
ANALYSIS AND REGULARIZATION OF DEEP GENERATIVE SECOND

ORDER ORDINARY DIFFERENTIAL EQUATIONS

by

Batuhan Koyuncu

B.S., Physics, Boğaziçi University, 2018

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2021

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my advisor Prof. Lale Akarun

for allowing me to pursue my master’s degree under her supervision and guidance.

I also would like to thank Prof. Ali Taylan Cemgil for accepting me as a graduate

student prior to his leave. His lectures and approach have inspired me to pursue my

degree in machine learning. I would also like to thank my thesis jury members Prof.

Mehmet Burçin Ünlü and Assist. Prof. Berk Gökberk for their valuable comments and

suggestions. In addition, I thank Prof. Ünlü for all his guidance and encouragement

through the years.

I owe my deepest gratitude to my family for their endless support, encouragement,

and love, especially during di�cult times. I thank my dearest friends Alp, Gökçe,

Miray, Mustafa, Onur, and Orhan. I feel blessed to have their support and friendship.

I would like to thank Ekin for o↵ering her endless support and always being there for

me. She has turned this journey into a joyful and inspirational one.

I would like to thank my colleagues at Boğaziçi University for their support and

friendship. I thank Ahmet, Ahmet Alp, Doğa, Oğulcan,and Tuna Han for o↵ering their

help whenever I need it.

This work is supported by Boğaziçi University Research Fund under the Grant

Number 16903. We thank TETAM and Inzva for the computing resources provided.

iv

ABSTRACT

ANALYSIS AND REGULARIZATION OF DEEP

GENERATIVE SECOND ORDER ORDINARY

DIFFERENTIAL EQUATIONS

Deep generative models aim to learn processes that are assumed to generate the

data. To this end, deep latent variable models use probabilistic frameworks to learn a

joint probability distribution over the data and its low-dimensional hidden variables. A

challenging task for the deep generative models is learning complex probability distri-

butions over sequential data in an unsupervised setting. Ordinary Di↵erential Equation

Variational Auto-Encoder (ODE2VAE) is a deep generative model that aims to learn

complex generative distributions of high-dimensional sequential data. The ODE2VAE

model uses variational auto-encoders (VAEs) and neural ordinary di↵erential equa-

tions (Neural ODEs) to model low-dimensional latent representations and continuous

latent dynamics of the representations, respectively. In this thesis, we aim to explore

the e↵ects of the inductive bias in the ODE2VAE model by analyzing the learned dy-

namic latent representations over three di↵erent physical motion datasets. Then, we

re-formulate the model for flexible regularization, and we extend the model architecture

to facilitate the learning of the varying static features in the sequential data. Through

the experiments, we uncover the e↵ects of the inductive bias of the ODE2VAE model

over the learned dynamical representations and demonstrate the ODE2VAE model’s

shortcomings when it is used for modeling sequences with varying static features.

v

ÖZET

DERİN ÜRETİCİ İKİNCİ DERECEDEN ADİ

DİFERANSİYEL DENKLEMLERİN ANALİZİ VE

DÜZENLENMESİ

Derin üretici modeller, verileri ürettiği varsayılan süreçleri öğrenmeyi amaçlar.

Bu amaçla, derin üretici modeller, veriler ve verilerin düşük boyutlu gizli değişkenleri

üzerindeki ortak olasılık dağılımını modeller. Sıralı veriler üzerindeki karmaşık olasılık

dağılımlarını gözetimsiz biçimde öğrenmek derin üretici modeller için zorlu bir görevdir.

Adi Diferansiyel Denklem Değişimsel Otokodlayıcı (ADDDO) yüksek boyutlu sıralı

verilerin kompleks üretici dağılımlarını öğrenmeyi amaçlayan bir derin üretici mod-

eldir. ADDDO modeli düşük boyutlu gizli değişkenleri ve değişkenlerin sürekli gizli

dinamiklerini modellemek için sırasıyla değişimsel otokodlayıcı ve sinirsel adi diferan-

siyel denklem modellerini kullanır. Bu tezde, üç farklı fiziksel hareket veri setinde

öğrenilen dinamik gizli temsilleri analiz ederek ADDDO modelinin sahip olduğu model

varsayımının etkilerini incelenmiştir. Ardından verilerdeki farklılaşan statik özelliklerin

öğrenilmesini kolaylaştırmak amacıyla bu model esnek düzenlileştirilme için yeniden

formüle edilmiş ve ayrıca model mimarisi genişletilmiştir. Deneyler sonucunda AD-

DDO modelinin model varsayımının öğrenilen dinamik gösterimler üzerindeki etkileri

ortaya çıkarılmış ve bu modelin, değişken statik özelliklere sahip dizileri modellemek

için kullanıldığında yetersiz kaldığı gösterilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

1.1. Motivation and Contributions . 1

1.2. Organization of the Thesis . 3

2. FUNDAMENTAL BACKGROUND . 4

2.1. Deep Learning . 5

2.2. Artificial Neural Networks . 6

2.2.1. Multilayer Perceptron . 7

2.2.2. Convolutional Neural Networks 8

3. THEORETICAL BACKGROUND . 10

3.1. Variational Inference and Variational Autoencoders 11

3.2. Disentangled Representation Learning and �-VAE 19

3.3. Neural Ordinary Di↵erential Equations 22

3.4. Bayesian Neural Networks . 29

3.5. ODE2VAE . 32

4. �-ODE2VAE AND ODE2VAE-c . 39

5. RESULTS . 46

5.1. Datasets . 46

5.1.1. Bouncing Balls . 46

5.1.2. Simple Pendulum . 49

5.1.3. Projectile Motion . 50

5.1.4. Bouncing dSprites . 50

vii

5.2. Evaluation Metrics . 51

5.2.1. L2 Norms of the Latent States 51

5.2.2. Mean Squared Error . 52

5.2.3. Peak Signal-to-Noise Ratio . 52

5.2.4. Marginal Log-likelihood . 52

5.3. Experiments . 53

5.3.1. Implementation Details . 53

5.3.2. Analysis of the Latent States 54

5.3.3. Learning Varying Static Features with the ODE2VAE Model . . 70

6. CONCLUSIONS AND FUTURE WORK . 75

REFERENCES . 77

APPENDIX A: NETWORK ARCHITECTURES 89

APPENDIX B: EXTRA RESULTS . 91

viii

LIST OF FIGURES

Figure 2.1. Multilayer perceptron with single hidden layer. 7

Figure 2.2. Illustration for convolution operation. 9

Figure 3.1. Illustration for variational inference methods. 12

Figure 3.2. Graphical model representation of variational autoencoder model. 15

Figure 3.3. Graphical model for reparameterization trick. 17

Figure 3.4. Illustration for multilayer perceptron and Bayesian neural networks. 30

Figure 3.5. Illustration of the ODE2VAE model. 38

Figure 5.1. Figure for the bouncing balls dataset with number of balls n = 1. . 47

Figure 5.2. Figure for the bouncing balls dataset with number of balls n = 2. . 47

Figure 5.3. Figure for the bouncing balls dataset with number of balls n = 3. . 48

Figure 5.4. Figure for the bouncing balls dataset with number of balls n = 1, 2, 3. 48

Figure 5.5. Figure for the bouncing balls dataset with number of balls n = 1

with di↵erent radii. 48

Figure 5.6. Figure for the simple pendulum dataset. 49

Figure 5.7. Figure for the projectile motion dataset. 50

ix

Figure 5.8. Figure for the bouncing dSprites dataset. 51

Figure 5.9. MSE values for the bouncing balls dataset with n = 1. 56

Figure 5.10. PSNR values for the bouncing balls dataset with n = 1. 56

Figure 5.11. Example test case reconstructed by the ODE2VAE model for the

bouncing ball motion with n = 1. 57

Figure 5.12. Figure for the latent representation analysis of the baseline model

for the bouncing balls dataset with n = 1. 57

Figure 5.13. MSE values for the bouncing balls dataset with n = 2. 59

Figure 5.14. PSNR values for the bouncing balls dataset with n = 2. 59

Figure 5.15. Example test case reconstructed by the ODE2VAE model for the

bouncing ball motion with n = 2. 60

Figure 5.16. Figure for the latent representation analysis of the baseline model

for the bouncing balls dataset with n = 2. 60

Figure 5.17. MSE values for the bouncing balls dataset with n = 3. 62

Figure 5.18. PSNR values for the bouncing balls dataset with n = 3. 62

Figure 5.19. Example test case reconstructed by the ODE2VAE model for the

bouncing ball motion with n = 3. 63

Figure 5.20. Figure for the latent representation analysis of the baseline model

for the bouncing balls dataset with n = 3. 63

x

Figure 5.21. MSE values for the simple pendulum test set. 65

Figure 5.22. PSNR values for the simple pendulum test set. 65

Figure 5.23. Example test case reconstructed by the ODE2VAE model for the

simple pendulum motion. 66

Figure 5.24. Figure for the latent representation analysis of the baseline model

for the pendulum dataset. 66

Figure 5.25. MSE values for the projectile motion test set. 68

Figure 5.26. PSNR values for the projectile motion test set. 68

Figure 5.27. Example test case reconstructed by the ODE2VAE model for the

projectile motion. 69

Figure 5.28. Figure for the latent representation analysis of the baseline model

for the projectile motion dataset. 69

Figure 5.29. Example test cases reconstructed by the ODE2VAE model for the

mixed bouncing balls dataset. 71

Figure 5.30. Example test cases reconstructed by the ODE2VAE model for the

multiple radii dataset. 73

Figure 5.31. Example test cases reconstructed by the baseline model and ground

truth frames for the bouncing dSprites dataset. 74

Figure A.1. Model scheme for ODE2VAE and ��ODE2VAE models. 89

xi

Figure A.2. Model scheme for ODE2VAE-c model. 90

Figure B.1. Example test case for bouncing balls with n = 1 and corresponding

latent vectors. 91

xii

LIST OF TABLES

Table 5.1. Performance metrics of the selected model on the bouncing balls

dataset with n = 1. 54

Table 5.2. Performance metrics of the selected model on the bouncing balls

dataset with n = 2. 58

Table 5.3. Performance metrics of the selected model on the bouncing balls

dataset with n = 3. 61

Table 5.4. Performance metrics of the selected model on the simple pendulum

dataset. 64

Table 5.5. Performance metrics of the selected model on the projectile motion

dataset. 67

Table 5.6. Performance metrics of the selected models on the mixed bouncing

balls dataset. 70

Table 5.7. Performance metrics of the selected models on the bouncing balls

with multiple radii dataset. 72

Table 5.8. Performance metrics of the selected model on the bouncing dSprites

dataset. 72

xiii

LIST OF SYMBOLS

a Latent dimensionality

a Adjoint state

argmax Argument of the maximum

argmin Argument of the minimum

b Bias

C Integration constant

C Global latent variable

det Determinant

diag(·) Diagonal matrix with the given vector values

DKL [q || p] KL divergence between distributions q and p

Dpos Position decoder

Epos Position encoder

Evel Velocity encoder

E[·] Expectation

f Arbitrary mapping function

f ⇤ True mapping function

f Di↵erential vector field / Latent acceleration field

F Bijective transformation

h Hidden layer

h Initial height

kg Kilogram

l Length of the rod

L✓,� Evidence lower bound

LKL KL divergence

L(·) Loss function

L Sample size

m Meter

m Amortized inference length

xiv

n Number of balls

N Number of data points

N (0, I) Isotropic multivariate Gaussian distribution

N (µ,⌃) Multivariate Gaussian distribution with mean µ and variance

matrix ⌃

O Time complexity

p Parameters for Bernoulli distribution

p(·) Probability density function

q(·) Variational probability density function

s Second

st Latent position variable at time t

S ODE solver

t Time index

T Sequence length

Tr Trace

v Initial velocity

vt Latent velocity variable at time t

W Weight

W Weight of Bayesian neural network

x Input

x Multivariate random variable

y Output

ŷ Predicted output

z Latent variable

↵ Initial angle

� Regularization hyperparameter for VAE

✏ Random sample from isotropic Gaussian distribution

� Penalization hyperparameter for ODE2VAE

� Step size

µ Mean

xv

� Variational parameter set

�(·) Activation function

�2 Variance

⌃ Covariance matrix

✓ Parameter set

� Element-wise multiplication

xvi

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

ANN Artificial Neural Network

BNN Bayesian Neural Network

CNF Continuous Normalizing Flows

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

ELBO Evidence Lower Bound

GAN Generative Adversarial Network

GD Gradient Descent

i.i.d. Independent and Identically Distributed

KL Kullback–Leibler

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

Neural ODE Neural Ordinary Di↵erential Equation

NLL Negative Log-likelihood

NN Neural Network

ODE Ordinary Di↵erential Equation

ODE2VAE Ordinary Di↵erential Equation Variational Autoencoder

ODE2VAE-c Ordinary Di↵erential Equation Variational Autoencoder with

Global Representation

PSNR Peak Signal-to-Noise Ratio

ReLU Rectified Linear Unit

ResNets Deep Residual Networks

RNN Recurrent Neural Network

SDE Stochastic Di↵erential Equation

xvii

SGD Stochastic Gradient Descent

SI International System of Units

VAE Variational Autoencoder

VI Variational Inference

�-ODE2VAE Beta-Ordinary Di↵erential Equation Variational Autoencoder

�-VAE Beta-Variational Autoencoder

1

1. INTRODUCTION

1.1. Motivation and Contributions

Deep generative models such as variational autoencoders (VAEs) [1] and gen-

erative adversarial networks (GANs) [2] aim to learn distributions that represent and

generate the data [3]. The learned distribution can be used for generating new data [4],

extrapolating into the future [5, 6], data imputation [7], representation learning [8, 9],

anomaly detection [10], clustering [11], and multi-modal learning [12]. It is interesting

to learn these distributions by using unsupervised learning algorithms which do not

require any labeled data. One of the challenging tasks for deep generative models is

learning high-dimensional probability distributions over sequential data such as videos,

speech or music.

Deep latent variable models learn a joint probability distribution over the data

and the low-dimensional latent variables which represent underlying generative factors

of the data. These latent variables are not only useful for the generative process but

they also capture the hidden structure of the data. Although deep latent variable

models are black-box architectures, the low-dimensional latent representations may

be semantically meaningful and interpretable if the model is regularized and has a

proper inductive bias in it [13,14]. For instance, there are recent works on embedding

physics-motivated inductive biases in deep learning models [15, 16].

In this thesis, we work on understanding and extending a continuous-time gen-

erative model, deep generative second order ordinary di↵erential equations (ODEs)

with Bayesian neural networks (ODE2VAE) [5]. The ODE2VAE model learns latent

trajectories of videos by using second order latent ODEs [17]. The ODE2VAE model

focuses on learning arbitrary dynamics of three sequential datasets: CMU walking

data, rotating MNIST, and bouncing balls datasets.

2

The CMU walking dataset consists of sequences of a fixed number of joint angle

measurements, the rotating MNIST dataset has the image sequences of handwritten

“3” digits, and the bouncing balls dataset has videos of three balls bouncing in a two

dimensional (2D) box. The baseline model focuses on developing better reconstruction

and extrapolation performance. Although the model has improved metrics over the

described datasets, the representations learned by the model are overlooked. Given

that the model has a physics-motivated inductive bias, it has the capacity of modeling

well-defined physical dynamics (e.g. bouncing balls) and learning latent representa-

tions that may capture approximate physical generating factors. This property can

be explored by challenging the model with di↵erent motion datasets and checking if

the latent representations behave according to the physical intuitions. Moreover, since

the baseline model is tested with datasets that have fixed content, the true generative

factors have a single set of time-independent factors. Therefore, the model’s capac-

ity of learning the content of the sequences is not investigated. Since the model has

dynamic latent states, learning static features of a video and preserving them over

time steps may be a compelling task. Two possible approaches that may help learning

static features are regularizing the dynamic latent units for capturing static features

or extending the baseline architecture properly.

In this thesis, we have made the following contributions:

• We investigate ODE2VAE’s performance on modeling the three motion datasets:

bouncing balls, projectile motion, and simple pendulum.

• We analyze the model’s dynamical latent representations during di↵erent motion

types.

• We uncover the e↵ects of the inductive bias of the ODE2VAE model over its

learned dynamical latent representations.

• We extend the model formulation for flexible regularization and we extend the

model architecture to learn the static features e�ciently.

• We investigate the performance of the baseline model on the datasets with varying

static features.

3

We tested the baseline model’s performance with three di↵erent motion datasets

in order to quantify its generalizability capacity and to uncover the e↵ects of its in-

ductive bias over the learned representations. We show that the ODE2VAE model

can learn physically plausible latent representations without any supervision. After

we reformulate the baseline model, we attempt to regularize it, which has the e↵ect of

increasing the approximate disentanglement of the time-variant and invariant features.

