
ADVERSARIAL ONE-SHOT VOICE CONVERSION USING DISENTANGLED

REPRESENTATIONS

by

Ali Yeşilkanat

B.S., Computer Engineering, Ege University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2020

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Prof. Sadık Fikret

Gürgen, who has given me the opportunity to pursue my master’s education and su-

pervised my research. I would also like to express my gratefulness to Assist. Prof.

Heysem Kaya, for his expertise and guidance during my studies.

I would also like to thank Prof. Murat Saraçlar and Assist. Prof. Tevfik Aytekin

for their valuable contribution and comments on my thesis.

I owe my deepest gratitude to my family, especially my mother, for their endless

love and support throughout my life.

Lastly, I would especially like to thank Deniz Engin for motivating me during my

hard moments throughout my research. Without her support, I could not have been

accomplished this work.

iv

ABSTRACT

ADVERSARIAL ONE-SHOT VOICE CONVERSION

USING DISENTANGLED REPRESENTATIONS

In this thesis, a new adversarial one-shot voice conversion (VC) method is in-

troduced by enhancing one of the latest variational autoencoder based one-shot VC

methods. The proposed method utilizes acoustic features as Mel-spectrograms and re-

lies on disentangled representations by separating speaker and content representations

of the spoken content. An adversarial loss and perceptual loss are combined in order

to increase the quality of generated Mel-spectrograms. We train a speaker classifier by

utilizing the architecture of a well-known model in the computer vision area, to be able

to adapt perceptual loss during the training of the VC model. We conduct experiments

on the Voice Cloning Toolkit dataset and evaluate the proposed approach in terms of

Global Variance and MOSNet, a humanoid opinion score simulator. Experimental

results indicate that our approach improves VC quality remarkably.

v

ÖZET

ÇÖZÜLMÜŞ GÖSTERİMLERİ KULLARARAK TEK

ÖRNEKLE ÇEKİŞMELİ SES DÖNÜŞÜMÜ

Bu tezde, en yeni varyasyonel özkodlayıcı tabanlı tek örnekli ses dönüşümü

yöntemlerinden biri geliştirilerek yeni bir ses dönüştürme yöntemi tanıtılmıştır. Öneri-

len yöntem, akustik öznitelikler olarak Mel-spektrogramları kullanmakta ve konuşulan

içeriğin konuşmacı ve içerik gösterimlerini ayırarak çözülmüş gösterimler oluşturmakta-

dır. Üretilen Mel-spektrogramlarının kalitesini arttırmak için çekişmeli ve algısal kayıp-

lar kullanılmıştır. Ses çevrim modelinin eğitimi sırasında algısal kaybı uyarlayabilmek

için bilgisayarlı görme alanında iyi bilinen bir modelin mimarisini kullanarak bir konuş-

macı sınıflandırıcısı eğitilmiştir. Voice Cloning Toolkit veri seti üzerinde deneyler

yapılmış, global varyans ve insansı bir yorum simülatörü olan MOSNet açısından

değerlendirilmiştir. Deneysel sonuçlar, çalışmamızın referans aldığımız ses dönüşüm

yönteminin ses çevrim kalitesini önemli ölçüde artırdığını göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

2. RELATED WORK . 3

3. SPEECH ANALYSIS AND SYNTHESIS . 6

3.1. Feature Extraction . 9

4. AN OVERVIEW OF VOICE CONVERSION 11

4.1. Feature Alignment . 11

4.2. Feature Conversion . 12

4.2.1. Mapping Codebooks . 13

4.2.2. Gaussian Mixture Models . 13

4.2.3. Frequency Warping . 15

4.2.4. Deep Learning . 15

5. ADVERSARIAL ONE-SHOT VOICE CONVERSION 27

5.1. One-shot Voice Conversion by Disentangled Representations with In-

stance Normalization . 28

5.1.1. Adaptive Instance Normalization 31

5.2. Adversarial Loss . 33

5.3. Perceptual Loss . 36

5.4. Learning Objective . 37

5.4.1. Adversarial VC . 37

5.4.2. Adversarially Decoded VC . 37

5.4.3. Adversarially Decoded & Perceptually VC 38

5.5. Architecture Details . 39

vii

6. EXPERIMENTS AND RESULTS . 41

6.1. Datasets . 41

6.1.1. VCTK . 41

6.1.2. Librispeech . 42

6.2. Evaluation Metrics . 42

6.2.1. Global Variance . 42

6.2.2. MOSNet . 42

6.3. Experimental Results . 43

6.3.1. Implementation Details . 43

6.3.2. Results . 44

7. CONCLUSION AND FUTURE WORK . 50

REFERENCES . 52

viii

LIST OF FIGURES

Figure 4.1. Artificial Neuron diagram [1]. 16

Figure 4.2. Common activation functions in neural networks [2]. 16

Figure 4.3. Network graph for a (L+ 1)-layer perceptron. 17

Figure 4.4. Autoencoder. 18

Figure 4.5. Difference between AE and VAE [3]. 19

Figure 4.6. Recursive Neural Networks [4]. 23

Figure 4.7. Similarity between CNNs and animal visual cortex [5]. 24

Figure 4.8. 1D convolution and max pooling operations over a spectrogram

frame [6]. 24

Figure 4.9. Gated Convolutional Neural Network [7]. 25

Figure 5.1. One Shot Voice Conversion with AdaIN - Training. 27

Figure 5.2. One Shot Voice Conversion with AdaIN - Test. 28

Figure 5.3. Encoder and Decoder architectures of the conversion model [8]. . . 39

Figure 5.4. Discriminator Architecture. 40

Figure 5.5. Architecture of VGG16 [9]. 40

ix

Figure 6.1. Global Variance of the seen speakers conversions. 45

Figure 6.2. Global Variance of the unseen speakers conversions. 45

Figure 6.3. Spectrogram Heatmaps of the source, target and converted utter-

ances for seen test set. 48

Figure 6.4. Spectrogram Heatmaps of the source, target and converted utter-

ances for unseen test set. 49

x

LIST OF TABLES

Table 5.1. Experiments and according model settings. 38

Table 6.1. Seen speakers conversions MOSNet Results. 46

Table 6.2. Unseen speakers conversions MOSNet Results. 46

xi

LIST OF SYMBOLS

a ∼ p(b) a has the probability distribution of p(b)

b Bias

D Discriminator

E Expectation

f Function

G Generator

I Identity Matrix

L Loss

Lcritic Critic Loss

Ldec Dec Loss

Ldisc Discriminator Loss

LKL KL Loss

Lperc Perceptual Loss

Lrec Reconstruction Loss

Lvae VAE Loss

Lvae+perc Summation of VAE and Perceptual Loss

M Number of distributions, Number of frequency bands

N Gaussian Distribution

p(a) Probability of an event a

p(a, b) Joint probability of a and b

p(a|b) Conditional Probability of a given b

R Real Number

T Transpose

tr Trace

x Random variable

w Weight

W Weight

z Latent Variable

xii

β Affine Parameter

∆ Difference

ε Error

η Learning Rate

∈ Element of

γ Affine Parameter

Γ Gamma Distribution∫
Integral

λrec Reconstruction Loss Weight Factor

λperc Perceptual Loss Weight Factor

λkl KL Loss Weight Factor

λadv Adversarial Loss Weight Factor

λkl Reconstruction Loss Weight Factor

µ Mean Vector

∇ Gradient Operator

σ Standard Deviation

Σ Covariance Matrix∑
Summation

θ Model Weights

θD Discriminator Weights

θEc Content Encoder Weights

θEDec Decoder Weights

θEs Speker Encoders Weights

⊗ Hadamard Product

* Convolution Operator

| | Absolute Value

|| || L1 Norm

|| ||2 L2 Norm

xiii

LIST OF ACRONYMS/ABBREVIATIONS

AE Autoencoder

ANN Artificial Neural Network

AdaIN Adaptive Instance Normalization

BN Batch Normalization

CNN Convolutional Neural Network

DBLSTM Deep Bidirectional Long-short Term Memory

DL Deep Learning

DNN Deep Neural Network

DTW Dynamic Time Warping

EM Expectation Maximization

FD-PSOLA Frequency Domain Pitch Synchronous Overlap and Add

FFT Fast Fourier Transform

FP Floating Point

GAN Generative Adversarial Network

GLU Gated Linear Units

GMCC Generalized Mel Cepstral Coefficients

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

GV Global Variance

HMM Hidden Markov Model

HNM Harmonic Plus Noise Model

IN Instance Normalization

JDGMM Joint Density Gaussian Mixture Model

KL Kullback-Leibler

LP-PSOLA Linear Prediction Pitch Synchronous Overlap and Add

LPCC Linear Predictive Cepstral Coefficients

LSF Line Spectral Frequencies

xiv

LSTM Long Short Term Memory

MFCC Mel Frequency Cepstral Coefficients

MOS Mean Opinion Score

NN Neural Network

PSOLA Pitch Synchronous Overlap and Add

RBM Restricted Boltzman Machine

RNN Recursive Neural Network

STFT Shor Term Fourier Transform

STRAIGHT Speech Transformation and Representation Using Adaptive

Interpolation of Weighted Spectrum

TD-PSOLA Time Domain Pitch Synchronous Overlap and Add

TTS Text To Speech

VAE Variational Autoencoder

VC Voice Conversion

VQ Vector Quantization

WGAN Wasserstein Generative Adversarial Network

WGANGP Wasserstein Generative Adversarial Network with Gradient

Penalty

1

1. INTRODUCTION

Voice Conversion (VC) is a problem whose goal is the modification of the source

speech signal to target speech signal in a direction that linguistic aspects of the spoken

content do not alter, but source utterance’s properties such as style and identity are

reconstructed according to target. VC is used in various applications such as speech

enhancement, voice restoration, language learning, text-to-speech [10]. VC has been

an intensely researched [11–15] problem, containing most of the aspects of speech pro-

cessing and speech synthesis areas [10, 16].

Corpora for the VC tasks are split into parallel and non-parallel related to ut-

tered text. For parallel data, speakers utter same script; however, in non-parallel data,

speakers speak freely without any linguistic restriction. In the literature, various meth-

ods for parallel [14,17,18] and non-parallel [19–21] data are proposed. VC applications

generally designed to expect and generate acoustic features such as formants [22], and

spectrums [23]. In a recent work [24], raw-audio transformation is also studied.

Initial VC systems are developed using Vector Quantization (VQ) [14], and Gaus-

sian Mixture Models (GMM) based statistical models [17]. Also, studies using Artificial

Neural Networks (ANN) are proposed [25]. Thanks to the improvements on the com-

putational power, training deep neural networks has become easy and fast, thence VC

studies using DL proposed such as Convolutional Neural Networks (CNN) [21] and

Long Short-Term Memory (LSTM) [26], and they outperform the previous GMM and

ANN-based models [19,27]. By the great achievements on deep generative models, VC

research tend to study Generative Adversarial Networks (GAN) [20, 21, 28, 29], Auto

Encoders (AE) [30], Variational Auto Encoders (VAE) [31–34].

2

By the definition of the problem, studies about the separation of content and

speaker characteristics intuitively are proposed, which is named as disentangled rep-

resentations [20, 35] in computer vision area. This allows models to focus on learning

content and style separately leading to receive better conversions for the unseen speak-

ers in better quality. Also, one and zero-shot learning VC methods are proposed [8,30],

aiming to make the conversion of unseen speaker’s voices utterances by using only a few

utterances of the speaker. These methods, achieve better performance for converting

unseen speakers.

In this thesis, the aim is to propose a new adversarial one-shot voice conversion

system that utilizes disentangled representations. Our method is built upon a recent

one-shot voice conversion approach [8] based on the VAE model. The proposed model

takes and generates Mel-spectrogram features to be able to represent speech utterances.

Our main contribution is adding perceptual and adversarial losses into the baseline

model to improve the quality of the voice conversion. We also propose a speaker

recognition model to extract features to calculate the perceptual loss which improves

the quality of generated Mel-spectrogram visually. Experiments are performed on non-

parallel VCTK corpora [36]. The proposed method is evaluated on unseen speakers

during training for one-shot VC via separation of intergender and intragender by using

Global Variance and MOSNet as metrics. Experimental results demonstrate that the

proposed method outperforms significantly the baseline approach.

