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ABSTRACT

OBJECT, ACTION, AND OUTCOME BLENDING

LATENT SPACE EXPLORATION WITH INTRINSIC

MOTIVATION TO LEARN MANIPULATION SKILLS

In quest of making artificial agents more autonomous and intelligent, equipping

them with the ability of self-learning of skills plays a crucial role. In this thesis, we

focus on intrinsically motivated exploration to enable e�cient acquisition of skills for

artificial agents. During the exploration, the agent uses the intrinsic motivation signal

to self-select the exploration regions to proceed. This motivation signal drives the

agent to explore the region that is neither too easy nor too di�cult for the agent.

First, we proposed a method that continuously partitions the sensorimotor space using

the predictability principle to form specialized learning regions to better employ an

existing intrinsic motivation framework. Our next study aims to utilize a latent space

that facilitates the self-organization of the exploratory behaviors driven by the intrinsic

motivation to learn a set of skills. To make this space reflect the dynamics of the

interaction between the robot and the environment, we propose blending the outcome,

action, and object information. Next, the latent space is clustered into di↵erent regions;

each is then learned by separate predictors. The proposed approach is validated with

a simulated robot that manipulates di↵erent objects using parameterized actions in a

table-top environment. Our approach allows the robot to organize its own curriculum,

enabling it to proceed from easier skills to more complex ones. The analysis of the

curriculum deduces that grasp emerges before pushing, which is consistent with the

skill emergence in infants. Furthermore, results show that the proposed method makes

significantly lesser prediction errors than its counterparts in various settings.
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ÖZET

NESNE, EYLEM VE SONUÇ BİLGİSİNİ HARMANLAYAN

SAKLI UZAYDA MANİPÜLASYON BECERİLERİNİN

İÇSEL MOTİVASYONLU KEŞİF İLE ÖĞRENİMİ

Yapay ajanları daha özerk ve zeki yapma arayışında, onların, becerileri kendi

kendilerine öğrenebilme yeteneğiyle donatılması çok önemli bir rol oynar. Bu tezde,

yapay ajanların becerileri verimli bir şekilde kazanmasını sağlamak için içsel motivas-

yonlu keşfe odaklanmaktayız. Keşif sırasında ajan, keşfe devam edeceği bir sonraki

bölgeyi içsel motivasyon sinyalini kullanarak seçer. Bu motivasyon sinyali, ajanı, ajan

için ne çok kolay ne de çok zor olan bölgeyi keşfetmeye yönlendirir. İlk çalışmamızda,

mevcut bir içsel motivasyon mimarisini daha iyi kullanmak amacıyla, özel öğrenme böl-

gelerini oluşturmak için, duyumotor uzayını öngörülebilirlik ilkesini kullanarak sürekli

olarak bölen bir yöntem önerdik. Bir sonraki çalışmamız, bir dizi becerinin öğrenimi

için, içsel motivasyonun yönlendirdiği keşifsel davranışların kendi kendine örgütlenme-

sini kolaylaştıran saklı bir uzay kullanmayı amaçlamaktadır. Bu uzayın robot ve çevre

arasındaki etkileşimin dinamiklerini yansıtmasını sağlamak için, sonuç, eylem ve nesne

bilgilerinin harmanlanmasını öneriyoruz. Daha sonra, bu saklı uzay farklı bölgelere

ayrılmakta ve her bölge ayrı tahmin modelleri tarafından öğrenilmektedir. Önerilen

yaklaşım, masa üstü bir ortamda, parametrik eylemler kullanarak farklı nesnelerle et-

kileşime giren, simüle edilmiş bir robotla doğrulanmaktadır. Sunduğumuz yaklaşım,

robotun kendi müfredatını düzenlemesine olanak tanıyarak, robotun daha kolay olan

becerilerden daha karmaşık olanlara geçmesini sağlar. Oluşan müfredatın analizi, it-

me becerisinden önce kavrama becerisinin ortaya çıktığı sonucuna varmaktadır, bu da

bebeklerdeki beceri gelişimi ile benzerlik göstermektedir. Ayrıca, sonuçlar, önerilen

yöntemin çeşitli koşullar altında, benzerlerinden önemli ölçüde daha az tahmin hatası

yaptığını göstermektedir.
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1. INTRODUCTION

From the moment they are born, babies begin learning about their bodies and

the environment autonomously. Even when there is no immediate reward or explicit

assistance from their caregiver, it is quite interesting that they conduct this learning

process and develop sophisticated skills. Infants learn through exploration (online),

throughout their life (continuous and open-ended) and they acquire cognitive abili-

ties in parallel reciprocally (cross-modal) [1]. Inspired by the properties of human

development, this thesis studies how a robot can learn the outcomes of its actions by

autonomous exploration. When there exist various interaction schemes involving di↵er-

ent types of objects and di↵erent types of actions, the robot needs to identify di↵erent

interaction schemes. This study proposes an approach for identifying such di↵erent

scenarios; each is then learned by separate predictors. The autonomous exploration is

driven by intrinsic motivation (IM), which enables the robot to learn these di↵erent

interaction schemes by following a self-organized curriculum.

Autonomous exploration has been regarded as an essential mechanism for the

learning and development of living organisms [2]. Exploratory behaviors, which enable

us to adapt to di↵erent kinds of situations, learn complex skills, and practice our

creativity, are observed not only in humans but also in other animals [3, 4]. Earlier,

this phenomenon was studied within drive [5] and instinct [6] theories [3]. Proponents

of drive theory supposed that the activities of an organism are caused by the need for

preserving the homeostasis. According to Freud [7], life instinct makes humans engage

in activities for self-preservation and survival of the species. However, White [3] states

that exploratory behaviors cannot be obtained only by drives and instincts. Based

on the experimental evidence, White [3] argues that these exploratory behaviors have

the aim of e�cient interaction with the environment. They stress that since these

behaviors have a particular aim and they are persistent, they have a motivational

aspect. According to Deci [8], exploration, novelty-seeking behaviors, and play stem

from the human need for feeling competent and self-determining and argue that these

behaviors are “intrinsically motivated”.
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In this thesis, we show how an agent learns purposeful skills by autonomous

exploration driven by intrinsic motivation. Regarding high-dimensional search spaces,

random exploration is a slow and costly process [9, 10]. However, it is shown that

exploration guided by the intrinsic motivation enables an agent to focus on the problems

with the appropriate level of complexity. In other words, the agent does not waste its

learning time with neither too easy nor too di�cult problems [11]; hence intrinsic

motivation provides sample e�ciency [10]. A particular intrinsic motivation signal,

learning progress [12], considers the change of the prediction error, therefore drives the

agent to explore the “unfamiliar” parts of the environment [1]. By utilizing learning

progress as an IM signal, Oudeyer et al. [13] show that the robot self-organizes a

complex developmental progression.

Considering realistic scenarios, an agent may interact with many di↵erent types of

objects, using many di↵erent action possibilities under di↵erent environmental condi-

tions throughout its life. In such a case, predicting how the environment changes based

on the actions of the robot can be quite challenging. How animals and humans address

this challenge inspires our study as well as several computational approaches [14, 15].

Kawato [16] investigates the existence of separate internal models in humans and ani-

mals to learn and control di↵erent objects and environments. According to Kawato [16],

an internal model comprises a forward model that predicts the sensory outcome of a

given action command and inverse model that estimates the action for the desired

sensory outcome. Later, Wolpert and Kawato [15] argue that for motor control, hu-

mans employ multiple modules where each of them is responsible for di↵erent contexts.

They indicate that this modular strategy gives rise to (1) e�cient coding of the world

considering all the interactions with qualitatively di↵erent contexts, (2) simultaneous

learning of di↵erent contexts without interference with each other, (3) the possibility

of learning a more complex context by reusing the knowledge obtained from other

modules.

Exploiting modularity in learning models, now the question is: How to determine

the distinctive characteristics of an environment that can be learned by separate mod-

ules? In our first work, similar to the approach proposed by Oudeyer et al. [13], we
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identified these distinctive characteristics directly from sensorimotor space. The other

studies show such an identification by learning an embedding from sensory space [17–19]

and from salient events [20]. Some other studies do not consider such identification

and use engineered separation [21,22]. However, a current limit of existing approaches

is that they do not take into consideration the overall picture. For example, consider

“motor babbling” [23] and “goal babbling” [24] mechanisms for skill development. The

former allows learning of motor and outcome associations by executing random motor

commands, i.e., it explores the motor space. The latter allows learning of a motor skill

by repeatedly working on fulfilling multiple goals related to that skill, i.e., it explores

the outcome space [24]. Our next study aims at combining the advantages of both

of the methods and including object-related information. To this end, we consider

utilizing a latent space that blends outcome, action, and object-related information to

assign the regions with di↵erent characteristics of the environment to disjoint forward

models. It is known that, in cognitive systems, mental representations and skill learn-

ing evolve together. However, for simplification, our implementation assumes that the

latent space is not procured in parallel with skill acquisition.

Our main contribution in this study is that we propose an approach for distin-

guishing between di↵erent characteristics of the environment so that it can exploit

modularity in skill learning e�ciently and e↵ectively. To this end, our method utilizes

a compact representation that blends outcome, action and object-related information.

Additionally, our study (1) shows that the disjoint regions created from this latent

space correspond to semantically meaningful primitives, (2) presents an active learning

scheme among these primitives driven by intrinsically motivated exploration and (3)

demonstrates that the developmental order arisen by this active learning scheme is in

parallel with the emergence of the manipulation skills of the infants. The proposed

method is validated on a simulated manipulator robot that interacts with di↵erent

types of objects in a table-top environment. The results revealed that the prediction

performance is better with latent space exploration than its counterparts. Further-

more, intrinsically motivated exploration in the latent space allowed us to observe that

grasping emerges before pushing, which is in parallel with the motor development of

the infants.
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The rest of this thesis is structured as follows: in Chapter 2 the computational

methods used in this study are introduced, in Chapter 3 the physical and software

components used in our experiments are presented, in Chapter 4 the related studies in

the literature are reviewed and in Chapter 5 our first study on this topic is presented.

Chapter 6 presents the our next proposed system and explains the components of this

system. Chapter 7 explains the experiment setup created for validating the proposed

approach and Chapter 8 gives the experiment results. Finally, Chapter 9 provides

discussions about the proposed method and Chapter 10 concludes this thesis.
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2. BACKGROUND

This chapter presents an overview of computational methods and architectures

used in this thesis. Each section of this chapter explains one particular method, and

the subsections present a more specific version of the mentioned method.

2.1. K-Nearest Neighbors Algorithm

The K-Nearest Neighbors (K-NN) algorithm is a machine learning algorithm that

considers the closest data points to calculate the output of the given input. It is a lazy

learning algorithm that does not have a model-building phase, but the prediction phase

usually takes a long time.

K-NN can be used for both classification and regression problems. For classifica-

tion problems, the input is classified by assigning the most frequent label among its K

number of neighbors. For regression problems, the weighted average of the k-nearest

neighbors is used for calculating the continuous output. In this algorithm, K is a hy-

perparameter defined by the user, and the distance metric is a hyperparameter used

for determining the neighborhood.

The advantages of this algorithm: (1) it can be applied to the data independent

from its distribution, (2) it is straightforward to understand and implement. Disadvan-

tages of this algorithm: (1) hyperparameter selection requires expertise, (2) prediction

phase takes a long time as the dataset grows, (3) requires a large number of samples

for better performance, (4) memory requirement is high.

2.2. Artificial Neural Networks

Artificial Neural Networks (ANN) are a collection of artificial neurons that are

inspired by the biological neurons in a biological brain. The artificial neuron concept is

first introduced by McCulloch and Pitts [26]. Figure 2.1 shows a schematic model of an
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Figure 2.1. Schematic model of an artificial neuron. The figure is adapted

from [25, Chapter 18].

artificial neuron. The linked structure of the artificial neural networks allows propagat-

ing the activation from an artificial neuron to another. Each connection from a neuron

ai to aj has a weight wi,j that determines the contribution of the ith neuron’s activation

to j
th neuron’s activation. After calculating the weighted sum of the inputs, the acti-

vation function determines whether the neuron is fired or not. The activation function

is an important component of artificial neurons. The neural networks are considered

“Universal Function Approximators” [27]. Activation functions allow presenting the

non-linear relationship between the inputs and the outputs. If the activation function

is omitted, then the neuron only presents a simple linear relationship; thus, it would

have less representational power. Some example activation functions are:

• Linear Unit: Outputs the weighted sum of the inputs.

