
A MULTI-TASKING EXECUTIVE

by

SEDAT YILMAZER

B. S. it1 E.E .. , Bogazici Univel's:i.ty, 1981

Submitted to the Institute for Graduate Studies In

Science and Engineering in partial fulfilment of

the reauirements for the d~gree of

Master of SCIence

in

Computer Engineering

Bogazici University Library

11II11111111111111111111111111111111111 ~
39001100314890

Bogazici UnIversitv

iii

ACKNOWLEDGEMENTS

I consider it a previlage to acknowledge those people who

helped and encouraged me during my education and specially my

thesis advisoi~,

I would like to thank Dob. Dr. Tunc Balman 1 my

for his kind help and understanding throughout

my undergraduate and graduate study as well as my thesis. 1

would like to thank Doc. rho Vorgo lstefanopulos •

(d \"' a cl U ate a d vis 0 i~. who encourged me on taking a master thesis. I

also wouJd like to thank Mr. TanJu Argun and Mr. Sait GOZUM who

let me use the facilities of the research and development

laboratories of NETAS. I would like to thank Mr. Semih Pekol who

fi l'st showed me the power of multi-tasking on microcomputers.

F i na 11 y, I would like to thank Mr. EI",?]. c u!..; Y i ItV,;'::\ Z e 1'. l¥ly deai"

brother for his patience in proofreading this manuscript.

iv

ABSTRACT

This thesis describes the design and iMplelYlentat iOt1

of a real-tiMe Multi-tasking priority-driven executive, FOX. The

na,y,e stal"lds for "a East QbJect ol~iented e~ecutive. FOX pe r,y,i t s

the Micro-coMputer user to enJoy the Multi-tasking capabilities

of the high perforMance Machi~es like MinicoMputers.

to unify the concept of Multi-tasking and teaM study of

FOX uses the concept of exchange for inter task

cOMMunication and synchronization. F01~ interrupts, FOX uses

special exchanges called flags. There is no liMit on the nUMber

of tasks and nUMber of exchanges that can be created under FOX.

There are 16 flags Managed by FOX. Eigth of these flags are

assigned to eight external interrupt sources via an interrupt

priority controller. The reMaining eight can be used by the

prograMMers for fast and easy event proceSSitlg. Each task

running under FOX has an eight bit priority level, which is used

by the task dispacher. All task exchange and interrupt binding

is done dynaMicaly by FOX to ease the team study of projects of

I a l"ge code S1 ze.

v

OZET

Bu tez oncelikli bir gercel-zaman isletim cekirdeginin

FOX ,tasarim ve gerceklenmesini tanimlar. is 1 elYIC i

kullanici larit1a daha buyuk i sl e,Y,c i 1 e ri n, o rneg i 1"1 ftdni

coklu kullanim imkanlarini saglar. FOX coklll

kullanim ve grup calismasi kavramlarina duzenli bir yapi

icin iletisim kutulari kavramini kullanir. FOX kesintiler icin

ozel iletisim kutulari kullanir. Bu ozel kutulara bayrak adi

Cekirdegin icinde buiunabilecek iletisim kutulari ve

islem sayisi uzerine bir sinirlama yoktur. FOX 16 adet bayragin

kullanilmasini saglar. Bunlardan 8 adedi 8 diskaynakli kesintiye

bi l~ kesil"1ti oncelik cozumleyicisi ile iii s t i r i 1m i s 1 e I'd i I'.

Artakalan 8 adet bayrak. kulanici tarafindan hizli i 1 et is i IYI

icin kullanilabilinir, hizli kesinti iletisimi ornegi

gi bi. FOX altinda calisan he I' islelYlin·8 dililYllik VB ielelYlci

bolusumunde kullanilan, bir oncelik seviyesi va r'd i I'.

ieIelYI, i let i si ,y, kutusu ve bayrak baglantilari

yazinimlarin ve grup calisMasinin kolaylastirilmasi

tarafindan cekirdek icinde kendiliginden yapilir.

iei n,

Butun

buyuk

FOX

vi

TABLE OF CONTENTS

nChNDWLEDGEtvlE: 1\,J"rs••.••...........••...•.•........• iii

ABST FI(-'lCT ••.•••••• ".. i v

DZE1- .. II " .. ,. " .. /II If .. " a ... It ,. .. ", " " ,. It ", " V

I. I NT liODUCT IOI\J ••..•.••.•.•.•..••••••..•.•••••••••• 1

1 AIM .••••.••••••••••.••••••.•••.•••••••••••. 1

2 HISTORY OF MICROCOMPUTER HW DEVELOPMENT 1.

3 HISTORY OF MICROCOMPUTER SW DEVELOPMENT

4 APPLICATION PROGRAMMING •....•..•.•.••••..•• 4

11. CONCEPT OF ABSTRACT M~iCHINE •••...•....••••••••... 6

1. DEFINITION OF THE ABSTRACT MACHINE .•••••••• 6

III. FOX MACHINF~ .••••••••••••••..•...•.••.••••.••••••• B

1 DEF I NIT I ON •.••••.•..•••..•..••..••.•..•.•.. B

2 USE ENV I RONtvlENT •.•••.•..••••••.•••.••.•••• 1 (>

"< w SYSTEM REQUIREMENTS ..•...•..••••.••••.•..• 10

4 FOX AS AN ABSTRACT MACHINE •..•••••.•.•.••• 12

L-::
.J IYlETHODOLOGY .•.•.•..•.......••.•..•..••.•.• 1 q

6 iYlODULAR I TY •.•.•.. «........................ 15

7 ENTIW TO FOX .•• «.......................... 1 b

B ENGINEERING FOR HARDWARE DEPENDINCIES •.••. 17

9 GLOBAL VERSU~:' L.DcrH~ DPT 1 IYJ I ZnT IC)N ,......... 'I 9

10 METHOD OF COMMUNICATION IN FOX •....•....• 20

vii

IV. FOX MANAGEMENT ROUTINES •.••.•.••••.••••••..•••. 22

1 FUNCTIONS OF FOX ,r.
................. ., ",., ":':'.i:..

.-,

..:. TAm(DISPATCHING r;,"if
.. "'~.,. " ,.." "' .. ,1

3 EXCHANGE MANAGEMENT 26

4 EVENT PROCESS I NG 28

1 FLAG EXCHANGE MANAGEMENT ..•..•..••... 29

2 FAST EXCHANGE MANAGEMENT •.•••••..•••• 30

V. FOX OBJECT DEFINITIONS .••••.••••.••••.••••.•••• 32

1 USE OF OBJECTS .~ •....•......••..•.•...•.•. 32

2 TASK RELATED OBJECTS •.....••••.••.•......• 32

1 STATIC TASK DESCRIPTOR .•.•.•.••.••.•. 33

2 TAS~(DESCRIPTOR ...•••••.••••••...•.•• 34

3 TASK LINK DESCRIPTOR ...••.•.•....•... 38

3 EXCHANGE RELATED OBJECTS ..•.••..•.•..•..•. 40

1 STATIC EXCHANGE DESCRIPTOR .•.•.••....• 40

2 EXCHANGE DEseR I PTOR .•..•..••...•..•... 42

3 EXCHANGE LINK DESCRIPTOR .•..•••••.••.. 46

4 INTERRUPT RELATED OBJECTS••..... 48

1 STATIC INTERRUPT DESCRIPTOR•.. 49

:2 INTERRUPT DEseR I PTOR•. 51

vii i

FOX INSTRUCTIONS
.11', ,.

1 INSTRACTIONS ON AN ABSTRACT MACHINE •••••••

2 CREATE GROUP •••••••••••••••••••••••••••••• 54

1 CF~EATE Tn~;I·\ ••••••••••••••••••••••••••

CREATE EXCHANGE ••••••••••••••••••••••

CREATE INTERRUPT •••••••••••••••••••••

C::'C;:'
.,.1.,.1

5C

57

3 L. I 1\1 ~< G F~ [I U P ~..... u • .. ,. .. II If » u .. 14 " ,. " M " II 11 • II 58

1 L I f\.If(TAS~(•••••••••••••••••••••••••••• 59

~7: L~ I 1\11-< EX CHAt\IGE "''''' ~ u ~ .. II .. " ... " " " • ,. II E)()

!. UT Il_ I TV GROUP ••••••• "..................... C1

1. SUS PEI\JP •••••••••••••••••••••••••••••• C 1

2 RESUME " •••••••• '. •• 52

3 DISPATCH ••••••••••••••••••••••••••••• t.:'3

L-:::- EXCHANGE OPE Rrn T DNf; Gt.j. •. J ·
1 SEI\JD OPEFUHION · bl.~

a Send if fl~ee o l~ l~et u nl · · · · · · · ee
b Pe l~ f 0 1~IYI Sel"ld and l~et u l~n · · · · · · r; 7

c PepfOI~IYI SE.~nd o \~ t i'Yle out · · · · · GLi

2 t..JAIT OPER('::)TION · (:;9

a lrJa i t if fl'ee o l~ l'et U l"'n " " · · · · " 71

b ~~a i t '-tnt i 1 ',~eCf-:? i. ve
" " " · · · · · · · · 7:"2

c Wait IYle~:;sage 01' t i'YIE! out · · " " " 73

E FOX FLAG OPC~~AT lONE;
" · " · " " · · · · · · · " · · " · · " · " " 7t.

1 r:::VE:NT' ".""""" •• "" ••• "" •• "." ••• "." ••• ". 14

:2 E I GNAL •.• " •••• "."" •••• " ••••• ""."...... 75

ix

VII. MORE ON SEND AND WAIT OPERATIONS 76

1 SEND - WAIT INTERRACTION •....•...•....•.•. 76

2 COMIYJUN I CAT I ON••. 77

3 SYI\t[~l-tRONIZATION u Of Of ~ H 77

[j IYiUrU(u .. [XCLUr I UN •••••••••••••••••••••••••• 19

VIII. SYSTEM START UP •...•..........•...••..••..•..• 81

1 SYSTEM INITIALIZATION .•..•......•..•••••.. 91

IX. SAMPLE APPLICATION•.......• 83

1 SAMPLE APPLICATION•.......••.•.•..• 93

2 DEF I NIT I ON ...•................••....••.•.. 8~j

3 I J\j I -r I AL. I Z AT I [II'-J n .. u " Of ~ H 51 Q 1:39

1-1- T(:')Sh BODIES•....... 90

X. CONCL.US ION•...............•.........•... 92

APPENDIX A

npPENDIX B

APPEI\!D I X C

REFERENCES

FOX PFWPOSAL•..... (:;/.\.

f:30URCE LIST I NGS ..•.............•...•...•...•

SAMPLE APPLICATION•.••.....•.......

105

I. INTRODUCTION

1.1 AIM

The aim of this master thesis IS to aooly the best of the

software engineering to a realworld oroblem. Current interests

In microcomouters and ooerating systems lead us to

it was oossible to work with microcomouters and ooerating

!;:;yst e,Y,s. The term ooerating system is QUIte wide f 0 f' t I·", i ',:,

restricted term EXECUTIVE will be more suitable f D \'

the subject of the master thesis.

1.2 HISTORY OF MICROCOMPUTER HARDWARE DEVELOPMENT

intl'oductlon of: fir":;;t .y.icr'o··"·cOfi',outt.?i" 4004 by

:r !\ITEL., we have taken such a long way that it is hardly oossible

to find another branch of technology that has o r'09 r'E~ssE:'cl

fast in the ~istory of mankind. If we revise the micro-comouter

h :i. ~,t 0 r·y,

ccjllE!d,

we can see that after the introduction Dr

first generation 4 bit, multi-chiD devices, we Jumo to

the single chip 8 bit devices in less than 3 years. These,

called, second generation chips found a wide apollcation area in

orocess control ap0lIcatlons and intellIgent i ns,t r' UlY,ent at i 0 (I.

Suddenly rnany of applications that were cost inefficient,

1:;0 cheap that we sta)~ted to see

cont l'olled" ovens and washing machines. At the sa!'fle t i lYle,

cont)'01 applications where we use those huge minicompters or

10CJic, usual application areas of: the

,1'1 i c l" 0 C 0 11'1 put e r's. In parallel to all these, a new area suddenly

opened to the man on the street, the home computers !. These H

bit machines were really ideal for intelligent instruments and

for small-sized process-control applications, as well as the new

'::1I'ea of But in a very short period

about medium-scale control applications and very-

intelligent instruments demanded more powerful processors, even

more powerful than the early mini-computers. This combined with

the desi l'e of gettil"lg the IYlost of the IVla l~ket sha)'e by

i nt)'oduc i ng the f i)~st 16 bit Ivli c roc 0 IYI put e r fo)'ced the

,y,i::\) . .., u fact u l'e)'S, and f i rIa 11 y we got 15 bit CO'Ylput i ng powe I' in the

'\'I i C"l'O P l"'ocesso r's. Of' cou l'se, the d)'ag of the huge softwal'e

investment on 8 bit ~achines and t hE~ st arlda rt c DIY")" 1.1 n i cat i ('"H1

of 8 bits between the computers will keep the 8 bit

mic)'ocomputers 1.10 fo)' a ve)'y long time, if not fo)'eve)'.

3

1.3 HISTORY OF MICROCOMPUTER SOFTWARE DEVELOPMENT

Parallel to hardware developments in micro-computer

technology. microcomputer software has also develope~ rapidly.

Today we have most of the compilers, at least their subsets, and

many of the operating systems like UNIX on the micro-computer

systems. Also special operating systems for microcomputers have

been written, and, today we may speak of a standardization in

microcomputer operating systems. CP/M and MP/M of DIGITAL

RESEARCH,. ISIS-II and ISIS-III of Intel have found a very large

user base in 80 series micro-computers, namely the 18080. zao ,

18086, ISOSS. These operating systems are designed for single or

multi user development systems or for commercial applicatibns

like engineering terminals, business class machines and for home

computers. On the other hand more than half of the micra-

computers going into the control 1 · t· app Ica;lons. like process

control and robot control. Needs of these applications are quite

different. In such applications the system must respond to the

completely unexpected events of the real world. It must perform

different tasks of different importance concurrently. To answer

these requirements, the operating system of the control

application should handle real-time events, should dispatch th0

processing power to the most urgent task, and finally should use

minimal possible processing power, both in the proceSSIng unit

and in the memory. One should notice that if a user waits at his

terminal for a response of ten seconds, he Just gets angry for a

if a process controller can not respond to an

event in one s~conds it might crash the whole system. Also it is

cleal~ that contr'ol applications, usually, if riot always, l'f~qu:lr'E.\

vel'y high

softwa \'e.

reliability figures from both the hardware and the

1.4 APPLICATION PROGRAMMING

I \., a real' world application 1 to get most out of the

hardware, usually the designer of the control application forces

the limits of the micro-computers. That inturn means more

software and more memory. On the other hand the designer should

bring his product to the market as soon as possible. That forces

the design manager to use more software engineers on the same

Leader of the design team breaks the :tnt 0

sevel'al pal'ts and assigns one or more of these parts to one or

more of the design members. Then on, the leader is responsible

for the intel'action of the parts and resolving the potential 01'

appeal'ing inconsistancies or contradictions.

be quite easy at the first glance. But

That migth seem to

this Job directly

influences the product complexity and reliability. Many software

C:~
,J

prOjects fall behi l"d schedule due to seemingly very small

interface problems and bad partitioning of the proJect. No orle

can argue that he can partition the project in the pe I~fect

co ,y, bin a t i 0 },'\, bu:t. some can say that it migth not be the perfect

but can easily be changed when need This is ce,dled

modularity or adaptability_ To help the design leadel~ to

generate a good project partitioning, we must supply some tools

for him, He should not be lost in the details of the interaction

of the partitions, these methods should be standartized, so both

thf.0 pl'o,Ject 1€-:!i:"df21~ and the project manager can be sure that

of the partition, or more important than t h,,;\t 'j

changing any af the team members will not cause excessive impact

on the other parts or on the members of the team.

I nth i s t hes i ~~. we tried to design and implement a

priority driven executive. It is designed to take most of

the underlying hardware, using minimal memory and CPU

time. is designed to standardize the task and

hl'tel~l~upt i'r1tel~face. In !:::.hort, it is designed to ease the .1olj of

the P \"O,J ect 'YlanagE~ \", prOject leader and the team members. Of

trying to ease everybody's Job will b I' i 1'1g

restrictions on the system and some overload to the CPU. 'But

once the user masters the system, he will see that all

1'f2!St l~ict ions, e){cept the time and memory limits, en f 0 I'CE.'S <:\

structured approach to the software development and the

II. THE CONCEPT OF ABSTRACT MACHINE

2.1 DEFINITION OF THE ABSTRACT MACHINE

We genepally identify a ppocessing unit as a papticulap

collection of 'hard~are that implements the instruction set of a

IYlechanical processors of the past. Even with the modern

COIYlputel~s,befol~e the LSI, it was easy to physically point c;\t thE~

processor as distinct from me~ories,

Continuing integration of functions into silicon,at least,

this physical distinction mope difficult with single chip

computers which contains memory, peripheral and program. nlSD

microprogramming (that is replacing the hardwiped instruction

decoding with a more elementary programmed processor) as the

implementation strategy has blurped the distinction by one more

::~t ep. That is when the instpuction set

implemented in terms of more primitive instructions,

difficult to identify the "'Ylachine". It is; c.'lear' that t h i~;;

rla)"pow physical definition of the machine is not adequate for

the CUI'I'ent technology levels arid is likely to beCOIYle eVt?1'1

adequate with the technologies of tomorrow.