3

2. RELATED WORK

Voice Conversion problem has been an active research topic since Childers et

al. [37] identified this problem. Then, several statistical-based voice conversion meth-

ods are proposed until the advances in the deep learning area. Nowadays, deep learning

based methods on voice conversion gain more attention. Thus, voice conversion ap-

proaches based on statistical and learning are explained, separately, in this chapter.

Statistical Based Methods One of the pioneer voice conversion method pro-

posed by Abe et al. [14] was based on Vector Quantization (VQ). This method rep-

resents the correspondence between two speakers by a simple concept as mapping

codebooks. Shikano et al. [38] improved this method by representing the source vector

as a weighted linear combination of all the codewords to quantize fuzzy vectors to avoid

limitations of the discrete space representation. Valbert et al. [39] use a warping func-

tion, named as frequency warping, to minimizing spectral distances between source and

target spectrums. These proposed methods have produced high quality speech; how-

ever, they lack capturing speaker identity to convert because of the stationary in the

relative amplitude of the spectrum. To diminish this effect, Gaussian Mixtere Models

(GMM) based voice conversion methods have been proposed by Stylianou et al. [40,41]

that assume the probability distribution of the acoustic features as a combination of

Gaussians. Kane et al. [42] proposed Joint Density GMM (JDGMM) using the approx-

imation of the joint density of the source and target features by concatenating their

aligned forms. Iwanashi et al. [43] proposed another speech spectrum transformation

method by interpolating spectral patterns between pre-stored multiple speakers for

speech synthesis. These described methods above are required of parallel data, which

requires the source, and the target speakers speak the same utterance.

4

Various alignment methods for nonparallel data containing different utterance

for the source and the target speaker are proposed. Duxans et al. [44] proposed a

Text-To-Speech (TTS) synthesizer to produce the same text for source-target pairs.

HMM-based speech recognition models are used by Ye et al. [13] to labeling frames in

source and target speech and create a mapping. Ney et al. [45] proposes class-based

alignment by clustering source-target feature vectors independently into a given number

of classes and calculates the nearest neighbors of source vectors into the corresponding

target class. These methods aligns nonparallel speech pairs in order to convert spectral

features.

Learning Based Methods Artificial Neural Network (ANN) are used by Naren-

dranath et al. [46] for spectral conversion in the same manner with GMMs by using

formants. Desai Et al. [25] proposed a similiar VC with ANN but using MFCCs as

acoustic features. Radial Basis Function networks are proposed by Watanabe et al. [47]

by using representation linear predictive coding (LPC) based spectral envelopes; how-

ever, they cannot pass the success of GMMs. Chen et al. [48] used restricted Boltzman

machine (RBM) instead of GMM in order to model the Spectral joint density in order

to capture the inter-speaker and inter-dimensional dependencies, improving the quality

of the converted voice in terms naturalness.

Using Deep Belief Networks, which are multiple layered RBMs, Nakashika et

al. [19] proposed a VC system to extract higher feature space for speech. Mohammadi

et al. [27] uses the same hidden feature space learning idea with deep autoencoders.

Variational autoencoders are used by Blaauw et al. [31] by Gaussian distribution to

model latent space for VC. In the study of Kameoka et al. [32], VAE model with an

auxillary classifier for speakers is proposed for many-to-many non-paralel VC.

5

Xie et al. [49] introduced a sequence based refinement to frame based voice con-

version method using sequence error metric. Using Recurrent Temporal Restricted

Boltzmann Machines, Nakashi et al. [50] proposed a sequence based VC. Sun et al. [15]

proposed a sequence-to-sequence voice conversion method using Deep Bidirectional

Long-short Term Memory (DBLSTM). In the study of Ming et al. [26], DBLSTM

based sequence-to-sequence emotional VC is applied.

Kaneko et al. [21] proposed a CycleGAN based non-parallel voice conversion

method with gated Convolutional neural networks (CNN). StarGAN based many-to-

many non-parallel voice conversion system is proposed by Kameoka et al. [32]. Hsu et

al. [34] proposed a VAE based model with Wasserstein GAN for non-paralel VC.

Representation learning is concerning learning representations of the data for

making it easier to extract the information while modeling [51]. The underlying reason

for the contemporary progress of the neural network models is representation learning.

Disentangled representation means factorization, some latent cause, or causes of vari-

ation [52]. In voice conversion studies, disentangled representations are employed by

factorization of the style and content of the speech utterance. By the factorization of

both target and source utterances, the aim is to use target speakers’ style representa-

tion with the content representation of the source speaker. Chou et al. [20] proposed

a many-to-many VC by separating content and style representations of speech. In

their other study [8], they applied similar disentangled representation idea by adap-

tive instance normalization for one-shot VC. An autoencoder model is used by Qian

et al. [30] to create a zero-shot VC system by designing a bottleneck for disentangled

representations.

6

3. SPEECH ANALYSIS AND SYNTHESIS

Speech production is the process that translation the speaking intentions to a

hearable signal, which defined as speech. This process is created with pneumonic

thrust produced by the air from the lungs that generate sound by phonation into the

glottis in the larynx that then is modified by the vocal tract into different vowels and

consonants [53]. Speech recognition is the process that transformation of the uttered

sound waves from air into the brain as meanings. Uttered sound waves flow into the

ear canal until they reach the eardrum, which passes the vibrations through the middle

ear bones or ossicles into the inner ear, which called the cochlea, containing thousands

of tiny hair cells. These hair cells change the vibrations into electrical signals that are

sent to the brain through the hearing nerve, which will be transformed into meaning

by the brain. With speech production and recognition, human communicate, explain

themselves, and understands each other intentions unless some circumstances such as

language barrier, noisy, insufficiently quite audio wave or dysfunctionality in hearing

or production organs.

Speech Analysis and Synthesis is thereby modeling recognition and production of

human speech in a way that is analyzing speech signals by various features and mod-

eling or modifying and reconstructing speech signals by generated features. Typical

voice conversion frameworks consist of speech analysis and synthesis modules, which

are crucial to be high quality for conversion. Moreover, these two modules have a

tight connection; the output of the analysis module should have enough features in

order to achieve high quality in the synthesis module while reproducing the speech. As

a consequence, in voice conversion frameworks, the analysis module required to con-

vert speech signal into jointly independent representation elements as acoustic features

(spectral) and prosodic features (pitch, duration), and the synthesis module required to

reconstruct the speech signal from the analyzed parameters with high quality and nat-

uralness. Moreover, it should allow flexible modifications of the acoustic and prosodic

features without quality degradation.

7

The voice conversion task aims to transform the style of the speech to another

person’s voice, but not altering the linguistic content of it. Consequently, these frame-

works require to have a source and a target speaker for the content and style of the

synthesized, respectively. The converted speech signal is desired to be natural, having

the same language content of the source speaker and similar to the target speaker.

The most commonly applied speech models for building the speech analysis and

the speech reconstruction modules in voice conversion studies are concisely explained

in the following parts.

Pitch synchronous overlap and add (PSOLA) PSOLA is a method provid-

ing high-quality synthesized speech with artifact-free prosodic modification based on

the decomposition of a speech signal into various overlapping speech segments. Time

Domain PSOLA (TD-PSOLA) [54] is one of the methods basing on PSOLA method,

which works on time-domain for speech synthesis. It cannot be applied to voice conver-

sion tasks because it assumes no model for the speech signal, and it runs directly on the

samples in the time-domain. Consequently, it has no control over spectral envelopes.

For enabling spectral transformations, several variants of PSOLA are proposed

working on other then time-domain as TD-PSOLA and Frequency Domain PSOLA

(FD-PSOLA). Unlike TD-PSOLA, FD-PSOLA method transforms the speech signal

in the frequency domain, hence allowing for spectral manipulation. In Linear Predictive

PSOLA (LP-PSOLA), the PSOLA method is combined with a residual-excited LPC

model of speech by separating the signal into a time-domain excitation and a time-

varying spectral envelope. With this division, adjustments on the excitation signal are

combined with re-synchronized spectral envelopes in order to produce the converted

speech. As a result, FD-PSOLA and LP-PSOLA are more suitable for voice conversion

than TD-PSOLA and have been used in some of the voice conversion systems proposed

in the literature [39,55,56].

8

Sinusodial Models A sinusoidal model represents the speech waveform locally

as a sum of sinusoids whose parameters change with time [57]. A harmonic model

which is a particular type of a sinusoidal model whose sinusoids are estimated only at

frequencies which are multiples of the local fundamental frequency.

The sinusoidal model is used in many voice conversion systems [40, 58] because

of proving high-quality speech reconstruction and prosodic modification. Also, param-

eters of this model contain information about waveform and spectrum, which can be

used to estimate magnitude and phase spectral envelopes in order to manipulate and

convert voice.

Harmonic Plus Noise Model (HNM) HNM models are based on separation

in the frequency domain by a cut-off frequency, which called as maximum voiced fre-

quency, to decompose the speech signal into a harmonic and a noise component. The

harmonic component is modeled as the sum of harmonic sinusoids up to the maximum

voiced frequency, while the noise component is modeled as Gaussian noise, filtered by

a time-varying autoregressive filter. The decomposition of a speech signal into har-

monic and noise components allows for flexible modifications hence this model has

been applied for voice conversion systems in [40,59].

Speech Transformation and Representation using Adaptive Interpola-

tion of weiGHTed spectrum (STRAIGHT) The STRAIGHT [60] model divides

speech information into the mutually independent source and filter parameters by using

the same theory of the source-filter model [61]. It uses pitch-adaptive spectral analysis

consolidated with a surface reconstruction method in the time-frequency domain, and

an excitation source design based on phase manipulation. By using these procedures,

it decomposes the speech signal into three components as a smooth spectrogram, which

is free from periodicity in time and frequency, a fundamental frequency (F0) contour,

and a time-frequency periodicity map which captures the spectral shape of the noise

and also its temporal envelope.

9

STRAIGHT is a high-quality vocoder, and it allows flexible speech manipulation,

as the three components are mutually independent. Also, this kind of representation

is adequate to interpolate spectral envelopes and to extract speech parameters like the

cepstral coefficients. It has been used in a large range of voice conversion applica-

tions [12, 17,62,63].

Griffin and Lim, multiband excitation vocoder Griffin-Lim model [64] rep-

resents the short-time spectrum of speech as the product of an excitation spectrum

and a spectral envelope. It smoothly approximates the speech spectrum as a spectral

envelope. A fundamental frequency, a voiced/unvoiced, the decision for each harmonic

of the fundamental frequency, and the phase of each harmonic represents the excitation

spectrum. While synthesis, model parameters are approximated in the time domain for

voice part of the speech in the frequency domain for the unvoiced part of the speech.

This model has been used widely in voice conversion systems [65].

3.1. Feature Extraction

Feature extraction module (or speech parameterization) uses outputs of speech

analysis modules to extract features in many speech-related applications, including

voice conversion task. In some cases, results of analysis like signal periods, short-time

spectrum samples, LPC coefficients, amplitudes/frequencies/phases are used directly

bypassing this step [24, 66], yet using these makes the voice conversion problem more

complicated and computationally expensive. Some popular feature extraction methods

used in voice conversion in the literature are discussed briefly on the following.

Formants Formants are resonating frequencies of the vocal tract, which are

peaks of the spectral envelope. They have played a dominant role in the studies of

both speech production and perception, particularly with vowels. Formants are de-

pendent on speaker identity because the length of the pharyngeal-oral tract depends

on the physical size of the speaker, which effecting the frequency locations of all vowel

formants. Parameters related to formants, like formant frequencies, bandwidths, and

intensity, are used in several voice conversion tasks [14,22,67].

10

Cepstral Coeficients A cepstrum is a result of taking the Inverse Fourier trans-

form of the logarithm of the estimated spectrum of a signal. The name ”cepstrum” was

derived by reversing the first four letters of ”spectrum”. They model both spectrum

peaks and valleys. Cepstral Coefficients have been widely used in speech-related sys-

tems; also, they provide a reliable measure of the acoustic distance between different

frames, which is a necessary property for alignment tasks. Mel-Cepstral Coefficients

(MCCs) [18], Generalized Mel-Cepstral Coefficients (GMCCs) [68], and Linear Pre-

dictive Cepstral Coefficients (LPCC) [69] are popular cepstral features used for voice

conversion applications.

