when

combined with a big vertical scale resulted in shaper peaks in Figure 3.21. Terrain 2

(Figures 4.4 and 4.5 ) is similar to the terrain in Figure 3.23. Although they have the
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Figure 3.17. Terrain generated with Perlin Noise: harmonics=2, frequency=0.15,

amplitude=50

same parameters, they are not exactly the same, since the program creates the terrain

randomly at each time.

We can conclude that high frequency values mostly result in unrealistic terrains,

with sharp peaks, unless they are combined with small amplitude values, which convert

the sharp peaks into small ledges on the surface.



31

Figure 3.18. Terrain generated with Perlin Noise: harmonics=4, frequency=0.15,

amplitude=50

Figure 3.19. Terrain generated with Perlin Noise: harmonics=6, frequency=0.15,

amplitude=50
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Figure 3.20. Terrain generated with Perlin Noise: harmonics=6, frequency=0.3,

amplitude=50

Figure 3.21. Terrain generated with Perlin Noise: harmonics=6, frequency=1,

amplitude=50
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Figure 3.22. Terrain generated with Perlin Noise: harmonics=6, frequency=10,

amplitude=50

Figure 3.23. Terrain generated with Perlin Noise: harmonics=6, frequency=1,

amplitude=5
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4. BASICS FOR 3D TOPOGRAPHIC WSN EVALUATION

IN TARGET TRACKING

Many existing performance evaluations on WSN take place on planar networks,

which do not reflect the real life situations. These evaluations assume a random de-

ployment scheme in evaluations. However, sensor nodes are randomly deployed in

inaccessible terrains, where the terrain properties, e.g., ledges, rocks may block line of

sight conditions, between sensor nodes and the sensor node and the target. This work

aims to show the performance of a target tracking application under a realistic scenario

and depicts whether the 2D results are realistic enough since the communication and

sensing capabilities change in 3D terrain. The evaluations are done on various terrains,

including hilly, smooth, ledgy terrains and aim how different terrains affect communi-

cation and sensing capabilities and resultantly the performance of the target tracking

application.

This chapter aims to provide the background on the target tracking model we take

as a reference and the terrain environment where the sensors are deployed. In Section

4.1 the need for unbiased converted measurements in target tracking application is

explained. Section 4.2 aims to provide the necessary background on target tracking.

In Sections 4.2.2 and 4.2.3 the observation model parameters in 2D/3D are derived and

also 3D to 2D mapping in the terrain environment is explained, and finally in 4.2.4,

the data fusion architecture is defined.

Section 4.3 explains sample surfaces; the terrains where the WSN target tracking

application is evaluated, together with their generation parameters. The terrains are

shown in their rendered forms.
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4.1. Unbiased Target Tracking

In target tracking applications, cartesian coordinates are the most suitable form

of representing target motions. However, in most systems, measurements of the target

position are reported in polar coordinates (range, bearing, elevation angle) with re-

spect to the target position. The measurement errors have considerable affects on the

performance of the target tracking system. There are two implementation alternatives

to remedy this problem. The first method is to use a linear Kalman filter with mea-

surements converted to a Cartesian frame of reference. Here the errors of the converted

measurements are correlated. The second method is to use an extended Kalman filter

(EKF) that uses a mixed coordinate filter by incorporating the original measurements

in a nonlinear fashion into target position estimation, [45].

The classical conversion from polar to cartesian coordinates results in biased and

inconsistent estimates for cross-range measurement error. The main idea for unbiased

conversion for 2D and the derivations for the Gaussian noise case is given in Section

4.2.2, then continued for the 3D case in Section 4.2.3.

4.2. Target Tracking Data Processing Architecture

In this section, the process and observation models for target tracking are defined.

Then the foundations of the distributed data fusion architecture are presented.

4.2.1. Process Model

The target process is a four dimensional vector that consists of the two dimen-

sional position of the target, (ξ, η), and the velocity of the target, (ξ̇, η̇), at each of

these dimensions. The target process state vector is defined by

x = [ξ η ξ̇ η̇]T , (4.1)
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and it evolves in time according to

x(k + 1) = Fx(k) + v(k) (4.2)

in [30]. Here, x(k) is the real target state vector at time k as given in (4.1), F is the

process transition matrix, and v is the process transition noise.

4.2.2. Observation Model in 2D

Sensors can only observe the first two dimensions of the process. The velocity

of the target is not observable by the sensors. Furthermore, sensors collect range and

bearing data, but they cannot observe the coordinates of the target directly. Because

sensors observe the target state in polar coordinates, linear filtering formulations do

not help as discussed in Section 4.1.

The measured range and bearing are defined with respect to the true range r and

bearing β as

rm = r + νr

βm = β + νβ (4.3)

in [46]. The errors in range νr and bearing νβ are assumed to be independent with zero

mean and standard deviations σr and σβ, respectively.

The classical conversion from polar to cartesian coordinates is given by

xm = rm cos βm

ym = rm sin βm. (4.4)

Due to the nonlinear transformation of the noisy bearing, this conversion can give

biased estimates. A compensation factor can be introduced based on the knowledge
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about the bearing noise, νβ. From the symmetric probability density function pdf of

f(ν), it is clear that

E [sin νβ] = 0. (4.5)

Then the expectation values become

E [xm] = λβr cos β

E [ym] = λβr sin β. (4.6)

where λβ = E [cos νβ] is the bias compensation factor. The classical conversion 4.4 is

biased if λβ 6= 1. Then the unbiased conversion for uniform distribution can be given

as:

xu
m = λ−1

β rm cos βm

yu
m = λ−1

β rm sin βm. (4.7)

The target mean state observed after the unbiased polar-to-Cartesian conversion in 2D

is given by

ϕc =







ξc
m

ηc
m





 =







λ−1

β rm cos βm

λ−1

β rm sin βm





 (4.8)

in [30].The elements of covariance and variance of the observation errors based on the

observations rm and βm in 2D are, [46]

R11

m = var(xu
m|rm, βm)

= (λ−2

β − 2)r2

m cos2 βm +
1

2
(r2

m + σ2

r)(1 + λ
′

β cos 2βm)

R22

m = var(yu
m|rm, βm)

= (λ−2

β − 2)r2

m sin2 βm +
1

2
(r2

m + σ2

r)(1 − λ
′

β cos 2βm)

R12

m = cov(xu
m, yu

m|rm, βm)
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= (λ−2

β − 2)r2

m cos βm sin βm +
1

2
(r2

m + σ2

r)λ
′

β sin 2βm (4.9)

where

λβ = E [cos νβ] = e−σ2

β
/2,

λ
′

β = E [cos 2νβ] = e−2σ2

β = λ4

β (4.10)

These factors are derived from the distribution of the bearing (and elevation) noise,

[46]. The bearing measurement error has the zero-mean Gaussian distribution, which

is denoted as νβ ∼ N(0, σβ).

