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ABSTRACT

DETECTION OF ANTIBIOTIC RESISTANCE IN

BACTERIA

VIA MACHINE LEARNING APPROACHES

Tuberculosis, which is sometimes referred as white plague, is one of the most

dangerous diseases caused by bacteria in our era. The species causing the sickness

is in the family of Mycobacteriaceae and called mycobacterium tuberculosis. Bacte-

ria are able to acquire resistance to antibiotics, so mortality rate among tuberculosis

patients is increasing. This thesis examines different machine learning algorithms to

detect antibiotic resistance to four first-line drugs in tuberculosis treatment. Variants

on 23 target genes are included as input for each model. The base mycobacterium

tuberculosis genome, which is used to detect variants on each sample in the data set,

is the genome with id h37rv. Bacteria having h37rv as genome, are susceptible to

all first-line antibiotics. Different machine learning algorithms are investigated and

compared to each other. We observe that traditional machine learning algorithms

have higher performance than multilayer perceptrons do. The impact of different data

representations used in information retrieval on antibiotic resistance detection is also

examined and we can not find any clear evidence for them to improve machine learning

models’ performances. Additionally, the contributions of mutations are ranked via the

SHAP methodology used in the interpretation of machine learning models. We pro-

pose ten mutations with the highest SHAP values for each target drug as resistance

determinants.
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ÖZET

YAPAY ÖĞRENME YAKLAŞIMLARIYLA

BAKTERİLERDE ANTİBİYOTİK DİRENÇ TESPİTİ

Beyaz veba olarak da anılan verem günümüzde en ölümcül bakteri kaynaklı

hastalıklardan biridir. Bu hastalığa sebep olan tür Mycobacteriaceae ailesinden verem

çubuk bakterisidir. Bakterilerin antibiyotiklere karşı direnç kazanabilmeleri yüzünden

verem hastaları arasındaki ölüm oranı artmaktadır. Bu tez farklı yapay öğrenme algo-

ritmalarının, verem tedavisinde kullanılan dört birinci sıra antibiyotiğe karşı geliştirilmiş

direnç tespitinde kullanımını incelemektedir. Her bir model için 23 hedef gen üzerindeki

değişiklikler girdi olarak kullanılmıştır. h37rv kimliğine sahip olan verem çubuk bak-

terisi genomu değişiklik tespitinde temel olarak alınmıştır. h37rv kimlikli kalıtsal

materyale sahip olan bakteriler birinci sıra antibiyotiklerin hepsine duyarlıdır. Çeşitli

yapay öğrenme algoritmaları incelendi ve birbiriyle kıyaslandı. Geleneksel modellerin

performanslarının çok katmanlı algılayıcılardan daha yüksek olduğunu gözlemledik.

Bilgi erişimi alanında kullanılan çeşitli veri gösterimlerinin antibiyotik direnç tespiti

üzerindeki etkileri de incelenmiş ancak makine öğrenmesi modellerinin performanslarını

arttıracak bir etkiye sahip olduğu çıkarımı yapılamamıştır. Ek olarak SHAP ismi veri-

len makine öğrenmesi anlamlandırma tekniği ile mutasyonların antibiyotik direnç tah-

minine katkıları incelenmiştir. Her bir hedef ilaç için en yüksek SHAP değerine sahip

on mutasyonu direnç berlirleyici olarak ileri sürüyoruz.
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1. INTRODUCTION

An antibiotic called penicillin was discovered by Sir Alexander Fleming in 1928.

Penicillin was utilized to treat diseases derived from bacterial pathogens after its dis-

covery. Many lives were saved from infected wounds during World War II thanks to

penicillin. However, penicillin resistance has been developed by the pathogens over

time and penicillin resistance has became a clinical issue [9]. Then a new kind of

antibiotics, beta-lactam antibiotics, was discovered. Yet, again, bacteria eventually

developed tolerance to beta-lactam antibiotics. This process has repeated itself with

newly introduced antibiotics.

In addition to the tolerance developed by bacteria on their own, there is another

way for them to gain resistance to antibiotics: gene transfer. Horizontal gene transfer

is the basis for bacterial evolution. Bacteria are able to gain antibiotic resistance due

to this evolutionary ability. Gene exchange provides bacteria with dynamic genomes.

Consequently, pathogens’ genomes should be observed continuously. Identification of

antibiotic resistance would decrease both treatment time and cost by preventing im-

proper treatment.

With the discovery of the first generation of antibiotics, antimicrobial chemother-

apy has been the primary method of defense against diseases that are caused by bac-

teria. The method has saved millions of lives. However, the effectiveness of our fun-

damental fighting method against bacterial pathogens is decreasing over time due to

overuse and misuse of antimicrobial drugs. Unfortunately, the mortality from illnesses

caused by bacteria is currently increasing. Additionally, it is observed that the risk of

acquiring infections caused by antimicrobial resistant pathogens is increasing. Doctors

may refuse to conduct basic surgeries in the near future due to high probability of

mortality caused by infections acquired in hospitals.
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Antibiotic resistance also bears huge economic burdens on the society. According

to some estimates, antimicrobial resistance costs to US health system between $21

billion and $34 billion dollars every year [10]. Another study from Thailand claimed

that average hospitalization costs were increased from $108 to $528 [10] due to patients

infected by antimicrobial resistant (AMR) pathogens.

Currently methods used to detect antibiotic resistance in pathogens require em-

pirical antibiotic therapies that take days to identify the pathogens and their resistance

to antibiotics [11]. To keep antibiotic resistance down, it is important to detect its roots

properly and to use suitable antibiotic agents. The above mentioned detection methods

cause a delay in treatment. However, it is possible to speed up antibiotic resistance

detection via methodologies utilizing machine learning techniques and whole genome

sequencing technologies.

While there are studies related to antimicrobial resistance in pathogens, they were

mostly conducted from microbiology and biochemistry perspectives. The topic is still

a relatively new area of research for computer scientists. Thanks to developments in

multi-core processors and data analysis methodologies, it becomes possible to decrease

both time and cost of the detection of antimicrobial resistance in pathogens.

In this thesis the contribution of machine learning methods to the study of antibi-

otic resistance detection in mycobacterium tuberculosis is examined. We investigate

support vector machines (SVM) with linear and rbf kernel, logistic regression, random

forests, xgboost and feedforward neurak networks. We also examine whether differ-

ent data representations used in natural language processing domain such as TF-IDF,

TF-RF, BM25TF-IDF, BM25TF-RF lead any improvements on model performances.

Lastly we inspect the mutations that have the highest impact on the prediction of

antibiotic resistance via machine learning interpretation methods. By doing so, we aim

to detect mutations that lead to antibiotic resistance in tuberculosis bacteria.



3

2. BACKGROUND

2.1. Biological Background

2.1.1. Methods to Acquire Antibiotic Resistance

Most of currently used antibiotic compounds are produced by some microbes as

an ability to protect their environment from other organisms [12]. Actually there is

an ongoing battle in bacteria kingdom. Some bacteria would develop resistance to

their enemies’ evolutionary advantages. It is observed that different bacteria start

to develop resistance to antibiotics independent from each other. Therefore, it is an

undeniable fact that evolutionary mechanisms play an important role in antibiotic

resistance development.

The process of antibiotic resistance development is intensified by human-caused

influences. The decrease in the cost to produce antibiotics caused the increase in the

use of antibiotics. The gradual increase in the usage of antibiotics in anthropogenic

activities such as agriculture, aquaculture and non-human applications such as waste

disposal, results in higher selection and maintenance pressures on bacteria popula-

tions. Misuse and overuse of antibiotics have increased the development of antibiotic

resistance among bacteria by rising selective pressures on pathogenic organisms. In ad-

dition to accelerated evolutionary process, there is a question required to be answered:

what are the biological origins of antibiotic resistance development besides evolutionary

pressures on bacteria?

Changes occurring on bacterial DNA may result in the development of resistance

to a specific antibiotic. There are different ways for bacteria’s DNA to be changed.

Random mutations on genetic materials of a bacterium are one of the DNA change

methods that may result in the development of antibiotic resistance. For instance, point

mutations on gyrA, gyrB, parC, and parE genes of bacterial DNA [13] cause antibiotic

resistance. It is also possible for a mutation to cause a phenotype which is responsible
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for intrinsic resistance (defined as resistance that is a common character among bacteria

species [14]). To illustrate, existence of efflux pump, which is a transportation protein

used to extrude substrates, has an impact on the development of antibiotic resistance,

they may transmit antibiotics from the cell to the external environment [15].

Another possibility for a variation of bacterial DNA is horizontal gene transfer [16]

occurring between different organisms from the same generation. It has three differ-

ent sub-types namely conjugation, transformation and transduction. Conjugation, in

which two bacteria change their genetic materials directly, is one of the horizontal gene

transfer methods . These two cells build a cellular bridge (conjugation pilus) between

their cytoplasms and genetic materials (generally circular DNA pieces called plasmids)

are transferred via this bridge. Transformation is another way to acquire genetic ma-

terials from external sources. The main source for these external DNA pieces is dead

bacteria’s DNA. Transduction is the last HGT method in which DNA of a bacterium

is transferred by a bacteriophage (viruses targeting at bacteria). In this type of genetic

material acquisition, bacteriophages become natural transmitters for genes of their

hosts and transfer some segments of their hosts’ genetic materials [17].

There is a phenomenon called host-controlled restriction and modification [17]

which is referring to genetic set-up in bacteria identifying and destructing invader DNA.

This mechanism works as a natural limit for horizontal gene transfer, but between 1.6

and 32.6 percent of microbial genomes are acquired by horizontal gene transfer accord-

ing to some estimations [18]. Therefore, HGT plays an important role in spread of

antibiotic resistance among bacteria populations in spite of the host-controlled restric-

tion and modification.

2.1.2. Mobile Genetic Materials in Bacteria

Plasmids are required to be investigated to understand the origin of antibiotic

resistance because they are genetic materials transferred during conjugation. They are

relatively small, circular, double-stranded DNA molecules. They are separated from
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bacterial chromosomes and replicated independently [12]. To carry antibiotic resis-

tance, a plasmid is required to contain genes or mutations which cause the resistance.

Transposons are gene systems that change their sites within DNA or jump from

one DNA to another one [12]. It is also possible for a transposon to jump from plasmids

to bacterial chromosomes and vice versa. This is why they are sometimes referred as

‘jumping genes’ [19]. Resistance causing transposons contain at least one resistant

gene, otherwise they would not have any impact on antibiotic resistance.

Gene cassettes are circular, free, non-replicating genetic molecules. Gene cas-

settes generally contain only one gene. Integrons are genetic elements having specific

sites which gene cassettes can be integrated at by site-specific recombination [20]. It

is possible to divide integrons into two categories namely mobile and chromosomal.

Chromosomal integrons are relatively bigger than mobile integrons, but the mobile

ones are the ones which are generally responsible for the dissemination of antibiotics

resistance [21].