Line spectral frequencies (LSF) LSFs are individual representations of all-

pole filters. The coefficients are close to formants, ordered ascendingly, which guaran-

teeing filter stability, and perturbations of them have only affect locally on the spec-

trum [70]. LSF is used in some voice conversion tasks [58, 71].

11

4. AN OVERVIEW OF VOICE CONVERSION

In this chapter, a background information about voice conversion methods is

explained. Different alignment techniques for features are also discussed for parallel

and non-parallel speech corpus.

4.1. Feature Alignment

In voice conversion problems, there are two sorts of training sets as parallel and

nonparallel data. In parallel data, source and target speakers utter the same text during

recording; however, in nonparallel data, speakers speak freely without any linguistic

restriction except language. Parallel and nonparallel data require different feature

alignment methods. However, in voice conversion, alignment may not be required

depending on feature conversion methods.

Parallel Data When parallel data is available, the most applied algorithm is

dynamic time warping (DTW) for aligning frames [72] in voice conversion [14, 18].

However, it does not take into account the differences between speakers because of

searching the path of minimal global distortion among source-target pairs. There are

some additions made on DTW for this purpose in the literature [16].

Another technique for frame alignment is based on Hidden Markov Models

(HMM) requiring phonetic transcription of frames. In this method, utterances seg-

mented into phonetic parts using speaker-dependent models and linear time warp-

ing [44] or dynamic time warping [58] are used to obtain higher similarity within the

source and target feature vectors. However, this approach needs extremely data from

both speakers.

12

Nonparallel Data In a practical voice conversion application, there may be

only nonparallel corpora ready for the training stage. Several methods are proposed

for aligning nonparallel data.

Using a Text-To-Speech (TTS) synthesizer, the alignment problem can be solved

if there is enough data for the speaker to train the TTS model. In this case, after

training the TTS module, the same texts are synthesized for source-target speaker

pairs and then aligned by parallel data alignment methods [44].

In class-based frame alignment, clustering source and target feature vectors inde-

pendently into the number of classes is aimed [45]. After the mapping among speaker

pairs is established, alignment is made by finding the nearest neighbor of each source

vector into the corresponding target class.

The reverse of TTS based alignment, HMM-based speaker-independent speech

recognition model is used to label all frames in source and target speech with HMM

state identity to create a mapping between them. Subsequent to the mapping, the

longest matching sequence from source to target speech is found [13]. The performance

of speech recognizer is indispensable in this approach.

4.2. Feature Conversion

Voice conversion tasks aim to transform the identity of a speaker into another

speaker’s content. This identity can be represented in various features such as the

pitch contour, the spectral envelope, the speaking rate, the duration of the pauses,

or the prosody of the speaker. However, modeling all these features are not always

essential because of complexity and information they contain is not suitable for voice

conversion tasks. Spectral envelopes, used as the gist of the many voice conversion

tasks [10], have discriminative features for speaker identity than other features [73].

In this section, some popular spectral envelope conversion, called generally as spectral

conversion, methods will be discussed briefly.

13

4.2.1. Mapping Codebooks

One of the simple basic voice conversion method is codebook mapping, which

requires aligned source and target utterances. The primary intention is generating a

mapping codebook as a compound of the source and target speaker frame-wise feature

vectors.

Some distinct approaches are proposed in the literature for this kind of mapping,

such as quantizing vectors independently with DTW for the frame-level match, then

calculating the correspondences for each source entry to the target codebook entries in

the form of histograms [14]. In the conversion phase, the source speaker’s input utter-

ance is analyzed, and the spectrum parameters are vector-quantized using the source

speaker’s codebook in order to decode using the source-target mapping codebooks.

Furthermore, by representing the source vector as a weighted linear combination of all

the codewords, fuzzy vector-quantization [38] is formed by using every correspondence

within the two sets of codewords in the conversion.

4.2.2. Gaussian Mixture Models

In the voice conversion, using statistical methods for spectral envelopes trans-

formation opens a new route. Previously mentioned methods based on the vector-

quantization algorithm have drawbacks for discontinuities in the conversion function

near the transitions between classes. To diminish the effect of this detriment, the divi-

sion of the acoustic space into overlapping classes to which input vectors belong with

a certain probability is applied. Taking this idea into consideration, spectral conver-

sion methods based on GMM are developed [40, 41]. In these approaches, it has been

assumed that the probability distribution of the acoustic features are represented as a

combination of Gaussian distributions which are fitted to the training acoustic vectors

of the source speaker utilizing expectation-maximization (EM) algorithm.

14

In Equation 4.1 feature vectors are expressed as multivariate distributions for

GMM spectral conversion

p(x) =
M∑
c=1

αcN(x;µc,Σc) (4.1)

where p is the dimension of feature vectors, N(x;µc,Σc) are Gaussians representing

the source speaker’s acoustic space defined by the mean vector of size p, µ and the

covariance matrix Σ of size p× p, and M is the number of distributions, and αc is the

weight assigned to the cth gaussian component of the model. A GMM-based spectral

conversion function can be seen in Equation 4.2.

F (x) =
M∑
c=1

pc(x)
[
vc + ΓcΣ

−1
c (x− µi)

]
(4.2)

where the parameters vc and Γc are a mean vector and a covariance matrix Σc, which

are calculated during the training phase by minimizing the least squares error given

by the distance between the transformed vectors F (xk), and the corresponding aligned

target vectors yk. Converted acoustic features are a combination of different mean and

variance transformations of the source frames, where each transformation is weighted

by its posterior probabilities.

A GMM may also be used for approximation of joint density of the source and

target features by concatenating their aligned forms, named as Joint Density (JDGMM)

[42], and can be calculated as Equation 4.3.

F (x) =
M∑
c=1

pxc (x)
∣∣µyc + Σyx

c Σx−1
c (x− µxc)

∣∣ ,µc =

 µxc

µyc

 Σc =

 Σxx
c Σxy

c

Σyx
c Σyy

c

 (4.3)

15

4.2.3. Frequency Warping

Frequency warping methods intend to find a warping function that minimizes the

spectral distance between the source and target spectrum. On the conversion stage, the

warping function is applied to the source spectrum frame by frame to produce target

speech [71]. Customized versions of this idea are implemented in the literature. One

of them is dynamic time warping, which uses dynamic programming for finding the

warping function generating a frequency warping path that achieves the lowest spectral

distance [39].

In the frequency warping quality of the speech is reported to be very high, but

the identity of the target speaker is not entirely captured because of stationary in the

relative amplitude of the spectrum. There is also a combination of frequency warping

with HMM models [74] in order to improve dissimilarity issues; even though, they still

have limitations in the identity conversion.

4.2.4. Deep Learning

Neural Network (NN) is a non-linear statistical model for approximation between

input and output samples, and it has been applied for various voice conversion tasks in

the likewise reason with GMMs for spectral mapping [75]. A neural network is formed

as input, optionally no or one hidden layer but generally multiple hidden layers, and

output layer. Each layer is made of artificial neurons that have parameters such as

activation functions, weights, and biases [76] and can be identified as Equation 4.4.

y = f(Wx+ b) (4.4)

where W, b, f, y, represent weight, bias, activation function, and output, respectively,

during training process W and b are optimized by a certain objective function. The

activation function, f , is a mathematical “gate” in between the input feeding the

current neuron and its output going to the next layer, which is a transformation that

maps the input signals into output signals.

16

x1 w1

x2 w2 Σ fact

Activation

function

yout
Output

x3 w3

Weights

Bias

b

Inputs

Figure 4.1. Artificial Neuron diagram [1].

In a neural network, numeric data points, called inputs, are fed into the neurons

in the input layer. Each neuron has a weight, and multiplying the input number with

the weight gives the output of the neuron, which is transferred to the next layer.

Figure 4.2. Common activation functions in neural networks [2].

Neural networks are trained by an algorithm named backpropagation that aims

to minimize the cost function, which is the average loss function for the training set,

iteratively by modifying the network’s weights and biases. The level of change is

decided by the gradients of the cost function with respect to those parameters [76].

17

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

input layer
1st hidden layer Lth hidden layer

output layer

Figure 4.3. Network graph of a (L+ 1)-layer perceptron with D input units and C

output units. The lth hidden layer contains m(l) hidden units. [1]

Gradient Descent is one of the most famous optimizers which are used for updat-

ing the weights of the neural network. It updates the weights by summing the result of

multiplying the gradient in that weight by the given parameter called learning rate [77],

formulation can be seen in Equation 4.5.

∆w = −η ∂L
∂w

w[n+ 1] = w[n] + ∆w

(4.5)

where, w is the weight vector, n is the iteration, η represents the Learning Rate and L

is the loss function.

Early ANN models are used for spectral transformation methods with differ-

ent acoustic representations in the literature [23, 46]; however, these systems are out-

performed by GMM models. Also, inspiring by the JDGMM based voice conversion

methods, restricted Boltzmann machines (RBM) are utilized to represent the joint

distributions of source and target speech features as probably density model [48].

18

Following the impression of Deep Learning a particular sort of machine learn-

ing algorithm that makes use of a cascade of multiple layers of nonlinear processing

units for feature extraction and transformation [78], different forms Deep Neural Net-

works (DNN), are produced for voice conversion. Deep Belief Networks, which contain

multiple RBM layers, are used to obtain higher-order feature space of source and tar-

get utterances in order to convert [19]. For the identical responsibility among DBN

concerning extracting higher representations, Deep Autoencoder models are used for

conversion tasks [27].

x Encoder z Decoder x̂

Figure 4.4. Autoencoder.

A typical autoencoder has encoder and decoder components joined by a hidden

layer, which named latent representation. The encoder tries to reduce input x into z

lower-dimensional space, and the decoder tries to decompress z latent space into x̂,

reconstruction of input x. Nevertheless, the fundamental problem with autoencoders

is that their latent space may not be continuous or allow smooth interpolation, which

brings two concerns. One of them is they always replicate their inputs without any

variation, the other one is that if a latent space has discontinuities and sampled from

these gaps, then the decoder will produce an unrealistic output because of unseen

encoded vectors coming from that range of the latent space. To handle these prob-

lems, Variational Autoencoders (VAE) are proposed whose continuous latent spaces

providing simple random sampling and interpolation, which makes them valuable for

generative modeling [79].

19

VAE, one of the most common continuous latent variable models, learns a latent

space Z = RQ using a given set of samples {y} ⊆ Y = RR where Q � R. Figure 4.5

gives an overview of variational autoencoders, x is represented as y in equations. The

model consists of two components which are the generative model p(y|z), named ”de-

coder” in VAE, given a fixed prior p(z), and the inference model q(z|y) named marginal

likelihood also ”encoder” in VAE.

Figure 4.5. Difference between AE and VAE [3].

p(y) =

∫
p(y, z)dz =

∫
p(y|z)p(z)dz (4.6)

Approximation of data distribution is given in Equation 4.6. For simple Gaussians

can be determined and maximized analytically, however this is not always possible. In

VAE, the main idea is to attempt to sample values of z that are likely to have produced

y, and compute p(y) from z using a new function q(z|y) which can take a value of y

and returns a distribution over z values that are likely to produce y. This procedure

is identified as variational inference that is the problem of finding a model distribution

q(z) to approximate the true posterior p(z|y).

20

While training a VAE model, this is accomplished by minimizing the distance

between q(z) and p(z|y) using Kullback-Leibler (KL) divergence as a distance measure

on probability distributions.

KL(q(z)|p(z|y)) = Eq(z)
[
ln

q(z)

p(z|y)

]
(4.7)

where Eq(z) represents the expectation with respect to the distribution q(z).

Proof. Rewrite KL divergence by using Equation 4.6.