In [46], the elements of the true covariance and variance Rt have also been derived.

R11

m = var(xu
m|r, β)

R22

m = var(yu
m|r, β)

R12

m = cov(xu
m, yu

m|r, β) (4.11)

However,the true covariance is unavailable due to the fact that the true range

and bearing must be known. Thus covariance values conditioned on the measured

range rm and measured bearing βm have been derived. In [47], covariance conditioned

on rm and βm have been derived by conditioning the covariance Rt on rm and βm,

Rm = E [Rt|rm, βm]. In [46] a direct procedure is followed by deriving xu
m and yu

m

based on the rm and βm.

4.2.3. Observation Model in 3D

The observations for 3D case are, [46]:

rm = r + νr

βm = β + νβ
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εm = ε + νε (4.12)

where r is the true range, β is the bearing angle, ε is the elevation angle and νr, νβ, νε

are independent zero-mean noise with standard deviation σr, σβ and σε respectively.

Then the unbiased conversions in this case:

xu
m = λ−1

β λ−1

ε rm cos βm cos εm

yu
m = λ−1

β λ−1

ε rm sin βm cos εm (4.13)

while the covariances of the observation errors in 3D are

R11

m =
1

4
λ−2

β ε−2

β (r2

m + 2σ2

r)(1 + (λ
′

β)2 cos 2βm) × (1 + (λ
′

ε)
2 cos 2εm)

−
1

4
(r2

m + σ2

r)(1 + λ
′

β cos 2βm(1 + λ
′

ε cos 2εm)

R22

m =
1

4
λ−2

β ε−2

β (r2

m + 2σ2

r)(1 − (λ
′

β)2 cos 2βm) × (1 + (λ
′

ε)
2 cos 2εm)

−
1

4
(r2

m + σ2

r)(1 − λ
′

β cos 2βm(1 + λ
′

ε cos 2εm)

R12

m =
1

4
λ−2

β ε−2

β (λ
′

β)−2(r2

m + 2σ2

r) sin 2βm(1 + (λ
′

ε)
2 cos 2εm)

−
1

4
λ

′

β(r2

m + σ2

r) sin 2βm(1 + λ
′

ε cos 2εm) (4.14)

where

λβ = E [cos νβ] = e−σ2

β
/2,

λ
′

β = E [cos 2νβ] = e−2σ2

β = λ4

β

λε = E [cos νε] = e−σ2
ε/2,

λ
′

ε = E [cos 2νε] = e−2σ2
ε = λ4

ε (4.15)

It should be noted that the covariance matrix for 3D is a three-by-three matrix,

consisting of elements R11

m , R22

m , R33

m , R12

m , R13

m , R23

m . However, in this study the only

the coordinates (x, y) are of importance, not the z coordinate. The target tracking

process continues in 2D, since the z coordinate is bound to the terrain height in the
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corresponding (x, y) coordinate and need not be observed. We can imagine a 2D map-

ping of the 3D terrain, where (x, y) coordinates do not change, only the height values

are eliminated. The parameters observed (rm, βm, εβ) are mapped to 2D coordinates.

As a result, we only need the R11

m , R22

m , R12

m elements of the covariance matrix.

4.2.4. Distributed Data Fusion Architecture

Information state y and the information matrix Y associated with an observation

estimate x̂, and the covariance of the observation estimate P at time instant k are given

by [48]

ŷ(k) = P−1(k)x̂(k), (4.16)

Y(k) = P−1(k). (4.17)

In [48], it is shown that by means of sufficient statistics, an observation ϕ contributes

i(k) to the information state y and I(k) to the information matrix Y where

i(k) = HTR−1(k)ϕ(k), (4.18)

I(k) = HTR−1(k)H (4.19)

and H is the observation matrix of the sensor.

Instead of sharing the measurements related to the target state among the col-

laborating sensors, sharing the information form of the observations results in a simple

additive fusion framework that can be run on each of the tiny sensing devices. The

distributed data fusion equations are

ŷ(k | k) = ŷ(k | k − 1) +
N

∑

i=1

ii(k), (4.20)
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Y(k | k) = Y(k | k − 1) +
N

∑

i=1

Ii(k) (4.21)

in [30]. Here, N is the total number of sensors participating in the fusion process and

ŷ(k | k − 1) represents the information state estimate at time k given the observations

up to and including time k − 1.

Just before the data at time k are collected, if we are given the observations up

to the time k − 1, the predicted information state and the information matrix at time

k can be calculated from, [30]

ŷ(k | k − 1) = Y(k | k − 1)FY−1(k − 1 | k − 1)ŷ(k − 1 | k − 1), (4.22)

Y(k | k − 1) = [FY−1(k − 1 | k − 1)FT + Q]−1 (4.23)

where Q is the state transition covariance.

State estimate of the target at any time k can be found from, [30]

x̂(k | k) = Y−1(k | k)ŷ(k | k). (4.24)

4.2.5. Collaborative Target Tracking Algorithm

The algorithm employed by a sensor for tracking targets in a collaborative manner

within the distributed data fusion framework is depicted in Algorithm 4, [30] and

explained as a flowchart in Figure 4.1. The information state and the information

matrix denominations associated with the current observation are defined by (4.18).

The predicted information state and the information matrix are computed by (4.22).

ŷ(k | k) = ŷ(k | k − 1) + i(k), (4.25)

Y(k | k) = Y(k | k − 1) + I(k). (4.26)
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Figure 4.1. Target Tracking algorithm employed by each sensor, modified from the

ICTP adjustment algorithm

4.3. Sample 3D Surfaces

3D terrains, where the results are evaluated, are generated via Perlin Noise

method in GeoFrac2000, with the parameters in Table 4.3. The rendered form of

terrains are in shown in Figures 4.2 through 4.9. Each of the terrain has more than one

views, rendered with different camera position and orientations. Terrains are rendered

with Terragen.
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Algorithm 4 Pseudocode of the collaborative target tracking algorithm run on a

sensor. Modified from [30].

Require: Observations rm(k), θm(k) from the target at time instant k, information

state ii(k) and information matrix Ii(k) at time instant k from the neighboring

sensors i, system variables F, Q, H, R.

Ensure: Target position estimate x̂(k | k) at time instant k.

