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ABSTRACT

MORPHOLOGICALLY MOTIVATED INPUT

VARIATIONS IN TURKISH-ENGLISH NEURAL

MACHINE TRANSLATION

Success of neural networks in natural language processing has paved the way for

neural machine translation (NMT), which rapidly became the mainstream approach in

machine translation. Tremendous improvement in translation performance has been

achieved with breakthroughs such as encoder-decoder networks, attention mechanism

and Transformer architecture. However, the necessity of large amounts of parallel

data for training an NMT system, and rare words in translation corpora are issues

yet to be overcome. In this study, neural machine translation of the low-resource

Turkish-English language pair is approached. State-of-the-art NMT architectures are

employed and data augmentation methods that exploit monolingual corpora are used.

The importance of input representation for the morphologically-rich Turkish language

is pointed out, and a comprehensive analysis of linguistically and non-linguistically

motivated input segmentation approaches has been made. Experiments on different

input variations have proven the importance of morphologically motivated input seg-

mentation for the Turkish language that carries a rich morphology. Moreover, supe-

riority of the Transformer architecture over attentional encoder-decoder models has

been shown for the Turkish-English language pair. Among the employed data aug-

mentation approaches, back-translation has proven to be the most effective, and the

benefit of increasing amount of parallel data on translation quality is confirmed. This

thesis demonstrates a comprehensive analysis on NMT architectures with different hy-

perparameters, data augmentation methods and input representation techniques, and

proposes ways of tackling the low-resource setting of Turkish-English NMT.
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ÖZET

TÜRKÇE-İNGİLİZCE SİNİRSEL MAKİNE ÇEVİRİSİNDE

MORFOLOJİK GÜDÜMLÜ GİRDİ VARYASYONLARI

Sinir ağlarının doğal dil işlemedeki başarısı, hızla makine çevirisinde ana yaklaşım

haline gelen sinirsel makine çevirisinin (SMÇ) yolunu açmıştır. Kodlayıcı-kod çözücü

(encoder-decoder) ağları, dikkat (attention) mekanizması ve Transformer mimarisi gibi

atılımlarla çeviri performansında muazzam bir gelişme sağlanmıştır. Bununla birlikte,

bir SMÇ sistemini eğitmek için büyük miktarda paralel verinin gerekmesi ve çeviri der-

lemlerinde kullanılan az rastlanmış kelimeler, henüz üstesinden gelinmemiş sorunlardır.

Bu çalışmada, düşük kaynaklı Türkçe-İngilizce dil çiftinin sinirsel makine çevirisi ele

alınmaktadır. Son teknoloji SMÇ mimarileri ve tek dilli derlemlerden yararlanılan veri

artırma yöntemleri kullanılmıştır. Morfolojik açıdan zengin Türk dili için girdi tem-

silinin önemine dikkat çekilmiş ve dilbilimsel güdümlü ve dilbilimsel güdümlü olmayan

girdi bölümleme yaklaşımlarının kapsamlı bir analizi yapılmıştır. Farklı girdi varyasy-

onları üzerinde yapılan deneyler, zengin bir morfoloji taşıyan Türkçe için morfolojik

güdümlü girdi bölümlemenin önemini kanıtlamıştır. Ayrıca, Türkçe-İngilizce dil çifti

için Transformer mimarisinin dikkat mekanizmasına sahip kodlayıcı-kod çözücü (at-

tentional encoder-decoder) modellere göre üstünlüğü gösterilmiştir. Kullanılan veri

artırma yaklaşımları arasında geri çevirinin en etkilisi olduğu kanıtlanmıştır ve par-

alel veri miktarındaki artışın çeviri kalitesine faydası doğrulanmıştır. Bu tez, farklı

hiperparametrelerle eğitilen SMÇ mimarileri, veri büyütme yöntemleri ve girdi temsil

teknikleri üzerine kapsamlı bir analiz sunmakta ve Türkçe-İngilizce SMÇ’nin düşük

kaynak sorunu ile mücadele etmenin yollarını önermektedir.
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1. INTRODUCTION

Overcoming language barriers between people has been a concern of humankind

for ages. Communication between people that speak different languages, availability of

literary or professional text is achieved through human translation. However, accessing

and maintaining human translation quality is, to this day, a costly and problematic

issue. Unavailability and expensiveness of human translation, and advances in com-

puter science and natural language processing (NLP) has led to the idea of automatic

translation of languages: machine translation (MT).

The history of machine translation started with rule-based translation, relying on

dictionaries and grammar rules. Along with the increase in computational power, data-

driven, corpus-based approaches such as statictical machine translation (SMT) and

example-based machine translation (EBMT) became more predominant. Extracting

statistics from bilingual text has led to great success and state-of-the-art results, raising

hope in quest of replacing human translation with MT.

Adoption and success of deep learning and neural networks in NLP has been the

next big step in MT history, originating neural machine translation (NMT). Accom-

modating the entire machine translation system into an end-to-end neural network and

eliminating excessive feature engineering, NMT gradually replaced SMT, becoming the

new state-of-the-art, and the main technology behind commercial MT systems, such

as Google [3] and Microsoft [4].

Incredible breakthroughs have been achieved in NMT with the introduction of

the encoder-decoder network, attention mechanism, and the Transformer architecture.

Even though the encoder-decoder and Transformer architectures effectively extract the

syntactic and semantic information from a bitext, the lack of large amounts of parallel

data for training an NMT system has become one of the most investigated issues. Data

augmentation methods for low-resource scenarios, and powerful input representation
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approaches for the open-vocabulary problem have been discovered, taking NMT one

step further.

In this research, Turkish-English neural machine translation has been investi-

gated. Turkish-English NMT is an especially challenging task, due to the notable

dissimilarity and low-resource setting of the Turkish-English language pair. Rich mor-

phology of the Turkish language causes the extraction of information from unsegmented

words to be rather troublesome.

In order to tackle this difficult task, a comprehensive analysis on state-of-the-

art NMT model architectures, data augmentation techniques and input segmentation

methods has been made. The attentional encoder-decoder model with deep transition

and BiDeep architectures, and the Transformer architecture have been trained, pressing

the importance of model and hyperparameter selection in Turkish-English NMT.

An exhaustive survey on the data sparsity issue in NMT has been carried out,

resulting in a selection of three data augmentation approaches for this task: self-

training, back-translation and copied data. These approaches have been exploited to

expand the training corpus size from 207K sentences up to 6.9M sentences, observing

the benefits of each approach separately, and together.

The most significant contribution of this study is aimed to be the implemen-

tation of nine morphologically motivated input segmentation methods for the Turkish

language, in comparison to two of the most widely used non-morphologically motivated

input representation approaches. The advantages of employing linguistically motivated

input representations in Turkish-English NMT are shown, in addition to an analysis of

the strengths and weaknesses of each input variation.

The thesis is organized as follows: a comprehensive literature review on NMT

is presented in Section 2. Statistics and resources of the datasets used in training of

the NMT systems are given in Section 3. Model architectures, data augmentation and
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input segmentation methods are described in Section 4. Experimental results and their

analysis are provided in Section 5. Finally, the work is summarized and future work is

suggested in Section 6.
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2. RELATED WORK

Among several machine translation approaches, including rule-based, statistical,

example-based and neural machine translation (NMT), this research is based on the

most recent methods, which lie around the neural machine translation approach. The

history of neural machine translation is examined in Section 2.1.

Approaches to tackle the low-resource scenario in NMT, such as data augmenta-

tion (self-training, back-translation, copied data) and other semi-supervised methods

are described in Section 2.2.

The Turkish-English news translation tasks in EMNLP’s 2017 and 2018 Con-

ferences on Machine Translation (WMT17, WMT18) pose a rich variety of models

for Turkish-English NMT, pressing the importance of data augmentation in this low-

resource setting. Turkish-English NMT systems in WMT17 and WMT18 are explained

in detail in Section 2.3.

The input of an NMT system can make all the difference. The morphologically-

rich characteristic of the Turkish language has urged researchers to focus on more

morphologically motivated inputs. The most frequently used input representations,

and linguistically inspired input variations are investigated in Section 2.4.

2.1. Neural Machine Translation

The introduction of neural networks into the realm of machine translation can

be traced back to late 1990s, with the works of Forcada and Ñeco [5], where they

introduced two feedforward neural networks called the encoder and the decoder, and

Castaño et al. [6], where they compared subsequential transducers with neural networks

in an MT task. Their works could not further be investigated, due to inadequate

computational resources.
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After the 2000s, it can be observed that neural networks have been used as an

aiding tool in statistical machine translation. Bengio et al. [7] exploited feedforward

neural language models for the target language. Zamora-Martinez et al. [8] have also

used neural network language models (NNLMs) for source and target languages in

their statistical machine translation (SMT) model. Neural networks have been used to

learn the translation probabilities of phrase pairs [9], as reordering [10] and preordering

models [11] and as joint models, augmenting the NNLM with a source context window

[12]. These can be considered as examples of hybrid or joint models concerning neural

networks [13].

End-to-end neural models that directly translate source sentence into target sen-

tence are considered as pure examples of neural machine translation (NMT). In 2013,

Kalchbrenner and Blunsom [14] introduced recurrent neural networks for translation

modeling, laying the foundation of NMT. After this breakthrough, sequence to sequence

NMT models started to be frequently in the form of an encoder-decoder architecture,

where the source sentence is encoded into a fixed-length vector, from which the decoder

generates the target sentence [15,16].

The introduction of the encoder-decoder model is an important milestone in

NMT, and was applied to English to French translation in the WMT14 (ACL 2014 9th

Workshop on Statistical Machine Translation) translation task . This was one of the

first neural machine translation models that outperformed baseline statistical machine

translation models in such a large task. Afterwards, the encoder-decoder model was

further enhanced with the addition of Bahdanau attention, and global/local attention

mechanisms [17,18], addressing the issue of translating long sentences.

Liu et al. [19] proposed a target-bidirectional model, trying to tackle the issue of

unbalanced outputs in RNN (recurrent neural network) based NMT (RNMT), arising

from large vocabularies, frequent reordering between input and output sentences, and

long sentences. A solid example of this phenomenon is shown in their analysis on

Japanese-English translation hypotheses, where the translation quality of the prefixes
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is much higher than that of the suffixes. As a solution, they generate hypotheses from

right-to-left (R2L) in addition to left-to-right (L2R), and enforce target agreement

of these separate models via joint search. Bidirectional decoding has been further

employed through rescoring n-best translation hypotheses [20], inference with linear

relaxation [21], neural forward (for L2R models) and backward decoders (for R2L

models) for asynchronous bidirectional inference [22], and a single bidirectional decoder

for synchronous bidirectional inference [23]. Latest models prefer beam or greedy search

for translation [22,23].

The success of the attention mechanism brought with it the idea of self-attention,

where attention is used not only between the encoder and decoders, but within them.

Vaswani et al. [24] introduced two new self-attention mechanisms (Scaled Dot-Product

and Multi-head attention), and a new architecture called the Transformer, relying com-

pletely on self-attention to deduct the global relationships between input and output.

With this new architecture and the semisupervised method of back-translation as a

way of incorporating monolingual data, state-of-the-art results have been reached for

the WMT14 English-German test set [25]. Recent NMT architectures have also been

incorporated in the realm of commercial MT systems, such as Google Translate [3] and

Microsoft Translator [4].

Developing deep NMT models with better performance have got tremendous at-

tention from researchers, resulting in advanced NMT models that are variants of vanilla

Transformer and the attentional encoder-decoder. RNMT+ [26], an enhancement over

Google’s RNN-based GNMT (Google’s Neural Machine Translation) model [3], con-

sisted of 6 bi-directional LSTMs in the decoder, and took advantage of the Trans-

former model’s multi-head additive attention. Bapna et al. [27] have trained a 16-layer

Transformer model with a new attention mechanism: transparent attention. To better

adjust gradient flow to depths of the encoder layers and optimize the gradient ex-

ploding/vanishing problem for deeper models, transparent attention creates weighted

residual connections along the encoder depth. Wang et al. [28] train an even deeper

Transformer with a 30-layer encoder, extending the work of Bapna et al. [27] with layer
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normalization and dynamic linear combination of layers. Searching for a simplified ar-

chitecture with comparable performance, So et al. [29] apply neural architecture search

(NAS), and train the original Transformer with 37.6% less parameters, outperforming

it by 0.7 BLEU for the WMT14 English-German test set.