KL(q(z)|p(z|y)) = Eq(z)
[
ln

q(z)

p(z|y)

]
=Eq(z)[ln q(z)]− Eq(z)[ln p(z|y)]

=Eq(z)[ln q(z)]− Eq(z)[ln p(z, y)] + ln p(y) (4.8)

Re-arranging Equation 4.8 leads to the evidence lower bound, also referred to as vari-

ational lower bound.

ln p(y) =KL
(
q(z)|p(z|y))− Eq(z)[ln q(z)] + Eq(z)[ln p(z, y)]

≥ −Eq(z)[ln q(z)] + Eq(z)[ln p(z, y)]

= −Eq(z)[ln q(z)] + Eq(z)[ln p(z)] + Eq(z)[ln p(y|z)]

= −KL(q(z)|p(z)) + Eq(z)[ln p(y|z)]

As a result, maximizing the intractable marginal likelihood p(y) in Equation 4.6 trans-

formed into approximation by maximizing the evidence lower bound, which defined in

Equation 4.9.

−KL(q(z)|p(z)) + Eq(z)[ln p(y|z)] = Eq(z)
[
ln
p(y, z)

q(z)

]
(4.9)

21

In the circumstances concerning latent variable models, q(z) in Equation 4.9 shall

depend on y explicitly in the same manner with q(z|y) in order to reconstruct any y

from the corresponding latent z.

−KL(q(z|y)|p(z)) + Eq(z|y)[ln p(y|z)] = Eq(z|y)

[
ln
p(y, z)

q(z|y)

]
(4.10)

In Equation 4.10, q(z|y) represents the encoder, and p(y|z) the decoder which can be

combined as autoencoder and implemented as a neural network, hence it can be trained

by maximizing the right-hand-side of Equation 4.10 after choosing suitable parameters

for distributions p(z) and q(z|y). Back-propagating the error through a layer that

samples z from q(z|y), which is a non-continuous operation and has no gradient, hence

reparameterization trick is applied by a differentiable transformation g(z, ε) based on

an auxiliary variable ε drawn from a distrubition. Generally, in VAE q(z|y) and p(z)

are Gaussians because of their easy reparameterization [80].

q(z|y) = N
(
z;µ(y;w), diag

(
σ2(y;w)

))
(4.11)

p(z) = N (z; 0, IQ) (4.12)

In Equation 4.11, w represents the weights of the neural network, which are parameters

of mean and covariance matrix of q(z|y). N is the Gaussian distribution and IQ ∈ RQ×Q

in Equation 4.12 is the identity matrix.

zi = gi(y, εi)

= µi(y) + εiσ
2
i (y)

εi ∼ N (ε; 0, 1)

In conclusion, given a sample ym ∈ RR, the objective to be minimized has the form.

LVAE(w) = KL(q(z|ym)|p(z))− 1

L

L∑
l=1

ln p(ym|zl,m)

22

VAEs are used in many voice conversion systems [8, 28,31–33]. GANs are one of

the most popular deep generative models that aim to model data distribution based on

differentiable generators networks and discriminator networks. The generator network

produces samples from x = g(z; θ(g)), which z is known distribution. Its adversary,

the discriminator network, attempts to distinguish between samples drawn from the

training data and samples drawn from the generator as probability value given by

d(x; θ(d)), indicating the probability that x is a real training example rather than a

fake sample drawn from the model. Formally, the game between the generator G and

the discriminator D is the minimax objective:

min
G

max
D

V (D,G) = Edata(x)[logD(x)] + Ezpz(z)[log(1−D(G(z)))] (4.13)

GANs have several prevalent failure conventions being areas of active research. One

of the typical examples of these failures is gradient vanishing on the generator, which

happens when the discriminator too powerful than the generator part. Another one is

mode collapse, which the generator is always trying to find the one output that seems

most plausible to the discriminator, so it always generates the same output. Moreover,

in usual, GANs are hard to converge [81]. None of these problems have been entirely

solved in the literature; though, some methods are introduced to solve them [82, 83].

Various GAN based systems are used in VC applications [21,29].

RNNs, a specific type of DNNs whose main course is using the sequential infor-

mation to learn patterns over time [84], are used in voice conversion systems to obtain

more context than one frame. Using RNN, the temporal behavior of frames is modeled

by regarding the former hidden layer state in addition to the current frame.

Where xt is the input at time step t, At is the hidden state at time step t, which

calculated based on the previous hidden state At−1 and the input at the current step

xt, and ht is the output at step t. Described RNN models are not proper for modeling

long term dependencies because of the ”vanishing gradient” problem, which occurs

when gradient multiplied many times by a number whose absolute value is lower than

1, and ”exploding gradients” problems occurring as the opposite of a vanishing.

23

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 4.6. Recursive Neural Networks [4].

The vanishing gradient problem causes gradients to reach values close to 0 when

propagated several timesteps back, and the exploding gradient problem causes the

gradients multiplication by big numbers repeatedly, giving a lead to infinity [85]. Long

Short-Term Memory (LSTM) [86] and the Gated Recurrent Unit (GRU) [87] are the

most well-known introduced architectures in order to solve these difficulties.

LSTM cells contain A Cells state and 3 ”gates” controlling the flow of information

that enters and leaves the cell. These gates, named Input, Forget, and Output and

they are trained to allow all, a part, or none of the information in the input to be

taken into account to adjust the weights in the DNN of a timestep. GRU has a similar

arrangement with LSTM cell, but with the Forget and Input gates blended into a

single Update gate and the Cell state and the hidden state fused, in order to have the

same performance with less complexity. LSTM and GRU are used in voice conversion

tasks [15, 88].

CNN is a sort of deep learning model inspired by the structure of the animals’

visual cortexes. CNNs are mostly used for processing 2-dimensional data such as

images; however, they are additionally used in 1 and 3-dimensional data. In voice

conversion systems, 1D and 2D CNNs are used for modeling acoustic features as well

as directly speech signals.

24

Figure 4.7. Similarity between CNNs and animal visual cortex [5].

CNNs are composed of several consecutive layers such as convolution, pooling,

and fully connected layers. Convolution and pooling layers perform feature extraction,

whereas a fully connected layer maps the extracted features into the final output as

the prediction. They learns spatial hierarchies of features, from low-level to high-level

patterns by one block after another as in Figure 4.7.

Figure 4.8. 1D convolution and max pooling operations over a spectrogram frame [6].

25

A convolution layer plays a crucial role in CNNs, which is composed of a stack of

mathematical operations that are convolution, a specialized type of linear operation,

and nonlinear activation functions that typically used in neural networks. A small grid

named as kernel is slid on entire input to extract features by a constant distance which

called the stride. An element-wise product between each element of the kernel and

the input tensor is calculated at each location of the tensor and summed to obtain the

output value in the corresponding position of the output tensor, called a feature map.

As one layer feeds its output into the next layer, extracted features can hierarchically

and progressively become more complex.

A pooling layer provides a downsampling operation by reducing the in-plane di-

mensionality of the feature maps that extract by convolutional layers. This operation

enables small shifts and distortions to be translation invariant; furthermore, it de-

creases the number of succeeding learnable parameters. Different pooling methods are

proposed in the literature as max pooling and average pooling [89].

Figure 4.9. Gated Convolutional Neural Network [7].

CNNs are useful for learning features; however, they face difficulties for long-

term dependency modeling. In order to solve this problem, gated convolutional neural

networks are implemented similar to LSTM based gating mechanism [90]. In a gated

CNN, gated linear units (GLUs) are used as an activation function instead of other

activation functions. In Equation 4.14, lthlayer output is calculated by GLU.

26

H l = (H l−1 ∗W + b)⊗ σ (H l−1 ∗ V + c) (4.14)

where Hl−1 is the previous layer’s output, W , V , b, and c learnable model parameters,

σ is the sigmoid function and ⊗ is the element wise multiplication [91]. Gated CNNs

are used in many VC applications to capture broad region and long-term dependencies

of acoustic features [7, 21].

27

5. ADVERSARIAL ONE-SHOT VOICE CONVERSION

Inspired by [8], a one-shot voice conversion method is proposed benefiting from

perceptual and adversarial losses besides disentanglement representation with AdaIN.

VC model also contains VAE model by disentangling the speaker and content informa-

tion of the speech utterance. The underlying idea of this disentanglement is capturing

the information utilizing stationarity of the speech signal. While the speaker infor-

mation is invariant within an utterance, the content information varies. Hence, the

model achieves this factorization by using normalization and pooling layers. Designed

architecture for the training stage can be demonstrated in Figure 5.1.

Speaker

Representation

Content

Representation

Decoder Discriminator

AdaIN

Content Encoder

Instance

Normalization

Average

Pooling

Speaker Encoder

Real Data

Target Speech

Source Speech

Figure 5.1. One Shot Voice Conversion with AdaIN - Training.

The proposed methods are evaluated in terms of objective and subjective. Global

Variance as an objective evaluation metric, and MOSNet, which is an imitation of the

mean opinion score as a subjective evaluation metric, are chosen. Experimental results

show that the proposed method performed better than the baseline VAE model for

both metrics.

28

5.1. One-shot Voice Conversion by Disentangled Representations with

Instance Normalization

A VAE scheme is designed to contain two encoders, which are style and content

encoders, and one decoder. Encoders aim to transform the given speech inputs into hid-

den disentangled representations as content and style of the utterance; then, decoders

mix the representations to create a converted speech. By disentangling the speaker and

content representations, encoder models learn independently from the seen samples in

the training. In this way, the model shows better performance for conversion between

unseen speech utterances.

In the training phase, encoder inputs and decoder outputs are the same speaker

utterance, which aim is to train unsupervised way to have more robustness for the

out of dataset conversions. For testing, target utterance is fed into speaker encoder,

and source utterance is fed into the content encoder; hence the generated output is

the converted voice from source to target speaker. During conversion, the model needs

only a small utterance of the target speaker for converting the style of the source

utterance. The conversion architecture in the test stage can be seen in Figure 5.2.

Besides, speakers used in the testing phase do not have any utterance in the training

set; therefore, the model transforms voice with one shot example.

Speaker

Representation

Content

Representation

Decoder

AdaIN

Content Encoder

Speaker Encoder

Target Speech

Source Speech

Instance

Normalization

Average

Pooling

Figure 5.2. One Shot Voice Conversion with AdaIN - Test.

29

The input for this system is one of the popular cepstral features, Mel spectro-

grams. They are calculated by transforming into the frequency domain by FFT to

extract magnitude information. Then, logarithm function is applied to the magnitude

part followed by a scale transformation using a specialized triangular filter, named as

a mel-filter bank. As a result, the input x ∈ RN×T as Mel-spectrograms where N and

T represents the number of Mel frequency bands and time-steps, respectively.

Speaker encoder Es tries to extract speech invariant features by using the average

pooling layer to learn global information over the time dimension. Content encoder Ec,

however, normalizes the speaker information by instance normalization to learn content

information. This is proven by disabling instance normalization layer and training the

conversion model and a speaker classifier model, which tries to see how much speaker

information in content representations. The lower accuracy of this classifier shows

the less information is carried, and the disabling instance normalization layer shows

lower accuracy results on the classifier. As a result, instance normalization and average

pooling layers disentangle the representations of the speech utterance as content and

speaker information.

For the voice conversion phase, the decoder part of the VAE, Dec is used with the

AdaIN layer. The aim of using AdaIN is the same purpose as Huang et al. [92] work,

transforming the style on the feature space in the network. The decoder performs this

transformation by PixelShuffle-1D layer [93] for upsampling and generating converted

Mel-spectrograms.

The base model is trained with a combination of two losses. To formulate the

losses, let speaker and content encoders be, Es, Ec and decoder be Dec. x is acoustic

feature segment where randomly sampled from X, the all acoustic feature segments in

the training data. Ec aims to learn content representation zc, and Es aims to learn

speaker representation zs.

30

As a general assumption in VAE models, p(zc|x) is assumed as conditionally inde-

pendent Gaussian distribution with unit variance, N (Ec(x), I). The speaker encoder

model aims to minimize the reconstruction loss between different utterances belonging

the same speaker, which can be formulated as:

Lrec (θEs , θEc , θD) = E
x∼p(x),zc∼p(zc|x)

[
‖D (Es(x), zc)− x‖1

1

]
(5.1)

To learn the content representations, the distance between posterior distribution p(zc|x)

and the latent prior distribution N(0, I) is minimised using KL divergence. KL diver-

gence calculates the distance between two distributions, which can be seen in Equa-

tion 5.2.