• Sigmoid Unit: Uses the logistic sigmoid function. This function squashes the

activation between 0 and 1.

• Hyperbolic Tangent (tanh) Unit: It is similar to sigmoid unit. Hyperbolic tangent

function squashes the activation between �1 and 1.

• Rectified Linear Unit (ReLu): It is widely used in neural networks nowadays.

The output of this activation function is between [0, inf); it gives zero output if

the input is negative; otherwise, it gives the input itself.
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In the literature, there are two di↵erent ways to connect the artificial neurons to

create a neural network [25]:

• Feed-forward Networks: They allow connections only from the input to the out-

put. They do not exhibit loops and forms a directed acyclic graph. In order to

compute the output, they only consider the input.

• Recurrent Networks: They allow feedback connections, i.e., introduce loops in the

network structure. In order to compute the output, they consider the internal

state of the neuron alongside the inputs.

In this thesis, the feed-forward structure of the neural networks is used. In

practice, feed-forward networks are typically organized into multiple layers and are

also known as Multilayer Perceptron (MLP). MLPs are widely used in deep learning

applications for approximating complex functions [28, Chapter 6]. They are primarily

used for capturing the patterns given large datasets and generalizing the learned non-

linear relationship to the unseen data inputs.

The neural networks are trained by backpropagating the error [29]. The gradient

of the error is propagated from the output layer towards the input layer by altering the

weights of the connections between the neurons. Besides the hyperparameters of the

network architecture, hyperparameters of the training (e.g., batch size, optimization

algorithm) are important for acquiring better performance.

2.2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a particular type of neural network

that are commonly used for processing image, video and time-series data. They are in-

spired by the working mechanism of the visual cortex in the brain [30]. CNNs typically

comprise convolution layers and pooling layers along with the input and the output

layers. In this type of network, the convolution operation is applied in at least one of

their layers [28, Chapter 9].
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(a) Convolution Operation. Adapted from [31].

(b) Pooling Operation. Adapted from [32]

Figure 2.2. Schematic representation of convolution and pooling operations.

CNNs provide an e�cient way of processing high-dimensional data by applying

filters throughout the input. In the convolution layer, a set of filters, which have a lower

dimension than the input, are passed over the data. As a filter passes over the data, it

creates a feature map by calculating the weighted sum of the pixels that it passes on. A

schematic overview of this operation is shown in Figure 2.2(a). In CNNs, the first few

convolutional layers usually find simple features such as edges and brightness [33]. As

the number of convolution layers increases, more complex features can be discovered

automatically. In order to determine the activation of this operation, usually, a non-

linear activation function is applied. Next, the pooling layer reduces the size of the

feature map by summarizing the statistical patterns of it. An example of a pooling

operation, namely Max-Pooling, is shown in Figure 2.2(b). Pooling operation provides

e�ciency in terms of computational resources and prevents overfitting. CNNs enable

parameter sharing. Since a filter can be used anywhere in the data, it abandons the need

for learning a separate set of parameters for each location. Due to pooling operation,

CNNs provide translation-invariance; however, invariance to scaling or rotation can be

handled by di↵erent kinds of mechanisms [28, Chapter 9].
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Figure 2.3. General structure of the autoencoders. The encoder encodes the input to

the internal representation (z). The decoder takes the internal representation (z) and

outputs the reconstruction of the input. The figure is adapted from [34].

2.2.2. Autoencoders

Autoencoders are another particular kind of neural network that is trained to

reconstruct the given input. They are typically used for encoding the input to a

lower-dimensional representation; hence they provide dimensionality reduction. Au-

toencoders are preferred to the conventional dimensionality reduction techniques (e.g.,

Principal Component Analysis (PCA)); because they can find complex non-linear re-

lationships. In many cases, obtaining lower-dimensional representations are desirable;

since it provides performance improvement, and it is e�cient in terms of computational

resources.

Autoencoders consist of two parts, as shown in Figure 2.3. The encoder part en-

codes the given input to the internal representation. The decoder part reconstructs the

input of the encoder from the internal representation. Although the internal represen-

tation typically has a lower-dimension than the input, larger internal representations

are shown to be e↵ective in sparse coding settings [28, Chapter 14]. The parameters of

the encoder and the decoder are learned jointly by minimizing the reconstruction loss,

i.e., the dissimilarity between the input and the reconstructed version of the input.

Thus, autoencoders are considered as an unsupervised learning technique.
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Figure 2.4. General structure of the VAE. The probabilistic encoder approximates

q�(z|x), and the probabilistic decoder approximates p✓(x|z). The figure is adapted

from [34].

2.2.2.1. Variational Autoencoders. Variational Autoencoders (VAE) [35] are a type of

autoencoders which are based on variational inference. The encoder part of a VAE

maps the given input into distribution in the latent space. The decoder part decodes

a point sampled from the encoded distribution. A general structure of VAEs is shown

in Figure 2.4. If the distribution is assummed to be parameterized by ✓, the likelihood

of generating real data samples (x) from the latent encoding vector (z) would be

p✓(x|z). Similarly, the prior and posterior would be p✓(z) and p✓(z|x). Since the

integral of the marginal likelihood is intractable, Kingma and Welling [35] proposed

using an approximation q�(z|x) parameterized by � instead of intractable posterior

p✓(z|x). VAEs are trained by both maximizing the log-likelihood of generating real data

p✓(x) and minimizing the di↵erence between the approximate and real the posterior

distribution DKL(q�(z|x)||p✓(z|x)) [34], as shown in Equation 2.1. In order to use

backpropagation during the training phase, reparameterization trick [35] is used.

LV AE(✓,�) = � log p✓(x) +DKL(q�(z|x)||p✓(z|x))

= �Ez⇠q�(z|x) log p✓(x|z) +DKL(q�(z|x)||p✓(z))
(2.1)
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2.3. Gaussian Mixture Models

Gaussian Mixture Models (GMM) is a probabilistic method that represents a

probability distribution with multiple Gaussian distributions. Each Gaussian distribu-

tion is called as a component of the GMM. GMMs are parameterized by the weight of

the mixture components, component means, and component variances/covariances.

GMMs are trained by the Expectation-maximization algorithm. In the expec-

tation step, for each data point, the expectation of being a member of a component

is calculated. In the maximization step, the parameters of the model are updated to

maximize the probability of the model generating these parameters. An essential prop-

erty of the expectation-maximization algorithm is that at each iteration, the maximum

likelihood of the data increases. Hence it is guaranteed to find a local maximum or a

saddle point. These steps repeat until the algorithm converges.

GMMs are commonly used for clustering and density estimation. GMMs are able

to generate clusters with di↵erent shapes and sizes. It makes the soft-assignment of

clusters. That means, for a data point, GMMs give membership probabilities of each

Gaussian.



12

3. EXPERIMENT PLATFORM

This chapter presents the tools used in this thesis. Section 3.1 introduces the

physical entities involved in this study. Section 3.2 provides the computational tools

employed in this study.

3.1. Physical Units

3.1.1. UR10 Robot

In this thesis, the experiments of the proposed method are conducted on a sim-

ulated UR10 robot. Although we have used the simulated version, it is important to

mention the general features of the real robot. UR10 is a collaborative industrial robot

that is manufactured by Danish company Universal Robots [36]. It is capable of car-

rying up to 10 kilograms. The robot has six-degrees-of-freedom, and it can reach up

to 1.3 meters. It is mainly used in production lines for assembly and packaging tasks.

3.1.2. Kinect

Kinect [37] is a product of Microsoft Corporation. It has an RGB color video

camera and an infrared camera to determine the depth information. Furthermore, it

can perform motion capturing. It is widely used in robotics applications. In this thesis,

Kinect is used in simulation experiments of the proposed method to capture the depth

images of the objects.

3.2. Software Units

3.2.1. Robot Operating System

Robot Operating System (ROS) [38] is an open-source software that provides var-

ious types of services to the robotic software processes. Although it is not an operating
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system, similar to the operating systems, it provides hardware abstraction and allows

message-passing across processes. Furthermore, it serves low-level device control, im-

plementation of commonly-used functionality, and package management functionalities.

ROS supports a large number of commonly used robots, sensors, and motors.

The runtime processes are represented in a graph structure where each process

is called a node of this graph. Other entities of this graph structure are the master

node, messages, services, topics, and bags. Each node can communicate with another

node by messages which are passed over a topic. The services are a more specialized

way of passing messages that are based on request/reply strategy. Bags are used for

storing and playing back the message data. The master node establishes the connection

between the graph entities and provides parameters to the nodes at runtime. A ROS

system can work using multiple computers. In this thesis, ROS is used for scheduling

the data collection in simulation.

3.2.2. CoppeliaSim

CoppeliaSim (formerly V-REP) is a general-purpose robotic simulator that al-

lows distributed control of the simulated environment [39]. It provides a broad range

of robots used in industry and academy, as well as widely used sensors. It also presents

building blocks, e.g., actuators, grippers, sensors, for designing custom robots. More-

over, there are various types of objects and environment properties that allow simula-

tion of real-world scenarios. The entities of the simulation scenes can be independently

controlled by embedded scripts, by ROS nodes, by remote API clients or plugins. The

embedded scripts are written in Lua, and ROS nodes are usually written in C/C++

or Python. CoppeliaSim has builtin calculation modules that enable various features

such as collision detection, inverse kinematics calculation, path/motion planning. It

provides the Bullet Physics library, Open Dynamics Engine (ODE), Newton Dynamics

engine, and Vortex Studio engine for simulating physical properties of the environment.

In this thesis, the experiments with UR10 robot are implemented and conducted in

CoppeliaSim. For the inverse kinematics calculation, inverse kinematic module of the

CoppeliaSim is used. We have used Bullet 2.78 physics engine.
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3.2.3. External Library and Packages

3.2.3.1. Scikit-learn. Scikit-learn is a Python library that provides a broad range of

machine learning algorithms as well as utility functions required for machine learning

applications [40]. It is built on SciPy, a Python library for scientific computing, and

it uses NumPy for mathematical functionalities. In this thesis, K-NN regressors and

GMMs are implemented by using Scikit-learn. In this study, model selection and

preprocessing utilities are also used from Scikit-learn library.

3.2.3.2. Keras. Keras is an open-source library for designing and working with neural

networks [41]. It provides a broad range of implementations required for creating

neural network models. It presents commonly used losses, optimizers, and metrics as

well as various utilities for neural network experiments. Keras is written in Python,

and it can utilize Tensorflow, Theano, and Microsoft Cognitive Toolkit (CNTK) as

backend. It allows training both on the central processing unit (CPU) and on the

graphics processing unit (GPU). It is widely used in both industry and the research

community. The networks used in this thesis are implemented using Keras API.

3.2.3.3. Statistical Analysis Packages. In this thesis, for statistical analysis of the re-

sults several Python packages are used:

• Pingouin [42] is a Python package that provides several statistical analysis tools.

It provides analysis of variance (ANOVA), several post-hoc tests and some other

widely used statistical methods.

• Scipy.stats [43] is a module of SciPy library. It provides a wide array of statistical

functions and probability distributions.

• Scikit-posthocs [44] is a Python package that provides a large number of post hoc

tests to conduct pairwise comparisons after performing ANOVA.
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4. RELATED WORK

4.1. Intrinsic Motivation

Intrinsic motivation causes an agent to seek novel, surprising phenomena, and

make it focus on developing the skills with intermediate complexity [4]. As it fosters

exploratory behavior in the organisms, it is considered that intrinsic motivation is

an essential element of open-ended learning [2]. The ability to seek information by

exploration, driven by the pursuit of novelty and surprisingness observed in infants

and other animals [3, 4].