We also introduce another model variant that achieves similar disentanglement with a

new architecture design. Lastly, we aim to compare the performances of the baseline

model and the proposed model variants on the three novel datasets with varying static

features. Due to the convergence issues, we are only able to investigate the performance

of the baseline model. We show the dynamical inductive bias of the ODE2VAE model

may be a disadvantageous property that hinders learning varying static features.

1.2. Organization of the Thesis

The thesis is organized as follows: In Chapter 2, fundamental deep learning

notions are summarized. In Chapter 3, a comprehensive theoretical background and

related works about variational autoencoders [1], disentangled representation learning

[18,19], neural ordinary di↵erential equations [17], Bayesian Neural networks [20], and

ODE2VAEs [5] are given. In Chapter 4, the proposed ODE2VAE model variants are

presented. In Chapter 5, the results section is presented for elaborating on the datasets,

evaluation metrics, implementation details, model hyperparameters, and experiment

results. Lastly, comments and discussions about the results and possible future works

are presented in Chapter 6.

4

2. FUNDAMENTAL BACKGROUND

The learning tasks in Machine Learning (ML) can be defined as a mapping be-

tween input space and output space . Supervised learning algorithms require using

examples of data instances and labels, {(xi, yi)}
N
i=1

, which are input and output pairs

from the true mapping function f ⇤ that is aimed to learn. Training an ML model for

a supervised learning task is equivalent to learning a model f with the parameters of

✓ that approximates the true mapping function f ⇤. For instance, given images and the

number of people in them as example pairs, an ML model can be optimized as a func-

tion approximation that takes images as input and outputs the number of people in

them. Unsupervised learning, on the other hand, aims to learn unobserved structure of

data using examples of {(xi))}
N
i=1

. The approximated model can be used for generating

new data or modeling the hidden variables of the underlying data generation process.

For example, learning how to compress images to a lower-dimensional representation

space and decompressing them back to the data space may be used for memory-e�cient

storage of images [21].

The learning task can be seen as an optimization procedure with an objective

function to be minimized with respect to model parameters, ✓. The objective function,

also called loss function L, computes a distance metric between ground truth labels y

and model predictions ŷ = f✓(x). Since we do not have complete access to the true data

generating distribution, the loss function is computed over a limited set of observations.

They are called training and test sets, which are assumed to be independent and

identically distributed (i.i.d.) samples from the true data generation distribution. The

loss function can be computed over the training set, {(x1, y1) , . . . (xN , yN)}, as follows:

f ⇤
⇡ argmin

f✓

1

N

NX

i=1

L (f✓ (xi) , yi) . (2.1)

5

It is important to highlight that it is generally not possible to learn the true map-

ping function itself but a proxy function, since there is a limited available data points

and computation power of our model. There exist di↵erent optimization techniques

that help ML practitioners find best model parameters such as computing closed form

solutions (if they exists), exhaustive hyper-parameter search, and gradient based learn-

ing. We limit our discussions on gradient based learning because the model architec-

tures that are mentioned in this thesis are suitable for gradient based learning. There-

fore, the learning procedure is equivalent to finding the best model parameters that

approximate the true model f ⇤ by minimizing the error metric that is computed [22].By

using the loss function, it is possible to compute gradients with respect to each model

parameter by using the chain rule. Since the gradients with respect to parameters

show a direction of the steepest ascent of the error metric, updating the parameters in

the direction of the negative gradient proportional to the chosen step size minimizes

the error metric. This iterative optimization is called gradient descent (GD) which is a

first-order method. There is also a stochastic variant of GD algorithm called Stochastic

Gradient Descent (SGD) [23] that is performing gradient descent given the error metric

computed over a minibatch of example pairs, and repeating that by going over all ex-

amples with the assumption of the data are i.i.d. There are also advanced optimization

algorithms such as Adagrad [24], and Adam [25], which allow one to change the step

size during optimization. It is worth highlighting that the optimization problem cannot

be solved analytically because the training data, consisting of limited set of example

pairs, does not cover all possible mappings between input and target space. Therefore,

the learned model, function approximation f✓, would be a good approximation but

generally not the function f ⇤ itself, in Equation (2.1).

2.1. Deep Learning

Deep Learning (DL) is a subfield of Machine Learning which aims to build models

that are capable of learning abstract representations of input data [22,26]. DL models

utilize a stacked layer of computations to increase the level of abstraction in represen-

tations.

6

These abstract representations are learned automatically for the given task by updat-

ing the model weights with back-propagation [23]. DL models require a vast amount

of data and considerable computational power. They have become promising and ad-

vantageous compared to other ML models because the amount of computation power

and available data increase drastically. DL models are composed of Artificial Neural

Networks, which are defined in the following section.

2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are composed of multiple computational units

that are designed with taking advantage of signal transmission in nervous systems in

biology [27]. ANNs consist of layers of artificial nodes. These nodes reside in layers and

have weighted connections to the nodes in the next layer. By using the node values

in the given layer n and weighted connections W n that connect them to the nodes

in the following layer, the node values in the layer n + 1 can be computed by using

matrix multiplications followed by non-linear activation functions. The first and last

layers of an ANN are called input and output layers, respectively. The input layer

passes x through the network and the output layer outputs y as a network prediction.

The layers between them are called hidden layers. In a supervised setting, ANNs can

be used as function approximators, f✓, that learn to a true mapping, f ⇤, between

input space X and output space Y. The approximation f✓ is learned by using a set

of paired examples (x1, y1), ...(xN , yN) with N elements. The task of learning can be

defined as determining the parameters of the neural network ✓, weights, and biases.

Learning procedure requires updating the network using the gradients propagation

loss function with respect to network weights. This is called the back-propagation

algorithm, and it empowers training neural networks e�ciently with gradient-based

learning [23]. From a mathematical perspective, many research studies show that

neural networks can approximate a wide range of functions with a su�cient number

of hidden layers, nodes, and non-linear activation functions [28,29]. It is worth noting

that sparsity of the connections or stochastic weight values imposes di↵erent neural

network architectures, which will be discussed in the following sections.

7

2.2.1. Multilayer Perceptron

Multilayer perceptron (MLP) are fundemental neural networks that can be used

for f✓. A multilayer perceptron has fully connected layers with hidden layers, weights

(W n), bias terms (bn), and activation functions (�(·)).

Figure 2.1. Multilayer perceptron with single hidden layer. Layers 1,2, and 3

correspond to input, hidden, and output layers, respectively. The network parameters

are the weights W n, and biases bn.

For example, Figure 2.1 shows a single hidden layered MLP which can be im-

plemented by using a�ne transformations followed by non-linear activation functions.

Figure 2.1 includes three main concepts: matrix multiplications, non-linear activation

functions, and bias nodes. A common practice is using vector notation for node values

at each layer. Hidden node values of the next layer hi can be computed as:

hi = �(W i>hi�1) (2.2)

where bias nodes are concatenated to the hidden layers before every forward compu-

tation.

8

As shown in Figure 2.1, bias nodes are not connected to previous layers through

weights and they are concatenated to the node values at each layer except the last

one. They help to shift the output value of matrix multiplication. Since weighted

connections are insu�cient for modeling non-linear relationships, there are also non-

linear activation functions used on top of the a�ne transformation that is computed by

the previous layer’s real-valued nodes and weights. It can be shown that using a stack

of hidden layers without non-linear activation functions can be equivalently modeled

with a single hidden layer. Therefore, non-linear activation functions are a crucial part

of the learning task. Some of the common activation functions that are used in hidden

layers are rectified linear unit (ReLU) max(0, x), sigmoid function 1/ (1 + e�x), tanh,

and softmax function exi/
PK

j=1
exj which is generally used in the output layer.

2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) also have hidden layers, weights, biases,

and activation functions as MLPs have. However, they are specifically designed to work

with spatial inputs such as images, videos, or volumetric data. Its hidden or output

layer may also be three-dimensional. CNNs do not have fully connected layers; instead,

they have a filter of weights that convolves a given window, sliding over the inputs with

a given stride. The depth of the layers can be thought of as stacked outputs of filters in

each layer. Since CNNs convolve input with filters, it is equivalent to using the same set

of weights in various parts of the input. The common intuition behind this property is

having multiple filters that look for local features over the input, which establishes the

spatial invariance property of CNNs. Therefore, CNNs can extract features by using

less number of learnable parameters compared to MLPs. Stride of the layer defines

the step size of the convolution operation. Padding refers to filling the border of the

input tensor with zeros, which is generally used to control the shape of the output

map. Another important operation used with CNNs is pooling, which corresponds to

convolving the input with a filter that downsizes the receptive field by applying the

max operation [22]. It is worth mentioning that CNNs may perform three dimensional

(3D) convolution for extracting features from temporal data.

9

CNNs are generally preferred for extracting local features. In Figure 2.2, the input

image with size 3 ⇥ 32 ⇥ 32 is convolved with stride 1 by a filter with size 3 ⇥ 5 ⇥ 5

that stores network weights. The result, activation map, is computed by the matrix

multiplication of the filter and the receptive field over the image. The output has the

size 1⇥ 28⇥ 28. Therefore, each pixel corresponds to di↵erent dot products during the

convolution operation.

Figure 2.2. Illustration for convolution operation. The input image is convolved by a

filter to produce the output image.

CNNs are utilized for various tasks that primarily deal with visual information.

One of the earliest applications of CNNs that are trained using back-propagation is

for image recognition, recognizing handwritten numbers [30]. One of the well-known

applications of CNNs is AlexNet [31], which was the first neural network state-of-the-

art model on the ImageNet challenge [32] for object detection and image classification.

It has showed how successful NNs can be used to solve recent challenges in ML world.

10

3. THEORETICAL BACKGROUND

In this thesis, we mainly deal with generative models, which are trained in an un-

supervised way to learn complex probability distribution p⇤(x), which is the underlying

probabilistic process for generating high-dimensional data x. In this setting, p⇤(x) is

unknown and there are limited independently and identically distributed (i.i.d.) ob-

servations {(xi)}
N
i=1

that are sampled from the true distribution. The task of learning

is approximating the true distribution p⇤(x) by finding the best model p✓(x) with the

set of parameters ✓ that approximate the underlying process as follows:

p⇤(x) ⇡ p✓(x) (3.1)

x ⇠ p✓(x) (3.2)

{(xi)}
N
i=1

i.i.d.
⇠ p⇤(x) (3.3)

where ⇠ denotes the distribution of the random variables. This is a challenging task

because it is needed to design p✓(x) flexible enough to be able to approximate the true

distribution. After the best set of model parameters ✓ are found, the model can use

them to generate new samples x. For instance, a real-life application may be learning

the distribution over the X-ray scans of people. In this example, p✓(x) may be the

candidate model to learn correlations between pixel values of scans. Since the inputs

are high-dimensional scans, the true distribution is a complex distribution to learn.

It may be beneficial to utilize latent variable models. Latent variables, z, are hidden

variables that are not observed during the data generation process. By using a latent

variable model, we can still recover p✓(x) by marginalizing out latent variables, which

can be formulated as:

p✓(x, z) = p✓(x | z)p✓(z) (3.4)

p✓(x) =

Z
p✓(x, z)dz. (3.5)

11

In a latent variable model, the generative model is equivalent to learning the

parameters of joint distribution of observations and hidden variables, p✓(x, z). The

term p✓(x), is referred as marginal likelihood of data or evidence. Since the complex

nature of p✓(x) can be hard to model, latent variable models enable us to factorize the

marginal likelihood as the product of prior and likelihood distributions (see Equation

(3.4)). By introducing a factorized form of the joint distribution, the marginal likeli-

hood can be constructed as the product of simpler distributions which enables us to

approximate the true distribution p⇤(x) through a simpler and more tractable latent

variable model (see Equation (3.5)). The latent variable models used in this thesis

are deep latent variable models that are parameterized by neural networks. By using

Bayes’ theorem, it is possible to infer latent variables of a given data point:

p✓(z | x) =
p✓(x | z)p✓(z)

p✓(x)
. (3.6)

Although the marginal likelihood (or evidence) can be factorized, it requires high

dimensional integrals to compute (see Equation (3.5)), which makes the denomina-

tor and the posterior computation intractable in Equation (3.6). In the next section,

variational inference methods are introduced. They are utilized to overcome the in-

tractability issue. By overcoming the intractability problem, it becomes possible to

infer latent representations of a given data point through the posterior. The inferred

latent representations can be thought of as the low dimensional and abstract hidden

variables that are needed to generate the data itself. The latent representations may

be used for a wide range of tasks such as representation learning [8], clustering [11],

sequence modeling [33], image classification [34], and multi-modal learning [12].

3.1. Variational Inference and Variational Autoencoders

Variational Autoencoders (VAE) [1] are deep latent variable models which approx-

imate the generative distribution p✓(x) through latent variables. The main motivation

behind VAEs is using variational inference (VI) [35] to model p✓(x).

12

VI aims to find approximate posterior which cannot be solved analytically due to

the intractability in Bayes’ theorem imposed by the marginal likelihood in the denomi-

nator (see Equation (3.6)). Variational inference methods reformulate the approximate

posterior problem as an optimization problem [36] as shown in Figure 3.1. In Figure

3.1, q(z | x;�) denotes the set of approximate variational distributions where � denotes

the parameters.

Figure 3.1. Illustration for variational inference methods. The aim is to find the best

parameters �⇤ that minimize the KL distance between the variational approximation

(q) and the target distribution (p). The figure is adapted from [37] with permission.

The optimization scheme starts with defining the set of possible solutions to search

for the best approximation. To be more specific, a family of distributions is selected

to define the set of possible approximate distributions. The aim of the optimization

procedure is finding the best distribution q�(z | x), with variational parameters � [1],

that approximate the posterior p✓(z | x) as follows:

q�(z | x) ⇡ p✓(z | x) (3.7)

which aims to find variational parameters � ensuring the tractability of the posterior

in Equation (3.6).

13

The objective function of this optimization problem is Kullback-Leibler (KL)

divergence, which measures the di↵erence of a candidate and the reference distribution.

The intuition behind KL divergence is calculating a metric that shows how much

information is lost when the candidate distribution is used instead of the reference

distribution. KL divergence between variational posterior q�(z | x) and intractable

posterior p✓(z | x) is minimized w.r.t. variational parameters:

q⇤�(z | x) = argmin
�

DKL [q�(z | x) || p✓(z | x)] . (3.8)

KL divergence can be written as:

DKL [q�(z | x) || p✓(z | x)] =

Z
q�(z | x)


log

q�(z | x)

p✓(z | x)

�
dz

= Eq�


log

q�(z | x)

p✓(z | x)

�
. (3.9)

One can check that the KL divergence of two distributions is always non-negative [38].

It is equal to zero if two distributions are identical, which is equivalent to finding

a variational posterior that can replace the true posterior. With this optimization

procedure in mind, the relationship between KL divergence and marginal log-likelihood

can be formulated as the following:

DKL [q�(z | x) || p✓(z | x)] = �Eq�


log

p✓(z | x)

q�(z | x)

�

= �Eq�


log

p✓(x | z)p✓(z)

p✓(x)
� log q�(z | x)

�

= �Eq� [log p✓(x | z) + log p✓(z)� log q�(z | x)]

+ log p✓(x). (3.10)

14

In Equation (3.10), logarithm of the evidence can be pulled out of the expectation

operation since it is does not depend on the variational posterior. Therefore, it can be

organized as follows:

log p✓(x) = DKL [q�(z | x) || p✓(z | x)]

+ Eq� [log p✓(x | z) + log p✓(z)� log q�(z | x)]

= DKL [q�(z | x) || p✓(z | x)]

+ Eq� [log p✓(x | z)]� Eq�


log

log q�(z | x)

p✓(z)

�
. (3.11)

The left-hand side of Equation (3.11) has data log-likelihood, which does not depend on

hidden variables and should be maximized for approximating the true distribution in

(Equation (3.1)). The right-hand side of Equation (3.11) consists of the KL divergence

term, which is non-negative and needs to be minimized during variational inference.

Therefore, all the other terms on the right-hand side can be seen as a lower bound for

the data log-likelihood, which is called the evidence lower bound (ELBO):

log p✓(x) = DKL [q�(z | x) || p✓(z | x)]

+ Eq� [log p✓(x | z)]� Eq�


log

q�(z | x)

p✓(z)

�

| {z }
(ELBO)

= DKL [q�(z | x) || p✓(z | x)] + L✓,�(x)| {z }
(ELBO)

(3.12)

and the ELBO term can be written as:

L✓,�(x) = Eq� [log p✓(x | z)]� Eq�


log

q�(z | x)

p✓(z)

�
. (3.13)

Maximizing the ELBO term has two crucial e↵ects on the optimization [39].

Firstly, it increases the data log-likelihood. Increasing data log-likelihood log p✓(x) is

equivalent to increasing marginal likelihood since logarithm is a monotonic function.

15

Secondly, it forces the KL divergence between the variational approximate posterior

and the true posterior to be smaller, which generates a better variational approximate

posterior.