DKL [p1‖p2] =
1

2

[
log
|Σ2|
|Σ1|
− n+ tr

{
Σ−1

2 Σ1

}
+ (µ2 − µ1)T Σ−1

2 (µ2 − µ1)

]
(5.2)

Since the latent prior distribution is a zero mean unit variance Gaussian, the values

can be changed by µ1 = µ,Σ1 = Σ, µ2 =
−→
0 ,Σ2 = I as in Equation 5.3

DKL [p1‖p2] =
1

2

[
log
|Σ2|
|Σ1|
− n+ tr

{
Σ−1

2 Σ1

}
+ (µ2 − µ1)T Σ−1

2 (µ2 − µ1)

]
=

1

2

[
log
|I|
|Σ|
− n+ tr

{
I−1Σ

}
+ (
−→
0 − µ)T I−1(

−→
0 − µ)

]
=

1

2

[
− log |Σ| − n+ tr{Σ}+ µTµ

]
(5.3)

31

By the expansion and removal of the unnecessary terms, the Equation 5.3 reduces

L2 regularization of Ec.

DKL [p1‖p2] =
1

2

[
− log

∏
i

σ2
i − n+

∑
i

σ2
i +

∑
i

µ2
i

]

=
1

2

[
−
∑
i

log σ2
i − n+

∑
i

σ2
i +

∑
i

µ2
i

]

=
1

2

[
−
∑
i

(
log σ2

i + 1
)

+
∑
i

σ2
i +

∑
i

µ2
i

]
Lkl (θEc) = E

x∼p(x)

[∥∥Ec(x)2
∥∥2

2

]
(5.4)

Combining Equations 5.4 and 5.1, the loss function for VAE model becomes:

Lvae = min
θE,θEc ,θDec

L (θEs , θEc , θDec) = λrecLrec + λklLkl (5.5)

5.1.1. Adaptive Instance Normalization

In neural networks normalization is applied to the neurons by adjusting and

scaling the activations. These methods decrease the model’s training time by a huge

factor and reduces complexity [92]. Several normalization methods proposed in the

literature such as batch normalization (BN), instance normalization (IN) and, adaptive

instance normalization (AdaIN) are described.

Batch normalization (BN) uses the distribution of the summed input to a neuron

over a mini-batch of training instances to compute a mean and variance parameters

for normalization [94]. This normalization may be used in all or some parts of neural

network with BN layers.

32

The primary motivation of BN is that it reduces the effect of internal covariate

shift between two layers, which are the tendency of the distribution of activations to

drift. Thus, BN enables training of a neural network with higher learning rates, which is

the basis for faster convergence and better generalization [95]. Given a four dimensional

tensor, x ∈ RN×C×H×W where N is mini-batch size, C is channel size, H and W are

two spatial dimensions, BN normalizes the mean µ(x) and standard deviation σ(x) for

each individual feature channel across batch size and spatial dimensions independently:

BN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (5.6)

where affine parameters, γ, β ∈ RC , are learned from data.

µc(x) =
1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

xnchw (5.7)

σc(x) =

√√√√ 1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

(xnchw − µc(x))2 + ε (5.8)

BN layers are initially invented to accelerate the training of networks but have also

been discovered beneficial in style transfer applications.

Instance Normalization (IN) is similar to BN, which normalizes the activation

of neurons using measured mean and standard deviation and used for style transfer

applications [96]. Nevertheless, unlike batch normalization, the computation is made

over spatial dimensions independently for each channel and each sample.

33

IN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (5.9)

where mean and standard deviation is calculated;

µnc(x) =
1

HW

H∑
h=1

W∑
w=1

xnchw (5.10)

σnc(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc(x))2 + ε (5.11)

Adaptive Instance Normalization (AdaIN) is a simple extension to IN which computes

the affine parameters from the style input adaptively [92]. In voice conversion, this style

input represents the style of the target speaker, which enables feature level conversion.

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (5.12)

where µ(y) and σ(y) are the mean and standard deviation of the style input y. Plainly,

normalized content input is scaled with σ(y), and shift it with µ(y), in order to perform

style transfer in the feature space by transferring feature statistics, specifically the

channel-wise mean and variance.

5.2. Adversarial Loss

In essence, a GAN is composed of a generative model with a discriminator model,

and they are trained jointly. Chiefly, the loss function of the generator is called recon-

struction loss and adversarial loss for the discriminator. In the literature, various types

of adversarial and reconstruction losses are applied with different designs of discrimina-

tor and generators are proposed regarding to the tasks. In this work, a discriminator

module is combined with a VAE model that leads to the addition of another term,

adversarial loss, in Equation 5.5.

34

The Wasserstein GAN [97] is a more modern modification of the traditional GAN,

in which the goal of the discriminator is to estimate the “distance” between the two

distributions. In particular, the 1-Wasserstein distance, also known as the earth-mover

distance, is used. Wasserstein distance for the real data distribution Pr and generated

data distribution Pg can be calculated as:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖x− y‖] (5.13)

where Π (Pn,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are

respectively Pr and Pg. This distance shows the minimum cost of transporting mass in

converting the data distribution Pg to the data distribution Pr. The infimum (great-

est lower bound) for this distance is highly intractable; however, using Kantorovich-

Rubinstein duality [98] the equation can be expressed using supremum (least upper

bound) which is over all the 1-Lipschitz functions f : X → R.

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (5.14)

where Pθ be the distribution of gθ(Z) with Z a random variable with density p. In

Equation 5.14, ‖f‖L ≤ 1 can be replaced with ‖f‖L ≤ K ending up to K ·W (Pr,Pg).

Having a parameterized family of functions {fw}w∈W that are all K -Lipschitz for some

K, leads to re-defining the Equation 5.14.

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z) [fw (gθ(z)] (5.15)

where gθ is a function satisfying Lipschitz condition. W (Pr,Pg) may be differenti-

ated by backproping through Equation 5.14 via estimating Ez∼p(z) [∇θfw (gθ(z))]. This

allows finding a solution f : X → R to the maximization problem defined in Equa-

tion 5.16 using function Ez∼p(z) [∇θfw (gθ(z))] named as ”critic”.

max
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (5.16)

∇θW (Pr,Pθ) = −Ez∼p(z) [∇θf (gθ(z))] (5.17)

35

To approximate the function f for solving the maximization problem in Equation 5.16,

neural networks having weights w can be used, and backproped using the Equation 5.17.

For enforcing the Lipschitz constraint, Arjovsky et al. proposed al. [97] clipping the

weights of neural network after each gradient update. As a result, they define the loss

function for critic as:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] (5.18)

Choosing clipping parameters too small or too big may cause convergency and van-

ishing gradient problems, therefore, Gulrajani et al. [83] proposed a better method

for enforcing Lipschitz constraint by penalizing gradients. In their work, a function

has been explained as 1-Lipschitz if the norm of the function’s gradients at most 1

everywhere. Therefore, the gradient norm of the critic output is adjusted concerning

its input in order to enforce 1-Liptschitz.

In order to bypass tractability issues, Px̂ sampling function is defined along

straight lines between data and generator distributions. Using random samples x̂ ∼ Px̂,

a soft version of the constraint with a penalty on the gradient norm is enforced by

λ (‖∇x̂Dw(x̂)‖2 − 1)2 where λ defines the penalty coefficient. In conclusion, the loss

function of Wasserstein GAN with Gradient Penalty can be defined as:

Ldisc = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2] (5.19)

36

5.3. Perceptual Loss

Generative models are trained by minimizing the reconstruction error between

the input and generated instances. For instance, in speech construction, this will be

an acoustic feature distance between utterances, or for image generation, this will be a

pixel-wise distance between images. For example, if two images that are perceptually

the same, but different from each other based on even one pixel, then based on per-pixel

loss functions, they will be very different from each other. For solving this problem,

Johnson et al. [99] proposed a higher level comparison for calculating the style or

perceptual discrepancies and named ”perceptual loss”. By using a pre-trained model,

higher-level features are extracted for the outputs of the generation model and used for

distance calculation in order to minimize the perceptual loss by adding another term

to model loss.

Extracting higher-level features, generally is applied with a classification network,

which is trained on a different dataset regardless of the main problem. The performance

of the classification is not expected to be excellent inasmuch as feature learning is not

directly dependent on the auxiliary task. After training the auxiliary model, the model

can be clipped from inputs until the chosen intermediate layers, frequently convolu-

tional layers. During the training of the transformation model, activation of these

intermediate layers is used for higher-level feature extraction.

LPercep = λ ‖D(x)−D(x̂)‖1 (5.20)

where D is the pretrained model for feature extraction, x and x̂ are the real and

generated data, λ is the perceptual loss weight. Mean absolute error is calculated on

higher-level activations regarding to inputs, x and x̂ to calculate perceptual loss.

37

5.4. Learning Objective

The models are trained with various objective functions in order to find the most

effective VC configuration. Some of the loss functions affect all blocks of models; some

of them only affect some parts. To compare the effects of the losses, they are added on

top of the baseline one-shot VC model, cumulatively and evaluated one by one. The

baseline conversion model is trained with reconstruction and content losses detailed in

Equation 5.5.

5.4.1. Adversarial VC

Adversarial loss, critic, is added as another loss term to Lvae loss in Equation 5.5.

Discriminator is trained by a WGAN-GP defined in Equation 5.19. In this approach,

VAE loss which defined in Equation 5.22, is combined with the critic loss Lcritic mul-

tiplied by a λadv parameter where D is the discriminator and Dec is the decoder part

of the models.

Lcritic = − E
x̃∼Pg

[D(x̃)] (5.21)

Ltotal = Lvae + λadvLcritic (5.22)

5.4.2. Adversarially Decoded VC

In this approach, a similar strategy in the subsection 5.4.1 is developed with the

difference of applying the Lcritic only to the decoder part of the VC model, which can

be seen in the Equation 5.23. The losses of the speaker and content encoders, and the

decoder are calculated by Lvae.

Ldec = L (θDec) = λadvLcritic (5.23)

Ltotal = Lvae + Ldec (5.24)

38

5.4.3. Adversarially Decoded & Perceptually VC

The perceptual loss is calculated by L2 form of intermediate output of the pre-

trained model using converted and real utterances and formulated in Equation 5.20. In

this strategy, the Ltotal loss defined in Equation 5.24 is summed up with the perceptual

loss, multiplied by a λperc parameter. The calculated perceptual loss affects both

encoders and decoders similarly with the Lvae loss.

Lvae+perc = L (θEs , θEc) = Lvae + λpercLperc (5.25)

Ldec = L (θDec) = Lvae + λpercLperc + λadvLcritic (5.26)

Ltotal = Lvae+perc + Ldec (5.27)

Previously described VC training approaches are summarized in the Table 5.1 by the

models and losses effected. The models containing discriminator blocks use WGAN-GP

loss defined in Equation 5.19 for the discriminator.

Table 5.1. Experiments and according model settings.

Models Encoders Decoder

Baseline VC Lrec + LKL Lrec + LKL

Adversarial VC Lrec + LKL + Lcritic Lrec + LKL + Lcritic

Adversarially Decoded VC Lrec + LKL Lrec + LKL + Lcritic

Adversarially Decoded &

Perceptually VC
Lrec + LKL + LPerc Lrec + LKL + Lcritic + LPerc

39

5.5. Architecture Details

The model contains speaker and content encoder blocks with a decoder block.

Besides, a discriminator for critic and VGG-16 block for perceptual loss is designed.

The encoders and decoder use 1D convolution; however, the discriminator and VGG-

16 model use 2D convolution. Both encoders use ConvBank layer in their first layers,

which has been proposed by Wang et al. [100] to capture long-term dependencies similar

to Gated CNNs.

Figure 5.3. Encoder and Decoder architectures of the conversion model [8].

40

�
�

�
�

�
�

�
�

�

�

!
"

#
�

$
%

&
�

'
(

�
�

)
%

#
*

+
,

%
-

.