Inspired by the intrinsic motivation in psychology [45], researchers developed

computational models of intrinsic motivation to equip artificial agents with the abil-

ity of open-ended and autonomous learning [12, 13, 46, 47]. Oudeyer and Kaplan [2]

divide the computational approaches of intrinsic motivation (IM) into two classes as

Knowledge-Based IM (KB-IM) and Competence-Based IM (CB-IM). KB-IM strategy

is derived from the deviation of the knowledge of the agent on the environment from

reality [2]. While the agent expands its knowledge about the environment by exploring

the situations outside of its current understanding, it learns new skills [48]. The CB-

IM strategy focuses on a specific state, i.e., the goal state, that is adaptively changed

according to the current competencies of the agent [48]. In other words, the CB-IM

stems from the performance of an agent to achieve a specific goal. Mirolli and Baldas-

sarre [49] state that both of KB-IM and CB-IM can serve knowledge and competence

acquisition. They also point out that they might have a complementary relationship

in a sense that the KB-IM mechanisms to detect which skills to train based on their

novelties and the CB-IM mechanisms to select the expert to achieve a particular goal.

4.1.1. Computational Models of Intrinsic Motivation

Blank et al. [46] stress that the “inherent anthropomorphic bias” is a problem

of task-oriented robot design methodologies. They state that expecting a robot to
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accomplish a task as humans do is wrong, and they propose an intrinsic developmental

algorithm to allow the robot to discover its capabilities on its own. The robot first

builds abstractions from raw sensory data, which enable it to focus on the most crucial

features of the environment. Then it utilizes the abstractions to predict the future.

The motivation mechanism enables the robot to learn complex behaviors from low-

level control schemes. Similar to their work, our proposed approach forms abstractions

later to be used in the motivation framework.

Oudeyer et al. [13] propose a mechanism that is called “Intelligent Adaptive

Curiosity” that drives the agent to concentrate on situations with intermediate com-

plexity to foster autonomous mental development. Throughout the exploration, the

agent masters the environment dynamics and partitions the sensorimotor space to be

further learned by the local experts. To build a curriculum, the agent makes use of

an intrinsic reward measure, particularly the learning progress, to select which region

to explore next. Thus, the agent distinguishes the regions that are controllable from

uncontrollable ones and develops a curriculum with an increasing level of complexity

within the controllable part. This study is one of the pioneering work in intrinsically

motivated learning in robotics and provided an example of computational architecture

and its implementation for the next generations of open-ended learning in artificial

systems [50, 51]. Our first study is inspired by this study in terms of partitioning the

exploration space into the regions and using disjoint forward models that are exclusive

for one particular region. Similar to their work, we consider learning progress as the

intrinsic motivation signal.

In the proposed approach, there is no predefined task, and the main interest is

to make e↵ect-prediction using forward models. However, in the literature, there ex-

ist reinforcement learning studies that utilize intrinsic motivation to learn a policy to

accomplish a given task. Chentanez et al. [52] propose using the intrinsic motivation

in the Reinforcement Learning (RL) domain to create more competent agents that are

able to develop and enhance the hierarchies of skill learning, as stated by Barto et

al. [53]. Uchibe and Doya [54] use embodied evolution of a group of mobile robots to

discover intrinsic motivation in an RL framework. Hester and Stone [55] use a combi-
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nation of intrinsic motivation signals in an RL framework to discover novel states and

improve the performance of the model in the states where it is uncertain. Florensa et

al. [56] suggest a self-supervised RL framework that generates goals with intermediate

complexity using Generative Adversarial Networks (GAN) to produce a curriculum for

the agent automatically. To learn complex skills with minimal supervision, Eysenbach

et al. [57] express that the agent should learn skills as diverse as possible. To achieve

that, they formulate “diversity” with an information-theoretic objective to guide the

exploration of an unsupervised RL agent. Colas et al. [58] propose an intrinsically mo-

tivated RL architecture that allows the robot to achieve multiple goals with increasing

complexity using a single policy. To address the problems of large action and state

spaces in RL, Hierarchical Reinforcement Learning (HRL) [59] use abstractions to sim-

plify the problem. Intrinsic motivation is also applied to HRL studies at the di↵erent

levels of the hierarchy [20, 60–63], both in high-level and low-level controllers.

4.1.2. Computational Models of Infant Development

The studies mentioned so far are not involved much in observing a developmen-

tal order and relating their findings with psychological research. Several works put

emphasis on infant development in computational models of intrinsic motivation [13].

Forestier et al. [21] develop an algorithmic procedure called “intrinsically motivated

goal exploration processes” (IMGEP) that allows the autonomous discovery and selec-

tion of goals. These goals are achieved by following a self-generated curriculum with an

increasing level of complexity. Their method uses reward functions as given modular

representations of goal spaces and explores them by employing intrinsic motivation.

They validate their approach in a 3D printed robot that first learns how to move its

end-e↵ector and then use tools to learn more complex relationships that are present in

the experiment setup. Haber et al. [64] show a computational model where the agent

develops the understanding of ego-motion, followed by the ability to interact with sin-

gle and multi-object. To discover the most informative parts of the environment, they

utilize a “world model” that is trained with a history of states and predicts the action.

They use a model that proposes actions through a “loss model” which predicts the
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loss of the world model to drive the exploration to discover novel states. Mannella et

al. [65] hypothesize that an agent learns about the dynamics of its body by autonomous

goal generation regulated by the intrinsic motivations. To validate their hypothesis,

they create a model that relies on CB-IM signal to form abstract representations of the

observations, to select goals to pursue, and to learn motor skills.

Nagai [66] suggests that predictive learning of sensorimotor information allows

infants to perform goal-directed actions and to obtain some other cognitive abilities

and propose a computational architecture for predictive learning. In their study, the

forward model predicts the next sensory state and action to be executed, given the

current sensory state and the action. They show that predictive learning enabled the

hierarchical development of goal-directed actions. They also demonstrate that as the

performance of the predictor improves, the robot develops grasping and reaching abil-

ities. Gaussier and Pitti [67] shows a neurocomputational mechanism for multi-modal

integration in infants to reach and grasp objects. They hypothesize that “reachable

regions” cells, which are considered to be organized in the brain by sensorimotor con-

tingencies, manages the learning of reaching and grasping skills.

Bugur et al. [68] show the emergence of push and grasp behavior on a simulated

robot in a 3D environment is parallel to the infant motor development. They use

the action and e↵ect space information to obtain a latent representation that eventu-

ally distinguishes between two high-level actions, namely push and grasp. The latent

representation is formed by first, obtaining two clusters from the e↵ect space, and sec-

ond, by using the cluster information of the e↵ect space, applying Linear Discriminant

Analysis on the action space. Throughout the exploration, they further partition this

latent space, which results in multiple local experts. Similar to their study, we learn

local forward models to capture the dynamics of regions of the latent space and explo-

ration is driven by the learning progress. However, our study di↵ers from their study

by means of forming the exploration regions. In our study, we are integrating three

di↵erent modalities, namely object, action, and outcome in the latent space, and we

do not further partition this latent space during the exploration.
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4.1.3. Robot Learning Studies Exploiting Intrinsic Motivation

Ivaldi et al. [69] introduce an active perception system that utilizes curiosity-

driven exploration for manipulation tasks. Their method uses socially guided learning

along with the curiosity-driven exploration decide on which object to interact with

which manipulation strategy to recognize the objects. Oudeyer et al. [70] present

a method that combines intrinsic motivation and imitation learning for motor skill

development in robots. They argue that social guidance can allow an intrinsically mo-

tivated learner to learn areas that are di�cult to discover faster. Combining socially

guided learning and intrinsic motivation is also used in hierarchical learning of interre-

lated tasks [71]. Fournier et al. [10] introduce an RL agent that learns multiple tasks

by learning from demonstrations of another agent and actively chooses what task to

explore in a non-rewarding environment.

Ugur et al. [72] propose a curiosity-driven learning scheme to speed up the learn-

ing of the traversability a↵ordance for a mobile robot. Ugur and Piater [73] suggest a

system to structure and learn interdependent a↵ordances in a table-top manipulation

scenario by intrinsic motivation. They used intrinsic motivation for action selection,

object selection, and feature selection to learn a↵ordances. Baldassarre et al. [74] intro-

duce an architecture to learn a↵ordances that are to be used in solving planning tasks.

They propose learning a↵ordances through intrinsic motivation and using attention-

based active perception to decompose the planning tasks to learned a↵ordances. Blaes

et al. [22] utilize intrinsic motivation in a task-planning architecture. They assume

that the environment is partitioned into controllable goal spaces, and the agent selects

between these spaces using surprise-based intrinsic motivation.

4.2. Representation Learning

One particular aspect of our study is to learn a representation that makes the

exploration more e�cient by simplifying the task into easier parts, which are then

explored by intrinsic motivation. In a comprehensive review of representation learn-

ing [75] it is defined as “learning representations of the data that make it easier to ex-
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tract useful information when building classifiers or other predictors”. Most of the work

in robot learning practices engineered features representations to perform given tasks.

However, to obtain full autonomy in intelligent systems, the agent also should be capa-

ble of building e�cient feature representations from raw sensory data. Representation

learning in robotics is an important research direction that allows the learning systems

to be e�cient in computational resources, generalization ability, time e�ciency, and

abandons the need for feature engineering. Many works from robot learning, control,

and RL domains focus on learning such representations to foster autonomy. Bowling

et al. [76] present an example of state representation learning that utilizes the action

information to the trajectory prediction task. Boots et al. [77] proposes learning “pre-

dictive state representation” by making use of action and observation trajectories later

to be used in a robotic planning task. Lange et al. [78] investigate whether using an

autoencoder to obtain state representation from image data is useful for learning a

control policy. [79, 80] suggest using “robotics priors” to learn an appropriate state

representation to facilitate the learning of environment dynamics. Watter et al. [81]

and [82] suggest embedding high-dimensional observations to be used in complex con-

trol tasks. Machado et al. [83] propose an algorithm for discovering options [84] by

using successor representation [85]. Whitney et al. [86] suggest learning an abstraction

that groups state and action pairs with similar outcomes to attain sample e�ciency in

RL frameworks.

Several works consider using representation learning approaches along with the

intrinsic motivation. Mohamed and Rezende [17] propose a formulation for estimating

mutual information, which is used as an IM signal, namely the “empowerment”, in

an RL framework. They aim to develop a vision-based motivation system and apply

representation learning to encode raw sensory observation into the state. Santucci et

al. [20] introduce a hierarchical architecture that allows the agent autonomously to

discover goal states and to choose which goal to pursue by using a CB-IM signal in

a 3D simulated setup that involves a robot learning to reach the objects. They build

an implicit and an explicit representation from the changes observed in the environ-

ment to make an RL agent pursue them as candidate goals. Vezhnevets et al. [61]

suggest a two-level architecture in which the higher-level controller sets goals for a
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lower-level controller, which is intrinsically motivated to fulfill these goals. They use

a latent state space to identify the sub-goals. Péré et al. [19] added a representation

learning algorithm on top of IMGEP [21] to create the goal-spaces from raw sensory

observations. In that study, the agent passively observes the environment to collect

data about the environment then uses a representation learning algorithm to learn an

embedding function. After that phase, learned representation is used as the goal space

to be explored by the intrinsically motivated architecture they proposed previously.

Later, Laversanne-Finot et al. [18] use a disentangled representation learning stage to

form goal spaces to be used in IMGEP [21]. They observe that the agent could discover

and learn the controllable goal spaces in the presence of the distractor sensory phenom-

ena. To provide exploration e�ciency, Blau et al. [87] introduce Bayesian curiosity to

the RL domain. Their method brings the observations to a latent space that is being

used for computing the intrinsic reward (i.e., uncertainty) of the observation. Then,

the policy network is trained using a combination of extrinsic and intrinsic reward sig-

nals. Hafez et al. [88] propose a system that learns a latent space that is inspired by

the human mental simulation of motor behavior. They use this latent space to supply

“imagined experiences” as training data to local dynamics models to improve their pre-

dictions. They determine the imagined experiences by utilizing intrinsic motivation.

