
DEADLOCK DETECTION PROBLEM IN COMPUTING SYSTEMS:

A Simulation Approach Using a Priority Based

Deadlock Detection Algorithm

by

SemaF. AkgOn

B.S. in CMPE .• BoAazi~i University, 1987

"Ii[~iiiiil~~imi~ 11I1I"~1 ~
39001100310369

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Engineering

BoAazi~i· University

1989

..

ACKNOWLEDGEMENTS

I am grateful to Dr. Oguz Tosun for his guidance and help. lwould like to thank Dr. Ufuk
.. , ...

t;agtayan who proposed the topic of the thesis. Thanks to Dr. Selahattin Kuru, AU RiZa

Kay tan for their'com.ments~Valuable editorial improvements and help of Fedon Kadifeli

are gratefully acknowledged. Thanks to A. C. Cem Say, my ideaS are deeply influenced

bjo· discussions with him. Special thanks go to GOrol Oktug;

Sema F. Akgon

iv

ABSTRACT

In t.his thesis, the deadlock detection problem in computing systems is eXamined in

detail. Deadlock models and some published algorithms on deadlock detection are

discussed. A modified priority based algorithm is int.roduced andsume more

modifications are offered to make the algorithm correct and more efficient. The final

version of the algorithm is simulated for a single-site system. To show the effects of

these modifications. the simulation results obtained with modifications are compared

wit.h the results obtained without them. It is observed that after the modifications. t.he

system performed better. For further simulation studies. a distributed system model is

offered.

v

'OlET

, Bu tezde bUgisa.yar si.stemlerindeki kilitlenme yaka.1ama. sorunu incelenmektedir.

KiliUenme modelleri ve konu hakktnda yaytnlanm~ ball algoritm.alar tanlttlmaktadlr.
~ '. .

Daha Once· dOieltilm~ "Oncelige Dayal! Bir Kilitlenme Yakalama MgOritmasl"

ru;:lklanmaktadlr. AlgoritmaYl daha verimlive dogru yapmak i/yin ball deg~ik1ikler

onerilmektedir. Algoritmanm son hali tek . ~lemcm 'bir sistem i/Yin

benzet1mlenmektedir. Deg~ikliklerin etkisini gostermek amac:l ile, alman sonu/ylar

deg~iklikler yaptlmadan alman sonu/ylarla ka.qd.a~hnlmaktadlr., Yapdan

deg~iklikler1e sistemin daha b~nh oldugu gozlenmektedil'. Aynca ileride yapl1ac:ak.

olan henzetim /yal~malal'l i/Yin daglttlm~ hil' sistem modeli onel'ilmektedir.

vi

T ABLE OF CONTENTS

ACKNOWLEDGEM£NiS , , ' .. iii

ABS'TRACT .. , ; ... iv

OZET ; .. ' ; .. ; V

LIST OF FIGURES ; .. ix

LIST' OF TABLES ~ ... ; ' x

LIST Of SyMBOLS : , .. xi

I: INTRODUCTION' ... 1

II. DEADLOCK : ~ .. 4

2.1. The Deadlock Problem "' .. 4

2.1.1. Definition ofDeadlock ~ .. 4

2.1.2. Examples of Deadlock : .. 6

2.1.3. Resource Types : ; ... 8

2.2. The General Mode1. : .. 8

2.2.1. General Resource Graph .. 9

·2"2 .. 2,, Opera.ti.ons on ReSf>urces"",,,,,,,,\\\\\\\\\\\,,,1.\\\\'\'''\\\\',,,,,'\\\\"""\"\\, ,,,,,,,,,,,\\,10

2.2.3. Existen,~ of a. Deadlock inSystem .. l1

2.3. Deadlock Policies,. .. 12

Vll

23.1. Deadlock Detection and Recovery .. 12

.2.3.2. Deadlock Prevention ... 13

2.3.3. Deadlock Avoidance .. 13

Ill. MODELS OF DEADLOCK. ; .. 15

3.1. One-Resource Modet .. , ... 15

3.2. AND.Model , ~ ~ ~ .. 16

3.3. OR MotIet .. ' 17

3.4. AND-OR Modet : .. , 18

(n). .
3.5. k Model : .. , , 19

3.6. Unrestricted Model .• : : .. 19

IV. DEADLOCK DEfECTION IN DISTRIBlJTEDSYSJEMS ... 21

4.1. A Brief Introduction to Concurrency Problem ... : 21

4.2. Centralized Deadlock Detection ... 22

4.3. Hierarchical Deadlock Detection ~ .. 24

4.4. Distributed Deadlock Detection ... ; 25

4.5. Lock Granularity ., ... 26

4.6. The Resource Model ... : : 26

V. DISTRIBUTED DEADLOCK DETECTION ALGORITHMS ... 28

5.1. Path-Pushing Algorithms ~-.. ; ~ 28

5.2: Edge-Chasing AJgorithms ... : 29

5.3. Diffusing CO~putations .. 30

'5.4. Global State Detection ... 33

VI. STUDY ON AN EDGE-CHASING ALGORITHM ... 36

6.1. A Priority Based Distributed Deadlock Detection Algorithm 36

6.1.1. The Di$"ibuted Resource Model "' ~ 36
'. I

6.1.2. Distribu'ted Deadlock Detection ... 38

viii

6.1.3. Deadlock Resolution ... 40

6.2. Errors and Deficiencies Detected by Choudhary et al. ; .. .41

6.2.1. Undetected Deadlocks ... 41
-

6.2.2. False Deadlocks .. ; 42

6.3. Some More Modifications ... 44

6.3.1· Modified Algorithm ~ .. 47

VII. A SIMULATION USING THE NEW PRIORITY BASED PROBE ALGORITHM FOR
\

DEADLOCK DETECfION AND EXTENSION FOR DISTRIBUTED SYSTEMS ; 50

7.1. Simulation Model 'of a. Single-Site System : .. 50

7.2. Application of The Algorithm to The Modei.. , " 55

7.3. Data Structures of The Model. .. 56

7.4. Results Obtained ... 59

7.5. Extension

General Distributed System Model for The FurtherStudies; " h3

7.5.1. Simulation Model of a Site in Distributed System 65

7.5.2. Ordering of Events in the System : " 67

VIII. CONCLUSION : i .. 69

APPENDIX A. BASIC TWO PHASE LOCKING ... 71

APPENDIXB. MODIFIED PROBE ALGORITHM BY CHOUDHARY et at : 73

APPENDIX C. PROGRAM LISTING : ; .. 76

BIBLIOGRAPHY .. 104

REFERENCES. NOT CITED ;106

ix

~ LIST OF FIGURES

Page

FIGURE 2,1 System states of t.he example ." """""""""" .. """"."""""""""""."".,,"",, .. ,, .. ,,,,)

FIGURE 2,2 A general resource graph """"""",,, ... , .. ,,,, .. ,,,,,, ... ,,.,,,, .. ,,,,,,,,,,,,,, .. ,,,,,,,,,,,,,,,,.,, .. ,, .. 10

FIGURE 3.1 WFG of an example system .. " .. " """" .. """."""""""""""."".".", .. " .. ,,,, ,, .. .17

FIGURE 4,1 Formation of phantom deadlock "", .. """""."""" .. , .. " ... "" .. " "" .. ,, ,, ".,,23

FIGURE),1 Mapping t.ransaction agents to processes " .. """" .. "" ,,,.,,,, ,, .. ,,",, .. ,, .. ,,,,,,,,,,31

FIGURE 5,2 A cut of a distributed system .. """ ... ""."""""."."."."."."".""""".,, .. ,,.,,",, ,,34

FIGURE 6,1 An undetected deadlock, ,,,"""''''', .. ,''', ... ,'''''''''''''''',, .. , .. , .. ,''''''", ,'," "'''''''''' ,.," ,.41

FIGURE 6.2 Example of a f~1se deadlock "."" " ... " .. "" .. ""."" ;""""."."~" "",,,,43

FIGURE 6.3 Anot.her false deadlock example""."",~" """ .. ""."" ... ""."'''.'''''''' "A4

. 'fIGlJRE 6,4 Ail Uili'&soiVQd dQadiock QxamplQ "',,,,,,,,,,,,,,,',,,,,,'.,,,,,,,',,', ",''''''.'', "'" "" '" "',,,,,,,,', """ ,,45

FIGURE 7.1 Logical queuing model for a single-site system"" " .. ".".""" " .. """",,,,52

FIGURE 7.2 Physical queuing model for a single-site system .. """ "" .. "" """,, ... ,,,,53

FIGURE 7,3 A record in resource table " .. """''' .. ,~ ".'''' .. " ".'''' " ,, ,,57

FIGURE 7,4 A record in transact.ion table"""."""""""'''''''''''''"."''''''".:"" .. " .. " " ... ",,,, ... 57

FIGURE 7,5 St.ructure of a probe queue ""; " ,,, ,,,,,,,, .. ,, .. ,,.,, ,,.,, .. ,, .. 58

FIGURE 7.6 Structure of wait. queue ".".""."""" .. "" .. ".,:;".,, ,,"" ... " .. " .. """"" ... ",, .. ,," "" ,59

FIGURE 7 ,7 Simple model of the distributed system"" .. " .. "".",,,,,,,,,,,,,,,.,,,, ,,,,,, ,,.,,,,,64

FIGURE 7,8 Logical queuing model for a distributed system site ."""".""."" .. "".""."".".",66

FIGURE 7,9 Physical queuing model for a distributed system site"""""" .. "." ... ".",,, " .. , ,67

x

LIST OF TABLES

Page

TABLE 7.1 Model parameters .. ; 54

TABLE 7.2. Simulation parameter settings : , , 60.

. TABLE 7.3 Simulation results taken with different mpl values .. 60-

TABLE 7.4 Simulation results taken with different mpl values when priority has

no importance in handling requests : .. 61

TABLE 7.5 Simulation results taken when probe_Q's for data managers are not

employed .. """"""." ", .. " .. " .. ":, "" ... ", .. ,,, ... , ,''', ,''''''',.,'" .. ,', .. ",,,62

TABLE? ,6 Simulation results taken with different think-time values .. " .. ,,, .. ,,, .. ,,, , .. ,63

c: I

I' • ... (

DMfR;)

E

ei

Pi

r' I

Ii.

Iii

TIffT;)

IYEG

IYFGj

LIST OF SYMBOLS

current value of local dock at site i

controller at site i

data manager of Ri

set of events in a system'

;eventi

future of cut c in a. dist;ributed System

identity ofTi

past of cut c in a. distributed system

process i in a single-site system.

process i in site j of a distributed system

resource'of type i

,current number. of a.vailable units of Ri

sequence of processes

site j in a. distributed system

global state at time t

transaction i at a single-site system

total number of units of Ri

transaction agent i in site j of a distributed system

transaction managerofTi

wait for graph of a. single-site system

wait for graph of site i ill a. distributed system

xi

xii

n set of processes in a system

p set of resources in a system

p(~ . setof consumable resources in a system

Pr set of reusable resources in a system

X all possible allocation states of all system resources

@ null set

:5 happened before relation

I- reachability relation

1

L INTRODUcrlON

Deadlock detection is an important problem of multiprogramming environments; in

which several processes may compete for, a finite number of resources. A, process

, requests resources, and if the resources are not available 'at that time. it enters a wait

state. It may happen that waiting processes wiU never again chang~ state, because the

resources they have requested are held by other processes which are directly or

transitively waiting for them. This situation is called a deadlocK. In other 'Words, it is a

permanent blocking of a set of processes that either compete for system resources or

communicate with each other,

If deadlock is ignored in the design state, it must be detected later by some

means, and then a process must be terminated and restarted to recover from it. It is also

, possible that a deadlock, containing all the processes in the system~ occurs.

; .
Methods for coping with deadlock fall into three categories. The first policy is

detection IlJ1d recovery: Here no action is taken to prevent deadlock from occurring.

When a group of deadlocked processes is identified" some of them are terminated in

order to break the deadlock. In connectionwi.tJ.l, this policy the selection of the so­

called victim is another interesting component. The seco'nd policy is preventioll. It is

, accomplished by preventing at least one of the conditions. all of which are necessary

for deadlock to happen. And the thiid policy is aYOIi/a,Qce. This refers to methods that

rely on some knowledge of future process behavior to constrain the pattern of

resource allocation.

The topic of the thesi~ is deadlock detection and resolution. First the problem is

introduced. Then, survey analysis is done and deadlock detection algorithms in

distributed systems'are grouped according to the methods they use. A single-site system

uses, basic and simple methods for deadlock detection because there is no

communication pi"oblem within a ~ingle-site system. After, this general study, a

deadlock detection algorithm is studied. A situation under which. the algorithm is

unable to resolve the de.adlock is found. Some structural modifications are suggested to

make the algorithm m4re efficient and correct. To show the performance of the

2

algorithm. it is simulated on a single-site system. The simulation results are discussed.

Finally a distributed system model is introduced for further simulation study.

The thesis consists of eleven parts (including this part). In the next three parts.

the deadlock pro.blem is explained in detaiL The fifth part introduces deadlock

detection algorithms in distributed systems. In the remaining parts. a priority based

deadlock detection algorithm is introduced. its structure is changed. and simulated for a

single-site system. The aim of the simulation is to show that the algorithm works under

deadlock conditions.

Part II introduces the deadlock problem, gives examples of deadlocks, describes

what a general resource graph is, explains the necessary and sufficient conditions for

deadlock to happen, and gives information about deadlock policies.

Part III discusses models of deadlock according to resource request model of the

processes.

Part IV explains the methods of deadlock detection in distributed systems. It is

known that deadlock is important problem in distributed systems too.

Part V makes a.classification of distributed deadlock detection algorithms and

explains each class. It also gives example algorithms for some classes.

Part VI explains an edge-chasing algorithm that is developed by Sinha and

Natarajan ul*. discusses the errors and the deficiencies of the algorithm detected by

Choudhary tit al121. Also some modifications are proposed to improve the algor~thm.

Part VII introduces a single-site. system simulation using the algorithm

explained in Part VI both to test the algorithm and to show the effect of the some

system parameters on the performance of the system. For the future studies, it offers a

distributed system simulation model.

Part VIII contains conclusion of the thesis.

Appendix A explains two-phase locking protocol in concurrency control.

Appendix B gives the deadlock detection algorithm modified by Choudhary tit aJ

[21.

i/"

References enclosed In" brackets refer·to the bibliography.

3

Appendix C contains the listing of the simulation program which is introduced

in Part VII.

Bibliography gives a list of references used in this study and cited in the text of

the thesis. References not cited are listed separately.

4

I I. DEADLOCK.

Deadlock is the perllUlllt1Dt blocking of a. set of processes either competing for system

resources or communicating with each other. The problem of deadlock is not. unique to

the operating system environment Generalizing our interpretation of resources and

processes. we can see that the deadlock problem maybe a part of our daily

environment.

In this part, first, the probJem is introduced. ExampJes of deadlock are given.

Secondly. the gtmeraJ modeJ of a system is expJained. Methods of dealing with deadlock

are introduced.

2.1. The Deadlock Problem

In this section. we define some terms used in the rest of the chapter. introduce the

probJem. give exampJes of deadlock. and explain the characteristics of resource types.

2.1.1., Definition of Deadlock

A computer system may be abstractly represented by a pair of sets (r, nl. where

i: = { All possible allocation states of aU system resources}

n = (Processes)

Each eJement in i: represents one possible state in the distribution of the

resources. Each process.in n is a function that. for each system state in L. maps to

another set (Jf states. That state. possibly. can be empty.

5

For example. let:E "" (So T. U. V) and n "" (Pl' P2), In this system there are only

four possible system states, Suppose the possible actions by the two processes are:

PI(S) ",,{T.U} P2(S) ",,{U)

Pl(D =0 P2(D :: (S. V)

PI OJ) :: (V) P2(1J) =0

Pt(V) ::(U) P2(V) ::0

. where. for example, Pl (S) :. (T. U) means that when Pl is in state S. it may operate

changing system state to T or U, When the range is 0 (null sell. t4e process may not

operate to change the system state from the given state, A system can be shown

graphically. by using nodes for the possible ~tates and arcs for the possible state

changes, The above example can be defined by Figure 2.1.

1

~-----~
S, T

1(\~ \
\ 1
\ (~--~ /""" -.

u,--~v

2

I

fIGURE 2.1 System states of the example

An operation by process i changes the system state from. say. S to T. It is

abbreviated by writing S i-tT, If a sequence of operations by processes i.j., ..• k is

possible (S-ti T.T-tj-tU." "V-tk-tW), the sequence isabbrevia.ted byS-t*-tW.

With these Settings. some terms related to deadlock can be defined, A process Pi

is blod-:eJ iLl slole S if there exists no T so that S i-tT, In the figure, PI is blocked in

6

With these settings, some terms related to deadlock can be defined. A process Pi

is blocked in slale S if there exists no T so that S-.i-.T. In the figure, PI is blocked in

state T because there is no arc labelled 1 starting at node T. Process Pi is deadlod:ed in

staleS if Pi is blocked in S and. for all statesTwith S-.i-.T. Pi is blocked in T. No ~r

how other processes can change the system state, there will be no opportunity for Pi to

perform an operation. In the figure. P2 is deadlocked in the states U and V. Pt is not

deadlocked in T because T -+2-+S unblocks PI' If there is a process Pi deadlocked in S.

then S is a Jeadlol..-J: stille. In the figure U and V are deadlock states. If all processes Pi

are deadlocked in S. then S is a 101111 deadJod: sIaIe. There is no total deadlock state in the

figure. State S is SQ(wrtJ (safe state) if it is not a deadlock state and. for any state T

reachable from S. Tis not a. deadlock ,stale.

2.1.2. EIalD.ples of Deadlock

Deadlocks can be different ftom each other. Depending on the number of resources

and processes, they can be simple or comvlicated.

As a first example. consider the two processes competing for disk file D an~ tape

drive T. Deadlock occurs if each process holds one resource and requests the other.

Strategies to deal with this kind of problem include imposing constraints on system

design so that certain reSources are requested in particular order.

As a second example. suppose the main memory space required for activation

records of processes is dynamically allocated. Suppose total space consists of 20K bytes

and two processes require memory in the following way:

Request 8K bytes Requests 7K bytes

Requests 6K bytes Requests 8K bytes

As in the previous example. if both processes progress their seCond requests. deadlock

occurs. Strategies to cope with such deadlocks include preemption of main memory

through paging or requiring processes to declare maximum amount of memory space

required in adva.nce.

7

Consider two communicating processes having the following structure is

another example,

Receive (P2' M) Receive (PI' M)

Send (P2' M')

Design errors such as these may occur at isolated places in very large programs and

may be difficult to detect.

For a fourth example, consider that we have two processes sharing resource R.

. After some period of time both processes want to hold the resource R exclusively by

upgrading their locks. Each process begins to wait for the other one to release the lock.

req-shared-Iock (R) r'eq-shared-:lock (R)

acquire-shared-Jock (R) acquire-shared-lock (R)

req-exc1usive-lock (R) req-exclusive-loc.k (R) ,

A solution for this problem is that if there are more than one users of a resource,

processes are not allowed to 'upgrade their locks without releasing the resource f1nt.

In each of these examples, deadlock occurs because processes request resources

held by other processes and, at the same time, those processes wait for the resources

held by former processes. This is the fundamental characteristics of deadlock.

Deadlock is similar to sta.rYatio.t1, smce each of these involves one or more

proce~s that are permanently blocked and waiting for the availability of the

8

resource. The two. however. are distinctly different phenomena. A deadlocked process

waits for resources that will never be released. Starvation occurs when some process

waits for a resource that periodically became available. but it is never allocated to that

process.

