
A HYBRID BERT-GAN SYSTEM FOR PROTEIN-PROTEIN INTERACTION

EXTRACTION FROM BIOMEDICAL TEXT

by

Mert Basmacı

B.S., Computer Engineering, Middle East Technical University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2021

iii

ACKNOWLEDGEMENTS

First, and most of all, I would like to express my deepest gratitude to my super-

visor, Assoc. Prof. Arzucan Özgür for her continuous support, guidance, and patience

throughout my Master’s education. The completion of this thesis would not have been

possible without her expertise and deep knowledge.

I would like to thank my committee members, Prof. Tunga Güngör and Assoc.

Prof. Gülşen Cebiroğlu Eryiğit, for kindly accepting to be in my thesis committee and

for their valuable comments.

I would also like to thank Assoc. Prof. Junguk Hur and Assoc. Prof. Yongqun

”Oliver” He for their contributions to our case study and their excessive efforts during

COVID-19 dataset curation, annotation, and evaluation.

The most special thanks go to my best friends Gizem and Zeki for being influential

in my decision to pursue my Master’s education. They have always been very helpful

in the most important decisions of my life since the day I met them. I would also like

to extend my special thanks to my roommate Emre for being such a motivating friend.

Last but definitely not least, I would like to thank my family, my parents, İlknur

and Tayfun, and my brother, Bora, for their endless love, encouragement, and support

throughout my life. I would like to dedicate this thesis to my beloved grandparents

Selahattin and Müzeyyen Ayrancıoğlu, my first and lifelong teachers. They are my

heroes who have always believed in and encouraged me throughout my education and

every day of my life.

iv

ABSTRACT

A HYBRID BERT-GAN SYSTEM FOR

PROTEIN-PROTEIN INTERACTION EXTRACTION

FROM BIOMEDICAL TEXT

Considering the rapid increase in the biomedical literature, manual extraction of

information regarding Protein-Protein Interactions (PPIs) becomes an exhausting task.

Therefore, there is a strong need for the development of automatic relation extraction

techniques from scientific publications. In this study, we introduce a novel two-stage

system to extract PPIs from biomedical text. Our approach contains two cascaded

stages. In the first stage, we utilize a transformer-based model, BioBERT, to determine

whether pairs of proteins appearing in a sentence interact with each other; therefore, we

perform a binary relation extraction task. In the second stage, we adopt a Generative

Adversarial Network (GAN) model that consists of two contesting neural networks to

eliminate false-positive predictions of the first stage. We evaluate the performance of

both stages separately on five benchmark PPI corpora: AIMed, BioInfer, HPRD50,

IEPA, and LLL. Later on, we combine the five corpora into a single source to examine

the system performance on a general PPI corpus. Finally, we apply our system to

a case study for Host-Pathogen Interaction extraction from the COVID-19 literature.

The experimental results show that our first stage achieves the state-of-the-art F1-score

of 79.0% on the AIMed corpus and obtains comparable results to previous studies on

the other four corpora. Moreover, our second stage results reveal that the GAN model

improves the first stage results when our BioBERT model is trained on the combined

corpus. Our case study results demonstrate that the proposed system can be useful as

a real-world application.

v

ÖZET

PROTEIN-PROTEIN ETKİLEŞİMİ ÇIKARIMI İÇİN

HİBRİT BERT-GAN SİSTEMİ

Biyomedikal literatürdeki hızlı artış göz önünde bulundurulduğunda, Protein-

Protein Etkileşimleri ile bilgilerin el ile çıkarılması zorlu bir iştir. Bu sebeple bilim-

sel yayınlardan otomatik ilişki çıkarma yöntemlerinin geliştirilmesine ihtiyaç vardır.

Bu çalışmada, biyomedikal metinlerden Protein-Protein Etkileşimlerini çıkarmak için

iki aşamalı yeni bir sistem sunulmaktadır. İlk aşamada, cümlelerde geçen protein

çiftlerinin birbirleriyle etkileşime girip girmediklerini belirlemek için BioBERT adlı

transformatör tabanlı bir model kullanılmaktadır ve dolayısıyla ikili ilişki çıkarma işlemi

uygulanmaktadır. İkinci aşamada ise, ilk aşamadan gelen yanlış-pozitif tahminleri

ayıklamak için birbiriyle yarışan iki sinir ağından oluşan Çekişmeli Üretici Ağ modeli

kullanılmaktadır. Her iki aşamanın performansı AIMed, BioInfer, HPRD50, IEPA ve

LLL adlı beş Protein-Protein etkileşimi veri kümesinde ayrı ayrı değerlendirilmektedir.

Ardından, sistemin başarısı bu beş veri kümesi birleştirilerek elde edilen genel bir

Protein-Protein Etkileşimi veri kümesinde incelenmektedir. Son olarak sistemimiz,

COVID-19 yayınlarından Konak-Patojen Etkileşimlerini çıkardığımız örnek çalışmada

denenmiştir. Deneysel sonuçlar, ilk aşamamızın AIMed veri kümesinde %79.0 F1

puanıyla önceki çalışmaları geçtiğini, diğer veri kümelerinde ise önceki çalışmalarla

benzer sonuçlar elde ettiğini göstermektedir. İkinci aşama sonuçlarımız ise birleştirilmiş

veri kümesi üzerinde Çekişmeli Üretici Ağ modelinin, ilk aşama sonuçlarını iyileştirdiğini

göstermektedir. Örnek çalışmadan elde ettiğimiz sonuçlar ise, önerilen sistemin gerçek

dünya uygulaması olarak faydalı olabileceğini ortaya koymaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Contributions of the Thesis . 3

1.2. Organization of the Thesis . 3

2. BACKGROUND . 5

2.1. Protein Interaction Databases . 5

2.1.1. STRING . 5

2.1.2. BioGRID . 6

2.1.3. IntAct . 6

2.1.4. BIND . 6

2.1.5. APID . 7

2.1.6. DIP . 8

2.2. Word Embeddings . 8

2.2.1. Word2Vec . 9

2.3. Convolutional Neural Network . 10

2.4. Generative Adversarial Networks . 14

2.5. BERT . 15

3. RELATED WORK . 17

4. DATA SET . 24

4.1. AIMed . 24

4.2. BioInfer . 24

4.3. The HPRD50 . 24

vii

4.4. The IEPA . 25

4.5. The LLL . 25

4.6. Characterization of the Corpora . 25

4.7. Unified Dataset Format . 27

5. METHODOLOGY . 30

5.1. Preprocessing . 30

5.2. Overall System Architecture . 32

5.3. BioBERT Model . 33

5.3.1. Fine-Tuning the BioBERT . 35

5.3.2. The first-stage / BioBERT PPI Prediction 37

5.4. GAN Model . 38

5.4.1. PreTraining GAN . 39

5.4.2. Training Generative Network 39

5.4.2.1. Word Embeddings . 40

5.4.2.2. Position Embeddings 40

5.4.2.3. CNN Architecture . 40

5.4.3. Training Discriminator Network 41

5.4.4. The Second Stage / Adversarial Training 42

6. EXPERIMENTS AND RESULTS . 43

6.1. Evaluation Metrics . 43

6.2. McNemar’s Test . 44

6.3. Results of the First Stage . 46

6.3.1. Cross-Corpus Results . 53

6.3.2. Combined-Corpus Results . 54

6.4. Results of The Second Stage . 55

6.4.1. Second Stage Results (First Stage trained on separate corpora) 56

6.4.1.1. McNemar Test Results on AIMed 56

6.4.1.2. McNemar Test Results on BioInfer 57

6.4.1.3. McNemar Test Results on HPRD50 58

6.4.1.4. McNemar Test Results on IEPA 59

6.4.1.5. McNemar Test Results on LLL 60

viii

6.4.2. Second Stage Results (First Stage trained on combined corpus) 61

6.4.2.1. McNemar Test Results on AIMed 61

6.4.2.2. McNemar Test Results on BioInfer 62

6.4.2.3. McNemar Test Results on HPRD50 63

6.4.2.4. McNemar Test Results on IEPA 64

6.4.2.5. McNemar Test Results on LLL 65

6.4.2.6. McNemar Test Results on Combined Test Set 66

7. A CASE STUDY: HOST-PATHOGEN INTERACTION EXTRACTION ON

COVID-19 DATASET . 68

7.1. Dataset Curation . 69

7.2. Experiments and Results . 71

8. CONCLUSION . 72

REFERENCES . 76

ix

LIST OF FIGURES

Figure 1.1. Number of indexed citations added to MEDLINE during each fiscal

year since 1995. 2

Figure 2.1. Interaction network of ACE2 protein generated by STRING. . . . 5

Figure 2.2. IntAct: Number of Proteins, Interactions, Binary interactions and

n-ary interactions since 2004. 7

Figure 2.3. APID: The interaction between two proteins (ACE2 and SPIKE)

with nine curation events and four distinct pieces of experimental

evidence. 8

Figure 2.4. Word2Vec model architectures . 10

Figure 2.5. An example of 2-D convolution . 12

Figure 2.6. The RELU function . 13

Figure 2.7. Illustration of Max Pooling and Average Pooling 13

Figure 2.8. The architecture of generative adversarial networks 15

Figure 4.1. A train sample from dataset . 28

Figure 4.2. A test sample from dataset . 28

Figure 4.3. A part of an answer key, in TXT format. 28

x

Figure 5.1. An overview of our two-staged hybrid BERT - GAN pipeline . . . 34

Figure 5.2. The distribution of sentence length in our dataset 36

Figure 7.1. Sample sentences extracted by SciMiner. 69

Figure 7.2. Confusion matrix of our model for Host-Pathogen Interaction Ex-

traction. 71

xi

LIST OF TABLES

Table 4.1. The characteristics of the five corpora. 26

Table 4.2. The statistics of the five corpora. 27

Table 5.1. A sample preprocessed sentence. 32

Table 5.2. List of corpora and number of their words used BioBERT. 35

Table 5.3. Hyperparameter selection for fine-tuning BioBERT model. 37

Table 5.4. Hyperparameter settings of the generator and the discriminator. . 41

Table 6.1. Contingency table for two classifiers. 45

Table 6.2. Performance comparison of our first stage based on Five Bench-

marking PPI corpora. 48

Table 6.3. Performance comparison of our first stage by macro precision, macro

recall and macro F1-score. 52

Table 6.4. Cross-Corpus evaluation results on Five Benchmarking PPI corpora. 53

Table 6.5. Combined corpus evaluation results on Five Benchmarking PPI cor-

pora. 54

Table 6.6. The second stage results on AIMed Corpus. 57

Table 6.7. The second stage results on BioInfer Corpus. 58

xii

Table 6.8. The second stage results on HPRD50 Corpus. 59

Table 6.9. The second stage results on IEPA Corpus. 60

Table 6.10. The second stage results on LLL Corpus. 61

Table 6.11. The second stage results on AIMed Corpus. 62

Table 6.12. The second stage results on BioInfer Corpus. 63

Table 6.13. The second stage results on HPRD50 Corpus. 64

Table 6.14. The second stage results on IEPA Corpus. 65

Table 6.15. The second stage results on LLL Corpus. 66

Table 6.16. The second stage results on combined test set. 67

Table 7.1. Same statistics for host and pathogen files. 70

xiii

LIST OF SYMBOLS

Bi ith bag

D(G(z)) The probability of the discriminator estimating a fake

instance as real

D(x) The discriminator’s estimate of the probability when given

sample x

Ex Expected value over all real data instances

Ez Expected value over all random instances

G(z) The generator’s estimate of the probability when given noise

from latent space

LD The loss function of the discriminator

LG The loss function of the generator

log(n) The logarithmic function of the value n

N Number of bags

ND Negative dataset to pretrain discriminator

NG Negative dataset to pretrain generator

P Positive dataset

sj j th sentence

z Latent space

∗ The convolution operator∑
The summation operator

xiv

LIST OF ACRONYMS/ABBREVIATIONS

ACE2 angiotensin-converting enzyme 2

APG All-paths graph

BERT Bidirectional Encoder Representations from Transformers

BioBERT Bidirectional Encoder Representations from Transformers for

Biomedical Text Mining

BioInfer Bio Information Extraction Resource

BioNLP Biomedical Natural Language Processing

BOW Bag-of-words

CBOW Continuous Bag-of-Words Model

CNN Convolutional Neural Network

CSV Comma Separated Values

CTK Convolution Tree Kernel

DCNN Deep Convolutional Neural Network

DDI Drug-Drug Interaction

DIP Database of Interacting Proteins

DNN Deep Neural Network

DPP4 dipeptidyl peptidase 4

DPT Dependency Parse Tree

DSTK Distributed smoothed tree kernel

EDG Extended Dependency Graph

GAN Generative Adversarial Networks

HCoV Human Coronavirus

HPI Host-Pathogen Interaction

HPRD Human Protein Reference Database

IEPA Interaction Extraction Performance Assessment

IPT Interaction Pattern Tree

kBSPS k-Band Shortest Path Spectrum Kernel

KNN K-Nearest Neighbor

xv

LLL Learning Language in Logic

LLL05 Learning Language in Logic 2005

LSTM Long Short-Term Memory

MCCNN Multichannel Convolutional Neural Network

McDepCNN Multichannel Dependency-based Convolutional Neural Net-

work

MIL Multi-Instance Learning

MIML Multi-Instance Multi-Label

MLM Masked Language Model

MLP Multi Layer Perceptron

NLP Natural Language Processing

NNLM Neural Net Language Model

OOV Out-of-Vocabulary

PCNN Piecewise Convolutional Neural Networks

PIPE PPI Pattern Extraction

PPI Protein-Protein Interaction

RELU Rectified Linear Activation FunctioN

RNN Recurrent Neural Network

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

ST Subset tree

SVM Support Vector Machine

1

1. INTRODUCTION

Protein-Protein Interaction (PPI) is one of the key studies in biology. They are

vital in biological processes such as cell metabolism, signal pathways, DNA replication

and transcription, and conversion of genotypes to phenotypes [1]. In addition, the

disruption of these processes often causes diseases and has a significant impact on the

initiation or progression of pathology [2]. Therefore, the study of PPIs not only provides

a better understanding of biological processes but also helps in the identification of

several diseases and the development of potential treatments and therapies that are

targeting interactions.

PPIs with their central role in biological processes examined in many biomedical

studies and those studies are mostly published and stored in literature databases.

PubMed, one of the main archives of biomedical and life sciences journal literature,

as of today, comprises more than 32 million citations for the biomedical literature [3].

With the rapid advancements in technology and ease of access to the vast amount of

research knowledge provided by literature databases, studies have gained momentum

over the years. Figure 1.1 depicts, the number of indexed citations added to MEDLINE

during each fiscal year since 1995 [4]. As seen in Figure 1.1, the number of citations

over the years increase linearly. Hence, much information regarding protein interactions

remains in those papers.

Furthermore, several databases and protein interaction networks such as STRING,

Search Tool for the Retrieval of Interacting Genes/Proteins [5], BioGRID, The Bio-

logical General Repository for Interaction Datasets [6], IntAct, Molecular Interaction

Database [7], BIND, Biomolecular Interaction Network Database [8], APID, Agile Pro-

tein Interactomes DataServer [9], and DIP, Database of Interacting Proteins [10] that

empower the current knowledge on protein cascades are created. These databases store

protein interactions in a structural format and provide easy access to previous work

on proteins. They also shed light on scientists to explore possible protein targets and

2

interactions. However, most of them are created manually, and they store a small por-

tion of the information available while the biomedical domain increases rapidly. Since

it is an onerous and time-consuming task for database curators to detect these inter-

actions from long papers, much information regarding protein interactions may remain

hidden in those papers. Keeping these databases and interaction networks updated

also requires manual effort; therefore, the development of information extraction and

text mining techniques for automatic extraction and identification of PPIs from free

texts is inevitable [11].

Figure 1.1. Number of indexed citations added to MEDLINE during each fiscal year

since 1995.

This thesis focuses on extracting Protein-Protein Interactions from textual sen-

tences applying deep learning techniques. BioBERT (Bidirectional Encoder Repre-

sentations from Transformers for Biomedical Text Mining) [12] and GAN (Generative

Adversarial Networks) [13] based hybrid model is introduced to accomplish this task.