Employing state-of-the-art architectures, such as attentional encoder-decoders

and Transformers, NMT toolkits for efficient and high speed training have been in-

troduced, such as Nematus [30], OpenNMT [31], Tensor2Tensor [32], FairSeq [33] and

Marian [34], a C++ re-implementation of Nematus. In this research, the Marian

toolkit has been used for all experiments, due to its state-of-the-art results in WMT17

and WMT18 for Turkish-English, and additional benefits, such as high training and

translation speed, and multi-GPU training.

2.2. Low Resource Neural Machine Translation

Sparsity of sentence aligned parallel corpora significantly degrades the perfor-

mance of NMT systems for low-resource language pairs. In order to tackle this issue,

ways of extracting and exploiting the linguistic knowledge within monolingual cor-

pora, which is much more accessible, have been investigated by researchers. One of

the first works that incorporated monolingual data into their NMT system is Gülçehre

et al. [35], where they came up with two methods of integrating recurrent neural net-

work language models (RNNLM) trained on monolingual target-side data. Their first

method was shallow fusion, where the translation hypotheses are rescored by the lan-

guage model (LM). The second was deep fusion, where the hidden states of the LM are

concatenated with those of the decoder. Another method presented itself in WMT15,

through re-scoring n-best hypotheses of the NMT model with n-gram LMs [36].

Sennrich et al. [37] introduce two strategies to leverage monolingual data: empty

(dummy) source sentences and synthetic source sentences. The former requires parallel

examples with empty source side, implying the context vector to be uninformative,

enforcing the network to learn solely from previous target words. The latter is the



8

novel back-translation approach, which is the automatic translation of monolingual

target data into synthetic source data. In this case, target-side is authentic monolingual

text, and only the source-side is synthetic. After obtaining dummy or back-translated

source data, NMT networks are trained with a mixture of parallel data and pseudo

parallel data.

The back-translation approach has been further investigated, with comprehensive

analysis on the amount of synthetic data, revealing an improvement of translation per-

formance with larger amounts of back-translated data, until the point where the balance

is too much in favor of the synthetic data [38]. Iterative back-translation also turned out

to be beneficial for both low-resource and high-resource scenarios [39]. Introduction of

back-translation into hierarchical transfer learning for low-resource Uygur-Chinese and

Turkish-English language pairs has improved generalization with respect to baseline

back-translation methods [40].

Enhancements over the original back-translation method have been made, by

sampling multiple source sentences based on word distribution of output words [41], or

sampling a single source sentence in addition to adding noise to beam search outputs

[25], showing improvement in translation accuracy. Caswell et al. [42] revealed the

role of noise in back-translation, which turned out to be helping the model distinguish

between original and synthetic data. In turn, they extended this notion through a

method called tagged back-translation, where synthetic data is explicitly labeled with

the < BT > tag, obtaining matching or higher scores on many different scenarios (low-

resource, mid-resource, iterative). Another way of distinguishing between authentic

and synthetic data to improve back-translation is through uncertainty-based confidence

measures [43].

Improvement in translation quality that comes with data augmentation through

original target-side monolingual data, has given birth to another strategy: copied mono-

lingual data [44]. This technique involves copying the target-side monolingual data to

the source-side, creating a bitext with each source sentence identical to the target sen-
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tence. Afterwards, the copied data is mixed with the original parallel corpus, to form

the final training set.

Source-side monolingual data has also been seen as a source for data augmen-

tation. Aiming to obtain better context representations, Zhang and Zong [45] flipped

the back-translation approach, by translating source-side monolingual data into syn-

thetic target data via self-learning. Their second approach is multi-task learning via

two NMTs that simultaneously learn translation and source-sentence reordering. He et

al. [46] more recently revisited self-training with injected noise, observing once again

its smoothing effect. The work of Jiao et al. [47] asserts that self-training significantly

improves translation quality of uncertain sentences, especially for low-frequency words.

Works that incorporate both source-side and target-side monolingual corpora

have also shown great promise. Wu et al. [48] adopt a strategy to leverage both sides,

and observe that using both target and source sides improves translation quality with

respect to only one of them. Other methods include an autoencoder that reconstructs

the observed monolingual corpora [49], reinforcement learning with source and target-

side LMs [50], iterative back-translation [39] and a mirror-generative NMT that can

learn from the monolingual corpora by jointly training source-target, target-source

NMT models and two language models [51].

Leveraging monolingual data in NMT has also been realized through pre-training,

on the grounds of its effectiveness in language modeling and language understanding for

many NLP tasks (Named Entity Recognition, Question Answering, etc.). Among the

most widely used pre-training models, Embeddings from Language Models (ELMo) [52]

is a deep bidirectional language model, pre-trained on large-scale unlabeled data. Bidi-

rectional Encoder Representations from Transformers (BERT) [53] is a Transformer

model, pre-trained with the masked language model (MLM) and next sentence pre-

diction (NSP) objectives. After pre-training, the ELMo and BERT models can be

fine-tuned for various tasks.
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An example of integrating pre-training to NMT is by feeding ELMo word em-

beddings as input to the encoder or decoder of the Transformer [54]. Song et al. [55]

have pre-trained a MAsked Sequence to Sequence (MASS) model with the objective

of reconstructing a sentence with missing (masked) parts. Afterwards fine-tuning their

model, they improved the state-of-the-art results of English-French translation, with

37.5 BLEU. Similarly, a denoising autoencoder that pre-trains sequence-to-sequence

models with the object of reconstructing a corrupted text, BART [56] contributes to

Romanian-English MT with an increase of 1.1 BLEU. A multilingual application of

BART, mBART [57], reaffirms the success of pre-training in supervised and unsuper-

vised MT for sentence and document levels.

Another method to alleviate the negative effects of the low-resource scenario is

translation data augmentation (TDA) [58], inspired by data augmentation techniques

in computer vision. Existing parallel sentences, especially ones with low-frequency

words are altered with the help of long short-term memory (LSTM) language models,

by substituting rare words with more common words, at the same time keeping the

sentence plausible.

A comprehensive analysis on the effects of hyperparameters on the low-resource

setting has shown that reducing the Byte-Pair Encoding (BPE) vocabulary size, using

word dropout and tuning the hyperparameters is extremely important performance

boosters [59]. The domination of NMT over phrase-based statistical machine transla-

tion (PBSMT) in the low-resource setting for far less parallel training data has also

been confirmed.

2.3. WMT17, WMT18 Tasks

The WMT17 News Translation Task is a shared task that entails the Chinese-

English, Czech-English, Finnish-English, German-English, Latvian-English, Russian-

English and Turkish-English language pairs. A total of 103 submissions from 31 institu-

tions were made [60]. 7 systems have been submitted for the Turkish-English direction.
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In this study, the three Turkish-English neural machine translation systems in WMT17

and their performances are taken into account (Table 2.1). All reported BLEU scores

are of official submissions in WMT17, except for UEDIN’s improved result in 2018 for

the WMT17 test set.

The low-resource characteristic of the Turkish-English language pair (approxi-

mately 220,000 parallel sentences in the SETimes corpus) and the need for exploiting

monolingual data due to its availability, all NMT systems with submissions in Turkish-

English have used back-translation (automatic translation of target data into source

data), approaching this technique in different ways.

Table 2.1. Turkish-English news translation results on the WMT17 test set.

System Model Input
Monolingual

Data
BLEU

LIUM
Attentional

encoder-decoder
BPE 150K back-translated 17.91

AFRL-MITLL
Attentional

encoder-decoder
BPE 14M back-translated 18.05

UEDIN (2017)

Stacked

Attentional

encoder-decoder

BPE

400K back-translated

+

400K copied

20.1

UEDIN (2018) Transformer BPE

2.5M back-translated

+

1M copied

26.6

The LIUM system in WMT17 used a bidirectional Gated Recurrent Unit (GRU)

encoder with layer normalization, and a conditional GRU (cGRU) decoder with at-

tention, employing tied embeddings (for feedback and output embeddings) [61]. The

back-translated data amount was kept at around 150K sentences to abide with original-

to-synthetic ratio. They obtained a 17.91 cased BLEU score from an ensemble of two

Turkish-English models trained with a dropout of 0.3, and two models with a dropout
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of 0.2. They also experimented with different amounts of back-translated data in the

English-Turkish direction, observing that the original-to-synthetic ratio can be dis-

regarded, and the increase of back-translated data amount is significantly beneficial,

seeing the 4.6 BLEU score improvement with 1M sentences as opposed to 150K sen-

tences where the original-to-synthetic ratio is preserved.

The AFRL-MITLL system in WMT17 employed an iterative approach for back-

translation [62], where they first created a Turkish-English statistical machine trans-

lation model with Moses, creating the first back-translated batch of data (around 5

million sentences). Afterwards they trained an English-Turkish Marian system on the

parallel data and the back-translated data from the Moses model, and decoded the En-

glish monolingual data (around 9 million sentences). Finally, two left-to-right (L2R)

Marian models and one right-to-left (R2L) Nematus model was trained on the parallel

data and the back-translated data from the previous Marian model. The two L2R Mar-

ian models ensemble decoded, and the R2L Nematus model rescored the n-best lists to

produce the final translation output. They combined their Turkish-English ensemble

system, with their OpenNMT system where they used iterative back-translation on

800K sentences, and the aforementioned phrase-based Moses system, and submitted

their result for newstest2017 in cased BLEU as 18.05.

University of Edinburgh’s (UEDIN) system in WMT17 [63] used a stacked at-

tentional encoder-decoder architecture proposed by [64] where the LSTM layers are

stacked, and residual connections are used between stack layers. They trained shallow

NMT models to back-translate 400K sentences. They also copied the monolingual cor-

pus, and converted it into bitext, where source and target sides were identical. Final

training corpus consisted of parallel, copied and back-translated data with 1:2:2 ratio.

An ensemble of four left-to-right Nematus models was used for obtaining the 50 best

translation hypotheses, which were in turn rescored by an ensemble of four Nematus

right-to-left models. The ensemble model received a cased BLEU score of 20.1, the

highest among the submitted systems.
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The WMT18 News Translation Task entails the Chinese-English, Czech-English,

Estonian-English, Finnish-English, German-English, Kazakh-English, Russian-English

and Turkish-English language pairs, receiving 103 submissions from 32 institutions [65].

Results of official submissions of the 2 systems for the Turkish-English direction are

given in Table 2.2.

Table 2.2. Turkish-English news translation results (official) on the WMT18 test set.

System Model Input
Monolingual

Data
BLEU

NICT Transformer BPE 1.6M back-translated 26.9

UEDIN Transformer BPE

2.5M back-translated

+

1M copied

26.9

The NICT system in WMT18 [66] incrementally trained their Marian Transformer

models, increasing the amount of their back-translated data at each iteration. They

first trained a Turkish-English and English-Turkish NMT system with the parallel

data (approximately 220,000 parallel sentences in the SETimes corpus), and back-

translated 200K sentences with each of these models. Afterwards, the two sets of

synthetic parallel data are mixed with the original parallel corpus, to generate the

next NMT models. This operation is performed 4 times, where the amount of back-

translated data is doubled at each iteration, finally reaching 1.6M sentences. They

combined their phrase-based SMT system with the NMT system, by generating 100-

best translation hypotheses, and rescored them using a reranking framework. Their

combined system received a cased BLEU score of 26.9 for the newstest2018 test set.

University of Edinburgh’s (UEDIN) system in WMT18 [67] employed the Trans-

former architecture and a deep RNN architecture, both of which were implemented

using the Marian tool. The deep RNN was described as a BiDeep GRU encoder-

decoder [68], used with multi-head and multi-hop attention. Multi-head attention

entails an MLP attention mechanism with a tanh hidden layer before a soft-max layer
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for the attention heads. Multi-hop attention includes attention hops introduced be-

tween the deep transition GRU layers in the decoder. Using the deep RNN setting,

a back-translation system is trained using only the 200K parallel corpus. Using this

model, 800K sentences are back-translated, creating a second back-translation system

with the combination of the parallel corpus and the synthetic corpus (1M sentences).

Afterwards, 2.5M sentences are back-translated with the second deep RNN model. For

the final Marian Transformer models, one setting of the training corpus is the 2.5M

synthetic sentences, and an addition of the parallel corpus oversampled 5 times (1M

sentences). The second setting is the previous setting, with the addition of 1M copied

data, obtained the same way as in the WMT17 task. 6 independently trained left-

to-right models are used for translation, and 3 right-to-left for rescoring, yielding an

official 26.9 BLEU score for the newstest2018 test set (Table 2.2). Their best system

received 28.2 BLEU (for newstest2018 ) after the shared task submission, reported as

state-of-the-art in Section 5.4. They also improved their state-of-the-art submission

for the WMT17 shared task, obtaining 26.6 BLEU for the newstest2017 test set (Table

2.1).