1: ϕ(k) ⇐ f(rm, θm)

2: i(k) ⇐ HTR−1(k)ϕ(k)

3: I(k) ⇐ HTR−1(k)H

4: ŷ(k | k − 1) ⇐ Y(k | k − 1)FY−1(k − 1 | k − 1)ŷ(k − 1 | k − 1)

5: Y(k | k − 1) ⇐ [FY−1(k − 1 | k − 1)FT + Q]−1

6: ŷ(k | k) ⇐ ŷ(k | k − 1) + i(k)

7: Y(k | k) ⇐ Y(k | k − 1) + I(k)

8: ŷ(k | k) = ŷ(k | k − 1) +
∑N

i=1
ii(k)

9: Y(k | k) = Y(k | k − 1) +
∑N

i=1
Ii(k)

10: x̂(k | k) = Y−1(k | k)ŷ(k | k)

Table 4.1. Perlin Noise Parameters

Terrain Number Harmonics Frequency Amplitude

Terrain 1 6 0.15 50

Terrain 2 6 1 5

Terrain 3 6 0.3 20

Terrain 4 7 0.1 20

As seen figures, Terrain 1 and Terrain 3 are hilly terrains which have peaks,

although Terrain 1 is of more mountainous type in the sense that the surface in Terrain

1 is flatter than Terrain 3, which also means Terrain 3 has a more ledgy surface than

Terrain 1. The reason for this, is that Terrain 3 is generated with a higher frequency

for the same harmonics values as seen in Table 4.3. Higher values of amplitude results

in a mountainous surface in Terrain 1. Terrain 2 is not a hilly (slopy) terrain but has

small-sized ledges. The reason behind that is also explained in Section 3.5. Although

generated with a higher frequency, Terrain 2 is not hilly because of its small vertical
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scale. High frequency, that would otherwise result in peaks, has caused small ledges

in Terrain 2 when the vertical scale is relatively small. Terrain 4 is not ledgy-surfaced,

but relatively slopy in the sense that it has more wide-scale slopes than Terrain 2 but

has less number of ledges which makes it flatter. The reason behind this is clear when

Table 4.3 is referenced, since Terrain 4 is generated with the smallest frequency and a

relatively smaller amplitude. The outcome of the topography of the terrains in terms

of communication and detection capability of the sensor nodes is explained in Sections

5.4 and 5.5.

Figure 4.2. Terrain 1, part (a)
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Figure 4.3. Terrain 1, part (b)

Figure 4.4. Terrain 2, part (a)
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Figure 4.5. Terrain 2, part (b)

Figure 4.6. Terrain 3, part (a)
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Figure 4.7. Terrain 3, part (b)

Figure 4.8. Terrain 4, part (a)
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Figure 4.9. Terrain 4, part (b)
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5. 3D TOPOGRAPHIC PERFORMANCE EVALUATION

OF WSN

The aim of this chapter is to analyze the effect of incorporating 3D terrains into

a WSN target tracking simulation environment. Following the information on the

simulation environment and experiments, we comment on the simulation results, with

regards to the topography of the terrains and other simulation parameters.

5.1. Simulation Environment & Methodology

We have done our simulations with the heightmaps of the terrains shown in

Section 4.3. The heightmaps are processed with the techniques explained in Section

3.2. The heightmap processing is done in terms of two WSN tasks: communication

and sensing.

For each terrain, ten different sensor deployments are done. The results in Sec-

tions 5.3, 5.5 and 5.6 are derived from the same target motion behaviour. Associated

with each deployment in a terrain, the communication matrix and detection array is

derived. The communication matrix defines how many sensor pairs out of all sensor

pairs could communicate in a channel via broadcast, while the detection array defines

how many sensors could detect the target at each time slot of the complete simulation

duration. The communication matrix is the output of Visual C++ program, since it

runs faster than the Matlab code, while the detection array is the output of a Matlab

program. The simulation program runs in Matlab, outputs the real target motion, ob-

servation error, cooperative information filter error, total packets received, total packets

sent in the network, total detecting sensors and total sending sensors.
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Table 5.1. Shadow fading communication model parameters.

Carrier frequency 1.8 GHz

Path loss exponent 2

TX & RX antenna height 0.1 m

Shadow fading standard deviation 4

Sensor transmission power -30 dB

5.2. Experiments

We run Monte Carlo simulations to examine the performance of the WSN tar-

get tracking application based on the distributed data fusion architecture, taking the

methodology and the work in [30]. We examine the mean error in four terrains and

with four different scenarios each having different number of sensors. Each of these

16 simulations are run with ten random deployments in a 200 m × 200 m area. All

data points in the graphs represent the means of ten runs. A target moves in the area

according to the process model described in Section 4.2.3. We utilize TWR-ISM-002-I

radar [49] detection model with pseudorandom signaling, whose typical range is 18

meters, [30].

In collaborative information fusion, if a sensor is able to communicate with other

sensors to share its belief about the target state, it broadcasts its information state

and the information matrix. Communication may not be possible due to the non-LOS

condition between nodes in terrain. Sensors update their belief about the target state

with these received data as described in Section 4.2.4. In our simulations, we use the

same shadow-fading radio propagation model for the communication signals as in [30],

whose parameters are given in Table 5.1, [50].

5.3. Analysis of the Mean Error for Collaborative Target Tracking

In Figures 5.1 and 5.2, the mean error comparison of cooperative information filter

has been done for various terrain types and the 2D surface. It is seen that Terrain 2

has the highest mean error, although it has relatively less slopes than Terrain 1 and
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Terrain 3. However, Terrain 2 has a lot of ledges on its surface, which means, although

the peaks are small in size, they are enough to block the communication among sensors.

Terrain 1 and Terrain 3 have similar mean errors, since they have both hilly surfaces.

With being more hilly Terrain 1 has a higher mean error. Among the evaluations in

terrains, Terrain 4 has the lowest error rate, since it does not have a hilly surface nor

any ledges. In Figure 5.2, the error comparison of Terrain 4 and the 2D surface has

been shown. Even in the most dense scenario and in comparison with the flattest

terrain, there is a high deviation between the mean errors; the error in the 2D scenario

is 0.34 m whereas it is 3.46 m in Terrain 4. In other terrains, the mean error for the

300 sensors scenario is approximately 6.1 m, which makes the targeting application

impractical.
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Figure 5.1. Mean error comparison for cooperative information filter

Figure 5.3, 5.4 and 5.5 compares the observation errors between 2D and respec-

tively Terrain 1, Terrain 2, Terrain 4, from the viewpoint of the sensor that is marked

as a star at the coordinates (191, 141). The circles indicate other sensors in the field.