2.2. Machine Learning Background

2.2.1. Logistic Regression

Logistic regression is one of the widely used machine learning algorithms. In

addition to its computational simplicity, it is easy to understand and implement. It is

possible to define logistic regression as the most primitive neural networks, it is simply

a single neuron (see Figure 2.1 for details).
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Figure 2.1: Neuron used in logistic regression

The Optimization (finding the best possible set of weights) is done in two steps

namely forward propagation and backward propagation. In forward propagation, the

class that the sample belongs to and the cost would be estimated. Firstly, let us

investigate the formula used in forward propagation. Weighted combination of features

is calculated via

ŷ = wt ∗ x+ w0 (2.1)

‘w’ is a vector containing weights for each feature. It is also possible to state

that this vector represents how much a feature is important in class prediction. w0 is

called bias. This value is independent from the features. After ŷ is estimated, it is

transformed by a function known as sigmoid, or logistic function shown in Figure 2.2.

p(C1|X) =
1

1 + e−ŷ
(2.2)

Class prediction is done according to the value calculated by the sigmoid transfor-

mation. If it is greater than 0.5, the sample will be assigned as class 1 (C1), otherwise

it would assigned to class 2.
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Figure 2.2: Sigmoid (logistic) function

To find the optimal weights for the features, it is required to define a cost function

which would be used in backward propagation. Cross-entropy is used as the cost

function in logistic regression. The cost function (see Equation 2.4 for details) is

estimated by average of the loss function (see Equation 2.3 for details) over the whole

training set.

L(ŷ, y) = y ∗ log ŷ + (1− y) log (1− ŷ) (2.3)

J = − 1

m

m∑
i=1

L(ŷ, y) (2.4)

The aim of the backward propagation is to find the global minimum of the cost

function. This is why each weight is slightly updated according to the derivative of the

cost function according to the weight itself in every iteration of backward propagation.

Bias should also be included in backward propagation. Moreover, its optimal value is

supposed to be found in order to build a successful classifier.

∆w =
∂J

∂w
(2.5)

w = w + ∆w (2.6)
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Logistic regression can be used in multiclass classification problems as well. To

execute logistic regression for multiclass prediction, ‘softmax’ (see Equation 2.7) is used

as the activation function instead of the logistic function. ‘K’ in the softmax formula

corresponds to the class count in the problem. The sample is assigned to the class with

the maximum value of the resulting softmax values.

σzi =
ezi∑K
j=1 e

zj
for i=1,...,K (2.7)

2.2.2. Support Vector Machines

Support vector machines (SVMs) are discriminant based classification algorithms

proposed by Vapnik [22]. In other words, the aim of SVMs is to find the best separator

hyperplane between classes. To find the optimal discriminator, the margin (distance

of hyperplane to the closest points to itself) is tried to be maximized for better gen-

eralization [23]. Additionally it is possible to observe that SVM can be used in both

binary and multiclass classification problems.

For the binary classification case, every observation in the dataset is a tuple

containing features and the class that it belongs to. X = {xt, rt} where rt ∈ {−1, 1}.

Equations for the discriminator and the distance of a point to the discriminator can

be seen in equations 2.8 and 2.9 respectively.

rt(wT ∗ xt + w0) = 0 (2.8)

dist(x, discriminator) =
rt(wT ∗ xt + w0)

‖w‖
(2.9)
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Support vectors are originated from points located on margin boundaries. They

are circled in the Fig 2.3. The aim of the algorithm is to maximize the distance between

points deriving the support vectors and the hyperplane as it was stated earlier. In the

Equation 2.10, ρ is the value which we are trying to maximize during the training.

rt(wT ∗ xt + w0)

‖w‖
≥ ρ (2.10)

It is possible to convert the equation in the following form

rt(wT ∗ xt + w0) ≥ ρ‖w‖ (2.11)

To handle the possibility of infinitely many solutions to ρ‖w‖ due to scaling‖w‖,

the expression is fixed to 1. To maximize ρ, the minimization of‖w‖ is required. Then

the maximization problem becomes a minimization problem under a constraint because

of the duality [22]. The optimization problem seen below can be solved via lagrangian

multipliers.

Minimize
1

2
‖w‖2 subject to rt(wT ∗ xt + w0) ≥ 1 for all t (2.12)

The lagrangian primal function (see Equation 2.13) is tried to be minimized with

respect to w and w0.

Lp =
1

2
‖w‖2 −

N∑
t=1

λ[rt(wT ∗ xt + w0)− 1] (2.13)

=
1

2
‖w‖2 −

N∑
t=1

λrt(wT ∗ xt + w0) +
N∑
t=1

λ (2.14)
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After taking derivatives of Lp with respect to w and w0 and plugging them into

the equation, we get lagrangian dual objective function [24].

Ld = −1

2

∑
t

∑
s

λtλsrtrs(xt)Txs +
∑
t

λ (2.15)

Ld in Equation 2.15 is required to be maximized with respect to λt [25]. After

solving the equation, N of λ would be found but most of them would be equal to 0.

xt whose λs are greater than 0 is called support vectors. To decide the discriminant,

Equation 2.16 is required to be solved for all support vectors and their average is chosen

as the discriminant [25].

w0 = rt − wTxt (2.16)

It is not possible to find a proper discriminator via the formula mentioned above

(they are valid for maximal margin classifier), if classes are not perfectly separable by

a linear discriminant. This issue is solved via soft margin in support vector classifiers.

Soft margin allows some observations which may be locate inside of the margin or

wrong side of the discriminator. Soft margin is applied via introducing a new variable

into equations used in maximal margin classifier.

rt(wT ∗ xt + w0) ≥ (1− εt) with εt ≥ 0 and
N∑
t=1

εt ≤ C (2.17)

C in the Equation 2.17 is a hyperparameter which is required to be tuned. After

inserting relaxing variable into lagrangian primal function, the equation becomes:

Lp =
1

2
‖w‖2 + C

N∑
t=1

εt −
N∑
t=1

λ[rt(wT ∗ xt + w0)− 1 + εt]−
N∑
t=1

µεt (2.18)
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It should take derivatives of Lp with respect to parameters and set them to 0.

The values that make derivatives of Lp equal to 0 would be plugged into the equation

of Lp. The difference between maximal margin classifier is the term related to relaxing

variable (ε in Equation 2.17). By doing so we get Lagrangian dual objective function:

Ld = −1

2

∑
t

∑
s

λtλsrtrs(xt)Txs +
∑
t

λ (2.19)

where
∑
t

λtrt = 0 and 0 ≤ λt ≤ C , ∀t. Support vectors and the discriminator are

found like in maximal margin classifiers.

Figure 2.3: The optimal hyperplane in svm [7]

Since not all problems can be solved via linear discriminators, there is a need

for more flexible models than linear ones. To get more flexible models, input space

is enlarged via transformation functions. This idea is the basis for support vector

machines. Actually it is not required to set a transformation function, knowing the

kernel function (computing the inner product of vectors in the enlarged feature space

[26]) would be enough to continue to find discriminator. The procedure is the same

with support vector classifiers after choosing the kernel. In another words, a linear
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discriminant is tried to fit into observations enlarged by a transformation function.

Most popular kernel functions in SVM literature are pth-degree polynomial and radial

basis functions.

2.2.3. Random Forests

In machine learning, ensemble methods refer to techniques combining results of

different machine learning algorithms. Bagging, in another words bootstrap aggre-

gation, is an ensemble technique to reduce the variance in models having high vari-

ances [24]. Basically bagging aims to prevent overfitting by reducing variance. Results

of many estimators are averaged in bagging. These estimators are suggested to be

unbiased models, relatively weak models [24]. Any simple models such as decision tree

with prediction error lower than 1/2 are referred as weak models in this context. These

estimators should be better than random guessing.

In the classical bagging, M different base learners are trained on different sub-

sets of the data. These subsets are chosen uniformly and the replacement is allowed.

Replacement means that a sample can co-occur in multiple subsets which are not mu-

tually exclusive. After M base learners training, the final decision is made by averaging

of estimations of base learners as in Equation 2.20. In classification problems, majority

voting is used to decide the model output instead of averaging as observed in Equation

2.21.

f̂bag(x) =
1

M

M∑
m=1

f̂m(x) (2.20)

f̂bag(x) = majority voting{f̂b}Bb=1 (2.21)

Random forests is an improvement for classical bagging which tries to decorrelate

base learners by choosing features that would be used to train trees, randomly [27]. In

another words, each tree in random forests is grown on the different subset of features.
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Therefore, the correlation between trees is decreased. The rest of random forests is

the same with vanilla bagging (see Figure 2.4 for details).

Figure 2.4: Bagging vs random forests

2.2.4. XGBoost

There is a concept in machine learning algorithms called boosting. In boosting,

many weak estimators trained successively are gathered to create a single strong esti-

mator. Boosting starts with training a simple model on the dataset. Then a new simple

estimator, which focuses on deficiencies of previous estimators, is introduced into the

system. New models are introduced into the system until there is no improvement in

results or estimator count hits the upper limit for estimators (this is a hyperparam-

eter). The logic in the gradient boosting is the same with ordinary boosting. While

new estimators are added into the system, the gradient descent algorithm is used to

minimize arbitrary loss function which is used to properly combine all estimators.

2.2.5. Feedforward Neural Networks

Feedforward neural networks or multilayer perceptrons are essential structures

in deep learning approaches. In this type of architectures, it is aimed to approxi-



14

mate a function with respect to our dataset. In feedforward neural networks, feedback

connections to neurons is not observed. When feedback connections are allowed, the

architecture is defined as recurrent neural networks [28].

Figure 2.5: A feedforward neural network example

Feedforward neural networks aim to find optimum weights and biases for all

hidden units. To conduct an optimization over architectures, it is required to define

a loss function for the model. For instance if the problem is binary classification,

it is suggested to use binary cross entropy loss. The first step in the training is to

make prediction about the output and to calculate the loss with the current state of

the model. This process is referred as forward propagation. After completing the

forward propagation, an optimizer is used to find optimum weights and biases for

every neuron. The backward propagation is an optimization problem in which the loss

function is minimized. It starts with differentiation of the loss function with respect

to neurons in the output layer so gradients for output neurons are calculated. Then

each gradient flows through all related neurons in all layers by the chain rule in the

backward direction.
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Multilayer perceptrons, as the name suggests, are comprised of more than one

hidden layers that consist of perceptrons referred as neurons hidden units (see Figure

2.1 for what neuron means in the context of multilayer perceptrons). Each neuron

can be thought as a function which converts input vector to a scalar value. It calcu-

lates the result of an activation function fed by linear combination of neuron features.

Additionally, a layer is an analogy for a vector-to-vector converter. Features for the

first hidden layer is the dataset itself, on the contrary, features for the second and

further layers are outputs of previous layers. It is required to break linearity in deep

learning architectures because the function that the model tries to learn is generally

a non-linear function. This is why non-linear activation functions are used in hidden

units in feedforward neueal networks.

