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ABSTRACT

USING TRANSFORMER NETWORKS FOR DETECTION

AND NORMALIZATION OF NAMED ENTITIES IN

BIOMEDICAL TEXTS

The increasing difficulty of retrieving relevant information from rapidly growing

literature has raised the interest for natural language processing (NLP) systems in the

biomedical domain. In many of these systems, detection of named entities such as

diseases, genes, and molecules (named entity recognition) and matching them to the

corresponding entries in ontologies (normalization) are important intermediate steps.

As these two tasks are related and datasets in this domain are relatively small, multi-

task learning has been frequently used in the literature for this problem. Meanwhile,

in recent years, the success of transformer-based pre-trained language models such

as BERT in various NLP tasks has led them to be also applied in the biomedical

domain. The different characteristics of biomedical text such as abbreviations and

specific terminology motivated the development of new language models, which were

trained specifically for this domain using a biomedical corpus. In this study, we propose

a multi-task learning approach for named entity recognition and normalization by

utilizing transformer-based pre-trained language models. To enable the optimal sharing

of information, both tasks are formulated with text span embeddings obtained with

a common encoder network. Promising results are obtained and compared with the

results of state-of-the-art systems from the literature for commonly used named entity

recognition datasets.
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ÖZET

DÖNÜŞTÜRÜCÜ AĞLARI KULLANILARAK

BİYOMEDİKAL METİNLERDE VARLIK İSİMLERİNİN

TANINMASI VE NORMALİZASYONU

Çok hızlı ilerleyen literatür içinden ilgili yayınlara ulaşmanın gittikçe zorlaşması

biyomedikal alanı hedefleyen doğal dil işleme sistemlerine olan ilgiyi arttırmaktadır.

Bu sistemlerin önemli bir kısmında yayınlarda geçen hastalık, gen ve molekül adları

gibi özel isimlerin tespit edilmesi (varlık ismi tanıma) ve ilgili ontolojilerdeki kayıtlarla

eşlenmesi (normalizasyon) ara adımlarına ihtiyaç duyulmaktadır. Bu iki görevin bir-

biriyle yakın bir ilişki içinde olması ve bu alandaki veri kümelerinin küçük olması ne-

deniyle bu çoklu görev öğrenmesi literatürde sıkça başvurulan bir yaklaşım olmuştur.

Bunun yanı sıra doğal dil işleme alanında son yıllarda BERT gibi dönüştürücü mi-

marisine dayanan önceden eğitilmiş dil modelleri kullanımıyla farklı görevlerde büyük

başarılar elde edilmesiyle biyomedikal alanında da bu tarz modellerden faydalanılmaya

başlanmıştır. Biyomedikal metinlerin kendilerine has bir terminolojiye sahip olmaları

ve bu metinlerde kısaltmalara sıkça rastlanması gibi nedenlerle bu alana özgü dil model-

lerinin eğitilmesine ihtiyaç duyulmuştur. Bu çalışmada farklı biyomedikal veri kümeleri

üzerinde transformer tabanlı dil modelleri ile çoklu görev öğrenmesi yaklaşımının etkili

bir biçimde birlikte kullanılmasına çalışılmıştır. İki görev arasında bilgi paylaşımının

en iyi düzeyde gerçekleşebilmesi için iki görevde de ortak bir ağ ile elde edilen metin

aralıklarının vektör gösterimleri kullanılmıştır. Umut vadeden sonuçlar elde edilmiş ve

sistemin performansı sıkça kullanılan veri kümeleri üzerinde literatürdeki en başarılı

sistemlerle kıyaslanmıştır.
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1. INTRODUCTION

Information overload is considered to be one of the greatest problems for knowl-

edge workers in today’s age. For researchers, in particular, it is getting harder every

year to keep up with relevant research and reach relevant information due to the ever-

increasing number of researchers, journals, and published articles.

The same problem also applies in the biomedical field. In recent years, about two

times every minute a new research article is included in the PubMed citation database

[2], which currently contains about 32 million citations and was subject to 3.3 billion

searches in the last year [3].

The situation is even worsened during times like the ongoing COVID-19 pandemic

when it is critical to stay up-to-date with very fast-developing research to be able to

make decisions under optimal circumstances. LitCovid [4], an effort to provide a daily

updated hub for COVID-19 related literature in PubMed, is hosting 158576 articles as

of today [5].

Named Entity Recognition (NER) and Named Entity Normalization (NEN) are

among the most well-known and studied tasks in Natural Language Processing (NLP)

because often achieving high accuracy in these tasks is crucial for many text mining

systems where they are typically used in successive steps.

In NER, we aim to extract text spans that correspond to a real-word entity that

is denoted by a proper name. For example, given the sentence “Ministry of Health

announced the number of infected patients.”, we expect to get “Ministry of Health”

categorized as “Organization”. In NEN or normalization, on the other hand, we would

like to determine which particular entity or concept a given entity mention refers to.

For example, in the sentence “Paris is the capital of France”, the mention of “Paris”

should be identified as Paris the city, not for example as the celebrity Paris Hilton.
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Usually, the set of concepts that we want to map mentions to is given in the form of a

dictionary, ontology, or knowledge graph. For this reason, NEN is also referred to as

named entity linking (NEL) or named entity disambiguation (NED) in the literature.

Naturally, there has been great interest in both these tasks in the biomedical

NLP domain, as many information retrieval and text mining systems require successful

execution of these tasks in their intermediate steps. A non-comprehensive list is given

below:

• covidAsk [6] A real-time question answering system for COVID-19 related ques-

tions. Broadly speaking, segments from COVID-19 related articles are embedded

into vectors by a retrieval model trained for general-purpose question answer-

ing. From each research article appearing in the search results, they extract and

normalize biomedical entities for enabling a quick overview of occurring entities,

their descriptions, and synonyms.

• VAPUR [7] A search engine for finding related protein-chemical pairs from

COVID-19 literature. Since biomedical compounds and proteins may occur in

different articles in very different surface forms, traditional general-purpose sys-

tems may fail return relevant results. In VAPUR, an automatic bioNLP pipeline

is employed to build an inverted index for protein-compound pairs. Entities are

extracted and normalized from the COVID-related corpus and then a relation

extraction model is used to find related protein-chemical pairs that occur in the

same sentence. This way, when a compound such as “Favipiravir” is queried,

via the inverted index the system returns all related proteins with corresponding

articles in the literature.The performance of the system is measured through an

evaluation by domain experts.

• PKG [8] (PubMed Knowledge Graph) To ease access to relevant information

from PubMed, authors construct a knowledge graph from PubMed abstracts. To

this end; authors with their affiliations and biomedical entities are extracted and

entities or authors that correspond to the same real-world object are unified. They

have demonstrated the usefulness of the knowledge graph with 3 examples. By
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analyzing connected nodes of neurologist Stephen Silberstein they have identified

collaboration patterns and key institutions. Observations of the CGRP molecule

have shown interesting patterns in the change of interest in academic cycles with

respect to other compounds. Finally, via an analysis of the bipartite author-

entity network, they suggested collaboration opportunities between researchers

who share a common interest.

While both NER and NEN are well-studied tasks in NLP, applying advances to

the biomedical domain is not straightforward, as biomedical texts have characteristics

such as domain-specific terminology and frequent use of abbreviations. In addition,

biomedical NER datasets are usually much smaller than those studied in NLP. Because

of this, often domain-specific approaches are required to obtain the best performance.

Named entity recognition and normalization tasks in the biomedical domain have

been the subject of many studies in the literature. Earlier works were based on tradi-

tional machine learning algorithms with handcrafted features. For example, [9] used a

joint CRF model with features like character n-grams, word stems, part-of-speech tags.

As deep learning methods have become dominant in the NLP domain, state-of-the-art

systems have adapted neural approaches. One example is [10], which used LSTM and

word embeddings to improve upon existing models. More recently, following the trend

in NLP, pre-trained language models have been applied to obtain state-of-the-art re-

sults. BioBERT [11]) was trained on 18B tokens from biomedical papers, whereas

SciBERT [12]) was trained on a random collection of papers from Semantic Scholar

making up 3.17B tokens.

As of now, the best results for the normalization task are achieved using BERT-

based models in a contrastive learning fashion. In BioSyn [13]), entity mentions and

their synonyms are embedded using a pre-trained BioBert model such that mentions

mapping to the same entity have closer embeddings than non-synonyms. This allows

the classification of unseen entities in the dataset as the embeddings are created from

the surface representation of entity synonyms. SAPBERT [14]) improves upon BioSyn
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by pre-training the embedding model in a more general biomedical dictionary before

the actual normalization dataset.

Several papers have explored the benefits of joint learning between these tasks.

TaggerOne [9] is a transition-based model where states were the product of NER and

NEN states. More recently, in [1], both tasks were learned together with a common

encoder but two separate prediction heads. Furthermore, they have also shown that

feeding the output of the NEN model as input to the NER model yielded even bet-

ter performance. Collabonet [15], on the other hand, showed that combining models

trained on datasets for different entity types (diseases, chemicals, species, etc.) can

improve model performance on individual NER datasets for a specific entity type.