As the target moves away, the observation errors for the sensor increase. The results

for Terrain 3 is not given here, since it gives similar results with Terrain 1. The ob-

servation errors are calculated according to 2D and 3D distances, they do not consider

whether the target is detected or not. Observation errors give similar but not the same
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Figure 5.2. Mean error comparison of Terrain 4 and 2D surface for cooperative

information filter
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Figure 5.3. 2D and 3D observation errors of a sensor in Terrain 1, in 75 sensor

scenario
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Figure 5.4. 2D and 3D observation errors of a sensor in Terrain 2, in 75 sensor

scenario
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Figure 5.5. 2D and 3D observation errors of a sensor in Terrain 4, in 75 sensor

scenario
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results for the three of the terrains, since each terrain has a different topology, and

therefore has different distance, bearing degree and elevation degree parameters.
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Figure 5.6. 2D and 3D cooperative information errors of a sensor in Terrain 1, in 75

sensor scenario

The cooperative information errors of Terrain 1, Terrain 2 and Terrain 4 have

been compared with that of 2D in Figures 5.6, 5.7 and 5.8. Here, again the error in

Terrain 3 is not illustrated, since each three terrains (Terrain 1, Terrain 2 and Terrain

3) have similar mean errors. The results are evaluated according to the viewpoint of

the sensor marked as a star. As seen also in the mean error graph (Figure 5.1), mean

errors of Terrain 1 and Terrain 2 are very close to each other, resulting in similar target

location estimates. On the other hand Terrain 4 achieves a better mean error, and the

target estimate is close the original state and cooperative information filtered estimate.

The differences in the target location estimates are more clear in Figure 5.9, which

focuses on a more refined segment of the target’s route.
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Figure 5.7. 2D and 3D cooperative information errors of a sensor in Terrain 2, in 75

sensor scenario
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Figure 5.8. 2D and 3D cooperative information errors of a sensor in Terrain 4, in 75

sensor scenario
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Figure 5.9. Cooperative information errors of Terrain 1, Terrain 2 and Terrain 4

Figure 5.10. Comparison of sensor communication rate in 3D terrain (75 sensors)

5.4. Analysis of the Communication Rate Among Sensors

In this section the communication among sensors in a terrain environment have

been measured. Figures 5.10 through 5.13 show the results. The values are obtained

from one of the upper or lower triangles of the communication matrix, as discussed

in Section 5.1. The y-axis shows the number of communicating sensor pairs, while

the x-axis shows the terrain types. Terrain 0 represents the 2D surface, while other
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Figure 5.11. Comparison of sensor communication rate in 3D terrain (150 sensors)

terrains follow the previous indexing. The communication comparison has been done

for all scenarios, 75 sensors, 150 sensors, 225 sensors and 300 sensors. All graphs have

nearly the same results, therefore they will not be discussed separately.

Figure 5.12. Comparison of sensor communication rate in 3D terrain (225 sensors)

It is clear that Terrain 4 has the highest number of communicating sensor pairs

among other terrains, since it has a flatter surface than other terrains, in the sense that

it has less slopes and less number of ledges. Even in this condition, it has one fourth

communication capability of the 2D surface. Terrain 1 has the second highest number

of communicating sensors among all the terrains. It should be noted that Terrain 1

is not the second best in the mean error comparison among terrains, Figure 5.1. This

comes from the fact that the mean error is not a function of only the communication

capability, but also the detection capability. Since the peaks in Terrain 1 occur in a
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Figure 5.13. Comparison of sensor communication rate in 3D terrain (300 sensors)

large area, they do not block communication as ledges would normally do, just in the

case of Terrain 2. Terrain 3, having a similar topography with Terrain 1 is the third

best and Terrain 2 has the worst communication capability. This comes from the fact

that, although Terrain 2 has no peaks, it has many ledges (small sized peaks, rocks,

etc.) which block the communication between sensors.

5.5. Analysis of the Detection Rate of Sensors

In this section, the total target detection by sensors, on the 2D surface and in

the 3D terrain environments have been measured. Figures 5.14 through 5.17 show the

results. The values are the averaged values of the total detection in the simulation du-

ration obtained from the detection array, as discussed in Section 5.1. The y-axis shows

the number of detecting sensors at a time, while the x-axis shows the terrain types.

The detection comparison has been done for all scenarios, 75 sensors, 150 sensors, 225

sensors, and 300 sensors. All graphs have the same relative results, therefore they will

not be discussed separately.

It can be seen from charts that Terrain 4 having a smooth, not ledgy surface and

less number of peaks, has the highest number of detecting sensors, coming after the 2D

surface. It can be seen that, the 2D surface and Terrain 4 have similar results, unlike

the results in the communication rate. It has two reasons. First the sensors have a

sensing range of 18 meters, which means that even in the case of complete LOS, there
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Figure 5.14. Comparison of sensor detection rate in 3D terrain (75 sensors)

Figure 5.15. Comparison of sensor detection rate in 3D terrain (150 sensors)

Figure 5.16. Comparison of sensor detection rate in 3D terrain (225 sensors)
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Figure 5.17. Comparison of sensor detection rate in 3D terrain (300 sensors)

will be a low detection rate due to this range. Second, the angle of the 3D line segment

between the target and the sensor is higher than the angle of the line segment between

sensors, and thus it is less likely to be obstructed by the terrain formations.

Terrain 2 is the second best in terms of detection, after Terrain 4. Although

Terrain 2 has a small number of peaks (hills), it has a ledgy surface. It should be

noted that ledges, which are sources of obstruction in the communication, do not affect

detection as would the peaks do. Since the target and sensor height is assumed to be

150 cm and 10 cm respectively, the 3D line between the two, would not be blocked by

the small ledges on the surface, contrary to the 3D line between a sensor pair in the

communication task. Terrain 3 comes as the third best, since it has less number of

peaks than Terrain 1, although it has a more ledgy surface.

Here, a discussion about the dominancy of the communication and detection, on

mean error could be made. It is obvious that Terrain 1 and Terrain 3 give out similar

results on communication and detection rates, with Terrain 1 giving out a better result

for communication and Terrain 3 giving out better result for the detection rate. The

communication and detection ratios of the Terrain 1 and Terrain 3 are Crt1
t3 = 1.53

and Drt3
t1 = 1.17, respectively. Although Terrain 1 has a higher communication ratio

than Terrain 3’s detection ratio, Terrain 3 gives out a better performance on the mean

error. This implies that detection dominates in the mean error, when the topographies
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give out similar results on detection and communication.

With regards to the topography of the terrains, we can also make such an assump-

tion: A terrain having a hilly surface with a lot of peaks results in a low performance

on detection, since the angle of the 3D line segment between the target and the sen-

sor would be higher and be more likely to be obstructed by the large peaks, instead of

ledges. On the other hand, a terrain having a ledgy surface results in a low performance

on communication between the sensors, since the angle of the 3D line segment between

sensor pairs would be smaller and be more likely to be obstructed by the peaks.