�
�

�
�

�
�

�
/

�
0

�

!
"

#
�

$
%

&
�

'
(

�
�

�
�

�
�

�
�

�
�

1
�

�

!
"

#
�

$
%

&
�

'
(

�
�

)
%

#
*

+
,

%
-

.

�
�

�
�

�
�

�
1

/
�

�

!
"

#
�

$
%

&
�

'
(

�
�

)
%

#
*

+
,

%
-

.

�
�

�
�

�
�

�
1

/
�

�

!
"

#
�

$
%

&
�

'
(

�
�

)
%

#
*

+
,

%
-

.

�
�

�
�

�
�

�
1

/
�

�

!
"

#
�

$
%

&
�

'
(

�
�

2
.

-
-

+

3

�
�

�
�

%
$

"
%

4
,%#-52#*%67

Figure 5.4. Discriminator Architecture.

6464

22
4

224

conv1

128 128

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512

14

conv5

1

40
96

fc6

1

40
96

fc7

1

fc8+softmax

K

Figure 5.5. Architecture of VGG16 [9].

The input shape of the original VGG-16 model is originally 224 × 224 × 3 RGB

images, in this study, it is altered as 128 × 256 × 1 for accepting spectrograms instead

of images.

41

6. EXPERIMENTS AND RESULTS

6.1. Datasets

6.1.1. VCTK

The Voice Cloning Tool Kit (VCTK) Corpus [36] is published by the Centre for

Speech Technology Voice Cloning Toolkit (CSTR), including speech utterances from

109 native speakers of English with various accents. Each speaker reads out about 400

sentences. This dataset is used for training and evaluating the voice conversion model.

This dataset is split into training and test sets. The training dataset contains

89 random speaker utterances, each randomly chopped into segments having length of

128. Approximately 2.5M segments are used for training set and 5K of these segments

are formed validation set for parameter tuning and model selection.

For the test set, two arrangements are made in order to observe the performance

of one-shot VC. For the seen speakers dataset, 8 male and 8 female speakers whose

some utterances belong to the training set are chosen. Then, 10 random utterances

for each speaker which not used in training set selected and randomly clipped again

into 128 length segments forming a seen test set containing 80 male and 80 female

utterances.

Towards generating unseen dataset, 8 female and 8 male speakers are chosen

which any of their utterances are not used in the training set. 10 random utterances

are selected and sampled into 128 length segments to create 80 female and 80 male

utterances for the unseen test set.

42

6.1.2. Librispeech

The LibriSpeech corpus [101] contains approximately 1000 hours speech utter-

ances read in English. The published dataset is divided into various categories, re-

spectively, with their recording properties named ”clean” and ”other” partitioned as

train, development, and test splits with the length of the recordings. A part of the

development set is used for training perceptual loss model. The utterances of the 40

randomly chosen speakers are sampled into 128 length segments, forming training and

validation sets.

6.2. Evaluation Metrics

6.2.1. Global Variance

In VC problems, global variance (GV) [102] has been used to see whether the

result of the converted voice matches to the target speaker in terms of spectral vari-

ance distribution. GV for spectral features is calculated for each frequency index by

calculating the variance of the spectral value for utterance. Generally, the calculated

GV is visualized, and conversions are compared with the original target speakers.

6.2.2. MOSNet

Mean opinion score (MOS) is a quality metric used in the various domains such

that objective metrics are not enough to represent overall quality. MOS is calculated

by taking the mean over individual values on a scale that a subject assigns to his/her

opinion of the quality of the performance. These ratings may be obtained from a

subjective evolution test. MOS is the general subjective evaluation metric for VC

problems.

Lo et al. [103] proposed an evaluation system to mimic subjects’ opinions to a

deep learning model. The proposed system, named MOSNet, contains convolutional

and recurrent neural network models to predict human ratings of converted speech.

43

6.3. Experimental Results

6.3.1. Implementation Details

Proposed VC system development was made in Python language on version

3.7 [104] and with various Python based frameworks. For the preprocessing and feature

extraction part, Librosa framework is employed [105]. Speech utterances are trimmed,

to remove leading and trailing silences, following by a preemphesis stage in order to

emphasize lower frequency energy to higher. In order to extract acoustic features, Short

Term Fourier Transform (STFT) is applied with a 50 milliseconds window length, a

12.5 milliseconds hop length, and a 2048 STFT window size. The magnitude part of the

STFT response is transformed into 256-bin Mel-scale spectrograms. Normalization by

mean subtraction standart deviation division is applied to extract Mel-spectrograms.

For the perceptual loss, a speech classification model is trained. For this model, the

same preprocessing is applied; however, the extracted Mel-spectrograms are normalized

using the calculated mean and standard deviation from the dataset used for training

of the conversion model.

Neural network architectures in this application are utilized with Pytorch frame-

work [106]. Networks are trained in NVIDIA’s RTX-2070 Ti and Tesla V-100 Graphic

Processing Unit (GPU)s. Automatic mixed precision [107] is used for training models

by a Pytorch extension framework, named NVIDIA APEX [108]. Half precision train-

ing aims to use half-precision floating-point numbers for storing neural networks and

applying matrix operations. This approximately halves the memory usage in a GPU

and also speeds up the operations on some GPUs having NVIDIA’s Tensor cores [109].

Tensor core allows multiplication floating point 16 (FP16) input matrices and accumu-

lation products into either FP16 or FP32 outputs.

Apex allows usage of both FP16 to and FP32 to gain benefits from both of them

without their own weaknesses increase speed, use less memory and for storing and

arithmetic FP16. Weights, activations and gradients are stored using in FP16, an

FP32 master copy of weights is used for updates.

44

Loss-scaling is used for some applications containing overflow or underflow risk.

Experiments with FP16 arithmetic used Tensor Core operations with accumulation

into FP32 for convolutions, fully-connected layers, and matrix multiplies in recurrent

layers.

The proposed model is trained with Adam optimizer [110] with a 0.0005 learning

rate, and β1 = 0.9, β2 = 0.999 and 32 batch size. To prevent over-fitting, weights are

multiplied with weight decay rate as 0.0001 in each iteration. For a stable training,

the gradient norm of the model weights are clipped to have maximum norm as 5. λrec

is set to 10, λkl is set to 0.01, λdisc is set to 1 and, λperc is to 10. All λ values are

found empirically. The model is trained for 800K mini batches containing segments

from training set.

6.3.2. Results

The VC experiments are employed on the VCTK dataset with the several setups

which defined and explained in Section 5.4. The same setup names are identified in

this section.

Experimental results are provided according to Global Variance and MOSNet

evaluation metrics. Moreover, intergender and intragender conversions with unseen and

seen speakers used in the training dataset are compared. In both speaker conversions,

only one utterance of each speaker is used.

Voice conversion task is applied for F2F, M2M, F2M, and M2F conversions both

unseen and seen test set. Intensive explanation of unseen and seen test sets given in

Subsection 6.1.1. Results are visualized on Figure 6.1 and Figure 6.2 in terms of Global

Variance in order to show that converted example match the target speaker identity.

This matching can be analyzed by observing the frequency variances of the target char-

acteristics and converted examples. As expected, the closest distance between plots

one shows a better conversion. Both figures indicate that proposed methods performed

better than the referenced baseline one-shot VC work.

45

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

GV

M-F
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

GV

M-M
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

GV

F-M
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

GV

F-F
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

Figure 6.1. Global Variance of the seen speakers conversions.

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

GV

M-F
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

GV

M-M
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

GV

F-M
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

0 50 100 150 200 250
Frequency Index

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

GV

F-F
Target
Adversarially Decoded & Perceptually VC
Baseline VC
Adversarial VC
Adversarially Decoded VC

Figure 6.2. Global Variance of the unseen speakers conversions.

46

The Adversarial VC model matches the most speaker characteristics; however,

two other developed models generate a better understanding of some frequency areas.

The converted utterances in the unseen and seen test sets are synthesized to

audio from mel spectrograms by Griffin-Lim algorithm [64]. Then the implementation

of the MOSNet [103, 111] which pretrained on the Voice Conversion Challenge 2018

dataset [11] is used to generate mean opinion score as 1 for the worst 5 for the best

conversion. Similarly to the Global Variance results, Adversarial VC model has the

most promising results on each test cases in the overall. The MOSNet results of the

conversions can be seen from Table 6.1 and Table 6.2, representing the highest mean

opinion score values in bold.

Table 6.1. Seen speakers conversions MOSNet Results.

Models M-F M-M F-M F-F

Baseline VC 3.66 3.28 3.25 3.63

Adversarial VC 4.20 4.23 4.17 4.18

Adversarially Decoded VC 4.11 4.25 4.18 4.12

Adversarially Decoded &

Perceptually VC
4.08 3.92 3.83 4.06

Table 6.2. Unseen speakers conversions MOSNet Results.

Models M-F M-M F-M F-F

Baseline VC 3.62 3.33 3.34 3.60

Adversarial VC 4.17 4.21 4.13 4.17

Adversarially Decoded VC 4.04 4.18 4.15 4.06

Adversarially Decoded &

Perceptually VC
3.99 3.83 3.79 3.99

47

The MOSNet and Global Variance results demonstrate that adding a discrim-

inator to the VAE model improves the VC task significantly. The critic loss from

WGAN-GP not only improves the performance of the decoder but also improves the

latent representation of the speaker and content encoders by comparing the results of

the Adversarial VC and Adversarially Decoded VC.

The perceptual loss from the VGG16 model is not as powerful as the adversarial

loss on our VC experiments. The model used for extracting this loss is a successful

feature extractor model in the computer vision field and did not show high-quality

results for speech-related tasks as in our attempts.

48

0 25 50 75 100
0

50

100

150

200

250
Source

0 50 100
0

50

100

150

200

250
Target

0 25 50 75 100
0

50

100

150

200

250
Baseline VC

0 25 50 75 100
0

50

100

150

200

250
Adversarial VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Decoded VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Female to Female

0 25 50 75 100
0

50

100

150

200

250
Source

0 50 100 150
0

50

100

150

200

250
Target

0 25 50 75 100
0

50

100

150

200

250
Baseline VC

0 25 50 75 100
0

50

100

150

200

250
Adversarial VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Decoded VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Female to Male

0 50 100 150 200
0

50

100

150

200

250
Source

0 50 100
0

50

100

150

200

250
Target

0 50 100 150 200
0

50

100

150

200

250
Baseline VC

0 50 100 150 200
0

50

100

150

200

250
Adversarial VC

0 50 100 150 200
0

50

100

150

200

250
Adversarially Decoded VC

0 50 100 150 200
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Male to Female

0 50 100 150 200
0

50

100

150

200

250
Source

0 50 100 150
0

50

100

150

200

250
Target

0 50 100 150 200
0

50

100

150

200

250
Baseline VC

0 50 100 150 200
0

50

100

150

200

250
Adversarial VC

0 50 100 150 200
0

50

100

150

200

250
Adversarially Decoded VC

0 50 100 150 200
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Male to Male

Figure 6.3. Spectrogram Heatmaps of the source, target and converted utterances for

seen test set.

49

0 25 50 75 100
0

50

100

150

200

250
Source

0 10 20 30 40
0

50

100

150

200

250
Target

0 25 50 75 100
0

50

100

150

200

250
Baseline VC

0 25 50 75 100
0

50

100

150

200

250
Adversarial VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Decoded VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Female to Female

0 25 50 75 100
0

50

100

150

200

250
Source

0 20 40 60 80
0

50

100

150

200

250
Target

0 25 50 75 100
0

50

100

150

200

250
Baseline VC

0 25 50 75 100
0

50

100

150

200

250
Adversarial VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Decoded VC

0 25 50 75 100
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Female to Male

0 50 100 150
0

50

100

150

200

250
Source

0 10 20 30 40
0

50

100

150

200

250
Target

0 50 100 150
0

50

100

150

200

250
Baseline VC

0 50 100 150
0

50

100

150

200

250
Adversarial VC

0 50 100 150
0

50

100

150

200

250
Adversarially Decoded VC

0 50 100 150
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Male to Female

0 50 100 150
0

50

100

150

200

250
Source

0 20 40 60 80
0

50

100

150

200

250
Target

0 50 100 150
0

50

100

150

200

250
Baseline VC

0 50 100 150
0

50

100

150

200

250
Adversarial VC

0 50 100 150
0

50

100

150

200

250
Adversarially Decoded VC

0 50 100 150
0

50

100

150

200

250
Adversarially Dec. & Perc. VC

Male to Male

Figure 6.4. Spectrogram Heatmaps of the source, target and converted utterances for

unseen test set.