All aforementioned models in the WMT17 and WMT18 tasks used byte pair

encoding (BPE) [69] as the input scheme, with the subword-nmt tool [70].

2.4. Input Variations

Large vocabularies and out-of-vocabulary (OOV) words have been the focus of

researchers due to the open vocabulary setting of NMT. To cope with the increase of

training complexity due to large target vocabularies, Jean et al. [71] proposed impor-

tance sampling, exploiting a small subset of the vocabulary. Other techniques include

a post-processing step that look up OOV words from a dictionary [72], and the repre-

sentation of only OOV words as character embeddings [73]. Addressing both the OOV

and the morphologically complex word (MCW) problem, Sennrich et al. [69] proposed

their own word segmentation scheme, called byte pair encoding (BPE). In this scheme,

words are divided into subword units from a set of frequent pairs of characters. Their
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method allows a fixed-size vocabulary, and the ability to represent OOV or MCW

words efficiently.

The morphologically-rich characteristic of Turkish requires particular attention in

the translation task. Being a highly agglutinative language, multiple morphemes can

be concatenated, posing an incredible variety of inflections and derivations, such that

a single word in Turkish may and often does correspond to multiple words in English.

An example is “okulundaydı”, which can be translated as: “He/she was at his/her

school”. The correct segmentation of this word would be okul (school) + u (his/her)

+ nda (at) + ydı (he/she was). Thus, the significance of input decomposition for the

Turkish-English NMT task comes to surface, expecting better translation quality if the

correct segmentation of morphemes inside a Turkish word is achieved.

Gülçehre et al. [35] employed an encoder-decoder model with Bahdanau atten-

tion, leveraging monolingual data via shallow and deep fusion. Regarding the input of

their NMT model, they tokenized the Turkish sentences using Zemberek [2], followed

by morphological analysis and disambiguation using Sak et al.’s [74] tool, afterwards

removing non-surface morphemes (part-of-speech tags, etc.). Their NMT system, sup-

ported with deep fusion LM, reached a 20.56 BLEU for The International Workshop

on Spoken Language Translation 2014 (IWLST14) test set. The same pre-processing

approach was employed by Shen et al. [75] in their densely connected NMT system,

obtaining 24.54 BLEU score on the IWLST14 test set.

Sennrich et al. [37] relied on the same architecture and the same pre-processing

for Turkish sentences as Gülçehre et al. [35], differing in their usage of the monolingual

data. Asserting that an encoder-decoder network can already model the probability

distribution of a target word given its previous target words, they use back-translation

and dummy source sentences (empty source side) instead of language models, to incor-

porate monolingual data. Their single model received a 20.4 BLEU for the IWLST14

test set.
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Bektaş et al. [76] tokenized the Turkish sentences using the Moses tokenizer,

followed by Oflazer’s [77] morphological analyzer, and Sak et al.’s [74] morphological

disambiguator to produce the Turkish input representation for their Turkish-English

SMT system. They only kept the morphological features that correspond to lexical

morphemes inside the word (dative, accusative, past participle, etc.) for the input

segmentation of the word. Ataman et al. [78] also followed the same pre-processing

approach, but included the root and all suffix tags in the Turkish input representation

of their NMT model.

Pan et al. [79] proposed a multi-source neural model with two encoders, namely a

word-based encoder for source word features and a knowledge-based encoder for source

morphological features. The morphological features entail the lemma, part-of-speech

(POS) tag, and the morphological tag. They used BPE for segmentation, followed by

the Zemberek tool, and Sak et al.’s [74] morphological disambiguator . Their multi-

source model achieved 27.37 BLEU score for the IWLST14 test set.

For better comparison, the aforementioned systems are summarized in Table 2.3.
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Table 2.3. News translation BLEU scores of different input variations.

Test set

System Model Input
Parallel

Data

Monolingual

Data
IWLST14 WMT16

Gülçehre

et al. [35]

Attentional

encoder-decoder

+ RNNLM

Morph. analysis

+ disamb.
160K

Not

specified
20.56 -

Shen

et al. [75]

Densely

connected

attentional

encoder-decoder

Morph. analysis

+ disamb.
360K - 24.54 -

Sennrich

et al. [37]

Attentional

encoder-decoder

Morph. analysis

+ disamb.
320K

3.2M

back-translated
20.4 -

Bektaş

et al. [76]

(Hierarchical)

Phrase-based

SMT

Morph. analysis

+ disamb.

(Only morphemes

in word)

208K 28M - 16.01

Pan

et al. [79]
Transformer

Multi-source

(Lemma + POS

+ Morph. tag)

355K - 27.37 -
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3. DATASET

The SETimes (Southeast European Times) corpus is a parallel corpus gathered

from news articles in 10 Balkan languages, containing 45 bitexts [80,81]. The Turkish-

English SETimes parallel corpus, consisting of 207K sentences, has been used in this

research, where sentences have been tokenized and cleaned (sentences with less than

1 and more than 80 tokens) using the Moses cleaning scripts [82] before truecasing

and further word segmentation. The SETimes-clean corpus has been used for training.

Corpus statistics can be seen in Table 3.1.

Table 3.1. Corpus statistics.

Turkish English

Corpus Usage Sentences Tokens
Unique

Tokens
Tokens

Unique

Tokens

SETimes - 207,678 4,655,869 168,036 5,237,327 70,573

SETimes-clean Train 207,373 4,633,304 167,519 5,210,932 70,356

newstest2016 Dev 3,000 54,420 16,441 67,468 9,700

newstest2017 Test 3,007 55,527 15,777 68,739 9,466

newstest2018 Test 3,000 57,377 17,141 70,575 10,109

WMT News

Crawl (TR)
Aug. 2,494,930 40,701,743 863,004 - -

WMT News

Crawl (EN)
Aug. 3,409,247 - - 92,807,980 591,787

For monolingual data, the WMT News Crawl 2020 dataset [83] has been uti-

lized. The dataset has been extracted from online newspapers, sentence-split, shuffled

and released for the WMT shared tasks. The Turkish monolingual corpus consists of

26,552,319 sentences and the English corpus consists of 274,929,980 sentences. Only

the used portions of the corpora are reported in Table 3.1, usage denoted as “Aug.”

for data augmentation.
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For all models, the WMT16 test set (newstest2016 ) has been used for validation

(development). WMT17 (newstest2017 ) and WMT18 (newstest2018 ) test sets have

been used for testing.
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4. METHODOLOGY

4.1. Encoder-decoder Model

The encoder-decoder architecture (Figure 4.1) can be considered a dominating

architecture in neural machine translation, where recurrent neural networks (RNNs)

are used for sequence-to-sequence prediction. The main purpose here is to extract a

fixed length vector from a variable-length input sentence, and then generate a variable-

length target sentence.

Figure 4.1. Encoder-decoder architecture. (self-drawn)

The encoder consists of LSTM/GRU cell(s). It takes the input sequence, extracts

the information and stores it in its internal states. Thus, the input sequence is reduced

into a context vector. The output of the encoder is disregarded. The decoder usually

follows a similar architecture to the encoder (LSTM/GRU). The states of the decoder

are initialized to the final states of the encoder (the context vector). Thus, the decoder

can generate the translated sequence based on the encapsulated information from the

encoder. A softmax activation function is applied to the last layer of the decoder, to

introduce non-linearity to the network.
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During training, the decoder starts from the first token in the input sequence

(SOS - start of sentence token in Figure 4.1), and learns to predict the next word, until

the end of the sentence. During testing (inference/translation), the decoder is given

the start of sentence token (SOS), and predicts the entire sequence, word by word,

until the end of sentence token (EOS) is reached.

If we formulate the translation process of the decoder, denoting the output sen-

tence with y, we can state that the decoder is trained to predict the next word yt

given the context vector c and all previously predicted words (y1, y2...yt−1). Hence, the

probability over the final translation y becomes:

p(y) =
T∏
t=1

p(yt|{y1, ..., yt−1}, c). (4.1)

Each conditional probability is the output of a non-linear function g that returns

the probability of yt given the previous word yt−1, the decoder hidden state st and the

context vector c:

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c). (4.2)

The most significant handicap of the encoder-decoder network in NMT is poor

translation performance for long sentences. Feeding the input sentence to the network

in reverse order may aid in resolving short-term dependencies in the dataset [16].

However, the problem of long-term dependencies, and preserving the integrity of the

target sentence for a long input sentence turned out to be an important issue to be

resolved. Representing the information within a sentence in a fixed-length vector may

not be adequate to encode a long sentence with a complicated structure [15]. To solve

this issue, the concept of attention has been introduced.
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Bahdanau et al. [17] introduced a new model, where the constant context vector

c(x) that represented the whole input sentence, is replaced by a series of context vectors

cj(x) for each time step j. Thus, the attentional decoder can focus on only a part of

the sentence that is most relevant/important when generating the next word: aligning

and translating at the same time.

Transforming Eq. 4.2 with the attentional context vector ci, the conditional

probabilities become:

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci), (4.3)

where the hidden state si for time i is given by the formula:

si = f(si−1, yi−1, ci). (4.4)

The difference from the encoder-decoder architecture is that, the probability of

a target word yi is conditioned on a distinct ci , which is a weighted sum of a series

of annotations (h1, ..., hTx) that contain information about the whole input sequence,

with a strong focus on the words neighbouring the i-th word [17]:

ci =
Tx∑
j=1

αijhj , (4.5)

where the weight αij of each annotation hj is computed by

αij =
exp(eij)∑Tx

k=1 exp(eik)
, (4.6)

eij = a(si−1, hj),

where a is an alignment model that scores the match between the inputs around position

j and the output at position i based on the previous decoder hidden state si−1 and

the j-th annotation (encoder hidden state) hj. The alignment model can be jointly
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trained as a feedforward neural network along with the encoder-decoder components.

The system proposed by Bahdanau et al. [17] can be seen in Figure 4.2.

Figure 4.2. Attention mechanism, generating target word yt [17]. (self-drawn)

In this study, the Marian [34] implementation of the encoder-decoder model with

Bahdanau attention has been used. Marian’s attentional encoder-decoder is equivalent

to that of Nematus [30], which follows the architecture proposed by Bahdanau et

al. [17], with the following differences:

• As opposed to initializing the decoder hidden state with the last annotation in

the backward encoder state

s0 = tanh(Winit

←
h1), (4.7)

the decoder hidden state is initialized with the average of the source annotation:

s0 = tanh

(
Winit

∑Tx

i=1 hi
Tx

)
. (4.8)
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• A novel conditional GRU with attention, cGRUatt, is implemented, where the

previous hidden state sj−1, the entire context set C = {h1, ..., hTx}, and the pre-

viously translated symbol yj−1 are used to update the hidden state sj at position

j, to be used in the prediction of symbol yj, shown as sj = cGRUatt(sj−1, yj−1, C).

cGRUatt is made up of two GRU state transition blocks and an attention mech-

anism between them. The first GRU combines the previously translated symbol

yj−1 and the previous hidden state sj−1, generating an intermediate representa-

tion s
′
j, shown as s

′
j = GRU1(sj−1, yj−1).

The attention mechanism between the GRUs takes in the entire context set C

and the intermediate hidden state s
′
j, outputting the context vector cj:

cj = ATT (C, s
′

j) =
Tx∑
i

αijhi,

αij =
exp(eij)∑Tx

k=1 exp(ekj)
, (4.9)

eij = vTa tanh(Uas
′

j +Wahi),

where αij is the normalized aligment weight between the ith source symbol and

jth target symbol, and va , Ua and Wa are model parameters. In turn, the sec-

ond GRU creates the hidden state sj of the cGRUatt with the help of s
′
j and the

context vector cj, shown as sj = GRU2(s
′
j, cj).

The combination of RNN blocks occurs recurrently at the level of the entire cGRU

layer, instead of indiviual recurrence in the GRU blocks, resembling deep transi-

tion RNNs [84].

• tanh non-linearity is introduced to the feedforward hidden layer of the decoder,

instead of maxout before the softmax layer.

• Additional biases are not used in the encoder and decoder word embedding layers.

• Decoder implementation is simplified by employing Look, Update, Generate de-
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coder phases, rather than Look, Generate, Update in Bahdanau et al. [17].