There are many different activation functions used to break linearity in deep neu-

ral network architectures. Mostly used non-linear activation functions in the literature

are tanh (see Figure 2.6 for details), relu (see Figure 2.7 for details), leaky relu (see

Figure 2.8 for details), sigmoid (see Figure 2.2 for details) and softmax. Generally

sigmoid and softmax are used in the output layer if the responsibility of the model is

to conduct a classification. Optimization for relu and leaky relu is easier than tanh,

sigmoid, and softmax because they are simply the combination of two different lines.

Figure 2.6: Tanh

Deep feedforward neural networks are generally more complex architectures than

the ones used in traditional machine learning like svm, random forests etc. When
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the complexity in the architecture increases, the model becomes more vulnerable to

overfitting. There are different solutions for overfitting. The dropout technique is one

of mostly used overfitting precautions in neural networks. Basically some randomly

chosen hidden units are deactivated during each training epoch. To deactivate a neuron

in the network, its results are multiplied by zero. By doing so its impact on the loss

function is ignored for that specific training epoch.

Figure 2.7: ReLU

Additionally there is a method called early stopping to prevent overfitting. If

the training continues many epochs, at some point the error on validation set starts to

increase while the error on the training set still decreases. In the literature this is called

that the model starts to memorize inputs. Early stopping aims to stop the training

just before that break point.

Figure 2.8: Leaky ReLU
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2.2.6. Estimation of Feature Importance

There are different ways to estimate feature importance for a machine learning

model such as permutation feature importance, DeepLIFT. We will focus on the SHAP

methodology in our research.

2.2.6.1. Shapley Values and SHAP. SHAP is an abbreviaiton for shapley additive ex-

planations. It is a method to explain how a model predicts with respect to its features.

The approach is based on the coalitional game theory [29]. Each feature is thought as

a player in the coalition. Shapley values are referring to contribution of each feature

to the prediction of the model for a sample.

2.3. Literature Review

2.3.1. Filtering Process to Find Mutations Causing Antibiotic Resistance [1]

Researchers gathered 3651 complex genome sequence of tuberculosis bacteria from

different regions of the world. H37Rv was chosen as reference genome because the

bacterium with this DNA is susceptible to all antibiotic families investigated in the

research. All paired-end reads were mapped with stampy to the reference genome.

Isolates with less than 88% mapped coverage of the reference genome were excluded.

Identification of resistance causing single nucleotide mutation over genome-wide as-

sociation is challenging so they focused on 23 candidate genes and their promoter

regions. During the research, characterization of mutations on these target 23 genes as

resistance or benign was the aim. We will focus on the same target genes.

Some filters were applied to all loci differing from H37Rv. Firstly sequences dif-

fered from H37Rv just on the null-call were eliminated and they would not be included

in further investigations. Then synonymous SNPs were filtered out. Another filter

was applied to exclude lineage or phylogeny mutations. Remaining mutations were

characterized as resistance-determining or as benign. To identify resistant determinant
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all genes related to a drug were focused. A mutation was identified as resistant after

applying mentioned filters to all genes related to a drug on a sequence known as resis-

tant to a drug. After applying this whole process on all training set, researchers found

mutation list that may cause antibiotic resistance.

A mutation library, which contained variants causing antibiotic resistance and

not having impact on antibiotic resistance development, was created in this case. The

library contains 2512 mutations observed on the mentioned target genes.

2.3.2. Deep Learning to Predict Antibiotic Resistance Gene from Metage-

nomic data [2]

ARGs were gathered from different databases namely ARDB, CARD and UNIPROT.

Genes coming from ARDB and CARD were assigned as known genes (genes from these

two databases can be thought as features) and these two databases contain information

about antibiotic resistance that the gene may be responsible for and antibiotic group

that the gene belongs to. There were 102 antibiotics which were grouped under 30

antibiotic categories. Genes coming from UNIPROT would be used in training after

preprocessing and they were queried in the database with KW-0046 keyword. Before

preprocessing, all duplicate sequences were removed with CD-HIT (discarding all ex-

cept one that have 100% identity and the same length). While retrieving UNIPROT

genes, their metadata information was also gathered to annotate them unless they

were already gathered. UNIPROT genes were annotated according to their metadata.

Levenshtein distance was used to calculate similarities between gene metadata and

antibiotic categories. After text mining, there were two gene groups, one could be

categorized with respect to their metadata and the other one could not be success-

fully annotated (tagged unknown in the paper). After this refinement process, this

annotations were validated by ARDB and CARD. If a gene from UNIPROT (after re-

finement) has more than or equal to 90% identity to ARDB-CARD gene over its whole

length, it was tagged as High. Similarly if a gene from UNIPROT has more than or

equal to 50% identity and e-value was lower than 1e-10 to ARDB-CARD gene, it was

tagged as Mid. DIAMOND (a program similar to BLAST) was used during validating
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UNIPROT genes according to ARDB-CARD. The remaining genes would not be used

in training of the proposed deep learning models. SNPs (single nucleotide polymor-

phisms) between UNIPROT genes were also filtered out. After these preprocessing

procedures, there were 14933 genes remaining at total.

When preprocessing was completed, a feature matrix whose rows corresponding

to homology similarity of UNIPROT genes to ARDB-CARD genes was calculated.

UNIPROT genes were aligned to ARDB-CARD genes by using DIAMOND, the bit

score was calculated and used as the similarity indicator. Proposed deep learning

models were trained with this feature matrix.

There were two proposed architectures: DeepARG-LS which was developed to

classify ARGs based on full gene length and DeepARG-SS which was developed to

classify ARGs based on short sequence reads. 70% of the dataset was assigned as

training set and the remaining part of the dataset was assigned as validation set. The

baseline model contained 4 dense hidden layers containing 2000, 1000, 500 and 100

hidden units respectively. Input layer was consisted of 4333 hidden units referring to

genes from ARDB and CARD databases. To avoid the overfitting, random hidden units

were removed via dropout technique. The Output layer contains 30 units corresponding

to 30 antibiotic resistance categories. The softmax activation function was used to

calculate the probability of input sequence to each AR categories.

In DeepARG-SS input genes were split into 100 nucleotid-long sequences. An

overall precision of 0.97 and a recall of 0.91 were achieved among the 30 antibiotic cat-

egories tested. In comparison, the best hit approach achieved an overall 0.96 precision

and 0.51 recall. In DeepARG-LS input genes were used as a whole. It was expected

that their results would be better because longer read sequences contain more informa-

tion than short read sequence did. DeepARG-LS achieved a high precision (0.97+-0.03)

and an almost perfect recall (0.99+-0.01) for antibiotic categories that were highly rep-

resented in the database. Comparatively, the best hit approach achieved a perfect
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precision (1.00+-0.00) but a much lower recall (0.48+-0.2) for these categories. Both

models did not perform well for categories with less genes. Further validations were

conducted on different databases such as MEGARes

2.3.3. WDNN to Find Drug Resistance from Whole Genome Sequencing [3]

In the research, WHO network of supranational reference laboratories and the

ReSeqTB knowledgebase were used in the training of the initial model included 3,601

MTB isolates. Besides, there were 792 MTB isolates as a separated validation set. 10

different antitubercular drugs would be included in the research. Researches defined

‘predictor’ to use them in the input layer of proposed WDNN architecture. 28 pre-

selected antibiotic resistant genes and promoter regions were targeted by the study.

They found 6342 frameship insertion-deletions and SNPs. 156 of these changes existed

at least 30 of 3601 MTB isolates so they were selected as predictor. The remaining

changes were aggregated into 141 derived categories. 56 of these categories were present

in at least 30 isolates so they were chosen as predictor as well. In total, they used 222

predictors to train their model and further analyses (0 or 1 with respect to existence).

Wide and deep neural networks are the combination of logistic regression and deep

multilayer perceptrons. In WDNN logistic regression and deep multilayer perceptrons

are trained separately and merged in the final classification layer of the model. In

deep multilayer perceptrons proposed in the paper contained two hidden layers (both

contained 512 hidden units) with the ReLU activation function, monte carlo dropout,

and L1 regularization. The network was trained with stochastic gradient descent using

Adam optimizer. There were 222 hidden units in the input layer corresponding to 222

predictors. In the concatenation layer there were 734 hidden units. 11 antibiotic drugs

were investigated during the research so there were 11 units in the output layer. The

sigmoid was used as the activation function in output layer.

During the research different machine learning approaches were trained to com-

pare their proposed model: multitask WDNN. Average sensitivities and specificities for

rifampicin and isoniazid were as follows: 97.1% and 95.9% (multitask WDNN), 95.6%
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and 95.4% (random forest), 96.7% and 95.7% (regularized logistic regression), 96.3%

and 94.3% (preselected mutations MLP), and 97.2% and 95.2% (single task WDNN).

Model performance trends were similar for other eight anti-tubercular drugs.

2.3.4. ML to Classify Antibiotic Resistance from DNA Sequencing Data [4]

Previously identified 23 candidate genes and their 100 base pair upstream regions

were targeted by researchers in this study. Isolates used in the study [1] were used in

the research and methods mentioned in the paper [1] were used in DNA sequencing.

All SNPs (single nucleotide polymorphisms) were found. The existence of a SNP in

an isolate was represented by a binary value: 1 for existence and 0 for absence. 2629

SNPs were found in total. They separated into 3 different feature sets. In the first one

all SNPs were used, in the second one SNPs that were previously suspected of being

resistance-determinants were included, the last one contained direct determinant genes

for drugs. During the research, 11 drugs were investigated.

To understand underlying structure of genetic variations of bacterial isolates,

both PCA and SL-PCA (sparse logistic version of PCA) were utilized. Both method

decreased the dimensionality of 2639 to 2. Researchers continued with SL-PCA because

it was more informative. One method to predict whether an isolate is resistant to a

drug or not was called ‘direct association’. In this method, an ‘OR’ rule was employed,

if an isolate contained any mutations associated with a given drug in the libraries

(Dream TB and the library mentioned in the paper written by T. Walker [1]) it was

assigned as resistant to the drug.

During the research 7 different machine learning methods were investigated: lo-

gistic regression with L1 and L2 regularization, SVMs with L2 regularization and radial

basis function kernel, random forest, a product-of-marginal models, a class-conditional

Bernoulli mixture model. In average all machine learning based-methods had higher

AUC results than ‘direct association’ method. In this type of researches sensitivity is
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the most important criterion because failure to detect actual antibiotic resistant bac-

terium may result in harm for a patient. Machine learning algorithms contributed to

increase in sensitivity.

2.3.5. Application of ML to MTB Drug Resistance Analysis [5]

Traditional machine learning methods such as logistic regression, gradient tree

boosting, support vector machines, and random forests were used in this case. Dataset

contained 13402 isolates, it was expanded version of the one used in paper named

‘Machine learning for classifying tuberculosis drug-resistance from DNA sequencing

data’ [30]. The dataset was highly imbalanced, isolates were mostly extracted from

susceptible bacteria. They tried to figure out importance of mutations in isolates in

addition to conducting a classification.

The feature extraction was done as T. Walker explained in his research [8]. Before

starting model training, dimensionality was reduced via sparsity constraints such as

PCA (principal component analysis) and NMF (non-negative matrix factorization).