5.6. Analysis of Mean Error for Kalman and Individual Information

Filters

Mean error comparisons for Kalman and individual Information filter has been

depicted in Figures 5.18 and 5.19, respectively. Since both of these filters require no

collaboration, they depend on the detection rate in the terrain environment, not the

communication rate. The charts compare mean errors in each of the terrains and on the

2D surface, in the 75 sensor scenario. The mean error charts are almost parallel with

the detection rate charts but in an inverse way, since as the detection rate increases,

the mean error decreases.

Figure 5.18. Mean error comparisons for Kalman filter

Here, an exception is the mean error on the 2D surface and in Terrain 4. It
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can be seen that the 2D surface has slightly higher error rate than Terrain 4. This

result comes from different covariance matrices in 2D and 3D, e.g., the elements in the

covariance matrix of 2D has higher values than those in 3D.

Figure 5.19. Mean error comparisons for Individual Information filter

The Kalman filter errors of Terrain 1, Terrain 2 and Terrain 4 have been compared

with that of 2D in Figures 5.20, 5.21 and 5.22 from the viewpoint of the sensor marked

as a star. The Kalman filter outputs of Terrain 1 and Terrain 2 do not output similar

results this time, as opposed to the target location graphs in collaborative tracking

(Figures 5.6 and 5.7). Since Terrain 2 has a higher detection rate, it achieves a better

target location estimation. As also seen in Figure 5.21, the target location estimation

in Terrain 2 is very close to that of the 2D surface. Among the three terrains, Terrain 4

achieves the best performance. It even gives a better estimation than that obtained by

the 2D surface, which comes from the differences in the covariance matrix derivations

in 2D and 3D, as discussed before.

5.7. Analysis of a Different Target Motion

In Figure 5.23, a comparison has been made in terms of detection rate of the

sensors with a different target motion scenario, motion 2. Motion 2 can be seen in

Figures 5.24 through 5.26. It is obvious that, although the target’s new motion is

wigglier than the previous one, it has a lower detection rate in each terrain, except in
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Figure 5.20. 2D and 3D Kalman filter errors of a sensor in Terrain 1, in 75 sensor

scenario
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Figure 5.21. 2D and 3D Kalman filter errors of a sensor in Terrain 2, in 75 sensor

scenario
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Figure 5.22. 2D and 3D Kalman filter errors of a sensor in Terrain 4, in 75 sensor

scenario

Terrain 1. The reason behind this is the speed of the target. The target moves faster

in this new motion, as seen from the distance between the markers in Figures 5.24

through 5.26. Since the LOS conditons vary continuously, the target’s fast movement

degrades the detection rate, and since the sensing range is 18 m the curly movement

does not increase the performance.

Figures 5.24 through 5.26 show the performance of the collaborative information

filter with this new target motion, in terms of the target’s observed state from the point

of the sensor marked as a star. Terrain 1 and Terrain 2 gives out similar results, and

Terrain 4 achieves a better performance than both of the two terrains, as discussed in

Section 5.3. It should be noted that, in the regions where there are not enough sensors,

the observed state of the target deviates a lot from the real state in the case of Terrain

1 and Terrain 2. Terrain 4, with its smooth surface has a lower error rate, even in these

regions.

This new target motion has been investigated with different sampling rates. Since
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Figure 5.23. Comparison of target detection rate of motion 1 and motion 2 for 75

sensors scenario
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Figure 5.24. 2D and 3D Collaborative information filter errors of a sensor in Terrain

1, in 75 sensor scenario
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Figure 5.25. 2D and 3D Collaborative information filter errors of a sensor in Terrain

2, in 75 sensor scenario
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Figure 5.26. 2D and 3D Collaborative information filter errors of a sensor in Terrain

4, in 75 sensor scenario
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the LOS conditions vary continuously the aim is to capture the target position as

frequent as possible. The mean error of this new target motion has been compared

with that of the previous target motion at sampling rates of 5, 2.5, 1.25 and 0.62 times

the sampling rate of the previous motion respectively, denoted by line. It could be

seen in Figure 5.27, that the mean error has been improved in the first scenario and

degrades as the sampling rate is reduced.

Figure 5.27. Mean error on different sampling rates, in 75 sensor scenario

5.8. Analysis of Terrain Generation Parameters

The mean error of the target tracking application has been analyzed in terms

of different terrain generation parameters for the 75 sensors scenario. The effect of

amplitude, frequency and harmonics of the Perlin Noise, can be seen in Figures 5.28,

5.29 and 5.30.

As seen in Figure 5.28, the mean error increases as the amplitude of the terrain

is increased, at fixed harmonics and frequency values. The amplitude denotes the

distance between the lowest and highest point in the terrain, namely the vertical scale.

The behaviour of the mean error comes from the height of the peaks on the terrain

surface. With a small amplitude value, the formations on the surface become ledges

and with a high amplitude the formations become peaks. The amplitude factor both
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affects communication and detection tasks, resulting in a degradation in the tracking

accuracy.

Figure 5.28. Effect of terrain amplitude on mean error, with harmonics=5 and

frequency=0.3

Figure 5.29. Effect of terrain frequency on mean error, with harmonics=5 and

amplitude=20

Figure 5.29 depicts the effect of frequency on the mean error at fixed harmon-

ics and amplitude values. As the frequency increases, the turbulence of the terrain

increases resulting in a higher mean error. It should be noted that the degradation

the performance is higher when the frequency is small. When the frequency increases,

incremental mean error decreases. This comes from the different scale noise functions

in Perlin Noise. Here, the frequency parameter denotes the highest frequency with the
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Figure 5.30. Effect of terrain harmonics on mean error, with frequency=0.12 and

amplitude=10

lowest vertical scale in the terrain, namely the last noise wave with the smallest ampli-

tude. Since at fixed amplitude and harmonics, the frequency of the last noise function

would form ledges, the detection task would not be affected as would be effected in

lower frequencies.

Figure 5.30 denotes the effect of number of harmonics on the mean error at fixed

frequency and amplitude values. The harmonics is the number of noise functions used

in the Perlin Noise. The frequency input to the terrain generation, is the frequency of

the last noise function with the smallest vertical scale. As the number of harmonics

increases, smaller frequencies are used in the terrain generation which means the terrain

gets smoother, and eventually the mean error is decreased.

5.9. Analysis of Target Height

In this section, the effect of target height on the mean error is investigated in

Terrain 1, Terrain 2 and Terrain 3 for the 75 sensors scenario. It can be seen in Figure

5.31 that the target tracking accuracy increases as the target height is increased. As

discussed in previous sections, the targets could be either people or vehicles, e.g., cars,

trucks, whose heights could range from 100 cm to 250 cm.
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It should be noted that the accuracy is most improved in Terrain 3. This comes

from the fact that Terrain 3 has a peaky surface, which blocks the LOS condition

between the target and the sensor node. On the other hand, less improvement is

achieved in Terrain 2 due to its ledgy surface, which does not block the LOS between

the target and the sensor most of the time. Terrain 1 comes after Terrain 3 in terms

of error improvement, due its relatively smooth surface.