Zhao et al. [89] use embeddings of actions and observations to find a linear dynamics

model in action embedding space. They formulate that the learned embedding cap-

tures the information-theoretic properties of the environment, and use this quantity as

the intrinsic reward signal to augment the reward for the RL algorithms.
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5. UTILIZING PREDICTABILITY PRINCIPLE FOR

INTRINSICALLY MOTIVATED EXPLORATION OF THE

SENSORIMOTOR SPACE

This chapter presents our first study on intrinsically motivated exploration strate-

gies. Section 5.1 presents the context of our first study, Section 5.2 provides the details

of the method, Section 5.3 explains the experiment setup and Section 5.4 gives the

results of the experiments.

5.1. Introduction

For many years, scientists generally have followed three main approaches for

building intelligent systems [90]. In the first one, an intelligent system is directly

programmed to perform a given task. In the second, the computer is provided human-

edited sensory data and runs a learning program specific to the task. Finally, in the

last, intelligent systems evolved by the principle of “survival of the fittest”, i.e., the

most competent races left their survival skills to successive generations [90].

Survival depends on lifelong learning and application of what has been learned.

Intrinsic motivation (IM) is regarded as a set of active learning mechanisms for devel-

opmental robots, improving learning in high-dimensional search spaces. Since IM de-

mands the development of broad competence rather than immediate external goals [53],

IM is a part of continuous and high-quality learning [91]. The autonomous mental de-

velopment concept is defined as developing mental capabilities under the control of a

learning agent’s own developmental program, via the autonomous real-time interac-

tions with the external environment with the sensors and actuators of the agent as well

as its internal environment with time [90]. Originated from the fact that IM mecha-

nisms generate learning signals by observing the skills or knowledge level needed to be

acquired by the agent [92], autonomous mental development concepts were tried to be

adapted to learning machines.
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Weng et al. [90] state that, contrary to manual development involving running

a program for a specific task with hand-engineered representations, autonomous de-

velopment consists of two main phases. According to Weng et al. [90], the first one

(construction and programming phase), a developmental program is formed, control-

ling the autonomous development of the agent and not related to a specific task, and

the agent’s body is designed according to its operating environment. The beginning

time of the execution of this program is considered the time that the agent was “born”

and the second phase begins. In the second one (autonomous development phase),

the agent starts interacting with the physical world and develops the skills required in

that environment. In this scheme, Weng et al. [90] argues that the skills learned in the

earlier stage of the agent’s lifetime form a basis for learning new skills.

E�cient and e↵ective learning in high-dimensional spaces is hard and can be

simplified by splitting the sensorimotor space (SM) into smaller regions. The regions

with similar characteristics can be generalized e↵ectively by an expert responsible only

for these regions. Distributing learning tasks across the experts of smaller regions

provides more accurate results and thus improves the overall quality of the learning. In

order to make these experts proficient in their local regions, SM should be split wisely.

A particular method of IM, namely Intelligent Adaptive Curiosity (IAC), provides a

smart splitting scheme in such a high-dimensional SM and drives the learning agent

to explore the regions by considering the competence level of the agent. The essential

point that forms the core of our study is the decision of how to split SM into specialized

learning regions. Reflecting environment dynamics to the learning space and formation

of child regions should be determined by the previously collected experience of to

be split region. Thus, to determine the regions to be formed after the split, we are

considering predictability, which is the degree of potential success rates of the candidate

regions. Our study performed better than the original study [13] (we will also briefly

explain their idea in this chapter) does not consider how the experts would perform

in the generated sub-regions, in an experimental setting simulating the interaction of

a robot with a simple 2D environment. In this study, we propose a novel method to

split the learning space into easy to learn regions and provide a more accurate way of

calculating the intrinsic reward that the agent gets. As a result, our approach considers
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the future aspects of the splitting process and reflects a more distilled way of using IM

for exploration.

5.2. Method

The proposed method is built on the IAC framework proposed by Oudeyer et

al. [13]. In Subsection 5.2.1 we give a brief introduction to IAC, in Subsection 5.2.2

we explain the method given in [13] and explain our approach of splitting SM, in

Subsection 5.2.3 we describe learning machines and their contribution to the splitting

process, then in Subsection 5.2.4 we provide the formal explanation of the learning

progress and finally in Subsection 5.2.5 we explain the action selection mechanism.

5.2.1. Summary

Intelligent adaptive curiosity (IAC) proposed by [13], adaptively splits SM into

regions and uses LP of these regions for deciding which region to explore and learn

next. Regions with large LP are primarily explored and learned. Since LP would be

low in problems that are too easy or too complex or impossible to learn, it automatically

works on problems that have moderate complexity before dealing with simple and hard

learning problems. Thus, the actions of the robot become more complex gradually, and

the developmental sequence organizes itself.

The flow of the IAC algorithm can be summarized as follows: Each experience

encountered by the robot is recorded to the memory of the system as a vector (we

will call them as “exemplar” in order to be coherent with IAC [13]). An exemplar is a

couple of current sensorimotor state and its outcome in sensory space hSM(t), S(t+1)i.

SM continuously split into regions when any region met splitting criterion. Note that

splitting can be any condition depending on the application, here we used a threshold

value for the number of exemplars that a region is allowed to contain as in [13]. Each

region has its learning machine, and this machine is responsible for predicting the

next sensory state S(t + 1) given the current sensorimotor state SM(t) covered by

that region. Each learning machine is trained with the exemplars of the corresponding
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region, and when a prediction should be made, the learning machine covering that

exemplar is selected and used for the prediction. After the execution of the action

in the given sensorimotor context, the di↵erence between the actual outcome and the

prediction is calculated and recorded into the error list of the corresponding region.

Afterward, this list is used for the evaluation of the LP of that region. LP is the core of

the IM in the system and used for the determination of the action, which contributes

most to the learning process.

5.2.2. Splitting the Sensorimotor Space

We aimed to improve the learning performance of the IAC by splitting SM ac-

cording to the predictability principle. IAC splits SM, and the mechanism behind

this division is an essential part of our study. In our method, before the actual split

performed, the regions are hypothetically split into two parts a predefined number of

times by considering each SM(t) dimension (feature) and potential learning success of

each hypothetical region is calculated. This process clarifies our idea of determining

which feature dimension and value will be used in that region’s splitting procedure.

The splitting procedure can be summarized as follows: In the beginning, only

one region (R0) exists, and when it meets the splitting condition, it is split into two

new regions. This way, each region, when it satisfies the splitting condition, is split

into two child regions and stores the feature dimension used for splitting along with

the corresponding cutting value in itself. Since the cutting dimension of a region corre-

sponds to a feature of SM vectors, when a prediction is to be made, the corresponding

region can easily be found by using the cutting dimension and value stored in regions.

After splitting, exemplars contained by a parent region distributed across its children

by considering the cutting information. For example: if the selected cutting dimension

is the motor command and the determined cutting value is 0.5, all the exemplars in-

side the left child region would have their motor command value below 0.5 while all

the exemplars inside the right region would have their motor command value above

0.5. In the rest of this chapter, we will refer our method based on the potential error

calculation as PE-IAC and the method proposed in [13] based on variance as V-IAC.
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In V-IAC, a region is partitioned into two new regions in which the sum of the

variances of S(t+1) components weighted by the cardinality of each region is minimal.

A detailed explanation of it can be found in [13]. Our proposed method PE-IAC first

hypothetically splits exemplar set into two by each feature dimension of SM vector

predefined number (chosen arbitrarily) of times. From the hypothetical pair of regions,

the pair with the lowest total potential error is selected. Thereby, instead of V-IAC,

which does the splitting according to feature distribution in exemplars, splitting in

PE-IAC is done by taking potential successes of candidate regions into account. Let

each exemplar SM(t) is a vector with length l and the decision of how to split the

region is made by the following steps:

• Exemplar set of each parent region is sorted for each dimension index j by con-

sidering only that dimension.

• The sorted set of exemplars are split into two from di↵erent cutting values. Each

hypothetical child region’s learning machine is trained with the set of exemplars

contained by that region, and corresponding errors are calculated. This process is

executed incrementally. The sum of the errors of each child region is divided into

the length of the exemplar set, and the minimum of these two values is taken and

stored as pej,i (potential error by splitting jth dimension from its ith cutting value).

From all the calculated error rates for that dimension PEj = {pej,1, pej,2 . . . pej,i},

the smallest value is selected pej = min(PEj) and corresponding cut value is

stored.

• Smallest potential error rate from all dimensions is selected, and corresponding

cutting dimension and cutting value are used for actual splitting.

5.2.3. Learning Machines

Each region has a learning machine that is trained by that region’s exemplars.

The learning machine of a region is responsible for the prediction of the next sensory

state given sensorimotor input covered by the region. Any machine learning algorithm

can be used for implementing a learning machine. For the sake of the integrity of the
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system, the same algorithm could be used for all learning machine inside it. In this

study, the selection of the learning algorithm does not depend on the method, and

any algorithm that is compatible with the given learning task could be used. In [13],

K-Nearest Neighbor (K-NN) [93] is used as the regression algorithm. When a region

is split, learning machines of the new regions cannot use the learning machine of their

parent directly. Thus, after each split, newly generated child regions should train their

own learning machine with their own set of exemplars.

The second main contribution of our proposed method is that each new learning

machine is trained by the exemplars of the corresponding region one-by-one and forms

its own error list. Therefore, di↵erent from V-IAC, where each child inherits exemplars

of its parent, in our method, each child region and its corresponding expert considers

only the errors made only by itself.

5.2.4. Calculating Learning Progress

The LP of each region is computed by the approach suggested by Oudeyer et

al. [13]. Let S
0(t + 1) denote the prediction, S(t + 1) denote the actual outcome of

SM(t) vector and en(t+ 1) denote the error. Then the error is mathematically:

en(t+ 1) = ||S(t+ 1)� S
0(t+ 1)||2 (5.1)

Region Rn’s error list will be consist of:

en(t+ 1� �), en(t+ 1� �+ !1), en(t+ 1� �+ !2), . . . , en(t+ 1)

Here en(t+ 1� �) denotes the error of first exemplar covered by that region and

inherited from the parent. Since the exemplars inherited from the parent does not

follow a regular time pattern, en(t+1� �+!1) denotes the next exemplar covered by

that region and en(t+ 1) denotes the most recent prediction error.
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LP of a region is calculated by taking the smoothed derivative of the closest

error curve and smoothed derivative of the older closest error curve. Let ✓ denote the

smoothing parameter and ⌧ denote the time window parameter, mathematically:

hen(t+ 1)i =
P✓

i=0 en(t+ 1� i)

✓
(5.2)

hen(t+ 1� ⌧)i =
P✓

i=0 en(t+ 1� ⌧ � i)

✓
(5.3)

hen(t+1)i and hen(t+1� ⌧)i denote the smoothed derivative of the closest errors and

the older closest errors respectively. The LP is calculated by taking the negative of the

actual decrease in the prediction error:

L(t+ 1) = hen(t+ 1� ⌧)i � hen(t+ 1)i (5.4)

5.2.5. Action Selection

In IM systems, action selection is made by maximizing the intrinsic reward that

the agent gains from executing the corresponding action. In our problem, since SM is

continuous, the next candidate SM(t+1) vector is selected by random sampling inside

this space. In a set consisting of 100 sampled exemplars, each sample’s corresponding

region is found, and LP of these regions are compared. With ✏-greedy action selection

mechanism, the sample covered by the region with the largest LP is selected and used

as the next sensorimotor input of the system. Next, the input is executed, results are

observed, and the system is updated. PE-IAC and V-IAC use the same mechanism to

calculate LP and to select the action.



29

Figure 5.1. Experiment environment is a 8⇥ 8 2D environment consists of areas with

di↵erent characteristics. Area-1 (A1) is slippery, Area-2 (A2) is sticky and Area-3

(A3) is completely random. The robot changes its position on the given environment.

