
AN EMBEDDED RISC-V CORE WITH FAST MODULAR MULTIPLICATION

by

Ömer Faruk Irmak

B.S., Computer Engineering, Istanbul Technical University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2020

3

ACKNOWLEDGEMENTS

I would like to first thank my thesis advisor Prof. Dr. Arda Yurdakul for her

guidance and encouragement throughout development of my thesis. Her patience and

continuous support were invaluable for me to continue this work.

I am also thankful that I had the chance to work with my friends at our RISC-V

work group; Alp, Fatih and İbrahim. Together, they made my time through graduate

school memorable.

Lastly, finishing this work would have not been possible without support from

my family that helped me get through the stressful times and kept me going. I am

forever in debt to them.

June 2020 Ömer Faruk IRMAK

4

ABSTRACT

AN EMBEDDED RISC-V CORE WITH FAST MODULAR

MULTIPLICATION

While one of the biggest enabling factors of Internet of Things growth is cheap

and capable hardware, maybe the biggest concern is privacy and security. Encryption

and authentication need big power budgets, which battery-operated IoT end-nodes do

not have. Hardware accelerators designed for specific cryptographic operations provide

little to no flexibility for future updates. Custom instruction solutions are smaller in

area and provide more flexibility for new methods to be implemented. One drawback

of custom instructions is that the processor has to wait for the operation to finish.

Eventually, the response time of the device to real-time events gets longer. In this work,

we propose a processor with an extended custom instruction for modular multiplication,

which blocks the processor, typically, two cycles for any size of modular multiplication.

We adopted embedded and compressed extensions of RISC-V for our proof-of-concept

CPU. Our design is benchmarked on recent cryptographic algorithms in the field of

elliptic-curve cryptography. Our CPU with 128-bit modular multiplication operates at

136MHz on ASIC and 81MHz on FPGA. It achieves up to 13x speed up over software

implementations while reducing overall power consumption by up to 95% with 41%

average area overhead over our base architecture.

i

ÖZET

HIZLI MODÜLER ÇARPMA KABİLİYETLİ GÖMÜLÜ

RISC-V İŞLEMCİ ÇEKİRDEĞİ

Nesnelerin İnterneti büyümesini sağlayan en büyük etkenlerden biri ucuz ve

yetenekli donanım iken belki de en büyük endişe gizlilik ve güvenliktir. Gizlilik ve

güvenlik sağlamak için gereken şifreleme ve kimlik doğrulama, pille çalışan Nesnelerin

İnterneti uç düğümlerinin sahip olmadığı büyük güç bütçelerine ihtiyaç duyar. Litera-

türdeki mevcut donanım hızlandırıcıları belirli iş yükleri için tasarlanmışlardır, bu se-

beple gelecekteki güncellemeler için çok az esneklik sağlar veya hiç esneklik sağlamazlar.

Özel komut tabanlı çözümler, alan maliyeti olarak daha küçüktür ve uygulanacak yeni

yöntem ve algoritmalar için daha fazla esneklik sağlarlar. Özel komutların bir dezavan-

tajı, sistemin işlem bitene kadar beklemesi gerekmesidir. İşlem çok uzun sürdüğünde,

cihazın gerçek zamanlı olaylara yanıt süresi uzar. Bu çalışmanın amacı modüler çarpma

için özel komutla genişletilmiş bir işlemci önermektir. Bu yaklaşımda modüler çarpma,

tipik bir durumda, işlemciyi iki saat çevrimi boyunca engelleyebilir. RV32EC komut se-

tini temel aldığımız ve Verilog ile geliştirdiğimiz tasarımımız, Eliptik Eğri Kriptografisi

(ECC) alanındaki güncel şifreleme algoritmaları üzerinde denenmiştir. 128 bit modüler

çarpma içeren uygulamaya özel tümdevre (ASIC) tasarımında 136 MHz saat hızına ve

alanda programlanabilir kapı dizileri (FPGA) üzerinde 81 MHz saat hızına ulaştık.

Yazılımsal çözüme kıyasla çeşitli kriptografik eğrilerde on üç kata kadar hız artışı elde

ederken, temel mimarimiz üzerinde ortalama % 41 alan artışı ile toplam güç tüketimini

% 95’e kadar azaltmayı başardık.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . 3

ABSTRACT . 4

ÖZET . i

LIST OF FIGURES . iii

LIST OF TABLES . v

LIST OF ACRONYMS/ABBREVIATIONS . vii

1. INTRODUCTION . 1

2. RELATED WORK . 4

2.1. Programming Oversights . 4

2.2. Network . 5

2.3. Encryption . 6

2.4. Security in IoT . 7

2.5. RISC-V . 9

3. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 12

4. SPA-ATTACK RESISTANT MONTGOMERY MULTIPLICATION DATAP-

ATH DESIGN . 15

5. MONTGOMERY MULTIPLICATION INSTRUCTION FOR RISC-V ISA . 19

5.1. Partial Execution Mode . 22

6. ANALYSIS . 24

6.1. Base Architecture . 24

6.2. Benchmarks . 26

6.3. Attack Analysis . 35

6.3.1. Passive Attacks . 36

6.3.2. Active Attacks . 40

7. CONCLUSION . 42

REFERENCES . 45

iii

LIST OF FIGURES

Figure 3.1. Hierarchy of ECC operations . 12

Figure 3.2. Sign/Verify runtime profile on a RV32EC architecture 13

Figure 4.1. R2MM Pseudo-code, Multiplicand (A), Multiplier (B), Modulus

(N), Result (S), ith bit of A (Ai) 16

Figure 4.2. Basic R2MM Hardware . 17

Figure 4.3. MMUL Operation Pseudocode . 18

Figure 5.1. Candidate RISC-V instruction formats 19

Figure 5.2. Memory layout for I-type MMUL 20

Figure 5.3. Memory layout for R-type MMUL 20

Figure 5.4. Memory layout for R4-type MMUL 21

Figure 5.5. Integration of MMUL in datapath 21

Figure 5.6. MMUL partial execution time diagram 22

Figure 5.7. MMUL control register . 23

Figure 6.1. Base Architecture . 25

iv

Figure 6.2. Modular multiplication function for FourQ implemented with MMUL

custom instruction with atomic execution 27

Figure 6.3. Modular multiplication function with Partial Execution enabled for

FourQ . 28

Figure 6.4. Activity Graphs (a) Software, (b) Custom Instruction with Atomic

Execution, (c) Custom Instruction with Partial Execution, (d) Par-

tial Execution with Interrupts In Between 37

Figure 6.5. Activity Graphs for Three MMUL Runs over GF(2127 -1) 38

Figure 6.6. Crosscorrelation Graphs for Three MMUL Runs 39

v

LIST OF TABLES

Table 6.1. CPU Benchmark . 24

Table 6.2. Runtime of benchmarks in clock cycles, Base RV32EC Architecture

(BA), Cus-

tom Instruction with Atomic Execution (CI-AE), Custom Instruc-

tion with Partial Execution (CI-PE) 30

Table 6.3. Runtime of benchmarks in clock cycles, Base RV32EC Architecture

(BA), Cus-

tom Instruction with Atomic Execution (CI-AE), Custom Instruc-

tion with Partial Execution (CI-PE) 31

Table 6.4. Runtime of benchmarks in clock cycles, Base RV32EC Architecture

(BA), Cus-

tom Instruction with Atomic Execution (CI-AE), Custom Instruc-

tion with Partial Execution (CI-PE) 32

Table 6.5. Average Power Consumption (W) During A Modular Multiplication 33

Table 6.6. Average Dynamic Power Consumption Per Module (W) During A

Modular Multiplication . 33

Table 6.7. Normalized Energy Consumption (Power x Clock Cycles) 33

Table 6.8. Post P&R Frequency and Area (Xilinx XC7Z020-1 FPGA) 34

Table 6.9. Post Synthesis Frequency and Area (OSU018) 34

vi

Table 6.10. Overhead Comparison . 35

vii

LIST OF ACRONYMS/ABBREVIATIONS

ISA Instruction Set Architecture

RISC Reduced Instruction Set Computing

IoT Internet of Things

M2M Machine to machine

ECC Elliptic Curve Cryptography

ECDH Elliptic-curve Diffie–Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

R2MM Radix-2 Montgomery Multiplication

CSR Control and Status Register

BA Base RV32EC Architecture

CI-AE Custom Instruction with Atomic Execution

CI-PE Custom Instruction with Partial Execution

CISC Complex Instruction Set Computing

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

CVE Common Vulnerabilities and Exposures

DoS Denial of Service

ARP Address Resolution Protocol

IP Internet Protocol

WSC Warehouse Scale Computing

1

1. INTRODUCTION

IoT market has been one of the driving forces of embedded hardware. It is

projected to be a multi-billion dollar industry with billions of devices in operation

[1]. Key enabler that is a must for this forecast to become a reality is cheap and

capable hardware. There are multiple efforts, both in academia and industry, that

are aiming to bring costs lower while making hardware more efficient in the tasks it is

designed to perform. IoT end-node hardware should be secure and designed with power

consumption in mind. Neither encryption nor authentication are light operations for a

barebones hardware to handle efficiently. Therefore, there are efforts on both designing

new lightweight algorithms [2] that suit better to less powerful processors and designing

specialized hardware that tackles the heavy operations more efficiently [3].

IoT end-node workloads can be characterized as low frequency bursts of compu-

tationally expensive operations with sleep states in between [4] [5]. When designing a

solution for energy efficient IoT end-nodes, low power modes should be utilized to the

fullest extent. By definition, IoT devices are connected to a network and transfer the

data they produce to another host. Secure communication involves complex encryption

and authentication algorithms which considerably extend the on-state duration when

implemented solely in software [6].

There exist implementations for faster cryptographic operations that would al-

low better utilization low power modes. They mainly adopt one of the two prominent

approaches, which are designing custom accelerators [3] [7] [8] and extending the pro-

cessor architecture with custom instructions [9] [10] [11]. Although high performance

can be achieved with parallel and pipelined custom accelerators, the area overhead for

heavily constrained IoT devices are unacceptable. Another drawback of custom accel-

erators is the lack of adaptability. They are designed to be highly effective for specific

operations but they can only be used for a fixed set of operations. Security domain

faces frequent developments. A single known vulnerability in a system is enough for

someone to manipulate it however they like. For example, a device using vulnerable

2

NIST P-256 [12] to verify its signed firmware can be exploited to run unauthorized

code. There are multiple known methods of exploiting RSA [13]. Lenstra et. al. [14]

show that 0.2% of RSA public keys that can be found on the internet can be used to

recover their RSA secret keys.

Custom instructions can be utilized for accelerating cryptographic operations, as

well. Fundamental and complex operations in cryptography can be mapped to custom

instructions and implemented in hardware with less resources compared to full custom

accelerators. This makes using the same hardware for different algorithms possible as

custom instructions can be used to implement any algorithm. If the current solution

used turns out to be vulnerable, different solutions can be implemented via a software

update without any significant performance penalty.