"7

Actually, we

instead we developed an alternative definition.

CUI'i'ent programming methods use another concept, known a!:Oi

Programmers of today. regard the machine

that they are programming as much more than a collection of

instructions that are defin~d in the reference manual. Indeed

the physical machine is of little concern to the programmers.

Viewed as above. we can identify any collection of hardware

and software that provides a well defined set of functions as

defining an "abstr'act 1)'lachine". In such a machine, instuction

set consist of the functions provided by the

software combination. For a particular application it be

possible to view multiple such abstract

various pieces of the whole.

machines by taking

I I I. FOX MACHINE

3.1 DEFINITION

The tE'I~IYIS "execlltive" ,

"t1ucleus;'11 have been used to descl~ibe ~~oftwal~e systelYls of widely

d i ffe I~ent funct i onal i ty. These machines generally P l"OV i de

management of some machine resources such as liD I'll e I'll 0 l"y D l" CPU

So we might define an operating system as a collection of

modules which defines an abst pact fTlach i ne that softwa l"e

includes resource management functions as well as the

supplied computational functions. Clearly the pange of softwape

systems by this definition is large. Rather than trying to

I~esolve this dispal~ity, tel~IYI Uexecutive" will be used. 'fhat i!::;,

this master thesis will describe a software system which

pl~ovides a of I~ea l--t i lYle

applications.

The thing to realize from above discussion is

any' operating system functlonally enlarges the processor

seen by the user. The functions that are provided become as much

like a of the machine's functionallity as , ADD'

Indeed it is functionally unimportant to the

desiping to create a task it requires a single

instruction Ol~ a l~outine to it.

In tepms of the abstract machine discussion in the orevious

chaptep we will exemine a software package which defines an

abstract machine that includes functions requiped to coordinate

p r'oe] r'C;\'Y'S;" i"~nd pb' l" f ())",y, PE'':''I!·'" t i ,Mi) co nt 1'01 Li;\ PP 1 .I. Cd t i () n.

The key overall requirement of the executive will be that

it will supply a ",y,it'li!,!".:,l covering set" of flli"lctions to pe 1"1(' it

coordination of asynchronous tasks. Like the instruction set of

the base machine, the executive itself performs no work but

rathep provides an enviponment within which useful

perfo 1",Y,ed.

tasks ca'(l

Hepe ape some of the limitations of the system which

differs it from large-scale operating systems. F i \'!:; t, :i t; 1 b n (J t

primarily intended for a multi-user environment, is

addressed to control applications. Also it does not assume a

backing store from whiCh ppogram and data overlays can be loaded

(although can easily suppo)"t such extentions).

10

3.2 USE ENVIRONMENT

In terms of abstract machines we might characterize the

hardware as essentially the same machine at the processor level,

but different machines at the computer system level. was

desired that the abstract machines defined by adding FOX to the

underlying computer be as much the same as possible. During the

design of FOX. it is assumed that its user would span the

entire broad range of applications. This implies that it might

find uses ranging from minimal single board systems that

function as single device controlers to complex multiboard

applications implementing a real-time process or industrial

control functions.

3.3 SYSTEM REQUIREMENTS

The hardware environment and anticipated uses of FOX

defines a tight set of requirements. Foremost among these are

its memory constraints; indeed for the anticipated uses. memory

size considerations dominate the ex~cution speed ones over a

considerable wide. range. Sice aoplications that would reside

entirely on a single board with about 8kb of EPROM, the maximUM

11

size of the FOX should not go over the half of that space, that

i::~ 41..;b of EPROIYI. Moreover, unlike the minicomputer systems many

apolications of microcomputers would not have available any mass

sto)'agE'.' 01' othel', pI'OL]r'aJYJ loading device. So FOX is designed to

(or' E:Pi~(JIYl) a(lci cc.·\jJab 1 e of automatIcally

inItializing the system at power on.

F::- i 1'li:\ 11 y ., to define the general functIonality of FOX.

shed 1 examine common characteristics of the ant ici pelt inc]

d!::)plications. Real-tIme applications commonly need to perform a

of tasks of different importance logically in parallel,

with the preference always given to executing the most critical

one fil'st. While these tasks can be relatively independent they

to periodically synchronize themselves with or'

another distinct task or with the outside world. For the second,

~~upp], i t~!cJ

mechanism. Some tasks may also need to communicate data with one

anothel'. Finally the tasks must have the ability to cont r'D]'

the i 'j'

execution for certain periods Dr by guaranteeing that they are

not indefinitE'ly cif::!layed by, fol" E!HC:lIYICJIE', e\ {,,,\ultv dC:'v:i.ce.

The best software engineering techniques are used to

minimize the development effort. We feel that there was more to

bot h in development effort and code space, by avoiding

optimized specialization of function in favour of more general

designs. For that. most of time is spent on defining the objects

that FOX will heavily depend on. The resulting external design,

therefore, has a single mechanism to prOVIde task communicatIon,

synchronization and time references. To do so, it inca r' po I'at t'.:s

t he ope I'at:i. ng system design apprtiches favoured 11'1 much of the

modern computer litarature. the i nten1':;il !:5t i'uct u J"es

are highly modular and designed to be as uniform as possible so

as tD avoid replicating s i ,Y, i 1 a I' , but nonidentical i nt e I'na 1

management routines.

3.4 FOX AS AN ABSTRACT MACHINE

The abst I"ac:t machine defined by FOX augments the base

microprocessor by i nt l'oduci ng sOIYle add it i on.::d c n IYI put at ion a 1

concepts. A task is defined as an independent executable program

5eglYler1t. That 15, a task embodies the concept of program in

execution on processor. FOX permits multiple tasks to be defined

which can run in carallel,
0)" in IYlulti~·tasked fashion. That i~;;,

FOX makes individual tasks running on the same processor appear

to be running on separate processors by managIng the dispatching

of the processor to a particular task. The registers 01'1 the

the activity or state of the \,'unni ng

Other tasks may be ready to execute, but for SOMe reason have

not been selected to run yet, so have their processor states

saved elsewhere in the system. From the point of view of· the

that 1S a task, execution proceeds as though it were

the only one being run by the orocessor. Only the apparent speed

of the execution is affected by the multi-tasking.

point of view of the system, every task is always in one of the

\~urlni n9, ready or waiting. The task actually in

execution is running. Any otl·lel' taf.'.:.k which could be i'ui""ming but

f C) \' the fact that the system has selected some other task to

actually use the processor, 1S ready. Tasks which are delayed or

suspended for some reason are waiting.

E:ach tash is assigned a priority which determines its

relative importance within the system. Whenever a decision must

be made as to which task of those that are r'f:~ .;;\ d y '''; h 0 1 .. 11 cI ,"'un

ths one with the highest priority is given preference.

in the spirit of the mechanism. the same priority

replaces a separate mechanism for disabling i 1·-. t e r I' u p t ~3.

Interrupts from external devices are logically given software

!::lr·i 0 r·i ties. If the application system designer wants

particular task ·as of important than to ce l't 1:\ i \"1

i n t e \' \' u p t s , he can specify this by simply setting the F·OX

of that task to be higher than the FOX

associated with that intsrrupt.

11.1.

3.5 METHODOLOGY

This section considers some details of the i IYIP 1 E'IYlent c.it i 0 l"l

of the system as an illustration of the design of such soft~are

pr'oducts. Fi r~:;t the methodology aoplied to effort will

and this will be followed by some samples of the

,flE'chan i SIYI.

To provide the abstract machine Just described.

the ot her' reouirements of the system, FOX IS a~.5

a combination of ROM resident code and some RAM resident tables.

Just as a hardware designer uses VLSI o I' LSI devices In

preference to more elementary TTL components, we chose to use a

high level language rather than elementary assemble coding. The

system is therefore designed using the PL/M. Tnt!:.'}' ~,; hiqh JL~vf::'l

system implementation language. The soace constraints and a good

of internal maintainablity goal is achieved by maximizing

the modularity of the design. The board independent functions of

,v, u I t i - t ask i 'ng communication and control co ,y, p 1. Ed~ e], y

from board dependent timing and i n tel' I' U P t hand 1 i t'lc:.1

funct ions. movement of the FOX to another bo.:~n.i

only ~e-implementation of these boa rei clepf?ndent

J .,;, .1....)

f\.\t1ct i on~~. In addition 7 data structures of the internal and

user visible objects are generalized 50 that single algorithm

could deal with any of theM. Individual optimizations could have

been Made in local design of Many parts of the data structures

to the i \"' space 01' t i lYle costs slightly_ SI_lch

howevel', would have cost considerably More in

code space and code complexity.

3.6. MODULARITY

The Module feature of PLJM IS uied to simulate the abstract

data type concept and enforce inforMation hiding. That is

every data structure used by the FOX is under the exclusive

control of a single Module. The Modules supply to each other a

restrIcted set of public procedures and variables. It is only

through these paths that agents outside a Module May access the

data structures Maintained by the Module. The only assuMption

that outside agents May Make about a Module and its d'::ita

structures are those specified by the definition of the public

pat hs. As a l'esult, as long as these interface speCifications

a l'e It, a i nt a i ned '.' any given datB structure May be re-organized by

]'e-dE!s igni ng its controlling modulE? without affect i'r1q ot he r'

of syst f2,Y,. This ':''1 pp r'o act", i II',P I'oves

understandability of the iMpleMentation and 'f ':>.c i 1 :i t at t~~,> the

1b

debugging and maintenance of the systeM.

3.7 ENTRY TO FOX

The IYlet hod of activation of the executive froM the user

prograMs found to be very iMportant for the control of the

j;;lct i v:i t :i (i~S.

define one entry for each system procedure supported. That would

be done by a Jump table at a fix MeMory location and tell the

user where to call when he needs one of the systeM procedures.

This Method has the following drawback. nt each systeM procedure

call paraMeters should be checked, if the status of "in FOX"

need be updated. Also giving so Much inforMation to the

violates the information hiding rule. The second Method. which

is called gating, states that only one entry should be given to

the user for an executive. Usei'"' ~::;hDUld oass the j"eq u i l'ed

operation as paraMeter, and depending on this paraMeter the gate

checks the legality of the call and I\'I a rks all l"elated

inforMation on the task desc I' i ot 0 r' and then activates the

required operation. The drawback of this Method is that one More

paraMeter should be sent to the executive, which might increase

the user code space a little bit. But, all system procedures are

so designed that they require only one parameter, and wi th this;

1\'lethod Orie IYIOpe pal'aIYletel' of " what to do " rieed be <;Iiven. The

1.7

ovepload on the code space was estimated to be negligable and

gate method of executive activation was selected.

FOX system activation is defined to be as follows.

CALL FOX(ACTION$ID,PARAMETER);

The address of the gate is defined to be ROM start addl'ess,

plus three. So it IS 0003 for a standart FOX implementation.

3.8 ENGINEERING FOR HARDWARE DEPENDENCIES

The two functions which vary most significantly across the

(SEC) are the timing and i n t e i' i"' U P t

facilitiE!s. To accomodate these variations, the implementation

separates the logical and physical parts of these functions.

The inteprupt facilities are split between the module WhICh

implements communication operations and a

·fh!::! CO,YII,·,UI"IICdLIOn modul,a wr·uvId",.':;;; <i.1 bP(;.'C.l d.1

1 intEII'rupt opel'ation which log i Ci::\l

tr'anslation of i (\ t E~ l~ !'l.ll::! t i nt 0 This

facil:i.ty of t hr.:! i nt 1'21' l'upt

machine and remains the same In any version of FOX. The hardware

depf-?ndf2nt

:i nt f::! r I'upt

lo~J:i.CE:ll

i n tel' l' U P t module deals directly with the

~\t l'UCt u r'e and invokes the Signal oper'ation i"lt

If2vel. Only this module need r'eci es; i C] n(~cj w hE?r1

18

generating a FOX version for a different board. With this

approach FOX takes full advantage of the hardware vectored

priority structure on high performance products and can simulate

this desirable st.ructure at sligthly higher software cost on low

performance products.

The same sort of variations are faced in providing a source

of system time unit. Again, one module provides all of the

logical timing functions associated-0ith providing timing delays

and time limits to the user. This module is independent of the

type, frequency. or location of the physical source of the

timer. A seperate module is responsible for clocking the logical

level by invoking it once every system time unit. Once again,

this permits a consistent definition of time unit in FOX,

regardless of the sophistication of the available time source,

and limits the amount of re-implementation needed to support a

new product.

3.9 GLOBAL VERSUS LOCAL OPTIMIZATION

have already discussed some aspects of global

loc':;ll opt i JYI i z at ion. at the overall design level In terms of

avoidance of redundant features. A good example of this trade

off in the implementation is provided by the linked list data

structures within FOX. Like many such systems, the "!"e a l~t~ a

of linked lists which must be maintained to reflect

stat us of: the systE!m. Local optimization on the of

links within data structures Dr in the form of the heads used

links would be guaranteed to save a few bytes oft he

data space across the varlOUS listS',. the 1 :i, ;,:;t

i n!::'.E' \~t i 0 VI. scanning. and deletion algorithms could be specially

to th~ individual list structures to save microseconds

of execution time for some operations on some lists. Indeed, any

such tailored algorithm might well use less code than a single

more general one.

0\,) t he at he"!" hand. IYlany 0 f the 1 i st a pe i~at i on!:; are • in no

titYlf-? cl~itical. Gener'alizing all the !::;t)'uctu'l~es to u!::;e a

r'ppli::\CE'r::; 'Ylultiple c'\liJor'ithIY,;c; with ,jU!:;it O)'IP , t hl,\!::;

corlE! <:.;pace .. The particular form can be chosen to favo l~

those operations that are frequent, thus limiting the impact of

the generalization on the execution time of the system. Perhaps,

JYlost ho\t,leve l~. by reducing the number of

algorithms and structures used, we decrease the potential number

of er'l'Ol~!::, eH'lei iIYlprovt;:! the IYldi'ntdinc:luility of the l'E'sultant CDcIE;.

20

3.10 METHOD OF COMMUNICATION IN FOX

PI~:; IYlent i 0 ned befor'e, tasks may desire to communicate

information to one another. To do this FO~ machine defines a

message to be some arbitrary data to be sent between tasks. To

mediate the communication of messages, FOX defines an exchange

to be a conceptual link bet~een tasks. An exchange functions

like a mailbox in that messages are deposited

tc\sk and ~ollected by another. Its function is commplicated by

the fact that a task may attempt to collect a message f \" () IYI iJ n

exchange that is empty or may attempt to deposit a message to an

e){ci-lan<;]e which i~::; full. In s;uch CaSf.0S the E~xecution of that task

is delayed until the exchange becomes free or depending on the

type of the exchange operation, till the defined time limit has

expi l'ed.

i nei i l'f.'?ct

Tas~i~:; ·~hat are so delayed are in wait Sit at e. This

communication mechanism is crefered over the one which

directly addresses tasks (as in REMTEX written in NETAS by Mr

AYDIN KUBILAY). because it permits greater flexibility in the

arrangement of receiver and sender tasks. That is the receiving

task need only know the interface specification for the function

1;0 Tash or tasks which implement f:unct :i. on

known and thus may be conviniently changed if

21

The conventional mechanism used by programs to communicate

with the external devices is interrupt. Unfortunately,

interrupts are by nature unexpected events and programming with

them tends to be error prone. The essential characteristics of

an interrupt is that a parallel, asynchronous activity the

device)

program).

wishes to communicate with another activity a

Since this communication should be faster than the

normal exchange operations a special exchange is managed by FOX,

namely the FLAG. Flags are special objects to link software

programs to the events. FOX machine eliminates interrupts by

changing them into flag messages, which indicate that an

interrupt has occured. A flag is Signaled by a particular

interrupt. Tasks which service the interrupts do so under FOX by

an Event system call on a flag. Thus prioritized nested

interrupts are handled.

The last concept embodied in the FOX abstract machine is

that of time. The FOX machine defines time, interms of system

time u~its. It then permits tasks to delay themselves for a

given period of time, 50 that they can synchronize themselves

with the outside world. It also guards against unduly long

delays caused by attempting to collect a message or deposit a

message to an e~pty or full exchange. by limiting the length of

time that they are willing to spend waiting for some message to

arrive or space become available.