• Multi-source encoder-decoder networks can be trained. This allows the exploita-

tion of multiple linguistic features, in that the final embedding is the concatena-

tion of each feature embedding [85]. Junczys-Dowmunt and Grundkiewicz [86]

adopt this multi-source model for automatic post-editing of MT output, and de-

scribe the computation of the decoder start state s0 for the dual-source model

as the concatenation of the averaged encoder contexts. The decoder consists of

doubly-attentive cGRU cells, the only difference from the original conditional

GRU being once again the concatenation of the context vectors.

• Tying of embedding matrices is possible. Press and Wolf [87] define tied em-

beddings as the weight tying of input and output embeddings of the decoder,

describing its effect in NMT as the reduction of number of parameters of the

model by less than half, without compromising the performance. Three-way

weight tying is also allowed, where input and output embeddings of the decoder,

and the input embedding of the encoder are tied.

The deep encoder-decoder architectures implemented in Marian are explained in

the following subsections.

4.1.1. Deep Transition Architecture

The deep transition RNN employs multiple transition layers of GRU blocks, con-

nected in such a way that the state output of one is the state input of the next one.

Recurrence is implemented at the level of the whole multi-layer recurrent cell instead

of individually at each GRU transition. Application of this architecture to NMT is a

novel contribution of Miceli Barone et al. [68].

The deep transition encoder is a bidirectional RNN, where the encoder recurrence

depth is represented with Ls. The forward state of the i-th source word
→
hi ≡

→
hi,Ls

is calculated such that, input of the first GRU transition is the word embedding xi,

whereas the other GRU transitions have no external inputs. The previous word state
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→
hi−1,Ls is input to the first GRU transition for the current source word, enabling

recurrence:

→
hi,1 = GRU1 (xi,

→
h i−1,Ls) (4.10)

→
h i,k = GRUk (0,

→
h i,k−1),where 1 < k ≤ Ls .

Reverse source word states are calculated in a similar fashion, and concatenated

to the forward source word states, forming the bidirectional source word states C ≡

{[
→
hi,Ls

←
h i,Ls ]}.

Figure 4.3. Deep transition decoder [68]. (License provided in Appendix A)

The deep transition decoder (Figure 4.3) is an extension of the baseline decoder

that consists of a transition depth of two, where GRU1 takes in the embedding of the

previous target word, and GRU2 receives a context vector computed by the attention

mechanism. This scheme is extended, so that the transition depth (decoder recurrence

depth) becomes an arbitrary Lt, where the embedding of the previous target word

is denoted as yj−1, and the context vector computed by the attention mechanism as

ATT (C, sj,1):

sj,1 = GRU1 (yj−1, sj−1,Lt)

sj,2 = GRU2 (ATT (C, sj,1), sj,1) (4.11)

sj,k = GRUk (0, sj,k−1) ,where 2 < k ≤ Lt ,
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where only the first two GRU transitions have external inputs. Finally, prediction of

the current target word is achieved by the feed-forward output network, exploiting the

target word state vector sj ≡ sj,Lt .

In this research, the Marian implementation of the deep transition architecture

with an encoder recurrence depth of Ls = 4 and a decoder recurrence depth of

Lt = 8 has been adopted in all of the attentional encoder-decoder experiments except

the final models (Section 5.4). Tied embeddings (weight tying of all embeddings and

output layer) [87] have been employed to reduce the number of parameters. To reduce

training time, layer normalization [88], an alternative to batch normalization has been

used. Different from batch normalization, layer normalization operates on the channel

dimension instead of the batch dimension, computing the normalization statistics from

the summed inputs to the neurons within a hidden layer, hindering new dependencies

within training cases (Figure 4.4). Layer normalization is applied to all recurrent and

feed-forward layers, with the exception of layers followed by a softmax. A dropout of

0.1 has been applied along the RNN layers.

Figure 4.4. Batch normalization versus layer normalization [89]. Feature map tensors

are shown, where pixels in blue are normalized. N: batch axis, C: channel axis, (H,

W): spatial axes. (License provided in Appendix B)

Taking example from UEDIN’s WMT18 system [67], Adam [90] has been used

for the optimization of the models, with β1 = 0.9 and β2 = 0.98. Learning rate

was started at 0.0003 during training. Exponential smoothing, gradient clipping and
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for regularization, label smoothing [91] (0.1) as a way of encouraging the model to

be less confident have been incorporated. The models have been trained on 2 GPUs

on TÜBİTAK ULAKBİM’s computing infrastructure, TRUBA (Turkish National e-

Science e-Infrastructure), with mini-batch size fit into 9.5GB of GPU memory.

Early stopping with a patience of 5 has been selected as the stopping criterium,

with word-level cross-entropy used as the validation metric every 5,000 updates, up to

8 or 12 epochs. Training time differs according to the size of the training corpus and

convergence. Best models according to BLEU score for the validation set have been

kept.

4.1.2. Stacked Architecture

The stacked attentional encoder-decoder architecture is not used directly in this

research, however is explained for the sake of the BiDeep architecture, which is a

combination of deep transitions and stacking.

The stacked architecture is a GRU-based NMT model with residual connections

between the stack layers. Multiple connected GRUs run for the same number of steps,

so that at each time step the bottom GRU takes external inputs from the outside,

while the higher GRU is fed as external input, the state output of the one below

it. Information flow is improved with residual connections between states at different

depths. The main difference from the deep transition architecture is the individual

recurrence within each GRU transition block [68].

Figure 4.5. Alternating stacked encoder [68]. (License provided in Appendix A)
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A variation of Zhou et al.’s [64] LSTM-based model, the encoder is called an

alternating stacked encoder (Figure 4.5). The forward encoder consists of a stack

of GRUs, operating in alternating directions, the first GRU processing words in the

forward direction, the second GRU in the backward direction, and so on. Assuming an

encoder stack depth as Ds and the source sentence length N , the forward source word

state
→
wi ≡

→
wi,Ds is obtained as:

→
wi,1 =

→
hi,1 = GRU1 (xi,

→
h i−1,1)

→
hi,2k = GRU2k (

→
wi,2k−1,

→
hi+1,2k), for 1 < 2k ≤ Ds (4.12)

→
hi,2k+1 = GRU2k+1 (

→
wi,2k,

→
hi−1,2k+1), for 1 < 2k + 1 ≤ Ds

→
wi,j =

→
hi,j +

→
wi,j−1, for 1 < j ≤ Ds ,

where
→
h0,k and

→
hN+1,k are assumed to be zero vectors. At each level above the first,

the word state of the current level
→
wi,j is computed as the sum of the word state of the

previous level
→
wi,j−1 and the current GRU cell’s recurrent state

→
h i,j, indicating residual

connections.

The backward encoder operates the same way, where the words are processed

backwards in the first level, and the rest of the levels alternate directions. The con-

catenation of the forward and backward word states constitutes the bidirectional word

states C ≡ [
→
wi,Ds

←
wi,Ds ].

The stacked decoder also consists of stacked GRUs that do not alternate direc-

tions, but operate in the forward direction. The base GRU is a conditional GRU

(cGRU) with a transition depth of two, whereas the higher RNNs are simple GRUs

with residual connections and a transition depth of one. The target word states for

decoder stack depth Dt are computed as follows for the higher GRUs:
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sj,1,1 = GRU1,1 (yj−1, sj−1,1,2)

cj,1 = ATT (C, sj,1,1)

sj,1,2 = GRU1,2 (cj,1, sj,1,1)

rj,1 = sj,1,2 (4.13)

sj,k,1 = GRUk (rj,k−1, sj−1,k,1)

rj,k = sj,k,1 + rj,k−1, for 1 < k ≤ Dt .

4.1.3. BiDeep Architecture

The BiDeep RNN is a novel architecture proposed by Miceli Barone et al. [68] as a

mixture of deep transition and stacked architectures. Ds individually recurrent GRUs

of the stacked encoders and decoders are replaced with multi-layer deep transition cells

consisting of Ls GRU transition blocks. Hence, for the BiDeep RNN, the GRUk in Eq.

4.12 and Eq. 4.13 is replaced with a multi-layer deep transition GRU: DTGRUk, other

computations remaining the same. The multi-layer DTGRUk cell is computed as:

vk,1 = GRUk,1 (ink, statek)

vk,t = GRUk,t (0, vkt−1), for 1 < k ≤ Ls (4.14)

DTGRUk (ink, statek) = vk,Ls .

In this research, the final models carry the BiDeep RNN architecture implemented

with Marian, with 4 encoder layers (each with 2 transitional GRU cells) and 4 decoder

layers (the first layer with 4 and the next layers with 2 transitional GRU cells). The

BiDeep models are equipped with tied embeddings, layer normalization, exponential

smoothing, gradient clipping and label smoothing (0.1). The model is optimized using

Adam with the same parameters as the deep transition models described in Section

4.1.1, with the same stopping criterion, trained on 2 GPUs.
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4.2. Transformer Model

The sequential nature of the recurrent encoder-decoder models with attention

makes parallelization within training examples difficult, especially for longer sentences.

In addition, distant items may not affect each other’s output without passing through

many RNN steps or convolutional layers. In order to address these problems, Vaswani

et al. [24] introduced self-attention. Their entirely attention-based new model intro-

duced short paths between distant words, and reduced the amount of sequential com-

putation. The model architecture that they have introduced is called a Transformer,

a model that allows more parallelization, better translation quality and less training

time.

The Transformer (Figure 4.6) uses stacked self-attention and point-wise, fully

connected layers for the encoder and the decoder, where the encoder consists of 6

stacked layers, each with a multi-head self-attention layer and a position-wise fully

connected feed-forward layer. Residual connection and layer normalization are applied

around each two sub-layers. The decoder also consists of 6 stacked layers. In addition

to the two sub-layers in the encoder, the decoder applies multi-head attention to the

output of the encoder. Once again, residual connection and layer normalization are

applied. The multi-head attention layer in the decoder is masked, to ensure that

attention does not focus on unknown outputs in subsequent positions.

Vaswani et al. [24] define attention as a function of a query and a set of key-value

pairs. A weight corresponding to the value is computed with a compatibility function

of the key and the query. Two self-attention mechanisms have been introduced: Scaled

Dot-Product Attention and Multi-Head Attention, explained in detail in Sections 4.2.1

and 4.2.2.
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Figure 4.6. Transformer model architecture [24]. (self-drawn)

4.2.1. Scaled Dot-Product Attention

In Scaled Dot-Product Attention (Figure 4.7), queries and keys are of dimension

dk, and values of dimension dv. The weights of the values are computed by taking the

dot product of the query with all keys, divided by
√
dk, and then applying softmax. The

matrix of outputs is (queries, keys and values are packed into the matrices Q,K, V ):

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (4.15)
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Figure 4.7. Self-attention models [24]. (self-drawn)

The scaling of the dot product by (1/
√
dk) is to prevent the dot product from

growing too large.

4.2.2. Multi-Head Attention

In Multi-Head Attention, the queries, keys and values are linearly converted h

times with different, learned projections into dk, dk and dv dimensions. Afterwards, the

attention function is performed in parallel, generating dv-dimensional output values.

These output values are then concatenated and projected, yielding the final values

(Figure 4.7):

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (4.16)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ).
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The advantage of the multi-head attention is jointly obtaining information from

different representation subspaces at different positions. Vaswani et al. [24] exploited

the multi-head attention in three ways. Firstly, as in the encoder-decoder attention

models, as a way for the decoder to focus on specific parts of the input, secondly, inside

the encoder, and thirdly, inside the decoder.

The Marian implementation of the Transformer, following the explained ap-

proach, was used in this study for the Transformer models. Encoder and decoder

depths have both been set to 6 layers, employing 8-head multi-head attention. All

Transformer models have been trained on 4 GPUs, with early stopping if the word-

level cross entropy does not improve after five 5,000 updates, up to 12 epochs. Different

from the original model, size of the position-wise feed-forward network has been set to

4096 instead of 2048, and the size of embedding vector has been set to 1024 instead of

512, resembling Google’s Transformer-Big architecture. Although compromising from

speed and memory usage, improvement over the original has been observed (Section

5.1).

In addition to dropout between Transformer layers (0.1), dropout for Transformer

attention (0.1) and Transformer filter (0.1) have been applied. As in the attentional

encoder-decoder models, tied embeddings, layer normalization, exponential smoothing,

gradient clipping and label smoothing (0.1) have been adopted. In order to be compat-

ible with the increase in parameters, mini-batch size was fit into 8GB of GPU memory.