In this thesis, we tried to combine successful ideas from earlier works. As de-

scribed earlier, in many papers multitask learning had improved the results. On the

other hand, more recent studies had success with pre-trained transformer language

models and contrastive learning for the NER task. Motivated by these works, we test

three different hypotheses:

(i) Testing multitask learning between NER and NEN tasks together with transfer

learning with a pre-trained language model. More specifically, we will replace

word embeddings + LSTM networks in the classical sequence tagging approach

of [1] with BERT-based transformer encoders.

(ii) Using sentence context with BERT models to learn mention embeddings in con-

trastive learning approach for normalization. We will the same learning objective

as in BioSyn [13], but mention embeddings will be created with sentence context.

(iii) Finally, we will use a span classification approach for the NER task and train

the joint encoder together with the normalization task described above. Since

both tasks internally use span embeddings we hope that multitask learning will

be useful in this setting too.



5

We hope to show that multitask learning can be still useful when used in con-

junction with transfer learning. As biomedical NLP datasets are usually quite small,

in general, multitask learning can be helpful as it provides more information. In this

case, the normalization signal can help the model create a more informative entity

representation and thus be more generalizable in NER. Also, the NER signal can help

the model to better make use of sentence context, which could be harder for the model

with the normalization task alone.

In this work, we propose to train a BERT-based model jointly on named en-

tity recognition and normalization tasks. Both recognition and normalization tasks

will be formulated via span representations instead of more usual sequence labeling

approaches. A joint transformer encoder will be used to create embeddings for each

span.

For normalization, we will use a similar approach to BioSyn. Synonym candidates

will be drawn from the dictionary and based on embedding closeness the model will

try to discriminate actual synonyms from others. However, unlike the BioSyn, the

embedding for the entity mention will be created using the joint encoder. This allows

the embeddings to capture contextual information. As mentioned in the BioSyn work,

there are cases where identical mentions have been annotated with different entities.

By extracting the mention representations from the sentence representation, we hope

to handle such cases and even perhaps remove preprocessing steps like abbreviation

resolution.

For the NER task, each span will be treated as a candidate entity and the model

will try to predict whether a span forms an entity and of which class. Although this

meansO(n2) predictions, it can be done efficiently as we will explain in the methodology

section.

The rest of this thesis is organized as follows: In Chapter 2, background informa-

tion for NER and NEN tasks and several commonly used techniques will be given. In
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Chapter 3, we will give an overview of related works in this area and describe several

papers which directly inspired work in more detail. In Chapter 4, the methodology

used in different settings will be discussed. Experiments and their results will be pre-

sented in Chapter 5 and the last chapter Chapter 6 will be reserved for discussion of

the results and conclusion drawn from the study.
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2. BACKGROUND

2.1. Named Entity Recognition

Named Entity Recognition (NER) is one of the most practically useful and there-

fore arguably one of the main tasks in all of the NLP domain. Given a text segment,

typically a sentence, NER amounts to locating spans of tokens corresponding to en-

tities of interest and classifying the extracted entity to a fixed set of broad types,

such as PERSON, ORGANIZATION, LOCATION, etc. For example in the sentence

“Merih Demiral was transferred to Juventus in 19/20 football season.” the entities to

be extracted could be the span “Merih Demiral” with type “PERSON”, “Juventus”

with type “ORGANIZATION” and “19/20 football season” with type “DATE”. In

biomedical NER datasets, entity types are usually diseases, chemicals, or species.

Many practical applications require NER as an intermediate step. For example,

in information retrieval systems it is desirable to index occurrences of named entities.

Automatic pipelines can be built via NER systems to extract relevant data from text,

for example, to speed up customer support.

In NER datasets model performance is usually calculated with a span-based F1

score. In a given text, gold entities and predicted entities are contrasted. Predicted

entities found in the gold entities set are treated as true positives, not found ones are

counted as false positives. Similarly, gold entities not found in predicted entities are

treated as false negatives. Note that two entity detections match only if both their

spans and type match.

2.2. Named Entity Normalization

Named Entity Normalization (NEN), also referred to as Named Entity Disam-

biguation (NED) and Named Entity Linking (NEL) in the literature, is matching entity
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mentions found in a text to a unique identifier, which we will refer to as CUI (concept

unique identifier) following [13]. Typically the set of unique identifiers to which the

entities are matched to come from a knowledge base such as Wikidata or DBpedia.

Therefore mentions are “linked” to the entries in the knowledge base which could be

used for semantic annotation.

The difference between NER and NEN tasks is that in NER we are only concerned

with detecting the mention from the text and classifying it into a broad entity type

such as “DATE” or “ORGANIZATION”. However, in NEN it is often assumed that

the entity already has been found from the text and we are trying to “disambiguate”

the found mention by assigning it to a very specific entity in the knowledge base. For

example in the sentence “Jaguar has been making luxurious sedans and athletic sports

cars for decades.“, “Jaguar” refers to the automobile brand, not to the animal species.

NEN can be seen as a fine-grained version of the NER, as we usually require not only

a broad entity type such as PERSON, instead, we want to map the entity to a specific

ontology entry that specifically refers to the person in question. Therefore we can say

that NER and NEN tasks are closely related and complementary.

In the setting where entity mentions are not extracted, and the F1 score is calcu-

lated similarly to NER. However, in this case, we don’t care about span matches and

only use predicted CUI labels to find true positives, false positives, and false negatives.

In the setting where entity mentions are already extracted, we measure accuracy in the

top k entity predictions of the model.

2.3. Sequence Tagging

Sequence tagging defines a general approach that is applicable to a number of

different NLP or other sequence learning tasks. Basically, given sequence of tokens,

[x1, x2, ..., xn], each token will be classified (or “tagged”) to a label class so that a

sequence of labels of the same length will be obtained: [y1, y2, ..., yn].
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While this approach is very simple, it can be used to formulate model different

tasks. For example, in tasks like NER where we would like to extract spans with entity

types from a sequence, sequence tagging can be used as follows:

• Tokens that are not inside an entity span will be assigned to outside label (“O”

label).

• Tokens that are the first token of an entity span will be assigned to the begin

label of entity type, e.g. “B-ORGANIZATION”, “B-DATE” etc.

• Tokens that are part of an entity span but are not the initial token will be assigned

to inside label of the entity type, e.g. “I-ORGANIZATION”, “I-DATE” etc.

This way, any list of non-overlapping entity spans with types can be converted

into unique a sequence of labels and vice versa. Since there are different tokens labels

for start and other tokens of an entity type, there will not be any confusion about

whether a sequence of labels with the same entity type is actually multiple separate

entity spans of the same type. This particular encoding scheme is known as “IOB”

encoding and there are also other encoding options like “IOBES” which also includes

end and single token labels.

Sequence tagging is still the most commonly used formulation for NER to this day.

Other tasks which are typically formulated as sequence tagging include part-of-speech

tagging, semantic role labeling, and many others.

2.4. Contrastive Learning

In many machine learning tasks such as face recognition, there are thousands or

millions of different labels encountered in the dataset. This leads to a data sparsity

problem, as some of the label classes will contain very few samples in the training set.

Also, in some settings, we may even want to handle label classes that are encountered

at the training time, for example adding a new person to the face recognition system.
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In such situations, contrastive learning can offer a remedy. In contrastive learning,

the idea is to learn a mapping from samples to the embedding vector space, such that

samples that have the same labels (similar or positive samples) have the close vectors

and samples that have different labels (dissimilar or negative samples) have embeddings

that are distant from each other. The network is trained to “contrast” similar and

dissimilar samples.

Since the model never explicitly sees the labels during training, it can generalize

to label classes not seen during training. For example, in face recognition, the model

will hopefully embed two images of the same person into close vectors even if no image

of that particular person was in the dataset.

Contrastive learning has many applications in different areas of machine learning.

It is the de-facto approach for few-shot learning problems where only a few samples

for each class is present in training dataset like facial recognition. It is also widely

used for image retrieval and document retrieval (e.g. [16]), where the queries can not

be known beforehand. It can be also adopted for pre-training purposes. For example

in SimCLR [17], to learn image representations without labels, the model is trained

to map augmentations of the image to close vectors in embeddings space and distant

vectors otherwise. SimCLR had significantly improved the then state-of-the-art results

in unsupervised object recognition.

2.5. Pre-trained Language Models

In recent years, there has been a huge surge of interest in pre-trained language

models, which are now a vital part of almost all state-of-the-art systems in many tasks

in the NLP domain, such as natural language inference, sentiment analysis, or question

answering. In fact, the year 2018 has been described as “ImageNet moment” of NLP

[18], during which many influential works using this methodology (e.g. ELMo [19],

ULMFIT [20], GPT [21], BERT [22]) have been published.
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Unlike traditional word vectors, which can be seen as shallow neural networks,

these studies proposed transfer learning with deep networks with a high number of

parameters.