A two-stage ensemble learning model is applied such that those two models work cas-

caded way, or simply put one after another. In the first stage, the BioBERT model,

a state-of-art method in the biomedical domain, predicts whether a sentence contains

a protein interaction or not. Then, the predicted outputs of the BioBERT model are

3

given into the GAN model to eliminate the false positives. In other words, these two

stages have different purposes. While the first stage predicts interactions, the second

stage aims to increase performance. Our models are evaluated on various experiments

by using five benchmark PPI datasets. Obtained results are compared with all related

studies. In order to justify the performance improvement achieved by our second stage,

several significance tests are conducted.

1.1. Contributions of the Thesis

The main contributions of this thesis are summarized as follows:

• We introduce a hybrid system for the Protein-Protein Interaction Extraction task.

• To the best of our knowledge, BioBERT and GAN models together are first

examined for the Protein-Protein Interaction Extraction task.

• We train and test our models on Five Unified Benchmarking Corpora: AIMed,

BioInfer, HPRD50, IEPA, and LLL. BioBERT and GAN models are first exam-

ined on Five Unified Benchmarking PPI Corpora to the best of our knowledge.

• Our first stage achieves state-of-the-art result on AIMed corpus. On other cor-

pora, we obtain comparable results with previous state-of-the-art approaches.

• We obtain performance improvements with the GAN model on a generalized PPI

corpus, and we provide significance test results to justify the improvement.

• We applied our model to a case study: Host-Pathogen Interaction Extraction on

COVID-19 dataset. The results reveal that our system can be applied for a wide

range of biomedical relation extraction tasks.

1.2. Organization of the Thesis

The rest of the thesis is organized into seven chapters. Chapter 2 gives back-

ground information about the terms that are used in the thesis. The protein interaction

databases that are the primary resources for our dataset and have been used in several

related works are described in this chapter. Moreover, background information about

4

word embeddings and deep learning models are also introduced in the chapter.

Chapter 3 gives a summary of the previous studies in the Protein-Protein In-

teraction Extraction domain. In addition, early kernel-based approaches and recent

deep learning models applied in this domain are explained, and their performances on

different datasets are provided in the chapter.

Chapter 4 provides detailed information about the Five Benchmarking PPI Cor-

pora used in our study. The characterization of the corpora is given with their statistics.

Unified Dataset Format is explained in this chapter as well.

Chapter 5 describes our proposed hybrid BERT-GAN system. The overall system

architecture is given in this chapter. The technical aspects of our preprocessing method,

word representation, hyperparameter settings, and model training details are explained.

Chapter 6 provides experiments and the results of our proposed model. First, we

explain the evaluation metrics and applied statistical significance tests in this chapter.

Then, we compare our model performance with other related studies experimented

on the same dataset. Since our first stage itself is capable of extracting PPIs, we

also report its performance separately. We provide cross-corpus and combined corpus

evaluation results and significance test reports in the chapter.

Chapter 7 describes a case study for Host-Pathogen Interaction Extraction on

COVID-19 dataset. Dataset curation details and performance evaluation of our system

are reported in this chapter.

Chapter 8 provides final remarks, conclusion and future work.

5

2. BACKGROUND

2.1. Protein Interaction Databases

2.1.1. STRING

STRING, Search Tool for the Retrieval of Interacting Genes/Proteins, is a database

that stores Protein-Protein Interactions, including both physical interactions as well

as functional interactions [14]. It aims to integrate all known information regard-

ing protein interactions so that it uses several resources like public text collection,

automated text mining and computational prediction methods and experiments of in-

teraction databases. Thus, it maps all interaction evidence in a single place. It also

aims for comprehensive coverage, so it contains 52857362 protein interactions with high

confidence(score ≥ 0.9) from 14000 organisms [15]. In addition, STRING provides a

customizable user interface to demonstrate protein interaction networks, as seen in

Figure 2.1.

Figure 2.1. Interaction network of ACE2 protein generated by STRING.

6

2.1.2. BioGRID

BioGRID, The Biological General Repository for Interaction Datasets, a biomed-

ical interaction database, consists of Protein-Protein Interactions, genetic interactions

and chemical interactions. It is generated by comprehensive curation efforts containing

compilation interaction records through structured evidence codes, phenotype ontolo-

gies, and gene annotations. As of today, it contains 2,045,743 protein and genetic

interactions, 29,093 chemical interactions, and 1,070,825 posttranslational modifica-

tions from 76687 publications [16]. BioGRID data are freely distributed and available

for download in many standardized formats. Thus, it is one of the primary literature

for protein-protein interactions.

2.1.3. IntAct

IntAct is a freely available open-source database for molecular interaction data

curated from literature or direct data resources. While IntAct is designed for repre-

senting any biomolecular interactions, their main focus is always Protein-Protein Inter-

actions which are experimentally verified. Since all data is being annotated manually,

it is a trustworthy source for Protein-Protein Interactions. The number of proteins

and interactions of the IntAct database has been updated over the years, and it en-

larged rapidly, as seen in Figure 2.2. As of today, IntAct contains 122,338 interactors

and 1,139,018 interactions obtained through 22,368 biomedical publications and 72,393

experiments [17].

2.1.4. BIND

BIND, The Biomolecular Interaction Network Database stores interactions, molec-

ular complexes, and pathways. According to BIND, two or more objects and a publica-

tion reference are required to describe a basic interaction. Those objects can be DNA,

RNA, genes, proteins, or molecular complexes. BIND is manually curated, and each

entry requires a PubMed publication reference and entry references to another database

7

such as GenBank [18]. Each entry within the database provides references/authors for

the data. BIND database grows continually. As of 2004, it contains 28,266 Protein-

Protein Interactions, 4,225 genetic interactions, and also 874 protein-small molecule

interactions from 11,649 unique biomedical publications [19].

Figure 2.2. IntAct: Number of Proteins, Interactions, Binary interactions and n-ary

interactions since 2004.

2.1.5. APID

APID, Agile Protein Interactomes DataServer is a protein interaction database

of 400 organisms. It is manually curated, and consists of experimentally validated

Protein-Protein Interactions. APID is a collection of several interaction databases

and networks such as BIND, BioGRID, DIP, IntAct and provides a unified format

for PPIs. APID is a comprehensive collection of 90,379 distinct proteins and 678,441

singular interactions [20]. It also provides a data visualization tool that allows the

construction of protein interaction tables as seen in Figure 2.3 and visual exploration

of the corresponding networks.

8

Figure 2.3. APID: The interaction between two proteins (ACE2 and SPIKE) with

nine curation events and four distinct pieces of experimental evidence.

2.1.6. DIP

DIP, The Database of Interacting Proteins, is a Protein-Protein Interaction net-

work consisting of experimentally proven interactions from many different scientific

journals and archives such as MEDLINE. It provides a comprehensive tool for brows-

ing and extracting protein interactions. DIP contains valuable information regarding

protein functions, protein-protein relationships, and properties of interacting protein

networks. All protein entities have cross-references to at least one of the major pro-

tein databases such as PIR [21], SWISSPROT [22], and GenBank [18]. As of 2003, it

contains 18,500 protein interactions from 2,500 research articles.

2.2. Word Embeddings

In Natural Language Processing (NLP), words are represented by vectors so that

several vector calculus can be applied for different statistical analyses. Word embedding

is a term used for the representation of words in the form of real-valued vectors. Those

vectors are obtained using a set of language modelling and feature learning techniques,

where words with similar meaning have a similar representation; in other words, they

are closer to each other in the vector space [23].

9

There are different approaches for word embedding representations, and they are

mainly classified into two categories as follows:

(i) Frequency-based methods such as count vector, TF-IDF vector, and Co-Occurance

vector,

(ii) Prediction-based methods such as Word2Vec, GloVe, and fastText.

Frequency-based approaches work based on the count of a word in each document.

They vectorize the words depending on their frequency of occurrences in documents,

assuming that words in the same contexts share similar or related semantic meanings.

Unlike the frequency-based approaches, prediction-based approaches build predictive

models that directly target predicting a word given its neighbours. The quality of

the resulting vector representations in prediction-based approaches are measured by

considering not only similar words tend to be close to each other, but words can also

have multiple degrees of similarities [24]. Typically, in predictive approaches, word

vectors are initialized with random weights. These weights are updated through back-

propagation to maximize the data log-likelihood under a neural network architecture

that will produce word representations that hold both syntactic and semantic properties

[25].

2.2.1. Word2Vec

Word2Vec is a prediction-based word representation approach. It is a two-layer

feed-forward neural net language model (NNLM) [26] in which the hidden layers re-

placed by a projection layer. This projection layer depends heavily on the efficiency of

the softmax normalization, which makes the NNLM model simpler but more efficient

with the large amount of data [23]. Word2Vec is trained in two steps:

(i) First, Continuous Bag-of-Words Model (CBOW) is trained using simple NNLM

architecture,

(ii) and then, the Skip-Gram model is trained using N-gram NNLM architecture.

10

The CBOW model has a simple NNLM architecture in which a single projection

layer replaces the hidden layers. The CBOW model predicts the current word given

surrounding context words. It averages all words given in the window so that the order

of the surrounding context words does not affect the prediction; therefore, the term

bag-of-words is used [23].

The Skip-Gram model has a similar NNLM architecture, but instead, it predicts

the surrounding context words given a current word. Since distant words which are less

relevant to the current word are sampled less, they have less weight on the obtained

word vector [23]. The overall Word2Vec model architecture is shown in Figure 2.4.

Figure 2.4. Word2Vec model architectures (taken from [23]). The CBOW

architecture predicts the current word based on the context, and the Skip-gram

predicts surrounding words given the current word.

2.3. Convolutional Neural Network

Convolutional Neural Networks (CNN) [27] is a kind of neural network architec-

ture that has been widely used in several domains such as Signal Processing, Computer

Vision, and Natural Language Processing, and it is tremendously successful in several

11

tasks. The name comes from a mathematical operation called convolution, which is a

kind of linear operation. In essence, it consists of two real-valued functions given in

Equation 2.1 where the first argument of the convolution x is called as the input, and

the second argument w is called as the kernel in the deep learning terminology [28].

(x ∗ w)(t) =

∫
x(a)w(t− a)da (2.1)

In CNN architecture, having a smaller kernel size compared to the input size

allows the kernel to travel the input array at different points systematically, and at

these points, matrix multiplications are performed between the corresponding part of

the input array and the kernel. Figure 2.5 illustrates a sample convolution process on 2-

D vectors. The output is sometimes referred to as the feature map, which is the sparse

representation of the input array. Since feature maps are smaller than input arrays in

size, they reduce memory requirements and improves statistical efficiency [28].

In general, convolutional neural networks consists of three stages which are the

convolution stage, detector stage and pooling stage [28]. After convolution is applied

and the feature map is obtained, each value in the feature map are passed through a

nonlinear function such as the rectified linear activation function (RELU). This stage

is called as the detector stage. The purpose of the detector stage is to introduce nonlin-

earity into the network since the inputs contain various properties that are nonlinear

to each other. Other nonlinear functions can also be used in this stage to produce

nonlinearity, such as the logistic sigmoid function or tanh function. However, RELU

outperforms others in practice; therefore, it is frequently used [29]. RELU is a very

basic nonlinear function that replaces all negative elements in the feature map with

zero. Figure 2.6 illustrates the RELU function.

After the detector stage, a pooling function is used to reduce the dimensionality of

the feature map. Pooling function has different variants such as max pooling, average

pooling and sum pooling etc. For example, in max-pooling [30] operation yields the

12

largest value within a portion of the feature map with a certain size, and in average

pooling, it takes the average of values in that portion of the feature map [31]. Figure 2.7

illustrates the max pooling and average pooling functions.

Figure 2.5. An example of 2-D convolution. Boxes with orange color are used to

indicate how the upper-left element of the output tensor is formed by applying the

kernel to the corresponding upper-left region of the input tensor.

13

Figure 2.6. The RELU function.

Figure 2.7. Illustration of Max Pooling and Average Pooling (taken from [31]).

14

2.4. Generative Adversarial Networks

Ian Goodfellow [13] introduced Generative adversarial networks (GANs), which

are deep neural network architectures that consist of two neural networks, a generator

G and a Discriminator D. GANs perform an adversarial learning process where two

neural networks contesting with each other to generate new samples of data that can

preserve similar patters to the original data. They are widely used in Computer Vision

tasks such as image and video generation and super-resolution.

During the adversarial process, two neural networks have different purposes:

(i) The generative model G captures the data distribution and generates new samples

that preserve the same statistics with the training samples.

(ii) The discriminator model D learns to distinguish the samples generated by the

generative model from training samples.

Typically, both neural networks are multilayer perceptrons that optimize oppos-

ing objective functions. The generator starts with generating noisy samples G(z) from

a latent space z. Since each variable in the initial sample comes from a Gaussian

distribution, they have no meaning at first. Hence, when the training begins, the dis-

criminator assigns a low probability to fake samples and easily distinguishes them from

the real ones. Through the training phase, the generator aims to learn the fooling dis-

criminator; therefore the objective function of the generator is defined as to minimize

the following Equation 2.2:

log(1−D(G(z))) (2.2)

where D(G(z)) is the probability of the discriminator estimating a fake instance as real.

Since a strong generator can be obtained by the contest with a strong discriminator, the

discriminator also aims to be better distinguishing real and fake samples. Therefore,

15

the objective function of the discriminator is to maximize the following Equation 2.3:

Ex[log(D(x))] + Ez[log(1−D(G(z)))] (2.3)

where D(x) is the probability of the discriminator accurately estimating a real instance.

The training process continues until the optimal generator is obtained. At this

point, the probability of the discriminator making a mistake is maximum; in other

words, it can no longer distinguish real samples from fakes. Figure 2.8 illustrates the

overall GAN architecture.

Figure 2.8. The architecture of generative adversarial networks (taken from [31]).

2.5. BERT

BERT, Bidirectional Encoder Representations from Transformers, is a recent rep-

resentation model that has achieved state-of-the-art performance on several NLP tasks.

It is a pretraining language representation where a language model is trained on a large

corpus, and later on, it can be used for several tasks by applying a fine-tuning process.

Unlike the previous language representation models (e.g., Word2Vec, GloVe), BERT

focuses on using deep bidirectional representations of unlabeled text by jointly condi-

tioning on both the left and the right context [32]. Being trained on unlabeled text

data brings an opportunity to use an enormous amount of plain text data publicly

available on the web.

16

Pretrained language models can be mainly classified into two categories which

are context-free language models and contextual language models. While context-free

language models such as Word2Vec and FastText generates a single word embedding

for each word regardless of the context, contextual language models generate different

word representations depending on the other words in the sentence. BERT is a con-

textual language model; therefore, word representations contain enriched information

depending on the context.

Furthermore, contextual language models can be divided into two categories

which are unidirectional and bidirectional models. In unidirectional language mod-

els, each word is contextualized using the words standing to its left or right. On the

other hand, BERT is a bidirectional language model where words are contextualized,

combining both the left and right context. Furthermore, unlike the previous bidirec-

tional language models, BERT uses a masked language model (MLM) where some of

the input tokens are randomly masked and predicted based on the context.

17

3. RELATED WORK

There have been many approaches to extract protein-protein interactions from

text sentences. Distant Supervision [33] is one of the standard technique for relation

extraction and uses the existing knowledge stored in the knowledge base. The distant

supervision assumes that if two entities (proteins in our case) have a relationship in

a given database, then all sentences containing these two entities will express that

relationship in some way. However, since any individual sentence may carry a wrong

indication, the resulting databases are often noisy; in other words, they contain many

false positives [34].

Several denoising approaches are introduced to solve the false-positive problem of

distant supervision. Multi-instance single-label learning [35] and multi-instance multi-

label learning [36] were introduced to tackle the wrong label problem in Distant Super-

vision. Multiple sentences for the same entity pair are allowed in multi-instance single

label learning, but each should have a single label. Multi-instance multi-label learning

(MIML), on the other hand, is an extension of multi-instance single-label learning and

assumes the same pair of entities may have multiple labels. MIML was later on tested

against single-instance learning for the Protein-Protein Interaction task. [37]. Accord-

ing to their experiments on the Salmonella and Human Protein dataset, multi-instance

learning greatly outperforms single-instance learning, achieving an overall MCC score

of 0.6306 versus 0.5260 for single-instance learning.