Imbalance in data was handled by equalizing sample sizes for both classes (resistant

and susceptible). To make two class equal sized, susceptible isolates were sub-sampled

randomly.

The training was run by the following methodology: 100 iterations 5-fold cross

validation and results were reported accordingly. After the classification, 10 most

important features (mutations) were also reported for all antibiotics included by this

research.

2.3.6. Deep Learning to Detect Cooccurent AMR in MTB [6]

In this case, the dataset created by The CRyPTIC Consortium [31] was used

to predict co-occurent resistance of mycobacterium tuberculosis. Mutations on target

genes defined by T. Walker [8] were used as features. An end-to-end model was pro-

posed by researchers to conduct multilabel classification for antibiotic resistance for
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4 first-line antibiotics namely isoniazid, rifampicin, ethambutol and pyrazinamide. A

deep denoising autoencoder named DeepAMR was developed. The architecture con-

tained 3 stacked encoders which extracted information. The feature sizes dropped from

5823 to 20. After feature extraction 4 mlp with 2 layers were used to predict whether

the sample had resistance for a drug. Training was completed in two steps. The au-

toencoder was trained initially. After autoencoder training, mlps for each antibiotic

were finetuned. Train-test set split was proportional to 70-30.

SNPs ranking was conducted to check variant importance in antibiotic resistance

development. The approach based on permutation feature importance. They reported

a metric estimating sensitivity drop when a feature was permuted.
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3. DATASET

3.1. Dataset

We focus on the mycobacterium tuberculosis in this research because it is one

of the most vital bacteria-causing diseases across the world. Therefore, we included

13860 mycobacterium tuberculosis isolates gathered from different region of the world

as stated in baseline papers [8,31]. Dataset are formed by fastq [32] files storing biolog-

ical sequences and their corresponding quality scores. An example from one of isolates

used in our research can be seen below:

@SRR2099940.1 1 length=151

ACCCGGAACCAAGACTCGGAACTAACGAGAACCAGGGAGATACGTCGTTGA

+SRR2099940.1 1 length=151

CCCFFFFFHHHHHIIJJJJJJJJJJJIJJJJJIJJJIIJIIIJJIJJHGHFFFFDDDDDDDDDD

First and third lines in the fastq example, are simple header lines. They contain

information about ncbi assigned id for this organism and sometimes information about

the machine that reads DNA sequences. The second line contains the actual short

DNA reads. As you can see from the example, there are only 4 characters (A, T,

C, G) referring to nucleotides that can be observed on DNA. The last line contains

read qualities for each nucleotide. Quality score for each nucleotide is represented by a

character. All possible quality characters can be seen below. The lowest quality score

is represented by exclamation mark and the highest quality score is shown by tilde.

All other quality scores are between them and they are located in ascending order. All

characters representing quality can be seen below:

!”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ ‘

abcdefghijklmnopqrstuvwxyz{|}˜

It is not possible to process fastq files directly in our research. Therefore, a

data preprocessing pipeline was implemented to extract necessary genomic information

about target bacteria. Variants are extracted from raw sequence reads distributed
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via fastq files. All models that we investigate during this research, use only variants

extracted by the preprocessing pipeline that we developed. Details can be seen in

Section 4.1.

4 first line antibiotics used in tuberculosis treatment namely isoniazid, rifampicin,

ethambutol and pyrazinamide are main concerns in this research. This is because they

are firstly used drugs in the tuberculosis treatment. There are some missing labels for

antibiotics in the dataset. Each bacteria isolate is not examined for each target drugs

in our baseline researches [31]. Therefore, we need to filter out isolates that do not

contain a label for drugs that we examine. We conduct this filtering mechanism for

each target drug separately since each antibiotic is investigated independently of the

others.

In addition to missing information in the dataset, the dataset itself is highly

imbalanced. To elaborate, there are more susceptible isolates in the dataset than

resistant ones. This pattern is observed for all antibiotics investigated in the research.

Therefore we should handle class imbalance in our dataset to conduct more precise

detection of antibiotic resistance in bacteria forming our dataset. For details please

check Section 4.2.
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Figure 3.1: Class distributions for all target drugs
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4. METHODS

We focus on 4 first-line antibiotics and 23 genes on which mutations are previously

detected as resistance determinants during this research. Methods can be categorized

under 3 topics namely, data preprocessing, classification and feature importance ex-

traction.

4.1. Data Preprocessing

4.1.1. Preprocessing Pipeline

We developed a pipeline application to conduct data preprocesing. The pipeline

is formed by 5 subprocesses namely downloading isolate read files, sequence alignment,

bam cleaning, variant calling and variant annotation. First step is to download experi-

ment files containing short reads gathered by next generation sequencing techniques [33]

for each mycobacterium tuberculosis isolate investigated in this research.

First of all, a manager application is written to manage all tools included in

the pipeline. Python is chosen as the language for the application. The application

conducts command line calls for all other third party applications to prepare all required

information from fastq files containing short reads derived from next generation DNA

sequencing.

There are 3 required arguments which respectively refer to pipeline’s own con-

figuration file, the main directory containing all isolate folders and identifications of

isolates to which the pipeline would be applied. Provided ids are supposed to satisfy

one of the following formats: single value (348), comma-separated two values (348,400)

or dash-separated two values (348-400). If single value is provided to the application

then it applies the data preprocessing pipeline only to the given isolate. If the argu-

ment contains comma-separated two values, it divides the argument into two values by

comma and applies the pipeline to these two ids. If the provided arguments contains
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dash then the manager application divides the input into two values and applies the

pipeline to all isolates between provided two values (including both of the inputs).

The pipeline uses a yaml [34] configuration file to trigger download module. The

application manager assumes that each isolate has its own directory and all these

isolate directories are contained by another base directory. As you might guess each

isolate directory contains configuration file for the download module, it has two different

method to download fastq files. The first one uses FTP and gets data from european

nucleotide archieve. The other one uses NCBI Sratoolkit. Download module reads run

ids from the configuration file if it uses NCBI Sratoolkit. It uses download links, if

FTP is chosen. The default download method in the current version of the pipeline is

NCBI Sratoolkit due to its download performance.

After downloading fastq files, they are aligned to a reference genome. H37Rv

sequence of mycobacterium tuberculosis is the one we used in our research because it

is susceptible to all first-line antibiotics. There are different aligners integrated with

the pipeline manager application. It is possible to work with one of following aligners:

Stampy [35], NextGenMap [36], BWA [37] and GSNAP [38]. GSNAP is the current

default sequence alignment mapper, As it is defined in the research in which different

aligners and variant callers are compared [39], it achieves high sensitivity without losing

much in specificity. Installation of these mappers is prerequisite and should be done

manually. After installation process for these mappers is completed, configuration for

the aligner can be set in the configuration file which is provided the application with

a command line argument. These mappers give output in sam [40] format. However,

BamCleaner utilizes bam files as input so sam files created by alignment process are

converted into bam [40] by SAMtools [40].

When bam files are ready, they are put into cleaning module of the pipeline

manager. To clean bam files, GATK is used [41]. It has a recommended pipeline to

clean files created by sequence alignment mappers [42]. In our approach, bam files

are sorted, duplicates in bam files are marked and removed and bam files without

duplicates are indexed via the preprocessing pipeline manager.
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The preprocessing manager conducts variant callings to find possible SNPs and

INDELs on cleaned bam files. All variants are stored in a vcf file [43]. Two different

variant callers are used in the pipeline. First one is referred as SAMtools [40] and

the other one is referred as Platypus [44]. They perform differently in detecting SNPs

and INDELs. It is possible to extract features from different combinations of variants

detected by these two methodologies. However, we will include SNPs detected by

samtools and INDELs detected by platypus in our research.

Last step of the pipeline is normalizing the vcf files created by variant callers.

It is used to detect whether any two indels are representing the same modification on

the DNA or not. If two indels are the same then we are not required to include both

of them in our research. Left-normalization is gaining popularity among researchers.

Left normalization means that start position of a variant is shifted to left until it is not

possible to do so and the mutation is represented as few nucleotides as possible.

4.1.2. Base Feature Matrices

We focus preselected 23 genes defined by T.Walker [8] in this research. There is

at least one mutation on these genes that was previously detected to cause antibiotic

resistance in mycobacterium tuberculosis [8]. Additionally, promoter regions of these

genes are also included in our processes. Antibiotic and related resistance determinant

genes can be seen in the table 4.1.

Variants that are not related to target genes are ignored in further steps of our

research. After selecting variants only observed on target genes, we apply some filters to

SNPs which are independent of used variant callers. Then the feature matrix is formed

by remaining variants. First filter is related to read depth of variants. It should be

greater than 90%, otherwise the SNP would be neglected in the rest of the research.

The second filter is related to the observation frequency of a mutation. Mutations

which are seen in only one isolate are filtered out by the second filter. We do not apply

any filters to INDELS.
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Table 4.1: Antibiotic Resistance and Gene Relations [8]

Isoniazid Rifampicin Ethambutol Pyrazinamide Other Antibiotics

ahpC rpoB embA pncA gyrA

fabG1 embB rpsA gyrB

inhA embC rpsL

katG embR gidB

ndh iniA rrs

iniC tlyA

manB eis

rmlD

All detected variants are iterated over for each variant detection methods. These

variants constitute columns of the feature matrix. Additionally isolates form rows of

the feature matrix. If a variant exists in an isolate, related feature matrix location is

marked as ‘1’, otherwise it is marked as ‘0’. We would call this feature matrix as binary

data representation in next steps of this research. It is possible to see feature matrix

size in the table 4.2:

Table 4.2: Base Feature Matrices

Variant Detection Feature Matrix Size

snp: SAMtools & indel: Platypus 13860*11750

4.1.3. Additional Data Representations

Binary data representation assumes that each feature has the same weight. This

means in case at hand that each mutation has a direct impact on the antibiotic resis-

tance. However, some mutations on target genes may not have any impact on antibiotic

resistance development. This is why finding an alternative data representation which

differentiate weights of mutations may improve performances of our models. Term
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weighting methods used in information retrieval help us to avoid the assumption that

each mutation has the same influence on the development of drug resistance. We inves-

tigate 4 different term weighting methods generally used in natural language processing

namely TF-IDF, TF-RF, BM25TF-IDF, BM25TF-RF.

4.1.3.1. TF-IDF based data representation. TF-IDF (term frequency - inverse docu-

ment frequency) is used to estimate distance between the query and a document. All

documents are sorted according to this evaluation and the owner of the query would

face with most relevant documents to his/her query. By doing so, search quality is

aimed to be improved.

TF is obtained by the division of the number of that a term is seen in a document

to the total term count in the document. We mention the result of this division as

TF in the formula. IDF is the measure of how much information a term provides. In

another words, IDF is used to increase weights of rare terms and decrease significance

of common terms. It is calculated by division of the total document count (N) to the

number of these documents that contain the term (DF ).