Best models according to BLEU score for the validation set have been kept.

4.3. Data Augmentation

The low-resource setting of the Turkish-English pair (207K parallel sentences)

has encouraged the usage of monolingual corpora, through self-training for source-side,

and through copying and back-translation for target-side parallel data augmentation.

The Turkish and English monolingual data has been obtained from the WMT News

Crawl 2020 dataset.
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For experimentation on different input variations, a shallow Turkish-English at-

tentional encoder-decoder model has been trained using only the 207K SETimes-clean

parallel corpus. The Moses scripts for tokenization, truecasing and punctuation nor-

malization [82] have been applied to the parallel corpus. Joint byte pair encoding

(BPE) has been employed for subword segmentation [69]. With the trained model,

source-side (Turkish) monolingual data of 450K sentences has been translated into En-

glish. The combination of the parallel SETimes corpus and the synthetic corpus have

been cleaned with the Moses script, resulting in Corpus A with 656K sentences (Table

4.1).

Table 4.1. Statistics of augmented corpora after tokenization and cleaning.

Synthetic

Corpus Self-trained Back-translated Copied Original Total

SETimes-clean - - - 207,373 207K

A 448,811 - - 207,373 656K

B 1,994,892 - - 207,373 2.2M

C 2,483,765 - - 207,373 x 5 3.5M

D - 2,404,835 - 207,373 x 5 3.4M

E - 2,404,835 981,141 207,373 x 5 4.4M

F 2,483,765 2,404,835 981,141 207,373 x 5 6.9M

In order to observe how the amount of synthetic data affects translation qual-

ity, source-side (Turkish) monolingual data of 2M sentences has been translated into

English in the same manner. Mixed with the SETimes-clean parallel corpus, Cor-

pus B (2.2M sentences) has been used for training attentional encoder-decoder and

Transformer models, with different input segmentation techniques.

After the results of different input variations have been obtained, the best in-

put segmentation method has been selected for the final models. The final models

were trained on a combination of synthetic self-trained data (by translating source-side

monolingual data), copied data, and synthetic back-translated data (by translating

target-side monolingual data).
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For the final models, 2.5M Turkish sentences from the WMT News Crawl 2020

dataset have been translated by a Turkish-English attentional encoder-decoder model

with BiDeep architecture, trained on only the SETimes-clean corpus. Pre-processing

of the parallel corpus differed from the aforementioned process, where the best input

segmentation method, Morphemes has been applied, which will further be explained in

Section 4.4. The 2.5M synthetic parallel corpus has undergone special cleaning steps,

taking example from Durgar El-Kahlout et al. [92]. A sentence pair has been removed

if:

• the synthetic sentence consists of only one word

• token count in synthetic sentence / token count in authentic sentence > 3

• a token in the synthetic sentence repeats itself 3 times consecutively

After cleaning is complete, the synthetic corpus has been paired with the SETimes-

clean corpus. In order to prevent the ratio of synthetic over original from becoming

too much in favor of the synthetic, the original parallel corpus has been oversampled

(copied) 5 times (shown in Table 4.1 as x 5), forming Corpus C (3.5M sentences).

In addition to exploiting source-side monolingual data via self-training, target-

side monolingual data has also been incorporated via back-translation. An English-

Turkish BiDeep model has been trained on only the SETimes-clean corpus, undergo-

ing the same pre-processing operation as the source-side. Afterwards, 2.5M English

sentences from the WMT News Crawl 2020 dataset have been back-translated. The

obtained synthetic back-translated corpus has been cleaned with respect to the afore-

mentioned three conditions. Corpus D consists of the clean back-translated corpus,

and SETimes-clean, oversampled 5 times (3.4M sentences).

Following the work of Currey et al. [44], a copied corpus of 1M sentences has been

created. 1M English sentences from the WMT News Crawl 2020 dataset has been taken,

and a bitext has been formed, with the source-side identical to the target-side. The

copied corpus has been added to Corpus D, to form Corpus E (4.4M sentences). In
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addition, a corpus that contains all the augmentations (the copied, the back-translated

and the source-side translated corpora) has been put together, to form Corpus F (6.9M

sentences).

4.4. Input variations

Input representation is an important factor in translation quality, especially for

low-resource settings. In addition to carrying the low-resource setting, Turkish is a

morphologically-rich language, requiring special attention for word segmentation. In

this research, mainstream word segmentation techniques and morphologically moti-

vated segmentation techniques designed specifically for Turkish have been applied and

compared in the scope of the Turkish-English NMT task.

Input segmentation methods are explained with examples and statistics in the fol-

lowing subsections. In all scenarios, subword segmentation is applied after truecasing,

punctuation normalization and tokenization of the sentence. The tokenization process

mentioned here is merely the separation of words and punctuation.

4.4.1. Byte Pair Encoding

Byte pair encoding (BPE) is a word segmentation algorithm that encodes rare

words via subword units [69]. The open vocabulary problem is tackled by creating a

fixed-size vocabulary consisting of variable-length character sequences. Additionally,

translation of rare words, when represented with subword units, becomes easier to

manage. The only hyperparameter of the BPE algorithm is the number of merge

operations, that determines the number of frequent character n-gram pairs that form

a word or a subword when merged.

In this research, joint BPE is applied, which is learning the encoding on the union

of source and target vocabularies, observed to improve consistency between source and

target segmentation. Joint BPE learning is achieved by the concatenation of source



38

and target corpora, and then applying the subword-nmt tool [70] on the concatenated

corpora. Number of merge operations has been set to 85,000. Segmented subwords

carry the “@@” symbol at the end, except for the rightmost subword of a word (see

example in Table 4.2).

Table 4.2. Examples of Byte Pair Encoding (BPE) and WordPiece (BERT)

segmentation.

EN TR

Original

Sentence

Unfortunately, Greece as a full

member of the Alliance,

threatens to use its veto.

Kendi zayıflığımız yüzünden

bu hedeflere geçtiğimiz yıl

ulaşamamış olmaktan üzüntü

duyuyorum.

BPE

Segmented

Sentence

Un@@ fortun@@ ate@@ ly ,

Greece as a full member of the

Alliance , threatens to use its veto .

kendi zayıf@@ lığımız yüzünden

bu hedeflere geçtiğimiz yıl

ulaş@@ amamış olmaktan üzüntü

duyuyorum .

BERT

Segmented

Sentence

Un ##fort ##unate ##ly ,

Greece as a full member of the

Alliance , threatens to use its veto .

kendi zayıf ##lığımız yüzünden

bu hedeflere geçtiğimiz yıl

ulaşama ##mış olmaktan üzüntü

duyuyorum .

4.4.2. WordPiece

WordPiece algorithm is a word segmentation algorithm similar to BPE [3]. Once

again, a provided number of merge rules are learned. Different from the BPE algorithm,

which chooses the most frequent character n-gram pair, the pair that maximizes the

language model likelihood is chosen.

For this subword tokenization scheme, the Huggingface [93] implementation of

BERT’s [53] WordPiece tokenizers have been used. BERT Transformer models are pre-

trained on large English and Turkish data, with masked language modeling and next

sentence prediction objectives, thus learning an inner representation on the languages,

afterwards to be used for fine-tuning.
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BERT tokenizers are created with the WordPiece algorithm, and can be used for

tokenizing data for fine-tuning BERT language models, or any given task.

For English, the case-sensitive bert-base-cased tokenizer [53] with a vocabulary

size of 28,996, and for Turkish the distilbert-base-turkish-cased tokenizer [94] with a

vocabulary size of 32,000 has been used, which is a distilled, lighter version of BERT

[95]. After separately segmenting the Turkish and English sentences, subwords carry

the “##” symbol at the beginning, except for the leftmost subword of a word (see

example in Table 4.2).

Although being quite similar to the BPE algorithm, BERT’s tokenizer benefit

from being pre-trained on large amounts of data, but has the drawback of using separate

vocabularies for the two languages. Hence, it is intended in this study to make a

comparison between the two methods.

4.4.3. Morphemes and Allomorphs

Morphemes are defined as small lexical items that carry a meaning. Free mor-

phemes can function alone with a specific meaning, whereas bound morphemes function

as parts of words, used in conjunction with a root or other bound morphemes. Allo-

morphs are different phonological variants of morphemes. The difference can be in

spelling or pronunciation. For example, the ablative morpheme in Turkish is “DAn”,

which has four allomorphs, depending on the root word it is attached to: “tan, ten,

dan, den”.

In this research, complex morphology of the Turkish language has led to the idea

of morphologically motivated input segmentation, meaning the breaking up of a word

into its morphemes via morphological analysis and disambiguation. The morphosyn-

tactic and morphosemantic information carried by the morphemes and allomorphs is

expected to be leveraged with several approaches, and comparison within these meth-

ods and with mainstream word segmentation methods (BPE, WordPiece) that are not
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linguistically motivated has been carried out.

Before morphological analysis and disambiguation, Turkish sentences have been

cleaned and truecased with the Moses scripts. Afterwards, the Zemberek tokenizer [2]

has been used for the separation of words and punctuation.

4.4.3.1. Morphemes. Morphological analysis of Turkish sentences has been performed

using Sak et al.’s [1] tool. After morphologically parsing the sentence, disambiguation

is applied on all possible parses of a word, selecting the best morphological analysis

(Table 4.3).

After disambiguation, the sentence is reconstructed word by word, using a Python

script. The disambiguated morphological analysis of each word is used to extract its

morphemes, separated by a space. Each morpheme after the root morpheme starts

with an underscore (“ ”). Special extraction is used for capital letters from the original

corpus, since this knowledge is lost during analysis.

The second input variation with this approach is obtained by concatenating the

morphemes other than the root, called Concatenated Morphemes. In this case, the

concatenated morpheme sequence carries an underscore at the beginning. The third

input variation is using only the root and the morpheme at the end of the word, referred

to as Last Morpheme. The reason for the usage of the last morpheme is based on Oflazer

et al.’s [96] observation that syntactic relation links are usually associated with the last

morpheme/IG (inflectional group) of a word. This final input segmentation method

results in syntactic and semantic loss, but decreases the amount of morphemes in a

sentence, a rather interesting method to observe. All segmentations with morphemes

are exemplified in Table 4.5.
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Table 4.3. Morphological analysis and disambiguation (Sak et al. [1]) of the sentence:

“Gün geçtikçe bu tarz haberleri daha sık duyar hale geldik .”.

Word Analysis Disambiguation

Gün
(1) Gün[Noun]+[Prop]+[A3sg]+[Pnon]+[Nom]

(2) gün[Noun]+[A3sg]+[Pnon]+[Nom]
(2)

geçtikçe
(1) geç[Verb]+[Pos]-DHk[Noun+PastPart]+[A3sg]+[Pnon]+CA[Equ]

(2) geç[Verb]+[Pos]-DHkçA[Adv+AsLongAs]
(2)

bu

(1) bu[Pron]+[Demons]+[A3sg]+[Pnon]+[Nom]

(2) bu[Adj]

(3) bu[Det]

(3)

tarz (1) tarz[Noun]+[A3sg]+[Pnon]+[Nom] (1)

haberleri

(1) haber[Noun]+[A3sg]+lArH[P3pl]+[Nom]

(2) haber[Noun]+lAr[A3pl]+[Pnon]+YH[Acc]

(3) haber[Noun]+lAr[A3pl]+SH[P3sg]+[Nom]

(4) haber[Noun]+lAr[A3pl]+SH[P3pl]+[Nom]

(3)

daha (1) daha[Adv] (1)

sık

(1) sık[Verb]+[Pos]+[Imp]+[A2sg]

(2) sık[Adj]

(3) sık[Adv]

(2)

duyar

(1) duy[Verb]+[Pos]+Ar[Aor]+[A3sg]

(2) Duyar[Noun]+[Prop]+[A3sg]+[Pnon]+[Nom]

(3) duyar[Adj]

(1)

hale

(1) hâl[Noun]+[NoHats]+[A3sg]+[Pnon]+YA[Dat]

(2) hal(II)[Noun]+[A3sg]+[Pnon]+YA[Dat]

(3) hale[Noun]+[A3sg]+[Pnon]+[Nom]

(4) Hale[Noun]+[Prop]+[A3sg]+[Pnon]+[Nom]

(1)

geldik

(1) gel[Verb]+[Pos]+DH[Past]+k[A1pl]

(2) gel[Verb]+[Pos]-DHk[Noun+PastPart]+[A3sg]+[Pnon]+[Nom]

(3) gel[Verb]+[Pos]-DHk[Adj+PastPart]+[Pnon]

(1)

. (1) .[Punc] (1)

4.4.3.2. Allomorphs. Usage of morphemes in the input representation has the effect

of vocabulary reduction, since different phonetic variations of suffixes, affixes and roots

are represented with a single form. With the intention of observing if the drop in

vocabulary size improves translation quality, allomorphs, that is to say morphemes



42

with phonological variations, have also been investigated. However, the morphological

analysis and disambiguation tool of Sak et al. does not provide this functionality. To

achieve an allomorph segmentation, the Zemberek tool [2] has been used.