Figure 5.31. Effect of target height on mean error
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6. CONCLUSION

In this thesis, we explored the problem of WSN performance evaluation on 3D

topographic surfaces and made a performance comparison for a collaborative target

tracking application scenario.

Most of the recent modeling and studies regarding a WSN research problem has

been done on 2D planar surfaces assuming a distance based sensing and 2D freespace

communication model. These works assume a random deployment scheme which com-

monly takes place in 3D inaccessible terrains, by randomly deploying thousands or

sensors from a plane. A contradiction between the assumptions on the research prob-

lem and the modeling environment occurs as a result of this.

In this thesis we investigated the problem of incorporating a realistic modeling

environment into sensor networks. Our motivation has been the non-realistic and

contradictive assumptions in WSN performance evaluations, where the formations of

the topographic surface such as 3D line of sight, rocks, ledges, that would normally

block the communication and sensing tasks are not taken into account. In the real life,

the outcome of this blockage is a considerable degradation on the communication and

sensing task.

We attacked the problem by generating artificial but realistic terrains, via terrain

generation tools. We changed the generation parameters, and obtained various terrain

representations, heightmaps. The results became more clear, when the heightmaps have

been rendered into 3D terrains with a rendering software. We used four terrains as the

testbeds for our simulations: Hilly terrain, ledgy terrain, mild-hilly terrain and smooth

terrain. Our goal was to experiment with a collaborative target tracking application

in different types of terrains and see the topographic effects on the tracking accuracy,

which is a combined task of communication and detection in the network.

The outcome of our simulations, are the mean error which is a measure of track-
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ing accuracy, the number of communicating sensor pairs and the number of detecting

sensors.

In the mean error comparison of four terrains and a 2D surface, the ledgy surfaced

terrain gave out the highest mean error. In a ledgy terrain, although the peaks are

small in size, they are enough to block the communication among sensors. The two

hilly terrains that have similar mean errors, come after the ledgy-surfaced terrain, in

the mean error. The smooth terrain gave out the lowest mean error. It is seen that

even in the most dense scenario and in comparison with the flattest terrain, there is a

high deviation between the mean errors of the 2D surface and the smoothest terrain,

which makes the targeting application impractical in a realistic scenario.

We also evaluated the detection and communication capabilities of the WSN in

the terrain environment. For the communication capability, we computed the number

of communicating sensor pairs. Considering non-LOS conditions between the sensors

in the terrain, we derived a communication matrix.

The result of the communication matrix turned out to be the flattest terrain hav-

ing the highest number of communicating sensor pairs, due to its smooth topographic

surface. Then comes hilly and mild-hilly terrains, giving out similar results, although

the terrain having wide scaled peaks, has a higher communication rate. The ledgy

surfaced terrain, gives out the worst performance on communication

As for the detection, the flattest terrain still achieves the best performance, due to

its smooth surface. This time ledgy-surfaced gave the second best result in detection,

although it gave out the worst performance on communication. This came from the

fact that, having a ledgy surface is of little importance in the detection task, since

the angle of the 3D line segment between the sensor and the target is high due to

the height of the target (150 cm), and not affected by ledges. Mild-hilly with its less

number of wide scaled peaks, has a higher detection rate than the hilly terrain. We

also evaluated the performance of Kalman and Individual Information filter in terms of

the mean error, using the terrains. It is shown that the filters give approximate results
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with the detection rate of the terrains.

As a result, we have seen that the target tracking accuracy in a WSN is both

dominated by communication and detection task which are also dominated by the

topography of the terrains. It has been shown that the communication rate degrades

in a ledgy surfaced terrain, although the terrain has little number of slopes. Large

peaks, on the other hand are sources of obstruction in the detection phase.

We finally investigated the effect of terrain generation parameters and target

height on mean error. We showed that when the amplitude and the frequency are

increased, the mean error also increases. The frequency affects the turbulence of the

terrain, creating peaks or ledges depending on the amplitude, thus decreasing the LOS

conditions. The amplitude affects the height of the peaks or ledges, which again affects

the LOS conditions and eventually the mean error. The harmonics is the number

of noise functions used in the terrain generation. At fixed frequency and amplitude

values, we showed that, larger number of harmonics generates smoother terrains and

improves the tracking accuracy. Regarding different objects moving in the region, the

target height could vary from 100 cm to 250 cm. We showed that as the target height

increases, the detection capability and resultingly the tracking accuracy increases. The

improvement in the mean error depends on the structure of the underlying terrain.

In this thesis, we mainly contributed to a new realistic performance evaluation

scheme for WSNs. We have developed a terrain simulation environment, where the

sensors are assumed to be deployed. Upon the high deviation of the results from those

of 2D planar surfaces, we showed that the performance predictions could be misleading

on the paper design, due to non-realistic assumptions on the WSN deployment region.

6.1. Future Work

Several scenarios could be added to make our simulations more realistic. Natural

formations, e.g., river, sea, ponds, can be incorporated to our terrains. We can model

that the sensors randomly deployed onto these regions, do not function any more.
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We can also model the target’s mobility according to the topography of the ter-

rains. By this we can achieve a more realistic terrain simulation environment and

evaluate our results under these assumptions.

The terrain impact on the communication other than clear LOS, might be another

future study of this thesis. The fresnel zone information could be useful in calculating

the signal attenuation between two sensors even if the path has a clear LOS. Here,

since we have triangles rather than the height values between each sensor pair, the

problem would converge to fresnel zone and triangle intersection problem.
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APPENDIX A: TERRAGEN FILE FORMAT

A.1. File Structure

A terragen terrain file consists of a 16-byte identifier and a number of chunks.

The positions of the various chunks are flexible, however, it should be noted that some

chunks must appear before others.

The chunks contain its 4 byte identifier, e.g., ‘ALTW’ and then the chunk data.

All chunks are aligned to the nearest 4 bytes.

A terrain file must contain the following:

1. At the beginning of the file, an 8-byte ‘TERRAGEN’ string.

2. After the ‘TERRAGEN’ string, an 8-byte ‘TERRAIN’ string.

3. A ‘SIZE’ chunk.

4. ‘XPTS’ and ‘YPTS’ chunks are required, if the terrain is not square.

5. A 4-byte ‘EOF’ string at the end of the file which is necessary for old versions of

Terragen.