Many of these models can be seen as “contextualized word embeddings”. In the

classical word vector approach (for example word2vec [23]), a fixed representation for

each word is learned during pre-training and these representations are independent

of the context in which the word occurs. This causes a problem with words with

multiple senses. Deep pre-trained language models don’t suffer from this problem, as

they differentiate between senses or even refine the “meaning” of a word by processing

the complex contextual information in their stacked layers.

Unlike in computer vision, where pre-training networks on a big labeled dataset

such as ImageNet is a common practice, these networks are usually trained in an

unsupervised way on large textual corpora, such as Wikipedia articles or book scans.

This is very advantageous, as it is relatively straightforward to find large corpora for

pre-training compared to more costly data annotation, for example by incorporating

web crawls. This also makes them easy to apply to NLP tasks in other domains with

smaller supervised datasets. For example to improve a named entity recognition system

for the German language, one can pretrain a language model on German texts collected

from the internet.

Another one of the promises of such networks is their wide applicability and

re-usability. Even though it might be more costly to train these deeper unsupervised

models on large corpora, it can be done once by perhaps a large company or institution

with computational resources and shared with other practitioners to make use of these

models in their own inquiries.
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2.5.1. BERT

BERT [22], short for ”Bidirectional Encoder Representations from Transformers”,

is arguably the most influential development in NLP in recent years. At the time of its

release, it had simultaneously improved upon state-of-the-art systems in many tasks

while adopting a unified approach in almost all of them.

The BERT model is based on the transformer architecture [24], which was origi-

nally proposed for neural machine translation. In contrast to CNN or LSTM networks,

which are either based on convolution or recurrence operations, the transformer is

based solely on attention mechanism. At each transformer layer, the representation

of a token is obtained with a weighted sum of representations of other tokens in the

sequence, where the weights are determined with a small network and depend on the

queried token. This way, every token can directly influence every other token in the

sequence in the next layer without requiring long recurrence or multiple layers. As

transformer layers are not position-aware like LSTMs, position information is explic-

itly given by adding a learned position embedding to the initial token representation.

Because of this, there is a maximum length of context which it can process, which was

chosen to be 512 in this work.

Also, the model adopts a variant of subword tokenization, WordPiece, as in many

of the previous works. From a large textual corpus, a subword vocabulary is learned and

all word occurrences are expressed using subwords from this fixed subword vocabulary

in a parsimonious way. For example the word “walking” may not be present in the

subword dictionary, and will be instead segmented as “walk” + “###ing”. This way,

one can obtain still useful representations of words even though they don’t occur in that

specific form in the training set if they are composed of frequently seen subwords. This

segmentation algorithm was found to be very beneficial for working with languages

like Turkish and German where a specific occurrence of a word can be very sparse

because of the composition rules of the language. Since these models are meant to be

trained on large corpora, where many misspelling and obscure words can be found, this



13

approach is particularly useful as otherwise many words will not be seen enough times

in the training set to be able to learn meaningful word embeddings. Also, a reduction

in vocabulary size results in a decrease in the number of parameters, thus a smaller

memory footprint and faster execution. A subword vocabulary size of around 30.000

was chosen for the BERT model for a good efficiency/word coverage trade-off.

The main innovation in this work is the so-called “bidirectionality” of its token

representations. Previously, language models were pre-trained in a left-to-right fashion,

using the tokens that lie on the left side to predict the next token in the sequence. The

token representations obtained from a language model trained this way will only contain

information from the left context of the token, which is undesirable. Even though one

can train a “bidirectional” language model via combining left-to-right and right-to-left

representations to predict a token, as done in ELMo [19], it would be still suboptimal

as information coming from both sides would not be fused until the last layer.

Another problem arises when we want to fine-tune a left-to-right language model

directly on a downstream task instead of using its internal representations as features.

For example, in GPT from OpenAI a left-to-right transformer was finetuned in several

tasks via concatenating a linear layer on top and updating all parameters of the lan-

guage model. However, since the language model was trained in a left-to-right way, it

can only flow information from left-to-right in the finetuning phase too, which is very

undesirable for tasks like natural language inference or question answering.

To overcome this problem the authors of BERT propose the MLM (masked lan-

guage modeling) objective, also known as Cloze task in the literature. Some randomly

chosen tokens in the original sentence or a longer sequence are hidden and the model

tries to predict the missing tokens given the visible tokens in the context. The network

is forced to make use of the full context from both sides to refine the representation

of tokens so that the final hidden vectors for the masked tokens are representative

enough to predict them. Since a transformer encoder allows direct interaction between

every token pair via attention mechanism, tokens from the left and right context of
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the token to be predicted can interact in every layer without allowing the model to

“cheat” as predicted token is only given as a mask token in the input. This allows the

bidirectional flow of information throughout the network during pre-training. Since

the interaction between the left and right context happens at every layer, the authors

call BERT “deeply directional” as opposed to the “shallow bidirectionality” of ELMo.

Additionally, to encourage the model to output meaningful representations, not

just for the masked tokens, the tokens randomly chosen for prediction are %80 of the

time are masked, %15 of the time randomly replaced, and in the remaining %15 left as

it is. This prevents the mismatch during training and finetuning, as otherwise during

training the model would see only masked inputs and during finetuning only original

sentences. This was shown to have a small positive influence on the results.

Since many important NLP tasks involve two sequences (e.g. question answering,

natural language inference, etc.) the authors decided to incorporate such a task also to

the pre-training scheme. To this end, they use NSP (Next Sentence Prediction) task,

which is a binary classification task predicting whether two sentences directly follow

one another in the corpus. Although in the original BERT paper this was claimed to

be useful for tasks like question answering and natural language inference this was put

into question in the later works [25]).

BERT was pre-trained on a combined dataset comprised of 800 million words

BooksCorpus and English Wikipedia dump of size 2,500 million words. The authors

also point out that it is important to use a dataset where we have access to full doc-

uments as only then we can ensure to have long sequences to fill up a context of 512

tokens.

At the time of writing BERT paper was cited 20571 times. Originally it had

improved upon the previous best model %7.7 on the comprehensive GLUE benchmark.

Because of its huge success in nearly all areas, it has been widely adopted and it

has given rise to other transformer-based pre-trained models such as Roberta, Albert,
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BART, CTLR. Nowadays, all top submissions on GLUE and SuperGLUE benchmarks

at least include a BERT-like subcomponent in their system, and in many tasks, they

have even exceeded human performance.

2.5.2. BioBERT

As BERT has found success in so many different tasks, there have been naturally

many efforts to apply it to other domains. Although we can assume that the BERT

model has a good grasp of standard English text considering its strong performance

on common English NLP tasks, it won’t be as useful in the biomedical domain as in

the biomedical domain there is a very specific terminology it uses. It is difficult to

expect BERT to have a meaningful representation for words like “favipiravir” which

occur rarely at best in the general domain corpus that BERT was trained on.

This has motivated researchers to pre-train BERT on large biomedical corpora

to make them more effective for downstream tasks in this domain. Note that this

means BioBERT uses the same WordPiece tokenizer as the original BERT model. In

BioBERT [11], authors chose to continue pre-training of BERT on biomedical corpus

which they have constructed using 2 different sources:

(i) PubMed abstracts (4.5 billion words)

(ii) PMC full-text articles (13.5 billion words).

They experimented with different pre-training setups: training for 270K steps

(BioBERT v1.0) on (a) PubMed only, (b) PMC only, (c) PubMed and PMC, and (d)

training for 1M steps on PubMed only (BioBERT v1.1).

They finetuned resulting pre-trained models and compared them to previous

works on many different biomedical datasets for named entity recognition, relation

extraction, and question answering. The results justified the in-domain training of

BERT for the biomedical domain. On NER datasets for instance, while BERT was
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behind on state-of-the-art systems by %2.01 points on average, BioBERT models were

the best performers in six out of nine cases.

2.5.3. SciBERT

SciBERT model was developed for similar motivations to BioBERT. However,

instead of targeting the biomedical domain only, the authors wanted to train a common

model which can be useful for NLP tasks in a variety of different scientific domains

such as computer science and chemistry.

The pre-training corpus of SciBERT was constructed from full texts of 1.14 million

research articles randomly chosen from Semantic Scholar. 18% of the articles were from

the computer science domain and the other 82% were from the biomedical domain in

a broad sense, making a 3.17 billion word dataset.

They try two different approaches for tokenizer vocabulary.

(i) BASEVOCAB - original vocabulary of the pre-trained BERT models is retained.

This allows initializing the models from BERT checkpoints.

(ii) SCIVOCAB - the vocabulary is learned using the scientific corpus. In this set-

ting, the models should be trained from scratch as their vocabulary would be

mismatched to the original BERT.

In addition to different vocabulary setups, the authors also experiment with dif-

ferent transfer learning methods. Besides the more common finetuning approach, in

which all parameters of the pre-trained language model are updated during training,

they also try feature or embedding-based approach, in which the parameters of the

language model are frozen. In the latter case, a two-layered BiLSTM is added in front

of the BERT model.