Unlike custom accelerators, custom instructions block the processor for the du-

ration of its execution. For real-time applications one of the key performance metrics

is the response time of the device. An industrial IoT node at the machine-to-machine

(M2M) interface [15] or a hard real-time system such as a flight controller avionic may

require to get precise readings from its environment as well as communicating over an

encrypted channel [16] [17]. Instruction latency should be low enough to allow handling

real time events as fast as possible.

Software ecosystem has been heavily influenced by open source and free software

for a considerable amount of time, yet hardware arena has mostly sticked to proprietary

technologies for so long. RISC-V [18], an open source and loyalty free ISA, backed by

its foundation [19] is trying to mainstream the open source mentality in the computing

hardware industry. Many open source implementations of RISC-V have been done both

in academia [20] [21] [22] [23] and industry [24]. With support for custom extensions

enabling novel implementations and being license free makes the RISC-V perfect for

academic work like this one and for-profit corporations.

In this work we have designed a microprocessor core with its ISA extended with

a custom instruction for Montgomery multiplication. Modular multiplication is highly

3

utilized in public key cryptography. Our proposed custom instruction implementation

can be executed both atomically and partially in short iterations, therefore does not

degrade system response time. We implemented Embedded and Compressed extensions

of RISC-V (RV32EC) [19] as the base ISA of our proof-of-concept CPU, which is

designed in Verilog. Design is benchmarked with operations on various cryptographic

elliptic curves. Synthesis is done for both FPGA and ASIC targets to collect area and

power consumption metric.

The remaining of this thesis is structured as follows. Section 2 provides a sum-

mary of previous work done in this field. Section 3 gives a brief introduction to anatomy

of Elliptic Curve Cryptography (ECC) operations. Section 4 explains the hardware and

software design choices made for the acceleration. Section 5 describes the microarchi-

tecture designed as the base platform and gives benchmark results. Section 6 analyses

the possible attack vectors against our design and Section 7 concludes the thesis.

4

2. RELATED WORK

Security of the data that our connected devices carry and generate is one of the

biggest concerns of modern world. From our phones to fridges, everything we own

somehow connects to the Internet. This allows a huge set of attack surfaces to be

exposed to everyone on the Internet. Every device connected to the Internet, including

IoT devices, suffer from similar vulnerabilities that can be at any point of the system.

Programming errors can be turned into exploitable vulnerabilities with well crafted

inputs to the system. Network traffic that the target generates or other vulnerable

devices on the network can be exploited as well. Algorithmic or implementation weak-

nesses in key security infrastructure like encryption is another vector that attackers

use. Security researchers are working hard to discover and propose countermeasures

for possible vulnerabilities that can be exploited. Discovered vulnerabilities are first

reported to relevant parties so that a fix can be deployed. After a certain period,

researchers get to publish their findings and the vulnerability gets added to Common

Vulnerabilities and Exposures (CVE) list [25].

2.1. Programming Oversights

Bugs introduced into software during development or oversights during the design

phase are prominent sources of vulnerabilities [26]. Programming languages like C or

C++ that put the sole responsibility of security, especially memory management, on

developer and provide little to no guidance. A C programmer has to manage all the

memory allocations which raises ownership of memory issues. This may result in errors

like use-after-free (accessing a dynamically allocated memory that is already given back

to the system) or a novice programmer can easily try to share local storage variables (ie.

stack allocated) with functions outside its scope. But they are preferred for the low level

access they provide to the system and their superior performance. New programming

languages like Rust [27] are trying to provide similar levels of performance while not

sacrificing from security. Software vulnerabilities may even be exploited for privilege

escalation and arbitrary code execution. Privilege escalation can be summarized as an

5

attacker gaining higher level access to system resources that a regular user normally

would not be able to access [28]. Arbitrary code execution exploits enable attacker to

issue any command or execute their own code on the target system [29].

One of the most frequent programming error is buffer overflows [30] [31] [32] [33].

It happens when a program reads or writes to an index that is beyond the original buffer

boundary. The attacks are crafted to cause overflow and access memory locations that

user normally cannot. Changed memory location can be a part of the program state

and cause program to behave differently. Overwritten sections can also be part of

the executable code of the program. This can result in completely arbitrary code

execution [34], which will naturally give an attacker almost infinite possibilities. Some

CPU architectures support disabling execution [35] [36] on selected memory pages to

prevent such attacks.

Format string vulnerabilities are also frequent in programs using standard C

library functions. Functions like printf/scanf take a format string and access program

stack according to the format string. When user input is used as the format string, data

in the stack can be read or changed easily. Similar to the buffer overflows, a wide range

of possibilities from changing program state to running arbitrary code exist [37] [38].

2.2. Network

Devices that are connected to a Wide Area Network, like the Internet, is always

under the threat of being target to an attack. Security of the network plays a great

deal in security of the connected devices. First step of securing a network is keeping

the attacker off the network. This requires an authentication mechanism to verify user

identities, which may be an ECC based signature. ECC based key pairs can be used

to sign a message and that message can later be used to verify the senders identity. If

the network is public or the attacker happens to be an authorized user, access control

policies [39] [40] to restrict the actions users can take in the network and infrastructure

to monitor the user actions or network traffic should be in place to detect any anomaly

in the network and take an appropriate action. Mostly, network based attacks aim to

6

either disrupt the service or extract valuable information from the traffic [41].

A widely practiced attack is called man-in-the-middle attacks. Attackers inter-

cept the traffic in the network and analyze it to use for their advantage. If the traffic

is not encrypted or the encryption can be cracked, attackers can extract valuable in-

formation like login credentials, credit card information or impersonate one end of the

communication. Using an authentication algorithm like Elliptic Curve Digital Signa-

ture Algorithm (ECDSA) combined with a symmetric encryption can would render

such an attack ineffective [34].

Denial of Service (DoS) attacks aim to cripple a computer system so that it

cannot fulfill its primary tasks [42]. Attackers build botnets [43] with compromised

devices that are infected by malware or already run exploitable software. Devices in

the botnet generate traffic to the target system and aim to overwhelm it’s network

and processing capabilities. DoS attacks can be also amplified thorough what is called

"UDP Amplification". Amplification is done by a UDP server when a small packet

to the server triggers a big response packet. Botnet sends small query packets with a

spoofed source address and server sends the amplified traffic to the target system.

Multiple network protocols are susceptible to spoofing. Address Resolution Proto-

col (ARP) messages can be spoofed to associate a MAC address to an Internet Protocol

(IP) address which can be used to direct any traffic to any host. MAC address of a

device, which is supposed to be globally unique and static, can also be changed with

software. IP addresses, as seen in the UDP Amplification example, can also be spoofed

to impersonate another system.

2.3. Encryption

Symmetric encryption algorithms like AES [44] are widely used for secure com-

munication and storage of data. Data is both encrypted and decrypted using the same

secret key. Assuming that the secret key is known to both parties and not communi-

cated over an observable medium, they provide sufficient levels of security. Algorithms

7

like Diffie-Hellman Key Exchange [45] make it possible to generate a secret key shared

between two ends of the communication, without ever transmitting the secret over the

network. Attacks against symmetric encryption schemes stem from implementations

leaking secret information via different side channels [46]. Variations in execution time,

power consumption [47] or memory access pattern [48] that is dependent on the secret

key can be analyzed to extract the secret key.

Public key encryption is a different approach, where the encryption and decryp-

tion process requires two keys. The public key is used to encrypt the data. Only the

private key can be used for correctly decrypting the ciphertext. This allows the public

key to be freely distributed. Asymmetric encryption keys are much longer compared to

symmetric counterparts and the encryption/decryption process is slower. It is widely

used for authentication. A message can be signed with the private key and the ori-

gin of the message can be verified with the public key. After the authentication, a

shared symmetric secret key can be generated using algorithms like Diffie-Helmman or

Elliptic Curve Diffie-Hellman [49] to encrypt the remaining traffic using symmetric en-

cryption. RSA and ECC are two widely used public key encryption schemes. RSA has

been shown to be vulnerable because of both algorithmic and implementation weak-

nesses [50] [51] [52]. Different ECC curves are also subject to side channel [53] and

structural attacks [54].

2.4. Security in IoT

IoT networks consist of various layers and may span over large areas [55]. They

should be secured in every point, from gateways to end-nodes, that can be used as an

attacking point. Since end-nodes are most of the time easier to access for attackers, they

should be the most hardened. Auer et. al. [56] propose "Universal Sensor Platform"

as a secure hardware base to be used for sensor application end-nodes. One of the key

components of their design are encryption and authentication, which they claim that

can be carried out efficiently with the help of accelerators and ISA extensions that

open source hardware brings.

8

For security, authentication is crucial. But authentication schemes are costly to

use. Efforts like FourQ [57] and ARIS [58] and [59] try to lower the computational costs

so that ECC based authentication is accessible to less capable devices as well. While

lowering computational complexity of ECC, accelerating the process with specialized

hardware is also possible.

ECC acceleration is a highly studied topic since its inception [60]. Main im-

provements in ECC acceleration are high throughput and low latency computation

that comes with higher power consumption and bigger area trade off. Different meth-

ods like pipelining [61], precomputation [62], and parallelism [63] are used to achieve

high performance. Although they provide high performance, they require additional

hardware. Increasing the hardware complexity would in return increase the cost of

development and manufacturing. Application areas such as IoT are sensitive to cost

increases and work being done in the field should be in alignment with that.

ECC operations can be accelerated at different levels of abstraction and higher

levels would be implemented in software. Scalar multiplication is the most studied

operation [64] [65] as it is a computation demanding and frequent operation in ECC

calculations. It is a necessity to have an efficient multiplication implementation. But

the high complexity of the operation requires an equally complex hardware that is not

suitable to be embedded in tightly constrained hardware. Point doubling and point

squaring, which are simpler operations, can also be accelerated and combining these

operations to carry out more complex operations like scalar multiplication is possible.

Harb and Jarrah [8], took this approach for embedded applications yet the resulting

hardware is magnitudes of larger than the platforms we are targeting. The measures

they have taken against side channel attacks made the hardware even bigger. Ultra

small platforms require smaller operations to be accelerated in hardware and rest to

be implemented in software.

Previous work mostly focuses on customized, one time generated hardware for

specific Galois Fields [7] [66] [67], which limits the adaptability of hardware to various

or new curves that may come up in the lifetime of the systems that would use the

9

proposed solutions. Security of established standards day by day are found out to

be compromised, being future proof is a key feature in this ever evolving domain of

security.

Fully software implementations are also available [68] [69] [70]. While they can

be flexible, they are very susceptible to side channel attacks. Efficient implementations

require clever tricks like hand written assembly routines for better performance that

limit the portability of the code and may leak important information via these side

channels. When software implementations are hardened against these attacks, perfor-

mance loss is introduced. Performance and energy efficiency is sub par compared to

hardware implementations. Fully software implementations should be last resort for

platforms that are both constrained by their hardware and power budget.