Piecewise Convolutional Neural Networks (PCNNs) was introduced with multi-

instance learning (MIL) for distantly supervised relation extraction [38]. Distantly

supervised samples are treated as multi-instances where some noisy samples are taken

into account. In addition, they came up with a piecewise max-pooling layer in CNN

architecture to capture structural information between entities to address the wrong

label problem of distant supervision. Compared to MIML [36], they improved the recall

score by approximately 34% without any loss of precision on the Freebase dataset.

18

Dependency Parse Trees (DPTs) of the sentences were introduced to analyze

paths between two protein entities [11]. They have defined separate cosine and edit

distance-based similarity functions to compare the similarity between two DPT of sen-

tences containing protein names. They investigated semi-supervised machine learning

methods on top of the dependency features. The performance of supervised learning

algorithms, i.e., Support Vector Machines (SVMs) and K-Nearest Neighbor (KNN),

were compared with the semi-supervised counterparts of these algorithms, transduc-

tive SVMs and harmonic functions, respectively. It was stated that edit distance kernels

with Semi-supervised algorithms perform better than supervised alternatives for the

PPI extraction task.

All-paths graph (APG) kernel [39] was proposed for Protein-Protein Interaction

Extraction. APG considers all possible dependency paths connecting any two vertices

and sums the weights of these paths. They assign higher path weights for the shortest

paths and lower weights for other paths. As a result, their representation highlights

the shortest path without discarding potentially relevant words outside the path. The

model was evaluated on five PPI corpora, AIMed, BioInfer, HPRD50, IEPA and LLL.

It was stated that APG achieves 56.7% F1 score and 84.8% AUC on the AIMed corpus,

which was better compared to the previous kernel studies.

A hybrid kernel-based approach [40] was proposed for the same task. By com-

bining different kernels such as Bag-of-words (BOW) kernel, Subset tree (ST) kernel,

and Graph kernel, based on several syntactic parsers such as Dependency parser and

Deep parser, they utilized a wide range of information from sentences. Furthermore,

they have applied an SVM classifier on top of the resulting kernels and achieved better

results than the previous kernel-based approaches on four out of the five PPI corpora,

AIMed, BioInfer, HPRD50, IEPA and LLL.

The k-Band Shortest Path Spectrum Kernel (kBSPS) [41] was proposed for ex-

tracting relations from biomedical text. It is claimed that the shortest path is not

enough for relation extraction, so they have included dependency graph nodes and

19

dependencies within a distance of k from the shortest path. They have used the SVM

model as a classifier and achieved comparable results with the APG kernel.

The walk-weighted subsequence kernel was proposed for the Protein-Protein In-

teraction extraction task [42]. They have assigned different weights to common sub-

strings of two shortest path strings. They have handled lexical subgraphs, syntactic

subgraphs, e-walk and v-walk, and dependencies with varying weights. They compared

the results with other systems, and their model achieved a higher score than the pre-

vious stories on the small datasets. It is reported that their model has obtained an

82.1% F1-score on the LLL corpus.

Neighborhood hash graph kernel was introduced for the same task [43]. Unlike

previous graph kernel-based approaches, the neighborhood hash graph kernel makes

use of complete dependency graphs to represent the sentence structures. A mapping

function was implemented to map each node label of the dependency graph into a

fixed-length binary array. Then, bit labels of nodes were updated by order-independent

logical operations on the bit labels of the neighbor dependency nodes. They investi-

gated the performance of the neighborhood hash graph kernel on five benchmarking

PPI corpora and obtained comparable performance to the previous state-of-the-art PPI

extraction systems.

Extended Dependency Graph (EDG) was proposed for biomedical relation ex-

traction [44]. The EDG vertices were constructed with text, part-of-speech tags and

word lemmas. Entities and phrases that span multiple words in a sentence were stored

into a single vertex. Additional syntactic relations such as coreference, appositive, is-A,

member-collection, and part-whole relations were also included in EDGs. They evalu-

ated the performance of EDG with two different kernels, which are edit distance kernel

and all-paths graph kernel, by applying them on five different PPI Corpora, AIMed,

BioInfer, HPRD50, IEPA and LLL. They showed that EDG with edit distance kernels

achieved up to 10% F1 score improvement compared to dependency graphs with the

same kernel on PPI corpora.

20

PIPE [45], the PPI Pattern Extraction module was proposed for BioCreativve

challenge [46]. They proposed an interaction pattern tree (IPT) kernel that integrates

convolution tree kernel (CTK) to extract PPIs. The IPT kernel captures the syntactic

and semantic information of sentences. CTK integrates IPT with SVMs. They also

evaluated their method on Five Benchmarking PPI Corpora. Their approach outper-

formed several kernel methods and achieved comparable results with multi-kernel-based

methods.

Distributed smoothed tree kernel (DSTK) was introduced for Protein-Protein In-

teraction extraction from biomedical literature [47]. DSTK utilizes both syntactic and

semantic vectors to overcome the shortcomings of information loss from single ker-

nel approaches. They used several word, and word distance features such as protein

names, interaction keywords, surrounding words, words between two protein entities

for their feature-based kernel. For their distributed smooth tree kernel, they gener-

ated distributed trees with distributional semantic vectors that capture the semantic

information of sentences. They evaluated their method on Five Benchmarking PPI

corpora and achieved better F1-scores (71.01% on AIMed, 76.29% on BioInfer, 80.00%

on HPRD50, 80.23% on IEPA, and 89.20% on LLL corpus) compared to other previous

state-of-the-art systems.

Since deep learning techniques have achieved great success in many domains

through deep hierarchical feature construction and capturing long-range dependencies

in data, they are also being examined for a wide range of NLP tasks, including Protein-

Protein Interaction Extraction. A feed-forward neural network architecture that can

learn complex and abstract features of data was proposed for PPI extraction [48]. First,

the parameters of the Deep Neural Network (DNN) were initialized by training auto-

encoders. Then, the gradient descent algorithm with backpropagation was applied to

train the model. Finally, the performance of the system was evaluated on two PPI

corpora, AIMed and BioInfer, and obtained 0.8% and 1.3% F1-score improvement

compared to the APG kernel method.

21

A deep convolutional neural network (DCNN) was introduced with various feature

embeddings to extract PPIs from sentences [49]. First, they concatenated existing word

embeddings with position embeddings which are relative distances from target protein

entities. Then, the obtained features were passed into a CNN model for training.

Finally, they evaluated their work on AIMed corpus. Unlike previous studies, they

used macro-averaged F1 scores as an evaluation metric, and they obtained an 85.2%

score.

A Shortest Dependency Path-Based Convolutional Neural Network (sdpCNN)

model was proposed for Protein-Protein Relation Extraction [50]. They used only the

shortest dependency paths (SDPs) as a feature. It was claimed that manual feature

selection and feature combination approaches bring bias to representations. CNN, on

the other hand, can automatically learn these features from SDPs. They evaluated

their model on AIMed and BioInfer corpora and achieved 66.0% and 75.2% F1-score,

respectively.

A multichannel Convolutional Neural Network (MCCNN) model was proposed for

biological relation extraction [51]. The model has CNN architecture and relies on mul-

tichannel word embeddings that enable the fusion of multiple word embeddings. They

applied their model for Drug-Drug Interaction (DDI) and Protein-Protein Interaction

(PPI) tasks. The model was tested on the DDIExtraction dataset for the DDI task

and outperformed SVM based model score by 3.2%. For the PPI task, AIMed [52], and

BioInfer [53] datasets, which have been extracted from the DIP database, were used,

and the model outperformed SVM based model score by 2.7% and 5.6%, respectively

on two datasets.

A multichannel dependency-based convolutional neural network model (McDe-

pCNN) was proposed for extracting protein-protein interactions from biomedical lit-

erature [54]. They applied two channels; one for embedding vectors, the second for

the embedding vector of the head of the corresponding word. They claimed the dif-

ferent channels provide richer information to the model. The model was evaluated on

22

two benchmarking corpora, AIMed [52], and BioInfer [53], and it outperformed previ-

ous deep learning models and single feature-based or kernel-based models significantly.

Moreover, they showed that the McDepCNN model is also successful over different

corpora and can learn long-distance features in sentences with the help of multichannel

embeddings.

A recurrent neural network (RNN) was proposed to identify PPIs [55]. They have

implemented a bi-directional RNN with Long Short-Term Memory (LSTM) model to

extract protein interactions. Their system consists of three layers: (i) an embedding

layer that transforms words into embeddings, (ii) a recurrent layer that is constructed

using LSTM cells, and (iii) a fully connected layer that performs the classification

task. They evaluated their work on two PPI corpora: AIMed and BioInfer. Their

model outperformed the existing models on both corpora by achieving 76.9% and

87.2% F1-scores, respectively.

A hybrid model that combined RNN and CNN models was introduced for this task

[56]. They generated the shortest dependency paths (SDPs) based on the dependency

graph of sentences. While their RNN model captures sentence features from sentence

sequences, the CNN model utilizes SDPs. On top of these, they implemented a multi-

layer perceptron (MLP) with a softmax output layer for classification. Finally, they

evaluated their proposed model on a (Drug-Drug Interaction) DDI corpus and Five

Benchmark PPI Corpora; AIMed, BioInfer, HPRD50, IEPA, and LLL. They obtained

the best F1-score on AIMed and IEPA corpora compared to kernel-based approaches.

Tree LSTM (tLSTM) model with structured attention architecture was proposed

for identifying PPIs [57]. The dependency parse trees were traversed through tree

LSTM model in order to learn structural information of sentences. They have also

combined tLSTM results with a structured attention-based model results. The model

has been evaluated on Five Benchmark PPI corpora; AIMed, BioInfer, HPRD50, IEPA,

and LLL. The obtained macro-averaged F1-scores are 81.6% 89.1% 78.5% 81.3%, and

84.2%, respectively.

23

A deep residual convolutional neural network was introduced for PPI extrac-

tion [58]. They have added a residual connection between convolutional modules to

make the model strong for classification. The model consists of three layers: (i) an

embedding layer for word representation, (ii) the convolutional layer that consists of

several convolutional modules with a residual connection, and (iii) a classifier layer that

gives prediction results. They achieved comparable results with previous RNN based

approaches on Five Benchmark PPI Corpora; AIMed, BioInfer, HPRD50, IEPA, and

LLL.

24

4. DATA SET

In this thesis, we used five benchmark corpora, AIMed [52], BioInfer [53], IEPA

[59], HPRD50 [60] and LLL [61] that have been converted into a unified format by

Pyysalo [62]. These five corpora have been widely used in different PPI extraction

research and have become common benchmarking datasets. It also provides predefined

train and test splits to accomplish the standardization.

4.1. AIMed

AIMed is a corpus extracted from 200 PubMed abstracts identified by the Database

of Interacting Proteins (DIP). For the negative samples, different 30 abstracts that con-

tain no PPIs are selected. It contains manually annotated protein-protein interactions

and widely used for PPI extraction method comparison.

4.2. BioInfer

BioInfer is a corpus consisting of sentences from PubMed abstracts that contain

interaction protein pairs identified according to the Database of Interacting Proteins.

The sentences are manually annotated by the corpus creators identifying entity pairs,

protein types, and interaction words containing complex and negative interactions and

static relations. It contains nearly 7500 sentences, with 30percentage indicating positive

interactions.

4.3. The HPRD50

The HPRD50 is a protein-protein interaction corpus intentionally created as an

evaluation dataset for RelEx systems. The sentences are extracted from 50 abstracts

identified by the Human Protein Reference Database (HPRD). First, the protein and

gene names are automatically annotated by software. Then, the interactions of these

25

entities are manually annotated. Each entity pair also contains the interaction certain-

ties.

4.4. The IEPA

The IEPA is a corpus created from the sentences of PubMed abstracts, con-

taining ten pairs of co-occurring chemicals that were mainly proteins. The corpus is

intentionally created for biomedical research topics. The entity pairs and interactions

are manually annotated concerning the direct and indirect effects of the entities on

each other.

4.5. The LLL

The LLL corpus is a shared dataset that contains gene interactions of Bacillus

subtilis, created for the Learning Language in Logic 2005 (LLL05) challenge. It con-

tains manually annotated gene-protein interactions stating types of interactions such

as explicit interaction, binding protein-gene interaction, or membership in a regulon

family.

4.6. Characterization of the Corpora

All five corpora consist of sentences extracted from biomedical literature, and

these sentences contain several protein and gene entities. In addition to entity anno-

tations, interacting entity pairs are also specified in each sentence. Even though some

corpora contains additional properties such as interaction direction, interaction cer-

tainty, binding of words that specify the interaction and interaction complex where an

annotation includes more than two entities, these do not exist in each corpus as seen in

Table 4.1 [63]. Therefore, the unified corpora only reveal the shared properties where

entity pairs contain simple interactions, i.e., undirected, untyped interactions with no

complex structure and no interaction certainty.

26

Table 4.1. The characteristics of the five corpora.

AIMed BioInfer HPRD50 IEPA LLL

Corpus Size 1955 1100 145 486 77

Entity Types
Human

Protein/Gene

Protein/

Gene/RNA

Human

Protein/Gene
Chemicals

Protein

/Gene

PPI direction no yes no yes yes

PPI certainty no no yes no no

PPI binding no yes no yes no

PPI complex no yes no no no

Each corpus contains a different number of sentences. AIMed and BioInfer are

the largest corpora among them having 1955 and 1100 sentences, respectively. LLL,

on the other hand, contains 77 sentences. The average sentence length is nearly the

same in each corpus, except HPRD50 has a slightly smaller sentence length.

Furthermore, each sentence consists of a different number of entities. BioInfer is

the most complex corpus with four entities for each sentence on average and a larger

ratio of multiple entities to two entities. It is the wealthiest source that contains the

largest number of entity pairs, 9666, while LLL is the smallest, containing 300 entity

pairs. Although LLL is the smallest corpora, it is one of the most complexes after

BioInfer, with 3.1 entities for each sentence on average. IEPA is one of the most simple

corpora with the lowest ratio of multiple entities to two entities for each sentence. It

means that the sentences contain single Protein-Protein interactions in general rather

than having interaction complexes.

Moreover, not each entity pair in a sentence reflects Protein-Protein Interaction.

The entity pairs that contain PPI are annotated as positive samples, and others an-

notated as negative samples. Hence, each corpus yields a different positive/negative

sample distribution as seen in Table 4.2.

27

Table 4.2. The statistics of the five corpora.

Corpus AIMed BioInfer HPRD50 IEPA LLL

Sentence Count 1955 1100 145 486 77

Min. Sent. Length 4 6 6 6 9

Max. Sent. Length 127 95 57 90 72

Avg. Sent. Length 31 35 27 32 34

Avg. Entity Count 2.2 4 2.8 2.3 3.1

Max. Entity Count 18 21 7 6 9

Sent. w/ Two Entities 477 273 69 375 35

Sent. w/ Mult. Entities 685 817 76 111 42

Sent. w/ Single PPI 316 268 49 281 25

Sent. w/ Mult. PPIs 254 516 41 23 42

Max. PPI count 12 38 6 4 7

Pos. Pair 1000 2534 335 163 164

Neg. Pair 4834 7132 482 270 166

Total Pair 5834 9666 817 433 300

4.7. Unified Dataset Format

The five unified PPI corpora are provided in a simple XML format. Data from

each corpus is divided into two separate files, one for training and the other for testing.

The correct labels for the test data are stored in another file. The directory contains

three separate folders named train, test, and answers. Train and test folders consist of

five XML files corresponding to AIMed, BioInfer, HPRD50, IEPA, and LLL datasets.

In the test XML files, there is no interaction information exists. This information can

be found in five TXT files located in the answers folder. Two samples from train and

test datasets can be seen in Figure 4.1 and Figure 4.2 respectively. These figures also

illustrate the XML format of the five unified datasets. A part of an answer key that is

in TXT format can be seen in Figure 4.3.

28

Figure 4.1. A train sample having two Protein-Protein Interactions from Five Unified

PPI Corpora.

Figure 4.2. A test sample from Five Unified PPI Corpora.

Figure 4.3. A part of an answer key, in TXT format.

29

The format contains the following properties:

• The sentence element contains a raw sentence.

• Entities are identified through the entity element, and it contains character offset

attribute that locates entity position.