5.3. Experiment Setup

In the experiment setting, a robot that moves in an 8 ⇥ 8 2D environment is

simulated, as shown in Figure 5.1. The experiment environment consists of three sub-

areas with each of them has a di↵erent characteristic. The consequences of the robot’s

actions depend on the area it stands and the frequency of the sound emitted by the

robot. The robot moves in vertical and horizontal directions and motor commands of

this movement, namely h, v defined in h, v 2 R | �1 < h, v < 1. Without considering

the e↵ect of the area that the robot stands and the frequency of the sound, if the robot’s

horizontal motor command h = 0.5 and its x position at time t is x = 1.2 then at time

t+1 the robot would be in x = 1.7 by executing the given action. Furthermore, it emits

a sound with frequency f 2 R | 0  f < 1, and the frequency a↵ects the interaction

of the robot with the environment. Without considering the e↵ect of the area that

the robot stands, if the emitted sound frequency value is f1 2 [0, 0.33), reverse of the

motor commands are executed (i.e., hh = 0.1, v = 0.4i 7! hh = �0.1, v = �0.4i. If it

is f2 2 [0.33, 0.66) regardless of their value, executed as h = 0, v = 0. If f3 2 [0.66, 1)

then the commands executed as they are.

After considering the e↵ect of sound frequency on robot’s interactions, h, v com-

mands executed depending on the area it stands, i.e., for A1, multiplying both with

3; for A2 dividing both with 2 and for A3 movement of the robot will be completely

random. Changes in the x, y position of the robot are calculated by adding h, v com-
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mands to current x, y position of the robot. In this setting M(t) = (h, v, f) consists of

horizontal speed, vertical speed and sound frequency respectively. Sensory vector con-

sists of x, y position of the robot: S(t) = (x, y). In brief, robot maps the next sensory

state to the current sensorimotor input: SM(t) = (h, v, f, x, y) 7! (x0
, y

0) = S(t+ 1)

5.3.1. Learning Flow

At time t, N possible SM vector is introduced by the system. Except for the time

before the first split and ✏-greedy action selection rule, the next action is determined

by IM, namely, LP of the regions. (N depends on the environment dynamics, and here

we used N = 100.) Next, the robot predicts S(t + 1) with the given SM vector. In

order to make a prediction, the system finds the responsible region of that exemplar,

and the learning machine of that region is used for the prediction of the execution of

this vector’s outcome. Finally, this SM vector is stored in exemplar set of that region.

5.3.2. Experiment Parameters

The system is trained with 5000 iterations, and the required number of exemplars

for the splitting condition is 1000 (splitting criterion), i.e., when a region collects 1000

exemplars, it is split into two new regions. For ✏-greedy action selection rule, ✏ = 0.3,

for calculating LP smoothing parameter ✓ = 30 and time window parameter ⌧ = 5 is

used. Furthermore, to determine the splitting dimension and value, 10 di↵erent split

locations were used when computing the error rates of hypothetical regions. Results

are compared with V-IAC by using the same parameters.

5.4. Results

The proposed method is evaluated by analyzing the following: how well the au-

tonomously generated sensorimotor regions reflect the underlying experimental setup

(Subsection 5.4.1); whether our system allowed e�cient and e↵ective learning by ana-

lyzing the change in LP (Subsection 5.4.2), and the decrease in total error rate (Sub-

section 5.4.3). The proposed method is compared with V-IAC in our analysis.
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(a) SM tree formed by PE-IAC (b) SM tree formed by PE-IAC

(c) SM tree formed by V-IAC (d) SM tree formed by V-IAC

Figure 5.2. SM region tree formed by PE-IAC and V-IAC. Here first, second and

third line corresponds to the ID, cutting dimension and cutting value of the region

respectively. Arrows show the parent-child relationship between the regions.

5.4.1. Generated Sensorimotor Regions

Our aim in this method is splitting SM from the points which split the space in a

semantically sensible and useful manner to improve the learning rate of the system. In

order to evaluate this, both PE-IAC and V-IAC were trained with a 5000 iteration set.

Due to the randomness, after a large number of runs, various distinctively structured

trees were formed. Figure 5.2(a) and Figure 5.2(b) shows two representative trees
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(a) PE-IAC (b) V-IAC

Figure 5.3. Sound frequency preferences in one run. The x-axis represents the number

of exemplars collected by the agent and y-axis represents the sound frequency values

obtained by considering and smoothing all the frequencies inside a time window.

formed during our experiments. In Figure 5.2, di↵erent trees produced by PE-IAC and

V-IAC with the same parameters are shown. In Figure 5.2(a), the calculated cutting

dimension of the 4th region is compatible with the environment dynamics. The 6th

region covers A1 entirely, and the following splits are based on the f parameter, i.e.,

the system represents the e↵ects of the f action parameter qualitatively. Another tree

formed by the PE-IAC method is shown in Figure 5.2(b). In this tree, the first split

occurred at x = 0.805. In this case, the system prefers exploring the region with x

parameter larger than the cutting value 0.08, which is a value close to the boundary

(1.0) that separates A1 and A2. Next, the 3rd region is split by y = 1.147, which

defines the other border between A1 and A3; then, there was no observation of further

exploration in region 5. This is because the region is a non-learnable region since it

involved randomness. As can be seen in both two children of the 2nd region, the system

was successful in terms of splitting the region by f parameter from the points which

make a di↵erence. As shown in Figure 5.2(c) and Figure 5.2(d), V-IAC could not split

SM successfully taken into account the environment dynamics i.e., there were no trees

formed by this method using f parameter as a cutting dimension.

We further analyzed how often which sound frequencies were explored by the

robot for training di↵erent experts. When we compare plots in Figure 5.3, we observe
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(a) PE-IAC

(b) V-IAC

Figure 5.4. Smoothed derivative curves of errors of PE-IAC and V-IAC. For

visualization, smoothed error curves are represented according to robot’s

encountering time of the experiences.

that our method prefers using specific sound frequencies as time passes. However,

such distinction in V-IAC is not discovered within 5000 iterations. Furthermore, it

is observed that after the 10000 iteration phase, this parameter has still not been

discovered in V-IAC. Thus, V-IAC could not explicitly identify and represent the e↵ect

of sound frequencies on the interaction of the robot with the environment.



34

Figure 5.5. Comparison of the mean error of PE-IAC and V-IAC methods. The lines

correspond to the mean error values of the test sets and shaded areas represent the

variance.

5.4.2. Comparison of Learning Progresses of Regions

Here, we analyze the LP in each region and compare the LPs observed in PE-IAC

and V-IAC. In Figure 5.4(a), error curve of each child region is preceded by that region’s

parent’s error curve; thus, the decrease in the error after the split can be observed from

the plot. First of all, as SM is split, the coherency of predictions is improved in general.

However, the error rate of region 5 remains the same (and high) as it corresponds to A3

that is completely random and, therefore, it is not learnable. The smoothed derivative

error curves generated by V-IAC are shown in Figure 5.4(b). In this method, for each

child region, errors are completely inherited from the parent region, and error change

can be observed by considering this case. When the two methods are compared, it

can be observed that with our method error drops quickly in all regions except the

unlearnable region and, with V-IAC, while error drops in some regions, it remains the

same in other regions since those regions include parts from unlearnable A3.

5.4.3. Comparison of Decrease in Total Error Rate

For both methods, error rates of the systems that involve experiments with di↵er-

ent training sizes are shown in Figure 5.5. For this plot, we have trained both methods

with the number of exemplars stated in the x-axis. Next, both methods were tested
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with 10 di↵erent test sets, each of them including 2000 exemplars. Initially, there is

no di↵erence in performance between the two systems in the training set with 1000

training exemplars, because the first split had not yet occurred, and the system has

not made action selection by using its own IM. After training the system with 2000

exemplars, the gap between the performances of the methods becomes more apparent.

5.5. Conclusion

In this study, we have proposed a novel method for splitting SM to improve the

learning performance and compared it with an existing approach. Our contributions in

this study are (1) we have brought in a new splitting mechanism which considers the

successes a broad range of potential learning regions and (2) while evaluating the LPs

that is used as the intrinsic reward of the agent, we consider only the errors made by

that learning region. As a result, the IM mechanism provided in our work splits SM

more accurately and considers the future aspects of the splitting decisions. We have

evaluated our method in a simple experimental setting; we have observed that the

proposed method performs better than the existing method. Also, our method is more

memory e�cient since the child regions do not inherit error list of its parent. However,

considering a broad range of candidate regions and re-evaluating their performances

for each split decision, brings high computational overhead. Further, in this work, we

set the total exemplar number that the agent will encounter during its lifetime. How-

ever, this mechanism should be autonomous, as well. After some point, the splitting

mechanism should be stopped when the agent acquires a su�cient level of competency.

In this study, we considered partitioning the sensorimotor space by the potential

prediction performance of the candidate regions. If we consider the interaction between

the agent and the environment, this approach has a limitation about not considering

the outcome of the interaction. In our next study, we address this limitation by utilizing

a latent space that combines the outcome, action, and object-information. Our next

study is verified with a setup that involves 3D interactions with a simulated robot.
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6. PROPOSED SYSTEM

In this chapter, the proposed system is introduced, and the building blocks of the

system are explained. The organization of the chapter is as follows: first, the represen-

tations of the state, action, and e↵ect are explained in Section 6.1; next, an overview

of the system and general workflow are given in Section 6.2, finally the structures of

the individual components of the proposed system are presented in Section 6.3 - 6.6.

6.1. Representations of State, Action and E↵ect

In the proposed system, in order to build the representation of the state (the yel-

low box in Figure 6.1), the robot first executes randomly sampled actions in randomly

sampled states. Here, the state (S) corresponds to the encoded depth image (Ienc) of

the object that the robot is interacting with. In order to obtain a lower-dimensional

encoding of the depth image (I), the output of the encoder part of a convolutional au-

toencoder is used. The encoder part of the convolutional autoencoders takes 128⇥ 128

depth image as the input and outputs 8D encoding of the given image. Although we

tried lower-dimensional encoding sizes, using 8D as the image encoding provided better

reconstruction performance.

The action (A) parameters comprise of the trajectory length (rpath), approach

direction (�path), and the type of the action primitive. The end-e↵ector of the robot

follows a semi-circular trajectory, and rpath is the radius of this semi-circle, �path is

the direction that the robot approaches the object. The type of end-e↵ector aperture,

namely open, half-open, and closed, determines the configuration of the end-e↵ector.

Therefore the action is a 5D vector. Note that, the end-e↵ector of the robot always

follows a semi-circular path independent from the configuration. The robot does not

know about the semantic meaning of these end-e↵ector aperture types; it only changes

the pose of its fingers depending on the configuration input. These configurations are

hard-coded; the robot does not make any alignment.
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Figure 6.1. Structure of the proposed system.

Given the state and the action, the FM predicts the e↵ect of this interaction on

the object. The object to interact is always on the center of the table, i.e., its initial

position does not change. The e↵ect (E) is observed by executing the given action at

the given state and comprises of the change of the x, y, z position, and the orientation

around the z axis. To ensure the continuity of the orientation, sine, and cosine values

are used. Thus the e↵ect is a 5D vector. Further details about the state, action, and

e↵ect are given in Chapter 7.

6.2. Overview and General Flow

To make an agent adapt to di↵erent kinds of environments and dynamics and

achieve tasks without being programmed to, it needs to be equipped with the ability

to learn autonomously. For example, the environment may require interactions with

di↵erent objects, di↵erent actions in various environmental conditions. We hypothesize

that if the agent had a mechanism to identify these di↵erent characteristics, it would

simplify the problem of learning the environment dynamics. To learn these di↵erent

characteristics of the environment in a modular fashion, we consider identifying these
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regions in a space that blends state, action, and e↵ect information. Ideally, this space

should not be dominated with the information that comes from one of the modalities

(i.e., object, action, or outcome); it should highlight the most relevant links between the

causes and the consequences. Therefore, we propose an approach with two stages: (1)

organization of the exploration space, (2) active exploration. Note that it is assumed

that the exploration space does not change during the active exploration stage.