Heterogeneous and connected nature of some IoT networks enable work to be

distributed between nodes to achieve overall better operation. Chang et. al. [71]

offload the heavy cryptographic operations to more capable, GPU accelerated gateway

nodes.

Similar to those done for ECC, acceleration efforts [72] [73] were shown for other

algorithms, like RSA, that utilize modular arithmetic. A balance between speed and

flexibility is targeted without much regard to hardware size. To balance the hardware/-

software parts of their target algorithms, a careful approach is taken while designing

both. Even with these efforts resulting software portability is low with no universal

interface between hardware and software.

2.5. RISC-V

Software ecosystem has been heavily influenced by open source and free software

for a considerable amount of time, yet hardware arena has mostly sticked to proprietary

licenses for so long.

For decades there have been many different ISAs backed by industry or academia.

10

But not many have lived to see today, the ones still active are cumbered by licenses.

This mainly have made such free and openness movement impossible with hardware.

There are many different ways a free ISA could benefit the scene by creating a truly

free open processor market;

(i) Free market will flourish competition, thus improving overall quality

(ii) Increase design reuse by enabling open-source designs which would ease the overall

effort

(iii) Decrease the overall cost of SoC development, making cheap IoT nodes possible

Assuming the question whether if we need an open ISA or not is answered, next

question is how it should be designed. Reduced Instruction Set Computing (RISC) and

Complex Instruction Set Computing (CISC) are two dominant methodologies used to

build an ISA around them. Yet, current implementations of CISC ISAs mostly translate

high complexity instructions to RISC-like simple operations.

Relevant new CISC ISA development have been non-existent for a while. Even

if CISC ecosystem was highly active, it may not be the best choice when it comes to

designing a free ISA. CISC processors today are highly complex due to legacy code

support, they need translate even the oldest instructions, that aren’t relevant in any

shape or form for new projects, to the microinstructions they actually support. That

brings a lot of complexity to the design. Obviously, a new ISA won’t have any legacy

code to support, it only makes sens to ditch the middle translation layer for a new

design.

Although commercial RISC ISAs becoming more like CISC these days, RISC

domain has some active projects trying to stick to their roots. There are even some

projects in the free domain, to name a few, relevant ones are OpenRISC, SPARC and

RISC-V. SPARC family has both free and proprietary versions, OpenRISC and RISC-

V are true free ISAs. What stands out RISC-V from other alternatives is that it is

designed with modern concerns an ISA should address in mind.

11

RISC-V was designed with multiple use cases from low power to Warehouse Scale

Computing (WSC) in mind [18];

(i) Base-plus-extension ISA scheme and compressed instructions target efficiency in

constrained systems such as mobile devices and IoT nodes.

(ii) Quadruple Precision, Double Precision, Single Precision floating-point support

for WSC

(iii) 32-bit, 64-bit and 128-bit address spaces for all ranges of devices from IoT to

WSC systems

With the momentum RISC-V has, it’s argued that it will be the Linux of hardware

in the near future. Essentially it’s an easy choice when it comes to picking up a free

ISA to support and help build the ecosystem.

Both software and hardware ecosystem around RISC-V adopts free/open-source

development mindset. Currently it is mostly driven by the RISC-V foundation [19]

and its members. Foundation certifies implementations of RISC-V, maintains the ISA

and organizes workshops all around the world frequently to get people interested in

RISC-V collaborate easier.

RISC-V user [74] and privileged [75] ISA specifications are the ultimate texts to

reference when doing any work related to RISC-V. User-level specification defines the

base instruction and the extensions around that while privileged architecture specifi-

cation defines the system level functionality that needs to be implemented by RISC-V

systems in order to support complex operating systems and external devices.

12

3. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

ECC is a public-key cryptography approach that utilizes elliptic curves over finite

fields. This approach is an alternative to the RSA algorithm, as it allows shorter length

keys to achieve equivalent security level of much longer RSA keys [76].

Figure 3.1. Hierarchy of ECC operations

As it can be seen in Figure 3.1, ECC operations can be broken down to different

levels of abstraction. This hierarchy of operations can be split into two parts at any

level to implement one part in software and the other part in hardware. Each step of

this hierarchy takes increasingly more resources to implement in hardware. Decision

of how to make the split should be made with performance and cost implications in

mind.

Highest level in the hierarchy is the protocol level. Algorithms like Elliptic-curve

Diffie–Hellman (ECDH) and Elliptic Curve Digital Signature Algorithm (ECDSA) re-

side in this level. They define how key pairs should be generated, exchanged and used

to sign/verify messages. They rely on mathematical complexity of point operations on

an elliptic curve to provide the security. Some of the point operations on an elliptic

curve like scalar multiplication (3.1), point doubling (3.2) and point squaring (3.3) can

be formulated as;

13

P ′ = k ∗ P (3.1)

P ′ = 2 ∗ P (3.2)

P ′ = P 2 (3.3)

where P and P ′ are points on the curve while k is a scalar. Elliptic curves are defined

over a Galois field and all point operations involve modular operations over these fields.

They reside at the bottom layer of abstraction hierarchy.

Figure 3.2. Sign/Verify runtime profile on a RV32EC architecture

14

Smallest building block of ECC operations are finite field operations like modular

multiplication, modular addition, modular squaring. Accelerating these operations is

a good starting point to achieve overall better performance and efficiency. We have

profiled the time that is spent on the finite field arithmetic in sign/verify operations

on different curves like FourQ [57], NIST P-256 [12] and Curve25519 [77] to determine

which operations would be more beneficial to accelerate in RV32EC. Results in Figure

3.2 show that multiplication is the single most important operation to be accelerated

in a fully software implementation.

Figure 3.2 shows that finite field multiplication is a good candidate for acceler-

ation in constrained devices because while it is less demanding in terms of hardware

resources compared to operations higher in the hierarchy, it is a real performance hog

in ECC operations. It can also be used to carry out squaring operations as well.

15

4. SPA-ATTACK RESISTANT MONTGOMERY

MULTIPLICATION DATAPATH DESIGN

Modular multiplication is the operation defined by the Equation (4.1):

P = (A ∗B) mod N (4.1)

One of the key efficient algorithms in this area is Montgomery Multiplication [78].

Montgomery Multiplication replaces trial division operation with division-by-a-power-

of-2 which can be efficiently executed on a general purpose processor since the numbers

are represented in binary form. For operands with length of n in bits, Montgomery

multiplication calculates the Equation (4.2):

MMUL(A,B,N) = (A ∗B ∗R-1) mod N (4.2)

where;

R = 2n (4.3)

2n-1 < N < 2n (4.4)

gcd(R,N) = 1 (4.5)

To get the result P , four Montgomery Multiplications should be performed assuming

R’ is precalculated.

R′ = R2 mod N (4.6)

16

1. Bring operand A to Montgomery domain

A′ = MMUL(A,R′, N) (4.7)

2. Bring operand B to Montgomery domain

B′ = MMUL(B,R′, N) (4.8)

3. Perform multiplication in Montgomery domain

P ′ = MMUL(A′, B′, N) (4.9)

4. Bring result back from Montgomery domain

P = MMUL(P ′, 1, N) (4.10)

Figure 4.1. R2MM Pseudo-code, Multiplicand (A), Multiplier (B), Modulus (N),

Result (S), ith bit of A (Ai)

We chose the Radix-2 Montgomery Multiplication (R2MM) algorithm [79] for the

implementation. R2MM is suitable for simple hardware implementation because it is

composed of simple operations that suit hardware better. R2MM can be implemented

by a simple adder and shifter.

As it can be seen in Figure 4.1, there are multiple conditional operations in the

algorithm. Conditional operations cause variations in run time of the algorithm which

17

Figure 4.2. Basic R2MM Hardware

is a prime candidate to be exploited by SPA attacks. If this algorithm were to be

implemented in software, additional measures should be taken [80]. But the hardware

implementation has constant execution time as if-statements are only enable signals of

memory elements.

Our hardware consists of an adder and an accumulator for storing the interim

results, a controller for execution of the algorithm with conditional operations in Figure

4.1 implemented as enable signals of the accumulator register. First cycle of each loop

iteration is used to calculate Acc + AiB. Since Ai is a single bit value, it serves as an

enable signal of accumulator register, only if Ai is 1 the accumulator is updated with

Acc+ B value. In the second cycle, modulus N is added to value in the accumulator.

Result of the addition is only saved to the accumulator register if existing value in

accumulator (Acc+AiB) is odd. Operand A is stored in a shift register and shifted to

18

Figure 4.3. MMUL Operation Pseudocode

right by one bit in each iteration of the loop. Since operand A is consumed one bit at

a time, whole operand is not required to be in MMUL internal registers. Each word

of operand A is fetched from memory when previous word is completely shifted out of

the internal register. For a RV32 machine, a new word of operand A is fetched after

every 32 iterations of the loop. After the loop is finished, in one last cycle, modulus is

subtracted from the accumulator to bring result back to [0, N) range. If the result is

still positive after the subtraction, accumulator is enabled and the final result is saved

to the accumulator register to be written back to memory. Figure 4.3 summarizes flow

of execution. Overall, one MMUL operation takes 2n+ 1 clock cycles for calculations,

3 ∗WORDS memory load operations for operand fetch and WORDS memory write

operations for writing back the result where WORDS = ceil(n/32) for RV32 and

WORDS = ceil(n/64) for RV64. Operands up to n bits can be processed with n

being limited by the MMUL hardware configuration.

19

5. MONTGOMERY MULTIPLICATION INSTRUCTION

FOR RISC-V ISA

RISC-V has different instruction formats already defined, some of them can be

seen in Figure 5.1. More than one could be used for our application with two main

tradeoffs. Regardless of the instruction encoding, we decided MMUL instruction to

work on memory addresses unlike any instruction in RISC-V specification. When it

comes to multiprecision operations, defining a unified interface on memory addresses

is more performant. The key point that has to be made clear is the layout of operands

imm rs1 fnc3 rd opcode I-type

fnc7 rs2 rs1 fnc3 rd opcode R-type

rs3 fnc2 rs2 rs1 fnc3 rd opcode R4-type

Figure 5.1. Candidate RISC-V instruction formats

in memory. Constraining how operands should be arranged may result in lower per-

formance as it may require application code to rearrange operands in memory to get it

in the way it is required. These constraints put on operands will result in a more flex-

ible instruction with more fields to encode additional information that may be used to

pack more functionality into the instruction. MMUL requires 3 operands and a space

to store the result. This means 3 memory addresses for input and a single memory

address for output. Length of the operands must be encoded in the instruction for

flexibility. Instruction should be able to provide this information to the accelerating

hardware.