FOX is a multi-tasking executive that performs task

dispatching and system timing.

management and flag management.

these functions in detail.

It also performs exchange

The following sections describe

Although FOX is a multi-tasking executive, at any given

point in time, only one task has access to the CPU resource.

Unless it is specifically written to communicate or synchronize

execution with other tasks. it runs unaware that other tasks may

be competing for the system's resources. Eventually. the system

suspends thS task from execution and gives another task the

opportunity to run.

IV. FOX MANAGEMENT ROUTINES

4.1 FUNCTIONS OF FOX

FOX 1S a multi-tasking executive that performs task

dispatching and system timing. It also performs exchange

management and flag management. The following sections describe

these functions in detail.

Although FOX is a multi-tasking executive, at any given

point in time, only one task has access to the CPU resource.

Unless it is specifically written to communicate or synchronize

execution with other tasks. it runs u~aware that other tasks may

be competing for the system's resources. Eventually. the system

$uspends the task from execution and Olves another task the

opportunity to run.

4.2 TASK DISPATCHING

The primary task of the executive is transfering the CPU

resource froM one task to another. This is called DISPATCHING

and is performed by a part of the executive called the

dispatcher. Under FOX each task is associated with an object

called a TASK DESCRIPTOR. The dispatcher uses this object Lo

save and restore the current state of a running task. Every task

in the system resides in one of three states ready runnIng

or suspended. A ready task is the one that is waiting for the

CPU resource. A suspended task is the one that is waiting for

some other system resource or for a defined event. A runnlng

task is the one that the CPU is currently executing.

Dispatch

follows~

operation for a runnig task can be descr1bed as

1-) The dispatcher suspends the task from execution and

stores the current state in Task Descriptor.

2-) By definition the ready queue head is the higest priory

task in the system,

running.

So the dispatcher selects that task as

~) The dispatcher restores the state of the selected task

from its Task Descriptor and gives the CPU resource.

4-) The task executes until it makes a system call, or

an interrupt, or a tick of the system ~lock occures. Then,

dispatching 1S repeated.

Only tasks that are placed on the Ready List ar~ eligible

for selection during dispatch. By definition, a task is on the

Ready List if it is waiting for the CPU resource only. Tasks

waiting for other system resources can not execute until their

resoUrce requirements are satisfied. Under FOX, a task is

blo~ked from execution if it is waiting for:

ope pat ion.

2-) Space to become available in an exchange so it can complete

an exchange w~ite operation.

3-) An interrupt flag to be set.

4'-) A specific number of system ticks before it can be l"eIYloved

from the system delay list.

These situations are discussed in more detail in t hf.;)

following sections.

FOX is a priority driven system. This means that the

dispatcher selects the. highest priority ready task and gives the

CPU Tasks with the same priority are

s:,c h(,:;>d u 1 f.~d. That 1 c' .:> , they are given equal CPU time slices

executing CPU bound code. With pr'iol':i,ty dispatching, contr'ol is;

nHVC!I" to a lower priority task if there h :i, cOJ hE: l'

on the ready list. Since high priority compute

bound tasks tend to monopolize the CPU resource, it is advisable

to lowe \' the :i, j'" pr'io)"ity to avo i c:1 de<;,1 r'dcl i ng

pe 1" f: 0 j'IYla ncf.~. In addition, COIYlput e bound tasks can make FOX

dispatch calls; pE~riCldical1y to P l"OIYIDt e ~:,ha)'" i ng of thE, CPU

Lb

resource. When a task makes a dispatch call, the call appears as

a null operation to the task,

access to the CPU resource.

but allows other tasks to gain

FOX requires that at least one task be running at all

times. To ensure this, FOX maintains the IDLE task on the ready

list so it can be dispatched if there are no other tasks

available. The IDLE task runs at the lowest priority and is

never bl~cked from execution. It does not perform any useful

task, but simply gIves the system a task to run when no other

ready tasks exist.

4.3 EXCHANGE MANAGEMENT

Exchanges perform several critical functions for tasks

running under FOX. They are used for communicating messages

between tasks,

exclusion.

for synchronizing task execution, and for mutual

Exchanges are special objects, implemented in FOX as memory

files that contains room for a specific number of fixed length

messages. Like files. Exchanges can be created, read from and

written into with FOX system calls. When an exchange is created

with the FOX create exchange command, it is assigned a six

character name that identifies the exchange in FOX. Messages are

A task can read messages from an exchange or write messages

to an exchange in three ways : conditionally,unconditionally or

with ti,Y,e·--out. If no messages exist in the exchange when a

cO'ndit ion",',l read is performed, or the exchange is full when a

conditional write is performed, the system returns an error code

to the calling task. If a task pe~forms an unconditional

from an empty exchange • the system suspends the t~sk unt il

another task writes message to that exchange.

1n this manner is placed on the exchange's dequeue

similar situation occurs when a task makes an unconditional

write to a full exchange. A task suspended in this manner

placed on the exchange's enqueue list. If a task performs an

unconditional read from an empty exchange with time-out, the

system suspends the task until either a time-out occu l"!::'" o j-'

another task writes a message to that exchange. A task suspended

in this manner is placed on both the exchange's dequeue list and

the system delay 11st. A similar situation occurs when a task

makes an unconditional write to a full eKchange with time-out. A

suspended in this manner is placed on both the exchange'S

the system delay lJ.st. FOX

enqueue/dequeue l,ists to synchronize task execution.

4.4 EVENT PROCESSING

FOX suuports events of any kind. including the interrupts.

if! two ways. One, via flags which are special exchanges (as in

the Digital Research's MPM-II) where no more than one task 1S

allowed to wa it. The other method is like interrupt

the user service is immediately executed at the priority level

of the calling task. with interrupts ~asked or disabled.

The fi I'S1.: method converts events into messages so that

st \':i cot priority scheduling can be achieved and a logical (?vE'nt

mechanism can be implemented at a cost of a little bit time over

head of flag management. Where as the second method is usefull

when t I--ie, overhead of flag management can not be tolareted due

to tight timing requirements of event processing.

interrupt servicing.

In the follo\lJ:Lng both of the methods are

discu~sed in detail.

4.4 .. 1 Flag Exchange Management

This is a unified approach to event Dr interrupt servicing.

FDP th:i.E; UC.'

as FLAG$EXCHANGe. FOX maintains lG predefined fla(.J~;;., of

which 15 are user accessable. f 0 l' f u t U 1'(2

Each of the 15 flags (0 through 15) can u~:;ed

f l'£.~t:? 1 Y by the U~5e1'. For flag management, FOX has two sImple

system procedures, the EVENT and the SIGNAL. A task which wants

to wait on a flag Issues an EVENT system call,

wants to signal an event issues a SIGNAL system call. Details of

[\/ent ""nel system calls are desicribed thE- FUX

To avoid flag-under/over-runs the user is advised to follow

the b0'low li~5tecl l"ules. f01' his own sake.

1-) Do not use tlags if you can handle the case In some ot hel'

\l'Jay, such as normal exchange messages, o fc 0 U l'S(~., IrJithin

the defined. limits of the problem such as the time

e'o nf; t l'c\ i nt ',:).

2-) Make sure that only one task can issue EVENT system call

on the selected flag. That guaranties that no flag-under-

l'un c.'an ClCCU l".

3-lMake sure that the event service time is strictly

than th~ signal rate. This guaranties that the l'e wi 11

never be case of flag-over-run.

4-) Avoid the use of flag 15 whiCh IS reserved.

4.4.2. Fast Event Processing

For this type of operation the flag type is defined as

In this Mode the sel'vice routine is

activated i",t the cUl'I'elTt pr':lOI':loty level. In this IYlode, only the

SIGNAL systeM call is used. EVENT system call has no meaning.

SIGNAL system call appears like a normal subroutine call to the

calling task. This mode is useful when the event rate can not be

handled via norMal EXCHANGE$FLAG method.

FOX executive uses flags for signaling and synchronizing

tasks with defined events. Tasks access the flags with the FOX

systeM calls EVENT and SIGNAL Internally a flag can reside in

one of two states ; ~;et 0 I' r'eset. The reset state is further

divided into two categories:

1-) No task is waiting for the flag to be set.

2-) A task is waiting for the flag to be set.

from execution until it is set.

and blocked

Two tasks are not allowed to wait on the same flag. This is

an e I' I' 0 I' sit l\ a t :i 01"1 \' e f e I' e cI t a as" f 1 a gun de \' - \' un". S i fl'd I a \' :[y, a

task atteMpting to set a flag that is already set is anot~lel'

E~l'rC)1' f::;:ituat:i.on., called "flaq DVE?l"-·r'un".

31

Flags provide a logical interrupt system independent of the

physical interrupt system of the processor. They are primarily

intended for use by FOX to support the interrupt handler. For

example, when the interrupt handler receives a physical

interrupt indicating that an lID operation is completed, it sets

a flag and branches to the dispatcher. A task suspended from

execution because it is waiting for the flag to be set, is

ready list, making it eligible for selection placed on the

during dispatch. Once dispatched, the task can assume the liD

operation is completed.

v. FOX OBJECTS

5.1 USE OF OBJECTS

This section contains information on FOX objects. FOX uses

these objects to :

1-) Synchronize the tasks

2-) Communicate messages between tasks

3-) Synchronize the events

5.2 TASK OBJECTS

Every task in FOX has at least two task objects and

possibly one or more task link descriptors to form a logical

link to other tasks.

Following sections explain the functions and the details of

the task objects. namely Task Descriptor, Static Task Descriptor

and Task Link Descriptor.

5.2.1 Static Task Descriptor

running under FOX is associated with a Static

Task Descriptor. This object defines all static characteristics

o f: thE', -t; d~:; 1-\ " FOX usps this object to initiate the actual

[dynamic] Task Descriptor of the task. The structure of the

Static Task Descriptor is given below in PL/M programming

STATIC$TASK$DESCRIPTOR LITERALLY 'STRUCTURE (

L PTR I*LINK TO EXCHANGE *1

Ci-'-!tiPr-lCTER / -ll- T r-lSI,\ Nt~ME* I

p BYTE,

PC I1TH_, I * I N :r T :r Al_" PC -w- I

SP PTF~" I*CURRENT STACK *1

EH PTP

Elements of the static task descriptor defined above are

thedynami~ task descriptor of the task.

This descriptor will be used by the FOX

i nit i <"I t E'_' (:1 f r n IY' t! -Il" r:; t cO-t t i c- 'r d !',; k

NAIVfE

p

PC

GP

:31'.1.

contains the

l byt€:~> p \" :l Cl)" :l t Y > contains the priority

of t h€~ 'lasl..;

tot he

t <:;\SK.

2 hyt(;?s,

initial pr'ogl~al¥1 counter', points

first executable code of the

St ,:;\Cl-\ po:i. nt el',

initial stack pointer value.

2 bytes, eHception handler, points to the

5.2.2. Task Descriptor

Each task running under FOX is associated with a task

descriptor that defines all characteristics of the task. The FOX

uses the task descriptor to save and restore the state of the

The task descriptor object is shown below in PL/M

DECLnRE TASK$DESCRIPTOR STRUCTURE (

L PTF~,

Ci··!()RACTEn

SL PTH, / ·j(·9YSTD1 L I 1\.11-': .* j

D /.Ii- DELr:JV L:r I\//·\Jol /

/*EXCHANGE lINK*1

p BYTE, /1(P R I CJ R I T Y .1\. i

3T /!{~::;Tn'rus ·iI·/

[H

c::: /;(DEL..nv COUNT .~./

The! \.;.;!:I. eIYI",!nt L 0 'j" t 1"II} T d ~,: ;.(Dr.·! '.:iC \' i !Jt D l~ U l..;J (}C -1:: ~.i h n "-in t.' b U VC! ii;\ r'c'

cI (2 f :i. nC1d bE!:L C) ~'J.

L. ::::: byte!s;.) FDX La!::;i.; :Lin/.(p():i.ntt~i'

SI... o bytes FOX systeM list pointer

Delay Queue link, t~sks that are on

the delay li~t are linked throuqh

p () :i, n t,: C! j" "

E

p

ST

1-·'-)

2-)

3·····)

3(,

2 bytes. Exchange Pointer, used for th~ tasks

that are enqueueing or dequeueing on an

.:7.' >{ c ha 1'1<] (~ to. indic2\t(,~ Pi" which of

exchanges the task is waiting.

indicates the priority of

the t .::\51·\. A high value indicates a high

ppiOI"ity. PI'iol"it.:i(2S l~al'1(]e fr'olYI (l to 255.

sta~us of the task. A task can be in one or

more of the following states.

Nol. l"E!ady

d i SPi:\'t; c.'h.

SUbpendf!d

Task is eligible for dispatch.

is not eligible for

Ta:::;k

execution and either on system suspend list

or on exchange enqueue/dequeue list.

Task is neither on system

list nor on an exchange enqueue

Task 15 on system delay list

c·,,·)

7,,···) h,) FOX Task runs in FOX region

rl'", Not, Tn rox

PC ?rogram counter value.

Points to the first executable code of the

SP

in:i,t:Ld} stac\ of the task.

by'!: 00' dispatcher to save the internal

E>ic:c'p'l; :i. 0 n Hand 1. C l",

con d :~ -I; :1. 0 Yi " If \';0

exception handler is defined. t h i. !:~ p U i n t t::! i'

c

. , ,~ c: .J.-
,' •• 1 1.' , tu become cligiblb for dispdtch •

5.:2.3. Task Link Descriptor

a special object

1S defined in FOX. Using FOX syste~ c~ll LINKtTASK. one task can

to FOX system p~ocedures. ~ task can SUSPEND or RESUME another

and fills the name field. Acti~~ting FOX system procedure

LINK$TASK will supply the other neccessary pointers.

pointers are initiated,

task.

The structure of the object is given below in PL/M langu~ge.

DECLARE TASK$LINK$DESCRIPTOR STRUCTURE

L PTR, 1* PTR TO TASK DESCRIPTOR *

l\lrjlYJE (f...) Cl-I{'WACTER, I*EXCHANGE NA~E *1

s fNTC,

Fl···! PTR 1* EXCEPTOIN HANDLER *1

) "
7

L

.L
~, U

1 byte, Status of the task linked, at

t hr.;) t 'i, IYI!:,) (:) f thE) 1 i nh 0 PC! l"i"I\: j. n \.\. ()

value indicates that the desired task is

not currently on the system.

EH 1 bytes, pOititt.?\~ to the exceptio\'! I'ol..ltine

in case of an abnormal condition.

40

5.3 EXCHANGE RELATED OBJECTS

An exchange is a first in first out [FIFO] mechanism that

is implemented in FOX to provide severel essential functions in

the multi-tasking environment. Exchanges can be used for the

communication of messages between the tasks,

tasks and to provide mutual exclusion.

to synchronize the

FOX is designed to simplify exchange management f 0 \' hot 1'1

user and the system tasks. Exchanges are treated like files, so

they can be created, opened, written into and read from.

E)(chan<;;.le

Descr'i pt 0 l~,

D£·:!s;C r' i pt 01-'.

ObJ£-!ctE; include the

Static Exchange Descriptor and

5.3.1 Static Exchange Descriptor

Exch.:':\nge

L.ink

Each exchange in FOX has a static exchange descriptor which

defines all of the static characteristics of the exchange. The

dynamic Exchange Descriptor is created from the Static Exchange

Descriptor at the creation phase.

Structure of the static exchange descriptor is given below

in PL/M language.

DECLARE STATIC$EXCHANGESDESCRIPTOR LITERALLY' STRUCTURE

L PTR, 1* LINK TO EXCHANGE *1

NAME(6) CHARACTER, I*EXCHANGE NAME *1

SZ BYTE,

LNG BYTE.,

EH PTr~

I*MAX MESSAGE # *1

/ *'IYJES~1GE LENGTH *1

I*EXCEPTION HANDLER *1

) 1. ,

Elements of the static exchange descriptor defined above are

desc l' i bed be low.

L 2 bytes, Link to the exchange descl'iptor

N(')IYJE: c h ai' i3 c.'t f? 1'!S., of eHchangf?

Initialized at the system definition.

maximum number of messages that can

be deposited at the eHchange

LNG 1 byte, message length.

EH

4:::

5.3.2 Exchange Descriptor

Each exchange 1n FOX is associated with an Exchange

Descriptor object that defines all the characteristics of the

exchange. FOX uses this object to keep track of the message

to save the status of the exchange and to save

the exchange enqueue/dequeue links~ The exchange descriptor

object ~s given below in Pl/M language.

DECLARE EXCHANGE$DESCRIPTOR STRUCTURE

L

I\JrWIE (t;)

Ell

SZ

C

S

L.