In order to start organizing the exploration space, the initial interaction data

of the robot is collected. From the interaction data, state, action, and e↵ect vectors

are concatenated and then used as the input of a feature extractor. The output of

the feature extractor is considered as the latent space (Figure 6.1, the purple box).

Next, the latent space is clustered, and the exploration regions are formed (Figure

6.1, the green box). After this stage, the formed regions are frozen, i.e., learning the

characteristics of a region does not further alter its representation and the structure of

the regions.

After forming the regions, the active exploration stage (Figure 6.1, bottom) be-

gins. The agent learns the characteristics of the environment by exploring the regions.

Each region has an exclusive forward model (FM) that is in charge of learning the

characteristics of its region (Figure 6.1, the blue box). When a region is selected for

exploration (Rs), a state and action pair (S,A) is sampled from the region, and the

FM of the selected region predicts the e↵ect (Epred). Remark that we are using the

latent space for only creating distinctive exploration regions. Sampling inside the re-

gion is made from the original data points, neither from the encoding nor from the

reconstruction. The exploration strategy of the agent is regulated by the intrinsic mo-

tivation (IM) module (Figure 6.1, the orange box). During the exploration phase, the

IM module selects the region (Rs) with the maximum learning progress signal. Ideally,

the dynamics of the selected region is neither too easy nor too complicated for the

agent’s current skill set.
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6.3. Formation of the Latent Space

To obtain a representation that includes the necessary and su�cient information

about the link between the changes and its causes, we consider learning a latent space

that blends the object, action, and outcome information. This information is extracted

from the concatenation of S,A,E (8D� 5D� 5D) (Figure 6.1, the purple box). From

the computational perspective, it is desirable to have a compact representation that

retains the information in the original dimensions e�ciently and flexibly. To this end,

a Variational Autoencoder (VAE) with Gaussian prior is used. Any feature extractor

should work in practice; the choice of VAE is not central in our framework.

Following the input layer (18D), the encoder part of the VAE has an intermediate

layer (9D) with ReLu non-linearity, followed by the hidden layer (3D) that is split into

µ(z) and �(z) to allow reparameterization trick [35]. The decoder part has a structure

that is symmetrical to the encoder part. It takes z that is sampled from the output of

the encoder and has an output layer with sigmoid non-linearity. Binary cross-entropy

is used as the reconstruction loss, and the VAE loss is calculated as in [35]. The VAE is

trained with Adam [94] optimizer with a batch size of 100. The latent space is formed

by using the µ(z) from the output of the encoder. In order to form the latent space,

10% of the total interaction data is used. The procedure that explains the division

of the latent space into regions with di↵erent characteristics is explained in the next

section.

6.4. Formation of the Exploration Regions

Before starting the active exploration, the separate characteristics of the envi-

ronment need to be identified. Assuming that the latent space formed in the previous

step has the necessary representation capacity for such an identification, the separa-

tion of the environment characteristics is accomplished by clustering the latent space.

Each cluster is called a “region” of the environment. As the clustering algorithm the

Gaussian Mixture Model (GMM) is employed. This selection is due to its flexibility to

define the covariance shape and its probabilistic nature.
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Assuming that the clusters have the same shape, tied covariance is used. For

the experiments, per-sample average log-likelihood scores for [2, 20) of Gaussians are

examined. By applying the elbow method to these scores, the number of Gaussians to

be used is determined.

6.5. Prediction Models

To be competent in a given environment, an agent must have the ability to

predict the consequences of its actions. Following [14, 15], instead of learning the

overall dynamics with only one large and complex model, we consider dividing the

e↵ect prediction task into smaller subtasks that can be learned by simpler models.

Each region has an associated FM that is responsible for predicting the e↵ect given

a state and an action. The forward models are implemented as feed-forward neural

networks with input layer (13 units), one hidden layer (512 units) of Rectified Linear

Unit (ReLu) non-linearity, followed by the output layer (5 units). Each FM is trained

by backpropagation of the prediction error calculated as the mean square error (MSE),

and trained by using Adam [94] optimizer. For each exploration step, an FM is trained

with all the data which it countered so far. In order to prevent overfitting, the FM of

the chosen region is trained for 5 epochs at each step.

6.6. Intrinsically Motivated Learning Module

To learn about the characteristics of the regions in the absence of an external

task definition, the agent should have the ability to do autonomous exploration. In our

study, autonomous exploration is driven by intrinsic motivation. In this section, the

initialization of the intrinsic motivation module and its mechanism are explained.

In our study, we utilize “learning progress” as the intrinsic motivation signal. The

learning progress measure gives the prediction performance change of a FM between

consecutive time windows. At each step of the exploration phase, the learning progress

measures of the regions are calculated to select the region to proceed. The learning

progress signal is calculated by the approach suggested by [13].
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In order to start active exploration, the system needs initial values for the learning

progress values of the regions. The initial values for the learning progress are collected

from a short bootstrapping phase. In this phase, each FM samples a predefined number

(K) of state and action pairs. Then starts the training by taking smaller batches ()

and records the error made on the sampled set. After collecting K/ number of error

records, the exploration phase begins. Note that the exploration phase begins after

each FM finishes the bootstrapping phase.

Throughout the exploration, each region keeps track of its error list from the

beginning. At time t, the error of nth region (en(t)) is calculated by the MSE between

the predicted e↵ect Epred and the observed e↵ect Eobs. Learning progress of nth region’s

forward model (FMn) at time t is calculated by taking mean error (�n) di↵erences of

most recent errors as follows:

LPn(t+ 1) = �n(t+ 1� ✓)� �n(t+ 1) (6.1)

Mean error of FMn (�n) at time t is calculated as follows:

�n(t+ 1) =

P✓
i=0 en(t+ 1� i)

✓ + 1
(6.2)

where the window parameter (✓) is empirically set to 16. The window parameter (✓)

allows the system to capture the trend of the errors by averaging them within a time

window and prevents the fluctuations from a↵ecting the IM signal.

The intrinsic motivation module selects the region to explore by considering the

learning progress of the regions. The region to be explored is selected using the ✏-

greedy [84] selection mechanism.
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7. EXPERIMENTS

Figure 7.1. The experiment setup. A manipulator robot interacts with one of three

types of object on a table-top environment. While the interaction, only one of these

objects is present on the table.

The experiment setup is simulated in CoppeliaSim [39]. It consists of a six-

degrees-of-freedom manipulator robot (UR10 [36]) that interacts with one of three

di↵erent types of objects (cup, cylinder, and sphere) using its three-finger gripper as

shown in Figure 7.1. The robot is capable of following a parameterized trajectory with

a predetermined shape. While following the trajectory, it may use one of the three

end-e↵ector aperture width configurations that enable single-object interaction. For

each interaction, the simulation scene is reset, and the parameters of the selected type

of object and actions are sampled from a predefined range of values.

7.1. Parameterizations

7.1.1. Objects

The cup has a fixed height and radius of (h, r) = (15, 7.5) cm and has a handle

that is 12.5 cm apart from the center with a length of 10 cm. The orientation of the
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Figure 7.2. The end-e↵ector follows a semi-circular path above the surface of the

table. The action parameters controls the radius of the semi-circle (rpath) and the

approach position of the end-e↵ector to the object (�path).

cup around the normal vector from the surface of the table varies within [0, 2⇡] among

the experiments. Cylinders have a fixed height of h = 15 cm and radius within the

range of [1.5, 7.5] cm, and spheres have a radius within the range of [3, 7.5] cm.

To encode the depth image of the objects into state, the encoder part of an

autoencoder is used. The encoder consists of stacks of a convolutional layer followed

by batch normalization and max-pooling operations, with channel numbers 512, 256,

128, 64, 32, 16 and 8. The decoder part uses up-sampling instead of max-pooling and

has sigmoid non-linearity at the output layer. The rest of the decoder is symmetrical

to the encoder part. In order to ensure that the lower dimensional state representation

preserves the object-related information in the original dimensions, the quality of the

reconstruction by the decoder part is considered. The autoencoder is trained by using

binary cross-entropy as the reconstruction loss and Adadelta [95] optimizer.
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7.1.2. Actions

The end-e↵ector of the robot follows a semi-circular path that has start and end-

points with the same elevation from the tabletop. The closest point of the path to the

table is the halfway point, and it has a fixed o↵set from the surface of the table to avoid

collision between the end-e↵ector and the table. The semicircular path is defined with

rpath = [26, 31] cm with a z-orientation within �path = [0, 2⇡] radians. �path controls the

approach direction of the end-e↵ector to the object, i.e., controls the position of the

end-e↵ector on the magenta ellipse around the cyan arrow shown in Figure 7.2. The

action parameters are A = (rpath,�path, closed, half � open, open) including the radius

and z-orientation of the path and a one-hot encoded vector that encodes the type of the

end-e↵ector aperture respectively. The open end-e↵ector configuration is implemented

similar to grasp-reflex, i.e., when an object is inside of the end-e↵ector, the robot closes

the fingers. The object is picked up by half-open configuration if the object is between

two parallel fingers. The half-open configuration is realized by adhering all three fingers

in front of the palm.

7.1.3. E↵ects

The e↵ect is defined as the change of the position and the z-orientation of the

object E = (�x,�y,�z,
��!
��z) after applying the action. The e↵ect is calculated by

taking the di↵erence between the first and final pose of the object. We used sine

and cosine values of ��z to ensure continuous change. Note that, even if the robot

executes the action with open and half-open end-e↵ector aperture configurations to

objects, it may not elevate the object. This is because of the object size, object pose,

and end-e↵ector pose misalignment and simulation noise. For example, if the robot

approaches with an open end-e↵ector to the cup from the side of the cup’s handle, due

to the contact of the handle with fingers, the object rotates and is pushed out of the

end-e↵ector; hence it can not be grasped and elevated.
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7.2. Data Collection

At the beginning of each interaction, an object among one of the object types with

its corresponding parameterization is created in the center of the table. A Kinect [37]

camera is positioned on top of the table and records 128 ⇥ 128 depth image (I) of

the table-top. Then the robot changes the pose of the gripper depending on which

action primitive to use given within the action parameter vector, and the end-e↵ector

follows the semi-circular path that is tangential to the surface of the table center using

the inverse kinematic module of CoppeliaSim. The e↵ect is recorded when the end-

e↵ector reaches the end of the path, and simulation is reset. All the parameters are

sampled uniformly from their corresponding intervals. Overall, the dataset consists of

three di↵erent object types with three di↵erent action types that each consist of 5184

interactions, in total 3⇥ 3⇥ 5184 = 46656 interactions.
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8. RESULTS

In our study, we hypothesize that forming a latent space that blends the object,

action, and outcome information allows identifying the diverse characteristics that re-

side in the environment. In the rest of this thesis, the method that forms the regions

by clustering the latent space will be called as LatentIM. To validate our hypothesis,

we consider three di↵erent strategies to identify di↵erent characteristics of the environ-

ment: The methods forming the regions by clustering e↵ect, state, and action spaces

will be referred as E↵ectIM, StateIM, and ActionIM respectively. All of these methods

use the same clustering algorithm with the same parameters. However, the space that

the clustering is applied di↵ers. Finally, the baseline for the abovementioned strategies

is the RandomIM, which assigns regions to the data points randomly. Note that, for

all these strategies, the active exploration phase is identical, i.e., they only di↵er in the

formation of the regions.

We conducted experiments to answer the following questions:

(i) How does the method of region formation a↵ect the overall prediction perfor-

mance? (Section 8.2)

(ii) Does LatentIM create an ordering between di↵erent skills in the latent space?

(Section 8.3)

(iii) What is the e↵ect of the di↵erent hyperparameters (number of clusters, ✏, explo-

ration strategy) on overall performance? (Section 8.4)

Note that unless stated otherwise, we used image encoding (Ienc) with a dimension of

8 as the state, the number of samples included to the training of each FM in during

the bootstrapping phase is K = 128, for each exploration step the selected FM takes

 = 16 samples from its region, ✏ = 0.3, ✓ = 16, and the number of regions is 5. All

the FMs are neural networks with one hidden layer of 512 units with ReLu activation

function.
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Figure 8.1. Final states of several executions. The left, middle and right columns

show lifting the cup, pushing the sphere, and tumbling the cylinder, respectively.