If application can guarantee that all operands will be in a certain offset from a

base address in memory as shown in Figure 5.2, a single memory address stored in rs1

is enough for input operands. Thus I-type instruction format can be used. It leaves 15

bits of space in the instruction to be used for encoding other information. Length can

20

Figure 5.2. Memory layout for I-type MMUL

be encoded in bits in this format, giving us a maximum of 32768 bit operands.

Likewise, if multiplicand and multiplier are guaranteed to be always in fixed

positions relative to each other but modulus may be in random addresses as shown in

Figure 5.3; R-type format can be used. Two source registers, rs1 and rs2, would be

used as base addresses. This leaves 10 bits of space which enables, if length is encoded

in bits, maximum of 1024 bit operands.

Figure 5.3. Memory layout for R-type MMUL

Lastly, for the best performance in all cases, if R4-type format is used; all operands

can be in their independent addresses stored in rs1, rs2 and rs3 as shown in Figure

5.4. This format leaves only 5 bits which is not enough for length to be encoded in

bits. Encoding operand length in total architecture words, ie. WORDS, is another

21

option which makes 1024 bit length operands for RV32 and 2048 bit operands for RV64

possible.

Figure 5.4. Memory layout for R4-type MMUL

In this work, we decided to use R4-type instruction format because it imposes

no memory layout restrictions. Using GCC directive .insn [81] in this decision process

sped up the development. Meanings of our fields are;

• rd - Register containing memory address for result

• rs1 - Register containing memory address for multiplicand

• rs2 - Register containing memory address for multiplier

• rs3 - Register containing memory address for modulus

• fnc3, fnc2 - Combined, they encode length of our operands in architecture words

as follows

WORDS = (fnc2 * 8) + fnc3

Figure 5.5. Integration of MMUL in datapath

22

As it can be seen in Figure 5.5, MMUL is coupled with the datapath of the

processor. Addresses of operands are read directly from their respective registers of

the Register File and fed to the ALU in the datapath. Memory address to be worked

on is calculated in the ALU by adding the offset value supplied by the MMUL to the

base address read from register file. LSU is triggered by MMUL module to load or

store from the calculated address. Operands are loaded at the start of the execution

and stored in MMUL module during the entire operation. All execution is controlled

by MMUL itself.

5.1. Partial Execution Mode

As mentioned in Section 4, one MMUL operation takes 2n + 1 clock cycles for

calculations, 3 ∗ WORDS memory load operations for operand fetch and WORDS

memory write operations for writing back the result where WORDS = ceil(n/32)

for RV32 and WORDS = ceil(n/64) for RV64. As the instructions are atomic, for

duration of this operation processor will be unresponsive to any event that may happen.

For some applications this may be problematic because of the real time constraints they

have. To remedy this we can move the loop in our algorithm from hardware to software,

allowing our processor to service interrupts in between loop iterations.

Figure 5.6. MMUL partial execution time diagram

To achieve such behaviour, which we call partial execution, our implementation

has a special Control and Status Register (CSR) as shown in Figure 5.7. If partial

23

execution is enabled by a write with csrwr instruction to this register, which is directly

connected to "Execution Mode Select" signal in Figure 5.5, current MMUL instruction

is retired after every iteration of the loop in Figure 4.1. Application code has to execute

another MMUL instruction for each bit of operands, ie. n calls to the MMUL for an

n-bit x n-bit Montgomery multiplication operation, as shown in Figure 5.6. First call to

the MMUL does the memory load operations, while last call writes back the result. In

this case, maximum latency of MMUL instruction drops to either 3∗WORDS memory

load operations + 2 cycles or WORDS memory write operations + 3 cycles depending

on the memory operation latencies. Performance penalty of this, which will be later

presented, is minimal when used with loop unrolling.

Figure 5.7. MMUL control register

24

6. ANALYSIS

6.1. Base Architecture

To set a baseline for our work, we designed an in-order two-stage RV32EC core.

Core was designed to have minimal area footprint while maintaining comparable level

of performance. RISC-V is adopted as the ISA as it allows custom instructions and

have a rich set of encoding formats already defined.

Base user ISA of RISC-V is called RV32I and it includes basic arithmetic, control

transfer and memory operation instructions. It provides bare minimum for modern

languages to target as an architecture. A subset of RV32I is defined for embedded de-

vices as well, RV32E. While the supported instructions stay the same, it allows 16 word

register files (32 on RV32I) and makes some of the mandatory control and status regis-

ters optional to save hardware resources. RISC-V also has a compressed instruction set

extension which defines 16-bit encodings of frequently used RV32I instructions to bring

the code size down as well as increase performance by allowing multiple instructions

to be fetched in a single memory operation.

Figure 6.1 shows the base architecture of our design. Fetch stage has two main

components, realign buffer and decompressor. Realign buffer acts as a buffer for fetched

instructions and is able to serve 16 or 32 bit instructions from half word aligned ad-

dresses. Decompressor unpacks 16-bit instructions to their 32-bit equivalents. Only

32-bit instructions are fed to the next stage.

Table 6.1. CPU Benchmark
Our Work microriscy [82] Improvement %

Coremark 0.905 0.878 3%

Dhrystone 1805 1644 10%

Second stage handles the decoding and execution of the instruction stream. Apart

from jumps, branches and memory operations; all instructions have single cycle execu-

25

Figure 6.1. Base Architecture

26

tion time. Controller is capable of executing multi cycle instructions by delaying the

retirement of current instruction. In the case of a jump or branch, fetch stage is cleared

by the controller and execution continues from the target address. No prediction is done

for branches.

To set a baseline, Coremark and Dhrystone are run both on microriscy [82] and

our core using the same memory modules. Results can be seen in Table 6.1. Even

though our core is slightly faster than microriscy, they can be considered equal in

terms of performance.

How MMUL module is integrated into the base architecture can be seen in Figure

5.5. Related modules are color coded so they can be easily identified.

6.2. Benchmarks

Resulting design is benchmarked with multiple ECC curves. Software implemen-

tations of FourQ (128-bit) [57], NIST P-256 (256-bit) [12], Curve25519 (256-bit) [77]

and ARIS (an authentication scheme based on FourQ) [58] are run on our processor

and microriscy [82] core from PULP for the base values. Later, modular multiplication

and squaring implementations are replaced with a sequence of MMUL instructions and

run on our modified core. No modifications are made to any other part of the code.

Example blocks of code from modified field multiplication functions for FourQ

can be seen in Figure 6.2 and 6.3. They calculate c = a ∗ b mod n. Since our encod-

ing enables operands to be in unrelated memory addresses, arguments of the original

function can be used without any rearrangement of data. Value r is precalculated and

stored. In function fpmul1271 line 12 and 13, operands a and b are brought to the

Montgomery domain. Results are stored in intermediate variables _a and _b. At line

14, multiplication in Montgomery domain is done. Lastly, result is brought back to

[0, N) range in line 15. As line 15 suggests, any combination of addresses given to the

instruction can be the same.

27

1 typede f uint32_t felm_t [4] ;

2 uint32_t r [4] = {4 , 0 , 0 , 0} ;

3 uint32_t one [4] = {1 , 0 , 0 , 0} ;

4 uint32_t n [4] = {0 x f f f f f f f f , 0 x f f f f f f f f ,

5 0 x f f f f f f f f , 0 x 7 f f f f f f f } ;

6

7 void MMUL(uint8_t WORDS,

8 uint32_t∗ A, uint32_t∗ B,

9 uint32_t∗ N, uint32_t∗ C) {

10 uint8_t func2 = (WORDS >> 3) & 0x3 ;

11 uint8_t func3 = (WORDS) & 0x7 ;

12 asm v o l a t i l e (

13 " . insn r CUSTOM_0, " #func3 " , " #func2

14 " , %[C] , %[A] , %[B] , %[N]\ n" :

15 : [A] " r " (A) , [B] " r " (B) ,

16 [N] " r " (N) , [C] " r " (C)) ;

17 }

18

19 void fpmul1271 (felm_t a , felm_t b , felm_t c)

20 { // With atomic execut ion o f MMUL

21 v o l a t i l e uint32_t _a [4] , _b [4] ;

22

23 MMUL(4 , a , r , n , _a) ;

24 MMUL(4 , b , r , n , _b) ;

25 MMUL(4 , _a, _b , n , c) ;

26 MMUL(4 , c , one , n , c) ;

27 }

Figure 6.2. Modular multiplication function for FourQ implemented with MMUL

custom instruction with atomic execution

28

1 #de f i n e MMUL_CSR 0x800 // Address o f MMUL CSR

2 void fpmul1271_pe (felm_t a , felm_t b , felm_t c)

3 { // With p a r t i a l execut ion

4 v o l a t i l e uint32_t _a [4] , _b [4] ;

5 write_csr (MMUL_CSR, 1) ;

6

7 #pragma GCC un r o l l 128

8 f o r (i n t i = 0 ; i < 128 ; i++) {

9 MMUL(4 , a , r , n , _a) ;

10 }

11 #pragma GCC un r o l l 128

12 f o r (i n t i = 0 ; i < 128 ; i++) {

13 MMUL(4 , b , r , n , _b) ;

14 }

15 #pragma GCC un r o l l 128

16 f o r (i n t i = 0 ; i < 128 ; i++) {

17 MMUL(4 , _a, _b , n , c) ;

18 }

19 #pragma GCC un r o l l 128

20 f o r (i n t i = 0 ; i < 128 ; i++) {

21 MMUL(4 , c , one , n , c) ;

22 }

23 }

Figure 6.3. Modular multiplication function with Partial Execution enabled for FourQ

29

Function fpmul1271_pe implements the same functionality as the fpmul1271,

but utilizes partial execution feature of the MMUL instruction. Each assembly in-

struction in fpmul1271 is called in an unrolled loop allowing processor to handle asyn-

chronous events in between loop iterations.

In Table 6.2, 6.3 and 6.4, runtime of ECC benchmarks in clock cycles can be seen.

Full software benchmarks are run on microriscy [82] and our base architecture (BA) as

the control group. Runs that modular multiplication operation is implemented with

our custom instruction are labeled Custom Instruction with Atomic Execution (CI-

AE) and Custom Instruction with Partial Execution (CI-PE). There is a significant

speed up in all curve operations. This speed up contributes to lowering total energy

consumption. This setup uses a memory module with single cycle read latency. Longer

latency memories like EEPROM, FLASH are widely used as instruction memories. If

a longer latency instruction memory was used in benchmarks, results would be even

more in favour of our implementation. MMUL instruction takes multiple cycles thus

allowing a new instruction to be fetched before it finishes, therefore CPU is less likely

to be stalled waiting for new instructions.

Performance penalty of partial execution is negligible when paired with loop

unrolling. Depending on the compiler output, if not interrupted, a Montgomery mul-

tiplication can be executed in the same amount of time as atomic execution.