VAEs can be used to tackle this variational inference problem by using two neural

networks and a gradient-based learning algorithm to optimize both neural networks

jointly (see Figure 3.2). They are trained by maximizing the ELBO in Equation (3.13)

or, equivalently, minimizing negative ELBO.

Figure 3.2. The graphical model representation of variational autoencoder model. ✓

and � represents the set of parameters for generative and approximate variational

distribution, respectively.

The first neural network is named as the encoder (inference network), which

parameterizes the variational posterior q�(z | x). In this formulation, � corresponds

to the weights and biases of a neural network. It outputs a distribution over latent

variables z, given the input x. The output distribution is often chosen as a multivariate

Gaussian distribution with parameters µ,� and a diagonal covariance matrix:

(µ, log�) = Encoder�(x) (3.14)

q�(z | x) = N (z;µ, diag(�)) (3.15)

z ⇠ q�(z | x). (3.16)

16

Multivariate Gaussian distribution with random variable x 2 Rk, mean µ 2 Rk, and

covariance matrix ⌃ 2 Rk⇥k is given as:

N (x;µ,⌃) =
1

(2⇡)n/2|⌃|1/2
exp

✓
�
1

2
(x� µ)T⌃�1(x� µ)

◆
. (3.17)

In contrast to traditional VI, the parameter set of the encoder model, �, is shared

among all data points x, which is called amortization of weights [40]. Amortized VI has

advantages over traditional VI, such as using fewer parameters and directly computing

variational parameters of new data without running optimization steps. Therefore, it

is scalable and e�cient but also has a limited capacity for approximating the posterior.

The second neural network is a decoder, which is the generative model that models

the joint distribution of data and latent variables, p✓(x, z) = p✓(x | z)p✓(z). The prior

distribution p✓(z) is generally chosen as a multivariate Gaussian with mean of zero

and covariance matrix of identity (see Equation (3.18)). The conditional distribution

or likelihood p✓(x | z) is parameterized by a neural network with parameters ✓ (see

Equation (3.20)). It models a distribution over data points, which may be used for

reconstruction given a latent variable z. The family of the likelihood distribution

is chosen according to the properties of the data. For instance, when dealing with

data consist of binary images, Bernoulli distribution over each pixel value is used as

the likelihood distribution [1]. As mentioned before, the main motivation behind the

factorization of the joint distribution is modeling the complex marginal likelihood by

using the product of two tractable distributions, which are:

p✓(z) = N (z; 0, I) (3.18)

p = Decoder✓(z) (3.19)

p✓(x | z) = B(x;p). (3.20)

17

Multivariate Bernoulli distribution is denoted with B(x;p), which is given as:

B(x;p) =
Y

i

B (xi; pi) = pxi
i (1� pi)

1�xi . (3.21)

There are two neural networks in a VAE that should be trained jointly by max-

imizing the objective function, ELBO. The aim is to train the model e�ciently with

gradient-based learning by using minibatch SGD [23, 41]. However, the architecture

of VAEs brings a major challenge regarding the back propagation and parameter op-

timization steps. The first neural network, encoder, is a conditional distribution over

latent variables. It means that, in a forward computation, the latent variable that is

used in the decoder is sampled from the conditional distribution q�(z | x). During the

back-propagation, it is needed to compute the derivative of the random variable z w.r.t.

encoder parameters � for stochastic back-propagation [1, 42]. Since it is not possible

to take derivatives of the random variable, the sampled latent variable z is reparam-

eterized, which is called the reparameterization trick [1, 42]. Figure 3.3 illustrates the

reparameterization trick.

Figure 3.3. The graphical model describing reparameterization trick. Deterministic

and stochastic nodes are denoted with squares and circles, respectively. The figure is

adapted from [43] with permission.

18

The main idea of the reparameterization trick is enforcing the randomness of

the latent variable z ⇠ q�(z | x) to be originated from a separate node of noise, which

makes z a deterministic node with random noise so that it is possible to take derivatives

w.r.t. encoder parameters �. For instance, for a given mean and standard deviation

(µ,�), latent variable z can be re-written as:

z = µ+ � � ✏ (3.22)

✏ ⇠ N (0, I) (3.23)

where � denotes element-wise multiplication. The definition in Equation (3.23) allows

one to back-propagate. Furthermore, during optimization, the ELBO term in Equation

(3.13) can be computed by using log probabilities of the distributions in Equations

(3.15), (3.18), and (3.20). It is possible to decompose the ELBO itself to give some

intuition about what VAEs try to optimize. The ELBO term can be written as two

main terms; a reconstruction term and a regularization term:

L✓,�(x) = Eq� [log p✓(x | z)]� Eq�


log

q�(z | x)

p✓(z)

�

= Eq� [log p✓(x | z)]
| {z }

Reconstruction

�DKL [q�(z | x) || p✓(z)]| {z }
Regularization

. (3.24)

The reconstruction part drives the model to learn meaningful latent representa-

tions that can be decoded to output parameters of the conditional likelihood distribu-

tion. The conditional distribution can then be used for data generation. The KL term

shows that the variational posterior is regularized by the prior distribution, which is

generally selected as the standard normal distribution. It forces the learned variational

posterior to overlap with the prior, which builds a smooth latent space. This setting

encourages creating a latent space where encodings of similar data points are located

nearby. The intuition behind these latent clusters stems from the probabilistic nature

of the model. Since the latent representations are sampled from a distribution, there is

a possibility of sampling various latent representations given an arbitrary data point x.

19

The model is optimized to maximize the log-likelihood. Therefore, the model loses the

least amount of the reconstruction likelihood if the sampled z is decoded to generate

parameters for a similar data point x [44].

VAEs are utilized for various research problems such as learning generative models

for image datasets, i.e., handwritten digits, faces gestures, house numbers [1,45]. They

are also used for image classification [34], object segmentation [46], clustering [9, 11],

anomaly detection [10], future forecasting [47, 48],sequence modeling [33], time series

imputation [7], representation learning [8, 9], disentangled representations [49], zero

and few-shot learning [50], and multi-modal learning [12].

3.2. Disentangled Representation Learning and �-VAE

The field of representation learning deals with learning representations that are

useful for down-stream tasks such as classification, forecasting, prediction, and com-

pression [51]. In a probabilistic setting, learning better representations enables prob-

abilistic models to learn better posterior distributions over the hidden generating fac-

tors of the data [51]. In this thesis, we are interested in learning representations with

deep learning models in a probabilistic setting. Therefore, we generally refer to latent

variables as representations that are learned. Since representations carry necessary

information about the factors that generate high-dimensional data, they have typi-

cally lower dimensions compared to data points. For instance, for 32⇥ 32 images of a

bouncing ball that moves in two-dimensional space, there are three generating factors,

x and y coordinates, and radius of the ball. In this example, learning useful repre-

sentations corresponds to extracting low-dimensional representations that are related

to true hidden factors of the data, such as position coordinates and the radius. It is

worth highlighting that learning representations does not aim to recover true hidden

variables themselves but their useful transformations.

20

Disentangled representation learning carries the aim a step further and aims to

learn representations that are disentangled, so they are coupled with a single generative

factor and invariant to the others [19,51] i.e., disentangling object shape, color, position,

and background color. It brings the advantage of learning latent representations that

are semantically meaningful and interpretable, which correspond to the transformation

of true generative factors. These properties are very useful for down-stream tasks and

building interpretable models [52]. As already mentioned, VAEs are generative models

that aim to learn a joint distribution over data points and latent representations [1].

Since latent encodings in a VAE are used for decoding the data itself, they are indeed

learned generative factors in an unsupervised setting.

�-VAE is a VAE variant that deals with visual data and its disentangled latent

representations by modeling a disentangled posterior [18,44]. �-VAE requires unsuper-

vised training like as a traditional VAE. It uses the original ELBO term for VAEs (see

Equation (3.24)) and parameterizes the KL term in it with a hyperparameter �:

L✓,�(x) = Eq� [log p✓(x | z)]� �DKL [q�(z | x) || p✓(z)] . (3.25)

When � > 1, the KL term in Equation (3.25) contributes more, which enforces the

regularization of the approximate posterior by creating an information bottleneck given

the prior distribution as multivariate standard normal [18]. Since the prior distribution

has independent components among its dimensions, the KL divergence forces elements

of the approximate posterior to be factorized, too. The most useful latent units, which

are crucial for reconstruction and maximizing the ELBO objective, create a non-zero

KL divergence with the unit Gaussian prior. The latent units, which do not contribute

to the reconstruction objective, do not fit in the information bottleneck. Therefore,

they minimize the KL term and stay closer to the standard Gaussian prior indepen-

dently. Increasing the � hyperparameter forces disentangled representations, but it

may cause increased errors among reconstructions after an arbitrary value [18]. For

example, when working with image data, it can generate blurry data reconstructions.

21

When the � coe�cient gets too large, it does not allow storing any information in latent

space. The optimal value for � requires fine-tuning the trade-o↵ between reconstruc-

tion ability and disentangling latent representations. This value changes according to

di↵erent datasets and model architectures [18]. It is also observed that when the �

is large, there is a strong constraint on the latent bottleneck; the latent spaces only

capture the most prominent generative factors [44]. The reason is the model tries to

learn these prominent factors in the latent space, which create the highest possible

reconstruction likelihood under the constrained latent bottleneck [44]. Therefore, it is

possible to start with a high � value and decrease it during training. It helps to learn

factorized latent factors by starting from the most important to the least important

one.

Although we use the �-VAE formulation in this thesis, there are other �-VAE

variants for disentangled representation learning such as FactorVAE [53] and �-TCVAE

[54], which decompose the KL term and regularize specific subcomponents. Also, In-

foGAN [55], a generative adversarial network (GAN) variant [2], disentangles latent

representations by maximizing the mutual information between the latent representa-

tions and their outputs.

Disentangled representations in low-dimensional latent spaces may be informative

about how dynamics of the process evolves. In deep learning, there is a high number of

possible model designs for solving a specific task, and some of these model choices per-

form better than others [13]. This can be explained by the inductive bias of the models.

Inductive bias corresponds to a set of assumptions that are imposed to a model before

any training. Inductive bias may increase the interpretability and generalization of the

model [13,14]. For instance, CNNs have an inductive bias for being invariant to spatial

translation. The latent representations may be more informative when disentangled

representations in low-dimensional latent spaces are regularized with proper inductive

bias. For instance, videos of a dynamical system can be modeled in a low-dimensional

manifold [56–58]. It is possible to disentangle static and dynamics components of a

video and generate new videos by swapping components of a video [59].

22

For a video of a physical system, this may help modeling representations of physical

quantities such as position and velocity given that the model has appropriate inductive

biases, i.e., position latents are driven by the velocity latents according to equations

of motion. In this example, the inductive bias embeds intuitive physics concepts to

the model [5]. It can also be used for embedding more complicated physical concepts

[15, 16].

3.3. Neural Ordinary Di↵erential Equations

Thanks to advances in variational inference and deep learning, VAEs have been

used for extracting meaningful data representations and understanding the latent space

and the data manifold [1]. There are also recurrent neural network (RNN) based

encoders and decoders that can be used to extract representations of sequential data

[60, 61]. The main problem of the mentioned models is that the inputs are discrete

and regularly sampled, whereas real-world datasets or observations are continuous by

nature. Building deep learning models that can model continuous functions [6, 62, 63]

has the benefits of working with irregularly sampled data.

A recent work, Neural Ordinary Di↵erential Equations (Neural ODEs) [17] at-

tempt to tackle this issue of continuity. Rather than operating in discrete-time, it

enables deep learning models to operate on continuous data. Ordinary di↵erential

equations are equations that relate the functions of a single independent variable z(t)

and its derivatives {ż(t), z̈(t), . . . } with respect to the same single independent variable

t. In this thesis, we generally deal with first-order di↵erential equations in which only

the first-order derivative is present. The aim is solving for the function of the indepen-

dent variable z(t) by using the relationship imposed by the ODE. The function of the

independent variable may also be called the dependent variable z(t). For a dependent

variable z 2 RD, the di↵erential function or vector field f : RD
! RD creates a gradient

field in data space of the dependent variable.

23

This vector field denotes the continuous dynamics of a system e.g., how dependent

variable z(t), its derivative ż(t), and independent variable t change simultaneously:

ż(t) =
dz(t)

dt
= f(z(t), t) 2 RD. (3.26)

By integrating the di↵erential function, the dependent variable can be computed as a

function of the independent variable, which is called the general solution for the ODE

that is in consideration:

z(t) =

Z
f(z(⌧), ⌧)d⌧ + C. (3.27)

The general solution is valid for any value of constant C. Therefore, it does not o↵er

an exact solution until C is determined. Determining the value of C is possible when

a boundary condition or initial value of the dependent variable is provided on top of

the di↵erential field in Equation (3.26):

z(0) = z0 (3.28)

z(t) = z0 +

Z t

0

f(z(⌧))d⌧. (3.29)

In order to compute the particular solution, the di↵erential field should satisfy existence

and uniqueness conditions. The existence condition checks if the di↵erential field is

continuous on the interval around the initial value. The uniqueness theorem checks if

the partial derivative of the di↵erential field is continuous on the interval around the

initial value. One can check if the ODE satisfies the Lipschitz condition [64] to verify

that it is well-posed, meaning that the solution exists, is unique, and stable.

In some cases, analytical solutions for ODEs may not be available. Therefore,

it may be needed to utilize numerical approximations to compute the integrals in

Equation (3.29). Let us assume that the ODE has time t as the independent variable

and position z as the dependent variable. Numerical approximations aim to solve for

z(⌧) where ⌧ = {t1, t2, . . . , tn} with the given initial value at time t0.

24

There are plenty of numerical integrators for the numerical computation of integrals.

For introductory purposes, Euler’s Method, a first-order numerical approximation, is

described to provide su�cient motivation. The idea of Euler’s Method is approximating

the solution using the local tangent values at each time step, where � denotes the step

size between adjacent time steps [65]:

dz(t)

dt
= f(z(t), t) ⇡

z(t+ �)� z(t)

�
(3.30)

z(t+ �) = z(t) + �f (z(t), t) . (3.31)

This formulation has significant resemblances with deep residual networks (ResNets)

[66]. ResNets have forward propagation of the input through network layers, where

each layer output is summed with its input:

y = x+ h(x) (3.32)

where x, h, and y denote input, hidden layer, and output respectively. These are

called residual connections between input and output layers. ResNets aim to ease the

training of the deep neural networks by using residual connections. It is shown that

these connections solve the issues of vanishing and exploding gradients in deep neural

networks. Hence, they are helpful for optimizing networks with a high number of layers

[66]. Additionally, the forward propagation with residual connections in Equation

(3.32) has the same functional form with Equation (3.31) as the following:

z(t+ �)| {z }
Output

= z(t)|{z}
Input

+�f (z(t), t)| {z }
Residual

. (3.33)

This interpretation shows that deep neural networks with residual connections can

be used for numerical approximations of ODEs [67]. As the step-size h gets smaller,

the procedure becomes computing numerical integration continuously. It is essential

to highlight that there are solvers with adaptive step-size in which step-size is tuned

according to desired accuracy or tolerated error of the solution.

25

The discussions about ODEs, numerical approximations, and their connections

with deep neural networks bring us to building deep learning models that operate

continuously in time such as Neural ODEs [17]. In order to define a learning task that

can operate continuously in time, the traditional learning objective ẑ = f✓(t) is replaced

with
[dz(t)
dt = f(z(t), t, ✓), where ✓ represents the parameters of the neural network. The

aim of the neural network f(z(t), t, ✓) is to approximate the true dynamics of f(z(t), t).

In other words, the aim is to learn the derivative of the function instead of the function

itself. As it is necessary to write down a loss function to optimize the network with

gradient-based learning, the loss function for Neural ODEs can be written as [17]:

L[z(T)] = L

z (t0) +

Z T

t0

f(z(⌧), ⌧, ✓)d⌧

�
= L [S (z (t0) , t0, T, ✓)] (3.34)

where S denotes an ODE solver.

In Neural ODEs, the ODE solver is a black-box neural network that models

the dynamics by approximating the di↵erential field [17]. In Equation (3.34), the

loss function L computes a scalar loss metric given the initial value z(t0), network

parameters ✓, and the interval up to time point T . For the optimization of loss L,

the network requires updating network parameters ✓ and z(t0) by using gradients of L

w.r.t. parameters. At this point, it is important to highlight that the initial value z(t0)

may also be a parameter since it may also be an output of another network such as

an encoder. In this continuous setting, e�cient computation of forward and backward

passes is crucial. The solver that is used in the model has an adaptive step-size which

implies that the number of forward and backward computations are tuned according

to the problem itself. This may create memory overhead because back-propagation

requires saving all middle layer outputs and computing gradients. In Neural ODEs,

the memory ine�ciency problem is solved by utilizing the adjoint method [68] for back-

propagation. First adjoint state a(t) is for computing gradient of loss w.r.t. z(t) at

each instant.