2.1.3. Resource Types

There are two types of resources: reusaIJJe and cOJ1sumaIJJe .. Each class has distinct

properties that are reflected in the various strategies designed to deal with the deadlock

problem.

Reusable resources have fiJ:ed total inventory. Additional units are neither

created nor destroyed. Units are requested and. acquired by processes from a pool of

available units and, after use, they are returned to the pool. Eumples of reusable

resources are processors, 110 channels, main and secondary memory, devices, busses,

and information such as files, databases and mutual exclusion semaphores. In the first

two and the fourth examples, processes use reusable resources.

Consumable· resources have no fixed number of units. Units may be created

(produced) or acquired (consumed) by processes. An unblocked producer of a resource

may reiease any numher of units. These units immediately become available to the

consumer of the resource. An acquired unit ceases to exit. Examples of consumable

resources are interrupts. signals, messages and information in I/O buffers.

In general, deadlock may involve any combination of classes of resources. The

classes of resources present in any system or subsystem affect the manner in which

deadlock problem can be handled.

2.2. The General Model

A general system consists of nonempty sets of processes, n, and resources,p.

9

The set P is partitioned jnto two disjoint sets which are Pc and PC' representing

consumable and reusable resources. For each resource Ril the current number of

available units of Ri is greater than or equal to zero (rj ;?: 0). The total number of each

reusable unit is greater than zero (ti) 0). for each consumable resource, there is a

nonempty set of processes which produce units for that resource.
- .

2.2. J m General Resource Graph

A particular state of the general resource system model is described by the number of

units of each resource that each process requests, the number of units of each reusable

resource held by each process, and current available inventory of each process."Each

state can be explained by a bipartite digraph (directed-graph).

Nodes of the system are resources and transactions. To distinguish them, square

boxes, 0, are used to represent processes and circles, 0, to represent resources. For

reusable resources, the inventory of the resource is represented by placing small

tokens into the circle of the resource. For consumable resources, the tokens represent

the current number of available units.

There are three tYpes of edges in the system. Request edges (Pi' Rj) are used to

connect processes to resources and represent the requests which are not granted yet.
.4ssignDlcnt edges {Rj. Pi} connect resources to processes indicating that the resource

is allocated to the corresponding process. Produ(.":er edges <Rj • Pi} connect consumable

resources to processes that produce them. This edge is the permanent identifier of the

producer. In Figure ~.2. the producer edge is shown using a dashed line.

~here are some restrictions which a. general resource system model should

obey. For reusable resources:

. (a) The number of assignment edges directed from Rj cannot exceed tj(total number of

resources type D .

. (b) At any time the number of available units is rj = tj - (number of edges directed

from Rj).

10

FIGURE 2.2 "A general resource graph

(d For each process Pi' rnumber of request edges (Pi' Rj)J ... fnumber of assignment

edges CRj • Pi)l:s tj .

For consumable resources:

(a) Edge (Rj. Pi) exists if 8:nd only if Pi produces Rj.

(b) The inventory of rj at any time is constrained only to be nonnegative. This means

that systems containing consuDtable resources may have infinite number of states.

2~2.2. Operations on R.esources

In this part. operations which are performed by processes on re~urces are explained.

These operations are request. l,uvuclilil)Q. and release.

If process Pi is executable. then it may request any number of resources

R j . Rk,. . For each request. an edge is inserted, e.g. (Pi' Rj),

(Pi' Rk)····

If process Pi has a request for the resource Rj and the number of requested

units are not more than current inventory rj then Pi may acquire the resource. As a

result of this, the graph must be modified. Request edge

11

(Pi' R j) for a. reusable resource becomes <R j . Pi) indicating an allocation. Each request

edge to a consumable resource disappears. simulating the consumption of units by Pi'

Process Pi may release a.ny subset of resource it is holding or produce any

number of units of consumable resource. Assignment edges disappear from the graph.
but producer edges are permanent. When new units of Rj are pro~uced or released.

current inventory of the resource is increased by that amount.

2.2.3. EIistence of a DeadlOck in System

To check the existence of deadlock in a graph. the graph reduction method can be used.
In particular a reduction by a process Pi simulates the acquisition of any outstanding

request. the return of any allocated units of a reusable resource. and If Pi is a producer

of a consumable resource, the production of sufficient number of units to satisfy aU

subsequent requests by consumers.

Formally. a graph can be reduced by a non isolated node. representing an

unblocked process, in the following way:

(a) For each resource Rj. delete all edges (Pi. Rj) and if Rj is consumable decrement rj

by the number of deleted request edges,

(b) For each resource Rj. delete all edges (Rj. Pi). If Rj is reusable. then increment rj by

the number of deleted edges. If Rj is consumable. then set rj to infinity.

A reduction of a graph by a process node Pi may led to the unblocking of

another pr{tcess node Pj. making Pj a candidate for the next reduction. A graph is

completely reducible if there exists a sequence of graph reductions that reduces the

graph to a set of isolated nodes.
,

A process Pi is not deadlocked in state S, if there exists a sequence of reductions

in the corresponding graph that leaves Pi unblocked.

Another method of deadlock checking is searching for the existence of cycles

in the graph. Cycles show that there are some processes waiting for some resources. If

deadlock happens there must be a cycle. On the other hand, if there is a cycle the

system mayor may not be in a deadlock state, depending on the resource request model

of the processes. Some resources have multiple instances. A resource with multiple

instances is involved in deadlock, iff all the instances of it are involved in cycles.

12

23. Deadlock Policies

'Methods of dealing with deadlock, fall into three categories. These 'are detection and

recovery, prevention, and avoidance. Each policy has its advantages and disadvantages.

and also t.heyare used under different. conditions.

2.30 L Deadlock Detection and Recovery

If a.system does not employ a protocol to preveJ1t deadlocks, then it needs a detectioJ1
and recovery scheme. When a"group of deadlocked processes is identified'some of them

must be terminated (aborted) to resolve the deadlock. Either a deadlock detection

algorithm examines the state of the system periodically. or system events .00ay trigger·

the execution of the algorithm. The process 'Which is selected to be aborted is caUed

victim. The algorithm should select the one 'Whose termination costs the least. Factors

that are commonly used to make this determination include:

(a) The amount of effort that has already be~n invested in the process. This effort 'WiU

be lost if the transaction aborted.

(b) The cost of aborting the process. This cost generally d~pends on the number of

updates the process has already performed.

(c) The amount of effort it wiU take to finish executing the process. The scheduler

wants to avoid aborting a process that is almost finished. To ~o this. it must be able to

predict the future behavior of processes.

(d) The number of cycles that contain the process. Since aborting a process breaks all ,
.cycles that contain it.. it is best to abort processes that are part of more than one cycle.

A process can be repeatedly involved in· deadlock:. In each deadlock. the same

process is selected as the victim. It aborts and resta,rts its execution, only to become a

part of deadlock again. To avoid such' ere/it.'- resIarIs. the victim selection algorithm

should also consider the number of times a process aborted due to deadlock. If it has

been aborted too many times, then it should not be a candidate for victim selection.

unless all processes involved in deadlock have reaehed this state.

13

The thesis is on deadlock detection and resolution. So. this topic is examined in

detail in the following parts.

2.3.2. Deadlock Prevention

A second class of deadlock policy is proven/ion. Here the system design prevents entry

into a state which leads to deadlock. This is accomplished by denying at l..,ast one of the

four conditions which are nec~ssary for deadlock to happen:

(a) Mu/ual ErcJusiQD: Processes hold . resources exclusively. making them unavailable

to other processes.

(blNo.J1pree.Jl1ptio.J1: Resources are not taken away from a process holding them; only

processes can release resources they hold.

(c) .Hesollrce lI'aiti.J18= Processes that request unavailable units of resources block until

they become available.

(d) Partial AUocatio.J1: Processes may hold some resources when they are waiting for

other resources .

.Deadlock is preve~ted by designing the resource management section of an

operating system so that one of the conditions cannot occur. Denying any condition

inevitably degrades ut.ilization of the system resources, but it. is appropriate in the

systems for which deadlock carries a heavy penalty (real-time systems controlling

chemical or nuclear processes).

2.3~3~ Deadlock Avoidance
,

Avoic/8J1ce refers to methods that rely on some knowledge of future process behavior

to constrain pattern of resource allocation. Once again degradation in the resource

utilization is inevitable. Often, a subset of resources for which deadlock is especially

expensive is managed with an avoidance policy.

There are various algorithms which differ in the amount and type of

information required. The simplest and most useful model requires that each process

declare the maximum number of resources~r.~a~h type that it may need. Given a priori

information for each process, it is possible to construct an algorithm that ensures, the

system will never enter a deadlock state. A deadlock avoidance algorithm dynamically

examines the resource allocation state to ensure that there will never be a circular­

wait condition.

Given the concept of a safe state. we can define avoidance algorithms which

ensure that the system wiU never enter an unsafe state . The idea is- that the system

will always remain in the safe state. Initially the system is in a safe state. Whenever a

process requests a resource that is currently available, thesystem must decide whether

the resource can be immediately granted or not. The request is granted only if it leaves

the system in a safe state. As long as the state is safe, the operating system can avoid

unsafe states. In an unsafe state, processes are not prevented from requesting

. resources in such a way that a de.adJock occurs.

Note that in this scheme, ifa process requests a resource which is currently

available, it may still have to wait.

15

1110 MODELS OF DEADLOCK

Depending on the.application. resource systems allow a number of different kinds of

resource requests. For example. a process may need to access combination of some

resources, such as resource A and resource B. resource A or resource B. etc. This part

introduces a hierarchy of request models used in the literature. starting from very

restricted forms and going to models with no restriction. We also mention about some

algorithms which are designed for those models.

In Part 11 the deadlock problem is studied in detail. The theory can be directly

applied to aU system resources. Not to complicate the system. we can consider all

resources as "single unit reusable" resources. As a consequence. each resource is

either not in use or allocated to a single user . This shows that resource nodes are

redundant and can be eliminated from reusable resource graph.

In such a graph, edges are different than the ones we used. If R is a resource

and P and Q are processes such that (P. R) and (R. Q) are edges in the graph. t.hen the

transformed graph will have an edge (P. Q). This new graph is called rnJit-for-KraplJ

(FRi.) because an edge represents one process waiting for another to release the

resource. Since all resources are single unit. a cycle in WFG is the necessary and

sufficient condition for a deadlock to exist. For this reason. deadlock detection

algorithms are based on finding a cycle in the WFG.

3010 . One-Resource Model

It is the simplest model. in which a process can only make one outstanding request. at a

time. Finding a deadlock in such a WFG corresponds to finding a cycle in the graph. The

outdegree of a node. which is the ~umber of edges leaving a process node. is not more

than one:

16

A very simple algorithm for deadlock detection in the one-resource model

appears in Sinha and Natarajan [1 L It is an edge-chasing algorithm in which probes

are sent in the direction of the edges of WFG. In the simplest case, a probe consist of a

natural number which is unique to the nodes in the graph, node id, and the id of the

node which wiH be the victim in case of deadlock.

The algorithm has very nice features. It is very simple. Exactly one process in

the cycle detects the deadlock and simply informs the victim to take necessary actions

before being aborted. Spontaneous aborts are allowed and it does not detect phantom

deadlocks.

Although the algorithm seems to be correct Choudhary 8t aJ. (21 show the

missing parts of the algorithm and improve some of them ~ithout changing the main

st.nJcture of the algorithm. This is explained in detail in Part VI.

3.2~ AND Model

In this model, processes are allowed to request more than one resource at a time and

then, they wait all requests to be granted. The nodes of such a system can have'

outdegree greater than one. The problem of finding the deadlocks is equivalent to

. finding cycles in the WFG.

Consider the WfG given in Figure 3.1. Node Pll has two outstanding resource

requests. Because the system is an AND model system, both of the requests must be

satisfied.

We define deadlock in the AND model. using the lines of Chandy and Misra (5 i. A
process Pi is said to be dependent on process Pj if there is aseque.Q'ce seq = Pi' Pk' .. , Pj

of processes such that each process in seq is idle and each except the first holds a
resource for which the previous process in seq is waiting. We define Pi to be locally

dependent on Pj if all the processes in seq belong to the same controller. Pi is

deadlocked if it is dependent on itself or a process that is dependent on itself.

17

FIGURE 3.1 WFG of an example system

Deadlock detection algorithms for the AND model declare that deadlock exists,
only if cycles exist. Generally, you cannot say that Pi is deadlocked, if it is not involved

in the cycle but waiting Pj which is a part of the cycle. As you can see in Figure 3.1

n~e P53 is not part of a cycle, but because it is waiting for node P 43 which is part of a

cycle, it is also deadlocked. Deadlock in the one-resource system can be derIDed in the

same way, with additional restriction that a transaction can have at most one

outstanding request at a time. It is seen that the AND model is a more gene.rai form of

the one-resource model

3.3. OR Model

Another model of resource request is the OR m~et A request for many resources is

satisfied by granting any requested resource. An example of this model can be a read

request for a replicated data,item. It can be satisfied by reading any copy of it. In the

OR model. detection of a cycle is insufficient for deadlock detection. For example in

Figure 3.1, there is a cycJe in the WFG, but 'We cannot say that there is a deadlock,
because node Pll is transitively 'Waiting for node P22 which is an active node. We can

say that it is a deadlock situation, if all the edges leaving from Pl1are involved in

cycles.

18

In the OR Model. a kDot in the WfG indicates existence of deadlock. By

definition. a vertex v is in a knot if ';;f w such that w is reachable from v ~ v is

reachable from w. So. no path originating from a knot has "dead ends."

We define a deadlock in an OR model as follows: A process is blocked if no one of

its outstanding requests is granted. Each IJlot:*eJ process has a set of processes. called

its dependeDtset. A set S of processes is deadlocked if all processes in S are permanently

blocked. More clearly. asetS of processes is deadlocked if

(a) all processes in S are blocked.

(b) the dependent set of every process in S is a subsetofS. and

(d there are no grant messages in transit between processes in S.

Presence of a deadlocked set of processes is equiyalent to the existence of a knot

in the WFG. Therefore. deadlock detection in the OR model can be reduced to detecting

knots in the WfG. A blocked process p is deadlocked if p is in a knot or p can reach only

deadlock.ed processes.

AND model deadlock detection can be simulated by repeated applications of the

OR model deadlock computations, where each invocation operates on a subgraph of the

AND model WFG according to Knapp (61. But it becomes a very inefficient method to

handle deadlocks.

3A~ AND-OR Model

As the name implies, it is the generalization of the previous two models. Requests can
\

be combinations of the ones in AND and OR models. for example, (a and (b or c)) may be

a request of this model. For this model 'We can use repeated application of the OR model

deadlock computation as explained in the previous section. As explained before, Qsing

the algorithm in this way is very inefficient.

A better deadlock detection method for this model}s developed by llermann and

Chandy [71. The algorithm is explained in Section 5.3.

19

3.5. (~) Model

The (:) model allows the specification. of requests to obtain any ~ available resources

out of a pool of size n. It is the generalization of the AND-OR model. So every request in

the (:) model can be expressed using the AND-OR model ..

To find a deadlock in. such a model. the requesting process should be checked. If

out of k requests, more than (n-k) are involved in cycles, it is said. the process is

deadlocked.

An example algorithm for this model is Bracha and Toueg's Algorithm [81. A

transaction can have as a request an arbitrary and-or combination of (:) requests.

A process becomes blocked. when it issues an (:) request. It does so by

sending out n request messages. It becomes executing again when it receives k grant

messages. In this case, it sends reliDl/uisll messages to the remaining (n-k) processes,

informing them that the edge created by sending the request message no longer exists.

Garni 191 suggests improvements to this algorithm. without giving any

correctness proof or simulation results.

3.6. Unrestricted Model

Initially no ~source request structure is assumed. Instead the stability of the deadlock

is the only assumption made meaning that deadlocks cannot go away by themselves; we

must detect and resolve them.

The advantage of this mode! is that it works under every resource request

model But, because it is designed considering aU resource request structures. it has a

lot of overheads. So. it is preferred just for the systems in which resource requests do

not have agene.rai st.rudure.

20

However. in the context of deadlock detection in computing systems, these

algorithms seem to be of more theoretical value. Since the fact that no further

assumptions are made about. t.he underlying structure of the system. computation leads

to a great deal of overhead that can be avoided in algorithms for the simpler models.

21

IV ~ DEADLOCI. DETECTION IN DISTRIBUTED SYSTEMS

In general. a distributed system consists of a number of sites. each of which is actually

a centralized system. This brings additional problems to the system such as dealing with

replicated data.. single process executing in parallel at different sites. e~. As it can be

imagined. it is more difficult to detect the deadlock. in a distributed system. This is

because each site has only a local view of the whole system.

Both resource (in this case. we refer to a device, such as disk. tape. etc.) and

communication deadlocks can 'be distributed. In distributed systems. ilrocesses that

access nonlocal data.. migrate to other sites creating a subprocess at that site.

Subprocesses'may run concurrently with each other. The originating process is

blocked until all subprocesses terminate. A communication deadlock can occur. if a

process in replicated database requests the value of some nonloca1 data item and is

blocked until one of the sites that hold a copy of this data. responds.

4.1. A Drier 'lntroduction to Concurrency Problem

A nice place to see a group of resources is a database. In a database. we can call each
,

data. item a. resource. When concurrency or multiprogramming is a.llowed. .a

mechanism must be developed to control the acce~ of processes to data. items. This . .

mechanism is called I.'Y.JDI.WrreD(.:.r-· I.'Y.JDlrol mechanism. The proper definition of

concurrency control is given using the terms of. Bernstein el al [31. Concurrency

control deals with the problem of coordinating the actions of processes that operate in

parallel. access shared data.. and therefore potentially interfere with each other.

The main component of the systems that offer concurrent processing is the

IntDSIu.-:tiQD. A transacWm is defined as a process that accesses a shared database.

22

When two or more transactions execute concurrently, their oper-ations on the

resources in database are performed in interlea.ved fashion. Such an interleaving can

cause the resources to be in an inconsistent state. So, not to face with such situations,

resource requests of processes working concurrently are controlled. before granting

them.

When a transaction (process) successfuUy terminates, the transaction is said to

be committed. Successful termination means that the process acquired all the resources'

it requested and finished. A process is aMrled. if its execution is terminated by the

operating system. before it completes.

The main dif!1culty in deadlock detection in distributed systems lies in the

efficient construction of the global WFG. Construction of the global WFG is required to
detect global deadlocks. Even though each WFGi is acyclic, the global WFG may contain

a cycle. To discover such deadlocks, all sites must put their local WFG's together.

In distributed systems, if a process requests a resource at a remote site, a remote

age.11t is created at the remote site to implement the actual request, access, and release

of the resource.

In distributed deadlock detection algorithms, usuaUy databa..~ objects are used as

resources.

4.2. Centralized Deadlock Detection

In centralized deadlock detection, one site, the. central detector, is responsible for the

detection of global deadlocks. There are two basic approaches. In a periodi(~ deadlock

detect.ion, as t.he name implies. various sites are polled periodically to check the

occurrence of any deadlock. In the (vQliQUQuscase. each local site informs t.he central

detector when an edge inserted to or deleted from local WFG.

Once the centra.lized detector finds a deadlock, it selects a victim by using the

roles explained in Section 2.3.1 . Therefore in addition to WFG's, the centralized detector

needs some information about ,'transactions to make a .good victim selection.

23

Transferring this informatIon creates more message traffic in the system (mak.es the

traffic heavier J.