Table 4.4. Morphological analysis and disambiguation (Zemberek [2]) of the sentence:

“Gün geçtikçe bu tarz haberleri daha sık duyar hale geldik .”.

Word Analysis Disambiguation

Gün (1) [gün:Noun,Time] gün:Noun+A3sg (1)

geçtikçe (1) [geçmek:Verb] geç:Verb—tikçe:AsLongAs→Adv (1)

bu (1) [bu:Det] bu:Det (1)

tarz (1) [tarz:Noun] tarz:Noun+A3sg (1)

haberleri

(1) [haber:Noun] haber:Noun+A3sg+leri:P3pl

(2) [haber:Noun] haber:Noun+ler:A3pl+i:Acc

(3) [haber:Noun] haber:Noun+ler:A3pl+i:P3sg

(4) [haber:Noun] haber:Noun+ler:A3pl+i:P3pl

(3)

daha
(1) [daha:Adv] daha:Adv

(2) [daha:Noun,Time] daha:Noun+A3sg
(1)

sık

(1) [sık:Adj] sık:Adj

(2) [sık:Adv] sık:Adv

(3) [sıkmak:Verb] sık:Verb+Imp+A2sg

(1)

duyar

(1) [duyar:Adj] duyar:Adj

(2) [duymak:Verb] duy:Verb+ar:Aor+A3sg

(3) [duymak:Verb] duy:Verb—ar:AorPart→Adj

(2)

hale

(1) [hal:Noun] hal:Noun+A3sg+e:Dat

(2) [hâl:Noun] hal:Noun+A3sg+e:Dat

(3) [Hale:Noun,Prop] hale:Noun+A3sg

(4) [hale:Noun] hale:Noun+A3sg

(1)

geldik

(1) [gelmek:Verb] gel:Verb+di:Past+k:A1pl

(2) [gelmek:Verb] gel:Verb—dik:PastPart→Adj

(3) [gelmek:Verb] gel:Verb—dik:PastPart→Noun+A3sg

(1)

. (1) [.:Punc] .:Punc (1)

Morphological analysis and disambiguation with Zemberek operates in a similar

way as Sak et al., where allomorphs instead of morphemes are output (Table 4.4).

Reconstruction of the sentence with subword units is the same as described in Section

4.4.3.1. Allomorph segmentation is extended with two additional methods: Concate-
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nated Allomorphs and Last Allomorph, examples of which are presented in Table 4.5.

4.4.4. Morphological Tags

Usage of morphological tags instead of surface forms of the morphemes has been

previously employed by researchers in the Turkish-English MT task [76, 78]. In order

to extract morphological tags of a word, morphological analysis and disambiguation [1]

has been performed as described in Section 4.4.3.1 for Morphemes. Two different

segmentation methods have been employed.

4.4.4.1. Morphological Tags in Word. In this scenario, only the morphological tags

that correspond to a lexical item inside the word have been included in the input

representation. The root word has been represented in its surface form, afterwards to be

continued by the morphological tags of the rest of the morphemes. The Morph-Tags in

Word setting was expected to produce a similar translation performance as Morphemes,

with minor differences, due to the fact that morphological tags have almost one-to-one

correspondence with morphemes: YH ↔ [Acc], lAr ↔ [A3pl], NHn ↔ [Gen].

4.4.4.2. All Morphological Tags. All morphological tags have been included in the

input representation, including the type of root tag (Noun, Verb, Adj, etc.). This

segmentation method (All Morph-Tags) significantly increases the number of tokens in

a sentence, and is thus expected to yield deteriorated results.

Examples of input segmentation using morphological tags are presented in Table

4.5.
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4.4.5. Multi-source

As mentioned, a large amount of Turkish-English parallel data is extremely diffi-

cult to come by. Data sparseness for this language pair makes it a necessity to acquire

as much information from limited data as possible. Therefore, two different input seg-

mentation methods can be exploited simultaneously, hoping to capture semantic and

syntactic properties from the morphemes as effectively as possible.

Pan et al. [79] have trained a multi-source NMT model with a word-based encoder

to capture word features, and a knowledge-based encoder to capture linguistic features.

Similar to this approach, two input variations, Allomorphs and Morph-Tags in Word

have been used together to train a single multi-source attentional encoder-decoder

model, the former entailing morphemes in their surface form, the latter carrying their

morphological tags, thus clarifying the syntactic and semantic purpose of a morpheme

inside the sentence.

After applying morphologically motivated segmentation methods (Morphemes,

Allomorphs, Morphological Tags and Multi-source), Turkish words are broken into

smaller lexical items. However, rare words, or proper nouns that cannot be recognized

by the morphological analyzer are left unsegmented. Thus, for each linguistically mo-

tivated input variations, the segmented input representation is further segmented via

BPE, improving translation quality for all cases (Table 5.3).

In order to numerically distinguish the effect of each input segmentation method

on the Turkish corpus, token counts, unique token counts and average sentence lengths

have been provided in Table 4.6. The given statistics are for Corpus A, which consists

of 207K parallel and 449K synthetic sentences (total 656K sentences). Morphologically

motivated input variations are given solely and with further BPE segmentation (indi-

cated as +BPE), to observe the drop in vocabulary size (unique tokens) and increase

in average sentence length. Minor numerical differences between and within morpho-

logical variations are due to the differences of morphological analyzers and/or due to
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some minor exceptions missed by the Python scripts that create each corpus.

Table 4.5. Examples of input variations of the sentence:

“Gün geçtikçe bu tarz haberleri daha sık duyar hale geldik .”.

Input Variation Segmented Sentence

Morphemes Gün geç DHkçA bu tarz haber lAr SH daha sık duy Ar hâl YA gel DH k .

Concatenated

Morphemes
Gün geç DHkçA bu tarz haber lArSH daha sık duy Ar hâl YA gel DHk .

Last

Morpheme
Gün geç DHkçA bu tarz haber SH daha sık duy Ar hâl YA gel k .

Allomorphs Gün geç tikçe bu tarz haber ler i daha sık duy ar hal e gel di k .

Concatenated

Allomorphs
Gün geç tikçe bu tarz haber leri daha sık duy ar hal e gel dik .

Last

Allomorph
Gün geç tikçe bu tarz haber i daha sık duy ar hal e gel k .

Morph-Tags

in Word

Gün geç Adv AsLongAs bu tarz haber A3pl P3sg daha sık duy Aor hâl Dat

gel Past A1pl .

Morph-tags-all

Gün Noun A3sg Pnon Nom geç Verb Pos Adv AsLongAs bu Det

tarz Noun A3sg Pnon Nom haber Noun A3pl P3sg Nom daha Adv

sık Adj duy Verb Pos Aor A3sg hâl Noun NoHats A3sg Pnon Dat

gel Verb Pos Past A1pl . Punc

Some observations that can aid while analyzing the experimental results are:

• All input variations increase the total amount of tokens in the corpus, all the

while decreasing the vocabulary size.

• The smallest vocabulary size is obtained with BERT, due to the fixed vocabulary

size of the Turkish BERT tokenizer (32,000).

• Concatenation of morphemes/allomorphs and taking the last morpheme/allomorph

decreases the average sentence length, compared to using all morphemes/allomorphs

separately.

• Applying BPE segmentation after morphologically motivated input segmentation

reduces the vocabulary size, by separating proper nouns, rare or long words that

could not be segmented by the morphological analyzer.
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• Using all morphological tags of a word (Morph-tags-all) more than doubles the

average sentence length, thus lowering the expectation for high translation quality

for this variation.

As for the English sentences, tokenization with the Moses script is applied when

coupled with a morphologically segmented Turkish sentence. Further BPE segmen-

tation is applied when coupled with a morphologically + BPE segmented Turkish

sentence.

Table 4.6. Statistics of input variations on Corpus A. +BPE indicates further BPE

segmentation after the morphologically motivated input variation is applied.

+ BPE

Input

Variation
Tokens

Unique

Tokens

Average

Sentence

Length

Tokens
Unique

Tokens

Average

Sentence

Length

Unsegmented 12,409,844 396,654 18.91 - - -

BPE 14,376,964 66,713 21.91 - - -

BERT 15,579,083 29,225 23.74 - - -

Morphemes 20,567,955 154,087 31.34 20,810,209 63,751 31.71

Concatenated

Morphemes
17,121,720 162,108 26.09 17,388,020 65,028 26.50

Last

Morpheme
17,159,258 154,110 26.15 17,401,577 63,739 26.52

Allomorphs 20,559,065 160,029 31.33 20,825,083 64,177 31.74

Concatenated

Allomorphs
17,203,831 169,077 26.22 17,489,665 66,012 26.65

Last

Allomorph
17,173,915 152,364 26.17 17,410,779 63,718 26.53

Morph-Tags

in Word
20,570,495 148,191 31.35 20,791,690 63,163 31.69

Morph-tags-all 49,245,643 148,217 75.05 49,466,709 63,125 75.39
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4.5. Ensemble and Rescoring

In this extensive study on Turkish-English NMT, systems with various model

architectures, data augmentation methods and input variations have been trained, and

comparison between different settings has been manifested. However, the reliability

of a system is actually dependent on many factors, the initialization of parameters

being one. Thus, to ensure that the translation performance of a system is reliable,

and taking into account the fact that exploiting multiple models improves translation

quality [97], model ensembling has been utilized during all experimentations. Moreover,

the observation of Liu et al. [19] of the imbalance in output sentences (better translation

quality of prefixes over suffixes) has encouraged the use of bidirectional decoding via

rescoring [20].

Model ensembling in this research is carried out by training multiple models with

different random initializations of model parameters. For all experiments except the

final models, 4 left-to-right (L2R) and 4 right-to-left (R2L) models have been trained,

each of the four models randomly initialized with different seeds. For the final models,

the number of models for each direction has been decreased to 2, due to time and

memory concerns on account of the largeness of training corpora.

The same training corpus is used to train the L2R and R2L models. After training

is complete, decoding is performed in such a way that, the test sentence is encoded

and decoded by the L2R models, and the output probabilities from the L2R decoders

are averaged. The averaged word probabilities undergo beam search (beam size 50),

and 50-best translation hypotheses are thus created.

After n-best translation lists of the L2R models are originated, each 50 hypotheses

of each test sentence is rescored with the R2L models (input sentence and the hypothesis

are fed to the R2L models for scoring). The hypothesis that obtains the highest score

from the sum of L2R and R2L model scores is selected as the final translation.
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5. EXPERIMENTS AND RESULTS

Neural machine translation of the Turkish-English language pair carries several

difficulties, such as the sparsity of data, the rich morphology of Turkish, and the

obvious dissimilarity of the two languages. Hence, choices like model architecture,

amount of data, type of input representation and hyperparameters tremendously affect

translation quality. The experiments carried out in this study are expected to enlighten

the importance of these choices, and to find an optimal solution to this difficult task.

After observing various settings, the best model architectures, data augmentation

and input segmentation techniques are selected to train the final models.

Evaluation of the NMT models are carried out with the mteval-v14.pl Moses

script, and case-sensitive BLEU scores (BLEU-cased) for WMT17 (newstest2017 ) and

WMT18 (newstest2018 ) test sets are reported and compared.

5.1. Model Architectures

Among neural architectures in NMT, attentional encoder-decoder and Trans-

former architectures are the most widely adopted, and both have yielded state-of-the

art results in many scenarios and language pairs. The Transformer architecture has

recently been more predominant. Capturing long-term dependencies via self-attention,

and allowing parallel computation of outputs have significantly improved translation

quality. However, with regard to memory and time consumption, encoder-decoder mod-

els are much easier to train, and are therefore still preferred and tried to be improved.

In this research, both attentional encoder-decoder and Transformer models have been

experimented with, with different input representations and hyperparameters, so as to

deduct the most suitable architecture for the low-resourced Turkish-English language

pair.