50

7. CONCLUSION AND FUTURE WORK

In this work, a new one-shot voice conversion method was proposed. The VC

system was built on disentangling speech representations by learning the content char-

acteristics and the speaker’s style of the utterance separately. The proposed VC model

was a variational autoencoder using Mel-spectrograms for source and target utterance

and generated a converted spectral features with the same linguistic content of the

source utterance and the style of the target speaker. The model is trained unsuper-

vised without using any target utterance. During training, in each iteration, the same

utterance was used as both target and source speaker input. In the testing phase, the

model could convert any source and target utterance without any restrictions, moreover

allow converting unseen speakers’ utterances.

The main contributions of this work was adding perceptual and adversarial losses

to the VC model. For the adversarial loss, a discriminator is designed to distinguish if

a converted utterance is real or fake. Concerning the perceptual loss, a speaker recog-

nition model has been trained from a dataset different than the VC model is trained.

By using this model, the perceptual loss has been calculated using converted and the

source utterances. The VC experiments were performed for the utterances belonging to

both seen and unseen speakers during training. We also provided intragender and in-

tergender speaker conversions and Mel-spectrogram figures of the converted utterances.

Our experiments implied that our contributions had been significantly improved the

quality of the voice conversion in terms of Global Variance and MOSNet. The per-

ceptual loss from the speaker recognition model trained by Mel-spectrogram was not

much success as an adversarial loss.

In future work, we have several ideas: (i) We plan to evaluate our VC method

using humans instead of MOSNet for subjective evaluation. (ii) VC tasks are moving

towards using raw data as inputs bypassing the acoustic feature extraction process [24].

Moreover, we analyzed that the synthesis modules in the VC frameworks always have

a bit of loss, and generated sounds are noisy.

51

A specialized vocoder module or directly transforming the audio signal would be

helpful to increase the quality of the VC. Eventually, we aim to convert this model

into a raw audio-based end-to-end VC model. (iii) We intend to try different various

feature extraction methods for the perceptual loss other than using spectral features,

such as SincNet [112] features that extract hidden representation from the raw audio

form.

52

REFERENCES

1. “Collection of LaTeX resources and examples.”,

https://github.com/davidstutz/latex-resources, 2019, (Accessed on

11/28/2019).

2. “Neural Network Models in R”, https://www.datacamp.com/community/

tutorials/ neural-network-models-r, 2019, (Accessed on 01/02/2020).

3. “Variational Auto-Encoder”, https://www.renom.jp/notebooks/tutorial

/generative-model/VAE/notebook.html, 2018, (Accessed on 02/24/2020).

4. Goodfellow, I., Y. Bengio and A. Courville, Deep Learning , MIT Press, 2016,

http://www.deeplearningbook.org.

5. “Deep Convolutional Neural Networks as Models of the Visual System”,

https://neurdiness.wordpress.com/2018/05/17/deep

-convolutional-neural-networks- as-models-of-the-visual-system-qa/,

2018, (Accessed on 11/28/2019).

6. Lim, H., J. Park and Y. Han, “Rare sound event detection using 1D convolutional

recurrent neural networks”, Proceedings of the Detection and Classification of

Acoustic Scenes and Events Workshop (DCASE2017), pp. 80–84, 2017.

7. Kaneko, T., H. Kameoka, K. Hiramatsu and K. Kashino, “Sequence-to-Sequence

Voice Conversion with Similarity Metric Learned Using Generative Adversarial

Networks.”, INTERSPEECH , pp. 1283–1287, 2017.

8. Chou, J.-c., C.-c. Yeh and H.-y. Lee, “One-shot Voice Conversion by Separat-

ing Speaker and Content Representations with Instance Normalization”, arXiv

preprint arXiv:1904.05742 , 2019.

53

9. Iqbal, H., “HarisIqbal88/PlotNeuralNet v1.0.0”,

https://doi.org/10.5281/zenodo.2526396, Dec. 2018.

10. Machado, A. F. and M. Queiroz, “Voice conversion: A critical survey”, Proc.

Sound and Music Computing (SMC), pp. 1–8, 2010.

11. Lorenzo-Trueba, J., J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, T. Kin-

nunen and Z. Ling, “The voice conversion challenge 2018: Promoting development

of parallel and nonparallel methods”, arXiv preprint arXiv:1804.04262 , 2018.

12. Wu, C.-H., C.-C. Hsia, T.-H. Liu and J.-F. Wang, “Voice conversion using

duration-embedded bi-HMMs for expressive speech synthesis”, IEEE Transac-

tions on Audio, Speech, and Language Processing , Vol. 14, No. 4, pp. 1109–1116,

2006.

13. Ye, H. and S. Young, “Voice conversion for unknown speakers”, Eighth Interna-

tional Conference on Spoken Language Processing , 2004.

14. Abe, M., S. Nakamura, K. Shikano and H. Kuwabara, “Voice conversion through

vector quantization”, Journal of the Acoustical Society of Japan (E), Vol. 11,

No. 2, pp. 71–76, 1990.

15. Sun, L., S. Kang, K. Li and H. Meng, “Voice conversion using deep bidirectional

long short-term memory based recurrent neural networks”, IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4869–4873,

2015.

16. Stylianou, Y., “Voice transformation: a survey”, IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 3585–3588, 2009.

17. Toda, T., H. Saruwatari and K. Shikano, “Voice conversion algorithm based on

Gaussian mixture model with dynamic frequency warping of STRAIGHT spec-

trum”, IEEE International Conference on Acoustics, Speech, and Signal Process-

54

ing , Vol. 2, pp. 841–844, 2001.

18. Toda, T., A. W. Black and K. Tokuda, “Spectral conversion based on maximum

likelihood estimation considering global variance of converted parameter”, IEEE

International Conference on Acoustics, Speech, and Signal Processing , Vol. 1, pp.

I–9, 2005.

19. Nakashika, T., R. Takashima, T. Takiguchi and Y. Ariki, “Voice conversion in

high-order eigen space using deep belief nets.”, INTERSPEECH , pp. 369–372,

2013.

20. Chou, J.-c., C.-c. Yeh, H.-y. Lee and L.-s. Lee, “Multi-target voice conversion

without parallel data by adversarially learning disentangled audio representa-

tions”, arXiv preprint arXiv:1804.02812 , 2018.

21. Kaneko, T. and H. Kameoka, “Cyclegan-vc: Non-parallel voice conversion using

cycle-consistent adversarial networks”, IEEE European Signal Processing Confer-

ence (EUSIPCO), pp. 2100–2104, 2018.

22. Shuang, Z.-W., R. Bakis, S. Shechtman, D. Chazan and Y. Qin, “Frequency

warping based on mapping formant parameters”, Ninth International Conference

on Spoken Language Processing , 2006.

23. Bandoin, G. and Y. Stylianou, “On the transformation of the speech spectrum

for voice conversion”, IEEE Fourth International Conference on Spoken Language

Processing , Vol. 3, pp. 1405–1408, 1996.

24. Serrà, J., S. Pascual and C. Segura, “Blow: a single-scale hyperconditioned flow

for non-parallel raw-audio voice conversion”, arXiv preprint arXiv:1906.00794 ,

2019.

25. Desai, S., A. W. Black, B. Yegnanarayana and K. Prahallad, “Spectral map-

ping using artificial neural networks for voice conversion”, IEEE Transactions on

55

Audio, Speech, and Language Processing , Vol. 18, No. 5, pp. 954–964, 2010.

26. Ming, H., D. Huang, L. Xie, J. Wu, M. Dong and H. Li, “Deep bidirectional

LSTM modeling of timbre and prosody for emotional voice conversion”, , 2016.

27. Mohammadi, S. H. and A. Kain, “Voice conversion using deep neural net-

works with speaker-independent pre-training”, IEEE Spoken Language Technology

Workshop (SLT), pp. 19–23, 2014.

28. Kim, S. and H. Choi, “Emotional voice conversion using generative adversarial

networks”, GAN , Vol. 8, No. 3.169, pp. 5–784, 2017.

29. Kameoka, H., T. Kaneko, K. Tanaka and N. Hojo, “StarGAN-VC: Non-parallel

many-to-many voice conversion using star generative adversarial networks”, IEEE

Spoken Language Technology Workshop (SLT), pp. 266–273, 2018.

30. Qian, K., Y. Zhang, S. Chang, X. Yang and M. Hasegawa-Johnson, “AUTOVC:

Zero-Shot Voice Style Transfer with Only Autoencoder Loss”, International Con-

ference on Machine Learning , pp. 5210–5219, 2019.

31. Blaauw, M. and J. Bonada, “Modeling and transforming speech using variational

autoencoders.”, INTERSPEECH , pp. 1770–1774, 2016.

32. Kameoka, H., T. Kaneko, K. Tanaka and N. Hojo, “ACVAE-VC: Non-parallel

many-to-many voice conversion with auxiliary classifier variational autoencoder”,

arXiv preprint arXiv:1808.05092 , 2018.

33. Tobing, P. L., Y.-C. Wu, T. Hayashi, K. Kobayashi and T. Toda, “Non-

Parallel Voice Conversion with Cyclic Variational Autoencoder”, arXiv preprint

arXiv:1907.10185 , 2019.

34. Hsu, C.-C., H.-T. Hwang, Y.-C. Wu, Y. Tsao and H.-M. Wang, “Voice conversion

from unaligned corpora using variational autoencoding wasserstein generative ad-

56

versarial networks”, arXiv preprint arXiv:1704.00849 , 2017.

35. Gburrek, T., T. Glarner, J. Ebbers, R. Haeb-Umbach and P. Wagner, “Unsuper-

vised Learning of a Disentangled Speech Representation for Voice Conversion”,

Proceedings of the 10 Speech Synthesis Workshop (SSW10), 2019.

36. Veaux, C., J. Yamagishi, K. MacDonald et al., “CSTR VCTK corpus: English

multi-speaker corpus for CSTR voice cloning toolkit”, University of Edinburgh.

The Centre for Speech Technology Research (CSTR), 2017.

37. Childers, D., B. Yegnanarayana and K. Wu, “Voice conversion: Factors responsi-

ble for quality”, IEEE International Conference on Acoustics, Speech, and Signal

Processing , Vol. 10, pp. 748–751, 1985.

38. Shikano, K., S. Nakamura and M. Abe, “Speaker adaptation and voice conversion

by codebook mapping”, IEEE International Sympoisum on Circuits and Systems ,

pp. 594–597, 1991.

39. Valbret, H., E. Moulines and J.-P. Tubach, “Voice transformation using PSOLA

technique”, Speech Communication, Vol. 11, No. 2-3, pp. 175–187, 1992.

40. Stylianou, Y., O. Cappé and E. Moulines, “Continuous probabilistic transform

for voice conversion”, IEEE Transactions on Speech and Audio Processing , Vol. 6,

No. 2, pp. 131–142, 1998.

41. Stylianou, Y., “Harmonic plus noise models for speech, combined with statisti-

cal methods, for speech and speaker modification”, Ph.D thesis, Ecole Nationale

Superieure des Telecommunications , 1996.

42. Kain, A. and M. W. Macon, “Spectral voice conversion for text-to-speech synthe-

sis”, IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Vol. 1, pp. 285–288, 1998.

57

43. Iwahashi, N. and Y. Sagisaka, “Speech spectrum transformation by speaker inter-

polation”, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Vol. 1, pp. I–461, 1994.

44. Duxans, H., D. Erro, J. Pérez, F. Diego, A. Bonafonte and A. Moreno, “Voice

conversion of non-aligned data using unit selection”, TC-STAR WSST , 2006.