26

The dynamics of the adjoint state can be computed by solving another di↵erential

equation:

a(t) = @L/@z(t) (3.35)

da(t)

dt
= �a(t)>

@f(z(t), t, ✓)

@z
(3.36)

a(t0) = a (T)�

Z t0

T

a(t)T
@f(z(t), t, ✓)

@z(t)
. (3.37)

It can be seen that the adjoint state also requires network states z(t) over time. The

ODE can be solved backwards in time in order to avoid storing states over time.

Furthermore, the gradients w.r.t. network parameters ✓ can be computed with a second

adjoint state, and it can also be computed by solving another ODE backwards in time:

a✓(t) = @L/@✓ (3.38)

da✓(t)

dt
= �a(t)>

@f(z(t), t, ✓)

@✓
(3.39)

dL
d✓

= �

Z t0

T

a(t)>
@f(z(⌧), ⌧, ✓)

@✓
d⌧. (3.40)

There is also another adjoint state at(t) =
dL
dt(t) , which denotes gradients of loss L w.r.t.

independent variable t, time. In [17], the authors provide an e�cient algorithm to

compute all of these reverse ODEs, or gradients for the whole model, in a single call to

the solver by concatenating z, adjoint states, and gradients for network parameters [17].

Therefore, the memory ine�ciency is solved by trading o↵ the computation time, and

by solving another auxiliary ODE backwards in time.

Up to this point, we have discussed Neural ODEs’ contributions for approxi-

mating solutions of ODEs with neural networks. Their other contribution lies in the

field of normalizing flows (NF) [69]. In this setting, the aim is to deal with bijective

transformations of random variables through a function F and its e↵ects on underlying

distributions. Learning the transformation of the densities enables us to model complex

densities by transforming simple densities such as multivariate Gaussian distribution.

Thus allowing us to perform exact log-likelihood evaluation.

27

Also, a learned distribution can be used as an approximate posterior for finding vari-

ational approximation of the true posterior [69]. Let us assume that there is a con-

tinuous random variable x0 2 RD and an underlying process x0 ⇠ p0(x0). There is

also a bijective function F : RD
! RD, such that x1 = F(x0). Change of variables

formula is utilized [38, 69] to compute how the distribution p(x0) changes under this

transformation F:

log p1 (x1) = log p0 (x0)� log

����det
@F

@x0

���� . (3.41)

Normalizing flows method extends the change of variable theorem in Equation (3.41).

It describes the changes in the source density when the random variable from that

density goes under a sequence of bijective transformations [69]:

xK = FN � . . . � F2 � F1 (x0) (3.42)

ln pN (xN) = ln p0 (x0)�
NX

i=1

ln

����det
@Fi

@xi�1

���� . (3.43)

In Equation (3.41), the argument of the natural logarithm denotes the amount

of change in a unit volume of source density under the transformation. However,

computing the determinant term has a time complexity that scales in proportion to

the cube of the dimension of the random variable D, O(D3). Using Neural ODEs, it

is possible to re-write the sequence of transformations continuously by using ODEs.

In our original notation, let z(t) 2 RD with a time-dependent probability distribution

z(t) ⇠ p(z(t)). As in Equation (3.26), random variable z(t) is driven by a di↵erential

field dz(t)
dt = f(z(t), t). Similar to normalizing flows, the di↵erential field describes a

continuous transformation in the space of a random variable. Given the fact that

the di↵erential field is Lipschitz continuous, the di↵erential field that drives the source

density among the continuous transformation can be formalized using the instantaneous

change of variables theorem [17].

28

The di↵erential field and the transformation of the source density can be written as:

@ log p(z(t))

@t
= �Tr

✓
df

dz(t)

◆
(3.44)

log p (z (T)) = log p (z (t0))�

Z T

t0

Tr

✓
@f

@z(⌧)

◆
d⌧ (3.45)

which describes how base density flows continuously through transformations. The

process is called continuous normalizing flows (CNF) [17] and is trained by maximizing

Equation (3.45) [70]. In Equation (3.44), there is a trace operation instead of a deter-

minant operation, which means that the amount of change in the source distribution

can be computed with time complexity scaling proportional to the square of the size

of the random variable, O(D2). The dynamics for random variable and its density can

be solved by modeling the combined state:

2

4 z (T)

log p (z (T))

3

5 =

2

4 z (t0)

log p (z (t0))

3

5

| {z }
initial values

+

Z t0

T

2

4 f(z(⌧), ⌧ ; ✓)

-Tr
⇣

@f
@z(⌧)

⌘

3

5 d⌧

| {z }
dynamics

. (3.46)

Free-form Continuous Dynamics for Scalable Reversible Generative Models [70]

is another work from the authors of Neural ODEs. It extends the approach for a more

e�cient sampling for computing the log-likelihood at instant T . It also reduces the

time complexity of computing the log-likelihood to a level that scales linearly with the

input dimension D, O(D) [70]. However, in this thesis, we stick to the algorithm with

the time complexity O(D2) for computation of log densities for CNFs.

In the recent works, Neural ODEs are analyzed to demystify the black box model

[71,72]. Regularization of Neural ODEs draws attention in order to have a more stable

and robust training regime [72, 73]. There are variants of Neural ODEs for di↵erent

types of tasks.

29

Neural ODEs can be used to model the dynamics of irregularly sampled latent variables

and overperforms RNN based models on irregularly sampled data [6]. They can be used

for building continuous latent representations, generating continuous sequential data,

and producing plausible long-term forecasts [5,6,74–76]. Neural ODEs are also utilized

to learn continuous dynamics in physical systems by imposing the inductive bias that

is necessary to learn physical dynamics [15, 77]. Since Neural ODEs cannot capture

non-linear e↵ects, it is possible to use two coupled Neural ODEs in order to capture

non-linear system dynamics in latent dynamics [78]. Stochastic di↵erential equations

(SDE) can be interpreted as ODEs with instantaneous noise [79]. Similar to Neural

ODEs, SDEs can be used for learning non-deterministic continuous dynamics [80]. It

is also possible to learn weights of Neural ODEs in a Bayesian setting (see Section 3.4

for an introduction) to quantify the robustness of the model and capturing the model

uncertainty [81].

3.4. Bayesian Neural Networks

Deterministic deep learning models provide point estimates for their predictions,

which means that they do not capture uncertainty. They learn deterministic model

parameters, which make them prone to overfitting and lacking generalization capa-

bility [20]. Moreover, capturing uncertainty and providing a confidence interval over

the predictions has become significantly important [82] as deep learning models are de-

ployed for healthcare and diagnostics [83,84], robotics [85,86], self-driving vehicles [87],

and recommendation systems [88,89]. Hence, it is essential to capture the model’s un-

certainty about its outputs. Bayesian neural networks (BNN) present a probabilistic

setting to train DNNs. For instance, BNNs are utilized in computer vision tasks to

capture aleatoric and epistemic uncertainties [90]. This particular approach has re-

cently become available in diagnostics [91]. It is possible to achieve that by training a

well-defined deep learning architecture in a Bayesian setting, such as learning a distri-

bution over model parameters. This approach also increases the generalizability of the

model that is trained with a relatively small training set [20, 82].

30

Figure 3.4. Illustration (a) shows a traditional MLP. Illustration (b) shows Bayesian

neural network where weights are no longer deterministic values but random variables.

The idea behind BNNs is constructing a MLP with weights and biases that are

random variables. Let us first formulate traditional multilayer perceptrons (MLP) (see

Section 2.2.1) in a Bayesian setting. Let there be a dataset {(xi,yi)}
N
i=1

, containing

inputs and targets drawn i.i.d. from the true data distribution. The model can be

written as a predictive probability distribution over the targets y given the inputs x

and model parameters W , which are weights and biases of the MLP:

p(y | x,W). (3.47)

In order to learn weights of this model, it is possible to use Bayes theorem:

p(W | x,y) =
p(y | x,W)p(W)

p(y | x)
. (3.48)

In Equation (3.48), the posterior distribution is not tractable. It is not possible

to compute the evidence, p(y | x) =
R
p(y | x,W)p(W)dW , because it is a high

dimensional integral due to the large number of parameters S.

31

Therefore, it is possible to approximate the posterior in Equation (3.48) by using

amortized variational inference methods. Similar to the ELBO term that is derived for

the VAE (see Equation (3.13)), it is possible to write an ELBO term to be maximized

with respect the parameters of the approximate posterior q�(W):

L�(y) = Eq�(W) [p(y | x,W)]� Eq�(W)


log

q�(W)

p(W)

�
. (3.49)

The prior p(W) is generally selected as a standard Gaussian distribution N (0, I).

The model can be optimized by using minibatch Stochastic Gradient Descent [23].

Therefore, the reparameterization trick (see Equation (3.23)) is used in order to back-

propagate through the random variable W . After the posterior is approximated, the

model can be used for prediction by marginalizing out the network parameters given

the test data x⇤,y⇤ [92]:

p(y⇤
| x⇤) =

Z
p(y⇤

| x⇤,W)q�(W)dW . (3.50)

It is vital to highlight that MLPs are not stochastic models, which means that they do

not directly assign probabilities to their outputs. This is why the predictive distribution

in Equation (3.50) must be summarized by mean and variance statistics using Monte-

Carlo sampling. Given the MLP, a neural network with parameters W (NNW), the

average model prediction can be computed by model averaging [92]:

W ⇠ q�(W) (3.51)

ŷ = Eq�(W) [NNW(x⇤)] =
1

N

NX

i=1

NNWi(x
⇤). (3.52)

32

In order to quantify the model uncertainty, it is possible to compute the empirical

covariance matrix:

⌃y⇤|x⇤ = Eq�(W)

⇥
(NNW(x⇤)� ŷ)(NNW(x⇤)� ŷ)>

⇤

=
1

N � 1

NX

i=1

(NNWi(x
⇤)� ŷ)(NNWi(x

⇤)� ŷ)>. (3.53)

It is possible to build bridges between BNNs and ensemble learning. Ensemble

learning aims to train di↵erent models, to create ensemble models and use them for

generating predictions [93]. For instance, it is possible to use the mean of models’

predictions for a regression task or to use other fusion strategies such as voting for a

classification task. Learning a distribution over weights creates an infinite ensemble of

neural networks, where Equations (3.52) and (3.53) are equivalent approximating the

output and uncertainty of the ensemble, respectively [20].

3.5. ODE2VAE

Ordinary Di↵erential Equation Variational Auto-Encoder (ODE2VAE) proposes

a second order latent ODE model [5]. The model has the objective of learning latent

dynamics of high-dimensional sequential data such as videos. It utilizes VAEs [1] and

Neural ODEs [17] for encoding the frames and modeling the continuous dynamics in

the latent space, respectively. In other words, ODE2VAE models the latent dynamics

by using a continuous-time probabilistic ODE. The continuous latent representations

are called latent trajectories [5].

Using second order latent ODEs enables the decomposition of latent trajectories

in a hierarchical manner. The hierarchical decomposition of the latent space imposes

an inductive bias to the model with physical intuitions. The model has three decom-

posed and continuous latent trajectories: latent position, velocity, and acceleration

trajectories.

33

The latent position trajectory carries the latent representations that are used for decod-

ing the video frames. The latent velocity trajectory drives the latent position trajectory

through a first-order latent ODE. The latent acceleration trajectory governs the latent

velocity trajectory through another first-order latent ODE. Therefore, the ODE2VAE

model infers continuous latent dynamics of a sequential input by using these coupled

latent trajectories.

The latent dynamics and underlying generative process for the sequential data

x0:N with N + 1 frames at time points 0 : T can be summarized as [5]:

s0 ⇠ p(s0) (3.54)

v0 ⇠ p(v0) (3.55)

st = s0 +

Z t

0

v⌧d⌧ (3.56)

vt = v0 +

Z t

0

f⇤(s⌧ ,v⌧)d⌧ (3.57)

xi ⇠ p(xi | si) (3.58)

where p(s0) and p(v0) denote true posterior distributions, s0 and v0 correspond to the

initial latent states in the latent position and velocity spaces, st denotes the latent

position at time t and is driven by the di↵erential field of vt, vt denotes the latent

velocity at time t and is driven by the acceleration field f⇤(s⌧ ,v⌧), and p(xi | si)

denotes the likelihood which is used to decode the frame xi.

Due to the intractability issues, the ODE2VAE model aims to learn parameters

for modeling the generative process by using amortized variational inference methods

[35, 40] (see Section 3.1). It is best to derive the approximate posterior as we unfold

the model itself.

34

The model has two encoders parameterized by convolutional neural networks that

project input frames to position and velocity latent spaces:

(µs, log�s) = Epos(x0) (3.59)

(µv, log�v) = Evel(x0:m) (3.60)

qpos(s0 | x0) = N (s0;µs, diag(�s)) (3.61)

qvel(v0 | x0) = N (v0;µs, diag(�v)) (3.62)

where the approximate posterior distribution is denoted by q, the position encoder

Epos has the input of the first frame, the velocity encoder Evel has first m frames as

its input, m is called amortized inference length. Both approximate posteriors follow

multivariate Gaussian distributions parameterized by the outputs of the encoders. For

a clear notation, it is possible to combine the approximate posteriors into a single

multivariate Gaussian distribution with random variable zt:

zt =

2

4 st

vt

3

5 . (3.63)

The variational approximation for the posterior distribution becomes:

qenc (z0 | x0:N) = qenc

0

@

0

@ s0

v0

1

A | x0:N

1

A

= N

0

@

0

@ µs(x0)

µv(x0:m)

1

A ,

0

@ diag (�s(x0)) 0

0 diag (�v(x0:m))

1

A

1

A (3.64)

denotes amortized approximate posterior for the initial latent state, which is a combined

state of the initial latent position and velocity states.

After the approximate posterior of the initial latent state is modeled, the next

step approximates the posterior for the latent dynamics, which models future latent

states by using the acceleration field.

35

It is possible to write down the second order latent ODE by using two first-order

coupled ODEs [5]:

2

4 st

vt

3

5

| {z }
zt

=

2

4 s0

v0

3

5+

Z t

0

2

4 v⌧

fW (s⌧ ,v⌧)

3

5

| {z }
f̃W (s⌧ ,v⌧)

d⌧ (3.65)

ṡt = vt v̇t = fW (st,vt) (3.66)

where fW(st,vt) denotes the acceleration field.

The next step is approximating the posterior of the acceleration field, which

drives the latent dynamics. The true acceleration field, f ⇤(st,vt), is modeled by using

a Bayesian neural network fW(st,vt) [5]. The posterior for the BNN is over the model

parameters W , which are assumed to be in the form:

q(W) = N (W ;µf , diag(�f)). (3.67)

The last variational approximation is for the latent dynamics of the system, which

gives a distribution over the latent states following the initial latent state and the

acceleration field. The latent dynamics is modeled by using continuous normalizing

flows [17] (see Equations (3.44) and (3.45)). The di↵erential field that governs logarithm

of the approximate posterior can be derived by using instantaneous change of variables

theorem following Equation (3.65):

@ log q (zt | W)

@t
= �Tr

df̃W (zt)

dzt

!
dt

= �Tr

0

@
@vt
@st

@vt
@vt

@fW (st,vt)

@st

@fW (st,vt)

@vt

1

A

= �Tr

✓
@fW (st,vt)

@vt

◆
. (3.68)

36

The last step follows the fact @vt
@st

= 0. Therefore, the dynamics of the variational log

densities can be written as [5]:

log q (zT | W) = log q (z0 | W)�

Z T

0

Tr

✓
@fW (s⌧ ,v⌧)

@v⌧

◆
d⌧ (3.69)

where zt = [st,vt].

Now, we are ready to write down the factorized approximate posterior by using

the variational approximations derived previously:

q (W , z0:N | x0:N) = q(W)qenc (z0 | x0:N) qode (z1:N | z0,W) (3.70)

where the factorized approximate posterior has three components, which are for the

BNN, encoder, and latent dynamics. The ELBO term, which is the lower bound of the

marginal log-likelihood, can be written as [5]:

log p(X) � LODE2VAE(X)| {z }
ELBO

= �DKL[q(W , Z | X)||p(W , Z)]| {z }
Regularization

+Eq(W,Z|X)[log p(X | W , Z)]
| {z }

Reconstruction

= �Eq(W,Z|X)


log

q(W)q(Z | W , X)

p(W)p(Z)

�
+ Eq(W,Z|X)[log p(X | W , Z)]

= �DKL[q(W)kp(W)]

+ Eq(W,Z|X)


� log

q(Z | W , X)

p(Z)
+ log p(X | W , Z)

�

= �DKL[q(W)kp(W)]| {z }
ODE regularization

+Eqenc


� log

qenc (z0 | X)

p (z0)
+ log p (x0 | z0)

�

| {z }
VAE loss

+
NX

i=1

Eqenc


Eqode


� log

qode (zi | z0,W)

p (zi)
+ log p (xi | zi)

��

| {z }
Dynamic loss

. (3.71)

37

In Equation (3.71), X and Z denote the sequences x0:N and z0:N , and the expectations

are computed with respect to the corresponding variational posteriors denoted in Equa-

tion (3.70). The priors p(W), p(z0), and p(z1:N) are standard Gaussians. In Equation

(3.71), the first term regularizes the BNN by regularizing the network weights that are

used to model the acceleration field. The second term is in the form of a standard

ELBO term for a VAE (see Equation (3.13)). The last term corresponds to an ELBO

term for the latent sequence, which is driven by the latent ODE (see Equation (3.65)).