For power consumption analysis, FPGA tools are used. Design is synthesized

on a Xilinx XC7Z020-1 FPGA and activity data is gather with Xilinx’s development

environment, Vivado. Activity data is then used to increase dynamic power estimation

accuracy.

Power consumption of different configurations can be seen in Table 6.5. While

static power consumption shows only small changes within margin of error, dynamic

power goes down significantly. This can be explained with the power consumption per

design block during fully software and with custom instruction runs of the benchmark,

which can be seen in Table 6.6. When executing solely standard instructions, as in BA

30

Ta
bl
e
6.
2.

R
un

ti
m
e
of

be
nc
hm

ar
ks

in
cl
oc
k
cy
cl
es
,B

as
e
RV

32
E
C

A
rc
hi
te
ct
ur
e
(B

A
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
A
to
m
ic

E
xe
cu
ti
on

(C
I-
A
E
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
P
ar
ti
al

E
xe
cu
ti
on

(C
I-
P
E
)

B
as
e
RV

32
E
C

IS
A

E
xt
en
de
d
w
it
h
M
M
U
L
cu
st
om

in
st
ru
ct
io
n

m
ic
ro
ri
sc
y
[8
2]

B
A

C
I-
A
E

Sp
ee
du

p
C
I-
P
E

Sp
ee
du

p

Fo
ur
Q

B
en
ch
m
ar
k

G
F
(p

2)
sq
ua

ri
ng

19
72

5
19

36
5

25
35

7.
64

25
53

7.
59

G
F
(p

2)
m
ul
ti
pl
ic
at
io
n

30
06

6
29

52
2

38
61

7.
65

38
74

7.
62

G
F
(p

2)
in
ve
rs
io
n

13
87

75
0

13
65

08
0

12
21

31
11

.1
8

14
80

50
9.
22

Sc
hn

or
rQ

’s
ke
y
ge
ne
ra
ti
on

13
65

52
12

13
38

61
40

20
22

29
3

6.
62

20
52

37
1

6.
52

Sc
hn

or
rQ

’s
si
gn

in
g

14
55

01
01

14
25

32
97

29
13

22
8

4.
89

29
43

33
6

4.
84

Sc
hn

or
rQ

’s
ve
ri
fic
at
io
n

41
34

05
79

40
59

21
70

57
17

48
0

7.
10

58
13

80
4

6.
98

K
ey
pa

ir
ge
ne
ra
ti
on

(c
om

pr
es
se
d)

13
60

45
06

13
34

73
07

19
96

72
9

6.
68

20
26

81
8

6.
59

Se
cr
et

ag
re
em

en
t
(c
om

pr
es
se
d)

37
23

28
13

36
62

21
06

49
98

06
2

7.
33

50
92

13
3

7.
19

K
ey
pa

ir
ge
ne
ra
ti
on

(u
nc
om

pr
es
se
d)

13
58

69
51

13
34

61
51

19
96

34
2

6.
69

20
26

46
2

6.
59

Se
cr
et

ag
re
em

en
t
(u
nc
om

pr
es
se
d)

34
38

40
22

33
71

71
42

47
10

50
1

7.
16

47
53

02
1

7.
09

31

Ta
bl
e
6.
3.

R
un

ti
m
e
of

be
nc
hm

ar
ks

in
cl
oc
k
cy
cl
es
,B

as
e
RV

32
E
C

A
rc
hi
te
ct
ur
e
(B

A
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
A
to
m
ic

E
xe
cu
ti
on

(C
I-
A
E
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
P
ar
ti
al

E
xe
cu
ti
on

(C
I-
P
E
)

B
as
e
RV

32
E
C

IS
A

E
xt
en
de
d
w
it
h
M
M
U
L
cu
st
om

in
st
ru
ct
io
n

m
ic
ro
ri
sc
y
[8
2]

B
A

C
I-
A
E

Sp
ee
du

p
C
I-
P
E

Sp
ee
du

p

Fo
ur
Q

B
en
ch
m
ar
k

E
C
C

P
oi
nt

do
ub

lin
g

16
91

28
3

16
59

22
6

22
84

32
7.
26

22
97

72
7.
22

E
C
C

P
oi
nt

ad
di
ti
on

24
05

25
7

23
59

97
5

32
12

17
7.
35

32
20

97
7.
33

P
si

m
ap

pi
ng

69
98

07
7

68
63

31
0

95
69

13
7.
17

96
11

62
7.
14

P
hi

m
ap

pi
ng

10
42

31
34

10
21

68
77

14
69

42
3

6.
95

14
75

31
3

6.
93

P
re
co
m
pu

ta
ti
on

44
07

76
1

43
21

32
3

61
39

83
7.
04

61
61

72
7.
01

Sc
al
ar

m
ul
ti
pl
ic
at
io
n
(w

o
cl
ea
ri
ng

co
fa
ct
or
)

32
45

20
63

31
83

50
79

44
66

96
3

7.
13

45
08

18
3

7.
06

Sc
al
ar

m
ul
ti
pl
ic
at
io
n
(w

it
h
cl
ea
ri
ng

co
fa
ct
or
)

34
38

38
41

33
73

09
68

47
20

29
6

7.
15

47
62

78
6

7.
08

F
ix
ed
-b
as
e
sc
al
ar

m
ul

13
61

44
39

13
35

22
75

19
96

16
3

6.
69

20
26

36
7

6.
59

D
ou

bl
e
sc
al
ar

m
ul

38
58

35
66

37
84

36
06

54
54

20
4

6.
94

54
99

22
2

6.
88

32

Ta
bl
e
6.
4.

R
un

ti
m
e
of

be
nc
hm

ar
ks

in
cl
oc
k
cy
cl
es
,B

as
e
RV

32
E
C

A
rc
hi
te
ct
ur
e
(B

A
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
A
to
m
ic

E
xe
cu
ti
on

(C
I-
A
E
),

C
us
to
m

In
st
ru
ct
io
n
w
it
h
P
ar
ti
al

E
xe
cu
ti
on

(C
I-
P
E
)

B
as
e
RV

32
E
C

IS
A

E
xt
en
de
d
w
it
h
M
M
U
L
cu
st
om

in
st
ru
ct
io
n

m
ic
ro
ri
sc
y
[8
2]

B
A

C
I-
A
E

Sp
ee
du

p
C
I-
P
E

Sp
ee
du

p

A
R
IS

B
en
ch
m
ar
k

Si
gn

96
15

40
4

92
93

45
2

81
28

12
9

1.
14

81
55

29
9

1.
14

V
er
ify

16
04

85
40

15
65

28
70

30
69

30
9

5.
10

31
27

14
7

5.
01

N
IS
T

P
-2
56

B
en
ch
m
ar
k

K
ey

G
en
er
at
io
n

13
85

64
75

1
13

63
49

75
9

10
76

37
69

12
.6
7

10
85

97
27

12
.5
6

Si
gn

13
96

70
30

1
13

73
59

07
6

11
80

29
94

11
.6
4

11
89

84
38

11
.5
4

V
er
ify

15
81

62
66

3
15

56
16

11
5

12
46

32
89

12
.4
9

12
57

47
20

12
.3
8

C
ur
ve
25

51
9
B
en
ch
m
ar
k

K
ey

G
en
er
at
io
n

15
57

87
77

3
15

38
87

98
7

11
15

35
17

13
.8
0

11
31

22
94

13
.6
0

Si
gn

15
58

55
23

7
15

39
40

29
9

11
64

15
86

13
.2
2

11
80

02
42

13
.0
5

V
er
ify

31
13

03
42

4
30

74
98

17
9

22
43

78
24

13
.7
0

22
75

68
03

13
.5
1

33

Table 6.5. Average Power Consumption (W) During A Modular Multiplication

Static Dynamic Total

BA 0.107 0.154 0.261

CI-AE 0.105 0.064 0.170

CI-PE 0.106 0.120 0.226

Table 6.6. Average Dynamic Power Consumption Per Module (W) During A Modular

Multiplication
BA CI-AE CI-PE

Fetch Stage 0.058 0.002 0.026

Decoder 0.014 0.001 0.006

ALU 0.031 0.001 0.008

Register File 0.012 0.002 0.003

MMUL 0 0.054 0.053

column of Table 6.6, every module of the CPU works synchronously. When MMUL

instruction is in progress, rest of the CPU is idle. Biggest gain comes from the fetch

stage because only four instruction fetches are needed per modular multiplication with

our custom instruction and it is the biggest module in the design.

Table 6.7. Normalized Energy Consumption (Power x Clock Cycles)

BA CI-AE CI-PE

Fo
ur
Q KeyGen 1 0.10 0.13

Sign 1 0.13 0.18

Verify 1 0.09 0.12

P
25

6 KeyGen 1 0.05 0.07

Sign 1 0.06 0.08

Verify 1 0.05 0.07

C
25

51
9 KeyGen 1 0.05 0.07

Sign 1 0.05 0.07

Verify 1 0.05 0.06

Both average power consumption and execution time go down in our implemen-

tation. Naturally, product of these two metrics follow this trend as well. Normalized

34

energy consumption values can be seen in Table 6.7. For FourQ, a 128-bit curve,

roughly 90% of energy is saved while P-256/C25519, 256-bit curves, see savings up to

95%. As the prime that curves use gets bigger, performance increases and this results

in higher energy savings. R2MM scales better to larger operands with it’s O(n) time

complexity [79] [83].

Frequency and area results can be seen in Table 6.8 and 6.9. Although MMUL

itself is fairly small, it adds 33% area overhead to our base architecture and operat-

ing frequency goes down by 9% in FPGA synthesis. Using the TSMC OSU 0.18um

technology, ASIC synthesis shows 49% area overhead and 8% decrease in operating

frequency. Depending on the requirements of the application, a different implemen-

tation of Montgomery multiplication may be used for the required balance between

performance gain and area overhead.

Table 6.8. Post P&R Frequency and Area (Xilinx XC7Z020-1 FPGA)

Clock Freq. (MHz) Slices

Base Architecture (BA) 89.03 487

BA w/ 128bit MMUL 81.15 649

Table 6.9. Post Synthesis Frequency and Area (OSU018)

Clock Freq. (MHz) Flip Flops Gates

Base Architecture (BA) 148.46 872 8106

BA w/ 128bit MMUL 136.37 1305 12105

It is debated [84] that ECC is too complex to be used on IoT devices, yet even

new lightweight algorithms introduce similar overheads when accelerated in hardware.

In Table 6.10, a comparison of additional overhead of different custom instructions

can be seen. Tehrani et. al. [85] accelerate Lightweight Block Ciphers on a RV32I

platform. Their work is divided in to four categories. Category I is fully software

implementation similar to our base architecture while other categories progressively add

more complex acceleration capabilities with more instructions. Category II implements

the parallel Sbox instruction, Category III implements permutation and the bit-level

matrix multiplication instructions and Category IV implements the nibble-level parallel

matrix multiplication instruction, no instruction latency is reported.