17

They have evaluated SciBERT variants on a variety of tasks in different scientific

domains and progressed the state-of-the-art in several tasks. In general, all variants

have improved upon vanilla BERT models. SCIVOCAB approach has yielded slightly

better performance over BASEVOCAB on average. Experiments also showed that

finetuning approach is much more effective than the frozen embedding approach as for

both BERT-base and SciBERT there was a gap of about +3F1 points on average. In

fact, finetuned BERT-base model outperformed the feature-based SciBERT model.
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3. RELATED WORK

3.1. General Domain Named Entity Recognition and Normalization

In this section, we will give a brief overview of the development of research in

the general domain NER and NEN tasks. Research on biomedical NER and NEN

tasks follows a very similar trajectory as the much more widely studied general domain

English NER and NEN. Oftentimes, researchers have tried to apply advances in general

NER tasks to biomedical NER. Therefore, it is useful to outline the development of

these tasks in the general domain in order to understand the history of biomedical NLP

better.

3.1.1. Named Entity Recognition

Many earlier works employed more formal methods for the NER task. Rule-based

systems were developed that were relying on linguistic grammars and hand-crafted

lexicons or gazetteers. One advantage of these systems is that even though the clever

design of hand-crafted rules and lexicons by experts is necessary, they don’t require

training data. While such systems can be effective for some use cases, their reliance on

gazetteers naturally meant that they were having problems generalizing unseen named

entities and to domains other than the specific domain the system was developed for.

Other early works have used classical machine learning techniques with linguistic

features. In order to represent each training sample, researchers were very carefully

designing features like capitalization, part-of-speech tags, gazetteer match indicator,

and word occurrence in the corpus. Learning algorithms included general methods

like Decision Trees, Support Vector Machines (SVM), and Maximum Entropy models,

but also sequence learning models like conditional random fields (CRF) and Hidden

Markov models (HMM) were used (see [26]).
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As deep learning methods were becoming popular in NLP, they started gaining

prominence for NER tasks also. In one of the more influential papers, NLP from

Scratch [27] from back in 2011, it was demonstrated that without using any major

task-specific apriori knowledge or hand-crafted features, it was possible to train neural

networks that are very competitive with the best systems that use traditional pipelines.

By using very simple models by today’s standards, a simple feed-forward network that

took concatenation of vectors of neighboring words, they have reached near state-of-

the-art scores in four core NLP tasks: chunking, part-of-speech tagging, NER, and

semantic role labeling. However, they still needed to add traditional NLP features

like suffix and part-of-speech tags, in order to surpass previous systems. This was an

important milestone for the history of deep learning for NLP.

During the development of the field, other common techniques became part of

the standard pipeline. These include: pre-trained word vectors (like word2vec [23]),

character-level input representations [28]) and RNN based encoders (typically LSTM

or GRU). The setup from Lample [29] has been very influential and taken as a baseline

for many future works. They use pre-trained word embeddings in addition to learned

embeddings generated via bidirectional LSTMs. Input representation of each word is

created by concatenating different embedding types. An LSTM layer of hidden size 100

is used to contextualize the input representation of each word in order to obtain hidden

vectors. Finally, a CRF layer operates on these hidden vectors to obtain loss function.

Also, we should note that IOBES encoding scheme is used to create word-level features

and illegal transitions such as I-LOC to B-PER are already disallowed in the CRF

layer. One of the key conclusions of this work was that character-level features were

used for the first time for the NER task.

As the importance of unsupervised pre-training became more generally under-

stood in the NLP domain, researchers started to apply such techniques to the NER

task also. One very successful work in this category is Flair [30]. In this study, authors

train a character-level LSTM based language model on a large general domain corpus.

After pre-training, the language model, the concatenation of the hidden vectors of start
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and end characters of a word is used as the input representation while finetuning the

model for the downstream sequence labeling task. Flair had improved significantly

upon the then state-of-the-art previous systems in many NER datasets in both English

and German.

For general NER we also want to point to the original BERT implementation. In

order to adapt the BERT model to the NER task, the authors tried both finetuning

the BERT model directly on NER and using representation from its interior layers as

features and using an LSTM layer to obtain final hidden vectors. The results showed

that, even though BERT wasn’t able to become the state-of-the-art model in NER

unlike the other NLP tasks they have studied, its performance using in both finetuning

and feature cases was very competitive.

Meanwhile, some recent works tried using span representations for named entity

recognition. For example, [31] where NER is treated as dependency parsing which is

very similar to our span classification formulation. Another related work from this

is aspect is SpERT [32]). In this work, the authors address both NER and relation

extraction tasks. In relation extraction, the goal is to classify the relationship between

two given named entities in the same text segment. Here, NER is formulated as span

classification and the same span embeddings for entities are also jointly used for relation

extraction.

3.1.2. Named Entity Normalization

As discussed earlier NEN task is also studied under the names of Entity Linking

or Entity Disambiguation in the literature. As the plurality of the names suggests,

there are differences in its treatments in the literature. It is sometimes studied as an

end-to-end task, where entity mentions are extracted from the text first and then the

extracted mentions are mapped to concepts in the dictionary. In contrast, some studies

only consider it from the disambiguation perspective and it assumed that correct entity

mentions are already extracted from the text.
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As with the NER task, earlier models were based on dictionary matching and

classical ML algorithms with hand-crafted features. One of the most commonly used

features is the string similarity score between the mention and the concept (e.g. [33],

[34]). Since in many cases entries in knowledge bases have links to Wikipedia articles,

some of the papers used the cosine similarity between tf-idf vectors of the context of

the mention and Wikipedia article of the entity as a feature in order to benefit from

contextual match (e.g. [33]). Several studies have used topic modeling techniques in

order to represent entities and mentions as a weighted combination of topics (e.g. [33]).

Papers focusing on document-level entity disambiguation often used entity mention

graphs in order to benefit from consistency constraints between different entities found

in a single document [34]).

Over time different types of neural models have emerged. While some models used

neural networks to rank entity candidates with hand-crafted feature representations,

others used deep learning to create dense representations for mentions, entities, and

their context.

BERT model has also been applied to the NEN task. One of the successful

works that use BERT and is close in its approach to ours is BLINK [35]. In this

study, authors use two separate BERT encoders to embed mention context and entity

description to the same embedding space, so that the corresponding vectors are close

only if the mention indeed refers to the entity in the knowledge base. At inference,

the mentioned context is embedded in to feature space and a fixed number of entity

candidates are sampled from the knowledge base according to the distance of their

description embedding to that of the mentioned context. Furthermore, a separate

BERT model is used in order to select the correct entity among the list of candidate

entities that were found by the embedding method. BLINK has improved upon the

state-of-the-art in many different datasets.
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3.2. Biomedical Named Entity Recognition and Normalization

In this section, we first give a general overview of related works in both tasks

and then closely examine two related papers more closely in order to motivate our

approaches.

3.2.1. General Overview

As hinted in the introduction of this chapter development of biomedical NER and

NEN closely follows the development of their general domain counterparts. Because of

the specificity of the biomedical terms and the relatively small size of the dataset, these

two tasks are often handled together in biomedical literature. Therefore we summarize

related work of both tasks in a common section.

Many early works in this area were based on dictionary matching, such as in [36].

However such methods tend to be fragile and don’t generalize well to new entities.

Likewise, CRF-based entity taggers operating on manually extracted features were

proposed as they were popular in the NER research in the general domain.

Influential works under this category that were also made available as web APIs

are tmVar [37] for gene mutations, tmChem [38] for chemicals, DNorm [39] for diseases

and GNormPlus for genes. While all these studies had normalization steps that were

based on matching the mention to the concepts in the dictionary via simple heuristics

like abbreviation resolution and punctuation removal, DNorm had a machine learning-

based normalization step. The normalization module was trained with a learning-to-

rank objective, where positive and negative samples were drawn for each mention from

the concept dictionary. Both mentions and the entities were represented using sparse

features like tf-idf vectors. The matching score between an entity and a mention was

calculated by the inner product of their feature vectors weighted in each dimension by

a learnable importance score.
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In a follow-up work, TaggerOne [40], authors combined the DNorm approach

with CRF based NER model. Using features such as tf-idf and other lexical features,

NER and NEN vectors are created for each token in the input sequence. Possible

segmentations of the input sequence from a semi-Markov are scored with a weighted

sum of their NER and NEN scores. The NER scores were based on matching the tag

label with predictions whereas the NEN score was based on the similarity between the

features vectors of the mention and the concept. Their results have shown that joint

learning had significantly improved the performance in both tasks.

Many later works proposed character embedding + LSTM + CRF-based mod-

els in particular for the biomedical NER task. Among them, the approach of [1] is

particularly interesting because it employs both joint learning and explicit feedback to

improve the performance in both tasks. During the same period, for the NEN task,

many papers suggested contrastive learning using deep neural networks based on CNN

and LSTM layers. For example in BNE [41], a biomedical name encoder based on

bidirectional LSTM networks was suggested which more or less replaced the role of the

sparse vectors in DNorm’s approach.

Another line of research following the recent development of pre-trained language

models is the application of these models to NER and NEN tasks. In both SciBERT [12]

and BioBERT [11], the models were benchmarked in their performance in biomedical

NER datasets both becoming state-of-the-art in several of them. Also, several separate

works studied the application of BERT-based models to normalization problems like

Bert Ranking [42] and BioSyn [13].