TF − IDF = TF ∗ IDF (4.1)

TF = FT (4.2)

IDF = log(N/DF ) (4.3)

In our context, isolates are corresponding to documents and mutations are cor-

responding to terms. There is a difference between TF-IDF that we used and the one

in the literature. A mutation can be seen only once in an isolate despite the fact that

a term can be found multiple times in a document. Therefore, TF was changed into

TF = 1/((number of mutation on the isolate)+1). We summed divider with 1 to avoid

0 division issue. Additionally base of log in idf was set as 2 while some resources in

the literature are using e as the base for the logarithm.
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4.1.3.2. TF-RF based data representation. Researchers try to find alternative data

representation models to include predefinedly categorized information in the text cat-

egorization problem. In unsupervised weighting methods, the category of documents

is neglected in a way that a term has the same weight for each document category. On

the contrary, term weights in different categories are not required to be the same in

supervised term weighting.

While calculating inverse document frequency (an unsupervised weighting method),

the category of the document is ignored. In another words, IDF minds only the number

of the documents in the corpus that contain the queried terms without checking their

categories. Therefore, a term has the same weight for each document category. On

the other hand, RF (relevance frequency) includes document categories containing the

queried term in the calculation as well. TF-RF is used to estimate how important a

term is for a document category [45].

Ratio of the number of a term is observed in documents from positive categories

to the number of a term is observed in documents from negative categories is used

to estimate RF value [46]. By doing so, weight of a term is based on categories of

documents.

TF −RF = TF ∗RF (4.4)

RF = log2(2 +
a

max(1, c)
) (4.5)

‘a’ and ‘c’ in the RF formula are corresponding to observation count of the term in

all documents with positive category and observation count of the term in all documents

with negative category respectively. To understand difference between RF and IDF, it

would be better to convert IDF formula into a form containing variables used in RF

estimation: IDF = log( N
a+c

).
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As aforementioned, mutations and isolates are corresponding terms and docu-

ments respectively. In our context RF is calculated by division of the number of resis-

tant isolates containing the mutation to the number of susceptible isolates containing

the mutations. We sum 1 with the ‘c’ instead of choosing the maximum of 1 and ‘c’.

Thus, the RF formula becomes Equation 4.6

RF = log2(2 +
a

1 + c
) (4.6)

4.1.3.3. BM25TF-IDF based data representation. The algorithm is often called ‘Okapi

BM25’ and BM is referring to ‘best matching’. The algorithm is used by search engines

to rank documents according to their relevance score to a query. In our case, we would

try to score the relevance between variants and drug resistance. To calculate the rele-

vance score, we apply BM25 mechanics on TF term. TF is calculated like defined in

TF-IDF (see Equation 4.2 for details). Ls is referring to the length of samples and Lave

is referring to the average length of all samples in the entire collection. All samples in

our dataset has same sized features. Therefore Ls and Lave are equals and the equation

4.7 becomes the equation 4.8.

BM25TF = ((k + 1) ∗ TF )/(k ∗ ((1− b) + b ∗ (Ls/Lave)) + TF ) (4.7)

BM25TF = ((k + 1) ∗ TF )/(k + TF ) (4.8)

IDF is calculated as defined in the TF-IDF (see Equation 4.3 for details). The

final score is calculated by multiplying BM25TF and IDF values.

BM25TF − IDF = BM25TF ∗ IDF (4.9)
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4.1.3.4. BM25TF-RF based data representation. BM25TF was calculated as it was

defined in BM25TF-IDF and RF (see Equation 4.5 for details) is calculated as it is

defined in TF-RF. BM25TF-RF is calculated via multiplication of BM25TF and RF.

BM25TF −RF = BM25TF ∗RF (4.10)

4.2. Detection of Antibiotic Resistance

To detect antibiotic resistance in mycobacterium tuberculosis we utilize different

machine learning algorithms such as svm, random forests, xgboost, and feedforward

neural networks. All algorithms use feature matrices containing information about

only variants on target genes as input.

Tuberculosis resistance to 4 first-line antibiotics: isoniazid, rifampicin, etham-

butol and pyrazinamide is investigated in this research. Each antibiotic is evaluated

separately. The problem is thought as a binary classification for each antibiotic instead

of a multilabels classification problem. There are two reasons for taking problem as a

binary classification. The first one is missing information about labels in the dataset.

Different samples in the dataset are lacking labels for different antibiotics. To ignore

any isolate lacking label for any antibiotics would lead into serious decrease in the

dataset size. The bigger dataset would give better results for feedforward neural net-

works. The second reason is that the feature importance extraction is easier if models

are trained for a binary classification problem.

Additionally, the dataset is highly imbalanced which means susceptible and re-

sistant classes are not of equally sized. The susceptible class has much more samples

than the resistant class does. Imbalanced class pattern is observed for all antibiotics.

To handle the imbalanced dataset issue, we define weights for susceptible and resistant

classes (see Equations 4.11, 4.12 respectively for details) and use these values in the

training process of models. For instance in feedforward neural network architectures

we use class weights during the calculation of loss function so the optimization would
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handle the imbalance in class samples. To simplify, when the model makes a wrong

classification about resistant isolates, it will be penalized more than wrong classification

about susceptible isolates.

wsusceptible = max(Csusceptible, Cresistant)/Csusceptible (4.11)

wresistant = max(Csusceptible, Cresistant)/Cresistant (4.12)

Where:

Csusceptible: How many isolates belong to susceptible class.

Cresistant: How many isolates belong to resistant class.

Dataset is divided into two subsets namely training and test set. Training set

contains 80% of the whole dataset and remaining 20% is assigned as test set. While sep-

arating the dataset, proportion of resistant isolates to susceptible ones in both training

and test sets are equal to the ratio of resistant to susceptible isolates in whole dataset.

To tune hyperparameters for every model, 10 fold cross validation is used on the train-

ing set. We use grid search as the hyperparameter optimization (see Appendix A for

details about hyperparameters for each algorithm) technique. After hyperparameter

optimization, each model is trained on the training set and evaluated on the test set

separately.

Traditional machine learning algorithms are used from the python library named

scikit-learn [47]. To utilize xgboost, the library, which has the same name with the

algorithm, is used in this research [48]. To build multilayer perceptrons, we use pytorch

[49]. Artificial neural network with 1, 2, and 3 hidden layers are built and compared

to traditional machine learning algorithms in this research.

4.3. Extraction of Antibiotic Resistance Causing Mutations

The mutation key, represented in columns of the feature matrix, contains muta-

tion location and nucleotide changes. We convert this information into mutation id

defined by Human Genome Variation Society as our reference studies do.
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We include 23 target genes (see Table 4.1 for details) on which mutations are

detected as having an impact on antibiotic resistance in our research. Therefore, we

can only face with mutations observed on genes and their promoter regions. Naming

conventions for variants, that we follow, is as follows:

• If the mutation is SNP and it occurs on the coding region, it is named by concate-

nation of gene name, ” ” symbol, aminoacid that is encoded unless the mutation

occurs and aminoacid that is encoded after mutation

• If the mutation is SNP and it occurs on the promoter region, it is named by

concatenation of gene name, ” ” symbol, nucleotide in reference genome, location

with respect to start position of start codon on encoding region of the gene,

nucleotide after mutations. The location is negative value, it is the distance to

the beginning of start codon.

• If the mutation is deletion, it is named by concatenation of gene name, ” ” symbol

and deletion start location on gene, ” ” symbol, deletion end location on gene and

deleted sequence.

• If the mutation is insertion, is named by concatenation of gene name, ” ” symbol

and insertion start location on gene, ” ” symbol, insertion end location on gene

and inserted sequence.

We use xgboost to detect possible reasons for the development of antibiotic re-

sistance. SHAP (see Section 2.2.6.1 for details) is used to rank features according to

their impacts on drug resistance development. Basically SHAP estimates shapley val-

ues referring to how much a feature contributes to the model output. 10 variants with

the highest SHAP scores (see Table 5.1 for each antibiotic) are reported as possible

resistance determinants.
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5. EXPERIMENTS AND RESULTS

5.1. Classifier Comparison

Firstly we conduct experiments to decide which machine learning algorithm serves

better for our first goal to detect antibiotic resistance in mycobacterium tuberculosis.

To choose the best model, we train the all alternative models namely support vector

machine with linear and rbf kernel, logistic regression, random forests, xgboost, feed-

forward neural network with 1, 2 and 3 hidden layers on the same presplit train set.

The training and the test set contain 80% and 20% of the whole data set respectively.

Different metrics such as sensitivity, specificity, precision and f1 score are reported to

compare models.

3 dummy classifiers are proposed as baselines. In the baseline 0, all samples

are assigned as susceptible, in the baseline 1, all samples are chosen as resistant to

investigated antibiotic. In the last one (baseline 2) each sample is randomly assigned as

susceptible or resistant. A value is created between 0 and 1 uniformly for each sample.

If the estimated value is smaller than or equal to ratio of the resistant samples to

whole labeled samples in the dataset for investigated antibiotic, the sample is assigned

as resistant, otherwise it is assigned as benign. These dummy classifiers are used to

check whether investigated models are actually learning information from the data set

or not. It is possible to see that all machine learning models surpass baseline classifiers,

from Tables 5.1, 5.2, 5.3, 5.4. Therefore we deduce that all machine learning algorithms

are actually learning information from variants in the data set.

Different models perform differently for different antibiotics. Traditional algo-

rithms generally perform better classification than neural network approaches. For

isoniazid (see Table 5.1 for details), random forests surpass all other models when sen-

sitivity is at stake but it is not as powerful in specificity as it is for sensitivity. When

we examine f1 score, we observe that the most successful models are followings: svm

with linear and rbf kernel, logistic regression and xgboost. For our research xgboost is
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the best option among these 4 models for isoniazid because even if their f1 scores are

equal, xgboost has higher sensitivity than the other three has.

Table 5.1: Model Comparison for Isoniazid

Model Sensitivity Specificity Precision F1 Score

baseline0 0.00 1.00 1.00 0.00

baseline1 1.00 0.00 0.29 0.45

baseline2 0.28 0.71 0.28 0.28

svm linear 0.91 0.98 0.96 0.94

svm rbf 0.92 0.98 0.96 0.94

lr 0.91 0.99 0.82 0.94

rf 0.96 0.92 0.82 0.88

xgboost 0.93 0.98 0.96 0.94

ffnn-1d 0.90 0.95 0.88 0.89

ffnn-2d 0.86 0.96 0.89 0.88

ffnn-3d 0.85 0.97 0.93 0.89

Rifampicin is another antibiotic included in this research. It is observed that

traditional machine learning algorithms have better performance in average than feed-

forward neutal networks do. Additionally random forests has the worst scores among

traditional algorithms even in sensitivity. Interestingly multilayer perceptrons with 1

hidden layer surpasses all remaining algorithms in sensitivity. On the other hand it

does not perform well in specificity, precision, and f1 score. It falls behind traditional

machine learning approaches. In average, svm with linear and rbf kernel, logistic re-

gression, and xgboost perform similarly (see Table 5.2 for details). Svm with linear

kernel and logistic regression has slightly better f1 score than xgboost yet all of these 3

algorithms perform similarly with respect to sensitivity. Xgboost is chosen for further

steps of this research because the difference in performance of these models is ignorable.