35

Table 6.10. Overhead Comparison
Technology Base RISC-V ISA Area Overhead %

Our work FPGA (Xilinx) RV32EC 33%

Our work ASIC (0.18um) RV32EC 49%

[85] Category II ASIC (45nm) RV32I 51%

[85] Category III ASIC (45nm) RV32I 55%

[85] Category IV ASIC (45nm) RV32I 67%

6.3. Attack Analysis

Security of field operation implementations of a system are crucial for overall

security. There are existing attacks that target platforms with vulnerable field oper-

ations. ECDH encryption with Curve25519 implementation of Libgcrypt is shown to

be vulnerable by Genkin et al. [86]. They exploit the field operations that are not

implemented in constant time fashion. With Flush+Reload [87] attack, secret infor-

mation can be extracted easily by examining the cache response times. Another paper

by Alam et al. [88] showcases a vulnerability in a recent version of OpenSSL RSA

implementation with field operations as its root cause. Field operations that have

varying execution time or cache access patterns are exploited by observing the changes

in electromagnetic emissions from the target.

Our Montgomery multiplication implementation is constant time and can be used

to implement other computationally expensive field operations such as exponentiation

and squaring. But for a secure ECC implementation, operations implemented in soft-

ware should be constant time as well. Any side effects that these field operations

implemented in software may have on the system state, like cache contents, should be

carefully studied to ensure that no secret information is leaked. In this chapter we will

analyze if incorporating our custom instruction to an already secure ECC implementa-

tion would compromise the security of the system. We will explain how our work will

not expose new side channels to be exploited.

Fan et. al. [89], study the known side channel attacks and countermeasures

36

against them. They divide possible attacks mainly into two categories, namely, passive

and active attacks. While passive attacks only observe the target to gather secret

information, active attacks inject faults at either hardware or algorithmic steps to leak

secret information.

6.3.1. Passive Attacks

Cache based attacks [90], exploit the cache contents after the target code runs.

For example, if a lookup table is accessed according to the secret information, by

testing the access times to various indexes of the lookup table secret information can

be detected [91]. Our custom instruction fetches the operands fully into local registers

and has a consistent cache access signature. An implementation that is secure against

cache based attacks can adopt our custom instruction based modular multiplication

with no security consequences.

Timing attacks analyze the execution time of a given code to infer the execution

path that it follows [92]. When execution path depends on the secret information

that is passed to this piece of code, it may be leaked. Our MMUL implementation is

constant time and existing secure cryptography algorithm implementations can benefit

from the performance increase without additional precautions.

Simple power analysis attacks require execution path to contain branches that

are controlled by the secret information and lead to paths with different instantaneous

power consumption [93]. To analyze robustness of our implementation against a power

analysis attack, we used switching information from synthesized design to estimate

instantaneous power consumption. In Figure 6.4 switching activity inside the core for

a single modular multiplication can be seen. As they only represent activity inside

the core, instantaneous power consumption of memory or peripheral are not included

in the graphs. In (a) fully software implementation is profiled. Graph (b) shows the

switching activity while executing a modular multiplication operation using the cus-

tom instruction in atomic execution mode. Graphs (c) and (d) show the profile of

custom instruction with partial execution. There are interrupts being served in be-

37

(a)

(b)

(c)

(d)

Figure 6.4. Activity Graphs (a) Software, (b) Custom Instruction with Atomic

Execution, (c) Custom Instruction with Partial Execution, (d) Partial Execution with

Interrupts In Between

tween calls to the MMUL in Graph (d). Latter three graphs show four high activity

regions separated by lower activity periods. Each of the high activity period corre-

sponds to a Montgomery multiplication. Four Montgomery multiplications are needed

to perform a modular multiplication as given in Equation 4.7 to Equation 4.10. The

period where processor is doing the modular multiplication may be detected but it has

38

little correlation with the secret information that is used in the calculations.

Figure 6.5. Activity Graphs for Three MMUL Runs over GF(2127 -1)

39

Figure 6.6. Crosscorrelation Graphs for Three MMUL Runs

40

Figure 6.5 shows the switching activity of our core executing three MMUL in-

structions with three arbitrary 128-bit input sets over GF(2127 -1). Figure 6.6 shows

the correlation between graphs in Figure 6.5. Correlation is calculated as the cross-

correlation between the number of signals that change state each clock cycle in each

run. Crosscorrelation is calculated after DC components of switching activities are

eliminated. As it can be seen, there is a high correlation between the switching activi-

ties between different input sets, thus inputs to the calculation has minimal effect on

instantaneous power consumption. Input sets for the Figure 6.5 are;

• 0x4264c4c035d6ec7afbd55e860197ff68 , 0xe36d976eef32928cd1a32bef94160a9b

• 0x06333b57432d1a222af67d6cd46702a5 , 0xa22646c4413685fb8f50025b882f11a7

• 0x134488cce1c4cd94eb6b1433cfb85da5 , 0x17e4f5134a1f17e97112f460595ad253

Attacks like Differential Power Analysis, Refined Power Analysis and Compara-

tive SCA studied by Fan et. al. [89] exploit this small correlation between inputs and

power traces of an operation. Protection against these attacks require countermeasures

at the higher levels of ECC hierarchy. The most straight forward countermeasure is

randomization of operands of higher level operations like scalar multiplication. An

implementation that has taken needed precautions against such attacks will not be

negatively affected from using our custom instruction for field multiplication.

6.3.2. Active Attacks

Fan et. al. [89] divide active attacks into three main categories. One of them is

safe-error based analysis attacks. Safe-error attacks try to exploit the fact that some

faults will not be changing the computation result. The second category is weak-curve

based analysis attacks. Weak-curve attacks switch the point in scalar multiplication

with a point in a weak curve. Finally the last category is differential fault analysis

attacks that use the changes between faulty and valid results to extract the secret

scalar. All of these attacks try to exploit weaknesses of higher levels in ECC hierarchy

and therefore they are not in the scope of our work.

41

Attacks that tamper with the physical hardware to leak secrets are also studied

in ECC domain. Fouque et. al [94] show that a high power laser can be used to

manipulate inner storage elements of a processing hardware. Our implementation does

not take additional precautions to protect itself against such attacks. Depending on

the underlying physical implementation, such attacks can be used against our design

as well. Additional corrective hardware with error correcting codes can be utilized to

detect and correct any fault injected by an outside element.

42

7. CONCLUSION

In this thesis acceleration of ECC for constrained platforms is studied. Literature

shows that ECC is a good target to be accelerated since it involves computationally

expensive operations. Various levels that ECC can be accelerated at is also explored.

Accelerating at protocol or point operation level are proved to be costly in terms of

hardware resources. Efforts on accelerating at those levels are highly specialized. Spe-

cialization results in solutions with low adaptability which limits their use in different

scenarios. Field operations are the simplest operations that build the basis of the ECC.

For resource constrained systems, they are the ideal candidate to be accelerated with

their smaller are footprint and high adaptability to different applications.

To select the field operations to be accelerated, we profiled the runtime of various

ECC implementations and found out that vast majority of execution time, up to %95

for some curves, gets spent on modular multiplication. Modular multiplication can

be implemented with different algorithms. Montgomery multiplication is one of the

efficient algorithms that implements modular multiplication. Hardware implementa-

tion friendly Radix-2 Montgomery Multiplication was our algorithm of choice for our

modular multiplication implementation. A simple enough operation such as modular

multiplication can easily be mapped to a custom instruction. RISC-V specification

allow different platforms to have their custom instructions. But unlike a separate

memory-mapped accelerator, custom instructions block the processor for the duration

of the operation. To remedy this drawback, we introduced a partial execution mode

that can be controlled with a Control and Status Register (CSR). Partial execution

mode allows breaking down the Montgomery multiplication operation into smaller it-

erations so that system can service interrupts or do a context switch in between.

For our custom instruction, we analyzed different predefined RISC-V instruction

encodings. Among the available encodings, main trade off is between performance

and maximum operand size. The more fields are reserved for operand addresses, the

less space is left to encode operand length. We chose R4-type encoding for the best

43

performance and designed a Montgomery Multiplication that would be integrated into

the datapath of our processor.

For the base of our work, a two-stage in-order RV32EC core is designed and

implemented in Verilog. All the benchmarks are run on that base platform and on

another similar core from literature. These results are used as our base case. Various

ECC libraries using different curves are then benchmarked with our custom instruction

in both atomic and partial execution modes. Up to 13x speed up is achieved compared

to fully software implementation. Results show that curves that use bigger primes

benefit more from our custom instruction.

Dynamic power consumption is measured through activity analysis. Fully soft-

ware implementations of modular multiplication activates large portion of the proces-

sor, therefore results in high dynamic power consumption. While running our custom

instruction, switching activity drops significantly and results in lower dynamic power

consumption. Since our instruction is a multi-cycle instruction, fetch stage is the

biggest contributor in this drop in the dynamic power consumption. With speed up

and the drop in average power consumption, up to 95% energy is saved.

The design, with a 128-bit MMUL module, is then realized on both FPGA and

ASIC. Our FPGA platform of choice was Xilinx XC7Z020-1. Synthesis and P&R on

FPGA resulted in 649 slices being used and maximum clock frequency of 81MHz. An

ASIC synthesis is also done with TSMC OSU018, which is an open source 0.18µm

technology, as the target technology. Resulting ASIC design uses 12015 gates and 1305

flip flops, and has a maximum clock frequency of 136 MHz. Compared to base the

architecture, average area overhead is 41% and decrease in maximum clock frequency

is 9%. It is debated that ECC is too complex to be used on IoT devices, yet even new

lightweight algorithms introduce similar overheads when accelerated in hardware.

Our work can be extended with evaluation of different modular multiplication

algorithms that can be used to implement our custom instruction. Their performance

and area overhead can be evaluated. We showed trade offs between different instruction

44

encodings, future work can evaluate their performance and may extend the system

with different modular operation instructions that are computationally expensive like

reduction.

The last conditional subtraction can be eliminated if the loop in Figure 4.1 is

extended by two iterations. This is simply done by adding two bits to the higher bits

of operand and increasing the operand length. Eliminating subtraction simplifies the

hardware implementation as the additional multiplexer port and negation of operand

N is no longer needed which decreases the hardware size by 14% in our implementation.

Change in the operand length (n) affects both software and hardware. With the existing

state machine, partial execution would require 2 additional calls to MMUL. This can

be remedied with merging the last three cycles of the loop into a single call to MMUL

to maintain the same operation. The precalculated value R in Listing 6.2 Line 2 should

also be recalculated with updated n. Overall, it would require software developers to

be more aware of the underlying hardware implementation. That is why we decided

to pay the additional hardware cost to provide a more consistent interface to software.