49

Encoder-decoder models have been constructed with deep transition architecture,

with an embedding size of 512, and an RNN hidden state size of 1024. The encoder

and the decoder have a single layer, with an encoder recurrence depth of Ls = 4 and a

decoder recurrence depth of Lt = 8.

Transformer models carry 6 layers for the encoder and the decoder. Size of the

position-wise feed-forward network of the Transformer model was set to 2048, and the

embedding size to 512. However, this architecture proved not to be adequate for the

low-resource scenario of this task, yielding a 2-3 drop in BLEU score with respect to

the deep transition model. Therefore, from this point on the Transformer models have

been trained with a feedforward network size of 4096, and an embedding size of 1024,

resembling Google’s Transformer-Big architecture.

For model architecture experiments, all models have been trained with Corpus

A, consisting of 207K original, and 449K synthetic parallel sentences (a total of 656K).

Separate systems have been trained with BPE and BERT (WordPiece) input represen-

tations. For each different architecture, 4 left-to-right (L2R) and 4 right-to-left (R2L)

models have been trained. Translation on WMT17 and WMT18 test sets have been

done separately for each L2R and R2L model, and the average BLEU scores of 4 L2R,

and 4 R2L models have been reported. The final system for each architecture, is an

ensemble of 4 L2R models, which produce 50-best translation hypotheses (beam size

50), which are in turn rescored by 4 R2L models. BLEU-cased scores of each system

have been provided in Table 5.1.

The shallow Turkish-English NMT model used for the automatic translation of

the source monolingual data was trained solely on the 207K SETimes corpus, with BPE

segmentation. This single model has yielded 15.12 BLEU for newstest2017, and 15.64

BLEU for newstest2018. After data augmentation with synthetic 449K sentences, the

systems trained on Corpus A outperform the baseline shallow NMT model trained on

the SETimes corpus by 1-3 BLEU, except for Transformer-BPE with network size 512,

2048, which shows very poor translation performance.
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Table 5.1. TR-EN news translation (BLEU-cased) scores of systems with different

model architectures.

newstest2017 newstest2018

Model Input
No.

layers
Network Size

L2R

Avg.

R2L

Avg.
Ensemble

L2R

Avg.

R2L

Avg.
Ensemble

Deep Transition BPE 1(4), 1(8) 512, 1024 16.09 16.68 17.46 16.72 17.31 18.23

Deep Transition BERT 1(4), 1(8) 512, 1024 16.23 16.46 17.63 16.82 17.08 18.26

Transformer BPE 6, 6 512, 2048 14.35 13.82 15.50 14.59 14.09 15.72

Transformer BPE 6, 6 1024, 4096 16.67 17.13 17.92 17.33 17.59 18.52

Transformer BERT 6, 6 1024, 4096 16.93 17.19 18.14 17.47 17.62 18.70

The positive effect of model ensembling can be observed for each system, in-

creasing the BLEU score by up to 1.5. The Transformer architecture with network

size (1024, 4096), yields better results than the deep transition encoder-decoder ar-

chitecture for both input representations. An interesting deduction is that, BERT

input representation over BPE improves the L2R average of systems, yet deteriorates

or very slightly improves translation quality of the R2L average. Furthermore, the

Transformer architecture seems to be reacting better to BERT with respect to BPE,

than the encoder-decoder.

The improvement of BERT over BPE, and of Transformer over encoder-decoder is

not too major for the 656K corpus at hand, but is consistent over the ensemble results.

The best BLEU-cased score obtained from the model architecture experiments, is the

Transformer architecture with network size (1024, 4096), with BERT as the input

segmentation method, with 18.14 BLEU-cased for the WMT17 test set, and 18.70 for

the WMT18 test set.

5.2. Data Augmentation

A comprehensive analysis of previous work on the Turkish-English NMT task has

shown that the available parallel corpora are far from being sufficient in size, to obtain

state-of-the-art results.
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Different data augmentation techniques have been taken into consideration, and

synthetic parallel data has been obtained through self-training with source-side mono-

lingual data. The effect of data augmentation through self-training has been observed

with different model architectures and input representations, for the purpose of en-

lightening how the low-resource setting can be eliminated.

Table 5.2. TR-EN news translation (BLEU-cased) scores of systems with different

amounts of data augmentation.

newstest2017 newstest2018

Model Input
Training

Corpus

L2R

Avg.

R2L

Avg.
Ensemble

L2R

Avg.

R2L

Avg.
Ensemble

Deep Transition BPE
A (656K) 16.09 16.68 17.46 16.72 17.31 18.23

B (2.2M) 16.60 17.40 17.81 17.24 18.08 18.61

Deep Transition BERT
A (656K) 16.23 16.46 17.63 16.82 17.08 18.26

B (2.2M) 16.14 17.20 17.09 17.07 17.68 17.90

Transformer BPE
A (656K) 16.67 17.13 17.92 17.33 17.59 18.52

B (2.2M) 17.37 18.29 18.40 18.30 19.01 19.32

Transformer BERT
A (656K) 16.93 17.19 18.14 17.47 17.62 18.70

B (2.2M) 16.98 17.98 17.78 17.87 18.56 18.76

Transformer (with network sizes 1024 and 4096) and deep transition encoder-

decoder models have been trained as described in the model architecture experiments.

Each model architecture has been experimented with BPE and BERT input represen-

tations. Two training corpora have been used to show the effect of data augmentation:

Corpus A, consisting of 207K original, and 449K synthetic parallel sentences (total

656K sentences) and Corpus B, consisting of 207K original, and 2M synthetic parallel

sentences (total 2.2M sentences). For each system, average BLEU-cased scores of 4

L2R and 4 R2L models, and also of the final ensemble models have been presented in

Table 5.2.

It is important to note that the source-side (Turkish) monolingual data has been

translated into English via a shallow NMT model, with BPE as input representation.

Thus, the lack of improvement for the Deep Transition-BERT and Transformer-BERT
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systems can be related to the input representation of the self-training model. Deep

Transition-BPE and Transformer-BPE systems, however, seem to consistently benefit

from the increase in synthetic parallel data. When the amount of synhtetic data is

increased to 4.5 times its size, the Transformer-BPE system receives 0.48 and 0.8

higher BLEU scores for the WMT17 and WMT18 test sets, respectively.

5.3. Input Variations

The rich morphology of Turkish, and the scarceness of data has led to the investi-

gation of morphologically motivated input segmentation methods with respect to more

general input representations, like BPE and BERT (WordPiece). Linguistically moti-

vated input representations proposed and compared in this research are: Morphemes

and Allomorphs, each used separately, concatenated or by taking the last subword after

the root; Morphological Tags, by using only the tags that correspond to a lexical item

within the word, or using all tags; and Multi-source, by using both Allomorphs and

Morphological Tags in Word to train a single encoder-decoder model.

After applying morphologically motivated input segmentation to the tokenized

Turkish corpus, BPE algorithm is applied, further to segment rare words or proper

nouns that could not be recognized by the morphological analyzer. The positive effect

of BPE segmentation on top of morphological decomposition is demonstrated in Table

5.3. For all input variations, a left-to-right (L2R) model was trained on an input

without further BPE segmentation. The translation result of this model is compared to

an average of 4 L2R models trained with further BPE segmentation. The BLEU scores

showed that linguistically motivated input decomposition methods work much better

when coupled with BPE, observing an average of 0.94 BLEU improvement over nine

input variations. Hence, apart from this experiment, all mentioned morphologically

motivated input decomposition methods are supported with further BPE segmentation.
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Table 5.3. Left-to-right TR-EN news translation (BLEU-cased) scores of

morphologically motivated input segmentation methods with and without further

BPE segmentation.

Input
Without BPE

L2R

With BPE

L2R Avg.

Morphemes 16.29 ↑ 17.21

Concatenated

Morphemes
16.28 ↑ 17.28

Last

Morpheme
15.08 ↑ 16.03

Allomorphs 16.19 ↑ 17.19

Concatenated

Allomorphs
15.87 ↑ 17.06

Last

Allomorph
14.98 ↑ 16.11

Morph-Tags

in Word
16.49 ↑ 17.25

Morph-tags-all 14.91 ↑ 15.49

Multi-source 16.43 ↑ 17.32

All input variations have been used to train a deep transition attentional encoder-

decoder model, with network sizes 512 (embedding size) and 1024 (RNN hidden state

size). As described for previous experiments, a single-layer encoder with recurrence

depth Ls = 4 and a single-layer decoder with recurrence depth Lt = 8 have been

employed. The systems were trained on Corpus A (656K sentences: 207K original,

449K synthetic), to keep the systems safe from changes in training corpus quantity

and quality. For all input segmentations, 4 L2R and 4 R2L models have been trained,

and their average BLEU scores are reported. The final system is an ensemble of 4 L2R

models that produces an n-best list of 50 translation hypotheses, which is rescored by

the 4 R2L models. BLEU-cased scores of each system are shown in Table 5.4.
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Table 5.4. TR-EN news translation (BLEU-cased) scores of systems with different

input segmentation methods.

newstest2017 newstest2018

Input
L2R

Avg.

R2L

Avg.
Ensemble

L2R

Avg.

R2L

Avg.
Ensemble

BPE 16.09 16.68 17.46 16.72 17.31 18.23

BERT 16.23 16.46 17.63 16.82 17.08 18.26

Morphemes 16.71 17.35 18.42 17.21 17.78 18.83

Concatenated

Morphemes
16.65 17.17 18.16 17.28 17.68 18.79

Last

Morpheme
15.62 16.03 17.14 16.03 16.39 17.39

Allomorphs 16.64 17.13 18.08 17.19 17.41 18.66

Concatenated

Allomorphs
16.48 16.89 18.11 17.06 17.58 18.65

Last

Allomorph
15.78 16.17 17.44 16.11 16.53 17.58

Morph-Tags

in Word
16.52 17.09 18.24 17.25 17.71 18.58

Morph-tags-all 14.91 15.01 16.29 15.49 15.60 17.02

Multi-source 16.38 16.90 18.21 17.32 17.57 18.57

Among non-linguistically motivated methods, BERT (Wordpiece) representa-

tion performs slightly better than BPE. Comparison between linguistically and non-

linguistically motivated methods shows that six of the linguistically motivated input

representations improve translation quality over BERT and BPE, which is promising

for the low-resource Turkish-English language pair.
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For the analysis of input segmentation results, a reference Turkish word

(“evdekilerle”, translated into English as “with the ones at home”) is selected, in order

to aid in understanding how each input representation looks like.

The best input segmentation method is selected to be Morphemes (ev DA ki

lAr YlA) improving the BLEU score by 0.96 with respect to BPE for newstest2017,

and 0.5 for newstest2018 in the final ensemble results.

Among the Morphemes approach, the best method is using all morphemes sepa-

rately (ev DA ki lAr YlA) instead of concatenating (Concatenated Morphemes: ev

DAkilArYlA) or taking the last morpheme after the root (Last Morpheme: ev YlA).

Allomorphs (ev de ki ler le) method yields a BLEU score in between BPE and

Morphemes. This performance drop can be explained with the vocabulary reducing

effect of Morphemes, due to the elimination of phonetic variations within roots, suffixes

and affixes. In addition, usage of different morphological analyzers and disambiguators

(Sak et al. vs. Zemberek) may also explain the difference, requiring further comparison

on their performances.

Taking the last allomorph after the root (Last Allomorph: ev le) seems to outper-

form the Last Morpheme approach, yet is far from competing with the non-linguistically

motivated BPE or BERT, observed especially in the newstest2018 final ensemble re-

sult. However, using only the last (rightmost) allomorph after the root may prove

to be useful for the translation of very long Turkish sentences, where the syntactic

and semantic loss could be compensated by the decrease in amount of tokens. The

investigation of this is left for future work.

Even though there is an almost one-to-one correlation between morphological tags

and morphemes in Sak et al.’s morphological analyzer, the Morph-Tags in Word (ev

Loc Adj Rel A3pl Ins) approach does not achieve the same translation performance as

Morphemes. Being an approach adopted by researchers in the Turkish-English NMT
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task, it is useful to realize that using morphemes instead of their morphological tags

turns out to be more successful.