Although centralized deadlock detection is conceptually simple, there are some

problems involved in the approach. The first problem is ph8.11to.D1 t18Jse) deadlocks.

Assume a continuous deadlock detection and suppose initial states of site A and site Bare

as shown in the Figure 4.1 (a). Initially, process 1 requests a resource held by process 2,

process 2 and process 4 respectively wait for process 3 and process I.After a while

process 3 requests the resource held by process 4. The local WFG's of site A and site B

are sent to the central detector-Figure 4,He). At that moment processl releases its

resource request-Figure 4.Hb). But before the new WFG is sent. the central detector

detects a deadlock, but it is a false deadlock.

r·················_············ .. ·· __ ·····•·· __ • __ ·························_······ __ ·_········1

Site A SiteB

(a) Initial system state

r~-~-· .. -· ··· .. - ... -······ _·····n -.-......... -.•.... _ _ :

i !

2 t--...----..r-.....

Site A Site B

(b) Subsequent system state

(c) Phantom deadlock

fIGURE 4.1 formation of phantom deadlock

24

To prevent the detection of such a false deadlock. different concurrency control

algorithms such as two-phase locking can be used. for more information about two

phase locking refer to Appendix A. In case of two-phase locking. phantom deadlocks

again occur when a process that was involved in deadlock. spontaneously aborts.

A second problem with centralized deadlock detection is related to the high

volume of message traffic between the local sites and the central site. The lines leading

towa.rds the central detector can be bottlenecked. If continuous checking is used. too

much overhead is encountered. The tradeoff is between rapid detection of deadlocks

and reduced message traffic. There are several variations of periodic deadlock detection

to reduce the number of messages required for deadlock detection.

A third problem is their vulnerability to failure of the central site. causing

failure of the entire system. Such faults result in long delays until a new central agent

. is determined and supplied with up-to-date WFG information. One method for' the

solution of this problem is to provide a backup central site. But this solution brings

other side problems with it. such as its cost. need for backup time. etc.

One reason for the popularity of the centralized de-cldlock detection methods is
its conceptual simplicity. Moreover. some practical problems. such as removal of false

deadlocks. are easily solved. For example. whenever a global deadlock is detected. the

central controller can reconstruct the deadlock cycle using new information received

from local controllers. If the deadlock cycle remains. then the deadlock is a genuine

deadlock.

4.3. Hierarchical Deadloc1:Detection

The centralized deadlock detection requires that all information to construct the global

WFG must be requested by one site and kept in that site 0 Hierarchical deadlock

detection is in between centralized and distributed deadlock detection.

As in the centralized approach each site maintains its local WFG. In contrast to

the centralized approach, the global WFG is distributed over a number of different

deadlock detectors, These controllers are organized in a tree, where each leaf contains

the local WFG of a single site. A site is reported to its parent deadlock detector. Each .',

25

parent deadlock. detector is in charge of detecting and resolving any deadlock. that is

local to itself and the set of its descendent sites, The process terminates at some central

deadlock detector.

Hierarchical deadlock detection partially solves the problem of high cost of

construcUng the global WFG. But it is still vulnerable to failure of central deadlock

detectors and the phantom deadlock problem is not eliminated.

4_4~ Distributed Deadlock Detection

Using this method, any site can detect the deadlock given enough information.

Distributed deadlock detection has been the subject of intensive research in recent

yean and a lot of algorithms have been published on the subject. In this part, we will

see 'Why distributed deadlock detection is needed.

Most WFG cycles are of length two. Let's se~ why it is so. Suppose we start with

all active processes, so the WFG has no edges. When processes become blocked, edges

are added to th~ graph. Early in the execution, more processes are not blocked, so new

added edges are from waiting processes to the ones which are actually holding the

resource (an unblocked process). As more processes become blocked, there is more
chance that a process Pi will be blocked by a lock owned by process Pj which is also

blocked, creating a path of length two.

Suppose all processes access to the same number of data items with equal

probability. Then on the average, blocked and unblocked processes hold the same

number of ' locks. AU processes are equally likely to block an unblocked process. Then

the probability that an edge creates a path of length two (three, four, etc) is

proportional to the number of processes that are on the ends of paths of length one

(two, three, etc). Because initially there is no edge, short paths must dominate. So an

edge that completes a cycle has higher chance to wait a process which is on the end of

a shorter path. Therefore most WFG cycles are of the length two.

Because most WFG cycles are of length two, many times only two sites will be

involved in deadlock. So we do not need to construct ~e global WFG to see the existence

of a. deadlock, In this case 'trying 'to construct a global WfG, such as in centralized

26

deadlock detection, will be both useless. and time consuming. Communication of only

those sites which are involved in the deadlock is enough to detect the deadlock. In this

way. deadlock is detected faster without causing unnecessary communication.

4.:5. Lock Granularity

The choice of granularity of the database (when data files are used as resources).

'represents a tradeoff between increased concur~ncy and system overhead. Finer

granularity. at the record or field level. provides more opportUnity for concurrency,

but more locks to be dealt with. It may be desirable to allow different objects with

different granularities. such as a record. a disk page. or an entire file. making the

system more complex:. This method usually called llluJ'ignDu18ril; . .r-"lod::iilg.

In multigranularity locking protocols. deadlock can occur for more than one

reason. First.· a transaction that obtains too many locks on data items of small

granularity wants to increase the granularity of its subsequent lock requests. Another

problem arises when granularity of the resources is organized as a tree. In this case a

locking protocol may require a transaction that wants to lock some set of granules to

lock a majority of parents of these granules first. If two transactions happen to try

locking the same set of granules. they may reach to a level where both hold locks on

emctly half of the parents of the set. so none of them succeed.

-4.6. The Resource Model

To study deadlock detection algorithms for distributed systems, the model of Menasce

and Muntz [41 is going to be used. According to the model, a distributed system consists
of a coHection of N sites, sl' ~, .. ,sN' connected by a communication network. The

network is assumed to be fully connected. It is also said that the communication

network is connected using star topology. Each site is a centralized system that stores

27

some portion of the resources, Data objects in the databases are accepted as resources in
the distributed system, There are M. transactions, T1, T2, ' , ,TM running on distributed

data. A t.ransaction sends resDUrt::e requests to a t.ransaction manager (TM). There is
one controller (ci) for each site (si)' A transaction is blocked from the time it requests a

resource until the acquisition of the resource, A transaction can request a resource
which is ,residing at a remote site. A distributed transaction Ti implemented by

ImDSIu.:'Iiondgenls tij , each of which is the local agent for transaction Ti at site Sj' In

case transaction agent tij requests a resource which is controlled by controller cm'

controller Cj transmits the request to agent tim via controller cm' When tim acquires

the resource it sends a message to tij via cm. As it can be seen, intersite requests are

always between two agents of the same transaction.

When agents in transaction T i no longer need a resource controlled by cm' they

communicate with agent tim' which is responsible for releasing the resource, It is

assumed that messages sent between two 'sites arrive sequentially and in a finite time.

And also it is assumed that if a single transaction runs by itself in the distributed

system. it will terminate in a finite time and deadlock does notarise.

A transaction agent is said to be iJle if it is waiting to acquire a resource,

otherwise, it is ezel.'Vlil18- If an agent never acquires a requested resource, it is

permanently idle.

In part V, this model is taken into account when explaining some algorithms.

28

V. DISTRIBUTED DEADLOCK DETECTION ALGORITHMS

The distributed deadlock detection algorithms in the literature come from four

different classes which are path-pushing. edge-chasing, diffusing computations. and

global state detection. Each class has its advantages and drawbacks.

The correctness of a deadlock detection algorithm depends on two conditions

without looking at the class which it belongs to. First. every deadlock must be detected

eventually. Second. if a deadlock is detected it must exist. This condition means that

there should not be incorrectly detected deadlocks (pha.ntom deadlocks) because of out­

of-date information. But in case of spontaneous aborts no algorithm can guarantee to

detect only genuine deadlocks.

50 I. Path -Pushing Algorithms

The basic idea under this class of algorithms is to build some simplified form of global

WFG at each' site. For this purpose, it is allowed that all sites can exchange deadlock

information without causing too much message traffic. Using path-pushing,. each site

looks for cycles in its local WFG and lists all paths in the graph. It selectively sends

some portions of paths to other sites that may need them to find cycles. When a site

receives a path. it adds the edges of the received path to its local WFG. and ~hecks for

cycles. If there is no cycle. then the paths that neither the sender nor the receiver

have seen before are listed and sent to other sites which may have more edges to add to

these paths. The deadlock is detected by the site that adds the final edge to the path

making it a cycle. And then. it is reported to the other sites involved in the cycle. If

cycle lengths are short, this method is better than centralized deadlock detection.

Path-pushing is a nice method. if every site knows wher~ to send its paths. The

best method is sending them to all sites. if you want deadlock to 'be detected faster.

29

Although it makes detection faster. it causes heavy traffic in the system. Using this

approach. every site will end up detecting the deadlock. which is more than necessary.

And also. two or more sites that detect the deadlock might choose different victims.

To reduce the traffic and still make enough detections another method is

developed. Suppose that

(a) each transaction. T i' has a unique identification. Id(1jJ. and

(b) Ids are totally ordered.

In every cycle, at least one path 1i ~ ... ~ Tj has Id(Ti) ~ Id(Tj). If we only send around

the paths that have this property, we still find every cycle by reducing the number of

transferred path in the system. So, when a site produces new paths. it sends them to

sites having this property.

One important point on the subject is that many path-pushing algorithms are

found to be incorrect. For example Gligor and Shattuck (10] show that the algorithm

developed by Menasce and Muntz 141 is incorrect. Another example is Obermarck's

algorithm (111. It is thought that one reason of such in correct algorithm development

is that at that time the notion-of snapshots and consistent global sites in asynchronous

systems were not well understood.

5.2. Edge-Chasing Algorithms

The existence of a cycle in a distributed WFG can be checked by sending special

messages called prooes along the edges of the graph. Probes are distin ct from resource

request and grant messages and are only \Jsed for the detection of a cycle in the system.

When the initiator of a probe receives that probe, it knows that there is a cycle in the

system and it is on the cycle. Then deadlock resolution is initiated.

Only blocked processes propagate the probe along their outgoing edges.

Executing processes simply discard probes or do not put the probes into operation,

depending on the algorithm.

30

An edge-chasing algorithm which is developed by Sinha and Natarajan [1] and

modified by Choudhary etal [21. is examined and improved in the following parts.

5.3- Diffusing Computations

In this class, the basic idea is a diffusillK (vlIlpulllliQll which is activated by a

transaction manager that suspects a deadlock: If this computation terminates. the

initiator declares deadlock. The characteristic feature of the superimposed computation

in the case of distributed deadlock detection is that the global WFG is implicitly

reflected in the computation. The actual WFG is never built explicitly. The diffusing

computation expands by sending quer..v messages and shrinks by receiving rep'ie~;:

These messages are distinct from request and grant messages. When a diffusing

computation shrinks back to its originator it terminates.

Nodes different from the root are called ill/erllaJ nodes. 'Each node in the

diffusing computation has an initial state called the lleulntJ· state. The root sends

queries to its successors to start diffusing computation. After receiving the first query .

a node leaves the neutral state and becomes active. This query is called the ellgllKillg

query' for that node. The process thai-sent. the engaging query is called t.he ellgllgerof

that node. The edge along which t.he query is sent is called the ellgagelllellt edge of the

node.

After receiving engaging query, an internal node can send queries to its

successors, and also send replies to its predecessors and receive replies from its

successors. Queries travel in the direction of edges and replies travel in the opposite

direction.

The difference between the number of queries and replies sent over an edge is

called the deficit of this edge. The deficit of an edge is greater than or equal to zero.

Now we can define that the neutral state of a node is the state in which the

deficits of all edges are zero. The diffusing computation terminates when the root

returns to its neutral state. A node sends back its engaging reply only after it has

received replies from each query it has sent. '

31

We say that diffusing computation has terminated if and only if aU internal

nodes are in their neutral state, and also the root returns to its neutral state.

In general this approach results in shorter messages and less deadlock detection

overhead as compared to path-pushing algorithms.

If we examine Hermann and Chandy's AND-OR model algorithm [7] which uses

diffusing computations. we see that it is a tree computation. A tree computation

consists of a hierarchy of diffusing computations. Transaction agents are mapped to

the processes in the following manner: A process may have an AND request or an OR

request; an AND-OR request issued by some transaction agent is mapped to ,a tree of

processes. The mapping is a representation of the AND-OR re,quest in a regular form.
Figure 5.1 shows an example of this mapping. Processes like P'I are AND processes, and

the others are OR processes.

FIGURE 5.1 Mapping transaction agents to processes

32

When a grant. message is received an edge in t.he WfG disappears. for the

receiving blocked process:

(a) Eit.her no outgoing edges remain, and t.he process becomes act.ive,

(b) or if outgoing edges remain, t.here are t.wo possibilities: If it. is an AND process it.

remains blocked. If it. is an OR request.. all outgoing edges disappear and the process

becomes active.

The main idea is that any time a diffusing computation reaches a blocked OR

process, the diffusing computation is propagated to the dependent set of this process; if

the engaged process is blocked AND process, it initiates a separate tree computation for

each outgoing edge. In order to start a deadlock computation, an initiating process

sends a query to the process that is suspected of deadlock. A tree computation.

terminates when its initiator receives a reply from the suspected process.

According to the definition. a blocked processp is deadlocked if:

(a) Either p is an AND process and ",ill never receive a grant for at least one of the .
requested resources,

(b) or p is an OR process, and will never receive a grant message.

Queries have the form query(seq, x) where seq is the sequence of processes and

k is the sender of the query. If an engaging query(seq, m) arrives at a blocked AND
process Pk-' a new set of computations is initiated by Pk' And, after appending its

outgoing process Pk sends to all outgoing edges. of the WFG. If a block~d OR process

receives an engaging query, it propagates the query to aU processes in its dependent

set. These actions are referred as extension.

If query(seq, m) is not engaging and receiving process Pk has be~n blocked, a

reply(seq, k) is sent to the sender proceSs. This action is called reflection.

When a reply(seq, m) is received by an AND process, it sends its engaging reply

back, if it has been continuously blocked from the time it received the engaging query.

An OR process sends back its engaging reply when it receives replies from all the

elements of its dependent set, and if it has not been executed since it received the

engaging query. These actions are called collision.

To keep track of the queries sent and the replies received by ~each process, two

different message lists are used. These are incoming query list I()-list and-outgoing

33

query list (KJ-lisI. Those lists are updated when a new query is received or sent. The

important point is the receipt of a grant message,

A deadlock computation is started by· some controller. creating a process called

iniiiaior. Initiator sends a query to the process which is checked for deadlock, And a

tree computation starts, A tree computation terminates iff for every i and j. query(seq,
i) is sent to Pj' and replY(seq.j) arrives at Pi with no grants within this time interval,

~. 4. Global State Detection

An important point here is having a consistent global state without freezing the

. uoderJ;'7Dg CtJDlpuiaiil)os. Underlying computations can be considered as the system.

processes, transaction agents. and transaction managers.

Ef'"eois in the system are sending and receipt of messages. The set of events in

the system is denoted by E. The Jl)t=tJ/ stale of a process p consists of the history of all

events occurred on p. Using Lamport's 'lines (121.. Knapp {6J makes a definition of
partial ordering, tetet and e2 € E. Then e1 :S e2 (e1 happened before e2) if either .

. (a) e1 and e2 are both on the same process p. and e1 occurred eacijer in p than e2;

(b) el is a send event and e2 is the corresponding receive;

The first condition says that events in a single process are totally ordered. The second

condition implies that each message is received after it is sent. And according to the

third condition, we can say that orderiJ)g is transitive. Since an event cannot occur

. before itself. partial ordering is irreflexive.

We can represent the history of a system and its happened-before relation by a

diagram in Figure 5.2. The dots represent the events and, the horizontal lines are the

time axes of the processes.

p
c c

F c

ez
~ ------------~~----------~~-

P
-4

FIGURE 5.2 A cutof a distributed system

34

The following formalization is from Chandy and Lamport [131. A cutc of E is a.
partition of E into two sets Pc and F c' meaning the past and future of c. A cut is

(vnsislent ifF c is closed under ~. A consistent cutdefines a. consistent state. It can be

said that consistent cuts are the ones that do not contain a send event in the future with

the corresponding receive event in the past.

A special type of consistent state is St which is the global state at time t. St is a

purely theoretical construct that cannot be observed, because it is impossible. In

contrast, consistent states can be obtained within the system, We can extent the
relation:s to consistent states asfoUows: Let SI' S2 be consistent states. Then SI :S S2' if

the pastofS1 is a subset of the pastofSZ'

A reachability relation. t-. is defined between the states. Let S be a consistent.
state and e E E. such that P s ('\ (e) defines a consistent state S·. Then S t-e S· denotes that

S· is reachable from S. If there is a sequence of events, a, and if we can reach from state

S to S' by following those events. we can write S t-O' S·. Chandy and Lamport show that. S

:S S' implies (3 scbedule a :: S t-G S·).

In deadlock detection, the state of a system can be identified by the WFG, and for

schedules we can consider sequences of information. A transaction is deadlocked, if it
is deadlocked in WFGt, WFG at time 1. And we can also say that if a transaction is

deadlocked in WFG, it is also deadlocked in WFG', under the condition that WFG :S WFG'.

This is the main point on which deadlock detection algorithms can be based.

3S

Chandy and Lamport 113] show how to obtain a consistent global state of a

distributed system, A consistent global state in this way is called a So.8.pSDOt of the

system,

36

VI. STUDY ON AN EDGE-CHASING ALGOR.ITHM

In this part, first we examine the original algorithm of Sinha and Natarajan (1].

Then. the modified version of the algorithm by Choudhary etal [Zl is discussed. Fina.lly.

new modifications and structural changes are offered to make the algorithm more

efficient and correct. In this part. terms "transaction" and "process" are used

interchangeably.

6.1. A Priority Based Distributed Deadlock Detection Algorithm

by Sinha and Natarajan

The deadlock detection scheme presented by Sinha and Natarajan does not construct

any WFG. but follows the edges of the graph to search for a cyete. It is assumed that

each tnulsaction is assigned a priority in such a way that according to priorities all

transactions are totally ordered. When a transaction waits for a data item which is

locked by a lower prio.rity transaction. ltn . a.JJlagooistic conflict occurs. If an

antagonistic conflict. occu.rs for a data item. the waiting transaction suspects from

deadlock and initiat.es a message to find- cycles. If the message comes back to the

initiator, a deadlock cyde is detected.

6.1.1. The Distributed Resource Model

In the dist.rilJuted system. each site has a system-wide unique identifier. called site.Jd
in short. And·each site communicates through messages.

37

It is assumed that all messages sent arrive at their destinations in finite time

and also messages are error-free. The site-to-site communication is pipelined. meaning

that messages arrive in the order they are sent.

Within a site. there are several processes and resources (.10. ilel11~i. Every

process h8$ a system-wide unique name. called prol.~'d To access one or more (/alo.

ile/ll$ (resources), which may be distributed over several sites, a user creates a

transaction process at the local site. A transaction process coordinates actions on all

data items participating in the transaction andpreserv:es the consistency of the

resources .
. ,

Data items are passive entities that represent some accessible piece of

information. Each data item is controJIed by a data m8.11ager. If a transaction wants to

operate on a data item, it must send a request to the corresponding data manager.

Locking an-d unlocking of data items are performed via data managers. A data item can

be in one of two modes: free or e.¥c1usjve (no shared access is allowed). Data manager

grants the data item to requesting transaction. if the corresponding data item is free.