The actual elevation data is described after these chunks. Currently the elevation

data is stored in the ‘ALTW’ chunk. The elevation and heightmap coordinate units

(X, Y and Z) are defined in Terrain units, and not meters. Conversion to meters, can

be done from Terragen heightmap settings; the default scale is 30 meters to one terrain

unit. The actual scale value for a particular terrain is stored in the file’s ‘SCAL’ chunk.

A.2. Chunks

• ‘XPTS’ 4-byte identifier.

Appears after the ‘SIZE’ identifier and before any altitude data. This identifier

is followed by a 2-byte integer value xpts, and 2 bytes of padding. xpts is equal
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to the number of grid points in the x-direction.

• ‘YPTS’ 4-byte identifier.

Appears after the ‘SIZE’ identifier and before any altitude data. This identifier

is followed by a 2-byte integer value ypts, and 2 bytes of padding. ypts is equal

to the number of grid points in the y-direction.

• ‘SIZE’ 4-byte identifier, necessary.

Appears before any altitude data. This identifier is followed by a 2-byte value

equal to n - 1, and 2 bytes of padding. In square terrains, n is the number of

grid points in one direction. In non-square terrains, n is equal to the number of

grid points in the shorter direction. For example, in a terrain with a heightmap

of 400 grid points in the x-direction and 500 grid points in the y-direction, the

size would have the value of 399.

• ‘SCAL’ 4-byte identifier, optional.

Appears before any altitude data. This identifier is followed by three 4-byte

floating point values (x,y,z). It represents the scale of the terrain in metres per

terrain unit. Currently, Terragen allows only uniform scaling, so x, y and z scaling

is equal.

• ‘CRAD’ 4-byte identifier, optional.

Appears before any altitude data. This identifier is followed by one intel-ordered

4-byte floating point value, which is radius (in kilometers) of the planet being

rendered. The default value is the approximate radius of the Earth which is

6370.

• ‘CRVM’ 4-byte identifier, optional.

Appears before any altitude data. This identifier is followed by one unsigned

integer. Mode 0 means the terrain is rendered on a flat surface assuming no

earth curvature. Mode 1 means the terrain is stretched over a sphere with the

radius CRAD ∗ 1000/zscale, centred at (midx,midy,−CRAD ∗ 1000/zscale),

where midx = XSIZE/2 and midy = Y SIZE/2. In mode 1, the map will

look normal when viewed from above, but geographic distances will be stretched

towards the edge of the map if there is a lot of curvature.

• ‘ALTW’ 4-byte identifier.

Appears after the ‘SIZE’ identifier and must appear after the ‘XPTS’ and ‘YPTS’
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identifiers. ‘ALTW’ stands for ’Altitude in 16-bit Words’. After the ‘ALTW’

identifier, the following values must appear in order:

– HeightScale, a 2-byte signed integer value.

– BaseHeight, a 2-byte signed integer value.

– Elevations, a sequence of 2-byte signed integers.

There are (xpts ∗ ypts) elevation values. xpts and ypts either have been set in

the ‘SIZE’ chunk or the ‘XPTS’ and ‘YPTS’ chunks. The values in elevations are

not absolute altitudes. The absolute altitude of a particular point (in the same

scale as x and y) is equal to BaseHeight + Elevation ∗ HeightScale/65536.



78

REFERENCES

1. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey”, Computer Networks, Vol. 38, No. 4, pp. 393-422, 2002.

2. Huang,C. F., Y. C. Tseng, and Li-Chu Lo, “The Coverage Problem in Three-

Dimensional Wireless Sensor Networks”, Proceedings of IEEE GLOBECOM, Vol.

5, pp. 3182-3186, 2004.

3. Watfa, M. K. and S. Commuri, “Optimality Measures for Coverage in 3D Wireless

Sensor Networks”, 1st International Symposium on Wireless Pervasive Computing,

pp. 1-6, January 2006.

4. Akyildiz, I. F., S. Weilian, Y. Sankarasubramaniam and E. Cayirci, “A survey on

sensor Networks”, IEEE Communications Magazine, Vol. 40, No. 8, pp. 102-114,

August 2002.

5. Callaway, E. H., Wireless Sensor Networks, Architectures and Protocols,

Aucherbach Publications, 2004.

6. Shih, E., S. H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,

“Physical layer driven protocol and algorithm design for energy-efficient wireless

sensor networks”, Proceedings of ACM International Conference on Mobile Com-

puting and Networking, pp. 272-287, July 2001.

7. Woo, A. and D. E. Culler, “A transmission control scheme for media access in sensor

networks”, Proceedings of ACM International Conference on Mobile Computing

and Networking, pp. 272-287, July 2001.

8. Ye, W., J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wire-

less sensor networks”, Proceedings of IEEE INFOCOM, pp. 1567-1576, 2002.



79

9. Demirkol, I., C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless Sensor Net-

works: a Survey,” IEEE Communications Magazine, Vol. 44, No. 4, pp. 115-121,

April 2006.

10. Braginsky, D. and D. Estrin, “Rumor routing algorithm for sensor networks”, Pro-

ceedings of ACM International Workshop on Wireless Sensor Networks and Appli-

cations, pp. 22-31, October 2002.

11. Ganesan, D., R. Govindan, S. Shenker, and D. Estrin, “Highly resilient, energy

efficient multipath routing in wireless sensor networks”, ACM Mobile Computing

and Communication Review, Vol. 5, No. 4, pp. 11-25, October 2001.

12. Heinzelman, W. R., A. Chandrakasan, and H. Balakrishnan, “Energy- efficient

communication protocols for wireless microsensor networks”, Proceedings of 33rd

Annual Hawaii International Conference on Systems Science, pp. 3005-3014, Jan-

uary 2000.

13. Clouqueur, T., V. Phipatanasuphorn, P. Ramanathan, and K. Saluja, “Sensor De-

ployment Strategy for Detection of Targets Traversing a Region”, Mobile Networks

and Applications, Vol. 8, No. 4, pp. 453-461, August 2003.

14. Howard, A., M. J. Mataric and G. S. Sukhatme, “An Incremental Self-Deployment

Algorithm for Mobile Sensor Networks”, Autonomous Robots, Vol. 13, No. 2, pp.

113-126, September 2002.

15. O’Rourke, J., “Computational geometry”, International Journal of Computational

Geometry and Applications, Vol. 2, No. 2, pp. 215-217, 1992.

16. Tian, D. and N. D. Georganas, “A coverage-preserving node scheduling scheme for

large wireless sensor networks”, Proceedings of ACM International Workshop on

Wireless Sensor Networks and Applications, October 2002.