3.2.2. Joint Model of Zhao et al.

An important work that has greatly influenced our first approach is [1]. In this

work, the authors show that joint learning between biomedical NER and NEN tasks

can improve the performance in both tasks significantly. Both tasks are modeled as se-

quence tagging problems as standard in the NER literature. Following [29], a pipeline
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of (1) embedding layer, (2) LSTM layer, and (3) CRF layer is used for model construc-

tion. The embedding layer contains both a pre-trained word embedding layer that was

intended for biomedical NLP (PMC word2vec embeddings [43]) and a character-level

CNN layer. The outputs of these two layers are concatenated to obtain the final word

representation before the LSTM layer.

Since these two tasks are closely related, authors employ different variants of

joint learning between the two tasks. In the most basic joint learning setting weights

of the two models for both tasks are shared except the output layers. Experiments

show that this joint learning scheme already brings great improvements in both tasks.

Next, they introduce so-called explicit feedback mechanisms to inform one task with

the outputs of other tasks more directly. More concretely, the output predictions of

one task are turned into a vector and multiplied by a learnable matrix so that it has

the same dimension as the hidden vector of the other task. The resulting vector is

combined with the output of the bidirectional LSTM layer.

This procedure brings further improvements to both tasks performances. In par-

ticular feeding, the output of the NER task to the NEN model is responsible for much

of the improvement. In our approach, we only tried to incorporate the simple joint

learning scheme as it is easier to implement and it had already given great results.

3.2.3. BioSyn

A more recent and successful work was BioSyn [13] (“Biomedical Entity Repre-

sentations with Synonym Marginalization”), which inspired one of our methods. As

the title of the paper suggests their methodology is based on contrasting synonyms of

a mention from other possible known entity mentions corresponding to other concepts.

The basic idea is to map entity mentions to embedding vectors with a common

encoder. Similar entity mentions or more interestingly entity mentions corresponding

to the same concept in the dictionary are expected to have close embedding vectors



25

and mentions corresponding to distinct concepts should have embeddings that are far

apart from one another. When such an embedding is found, the corresponding concept

of an entity mention can be determined by finding the entity mention with the closest

embedding vector to that of the mention in question and assigning the concept of that

mention.

In order to obtain an embedding function with this property, authors employ con-

trastive learning which has seen great success in recent years particularly in computer

vision. For a given entity annotation in the dataset, “similar” and “dissimilar” can-

didates need to be drawn and an objective function should be chosen that encourages

embeddings of similar pairs to be closer and embeddings of dissimilar pairs to be more

distant.

In the case of biomedical NEN, similar candidates are entity mentions that are

map to the same concept as the entity in question and dissimilar candidates are those

that map to different concepts. Also note that in this approach we only the entity

mention itself in the annotation, disregarding the surrounding context of the mention

entirely.

One advantage of using this embedding-based approach is that it allows fast in-

ference compared to the previously mentions methods such as BERT Ranking [42]. In

order to rank candidate entity mentions from the dictionary, it is not necessarily run

the model N times to obtain similarity scores for entry in the dictionary. Rather, one

can pre-compute embeddings of all candidates once and store them in a database. In

order to make inference for a new entity mention, one needs to calculate the embedding

of this new mention only and compare this embedding vector to the ones of the can-

didate mentions. Further, efficient algorithms exist that don’t require O(N) distance

calculations for N elements in the dictionary. For commonly used distance metrics

such as Euclidean distance and cosine similarity, the complexity of the search can be

reduced to O(log(N)) with clever use of data structures. This ensures that inference

can be done in a reasonable time even if the size of the dictionary is in the millions
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range.

Another benefit of adopting this approach is that it can potentially correctly

predict concepts that are not found in the training set but existent in the dictionary. If

the embedding function is generalizable enough, it will map semantically similar entity

mentions to close vectors in the embedding space even if it has not encountered those

exact mentions in the training set before. This would be of great use for practical

applications as if the model is good enough only the output dictionary needs to be

updated to detect new concepts, such as new diseases or chemicals.

For representing entity mentions, authors use both sparse and dense embeddings.

The sparse representation corresponds to the commonly used tf-idf vectors of the en-

tities. Since biomedical entity mentions are usually complex, often compound words

comprised of Latin roots and suffice, tf-idf representation is based on character ngrams

rather than words. For dense representations, a BioBERT based encoder is chosen.

Since the BioBERT model was pre-trained on a large corpus of biomedical text, it

is expected to already have meaningful representations of biomedical entity mentions

even before training and to generalize well to mentions not seen in the training set of

the NEN task but perhaps seen in the pre-training corpus. The dense embedding vector

is obtained by feeding the mention to the BioBERT model enclosed in special tokens

(like ’[CLS] ovarian cancer [SEP]’) and choosing the hidden vector corresponding to

the ’[CLS]’ token as the embedding vector. We will denote this as

Emb(s) = BERT[CLS](s). (3.1)

It is important to mention that both the entity mention appearing in the training set

and synonym candidates are encoded with a shared BioBERT model so that they are

embedded in the same embedding space:.

The similarity score of two mentions (say, m and n) is calculated by the weighted

sum of the inner product of their sparse representations (Ssparse(m,n)) with the sum
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of the inner product of their dense representations (Sdense(m,n)):

S(m,n) = Sdense(m,n) + λSsparse(m,n). (3.2)

The weighting factor λ is not fixed but learned during training.

Another novelty of this work is in the construction of the candidate set. In

contrastive learning literature, the selection of negative samples was found to be of

critical importance in many different studies. One option is to choose random entries

from the dictionary, but it might be too easy for the model to distinguish the synonyms

from the randomly sampled entity mentions so that no real learning occurs after initial

epochs. Therefore, the authors choose entity mentions with the closest tf-idf match

for the candidate set (sparse candidates). To make the task of the model even harder,

they also add entity mentions with close dense vectors to the candidates set (dense

candidates). Note that selected dense candidates for an entity mention will be different

in each epoch as the weights of the model are updated. Following the intuition that

dense candidates will be more difficult than the original negative samples after initial

epochs and that the learning process should go from easier to harder examples; they

increase the ratio of dense candidates in each epoch from 0% to 100%. This candidate

selection process was named iterative candidate retrieval by the authors.

Authors have experimented with different loss functions including contrastive

loss and hard entropy maximization, but they have found that the marginal maximum

likelihood (MML) objective worked best. In the MML objective, similarity scores are

treated as logits in a multiclass classification task. This way, a softmax operation

gives probabilities of each candidate for getting chosen as the positive candidate. The

probability of a candidate set is given by the sum of positive candidates in the candidate

set, the negative log-likelihood of this probability is minimized:
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P (n | m; θ) =
exp(M(m,n)∑

n′∈N1:k
exp(M(m,n′)

P (N1:k | m) =
∑

n∈N1:k
EQUAL(m,n)=1

P (n | m; θ)

L =
1

M

M∑
i=1

log(P (Ni,1:k | mi)).

(3.3)

BioSyn has improved over the state-of-the-art in all datasets it was trained on.

In fact in their error analysis on NCBI disease dataset authors claim that most of the

errors were not due to the model but from other reasons (e.g. insufficient context,

hyponym, or hypernym annotations) and the model has reached the upper bound

performance.
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4. METHODOLOGY

In the context of biomedical named entity recognition, we will usually refer to

entities found in dictionaries or knowledge bases as concepts and to the text span

corresponding to the concept as mention.

We have used different setups for each hypothesis we wanted to test. In all

settings, the encoder transformer networks are initialized from one of the pre-trained

language models and the input texts are tokenized with the corresponding pre-trained

tokenizer of that model.

4.1. Sequence Tagging Approach

To test the first hypothesis, namely whether joint learning would be as beneficial

with BERT-like language models, we adapt the commonly used sequence tagging for-

mulation for both tasks as in [1]. This means that the model will map a sequence of n

tokens to a sequence of n tags for each task. Note that NER and NEN tasks will have

different output sequences and NEN will have a much larger output vocabulary.

More formally:

D = {(Sj, y
NER
j , yNEN

j )}j=1,k

Sj = [x1, x2, ..., xn]

yNER
j = [yNER

1j , yNER
2j , ..., yNER

nj ]

yNEN
j = [yNEN

1j , yNEN
2j , ..., yNEN

nj ].

(4.1)

Here, given a dataset D of size k Sj is the j’th input sequence with tokens
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xi, 1 < i < n and corresponding tag sequences for NER and NEN tasks, yNER
j and

yNEN
j , both of length n.

Both named entity recognition and normalization are thought of as multi-class

token classification problems. In the case of named entity recognition, target classes

correspond to different entity types in the dataset, whereas in entity normalization

case, there are as many classes as the number of entries in the target dictionary.

We use the ConLL format to represent the data format, following many works in

the literature. In each line represents a token and contains the token itself, NER tag,

and NEN tag of the token, separated by a tab character.