Otherwise, the lock request is inserted in a queue, called requesLf). and a transaction in

. the requesLQ is .called the reqllesterof the data item.' A transaction which has locked a

data item is called the holderof the data item.

Transactions can be in Qne of two states; active or JYa.iting. If a L.-a.nsaction is in

a requesLQofadata manager. it is in waiting state. otherwise it is active. The state of a

transaction changes from waiting to active when the data manager schedules -its

pending lock. requeslln case of state changes, data managers inform the transactions

about the changes.

Each transaction is assigned a priority in such a way that priorities of all

transactions are loWly ordered To assign priorities to transactions, timestamp

mechanism is used. When a transaction is initiated, it is assigned a unique timestamp.

So the transaction with the least timestamp value has the highest priority. This

condition implies that the oldest transaction within a site has the highest priority. If

transactions are created at different sites, first the priorities of corresponding sites

are compared to decide which transaction has higher priority.

A timestamp generated by a site whose site-id is i for a transaction is a pair (C. D

where C is the current value of the local clock.. Greater than. >. and less than. <.

relations for timestamps are defined as follows:

38

Let t1 - (Ct. it) a.nd tz- (C2. il) be two timestamps. Then

tl>~ iffCpC2 or (C1:(;2 and ihi2);

Transactions use ~o-phase Jocking protocol. while making their resource

requests.

6~1.2D Distributed Deadlock Detection

Deadlock is detected by circulating a message, called probe, through the deadlock cycle.

The occurrence of an antagonistic conflict for a data item triggers the initiation of a

probe. A probe is an ordered pair (i.11itiatOr, jll.11ior), where the initiator denotes the

requester ~hich is confronted with the antagonistic conflict. A junior denotes the

transaction whose priority is the least among transactions on the cycle.

A data manager sends the probe only to the holder of the data item. Transactions

send probes only to resources they are waiting for. Transactions and data managers

cannot communicate among themselves for the purpose of deadlock detection.

The basic detection algorithm has three steps.

(a) A data manager initiates a probe in the following two situations: The first situation

is when the data item is locked by a transaction and there is an antagonistic conflict.

The second situation is when a holder releases the data item, the manager schedules a

waiting lock request and there are other lock requests for which the priority of

requester>the priority of new-holder.

When a data manager initiates a probe it sets

initiator := requester;

junior := holder.

(b) Each transaction maintains a queue, calledprohe_Q, where it stores all the probes it

has received. So, the probe_O of a transaction contains the information on the ..
transactions that are directly of transitively waiting for it.

39

When t.r-dD.sa.ctions enter t.he second phase of t.wo phase locking protocol t.hey

are never involved in deadlock so t.hey can discard their probe3J and ignore any probe

or message which is related to deadlock detection.

When a transaction requests a data item and waits for it to be gr-a.nted. it goes

from act.ive to wait. state and transmits a copy of each probe stored in its probe_Q to t.he

corresponding data manager.

When a transaction T receives probe<initiator,juniorl, it performs the

foUowing.

ifjunior>T

then
junior :=T;

save the probe in the probe_Q;

ifT is in the waiting state

then
transmit a copy of the probe to the data manager where it is waiting;

(c) When a data manager receives probeHnitiator,juniorl from one of its requesters, it

performs the following.

if holder>initiator

then
discard"th e probe

else

if holder<initiator

then
propagate the probe to the holder

else declare deadlock and initiate deadlock resolution;

" When the deadlock is detected. the detecting data manager has the identities of the

highest and the lowest priority transactions. Junior (lowest priority transaction) is

chosen to be aborted.

40

6. L3~ Deadlock Resolution

Resolution consists of three steps.

(al The data manager sends an abort message to the victim which is junior of the probe.

The identity of the initiator is also sent in the message.

On receiving an abort message, the victim initiates a message, cJelJ.l1(vicUmJniUator),

sends it to the data manager of the resource that it is waiting for and enters the aoort

phase. Sinha and Natarajan thinks that probe_Qfs of transactions, from initiator to

victim in the direction of probe traversal, wiU not contain any probe having victim

either junior or initiator. So, there is no need for the clean message to traverse in that

part.

In the abort phase .. the victim reJeases aU the locks it owns, and withdraws its pending

Jock requests, and aborts. During this phase, it discards any message it receives.

(bl When a data manager receives a clean message, the message is propagated to the

holder of the resource.

(c) On receiving clean (victim .initiator). transaction T performs the foUowing

operations.

purge from the probe_O every probe that has the victim as its junior

or initiator;

ifT is in waiting state

then

ifT =initiator

then

discard the clean message

else

propagate the clean message to the data manager where it is waiting

else

discard the clean message;

After cleaning up their probe_Ofs, transactions on the broken cycle keep the

remaining probes in their probe_O for the detection of Jater deadlocks.

41

6.2. Errors and Deficiencies Detected by Choudhary ellil

It is detected by Choudhary et al 12J that the algorithm of Sinha and Natarajan f1 J

either fails to detect deadlocks or report deadlocks which do not exist in many

situations. They proposed a modified version of the algorithm. Their full algorithm can

be found in Appendix B. In the following subsections these errors and deficiencies are

discussed.

6.2.1 _ Undetected Deadlocks

Consider the situation shown in figure 6.1(a). Assume that DM(X1) initiated a probe (T l'

T5) and propagated to Ty then to T4 and finally to T3, These transactions keep the

. probe in their probe_Q's. Now suppose T3 commits and releases its locks. If T2 is first in

the requesLQ of DM(X3), it will acquire the lock. This situation is shown in Figure

6.1 (b). Now, if T 2 requests a resource which is held by T l' as shown in Figure 6.H c)

using a bold line, a deadlock cycle wiU be formed. Using the original algorithm this
cycle cannot be detected, because the only probe that can detect the cycle is probe (T l'

T) which will never be propagated to T I'

. T I Xt T) Tt Xt T) Tt Xt T)

• ~~2 • ~2 X2

)T4 T T
4 4

X
3 /

X .. / X3 3 ..
T T T T

2 3 2 2

(a) (b) (c)

FIGURE 6 J An undetected deadlock'

42

According to Choudhary ct ill IZJ. the following extension must be added to the

original algorithm. When a transaction completes or aborts, it releases the resources

that it is holding. The data manager associated with each released resource assigns the

resource to some transaction waiting in the requesLQCir one exists). Each data

manager then requests from all remaining transactions waiting in the requesLQ to

transmit their complete probe_Q's to itself. The data manager forwards each received

probe to the new -holder of the resource for which initiator exceeds the priority of the

new-holder ..

If the algorithm is modified as suggested above, when transaction T2 is granted

to resource X3,transaction T. transfers a copy of each probe in its probe_Q to data

manager DM(X3)' Because the iJiitiator of the probe (TI, TS) has higher priority than

. transaction T2, that probe is sent to transaction T2 by the data manager. When

transaction T 2 requests ,a resource which is held by tra~~ction T I' the probe (T I' T S) id

is transferre~ to transaction T I' which detects the deadlock cycle.

6.2.2. False Deadlocks

Other missing part of the original algorithm is that it detects false deadlocks. False

deadlock detections depend on external probes and old -probes left in the probe_Q's.·

Now, we will examine each situation separately.

(A) False JJesdJoCE JJue to .friernal Pruhes. Consider the case shown in Figure 62(a).
. Transactions T I and T2 are holding resources X I and X. respectively, and T. is holding

resources Xz and X3· In'addition 11' l Z and 14 have requested resources X3, Xz and X4,

respectively. II'S probe (11' 1.) is stored in the probe_Q's of 12 and T •. When the

deadlock cycle is detected by 12, 14 is selected as victim and aborted. A dean message is

initiated in the cycle to remove probes that contain I •. According to the algorithm the

clean message is discarded by the initiator, 12, considering that 12 should not have any

probe in its probe_Q containing the victim, I •• as its initiator or junior, because 12 is

the highest priority transaction on, the deadlock cycle. Ihis argument is only valid

when there is no transaction in the system waiting transitively a transaction on a
deadlock C"'ycle. In the example. although transaction 14 is aborted. probe (Tl' 14)

remains in the probe_Q ofT2 . Later, in Figure 62(C), when 12 requests a resource held

by II' the probes, which come from probe_Q ofI2 with higher initiator priority. are

sent to II causing it detect ~ false deadlock.

43

T2 T2 T2

!"''' •
I.t

Xz
Xt

Xz

•
Tl Tl Tl

(a) (b) (c)

FIGURE 6.2 Example of a false deadlock

The algorithm should be modified such that once a transaction is chosen to

abort. it should initiate a clean message which should not be discarded until it returns

to the transaction to be aborted. And the information of the clean message should be

used by each transaction 0.0. the cycle:

(B) False .Deadlocks J)lIe to O.kl Information. Now, consider the example in Figure 6.3(a).
A deadlock exists between transactions T2 and T4. Transactions T1• T3, and 1, are

waiting transitively on T4, The probe (T1, T,) is transferred to T2 via other

transactions. When T4 aborts, the probe (T l' T,) remains in the probe_O ofT2, although

there is .0.0 wait-for relation between Tl andT2, Later when T2 requests a resource held

by T l' the necessary probes are sent to T l' in eluding (T l' T,). In this situation as shown

in Figure 6.3(c), T I detects a false deadlock.

To avoid this type of false deadlock, the probe_O's of all the transactions

involved in the deadlock: cycle should cleansed of aU the probes upon receipt of the

clean message. Unfortunately. this eleansingcan prevent the detection of some future

deadlocks. To avoid this situation, all of the transactions involved in the deadlock cycle

. or waiting for data. items held by the transactions involved in the deadlock: cyele should

ret:ra.o.smit and/or reinitiate the probes. Another solution to this problem is just

ignoring such deadlocks, because they occur very seldom. In the algorithm of

Choudhary st a.I. 121. the former method is used. It can be seen easily that in this case,

the number of messages in the system increases drasticaUy.

44

6.3. SolD.e More Modifications

Choudhary eta/. (2J proposed a beUer version· of the algorithm of Sinha and Natarajan

[t 1. considering errors and the deficiencies in the algorithm. But there are some more

modifications to make the a1~orithm correct and more efficient. Since some of these are

structural modifications, we can calJ the new aJgorithm as a new edge-chasing

deadlock detection algorithm.

(A) Toe Problem of Unresolved .Deadlocks. Consider the situation shown in Figure

6.4(a). TransactionsTI andT3 have JockedresourcesXI andX3 respectively. Transaction

Tl has also Jocked resources Xl and X4' Transactions 11 and T 3 request resources Xl and

14 respectively. Because Tl has higher priority than TZ, DM(XZ) sends probe (1, Z) to 1Z.

In Figure 6:4(b). TZ requests resource X3' Because X3 has been Jocked by T3- and also

there is an antagonistic conflict, DM(X3) sends probe (Z, 3) to 13' TZ transfers a copy of

each probe stored in its probe_Q to the DM(X3)' This indicates that a copy of probe (I, 2)

i, sent to T 3' Because T 3" pr~ority is lower than.the junior of the probe, it assigns itself

as the junior of the probe and sends both probes to DM(Xt). When DM(Lt) rec;:eives

4S

probe (2, 3), it declares deadlock and sends a message to the victim to make it create the
corresponding clean message. It also transmits probe 0, 3) to T2. While probe 0,3) is

moving in the cycle, clean 0,2) reaches T2 and it purges every probe from its probe3J.

However probe (l, 3) is ahead of the clean message; it passes T 3 before its abortion and

reachesT2. In Figure 6.4(c), after the abortion of T3' T2 requests Xt. Because it is held

by Tt, the request of the transaction is put into the waiLQ of the corresponding data

manager. Then, T2 transmits a copy of its probe_Q to'DM(Xt). On receiving probe (1,3),

the data manager declares a deadlock with a false victim. Although there is a cycle. no

information .about the real victim is received. Because the identity of the real victim is

not known, deadlock cannot be resolved.

(a)

X
4

(b) (c)

FIGURE 6.4 An unresolved deadlock example

Our modification is that all transactions store the probes received with the

identity of the data manager sending it. W.e need to add a sender field into probes. The

field contains the identity of the node (data manager or transaction) sending the

probe. When a clean message is received, not all probes but the only the ones

transmitted by the data manager which is also on the cycle are purged from the

probe_Q. The victim discards all the messages received. after initiating a clean message.

(B) Pkkil181l1e Highest PrilJril:,."· Tmnssu.YilJl1 From lle'luesI_Q. As it is explained each

data manager has a requesLQ to hold the information related to transactions which are

currently waiting for the corresponding resource. In both the original and modified

algorithms, priority of the requesting transactions .h.~ no importance on deciding the

new-holder of the data item when the data item is released by the current holder. A

46

data manager can assIgn the lock. to any transactlon waiting in the requesLQ. Then. for

each requester in the probe_Q for which requester>new.-holder. the data manager

initiates a. probe a.nd sends it to the new.-holder.

Since it is a priority based system. it will be more logical to pick the transaction

with the highest priority from the'requesLQ as the new.-holder. Otherwise. there is

always a chance for the new.-b.older to be aborted by a higher priority transaction

which is waiting in the requesLQ. This modification will reduce the number of probes

sent and the number of deadlocks in the system. The only drawback of this modification

. is the extra computation to find the transaction with the highest priority in the

probe_Q. On the other hand, when assigning a resource. creation of probe is not

required, because all other transactions waiting for the resource have lower priority.

(C) ..4 Probt.LQ for Data. MaDagers. In the modified version of the algorithm.- after

allocating a resource to one- of the transactions waiting in the requesLQ (if any>, data

manager sends messages to the remaining transactions in the requesLQ to transfer

their probe_Q's. When data manager receives those probes, it transfers them to the

new.-b.older, after checking priorities of the initiators. As it can be imagined. the

number of messages trans~itted increases in such situations.

If each data manager keeps the probes that it receives, there wiU be no such

overhead. When the above condition occurs, instead of sending messages to the

transactions and waiting for them to transfer their probe_Q's, data manager picks the

necessary probes from its probe_Q and sends a copy of them to the new.-holder. A Probe

is deleted from the probe_Q of a data manager when its sender. which is also requester,

becomes the holder of the data item or when the sender is aborted. or when deadlock

happens. In case of deadlock. the probes which are sent by the transaction. and

waiting for the corresponding data. item and also on the cycle, are purged from the

queue. When the holder changes. the probes which are sent by new.-holder are deleted

from the queue.

This modification also reduces the number of messages and probes sent. But.

there is always a tradeoff; In this case, it increases the amount of space consumed.

Additional space is required for the probe_Q of each data manager.

It can be easiJy seen that the aim of the last two modifications is to reduce the

number of messages and probes sent. Since this is an algorithm for distributed systems,

the amount of messages transmitted is very important. It has a negative effect on the

47

c.ompletion time of transactions and it creates heavy traffic in the system. for the first

modification. we can say correction. instead of modification. of the algorithm.

6.3.1 Modified Algorithm.

In this subsection, we will introduce a new version of the algorithm that contains the

improvements explained in the previous section. The structure of probes is changed. A

new field seoder is added to the fields of the probe-pro/Je(iIlil.iatorJuoior,seoderJ. The

sender contains the identity of the unit (data manager or transaction) sending the

probe. In the same way, the structure of the clean message is also changed­

cie8J1(victimJoil.iator,seoder J. The function of the .sender is the same as above,

Another structural modification is that data managers also have probe_Q's. The probes

received by a data manager are k.ept in their probe_Q's.

(A) Modified lJeJuIlod: lJeleclioD ~4lKorilJJIJI: This part,of the algorithm is explained in

three steps:

(J) A data manager initiates a probe if there is an antagonistic conflict It

means that the requester of a data item has higher priority than its holder. In such a

case. probeHnitiator.victim,senderl is created and sent to the holder.

When the helder releases a data itea.· and if there are some

transactiens Yaitinl fer it. the data itea is Iranted te the one yith the

hilhest priority. Because all ether "aitinl transactions have less priority

than the ney holder. no probe is initiated under such a situation-unlike

the previous tyO a1lorithas.

When a transaction completes or aborts, it releases its locks. As explained above,

the data item is granted to another transaction. The probes which are sent by the new

holder are purged from the probe_Q of the data manager-if any. Then the probe_Q of

the data manager is checked. a copy of the probes of which initiator is greater than the

new holder is sent to the new holder. The sender field of the probe is changed before

sending it.

(2) A transaction saves the probes received in its probe_Q's before it enters the

second pha.~ of the two-phase locting. After it enters the second phase. all the probes

received are discarded.

When a transaction T receives probeUnlUator,junIor,senderJ, It performs the

following:

if (junior)- T)

then.
junior :=T;

save the probe in ~he probe_Q;

if T is in wait state

thea
transmit a copy of the saved probe to the data manager where it is waiting,

.fter chaalial the seader field

When a transaction is waiting to acquire a data item after changing the sender

part, it transmits a copy of each probe received to the data manager where it is waiting.

(3) When a data manager receives a probe<initiator,victim,sender), it performs

the following:

R'Ye the probe ia the probe_Q;

if (holder ~ initiator)

thea
send a copy of the probe to the holder, after chaalial the seader field

else
declare deadlock and initiate deadlock resolution;

When the holder of a data item changes, the data manager purges aU the probes

whic~ are sent by the new holder from its probe_Q. Then the probe_Q of the data

manager is checked, a copy of the probes of which initiator is greater than the new

holder is sent to the new holder. The sender field of the probes is changed before

sending them.

(B) The .DeadlOCK Hesoilltio.J1 Algorit.IJor. This part is also explained in three steps.

U) When a deadlock is declared, the detecting data manager chooses the junior

of the probe as the victim and sends an abort signal to it. The aim of the abort signal is

to give necessary information to the victim transaction. This information contains the

identity of the initiator. On receiving an abort signal the victim initiates a

clean(victim,initiator,sender) message and sends it to the data manager where it is

waiting. After initiating an abort message, the victim discards any probe or dean

message it receives.

49

The victim aborts when its abort message returns to itself,

(2) When a data. manager reteives a dean message, it purges every probe s-ent

by the sender of the dea.n message from its probtLQ, It propagates the dea.n message to

its holder after thanging the sender field,

It reinitiates probes for each requester with a higher priority than the holder,

A copy of the remaining probes with an initiator having a higher priority than the

holder is sent to the holder,

(3) When a transaction T receives a c1ean(junior.initiator.5l;1nderl, it performs

the following:

if T is in wait state

then

ifT = junior

then
enter the abort phase, release allloc.ks and purge every probe from its

probe_Q

else

purge every probe, of which sender is equal to the sender of

the dean .e55ale, from its probe_Q;

after chanlinl the Hnder of the dean me55ale, propagate it

to the data manager 'Where T is 'Waiting

else
discard the dean message;

Modifications in the algorithm are shown using bold characters,

so

VII. A SIMULATION USING THE NEW PRIORITY BASED PROBE

ALGORITHM FOR DEADLOCI. DETECTION AND EXTENSION FOR

DISTRIBUTED SYSTEMS

~he a.im 'of this simulation study is to show the performance of the new algorithm

which is explained in Part VI. Listing of the simulation program can be found in

Appendix C. In this pa.rt., the simulation model of the a.lgorithm is explained. The results

are given. The algorithm is not compared with any other deadlock detection algorithm.

The simulation results are given to show that it work's under deadlock conditions. And

as an extension to simulate the algorithm on a distributed system, a distributed system

model is introduced.