• The interaction element is only available in the training dataset. It specifies

interaction details where e1 and e2 attributes are entity pairs and type attribute

describes interaction type.

• The pair element is only available in the test dataset. It specifies entity pairs

with e1 and e2 attributes. The information regarding whether the entity pairs

indicate Protein-Protein Interaction can not be seen in the test file; instead, they

can be found in the answer key.

• The answer key consists of each entity pair id given in the test dataset and the

corresponding interaction information, which indicates whether the entity pair

contains PPI or not.

For instance, the training sample ”Presenilin 1 suppresses the function of c-Jun

homodimers via interaction with QM/Jif-1.” seen in Figure 4.1 contains four protein

entities which are ”Presenilin 1”, ”c-Jun”, ”QM” and ”Jif-1”, and two interacting

protein pairs which are ”Presenilin 1” - ”QM” and ”Presenilin 1” - ”Jif-1”.

30

5. METHODOLOGY

5.1. Preprocessing

The dataset described in Chapter 4 is in XML format, and it should go through

some preprocessing steps before we can move on to the further process. Since XML

data format contains plentiful information such as XML tags, elements, attributes,

characters, and we simply require plain sentences, the XML format is quite noisy for

our study. Furthermore, our dataset contains many biomedical terms, such as protein,

gene and chemical names. However, protein names are just an entity for us, and we are

only interested in whether the two protein entities interact with each other rather than

which exact protein names interact. Fortunately, each biomedical entity is annotated

in Five Unified PPI Corpora with their character offsets, and we replace their exact

names with common indicators: PROTEIN1 and PROTEIN2 for protein pairs that

are investigated for protein interaction and PROTEIN keywords for other proteins.

In short, our aim in the preprocessing step is to eliminate irrelevant and redun-

dant information and noisy and unreliable data. We have applied the following data

preprocessing steps to obtain higher quality data:

• Firstly, we parse XML files so that each XML element and attribute is accessible

as an XML element tree.

• At the top of the XML element tree, we have document trees, consisting of

sentence trees. We process each document tree one by one to process sentence

trees.

• Training and test sets have different sentence tree structures; therefore, they are

processed differently.

(i) In the training set, a sentence tree contains a raw sentence, a list of all enti-

ties in this sentence, and a list of entity pairs that indicate protein-protein

interactions in the same sentence. The training XML format does not con-

31

tain non-interacting entity pairs; however, this information is also important

for our model since they are considered as negative samples. Therefore we

generate all entity pair combinations for each sentence, and then we label

the interacting pairs in the given sentence tree as positive samples and the

non-interacting pairs as negative samples. In a sentence with n protein

entities (n ≥ 2),
(
n
2

)
entity pairs are generated. Moreover, with the help

of entity character offsets, we replace entity pair names with PROTEIN1

and PROTEIN2 keywords and entity names other than the entity pair with

PROTEIN keyword.

(ii) In the test set, sentence trees contain the raw sentence, all entities, and all

entity pairs. Same as the training set, we replace the entity pair names

with PROTEIN1 and PROTEIN2 keywords and entity names other than

the entity pair with PROTEIN keyword. This time we fetch the interaction

label from the answer key file.

• After XML parsing, we obtain clean sentences for each entity pair and the cor-

responding interaction annotation. Then, we apply further basic preprocessing

steps to obtained final sentences:

(i) Punctuation marks are removed.

(ii) Digit only strings are removed.

(iii) Blank spaces are removed.

• Finally, we export the resulting sentences and annotations in a Comma Separated

Values (CSV) file.

As an example, consider the sample training sentence given in Figure 4.1. The

sentence ”Presenilin 1 suppresses the function of c-Jun homodimers via interaction with

QM/Jif-1.” contains four protein entities which are ”Presenilin 1”, ”c-Jun”, ”QM”

and ”Jif-1”, and two interacting protein pairs which are ”Presenilin 1” - ”QM” and

”Presenilin 1” - ”Jif-1”. The sentence contains
(
n=4
2

)
= 6 entity pair combinations,

therefore we evaluate the same sentence for 6 times for each entity pairs. First, we

replace corresponding protein names with PROTEIN1 and PROTEN2 keywords and

other proteins as PROTEIN. Then we annotate interacting protein pairs that have

32

been given in training data as True PPI samples and other protein pairs as False PPI

samples. Table 5.1 summarizes the resulting preprocessed sentences for this example.

Table 5.1. A sample preprocessed sentence.

Protein Pair PPI Preprocessed Sentence

Presenilin 1

/ c-Jun
False

PROTEIN1 suppresses the function of PROTEIN2

homodimers via interaction with PROTEIN PROTEIN

Presenilin 1

/ QM
True

PROTEIN1 suppresses the function of PROTEIN

homodimers via interaction with PROTEIN2 PROTEIN

Presenilin 1

/ Jif-1
True

PROTEIN1 suppresses the function of PROTEIN

homodimers via interaction with PROTEIN PROTEIN2

c-Jun / QM False
PROTEIN suppresses the function of PROTEIN1

homodimers via interaction with PROTEIN2 PROTEIN

c-Jun / Jif-1 False
PROTEIN suppresses the function of PROTEIN1

homodimers via interaction with PROTEIN PROTEIN2

QM / Jif-1 False
PROTEIN suppresses the function of PROTEIN

homodimers via interaction with PROTEIN1 PROTEIN2

5.2. Overall System Architecture

In this chapter, we introduce the overall system architecture. Figure 5.1 depicts

the system overview to provide a better understanding for the following chapters. We

implement a two-staged hybrid BERT-GAN system for the PPI extraction task. The

system works in a cascaded way, or simply put one after another. Our two stages have

different purposes:

• The first stage is implemented to perform predictions. It predicts whether a given

sentence contains PPIs or not. Therefore it perform a binary relation extraction.

• The second stage is implemented to increase the accuracy of the first stage. The

prediction outputs of the first stage pass through the second stage. By an adver-

33

sarial process, false positive predictions are eliminated to increase the performance

in this stage.

To accomplish these two tasks, we implemented two separate learning models.

First, we fine-tune BioBERT, a pretrained language model for the biomedical domain,

to learn PPI information for the first stage. Then, for the second stage, we implemented

a Generative Adversarial Network that consists of two Convolutional Neural Network

models to eliminate false positives with the help of the adversarial process. Both stages

use the Five Benchmarking corpora explained in Chapter 4. Furthermore, we apply

the same preprocessing steps explained in Section 5.1.

5.3. BioBERT Model

Bidirectional Encoder Representations from Transformers for Biomedical Text

Mining (BioBERT) is a biomedical language representation model designed for Biomed-

ical Natural Language Processing (BioNLP) tasks. It has the same structure as BERT

that explained in section 2.5 in details. However, since BERT is pre-trained on generic

corpora like Wikipedia and BooksCorpus and is not developed for the biomedical do-

main particularly, estimating its performance on biomedical text is tricky. BioBERT,

on the other hand, is pre-trained on large biological corpora obtained from PubMed

and PMC articles, alongside general corpora (Wikipedia and BooksCorpus). As a con-

sequence, BioBERT also covers terms that are not found in biomedical corpora. The

vocabulary used for pre-training of BioBERT is listed in Table 5.2. It remarkably

outperforms BERT on three main BioNLP tasks, which are biomedical named en-

tity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80%

F1 score improvement), and biomedical question answering (12.24% MRR improve-

ment) [12]. Since its tremendous success, we decided to adopt the BioBERT model to

perform the PPI extraction task. We accomplish this by fine-tuning BioBERT on Five

Benchmarking PPI corpora. Fine-tuned BioBERT model is designed for our first stage

to predict whether given sentences contain PPIs. The detailed information regarding

the fine-tuning process and the implementation is given in the following section.

F
ig

u
re

5.
1.

A
n

ov
er

v
ie

w
of

ou
r

tw
o-

st
ag

ed
h
y
b
ri

d
B

E
R

T
-

G
A

N
p
ip

el
in

e.

35

Table 5.2. List of corpora and number of their words used BioBERT.

Corpus Number of words Domain

English Wikipedia 2.5B General

BooksCorpus 0.8B General

PubMed Abstracts 4.5B Biomedical

PMC Full-text articles 13.5B Biomedical

5.3.1. Fine-Tuning the BioBERT

We fine-tune the pre-trained BioBERT(v1.1+PubMed) model using the training

sets of Five Benchmarking PPI Corpora after applying preprocessing steps explained

Section 5.1 and we adapt it for our PPI extraction task. We utilized the sentence

classifier of the BERT, which uses a [CLS] token for the classification of relations and

a [SEP] token for the fixed-length sentences. Our preprocessed sentences are encoded

using the pre-trained BioBERT tokenizer that applies WordPiece tokenization.

Huggingface Transformers library [64] provides many general-purpose architec-

tures and pre-trained NLP models including BERT and BioBERT models. Both pre-

trained BioBERT model and BioBERT tokenizer are obtained from Transformers li-

brary which is implemented with Python programming language. BioBERT is imple-

mented with PyTorch deep learning library, therefore our fine-tuning implementation

also utilizes Pytorch.

As an initial step, we encode our preprocessed sentences with the help of pre-

trained BioBERT tokenizer. BioBERT tokenizer adds the [CLS] token to the beginning

of each sentence and [SEP] token to the end of each sentence and then map each token

to their ids. Since sentences in our dataset are of varying length, we will use padding to

make all sentences have the same length. We define a maximum sequence length to pad

the sentences. The maximum sequence length is defined by looking at the distribution

of the sentence length in our dataset as seen in Figure 5.2.

36

Figure 5.2. The distribution of sentence length in our dataset.

As seen in Figure 5.2 most of the sentences have a length of 64 words or less,

whereas the maximum sentence length is 127. The reason for defining a shorter maxi-

mum sentence length is that padding operation adds padding tokens to the end of each

sentence until it reaches the desired sentence length, therefore the resulting sentences

may contain redundant information and further it decreases the training performance.

Moreover, an attention mask is defined for each sentence. The attention mask is

a filter that indicates which tokens are padding and which tokens are sentence words.

This tells the BioBERT to not process PAD tokens for its interpretation of the sen-

tence. Later on, both encoded sentences and attention masks pass into the pre-trained

BioBERT model for fine-tuning task. HuggingFace’s BertForSequenceClassification

model is used with our dataset to obtain a classifier which predicts whether sentences

contain protein interactions. A single output layer is added on top of the BERT Model

to obtain BertForSequenceClassification Model. As we feed our PPI data during fine-

tuning, the whole pre-trained BioBERT model with an additional untrained output

layer will be trained on Protein-Protein Interaction task.

37

We select AdamW optimizer [65] as an optimization algorithm for fine-tuning,

which is one of the most commonly used optimizers for deep learning models. The

AdamW optimizer has several hyperparameters such as learning rate, epsilon and

weight decay. Epsilon is a very small number to prevent any division by zero in the

training phase. Learning rate and weight decay control how weights will be updated

in each epoch. The other hyperparameters for our model are epoch number and batch

size. We fine-tune our BioBERT model with the given hyperparameter settings in

Table 5.3. These values are obtained by several experiments and will be explained in

Chapter 6.

Table 5.3. Hyperparameter selection for fine-tuning BioBERT model.

HyperParameter Value

Max Sentence Length 64

Optimizer AdamW

Batch Size 16

Learning rate 2e-5

Epsilon 1e-8

Epochs 4

Weight decay 0.01

5.3.2. The first-stage / BioBERT PPI Prediction

In the first stage, we predict PPI sentences using fine-tuned BioBERT model.

After we fine-tune the BioBERT model with our Five Unified PPI corpora, we ob-

tain a classifier designed for a PPI extraction task. For correct evaluation, we obtain

predictions with various experimental settings:

• We train five different BioBERT models by using training sets of five PPI corpora.

Then we obtain predictions on the corresponding test sets.

• We obtain cross-corpus predictions by using these models on cross test sets.

38

• We combine the training sets of five corpora and train a single BioBERT model

on this single data source. Then we obtain predictions on each test set.

All these predictions then will be used in our second stage. Since our first stage

itself is capable of predicting PPIs, we also evaluate its performance separately. All

experiments and their results will be explained in Chapter 6.

5.4. GAN Model

Inspired by the work by [66], we adopt a GAN model to eliminate False-Positive

predictions obtained from our first stage. We use training sentences of five PPI corpora

with ground truth labels and test sentences of five PPI corpora with predicted labels

annotated by our BioBERT model together during the adversarial learning. By com-

bining these two, we obtain a new dataset that contains some possibly false-positive

labels.

Unlike the generator used in the Computer Vision field that generates fake images

from a random input space, our generator samples positive sentences from our dataset

and assigns some probabilities to each sample. On the other hand, our discriminator has

the same responsibility as the discriminator in the Computer Vision field; it is simply

a binary classifier and tries to distinguish whether given sentences contain protein

interactions or not. The generator updates its network with the feed-backs of the

discriminator gradually. Since our dataset contains some false-positive samples, we

believe that the generator will assign lower probabilities to false positives at the end

of the adversarial training by capturing the correct data distribution with the help of

our discriminator.

We label high-confidence positive samples determined by G as negatives and low-

confidence positive samples determined by G as positives in order to fool the discrimi-

nator. During the adversarial learning phase, the generator’s objective is to maximize

the probability of being positive for true samples, while the objective of the discrim-

39

inator is to minimize this probability. In the end, we define a probability threshold

and change the label of sentences below this threshold but annotated as positive by

BioBERT to negative.

5.4.1. PreTraining GAN

In order to obtain better initial parameters, both the generator and discriminator

are pre-trained. As a positive pre-training dataset, the positive instances of our training

dataset coming from the Five Benchmarking Corpora (P) are selected for our both

networks. As a negative pre-training dataset, on the contrary, we split our negative

instances into two separate negative datasets, ND for the discriminator, and NG for the

generator, for correct evaluation. At the end of the adversarial learning process, we wish

for a strong generator that fools the discriminator. Since the strong generator can be

obtained by competition with a robust discriminator, we pre-train the discriminator

until it reaches above 90% accuracy. The pre-training strategy of the generator is

similar to the discriminator except that it uses a separate negative dataset NG, and it

overfits on the positive dataset, P. The reason for overfitting in the pre-training phase

is that we want the generator to assign high probabilities for false-positive instances

at the beginning wrongly. Then, by applying adversarial learning, the generator will

learn false-positive samples with the help of feedback from the discriminator.

5.4.2. Training Generative Network

Convolutional Neural Networks have recently achieved great success in NLP-

related tasks, especially for sentence-level classification. For the protein-protein inter-

action extraction, we have sentences and entity pairs as input. Both our generative

and discriminator networks perform a similar task with sentence-level classification;

therefore, CNN architectures are very well fitted for our research. We have used the

typical setting as [67], proposed for their CNN architecture. We combine both word

embeddings and position embeddings to represent our sentences with vectors.

40

5.4.2.1. Word Embeddings. Different from this work [67], we use another pre-trained

word embedding, BioWordVec [68], which is designed for the biomedical domain.

BioWordVec has similar architecture to Word2Vec. However, it is trained on 27,599,238

PubMed articles and 28,436 MeSH term graphs; therefore, favourable for our PPI

dataset.

5.4.2.2. Position Embeddings. We also use position embeddings along with word em-

beddings. Relative distances from target protein entities are mapped into a vector of

dimension dpos. Since we have two target proteins, we obtain two different position

vectors. Relative distances of each word to target proteins are represented in these

two vectors, and the resulting position embedding is obtained by concatenation. While

the words staying on the other target protein direction are represented with positive

distances, the words staying on the opposite direction are represented with negative

distances.

5.4.2.3. CNN Architecture. Our CNN architecture consists of three basic components,

(i) Embedding layers, for word and position representations, (ii) a convolutional layer

that performs convolution operation and learns features, and (iii) an output layer,

applies a linear transformation and returns a two-dimensional vector representing the

probability of being positive and negative interaction. Our CNN architecture has some

hyperparameters such as window size and kernel size for convolutional layer, dpos for

position embedding dimension, and learning rate for Adam optimizer. We use the same

hyperparameter settings except the learning rate for both generator and discriminator

networks. The optimal hyperparameter values are obtained by several experiments and

given in Table 5.4.