45

REFERENCES

1. Columbus, L., “2017 Roundup Of Internet Of Things Forecasts”,

https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-

internet-of-things-forecasts, 2017, accessed on 1 Sep 2020.

2. Division, C. S., I. T. Laboratory, N. I. of Standards, Technology and D. of Com-

merce, “Lightweight Cryptography”, https://csrc.nist.gov/projects/lightweight-

cryptography, accessed on 1 Sep 2020.

3. Blaner, B., B. Abali, B. M. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauricella,

R. Leavens, J. J. Reilly and P. A. Sandon, “IBM POWER7+ processor on-chip

accelerators for cryptography and active memory expansion”, IBM Journal of Re-

search and Development , Vol. 57, No. 6, pp. 3:1–3:16, 2013.

4. Taneja, M., “A framework for power saving in IoT networks”, International Con-

ference on Advances in Computing, Communications and Informatics (ICACCI),

pp. 369–375, 2014.

5. Hendrickson, A., “Sleep, Sense, Connect: Low-Power IoT De-

sign”, https://www.electronicdesign.com/technologies/embedded-

revolution/article/21805040/sleep-sense-connect-lowpower-iot-design, 2017,

accessed on 1 Sep 2020.

6. Guo, G., Q. Qian and R. Zhang, “Different Implementations of AES Cryptographic

Algorithm”, IEEE 17th International Conference on High Performance Computing

and Communications, IEEE 7th International Symposium on Cyberspace Safety

and Security, and IEEE 12th International Conference on Embedded Software and

Systems , pp. 1848–1853, 2015.

7. Turan, F. and I. Verbauwhede, “Compact and Flexible FPGA Implementation of

Ed25519 and X25519”, ACM Trans. Embed. Comput. Syst., Vol. 18, No. 3, pp.

46

1–21, 2019.

8. Harb, S. and M. Jarrah, “FPGA Implementation of the ECC Over GF(2m) for

Small Embedded Applications”, ACM Trans. Embed. Comput. Syst., Vol. 18, No. 2,

pp. 17:1–17:19, 2019.

9. Nan, L., X. Zeng, Q. Ding, W. Li, Y. Du and L. Chen, “Research of Special Instruc-

tions for Finite Field X Multiplications of Cryptographic Algorithms”, IEEE 3rd

Advanced Information Technology, Electronic and Automation Control Conference

(IAEAC), pp. 1608–1613, 2018.

10. Bartolini, S., I. Branovic, R. Giorgi and E. Martinelli, “A performance evaluation of

ARM ISA extension for elliptic curve cryptography over binary finite fields”, 16th

Symposium on Computer Architecture and High Performance Computing , pp. 238–

245, 2004.

11. Gueron, S., “White Box AES Using Intel’s New AES Instructions”, 10th Inter-

national Conference on Information Technology: New Generations , pp. 417–421,

2013.

12. Hess, P., “SEC 2: Recommended Elliptic Curve Domain Parameters”,

https://www.secg.org/sec2-v2.pdf, 2010, accessed on 1 Sep 2020.

13. Overmars, A., Modern Cryptography - Current Challenges and Solutions , chap.

Survey of RSA Vulnerabilities, IntechOpen, 2019.

14. Lenstra, A., J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung and C. Wachter,

Ron was wrong, Whit is right , Tech. rep., IACR, 2012.

15. Miorandi, D., S. Sicari, F. D. Pellegrini and I. Chlamtac, “Internet of things: Vision,

applications and research challenges”, Ad Hoc Networks , Vol. 10, No. 7, pp. 1497

– 1516, 2012.

47

16. Bernsmed, K., C. Froystad, P. H. Meland and T. A. Myrvoll, “Security requirements

for SATCOM datalink systems for future air traffic management”, IEEE/AIAA

36th Digital Avionics Systems Conference (DASC), pp. 1–10, 2017.

17. Akram, R. N., K. Markantonakis, K. Mayes, P. Bonnefoi, D. Sauveron and

S. Chaumette, “Security and performance comparison of different secure chan-

nel protocols for Avionics Wireless Networks”, IEEE/AIAA 35th Digital Avionics

Systems Conference (DASC), pp. 1–8, 2016.

18. Asanović, K. and D. A. Patterson, Instruction Sets Should Be Free: The Case

For RISC-V , Tech. Rep. UCB/EECS-2014-146, EECS Department, University of

California, Berkeley, 2014.

19. “Official RISCV Foundation Website”, https://riscv.org/, accessed on 1 Sep 2020.

20. Asanović, K., R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,

D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,

Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Pat-

terson, B. Richards, C. Schmidt, S. Twigg, H. Vo and A. Waterman, The Rocket

Chip Generator , Tech. Rep. UCB/EECS-2016-17, EECS Department, University

of California, Berkeley, 2016.

21. Celio, C., D. A. Patterson and K. Asanović, The Berkeley Out-of-Order Machine

(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Proces-

sor , Tech. Rep. UCB/EECS-2015-167, EECS Department, University of California,

Berkeley, 2015.

22. Gautschi, M., P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand,

F. K. Gürkaynak and L. Benini, “Near-Threshold RISC-V Core With DSP Exten-

sions for Scalable IoT Endpoint Devices”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems , Vol. 25, No. 10, pp. 2700–2713, 2017.

23. Duran, C., D. L. Rueda, G. Castillo, A. Agudelo, C. Rojas, L. Chaparro, H. Hur-

48

tado, J. Romero, W. Ramirez, H. Gomez, J. Ardila, L. Rueda, H. Hernandez,

J. Amaya and E. Roa, “A 32-bit RISC-V AXI4-lite bus-based microcontroller

with 10-bit SAR ADC”, IEEE 7th Latin American Symposium on Circuits Sys-

tems (LASCAS), pp. 315–318, 2016.

24. “RISC-V SweRV Core Available to Open Source - Western Digital”,

https://blog.westerndigital.com/risc-v-swerv-core-open-source/, 2019, accessed on

1 Sep 2020.

25. “Common Vulnerabilities and Exposures (CVE)”, https://cve.mitre.org/, ac-

cessed on 1 Sep 2020.

26. Tweneboah-Koduah, S., K. E. Skouby and R. Tadayoni, “Cyber Security Threats

to IoT Applications and Service Domains”, Wireless Personal Communications ,

Vol. 95, No. 1, p. 169–185, 2017.

27. “Rust Programming Language”, https://www.rust-lang.org/, accessed on 1 Sep

2020.

28. “CVE-2020-3144”, https://nvd.nist.gov/vuln/detail/CVE-2020-3144, 2020, ac-

cessed on 1 Sep 2020.

29. “CVE-2020-10987”, https://nvd.nist.gov/vuln/detail/CVE-2020-10987, 2020, ac-

cessed on 1 Sep 2020.

30. “CVE-2019-1010298”, https://www.cvedetails.com/cve/CVE-2019-1010298/,

2019, accessed on 1 Sep 2020.

31. “CVE-1999-0018”, https://www.cvedetails.com/cve/CVE-1999-0018/, 1999, ac-

cessed on 1 Sep 2020.

32. “CVE-1999-0002”, https://www.cvedetails.com/cve/CVE-1999-0002/, 1999, ac-

cessed on 1 Sep 2020.

49

33. “CVE-2019-1010060”, https://www.cvedetails.com/cve/CVE-2019-1010060/,

2019, accessed on 1 Sep 2020.

34. Liu, J. and W. Sun, “Smart Attacks against Intelligent Wearables in People-Centric

Internet of Things”, IEEE Communications Magazine, Vol. 54, No. 12, pp. 44–49,

2016.

35. “Intel® 64 and IA-32 Architectures Software Developer’s Manual Vol. 3A”, https:

//software.intel.com/content/www/us/en/develop/download/intel-64-

and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-

3c-3d-and-4.html, accessed on 1 Sep 2020.

36. “Arm® Architecture Reference Manual”, https://developer.arm.com/

documentation/ddi0487/latest, accessed on 1 Sep 2020.

37. “CVE-2013-6809”, https://www.cvedetails.com/cve/CVE-2013-6809/, 2013, ac-

cessed on 1 Sep 2020.

38. “CVE-2004-1373”, https://www.cvedetails.com/cve/CVE-2004-1373/, 2004, ac-

cessed on 1 Sep 2020.

39. Gusmeroli, S., S. Piccione and D. Rotondi, “IoT Access Control Issues: A Capa-

bility Based Approach”, Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing , pp. 787–792, 2012.

40. Ouaddah, A., A. A. Elkalam and A. A. Ouahman, “Towards a Novel Privacy-

Preserving Access Control Model Based on Blockchain Technology in IoT”,

Á. Rocha, M. Serrhini and C. Felgueiras (Editors), Europe and MENA Cooper-

ation Advances in Information and Communication Technologies , pp. 523–533,

Springer International Publishing, Cham, 2017.

41. Alladi, T., V. Chamola, B. Sikdar and K.-K. R. Choo, “Consumer IoT: Security

vulnerability case studies and solutions”, IEEE Consumer Electronics Magazine,

50

Vol. 9, No. 2, pp. 17–25, 2020.

42. “Understanding Denial-of-Service Attacks”, https://us-

cert.cisa.gov/ncas/tips/ST04-015, 2019, accessed on 1 Sep 2020.

43. Kolias, C., G. Kambourakis, A. Stavrou and J. Voas, “DDoS in the IoT: Mirai and

Other Botnets”, Computer , Vol. 50, No. 7, p. 80–84, 2017.

44. “Announcing the ADVANCED ENCRYPTION STANDARD (AES)”,

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf, 2001, accessed

on 1 Sep 2020.

45. Diffie, W. and M. Hellman, “New directions in cryptography”, IEEE Transactions

on Information Theory , Vol. 22, No. 6, pp. 644–654, 1976.

46. Pammu, A. A., K. Chong, W. Ho and B. Gwee, “Interceptive side channel attack

on AES-128 wireless communications for IoT applications”, IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS), pp. 650–653, 2016.

47. Mangard, S., “A Simple Power-Analysis (SPA) Attack on Implementations of the

AES Key Expansion”, P. J. Lee and C. H. Lim (Editors), Information Security

and Cryptology — ICISC 2002 , pp. 343–358, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2003.

48. Acıiçmez, O., W. Schindler and Ç. K. Koç, “Cache Based Remote Timing Attack

on the AES”, M. Abe (Editor), Topics in Cryptology – CT-RSA 2007 , pp. 271–286,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

49. Barker, E., L. Chen, A. Roginsky, A. Vassilev and R. Davis, “Recommen-

dation for pair-wise key-establishment schemes using discrete logarithm cryp-

tography”, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

56Ar3.pdf, 2018, accessed on 1 Sep 2020.

51

50. Brumley, D. and D. Boneh, “Remote Timing Attacks Are Practical”, Proceedings

of the 12th Conference on USENIX Security Symposium - Volume 12 , SSYM’03,

p. 1, USENIX Association, USA, 2003.