EH

PTI~.,

CHAF<ACTER,

PTI~,

PTr~.,

PTF<,

BYTE,

PTF~,

BYTE.,

BYTE~,

BYTE,

BYTE,

PTR

1* EXCHANGE LINK */

I*EXCHANGE NAME *1

J·ioi-EYSTEM LINI~; .;1./

/~MESSAGE HEAD PTR *1

I*MESSAGE TAIL PTR */

J*MAX MESSAGE # *1

.I *BUFFEli Ell ZE·lI- I

I*CURRENT MESSAGE COUNT*I

I ·*E X CI-I(")I\jGE~ TY Pt:::

/* " ~3TATLJS ~. I

LENGTH .~./

I*EXCEPTION HANDLER *1

4 "'" .. :)

Elements of the exchange descriptor defined

dt:?sc\~ibE)d below.

L. 2 bytes, exchange link

Nf':!ME E, cha \~act e I"S, Name of the exchange, copied

from Static Task Descriptor.

SL. 2 bytes. System Link, FOX keeps a list of all

processes and exchanges. used by FOX.

jvlr.::' 2 bytes, Message head pointer, points to the

exchange buffer, the address of the next

me~sage to be read, used by FOX.

2 bytes, M es sag eta i 1 poi n t e \~ , poi)-1 t s tot h E~

exchange buffer, the address of the next

message to be written, used by FOX.

sz

of messages that can be kept in thE'

exchange message buffer, set by the user

BEZ 2 bytes, Exchange Buffer size, by definition,

size is Exchange size times the

exchange message length, set by FOX.

c 1 current number of messages

exchange buffer waiting to be read, USE,'d by

thf:~ FOX.

K 1 byte, exchange kind, exchanges can be of

three types:

1-) Perform operation or return type.

This type of exchanges do not

suspend the calling task if there is

no message in the exchange when the

task attempts to read message frum

the exchange or if there is no room

for a new message when the task

attempts to write into the eXChange.

Instead. the exchange returns

status to indicate that whether the

exchange operation is completed

successfully or failed to be

performed. Status is returned in the

status byte of the

descriptor.

exchange link

2-) Wait until the exchange operation is

successfully completed.

45

:)-) Wait l"? i t }1e (. the e>{chan(Je qpel~atj.qn

is s;ucces~::;fully COIYIP 1 et E!d Dr' until

t hf.? t il"fle····out, indicated in thE.!

(-?>{change 1 i nh: d~?sc I"'i pt 0 I~, occu r'E,'s ..

Ret 1.1 i~n II success II !3t at Ufii if E::"?xchanqe

took plaCE' or "failed" status if

ope)"at ion.

1 byte:.>, Gt at us, shows the current status of

t he exchange. It can take one of three

values, set by FOX.

1-·) exchange IS elYlpty

2-) exchange i c· . :;:, full

3--) exchange is fl~ee [m .. "?i t her' full

L 1 byt El,

of each message of the exchange, set by user.

EH ,
..::. bytes, exceptiDn handler, pDints to the

exception handler which will be activated if

an abnDrmal condition occures during exchange

operation, set by user.

4f,

5.3.3. Exchange Link Descriptor.

To ease the exchange operations and free user froM absolute

exchange descriptor address manupulations. FOX 'suppa I"'t S~ a

special object called exchange link descriptor. As in the tash

linl", desCl'iptol', if a task wants to send a message to an

exchange. it prepares an exchange li0k block, specifies the name

of the exchange that the message is to be sent, and call~; t hE:\

FOX system procedure LINKSEXCHANGE. FOX provides the necessary

pointers 50 that useI"' can invoke exchange wl"'ite

read operations of FOX.

The structure of the Exchange Link Descriptor is given

below in PL/M language.

DECLARE EXCHANGE$LINK$DESCRIPTOR STRUCTURE

L PTR 1* PTR TO EXCHANGE *1

N(':')IY1E (E.) CHARACTER, I*EXCHANGE NAME *1

IVI PTR, 1* PTF~ TO MESt:;AGE .~. I

1,\ BYTE:. Ii(· EXCH(:~NGE TV PI::: 'i4.j

BVTE, 1* EXCHr~NGE i:;TATLJS .1(- 1

[H PTI~ I·j(- E::XCEPTION Hr:1NDLER '~I
) .

1

47

EleMents of the exchange link descriptor defined above are

L
.... , .. ::. byt es, exchange pointer-"

to the desired exchange, set by FOX.

NAME NaMe of the exchange to be

linked, set by user

:2 bytes, points to the Messaqe buffer to be

sent or received, set by user.

!'\ 1 byte, desir-ed exchange Method. i'f l"wt ni 1

this paraMeter overrides the exchange kind

,if ['Ill t her1 the l'flet hod spec i f' i €.~d in t hi?

exchange descriptor is assuMed.

s 1 byte return status of the exchange

operation, set by FOX.

EH ,
..::. byt e~5, exception handler. point~; to

exception handler of the link. if not ~::.et to

nil then this exception handler overrides the

t'?xchange except i on hand If.:! 1"', if not given t h(?f)

the exception handler of the exhange is

48

5.4 INTERRUPT OBJECTS

An interrupt 1S a signal froM one process to another. It

can be froM an internal process, or in general froM an external

process to a internal process. By nature, they are random

signals at random intervals. Also the MechaniSM to respond to

those interrupts differ froM processor to processor. To hide the

actual MachanisM iMplemented on a micro-computer, they are

converted to special signals by FOX. This method can be

sumMarized as follows. An external event creates an interrupt

signal indicating the completion of a certain operation. When

the micro-computer recognizes the interrupt it completes its

last instruction and then starts interrupt acknowledge sequence.

At the end of this sequence current state of the process is

saved on the stack' and a special part of FOX, called

interrupt

generates

physical

handler is activated and depending on its level, it

a Signal call to FOX. At that instance the

interrupt signal IS completely converted to a software

signal to the related interrupt service routine. To indicate FOX

whereabouts of the interrupt service routines two special data

structures. called an Interrupt Descriptor and Static Interrupt

Descriptor is used.

Special care is paid to decrease the interrupt latency to

increase interrupt service rate.

49

5.4. 1 Static Interrupt Descriptor

phy~5ical Ol~ software:, is as!:'.>ociatecl with a

Static Interrupt Descriptor object that defines all static

nature of the interrupt service. FOX uses this object to

determine the service routine, its interrupt priority level and

its ser~ice type. The Static Interrupt Descriptor object is

given below in PLJM language.

DECU1RE STATIC$INTERRUPT$DESCRIPTOR STRUCTURE(

L PTli, J*POINTER TO DYNAMIC DESCRIPTOR *1

NAIYJE (E.) CHARACTER.I*INTERRUPT NAME

T BYTE, J* II\lTERliUPT TYPE '1\'/

!3RV PTR, 1* INTERRUPT SERVICE ROUTINE

PTR 1 J* EXCEPTION 1···1(.1NDl_E F~

L.VL BYTE /.1\' I NTEf~RUP'r l...LVLL..

) .
1

Elements of the static interrupt descriptor defined above

is <.::~iv~m below.

L 2 bytes, Pointer to the dynamic

df?scr'iptol'. Initiated by use\'.

I\IAIYIE E. cha \'act; e \'S, i nt e r' rupt nali'le, Initii::\"Ced by

usei ... "

T 1 intF~\'r'upt; Et? I'V icE,' t Y pI;:!., Ci:'l\'1 be

as exchange type or fast

explained in the Signal and Event procedures.

,")
. .;- if the exchange type is fast t; ypf;:!

then contains the address of the service

\'out i ne, else has no mea\'11ng. Initiated by

EH :2 bytes, poir1ter' to thE! E!XCeptj.on handle)'. It

wil 1 be USf2d on flag-over/under-run

concl:i. t :i. on~;. If not u!:::.ecl t h(?n ~:;;houlc1 bE'

initialized (':\s r'd 1, or' else should be

initialized with the address of the exception

hand 1 e)'.

L.VL 1 byte,

51

5.4.2. Interrupt Descriptor

Each interrupt in FOX system is associated with an

interrupt descriptor to define its dynamic status. FOX uses this

object to locate the service routine of the interrupt and its

flag status. The structure of the interrupt descriptor is given

below in PL/M language.

INTERRUPTtDESCRIPTOR STRUCTURE(DECLARE

L POINTER. 1* RESERVED FOR COMPATIBILITY *1

NAME(G)

Sl

TASK

SRV

EH

F

T

LVL

CHARACTER.

POINTER,

POINTER,

POINTER.

POINTER.

BYTE,

BYTE,

BYTE

) ~

1·*

1*

1*

1·*

/.*

/*

1*

I'~

INTERRUPT NAME *1

SYSTEM LINK *1

SERVICE TASK *1

SERVICE ROUTINE ~./

EXCEPTION HANDLER *1

FLAG *J

TYPE *1

LEVEL *J

Elements of the interrupt descriptor defined above is

explained below.

1:;"'-'
... J.L

L :;;;: I::lyte~~, reserved for compatibility with the

other descriptors,

NAIYJE

SL 2 bytes, System Link, used by fox to keep all

defined objects under FOX.

TAS~< ~~~ byt es., if interrupt type is defined as

exchange then' contains the address of the

service task's Task Descriptor address of the

interrupt, otherwise has no meaning.

2 byt E'S, po i nt s tot he i f"lt e l' l'upt Sie f'V i Cf?

Sf? l'V i eEl

is defined as fast service.

EH 2 pointer to the exception hand 1 f.~ \' ..

Activated when a flag error occures.

F 1 byte, indicates the state of the interrupt

flal,;) '::\S def i ned at thE~ f.jignal and Event

system procedures.

T 1 byte, intI7:.'l'r'upttYPf~, initiated by user'.

1 byte., interrupt priority level.

by USE~ l'.

53

VI. FOX INSTRUCTIONS

6.1 INSTRUCTIONS IN AN ABSTRACT MACHINE

The concept of abstract machine is realized in FOX by

introducing some new data objects and instructions. Just as the

base processor can deal with such4ata objects as 8 bit bytes

or unsigned integers, FOX abstract machine can deal directly

with the more complex objects ; tasks, messages, exchanges and

flags. Each of these data objects consists of a series of bytes

with a well defined structure, and may be operated on by certain

instructions. This is completely analogous, for example, to a

machine that permits direct operations on floating point data

objects which consist of a number of bytes with a particular

internal structure to represent the fraction, exponent and the

signs. In each case there are only certain instructions that can

be used correctly with the object and the internal structure of

the object is not of particular interest to the programmer.

The new instructions that ar~ provided by FOX are SEND,

WAIT, CREATE_TASK, CREATE_EXCHANGE, CREATE_INTERRUPT, LINK_TASK,

LINK_EXCHANGE SUSPEND. RESUME. SIGNRL EVENT. Create

instructions accept blocks of free memory block and some

creation information to format and initialize the block with the

appropiate structure. Link lnstructions link a task or an

54

exchange or an interrupt to the calling task. The remaining

instructions are of most interest to the operation of FOX. The

SEND and WRIT instructions are discussed In detail at the and of

this section and in the section entitled Send wait interaction.

In addition to the above mentioned standart FOX system

instructions, there are optional system instructions. These

instructions are hardware dependent, 50 they are provided If the

underlying hardware can support the instruction. LEVEL$ON

LEVELSOFF and ENDSINT system instructions are such Instructions

in the initial prototype.

6.2 CREATE GROUP

This group of FOX system calls introduces a new object to

FOX system. Group contains three system procedure namely

CREATESTASK, CREATESEXCHANGE and CREATES INTERRUPT. Each of these

system calls is described in detail in the following sections.

6.2. 1. "CREATE TASK" System Call

cc::
.,J..J

This FOX system call introduces a new task into the FOX

The ne~ly created task is inserted into the system

suspend Cjueue" It will become a ready task when a running task

resumes its execution by a FOX RESUME system call.

Gate entry code of the CRCATE$TASk is defined to be 01.

To create a task in FOX system, user should prepare a

static task descriptor to define all static nature of the task.

The structure of the static task descriptor is given in FOX

object definitions. If a task tries to create a task with a name

with which there is already another entry in FOX system,

the exception handler of the calling task is activated. if it

has any.

EXAiVlPLE

DECLARE TICkER$STATIC$TASk$DESCRIPTOR TASk$DESCRIPTOR

DATA(.TICkER$DESCRIPTOR. 1* Tf~~;l'\ DE~~:;CR I PTOR ADDRESS "'I

'TICkCFP, I'JI.' TrlSI,\ N(41'~E~ "leI

I~ T'ASh PHIORITY '1(,1

. TIC1'\EF{, 1* T(·iSh S'T'I'::lliT (~lDDF<Ebb 'ii.'/

1* TI=-)S!, STnCi-, pmDRE~3S li-I

.TICkER$EXCEPTION I'JI.' TASI"; EXCEPTION HANDL .. EH -l4./

) . ,
C(.:lLL FDX(CREATE$TASh,.TICkER$STATIC$TASh$DESCRIPTOR) ;

56

6.2.2. "CREATE EXCHANGE" System Call

This FOX system call introduces a new exchange to FOX

system. Then on. other tasks can link themselves to that

exchange via LINK$EXCHANGE FOX system call. Then, exchange can

accept SEND and WAIT operatl0ns.

Gate entry code of CREATE$EXCHANGE is defined to be 02.

To create a new exchange. user should prepare a Static

Exchange Descriptor to define all static characteristics of the

eXChange. The structure of the static exchange descriptor is

defined in FOX object definitions. If any task tries to create

an exchange whose name is already defined in FOX system. the

exception handler of the calling task is activated. if it has

any.

EXAMPLE

DECLARE CONSOLESSTATICSEXCHANGE$DESCRIPTOR STATICSEXCHANGE$DESCRI

DATA(.CONSOLE$EXCHANGE$DESCRIPTOR. 1* LINK TO EXCHANGE DESCRIPTOR

'CONSOL',

2,

80 - ,

.CONSOLE$EXCEPTION

1* EXCHANGE NAME *1

1* MAX # OF MESSAGES *
1* MAX MESSAGE LENGTH *1

1* EXCEPTION HANDLER *1
) ;

CALL FOX(CREATE$EXCHANGE,.CONSOLESSTATICSEXCHANGESDESCRIPTOR);

!57

6.2.3. "CREATE INTERRUPT" SysteM Call

This procedure introduces an interrupt to FOX system.

on the corresponding interrupt will be served depending on the

parameters passed via the static interrupt descriptor. The cause

of the interrupt need not bd a real physical interrupt, it can

also be SIGNALed by another task or even by the task itself. The

structure of the static interrupt- descriptor is given in the FOX

object definitions.

Gate code of the CREATES INTERRUPT is defined to be 03.

If a user tries to create an interrupt WIth a name whIch IS

already in the system, then the exception handler of the calling

task i~; activatE~cl., if it ha'"; {:;\ny.

EXArIJPL.E

DECLARE CONSOLE$STATICSINTERRUPT$OESCRIPTOR

STATIC$INTERRUPTtDESCRIPTOR

DnTr::l(.CONSOLE$INTERRUPTSDESCRIPTOR,I* POINTER TO OESCRIPTOR*I

" CONINT' 1 1* INTERRUPT NAME *1

1* INTERRUPT TYPE *1

.CONSOLE$INTERRUPTSSERVICE 1* SERVICE ADDRESS*I

.CONSOLEtEXCEPTION 1* EXCEPTION HANDLER *1

1* INTERRUPT LEVEL *1
) . . ,

CALL FOX(CREATE5INTERRUPT,.CONSOLE$STATICSINTERRUPTtDESCRIPTOR);

6.3 LINK GROUP

This group of FOX system orocedures links the callIng task

to a task or to an exchange or to an interrupt.

interaction in a design team, only the name of the

or the exchange or the interrupt service is needed.

opens the way of dyn~mic linking. The team leader defines all

exchanges and the interrupts at logical name lE~vel,

proceed on his own way. Only the name of the other units need be

l,cr'lo~'IIn to h ilYI. ~~ hE'n eVi:':'~ i"y b D eI Y brIngs his own part of the ~)V'5t elYI, . -

FOX will bind all interfaces dynamIcally. That also guarantees

that lf any of the team member changes his own part, he need not

infol'IYI the other team members as long as the predefined

interface standarts holel.

The LINK group includes the following procedures

1--) L I Ni-($TnE-;I-\ 1* to create a link between tasks *1

2-) LINKtEXCHANGE

and an exchange ~I

Each of the above procedures is described in details in the

following paragraphs.

59

6.3.1. "LINK TASK" System Call

This FOX system procedure creates a link between two tasks.

This is needed when a task needs to suspend or resume the

execution of another task. To create the link, user prepares a

task link descriptor where he only needs to give the name of the

task to be linked, and then activate FOX system procedure

LINK$TASK. FOX searches FOX system link for an entry with the

same name and then, returns the descriptor address in the link

part of the task link descriptor. Further calls, to suspend and

to resume other taSks, will use this informatiun to actually

locate the task descriptor, rather than searching the whole

system link every time it gets a Suspend or Resume system call.