In Computer Vision-related tasks, the generator produces new images from low

dimensional input noise. However, generating meaningful sentences from a generator

is a more complicated task in NLP. Therefore, we adopt the generator not to generate

new sentences instead to pick up random positive sentences that indicate protein inter-

41

Table 5.4. Hyperparameter settings of the generator and the discriminator.

HyperParameter Value

Optimizer Adam

dpos 64

Window Size 3

Kernel Size 100

Learning rate, G 1e-6

Learning rate, D 1e-5

Epochs 10

actions from the training dataset and assign probabilities to each of them. For an input

sentence sj , the generator assigns a probability of being positive protein interaction

pG(sj). After, the same sentence will be evaluated by the discriminator. In this time,

the discriminator will assign some probability of being a positive interaction pD(sj)

to the same sentence. Since the selected sentences are positive interactions from the

dataset, they consist of high-confidence sentences and regarded as true positives by the

generator. Therefore, the generator aims to maximize the following equation:

LG =
∑
sj∈T

log pD(sj) . (5.1)

5.4.3. Training Discriminator Network

The neural network architecture selection of the discriminator is the same as the

generator. We have used the CNN model for discriminator with the same configura-

tions as the generator. The hyperparameter selection of the discriminator is given in

Table 5.4. The discriminator gets a sample subset evaluated by the generator, and

then it assigns some probabilities to each sample. Even the generator regards these

sentences as true positives; the discriminator treats them as negative samples. The

42

objective of the discriminator is to minimize the cross-entropy loss function:

LD = −(
∑

sj∈(Bi−T)

log pD(sj) +
∑
sj∈T

log(1− pD(sj))) . (5.2)

5.4.4. The Second Stage / Adversarial Training

In the training phase, we use positive samples (P) from our training dataset. We

split P = s1, s2, ..., sj, ... into the N bags B = B1, B2, ..., BN so that we can utilize our

training process by gathering more feedback from the discriminator. In each epoch,

we traverse all positive dataset P once. The generator network assigns a probability

to each sentence in a bag Bi, pG(sj)j=1,...,|Bj |. Then we select the high-confidence

sentences among them, and they are regarded as negatives by the discriminator. The

low-confidence sentences are regarded as true samples by the discriminator. While the

generator tries to maximize the probabilities of being positive, the discriminator tries

to minimize the cross-entropy loss function.

43

6. EXPERIMENTS AND RESULTS

In this chapter, we provide different experimental settings and evaluate the per-

formance of our system by comparing it with other previous studies. The chapter starts

with the definition of the evaluation metrics and then provides different experimental

results. Since our first stage is capable of extracting Protein-Protein Interactions by

itself, we report its performance separately as well. Moreover, in order to claim the

success of the second stage, we also report Significance Test results for this stage.

6.1. Evaluation Metrics

The F1-score is the most commonly used performance evaluation metric for the

Protein-Protein Interaction Extraction task. It is the combination of precision and

recall metrics; therefore, it evaluates the system’s performance more precisely. The

precision, recall and F1-score metrics are defined as follows:

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

F1− score =
2 ∗ Precision ∗Recall
Precision+Recall

(6.3)

where,

• TP is True-Positive, which represents the number of sentences that are correctly

predicted as positive interactions by our model.

• FP is False-Positive, which represents the number of sentences that are wrongly

predicted as positive interactions by our model.

44

• TN is True-Negative, which represents the number of sentences that are correctly

predicted as non-interacting by our model.

• FN is False-Negative, which represents the number of sentences that are wrongly

predicted as non-interacting by our model.

Then, more specifically,

• The precision score attempts to answer the question of what proportion of positive

predictions were actually correct.

• The recall score attempts to answer the question of what proportion of actual

positives were predicted correctly.

Moreover, since some related studies provide macro-averaged F1 scores for correct

evaluation on imbalanced datasets, we also calculate macro-averaged F1 scores in each

experiment for the correct comparison. Macro-averaged F1-score is the average F1-

score on positive instances and negative instances, and it is widely used for imbalanced

data cases. It assigns a higher weight to the minority class, interacting proteins in our

case, and hence serves as a proper evaluation metric for our task. The macro-averaged

F1-score is calculated as follows:

macro-averaged-F1-score =
1

N

N∑
i=0

F1-score i . (6.4)

6.2. McNemar’s Test

McNemar’s test is a non-parametric statistical hypothesis test for paired compar-

isons [69]. It is also referred to as the ”within-subjects chi-squared test”. McNemar’s

test operates upon a contingency table which is a version of a 2x2 confusion matrix.

The contingency table compares the outcome of two different tests on the same table.

It is commonly used in medicine to determine whether a drug or treatment affects a

population. The McNemar test can also be applied to compare the performance of two

45

different classifiers. The contingency table of two different classifiers is represented as

seen in Table 6.1.

Table 6.1. Contingency table for two classifiers.

Classifier B correct Classifier B incorrect

Classifier A

correct

(X), number of samples correctly

classified by both A and B

(Y), number of samples

misclassified by B but not by A

Classifier A

incorrect

(Z), number of samples

misclassified by A but not by B

(T), number of samples

misclassified by both A and B

The null hypothesis, H0, states that the performance of the two classifiers are

similar, i.e., p(X) + p(Y) = p(X) + p(Z) and p(Z) + p(T) = p(Y) + p(T). Then, the

null and alternative hypotheses are defined as follows:

H0 : p(Y) = p(Z) , (6.5)

H1 : p(Y) 6= p(Z) . (6.6)

Then, McNemar test statistic, chi-squared, is calculated as follows:

chi-squared =
(Y − Z)2

Y + Z
. (6.7)

For a predefined significance threshold, i.e., α = 0.05, the p-value is calculated

assuming the null hypothesis is true. If the p-value is lower than the chosen significance

threshold, α, then the null hypothesis is rejected. This means that the performance of

the two systems differs.

We apply McNemar’s test to compare our two stage’s performance with each

other. We use the alternative hypothesis that the performance of our two stages is

46

different. We want to prove that our second stage significantly improves the predictions

of the first stage. If we obtain a better F1-score with alpha < 0.05 on the second stage,

we can conclude that the performance improvement is statistically significant.

6.3. Results of the First Stage

Since Five Benchmarking PPI Corpora consists of separate training and test

datasets, we fine-tuned the pre-trained BioBERT(v1.1+PubMed) model on the train-

ing datasets of five corpora and obtained five different trained models for the PPI

Extraction task in our first stage. Then, as our first experiment, we evaluated the

performance of our first stage on the test datasets of five corpora. Finally, we reported

our F1 results by comparing all previous related work that has been constructed on

the same five PPI corpora in Table 6.2.

Our first stage outperforms all previous studies on AIMed corpus, one of the most

enormous and complex corpus, and we obtain a state-of-the-art F1-score with a relative

improvement of 2.1%. Furthermore, we obtain the second-best result on BioInfer corpus

and the third-best result on HPRD50 and IEPA corpora. Our first stage performance

on the LLL corpus, on the other hand, lags below earlier studies, with a relative 11.6

percent F1-score. The reason may be the size and the characteristics of the LLL corpus.

It is the smallest corpus among five corpora, which has 300 sentences, and other kernel-

based approaches and sentence representations handle the characteristics of the LLL

corpus better than BioBERT.

As previously given in Table 4.2, all five corpora except the LLL corpus are highly

imbalanced, i.e., they have a substantially higher proportion of negative samples than

positives. Therefore, some studies provide macro-averaged F1 scores, which is the

average F1-score of positive and negative instances. Therefore, we have also calcu-

lated macro-averaged F1 scores in our experiments, and we compare these results in

Table 6.3, separately.

47

Lastly, we evaluated the first stage performance without applying protein name

replacement in preprocessing phase since we utilize a transformer-based BioBERT

model in this stage. However, since some protein names are rare and, they bring

some biases to sentences, they negatively affected the performance. The obtained F1-

scores are 31.4%, 41.0%, 45.9%, 62.8%, and 68.6% on five corpora. The results reveal

that the performance loss is more significant on larger corpora and, therefore, protein

name replacement has a positive effect on our system.

The compared models are briefly described as follows:

(i) Edit kernel. The similarity between two DPT of sentences is calculated by edit

distance similarity [11].

(ii) APG kernel. The weighted sum of all dependency paths between target proteins

is used. They assign higher weights for the shortest paths, and lower weights to

other paths [39].

(iii) hybrid kernel. BOW, ST and Graph kernels with syntactic, dependency and deep

parsers are combined as a hybrid kernel [40].

(iv) kBSPS kernel. Nodes within a distance k from the shortest path are included in

the representation [41].

(v) wws kernel. Different weights are assigned to common substrings of two shortest

path strings [42].

(vi) NHGK. Each node label of dependency graphs is map into a fixed-length binary

array, and values are updated according to neighbor dependency nodes [43].

(vii) EDG kernel. The extended dependency graph vertices are constructed with text,

part-of-speech tags, and word lemmas [44].

(viii) CTK. Convolution tree kernel integrates interaction pattern trees for sentence

representation [45].

(ix) DSTK. Distributed smoothed tree kernel utilizes both syntactic and semantic

vectors to overcome the shortcomings of information loss from single kernel ap-

proaches [47].

(x) DNN. A feed-forward neural network architecture for PPI extraction [48].

48

(xi) DCNN. The deep convolutional neural network implementation that combines

word and position embeddings [49].

(xii) sdpCNN. The sdpCNN model learns features from the shortest dependency paths

with a CNN architecture [50].

(xiii) MCCNN. A CNN model with a multichannel word embedding input layer [51].

(xiv) McDepCNN. A CNN model with multichannel dependency-based word embed-

dings [54].

(xv) LSTM. The bi-directional RNN architecture with Long Short-Term Memory [55].

(xvi) hybrid CNN-RNN. A hybrid CNN and RNN based model. While the RNN model

captures sentence features from sentence sequences, the CNN model utilizes SDPs

[56].

(xvii) t-LSTM. The dependency parse trees are traversed through a tree-LSTM struc-

ture in order to learn the structural information of sentences. t-LSTM model is

combined with a structured attention-based model [57].

(xviii) DRCNN. A deep residual CNN model architecture. A residual connection layer

is added between the convolutional layer to make the model stronger [58].

Table 6.2. Performance comparison of our first stage based on Five Benchmarking

PPI corpora.

Model Year Corpus Precision Recall F1-Score

Edit kernel 2007 AIMed 77.5 43.5 55.6

APG kernel 2008 AIMed 52.9 61.8 56.4

Hybrid kernel 2009 AIMed 55.0 68.8 60.8

kBSPS kernel 2009 AIMed 49.4 44.7 46.1

wws kernel 2010 AIMed 61.4 53.3 56.6

NHGK 2011 AIMed 54.9 68.5 60.2

EDG kernel 2015 AIMed 57.3 65.3 61.1

CTK 2016 AIMed 57.2 64.5 60.6

DSTK 2017 AIMed 68.9 73.2 71.0

DNN 2016 AIMed 51.5 63.4 56.1

49

Table 6.2. Performance comparison of our first stage (cont.)

Model Year Corpus Precision Recall F1-Score

sdpCNN 2016 AIMed 64.8 67.8 66.0

MCCNN 2016 AIMed 76.4 69.0 72.4

McDepCNN 2017 AIMed 67.3 60.1 63.5

LSTM 2017 AIMed 78.8 75.2 76.9

hybrid CNN-RNN 2018 AIMed 59.9 63.5 61.7

Our First Stage/

BioBERT Model
2021 AIMed 78.4 79.6 79.0

Edit kernel 2007 BioInfer - - -

APG kernel 2008 BioInfer 56.7 67.2 61.3

Hybrid kernel 2009 BioInfer 65.7 71.1 68.1

kBSPS kernel 2009 BioInfer - - -

wws kernel 2010 BioInfer 61.8 54.2 57.6

NHGK 2011 BioInfer 59.3 68.1 63.4

EDG kernel 2015 BioInfer 57.6 59.9 58.7

CTK 2016 BioInfer 68.6 70.3 69.4

DSTK 2017 BioInfer 75.7 76.9 76.3

DNN 2016 BioInfer 53.9 72.9 61.6

sdpCNN 2016 BioInfer 73.4 77.0 75.2

MCCNN 2016 BioInfer 81.3 78.1 79.6

McDepCNN 2017 BioInfer 62.7 68.2 65.3

LSTM 2017 BioInfer 87.0 87.4 87.2

hybrid CNN-RNN 2018 BioInfer 62.7 67.3 64.8

Our First Stage/

BioBERT Model
2021 BioInfer 81.2 78.9 79.9

Edit kernel 2007 HPRD50 - - -

APG kernel 2008 HPRD50 64.3 65.8 63.4

Hybrid kernel 2009 HPRD50 68.5 76.1 70.9

kBSPS kernel 2009 HPRD50 66.7 80.2 70.9

50

Table 6.2. Performance comparison of our first stage (cont.)

Model Year Corpus Precision Recall F1-Score

wws kernel 2010 HPRD50 66.7 69.2 67.8

NHGK 2011 HPRD50 67.8 85.3 74.6

EDG kernel 2015 HPRD50 76.7 83.3 79.9

CTK 2016 HPRD50 63.8 81.2 71.5

DSTK 2017 HPRD50 76.3 84.2 80.0

DNN 2016 HPRD50 58.7 92.4 71.3

sdpCNN 2016 HPRD50 - - -

MCCNN 2016 HPRD50 - - -

McDepCNN 2017 HPRD50 - - -

LSTM 2017 HPRD50 - - -

hybrid CNN-RNN 2018 HPRD50 75.1 76.4 75.6

Our First Stage/

BioBERT Model
2021 HPRD50 82.6 73.1 77.6

Edit kernel 2007 IEPA - - -

APG kernel 2008 IEPA 69.6 82.7 75.1

Hybrid kernel 2009 IEPA 67.5 78.6 71.7

kBSPS kernel 2009 IEPA 70.4 73.0 70.8

wws kernel 2010 IEPA 73.8 71.8 72.9

NHGK 2011 IEPA 72.4 79.8 75.3

EDG kernel 2015 IEPA 69.9 76.2 72.9

CTK 2016 IEPA 62.5 83.3 71.4

DSTK 2017 IEPA 75.9 85.2 80.2

DNN 2016 IEPA 71.8 79.4 74.22

sdpCNN 2016 IEPA - - -

MCCNN 2016 IEPA - - -

McDepCNN 2017 IEPA - - -

LSTM 2017 IEPA - - -

hybrid CNN-RNN 2018 IEPA 73.2 84.4 78.2

51

Table 6.2. Performance comparison of our first stage (cont.)

Model Year Corpus Precision Recall F1-Score

Our First Stage/

BioBERT Model
2021 IEPA 74.2 82.1 78.0

Edit kernel 2007 LLL - - -

APG kernel 2008 LLL 72.5 87.2 76.8

Hybrid kernel 2009 LLL 77.6 86.0 80.1

kBSPS kernel 2009 LLL 76.8 91.8 82.2

wws kernel 2010 LLL 76.9 91.2 82.4

NHGK 2011 LLL 86.2 92.1 89.1

EDG kernel 2015 LLL 92.1 78.2 84.6

CTK 2016 LLL 73.2 89.6 80.6

DSTK 2017 LLL 87.3 91.2 89.2

DNN 2016 LLL 76.0 91.0 81.4

sdpCNN 2016 LLL - - -

MCCNN 2016 LLL - - -

McDepCNN 2017 LLL - - -

LSTM 2017 LLL - - -

hybrid CNN-RNN 2018 LLL 76.6 96.1 85.2

Our First Stage/

BioBERT Model
2021 LLL 70.3 86.7 77.6

52

Table 6.3. Performance comparison of our first stage by macro precision, macro recall

and macro F1-score.