45. Ney, H., D. Suendermann, A. Bonafonte and H. Höge, “A first step towards

text-independent voice conversion”, Eighth International Conference on Spoken

Language Processing , 2004.

46. Narendranath, M., H. A. Murthy, S. Rajendran and B. Yegnanarayana, “Trans-

formation of formants for voice conversion using artificial neural networks”, Speech

Communication, Vol. 16, No. 2, pp. 207–216, 1995.

47. Watanabe, T., T. Murakami, M. Namba, T. Hoya and Y. Ishida, “Transformation

of spectral envelope for voice conversion based on radial basis function networks”,

Seventh International Conference on Spoken Language Processing , 2002.

48. Chen, L.-H., Z.-H. Ling, Y. Song and L.-R. Dai, “Joint spectral distribution

modeling using restricted boltzmann machines for voice conversion.”, INTER-

SPEECH , pp. 3052–3056, 2013.

49. Xie, F.-L., Y. Qian, Y. Fan, F. K. Soong and H. Li, “Sequence error (SE) mini-

mization training of neural network for voice conversion”, INTERSPEECH , 2014.

50. Nakashika, T., T. Takiguchi and Y. Ariki, “High-order sequence modeling using

speaker-dependent recurrent temporal restricted Boltzmann machines for voice

conversion”, INTERSPEECH , 2014.

51. Bengio, Y., A. Courville and P. Vincent, “Representation learning: A review

and new perspectives”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 35, No. 8, pp. 1798–1828, 2013.

58

52. Desjardins, G., A. Courville and Y. Bengio, “Disentangling factors of variation

via generative entangling”, arXiv preprint arXiv:1210.5474 , 2012.

53. Cohen, D., “Acoustic theory of speech production, with calculations based on

X-ray studies of Russian articulations”, , 1962.

54. Moulines, E. and F. Charpentier, “Pitch-synchronous waveform processing tech-

niques for text-to-speech synthesis using diphones”, Speech Communication,

Vol. 9, No. 5-6, pp. 453–467, 1990.

55. Turk, O., “Cross-lingual voice conversion”, Bogaziçi University , Vol. 3, 2007.

56. Arslan, L. M., “Speaker transformation algorithm using segmental codebooks

(STASC)”, Speech Communication, Vol. 28, No. 3, pp. 211–226, 1999.

57. McAulay, R. and T. Quatieri, “Speech analysis/synthesis based on a sinusoidal

representation”, IEEE Transactions on Acoustics, Speech, and Signal Processing ,

Vol. 34, No. 4, pp. 744–754, 1986.

58. Ye, H. and S. Young, “Quality-enhanced voice morphing using maximum like-

lihood transformations”, IEEE Transactions on Audio, Speech, and Language

Processing , Vol. 14, No. 4, pp. 1301–1312, 2006.

59. Stylianou, Y. and O. Cappe, “A system for voice conversion based on probabilistic

classification and a harmonic plus noise model”, IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pp. 281–284, 1998.

60. Kawahara, H., “Speech representation and transformation using adaptive interpo-

lation of weighted spectrum: vocoder revisited”, IEEE International Conference

on Acoustics, Speech, and Signal Processing , Vol. 2, pp. 1303–1306, 1997.

61. Fant, G., Acoustic theory of speech production, 2, Walter de Gruyter, 1970.

62. Assmann, P. F. and W. F. Katz, “Synthesis fidelity and time-varying spectral

59

change in vowels”, The Journal of the Acoustical Society of America, Vol. 117,

No. 2, pp. 886–895, 2005.

63. Rao, K. S. and B. Yegnanarayana, “Prosody modification using instants of signifi-

cant excitation”, IEEE Transactions on Audio, Speech, and Language Processing ,

Vol. 14, No. 3, pp. 972–980, 2006.

64. Griffin, D. W. and J. S. Lim, “Multiband excitation vocoder”, IEEE Transactions

on Acoustics, Speech, and Signal Processing , Vol. 36, No. 8, pp. 1223–1235, 1988.

65. Holmes, W., Speech synthesis and recognition, CRC press, 2002.

66. Chen, K., B. Chen, J. Lai and K. Yu, “High-quality Voice Conversion Using

Spectrogram-Based WaveNet Vocoder.”, INTERSPEECH , pp. 1993–1997, 2018.

67. Mizuno, H. and M. Abe, “Voice conversion based on piecewise linear conversion

rules of formant frequency and spectrum tilt”, IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pp. I–469, 1994.

68. Helander, E., T. Virtanen, J. Nurminen and M. Gabbouj, “Voice conversion us-

ing partial least squares regression”, IEEE Transactions on Audio, Speech, and

Language Processing , Vol. 18, No. 5, pp. 912–921, 2010.

69. Lee, K.-S., “Statistical approach for voice personality transformation”, IEEE

Transactions on Audio, Speech, and Language Processing , Vol. 15, No. 2, pp.

641–651, 2007.

70. Soong, F. and B. Juang, “Line spectrum pair (LSP) and speech data compres-

sion”, IEEE International Conference on Acoustics, Speech, and Signal Process-

ing , Vol. 9, pp. 37–40, 1984.

71. Erro, D., A. Moreno and A. Bonafonte, “Voice conversion based on weighted fre-

quency warping”, IEEE Transactions on Audio, Speech, and Language Processing ,

60

Vol. 18, No. 5, pp. 922–931, 2009.

72. Rabiner, L., “Fundamentals of speech recognition”, Fundamentals of Speech

Recognition, 1993.

73. Furui, S., “Research of individuality features in speech waves and automatic

speaker recognition techniques”, Speech Communication, Vol. 5, No. 2, pp. 183–

197, 1986.

74. Rentzos, D., S. Vaseghi, Q. Yan and C.-H. Ho, “Voice conversion through trans-

formation of spectral and intonation features”, IEEE International Conference on

Acoustics, Speech, and Signal Processing , Vol. 1, pp. I–21, 2004.

75. Funahashi, K.-I., “On the approximate realization of continuous mappings by

neural networks”, Neural Networks , Vol. 2, No. 3, pp. 183–192, 1989.

76. Ruhmelhart, D., G. Hinton and R. Wiliams, “Learning representations by back-

propagation errors”, Nature, Vol. 323, pp. 533–536, 1986.

77. Alpaydin, E., Introduction to machine learning , MIT press, 2009.

78. Deng, L., D. Yu et al., “Deep learning: methods and applications”, Foundations

and Trends R© in Signal Processing , Vol. 7, No. 3–4, pp. 197–387, 2014.

79. Kingma, D. P. and M. Welling, “Auto-encoding variational bayes”, arXiv preprint

arXiv:1312.6114 , 2013.

80. Doersch, C., “Tutorial on variational autoencoders”, arXiv preprint

arXiv:1606.05908 , 2016.

81. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville and Y. Bengio, “Generative adversarial nets”, Advances in Neural

Information Processing Systems , pp. 2672–2680, 2014.

61

82. “Common Problems — Generative Adversarial Networks — Google Devel-

opers”, https://developers.google.com/machine-learning/gan/problems,

2020, (Accessed on 01/01/2020).

83. Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin and A. C. Courville, “Im-

proved training of wasserstein gans”, Advances in Neural Information Processing

Systems , pp. 5767–5777, 2017.

84. Cleeremans, A., D. Servan-Schreiber and J. L. McClelland, “Finite state automata

and simple recurrent networks”, Neural Computation, Vol. 1, No. 3, pp. 372–381,

1989.

85. Pascanu, R., T. Mikolov and Y. Bengio, “On the difficulty of training recurrent

neural networks”, International Conference on Machine Learning , pp. 1310–1318,

2013.

86. Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural Compu-

tation, Vol. 9, No. 8, pp. 1735–1780, 1997.

87. Cho, K., B. Van Merriënboer, D. Bahdanau and Y. Bengio, “On the proper-

ties of neural machine translation: Encoder-decoder approaches”, arXiv preprint

arXiv:1409.1259 , 2014.

88. Zhou, C., M. Horgan, V. Kumar, C. Vasco and D. Darcy, “Voice conversion with

conditional SampleRNN”, arXiv preprint arXiv:1808.08311 , 2018.

89. Lee, C.-Y., P. W. Gallagher and Z. Tu, “Generalizing pooling functions in con-

volutional neural networks: Mixed, gated, and tree”, Artificial Intelligence and

Statistics , pp. 464–472, 2016.

90. van den Oord, A., N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals and

A. Graves, “Conditional Image Generation with PixelCNN Decoders”, Advances

in Neural Information Processing Systems , pp. 4790–4798, 2016.

62

91. Dauphin, Y. N., A. Fan, M. Auli and D. Grangier, “Language modeling with

gated convolutional networks”, International Conference on Machine Learning ,

pp. 933–941, JMLR. org, 2017.

92. Huang, X. and S. Belongie, “Arbitrary style transfer in real-time with adaptive

instance normalization”, ICCV , pp. 1501–1510, 2017.

93. Shi, W., J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert

and Z. Wang, “Real-time single image and video super-resolution using an efficient

sub-pixel convolutional neural network”, CVPR, pp. 1874–1883, 2016.

94. Ioffe, S. and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167 , 2015.

95. Bjorck, N., C. P. Gomes, B. Selman and K. Q. Weinberger, “Understanding batch

normalization”, Advances in Neural Information Processing Systems , pp. 7694–

7705, 2018.

96. Ulyanov, D., A. Vedaldi and V. Lempitsky, “Instance normalization: The missing

ingredient for fast stylization”, arXiv preprint arXiv:1607.08022 , 2016.

97. Arjovsky, M., S. Chintala and L. Bottou, “Wasserstein gan”, arXiv preprint

arXiv:1701.07875 , 2017.

98. Villani, C., Optimal transport: old and new , Vol. 338, Springer Science & Business

Media, 2008.

99. Johnson, J., A. Alahi and L. Fei-Fei, “Perceptual losses for real-time style transfer

and super-resolution”, ECCV , pp. 694–711, Springer, 2016.

100. Wang, Y., R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,

Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-end speech syn-

thesis”, arXiv preprint arXiv:1703.10135 , 2017.

63

101. Panayotov, V., G. Chen, D. Povey and S. Khudanpur, “Librispeech: an ASR

corpus based on public domain audio books”, IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210, 2015.

102. Toda, T. and K. Tokuda, “A speech parameter generation algorithm considering

global variance for HMM-based speech synthesis”, IEICE TRANSACTIONS on

Information and Systems , Vol. 90, No. 5, pp. 816–824, 2007.

103. Lo, C.-C., S.-W. Fu, W.-C. Huang, X. Wang, J. Yamagishi, Y. Tsao and H.-M.

Wang, “MOSNet: Deep Learning based Objective Assessment for Voice Conver-

sion”, arXiv preprint arXiv:1904.08352 , 2019.

104. Rossum, G., Python Reference Manual , Tech. rep., NLD, 1995.

105. McFee, B., C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg and

O. Nieto, “librosa: Audio and music signal analysis in python”, Proceedings of

the 14th Python in Science Conference, Vol. 8, 2015.

106. Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-

performance deep learning library”, Advances in Neural Information Processing

Systems , pp. 8024–8035, 2019.

107. Micikevicius, P., S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Gins-

burg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed precision training”,

arXiv preprint arXiv:1710.03740 , 2017.

108. “NVIDIA/apex: A PyTorch Extension: Tools for easy mixed precision and dis-

tributed training in Pytorch”, https://github.com/NVIDIA/apex, 2019, (Ac-

cessed on 01/21/2020).

109. “Tensor Cores in NVIDIA Volta Architecture — NVIDIA”,

https://www.nvidia.com/en-us/data-center/tensorcore/, 2020, (Accessed

64

on 01/21/2020).

110. Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv

preprint arXiv:1412.6980 , 2014.

111. “lochenchou/MOSNet: Implementation of ”MOSNet: Deep

Learning based Objective Assessment for Voice Conversion””,

https://github.com/lochenchou/MOSNet, 2019, (Accessed on 02/23/2020).

112. Ravanelli, M. and Y. Bengio, “Speaker recognition from raw waveform with sinc-

net”, IEEE Spoken Language Technology Workshop (SLT), pp. 1021–1028, 2018.