This is why the expectation is taken over the variational approximation for the latent

ODE. With the same training procedure with VAEs, the ELBO term is optimized

w.r.t. weights of the BNN, parameters of the encoder and decoder networks by using

mini-batches [5].

[5] provides a penalized ELBO formalization that o↵ers a more stable training

of the model. The intuition is scaling the components of the ELBO in Equation (3.24)

to balance their contributions to objective function during the course of optimization.

The penalized version of the ELBO is:

LODE2VAE⇤ =� �WDKL[q(W)||p(W)]

+ Eq(W,Z|X)


� log

q(Z | W , X)

p(Z)
+ log p(X | W , Z)

�

� �Eq(W) [DKL [qode(Z | W , X)kqenc(Z | X)]] (3.72)

where �W = |a|/|W| is chosen as the ratio of the latent space dimension a and the

number of weights in BNN. It is noted that the penalized ELBO objective helps to

balance the contributions of penalties over W and zi [5]. Additionally, it introduces

another regularization term that aims to prevent underfit of the encoder due to the

dominance of dynamic loss generated by the long output sequences [5]. It minimizes

the KL distance between the density modeled by the latent ODE and density generated

by the encoder. Hence, the encoder is also trained with whole sequence. The � term

is chosen by cross-validation [5].

38

The decoder is parameterized by a transposed convolutional neural network. It

takes the latent position states and outputs parameters for a Bernoulli distribution

over pixels of the output given that the inputs are a sequence of grayscale images:

p = Dpos(st) (3.73)

p(xt | st) = B(xt;p) (3.74)

where D is the decoder network and B(x;p) is a Bernoulli distribution (see Equation

(3.21)). In Figure 3.5, one can find a illustrative scheme of the ODE2VAE model,

which shows how the model’s components interact with each other.

Figure 3.5. Illustration of the ODE2VAE model. The figure is adapted from [5].

39

4. �-ODE2VAE AND ODE2VAE-c

The �-ODE2VAE model combines ideas of the �-VAEs [18] and ODE2VAE [5].

The motivation of the �-ODE2VAE is modeling the latent dynamics in a regularized

manner, which may lead to approximately disentangled and interpretable latent repre-

sentations.

A video is a sequence of frames that carries spatiotemporal information through

the pixels of its frames. There are static and dynamic components of a video. The

static components are shared by all the frames in the sequence, whereas the dynamic

components may be updated in each frame. For instance, if there are n bouncing balls

confined in a 2D frame, the balls’ count, shape, radius, mass are the static components,

their position, velocity, and acceleration are the dynamic components. Learning the

latent dynamics of a video through a generative model deals with both the static

and dynamic latent variables. If a generative model learns the static and dynamic

latent variables separately, it disentangles the time invariant and time dependent latent

features [59].

The ODE2VAE model does not have an explicit architectural choice, regulariza-

tion, or assumption for disentangling static and dynamic components [5]. However, we

show that it is possible to attempt learning disentangled representations of a video by

regularizing the ODE2VAE model. We take advantage of the hierarchical latent spaces

that latent second order ODE imposes over the ODE2VAE model (see Figure 3.5 for

ODE2VAE illustration).

As summarized in Section 3.5, the ODE2VAE model reconstructs and extrapo-

lates future frames by decoding time steps of the position latent trajectory. Let us

assume that position and velocity latent spaces are each a dimensional, st 2 Ra and

vt 2 Ra.

40

Since the static components of a sequence are constant over the sequence, there should

exist latent units that capture static components, which are the same for all time steps

along the continuous latent trajectory. This property may be fulfilled by putting an

additional constraint over the velocity latent variable vt at time t. The velocity latent

variable denotes a di↵erential field over the corresponding units of the position latent

variable. Therefore, if the velocity latent variable has units with values that are close

to zero, this means there is a minimal change on the corresponding units of the position

latent variable. When this property holds over all time steps, it constrains the position

latents to have approximate static components. Let us assume that there are a0 < a

units of the velocity latent variable that have values close to zero. As a result, there

should be a0 < a static components that are shared among all time points over the

latent position trajectory. For example, if a = 3 and a0 = 1, the position and velocity

latent spaces has a dimensions st, vt 2 R3 and there is at least a single static component

which is not perturbed as the other position latent variables due to the velocity latent

variable with a value close to zero:

2

6664

st1

st2

st3

3

7775

| {z }
st

=

2

6664

s01

s02

s03

3

7775

| {z }
s0

+

Z t

0

2

6664

v⌧ 1

v⌧ 2

v⌧ 3 ⇡ 0

3

7775

| {z }
ṡt=vt

d⌧ (4.1)

where st3 ⇡ s03.

To enforce this property, it may be necessary to regularize the position and ve-

locity latents independently. Therefore, the first step is separating the combined latent

states zt of ODE2VAE. Then, it is possible to re-write the logarithm of the approxi-

mate posterior for position and velocity latents by using the instantaneous change of

variables theorem:

@ log q (st | W)

@t
= �Tr

✓
dvt

dst

◆
dt = �Tr

✓
@vt

@st

◆
= 0 (4.2)

@ log q (vt | W)

@t
= �Tr

✓
dfW (st,vt)

dst

◆
dt = �Tr

✓
@fW (st,vt)

@vt

◆
. (4.3)

41

Therefore, the dynamics of the variational log densities becomes:

log q (sT | W) = log q (s0 | W)�
⇢
⇢
⇢

⇢⇢>
0Z T

0

0 d⌧ (4.4)

log q (vT | W) = log q (v0 | W)�

Z T

0

Tr

✓
@fW (s⌧ ,v⌧)

@v⌧

◆
d⌧ (4.5)

which creates separate densities for position and velocity trajectories. The ELBO for

the ODE2VAE model can be re-written as:

log p(X) � �DKL[q(W)kp(W)]

+ Eq(W,Z|X)


� log

q(Z | W , X)

p(Z)
+ log p(X | W , Z)

�

= �DKL[q(W)kp(W)] + Eq(W)


Eq(Z|W,X)


� log

q(Z | W , X)

p(Z)

��

+ Eq(W,Z|X) [log p(X | W , Z)]

= �DKL[q(W)kp(W)]� Eq(W) [DKL[q(Z | W , X)kp(Z)]]

+ Eq(W,Z|X) [log p(X | W , Z)] (4.6)

where the first term is regularizing weights of BNN, the second term regularizes latent

representations including the initial and following latent states, and the last term is

log-likelihood term for reconstructions. We will focus on the second term (LKL) and

decompose it (we omit the expectation over BNN weights for readability):

LKL = �DKL[q(Z | W , X)kp(Z)]

= �DKL[qenc(z0 | X)qode(z1:N | z0,W)kp(z0:N)] (4.7)

with the decomposed variational posteriors:

qenc(z0 | X) = qenc(s0 | X)qenc(v0 | X) (4.8)

qode(z1:N | z0,W) = qode(s1:N | s0, v0,W)qode(v1:N | s0, v0,W). (4.9)

42

In Equation (4.9), the encoders for initial states refer to position and velocity encoders,

and the latent ODEs correspond to the decomposed version of the latent ODE for

dynamic position and velocity latents. By using the definition of the KL divergence,

LKL becomes:

LKL = Eqenc(z0|X)Eqode(z1:N |z0,W)[� log
qenc(s0, v0 | X)qode(s1:N , v1:N | s0, v0,W)

p(s0)p(v0)p(s1:N)p(v1:N)
] (4.10)

where zt = [st,vt] and the prior distributions are standard multivariate Gaussians.

Since the initial densities for the latent position and velocity do not depend on the

next latents, the expectation over latent ODE densities can be marginalized out:

LKL = Eqenc(s0,v0|X)[� log
qenc(s0, v0 | X)

p(s0)p(v0)
]

+ Eqenc(s0,v0|X)Eqode(s1:N ,v1:N |s0,v0,W)[� log
qode(s1:N , v1:N | s0, v0,W)

p(s1:N)p(v1:N)
]. (4.11)

Plugging the Equation (4.8) and 4.9 in it creates the form:

LKL = Eqenc(s0|X)[� log
qenc(s0 | X)

p(s0)
] + Eqenc(v0|X)[� log

qenc(v0 | X)

p(v0)
]

+ Eqenc(s0,v0|X)Eqode(s1:N |s0,v0,W)[� log
qode(s1:N | s0, v0,W)

p(s1:N)

+ Eqenc(s0,v0|X)Eqode(v1:N |s0,v0,W)[� log
qode(v1:N | s0, v0,W)

p(v1:N)
] (4.12)

which can be written in terms of a summation of decomposed KL divergences:

LKL = �DKL[qenc(s0 | X)kp(s0)]�DKL[qenc(v0 | X)kp(v0)]

� Eqenc(s0,v0|X)[DKL[qode(s1:N | s0, v0,W)kp(s1:N)]]

� Eqenc(s0,v0|X)[DKL[qode(v1:N | s0, v0,W)kp(v1:N)]]. (4.13)

43

When the components for position and velocity latents are grouped, it becomes:

LKL = �DKL[qenc(s0 | X)kp(s0)]� Eqenc [DKL[qode(s1:N | s0, v0,W)kp(s1:N)]]| {z }
Latent position regularization

�DKL[qenc(v0 | X)kp(v0)]� Eqenc [DKL[qode(v1:N | s0, v0,W)kp(v1:N)]]| {z }
Latent velocity regularization

. (4.14)

This shows that the densities of initial and dynamic latent states may be regularized

separately for position and velocity trajectories. The KL term in Equation (4.14) can

be computed by utilizing Equation (4.4) and 4.5. It is possible to regularize the velocity

latents by putting a hyperparameters � that adjust the latent capacity of the position

and velocity trajectories:

LKL�� = ��sDKL[qenc(s0 | X)kp(s0)]� �v DKL[qenc(v0 | X)kp(v0)]

� Eqenc(s0,v0|X)[DKL[qode(s1:N | s0, v0,W)kp(s1:N)]]

� Eqenc(s0,v0|X)[DKL[qode(v1:N | s0, v0,W)kp(v1:N)]] (4.15)

where all the prior densities are selected as the standard multivariate Gaussian distribu-

tion. In Equation (4.15), while � = 1 corresponds to original ODE2VAE formulation,

� > 1 regularizes the model by forcing it to learn more e�cient latent position and

velocity representations [18]. The regularization of the position latents through �s dis-

entangles the position units, which may be helpful for disentangling static and dynamic

features of the sequence. Moreover, if it achieves this disentanglement the expected

static units mean that corresponding units in the velocity latents should be close to

zero (see Equation (4.1)). Additionally, the regularization of the velocity units through

�v term disentangles the velocity units for each time step, but most importantly, the

units of the latent velocity have a stronger bottleneck, which forces uninformative units

to have values close to the prior. Given the fact that the position trajectory is driven by

the velocity trajectory, this regularization can be helpful for leaving the corresponding

units of the position not updated as described in Equation (4.1).

44

The final form of the ELBO term for the ��ODE2VAE is:

log p(X) � �DKL[q(W)kp(W)] + Eq(W) [LKL��]

+ Eq(W,Z|X) [log p(X | W , Z)] . (4.16)

Our ��ODE2VAE model proposes disentangling static and dynamic latent features

through regularization. However, it is also possible to learn disentangled content and

dynamic latents by designing a proper model [59]. The ODE2VAE-c model has an

extra encoder on top of the ODE2VAE architecture. The extra encoder is called static

encoder that has the same input as the position encoder. The encoder is a convolutional

neural network and it outputs parameters for the approximate posterior for the static

latents in a latent space with a⇤ dimensions:

(µc, log�c) = Estatic(x0) (4.17)

qstatic(C | x0) = N (C;µc, diag(�c)) (4.18)

where Estatic denotes static encoder and the static latent component is a global variable,

which is same at every time step. These latent features are concatenated with position

latents after the position trajectory is sampled:

s⇤t =

2

4 st

C

3

5 (4.19)

where s⇤t denotes updated position state after the concatenation. Then, the concate-

nated latent position states are used for reconstruction and extrapolation as follows:

p = Dpos⇤(s
⇤) (4.20)

p(xt | s
⇤
t) = f(xt;p) (4.21)

where Dpos⇤ denotes the decoder and f(x;p) is a Bernoulli distribution (see Equation

(3.21)).

45

The decoder has the same architecture with the decoder in the original ODE2VAE

formulation expect its input’s dimension (see Equation (3.74)). The ODE2VAE-c has

the factorized approximate posterior distribution:

q (W , z0:N ,C | x0:N) = q(W)qstatic (C | x0) qenc (z0 | x0:N) qode (z1:N | z0,W) (4.22)

where zt = [st,vt]. The ODE2VAE-c has the ELBO formulation:

log p(X) � LODE2VAE�c(X)| {z }
ELBO

= �DKL[q(W)kp(W)] + Eqstatic


� log

qstatic (C | X)

p (C)

�

+ Eq(z0,C|X)


� log

qenc (z0 | X)

p (z0)
+ log p (x0 | z0,C)

�

+
NX

i=1

Eq(z0,C|X)


Eqode


� log

qode (zi | z0,W)

p (zi)
+ log p (xi | zi,C)

��
(4.23)

where q (z0,C | X) denotes qstatic (C | x0) qenc (z0 | x0:N) and the expectations are com-

puted with respect to the corresponding approximate posteriors in Equation (4.23).

The reconstructions are computed with updated position latents (see Equation (4.19)).

This formulation does not allow using the static features in the latent ODE computa-

tion. It can be achieved by concatenating the static features with zt to compute the

acceleration latents. In that case, the variational posterior over the latent ODE be-

comes qode (z1:N | z0,C,W). It is also possible to add a penalization term for learning

the static latents similar to the ODE2VAE model. In that case the ELBO in Equation

(4.23) has an additional regularization term over the static components:

��
NX

i=1

DKL [qstatic(C | X)kqstatic(C
0
i | X)] (4.24)

where qstatic(C0
i | X) term denotes the outputs of the static encoder at each time point

i given the ground truth frames.

46

5. RESULTS

5.1. Datasets

In this thesis, three synthetic physical motion datasets are used in the experi-

ments. These are bouncing balls, simple pendulum, and projectile motion datasets.

For each dynamical system, there are sequences of 32⇥ 32⇥ 1 images with pixel values

between 0 and 1. These are challenging datasets for the ODE2VAE model, since they

capture dynamics of di↵erent physical phenomena. Moreover, we create two variants

of the bouncing ball motion of the single ball. The first one has bouncing ball motion

with di↵erent ball radii. The second one has two di↵erent objects [94], a square and a

heart, that follow the dynamics of a single bouncing ball. If not otherwise indicated,

for each dataset, the number of cases are 10000, 500, 500 for training, validation, and

test sets. All parameters used in data generation are in International System of Units

(SI). We also store the moments of collision or change of direction in order to use them

in the analysis.

5.1.1. Bouncing Balls

Bouncing balls dataset [95] is a standard benchmark task for models that aim to

learn generative temporal modeling [5,57]. By using the provided implementation [95],

we re-implemented the bouncing balls dataset with multiple variants. The datasets

capture dynamics of n balls in a 2D box. There is no friction in the motion of the

balls, and all collisions are elastic. The 2D box has a side length of 10.0m. For the

dataset with constant ball radius, the radius and mass of the balls are fixed, at 1.2m

and 1.0 kg, respectively. The dataset with multiple radii has the radii of 0.9m and

1.5m. Each ball has a velocity that is randomly sampled from a standard normal

distribution. The velocities of the balls in the same sequence are normalized, so that

the total kinetic energy is constant over each sequence. The frames in the sequences are

separated by one second, and the balls’ motion is simulated with 0.5 second resolution.

47

In Figures 5.1, 5.2, 5.3, 5.4, and 5.5 we present di↵erent variants of the bouncing

balls datasets. We specify the sequence length as T , the number of balls as n, for the

training, validation, and test sets. The dataset with n = 1, 2, 3 has 9900, 495, and 495

cases for training, validation and test sets.

Figure 5.1. Bouncing ball dataset with number of balls n = 1 and sequence length

T = 10.

Figure 5.2. Bouncing ball dataset with number of balls n = 2 and sequence length

T = 10.

48

Figure 5.3. Bouncing ball dataset with number of balls n = 3 and sequence length

T = 10.

Figure 5.4. Bouncing ball dataset with number of balls n = 1, 2, 3, and sequence

length T = 10. Each value of n has equal number of cases in the dataset.