Model Year Corpus Precision Recall

macro-

averaged

F1-Score

DCNN 2016 AIMed 88.6 81.7 85.0

t-LSTM 2019 AIMed 81.4 81.9 81.6

DRCNN 2019 AIMed 87.0 85.9 86.3

Our First Stage/

BioBERT Model
2021 AIMed 87.0 87.5 87.2

DCNN 2016 BioInfer 72.1 77.5 74.7

t-LSTM 2019 BioInfer 88.9 89.3 89.1

DRCNN 2019 BioInfer 91.5 90.8 91.1

Our First Stage/

BioBERT Model
2021 BioInfer 84.5 84.9 84.6

DCNN 2016 HPRD50 - - -

t-LSTM 2019 HPRD50 81.7 82.3 81.3

DRCNN 2019 HPRD50 82.6 82.2 81.7

Our First Stage/

BioBERT Model
2021 HPRD50 83.9 82.0 82.7

DCNN 2016 IEPA - - -

t-LSTM 2019 IEPA 78.6 78.7 78.5

DRCNN 2019 IEPA 78.4 78.5 78.3

Our First Stage/

BioBERT Model
2021 IEPA 80.3 81.1 80.5

DCNN 2016 LLL - - -

t-LSTM 2019 LLL 84.8 84.3 84.2

DRCNN 2019 LLL 83.2 82.7 82.6

Our First Stage/

BioBERT Model
2021 LLL 76.8 75.6 77.6

53

6.3.1. Cross-Corpus Results

Secondly, we performed a cross-corpus evaluation. This time, we trained our

model on one corpus and tested the performance on the others. Cross-corpus evalua-

tion allows us to determine if our BioBERT model can perform well on other corpora so

that it can be generalized for different PPI datasets. We can also discover similarities

among corpora and create larger datasets that may reduce the data sparseness for deep

learning models. Table 6.4 depicts the cross-corpus results.

Table 6.4. Cross-Corpus evaluation results on Five Benchmarking PPI corpora.

Training

Corpus

Test

Corpus
Precision Recall F1-Score

AIMed AIMed 78.4 79.6 79.0

AIMed BioInfer 84.0 26.9 40.7

AIMed HPRD50 75.0 69.2 72.0

AIMed IEPA 80.0 7.1 13.1

AIMed LLL 100 3.3 6.5

BioInfer AIMed 39.0 89.5 54.3

BioInfer BioInfer 81.2 78.9 79.9

BioInfer HPRD50 60.0 80.8 68.9

BioInfer IEPA 67.9 67.9 67.9

BioInfer LLL 78.3 60.0 67.9

HPRD50 AIMed 52.6 63.9 57.7

HPRD50 BioInfer 72.8 28.9 41.3

HPRD50 HPRD50 82.6 73.1 77.6

HPRD50 IEPA 69.6 57.1 62.7

HPRD50 LLL 70.0 23.3 35.0

IEPA AIMed 34.3 64.9 44.8

IEPA BioInfer 59.6 40.1 48.0

IEPA HPRD50 57.9 84.6 68.8

IEPA IEPA 74.2 82.1 78.0

54

Table 6.4. Cross-Corpus evaluation results (cont.)

Training

Corpus

Test

Corpus
Precision Recall F1-Score

IEPA LLL 80.0 53.3 64.0

LLL AIMed 24.0 78.5 36.7

LLL BioInfer 38.1 69.2 49.1

LLL HPRD50 46.8 84.6 60.3

LLL IEPA 50.5 89.3 64.5

LLL LLL 70.3 86.7 77.6

6.3.2. Combined-Corpus Results

Since the performance of the fine-tuned models highly depends on the training

data used, we also investigated the effect of combining the training datasets of five cor-

pora as a single source. This time we fine-tuned the pre-trained BioBERT(v1.1+PubMed)

model on a single combined dataset source and obtained a single model. And then,

as our third experiment, we evaluated the performance of our single trained model

on test sets of five corpora. The results suggest that when the model is trained on a

larger dataset, the performance increases on the smaller corpora: HPRD50 and LLL,

and decreases on larger corpora: AIMed and BioInfer. While corpus size has a positive

effect on the performance of our BioBERT model, inter-corpus features can degrade

performance in already large datasets. The Table 6.5 summarizes the overall compari-

son.

Table 6.5. Combined corpus evaluation results on Five Benchmarking PPI corpora.

Training

Corpus

Test

Corpus
Precision Recall F1-Score

AIMed AIMed 78.4 79.6 79.0

Combined

Corpora
AIMed 60.8 84.3 70.6

55

Table 6.5. Combined corpus evaluation results (cont.)

Training

Corpus

Test

Corpus
Precision Recall F1-Score

BioInfer BioInfer 81.2 78.9 79.9

Combined

Corpora
BioInfer 80.3 76.4 78.0

HPRD50 HPRD50 82.6 73.1 77.6

Combined

Corpora
HPRD50 77.8 80.8 79.2

IEPA IEPA 74.2 82.1 78.0

Combined

Corpora
IEPA 75.4 76.8 76.1

LLL LLL 70.3 86.7 77.6

Combined

Corpora
LLL 78.1 83.3 80.6

Combined

Corpora
Combined test 75.1 76.2 75.7

6.4. Results of The Second Stage

In the second stage, we trained our GAN model by combining (i) the training

datasets of five corpora with ground truth labels and (ii) the test datasets of five

corpora with BioBERT annotations. At the end of the training phase, we changed

the labels of some test sentences to negative, in which our generator has assigned low

probabilities, but BioBERT has annotated positive. Then we calculate F1-score for

every five datasets by comparing the ground truth test labels.

We conducted two experiments for the second stage evaluation. First, we run our

second stage on top of the BioBERT model trained on every five corpora separately.

56

Second, we run our second stage on top of the BioBERT model trained on the combined

corpus. In both experiments, we tested our second stage on the test datasets of five

corpora. Hence, we report ten different results: five for the first case experiments and

five for the second case experiments.

Moreover, since our GAN model learns each time differently, it produces different

results. Therefore, we got five different runs for each test scenario, and the average

of these runs was reported as an overall second stage performance. Each individual

run provides the precision, recall, and F1 score results of the second stage. Since

our second stage changes some positive-labelled predictions of the BioBERT model to

negatives, we also report the number of changes in false-positives and true-positives.

Lastly, we conduct McNemar’s Test to evaluate whether we can obtain statistically

significant improvements on each second stage run compared to first stage results. The

contingency table, chi-squared value, and p-values of McNemar test statistics were all

provided in the final result table.

6.4.1. Second Stage Results (First Stage trained on separate corpora)

This section provides our second stage results when the BioBERT model is trained

on five corpora separately.

6.4.1.1. McNemar Test Results on AIMed. In this experiment, we use the first stage

predictions of our BioBERT model trained on AIMed corpus. The AIMed training

dataset with ground truth labels and AIMed test dataset with BioBERT predictions

are used during adversarial learning. The experimental results of five different runs are

given in Table 6.6. The results show that the F1 score drops 6.9% on average compared

to the first stage. The p-value of the McNemar test, which is 0.015 < 0.05, also proves

that the performance loss is statistically significant.

57

Table 6.6. The second stage results on AIMed Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[992, 10]

[22, 71]]
3.78 0.052 10 22 80.2 68.1 73.7

2
[[991, 8]

[23, 73]]
6.32 0.012 8 23 79.1 67.5 72.9

3
[[983, 9]

[31, 72]]
11.03 0.001 9 31 78.6 63.4 70.1

4
[[993, 6]

[21, 75]]
7.26 0.007 6 21 78.4 68.6 73.2

5
[[984, 10]

[30, 71]]
9.03 0.003 10 30 79.2 63.9 70.7

avg.

(2nd

Stg.)

- 7.48 0.015 9 25 79.1 66.3 72.1

1st

Stg.
- - - - - 78.4 79.6 79.0

6.4.1.2. McNemar Test Results on BioInfer. In this experiment, we use the first stage

predictions of our BioBERT model trained on the BioInfer corpus. The BioInfer train-

ing dataset with ground truth labels and BioInfer test dataset with BioBERT predic-

tions are used during adversarial learning. The experimental results of five different

runs are given in Table 6.7. The results demonstrate that although we can obtain

performance improvement on some runs, the F1 score drops very slightly on aver-

age compared to the first stage. None of each run can obtain statistically significant

changes, i.e., all p-values are greater than 0.05, and the null hypothesis is not rejected.

Therefore, we can conclude that our second stage does not contribute to our first stage

when we train BioBERT on BioInfer corpus.

58

Table 6.7. The second stage results on BioInfer Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[1303, 6]

[5, 227]]
0.0 1.0 6 5 81.5 78.5 79.8

2
[[1297, 16]

[11, 217]]
0.59 0.441 16 11 82.2 78.2 79.8

3
[[1282, 29]

[26, 204]]
0.07 0.787 29 26 82.8 77.0 79.1

4
[[1305, 9]

[3, 224]]
2.08 0.149 9 3 82.0 78.9 80.2

5
[[1296, 20]

[12, 213]]
1.53 0.216 20 12 82.6 78.3 80.0

avg.

(2nd

Stg.)

- 0.85 0.519 16 11 82.2 78.2 79.8

1st

Stg.
- - - - - 81.2 78.9 79.9

6.4.1.3. McNemar Test Results on HPRD50. In this experiment, we use the first stage

predictions of our BioBERT model trained on the HPRD50 corpus. The HPRD50

training dataset with ground truth labels and HPRD50 test dataset with BioBERT

predictions are used during adversarial learning. The experimental results of five dif-

ferent runs are given in Table 6.8. Similar to BioInfer, all p-values of the McNamer

test are greater than 0.05, which means we can not reject the null hypothesis. Conse-

quently, our second stage can not obtain significant differences compared to the first

stage results.

59

Table 6.8. The second stage results on HPRD50 Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[58, 1]

[1, 10]]
0.5 0.480 1 1 85.7 69.2 76.6

2
[[57, 2]

[2, 9]]
0.25 0.617 2 2 89.5 65.4 75.6

3
[[57, 1]

[2, 10]]
0.0 1.0 1 2 85.0 65.4 73.9

4
[[59, 1]

[0, 10]]
0.0 1.0 1 0 86.4 73.1 79.2

5
[[59, 2]

[0, 9]]
0.5 0.480 2 0 90.5 73.1 80.9

avg.

(2nd

Stg.)

- 0.25 0.715 1 1 87.4 69.2 77.2

1st

Stg.
- - - - - 82.6 73.1 77.6

6.4.1.4. McNemar Test Results on IEPA. In this experiment, we use the first stage

predictions of our BioBERT model trained on the IEPA corpus. The IEPA training

dataset with ground truth labels and IEPA test dataset with BioBERT predictions are

used during adversarial learning. The experimental results of five different runs are

given in Table 6.9. Similar to BioInfer and HPRD50, all p-values of the McNamer test

are greater than 0.05; the null hypothesis is not rejected. Therefore, our second stage

can not obtain significant differences compared to the first stage results.

60

Table 6.9. The second stage results on IEPA Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[107, 5]

[3, 21]]
0.13 0.724 5 3 79.6 76.8 78.2

2
[[106, 3]

[4, 23]]
0.0 1.0 3 4 76.4 75.0 75.7

3
[[106, 6]

[4, 20]]
0.1 0.752 6 4 80.8 75.0 77.8

4
[[107, 3]

[3, 23]]
0.17 0.683 3 3 76.8 76.8 76.8

5
[[107, 2]

[3, 24]]
0.0 1.0 2 3 75.4 76.8 76.1

avg.

(2nd

Stg.)

- 0.08 0.832 4 3 77.8 76.1 76.9

1st

Stg.
- - - - - 74.2 82.1 78.0

6.4.1.5. McNemar Test Results on LLL. In this experiment, we use the first stage

predictions of our BioBERT model trained on the LLL corpus. The LLL training

dataset with ground truth labels and LLL test dataset with BioBERT predictions

are used during adversarial learning. The experimental results of five different runs

are given in Table 6.10. Similar to BioInfer, HPRD50, and IEPA, all p-values of the

McNamer test are greater than 0.05; the null hypothesis is not rejected. Therefore, our

second stage can not obtain significant differences compared to the first stage results.

61

Table 6.10. The second stage results on LLL Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[45, 0]

[1, 15]]
0.0 1.0 0 1 69.4 83.3 75.8

2
[[44, 1]

[2, 14]]
0.0 1.0 1 2 70.6 80.0 75.0

3
[[45, 2]

[1, 13]]
0.0 1.0 2 1 73.5 83.3 78.1

4
[[44, 2]

[2, 13]]
0.25 0.617 2 2 72.7 80.0 76.2

5
[[43, 2]

[3, 13]]
0.0 1.0 2 3 71.9 76.7 74.2

avg.

(2nd

Stg.)

- 0.05 0.923 1 2 71.6 80.7 75.9

1st

Stg.
- - - - - 70.3 86.7 77.6

6.4.2. Second Stage Results (First Stage trained on combined corpus)

This section provides our second stage results when the BioBERT model is trained

on the training dataset of five corpora as a single source.

6.4.2.1. McNemar Test Results on AIMed. Here, we use the first stage predictions of

our BioBERT model trained on the combined corpus. The AIMed train set with ground

truth labels and AIMed test dataset with BioBERT predictions are used during adver-

sarial learning. The experimental results of five different runs are given in Table 6.11.

The results show that the second stage achieves 1% F1-score and 7.2% precision score

improvements compared to the first stage. The p-value of the McNemar test, which is

0.012 < 0.05, also proves that the performance improvement is statistically significant.

62

Table 6.11. The second stage results on AIMed Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[953, 21]

[8, 113]]
4.97 0.026 21 8 64.8 80.1 71.7

2
[[935, 48]

[26, 86]]
5.96 0.014 48 26 70.7 70.7 70.7

3
[[942, 39]

[19, 95]]
6.22 0.012 39 19 68.6 74.3 71.4

4
[[945, 38]

[16, 96]]
8.17 0.004 38 16 68.8 75.9 72.1

5
[[950, 30]

[11, 104]]
7.9 0.005 30 11 67.0 78.5 72.3

avg.

(2nd

stg.)

- 6.64 0.012 35 16 68.0 75.9 71.6

1st

Stg.
- - - - - 60.8 84.3 70.6

6.4.2.2. McNemar Test Results on BioInfer. In this experiment, we use the first stage

predictions of our BioBERT model trained on the combined corpus. The BioInfer

training dataset with ground truth labels and BioInfer test dataset with BioBERT pre-

dictions are used during adversarial learning. The experimental results of five different

runs are given in Table 6.12. The results demonstrate that we obtain performance

improvement on precision, recall and F1 scores for each run. All p-values are lower

than 0.05, and the alternative hypothesis is accepted. Hence, we can conclude that our

second stage contributes significantly to our first stage when we train BioBERT on the

combined corpus.

63

Table 6.12. The second stage results on BioInfer Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[1292, 8]

[1, 240]]
4 0.046 8 1 81.2 76.7 78.5

2
[[1283, 25]

[10, 223]]
5.6 0.017 25 10 82.8 76.4 78.7

3
[[1291, 14]

[2, 234]]
7.56 0.006 14 2 81.9 76.8 78.8

4
[[1287, 18]

[6, 230]]
5.04 0.025 18 6 82.1 76.5 78.6

5
[[1290, 13]

[3, 235]]
5.06 0.024 13 3 81.7 76.7 78.6

avg.

(2nd

Stg.)

- 5.45 0.023 16 4 81.9 76.6 78.6

1st

Stg.
- - - - - 80.3 76.4 78.0

6.4.2.3. McNemar Test Results on HPRD50. In this experiment, we use the first stage

predictions of our BioBERT model trained on the combined corpus. The HPRD50

training dataset with ground truth labels and HPRD50 test dataset with BioBERT

predictions are used during adversarial learning. The experimental results of five dif-

ferent runs are given in Table 6.13. The results demonstrate that although we obtain

performance improvement on the second stage, none of the p-values is lower than 0.05,

and the null hypothesis is not rejected. Consequently, our second stage does not con-

tribute significantly to our first stage.

64

Table 6.13. The second stage results on HPRD50 Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[58, 1]

[1, 10]]
0.5 0.480 1 1 80.0 76.9 78.4

2
[[59, 2]

[0, 9]]
0.5 0.480 2 0 84.0 80.0 82.4

3
[[59, 1]

[0, 10]]
0.0 1.0 1 0 80.8 80.8 80.8

4
[[57, 1]

[2, 10]]
0.0 1.0 1 2 79.2 73.1 76.0

5
[[58, 2]

[1, 9]]
0.0 1.0 2 1 83.3 76.9 80.0

avg.

(2nd

Stg.)