In this approach, we work at the sentence level and require that the input texts be

split into sentences. Split sentences are then tokenized into words, either by whitespace

or with more complicated methods. In this approach, most of the time we use already

sentence split and tokenized versions of the biomedical entity datasets that are publicly

available and were also used by previous works. They were first introduced by [44] and

the preprocessing was done by standoff2conll tool [45].

Note that, for NER we use a tagging scheme like IOB or IOBES to be able

to differentiate contingent mentions of the same type from each other. Since for the

normalization task we don’t care about the exact mention or how many times the

entity type occurs in the sentence, we don’t use a tagging scheme and try to predict

the target class for each token directly.

One weakness of using this approach for entity normalization is that, because

target classes are fixed during training, we cannot use the model to normalize into

unseen entity types.

The input representation for finetuning BERT-based models in these tasks should

be as close to the pre-training scheme as possible. Therefore each token is prepended
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by the special start token ’[CLS]’ and appended with ’[SEP]’. Since the training is done

in batches and sequences may be of different lengths, we also add ’[PAD]’ tokens to the

end of the sequences so that they all have the same number of tokens as the longest

sequence in the batch.

To obtain representations from a pre-trained BERT-based model, the input text

must be processed by the model’s specific pre-trained tokenizer that splits words into

subwords. Unlike traditional word-level deep learning models for sequence tagging

tasks, there is a token mismatch problem for BERT-like models that operate on subword

tokens. This represents a problem, as the number of subword tokens as returned by the

BERT tokenizer may differ from the original number of tokens in the tokenized sentence

so that we don’t have one tag label corresponding to each input subword token. Thus,

there is a necessity to map or align hidden subword output representations from BERT

to word-level tag sequences. This can be done in many different ways.

(i) To represent each word, simply use its first subword token

(ii) Pool all subword token representations of a word to get word representation (for

example take the average)

(iii) Re-map IOB or IOBES encoding so that it works at subword level

(iv) Make predictions for each subword using the target of the word and take the

majority in the inference time

We have chosen the first approach as it was easier to implement and chosen by the

original BERT implementation [22] and BioBERT [11]. The second approach was also

tried by Electra [46] and SciBERT [12] with a very similar performance. We implement

this strategy by adding dummy tag labels (e.g. ’X’) for not leading subword tokens

word and masking them out in the loss function. This way we don’t have to store the

subword-to-word map during the forward pass of the model and inference, we simply

ignore these masked subword tag predictions during decoding. Also, following standard

practice, we apply dropout with a rate of 0.1 to the hidden BERT representations for

regularization.
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Hidden representations outputted by the shared BERT-based encoder are fed into

two different classifier heads. These classifier heads are simply feedforward layers that

map a vector of BERT’s hidden size to a vector of size of the output vocabulary of

each task. After that logits are obtained for both tasks and we are ready to calculate

multi-class cross-entropy loss values for each token. Note that special start and end

tokens (i.e. ’[CLS]’ and [’SEP’]), pad tokens ([’PAD’]) and masked out non-leading

subword tokens (’[MASK’]) are not counted in the loss function thanks to masking.

We use a very simple joint learning scheme. For each sample, losses for both tasks

are calculated and simply added together with a weight factor that was determined

experimentally.

We have also experimented with the feature-based approach, where the weights

of the BERT model are not updated during training. In this setup, the outputs after

the BERT layer are encoded with a bidirectional LSTM layer. This approach, although

yielding slightly inferior results in the literature (like in SciBERT [12]), is more cost-

efficient as the BiLSTM layer has much fever parameters than the BERT model and

thus the backward pass is less costly as gradients don’t need to be calculated for BERT

layers.
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Figure 4.1. Outline of the BERT-based joint NER and NEN tagging model.

4.2. Span-based Approach

4.2.1. Span-based NEN

The BioSyn [13] has demonstrated the benefits of contrastive learning for the

normalization task. The main idea is that mentions from the sentences and their

synonyms are enforced to have similar embeddings. This is achieved by:

• getting synonym candidates by sampling synonyms and non-synonyms for each

mention

• embedding the mention by the BERT encoder
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• embedding all candidates for the entity mention by the BERT encoder

• predicting synonyms among the candidate set by using the cosine similarity be-

tween the candidate and the entity mention as logits

• finding concepts with closest embedding vector to mention embedding among the

concept dictionary during the inference

While this approach has yielded excellent performance and improved upon the

state-of-the-art models in all datasets, it treats the NEN task only as entity disam-

biguation and doesn’t use sentence context for calculating mention embeddings. In

fact, error analysis of the BioSyn model in the NCBI disease dataset has shown that

some of the misclassification errors were due to context dependence [11].

This inspired our model which calculates entity mention embeddings using the

sentence context. BERT representations of all tokens in the sentence are calculated by

feeding the sentence to the BERT encoder. Next, representations of the tokens that

correspond to the span that makes up the entity mention are pooled to get an embed-

ding for the full mention rather than its individual tokens. These mention embeddings

are used in the contrastive loss function of the BioSyn. Note that for embedding syn-

onym candidates from the dictionary, we still cannot use context and therefore embed

them the same way as in the BioSyn with a BERT encoder.

More formally, let S be a sentence containing the mention m. The mention m

maps to the CUI c. In the dictionary for the CUI c several synonyms (also called

synset) have been assigned. The set all of synonyms for all CUIs is denoted with

N = [n1, n2, . . . , nk] where ni ∈ N is a mention string. For the mention m, we will

choose a mention string from the dictionary using our model and assign its CUI to m:

c∗ = CUI(argmaxn∈NM(S,m, n)) (4.2)

where is the M(S,m, n) is the “synonymousness” score given by the model to the

mention string n from the dictionary for the mention m appearing in the context S.
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In BioSyn, the score was given by the inner product of mention embeddings of

m and n using a BERT encoder (hidden vector of the ’[CLS]’ token). Formally:

Emb(s) = BERT[CLS](s)

M(S,m, n) = Emb(m) · Emb(n).
(4.3)

However, in our approach, we will calculate the mention representation dependent on

the sentence S. The representation of m, will be formed by pooling representations of

tokens in S that make up m:

Emb′(S,m) = pool(BERT (S)[xi∈m]) (4.4)

where xi are tokens in S that correspond to the location of m in S. Note that this means

that mentions and candidates will be embedded in different ways. Therefore we might

use different encoders for dataset mentions and dictionary candidates, for example,

two BERT encoders that start with the same parameters but their parameters are not

shared during training.

To prevent us from the burden of training two different BERT models during

training, we might also use fixed embeddings for candidate embeddings using the

BioSyn model. In this setup, the contextual mention encoder will be aligning the

span embeddings to the space of the BioSyn model’s embeddings.

At this point, we have calculated similarity scores for all concept candidates for

the entity mention using BERT embeddings for each side. Different loss functions such

as contrastive loss and triplet loss have been proposed in the contrastive learning liter-

ature. Following BioSyn [13], we use marginal maximum likelihood (MML) objective,

which operates on all candidates at once instead of working on pairs. In this approach,

similarity scores are interpreted as logits and we try to maximize the probability of

choosing actual synonyms among the set of candidates. Formally, for the mention m
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and candidate n from the candidate set N1:k the probability is given by:

P (n | m; θ) =
exp(M(S,m, n)∑

n′∈N1:k
exp(M(S,m, n′)

. (4.5)

Then probabilities of all actual synonyms are added:

P (N1:k | m) =
∑

n∈N1:k
EQUAL(m,n)=1

P (n | m; θ). (4.6)

Finally the negative log-likelihood objective is maximized as follows:

L =
1

M

M∑
i=1

log(P (Ni,1:k | mi)). (4.7)

Figure 4.2. Training pipeline of constrastive NEN model.

For inference, embeddings of all mentions in the dictionary are calculated and

stored. For a given sentence, a NER system is run to get the named entities in the

sentence. Then mention embeddings for the named entities are obtained using the

BERT-based mention encoder. From candidate embeddings the one with highest dot

product with the calculated mention embedding is sought and its concept is assigned

to the mention as given by the following formula:

c∗ = CUI(argmaxn∈NM(S,m, n)) where

M(S,m, n) = Emb(m) · Emb(n).
(4.8)
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With the help of maximum-inner-product-search (MIPS) algorithms, we don’t

have to calculate products with all candidates in the dictionary to find the one with

the highest score. With the use of special data structures the search complexity can be

reduced from O(n) to O(log(n)). For this, we use Faiss [47], a popular MIPS library

by Facebook AI.

4.2.2. Span-based NER

Inspired by the success of previous studies, it is desirable to use joint learning

with NER with the contrastive learning formulation of the NEN task too. However,

when the NEN task is formulated using span embeddings as described above it is

awkward to use the sequence tagging approach for NER as the inner representations

have different requirements in both cases. For example, in NER tasks with sequence

tagging formulation, a token representation should contain the information whether

the token is at the start or the end of a named entity, whereas in span-based NEN

token representations of a mention should give a distinctive representation when they

are pooled. Therefore it makes to formulate the NER task using span embeddings so

that both tasks will benefit from sharing the same encoder representations.