Figure 5.5. Bouncing ball dataset with number of balls n = 1, radii of 0.9 and 1.5,

and sequence length T = 10. For each value of radius there are equal number of cases

in the dataset.

49

5.1.2. Simple Pendulum

A simple pendulum system consists of a point mass, and a pivoted rod with

length l, where the mass is suspended from the rod. The mass of the rod is negligible,

and there is no air friction in our case. In this thesis, we only consider pendulum

motions with small initial angles. Therefore, it is su�cient to model simple pendulum

motion. The dynamics of the simple pendulum is approximated by using small angle

approximation, sin↵ ⇡ ↵. The dataset captures the periodic motion of the point

mass around its equilibrium position. During the motion, the gravitational field is

uniform. The object reaches its maximum kinetic energy at its equilibrium position.

The magnitude of the restoring force over the object increases as it approaches its

highest point of swing. The side length of the 2D square box is 10.0m. The radius of

point mass is 1.0m. The length of the rod l has a uniform distribution in the range

[3, 6]. The initial angle for freeing the point mass follows a uniform distribution in the

range [⇡/36, ⇡/9]. The gravitational field has a magnitude of 9.91m/s2. The frames

are separated by 0.4 seconds, and the motion is simulated by the analytical solution for

the simple pendulum motion. Due to the di↵erent initial angles, the maximum total

kinetic energy for each case is di↵erent. Figure 5.6 shows example sequences from the

pendulum dataset. Since the aim is to learn the dynamics of the ball, the rod is not

visualized in the frames.

Figure 5.6. Simple pendulum dataset with single point mass hanged from the pivoted

rod. The vertical lines denote the equilibrium axis. The sequence length T is 10.

50

5.1.3. Projectile Motion

The projectile motion dataset consists of a ball, which is projected up in a square

frame with the side length of 10.0m. The ball is a↵ected by gravity and collisions during

its motion. The ball reaches its maximum kinetic energy before its first collision with

the ground. During the collision it loses some of its kinetic energy. It has a radius of

1.0m. The initial velocity (m/s) is denoted as v = [vx, vy], where vx and vy are sampled

from a uniform distribution with the ranges [1, 4] and [0, 1]. The initial position (m)

is denoted as h = [hx, hy], where hx is fixed as zero and hy has a uniform distribution

in the range [1, 3]. The coe�cient of restitution, which determines the magnitude of

the vy after the ball hits and bounces from the floor, is 0.80. The collision between the

ball and floor is assumed to take 0.1 second. The frames are separated by 0.1 second.

Figure 5.7 shows example sequences from the projectile motion dataset.

Figure 5.7. Projectile motion dataset with a ball launched from a initial height. The

sequence length T is 10.

5.1.4. Bouncing dSprites

The bouncing dSprites dataset captures motion of two type of objects, a square

and a heart. Each case has one object which follows the dynamics of a single bouncing

ball with the same details described in Section 5.1.1. This dataset is created by merging

the dynamics of a bouncing ball with two 2D objects from the dSprites dataset [94].

The frames are separated by a second.

51

Figure 5.8. Bouncing dSprites dataset with two shapes. For each shape there are

equal number of cases in the dataset. The sequence length T is 10.

5.2. Evaluation Metrics

The experiment results are evaluated by using the following quantitative evalua-

tion metrics. The quantitative evaluations are conducted by using the model’s latent

representations and its reconstructions and extrapolations. As the model first outputs

latent representations, its best to mention quantitative metrics that are computed in

the latent space.

5.2.1. L2 Norms of the Latent States

Deep latent variable models deal with high dimensional latent states. If the model

operates in the time domain, it generates high dimensional latent representations for

each time step. L2 (Euclidean) norms of the latent states are used as explanatory

and interpretable metrics used in the evaluation of the unsupervised deep generative

models that operate with continuous-time data [6, 78].

Since the baseline and proposed models operate with latent second order ODEs,

they have the inductive bias of learning the latent dynamics similar to real motion

dynamics. The L2 norm of the acceleration field is similar to the magnitude of the

force e↵ecting the dynamics in the latent space. Similarly, the L2 norm of the velocity

latent variable resembles square root of the total kinetic energy of the system.

52

5.2.2. Mean Squared Error

Mean squared error (MSE) computes mean of squared errors between true data

points and predictions:

MSE(x, x̂) =
1

n

nX

i=1

(xi � x̂i)
2 (5.1)

where xi denotes ground truth values, x̂i denotes predicted values, and n denotes

number of data points. The lower MSE represents higher similarity between the ground

truth and prediction. When MSE is used with image data, the result may be normalized

with respect to the number of pixels of an image, which is called pixel MSE.

5.2.3. Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) measures the quality of the prediction by com-

puting the logarithm of the ratio between the square of the maximum pixel fluctuation

among the images and the pixel MSE between the ground truth and predicted image:

PSNR(x, x̂) = 10 log
10

✓
MAXI

2

MSE(x, x̂)

◆
(5.2)

where MAXI
2 is 1 for the grayscale images. As the PSNR score increases, the predic-

tion quality also increases.

5.2.4. Marginal Log-likelihood

Marginal log-likelihood of a data point under the variational model can be com-

puted by using the importance sampling technique [41,42]:

log p✓(x) = logEq� [p✓(x, z)/q�(z | x)] . (5.3)

53

It can be approximated by using a Monte Carlo estimator:

log p✓(x) ⇡ log
1

L

LX

l=1

p✓
�
x, z(l)

�
/q�

�
z(l) | x

�
(5.4)

z(l) ⇠ q�(z | x) (5.5)

where L denotes the number of samples, q�(z | x) denotes the encoder model. As

the sample size L gets larger, the approximation becomes a better estimate of the

true marginal likelihood [41]. Given the dataset D with ND data points, the marginal

negative log-likelihood (NLL) can be computed as [41]:

� log p✓(D) = �
1

ND

X

x2D

log p✓(x). (5.6)

5.3. Experiments

We evaluate the performance of the baseline ODE2VAE model [5] on three dif-

ferent physical motion datasets described in Section 5.1. Compared to the baseline

model [5], the datasets include variants of the bouncing balls dataset, and two new

dynamical settings: simple pendulum and projectile motion. Then, we evaluate the

performance of the baseline model on the bouncing balls with n = 1, 2, 3, bouncing

balls with di↵erent radii, and bouncing dSprites datasets. We cannot evaluate the per-

formances of the proposed model variants since their increased complexity alleviates

the convergence issues.

5.3.1. Implementation Details

All of the model variants are implemented using the o�cial ODE2VAE model

implementation [5] and Tensorflow framework [96]. All of the model variants are trained

with Adam Optimizer [25] with the learning rate of ⌘ = 0.001. The models have the

learning objective of minimizing the corresponding negative ELBO term.

54

The amortized inference length is selected as m = 3. The learning rate is tuned

during the optimization using the exponential learning rate decay of 0.995. During the

experiments, the models are trained with the batch size of 32. The number of epochs

are specified for each experiment in the corresponding paragraphs. The coe�cient

�, for the penalized variational loss function, is chosen as 0.001 as it is suggested in

the original work [5]. The network architectures are chosen to be the same as the

original ODE2VAE model [5]. The architecture for the ODE2VAE and ��ODE2VAE

is described in Figure A.1 and the ODE2VAE-c’s architecture is presented in Figure

A.2. All experiments are executed on a single Tesla V100 GPU where each experiment

takes approximately two to four days.

5.3.2. Analysis of the Latent States

In this section, we conduct experiments for checking if the baseline ODE2VAE

can learn the latent dynamics by preserving physics-motivated quantities and still

reconstruct and extrapolate the sequences. We started the experiments with minimum

possible number of latent units that correspond to dynamical generating factors ⌫.

This approach has an implicit e↵ect of guiding the model to learn meaningful latent

representations since the only way to maximize the ELBO is allocating the latent units

by representing the ground truth generating factors. During the analysis, we use the

sample size L=10, which is the number of latent states sampled at each time step. Also,

we highlight the indices with collisions or direction changes in the related reconstruction

figures.

Table 5.1. Performance metrics of the selected model on the bouncing balls dataset

with n = 1. For the MSE and NLL values, the lower is better. For the PSNR scores,

the higher is better. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 3 0.0027± 0.0032 28.2601± 4.6264 42.5142

55

The baseline model with the latent dimensionality a = 2 cannot capture the

dynamics of the motion of the single bouncing ball after it is trained for 250 epochs.

We increase the latent dimensionality to a = 3 and a = 12 and train the models for

250 epochs. Both of the models have captured the dynamics of the single bouncing

ball. In Table 5.1, we only report the metrics for model with a = 3. In Figures 5.9

and 5.10, we plot MSE and PSNR values for the test cases over the time steps. The

model is able to capture physically meaningful latent representations. We present an

example case in Figure 5.11. When the ball hits the wall, there is a spike in the norm

of the latent acceleration. It can be seen that the standard deviation of the norm of

the acceleration field also increases during the collision. This indicates the fact that

the output of the BNN has a greater uncertainty during the collision. Some possible

reasons for the high uncertainty over the norm of the acceleration latents may be the

non-linear motion during the collision and the scarcity of the time steps with collision.

The norm of the latent velocity is not changed during the motion in the example case,

which suggests the fact that the latent velocity preserves its norm, but changes the

direction during the collisions (see Figure B.1 for a detailed example). Figures 5.12a

and 5.12b summarize the statistics for the norm of the acceleration field and latent

velocity over all test cases with a breakdown for the time steps with and without

collision. Figure 5.12a shows that the model generates an acceleration field with a

greater magnitude during the collisions. At the collision moments, the high standard

deviation over the norm of the acceleration field is meaningful since it depends on the

amount of change in the momentum, which varies in the test cases. When there no

collision, the model generates an acceleration field with a smaller norm compared to

the mean magnitude at the collision time points, which is physically plausible. We

note that the real dynamics require the model to generate zero acceleration field when

there is no collision. Figure 5.12b shows that the model has increased the magnitude

of the velocity latent without collision. Its magnitude decreases during the collision

moments. This is not an expected behavior since the ball’s stationary moments during

the collisions are ignored in the dataset. Therefore, it can be said the model cannot

preserve a constant norm of the latent velocity.

56

0 1 2 3 4 5 6 7 8 9
Time Steps

0.000

0.002

0.004

0.006

0.008

M
SE

Bouncing Balls (n=1) MSE

Figure 5.9. MSE values for the bouncing balls dataset with n = 1.

0 1 2 3 4 5 6 7 8 9
Time Steps

20

22

24

26

28

30

32

34

PS
N

R

Bouncing Balls (n=1) PSNR

Figure 5.10. PSNR values for the bouncing balls dataset with n = 1.

57

Figure 5.11. Example test case reconstructed by the ODE2VAE model with a = 3 for

the bouncing balls with n = 1. From top to bottom: mean and standard deviation

values of the latent norms; mean field prediction by the model; ground truth frames.

a) L2-norm of the Acceleration Latent b) L2-norm of the Velocity Latent

Figure 5.12. Mean and standard deviation values for the L2-norm of the latent

acceleration and velocity of the model for the bouncing balls dataset with n = 1. The

collision times are expanded with the window size of 3.

58

Table 5.2. Performance metrics of the selected model on the bouncing balls dataset

with n = 2. For the MSE and NLL values, the lower is better. For the PSNR scores,

the higher is better. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 5 0.0100± 0.0123 22.2161± 4.3479 96.4297

The baseline model with the latent dimensionality a = 5 captures the dynamics

of the motion of the two bouncing balls after it is trained for 500 epochs. Increasing

the latent dimensionality to a = 6 and a = 9 has not increased the model performance

and has caused convergence issues. In Table 5.2, we report the metrics for the model

with a = 5. In Figures 5.13 and 5.14, we plot MSE and PSNR values for the test

cases over the time steps. The model is able to capture physically meaningful latent

representations to a limited extent. We present an example case in Figure 5.15. When

the ball hits the wall, there is a spike in the norm of the latent acceleration. How-

ever, the acceleration field does not return to its initial magnitude after the collision.

Although there is a slight increase in the standard deviation of the norm of the ac-

celeration field during the collision, the uncertainty over the latent acceleration field

is persistent over all the time points. Compared to the single bouncing ball case, the

uncertainty of the BNN’s output is less informative about the dynamics. This may

stem from the increased complexity of the motion as the number of balls is doubled.

Moreover, the norm of the latent velocity is not preserved during the motion. Figure

5.16a shows that the model generates an acceleration field with a greater norm during

the collisions, which is physically meaningful. However, the model is unable to generate

a zero acceleration field at the time steps without collision. Figure 5.16b shows that

the model cannot preserve the norm of the latent velocity across di↵erent test cases,

which are supposed to have the same total kinetic energy in the real dynamics.

59

0 1 2 3 4 5 6 7 8 9
Time Steps

0.00

0.01

0.02

0.03

0.04

M
SE

Bouncing Balls (n=2) MSE

Figure 5.13. MSE values for the bouncing balls dataset with n = 2.

0 1 2 3 4 5 6 7 8 9
Time Steps

14

16

18

20

22

24

26

28

PS
N

R

Bouncing Balls (n=2) PSNR

Figure 5.14. PSNR values for the bouncing balls dataset with n = 2.

60

Figure 5.15. Example test case reconstructed by the ODE2VAE model with a = 5 for

the bouncing balls with n = 2. From top to bottom: mean and standard deviation

values of the latent norms; mean field prediction by the model; ground truth frames.

a) L2-norm of the Acceleration Latent b) L2-norm of the Velocity Latent

Figure 5.16. Mean and standard deviation values for the L2-norm of the latent

acceleration and velocity of the model for the bouncing balls dataset with n = 2. The

collision times are expanded with the window size of 3.

61

Table 5.3. Performance metrics of the selected model on the bouncing balls dataset

with n = 3. For the MSE and NLL values, the lower is better. For the PSNR scores,

the higher is better. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 8 0.0196± 0.0174 18.4438± 3.4380 154.9332

We find out that the ODE2VAE baseline model could not capture the motion of

three bouncing balls with a = 7. The baseline model with the latent dimensionality

a = 8 captures the dynamics of the motion of the three bouncing balls after it is

trained for 1000 epochs. Increasing the latent dimensionality to a = 9 or a = 12

has not increased the model performance. In Table 5.3, we report the metrics for the

model with a = 8. In Figures 5.17 and 5.18, we plot MSE and PSNR values for the

test cases over the time steps. As expected there is an increasing trend in MSE scores

and decreasing trend in PSNR scores. We present an example case in Figure 5.19. A

careful observation of the reconstructions for the time steps three and four indicates

that the model fails to preserve a rigid ball shape. The last frame of the reconstructions

also shows that the model lags behind and misses the ball to wall collision. We observe

that the magnitude of the acceleration field increases during the collision. However, it

starts increasing prior to the collision moments. The uncertainty over the acceleration

field’s magnitude increases as the model extrapolates into the future. There may be

two reasons behind this increased uncertainty, which are the model’s reduced predictive

performance during the extrapolations and the non-linear motion during the collision.

Figure 5.20a shows that the model still generates an acceleration field with a higher

magnitude for the time steps with collision. We observe that as the real dynamics get

more complex, the model tends to create acceleration fields with closer magnitudes for

the collision and no collision moments. Similar to the previous motions, the model is

unable to preserve the norm of latent velocity across di↵erent test cases (see Figure

5.20b).

62

0 1 2 3 4 5 6 7 8 9
Time Steps

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
SE

Bouncing Balls (n=3) MSE

Figure 5.17. MSE values for the bouncing balls dataset with n = 3.

0 1 2 3 4 5 6 7 8 9
Time Steps

12

14

16

18

20

22

24

PS
N

R

Bouncing Balls (n=3) PSNR

Figure 5.18. PSNR values for the bouncing balls dataset with n = 3.

63

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

5

6
L2-acceleration
L2-velocity

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

Norm of the Latent States with L=10

Figure 5.19. Example test case reconstructed by the ODE2VAE model with a = 8 for

the bouncing balls with n = 3. From top to bottom: mean and standard deviation

values of the latent norms; mean field prediction by the model; ground truth frames.

a) L2-norm of the Acceleration Latent b) L2-norm of the Velocity Latent

Figure 5.20. Mean and standard deviation values for the L2-norm of the latent

acceleration and velocity of the model for the bouncing balls dataset with n = 3. The

collision times are expanded with the window size of 3.

64

Table 5.4. Performance metrics of the selected model on the simple pendulum

dataset. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 2 0.0007± 0.0006 33.6325± 4.5241 26.5609

We train the ODE2VAE model with a = 2 and a = 6 on the simple pendulum

dataset for 300 epochs. Both models have captured the pendulum motion; there is

not a considerable improvement between the two models. Since the true pendulum

motion can be modeled with two dimensions, the only way for the model to capture

the motion with two latent dimensions is by using the decoder to capture the radius of

the ball. In Table 5.4, we only report the model’s performance with a = 2. In Figures

5.21 and 5.22, we plot MSE and PSNR values for the test cases over the time steps.