- 0.2 0.792 1 1 81.5 77.5 79.5

1st

Stg.
- - - - - 77.8 80.8 79.2

6.4.2.4. McNemar Test Results on IEPA. In this experiment, we use the first stage

predictions of our BioBERT model trained on the combined corpus. The IEPA training

dataset with ground truth labels and IEPA test dataset with BioBERT predictions are

used during adversarial learning. The experimental results of five different runs are

given in Table 6.14. Similar to HPRD50, all p-values of the McNamer test are greater

than 0.05; the null hypothesis is not rejected. Therefore, our second stage can not

obtain significant differences compared to the first stage results.

65

Table 6.14. The second stage results on IEPA Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[107, 6]

[2, 21]]
1.13 0.289 6 2 83.7 73.2 78.1

2
[[107, 2]

[2, 25]]
0.25 0.617 2 2 77.4 73.2 75.2

3
[[107, 4]

[2, 23]]
0.17 0.683 4 2 80.3 73.2 76.6

4
[[105, 1]

[1, 26]]
0.5 0.478 1 1 76.4 75.0 75.7

5
[[106, 2]

[3, 25]]
0.0 1.0 2 3 76.9 71.4 74.1

avg.

(2nd

Stg.)

- 0.41 0.613 3 2 78.94 73.2 75.9

1st

Stg.
- - - - - 75.4 76.8 76.1

6.4.2.5. McNemar Test Results on LLL. In this experiment, we use the first stage

predictions of our BioBERT model trained on the combined corpus. The LLL training

dataset with ground truth labels and LLL test dataset with BioBERT predictions are

used during adversarial learning. The experimental results of five different runs are

given in Table 6.15. The results demonstrate that none of the p-values is lower than

0.05, and the null hypothesis is not rejected. Consequently, our second stage does not

contribute significantly to our first stage.

66

Table 6.15. The second stage results on LLL Corpus.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[45, 2]

[4, 10]]
0.17 0.683 2 4 80.8 70.0 75.0

2
[[48, 0]

[1, 12]]
0.0 1.0 0 1 77.4 80.0 78.7

3
[[47, 0]

[2, 12]]
0.5 0.480 0 2 76.7 76.7 76.7

4
[[48, 1]

[1, 11]]
0.5 0.480 1 1 80.0 80.0 80.0

5
[[45, 1]

[4, 11]]
0.8 0.371 1 4 77.8 70.0 73.7

avg.

(2nd

Stg.)

- 0.39 0.603 1 2 78.5 75.3 76.8

1st

Stg.
- - - - - 78.1 83.3 80.6

6.4.2.6. McNemar Test Results on Combined Test Set. In this experiment, we use the

first stage predictions of our BioBERT model trained on the combined corpus. The

training dataset of combined corpus with ground truth labels and combined test set

with BioBERT predictions are used during adversarial learning. The experimental

results of five different runs are given in Table 6.16. The results demonstrate that the

second stage achieves 0.8% F1-score and 4% precision score improvements compared

to the first stage. The p-value of the McNemar test, which is 0.004 < 0.05, also proves

that the performance improvement is statistically significant.

67

Table 6.16. The second stage results on combined test set.

Run
contingency

table
chi-sq p-value FP↓ TP↓ P R F1

1
[[2539, 43]

[18, 303]]
9.44 0.002 43 18 79.6 73.9 76.6

2
[[2542, 36]

[15, 310]]
7.84 0.005 36 15 78.8 74.3 76.5

3
[[2549, 25]

[8, 321]]
7.76 0.005 25 8 77.8 75.3 76.5

4
[[2544, 33]

[13, 313]]
7.85 0.005 33 13 78.6 74.6 76.5

5
[[2532, 54]

[25, 292]]
9.92 0.002 54 25 80.7 72.9 76.6

avg.

(2nd

Stg.)

- 8.56 0.004 38 16 79.1 74.2 76.5

1st

Stg.
- - - - - 75.1 76.2 75.7

68

7. A CASE STUDY: HOST-PATHOGEN INTERACTION

EXTRACTION ON COVID-19 DATASET

In infectious diseases, pathogens such as bacteria, viruses, protozoans infect host

cells and establish themselves with high rates of reproduction within the host [70].

These microparasites may be resistant to host immunity, and during their lifespan,

protein interactions are established between host and pathogen proteins. Although the

presence of pathogens may not always cause disease in hosts, their interaction with the

host cell is adequate to define Host-Pathogen Interaction (HPI).

The current coronavirus pandemic, COVID-19, is a global pandemic of coron-

avirus disease, which is caused by Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) [71]. During its lifespan, including attachment and entry to the human

host cell, the replication and transcription phases, some structural proteins of human

coronavirus (HCoV) such as spike (S) protein, envelope (E), and membrane (M) inter-

act with several host proteins and cell receptors such as, angiotensin-converting enzyme

2 (ACE2) and dipeptidyl peptidase 4 (DPP4) etc. [72]. The human coronavirus and

host interaction has been investigated in many biomedical studies and, with the cur-

rent pandemic, the number of COVID-19 related papers are growing extremely fast.

This makes it increasingly difficult for researchers to uncover the relevant findings of

COVID-19.

In this case study, we apply our system to extract Host-Pathogen Interactions

from coronavirus related sentences. Since there is no previous study on this topic, we

created our own dataset by using a biomedical literature mining tool, SciMiner [73].

After candidate sentences with host and pathogen entities are automatically extracted,

they all are examined one by one and annotated manually. At the end of the data

curation, we obtain a golden standard HPI dataset for COVID-19. We apply similar

preprocessing steps as we did in the PPI extraction task. Since the corpus size is too

small, we excluded our GAN model on experiments.

69

7.1. Dataset Curation

We have created our own COVID-19 dataset for Host-Pathogen Interaction Ex-

traction Task. Sentences were pre-extracted from PubMed publications related to

COVID-19, which were published until June 2020, using a biomedical literature min-

ing tool, SciMiner [73]. The pre-extracted data contain the following properties:

• sentence ID,

• PubMed ID of the corresponding sentence,

• type of entity representation (symbol or name),

• Entity ID,

• match entity term,

• actual entity term,

• raw sentence.

Sample raw sentences extracted by SciMiner can be seen in Figure 7.1.

Figure 7.1. Sample sentences extracted by SciMiner.

Since the file data format is entity-based, the same sentence can be seen several

times if the sentence contains multiple host or pathogen entities. Two separate files

exist for host and pathogen entities, respectively. Some statistics about host and

pathogen files are given in Table 7.1. We apply the following steps in order to match

the host and pathogen entities in two separate files:

• We read both files and store them in memory.

• We extract sentence ids that occur in both host and pathogen files.

70

• For each common sentence, we retrieve related host and pathogen entities. Then

for each host and pathogen pair combination, we process the sentence. We apply

the same preprocessing steps that we have applied for the PPI dataset. We

replace the entity pair terms with PROTEIN1 and PROTEIN2 keywords and

other entities rather than entity pairs with a PROTEIN keyword. For each entity

pair combination, we obtain different versions of the same sentence.

Table 7.1. Same statistics for host and pathogen files.

File Host Pathogen

Number of Pubmed Articles 2698 332

Number of Unique Sentences 6106 631

Number of Extracted Entities 11262 949

After we obtain candidate host and pathogen entity pairs for each sentence, we

further eliminate some noisy data. Since SciMiner may produce wrong identifications

due to syntactic difficulty in processing some sentences, we need to manually eliminate

the wrong identification of entities. These difficulties can be summarized as follows;

(i) The frequently seen ACE-2 protein may written in long form with Roman numer-

als as angiotensin-converting enzyme II, so it is wrongly identified as angiotensin

converting enzyme.

(ii) Some complex protein structures like Microsomal prostaglandin E2 synthase-1

(mPGES-1) could be identified as two seperate entities since an entity named E2

also exists.

(iii) Some complex protein representations like B(0)AT1 could be partially identified

as AT1.

(iv) Although it is less frequently seen some host entities may wrongly identified as

pathogens and vice versa.

71

After we eliminate the wrongly identified host-pathogen pairs, we obtain 96 final

sentences. Finally, these pairs are manually annotated regarding they exhibit protein-

protein interaction semantically. Among the 96 sentences, we have labelled 64 host

and pathogen pairs that exhibit interactions semantically.

7.2. Experiments and Results

We have used our BioBERT model trained on Five Benchmarking PPI corpora

with our hyperparameter settings given in Table 5.3 to extract host-pathogen entities.

We excluded the second stage since it requires separate training data for learning and

our dataset is not large enough to achieve good results on this dataset. BioBERT

model, on the other hand, is pre-trained on large biomedical corpora and can also

achieve good results on small datasets. As an evaluation metric, we used F1-score and

obtained 65.8% which is very promising considering it is a type of cross-corpus evalua-

tion. Figure 7.2 provides the confusion matrix of our predictions as well. Interestingly,

we have obtained zero false positives, and therefore our precision score is 100%.

Figure 7.2. Confusion matrix of our model for Host-Pathogen Interaction Extraction.

72

8. CONCLUSION

The publications on the biomedical domain increase very rapidly. Automatic

biomedical relation extraction systems are crucial to detect information that may be

hidden in long biomedical publications. Protein-Protein interaction extraction is an

important use case for biomedical relation extraction. In this thesis, we have intro-

duced a hybrid BERT-GAN system for Protein-Protein Interaction extraction. We

have designed a two-staged system so that our two models, BERT and GAN, work

consecutively. As dataset, we used five benchmark PPI corpora: AIMed, BioInfer,

HPRD50, IEPA, and LLL. These corpora provide ground truth entity annotations and

sentence labels for both models.

In the first stage, we aimed to predict PPIs from biomedical sentences. Therefore,

we have used a pre-trained biomedical language model, BioBERT, and applied transfer

learning. In order to adopt the BioBERT model for the PPI extraction task, we fine-

tuned it on our PPI dataset. We analyzed its performance with several experiments:

• The performance of the first stage was evaluated on five corpora separately.

• The cross-corpus evaluation was performed in order to investigate the character-

istic similarities of the five corpora.

• These five corpora were combined as a single data source, and the model perfor-

mance was evaluated on the combined corpus.

Our first stage results demonstrated that our BioBERT model itself achieves

great success on Five Benchmarking PPI corpora. Our first stage has outperformed

all previous studies on AIMed corpus, one of the most enormous and complex corpus,

and we obtained a state-of-the-art F1-score with a relative improvement of 2.1%. Fur-

thermore, we achieved comparable results compared to previous studies on BioInfer,

HPRD50 and IEPA corpora. On the other hand, we obtained a lower F1-score on the

LLL corpus. The reason would be the size of the LLL corpus. It is the smallest cor-

73

pus among five corpora, which has 300 sentences, and other kernel-based approaches

and sentence representations could better handle the LLL corpus’s characteristics than

BioBERT.

Our cross-corpus evaluation on the first stage suggested that the performance

may increase when the BioBERT is trained on larger datasets. When we trained our

BioBERT model on a large BioInfer corpus and tested it on small HPRD50, IEPA

and LLL corpora, we obtained promising results. AIMed, on the other hand, failed

on smaller corpora contrary to expectation. The reason was not apparent, and fur-

ther analysis on AIMed dataset may be required as future work. Furthermore, when

BioBERT was trained on smaller corpora and tested on the AIMed and BioInfer, it

has failed as expected.

Next, we evaluated our first stage on the combined corpus. Our experiments

revealed that when the model is trained on the combined corpus, the performance

increases on the smaller corpora: HPRD50 and LLL, and decreases on larger corpora:

AIMed and BioInfer. We can conclude that while corpus size has a positive effect on

the performance of our BioBERT model on small datasets, inter-corpus features can

degrade the performance in already large datasets.

In the second stage, we aimed to increase the performance of the first stage by

applying an adversarial process between two generative and discriminator models. The

training datasets of five corpora with ground truth labels and the test sentences with

predicted labels of the BioBERT model were together used. We assumed that the

positive sentences of this dataset mainly consist of true positives since the majority of

the sentences are coming from ground truth training dataset and most of the BioBERT

predictions are correct, and there exist some false positives coming from BioBERT

predictions. At the end of the adversarial learning phase, our generator captures the

true positive data distribution by the feed-backs of the discriminator and assigns low

probabilities to the false-positive sentences. We defined a probability threshold and

changed the labels of some test sentences to negative, in which our generator has

74

assigned low probabilities, but BioBERT has annotated positive. In order to evaluate

whether the second stage makes a statistically significant improvement on the first

stage, we applied McNemar’s significance test. We evaluated the performance of the

second stage in two cases;

• when the BioBERT models trained on separate corpora were used on the first

stage.

• when the BioBERT model trained on the combined corpus was used on the first

stage.

Our second stage results revealed that the GAN model could not significantly

improve the first stage performance when the first stage model was powerful. The

second stage results were nearly equal to the first stage results when the BioBERT

model was trained on each separate corpus. According to McNemar’s test, we could

not reject the alternative hypothesis that the second model is statistically different from

the first model, so we can conclude that the second stage did not make a significant

impact in this particular case.

On the other hand, when we trained our BioBERT model on combined corpus and

ran our second stage on top of the first stage predictions, we have obtained significant

improvements with the GAN model on larger corpora: AIMed and BioInfer. However,

the second stage contribution was not significant on small corpora: HPRD50, IEPA,

and LLL. Considering the first stage results on the combined corpus and the second

stage results together, we have achieved three conclusions:

• Our BioBERT model had relatively worse results when trained on combined cor-

pus and tested on AIMed and BioInfer than when it was trained on these corpora

separately. Therefore, its performance may decrease when it is trained on a huge

general PPI corpus.

• When the first stage’s model performance is slightly low, our GAN model finds

an open point to improve the first stage significantly on large corpora.

75

• Regardless of the success of our first-stage model, our GAN model does not make

a significant impact on small datasets.

Lastly, we applied our system to a case study for Host-Pathogen Interaction

extraction on COVID-19 dataset. First, we have obtained COVID-19 related candidate

sentences from PubMed articles using a biomedical literature mining tool, SciMiner.

After some preprocessing steps, we filtered sentences having at least one host and

pathogen entities. Then, we have manually annotated interacting pairs and obtained

a ground truth HPI dataset for COVID-19. The results revealed that our model is

capable of handling different biomedical relation extraction tasks. Our first stage has

achieved a 65.8% F1 score and 100% precision score for the HPI extraction task. The

second stage evaluation was excluded due to two reasons; (i) the curated dataset is

too small, and (ii) no false positives were obtained on the first stage, so there was no

improvement point.

In the light of these conclusions, we can claim that our hybrid model is well

fitted for general PPI corpora and can be used as a successful PPI extraction system.

As future work, we want to mine a wide range of biomedical publications using the

SciMiner tool and run our hybrid system on obtained candidate sentences. We will

manually evaluate the performance of our system on a random subset of predictions.

In case of obtaining good results as if we expect, we will provide an updated open-source

PPI database for researchers.

76

REFERENCES

1. Phizicky, E. M. and S. Fields, “Protein-Protein Interactions: Methods for Detection

and Analysis”, Microbiological Reviews , Vol. 59, No. 1, pp. 94–123, Mar. 1995.

2. Kuzmanov, U. and A. Emili, “Protein-Protein Interaction Networks: Probing Dis-

ease Mechanisms Using Model Systems”, Genome Medicine, Vol. 5, No. 4, p. 37,

2013.

3. PubMed, PubMed Home Page, 2021, https://pubmed.ncbi.nlm.nih.gov, ac-

cessed in May 2021.

4. U.S. National Library of Medicine, Citations Added to MEDLINE® by Fiscal Year ,

2021, https://www.nlm.nih.gov/bsd/stats/cit added.html, accessed in May

2021.

5. Jensen, L. J., M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks,

P. Julien, A. Roth, M. Simonovic, P. Bork and C. von Mering, “STRING 8–A

Global View on Proteins and Their Functional Interactions in 630 Organisms”,

Nucleic Acids Research, Vol. 37, No. Database, pp. D412–D416, Jan. 2009.

6. Stark, C., “BioGRID: A General Repository for Interaction Datasets”, Nucleic

Acids Research, Vol. 34, No. 90001, pp. D535–D539, Jan. 2006.

7. Hermjakob, H., “IntAct: An Open Source Molecular Interaction Database”, Nu-

cleic Acids Research, Vol. 32, No. 90001, pp. 452D–455, Jan. 2004.

8. Bader, G. D., “BIND: The Biomolecular Interaction Network Database”, Nucleic

Acids Research, Vol. 31, No. 1, pp. 248–250, Jan. 2003.