8.1. Skills Developed by LatentIM

By checking the clusters that are created by clustering the latent space, we ob-

served the following groupings: (1) the one that uses half-open end-e↵ector configu-

ration and has a uniform distribution in all features but �z = 0 ; (2) the one that

uses open end-e↵ector configuration and has a uniform distribution in all features but

�z = 0 of the object pose; (3) the one that uses half-open end-e↵ector configuration

and has a uniform distribution in all features of the object pose; (4) the one that uses

open end-e↵ector configuration and has a uniform distribution in all features of the

object pose; (5) the one that uses closed end-e↵ector configuration and has a uniform

distribution in all features. Considering the characteristics, in the rest of this thesis,

we will call (1) as non-lifting pinch-grasp (n pinch), (2) as non-lifting power-grasp

(n power), (3) as lifting pinch-grasp (l pinch), (4) as lifting power-grasp (l power) and

(5) as non-lifting (n push). Note that these labels are given in order to help the reader;

we did not use them in our experiments. The developmental order of these skills are

presented in Section 8.3.

8.2. Comparison of Overall Performances

In this section, we investigate the e↵ect of the region formation on the overall

prediction performance of the system. For the comparison, we consider five di↵erent

mechanisms for the region formation, i.e., LatentIM, E↵ectIM, RandomIM, StateIM,

and ActionIM.
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(a) The change of weighted average MSE through exploration in

N = 40 experiments. The shaded areas show the standard devia-

tion.

(b) Statistical significance analysis for LatentIM, E↵ectIM, and

RandomIM.

Figure 8.2. Comparison of the prediction performances of LatentIM, E↵ectIM,

StateIM, ActionIM and RandomIM throughout the exploration.

Figure 8.2(a) shows the average weighted MSE of the N = 40 experiments. We

probed the performances of methods on all data at every 10 exploration steps. Since the

number of samples may di↵er between the regions, the mean MSE of one experiment is

calculated by weighting the MSE of a region by its number of samples. Next, the mean

and the standard deviation of the weighted MSEs are calculated for all experiments
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among all the probing time-steps. Note that the bootstrapping phase is not included

in the plot in Figure 8.2(a). As presented in figure LatentIM gives the lowest error

among all five cases. Following LatentIM, the E↵ectIM and StateIM perform similarly.

The only di↵erence we observed for those two is that the E↵ectIM is better at the

beginning, but StateIM shows a more rapid decrease in the MSE. Similar states can

result in significantly di↵erent e↵ects depending on the actions applied, and similar

e↵ects may be observed with di↵erent states and actions. Following the E↵ectIM

and StateIM, ActionIM gives a lower performance, since it does not include the state

information to form the regions. Overall, the RandomIM performs the worst, and here

we present it as a baseline.

In Figure 8.2(b), we present the statistical analysis of the di↵erences between

LatentIM, E↵ectIM, and RandomIM taken from the di↵erent exploration steps. We

ran analysis of variance (ANOVA) to check whether the MSE distributions of these

three approaches are di↵erent, then carried post-hoc ANOVA tests, i.e., Tukey’s HSD

test and Games-Howell test, depending on the equal and non-equal variance cases,

respectively. We found that after t = 50, the performance of LatentIM and E↵ectIM

di↵ers significantly p < 0.001, LatentIM giving more accurate predictions.

8.3. Developmental Order of Skills

In this section, we analyze the developmental order of the skills that is regulated

by the intrinsically motivated exploration. The analysis of the developmental order

observed in the single runs of LatentIM, E↵ectIM and RandomIM are presented in

Figure 8.3, and average of 40 runs of LatentIM is presented in Figure 8.4.

Figure 8.3(a) shows the change of the learning progress of the regions of LatentIM

in a single run. The regions of LatentIM show a clear ordering between the skills that

we have discussed in Section 8.1. It first explores the lifting grasps i.e., l power (R4)

and l pinch (R3) then shifts its attention to n pinch (R1), n push (R5) and n power

(R2), respectively. Note that the order of skills may change across di↵erent runs, due to

the randomness involved in ✏-greedy region selection and sampling inside the regions.
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(a) Change of LP in LatentIM

(b) Change of LP in E↵ectIM

(c) Change of LP in RandomIM

Figure 8.3. Changes of learning progresses of 5 regions during the exploration phase

from a single run. The learning progress signal is smoothed by (↵ = 16 window) to

make it easier to perceive.

Detailed investigation and statistical analysis of the developmental order formed by

LatentIM will be discussed later in this section.

In Figure 8.3(b), E↵ectIM shows a preference over R2, which corresponds to

the data points that produce a change in x, y position and the orientation of the

cup object, at the beginning but, following that, no clear ordering over the regions is

observed. Likewise, R4 contains the same kind of object, action, and e↵ect types. The

only di↵erence among those two is the change in the z-orientation of the object, i.e.,

sin(��z), cos(��z). Similarly, in 8.3(c) there is no ordering between the regions for
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Figure 8.4. Change of mean learning progress of 5 LatentIM regions during the

exploration phase. The plot is the smoothed by a time window (↵ = 16). The lines

show mean LP values and the shaded areas show the standard deviation.

RandomIM. Notice that through the end of the exploration phase, for all the strategies,

the LP values reach zero, even slightly go to negative values. By considering the

capacity of the predictor, this situation means that there is no advantage of further

learning. It has already learned what can be learned from this region. Negative LP

values are due to the fluctuations caused by the slight changes in the prediction errors.

Figure 8.4 shows the average (N = 40) change of the learning progress of the

regions of LatentIM. The plot is created by calculating the mean and the variances of

the regions, then smoothing by ↵ = 16. Since we are using neural networks as forward

models, the training examples encountered by the FMs alter the learning progress

values and their changes during the exploration. However, by looking at the averages,

as shown in Figure 8.4, we observe a consistent ordering as l pinch, l push, n pinch,

n push and n power. This ordering is sensible because, when grasped, the z-orientation

change is approximately zero. However, when pushed or not-lifted with pinch/power

grasp, the object may turn, tumble and stray away from the end-e↵ector’s trajectory.

Thus, when the robot lifts the object, the e↵ect is more predictable than the rest and

hence easier to learn.
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To evaluate the significance of the ordering presented in Figure 8.4, A Kruskal-

Wallis test was performed on the learning progresses of the five di↵erent regions. The

di↵erences between the learning progress distributions of the regions taken from the

interval t = [0, 139] were significant with H(4), p < 0.01. Following that, we also

performed the Mann-Whitney U test to determine the significance of the learning

progress values for the pairs of regions.

In Figure 8.4, first l pinch has the maximum learning progress value. Taken from

that interval at Point A the LP of l pinch was significantly greater than of l power,

p < 0.05 and the LP of l power was significantly greater than the rest with p < 0.001.

At the same time-step, n pinch was not significantly di↵erent than n push, while the

LP of n push being significantly greater than of n power, p < 0.01. Following the

plot, we see the dominance of l power over l pinch. Taken from that time window, at

Point B, LP of l power was significantly greater than of l pinch, p < 0.05. While the

LP of l pinch is significantly greater than of n push and n pinch with p < 0.001, the

di↵erence between n push and n pinch was not significant, both being greater than

n power with p < 0.01. After the decrease of l pinch and l power, a significant increase

in n pinch is visible at the Figure 8.4. Being within that time window, at Point C,

the LP of n pinch was significantly greater than of n push, p < 0.05. While LP of

l pinch is significantly less than of n push with p < 0.05 it was significantly greater

than of n power, p < 0.001. And finally, there is a short primacy of n push over the

rest, PointD, the LP of n push was significantly greater than of n pinch, p < 0.05. In

summary, our method follows this order among the regions: l pinch, l power, n pinch,

n push and n power.

8.4. E↵ects of Hyperparameters

In this section, we provide additional experiment results to examine the e↵ect of

the hyperparameters, i.e., ✏, the number of clusters, and the exploration strategy.
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Table 8.1. Mean MSE values for LatentIM, E↵ectIM and RandomIM with di↵erent ✏

values. Results reported here show the weighted MSE of the last exploration step for

each condition.

F-Score µ(LatentIM) µ(E↵ectIM) µ(RandomIM)

✏ = 0.0 1680.05 0.007121 0.009238 0.011895

✏ = 0.5 3635.97 0.006753 0.009065 0.011748

✏ = 0.7 3873.38 0.006724 0.009093 0.011675

✏ = 1.0 4291.49 0.006819 0.008934 0.011766

8.4.1. E↵ect of ✏ Parameter

In this subsection, the e↵ect of the ✏ parameter on the overall prediction perfor-

mance and the developmental order in LatentIM is analyzed.

In Table 8.1, we present the performances of LatentIM, E↵ectIM and RandomIM

by using di↵erent values of the ✏ parameter. We conduct One-Way ANOVA F (2, 87),

and post-hoc Tukey’s HSD. Pairs (LatentIM vs. E↵ectIM, LatentIM vs. RandomIM,

and E↵ectIM vs. RandomIM) for each ✏ value. The test yield that each pair is di↵erent

with p < 0.001.

As it is explained in Section 6.6, the ✏ parameter controls the ratio of exploration

steps with random exploration to all exploration. For all the ✏ values, we observe

that the LatentIM gives the lowest error among the other two. We conduct N = 30

experiments for each ✏ value and verify our results with One-Way ANOVA tests followed

by Tukey’s HSD post-hoc tests. We observe that except for ✏ = 0, the performance of

LatentIM does not change significantly.

In Figure 8.5 we present the single run learning progress evolutions of LatentIM

with di↵erent ✏ conditions. Increasing values of ✏ prevents seeing an ordering between

di↵erent skills and does not provide a further benefit for the predictor performance.
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(a) Change of LP in ✏ = 0.0 condition (b) Change of LP in ✏ = 0.5 condition

(c) Change of LP in ✏ = 0.7 condition (d) Change of LP in ✏ = 1.0 condition

Figure 8.5. Learning progresses of the regions of LatentIM with di↵erent ✏

parameters. The plots are smoothed with ↵ = 16 time windows.

8.4.2. E↵ect of Number of Clusters

In this subsection, the e↵ect of the number of clusters on the prediction perfor-

mance is analyzed. Prior to the experiments, the per-sample average log-likelihood

scores for [2, 20) of Gaussians are examined. The performance of di↵erent numbers of

clusters by applying the elbow method to these scores is presented in this subsection.

In Table 8.2, we present the performance comparisons of LatentIM, E↵ectIM and

RandomIM with di↵erent number of clusters. For this experiment, we use the given

hyper-parameters except for the number of clusters, which is the independent variable.

The results show the mean and standard deviations of the methods’ MSE calculated by

conducting 30 independent experiments each. Each experiment take 400 exploration

steps. To check the statistical significance of our findings, we use the One-Way ANOVA

test followed by Tukey’s HSD post-hoc analysis. We observe with 5, 6 and 7 clusters,

LatentIM gives a lower prediction error that is statistically significant with p < 0.001.

In the Table 8.2, italic font is used to indicate the lowest mean MSE that is statistically

significant with indicated ↵.
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Table 8.2. Prediction performance of LatentIM, E↵ectIM and RandomIM with

di↵erent number of clusters. The table presents mean (µ) and standard deviation (�)

of the errors in the last exploration step collected from 30 experiments.