Since the simple pendulum motion is a periodic motion, it may be easier to capture

compared to the other motion types. The model is able to capture physically mean-

ingful latent representations. We provide an example case in Figure 5.23 in which the

highlighted indices denotes the direction change and the vertical lines on the images

denote the equilibrium axis of the pendulum. The model generates an increased norm

of the latent acceleration when the object reaches its highest point during its motion

and the magnitude of the acceleration is minimized when the object passes through the

equilibrium point. Another observation is that the BNN has the decreased uncertainty

over the magnitude of the acceleration field when the object passes through the equi-

librium point. Additionally, the norm of the latent velocity reaches its peak when the

ball passes the equilibrium position and decreases when the object reaches its highest

points, which are the highlighted time points. The latent dynamics of the model be-

have similarly to the true dynamics of the simple pendulum. In Figure 5.24, we provide

the statistics for the norm of the latent acceleration and velocity over the test cases

with a breakdown for the moments with and without direction change. Figure 5.24a

shows that the model generates an acceleration field with a greater magnitude when

the object reaches its highest point.

65

Figure 5.24b shows that the latent velocities have a reduced norm at the moments of

direction change. Although the model cannot generate velocity latents with magnitude

zero during direction change, it captures a physically plausible decreasing trend.

0 1 2 3 4 5 6 7 8 9
Time Steps

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

M
SE

Pendulum MSE

Figure 5.21. MSE values for the simple pendulum test set.

0 1 2 3 4 5 6 7 8 9
Time Steps

28

30

32

34

36

38

PS
NR

Pendulum PSNR

Figure 5.22. PSNR values for the simple pendulum test set.

66

Figure 5.23. Example test case reconstructed by the ODE2VAE model with a = 2 for

the simple pendulum dataset. From top to bottom: mean and standard deviation

values of the latent norms; mean field prediction by the model; ground truth frames.

No
Change of
Direction

Change of
Direction

a) L2-norm of the Acceleration Latent

No
Change of
Direction

Change of
Direction

b) L2-norm of the Velocity Latent

Figure 5.24. Mean and standard deviation values for the L2-norm of the latent

acceleration and velocity the pendulum dataset. The figures display the values at the

moment of direction change and other time steps.

67

Table 5.5. Performance metrics of the selected model on the projectile motion

dataset. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 9 0.0016± 0.0016 30.5322± 5.1913 27.8267

We find out that the ODE2VAE baseline model could not capture the projectile

motion dynamics with a = 2, 3, 5, 7 after it is trained for 300 epochs and converged.

Therefore, we increased the number of latent units to 9. Although the model has

increased predictive performance with a = 9, it is not fully able to capture latent

dynamics that resemble the real projectile motion. In Figures 5.25 and 5.26, we plot

MSE and PSNR values for the test cases over the time steps. After time step four,

there is an interval in which the ball hits the ground for each test case. Since the ball

spends 0.1 second during its collision and the frames are separated for 0.1 second, the

motion of the ball becomes stationary. The drop in the MSE values and the peak in

the PSNR values may be because of the network’s tendency to overfit when the ball

becomes stationary. We present an example case in Figure 5.27. One of the challenges

about the projectile motion is that there is a constant gravitational acceleration to

learn. The results show that the model is not able to generate a constant acceleration

field. On the other hand, there is a slight increment in the total kinetic energy when

the ball is closer to the ground. In Figure 5.28a and 5.28b, we present the norm

of the acceleration and velocity latents at the time steps with and without collision.

Although the true acceleration field is constant (except for the collision moments) due

to the constant free-fall acceleration, the model is not able to learn a fixed acceleration

field among the di↵erent test cases (see Figure 5.28a). We omit to comment on the

norm of the latent velocity since the ground truth velocities are not the same in the

test set. It is only reported for the sake of completeness.

68

0 1 2 3 4 5 6 7 8 9
Time Steps

0.000

0.001

0.002

0.003

0.004

0.005

M
SE

Projectile MSE

Figure 5.25. MSE values for the projectile motion test set.

0 1 2 3 4 5 6 7 8 9
Time Steps

24

26

28

30

32

34

36

38

PS
N

R

Projectile PSNR

Figure 5.26. PSNR values for the projectile motion test set.

69

Figure 5.27. Example test case reconstructed by the ODE2VAE model with a = 9 for

the projectile motion dataset. From top to bottom: mean and standard deviation

values of the latent norms; mean field prediction by the model; ground truth frames.

a) L2-norm of the Acceleration Latent b) L2-norm of the Velocity Latent

Figure 5.28. Mean and standard deviation values for the L2-norm of the latent

acceleration and velocity for the projectile motion dataset. The figures display the

values at the moment of collisions and other time steps.

70

5.3.3. Learning Varying Static Features with the ODE2VAE Model

In this section, we challenge the ODE2VAE model by using three novel datasets:

mixed bouncing balls with n = 1, 2, 3, bouncing balls with di↵erent radii, and bouncing

dSprites. These datasets have varying static features among their cases. Therefore,

they can be used to check if the ODE2VAE model can learn static features instead of

memorizing them through the decoder. Although the proposed models �-ODE2VAE

and ODE2VAE-c may have a proper formulation for learning static features, they

increase the model complexity and cause convergence issues during training. Therefore,

we have limited the results in this section to the performance of the baseline model.

We remind that the baseline model’s performance on the datasets with fixed static

features is reported in the previous section.

Table 5.6. Performance metrics of the selected model on the mixed bouncing balls

dataset. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 15 0.0346± 0.0298 16.4827± 4.4092 190.0550

ODE2VAE, a = 20 0.0323± 0.0262 16.5108± 3.9572 176.5782

We train the baseline model with a = 15 and 20 for 1000 epochs on the mixed

bouncing balls dataset. The metrics are reported in Table 5.6. The model with a = 20

captures the motion better than the model with a = 15. In Figure 5.29, we present

example mean field reconstructions of the baseline model with a = 20 with the ground

truths. Although the model learns the independent bouncing ball cases, it is clearly

shown that the model cannot capture the varying number of balls in the test cases. In

Figure 5.29, it can be seen that the model cannot preserve the number of balls as it

extrapolates into the future. Some possible reasons behind the model’s inability may

be the convergence issues and the model’s dynamical inductive bias which may hinder

preserving static features over the time steps.

71

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

a) Reconstruction of the ODE2VAE model with a = 20 for the mixed bouncing balls dataset.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

b) Reconstruction of the ODE2VAE model with a = 20 for the mixed bouncing balls dataset.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

c) Reconstruction of the ODE2VAE model with a = 20 for the mixed bouncing balls dataset.

Figure 5.29. Figure for mean field reconstruction of the baseline model with a = 20

and ground truth frames for the mixed bouncing balls dataset.

72

Table 5.7. Performance metrics of the selected models on the bouncing balls with

multiple radii dataset. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 5 0.0199± 0.0137 18.7689± 4.7620 136.0506

ODE2VAE, a = 10 0.0175± 0.0137 18.8410± 3.4849 97.0111

ODE2VAE, a = 15 0.0172± 0.0144 19.8084± 5.1230 103.7041

Secondly, we train the ODE2VAE model with a = 5, 10, and 15 for 1000 epochs

on the bouncing balls dataset with multiple radii. We report the results in Table 5.7.

In Figure 5.30, we present mean field reconstructions for each model variant. The

models cannot capture the varying radius of the balls. In Figure 5.30a, we observe

that the model cannot preserve the shape of the ball, which may stem from the low

latent dimensionality a = 5. In Figures 5.30b and 5.30c, we observe that the models

collapse to a smaller radius. They learn the dynamics, but they could not capture the

true radius. Also, the model could not preserve the rigid ball shape in Figure 5.30c.

Table 5.8. Performance metrics of the selected model on the bouncing dSprites

dataset. Each metric is computed by using 10 samples per test case.

Model

Metric
MSE PSNR NLL

ODE2VAE, a = 15 0.0384± 0.0288 15.1704± 2.9083 142.2924

Lastly, we train the baseline ODE2VAE model with a = 5, 10, and 15 for 1000

epochs on the bouncing dSprites dataset. In Table 5.8, we only report the results for

the a = 15 since the other models did not capture the dataset’s motion. As shown

in Figure 5.31a, the model with a = 15 could capture the motion and the shape to a

limited extend. Even though the model generates the object with a square like shape

in the beginning, it could not preserve the size and shape.

73

Given that the model could learn the bouncing balls motion, learning di↵erent shapes

seems to hinder the model’s ability to learn dynamic features. It also fails to generate

motion after the sixth time step. Moreover, the model tends to collapse to a single

shape as shown in Figure 5.31b.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

a) Mean field reconstruction of the ODE2VAE model with a = 5 for the multiple radii dataset.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

b) Mean field reconstruction of the ODE2VAE model with a = 10 for the multiple radii dataset.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

c) Mean field reconstruction of the ODE2VAE model with a = 15 for the multiple radii dataset.

Figure 5.30. Figure for mean field reconstruction of the baseline models with

a = 5, 10, 15 and ground truth frames for the multiple radii dataset.

74

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

a) Mean field reconstruction of the ODE2VAE model with a = 15 for the bouncing dSprites dataset.

Re
co

ns
tr

uc
tio

ns

T= 0

G
ro

un
d

Tr
ut

hs

T= 1 T= 2 T= 3 T= 4 T= 5 T= 6 T= 7 T= 8 T= 9

b) Mean field reconstruction of the ODE2VAE model with a = 15 for the bouncing dSprites dataset.

Figure 5.31. Figure for mean field reconstruction of the baseline model with a = 15

and ground truth frames for the bouncing dSprites dataset.

75

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we work on a generative model, ODE2VAE [5], which uses second

order latent ODEs and Bayesian neural networks to learn arbitrary dynamics of the

sequences in an unsupervised setting. The model has an inductive bias that is imposed

by the coupled latent ODEs, which learn arbitrary latent dynamics. However, the

e↵ects of the inductive bias are not investigated in the original work [5]. We challenge

the model with di↵erent datasets and attempt to show the e↵ects of the inductive

bias of the ODE2VAE model over its latent representations. We choose to work on

well-known physical motion datasets: bouncing balls, simple pendulum, and projectile

motion datasets. We investigate if the learned latent representations behave according

to the real motion dynamics. Since the latent representations are high dimensional, we

use the norm of the latent representations during our analysis. We are able to show that

the ODE2VAE model can learn physically plausible dynamic latent representations for

the single bouncing ball and simple pendulum datasets. Although the model generates

successful predictions for the projectile motion dataset, its latent representations lack

physical intuition. Our results also show that the uncertainty over the magnitude of the

acceleration field increases during rare events and non-linear motions such as collisions.

In the second part, we challenge the baseline model to learn di↵erent static fea-

tures in addition to the dynamic features, which was not investigated previously [5]. In

the experiments, we utilize three novel datasets: mixed bouncing balls, bouncing balls

with di↵erent radii, and bouncing dSprites. These datasets di↵er from the previous

ones since they have varying static features among their cases. We re-formulate the

model for a flexible regularization (�-ODE2VAE) and attempt to learn static features

e�ciently through regularization. In addition, we attempt to learn static features by

extending the baseline model’s architecture (ODE2VAE-c). Given the fact that the

baseline model has a complex architecture and unstable training, we have not been

able to optimize the model variants, which are more complex than the baseline model.

76

Therefore, we only investigate the performance of the baseline model trained over the

sequences with multiple static features. Our findings show a possible pitfall of the

baseline model. Although the model could learn arbitrary dynamics of the bouncing

balls motion with fixed static features, it fails to learn the same motion with varying

static features. This observation suggests that the model’s dynamical inductive bias

is not suitable for learning di↵erent static features that should be preserved over the

time steps.

Our future work will include preserving latent physical quantities by parame-

terizing the latent acceleration field by utilizing arbitrary Lagrangians or Hamiltoni-

ans [15,16]. Simplifying the ODE2VAE model’s formulation may be a long-term goal,

which may reduce the model’s complexity and solve the convergence issues that we

faced during optimization. As the learning of static features through regularization

and architectural extension complicates the model, more straightforward approaches

such as hard-coding zeros to corresponding acceleration and velocity latent units will

be included in future work.

77

REFERENCES

1. Kingma, D. P. and M. Welling, “Auto-Encoding Variational Bayes”, 2nd Interna-

tional Conference on Learning Representations (ICLR), 2014.

2. Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. C. Courville and Y. Bengio, “Generative Adversarial Nets”, Advances in Neural

Information Processing Systems , Vol. 27, pp. 2672–2680, Curran Associates, Inc.,

2014.

3. Ruthotto, L. and E. Haber, “An Introduction to Deep Generative Modeling”,

CoRR, Vol. abs/2103.05180, 2021.

4. Karras, T., T. Aila, S. Laine and J. Lehtinen, “Progressive Growing of GANs

for Improved Quality, Stability, and Variation”, 6th International Conference on

Learning Representations (ICLR), OpenReview.net, 2018.

5. Yildiz, C., M. Heinonen and H. Lähdesmäki, “ODE2VAE: Deep Generative Second

Order ODEs with Bayesian Neural Networks”, Advances in Neural Information

Processing Systems , Vol. 32, pp. 13412–13421, Curran Associates, Inc., 2019.

6. Rubanova, Y., T. Q. Chen and D. Duvenaud, “Latent Ordinary Di↵erential Equa-

tions for Irregularly-Sampled Time Series.”, Advances in Neural Information Pro-

cessing Systems , Vol. 32, pp. 5321–5331, Curran Associates, Inc., 2019.

7. Fortuin, V., D. Baranchuk, G. Rätsch and S. Mandt, “GP-VAE: Deep Probabilistic

Time Series Imputation”, The 23rd International Conference on Artificial Intel-

ligence and Statistics (AISTATS), Vol. 108 of Proceedings of Machine Learning

Research, pp. 1651–1661, PMLR, 2020.

8. van den Oord, A., O. Vinyals and K. Kavukcuoglu, “Neural Discrete Representa-

tion Learning”, Advances in Neural Information Processing Systems , Vol. 30, pp.

78

6306–6315, Curran Associates, Inc., 2017.

9. Fortuin, V., M. Hüser, F. Locatello, H. Strathmann and G. Rätsch, “SOM-VAE:

Interpretable Discrete Representation Learning on Time Series”, 7th International

Conference on Learning Representations (ICLR), OpenReview.net, 2019.

10. An, J. and S. Cho, “Variational Autoencoder Based Anomaly Detection Using

Reconstruction Probability”, Special Lecture on IE , Vol. 2, No. 1, 2015.

11. Dilokthanakul, N., P. A. M. Mediano, M. Garnelo, M. C. H. Lee, H. Salimbeni,

K. Arulkumaran and M. Shanahan, “Deep Unsupervised Clustering with Gaussian

Mixture Variational Autoencoders”, CoRR, Vol. abs/1611.02648, 2016.

12. Schönfeld, E., S. Ebrahimi, S. Sinha, T. Darrell and Z. Akata, “Generalized Zero-

and Few-Shot Learning via Aligned Variational Autoencoders”, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 8247–8255, Computer

Vision Foundation / IEEE, 2019.

13. Goyal, A. and Y. Bengio, “Inductive Biases for Deep Learning of Higher-Level

Cognition”, CoRR, Vol. abs/2011.15091, 2020.

14. Battaglia, P. W., J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre,

H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash,

V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals,

Y. Li and R. Pascanu, “Relational Inductive Biases, Deep Learning, and Graph

Networks”, CoRR, Vol. abs/1806.01261, 2018.

15. Toth, P., D. J. Rezende, A. Jaegle, S. Racanière, A. Botev and I. Higgins, “Hamil-

tonian Generative Networks”, 8th International Conference on Learning Represen-

tations (ICLR), OpenReview.net, 2020.

16. Cranmer, M. D., S. Greydanus, S. Hoyer, P. W. Battaglia, D. N. Spergel and S. Ho,

79

“Lagrangian Neural Networks”, CoRR, Vol. abs/2003.04630, 2020.

17. Chen, R. T. Q., Y. Rubanova, J. Bettencourt and D. Duvenaud, “Neural Ordi-

nary Di↵erential Equations”, Advances in Neural Information Processing Systems ,

Vol. 31, pp. 6572–6583, Curran Associates, Inc., 2018.

18. Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed

and A. Lerchner, “beta-VAE: Learning Basic Visual Concepts with a Constrained

Variational Framework”, 5th International Conference on Learning Representa-

tions (ICLR), OpenReview.net, 2017.

19. Bengio, Y., “Deep Learning of Representations: Looking Forward”, Statistical Lan-

guage and Speech Processing (SLSP) - First International Conference, Vol. 7978

of Lecture Notes in Computer Science, pp. 1–37, Springer, 2013.

20. Jospin, L. V., W. L. Buntine, F. Boussäıd, H. Laga and M. Bennamoun, “Hands-

on Bayesian Neural Networks - a Tutorial for Deep Learning Users”, CoRR, Vol.

abs/2007.06823, 2020.