7.1. Simulation Model of a Single-Site System

A single-system consists of processors, channels, memories, resources, etc. all of which

are controlled by a central unit. Before going into the detail of the system model. it is

better to give the assumptions ve.make on the system:

(a) Basic two phase locking is used to solve the problem of synchronizing access to a

data item. All locks on a data item are considered to be exclusive locks, no shared access
•
is allowed.

(b) .Each transaction may make at most one outstanding request at a time, one resource

model. So detecting a cycle in the system is necessary and enough condition for

deadlock declaration.

51

(e) All transactions in the system are assumed to be designed properly, i.e,. no

transaction in the system contains infinite loops or simila.r errors,

(d) It is also assumed that there is no memory problem, such as, partitioning files into

pages because they do not fit into the main memory, We can put any data into the

memory when required,

(e) Each transaction is a batch process. Interactive processes are not used in the model,

For the modeUing of a single-site system the approach of Agrawal et a.l [14] is

used. Their approach is simplified in some respects. A great deal of interest is paid for

the modelling of concurrency control part.·

There are three parts of a concurrency control model: a data1Jase syste.1l1modeL

a user model. and a t.ra.tJsaction model The database system model captures the relevant

characteristics of the system's hardware and software, including physical resources

and their a-qs(lciated schedulers, the characteristics of the database, such as its size or

granularity, the load control mechanism for controlling the number of active

transactions in the system and the concurrency control algorithm. The user model

deals with the arrival process for users, assuming either an open system or a dosed

system with terminals. The type of the processes, batch-style or interactive, is related

to this part. The transaction model captures the behavior and 'processing requirements

of the transactions in the workload. .

Queuing model of the system is shown in Figure 7.1. There are a fixed number of

terminals from which transactions originate. There is a limit to the number of

. transactions allowed. to be active at any time in the system, the multiprogramming

level mpL When a new transaction originates, if the system haS a fuU set of active
transactions, it enters the ready queue where it· waits for the currently active

transactions to terminate successfully or abort. When there is enough space,

transactions move from the ready queue to the concurrency control queue (ee queue),

begin to execute and make their: first requests. These requests are handled by the

concurrency contra/unit. When a request is granted after an amount of time, the

transaction is placed into the cc queue for new requests. The duration between each

data item request is uniformly distributed between one and mll.L.Ieq_time. The delay to

transfer a transaction from ready queue to cc queue is computed by using the uniform

distribution between one and 1lIJJLJl1IJVl.t..lilJ1e,

52

LU ready
~queue

RESTART

cc ueue

fIGURE 7.1 Logical queuing model for a single-site system

If the result. of a request. is t.hat. the t.ransaction must. be blocked, it. enters the

blocked queue until the requesting data item becomes available. If a request leads to a

decision to abort a transaction, it goes back to the ready queue, possibly after a

randomly determined restart delay period of mean restarLdelay. During that period,

the other transactions which cause the abortion of the transaction leave the system, It

then makes all of the same requests again. When a transaction is restarted, -its

slarl.Jillle does not change. StarUime is the value of the local clock when the

transaction is initialized. Since the priorities of the transactions are measured with

their staruime's. aborted transactions have higher priorities than the transactions

initiated after their abortion. This method is called 8#inin8 prioril.,.~" h.J·· qein8-

RestarLdelay can be arranged according to rQj.1JOnStl_I.illle. ResponseJime is measured

as the difference between when a terminal first submits a new transaction and when

the transaction returns to the terminal following itS successful completion. including

any time spent waiting in the ready queue, time spent before (and during) being

. restarted. etc. It is better if we make the duration of restarLdelay adaptive. depending

53

on the observed average response time. Actually. the importance of restart-delay

depends on the load of the system. If the system is heavily loaded. restart-delay loses its

importance (a restarted process has to wait. anyway). In lightly loaded systems.

restarLdelay should be adjusted well. Short restarLdelay causes deadlock to happen

again. A long restarLdelay is waste of time for restarted transactions.

When a transaction completes, all the data items requested by it are updated and

the locks are released, and then a new transaction is transferred from the ready queue

to cc queue. The size of the ready queue is limited with the number of terminals.

because only one job can be sent from a terminal at a time. The size of cc queue is

limited with mpl.

TERMINALS

LU ready
~ queue

FIGURE 7.2 Physical queuing model for a single-site system

Parameter

nUDLOLres
nUDLOLterm
maXJes

min-1'es

mpl
context.....switchJime

ma.LlD.oveJime

thinkJime

min.JlCc.J:iur

max atc.J:iur

maXJeqJime

Meaning

Number of database objects
Number of terminals
Maximum number of resources
(database objects) requested

Minimum number of resources
(database objects) requested

Multiprogramming level
Time required for COnll;}xt
switching

Transfer delay from ready queue
to cc queue

Mean time bet.ween t.ransactions
created from a terminal

Minimum disk access time for a
database object

Maximum disk access time for a
database object

. Maximum duration between each
resource request

TABLE 7.1 Model parameters

54

CPU and 110 resources underlie the logical model of figure 7.1. The amounts of

110 and CPU time per logical service are specified as model parameters. To make the

model simpler. the number of CPU.servers is re$tricted to one. and there are multiple

1/0 servers. The physical queuing model is shown in figure 7.2. and Table 7.1

summarizes the associated model parameters. When a transaction requests CPU. it is

put into the CPU queue. Requests in CPU queue are serviced FeFS (first-come. first­

served). except that concurrency control requests have priority over aU other

service requests. The service disCipline for the I/O requests is also FCfS. Another

paralneter which is needed to define at this point is contexLSJYitciJ time which is the

amount of time required to save all the registers for the old transaction and to load the

registers for the new transaction.

The tbiDlLtime parameter is the mean time delay between the completion of a

transaction and the initiation of a new transaction from a terminal. It is assumed that

thin,Ltime ·is exponentially distributed.

A transaction is modeled according to the number of data items that it requests.

The parameter trtlJLsize is the average number of objects requested by a transaction.

The amount of data item that a transaction requests is defined by the uniform

distribution between miJLsize and O18Lsize (inclusive). Because it is a uniform

55

distribution. we do not need the mean value as an input. The data objects are randomly

chosen {without replacementJ among all of the data items in the database.

7.2. Application of The Algorithm to The Model

Before going into the details of the algorithm. it is better if we make a definition of a

transaction for this system. In the .system. a transaction can be defined by using the

number of data items it requests. the period of time between the requests. and the

initialization time. The number of data items is selected using a uniform distribution

between the maximum and the minimum number of requested resources. The period of

time between each request is also defined by another uniform distribution. In these

distributions the upper and the lower bounds can be changed depending on the type of

the transactions. In our simulation. atl transactions are of the same type. Initialization

time (starUime) is the value of the clock when the transaction is initialized. In the

system. transactions can'be in one of four modes: 8~'live. JJ·"JIitillg. resla.rletl. rest.a.r/ed­

and- ff"JIilillg. Initially all of the transactions are in the active mode. Active means that

the transaction is either executing or waiting for the CPU. If a request of a transaction

is not allocated. it enters waiting mode. A transaction goes from waiting mode to active

mode when it gets the resource that it is waiting for. When an aborted transaction

restarts. its mode becomes ~started and does not change until it acquires all the

resources that it requested in previous activation. If a restarted transaction waits. its

mode is changed to restarted-and-waiting. For both waiting and restarted-and-waiting

transactions. we will use the term waiting throughout this part.

The probe sending mechanism works as explained in the previous part. There is

a special process (sp-prv(~i in the system which wakes up when .. a transaction is

blocked. Because waiting transactions cannot access the CPU. they do not know if the

other transactions have sent them any probe or not during their wait periods. The

purpose of the sp-process is to check the probe_Q's of such transactions and (if any.

and if necessary) to transmit the probes to the necessary data managers. When

sp_process wakes uP. it checks the probe queues of all the blocked transactions and the

probe queues of the data managers for which blocked transactions wait. It. also.

performs the probe transfer operations on behalf of blocked transactions. Cycles are

detected by this process. Deadlock resolution is also performed by it.

56

In a multiprogramming environment, every work.ing process is not actually

active at any time (even though it seems so). An active transaction can capture the CPU

when its turn comes, according to the scheduling algorithm. In our system. a

transaction can not know about the probes it received when it does not hold the CPU,

for example when waiting in the ready queue to hold the CPU. We can call this period

.·lIiIJDJ"eJlJ..f"-l[period. The probes which are received during waiUnJeady_q

period, are kept in ff7K-pr list. When a transaction captures the CPU, it first checks

wtg_pr list and places the probes (if any) into prlist. which is the main probe queue of

the transaction. Then it continues to its regular work. The transactions which are

waiting for data. items. also. receive probes during their waiting period. Such

transactions cannot. hold the CPU, before t.hey acquire their requests. But by some

means the probes sent during the wait period must be handled. otherwise deadlocks

cannot be detected. sp_process does th~ job and checks the wtg_pr lists of waiting

transactions. It transmits the probes to prJist and to the data managers they are

waiting for.

When a deadlock resolution is initiated. sp-process does not terminate before

abortion of the victim. During that period no other process can capture the CPU. .

7-3. Data Structures of The Model

There are some basic units which should be implemented.usingproper data structures

in the model mentioned in the previous sections. The structure of those units are

explained below.

(A) Resource Tao/e : Resource table is an important component which keeps

information related to the data items (resources) at a site. It has a linked list structure.

For each resource there is a corresponding record in the list. The structure of each

record is shown in Figure 7.3.

As it can be understood from the figure. r~d contains the identity of the

resource. and Lid contains the identity of the transaction, currently holding the

resource. lfaitq is also a linked list containing the information about the transactions

currently waiting for the resource.

57

.. ...
r-1d

Lid

waitq

nextr
FIGURE 7.3 A record in resource table

. (B) TraDS6~~ioQ Table : Transaction table contains the information about the

transactions which can be initialized by the terminals. It has a linked list structure.

The structure of a node in the list. is shown in figure 7.4.

Ud

mode

slarUime

resnum

holdJist.

focus

restarLarr

rsLtime-Arr

ma.rk

mes

prlist.

wig_pr

nextt

FIGURE 7.4 A record in t.ransaction table

l....it/ contains t.he identit.y of t.he transaction. mo.ckcontains the current mode of

the t.ransaction. stariJime is assigned when the t.ransaction is init.ialized. resJlum

contains t.he number of data items the corresponding t.ransact.ion will request.. It is a·

random and predetermined value. holt/jist: is a set containing the identity of data items

t.hat the lrd.nsaction is holding. restarlJ.rr. rstJime.....a.rr. and ll1II.rkare the parameters

used when the t.ransaction restarts and contain the information about. requested

58

resources and request times, pr/istand fJ'tK-prare lists containing the probes received

by the transaction. If the probes are sent when the transaction is not active. they are

ke pt in wtg_pr,

(e) Probe Queues: Each transaction and data manager has a probe queue in the system,

which is actually a linked list. Probe queues are used to keep the probes sent by the

transactions that are directly or transitively waiting for that unit. Transactions receive

probes from data managers and data managers receive probes from transactions.

Probes are kept with the identity of the sender to make the life easier during deadlock

resolution activities. The structure is shown in Figure 7.5 .

... ...
init

vic

sender

next

FIGURE7.5 Structure ofa probe queue

l.oit is the short form of initiator. It shoW's the initiator of the probe. Wc(stands

for victim) contains the identity of the transaction that has the lowest priority among

the visited transactions by the probe. In a transaction's probe queue sender contains

the identity of the data manager that has sent the probe. In a data manager's probe

queue, on the other hand. scndercontains the identity of the transaction who has sent

it.

(D) lYait Quelle : Each data manager has a wait queue to store the information related to

the transactions requesting the corresponding data item. It has a linked list structure.

While assigning a data item to a transaction if there are more than one transaction, the

data manager considers the priorities of the requesting transactions. So both the

identities and the priorities of the waiting transactions are kept in. Figure 7.6 shows

the structure of a wait queue.

Requests in the wait queue are ordered according to the priorities of the

reqnesting transactions. Lid contains the identity of the requesting transactions.

StarLtime keeps the initialization time and shows the priority of the transactions.

59

_
Lid

starLtime

nextw • ..

FIGURE 7.6 Structure of wait queue

The queues in the system are simple linked lists just keeping the information

required.

7 A. Results Obtained

The main performance metric used in this thesis is throughput. Throughput is taken as

the number of completed transactions per ten thousand units of time. Number of

probes sent per a period of time can be considered as another performance metric.

Response_time can be a good performance metric, for the systems in which it has

importance. In our simulation throughput, number of deadlocks per ten thousand units

of time. number of probes per ten thousand units of time. and response_time are used ,

as performance metrics.

ContexLswitch-time is accepted as a unit of time in the system. When assigning

time values to the parameters, the ratio of the assigned value to contexLswitch_time is

taken into account. Some parameters have fixed values, such as nUJlLoLres,

nUJJLoLterm, maLres, min.-re5, contexLswitch_time, miJLaccdur, maLaccdur and

max...req_time. The value 9f mpJ is changed. Simulation parameter settings are shown

in TabJe 7.2.

To get the simulation results. the program is executed until a thousand

transaction~ complete. With each different setting this execution is repeated.

Parameter

nUDLoLres
nUDLOLterm
maLreS
minJes
mpl
contexLswitchJime
ma.LJD.oveJime
thinUime
min-ClCcdur
max a.cc....dur
maLreqJime

Value

200
50
8
2
2.5.7.10.15.30.50
1
4
200
15
65
25

TABLE 7.2 Simulation parameter settings

60

The value of mpl is cha.nged from time to time and differences in the results are

observed. In these simulations adaptiverestarLdelay is used. The behavior of the

system under different mpl values are shown in Table 7.3.

ThinUime ,.200;
RestarLdelay= adaptive;

mpJ response-
time

2 7400

5 4359

7 4285

10 4476

15 5018

30 8037

50 11671

num.of
&robes

II 000 units

1.9

112

24.7

<f!l.3

78.0

264.0

320.2

num.of throughput deadlocks
110000 units

J 64

.5 107

12 109

1.8 104

3.8 93

8.1 53

8.5 34

TABLE 7.3 Simulation results taken with different mpl values

61

ThinLtime is set to two hundred. As it can be seen from the table. the best throughput

is taken when mpl is equal to seven. After that level because of heavy load in cc queue.

throughput decreases gradually and the number of deadlocks begins to increase.

. Some simulation results are taken to show the effect of the ordering of requests

in the requesLQ. We repeat the above simulation with the system for which the

priority of requesting transactions has no importance in assigning the resource. The

results can be seen in Table 7,4. The effect of the modification is not clearly seen until

mpl reaches to fifteen. Becausempl is low. there are not many requests in requesLQ's

of data managers-so the ordering of requests has no importance on the performance

of the system. After mpl reaches to fifteen-we can call it threshold level for this

system-, the number of conflicts begin to increase so the length of requesLQ's. Then

the result of the modification can be seen cleady. If Table 7.3 is compared with Table

,7.4, it is seen that the number of deadlocks in Table 7,4 is more than the number of

deadlocks in Table 7.3, after the threshold level. Depending on the number of deadlocks.

the number of probes sent, and response time in Table 7,4 are greater than the ones in

Table 7.3. As a result of greater response time, the throughput in the Table 7,4 is less

than the one in Table 7.3.

ThinUime = 200;
RestarLdelay = adaptive;

mpi response-
time

2 7302

5 4379

7 4268

10 4405

15 5027

30 8139

50 12484

num.of
&robes

/1 000 uni~

2.0

13.1

24.1

47.1

98.2

303.2

476.1

num.of throughput deadlocks
/10000 units

.2 65

.6 106

1.2 109

2.3 104

4.2 91

8.9 50

9.9 26

TABLE 7,4 Simulation results taken with different mpl values when priority has no

importance in handling requests

62

To show the result of the modification which is explained in Section 6.3(C)­

Probe_Q for data. managers-, the system is simulated using the deadlock detection

algorithm with no probe_Q's for data. managers. In that case ,after the detection of

deadlock, data. managers on the cycle should send the messages to the transactions

waiting for th.em to reinitiate the probes (as in Choudhary et aI's algorithm). And also

after the termination or abortion of a process, the data. managers whose holder has

been the aborted or terminated transaction perform the same thing. The results are

shown in Table 7.5. To see the performance of the modified algorithm, the results can

be compared with the ones in Table 7.3. When data. managers do not have probe_Q's, the

message traffic becomes heavier because they should send a message to each

transaction in their requesLQ, and wait for the transactions to transmit a copy of their

probe_Q's. This process takes time and creates extra delays in the system. Such delays

are the cause of an increase in response time and in the number of deadlocks.

Depending on these two conditions, throughput of the system decreases.

ThinUime = 200:
RestarLdelay :: adaptive:

mpl response- num.of num.of throughput time &robes deadlocks
II 000 units 110000 units

2 743:> 2.3 .1 64

:> 44:>0 n.:> 1.0 104

7 4342 30.9 1.7 105

10 4512 62.0 3.2 103

15 5141 119.4 5.1 88

30 8637 333.1 9.3 46

50 14740 532.3 lO'2 21

TABLE 7.5 Simulation results taken when probe_Q's for data managers are not employed

The effect of think-time is shown in Table 7.6. mpl is set to seven and 'simulation

results are taken for different thinLtime values. As thinLtime Increases,

63

responseJime decreases. When thinLtime becomes very la.rge. throughput starts to

decrease. because CPU stays idle.

mpl=7;
RestarLdelay = adaptive;

think- response- throughput
time time

ZOO 4285 109

950 3683 107

1500 2975 107

. 3500 840 - 108

4000 790 102

4500 666 94

5000 548 90

TABLE 7.6 Simulation results taken with different think-time values

7.5. EItension: General Distributed System Model for The Further

Studies

This study can be extended as a simulation of a distributed system using the priority

based probe algorithm for deadlock detection. The deadlock detection algorithm

remains the same. but rome modification is required to adopt the single-site system

model to a distributed system model. In this section. these modifications and a general

distributed system model are introduced. A simple model of the system is shown in

figure 7.7.

Resources
A

Resources

FIGURE 7.7 Simple model of the distributed system

The assumptions made a.re:

64

(a) Resources in the system are not replicated. They are single.;..copy resources. Each

site is responsible, from its own unique resources. To reach a remote resource, a

message indicating the request is sent to the corresponding site. Then, allocation is

performed by the site which contains the data item.

(b) Sites are connected using star topology. This implies that a message can be directly

sent to any other site within the system. All messages sent arrive at their destination in

finite time without any error (error-free system). The delay experienced by a message

in a communication channel is constant for each channel.

(c) Site-to-site communication is pipelined, I.e. the receiving site gets the messages in

the same order that the 'sending site has transmitted them.

(d) When a transaction requests a data item from another site, the corresponding data

item is transmitted to the requesting site. After it is released by the requesting

transaction, it is transmitted back to its original site. Process migration is not used,

a.,f;jSUming that all the sites are heavilr loaded.

(e) To construct a global completeness within the system, events are partially ordered

using Lamport's approach [121.

65

(f) And all of the assumptions of the single-site system model are valid.

7.~.L Simulation Model of a Site in Distributed System

In terms of data access, the main difference between a distributed system and a single­

site system is that in the former. transactions may request data items which are

residing at remote sites.

The logical queuing model for a distributed system site is shown in Figure 7.8.

The previous model is modified according to inter-site requests. When a transaction

requests a data item at another site, a timestamped message (for ordering of events

among sites) containing the necessary information related to the transaction is sent to

the corresponding site and the requesting transaction is put into remote access block

queue. The transaction stays there until the requested data item is transmitted to its site.