Different span-based NER formulations can be found in the literature. We use a

simple scheme similar to SpERT [32]. Given a sequence of n tokens, there are n∗(n−1)

possible entity spans that may or not correspond to a named entity. Each span will be

classified into one of the entity categories or to the “non-entity” class. As the number

of possible entity spans grows with O(n2), the search space is limited to spans with a

maximum length W . (for example, W=10 means only spans up to 10 tokens will be

considered.)

In this NER task formulation, we will use the same span representation as in the

span-based contrastive NEN formulation. The same BERT-based encoder will be used

to obtain a sequence of hidden vectors for each token: H = [h1, h2, ..., hn]. Then all

valid possible span embeddings will be formed using the same pooling mechanism as
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in the NEN task. Note that, in the NEN task we were only considering spans that

correspond to a named entity whereas in the NER task we consider all valid spans (i.e.

all spans filtered by a maximum length). For the span xi, xi+1, ..., xj the representation

will be constructed by pooling the BERT representation of the tokens that lie inside

this span. Then this representation is fed to a linear layer and a softmax function to

obtain the output distribution as it is standard in multiclass classification. We use

the negative log-likelihood as the loss function. Note that output vocabulary includes

entity categories and a none-class for spans that do not correspond to a named entity.

Formally this can be expressed as follows:

S = [x1, x2, ..., xn]

si,j = [xi, xi+1, ..., xj] (for each valid span si,j, 0 ≤ i ≤ j ≤ n )

Emb(si,j) = h = pool(BERT (S)[xk∈si,j ])

y′ = softmax(W · h+ b).

(4.9)

During inference, all valid spans are considered and spans whose predictions are not the

none-class are selected as NER predictions for the sentence. Note that because we are

considering all valid spans it can occur that spans predicted to contain entities overlap

or fully contain one another. This property makes the span-based NER approach more

attractive for nested NER datasets as it is not possible to model overlapping entities

with a sequence tagging approach. Yet since the datasets we will be using don’t contain

such nested entities, we will handle these overlapping entity predictions by choosing

spans with higher scores in case of a collision.

Since now both tasks are using span representations for making predictions, we

can share internal representations and use the same encoder network. As in the se-

quence tagging approach, we simply add loss functions weighted by a fixed parameter

that was determined experimentally.
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4.2.3. Pooling Functions

As explained earlier, in both span-based NER and NEN formulations hidden vec-

tors corresponding to tokens of a span need to be converted to a single vector to be able

to represent the span at once. We tested different choices of pooling functions, which

were used in the literature. Note that different pooling operations can be combined by

concatenating the resulting vectors.

We experimented with the following operations:

• average pooling

• max pooling

• attention mechanism

• width embeddings

To make it easier for the model to use sentence context, we also tried concatenat-

ing the output of the “[CLS]” token to the pooled vectors. After initial experiments

with span-based NER, we found out max-pooling + [CLS] + width embeddings worked

best and due to time limitations only performed an ablation study on the NER task.
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Figure 4.3. Example for creating span embeddings “ovarian cancer”.
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5. EXPERIMENTS AND RESULTS

5.1. Datasets

In this section, we will give the details of the biomedical NER and NEN datasets

on which the proposed methods were tested.

Table 5.1. Statistics from datasets used in this work.

Dataset
# of Documents # of Mentions

Train Dev Test Train Dev Test

NCBI Disease 592 500 500 5134 787 960

BC5CDR Disease 500 500 500 4182 4244 4424

BC5CDR Chemical 500 500 500 5203 5347 5385

5.1.1. NCBI Disease Corpus

NCBI Disease Corpus [48] is one the most commonly used datasets in the biomed-

ical NER literature. It was constructed from the abstracts of PubMed articles. As the

name suggests, the dataset is mainly concerned with disease mentions. Each abstract

was annotated at both concept and mention levels. In a given abstract, all disease

mentions were identified and they were mapped to their corresponding concept. As

concepts sources, Medical Subject Headings (MeSH) and Online Mendelian Inheritance

in Man (OMIM) ontologies have been used. Since the sources were merged in an ear-

lier study to a single vocabulary called MEDIC [49], it was directly used whenever

possible. The MEDIC disease dictionary is part of a larger effort named Comparative

Toxicogenomics Database (CTD) which provides a public resource for health research

and the dictionary is updated monthly since its first release in 2012.
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14 different annotators were employed during the annotation process. Each ab-

stract was given to at least two different annotators. The annotators did not start

from scratch, rather they have received abstracts after they were annotated with the

PubTutor tool as a pre-step. After an abstract was reviewed and annotated by both

annotators their results were compared and conflicts were resolved by the annotator

pair.

In the MEDIC dictionary, an entry has a CUI (concept unique identifier) like

“MeSH:D010009”, a preferred name like “Osteochondrodysplasias”, a list of alternative

CUIs, and a list of synonyms. When annotating a mention in a PubMed abstract,

annotators were instructed to first try to map it to a concept with a matching preferred

name. If there is not a match, next the mention is searched in synonym lists. Note the

same synonym can be listed in many different entries. In this case, a CUI is chosen by

an annotator from the alternative CUIs list that best describes the mention logically.

In case when there is no specific entry that matches the mention the closest hypernym

is chosen for annotation.

A single mention may contain more the one disease concept like in “colorectal,

endometrial, and ovarian cancers”. Such mentions are called composite mentions and

were annotated by concatenating individual concept identifiers of the constituent dis-

eases with ’|’: “MeSH:D010051|D016889|D015179”.

Another non-standard situation is the case of multiple concept mappings, where

a mention is annotated by combining two different concepts. For example, “inher-

ited neuromuscular disease” was annotated by combining “Neuromuscular Disease”

(MeSH:D009468) and “Genetic Diseases, Inborn” (MeSH:D030342), and the combined

CUI is denoted by “MeSH:D009468+MeSH:D030342”.
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In the officially released version, the dataset already contains train, development,

and test splits.

Table 5.2. An truncated disease example from the MEDIC dictionary.

DiseaseName Ablepharon macrostomia syndrome

DiseaseID MESH:C535557

AltDiseaseIDs DO:DOID:0060550|OMIM:200110

Synonyms Ablepharon-Macrostomia Syndrome|AMS

9949209|t|Genetic mapping of the copper toxicosis locus in ...

9949209|a|Abnormal hepatic copper accumulation is recognized as ...

9949209 23 39 copper toxicosis Modifier OMIM:215600

9949209 158 185 hepatic copper accumulation SpecificDisease D008107

9949209 206 224 inherited disorder DiseaseClass D030342

9949209 272 299 hepatic copper accumulation SpecificDisease D008107

9949209 346 360 Wilson disease SpecificDisease D006527

9949209 362 364 WD SpecificDisease D006527

9949209 499 514 copper overload SpecificDisease D008107

9949209 523 553 non-Indian childhood cirrhosis SpecificDisease OMIM:215600

9949209 637 653 copper toxicosis SpecificDisease OMIM:215600

9949209 655 657 CT SpecificDisease OMIM:215600

9949209 738 751 liver disease DiseaseClass D008107

9949209 777 779 WD Modifier D006527

9949209 814 816 CT SpecificDisease OMIM:215600

9949209 999 1001 CT SpecificDisease OMIM:215600

9949209 1147 1149 WD SpecificDisease D006527

9949209 1174 1176 CT SpecificDisease OMIM:215600

9949209 1261 1263 CT SpecificDisease OMIM:215600

Figure 5.1. An example article annotation from the NCBI disease dataset.

5.1.2. BioCreative V CDR Corpus

The BioCreative V CDR dataset [50] was originally created for a challenge task for

promoting advances in biomedical NLP research. The dataset was intended for disease
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named entity recognition and chemical-induced disease relation extraction. Therefore,

unlike NCBI it contains both chemical and disease annotations. Since chemical-induced

disease relation extraction is not our focus, we will describe the dataset only from

NER and NEN perspectives. Similar to the NCBI disease dataset, this dataset was

also created by annotating PubMed abstracts. Concept sources were CTD chemical

dictionary for chemicals and MeSH dictionary for diseases.

Entity annotation was done by 4 people who were also indexers in the MeSH

project. Like in NCBI dataset construction, each abstract was annotated independently

by two different annotators. Disagreements between two annotations on the same

abstract were resolved by a different and senior annotator.

This dataset is also split into train, development, and test sets in its official

release.

8701013|t|Famotidine-associated delirium. A series of six cases.

8701013|a|Famotidine is a histamine H2-receptor antagonist used in ...

8701013 0 10 Famotidine Chemical D015738

8701013 22 30 delirium Disease D003693

8701013 55 65 Famotidine Chemical D015738

8701013 156 162 ulcers Disease D014456

8701013 324 332 delirium Disease D003693

8701013 395 405 famotidine Chemical D015738

8701013 442 452 famotidine Chemical D015738

8701013 464 472 delirium Disease D003693

8701013 537 547 famotidine Chemical D015738

8701013 573 583 famotidine Chemical D015738

8701013 689 699 famotidine Chemical D015738

8701013 CID D015738 D003693

Figure 5.2. An example article annotation from the BC5CDR dataset.