21. Lombardo, S., J. Han, C. Schroers and S. Mandt, “Deep Generative Video Com-

pression”, Advances in Neural Information Processing Systems , Vol. 32, pp. 9283–

9294, Curran Associates, Inc., 2019.

22. LeCun, Y., Y. Bengio and G. Hinton, “Deep Learning”, Nature, Vol. 521, No.

7553, pp. 436–444, 2015.

23. Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning Representations by

Back-Propagating Errors”, Nature, Vol. 323, No. 6088, pp. 533–536, 1986.

24. Duchi, J., E. Hazan and Y. Singer, “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”, Journal of Machine Learning Research,

Vol. 12, pp. 2121–2159, 2011.

80

25. Kingma, D. P. and J. Ba, “Adam: A Method for Stochastic Optimization”, 3rd

International Conference on Learning Representations (ICLR), 2015.

26. Goodfellow, I., Y. Bengio and A. Courville, Deep Learning , MIT Press, Cambridge,

MA, 2016.

27. Fukushima, K., “Neocognitron: A Self-Organizing Neural Network Model for a

Mechanism of Pattern Recognition Una↵ected by Shift in Position”, Biological

Cybernetics , Vol. 36, No. 4, 1980.

28. Cybenko, G., “Approximation by Superpositions of a Sigmoidal Function”, Math.

Control. Signals Syst., Vol. 2, No. 4, pp. 303–314, 1989.

29. Hornik, K., “Approximation Capabilities of Multilayer Feedforward Networks”,

Neural Networks , Vol. 4, No. 2, pp. 251–257, 1991.

30. Lecun, Y., L. Bottou, Y. Bengio and P. Ha↵ner, “Gradient-Based Learning Applied

to Document Recognition”, Proceedings of the IEEE , Vol. 86, No. 11, pp. 2278–

2324, 1998.

31. Krizhevsky, A., I. Sutskever and G. E. Hinton, “ImageNet Classification With

Deep Convolutional Neural Networks”, Advances in Neural Information Processing

Systems , Vol. 25, pp. 1106–1114, Curran Associates, Inc., 2012.

32. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge”, International Journal of Computer

Vision (IJCV), Vol. 115, No. 3, pp. 211–252, 2015.

33. Chung, J., K. Kastner, L. Dinh, K. Goel, A. C. Courville and Y. Bengio, “A Recur-

rent Latent Variable Model for Sequential Data.”, Advances in Neural Information

Processing Systems , Vol. 28, pp. 2980–2988, Curran Associates, Inc., 2015.

81

34. Pu, Y., Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens and L. Carin, “Variational

Autoencoder for Deep Learning of Images, Labels and Captions.”, Advances in

Neural Information Processing Systems , Vol. 29, pp. 2352–2360, Curran Associates,

Inc., 2016.

35. Jordan, M. I., Z. Ghahramani, T. S. Jaakkola and L. K. Saul, “Introduction to

Variational Methods for Graphical Models”, Machine Learning , Vol. 37, No. 2,

1999.

36. Blei, D. M., A. Kucukelbir and J. D. McAuli↵e, “Variational Inference: A Review

for Statisticians”, Journal of the American Statistical Association, Vol. 112, No.

518, p. 859–877, 2017.

37. Altosaar, J., Probabilistic Modeling of Structure in Science: Statistical Physics to

Recommender Systems , Ph.D. Thesis, Princeton University, 2020.

38. Murphy, K. P., Machine Learning: A Probabilistic Perspective, The MIT Press,

Cambridge, MA, 2012.

39. Kingma, D. P. and M. Welling, “An Introduction to Variational Autoencoders”,

Foundations and Trends in Machine Learning , Vol. 12, No. 4, pp. 307–392, 2019.

40. Gershman, S. and N. D. Goodman, “Amortized Inference in Probabilistic Reason-

ing”, Proceedings of the 36th Annual Meeting of the Cognitive Science, pp. 517–522,

2014.

41. Kingma, D. P., Variational Inference & Deep Learning: A New Synthesis , Ph.D.

Thesis, University of Amsterdam, 2017.

42. Rezende, D. J., S. Mohamed and D. Wierstra, “Stochastic Backpropagation and

Approximate Inference in Deep Generative Models”, 31st International Confer-

ence on Machine Learning , Vol. 4, pp. 3057–3070, International Machine Learning

Society (IMLS), 2014.

82

43. Altosaar, J., Tutorial - What is a Variational Autoencoder? , 2016,

https://doi.org/10.5281/zenodo.4462916, accessed in March 2021.

44. Burgess, C. P., I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins

and A. Lerchner, “Understanding Disentangling in beta-VAE”, CoRR, Vol.

abs/1804.03599, 2018.

45. Kingma, D. P., S. Mohamed, D. J. Rezende and M. Welling, “Semi-supervised

Learning with Deep Generative Models”, Advances in Neural Information Pro-

cessing Systems , Vol. 27, pp. 3581–3589, Curran Associates, Inc., 2014.

46. Sohn, K., H. Lee and X. Yan, “Learning Structured Output Representation using

Deep Conditional Generative Models”, Advances in Neural Information Processing

Systems , Vol. 28, pp. 3483–3491, Curran Associates, Inc., 2015.

47. Walker, J., C. Doersch, A. Gupta and M. Hebert, “An Uncertain Future:

Forecasting from Static Images using Variational Autoencoders”, CoRR, Vol.

abs/1606.07873, 2016.

48. Mehrasa, N., A. A. Jyothi, T. Durand, J. He, L. Sigal and G. Mori, “A Variational

Auto-Encoder Model for Stochastic Point Processes”, CoRR, Vol. abs/1904.03273,

2019.

49. Ainsworth, S. K., N. J. Foti and E. B. Fox, “Disentangled VAE Representations

for Multi-Aspect and Missing Data”, CoRR, Vol. abs/1806.09060, 2018.

50. Xian, Y., S. Sharma, B. Schiele and Z. Akata, “f-VAEGAN-D2: A Feature Gener-

ating Framework for Any-Shot”, IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 10275–10284, Computer Vision Foundation / IEEE,

2019.

51. Bengio, Y., A. C. Courville and P. Vincent, “Unsupervised Feature Learning and

Deep Learning: A Review and New Perspectives”, CoRR, Vol. abs/1206.5538,

83

2012.

52. van Steenkiste, S., F. Locatello, J. Schmidhuber and O. Bachem, “Are Disen-

tangled Representations Helpful for Abstract Visual Reasoning?”, CoRR, Vol.

abs/1905.12506, 2019.

53. Kim, H. and A. Mnih, “Disentangling by Factorising”, Proceedings of the 35th

International Conference on Machine Learning (ICML), Vol. 80, pp. 2654–2663,

PMLR, 2018.

54. Chen, R. T. Q., X. Li, R. B. Grosse and D. K. Duvenaud, “Isolating Sources of

Disentanglement in Variational Autoencoders”, Advances in Neural Information

Processing Systems , Vol. 31, pp. 2615–2625, Curran Associates, Inc., 2018.

55. Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, “In-

foGAN: Interpretable Representation Learning by Information Maximizing Gen-

erative Adversarial Nets”, Advances in Neural Information Processing Systems ,

Vol. 29, pp. 2172–2180, Curran Associates, Inc., 2016.

56. Denton, E. L. and v. Birodkar, “Unsupervised Learning of Disentangled Represen-

tations from Video”, Advances in Neural Information Processing Systems , Vol. 30,

pp. 4414–4423, Curran Associates, Inc., 2017.

57. Hsieh, J., B. Liu, D. Huang, F. Li and J. C. Niebles, “Learning to Decompose and

Disentangle Representations for Video Prediction”, Advances in Neural Informa-

tion Processing Systems , Vol. 31, pp. 515–524, Curran Associates, Inc., 2018.

58. Zhu, D., M. Munderloh, B. Rosenhahn and J. Stückler, “Learning to Disentangle

Latent Physical Factors for Video Prediction”, German Conference on Pattern

Recognition (GCPR), 2019.

59. Li, Y. and S. Mandt, “Disentangled Sequential Autoencoder”, Proceedings of the

35th International Conference on Machine Learning (ICML), Vol. 80, pp. 5656–

84

5665, PMLR, 2018.

60. Bengio, Y., P. Simard and P. Frasconi, “Learning Long-Term Dependencies with

Gradient Descent Is Di�cult”, IEEE Transactions on Neural Networks , Vol. 5,

No. 2, pp. 157–166, 1994.

61. Hochreiter, S. and J. Schmidhuber, “Long Short-Term Memory”, Neural computa-

tion, Vol. 9, No. 8, pp. 1735–1780, 1997.

62. Haber, E. and L. Ruthotto, “Stable Architectures for Deep Neural Networks.”,

CoRR, Vol. abs/1705.03341, 2017.

63. Lu, Y., A. Zhong, Q. Li and B. Dong, “Beyond Finite Layer Neural Networks:

Bridging Deep Architectures and Numerical Di↵erential Equations”, CoRR, Vol.

abs/1710.10121, 2017.

64. Khalil, H. K., Nonlinear Systems; 3rd ed., Prentice-Hall, Upper Saddle River, NJ,

2002.

65. Kendall E., A., H. Weimin and S. David, Numerical Solution of Ordinary Di↵er-

ential Equations , John Wiley & Sons, Ltd, Hoboken, NJ, 2009.

66. He, K., X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recog-

nition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778, IEEE Computer Society, 2016.

67. Chang, B., L. Meng, E. Haber, L. Ruthotto, D. Begert and E. Holtham, “Re-

versible Architectures for Arbitrarily Deep Residual Neural Networks”, CoRR,

Vol. abs/1709.03698, 2017.

68. Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishechenko,

The Mathematical Theory of Optimal Processes , Interscience, New York, 1962.

85

69. Rezende, D. J. and S. Mohamed, “Variational Inference with Normalizing Flows”,

32nd International Conference on Machine Learning (ICML), Vol. 2, 2015.

70. Grathwohl, W., R. T. Chen, J. Bettencourt, I. Sutskever and D. Duvenaud,

“Ffjord: Free-Form Continuous Dynamics for Scalable Reversible Generative Mod-

els”, 7th International Conference on Learning Representations (ICLR), OpenRe-

view.net, 2019.

71. Massaroli, S., M. Poli, J. Park, A. Yamashita and H. Asama, “Dissecting Neural

ODEs”, Advances in Neural Information Processing Systems , Vol. 33, pp. 3952–

3963, Curran Associates, Inc., 2020.

72. Ott, K., P. Katiyar, P. Hennig and M. Tiemann, “When are Neural ODE Solutions

Proper ODEs?”, CoRR, Vol. abs/2007.15386, 2020.

73. Ghosh, A., H. S. Behl, E. Dupont, P. H. S. Torr and V. Namboodiri, “STEER :

Simple Temporal Regularization For Neural ODEs”, CoRR, Vol. abs/2006.10711,

2020.

74. De Brouwer, E., J. Simm, A. Arany and Y. Moreau, “GRU-ODE-Bayes: Con-

tinuous Modeling of Sporadically-Observed Time Series”, Advances in Neural In-

formation Processing Systems , Vol. 32, pp. 7377–7388, Curran Associates, Inc.,

2019.

75. Kidger, P., J. Morrill, J. Foster and T. Lyons, “Neural Controlled Di↵erential

Equations for Irregular Time Series”, Advances in Neural Information Processing

Systems , Vol. 33, pp. 6696–6707, Curran Associates, Inc., 2020.

76. Chen, R. T. Q., B. Amos and M. Nickel, “Learning Neural Event Functions for

Ordinary Di↵erential Equations”, 9th International Conference on Learning Rep-

resentations (ICLR), OpenReview.net, 2021.

77. Greydanus, S., M. Dzamba and J. Yosinski, “Hamiltonian Neural Networks”,

86

CoRR, Vol. abs/1906.01563, 2019.

78. Gwak, D., G. Sim, M. Poli, S. Massaroli, J. Choo and E. Choi, “Neural Ordinary

Di↵erential Equations for Intervention Modeling”, CoRR, Vol. abs/2010.08304,

2020.

79. Øksendal, B., Stochastic Di↵erential Equations , pp. 65–84, Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2003.

80. Li, X., T. L. Wong, R. T. Q. Chen and D. Duvenaud, “Scalable Gradients for

Stochastic Di↵erential Equations”, The 23rd International Conference on Artificial

Intelligence and Statistics (AISTATS), Vol. 108 of Proceedings of Machine Learning

Research, pp. 3870–3882, PMLR, 2020.

81. Dandekar, R., V. Dixit, M. Tarek, A. Garcia-Valadez and C. Rackauckas, “Bayesian

Neural Ordinary Di↵erential Equations”, CoRR, Vol. abs/2012.07244, 2020.

82. Gal, Y., Uncertainty in Deep Learning , Ph.D. Thesis, University of Cambridge,

2016.

83. Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,

J. A. van der Laak, B. van Ginneken and C. I. Sánchez, “A Survey on Deep

Learning in Medical Image Analysis”, Medical Image Analysis , Vol. 42, pp. 60–88,

2017.

84. Esteva, A., A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou,

C. Cui, G. Corrado, S. Thrun and J. Dean, “A Guide to Deep Learning in Health-

care”, Nature Medicine, Vol. 25, No. 1, pp. 24–29, 2019.

85. Sünderhauf, N., O. Brock, W. J. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Up-

croft, P. Abbeel, W. Burgard, M. Milford and P. Corke, “The Limits and Potentials

of Deep Learning for Robotics”, CoRR, Vol. abs/1804.06557, 2018.

87

86. Levine, S., P. Pastor, A. Krizhevsky and D. Quillen, “Learning Hand-Eye Coordi-

nation for Robotic Grasping with Deep Learning and Large-Scale Data Collection”,

CoRR, Vol. abs/1603.02199, 2016.

87. Grigorescu, S. M., B. Trasnea, T. T. Cocias and G. Macesanu, “A Survey of Deep

Learning Techniques for Autonomous Driving”, CoRR, Vol. abs/1910.07738, 2019.

88. Wang, H., N. Wang and D. Yeung, “Collaborative Deep Learning for Recommender

Systems”, CoRR, Vol. abs/1409.2944, 2014.

89. Zheng, L., V. Noroozi and P. S. Yu, “Joint Deep Modeling of Users and Items

Using Reviews for Recommendation”, CoRR, Vol. abs/1701.04783, 2017.

90. Kendall, A. and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep

Learning for Computer Vision?”, CoRR, Vol. abs/1703.04977, 2017.

91. Kwon, Y., J.-H. Won, B. J. Kim and M. C. Paik, “Uncertainty Quantification Us-

ing Bayesian Neural Networks in Classification: Application to Biomedical Image

Segmentation”, Computational Statistics & Data Analysis , Vol. 142, p. 106816,

2020.

92. Gal, Y. and Z. Ghahramani, “Bayesian Convolutional Neural Networks with

Bernoulli Approximate Variational Inference”, CoRR, Vol. abs/1506.02158, 2015.

93. Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms , Chapman &

Hall/CRC, New York, 2012.

94. Matthey, L., I. Higgins, D. Hassabis and A. Lerchner,

dSprites: Disentanglement Testing Sprites Dataset , 2017,

https://github.com/deepmind/dsprites-dataset/, accessed in March 2021.

95. Sutskever, I., G. E. Hinton and G. W. Taylor, “The Recurrent Temporal Restricted

Boltzmann Machine”, Advances in Neural Information Processing Systems , Vol. 21,

88

pp. 1601–1608, Curran Associates, Inc., 2008.

96. Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and

X. Zhang, “Tensorflow: A System for Large-Scale Machine Learning”, CoRR, Vol.

abs/1605.08695, 2016.

89

APPENDIX A: NETWORK ARCHITECTURES

Figure A.1. Model scheme for ODE2VAE and ��ODE2VAE models. The figure is

adapted from [5].

90

Figure A.2. Model scheme for ODE2VAE-c models. The encoders output the means

and variances for the initial latent position and velocity states, and global static

state. The figure is adapted from [5].

91

APPENDIX B: EXTRA RESULTS

T=
0

Ground Truth Reconstructions Position Latents Velocity Latents Acceleration Latents

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

T=
1

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

T=
4

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

T=
6

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

La
te

nt

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

1.584 1.187 0.789 0.392 0.005 0.402 0.799 1.197 1.594 1.991
1

2

3

Po
si

tio
n

La
te

nt

2.664 2.073 1.481 0.890 0.299 0.292 0.883 1.475 2.066 2.657
1

2

3

Ve
lo

ci
ty

 L
at

en
t

28.44 22.08 15.73 9.37 3.02 3.34 9.69 16.05 22.41 28.76
1

2

3

Ac
c.

 L
at

en
t

T=
2

T=
3

T=
5

T=
7

T=
8

T=
9

Figure B.1. Example test case for bouncing balls with n = 1 and corresponding latent

vectors. The figure explicitly shows the evolution of the latent vectors.