A site receiving such a message first arranges the global system clock according to

the timestamp of the message (this point is explained in the following subsection in

detain. Such messages cause the system to create an agent of the requesting

transaction, at the requested site. Such operations are called pre-process for a remote

request by the requested site. Then, this transaction agent is put back of the ready

queue in the requested site. When processing time comes to that transaction agent its

request is checked by the concurrency con,trol unit. If the data item is available, it is

transmitted to the requesting site. When the requesting site completes its job with this

data item, it is sent back to the original site. During this period (transmission and

retransmission), all the transactions requested for the 'corresponding data item are

blocked. Transmission and retransmission periods for a fHe are fixed for each

transmission channel. Transactions are not allowed to migrate to remote sites. They

only create transaction agents at remote sites when they request data items at those

sites.

TERMINALS
REM~pre­
ACCES roce

.......

............ .-0-...----......
~----< _~ I __ >~~~----------------.

--0--

LU ready
~queue

cc ueue

blocked .

remote access
block queue

RESTART

flGURE7.8 Logicalqueuing model for a distributed system site

Physical queuing model is also modified as shown in Figure 7.9.

66

Some new parameters are. added. such as I.vmmuDit:~/iiJDJ!eIa:J·1iJJ.

Fel1llJleJ<eI/UesLprolJaht1i(.f1i/J. CommunicationJielayU.j) contains the transmission
delay experienced by a message while traveling from sitei to site;,

CommunicationJlelayU.j) may be equal to communication_delay(j.D. if both

transmission media are the same. For the simplicity of the model all

communicationJlelay's can be equal. RemoteJequesLprobability(i.j) keeps the
probability of the request which is made by a transaction residing at sitei for a,

67

resource residing at sitej. Remote-requesLprobability can be equal for aU sites or

change from site to site and also according to requested site.

TERMINALS

r4----< ~4------'"

LU ready
~ queue

TO REMOTE
SITE

FIGURE 7.9 Physical queuing model for a distributed system site

7 5_2~ Ordering of Events in tbe System

Since it is a distributed system. there is no common clock: to order the events within the

system. In a cent.ralized system. events are totally ordered according to the system

dock:. In a distributed system. partial ordering of events according to the messages sent.

between sites is enough for the consistency of the system. For such ordering Lamport's

"ha.ppened-before" relation [t2) which is explained in Section 'A is used. The

implementation of the relation to distributed systems is explained in the following

pa.ra.gra.ph.

68

Let's give an example of the situation that causes problems. Assume that there

are two processes, at different sites, that communicate with each other (process A and·

process B). Process A sends a message to process B when its local clock is equal to tOO.

Process B receives this message when its local clock is equal to 50. Because they are at

different-sites. such a situation usually happens. But this is a contradictory situation.

Although the message sending event happened before, it seems as if it has happened

after receiving the message according to the local clocks of the sites. To solve this

problem. we require the site to advance its local clock when it. receives a message of

which timestamp is greater than the value of its local clock. In the above example. t.he

local clock of the receiving site becomes 101 when it receives the message. But with

this clock. you cannot measure the duration of time between two events at a site

correctly.

The relation is simulated in the foUowing way: Each site has a global clock

Uogical clock) other than its own local clock. The purpose of the global dock is only ,
partial orc:tering of the events among sites. Global clock is updated by both the ticks of

the local clock and the messages sent from other sites. Because of this reason, the

global dock is not used for measuring the time between any two events. When a

transaction requests a remote data item. the request message is timestamped with the

value of the global dock of the r~questing site. It can be understood that the global

clock of each site is different from each other, but partially ordered according to

messages received from other sites.

69

VIII. CONCLUSION

In this thesis the deadlock problem in computing systems is introdul;(ld in demiL The

polities used to deal with the deadlock problem are explained, Among these polities.

"Deadlock Detection and Resolution" is selected and studied, Deadlocks are modeled

according to the resource requirements of processes,

Distributed computing systems are introduced, Advantages and disadvantages of

centralized. hierarchical. and distributed deadlock detection in distributed systems are

dis-cussed. It is seen that both centralized and hierarchical deadlock detection methods

transfer WfG's between sites. The classes of distributed deadlock detection algorithms

a.re presented. These classes employ. path-pushing. edge-chasing. diffusing

computations. and global state detection methods to detect deadlocks. Some algorithms

from different. classes are examined.

A priority based deadlock detection algorithm is introduced, The modified

version of the algorithm is examined, A situation' under which the algorithm cannot

resolve a deadlock is found, To solve this problem and to make the algorithm better

some structural changes are offered, We called the modified algorithm "the new

priority based probe algorithm for deadlock detection ,"

Lacking of the formal proof, the algorithm is extensively tested through

simulation for a single-site system model. To simulate the algorithm .. the model which is

used by Agrawal et 01 [14] for the performance analysis of the different concurrecy

control algorithms is employed, -with a fev modifications, Giving different values to the

system parameters, the behavior of the system is observed,

To show the effect' of modifications, the system is also simulated using the

algorithms without modifications, First, the importance of ordering of requests in the

requesLQ is considered and the system is simulated using the algorithm which does not

employ the ordering of events in requesLQ, When the results are compared with the

ones taken using the new algorithm, it is seen that for aU performance metrics, the

new algorithm performs better, Secondly, the same system is simulated using the

algorithm which does not employ probe_Q's for data managers and the results are also

70

compared with the results obtained using the new algorithm. Again beUer

performance of the new algorithm is observed. The only disadvantage of using

probe_Q's for data ma.nagers is that ext.ra memory is required for t.he probe_Q's of data.

managers.

for further simulation studies, the simulation model is extended for distributed

systems. Using this model. the new algorithm can be simulated for distributed systems

and performance results are compared with other deadlock detection algorithms for

distributed systems.

71

APPENDIX A. BASIC TWO PHASE LOCKING

To explain the subject Bernstein et ol [3) is referred. Throughout the. section. we can

replace the term transaction with the term process. Locking is a mechanism commonly

. used to solve the problem of synchronizing access to shared data. Each data item has a
Jocl: associated with it. Before a transaction T 1 may access a data. the scheduler first

checks the associated lock. If another transaction T2 holds the lock. then T 1 has to wait

" until T2 releases the lock. The scheduler ensures that only one transaction can hold a

lock at a time.

A basic two phase scheduler manages and uses its locks according to the

following rules:

(a) When it receives an uperation on a data from the transaction manager, the

scheduler tests if the requested lo~k conflicts with the other lock that is already set. If

So, it delays the operation. forcing the corresponding transaction to wait until it can set

the lock it needs. If not, then scheduler" sets the requested lock and sends the operation

to the data manager.

(b) Once a scheduler sets a lock for a transaction, it may not release that lock atJeast

until after data manager acknowledges that it has processed the lock's corresponding

operation.

(c) Once a scheduler has released a lock for a transaction, it may not subsequently

. obtain any more locks for that transaction .

.
Rule (a) prevents two transactions from concurrently accessing a data item in

conflicting mode. Rule (b) supplements Rule (a) by ensuring that the data manager

processes operations on data items in the order that scheduler submits them. Rule (c)

caIled the tFO phase rule, is the source of two phase locking. Each transaction may be

divided into two phases: growing phase during which it obtains locks, and shrinking

phase during which it releases locks. Its function is to guarantee that all pairs of

conflicting operations of two transactions are scheduled in the same order.

72

An important unfortunate property of two phase locking is that they are

subject to deod/od:s ..

73

APPENDIX B. MODIPIED PROBE ALGORITHM BY CHOUDHARY el 6L

In this part we represent the modified probe algorithm by Choudhary III 01. [21. The

algorithm makes no assumption about the scheduling policy of a data. manager. When

two or more transactions are simultaneously waiting for a data. item .. the data. manager

may assign the lock. for that data item to any transaction.

The basic deadlock detection algorithm now has the following steps.

1) A data manager initiates. propagates, or reinitiates a probe in the following

situations.

a) When a data item is locked by a transaction, if a lock request arrives from

another transaction, and requester) holder. the data manager initiates a probe and

sends it to the holder.

b) When the current holder releases a data item, the data manager schedules a

"'waiting lock request"· If there are more lock requests still in the tequesLQ, then for

e~ch lock request for which requester> new holder. the data manager initiates a probe

and sends it to the new holder.

When a data manager initiates a probe it sets

initiator:= requester;

jll.nior:= holder;

c) When a transaction completes or aborts, it releases its locks. The data

manager associated with each released data item assigns the lock for the data item to

some transaction (heretofore referred to as new holder) waiting for that data item (if

one exists). Each data manager then requests all remaining transactions waiting on the

new lock to transmit their complete probe_Q's to itself. (The identities of these

transactions are obtained from the data manager's requesLQ-l The data manager

74

forwards each received probe (jDitia/or.iuDior) to Dinf.-" bolder the lock for which

inilialor> De,," bolder.

2) Each transaction maintains a queue, caUed a probe_Q, where it stores aU probes

received by it. The probe_Q of a transaction contains information about the

transactions which wait for it directly, or transitiveJy. Sin ce a transaction foHows two­

phase Jocking, the information contained in the probe_Q of a transaction remains valid

until it aborts or commits.

After a transaction enters the second phase of the 2PL, it does not discard the
, '.

probe_Q. However, during the second phase, any probe received is ignored.

Otherwise, a transaction sends a probe or a copy of its probe~Q to the data

manager, where it is waiting in the foUowing three cases.

a) When a transaction T receives probe (initiator/unior), it performs the

foUowing.

if (junior> n
thea junior:= T;

save the probe in the probe_Q;

if T is in wait state

thea transmit a copy of the saved probe to the data manager where it is

waiting;

b) When a transaction issues a Jock request to a data manager and waits fOF the

Jock to be granted (i.e., it goes from active to wait state). it transmits a copy of each

probe stored in its probe_Q to that data manager.

c) If a transaction is waiting and receives a request for its prob~_Q from the
~

data manager where it is waiting, it sends a copy of its probe_Q to the data manager.

3) When a data manager receives probe (initiator/unior) from one of its requesters, it

performs the following.

if bolder)- initiator

thea. discard the probe

else if bolder < illilia/or

thea. propagate the probe to the bolder

else declare deadlock and initiate deadlock resolution;

75

When a deadlock. is detected, the detecting data manager has the identities of two

members of the cycle, il1ilialor and /ul1ior. i.e., the highest and lowest priority

transactions, respectively. The jllLlior is chosen as the deadlock Yklim.

(B) TIle /JeaJlod:: IJelel.Yiol1 JlIld PoslllesolulioLl Compuuliol1

This consists of the following three steps.

1) To abort the VJ(1ill1, the data manager that detects the deadlock sends an abort signal

to the vil.Yill1. The identity of the initiator is also sent along with the abort signal:

abort(viI.Yill1,il1ilialqr). Since the vil.Yill1 is aborted, it is necessary to discard those

probes (from the probe_Q of various transactions) that have the vkl,ill1 as their junior

or il1ilialor. Hence, on receiving an aborLsignal. the vk.lill1 does the following.

a) It initiates a message, clean(vklill1,iniiialor),. sends it to the data manager

where it is waiting.

b) The victim enters an abort phase only when its clean message returns to

itself. Once it enters the abort phase, the victim releases all the locks it held, withdraws

its pending request, and aborts. During this phase, it discards any probe or dean

message that it receives.

Z) When a data manager receives a deane victim,ioJtiator) message, it does the

following.

a) It propagates the clean message to its holder.

b) It reinitiates the probes for each requesterfor which requester' holder.

c) It requests each transaction in the requesLQ to retransmit its probe_Q.

3) When a transaction T receives a cleanVu.J1ior .initiator) message, it acts as follows.

purge eyery probe from its probe_Q;

if T is in wait state

thea if T-ju.J1ior

t.hea enter the abort phase and release all locks

else propagate the clean message to the data manager where T is waiting

else discard the clean message.

76

APPENDIX C. PROGRAM LISTING

This pa.rt contains the listing of the simulation program. The program is written in

Pascal. It contains three indud~ c files-var ..Jnit.pas. initialize .pas. and simu.pas. First

the listings of the include files are given according to their places in the main file. To

explain the program. comment lines are used.

Listing of Include File VAILINIT.PAS :

prooedure var_init(var data:data-Pa0k_type);
{ initializes all the system parameters of a single-site system }

begin

end;

dataA.numofres:=sl_numofres;
data"'.numofterm:=sl_numofterm;
data maxres: =sl_maxres;
data minres:=sl_Rcinres;
data mpl:=sl_mpl;
data context switch:=sl context switch;
data av move-time:=sl max move time; - '"- - - -data maxreqtime:=sl_maxreqtime;
data think_time:=sl_think_time;
data minaccdur:=sl~inaccdur;
data maxaccdur:=sl~maxaccdur;
data res_~ptr:=nil;
data tr_~ptr:=nil;
data re~~ptr:=nil;
data ready..:...<Lptr:=nil;
data cmpl:=O;
data sys_clock:=O;
data clock:=O;
data cumm_tr_dur:=O;
data numofprobes:=O;
data numoftrans:=O;
data numofcomptrans:=O;
data"'.mean tr dur:=O;
data numofdeadlock:=O;

Listing of Include File INITIALIZE.PAS :

prooedure initialize(var data:data~ok_type);
{ initializes all the queues used in the simulation of the system
and creates the first transaction of each terminal }

var
re~ptr/request:a_r~typet;

rd_ptr:el_rd_~t;
prev: tr_nodet;
pres: res _nodet;
last:el_rd_~t;
pre:a_re~typet;

res,i:integer;

procedure find_term(tid:integer; var t:tr_nodet);
{ finds the record of the terminal whose identity is sent as

parameter}
var

count :'integer;

begin
if (dataA.tr_~ptr<>nil)
then
be9in

t:=data tr_~ptr;
t:=t nextt;
oount:=l;
while {(tA.t_id<>tid) and (t<>nil)

and (oount<=dataA .numofterm» do
begin

t:=t nextt;
oount:=oount+l;

end' , .'

if (oount>dataA.numofterm)
then
begin

writeln('ERROR - in procedure find_term. initialize');
halt;

end;
end
else
begin

writeln('ERROR - in prooedure find_term~ initialize');
halt;

end;
end; { find_term }

prooedure insert_req(var req:a_req_typet);
{ inserts the reoeived reoord into 00 queue }
var

prel,pre2,ptr:a_req_typet;

77

begin
if (data~.re~~ptr<>nil)
then
begin

req next:=nil;
ptr:=data~.re~~ptr;
if (ptrA.next=nil)
then

ptrA.next:=req
else
begin

pre2:=data re~~ptr;
prel:=pre2~.next;

while «prel<>nil) and (p~el~.re~time<req"".re~time» do
begin

pre2: =prel;
prel:=prel next;

end;
pre2~.next:=req;
req next:=prel;

-end;
end
else

writeln('ERROR - in procedure insert_req, initialize');
end; { insert_req }

procedure transfer_bw_qs;
{ moves transactions from ready queue to cc queue }
var
fr_rd,rptr:el_rd_~t;
fr_req,newone,ptr:a_re~typet;
tr:tr_nodet;

begin
if (data ready_~ptr<>nil)
then
begin
fr_rd:=data~.ready_~ptr;
fr_rd:=fr_rd~.nextel;

fr_req:=data~.re~~ptr;
fr_req:=fr_req~.next;

while (fr_rd re~time<fr_req re~time) or (fr_req=nil»
and (data~.cmpl<data~.mpl) and (fr_rd<>nil) do

begin
data cmpl:=data cmpl+l;
new(newone);
ptr:=data re~~ptr;
newone~.next:=ptr next;
ptr'~ . next: =newone;
newone t_id:=fr_rd t_id;
find_term(newone t_id,tr);
if (tr mode=rst)
then
begin

newone re~time:=tr start_time;
newoneA.mode:=rstcpureq;

end

78

else
begin
newoneA.re~time:=fr_rdA.re~time;
newoneA.mode:=new;

end;
rptr:=dataA.ready_~ptr;
rptrA.nextel:=fr_rdA.nextel;
fr_rdA.nextel:=nil;
dispose (fr_rd) ;
fr_rd:=dataA.ready_~ptr;
fr_rd:=fr_rdA.nextel;
fr_req:=dataA.re~~ptr;
fr_req:=fr_reqA.next;
dataA.clock:=dataA.clock+dataA.av_move_time;

end;
end
else

writeln('ERROR - in transfer_bw_qs, initialize');
end; { transfer_bw_qs I

procedure insert_tr_rd_q(req:el_rd_~t);
(inserts a transaction into ready queue I
var

prel,pre2:el_rd_~t;

begin
if (dataA.ready_~tr<>nil)
then
begin
prel:=dataA.ready_~ptr;
prel:=prelA.nextel;
preZ:=data ready_~ptr;
while «prel<>nil) a~d (prel re~time<reqA.re~time) do
begin .

pre2:=prel;
prel:=prelA.nextel;

end;
preZ nextel:=req;
req nextel:=prel;

end
else
begin

writeln('ERROR - in procedure insert_tr_rd_q, initialize');
halt;

end;
end; { insert_tr_rd_q }

procedure job_suhmission(j:integer;delay:real);
{ initiates a transaction from the corresponding terminal }
var
rdtrans:el_rd_~t;

begin
new(rdtrans);
rdtransA.nextel:=nil;
rdtrans t_id:=j;
rdtrans re~time:=data clock-delay*ln(l-random);

79

insert_tr_rd_q(rdtrans);
end; { job_submission }
procedure init_trans_q;
f initializes all the terminals in the system }
var

ptrans,ptr,trans:tr_nodet;
i,j:integer;

begin
new(ptr) ;
ptr~.nextt:=nil;

data~.tr~~ptr:=ptr;
ptrans:=data~.tr_~ptr;
for i:=l to dataA.numofterm do
begin

newt trans);
trans t_id:=i;
trans mode:=act;

-trans start_time:=O;
trans resnum:=O;
trans hold_list:=[];
trans focus:=O;
trans""'. prlist: =nil;
trans ~wtg_pr:=nil;
trans nextt:=nil;
for j:=l to data maxres do
begin

trans restart_arr[jJ:=O;
trans rst_time_arr[j]:=O;

end;
trans mark:=O;
ptrans nextt:=trans;
ptrans:=trans;

end;
end; { init_trans_q I

procedure init_res_q;
{ initializes all the resources in the system I
var

pres,ptr,resource:res_nodet;
i:integer;

begin
new(ptr) ;
ptr nextr:=nil;
data res_~ptr:=ptr;
pres:=data res_~ptr;
for i:=l to data numofres do
begin

new(resource);
resource r_id:=i;
resource t id:=O;
resource waitq:=nil;
resource probes:=nil;
resource nextr;=nil;
pres"'.nextr:=resource;
pres:=resource;