The structure of the task link descriptor is given in FOX data

structures.

Gate code of LINK$TASK is defined to be 04.

EXAMPLE

DeCLARE A$TASK$LINK$DESCRIPTOR TASK$LINK$DESCRIPTOR

INITIAL(.NIL,'ATASK' O,.EXCEP1"ION$HANDLER)

CALL FDX(LINK$TASK,.A$TASK$LINK$DESCRIPTOR);

GO

6.3.2. "LINK EXCHANGE" System Call

This FOX system call creates a link between a task and an

exchange. This is needed when a task wants to exchange messages

with an exchange. To create the link between the task and the

exchange user prepares an exchange link descriptor and supplies

the name of the exchange that he wants to use in the rest of the

task. After the preparation of the exchange link descriptor user

activates FOX system call LINK$EXCHnNGE. FOX WIll supply the

neccessary link between the task and the exchange. This

information WIll be used later by FOX. when user Issues a SEND

or a WAIT system call. If a user attempts to use either of the

system calls BEND or WAIT before the link operation then. the

result is unpredictable and such a task ic defined to be

erroneous. The structure of the exchange link descriptor IS

given in FOX data structures.

Gate code of LINK$EXCHnNGE 1S defined to be 05.

EXAMPLE

DECLARE X$[XCHANGE$LINK$DESCRIPTOR EXCHANGE$LINK$OESCRIPTOR

INITIAL(.NIL,XSEXCHnNGE,o,.X$EXCEPTION) ;

CALL LINK$EXCHANGE(.X$EXCHANGE$LINK$DESCRIPTOR)

61.

6.4 UTILITY GROUP

This group of FOX system calls are used to suspend or to

resume any task Group contains three system

pr'ocE:'du l't:?~;, namely ,SUSPEND, RESUME and DISPATCH. Each of these

FOX system procedures are described in details in the followIng

&.4. 1. "SUSPEND" System Call

This FOX system call removes the deslgnated task from the

ready queue and puts it into the system suspend queue.

1 nt () thE)

delay queue, then it will be removed from the system delay ~ueue

anothE~r' tasl..;. If there is no other task to resume the suspended

task, then there is no chance of reactivating the task.

SUSPEND system call requires the task link descriptor as

input parameter. The qate code of SUSPEND IS 06.

D[CL.nF~E n$TnSK$LINK$DESCRIPTOR TASK$LINK$DESCRIPTOR

CALL MDVE(6,. ('CONSDL'),.A$TASK$LINK$DESCRIPTDR.NAME);

CALL LINK$TASKCLINK$TASKSCODE •. A$TASK$LINK$DESCRIPTDR)

CALL SUSPEND(SUSPEND,.TASK$LINK$DESCRIPTOR);

6.4.2. '" RESUME II Syst eM Ca 11

This FOX system call removes the designated task from the

system suspend queue and puts it to the ready queue. Only those

tasks that are o~ the system suspend queue can be resumed. If

the designated task is not on the system suspend queue then the

effect of the call is the same as of Disoatch. If a h1<;,1h

priority task is made ready by the RESUME system call then the

calling task looses the CPU reso~rce,

highest priority ready task again.

till

RESUME system call requires the task link descriptor

address as parameter. The gate code of resume is 07.

DFCLJH~E A$TASKSLINK$DESCRIPTOR TASK$LINK4DESCRIPTOR ;

CALL lINK$TASK(LINK$TASK$CODE •. A$TASK$LINK$DESCRIPTOR);

CALL RESUME(RESUME$CODE,.TASK$LINK$DESCRIPTOR);

6.4.3. "DISPATCH" Sytem Call

This FOX system call has no effect on the callIng task. It

Just removes the calling task from the ready queue and then re-

are equal priority ready tasks in the ready queue, they can gaIn

the CPU resource.

Dispatch system call requires no parameter, S:,O NIL Ce\ i'l t:)F!

used. The qate code of DISPATCH is defined to be 08.

FXnIY!PLF

CAL.L FOX(DISPATCH.NIL)

6.5 FOX EXCHANGE OPERATIONS

FOX machine provides several operations that the .user can

access with programmed calls. Two baSIC operations are of

MOst importance. These two operations are detcrlbed in detail.

1"-) SEND., Send a message to an exchange.

ThE?sie two opel'at ions; provide thE? capability to

messages between tasks in a system runnIng under FOX.

6.5. I. Sending a Message to an Exchange

The SEND operation enables a task to post a message at an

exchange. When use~ SENDs a message to an exchange, FOX actually

posts the whole body of the message to the buffer area of the

exchange. This avoids the overheads of free space management. If

user wants to qet rid of the overheads reqUIred to move the

he may post the address of the actual 11'jE~S~::.dg e.

IS more effiCIent than passing the address of

actual message. Passing the address of the actual message forces

not to modify the message buffer' unt 11 it

to many executives (iRMXIBO) user of FOX is

allowed to mOdify the messaqe buffer after the SEND ooeratl0n IS

CALL FOX (SEND. EXCHANGE$LINKSDESCRIPTORSADDRESS)

Gate code of SEND IS defined to be Og.

has one parameter; the address of the exchange linh

Instruction moves the message into its c i r'c u I a I'

first-in-first-out qUf'.?Ue if there IS available),'OO,Y,

E1 >< C ha rl(J(~" or suspends the execution of the task and puts the

tc:\sl..; into t:hE~ e)<chanC;JE' enqueue lIst. If a tash is; YJaitinq in thE,'

exchange dequeue list then the instruction removes the task from

exchange dequeue list and also from the system delay list, if It

had requested a time out, and inserts into the system ready list

't; 'I' 't 1 1'" E!" le;!:I. :l f::!

Th(::> c~a 11 i I"HJ task must be linked to the exchange via a

LINKSEXCHANGE operation before any SEND operation,

result of the SEND operation is not defined.

SENDs a message to an exchange several

functions are performed depending on the type of the exchange

bb

6.5.1.a. SEND if exchange is Tree or return

1-) The designated exchange 15 checked ,to see If

tl··leFE": is 1"'00lYI fOI~ the it-lcolYting 1i'lesf:~age.

2-) If there is no room for a new message

"fail" status.

3·-) If: t he r'i~ is room for the IncomIng

then move the mesage body to the exchange

bu ffe I~.

4-) If' on€'~ 01"' more tasks are waIting at the

the f i I'st task is giver) the

Ii'lessaqe, I"'emoved from the exihange's suspend

que ue a \·KI from the system deley queue, if

insel"'ted, and thenmade I"'eady.

5-) If a high priorIty task is the l'etJy 7 1)'lac! e

f'eacly, the sending tasl..; loos;;es the CPU

resoul"'ce until it again becomes the highest

priority ready task.

6.5. 1. b.

f:,7

Wait until SEND operation is completed

1-) The designated exchange is checked to see if

there is room for the incoming message.

2-) If there is no room for a new message, the

call i1"'lg task is suspended at this point f rOftl

futher execution. This condition will bE'

cal1inq t h!::! suspend

queue of the exchange.

1'0 o Ii'I

becomes available after step 2,

body is moved to the buffer of the exchange.

4-) If one or more tasks are waiting at the

~:;-)

the f i)"'st i S~ g i vel""1 the

removed from the exchange's suspend

queue and from the system deley queue, if

inserted there, and then made ready.

If a hiqh pl'i a l'i t Y t a~31·(15 t; hE' r'eby IYlade

r'8,:1cly. thE? send in\] tasl..; looses the CPU

i'es;o u i'CE! until it again becomes the highest

priority ready task.

6.5. 1. c.

-

SEND or wait time out

1-) The designated exchange is checked to see if

there is room for the incoming message.

2-) If there IS no room for a new message, then

the calling task is put into the exchange's

susper1d queue and into the system delay

queue, both at the same time. This condition

will be removed when sr~ce becomeru

or when the time limit has expired.

then

"fail" status.

4-) If there is room for the new message or l'OOIYI

becomes available after, step 2 the message

body is moved to the buffer of the exchange.

5-) If one or more tasks are waiting at

exchanq€:·, the fi I'S·t t a~:;;h :l ~; U i V£-?l"l thE!

message, \'f:? IYIO ved f I' () IVI the sUEipend queue ':'1)""ld

£,._) If a high priority task is, thereby, made

looses the CPU t he send i n<;1 task

l"eSO u i'ce until it again becomes the hi 9 hE:"!st

priority ready task.

69

6.5.2. WAITing for a message at an exchange

WAIT operation causes a task to wait for a message to

arrive at an exchange. It is also possible to delay

execution of the task when n~ message is anticipated for the

exchange. The task simply waits at an exchange where no

message is ever sent. When a task waits for a message at an

exchange, several operations are performed depending on the

type of the exchange operation requested. All of the SEND

operation varieries are also applicable to WAIT operation.

The only difference IS that the task which has requested the

WAIT operation is suspended when the exchange is empty, ie.

there is no message at the time of WAIT operation.

The WAIT instruction has two parameters; the address of

the exchange link descriptor and the WAIT system call gate

code. The exchange link descriptor contains the following

information.

1-) Type of the exchange operation desired

2-) Address of the buffer area to which the message

data will be moved.

3-) Status of the operation returned by FOX.

4-) Address of the exception handler to be activated

on an abnormal condition.

5-) Address of the exchange descriptor supplied by

FOX at exchange link operation

70

6-) Maximum time (in system units) for which the task

is to await the arrival of a message, if the

exchange is empty.

The result of the wait operation is that the message is

moved to the indicat~d memory block, if any could be moved,

and a status indicating if the operation is successfuly

CO,y,P let ed o I~ not. Eithel~ "SUCC(';!ss" 01' "failed" is

ret 1.1 1~I-led. From the programmer'~ point of view, this

i nst l~uCt i on simply executes and returns the specified

result. Actual execution of the instruction will involve the

del;:~y:inq

qUf.?ut;;>i Vlg

of task execution if no message is available.

it in a first-come-first-serve manner queue.

s,uch delay_, however', is not visible to t~-le pl~ogl~a"l'"y,el~. Thit.;

approach unifies the communication and timing aspects of the

design. It directly provides reliability in the case of lost

events due to hardware or software failure. Tasl-o; can be

g ua r'ant eE!'ci not to be indeterminately delayed due to f:3uch

failures and thus, attempt recovery from them. It

permits tasks to use the same mechanism to delay themselves

for a given time interval by waiting at an exchange at which

no message will ever arrive.

To request a wait operation, user sould activate FOX as

follow~::;:

CALL FOX(WAIT •. ASEXCHANGESLINK$DESCRIPTOR)

Gate code of wait is defined to be 10.

6.5.2. a.

71

WAIT if exchange is full or return

1-) The designated exchange is checked to see if

there is any message available.

1 C" -" no ,Y,essages at t he exchangE'~

)~etul~r1 "fail" st;atu~;;

3-) If there are one or mgre messages, then move

the message body to the user buffer.

4-) If a message from the exchange

creates free space for a suspended task, the

first task is given the free space,

from the exchange's suspend queue and made

l'eady.

5-) I f a high priority task is thereby made

r'eady., t he send i 1"1g task looses the CPU

l~eSOIJ r'ce until it again becomes the

priority ready task.

72

6.5.2. b. Wait until WAIT operation is completed

1-) The designated exchange is checked to see if

t hel'e any message available.

2-) If there is no message at the exchange the

calling task is suspended at this point froM

further execution. This condition will

removed when a mess~ge becomes available for

the calling task. The calling task is

i r1se r't E~d into the suspend q IJE~Ue of the

exchange.

3-) If t he.l'e one or more messages at the

e}(chanqe or a message arrives after step

the message body is moved to the user buffer.

l.j.--) If one or more tasks are waiting at the

exchar1ge for space become available"

task is given the free space, r'emoved

frOM the exchange's suspend queue and made ready.

~.5-···) I f a high priority task

l'E?'::idy, the sending t a~sk 1 CJ OSeS t he CPU

r'E!SOU I'ce until it again becomes the

priority ready task.

6.5.2. c. WAIT a Message or w~it tiMe out

1-) The designated exchange is checked to see if

the l'e is any message available at

(:?xchange.

2-) I 'f the \'e is no message available at

exchange then the calling task is put

the exchange's suspend queue and to

thE?

the

i nt ()

the

system delay queue, both at the same time.

This condition will be removed when a message

arrives the exchange or when the time

has e><pi l'ed.

3-) If the time limit has expired then return fail

st at us.

4-) If there is Dne or more messages available or

a message arrives after step 2,

body is moved to the user buffer.

5-) 1 f one or more tasks are waiting the

t2){chan~Je fo \' E;paCE.~ become available. the

first task is given space, removed from the

suspend queue and made ready_

t;--) I f a hi g h p l" :i. 0 j'i t Y t a~.; I~

the sending task loo~~es thf.:! CPU

l'esou l'ce until it again becomes the

priority ready task.

7L~

6.6. FOX FLAG OPERATIONS

FOX machine provides two operations on flags that the

user can access with programmed calls. Through the use of

these two operations any user can easyly write interrupt

routines, which are the the hardest to develope and debug.

Following sections describes the use of these two FOX system

r'out i n£1S.

6.6 .. 1. II EVENT" systeM call

The EVENT system call requires two parameters, the flag

number on which the task wants to wait and the Event system

call gate code. A task which has issued an EVENT system call

will be suspended till a task issues a SIGNAL system calIon

the designated flag. If the flag is already SIGNALed then

t hE~ effect of EVENT system call is the same a e DISPATCH

A task which is suspended in this manner will

be placed in the system suspend queue. User must make sure

that no more than one task could issue an EVENT callan the

Such a case is defined as flag-over-run and the

exception handler of the calling task is activated,

has any.

if it

75

6.6.2. "SIGNAL" system call

The SIGNAL system call has two parameters. the flag

number to be SIGNALed and the Signal system call gate code.

When a task or interrupt service has issued a signal system

call, the event waiting task, if there is any. is removed

from the ready queue and made ready. If thereby a high

priority task is made ready. then the calling task looses

the CPU resource until it again becomes the highest priority

ready task. If there is no task waiting on the flag then

depending on the flag state either the flag is set to

indicate that it is signaled. If it is already set then

this is identified as a flag-under-run and the exception

handler of the task is activated, if it has any.

VII. MORE ON SEND AND WAIT OPERATIONS

7. 1 SEND - WAIT INTERRACTION

To a large extent the power of FOX as an abstract

is derived froM the interaction between SEND and

wnrr. The :i. n t e)~ act ion t h)'ee IVlui t i -t aSf\ i 1'1g

o P E~ l~ a t ion!"o.

1-) COMMunication.

2-) Synchronization

3-) Mutual Exclusion

In describing these operations, a graphic notation

j.b

utiliZt'?d. Hel~f~ on, rectangles designate tasks while

triangles represent exchanges. Arrows that are directed

f l~OIYI tasks to exchanges are SEND o Pf? l'at i onSi.

operations are shown by arrows directed from exchanges to

the t a~::.k~;;"

77

7.2 COMMUNICATION

The most common interaction between tasks is that of

c a IYIIYI un i cat ion, the transfer of data between one task to

another via an exchange. as shown 1n figure below.

-------- 1\ --------
task I SEND I \ WAIT task

1------)----1 \---------}-----I
A I ex X \ 1 B

The above figure shows an example of communication

between task A and task B. Task A SENDs message to exchange

X and task B waits for a message at that exchange.

is the message producer and the task B is message consumer.

7.3 SYNCHRONIZATION

At t i lYleS, is a l~eq u i l"eIYlent to send a

synchronization signal from one task to another. ThE~ signal

can take the form of a message that might have no data bytes

c~t all.

Let us consider the implementation of a task scheduler,

used for the purpose of synchronizing another task that

relationship between the tasks and the exchanges :i. s,

sl···lown be low.

7fJ

/\
SEND 1 \ WAIT

---------)/EX y\-------)--
1/\

1\
1 \

1 \ WAIT I
j E X X \ .-•...• - > - I

I \

1-· -_··
TASh PI j - .. --

I

1\

..... -.. - I

--- I Tt:1St\ B
I!
I ._.- -...... - .- _. _ .. --.

I WAIT! \ SEND i
---------(/EX Z\-------(--

1 \

T.:\sh performs a timed wait on the

exchange X. Note that the full wait period will always occur

because there is no task that is sending message to exchange

X. In this ,'I',ai-Wier' "', s;pecific ti'Yled wait by the 'lash (.1

precedes the passing of a synchronization message frOM task

R to task B via an exchange Y and then returned from task 8

to task A via an exchange Z as a check back.