Additionally decision based algorithms are easier to interpret and we use interpretaion

methods to detect mutations that lead to antibiotic resistance.
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Table 5.2: Model Comparison for Rifampicin

Model Sensitivity Specificity Precision F1 Score

baseline0 0.00 1.00 1.00 0.00

baseline1 1.00 0.00 0.24 0.39

baseline2 0.23 0.76 0.23 0.23

svm linear 0.91 0.99 0.96 0.94

svm rbf 0.91 0.99 0.96 0.93

lr 0.91 0.99 0.96 0.94

rf 0.88 0.99 0.96 0.92

xgboost 0.91 0.99 0.95 0.93

ffnn-1d 0.92 0.91 0.77 0.84

ffnn-2d 0.86 0.98 0.93 0.90

ffnn-3d 0.88 0.98 0.94 0.91

We observe similar results for ethambutol with that we do for isoniazid and

rifampicin. Multilayet perceptrons perform worse than traditional machine learning

algorithms in the detection of antibiotic resistance. It is possible to see drastic decline

in random forests performance for ethambutol in the table 5.3. It falls behind other

traditional machine learning approaches. Xgboost surpasses all algorithms when it

comes to f1 score. However, svm with linear and rbf kernels and logistic regression

have higher sensitivity scores. We still choose xgboost to detect variants that cause

resistance to ethambutol due to the fact that it is easier to explain how xgboost makes

decision and similar performance scores.



40

Table 5.3: Model Comparison for Ethambutol

Model Sensitivity Specificity Precision F1 Score

baseline0 0.00 1.00 1.00 0.00

baseline1 1.00 0.00 0.14 0.25

baseline2 0.14 0.87 0.15 0.15

svm linear 0.91 0.91 0.62 0.74

svm rbf 0.92 0.91 0.64 0.75

lr 0.91 0.91 0.63 0.75

rf 0.68 0.91 0.56 0.61

xgboost 0.89 0.92 0.66 0.76

ffnn-1d 0.76 0.92 0.62 0.68

ffnn-2d 0.66 0.95 0.70 0.68

ffnn-3d 0.62 0.96 0.74 0.68

We observe serious drop in performance for all models when pyrazinamide is at

stake. It has the biggest subset of data that are not labeled so models are not able

to properly learn information from the dataset. This results in a drastic performance

drop. 18.1% of data are unlabeled yet positive class forms only 9.9% of the whole

samples. It is the lowest value among all 4 antibiotics. Xgboost has a relatively higher

performance than all other algorithms do. We observe the pattern that feedforward

neural network approaches fall behind traditional machine learning algorithms. How-

ever, their specificity scores are comparable to values for traditional models. Xgboost

is the approach that we choose to use in next steps of this research because it is one of

investigated approaches with highest f1 and sensitivity scores.
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Table 5.4: Model Comparison for Pyrazinamide

Model Sensitivity Specificity Precision F1 Score

baseline0 0.00 1.00 1.00 0.00

baseline1 1.00 0.00 0.12 0.22

baseline2 0.11 0.88 0.11 0.11

svm linear 0.74 0.94 0.64 0.69

svm rbf 0.61 0.97 0.72 0.66

lr 0.75 0.95 0.66 0.70

rf 0.55 0.98 0.79 0.65

xgboost 0.70 0.95 0.68 0.69

ffnn-1d 0.63 0.97 0.77 0.69

ffnn-2d 0.61 0.96 0.71 0.66

ffnn-3d 0.66 0.95 0.65 0.66

Another observation is that predictions about susceptible class are generally more

accurate. This situation leads us to the opinion that the issue about class imbalance

could not be completely solved. Even if the impact of class imbalance is reduced,

algorithms still tend to make more predictions of susceptible class.

When feedforward neural networks are compared to each other, we observe that

multilayer perceptrons with 1 hidden layer has better sensitivity for isoniazid, ri-

fampicin and ethambutol. However, multilayer perceptrons with 3 hidden layers has

better sensitivity score for pyrazinamide. Additionally, when the model complexity is

increased, the model predicts with higher specificity scores. Therefore we deduce com-

plex FFNNs learn information about negative class better than they do for resistant

class.

To sum up, we try different machine learning approaches including some neural

network architectures and traditional ones to detect antibiotic resistance to 4 first-

line drugs being used in treatment of mycobacterium tuberculosis. Machine learning

algorithms investigated in this research, are actually learning information because all
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of them surpass the proposed baseline estimators. Additionally traditional machine

learning algorithms give better results for all target drugs than multilayer perceptrons

do.

5.2. Data Representation Comparison

All algorithms, that we investigated in this research, are trained and evaluated

with different data representations such as TF-IDF, TF-RF, BM25TF-IDF, BM25TF-

RF. However, we only share results for xgboost below to not spoil the simplicity (see

Appendix B for all data representation comparisons).

Although we expect some improvements in the classification performance with

implementation of different data representations used in natural language processing,

we do not observe any significant improvements in the model performance (see Table

5.5 for details). Therefore, we decide to continue with the binary feature matrix to

find variants potentially causing antibiotic resistance.

Table 5.5: Data Representation Comparison for XGBoost

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.93 0.98 0.96 0.94

TF-IDF 0.92 0.98 0.96 0.94

TF-RF 0.92 0.98 0.96 0.94

BM25TF-IDF 0.92 0.98 0.96 0.94

BM25TF-RF 0.92 0.98 0.96 0.94

Rifampicin

binary 0.91 0.99 0.95 0.93

TF-IDF 0.90 0.98 0.95 0.92

TF-RF 0.90 0.98 0.95 0.92

BM25TF-IDF 0.90 0.98 0.95 0.92

BM25TF-RF 0.90 0.98 0.95 0.92

Continued on next page
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Table 5.5 – Continued from previous page

Data Representations Sensitivity Specificity Precision F1 Score

Ethambutol

binary 0.89 0.92 0.66 0.76

TF-IDF 0.90 0.92 0.66 0.76

TF-RF 0.90 0.92 0.66 0.76

BM25TF-IDF 0.90 0.92 0.66 0.76

BM25TF-RF 0.90 0.92 0.66 0.76

Pyrazinamide

binary 0.70 0.95 0.68 0.69

TF-IDF 0.66 0.95 0.64 0.65

TF-RF 0.66 0.95 0.64 0.65

BM25TF-IDF 0.66 0.95 0.64 0.65

BM25TF-RF 0.66 0.95 0.64 0.65

5.3. Important Mutations for Antibiotic Resistance

Different machine learning approaches are investigated during this research but

xgboost is chosen to find resistance determinant mutations because its performance is

above the average of all investigated algorithms (see Section 5.1 for details) and its

structure is relatively simpler to explain. Due to its decision tree based structure, it is

easier to interpret. We use SHAP (SHaply Additive exPlaniation) values (see Section

2.2.6.1 for information about SHAP) to understand which mutations are important in

the development of antibiotic resistance for each drug. It is possible to see the most

important 10 mutations in the development of antibiotic resistance for each target

drug in Table 5.6. SHAP values are estimations representing how much each feature

contributes to the final classification .
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We rank all features according to SHAP values estimated for xgboost. Then vari-

ants with the highest SHAP values are chosen for future investigations. 10 mutations

chosen for each antibiotic by xgboost (see Figure 5.1 for estimated SHAP values) can

be seen in Table 5.6. Mutations annotated with * (like katG1 S315T∗) actually lead

to antibiotic resistance for the investigated drug according to dreamtb database.

Figure 5.1: SHAP values estimated for 10 most important mutations

We took dreamtb database [50] as the ground truth for the relation between

antibiotic resistance and resistance determinants. The database was curated from

researches about antibiotic resistance in mycobacterium tuberculosis in the literature.

It contains 997 mutations that lead to antibiotic resistance to 4 first-line drugs. We

use the database to validate variants proposed by our model.
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Table 5.6: Antibiotics Resistance Causing Mutations

Isoniazid Rifampicin Ethambutol Pyrazinamide

katG S315T∗ rpoB S450L∗ katG S315T katG S315T

fabG1 C−15T∗ katG S315T rpoB S450L rpoB S450L

rpoB S450L gyrA E21Q embB M306V∗ gyrA E21Q

gyrA E21Q rpoB H445Y∗ gyrA E21Q ahpC G−88A

rpsA R212R rpoB D435V∗ embB M306I∗ embB M306V

fabG1 L203L gyrA S95T embC R927R rpsA R212R

rpsL K43R rpsA R212R embB Q497R∗ embB M306I

embB M306V embB M306V rpsL K43R pncA H57D∗

gyrA S95T rpoB H445D∗ rpoB G876G gyrA G668D

embB M306I rpsL K43R rrs S467S rpsL K43R

Additionally we try to understand the success of our model. Therefore, we es-

timate precision values for different top n features such as 10, 20, 40 and 60. There

are two different precision values. The first one estimates the ratio of resistance caus-

ing variants for the investigated antibiotics to the count of chosen mutations. On the

other hand the second one estimates the ratio of resistance causing mutations for any

drugs investigated in this research to the count of chosen mutations (see Table 5.7 for

details). We also calculate precision values for the model proposed in the reference

study [5]. The reference model is an implementation of logistic regression. The model

in the reference study has better precision scores than our xgboost does. Details can

be seen in the table 5.8.

Table 5.7: Precision for Top n Features

Top n Features Investigated Drug All Drugs Drug

10 0.20 0.50

Isoniazid
20 0.20 0.55

40 0.20 0.45

60 0.17 0.37

Continued on next page
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Table 5.7 – Continued from previous page

Top n Features Investigated Drug All Drugs Drug

10 0.40 0.60

Rifampicin
20 0.30 0.50

40 0.18 0.35

60 0.15 0.32

10 0.20 0.40

Ethambutol
20 0.25 0.45

40 0.28 0.43

60 0.25 0.38

10 0.10 0.50

Pyrazinamide
20 0.05 0.40

40 0.03 0.30

60 0.01 0.30

We use dreamtb as the source for mutations leading into development of antibiotic

resistance. Precision estimations are done according to dreamtb and the database was

lastly updated at May 26, 2014. Therefore, we can not directly deduce that variants

proposed by our model are not related to antibiotic resistance to target drugs so we

extract a list containing difference between variants chosen by our model and the

reference study. Then we filter out variants which exist in dreamtb database. We

present these mutations as our hypothesis (see Table 5.12 for the whole list). In the

next step of this research, we try to find proof that these mutations actually play a

role in the development of antibiotic resistance.
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Table 5.8: Precision Comparison for 10 Chosen Variants According to Dreamtb

Precision For

Variant Detector Investigated Drug All Drugs Drug

XGBoost 0.20 0.50
Isoniazid

Reference 0.50 0.50

XGBoost 0.40 0.60
Rifampicin

Reference 0.75 0.75

XGBoost 0.20 0.40
Ethambutol

Reference 1.00 1.00

XGBoost 0.10 0.50
Pyrazinamide

Reference 0.50 0.50

There is another database referred as mycoresistance containing mutations and

related researches in the literature [51]. It contains more recent papers than dreamtb.