# of

Clusters

LatentIM E↵ectIM RandomIM
µ(L)� µ(E) µ(L)� µ(R) µ(E)� µ(R)

µ � µ � µ �

2 0.009876 0.000293 0.009090 0.000232 0.010308 0.000302 0.00079⇤⇤⇤ �0.00043⇤⇤⇤ �0.00122⇤⇤⇤

3 0.009714 0.000354 0.008502 0.000231 0.011000 0.000210 0.00121⇤⇤⇤ �0.00129⇤⇤⇤ �0.00250⇤⇤⇤

4 0.008451 0.000352 0.008391 0.000203 0.011424 0.000258 0.00006ns �0.00297⇤⇤⇤ �0.00303⇤⇤⇤

5 0.006836 0.000194 0.009195 0.000255 0.011787 0.000199 �0.00236⇤⇤⇤ �0.00495⇤⇤⇤ �0.00259⇤⇤⇤

6 0.008892 0.000260 0.010928 0.000264 0.012116 0.000186 �0.00204⇤⇤⇤ �0.00322⇤⇤⇤ �0.00119⇤⇤⇤

7 0.007666 0.000291 0.010956 0.000231 0.012588 0.000186 �0.00329⇤⇤⇤ �0.00492⇤⇤⇤ �0.00163⇤⇤⇤

8.4.3. E↵ect of Di↵erent Exploration Strategies in Latent Space

In this subsection, we analyze the e↵ect of the exploration strategy on the overall

prediction performance. For this experiment, we consider two di↵erent strategies, along

with our LP-based intrinsically motivated exploration strategy, which will be referred

as IME in this subsection. Following the strategies presented in [21], we implemented

Fixed Curriculum (FC) and Single Goal Space (SGS). While the former selects regions

in turn according to exploration step % #of regions, the latter always selects only

one region throughout all the experiments.

Since the regions are formed by clustering the latent space, in the first step

of the exploration performances are not significantly di↵erent. This is an expected

result since, during the bootstrapping phase, each of them undergoes from the same

procedure, i.e., all the FMs for each strategy samples an equal number of data-points

from their corresponding region and trains the forward model before moving on the

exploration phase. Throughout the exploration, we see that the SGS stops improving

itself; it is due to the convergence of the selected region’s forward model.

For these strategies, we analyze the prediction performance on di↵erent output

channels at the end of the exploration phase by conducting Mann-Whitney U tests.

A Mann-Whitney test indicated that the prediction error of �y is less than for IME
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(µ = 4.281 cm) than for FC (µ = 4.437 cm) cm, p < 0.01, both being less than SGS

(µ = 17.986 cm), p < 0.001. Later, we calculated the ��z from the sines and cosines

predictions and found that, IME (µ = 8.0567�) is significantly less than FC (µ =

8.3312�), p < 0.001 both being significantly less than SGS (µ = 8.7922�), p < 0.001.
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9. DISCUSSIONS

9.1. The Developmental Order Created by LatentIM

In Figure 8.4 we observed that the l pinch is explored before l power (see Section

8.1). However, pinch grasp requires more precise control and exact movements and

develops after the power grasp in infants [1]. Considering the limited capabilities of

the simulators, simulating these precise movements and the inherent noise of the world

is intricate. Therefore, we consider this is a natural consequence of using a simulator.

As discussed by Oudeyer et al. [13], the complexity of tasks is observer-dependent,

and comparing the developmental order with infants is introducing an anthropomorphic

bias. Since it is almost impossible to mimic biological, physiological, and psychological

aspects of the development of infants in robots, such an ordering can be explained better

with the distribution of data. We have discussed the data distributions of LatentIM

in 8.1. We did not observe a similar ordering in comparison methods because they did

not create regions with such data distributions. Still, the clustering algorithm and the

parameters had to be the same for all these methods to provide a basis for comparison.

We investigated the e↵ect of the number of clusters in Section 8.4.

Redesigning the experiment setup in order to support tool use would be an in-

teresting direction for our research. It is known that the tool use abilities of infants

develop after becoming competent in basic manipulation skills [96]. Such an experi-

mental design for intrinsically motivated exploration can be seen in the study presented

by Forestier et al. [21].

9.2. Change in LP vs. Developmental Order

In vertebrates, the basal ganglia manage the selection between the competing

motor programs and cognitive resources [97]. When an organism needs to attend

more than one system, it needs to select one of them. Indeed, this is a resource
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allocation problem. In computer science, a vast number of heuristics and architectures

are developed for selecting and scheduling between competing resources. Redgrave et

al. [97] state that the selection mechanism should consider the influences of individual

competitors, should provide an order of priority among them, and should be adaptable.

Thus, considering the intrinsic motivation signal, which is the learning progress in this

study, provides the robot a heuristic to select between the competing resources (i.e.,

exploration of regions). Considering the “winner-take-all” strategy, as the learning

progress of the selected region falls below the second candidate, switching occurs, and

it continues like this [97]. Readers referred to the paper of Mirolli et al. [98] for a review

about the relationship between dopamine and prediction error signals.

9.3. Fixed Representation Assumption

A potential limitation of our work is that utilizing a fixed representation through-

out the exploration phase. Piaget states that the cognitive development of children is

a continuous improvement of schemas [99]. He argues that development stems from

biological maturation and interaction with the environment [100]. As children explore,

through assimilation and accommodation, they update the existing mental represen-

tation of the world [101]. However, our fixed representation assumption is only for

implementation purposes. We do not have any claim for the developmental progres-

sion of the mental representations.

9.4. Object-based Region Emergence

Considering the formation mechanism of the exploration regions, we also ex-

pected to see an object-based region emergence. Failure to observe such a situation

can be explained by several reasons such as (1) selection of input and output represen-

tations, (2) experiment setup, (3) mechanisms that form the latent space and (4) image

encoding procedure. Regarding (1), including distinctive features to the e↵ect may re-

sult in an object-based emergence. For example, the inclusion of x and y-orientations

(
��!
��x,

��!
��y) to the e↵ect features would create distinct e↵ects with cylinders and cups

than the spheres. Since a sphere can not be tumbled, we could observe a separate
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region. Concerning (2), using di↵erent objects and action parameterizations that can

create more diverse representations could support such an emergence. Even if the

depth image is used to obtain state representation, three types of objects look similar,

considering the position of the vision sensor. For example, using a box would result in

more distinct encodings. On (3), fine-tuning of the VAE parameters and using more

complex priors might cause observing distinctive object-based regions. About (4), al-

though using 8D image encoding (Ienc) provides a good reconstruction performance,

since it is not jointly learned with the latent space, it may not be able to find such a

distinction. We had to omit such a design due to the limited computational resources.

9.5. Utilization of Latent Space

In our study, we used VAE to form the latent space to separate the regions with

di↵erent characteristics. However, we sampled corresponding state and action pairs

from the original versions of these data points, i.e., we did not use the reconstruction

or encoding created by VAE. In the literature, there are interesting applications with

VAE, such as producing fake human faces. Considering the generative nature of the

VAEs, they could be utilized to create various learning examples. Such a property can

lead to dataset augmentation similar to [88], and real robot experiments could benefit

from it.

9.6. Observed Error and Sensory Noise

In our study, we have used the change of the position and orientation of the object

obtained from the simulator as the e↵ect. However, in the real world, the e↵ect of such

interactions is obtained from visual and tactile sensory information. In the grasp case,

the e↵ect is obtained by fusing the information coming from tactile and visual sensory

channels. In contrast, in the push case, the e↵ect can only be obtained from the visual

sensory data. If we had used tactile and visual information instead of using the data

provided by the simulator and introduced di↵erent sensory noise levels, it would allow

us to see whether the push case is more di�cult to predict than the grasp case in

real-world scenarios. Since the e↵ect observed by using only visual channels would be
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noisier than the combination of the visual and tactile channels, the usage of sensory

data for determining the e↵ect might change the performance and the order exhibited

by the system depending on the level of the sensory noise. Therefore, it would be an

interesting direction for our research to use sensory data for making e↵ect prediction.
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10. CONCLUSION

In this thesis, we studied intrinsically motivated exploration strategies that en-

able artificial agents to discover skills and acquire knowledge about the environment

autonomously. Inspired by the intrinsic motivation concept observed in humans and an-

imals, many developmental robotics and machine learning studies considered utilizing

computational models of intrinsic motivation to provide (1) an intelligent exploration

scheme for e�cient sampling of the learning examples, (2) a way to deal with sparse

reward settings in RL scenarios, (3) a detection mechanism for salient events in the

environment. In this study, we employed intrinsically motivated exploration to enable

e�cient and e↵ective learning of environment dynamics to discover a set of skills.

In our first study, we utilized an existing intrinsic motivation framework [13] and

proposed a mechanism to partition the sensorimotor space. In that work, during the

exploration, the sensorimotor space is continuously partitioned into regions by consid-

ering the potential prediction performances of the candidate regions. By evaluating

the method in a simple 2D experiment setup, we found that this partitioning scheme

enabled the discovery of semantically meaningful regions in terms of environment dy-

namics and presented a better prediction performance.

In our subsequent work, we propose utilizing a latent space that blends outcome,

action, and object-related information to discover distinctive interaction schemes be-

tween the robot and the environment. These schemes are learned by separate forward

models that predict the outcome given the state and the action. By determining

the exploration regions, we have shown that these regions correspond to semantically

meaningful regions that combine action and outcome information. In our experiments,

we compare our proposed method with the methods that consider di↵erent modalities

to form exploration regions and show that the proposed method exhibited a better

prediction performance.



62

REFERENCES

1. Cangelosi, A. and M. Schlesinger, Developmental robotics: From babies to robots ,

MIT press, 2015.

2. Oudeyer, P.-Y. and F. Kaplan, “What is intrinsic motivation? A typology of

computational approaches”, Frontiers in neurorobotics , Vol. 1, p. 6, 2009.

3. White, R. W., “Motivation reconsidered: The concept of competence.”, Psycho-

logical review , Vol. 66, No. 5, p. 297, 1959.

4. Berlyne, D. E., “Curiosity and exploration”, Science, Vol. 153, No. 3731, pp.

25–33, 1966.

5. Hull, C. L., Principles of behavior , Vol. 422, Appleton-century-crofts New York,

1943.

6. Freud, S., An outline of psycho-analysis , WW Norton & Company, 1969.

7. Freud, S., Beyond the pleasure principle, Penguin UK, 2003.

8. Deci, E. L., Intrinsic Motivation, Springer US, Boston, MA, 1975, http://link.

springer.com/10.1007/978-1-4613-4446-9.

9. Baranes, A. and P.-Y. Oudeyer, “Active learning of inverse models with intrinsi-

cally motivated goal exploration in robots”, Robotics and Autonomous Systems ,

Vol. 61, No. 1, pp. 49–73, 2013.

10. Fournier, P., C. Colas, M. Chetouani and O. Sigaud, “CLIC: Curriculum Learning

and Imitation for object Control in non-rewarding environments”, IEEE Trans-

actions on Cognitive and Developmental Systems , 2019.

11. Czikszentmihalyi, M., Flow: The psychology of optimal experience, New York:



63

Harper & Row, 1990.

12. Schmidhuber, J., “Curious model-building control systems”, Proc. international

joint conference on neural networks , pp. 1458–1463, 1991.

13. Oudeyer, P.-Y., F. Kaplan and V. V. Hafner, “Intrinsic motivation systems for au-

tonomous mental development”, IEEE transactions on evolutionary computation,

Vol. 11, No. 2, pp. 265–286, 2007.

14. Jacobs, R. A., M. I. Jordan, S. J. Nowlan and G. E. Hinton, “Adaptive mixtures

of local experts”, Neural computation, Vol. 3, No. 1, pp. 79–87, 1991.

15. Wolpert, D. M. and M. Kawato, “Multiple paired forward and inverse models for

motor control”, Neural networks , Vol. 11, No. 7-8, pp. 1317–1329, 1998.

16. Kawato, M., “Internal models for motor control and trajectory planning”, Current

opinion in neurobiology , Vol. 9, No. 6, pp. 718–727, 1999.

17. Mohamed, S. and D. J. Rezende, “Variational information maximisation for in-

trinsically motivated reinforcement learning”, Advances in neural information

processing systems , pp. 2125–2133, 2015.

18. Laversanne-Finot, A., A. Pere and P.-Y. Oudeyer, “Curiosity Driven Exploration

of Learned Disentangled Goal Spaces”, Conference on Robot Learning , pp. 487–

504, 2018.
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