80

end;
end; { init_res_q 1

begin { initialize 1
init_trans_q;
init_res_q;
new(rd-ptr);
rd-pt r· nextel: =ni l;
data ready _q-ptr: =rd-ptr;
rd-Ptr· t_id:=O;
for i:=l to data numofterm do

job_submission(i,data think_time);
data".cmpl:=l;
new(request);
rd-Ptr:=data~.ready_q-Ptr;
last:=rd-Ptr nextel;
rd-Ptr nextel: =last nextel;
request t_id:=last t_id;
request""'. req_time:=last req_time;
request mode:=new;
request next:=nil;
last nextel:~nil;
dispose (last) ;
new(req-ptr);
req-Ptr next:=request;
data req_q-Ptr:=req-Ptr;
writeln(' all queues are INITIALIZED');

end; { initialize j

Listing of Include File SIMU.PAS :

procedure simulate(var data:data_pack_type};
{ simulates a sing-site system }
var

resource :res_nodet;
trans : tr_nodet;
request :a_re~typet;
call_check_wtg_trs:boolean;

procedure oheok_olook(var req:a_re~typet);
{ updates the system clook I '

begin
if (reqA.mode <> wtgtrok)
then

if (dataA.clock<reqA.re~time)
then
data~.olock;=reqA.re~time;

end; { check_olock I

81

procedure find_term(tid:integer; var t:tr_nodet);
f finds the termir~l whose identity is given }
var

count:integer;

begin
if (dataA.tr_~ptr<>nil)
then
begin

t:=dataA.tr_~ptr;
t:=tA.nextt;
count:=!;
while «tA.t_id<>tid) and (t<>nil)

and (count<=dataA.numofterm» do
begin

t:=t nextt;
cmunt :=count+!;

end;
if (count>dataA.numofterm)
then
begin

writeln('ERROR - in procedure find_term');
.halt;

end;
end
else
begin

writeln(' ERROR - in procedure find_term' -);
halt;

end;
end; { find_term I

procedure find_res(rid:integer; var r:res_nodet);
(finds the resource whose identity is given I
var

count: integer;

begin
if (r<>nil)
then
begin

count:=!;
r:=dataA.res_~ptr;
r:=r nextr;
while «r r_id<>rid) and (r<>nil)

and (count<=dataA.numofres» do
begin

r : =r nextr ;
count:=count+l;

end;
if (count>data numofres)
then
begin

writeln('ERROR - in procedure find_res');
halt;

end;
end

82

else
begin

writeln('ERROR - in procedure find_res');
halt;

end;
end; { find_res }

procedure insert_tr_rd_q(req:el_rd_~t);
{ inserts a transaction into ready queue }
var
prel/pre2:el_rd_~t;

begin
if (data~.ready_~ptr<>nil)
then
begin
prel:=dataA.ready_~ptr;
prel:=prelA.nextel;
pre2:=dataA.ready_~ptr;
while ((prel<>nil) and (prelA.re~time<reqA.re~time» do
begin

pre2:=prel;
prel:=prelA.nextel;

end;
pre2 nextel:=req;
req nextel:=prel;

end
else
begin

writeln('ERROR -in procedure insert_tr_rd_q');
halt;

end;
end; { insert_tr_rd_q }

procedure insert_req(var req:a_re~typet};
{ inserts a transaction into cc queue }
var

prel,pre2/ptr:a_re~typet;

begin
if (dataA.re~~ptr<>nil)
then
begin

reqA.next:=nil;
ptr:=dataA.re~~ptr;
if (ptr next=nil)
then

ptr next: =req
else
begin

pre2:=ptr;
prel:=pre2A.next;
while «prel<>nil) and (prel re~time<req re~time» do
'begin

pre2 : =pre 1 ;
prel:=prelA.next;

end;

83

pre2 A .next:=req;
reQA.next:=prel;

end;
end
else

begin
writeln('re~~ptr is nil - insert_req');
halt;

end;
end; { insert_req }

procedure transfer_bw_qs;
{ transfers transactions from ready q~eue to co queue}
var
fr_rd,rptr:el_rd_~t; {from ready_queue}
fr_req,newone,ptr:a_re~typet;
tr:tr_nodet;

begin
if (dataA.ready_~ptr<>nil)
then
begin

fr_rd:=dataA~ready_~ptr;

fr_rd:=fr~rdA.nextel;
fr_req:=dataA.re~~ptr;
fr_req:=fr_reqA.next;
while «(fr_rdA.re~time<fr_reqA.re~time) or (fr_req=nil»

and (dataA.cmpl<dataA.mpl) and (fr_rd<>nil» do
begin

dataA.cmpl:=dataA.cmpl+l;
new (newone);
ptr:=dataA.re~~ptr;
newoneA.next:=ptrA.next;
ptrA.next:=newone;
newoneA.t_id:=fr_rdA.t_id;
find_term(newoneA.t_id,tr);
if (trA.mode=rst)
then
begin
newoneA.re~time:=trA.start_time;
newone".mode:=rstcpureq;

end
else
begin
newoneA.re~time:=fr_rdA.re~time;
newoneA.mode:=new;

end;
rptr:=dataA.ready_~ptr;
rptrA . nextel: =fr_rdA . nextel;
fr_rdA.nextel:=nil;
dispose (fr_rd) ;
fr_rd:=dataA.ready_~ptr;
fr_rd:=fr_rdA.nextel;
fr_req:=dataA.re~~ptr;
fr_req:=fr_reqA.next;
dataA.clock:=data clock+data av_move_time;

end;

84

end
else
begin
writeln('ready_~ptr is nil - transfer_bw_qs');
halt;

end;
end; { transfer_bw_qs }

procedure joh_submission(j:integer;delay:real);
{ initiates a transaction from the given terminal }
var
rdtrans:el_rd_~t;

begin
new(rdtrans) ;
rdtrans nextel:=nil;
rdtrans t_id:=j;
rdtrans re~time:=data clock-delay*ln{l-random);
insert_tr_rd_q(rdtrans);

end; { job_submission }

procedure initiate_probe(i,v,sndr:integer);
{ initiates the probe whose initiator, junior; and sender are

given as parameters }
var

pr:probet;
tr:tr_nodet;

begin
find_term(v, tr);
new(pr) ;
pr init:=i;
pr vic:=v;
pr sender:=sndr;
pr next:=tr wtg_pr;
tr wtg_pr : =pr ;
data numofprobes:=data numofprobes+l;
pr: =tr wtg_pr;
while (pr<>nil) do
begin

pr:=pr next;
end;

end; { initiate_probe }

procedure dm_to_tran(var pr:probet; var tr:tr_nodet);
{ sends the given probe to the specified transaction }
var
itra,vtra:tr_nodet;

begin
find_term{pr init,itra);
find_term{pr vic,vtra);
if «tr start_time > itra start_time)

or (tr t_id = pr init»
then
begin

if (tr start_time > vtra start_time)

85

then
pr~.vic:=trA.t_id;

pr· next: =tr·-·. wtg-pr;
t r~ . wtg-pr: =pr;
data~·. numofprobes :=data·-·. numofprobes+ 1;

end
else

dispose (pr) ;
end; { dm_to_tran J

procedure sendprobe(pr:probet; r:res_nodet);
{ sends the given probe to the specified data manager }
var

tran: tr_nodet;
tpr:probet;

begin
new(tpr);
tpr~:=pr~ ;
tpr~.sender:=r~.r_id;

tpr". next: =nil;
prA.next:=r".probes;
r".probes:=pr;
dataA.numofprobes:=data".numofprobes+l;
find_term(r". t_id~ tran);
dm_to_tran(tpr,tran);

end; { sendprobe }

procedure insert_into_prlist(pro:probet; var tra:tr_nodet);
{ inserts the probe sent into probe_O of the specified

transaction I
var

prevl,prev2:probet;

begin
prevl:=tra~.prlist;
prev2:=tra~.prlist;
while «prevl<>nil) and «prevl init<>pro init)

or (prevl~.vic<>proA.vic») do
begin

prev2:=prevl;
prevl:=prevlA.next;

end;
if (prevl=nil)
then
begin

proA.next :=tra prlist;
tra prlist:=pro;

end
else

if «prevl init=pro ·.init) and (prevl~.vic=pro~.vic))
then
begin

dispose (pro) ;
end;

end; { insert_into_prlist I

86

procedure transfer-prlist(var tra:tr_nodet; var r:res_nodet);
{ transfers the probes of the transaction to the specified

data manager J
var

loc:probet;
rpr:probet;

begin
loc:=tra~.prlist;
while (loc<>nil) do
begin

new (rpr) ;
rpr~.init:=loc~.init;

rpr vic :=loc vic;
rpr sender:=tra t_id; .
rpr next: =nil;
sendprobe(rpr,r);
loc:=loc~.next;

end;
end; { transfer_prlist }

procedure dispose_list(var l:probet);
{ disposes the given probe_Q }
var

ptrl,ptr2:probet;

begin
ptrl:=l;
l:=nil;
while (ptrl <> nil) do
begin

ptr2:=ptrl;
ptrl:=ptrlA.next;
ptr2A .next:=nil;
dispose(ptr2};

end;
end; { dispose_list }

procedure remove_holders_probes(var r:res_nodet; holder:integer);
{ removes the probes which are sent by the holder of the data

item from probe_Q }
var

res_pr,prev_res_pr:probet;

begin
res_pr:=rA.probes;
prev_res_pr:=res_pr;
while (res_pr <> nil) do

if (res_prA.sender = holder)
then

if (res_pr = r~.probes)
then
begin

rA.probes:=res_prA.next;
prev_res_pr:=rA.probes;
res_prA.next:=nil;
dispose (res_pr);

87

res-pr:=prev_res-pr;
end
else
begin

prev_res_pr'" .next:=res_pr'" .next;
res_pr"'.next:=nil;
dispose(res_pr);
res_pr:=prev_res_pr;

end
else
begin

prev_res_pr:=res_pr;
res_pr:=res_pr"'.next;

end; .
end; { remove_holders_probes }

procedure transfer_from_dm(res:res_nodet; var tra:tr_nodet);
{ transfers probes from a data manager to its holder }
var

probe,pr:probet;
itra,vtra:tr_nodet;

begin
prob~:=res"'.probes;
while (probe <> nil) do
begin

new(pr) ;
pr"':=probe"';
pr"'.next:=nil;
find_term(pr"'.init,itra);
find_term(pr"'.vic,vtra);
if «tra"'.start_time > itra"'.start_time),

or (tra"'.t_id = prA.init»
then
begin

if (traA.start_time > vtra"'.start_time)
then

pr"'.vic:=traA.t_id;
prA.sender:=res"'.r_id;
pr~.next:=traA.wtg_pr;
tra ,", . wtg_pr : =pr ;
dataA.numofprobes:=dataA .numofprobes+l;

end
else

dispose (pr) ;
probe:=probe"'.next;

end;
end; { transfer_from_dm }

procedure release_all(var tr:tr_nodet);
{ releases all the resources which are held by the specified

transaction }
var

res:res_nodet;
k:integer;

88

procedure release_it(var r:res_nodet);
var

temp,wt:w_re~typet;

act_tr,tra:tr_nodet;
req:a_re<t-typet;
prev_res_pr,res_pr:probet;
i:integer;

begin
if (r",waitq=nil)
then
begin

r· t_id: =0;
end
else
begin

temp:=r".waitq;
rA.waitq:=tempA.nextw;
tempA.nextw:=nil;
rA.t_id:=tempA.t_id;
new(req) ;
req".t_id:=tempA.t_id;
req".re~time:=dataA.clock

+random{ data" .maxaccdur-data minaccdur+l) +data minaccdur;
req".mode:=cpureq;
req".next:=nil;
dispose (temp) ;
find_term(reqA. t_id,act_tr);
if (act_tr mode=wtg)
then

act_tr mode:=act;·
if (act_trA.mode=rstwtg)
then

act_trA.mode:=rst;
act_trA.hold_list:=act_tr hold_list + [r".r_id1;
act_trA. focus: =0;
remove_holders_probes(r,act_tr t_id);
insert_req(req);
transfer_from_dm(r,act_tr};

end;
end; { release_it }

begin { release_all }
for k:= 1 to data numofres do
if (k in trA.hold_list)
then
begin

find_res(k,res);
release_it(res);

end;
end; { release_all }

89

procedure abort-phase(var tr:tr_nodet; var res:res_nodet);
{ puts the specified transaction into abort phase }
var

ptrl,ptr2;w_re~typet;
i:integer;
rdtrans;el_rd_~t;

begin
writeln(' DEADLOCK - transaction' ,trA.t_id:2,· is aborted');
find_res(trA.focus,res);
ptrl:=res""'.waitq;
ptr2:=resA.waitq;
i:=l;
while «ptr1A.t_id <> trA.t_id) and (ptrl<>nil»do
begin

ptr2:=ptr1;
ptr1:=ptr1A.nextw;
i:=i+l;

end;
if (ptr1=nil)
then
begin

writeln
('ERROR ~ transaction · ,trA.t_id:3,' is not in request_O');
halt;

end
else
begin
if (i = 1)
then

res""'.waitq:=ptr1 A .nextw
else

ptr2 A.nextw:=ptrl A .nextw;
ptrlA.nextw:=nil;
dispose (ptr 1) ;
tr focus:=O;
release_all(tr} ;
trA .mode:=rst;
trA.focus:=O;
trA.hold_list:=[];
dispose_list(tr prlist);
dispose_list(trA.wtg_pr);
tr ... · . mar k : =0 ;
dataA.cmpl:=dataA.cmpl-l;
new(rdtrans) ;
rdtransA.nextel:=nil;
rdtransA.t id:=trA.t id;
rdtransA.re~time:=data""'.clock-data""'.mean_tr_dur*ln(1-random);
insert_tr_rd_q(rdtrans);
end;

end; { abort_phase I

90

procedure dispose-prs_from_cycle(var l:probet; sres:integer);
{ disposes all the probes which has come from the cycle }
var

ptrl,ptr2:probet;

.begin
ptrl :=1;
ptr2:=1;
while (ptrl <> nil) do

if (ptrl sender = sres)
then
begin

if (1 = ptrl)
then
begin .

l:=ptrl next;
ptr2 :=1;
ptrl next:=nil;
dispose(ptrl) ;
ptrl:=ptr2;

end
else
begin

ptr2A.next:=ptrlA.next;
ptrl A .next:=nil;
dispose(ptrl};
ptrl:=ptr2A.next;

end;
end
else
begin

ptr2:=ptrl;
ptrl:=ptrlA.next;

end;
end; { dispose_prs_from_cycle }

procedure reinitiate_probes(var r:res_nodet; var t:tr_nodet;
wtr,vic:integer);

{ reinitiates some probes after deadlock }
var

wreq:w_re~typet;

pr, tpr :probet;
iterm,vterm:tr_nodet;

begin
wreq: =r waitq;
while (wreq <> nil) do
begin

if (wreqA.start_time < tA.start_time)
then

initiate_probe{wreq t_id,t t_id,r r_id);
wreq~=wreq""'.nextw;

end;
dispose_prs_from_cycle(rA.probes,wtr);
pr: =r probes;

91

while (pr <> nil) do
begin

new(tpr) ;
tpr :=pr ·;
tpr'··. next :=nil;
tpr sender:=r r_id;
dm_to_tran(tpr,t};
pr:=pr next;

end; .
. end; { reinitiate_probes }

procedure resolution(var tid:integer);
{ starts the resolution of a deadlock }
var

vic_tr,cycle_tr:tr_nodet;
res:res_nodet;
prevtr:integer;
pr, tpr : probet;

procedure transfer_prlist_to_wtg_pr(var prl,wtgl:probet);
{ transfers probes from wtg_pr list to prlist }
var
ptrl,ptr2:probet;

begin
ptrl: =prl;
while (ptrl <> nil) do
begin

new(ptr2) ;
ptr2 :=ptrl ;
pt.r2'~ . next.: =wt.gl;
wtgl:=ptr2;
ptrl:=ptrl next;

end;
end; { trans£er_prlist_to_wtg_pr }

begin {resolution}
find_term(tid,vic_tr);
find_res(vic_t.r focus,res);
find_term(res t_id,cycle_tr);
prevtr:=tid;
while (cycle_tr t_id<>vic_tr t_id) do
begin

data clock~=data clock+{data context~switch*4);
dispose_prs_from_cvcle(cycie_tr prlist,res r_id);
dispose_prs_from_cycle(cycle_tr wtg_pr ,.res r_id);
transfer_prlist_to_wtg_pr(cycle_tr prlist,

cycle_tr wtg_pr);
reinitiate_probes(res,cycle_tr,prevtr, tid);
prevtr:=cycle_tr t_id;
find_res(cycle_tr focus,res);
find_term(res t_id,cycle_tr);

end;
data clock:=data clock+(data context_switch*4};
dispose_prs_from_cycle(res probes,prevtr);
abort_phase (vic_tr ,res); .

92

if (resA.t_id <>0)
then
begin

find_term(res~.t_id,cycle_tr);
pr:=resA.probes;
while (pr <> nil) do
begin

newt tpr);
tpr :=pr ;
tpr next: =nil;
tprA.sender:=res~.r_id;

dm_to_tran(tpr,cycle_tr);
pr: =prA. next;

end;
end;

end; { resolution }

procedure check_wtg_trs;
{ checks the wtg_pr lists of waiting transactions, transfers

waiting probes into prlists and transmits a copy of them to
the necessary-data managers}

var
tr,inittr,victr:tr_nodet;
res:res_nodet;
pr, prs: probet;
req:a_re~typet;

stop: boolean;

begin
t~:=data""'.tr_~ptr;
tr: =tr nextt;
stop:=false;
while «tr <> nil) and (not stop}) do
begin

if «tr mode = wtg) or (tr mode=rstwtg»
then
begin

data A .clock:=rlata clock+(data context_switch*2};
pr: =tr wtg_pr ;
while Cpr <> nil) do
begin -

tr wtg_pr:=pr next;
pr next: =nil;
find_term(prA.init,inittr);
find_term(pr vic,victr);

if «inittrA.start_tiine<tr start_time) or
(pr init=tr t_id»

then
begin

if (victr start_time<tr start_time)
then

pr vic:=tr t_id;

93

if (pr· init = tr· t_id)
then
begin

dataA.numofdeadlock:=dataA.numofdeadlock+l;
resolution(prA.vic);
dispose (pr) ;
stop:=true;

end .
else
begin

new(prs) ;
prsA.init:=prA.init;
prs".vic:=prA.vic;
prsA.sender:=trA.t_id;
prs· next: =nil;
insert_into_prlist(pr, tr);
if (trA.focus<>O)
then
begin

find_res(trA.focus,res);
sendprobe(prs,res)

end;
end;

end
else

dispose(pr) ;
pr : =tr A . wtg_pr ;

end;
end;
tr: =tr nextt;

end;
end; { check_wtg_trs }

procedure check_res(var t:tr_nodet; rqr:integer);
t checks the specified resource to see if it is available or not }
var

res:res_nodet;
req:a_re~typet;

procedure allocate;
{ allocates the resource to the transaction }
begin

res'''' . t_id: =t t_id;
new{req) ;
reqA.t_id:=tA.t_id;
reqA.re~time:=data""'.clock+
(random(dataA.maxaccdur-dataA.minaccdur+l)+dataA.minaccdur);
reqA.mode:=cpureq;
req next:=nil;
tA.focus:=rqr;
t".hold_list:=t hold_list + [rqr];
insert_req{req) ;

end; { allocate }

procedure put_in_wq;
{ puts the request of the transaotion into request_O of the

data manager because the resource is held by another
transaotion}

var
f1,f2,neww:w_re~typet;
i:integer;
notfound:boolean;
tr1,rtr:tr_nodet;

begin
if (t~.mode=act)
then

t".mode:=wtg;
if (t".mode=rst)
then

t".mode:=rstwtg;
t".focus:=rqr;
new(neww) ;
neww".t_id:=t".t_id;
neww".start_time:=t".start_time;
neww".nextw:=nil;
f1:=res".waitq;
£2:=f1;
i:=1;
notfound:=true;
while «f1<>nil) and notfound) do

if (f1".start_time<neww".start_time)
then .
begin

f2:=f1;
fl:=fl",nextw;
i:=i+1;

end
else

notfound:=false;
if (i=1)

then res".waitq:=neww
else f2".nextw:=neww;

neww".nextw:~f1;
find_term(res".t_id,trl);
if (trl".start_time>t".start_time)
then

initiate_probe(neww".t_id,res".t_id,res".r_id);
transfer_prlist(t,res);
call_check_wtg_trs:=true;

end; { put_in_wq }

begin { allocate }
find_res(rqr,res);
if (res".t_id=O)
then

allocate
else

put_in_wq;'
end; { allocate }

procedure count(holdlist:resset; var result:integer);
{ counts the number of resource that the transaction holds }
var

i:integer;

begin
result :=0;
for i:=l to dataA.numofres do

if (i in holdlist)
then

result:=result+l;
end; { count }

procedure resource_request(var tra:tr_nodet);
{ requests a resource for the specified transaction }
var

reqtime:real;
req:a_re~typet;

reqres,cnt:integer;

begin
reqtime:=random(dataA.maxreqtime)+l;
data~.clock:=data~.clock+reqtime;

repeat
reqres:=random(data A .numofres)+l;

until not(reqres in traA.hold_list);
count(traA.hold_list,cnt);
traA.rst_time_arr[cnt+l]:=reqtime;
tra restart_arr[cnt+l]:=reqres;
check_res(tra,reqres);

end; { resource_request }

procedure initial_activation(var req:a_re~typet);
{ initial activation of a transaction }
var

tr:tr_nodet;
reqres:integer;

begin
data numoftrans:=data numoftrans+l;
find_term(req t_id,tr);
tr start_time:=reqA.re~time;
tr resnum:=random(data maxres-data A .minres+l)+data minres;
resource_request(tr);

end; { initial_activation }

procedure terminate(var trm:tr_nodet);
{ terminates the given transaction }
var
req:a_re~typet;

reqtime:real;
i:integer;

begin
reqtime:=random{data maxreqtime)+l;
data clock:=data".clock+reqtime;