51. Acıiçmez, O., Çetin Kaya Koç and J.-P. Seifert, “On the power of simple branch

prediction analysis”, ACM Symposium on Information, Computer and Communi-

cations Security (ASIACCS’07), pp. 312–320, ACM Press, 2007.

52. Pellegrini, A., V. Bertacco and T. Austin, “Fault-based attack of RSA authenti-

cation”, Design, Automation Test in Europe Conference Exhibition (DATE 2010),

pp. 855–860, 2010.

53. Biehl, I., B. Meyer and V. Müller, “Differential Fault Attacks on Elliptic Curve

Cryptosystems”, M. Bellare (Editor), Advances in Cryptology — CRYPTO 2000 ,

pp. 131–146, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

54. “Choosing safe curves for elliptic-curve cryptography”, http://safecurves.cr.

yp.to/, accessed on 1 Sep 2020.

55. Nundloll, V., B. Porter, G. S. Blair, J. Cosby, B. Emmett, B. Winterbourn,

G. Dean, P. Beattie, R. Shaw, D. Jones, D. Chadwick, M. Brown, W. Shelley

and I. Ullah, “The Design and Deployment of an End-to-end IoT Infrastructure for

the Natural Environment”, CoRR, Vol. abs/1901.06270, 2019.

56. Auer, L., C. Skubich and M. Hiller, “A Security Architecture for RISC-V based

IoT Devices”, Design, Automation Test in Europe Conference Exhibition (DATE),

pp. 1154–1159, 2019.

57. Costello, C. and P. Longa, “FourQ: four-dimensional decompositions on a Q-curve

over the Mersenne prime”, T. Iwata and J. H. Cheon (Editors), Advances in Cryp-

tology Conference - ASIACRYPT 2015 , p. 214–235, Springer Berlin Heidelberg,

2015.

52

58. Behnia, R., M. O. Ozmen and A. A. Yavuz, “ARIS: Authentication for Real-Time

IoT Systems”, IEEE International Conference on Communications (ICC), pp. 1–6,

2019.

59. Sridharan, R. and T. Jeyaprakash, “Security for Data in IOT Using a New APS

Elliptic Curve Light Weight Cryptography Algorithm”, Artificial Intelligence Tech-

niques for Advanced Computing Applications Lecture Notes in Networks and Sys-

tems , p. 137–146, 2020.

60. Koblitz, N., “Elliptic Curve Cryptosystems”, Mathematics of Computation, Vol. 48,

No. 177, pp. 203–209, 1987.

61. Chelton, W. N. and M. Benaissa, “Fast Elliptic Curve Cryptography on FPGA”,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems , Vol. 16, No. 2,

pp. 198–205, 2008.

62. Sining Liu, F. Bowen, B. King and Wei Wang, “Elliptic curves cryptosystem im-

plementation based on a look-up table sharing scheme”, IEEE International Sym-

posium on Circuits and Systems , p. 4, 2006.

63. Choi, H. M., C. P. Hong and C. H. Kim, “High Performance Elliptic Curve Cryp-

tographic Processor Over GF(2163)”, 4th IEEE International Symposium on Elec-

tronic Design, Test and Applications (delta 2008), pp. 290–295, 2008.

64. Khan, Z. and M. Benaissa, “Throughput/Area-efficient ECC Processor Using

Montgomery Point Multiplication on FPGA”, IEEE Transactions on Circuits and

Systems II: Express Briefs , Vol. 62, No. 11, pp. 1078–1082, 2015.

65. Kodali, R. K. and H. S. Budwal, “High performance scalar multiplication for ECC”,

International Conference on Computer Communication and Informatics , pp. 1–4,

2013.

66. Furbass, F. and J. Wolkerstorfer, “ECC Processor with Low Die Size for RFID

53

Applications”, IEEE International Symposium on Circuits and Systems , pp. 1835–

1838, 2007.

67. Alrimeih, H. and D. Rakhmatov, “Fast and Flexible Hardware Support for ECC

Over Multiple Standard Prime Fields”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems , Vol. 22, No. 12, pp. 2661–2674, 2014.

68. Zhou, L., C. Su, Z. Hu, S. Lee and H. Seo, “Lightweight Implementations of NIST

P-256 and SM2 ECC on 8-bit Resource-Constraint Embedded Device”, ACM Trans.

Embed. Comput. Syst., Vol. 18, No. 3, pp. 23:1–23:13, 2019.

69. Liu, Z. and J. Großschädl, “New Speed Records for Montgomery Modular Multipli-

cation on 8-Bit AVR Microcontrollers”, D. Pointcheval and D. Vergnaud (Editors),

Progress in Cryptology – AFRICACRYPT 2014 , pp. 215–234, Springer Interna-

tional Publishing, Cham, 2014.

70. Microsoft, “FourQlib”, https://github.com/microsoft/FourQlib, 2017, ac-

cessed on 1 Sep 2020.

71. Chang, C., W. Lee, Y. Liu, B. Goi and R. C. . Phan, “Signature Gateway: Offload-

ing Signature Generation to IoT Gateway Accelerated by GPU”, IEEE Internet of

Things Journal , Vol. 6, No. 3, pp. 4448–4461, 2019.

72. Zheng, X., C. Xu, X. Hu, Y. Zhang and X. Xiong, “The Software/Hardware Co-

design and Implementation of SM2/3/4 Encryption/Decryption and Digital Signa-

ture System”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems , pp. 1–1, 2019.

73. Sharif, M. U., R. Shahid, K. Gaj and M. Rogawski, “Hardware-software codesign

of RSA for optimal performance vs. flexibility trade-off”, 26th International Con-

ference on Field Programmable Logic and Applications (FPL), pp. 1–4, 2016.

74. Waterman, A., Y. Lee, D. A. Patterson and K. Asanović, The RISC-V Instruction

54

Set Manual, Volume I: User-Level ISA, Version 2.1 , Tech. Rep. UCB/EECS-2016-

118, EECS Department, University of California, Berkeley, 2016.

75. Waterman, A., Y. Lee, R. Avizienis, D. A. Patterson and K. Asanović, The RISC-

V Instruction Set Manual Volume II: Privileged Architecture Version 1.9 , Tech.

Rep. UCB/EECS-2016-129, EECS Department, University of California, Berkeley,

2016.

76. Gayoso Martínez, V., L. Hernandez Encinas and C. Sánchez Ávila, “A Survey of

the Elliptic Curve Integrated Encryption Scheme”, Journal of Computer Science

and Engineering , Vol. 2, pp. 7–13, 2010.

77. Bernstein, D. J., “Curve25519: New Diffie-Hellman Speed Records”, M. Yung,

Y. Dodis, A. Kiayias and T. Malkin (Editors), Public Key Cryptography - PKC

2006 , pp. 207–228, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

78. Montgomery, P. L., “Modular Multiplication without Trial Division”, Mathematics

of Computation, Vol. 44, No. 170, pp. 519–521, 1985.

79. Tenca, A. F. and C. K. Koc, “A scalable architecture for modular multiplication

based on Montgomery’s algorithm”, IEEE Transactions on Computers , Vol. 52,

No. 9, pp. 1215–1221, 2003.

80. Mamiya, H., A. Miyaji and H. Morimoto, “Efficient Countermeasures against RPA,

DPA, and SPA”, M. Joye and J.-J. Quisquater (Editors), Cryptographic Hardware

and Embedded Systems - CHES 2004 , pp. 343–356, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004.

81. “GCC insn directive”, https://embarc.org/man-

pages/as/RISC_002dV_002dFormats.html, accessed on 1 Sep 2020.

82. Davide Schiavone, P., F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand

and L. Benini, “Slow and steady wins the race? A comparison of ultra-low-power

55

RISC-V cores for Internet-of-Things applications”, 27th International Symposium

on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp.

1–8, 2017.

83. Karatsuba, A. and Y. P. Ofman, “Multiplication of Many-Digital Numbers by

Automatic Computers”, Dokl. Akad. Nauk SSSR, Vol. 145:2, pp. 293–294, 1963.

84. Samaila, M. G., J. B. F. Sequeiros, T. Simões, M. M. Freire and P. R. M. Inácio,

“IoT-HarPSecA: A Framework and Roadmap for Secure Design and Development

of Devices and Applications in the IoT Space”, IEEE Access , Vol. 8, pp. 16462–

16494, 2020.

85. Tehrani, E., T. Graba, A. S. Merabet, S. Guilley and J. Danger, “Classifica-

tion of Lightweight Block Ciphers for Specific Processor Accelerated Implementa-

tions”, 26th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pp. 747–750, 2019.

86. Genkin, D., L. Valenta and Y. Yarom, “May the Fourth Be With You: A

Microarchitectural Side Channel Attack on Several Real-World Applications of

Curve25519”, ACM SIGSAC Conference on Computer and Communications Secu-

rity , CCS ’17, p. 845–858, Association for Computing Machinery, 2017.

87. Yarom, Y. and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise,

L3 Cache Side-Channel Attack”, Proceedings of the 23rd USENIX Conference on

Security Symposium, SEC’14, p. 719–732, USENIX Association, USA, 2014.

88. Alam, M., H. A. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic and M. Prvulovic,

“One&Done: A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time

Blinded RSA”, 27th USENIX Security Symposium (USENIX Security 18), pp. 585–

602, USENIX Association, Baltimore, MD, 2018.

89. Fan, J., X. Guo, E. De Mulder, P. Schaumont, B. Preneel and I. Verbauwhede,

“State-of-the-art of secure ECC implementations: a survey on known side-channel

56

attacks and countermeasures”, IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), pp. 76–87, 2010.

90. Page, D., “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel”,

IACR Cryptology ePrint Archive, Vol. 2002, p. 169, 2002.

91. Mantel, H., A. Weber and B. Köpf, “A Systematic Study of Cache Side Chan-

nels Across AES Implementations”, E. Bodden, M. Payer and E. Athanasopoulos

(Editors), Engineering Secure Software and Systems , pp. 213–230, Springer Inter-

national Publishing, Cham, 2017.

92. Coppens, B., I. Verbauwhede, K. D. Bosschere and B. D. Sutter, “Practical Miti-

gations for Timing-Based Side-Channel Attacks on Modern x86 Processors”, 30th

IEEE Symposium on Security and Privacy , pp. 45–60, 2009.

93. Popp, T., S. Mangard and E. Oswald, “Power Analysis Attacks and Countermea-

sures”, IEEE Design Test of Computers , Vol. 24, No. 6, pp. 535–543, 2007.

94. Fouque, P.-A., N. Guillermin, D. Leresteux, M. Tibouchi and J.-C. Zapalow-

icz, “Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication”,

E. Prouff and P. Schaumont (Editors), Cryptographic Hardware and Embedded Sys-

tems – CHES 2012 , pp. 447–462, Springer Berlin Heidelberg, Berlin, Heidelberg,

2012.