45

5.2. Results

5.2.1. Sequence Tagging Approach

In this approach, we are trying to understand the effects of joint learning in

conjunction with transformer models. Therefore, we ran the experiments in the single-

task mode for both NER and NEN tasks and a joint mode. Also, to see the influence

of pre-trained transformer models we performed the same experiments with (1) the

original BERT model, (2) BioBERT, and (3) SciBERT.

Another parameter we experimented with was finetuning the BERT model versus

using it as features from frozen BERT layers. In the feature approach, a bidirectional

LSTM module was added on top of the BERT layer to increase the number of learnable

parameters and thus model complexity.

We have experimented with different parameter settings, but we have found the

hyperparameters used in SciBERT [12] worked optimally in almost all cases.

Results are presented below in 5 different tables. In 5.3 and 5.4 the results of

the finetuned models are shown, while 5.5 and 5.6 contain the results of the feature

approach in NCBI and BC5CDR datasets respectively. Finally, in 5.7 we see the

comparison between the models of Zhao et al. [1] and our best performing models.

The main conclusions we can draw from the results are:

• Domain-specific BERT variants outperform the vanilla BERT model in all tasks.

• BioBERT performs better on NCBI, while SciBERT has better results in BC5CDR.

• Joint learning between NER and NEN tasks has a small and not always positive

influence on model performance.

• The performance of our NEN models is much behind that of Zhao et al. [1]. This

might be indicating unexplained points in their work.
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Table 5.3. Results of the finetuned transformer models on the NCBI disease dataset.

Model Tasks NER-P NER-R NER-F1 NEN-P NEN-R NEN-F1

BERT NER 0.835 0.860 0.847 - - -

BERT NEN - - - 0.651 0.809 0.721

BERT Joint 0.838 0.871 0.854 0.662 0.816 0.731

BioBERT NER 0.867 0.890 0.878 - - -

BioBERT NEN - - - 0.682 0.832 0.749

BioBERT Joint 0.847 0.897 0.871 0.673 0.823 0.741

SciBERT NER 0.878 0.861 0.869 - - -

SciBERT NEN - - - 0.703 0.821 0.757

SciBERT Joint 0.882 0.876 0.879 0.710 0.815 0.759

Table 5.4. Results of the finetuned transformer models on the BC5CDR dataset.

Model Tasks NER-P NER-R NER-F1 NEN-P NEN-R NEN-F1

BERT NER 0.820 0.834 0.827 - - -

BERT NEN - - - 0.671 0.825 0.740

BERT Joint 0.818 0.833 0.826 0.677 0.828 0.745

BioBERT NER 0.854 0.866 0.860 - - -

BioBERT NEN - - - 0.683 0.846 0.758

BioBERT Joint 0.852 0.868 0.860 0.681 0.853 0.757

SciBERT NER 0.858 0.871 0.864 - - -

SciBERT NEN - - - 0.717 0.825 0.767

SciBERT Joint 0.855 0.873 0.864 0.715 0.819 0.764
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Table 5.5. Results of the frozen transformer models on the NCBI disease dataset.

Model Tasks NER-P NER-R NER-F1 NEN-P NEN-R NEN-F1

BERT NER 0.813 0.831 0.822 - - -

BERT NEN - - - 0.628 0.784 0.697

BERT Joint 0.814 0.845 0.829 0.644 0.793 0.711

BioBERT NER 0.849 0.874 0.861 - - -

BioBERT NEN - - - 0.657 0.819 0.729

BioBERT Joint 0.825 0.879 0.851 0.656 0.811 0.725

SciBERT NER 0.850 0.835 0.842 - - -

SciBERT NEN - - - 0.676 0.800 0.733

SciBERT Joint 0.856 0.850 0.853 0.697 0.787 0.739

Table 5.6. Results of the frozen transformer models on the BC5CDR dataset.

Model Tasks NER-P NER-R NER-F1 NEN-P NEN-R NEN-F1

BERT NER 0.790 0.818 0.804 - - -

BERT NEN - - - 0.655 0.798 0.719

BERT Joint 0.797 0.803 0.800 0.657 0.803 0.723

BioBERT NER 0.829 0.845 0.837 - - -

BioBERT NEN - - - 0.660 0.845 0.730

BioBERT Joint 0.836 0.856 0.846 0.659 0.835 0.736

SciBERT NER 0.834 0.844 0.839 - - -

SciBERT NEN - - - 0.694 0.802 0.744

SciBERT Joint 0.836 0.848 0.841 0.688 0.795 0.737
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Table 5.7. Comparison btw. Zhao et al. [1] and our BioBERT model.

Model
NCBI-disease BC5CDR

NER NEN NER NEN

Zhao et al.
split 0.82 0.81 0.80 0.81

Joint 0.86 0.87 0.86 0.87

BioBERT (ours)
split 0.88 0.75 0.86 0.76

Joint 0.87 0.74 0.86 0.76

5.2.2. Span-based NEN

The arguably ideal setting with two finetuned BERT encoders, one for encod-

ing context and the other for encoding mentions unfortunately did not fit into GPU

memory. Therefore we had to conduct the experiments in the following two settings:

(i) frozen BERT features + LSTM for context encoder finetuned BERT encoder for

mentions

(ii) finetuned BERT encoder for context encoder, pre-trained and fixed embeddings

from BioSyn for mentions

After initial experiments, we decided to choose the BioBERT model as the en-

coder network and did not experiment with SciBERT due to time limitations.

In 5.8, we compare our models to the results published in the literature. Note

that the full BioSyn model also makes use of sparse features, therefore we also include

its dense-only performance. Our model with frozen BioBERT + LSTM encoder lies

behind the dense BioSyn model, while the other setting with finetuned BERT context

encoder and fixed candidate entity embeddings yields a slight improvement over the

original dense BioSyn model. This shows that including sentence context for men-

tion representation can indeed bring benefits even in this constrained setup with fixed
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candidate embeddings.

Table 5.8. Accuracy scores of the top prediction of the NEN models.

Model NCBI-disease BC5CDR-disease BC5CDR-chemical

BNE 87.7 90.6 95.8

BERT-Ranking 89.1 - -

BioSyn 91.1 93.2 96.6

BioSyn (dense only) 90.7 92.9 96.6

Ours (w/ BioSyn embeddings) 91.0 93.1 96.7

Ours (Bert features) 86.2 90.8 96.1

5.2.3. Span-based NER

In this section, we give the results of the span formulation for the NER task.

As with the other experiments, after finding a hyperparameter setting that works

reasonably well, we kept it and varied pre-trained transformer encoders.

Below we see the model performance in different settings. Once again vanilla

BERT lies behind its domain-specific variants. Ablation study on pooling functions

shows concatenating max pool, width, and “[CLS]” representation works best and self-

attention on span tokens interestingly performs worse among choices even though it has

more learnable parameters. Also, note that joint learning with the NEN task brings

another small improvement to the results. When compared to the sequence tagging

approach, it brings similar performance.
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Table 5.9. Accuracy scores of the top prediction of the span based NER models with

different modeling choices.

Model NCBI-disease BC5CDR

BERT 83.7 79.6

BioBERT 88.5 82.5

SciBERT (max pool, width, CLS) 88.2 83.0

SciBERT (max pool) 87.9 82.7

SciBERT (avg pool) 87.7 82.5

SciBERT (self attention) 86.5 80.6

SciBERT (joint w/ NEN) 88.5 83.2
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6. CONCLUSION

In this thesis we studied named entity recognition and normalization tasks in

the biomedical domain. In general, we tried to combine the benefits of using domain-

specific pre-trained transformer language models with joint learning between two tasks.

Inspired by the great improvements reported in Zhao et al. [1], we first modeled both

tasks as sequence tagging problems and replaced word embedding + LSTM pipeline

with pre-trained transformer language models such as BioBERT and SciBERT. Unfor-

tunately, we did not see significant improvements in performance in this case.

In our second hypothesis, we proposed a novel model to bring contextual infor-

mation to a very successful BERT-based normalization model BioSyn [13]. Because of

computational constraints, we performed less optimal training setups, yet we saw slight

but consistent improvement over the mention-only model. Finally, we also formulated

the NER tasks using span embeddings and experimented with joint learning between

span-based NER and NEN tasks. Span-based NER models performed very similarly

to the sequence tagging NER models, but they have benefited from the joint training

slightly.

As future work, we would like to study incorporating document-level context into

both NER and NEN tasks as we saw a small improvement after adding sentence con-

text. Another fruitful-looking approach is creating graph embedding of concepts from

the ontology and using them in the normalization pipeline, to exploit the hierarchical

structure between concepts. Finally, a BERT-based variant of TaggerOne model [9]

that uses a semi Markov model to obtain and score segmentations would be an inter-

esting direction. In this case, both tasks will be modeled in an end-to-end fashion and

cascading errors won’t pose a problem as correct but low scoring segmentations from

the NER module will be boosted by the NEN module as they will have greater match

scores.
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