96

release_all(trm);
data~.cumm_tr_dur:=data~.cumm_tr_dur

+ (data clock-trm~'. start_time);
data numofcomptrans:=data numofcomptrans+l;
trm mode:=act; .
trm· start_time :=0;
t rm'" . resnum: =0 ;
trm focus:=O;
trm hold_11st:=[];
trm prlist:=nil;
trm wtg-pr:=nil;·
trm mark:=O;
for i:=l to data maxres do
begin

trmA.restart_arr[i]:=O;
trmA.rst_time_arr[i]:=O;

end;
data A .cmpl:=dataA.cmpl-1;
job_submission(trmA.t_id,dataA.think_time);

end; { terminate }

procedure move_wtg_prs(var tra:tr_nodet);
{ moves some of the probes from wtg_pr list to prlist }
var

pr:probet;
ter:tr_nodet;

begin
pr:=traA.wtg_pr;
while (pr<>nil) do
begin

traA.wtg_pr:=prA.next;
prA.next:=nil;
find_term(prA.init,ter);
if «(terA.mode=wtg) or (terA.mode=rstwtg» and

(terA.start_time<traA.start_time»
then

insert_into_prlist(pr,tra)
else

dispose (pr) ;
pr:=traA.wtg_pr;

end;
end; { move_wtg_prs }

procedure re_started(var req:a_re~typet);
l requests resources for restarted transactions }
var

tr: tr_nodet;
cnt:integer;
reqres: 1 .. s1_numofres; .

begin
find_term(reqA.t_id,tr);
if (trA.mark=O)
then

97

begin
dispose_list(trA.prlist);
dispose_list (tr" . wtg_pr) ;

end
else

move_wtg_prs(tr);
tr-..... mark : =tr mark+l;
reqres: =tr restart_arr [tr mark];
data clock: =data clock+tr" .rst_time_arr [tr mark];
check_res(tr,reqres);
if (reqres in tr hold_list)
then
if (tr mark<>dat.a'" .maxres)
then
begin

. if (tr restart_arr [trA.mark+l]=O)
then
begin

t.r mark:=O;
tr mode:=act;

end;
end
else
begin

tr mode : =act;
tr mark:=O;

end;
end; { re_started I

procedure activate_again(var req:a_re~typet);
{ execut.es restarted transactions }
var

t:tr_nodet;
res:res_nodet;
cnt:integer;

begin
find_term(req t_id,t);
if ({t mode=rst) and (t mark=data maxres»
then
begin

t mark:=O;
t" .mode:=act;

end;
if ((t mode=rst) and (t restart_arr[t mark+1J<>O»
then

re_started(req)
else
begin

t A . mode : =act;
move_wt.g_prs(t.);
count(tA.hold_list,cnt);
if (cnt=tA.resnum)
then

terminate(t)
else

resource_request(t);

98

end;
end.; { activate_again }

procedure take_request(var req:a_req_typet);
{ takes a transaction from cc queue }
var

ptr:a_re~typet;

begin
if (dataA.re~~ptr<>nil)
then
begin
ptr:=dataA.re~~ptr;
if (ptrA.next=nil)
then

req:=nil
else
begin

req:=ptr"'.next;
ptr next:=req next;
req next:=nil;

end;
end;

end; { take_request }

begin { simulate }
take_request(request);
call_check_wtg_trs:=false;
while «request<>nil) and

(dataA.numofcomptrans<stop_simulation» do
begin

check_clock(request);
write(chr(13), 'CLOCK :', sys_l clock:6:0);
case requestA.mode of

new initial_activation(request);
'cpureq activate_again(request};

end;

rstcpureq :. re_start~d(request);
wtgtrck : check_wtg_trs;

dispose(request);
if call_check_wtg_trs
then
begin

check_wtg_trs;
call_check_wtg_trs:=false;

end;
transfer_bw_qs;
take_request(request);
if.request=nil
then

while (request=nil) do
begin

check_wtg_trs;
take_request(request};

end;
data clock:=data clock+data context_switch;

99

if (data ·. rmmofamnptrans..::;.O)
then

dat.a···· .mean_t.r_dur: =dat.a···· . cUmID_tr_dur /dat.a" . numofcomptrans;
end;

end; { simulat.e }

Listing of The Main File :

{$U+ ,R+}
{ $G512 , P512, D-}
program deadlock;
{

}

This program simulates the deadlock detection algorithm
which is modified by S.F.Akglin for a single-site system.
All the parameters are given in constant form. It is
wI'it.ten by S. F.Akglin ·in Fall, 1989.

const
s1_numofres=200;

{ number of resources in the system }
s1_numofterm=50;

. { number of terminals in the system }
~l_maxre~=S;

l Dk~ximum nUnR1er of resources requested by a process }
sl_minres=2;

{ minimum number of resources requested by a process }
s1_mpl=50;

{ multiprogramming level }
sl_context_switch=l;

{ context switch time - unit of time in the system }
s1_IDax_move_time=4;

{ time required to move objects from ready queue to cc
queue l

s1_maxreqtime=25;
{ maximum duration between each resource request made by
a process}

s1_think_time=200;
{ mean time bet.ween t.ransact.ions creat.ed from a t.erminal }

s1_minaccdur=15;
{ minimum disk access t.ime for a dat.abase object }

sl_maxaccdur=65;
{ maximum disk access time for a database object }

stop_simulation=lOOO;
. I the program terminates when t.he number of completed

t.ranBaat.ionB reaahes t.he value of st.op_simulation I

100

type
probet= probe;

f points a probe }
probe=record

,init,vic,sender:integer;
next:probet
end;

{ ~ype of a probe }
w_req_typet=~_req_type;

{ points an element in request_Q }
w_req_type=record

t_id:integer;
start_time: real;
nextw:w_req_typet
end;

{ type of-an element in request_Q }
reqmode=(new,cpureq,rstcpureq,wtgtrck);

{ modes of the objects in cc queue }
a_req_typet="a_req_type;

{ points an element in cc queue }
a_req_type=record

t_id:integer;
req_time:real;
mode:reqmode;
next :a_req_typet;'
end;

{ type of an element in co queue }
res_nodet=Ares_node;

{ points a resource record }
res_node=record

r_id,
t_id:integer;
waitq:w_req_typet;
probes:probet;
nextr:res_nodet
end;

{ contains information related to a resource }
resources=l .. sl_numofres;
resset=set of resources;
modetype=(act,wtg,rst,rstwtg);

{ possible modes of a transaction }
tr_nodet=~tr_node;

{ points a transaction record }
tr_node=redord

t_id:integer;
mode:modetype;
start_time:real;
resnum:integer;
hold_list:resset;
focus:integer;
restart_arr:array [l .. sl_maxres] of integer;
rst_time_arr:array [1 .. sl_maxres] of real;
mark:integer;

{ restart_arr,rst_time_arr, and mark are used
in case of restart. Arrays used to store the
resources requested and their request times }

101

prlist,
{ oontains the probes reoeived by the transaotion }

wtg_pr: probet;
{ oontains the probes reoeived by the transaotion
when its waiting for C~U }

nextt: tr_nodet
end;

{ oontains information related to a transaotion }
el_rd_~t=~el_rd_q;

el_rd_q=reoord
t_id:integer;
re~time:real;
nextel:el_rd~~t;
end;

{ an element of ready_Q }
data_paok_type=~data_paok;
data_paok=reoord

numofres,
numofterm,
maxre8,
minres,
mpl,
ompl,
oontext_switch,
av_move_time,
maxreqtime,
think_time,
minaccdur,
maxaoodur : integer;
sys_clock, .
olook,
cumnL tr_ dur ,
numofprobes,
numoftrans,
numofcomptrans,
mean_tr_dur,
numofdeadlook : real;
res_~ptr :res_nodet;
tr_~ptr : tr_nodet;
re~~ptr : a_re~typet;
ready_~ptr : el_rd_~t;
end;

102

{ oontains all the parameters of a modeled single-site system }

var
8ys_1 ;·data_pack_type;

lSI var_init.pas}
{SI initialize. pas}
lSI simu.pas}

begin { main J
randomize;
new(sys_l);
var_init(sys_l);
initialize(sys_l};

simulate(sys_1);
write In;
writeln('PARAMETERS :');
wrl'teln('------------'). ------------ ,
writeln(,total number of resources:' ,sys_1~'.numofres:4);
writeln('total number of terminals :' ,sys_1~.numofterm:4);
write In{' max. resourc.e request :', sys_1". maxres: 3,

. ~in. resource request :' ,sys_1".minres:3);
writeln'('multiprogramming level (mpl) :', sys_1 mpl: 3);
wr:·ite In (, t hink_ time :', sys _1" . t hink_ time: 4);
writeln('max. disk access time : I ,8Y8_1" .maxaccdur: 3,

, min. disk access time :~ ,sys_l".minaccdur:3);
write In;
writeln('RESULTS OBTAINED :');
writeln('======--===========');
writeln('response_time:' ,

. (sys_l"'.cumm_tr_durlsys_l"'.numofcomptran8):6:0);
writeln('number of probes sent/lOOOO units of time:',

(sys_l"'.numofprobes*lOOOO)lsys_l"'.clock:7:0);
writeln{'number of deadlocks happened/lOOOO units of time :',

. (sys_l"'.numofdeadlock*lOOOO)/sys_l"'.clock:6:0);
writeln('THROUGHPUT');

103

writeln(' (number of transactions completed/l0000 units of time):',
(sys_l"'.numofcomptrans*lOOOO)/sys_l"'.clock:6:0);

end. { main}

BIBLIOGRAPHY 104

BIBLIOGR.APHY

1. Mukul K: Sinha and N. Natarajan, "A priority based distributed deadlock

detection algorithm," 1£££ Transaction on Software Engineering. Vol. SE-1 t No.

I. pp. 67-80. january 1985.

2.Alok N. Choudhary, Walter H. Kohler, john A. Stankovk, and Don Towsley, "A

modified priority based probe algorithm for distributed deadlock detection and

resolution," 1£££ Transaction on Software Engineering. Vol. 15, No. 1. pp. 10-17,
•

january 1989.

3. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Con/ro/a.nd Recovery in JJata/Jase Systems. Reading, Massachusetts: Addison­

Wesley, 1987.

4. D. Menasce and R. Muntz, "Locking and deadlock detection in distributed

databases," 1£££ Tra.nsaction on Software Engineering, Vol. SE-5, No.3. May 1979.

5. K. Mani Chandy and j. Misra, "A distributed algorithm for detecting resource

deadlocks in distributed systems," in Proceedings of t.b.e ACM'Symposium on

Princip/esof .Distribllted Computing (Ottawa, Canada), ACM, New York, pp. 157-

164, August 1982.

6. Edgar Knapp, Deadlock detection in distributed databases," ACM Computing

Surveys, Vol. 19, No.4, pp. 303-328, December 1987.

7. T. Hermann and K. Mani Chandy, A distributed procedure to detect AND/OR

deadlock," Tech. Rep. TR LCS-8301. Dept. of Computer Science, Univ. of Texas,

Austin. Tex., 1983.

8. G. Bracha and S. Toueg, it A distributed algorithm for generalized deadlock

detection,'" Tech. Rep. TR 83-558, CorneII Univ., Ithaca, NY., 1983.

BIBLIOGRAPHY 105

9. E. Gafni. "Perspectives on distributed network protocols: A case for building

blocks," in IEEE Milil.a.r..v wmmunii.~'ilJns wnkreni.':t! (Monterey, CalifJ, IEEE,

New York, pp. 1.1.1-1.1.5, 1986.

to. Virgil D. Gligor and Susan H. Shattuck, "On deadlock detection in distributed

systems," IEEE Tm..tlSll~~ion on Soo.ww.re Engineering. VoL S£-6, No.5, pp. 435-

440. September 1980.

I L Ron Obermarck, "Distributed deadlock detection algorithm," ACM Tra.I1sactio.l1s

o.l1.Data/JaseSystems. Vol. 7, No.2, pp.187-208, June 1982.

12. Leslie Lamport. "'Time, eJocks, and the ordering of events in a distributed

system," Commu.I1icatio.l1softIJe ACAI, Vol. 21, No.7, pp. 558-565, July 1978.

13. K. Mani Chandy and Leslie Lamport, "Distributed snapshots: Determining' global

states of distributed systems," ACM Tra.I1S1lctio.l1s 0.11 Computer Systems. Vol. 3, No.

I. pp. 63-7), February 1985.

H. Rakesh Agrawal, Michael j. Caret and Miron Livny, "'Concurrency control

performance modeling: Alternatives and implications," ACM Tra.I1S1lctio.l1s 0.11

bata..6ase Systems, VotI2, No.4, Pl'. 609-654, December 1987.

REFERENCES NOT CITED 106

REFERENCES NOT CITED

Agrawat R, M. J. Carey, and L W. McVoy, "The performance of alternative strat~gies

for dealing with deadlocks in database management systems," 1£££ Tr8.11S3ctio.11s

0.11 Soi'twareEngi.11eeri.11g, Vol. SE-13, No. 12, pp.1348-1363, December 1987.

Blazewicz .. j" J. Brzezinski, and G. Gambost"Time-stamp appr(~ach to store-and-forward

deadlock prevention, H 1£££ Tra11sactio.11s 011 l:o.D1.01lJ.11icatio11s, Vol. r.oM-35, No.5,

pp,490-49), May 1987.

Bochmann, G. V ... "Delay-independent d.esign for distributed systems .. " I.££E Tra11sactio.11S

0.11 Sofi.wareEnGi.11eeri.11G, Vol. 14, No.8, pp.1229-1237, August 1988.

eidon, L j. M. latTe, and M. Sidi, "Local Distributed deadelock detection by cyde

detection and clustering." 1£££ Tra..nsactio.11s 0.11 Software EnGi11eeriD.B.. Vol.

Sf-H, No. L pp. 3-14, January 1987.

EImagarmid, A. K., and A. K. Datta, "Two-phase deadlock detection algorithm," 1£££

Tr8.11sactio.11s 0.11 CO.D1pllters. Vol~ 37. No. 11, pp. 1454-1458, November 1988.
I
I

Elmagarmid, A. K., N. Soundararajan .. and M. T. Lill, "A distributed deadlock detection and

resolution algorithm and its correctness proof," IEEE Tra11sactio.11s 0.11 Software

Engi.11eeri11g, Vol, 14, No. 10, pp. 1443-1452, October 1987.

Hoare, C. A. R .. "Communicating sequential processes/' lc.7.D1.D11111icatio11s of the Al"kl, Vol.

21. No. 8,pp. 3-11. August 1978.

Maekava, M" O1dehoeft A.E" Oldehoeft RR Operati.11G S~'i'tems: Adv8.11ced CO.11cept. The

Benjamin/Cummings Pub, Co" 1987.

Peterson, J. L.. and Abraham SHberschatl. (Jperati.11B Sy..-;te-.D1 l011cepts,Reading,

Massachuttes, Addison-Wesley Pub. Co" 1985.

REFERENCES NOT CITED 107

Wuu, G, L. and A, J, Bernstein .. "false deadlock detection in distributed systems," IEEE

Transactions on Software Engineering I VoL S£-1 L No, 8.< pp, 820-82L August

1985,

	OTEZ342001
	OTEZ342002
	OTEZ342003
	OTEZ342004
	OTEZ342005
	OTEZ342006
	OTEZ342007
	OTEZ342008
	OTEZ342009
	OTEZ342010
	OTEZ342011
	OTEZ342012
	OTEZ343001
	OTEZ343002
	OTEZ343003
	OTEZ343004
	OTEZ343005
	OTEZ343006
	OTEZ343007
	OTEZ343008
	OTEZ343009
	OTEZ343010
	OTEZ343011
	OTEZ343012
	OTEZ343013
	OTEZ343014
	OTEZ343015
	OTEZ343016
	OTEZ343017
	OTEZ343018
	OTEZ343019
	OTEZ343020
	OTEZ343021
	OTEZ343022
	OTEZ343023
	OTEZ343024
	OTEZ343025
	OTEZ343026
	OTEZ343027
	OTEZ343028
	OTEZ343029
	OTEZ343030
	OTEZ343031
	OTEZ343032
	OTEZ343033
	OTEZ343034
	OTEZ343035
	OTEZ343036
	OTEZ343037
	OTEZ343038
	OTEZ343039
	OTEZ343040
	OTEZ343041
	OTEZ343042
	OTEZ343043
	OTEZ343044
	OTEZ343045
	OTEZ343046
	OTEZ343047
	OTEZ343048
	OTEZ343049
	OTEZ343050
	OTEZ343051
	OTEZ343052
	OTEZ343053
	OTEZ343054
	OTEZ343055
	OTEZ343056
	OTEZ343057
	OTEZ343058
	OTEZ343059
	OTEZ343060
	OTEZ343061
	OTEZ343062
	OTEZ343063
	OTEZ343064
	OTEZ343065
	OTEZ343066
	OTEZ343067
	OTEZ343068
	OTEZ343069
	OTEZ343070
	OTEZ343071
	OTEZ343072
	OTEZ343073
	OTEZ343074
	OTEZ343075
	OTEZ343076
	OTEZ343077
	OTEZ343078
	OTEZ343079
	OTEZ343080
	OTEZ343081
	OTEZ343082
	OTEZ343083
	OTEZ343084
	OTEZ343085
	OTEZ343086
	OTEZ343087
	OTEZ343088
	OTEZ343089
	OTEZ343090
	OTEZ343091
	OTEZ343092
	OTEZ343093
	OTEZ343094
	OTEZ343095
	OTEZ343096
	OTEZ343097
	OTEZ343098
	OTEZ343099
	OTEZ343100
	OTEZ343101
	OTEZ343102
	OTEZ343103
	OTEZ343104
	OTEZ343105
	OTEZ343106
	OTEZ343107