9. Alonso-López, D., M. A. Gutiérrez, K. P. Lopes, C. Prieto, R. Santamaŕıa and

J. D. L. Rivas, “APID Interactomes: Providing Proteome-based Interactomes with

77

Controlled Quality for Multiple Species and Derived Networks”, Nucleic Acids

Research, Vol. 44, No. W1, pp. W529–W535, Apr. 2016.

10. Salwinski, L., “The Database of Interacting Proteins: 2004 Update”, Nucleic Acids

Research, Vol. 32, No. 90001, pp. 449D–451, Jan. 2004.

11. Erkan, G., A. Özgür and D. R. Radev, “Semi-Supervised Classification for Ex-

tracting Protein Interaction Sentences using Dependency Parsing”, Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL), pp. 228–237,

Association for Computational Linguistics, Prague, Czech Republic, Jun. 2007.

12. Lee, J., W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So and J. Kang, “BioBERT:

A Pre-trained Biomedical Language Representation Model for Biomedical Text

Mining”, Bioinformatics , Sep. 2019.

13. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville and Y. Bengio, “Generative Adversarial Nets”, Advances in Neural

Information Processing Systems , Vol. 27, 2014.

14. Szklarczyk, D., A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N. T.

Doncheva, M. Legeay, T. Fang, P. Bork, L. J. Jensen and C. von Mering, “The

STRING Database in 2021: Customizable Protein–Protein Networks, and Func-

tional Characterization of User-uploaded Gene/Measurement Sets”, Nucleic Acids

Research, Vol. 49, No. D1, pp. D605–D612, Nov. 2020.

15. STRING, STRING Database — Statistics , 2021,

https://string-db.org/cgi/about?footer active subpage=statistics,

accessed in May 2021.

16. BioGRID, Database of Protein, Genetic and Chem-

ical Interactions, BioGRID Database Statistics , 2021,

78

https://wiki.thebiogrid.org/doku.php/statistics, accessed in May

2021.

17. IntAct Molecular Interaction Database, Statistics, Total Numbers , 2021,

https://www.ebi.ac.uk/intact/about/statistics?conversationContext=2,

accessed in May 2021.

18. Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell

and E. W. Sayers, “GenBank”, Nucleic Acids Research, Vol. 41, No. D1, pp. D36–

D42, Nov. 2012.

19. Alfarano, C., “The Biomolecular Interaction Network Database and Related Tools

2005 Update”, Nucleic Acids Research, Vol. 33, No. Database issue, pp. D418–

D424, Dec. 2004.

20. Alonso-López, D., F. J. Campos-Laborie, M. A. Gutiérrez, L. Lambourne,

M. A. Calderwood, M. Vidal and J. D. L. Rivas, “APID Database: Redefining

Protein–Protein Interaction Experimental Evidences and Binary Interactomes”,

Database, Vol. 2019, Jan. 2019.

21. Wu, C. H., “The Protein Information Resource”, Nucleic Acids Research, Vol. 31,

No. 1, pp. 345–347, Jan. 2003.

22. Bairoch, A., “The SWISS-PROT Protein Sequence Data Bank and Its New Sup-

plement TREMBL”, Nucleic Acids Research, Vol. 24, No. 1, pp. 21–25, Jan. 1996.

23. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient estimation of word

representations in vector space”, arXiv preprint arXiv:1301.3781 , 2013.

24. Mikolov, T., W. tau Yih and G. Zweig, “Linguistic Regularities in Continuous

Space Word Representations”, HLT-NAACL, 2013.

25. Mikolov, T., M. Karafiát, L. Burget, J. Cernocký and S. Khudanpur, “Recurrent

79

Neural Network Based Language Model”, T. Kobayashi, K. Hirose and S. Naka-

mura (Editors), INTERSPEECH 2010, 11th Annual Conference of the Interna-

tional Speech Communication Association, Makuhari, Chiba, Japan, September

26-30, 2010 , pp. 1045–1048, ISCA, 2010.

26. Bengio, Y., R. Ducharme, P. Vincent and C. Janvin, “A Neural Probabilistic Lan-

guage Model”, J. Mach. Learn. Res., Vol. 3, No. null, p. 1137–1155, Mar. 2003.

27. LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and

L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition”,

Neural Computation, Vol. 1, No. 4, pp. 541–551, 12 1989.

28. Goodfellow, I., Y. Bengio and A. Courville, Deep Learning , MIT Press, 2016,

http://www.deeplearningbook.org.

29. Wu, J., “Introduction to Convolutional Neural Networks”, National Key Lab for

Novel Software Technology. Nanjing University. China, Vol. 5, p. 23, 2017.

30. Zhou and Chellappa, “Computation of Optical Flow Using a Neural Network”,

IEEE International Conference on Neural Networks , IEEE, 1988.

31. Yani, M., M. B. I. S, Si. and M. C. S. S.T., “Application of Transfer Learning

Using Convolutional Neural Network Method for Early Detection of Terry’s Nail”,

Journal of Physics: Conference Series , Vol. 1201, p. 012052, May 2019.

32. Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of

Deep Bidirectional Transformers for Language Understanding”, arXiv preprint

arXiv:1810.04805 , 2018.

33. Mintz, M., S. Bills, R. Snow and D. Jurafsky, “Distant Supervision for Relation

Extraction without Labeled Data”, Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP , pp. 1003–1011, Association for Computational

80

Linguistics, Suntec, Singapore, Aug. 2009.

34. Roth, B., T. Barth, M. Wiegand and D. Klakow, “A Survey of Noise Reduction

Methods for Distant Supervision”, Proceedings of the 2013 Workshop on Automated

Knowledge Base Construction - AKBC '13 , ACM Press, 2013.

35. Riedel, S., L. Yao and A. McCallum, “Modeling Relations and Their Mentions

without Labeled Text”, Machine Learning and Knowledge Discovery in Databases ,

pp. 148–163, Springer Berlin Heidelberg, 2010.

36. Surdeanu, M., J. Tibshirani, R. Nallapati and C. D. Manning, “Multi-instance

Multi-label Learning for Relation Extraction”, Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning , pp. 455–465, Association for Computational Linguis-

tics, Jeju Island, Korea, Jul. 2012.

37. Mei, S. and H. Zhu, “AdaBoost Based Multi-Instance Transfer Learning for Pre-

dicting Proteome-Wide Interactions between Salmonella and Human Proteins”,

PLOS ONE , Vol. 9, No. 10, pp. 1–12, 10 2014.

38. Zeng, D., K. Liu, Y. Chen and J. Zhao, “Distant Supervision for Relation Ex-

traction via Piecewise Convolutional Neural Networks”, Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing , Association for

Computational Linguistics, 2015.

39. Airola, A., S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter and T. Salakoski, “All-

paths Graph Kernel for Protein-Protein Interaction Extraction with Evaluation of

Cross-corpus Learning”, BMC Bioinformatics , Vol. 9, No. S11, Nov. 2008.

40. Miwa, M., R. Sætre, Y. Miyao and J. Tsujii, “Protein–Protein Interaction Extrac-

tion by Leveraging Multiple Kernels and Parsers”, International Journal of Medical

Informatics , Vol. 78, No. 12, pp. e39–e46, Dec. 2009.

81

41. Palaga, P., “Extracting Relations from Biomedical Texts Using Syntactic Informa-

tion”, Mémoire de DEA, Technische Universität Berlin, Vol. 138, 2009.

42. Kim, S., J. Yoon, J. Yang and S. Park, “Walk-weighted Subsequence Kernels for

Protein-Protein Interaction Extraction”, BMC Bioinformatics , Vol. 11, No. 1, Feb.

2010.

43. Zhang, Y., H. Lin, Z. Yang and Y. Li, “Neighborhood Hash Graph Kernel for Pro-

tein–Protein Interaction Extraction”, Journal of Biomedical Informatics , Vol. 44,

No. 6, pp. 1086–1092, Dec. 2011.

44. Peng, Y., S. Gupta, C. Wu and V. Shanker, “An Extended Dependency Graph for

Relation Extraction in Biomedical Texts”, Proceedings of BioNLP 15 , Association

for Computational Linguistics, 2015.

45. Chang, Y.-C., C.-H. Chu, Y.-C. Su, C. C. Chen and W.-L. Hsu, “PIPE: A Pro-

tein–Protein Interaction Passage Extraction Module for BioCreative Challenge”,

Database, Vol. 2016, Aug. 2016.

46. Kim, S., R. Islamaj Doğan, A. Chatr-Aryamontri, C. S. Chang, R. Oughtred,

J. Rust, R. Batista-Navarro, J. Carter, S. Ananiadou, S. Matos, A. Santos, D. Cam-

pos, J. L. Oliveira, O. Singh, J. Jonnagaddala, H.-J. Dai, E. C.-Y. Su, Y.-C.

Chang, Y.-C. Su, C.-H. Chu, C. C. Chen, W.-L. Hsu, Y. Peng, C. Arighi, C. H.

Wu, K. Vijay-Shanker, F. Aydın, Z. M. Hüsünbeyi, A. Özgür, S.-Y. Shin, D. Kwon,

K. Dolinski, M. Tyers, W. J. Wilbur and D. C. Comeau, “BioCreative V BioC Track

Overview: Collaborative Biocurator Assistant Task for BioGRID”, Database, Vol.

2016, Sep. 2016.

47. Murugesan, G., S. Abdulkadhar and J. Natarajan, “Distributed Smoothed Tree

Kernel for Protein-Protein Interaction Extraction from the Biomedical Literature”,

PLOS ONE , Vol. 12, No. 11, pp. 1–14, 11 2017.

82

48. Zhao, Z., Z. Yang, H. Lin, J. Wang and S. Gao, “A Protein-Protein Interaction

Extraction Approach based on Deep Neural Network”, International Journal of

Data Mining and Bioinformatics , Vol. 15, No. 2, p. 145, 2016.

49. Choi, S.-P., “Extraction of Protein–Protein Interactions (PPIs) from the Litera-

ture by Deep Convolutional Neural Networks with Various Feature Embeddings”,

Journal of Information Science, Vol. 44, No. 1, pp. 60–73, Nov. 2016.

50. Hua, L. and C. Quan, “A Shortest Dependency Path Based Convolutional Neural

Network for Protein-Protein Relation Extraction”, BioMed Research International ,

Vol. 2016, pp. 1–9, 2016.

51. Quan, C., L. Hua, X. Sun and W. Bai, “Multichannel Convolutional Neural Net-

work for Biological Relation Extraction”, BioMed Research International , Vol.

2016, pp. 1–10, 2016.

52. Bunescu, R., R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani

and Y. W. Wong, “Comparative Experiments on Learning Information Extractors

for Proteins and Their Interactions”, Artificial Intelligence in Medicine, Vol. 33,

No. 2, pp. 139–155, Feb. 2005.

53. Pyysalo, S., F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen and

T. Salakoski, “BioInfer: A Corpus for Information Extraction in the Biomedical

Domain”, BMC Bioinformatics , Vol. 8, No. 1, Feb. 2007.

54. Peng, Y. and Z. Lu, “Deep Learning for Extracting Protein-Protein Interactions

from Biomedical Literature”, BioNLP 2017 , Association for Computational Lin-

guistics, 2017.

55. Hsieh, Y.-L., Y.-C. Chang, N.-W. Chang and W.-L. Hsu, “Identifying Protein-

Protein Interactions in Biomedical Literature using Recurrent Neural Networks

with Long Short-Term Memory”, Proceedings of the Eighth International Joint

83

Conference on Natural Language Processing (Volume 2: Short Papers), pp. 240–

245, Asian Federation of Natural Language Processing, Taipei, Taiwan, Nov. 2017.

56. Zhang, Y., H. Lin, Z. Yang, J. Wang, S. Zhang, Y. Sun and L. Yang, “A Hybrid

Model Based on Neural Networks for Biomedical Relation Extraction”, Journal of

Biomedical Informatics , Vol. 81, pp. 83–92, May 2018.

57. Ahmed, M., J. Islam, M. R. Samee and R. E. Mercer, “Identifying Protein-Protein

Interaction Using Tree LSTM and Structured Attention”, 2019 IEEE 13th Inter-

national Conference on Semantic Computing (ICSC), IEEE, Jan. 2019.

58. Zhang, H., R. Guan, F. Zhou, Y. Liang, Z.-H. Zhan, L. Huang and X. Feng, “Deep

Residual Convolutional Neural Network for Protein-Protein Interaction Extrac-

tion”, IEEE Access , Vol. 7, pp. 89354–89365, 2019.

59. Ding, J., D. Berleant, D. Nettleton and E. Wurtele, “Mining Medline: Abstracts,

Sentences, or Phrases?”, Biocomputing 2002 , World Scientific, Dec. 2001.

60. Fundel, K., R. Kuffner and R. Zimmer, “RelEx–Relation Extraction Using Depen-

dency Parse Trees”, Bioinformatics , Vol. 23, No. 3, pp. 365–371, Dec. 2006.

61. Nédellec, C., “Learning Language in Logic - Genic Interaction Extraction Chal-

lenge”, 4. Learning language in logic workshop (LLL05), Proceedings of the learn-

ing language in logic (LLL05) workshop joint to ICML’05, ACM - Association for

Computing Machinery, Born, Germany, Aug. 2005.

62. Pyysalo, S., R. Sætre, J. Tsujii and T. Salakoski, “Why Biomedical Relation Ex-

traction Results are Incomparable and What to Do About It”, Proceedings of

the Third International Symposium on Semantic Mining in Biomedicine (SMBM

2008). Turku, pp. 149–152, Citeseer, 2008.

63. Pyysalo, S., A. Airola, J. Heimonen, J. Björne, F. Ginter and T. Salakoski, “Com-

parative Analysis of Five Protein-Protein Interaction Corpora”, BMC Bioinfor-

84

matics , Vol. 9, No. S3, Apr. 2008.

64. Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s Transformers: State-of-the-

art Natural Language Processing”, arXiv preprint arXiv:1910.03771 , 2019.

65. Loshchilov, I. and F. Hutter, “Decoupled Weight Decay Regularization”, arXiv

preprint arXiv:1711.05101 , 2017.

66. Qin, P., W. Xu and W. Y. Wang, “DSGAN: Generative Adversarial Training for

Distant Supervision Relation Extraction”, Proceedings of the 56th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers),

Association for Computational Linguistics, 2018.

67. Zeng, D., K. Liu, S. Lai, G. Zhou and J. Zhao, “Relation Classification via Convo-

lutional Deep Neural Network”, Proceedings of COLING 2014, the 25th Interna-

tional Conference on Computational Linguistics: Technical Papers , pp. 2335–2344,

Dublin City University and Association for Computational Linguistics, Dublin, Ire-

land, Aug. 2014.

68. Zhang, Y., Q. Chen, Z. Yang, H. Lin and Z. Lu, “BioWordVec, Improving Biomed-

ical Word Embeddings with Subword Information and MeSH”, Scientific Data,

Vol. 6, No. 1, May 2019.

69. McNemar, Q., “Note on the Sampling Error of the Difference Between Correlated

Proportions or Percentages”, Psychometrika, Vol. 12, No. 2, pp. 153–157, Jun.

1947.

70. Anderson, R. M. and R. M. May, “Population Biology of Infectious Diseases: Part

I”, Nature, Vol. 280, No. 5721, pp. 361–367, Aug. 1979.

71. Varghese, P. M., A. G. Tsolaki, H. Yasmin, A. Shastri, J. Ferluga, M. Vatish,

T. Madan and U. Kishore, “Host-Pathogen Interaction in COVID-19: Pathogene-

85

sis, Potential Therapeutics and Vaccination Strategies”, Immunobiology , Vol. 225,

No. 6, p. 152008, Nov. 2020.

72. Lim, Y., Y. Ng, J. Tam and D. Liu, “Human Coronaviruses: A Review of

Virus–Host Interactions”, Diseases , Vol. 4, No. 4, p. 26, Jul. 2016.

73. Hur, J., A. D. Schuyler, D. J. States and E. L. Feldman, “SciMiner: Web-based

Literature Mining Tool for Target Identification and Functional Enrichment Anal-

ysis”, Bioinformatics , Vol. 25, No. 6, pp. 838–840, Feb. 2009.