Mutations which are proposed by our model are validated by papers included by this

database. It is possible to see all reference papers validating our hypothesis in the

table 5.12. Precision for variants proposed by our model and the model in the reference

study [5] are estimated according to mycoresistance as well (see Table 5.9 for details).

Additionally, we calculate precision scores for 10 randomly chosen mutations. It is

used to check accuracy of our proposals. As it can be seen from Tables 5.10 and 5.10,

precision scores of variants proposed by our model are higher than precision scores

estimated for randomly chosen 10 mutations. Therefore, we deduce that our model

detects mutations that actually play a role in the development of antibiotic resistance.
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Table 5.9: Precision Comparison for 10 Chosen Variants According to Mycoresistance

Precision For

Variant Detector Investigated Drug All Drugs Drug

XGBoost 0.90 0.90
Isoniazid

Reference 0.80 0.90

XGBoost 1.00 1.00
Rifampicin

Reference 0.80 0.80

XGBoost 0.30 0.70
Ethambutol

Reference 0.80 0.80

XGBoost 0.20 0.90
Pyrazinamide

Reference 0.40 0.60

Table 5.10: Precision Scores of XGBoost for 10 Randomly Chosen Variants

Precision For

Variant Detector Investigated Drug All Drugs Drug

XGBoost 0.00 0.10 Isoniazid

XGBoost 0.00 0.10 Rifampicin

XGBoost 0.10 0.20 Ethambutol

XGBoost 0.00 0.10 Pyrazinamide

Additionally we increase the threshold to include 20 mutations with the highest

SHAP values in the proposals. Then we estimate precision scores for proposed 20 mu-

tations according to mycoresistance database. Results can be seen in the table 5.11.

We could not compare xgboost with the reference algorithm because we do not know

its proposals when the threshold is increased to 20. Although precision scores are de-

creased, most of mutations in the proposal are related to the development of antibiotic

resistance for isoniazid and rifampicin. However, small portion of proposed mutations

for ethambutol and pyrazinamide are actually related to the antibiotic resistance. We

focus on 10 mutations that we used to estimate precision scores in the table 5.9 due to

higher precision score of our model.
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Table 5.11: Precision Scores of XGBoost for 20 Chosen Variants

Precision For

Variant Detector Investigated Drug All Drugs Drug

XGBoost 0.80 0.85 Isoniazid

XGBoost 0.75 0.80 Rifampicin

XGBoost 0.35 0.70 Ethambutol

XGBoost 0.10 0.60 Pyrazinamide

In the table 5.12, there is a column, which can take a binary (true or false) value,

named MDR/XDR. If any mutation in the table 5.12 has ‘TRUE’ in MDR/XDR

column, this mutation leads into resistance to both isoniazid and rifampicin. MDR is

referring to bacteria which have resistance to at least both isoniazid and rifampicin [6].

XDR is used for bacteria that are resistant to at least one of the injectable second-line

antibiotics in addition to isoniazid, rifampicin and any fluoroquinolones [6].

All mutations in our hypothesis are not included by dreamtb and the reference

paper as leading into antimicrobial resistance but they are detected by our model.

Additionally, we observe that gyrA, rpsL play a role in the development of antibiotic

resistance to isoniazid and rifampicin although they do not have any impact on antibi-

otic resistance to target drugs according to T.Walker [8] and dreamtb. rpsA is found

to cause resistance to isoniaid and rifampicin in addition to pyrazinamide. Eventhough

some mutations are detected to lead to the development of antimicrobial resistance by

our model, there are no evidence in mycoresistance database to support this hypoth-

esis. These mutations are shown by ‘No reference’ phrase in the ‘Reference Papers’

column in the table 5.12. It is worth to investigate these mutations because predictions

of xgboost about resistance determinant variants are accurate.
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Table 5.12: Proof for Proposed 10 Mutations

Mutation Reference Papers MDR/XDR Drug

gyrA S95T [52–54] True

Isoniazid

gyrA E21Q [55] True

rpsA R212R [56] True

rpsL K43R [57] True

embB M306V [58,59] True

embB M306I [59,60] True

gyrA S95T [52–54] True

Rifampicin

gyrA E21Q [55] True

rpsA R212R [56] True

rpsL K43R [57,61,62] True

embB M306V [58,59] True

rpoB G876G No reference False

Ethambutol

rrs S467S No reference False

gyrA E21Q No reference True

rpsL K43R No reference True

embC R927R No reference False

gyrA G668D No reference False

Pyrazinamide
gyrA E21Q No reference True

ahpC G-88A No reference False

rpsA R212R [56] True
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6. DISCUSSION

In this thesis, we compared different machine learning algorithms to classify my-

cobacterium tuberculosis samples according to their resistance to 4 first-line antibiotics.

Investigated algorithms included traditional algorithms as well as neural network ap-

proaches. Algorithms, that we studied during this research, can be seen as follows

support vector machine with linear and rbf kernel, logitic regression, random forests,

XGBoost, feedforward neural network with 1, 2, and 3 hidden layers.

We check whether machine learning approaches learn actually information from

the data set by comparing them with simple baseline classifiers. To conduct this com-

parison we define 3 different base estimators. In the first one all samples are labelled as

susceptible to the drug. In the second one all samples are marked resistant. The last

estimator classify a sample randomly with respect to its ratio of resistant to suscep-

tible labels for the antibiotic. All machine learning approaches surpass these baseline

classifiers for all experiments conducted for each antibiotic separately. Therefore, we

deduce that all of our machine learning models are actually learning from the data set.

Traditional algorithms interestingly have better classification performances than

feedforward neural networks do. However there is no clear winner among machine

learning models that we investigate during this study, different algorithms overcome

others for different antibiotics. For instance, Random forests has the highest sensitivity

for isoniazid. However, it falls behind other algorithms for other drugs. XGBoost is

one of algorithms with best scores in average. It is always one of the most successful

algorithms in experiments conducted for each antibiotics.

In feedforward neural networks, complex models learn more information about

susceptible class. When the hidden layer size is increased in multilayer perceptrons, it

generally results in higher specificity (except pyrazinamide). It is possible to deduce

that complex MLPs is better to conduct predictions about negative class. Even if we

try to handle class imbalance in the data set via introducing class weights into the
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system, it is not fully solved. Since in almost all cases, sensitivity scores fall behind

specificity. That is to say, almost in all experiments, success rate in prediction of

negative class is higher than resistant class.

Another point that we examine during this research is whether different data rep-

resentations used in NLP lead to any improvement in the performance of investigated

machine learning approaches. We evaluate TF-IDF, TF-RF, BM25TF-IDF, BM25TF-

RF. According to our experiments, there is no clear indicator to performance increase

in results of examined models. We observe different effects of each data representation

on different models (see Appendix B for details).

We investigate whether our trained model can detect antibiotic resistance causing

variants. There is a database named dreamtb containing information about mutations

on mycobaterium tuberculosis and whether they play a role in the development of an-

tibiotic resistance. We accept the database as the ground truth. We calculate precision

scores on variants proposed by our xgboost and the reference paper [5]. Predictions

conducted in the reference paper are more accurate according to dreamtb (see Table

5.8 for details). We also compare variants detected by xgboost algorithm with variants

in dreamtb. Our related deductions can be seen below:

• 2 out of 10 the most important variants with respect to xgboost are actually

resistance causing mutations for isoniazid.

• 4 out of 10 the most important variants with respect to xgboost are actually

resistance causing mutations for rifampicin.

• 2 out of 10 the most important variants with respect to xgboost are actually

resistance causing mutations for ethambutol.

• 1 out of 10 then most important variants with respect to xgboost is actually

resistance causing mutations for pyrazinamide.

Additionally, we conduct further investigations about variants not included by

dreamtb and the reference study [5] to prove that our model predictions about re-

sistance determinants are accurate. We validate mutations proposed by xgboost by
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mycoresistance database which is an alternative to dreamtb. It contains pubmed ids

for papers about mutations detected to cause the development of antimicrobial resis-

tance. Some variants proposed by our model are validated by mycoresistance although

they predicted as not leading resistance to target drugs by dreamtb and the reference

paper [5]. On the other hand there are some mutations that we are not able to find

any proof that they cause antibiotic resistance to drugs investigated in this research

(see Table 5.12 for evidence of proposed mutations). We detect that some genes such

as gyrA, rpsL and rpsA are misclassified by T.Walker [8]. We find that these three

genes have an impact on the development of resistance to isoniazid and rifampicin.
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7. CONCLUSION AND FUTURE WORKS

In this study we implemented and evaluated different machine learning algorithms

to detect antibiotic resistance in mycobacterium tuberculosis. We included only vari-

ants observed on some preselected genes (23 genes previously detected to play a role

in antibiotic resistance development). Different algorithms was evaluated and xgboost

had relatively high scores among them. Eventhough the impact of class imbalance was

decreased, it could not be solved completely. We also analyzed different term frequency

based data representations used in the information retrieval. We did not observe serious

improvements in model performances. In addition to investigation mentioned above,

we also tried to detect variants that play a role in development of drug resistance to

target drugs via interpretation methods for machine learning algorithms and we pro-

posed some mutations that have an impact in the development of antibiotic resistance

to target drugs. We also identified some genes playing a role in the development of

resistance to isoniazid and rifampicin which were not covered by T.Walker [8].

As future work, we will include all variants observed on bacteria samples in the

data set instead of 23 target genes. We may be ignoring some important information

that might help to detect antibiotic resistance. Additionally, we will pay attention to

architecture utilizing convolutional neural networks because an end-to-end algorithm

may recognize some unknown relations among variants observed on mycobacterium

tuberculosis DNAs.