The morphological analyzer and disambiguator produce beneficial information,

including type of nouns, meaning, purpose and person of the morphemes, etc. Incorpo-

rating all of this information was intended to be achieved, by including all morphological

tags that correspond to a word (Morph-tags-all: ev Noun A3sg Pnon Loc Adj Rel A3pl

Pnon Ins). However, this approach resulted in unnecessarily long sentences, growing

the average sentence length drastically. Thus, the BLEU score dropped from 18.24

to 16.29 for newstest2017, and from 18.58 to 17.02 for newstest2018, with respect to

Morph-Tags in Word.

Morphemes in their surface forms (Allomorphs) may not present all the syntactic

and semantic information hidden within. However, this information can be obtained

from the corresponding morphological tag (Morph-Tags in Word). The idea behind the

multi-source setting is to use Allomorphs with a word-based encoder, and Morph-Tags

in Word with a knowledge-based encoder simultaneously, collecting as much informa-

tion from a word as possible. However, the Multi-source input segmentation method

(word represented with both “ev de ki ler le” and “ev Noun A3sg Pnon Loc Adj Rel

A3pl Pnon Ins”) improved the final ensemble BLEU score of the Allomorphs for new-

stest2017 only by 0.13, and failed to improve the score for newstest2017. Using one

input representation is much more preferable with regard to memory and time con-

sumption, thus proving not to be a good engineering choice for this task.

A curious circumstance presents itself in the L2R and R2L averages of BLEU

scores: for each input variation, and for both test sets, the R2L models perform better

than L2R. One of the causes for this observation may be the complex morphology of

Turkish, and the abundant usage of suffixes. This supports the argument of Liu et

al. [19], regarding better translation of suffixes with the use of right-to-left decoding.
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Determining the weaknesses and strengths of different input representations for

the Turkish-English pair is meaningful, considering that scarce data makes it essential

to represent the morphologically rich Turkish language as best as possible. After com-

prehensive analysis, Morphemes and Morph-Tags in Word on top of BPE are shown

to be effective input segmentation methods, preferable to using only non-linguistically

motivated methods, like BPE and BERT.

5.4. Final Models

After comprehensive analysis on different model architectures, amounts of aug-

mented data and input variations, the final models are trained with the most optimal

settings, aiming high translation quality and generalization.

With regard to model architecture, it has been observed that the Transformer

architecture outperforms the attentional encoder-decoder model. This observation is

expected to be confirmed in the final models. Therefore, attentional encoder-decoder

with BiDeep architecture has been employed, with 4 encoder layers (cell depth: 2) and

4 decoder layers (base cell depth: 4, higher cell depth: 2), as described in Section 4.1.3,

with network sizes (512, 1024). The Transformer models carry 6 encoder and decoder

layers with network sizes (1024, 4096).

Three approaches have been used for data augmentation in the final models:

self-training (translating source-side monolingual data), back-translation (translating

target-side monolingual data) and copying (forming a bitext with source-side identical

to target-side).

Selected as the best input segmentation method, Morphemes followed by BPE

segmentation has been used as input for training the Turkish-English and English-

Turkish BiDeep NMT models on the 207K parallel corpus, to form self-trained data

from source-side and back-translated data from target-side monolingual data.
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BiDeep and Transformer models have been trained on Corpus C (207K original

data oversampled 5 times + 2.5M synthetic self-trained data) and Corpus D (207K

original data oversampled 5 times + 2.4M synthetic back-translated data). Afterwards,

only Transformer models were trained on Corpus E (Corpus D + 1M copied data) and

Corpus F (Corpus D + 1M copied data + 2.5M synthetic self-trained data), due to

time and resource limitations, relying on the observation that the Transformer model

outperforms the BiDeep models for Corpus C and Corpus D.

For each system, 2 L2R and 2 R2L models have been trained. The average

of Turkish-English translation results of the L2R and R2L models are provided in

Table 5.5, evaluated for the WMT17 and WMT18 test sets. The final models are

an ensemble of 2 L2R models that output 50-best translation hypotheses, rescored by

2 R2L models. State-of-the-art results for the test sets submitted by University of

Edinburgh to WMT18 [67] have been given in the table for comparison.

The three bottom rows of Table 5.5 represent hybrid systems, that is to say, an

ensemble of multiple systems. For the first hybrid system, 2 L2R BiDeep models and 2

L2R Transformer models trained on Corpus D have been ensembled. A total of 4 L2R

models of the two Transformer models have created 50-best hypotheses, which were in

turn rescored by the R2L models of the two systems (4 in total). In a similar fashion,

the second hybrid system was formed as an ensemble of 2 L2R BiDeep models and 2

L2R Transformer models trained on Corpus D; and 2 L2R Transformer models trained

on Corpus E. Rescoring is carried out by a total of 6 R2L models of these systems. For

the third hybrid system, a total of 6 L2R Transformer models trained on corpora D, E

and F have been used in ensemble to create the translation hypotheses. Rescoring has

been done by the 6 R2L models of these systems.

The BiDeep Turkish-English NMT model used for the automatic translation of

the source monolingual data was trained solely on the 207K SETimes corpus, with

Morphemes segmentation. This single model has yielded 16.45 BLEU for newstest2017,

and 16.77 BLEU for newstest2018. The benefit of data augmentation with synthetic
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self-trained 2.5M sentences is shown in the translation scores of the systems trained on

Corpus C, which outperform the baseline NMT model trained on the SETimes corpus

by 1.5-3 BLEU. The BiDeep English-Turkish NMT model that is utilized for back-

translation with Morphemes segmentation, yielded an English-Turkish BLEU score of

22.57 for newstest2017, and 22.19 for newstest2018. The comparison of this baseline

model to the final models would not be sensible, since the translation directions are

opposite.

When the influence of self-training and back-translation on translation quality is

evaluated, the power and effectiveness of back-translation can obviously be seen. With

nearly the same amount of synthetic data, back-translation improves the BLEU score

by 4.3 (newstest2017 ) and 5.25 (newstest2018 ) for the BiDeep model, with respect

to self-training. Similarly, the Transformer model trained on Corpus D outperforms

the Transformer model trained on Corpus C by 4.66 (newstest2017 ) and 6.53 (new-

stest2018 ) BLEU. Addition of copied data (Corpus E) seems to improve the L2R

models, but degrades the R2L models, resulting in a similar translation performance

with respect to using only back-translated data (Corpus D).

When all data augmentation methods are used together (Corpus F), the per-

formance seems to fall to a BLEU score between the self-trained (Corpus C) and

back-translated (Corpus D) systems. Using back-translated and copied data instead

of self-trained data seems a wiser choice for the Turkish-English NMT task, for fear of

overgrowing the amount of synthetic data and decreasing generalization, as in the case

of Corpus F.

Ensembling multiple systems proves extremely rewarding, regardless of the model

architecture. A hybrid of the BiDeep and Transformer systems trained on Corpus D

yields a higher BLEU than both systems, with a 26.21 BLEU on the WMT18 test set.

The best translation performance for the WMT17 and WMT18 test sets is obtained

from the hybrid of BiDeep and Transformer models trained on corpora D and E, with

24.74 and 26.38 BLEU, respectively. Even though the L2R and R2L averages of the
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Table 5.5. TR-EN news translation (BLEU-cased) scores of the final models.

newstest2017 newstest2018

Input
Training

Corpus

L2R

Avg.

R2L

Avg.
Ensemble

L2R

Avg.

R2L

Avg.
Ensemble

UEDIN

(2018) [67]

3.5M

back-translated

+ copied

- - 26.6 - - 28.2

Bi-Deep
C (3.5M)

self-trained
17.98 18.41 18.95 18.26 18.51 19.10

Transformer
C (3.5M)

self-trained
17.93 18.17 19.38 18.30 18.26 19.22

Bi-Deep
D (3.4M)

back-translated
21.86 21.75 23.25 22.95 22.64 24.35

Transformer
D (3.4M)

back-translated
22.22 22.25 24.04 24.00 23.96 25.75

Transformer

E (4.4M)

back-translated

+ copied

22.36 21.38 23.95 24.28 22.83 25.61

Transformer

F (6.9M)

back-translated

+ self-trained

+ copied

20.43 20.43 21.39 21.15 20.42 22.13

BiDeep +

Transformer

ensemble

D 22.04 22.00 24.37 23.47 23.30 26.21

BiDeep +

Transformer

ensemble

D, E 22.15 21.79 24.74 23.74 23.14 26.38

Transformer

ensemble
D, E, F 21.67 21.35 24.58 23.14 22.40 25.86
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hybrid systems are not necessarily higher than that of the single systems, weaknesses

of one system are compensated by the other’s strength, pressing the importance of

bidirectional decoding via model ensembling and rescoring.

Utilization of a morphologically motivated input segmentation method (Mor-

phemes) shows its advantages in the given results, coming close to the state-of-the-art

by ≈1.8 BLEU. Further experimentation on different amounts of back-translated data,

deeper Transformer architectures or more advanced ensembling methods are planned

to be explored, and are left for future work.
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6. CONCLUSION AND FUTURE WORK

This study approaches the Turkish-English NMT task from a morphologically

motivated angle, all the while incorporating state-of-the-art NMT architectures and

data augmentation methods.

Two architectures of the attentional encoder-decoder model, namely deep tran-

sition and BiDeep, have been trained and compared to the Transformer architecture.

Scenarios that entailed different input representations and amounts of training data

have led to the conclusion that the Transformer architecture, though costly in memory

and time consumption, outperforms the attentional encoder-decoder models.

Considering that the initial 207K Turkish-English parallel SETimes corpus is

too small for training a deep NMT model with high translation performance, parallel

data has been augmented through three methods. The first method is self-training,

where a Turkish-English NMT model has been trained on the SETimes corpus, and

source-side (Turkish) monolingual data has been translated into target-side (English).

The second method is back-translation, where the process of self-training is in reverse,

translating target-side (English) monolingual data into source-side (Turkish) with an

English-Turkish NMT model. The third and final method is through copying target-

side (English) data directly to the source-side, creating a bitext with identical source

and target sides.

Initial experiments on data augmentation through self-training have shown that

an increase in synthetic data results in better translation performance, but is also

dependent on the compatibility of input representations. Since BPE input was fed into

the NMT model that translated source monolingual data into target, models trained

with BERT (WordPiece) input could not benefit from the increase in synthetic data

created with a BPE-input model.



63

Coping with the low-resource setting of Turkish-English NMT has been aimed to

be achieved, by extracting as much syntactic and semantic information from the input

as possible. The rich morphology of Turkish has encouraged the usage of morpho-

logically motivated input segmentation methods instead of more general approaches

that can be applied to any language, and are statistically rather than linguistically

motivated. With this motivation in mind, nine morphologically motivated input rep-

resentation methods (based on Morphemes, Allomorphs and Morphological Tags) and

two non-morphologically motivated methods (BPE and WordPiece) have been experi-

mented with and compared.

Extensive experimentation has proven the success of morphologically motivated

input segmentation for Turkish. Keeping all other parameters of the NMT models un-

changed, the addition of linguistically motivated input segmentation on top of BPE has

led to better translation quality for six of the proposed input representation methods.

The best morphologically motivated input segmentation method has been selected to

be Morphemes, outperforming BPE by 0.96 BLEU.

Final models have been trained with the BiDeep attentional encoder-decoder

and Transformer architectures on data augmented corpora of up to 6.9M sentences,

with input in the form of Morphemes + BPE. The effectiveness of the morphologically

motivated input scheme has been demonstrated with a BLEU score of 26.38 on the

WMT18 test set from a BiDeep-Transformer hybrid system trained on back-translated

and copied data. The importance of bidirectional decoding with ensemble and rescoring

has been pressed, and the power of back-translation has been confirmed.

In future work, further experimentation with different amounts and ratios of orig-

inal, back-translated and copied data is planned. All of the proposed morphologically

motivated input variations are expected to be incorporated in deep models, to obtain

better translation quality, and to observe further benefits. Contributions made to the

Turkish-English NMT task are aimed to be extended to the English-Turkish direction,

and also other language pairs containing Turkish.
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Dowmunt, S. Läubli, A. V. Miceli Barone, J. Mokry and M. Nădejde, “Nematus:
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Figure A.1. Copyright license of Figures 4.3 and 4.5.
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Figure B.1. Copyright license for the reuse of Figure 4.4.
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Figure B.2. Copyright license for the reuse of Figure 4.4. (cont.)
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Figure B.3. Copyright license for the reuse of Figure 4.4. (cont.)
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Figure B.4. Copyright license for the reuse of Figure 4.4. (cont.)



86

Figure B.5. Copyright license for the reuse of Figure 4.4. (cont.)