If the task B waited on the exchange X directly rather

than using task A for scheduling. it would be scheduled n

SystE1''I'' t i,y,e uni ts fr'olYI when it :i 5~)U.E~S IrJA IT. i Yist;ead of \'1

~,yst e,'l'1 t i Iy,e lmits fl~OIY' t r.e last t i lYlE." it was aW",If.:el··leci. (.:1

comparison of these two methods is shown below.

t i,'l',e t; i 'Y'E~
----)------------)----- ------)----------)-------

niB niB 1'1 I n I n I n
I B I I Et I I 8

7.4 MUTUAL EXCLUSION

In an" environment with multi-tasking, resources, must

be shared. Example of shared resources include data

structures and peripherals, such as serial communication

device to console. Mutual exclusion can be used to ensure

that only one task has access to a shared resource at a

time. The diagram below shows how one can use an exchange

for mutual exclusion.

1 SEND
I task A 1---)---------
! 1---(-------- I
------------ WAIT I

I /\
------------ 1 ----------------/ \

I SEND -----------------/ \
1 task B 1---)-----------------------/ \
I 1---(----------------------/ EXCH \
------------ WAIT ---------------/ X \

! ------------/ \
------------ I --------------

I task C
1

SEND
1---)------
1---(---------

WAIT

flO

In this example the exchange X is sent a single message

at systetYt initialization. Then as tas!·,s l'eq ui l'e the

r'eso u \'ce, they WAIT for a message from the exchange X. When

a message is recdived, the task knows it has sole access to

the \'f..?SOU rce because there is only one message associated

with the exchange. {)fter' the task finishes with reSOU1'C(:e., it

SENDs the message back to the exchange x. The next

it ha~;.

exclusive access to the resource.

VI I I. SYSTEM START UP

8.1 SYSTEM INITIALIZATION

FOX is an e~bedded or dedicated system executive. This

IYlf:!':\l"1S that: it shtndd be able to)'es-tar't with 1'I'li ni 1'1'11.11'1'1, 0)"'

even bettsr', with no opsr'ator intervention. FOX, at restart,

initializes all of its data base and creates the IDLE task.

In addition to this FOX looks for an initial

absolute location 1000H. If this location contains a JUMP

:i, nst ruct i on (the machine code of JUMP instruction In this

Pr'ototyps is OC3h) then FOX cr'satss a second task I I\l I lS,'\

with the following attributes. The priority of the INITSK is

The stack area is stack of the dummy task

plus 20h. The task start address 1S 1000h.

This INITSK feature enables the system initiator to

write its own initial task and run it whenever a restart

OCCIJ)'S. All the remaining tasks. exchanges and interrupts

can be created with this I f\I I lSI" .. r:tt t he end 0 f t hE~

initialization period, this task should be suspended to

avoid unneccessary CPU usage. An alternative is to keep it

running for a high priority task.

B2

At the initialization all processor interrupts are

masked from both the processor via the disable interrupts

instruction also from the priority interrupt

decoder(IB259) via the interrupt mask register. Rny of the B

interrupt lines of the interrupt priority decoder can be

enabled or disabled with FOX extent ion calls LEVEL$ON and

LEVEL$OFF. These are non-standart FOX system procedures

which are supported only when the hardware supports the

operation. These two extention calls accept two parameters

to indicate the interrupt level to be masked or opened, and

the LEVEL$ON Dr LEVEL$OFF system call gate entry calls. Fox

masks a "level whenever it receives an interrupt from that

level. It is the responsibility of the interrupt service

programmer to open the corresponding level at the end of the

service routine or else no more interrupts can be signalled

from this level.

IX. APPLICATION

9.1 SAMPLE APPLICATION

In this section, an exaMole application of the usage of

FOX will be given. Example contains system initialization,

in its task but illustrates most of the capabilities of the FOX.

ThE! s:;ubJect

on 1 i t'lf:? de bugge I'.

is to construct a terminal handler of an

The debugger is assumed to wait for input

Messages at the exchange 'CONINP' and outputs characters to

the exchange 'CONOUT'. The actual task of the debugger 1S

not discussed here.

From the above definitions, we imMediately identify two

e)<ch'::H·H]E.~S "CONII\jP" and the "COI\jOUT". T~'lPou~Jh th(;~se e><ch,"\l'1g<=~~,:;

the debugger is connected to the outside world.

two separate tasks. one for the input channel and one for

the output channel.

Input channel task waits on the console input interrupt

flag for input characters.

is of the exchange type.

The type of the flag management

Whenever the operator enters a

eha l'dct E~ r., the console input task will be Signaled and will

read the character from the input channel. It will echo the

inout character back to the console through the "COI\lOUT"

eHch.::\n<:..:je. When the input character indicates the end of the

the input task will send the acummulated character to

the debugger for processing.

Output channel tas~\ IfJaits on the "CONOUT" eHchi::mqe foT'

the characters to be output Output channel task l'ecei VI::?S

the characters to be output and then issues an event s;y:::;t i::!lil

Cd.!. 1 on the console output interrupt flag. When the (;) ut put

channel becomes available, FOX Signals the output interrupt

flag and the output channel task outputs the next character.

This will be repeated until all of the characters are output

t Cl the c ha nne 1 •

l~eft:?I'i\"1g to the appendix C ,the source of the

sample application, one can see that the Module can

partitioned into t h I'ee sect i 0 n~:;. The definition

initiali~ation and the ti..~sk bod ies. In the

sections each of these parts will be discussed in detail.

9.2 DEFINITION

Lines one through 35 are the definition part of the module.

This part defines two external entries. the FOX entry and the

DEBUG f'.!nt r'y. FOX, defines the executive as a

procedure with two parameters;

address on which the defined operation will b!:? appliec.1.

T t 1,'1 i :I I

created as a task later in the initializatIon section.

is the object definition part

module. nIl of the objects are defined here. Line 23 defines

the Static Task Descriptor of the debugger task. This

cJt;!sCI~iptor' "is initi.::,tecl I-'Jith the followin<;.1 valuE's.

a-) The Task Descriptor of the debugger task is defined

to be the DEBUG$TnSK$DESCRIPTOR.

1;:)) l\JdlYIP ()f thE:.' clebllcJ~JE:.\r' tdsh i~; "DEBlJCJ II.

c-) Priority of the debugger tdsk is ten.

d-) Actual body of the task starts dt the address DEBUG,

which is the start address of the del;:)ugger procedure.

e-) Debugger task has no exception hdndler.

At line 23 the static task descriptor of the console

input task is defined and initialized with the followig

valuf2s.

The task descriptor of the console inout task 15

defined to be CI$TASK$DESCRIPTOR.

b-) NalYlf2 of' the ti:E>I..; is defined to be "CITA~;~\".

d-') i (',put

CONSOLE$INPUT$TASK.

C'!",) Cun<""nlL! inl)'Ji; L,,,,',,:, 11,,,1:'0 il\.! '~)<',:L,'pL.lun l'i"-lIIC.IIL!I'.

1 i I'H::!
..... e:::
~..J, the static task descriptor of t hl2 cons()lE~

output task is defined and initialized with the following

valul'2s.

The task descriptor of the console input :i, '=,

defined to be CO$TASK$DESCRIPTOR.

c-'-) Pr':lor'it'y 0'1' the console input task is set to

'r'l:t ne.

d-)

CONBOLE$OUTPUT$TABK.

8-) Console input task has no exception handler.

1 i ne 26:. some constants are defined. (':It

CCliYl " the end of message character, the terninal data port

acid r'es~:;. the console input event id and the console

intei"r'upt :lei.

Following the constant definitions,

exchange descriptor definitions of the console input

exchang~ and the console output exchange.

con!solt':! input e){ c he:\ nq ('0 1S to be

CI$EXCHANGESDESCRIPTOR and the name of the console output

e){change is set to be CO$EXCHANGE$DESCRIPTOR.

nt the interrupt descriptors for the console

input :l I'll: E':! \")"I.l pt ~J l' \:-.1

dc!finc.'d. T hE! n"~IYIE: 0 f thE' co n',"o :I. e], '('IOU"!; i nt; (0)' '1" U pt c:i Q~"C~ Y' i pt U t'

out put :i. n t E' I' I' U P t to

COSINTERRUPT$DESCRIPTOR.

(.~)t 1 i ne 30, the static interrupt descriptor of the

consule input interrupt is definQd and initialized with the

following values.

a-) Interrupt descriptor is the CI$INTERRUPT$DESCRIPTOR

b-) Name of the interrupt is CI$INT

c"")Ty [)(d 0 i" t hf~ e){ C' ha !l(d e n pt:~ I"at i () n .[s of F J< Ci,;(1I<C)E l; y pC!.

d-) No fast service address.

e-) No eKception handler.

'1"",,,) J'nt(2i"i"upt l.evel is; one.

Oi3

console output interrupt is defined and ini~ialized with the

following values.

a-) Interrupt descriptor is the CO$INTERRUPT$DESCRIPTOR

b-) Name of the interrupt is CO$INT

c-) Type of the exchange operation is of EXCHANGE type.

d-) No fast SerY1Ce address.

e-) No exception handler.

f:··-) lYltf.~i'r'l..lpt lc~YQl :i~:; tvlO.

i~lt I :i. nt? "~"":I
\,.},i... ? the static exchange descriptors of

console output exchange is defined and initialized with the

following values.

r.;\) Exchange descriptor of the console output exchange

defined to be CO$EXCHnNGE$DESCRIPTOR.

c-) There can be at most one message at the exchange.

d-) length of the exchange is defined to be 80 characters.

(.) 't "'1''''-\::,,:) , 'the static exchange of the

con\so 1 cc? input exchange is defined and initialized with the

following values.

a-·) Exchange descriptor of the console input E?xchi:1n(]e

defined to be Ci$EXCHANGEtDESCRIPTOR.

d-) length of the exchange is defined to be 80 characters.

the initialization for task creation.

9.3 INITIALIZATION

neccessary exchanges, namely the console Input exchange and

the cO);'1S'.;olf2 output E.lxchan~:I<:2. Then it creates the

namely the debugger task whose actual coding is nut

the console input task

C) ut put nt this point the reader Should notIce that

c:.' r'~'i::\t :I. n<;] a task only inserts it into the FOX system

90

dueue. Because of that they can not be ~isDatched until they

inserted to the system ~eacy queue. That will be done

later by RESUME system calls.

FDX namely the console input interrupt thE!

console output interrupt.

this point the system 15 ready for l:JY

dl

But .oiL thi'o;i point., ''''9.::\in., they Cd)"]

not qet

then the priotity of the initial task which is by definition

!Yir-~X ~i;PFn OFH TV-i.

the end of the initialization initial task

f J" CJ IYI further execution by a call to the SUSPEND

system procedure. nt thi~;;; pc):lnt., since it 15 removed f: l~ OIYI

system ready queue, the remining higest priority task,

91

9.4 TASK BODIES

This part of the module contains the actual task bodies.

The console input and console output tasks are defined here.

The task definition of the debugger is not i nc.'1 uded her'e

its fU'\'"'lct i n'n :i, 'r'lt] is 0 ut 0 f the '::;C'iJ pt~ () f t hi f.-::. t he~:; i ~;.

Conso li';'J input task has two parts in it, the initialization

input t,":lsl..; to thE! con~::;(Jlf;:! Dutput 0?}{cha,nl]('.'1 .:.'.nci t ht~ co nso 1 E?'

Input cl)(c'han(]e. It <:'.lso d(·:?f:i.l·)C!S tl-"IE! [:)l..lffE'r' ac:ldr'f~~::ses for' tl-IE!

eXChanges as the CI$BUF and the CHR$BUF respectively. Then

the console input task goes into an infinit loop where it

waits at the console input interrupt,

when the end of message byte received, send the cUMmulated

chEI1'acter's to the dt2buiJ~ler' t<::i~;;.k. IndEh?cI thcd; is the cOIYlpletE'

Job of the console input task.

Console output task has also two parts, initii:llization

J t C' t' U d t t.~ ~6 "IIi r II ,l; D t f II;~ C' U II ~::; U :I. L: U U L p iJ l;

exchange and then goes into an infinite 1000 where it ItJiJits

at the console output exchange for a message and then sends

the console output channel (.\ ut out

interrupts arrived.

x. CONCLUSION

ThE! ai,y, of this study was to desiq <-.!Inc! i IYI-P 1 (e II', e)Tt

P l' i, 0 I' i t Y driven multitaskino executive.

apart from a few minor differences is quite similar

tot h(2 0 'j' i. g i n<~1]. l'(2~5ea r'c h p r' 0 p o f:;, a 1 (~:::,E!e (.:lppE!'nd i)i (-)).

In COIYI/Ja r' :i, ng the resulting system with the origirlal

P I' 0 P 0 ~:;; a :I. of FOX we see the absence of a few system calls.

These ar'e the EXIT, LINK$INTERRUPT and the complete Delete

group of calls. The reason for their oMmission was that they

coni-I J.cted the df2s.1qn phI lo~:,ophy UI 'UX ,,,,1'11Ch .lS dn e,y,bf=:clclt:.!ci

system executive. During the implementation thr'ee new system

calls were thought of in order to make hand I E? i'

De~:;; pit e a]. I, the spirit of the pr'Dpo",,;al

remained to be the same. At the beginning it was estimated

that a language mixture of five per cent assembly and 95 per

cent high level language would be used.

hi i' itt en in T his b)' 0 ugh t the of

pod;abi 1 :Lty., because today cross compilers of PL._flyl

available for various microprocessors. The list contains the

H08b ., 8088 and 8051 from Intel, with 100 per cent

Co ,I', pat i b i r i t y" and Z80 , 6800, 6H09, and 6502 fr'Dm the PLMX

which are not 100 per cent software compatible, but

only restriction is that it does not suppo r't

93

longer than 6 characters for ~ublic entries,

have so many of them.

and IrJe do not

In this ~:.tudy, I tried to approach the executive as an

abstract machine and tried to show that an executive can be

implemented such that movIng the executive from one fdlYI i 1. Y

of microcOMputers to another does not effect the software

more than changing the executive to adopt to t he new

hd r-dwa r'e.

there may be some bugs left in somewhere

In the software, since testing an 8K8cutive

I.:' U ::;; :;.; :i. !J 1 C' 1.:.' 0 nd 1. L :i. 0 II 1 ~.:;,.]"1 d \' d 1 .'/ P 0 ~;;) ;:.:, .1, ~J 1 t.::,i OJ opc:n lo

complaints dnd ready to correct any such bugs.

APPENDIX A FOX PROPOSAL

A PROPOSAL FOR

A FAST OBJECT-ORIENTED EXECUTIVE

[FOX J

~~;UDI\1 I "l"1""I:::D 'TO
~;UDIYI:r 'TTL.D DY
~3I..JB.J[CT

DnTC

DH" TI,Ji\~C D(ILIYlrlN
c;rnn'r YJI."I"'I{)Zlf{
IV! n ;31' ~:: !~ 'J ;,1 C ~:; (~:;

:L]. / ~? (i./ :I. (:) El :2

1 propose to design and iMPlement a o b J e c t ,,-' 0 r" i E: n t e cI

It will be a collection of routines and tasks v-Jhich

s~uppo I't E!Vent driven multi-tasking on a microprocessor. 'I'
.I,

propose to design and iMplement a Fast Object-oriented eXecutive

CFCJX::I

Til Ul'(.IL;I' [.:u)YI.J/\L' JL ,:,1'., pI)I'Ldi,.JlL' r·.I'c) p U ~.:~ :.' .t LJ .1. c.' I L

bE! W)':i, t t ceo:)) :i, n d l·iLl D IJ 17,: L: 0 t h (a d \1 ;,\1 :I. d U ,l 1 it Y C', II cJ hic:Jilly

structred nature, t h ,:;: I ;\1 TeL, P L_ / Ivi i~) p \" J P Cl ',:; E! ci " n h :i, q h po\" t i (J n u f

will be written in PLJM e~cept Qossibly a very

portiun has to be written 1n the assembly language of the target

O\i0::r'all s y ~_:; t E! 11'1
. '["

WI.L J. ~,i::\ t i ,; fy thE?

FDX will be a Real-TiMe Event-driven ObJect-oriented i'iu]. t :l"

E:){t::!Cut i VQ" It will

Real-time scheduling

unnesseccary polling

prov:i,ci,:? ,i:l Sit l'uctul'C'·c:i IYif,,:thoci of: in'c0:r'faCl(l(J w:i. t.i"1 ti'IC

It V~:l 11

Possible future eHtentions

it v'll i J 1 be Multi-tashing to increase the throughout

peny Dald for the hardware"

'::)7

version of FOX will run on a systeM called I\'I~:;CP lr"l f::' i r'~::; t

I\IE·r~1~3. It is a sub-unit of a national telephone center under the

developMent of R&D deoartMent. ~as all the neccessary hdrd-

~\lc\\'(? nef:~ded for' dl"', E2><ecutivs , anci so fOI' I=-OX. It cc)Y\5:i.~;;t"~ Df d

processor board (SSC 80/20-4) with 4Kb of RAM.

an RS 232 cOMMunication interface

c:I E!C 0 cI (.:! \"'

:i. nt E·! f' f'deC! 1 oq i CN rn·)iYj L.j:!i~UIYl

E~><tQnt i on r~)o,,, f'cI

boards 20Ko ot RnM and uoto 40Kb of EPROM

enough for a siMole control application.