17. Wang, X., G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage



80

and connectivity configuration in wireless sensor networks”, Proceedings of ACM

International Conference on Embedded Networked Sensor Systems, pp. 28-39, No-

vember 2003.

18. Yan, T., T. He, and J. A. Stankovic, “Differentiated surveillance for sensor net-

works”, Proceedings of ACM International Conference on Embedded Networked

Sensor Systems, pp. 51-62, November 2003.

19. Slijepcevic, M. P., “Power efficient organization of wireless sensor networks”, Pro-

ceedings of IEEE International Conference on Communications, Vol. 2, pp 472-476,

June 2001.

20. Liu, B., and D. Towsley, ”A Study of the Coverage of Large-scale Sensor Net-

works,” Proceedings of the First IEEE International Conference on Mobile Adhoc

and Sensor Systems, 2004

21. Onur, E., C. Ersoy and H. Delic, “Finding Sensing Coverage and Breach Paths in

Surveillance Wireless Sensor Networks”, Proceedings of the IEEE PIMRC, Sep-

tember 2004.

22. Dhillon, S. S., K. Chakrabarty, “Sensor placement for effective coverage and sur-

veillance in distributed sensor networks”, IEEE Wireless Communications and Net-

working, Vol.3, pp. 1609-1614, March 2003.

23. Maroti, M., G. Simon, A. Ledeczi and J. Sztipanovits, ”Shooter localization in

urban terrain”, IEEE Computer, Vol. 37, No. 8, pp. 60-61, August 2004.

24. Henderson, T. C., E. Grant, K. Luthy and J. Cintron, “Snow monitoring with

sensor networks”, Proceedings of 29th Annual IEEE International Conference on

Computer Networks, pp. 558-559, November 2004.

25. Bulusu, N., D. Estrin and J. Heidemann, “Scalable Coordination for Wireless Sen-

sor Networks: Self-Configuring Localization Systems”, Proceedings of the 6th In-



81

ternational Symposium on Communication Theory and Applications, July 2001.

26. Ji, X. and H. Zha, “Sensor Positioning in Wireless Ad-hoc Sensor Networks Using

Multidimensional Scaling”, Proceedings of IEEE Conference on Computer Com-

munications, Vol. 23, No. 1, pp. 2652-2661, March 2004.

27. Ravelomanana, V., “Extremal properties of three-dimensional sensor networks with

applications”, IEEE Transactions on Mobile Computing, Vol. 3, No. 3, pp. 246- 25,

July-August 2004.

28. Watfa, M. K., and S. Commuri, “A Coverage Algorithm in 3D Wireless Sensor Net-

works”, Proceedings of the First International Symposium on Wireless Pervasive

Computing, pp. 1-6, January 2006.

29. Tezcan, H., E. Cayirci and V. Coskun, “A distributed scheme for 3D space coverage

in tactical underwater sensor networks”, Proceedings of IEEE Military Communi-

cations Conference, Vol.2, pp. 697-703, October-November 2004.

30. Onel,T., C. Ersoy and H. Delic, “An Information Controlled Transmission Power

Adjustment Scheme for Collaborative Target Tracking”, Proceedings of IEEE Sym-

posium on Computers and Communications, June 2006.

31. Zhao, F., J. Shin and J. Reich, “Information-driven dynamic sensor collaboration”,

IEEE Signal Processing Magazine, Vol. 19, No. 2, pp 61-72, March 2002.

32. Brooks, R.R., P. Ramanathan and A. M. Sayeed, “Distributed target classification

and tracking in sensor networks”, Proceedings of IEEE, Vol. 91, No. 8, pp. 1163-

1171, August 2003.

33. Li, D., K. Wong, Y. Hu, and A. Sayeed, “Detection, classification and tracking of

targets in distributed sensor networks,” IEEE Signal Processing Magazine, Vol. 19,

No. 2, March 2002.

34. Oh, S., S. Sastry, and L. Schenato, “A hierarchical multiple-target tracking al-



82

gorithm for Sensor Networks”, Proceedings of IEEE Interantional Conference on

Robotics and Automation, April 2005.

35. Yan, T., T. He, and J. A. Stankovic, “Differentiated surveillance for sensor net-

works”, Proceedings of ACM International Conference on Embedded Networked

Sensor Systems, November 2003.

36. Du, X. and F. Lin, “Efficient energy management protocol for target tracking sensor

networks”, Proceedings of 9th IFIP/IEEE International Symposium on Integrated

Network Management, pp. 45-58, May 2005.

37. LaSor, J. W., GeoFrac 2000, http://www.geofrac2000.com/, 2005.

38. Planetsite Software, Terragen photorealistic rendering software,

http://www.planetside.co.uk/terragen/productmain.shtml, 2005.

39. Moller, T. and B. Trumbore, Fast, Minimum Storage Ray/Triangle Intersection,

http://www.graphics.cornell.edu/pubs/1997/MT97.html, 2002.

40. Moller, T. and B. Trumbore, “Fast, Minimum Storage Ray/ Triangle Intersection”,

Journal of Graphics Tools, Vol. 2, No. 1, pp. 21-28, 1997.

41. O’Malley, S., Matlab script for Terragen, http://www2.cs.uh.edu/∼ somalley/,

2006.

42. Elias, H., Perlin Noise, http://freespace.virgin.net/hugo.elias/models/m perlin.htm,

2006.

43. Bourke, P., Perlin Noise and Turbulence, http://astronomy.swin.edu.au/∼

pbourke/texture/perlin/, 2000.

44. Martz, P., Generating Random Fractal Terrain, http://www. gameprogram-

mer.com/fractal.html, 2006.



83

45. Bar-Shalom, Y., X. R. Li and T. Kirubarajan, Estimation with Applications to

Tracking and Navigation, John Wiley & Sons, Inc., 2001.

46. Mo, L., X. Song, Z. Sun, and Y. Bar-Shalom, “Unbiased converted measurements

for tracking”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 34,

No. 3, pp. 1023-1026, 1998.

47. Lerro, D. and Y. Bar-Shalom, “Tracking with debiased consistent converted mea-

surements versus ekf”, IEEE Transactions on Aerospace and Electronic Systems,

Vol. 29, No. 3, pp. 1015-1022, July 1993.

48. Grocholsky, B., A. Makarenko, and H. Durrant-Whyte, “Information-theoretic co-

ordinated control of multiple sensor platforms”, Proceedings of the IEEE Interna-

tional Conference on Robotics & Automation, pp. 1521-1526, September 2003.

49. Advantaca, http://www.advantaca.com, 2006.

50. Kotz, D., C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott, “Experimen-

tal evaluation of wireless simulation assumptions”, Proceedings of the ACM/IEEE

Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,

pp. 78-82, October 2004.