We will also try to interpret samples in the data set which are not labeled by

laboratory experiments via semi-supervised learning techniques. In addition, we will

investigate whether techniques similar to word embedding used in NLP improve per-

formances of machine learning approaches in bioinformatics domain as well.
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APPENDIX A: Hyperparameters for Each Algorithm

Table A.1: Hyperparameters for SVM

Algorithms

Hyperparameters Svm linear Svm rbf

C [0.0001, 0.001, 0.01, 0.1, 1,

10, 100, 1000]

[0.0001, 0.001, 0.01, 0.1, 1,

10, 100, 1000]

gamma - [0.001, 0.1, 1, 10, 100]

Table A.2: Hyperparameters for LR

Algorithm

Hyperparameters Logistic regression

C [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

penalty [”l2”]

solver [”newton-cg”, ”lbfgs”, ”liblinear”, ”sag”, ”saga”]

Table A.3: Hyperparameters for Regression Tree Based Algorithms

Algorithms

Hyperparameters Random forests XGBoost

n estimators [100, 250, 500, 1000] [200, 250, 300, 350, 400, 500]

max features [”sqrt”, ”log2”, null] -

max depth - [2, 3, 4, 5, 6, 7, 8, 9, 10]

learning rate - [10, 1, 0.1, 0.01]
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Table A.4: Hyperparameters for Feedforward Neural Networks

Algorithm

Hyperparameters FFNN-1d FFNN-2d FFNN-3d

batch sizes [64, 256, 512,

1024, 2048]

[64, 256, 512,

1024, 2048]

[64, 256, 512,

1024, 2048]

hidden units [[16], [32], [64],

[128], [1024],

[4096], [8192]]

[[64, 64], [32, 32],

[16, 16], [64, 32],

[64, 16],[512, 128],

[512, 512],

[128,512]]

[64, 64, 64], [[64,

32, 16], [32, 32,

32], [16, 16, 16],

[512, 256, 128],

[512, 512, 515],

[128, 256, 512]]

activation functions [[”relu”],

[”leaky relu”]]

[[”leaky relu”,

”leaky relu”],

[”relu”, ”relu”]]

[[”leaky relu”,

”leaky relu”,

”leaky relu”],

[”relu”, ”relu”,

”relu”]]

learning rates [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.01, 0.001]

optimizers [”Adam”] [”Adam”] [”Adam”]

dropout rates [0.0, 0.25, 0.5] [0.0, 0.25, 0.5] [0.0, 0.25, 0.5]
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APPENDIX B: Data Representations Comparisons for All

Models

Table B.1: Svm with Linear Kernel

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.91 0.98 0.96 0.94

TF-IDF 0.92 0.99 0.96 0.94

TF-RF 0.92 0.98 0.96 0.94

BM25TF-IDF 0.92 0.99 0.96 0.94

BM25TF-RF 0.92 0.98 0.95 0.94

Rifampicin

binary 0.91 0.99 0.96 0.94

TF-IDF 0.91 0.99 0.96 0.93

TF-RF 0.91 0.99 0.97 0.94

BM25TF-IDF 0.91 0.99 0.95 0.93

BM25TF-RF 0.91 0.99 0.96 0.94

Ethambutol

binary 0.91 0.91 0.62 0.74

TF-IDF 0.89 0.93 0.69 0.77

TF-RF 0.91 0.93 0.69 0.78

BM25TF-IDF 0.90 0.93 0.68 0.78

BM25TF-RF 0.89 0.93 0.69 0.78

Pyrazinamide

binary 0.74 0.94 0.64 0.69

TF-IDF 0.79 0.94 0.63 0.70

TF-RF 0.76 0.95 0.67 0.71

BM25TF-IDF 0.71 0.94 0.62 0.66

BM25TF-RF 0.80 0.94 0.66 0.72



66

Table B.2: Svm with Rbf Kernel

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.91 0.98 0.96 0.94

TF-IDF 0.92 0.99 0.96 0.94

TF-RF 0.92 0.98 0.96 0.94

BM25TF-IDF 0.92 0.99 0.96 0.94

BM25TF-RF 0.92 0.98 0.95 0.94

Rifampicin

binary 0.91 0.99 0.96 0.94

TF-IDF 0.91 0.99 0.96 0.93

TF-RF 0.91 0.99 0.97 0.94

BM25TF-IDF 0.91 0.99 0.95 0.93

BM25TF-RF 0.91 0.99 0.96 0.94

Ethambutol

binary 0.91 0.91 0.62 0.74

TF-IDF 0.89 0.93 0.69 0.77

TF-RF 0.91 0.93 0.69 0.78

BM25TF-IDF 0.90 0.93 0.68 0.78

BM25TF-RF 0.89 0.93 0.69 0.78

Pyrazinamide

binary 0.71 0.94 0.64 0.69

TF-IDF 0.79 0.94 0.63 0.70

TF-RF 0.76 0.95 0.67 0.71

BM25TF-IDF 0.71 0.94 0.62 0.66

BM25TF-RF 0.80 0.94 0.66 0.72
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Table B.3: Logistic Regression

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.91 0.99 0.97 0.94

TF-IDF 0.92 0.98 0.96 0.94

TF-RF 0.92 0.98 0.96 0.94

BM25TF-IDF 0.92 0.98 0.96 0.94

BM25TF-RF 0.91 0.99 0.96 0.94

Rifampicin

binary 0.91 0.99 0.96 0.94

TF-IDF 0.91 0.99 0.96 0.93

TF-RF 0.91 0.99 0.96 0.93

BM25TF-IDF 0.91 0.99 0.96 0.93

BM25TF-RF 0.91 0.99 0.96 0.94

Ethambutol

binary 0.91 0.91 0.63 0.75

TF-IDF 0.85 0.94 0.69 0.76

TF-RF 0.93 0.87 0.55 0.69

BM25TF-IDF 0.87 0.93 0.68 0.76

BM25TF-RF 0.87 0.94 0.70 0.78

Pyrazinamide

binary 0.75 0.95 0.66 0.70

TF-IDF 0.77 0.93 0.62 0.68

TF-RF 0.75 0.94 0.64 0.69

BM25TF-IDF 0.75 0.94 0.62 0.68

BM25TF-RF 0.74 0.95 0.65 0.70
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Table B.4: Random Forests

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.95 0.91 0.82 0.88

TF-IDF 0.96 0.92 0.83 0.89

TF-RF 0.96 0.92 0.83 0.89

BM25TF-IDF 0.96 0.92 0.83 0.89

BM25TF-RF 0.96 0.92 0.83 0.89

Rifampicin

binary 0.88 0.99 0.96 0.92

TF-IDF 0.90 0.98 0.92 0.91

TF-RF 0.90 0.98 0.92 0.91

BM25TF-IDF 0.90 0.98 0.92 0.91

BM25TF-RF 0.90 0.98 0.92 0.91

Ethambutol

binary 0.68 0.91 0.56 0.61

TF-IDF 0.78 0.90 0.57 0.66

TF-RF 0.77 0.90 0.56 0.65

BM25TF-IDF 0.79 0.90 0.57 0.66

BM25TF-RF 0.79 0.90 0.57 0.66

Pyrazinamide

binary 0.55 0.98 0.79 0.65

TF-IDF 0.57 0.98 0.77 0.66

TF-RF 0.57 0.98 0.77 0.66

BM25TF-IDF 0.57 0.98 0.77 0.66

BM25TF-RF 0.57 0.98 0.77 0.66
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Table B.5: XGBoost

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.93 0.98 0.96 0.94

TF-IDF 0.92 0.98 0.96 0.94

TF-RF 0.92 0.98 0.96 0.94

BM25TF-IDF 0.92 0.98 0.96 0.94

BM25TF-RF 0.92 0.98 0.96 0.94

Rifampicin

binary 0.91 0.99 0.95 0.93

TF-IDF 0.90 0.98 0.95 0.92

TF-RF 0.90 0.98 0.95 0.92

BM25TF-IDF 0.90 0.98 0.95 0.92

BM25TF-RF 0.90 0.98 0.95 0.92

Ethambutol

binary 0.89 0.92 0.66 0.76

TF-IDF 0.90 0.92 0.66 0.76

TF-RF 0.90 0.92 0.66 0.76

BM25TF-IDF 0.90 0.92 0.66 0.76

BM25TF-RF 0.90 0.92 0.66 0.76

Pyrazinamide

binary 0.70 0.95 0.68 0.69

TF-IDF 0.66 0.95 0.64 0.65

TF-RF 0.66 0.95 0.64 0.65

BM25TF-IDF 0.66 0.95 0.64 0.65

BM25TF-RF 0.66 0.95 0.64 0.65
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Table B.6: Feedforward Neural Networks with 1 Hidden Layer

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.90 0.95 0.88 0.89

TF-IDF 0.87 0.97 0.92 0.89

TF-RF 0.88 0.97 0.93 0.90

BM25TF-IDF 0.87 0.97 0.91 0.89

BM25TF-RF 0.88 0.96 0.90 0.89

Rifampicin

binary 0.92 0.91 0.77 0.84

TF-IDF 0.87 0.97 0.91 0.89

TF-RF 0.88 0.96 0.86 0.87

BM25TF-IDF 0.85 0.97 0.90 0.87

BM25TF-RF 0.88 0.97 0.91 0.90

Ethambutol

binary 0.76 0.92 0.62 0.68

TF-IDF 0.82 0.90 0.59 0.69

TF-RF 0.81 0.94 0.70 0.75

BM25TF-IDF 0.81 0.88 0.53 0.64

BM25TF-RF 0.76 0.93 0.63 0.69

Pyrazinamide

binary 0.63 0.97 0.77 0.69

TF-IDF 0.65 0.96 0.70 0.67

TF-RF 0.68 0.96 0.71 0.69

BM25TF-IDF 0.65 0.96 0.71 0.68

BM25TF-RF 0.67 0.96 0.70 0.68
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Table B.7: Feedforward Neural Networks with 2 Hidden Layers

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.86 0.96 0.89 0.88

TF-IDF 0.85 0.96 0.89 0.87

TF-RF 0.87 0.98 0.95 0.90

BM25TF-IDF 0.88 0.94 0.86 0.87

BM25TF-RF 0.87 0.97 0.92 0.89

Rifampicin

binary 0.87 0.98 0.93 0.90

TF-IDF 0.86 0.96 0.88 0.87

TF-RF 0.89 0.98 0.94 0.92

BM25TF-IDF 0.85 0.97 0.90 0.87

BM25TF-RF 0.89 0.97 0.91 0.90

Ethambutol

binary 0.66 0.95 0.70 0.68

TF-IDF 0.77 0.93 0.65 0.71

TF-RF 0.81 0.94 0.69 0.75

BM25TF-IDF 0.59 0.96 0.72 0.65

BM25TF-RF 0.73 0.95 0.72 0.72

Pyrazinamide

binary 0.61 0.96 0.71 0.66

TF-IDF 0.62 0.96 0.70 0.66

TF-RF 0.64 0.97 0.75 0.69

BM25TF-IDF 0.54 0.98 0.80 0.64

BM25TF-RF 0.56 0.98 0.78 0.65
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Table B.8: Feedforward Neural Networks with 3 Hidden Layers

Data Representations Sensitivity Specificity Precision F1 Score

Isoniazid

binary 0.85 0.97 0.93 0.89

TF-IDF 0.86 0.97 0.93 0.89

TF-RF 0.83 0.98 0.94 0.88

BM25TF-IDF 0.89 0.96 0.89 0.89

BM25TF-RF 0.90 0.96 0.91 0.91

Rifampicin

binary 0.88 0.98 0.94 0.91

TF-IDF 0.88 0.98 0.93 0.91

TF-RF 0.89 0.98 0.95 0.92

BM25TF-IDF 0.88 0.98 0.93 0.90

BM25TF-RF 0.88 0.98 0.93 0.91

Ethambutol

binary 0.62 0.96 0.74 0.68

TF-IDF 0.66 0.96 0.71 0.68

TF-RF 0.72 0.95 0.72 0.72

BM25TF-IDF 0.69 0.96 0.72 0.70

BM25TF-RF 0.61 0.97 0.77 0.68

Pyrazinamide

binary 0.66 0.95 0.65 0.66

TF-IDF 0.56 0.97 0.73 0.63

TF-RF 0.69 0.95 0.67 0.68

BM25TF-IDF 0.62 0.96 0.69 0.66

BM25TF-RF 0.60 0.97 0.74 0.66