I

will

will try to desIgn the FOX as flexible as possible so it

be easily customized for any control application. I

11\IT[I... j PIYIX HU! r 1\\ T [L.. :i. F~ i'i x···r~ c.. ,

I cl 0\',' t

want to Invent the wheel again).

In thS design phase fo:tl0vJ

1 :i. ~:~t t ed bE!:l DW

one

and one after one month after the

of the FOX will be made. Possible objects will be discussed

scheduling methodes will b(.~! ciE.'finf2ci. ,;eCO(Ic:J

review, the dificulties and possible contradictions in the first

definitions will be discused and solved.

b .. -) The design methode will To fj"-'cl 0 vJn

development and Bottom-up object definition. () DJ (,·.'ct ';;,

tl·ldt the executive will heavily depend on ,

descriptors and Queue structures ,will be defined and ,then on,

the program development and coding will start.

C' If not stricKly neccessary machIne depended

features will not be used neither in HW nor in SW inc Iud :lfltJ

'::-JeJ

PCEINIIlg~ DE EQX
F(Ji< vJ i 11 be a nucleus to be costumized for any speclfic

multi-tasking system. It will have a minimal and sufficient user

inter'fclc(0 routines to handle the tasks and the- communication

The u0it of executable code collections unde~ the

FOX TI"'Jf:~r'e can bE.~ dny nUlllb(;?l" of tasf\s cGNJpetinq r 0 i"

will supply sufficient mechanizms to synchronlze the dct i v:i, t :i C'?",,-

of ;:;l11 of thE? per'ipl'\(~r'al.~:" Messages between the tasks will

h.::\nci 1 eel in the EXCHANGEs. Both the tasks and the exchanges C2n

be created and deleted with simple system calls. FDX vJ :i, 11

support a unified interrupt structure" User Cdn either ask the

FOX to suspend it until a specific interrupt arrives or

his OWrl int£-?Pl'upt f:5e 1''.1 i ce I' 0 uti ne f 0 \' fastel' i ntE->l"l"upt

se i"V i C 1 ng"

FOX will linked queues to schedule the tasks

manupulate the exchanges. For task scheduling, the \"e wi 11 be

thl'ee system queues

a -) Gyst€~i'1'1 l'eady task queue For the tasks that Ci:',ln

immediatly gasp the CPU and execute.

P)' i 0 \' 1. t '/

vi h :i. C'I'1

t-)'1'.: .. '

1 ()()

t hl.:~y can only be activated via a cr~ate task system

Queue has no implied structure but flrst in last out one seems

to be more convenlent.

C' "-) System time-wait v,.h i cl",

intentionally waiting for a time-out condition or waiting

the exchange operation, when the user defines a time-out in the

c'.>{ c.' ha nCj e , will be held in this queue. Slnce there can be many

in this Queue the structure of the queue shuuld

Job of the delay manager so that it does not have to

all llme-wait queue at each system clOCk tick.

add:i t :i on c UE~Ut'!C:

descriptors for send or receIve operations. 1'''1 ,;:\ ~,:

no message when a task reuuests one or' , if the eXChange has

tasks waiting at an exchange either for reCClve operation or for

i::\ send operation (mixture of send waiting and receive

task at any exchange queue IS (1 f' co U i"SE:\ i IYI P 0 ~~ 5 i !:d e).

can be qu~ued at the exchage queue and at the

t :i,IY,e' Wi:\ i '~ queue at the same time 1 if the user had asked for a

out Irj i 11

from both of the queues when the ti~e out condition

met or when the exchange operation IS completed.

101

following sections desicribe the proposed

routines for the above mentioned utilities.

a -) gB~8I~_I8§~

CRE~rE TASK(TASK DESCRIPTOR)

This insert the designated tasks

process descriptor into the system ready task queue. Then on the

task competes for the CPU and the peripherals as other tasks do.

DELETE TASK(TASK DESCRIPTOR)

This procedure removes the designated task from all

of the folluwing Queues and puts into the system dormant

q U(;:UL'.

1 - .. System ready task queue

1], -.. ' System time wait queue

111 -) Exchange wait Queues

c .-) £~II

E:Xrr

ready task queue.

i 0:=:

Yhis procedure links the designated task to the calling

e - QB~8Ig_g~g~8~§~

CREATE EXCHANGE(EXCHANGE DESCRIPTOR)

This procedure insets the designated exchange descriptor

into the systeM exchage link.

f --) Q~b~Is_s~g~8~§s

DELETE EXCHnNG[CEXCHANGE DESCRIBTIDN)

This procedure reMoves the designated exchange froM the

systeM exchange link

g - bl~~_~Xg~8~§s

LINK EXCHANGE (EXCHANGE_LINK_DESCR1PTOR)

This procedure links the designated exchange to the calling

t i:,I".:; 1·\ f n r' f: U r't hE0 l" E"H C hiJ nq c! n pC! 1"';.\ t i (1 n!:;

103

SEND(EXCHANGE LINK DESCRIPTOR)

This sends the designated message to

designated exchange. Task can ask for a time out facility under

abnormal conditl0ns and or define an exception handler. Also the

FOX defines a dummy exchange for task wait operations which is

1 "000) B!;Q!:J!;§I 0

IhlS procedure asks for a message at the

f2Xcharl(]e. User can define time out and or exception handler for

abnormal conditions, as in the SEND case.

J -) Q!;E!~g_!NIgBB!:JEI

DEFINE_INTERRUPTCINTERRUPT DESCRIPTOR)

This procedure defines an interrupt at specified level and

tyP(o,,'.

k - Q!;bgIg_I~IgBBYEI

DELETE_INTERRUPTCINTERRUPT_DESCRIPTOR)

This procedure deletes the interrupt defined before.

1 OL~

1 -) b!~~_!~I~BByeI

LINK INTERRUPT<INTERRUPT LINK DESCRIPTOR)

This procedure links the task to designated interrupt

descriptnr for further references.

m -) ~8!I_!~IgBBYEI

WAIT INTERRUPT(INTERRUPT LINK DESCRIPTOR)

This procedure puts the task into time wait queue until the

d E'C:l CJ l'li::lt t'Jd i nt t:-;))" r'u pt (() l" CJVElnt

n - QB~8I~_!NI~BByeI

c: I<CAT!.:.. I 1\;-fl.".·l~ I~U p-r (I)\JTC i~~ I~U,Tr 1.... I Ni<_DF~)Cn I PTCi n)

This procedure setc the designated interrupt (Dr event).

APPENDIX B SOURCE LISTINGS

ISIS-II PL/M-80 V3.0 COMPILATION OF MODuLE INITIALIZATION
OBJECT MODULE PLACED IN 5TART.OBJ
COMPILER INVOKED BY: PLMBO START PHINT(:lP:)

16

$DEBUG WORKFILES(:FO:. :FO: J

1***1
/H FOX INITIAliZATION ~iODULE HI
1** **1
1** THIS MODULE INITIATES ALL POINTERS ~~D **1
In CREATES THE INITIAL AND IDLE TASI,S HI
1** If I
1** MODULE NAME: INITIALIZATION **1
1** FILE NA~E: START If I
In AUTHOR : SEDAT YIUtAZER H/
1** DATE : 15.12.1983 HI
In HI
1***I**f******1
INITIALIZATION:
00:

iNGLIST

DECLARE JUrftP LITERALLY '(lC3H' :

17 DECLARE INHVECrDR BYTE EXTERNAL:

18 DECLARE (CREATEHAS;.\. CREATE!iiEXCHANGE. CREATE$INTERRUPT.
LINi\$TASK. LlNK$EXChANGE.
KILL. RESUME. DISPATCH.
SEND$EXChl~t~Gt. wAl HEXCIiANGE.
EVENT. SIGNAl.
LEVEl$ON. LEVcHOFF, END~INT"
ERROR

19 DECLARE INHSTACiH201 BYTE:

ADDRESS EXTERNAL:

20 DECLARE INI$TASK$DESCRIPTOR TASI\$DESCRIPTOR:
21 DECLARE IDLE$TASI($DESCRIPlOR TASI($DESCRIPTOR:

22 DECLARE INl!iiSHASKiDESCRI PTOR STATIC$TASK$DESCRI PTOR
DATA(, Ird$TASK$DESCRIPTOR.

, INITSf(' .
250.
lOOOH .
• INI$STACK+20.
NIL):

1********** FOX GATE CDDf DEFINITIONS If*f*lf*****I**/

J*DEClARE CREATE$TASK
CREATH£XCHANGE
CREATE$INTERRUPT
LINK$1"ASK
LINI\$EXCHANGE
SlJSPEND
RESUME

LITERAL.LY '01'.
LITERALLY '02'.
LITERALLV '03'.
LITERALLY '04' .
LITERALLV '05' .
LITERALLY 'Ob'"
LI TERALl Y , 07' .

DISPATCH LITERALLY 'OB' .
SEND LITERALlV '09'.
WAIT LITERALLY '10' .
EVENT LITERALLY , II' .

SIGNAL LITERALLY , 12' .
·LEVEL$QN LITERALLY '20' .
LEVEL~OFF LITEftALLY '21' .
ENDilNT LITERALLY '22' =

if
23 TIMER$INTERRUPT: PROCEDURE EXTERNAL:
24 2 END:

Ji==*f

2S

26 'J ...
27 .-,

.l.

28 2
29 " .l.

30 2
31 2

$EJECT
1***1
In INITrALlZE THE QUEUE POINTERS AND CURRENT H/
/n TASK POINTER HI
1** HI
It* PROCEDURE: SW$INITIALIZATION III
IH FUNCTION : INITIALIZE THE FOX POINTERS ul
1** CALL : CALL SWiINITIAL1ZATION **1
In HISTORV : CREATED AT 12.25.1'384 HI
1** *t!
1***1
SWiINITIALIZATru~: PROCEDURE ~

RQ$HEAD=.fDLE$TASK$DESCRIPTOR:
S/liHEAD=NIL:
DQ$HEAD=NIL:
FLiHEAD=NIL:
CP==RQ$HEAD!

END:

PLJM-BO COMPILER

$EJECT
i***I
1** INITIALIZE TH~ FOX HARDWARE **1
1** **1
1** PROCEDURE: HW$INITIALIZATION **1
Iu FUNCTION : INITIALIZE THE FOX HARDJ.iARE **1
It* CALL : CALL HW$INITIALIZATION if I
1** HISTORY : CREATED AT 12.25.1984 *tl

1** **1
I UU**H*******H**H***HH*H*******HHHHH***** I

32 HW$INITIALIZATIDN: PROCEDURE :

33 2

34 2
35 2
3& ~J

L

37 2
3B 2

39 .-,
L

DECLARE TIMER$CONTROL.$PORT
TIJ'IlER'iCOUNHPORT
PICiADDRESSiPORT
COUNT
I NITI All Z E$TlpiER

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'ODFH' _
)I)OOH) _

'ODSH' _
'25000' _
'03&H' :

OUTPUTiTIMER$CONTROL$PO~T)=INITIALIZE$TlMER:

OUTPUT (TlMER$COUNT$PORTl =LOW (COUNT! :
OUTPUT iTIMERiCOUNHPORT) =HIGH (COUNT> :
OUTPUTiPIC$ADDRESS$PORT);LOWi.lNT$VECTOR)+loH:
OUTPUT (PIC$ADDRESS$PORTl=HIGH(. INT$VcCTQR)~

PAGE

PL/M-80 LUM~ILER

40
41 2

42 2
43 2

44 2

45 2
46 2
47 2
48 3
49 3
50 3
51 2
52 2

$EJECT
/**/
/** FOX ENTRY PROCEDURE Hi
/** **/
/** PROCEDURE: FOX **/
/** FUNCTION : DISPATCH FOX SYSTEM CALL **1
/** CALL : CALL FOX (FUNCTION$ID. PARAMETER) *tl
1** HISTORY : CREATED AT 25.12.1983 **/
/** HI

1**/

FOX: PROCEDURE (GATE$VAlUE. PARAMETER) PUBLIC REENTRANT:
DECLARE GATEiVALUE BYTE.

PARAMETER ADDRESS:
DECLARE CALL$ADR ADDRESS:
DECLARE FUNCTION(I) POINTER DATA(.ERROR.

.CREnTE$TASK .
• CREATEiEXCHANGE .
• CREATEiINT£RRUPT.
• LINKiTAStC
.LINKiEXCHANGE.
.KIlL.
• RESUME.
• DISPATCH.
• SEND$EXCHANGE.
• WAIT'l'EXCHANGE.
• EVENT.
• SIGNAL
• ERROR.
• ERROR .
• ERROR .
• ERROR .
• ERROR •
• ERROR .
• ERROR .
• lEVEl$ON.
• LEVEL$OFF .
• ENDHNT

) :

DECLARe MAX$GATE$VALUE LITERALLY '22'!

DISABLE:
IF GAT£$VALUE (: MAX$GATE$VALUE THS~
DO:

CALL$ADR:FUNCTION IGA1HVALUfJ !
CALL CALL$ADR(PARAMETER) =

END:
£J'IIABLE:

END:

/**I
/n INTERRUPT SERVICE ROUTINES H/
1** CURRENTLY B INTERRUPT LEVELS ARE HANDLED **1
!** ii/

/ **H******** I

53 EVENTO: PROCEDURE INTERRUPT 0:

PAGE

PL/~-80 COMPILE~ PAGE

54 .)
L CALL FOXi12.0l!

S5 2 END:

56 1 EVENT1: PROCEDURE INTERRUPT i:
57 :2 CALL FOX (12.1> :
58 2 END:

59 EVENT2: PROCEDURE INTERRUPT 2:
60

. ., CALL FOX (12. 2): .£.

6i :2 END:

62 EVENT3: PROCEDURE INTERRUPT 3:
63 ~. CALL FOXi12.3l: .£.

64 END: .£.

65 1 EVENT4: PROCEDURE INTERRUPT 4:
66 2 CALL FOX il2. 4) :
67 ."\ END: .£.

68 EVENT5:'PROCEDURE INTERRUPT 5:
69 2 CALL FOXil:2.Sl:
70 .-. END: .i-

71 EVENT6: PROCEDURE INTERRUPT 6:
72 2 CALL FOX 02. 6) :
73 :2 END:

74 EVENT7: PROCEDURE INTERRUPT 7:
75 :2 CALL TIMER$INTERRUPT:
76 2 END:

n

78 2
79 2

80 2
81 2
82 .j

L

83 2
B4 2
85 3
86 '"7

...l

87 .-,
.:.

B8 2
89 2
90 2
91 ."\

.:-

92 3
93 2

$EJECT
I*************************H*************H*************I
in INITIALIZATION PROCEDURE AND HI
I ** IDLE TASK H

/** t*1
/** PROCEDURE: START HI
1** FUNCTION : iNITIATE SOFTWARE AND HARDwARE **1
1** CALL : NIA H/
/** HISTORY : CREATED 12.25.19B4 **/
1** **1
/***/

START: PROCEDURE PUBLIC:

DECLARE I$TASK$lINK$D£SCRIPTOR TASK$lINK$D£SCRIPTOR:
DECLARE STARHJUMP BYTE AT (1003) :

DISABLE:
CALL SW$INITIALIZATION: 1* IDLE TASK IS INITIATED */
CALL HW$INITIALIZATION:
IF START$JUmP;JUMP THEN
DO:

CALL FOX(CR£ATE$TASK .• INI$S$TASK$DESCRIPTOR):
END:
ENABLE:
CALL MOVE(. (' INITSK' J.. I$TASK$UNK$DESCRIPTOR.NAI'iUi):
CALL FOX (UNK$TASK .• I $TASKiLINK$D£5CRI PTOH) :
CALL FOX <R£SUfliE.. I$TASK$LINK$D£SCRI~TDR):
DO WHILE 1:

1* IDLE TASK *1
END:

END:

/*************** END OF MODULE ***********************1

94 1 END:

MODULE INFORmATION:

CODE AREA SIZE ; OlB3H 387D
VARIABLE AREA SIZE = OObBH i07D
MAXIMUM STACK SIZE; OOOFH 15D
50 i LI NES READ
o PROGI"hl1Yl ERROR (5)

ENO OF PL/M-BO COMPILATION

iiAGE

PLIM-BO COMPILER

ISIS-II PL/M-BO V3.0 COMPILATION OF MODULE USERINTERFACE
NO OBJECT MODULE REQUESTED
COMPILER INVOKED BY: PLMSO uSER PRINT(:lP:) NOOBJECT

$WORKFIL£5(:FO:.:FO:) DEBUG
I H***u*n***********u***i*********UH*******H**H I
1** ~ASTER THESIS CODE SECTION **
In H

1** THIS MODULE DEFINES ALL USER INTERFACE OF FOX **
1** **
1** MODULE NAME : U5ER$lNTERFACE **
1** FILE NAME: USER **
1** AUTHOR : SEDAT YILMAZER i*

In DATE : 5.29.1983 H

/** H

1***********************i**************i***********i**1

USER$I NIERFACE: DO:
$NOLIST

PAGE

PL/M-BO COMPILER

57

58 2

59 :2
60 .-,

4

61 2
62 2
63 ,.,

L

64 2
b5 2
66 " ~
67 2
68 .j

L

69 r.
~

70 2
71 2

$EJECT
I************************************~**********************1
1* CREATE A TASK DESCRIPTOR IN SYST8q LINK *1
1* *1
1* PROCEDlJRE: CREATE!liTASt(*1
/* FUNCTION : INHATE TASK DESCRIPTOR ANn INSERT SYSTEPI *1
1* CALL : CREATE!iiTI4SK (sH$n) : *1
1* HISTORY : CREATED AT 06.11.19B3 */
/**/

CREATE$TASK: PROCEDURE (S$fiD) PUBLIC:

DECLARE STD POINTER.
S$TASt(BASED S$T$D STATIC$TASt($DESCRIPTOR.
Hi} POINTER.
TASK BASED T$D TASK$DESCRIPTOR:

HD=snASK.L:
CALL MDVf(6 .• S$TASK.NAME(O) .• TASK.NAME{Ol):
TASK. P=S$TASI(, P:
TASK. SP=S$TASK. SP:
TASK.EH=S$TASK.EH:
TASK.L. TASK.D==NIL:
TASK. ST=IDLE:
TASI{.C=O:
RA~(TASK.SP-9)=LOW{.S$TASK.PC1:
RAM(TASK.SP-IOl=HIGH(.S$TASK.PCl:
CALL INSERT$SYSTEi>1$UNKmDl :
CALL INSERHQUEtJEmD. SQ~IiEAD):

END:

PllGf

PL/M-BO COMPILER

$EJECT
1**1
1* CREATE EXCHANGE IN SYTEf1I LINK *1
1* fl
If PROCEDURE: CREATE$EXCHANG£ *1
/f FUNCTION : INTRODuCE AN EXC~ANBE INTO SYSTEM *1
J* CALL : CREATE$EXCHANGE (5$£$D): '*:/
1* H1STDRV : CREATED AT Ob.11.1983 *1
I H****H*************H*********************H**********H** J

72 CREAT($EXCHANGE: PHDCEDUREIS$£$D) PuBLIC:

73 2 DECLARE S$£$O POINTER.

74 2
75 '2
76 2
77 .. , ..
78 2
79 '" "-

80 2
91 '2
82 2

S$£XCHANGE BASED 5$£$D STATIC$EXC~ANGE$DESCRIPTOR.

aD POINTER.

END:

EXCHANGE BASED E$D EXCHANGE$OESCRIPTOR:

E$D=S$EXCHANGE.L:
CALL MOVE(b .• S$EXCHANGE.NAM£!O) .• EXCHANGE.NAME(Ol):
EXCHANGE. LNG=S$EXCHANGE. LNG:
£XCHANGE.SZ=S$fXCHANGE.SZ:
EXCHANGE. BSl=EXCHANGE. SZ*EXCHAt~GE. LNG:
EXCHHNGE.£H=NIL:
EXCHANGE. MF. EXCHANGE. filB=O:
CALL INSERHSYSTEM$UNK (£$D) !

PAGE

n .. 1 n uv L"UI"It'lLI:.i1

83
94 2

B5 :2
Bf. 2
87 2
88 2
89 2
90 "'.

" 91 2
92 2
93 2

$EJ£CT
/**1
Itt CREATE INTERRUPT SERVICE H/
1** PROCEDURE : CREAT£$INTERRU?T **1
/n FUNCTION : INTRODUCE AN INTERRUPT SERVICE H-

1** INPUTS : INTERRUPT DESCRIPTOR POINTER i*i
1ft OUTPUTS ~ NONE **1
1** CAll : USER TASK **1
If* HISTORY : CREATED AT 11.12.1983 it/

1**1

CREATE$INTERRUPT: PROCEDUREIS$IDPI PUBLIC:
DECLARE SlD$P PTR.

SID BASED 5liDP 5TATIC$INTERRuPT$DESCRIPTOR.
lDP PTR.
1$0 BASED l$D$P INT£RRUPT$DESC~IPTOR:

lDP=SID.L:
CALL MDVElb .• SID.NAME(O).I$D.NAMEIO»:
1$0. T=S$I$D. T:
1$D. F=Et"PTY:
I$D.LVL=S$I$D.lVL:
I$D.EH=S$I$O.EH:
rNTE~RUPT$VECTOR(I$D.LVL)=IDP:

CALL INSERHSYSTEttl'i>UNK (I $lj<~P) :
END:

PAGE

PLIM-80 COMPILER

$EJECT
1***1**********1
1* LINK TASK OR EXCHANGE TO THE CALLING TASK *1
~ W
1* PROCEDURE : LINK$SYSTEM *1
1* FUNCTION : LINK TASK OR EXCHANGE TO CALLER *1
1* CALL : LINK$SYSTEM(L$P): *1
II iiI STORY : CREATED AT 06. li. i9&3 *1
1* NonCE : IF TiiE DESIGNATED ENTRY IS NOT IN THE *1
i* SYSTEM THEN THE EXCEPTION HANDLER OF THE *1
1* TASK WILL BE EXECUTED *1
1**1

94 LINK$SYSTEI~: PROCEDURE (LiP) PUBLIC :

95 2 DECLARE LiP POINTER. 1* LINK POINTER *1

% :2
97 2
98 2
99 3

100 3
101 4
102 4
103 4
104 3
~05 3
106 2
lOB 2

LINK BASED LiP DESCRIPTOR. 1* LINK DESCRIPTOR */
SiP POINTER. /* SYSTEM LINK POINTER *1
GiL BASED SiP DESCRIPTOR. 1* SYSTEM LINK D~SCRIPTOR *1
TASK BASED C$P TASK$D£SCRIPTOR:
S$P=FL$li8lD:
LINK.L=NIL! 1* INITIALIZE FOR NO SUCCESS *1
DO WHILE SiP () NIL:

E!'ID:

IF COMPARE(.S$L.NAME(OI .• LINK.NAME(OI.6) THEN
DO :

LINK. L=S$P:
S$P=NIL:

END:
ELSE S$P=S$L.SL:

END:
IF iLIil.K.L=NIU AND (TASK.EHONILl ThEN CALL TASK.EH:

PAGE

I'LIPI-OV LUI'lf'lLt.1(

109 1
llO 2

n1 2
li2 'i

J.

113 2
114 2

$EJECT
1***/
1* *1
i* *1
1* PROCEDURE : KILL *1
1* FUNCTION : KILL [SUSPEND] DESIGNATED TASK *1
1* CALL : CALL KrLL(TLD)~ *1
1* HISTORY : CREATED AT 06.05.1983 */
1***/
KILL: PROCEDUREtTLD) PUBLIC !

DECLARE HL$D POINTER .
TASK$UNK BASED T$L$D TASK$UNi'i$DESCRIPTOR:

CALL REMOVE$READY$QUEUE(TASK$LINK.L):
CALL I NSERT$QUEU£ t. SQ$HEAD. TASK$LINK. U:
CALL DISPATCH:

END:

PAGE

liS

116 2

117 2
118 2
119 2
120 2

$EJECT
1***1
1* *1
1* *1
1* PROCEDURE: RESU~E
1* FUNCTION : RESUME A SUSPENDED TASK
1* CALL : CALL RESU~£(TLD)
1* HISTORY : CREATED AT (~.05.19&3
I ****HH**HH*****HHHHH**********H****H*********~'1
RESUME: PROCEDURfiTLDi PUBLIC!

DECLARE TLD POINTER.

(ND:

TASKiLINK BASED TLD TASK$LINKiDESCRIPTOR:

CALL
CALL
CALL

REMOVE$QUEUEi.SQ$HEAD. TASK$LINK.L):
INS£RTiREADY$QUEUE(TASX$L1NK.L) :
DISPATCH:

PAGE 7

Il..fI'I-OV I.oUI'II"l LCt<

iEJECT
/**t*t*****1
1** INTERRUPT FLAG WAIT HI
1** **1
In PROCEDURE: EVENT HI
Itt FUNCTION : WAIT FOR AN INTERRUPT OR EVENT ul
iH INPUTS : INTERRUPT LINK DESCRIPTOR HI
1** OUTPUTS : NONE **1
1** CALL : USER TASKS HI
1** HISTORY : CREATtn AT 11. 12. 19B3 *t!
/** NOnCE H/

1**1***1

121 EVENT: PROCEDURE (LEVELl PUBLIC REENTRANT:

;22 2

123 2
124 ...

i.
'."\:1:'
ILJ 2
i26 3
.27 3
.l~ 3
29 "7

..J

30 3
'. ~i 3 u~

.32 . ..,
L

'7 3 ,'0)

35 3

:& ''')
.<.

39 2

DECLARE LEVEL
IDP
l$D

BYTE.
PTR.
BASED

i* POINTER TO INTERRUPT LINK DESCRIPTOR *1

IDP INTERRUPT$DESCRIPTOR:

UD$P" INTERRUPT$VEClOR (LEVEL) :
IF I$D.F :: EMPTy THEN
DO:

END:

END:

l$D.F=FI.JLL:
1$0. TASK=C$P:
DISABLE:
CALL REMOVE$READY$QUEUf(C$PI:
CALL 1 NSERHQtJEUE (.5Q$h£AD. C$P) :

ELSE liO:
IF I$D.F=FREE THEN I$D.F=EMPTY:

ELSE IF l$D.EH () NIL THEN CALL I$D.EH:
END:
CALL DISPATCH:

PAGE B

PLIM-OO COMPld::R

140
141 2
142 2

143 .j
L

144 2
145 2
146 r.

L

147 3
14S 3
149 ..,

..l

150 4
151 4
152 4
153 3

156 2
158 2

161 2

$EJECT
1**/
/ n S I GNAt. EVENT n /
/** PROCEDURE : SIGNAL **/
In FUNCTION : RELEASE ANY TASK WAITING FOR THE **/
1** EVENT LEVEL SPECIFIED. OR ACTIVE HI
1** TIiE INTERRUPT SERVICE ROUTINE HI
/** INPUTS : EVENT LEVEL **1
/** OuTPUTS : NONE t*1
J** HISTORY : CREATED 11.12.19&3 H/
1** NOTICE H/

1**/

SIGNAL: PROCEDURE (LEVELl PUBLIC:
DECLARE LEVEL BYTE:
DECLARE IDP PTR.

l$D BASED I$D$P INTERRUPT$DESCRIPTOR:
DECLARE l"EIl!P PTR:

IDP=INTERRUPT$VECTOR(LEVELI:
IF IiD.F = FULL ThEN
DO:

HD.F: D~PTY:
IF aD. T :: EX THE,'Ij
DO:

1* GET INTERRUPT DESCRIPTOR ADDRESS *1

CALL REMOVE$QUEU£!.SQ$HEAD.I$D.TASKI:

END:

CALL
END:
ELSE

END!

INSERT$READY$QUEUE(I$D.TASKI:

IF 1$D. SRV () NIL THEN CAll UD. SRV:

flS£ IF I$D.F= EMPTY THEN I$D.F=FREE:
ELSE I~ I$D.EH (} NIL THEN CALL I$D.EH:

CALL DISPATCH:

PAGE ,

PL/PI-80 t.:UMPlLER

1&2
:63 2

lb4 2
1I;S " L.

$EJECT
J***f*f**f*/
1** GET HEAD OF ANY EXCHANGE HI

1** **1
1** PROCEDURE: GET$EXCHANGE$HEAD **1
1** FUNCTION : GET HEAD OF A~V EXCHANGE **1
1** CALL : CALL G£T$£XCHANGE$HEAD(E$D.wHERE) **1
1** HISTORY : CREATED AT 06.11.1983 III

/H HI
I H**H**H**IH***HHHH******f**H**HH*HH****H**f*** I

GET$EXC~~GE$HEAD: PROCED0RE(E$D.wHERE) PUBLIC:
DECLARE (E$D.WHERE) POINTER.

END:

DiD BASED wrlC:RE POINTER.
l$D BASED E$D DESCRIPTOR:

D$D=IiD.L:

PAGE 10

PL/M-BO COMPILER

$EJfCT

I H,'H**H**HH********HHHI:**HIH*****HHHHHH******* I
;.. pur MESSAGE INTO EXCHANGE BUFFER *1
If *1
1* PROCEDURE: PUT$EXCHANGE$MESSAGE *1
1* FUNCTION : PUT MESSAGE INTO EXCHANGE BUFFER *1
1* CALL : PUT$EXCHANGE$MESSAGE([LD}: *1
I I: HISTORY : CREATED AT 06.05. 19B3 *1
I HH********HHHHH**********H'H*****IHH******HHHH 1

166 PUHEXCHANGf$MESSAGE: PROCEDURE (Ek$D) PUBlIC:

167 2

168 .j ..
169 .-,

I.

170 to,

t.

Ji2 .,
i.

174 ,'0,
I.

175 2
176 -r

>J

m 3
178 3
;i9 3
180 .,.

..l

lS1 ')
,{,.

IB3 r,
'-

184 .-;,
L

DECLARE (ELD_
£$D.
D$D

I*POINTER TO EXCHANGE LINK DESCRIPTOR*I
I*POINTER TO EXCHANGE DESCRIPTOR *1
1* DUMMY TASK DESCRIPTOR *1

) POINTER.

E$LINK BASED £$L$D EXCHANGE$LINK$D£SCRIPTOR.
E BASED E$D EXCHANGE$DESCRI PTOR:

aD=E$t..INK. L:
f. C=E. C+l!

Ii- E. LNG () 0 THEN CALL MOVE (E. LNG .• E. BUF (£. illF'). E$LINK.~) :
IF (E.iliF=(t.MF+t.UI=f.BSZ ThEN L'iiF;;O:
IF CHECK$EXCIiANGE(E$Dl IS EMPTY THEN
DO:

END:

CAL.L GEHEXCHANGE$HEAD(E$D .• D$DI:
Cj~lL f\t/l'iOVE~QU£UE (. Eo L. D~[j)!
CALL REr.OVE$DELAY$QUEUt(D~D}:
CALL .1 NSERT$iIEADY$QUEUE (O$D)!

ELSE IF E. C=£. 8Z THEt~ CALL SEHEXCHANGE (E$D.FiJLU :
ELSE CALL 5ET$EXCHA~GE(E$D,FRfE):

PAGE :

$EJECT
I**************f****f*******************f*****f********f***i!/
I f GET p';ESSAGE FROM EXCHANGE BUFFER * I
1* *1
i* PROCEDURE : GET$EXCHANGE$MESSAGE *i
If FUNCTION : PUT MESSAGE INTO EXCHANGE BUFFER f/

1* CALL : GET$EXCHANGE$MESSAGEiE$L~D)~ *1
If hISTORY : CReATED AT 06.11.1983 */
1**************HfHHH**H**fH******f**f********H'HHHHI

iSS GEYiEXCHH,'IjG£'liI'tlE:SSAGc: PROCEDURE ([1iL$D) PUBLIC ~

186 2

lB7 2
lBB .~

.(.

189 r) ..
191 .;

L

193 'J ..
:94 '~l

J..

195 3
:,96 3
197 -,

,j

19B :5
199 -(..,
2(10 .',

.L

202 :I:

203 2

DECLARE (ELD.
E$D.
DiD

I*PQINTER TO EXCHANGE LINK DESCRIPTOR*/
J*POlNTER TO EXCHANGE DESCRIPTOR t/
f* DUM~1V TASK DESCRI;:iTDR *J

) POINTER.

E$LINK BASED E$L$D EXChANGE$LINK$DESCRIPTDR.
E BAScO E$D EXCHANGEiDESCRIPTOR~

E$D=E$UNK. L:
E. C=E. C-1 ~
IF E.LNG 0 0 THEil CALL MQVE(E.l.E$UNl<.Ii1 .• £. BUF(E. fr1fJ)):

IF (E.,f,B:=(E.~iBtE.Ll)=E.BSZ THEN E.iY$=O:
IF CHECK$EXCHANGc(E$Dl IS FULL ThEN
DO:

Cfill G£T$EXCrlANGE$hEADiE$D •• D$Di:
CALl. REiYDVE$QUEUE (. E. L D$D) :
CALL REiT10VE!liOc.LAY$QUEU;::lD!liDl:
CALL INSERHREADY$QllEuE (l)$j}) :

END:
ELSE IF E.C~ THEN CALL SET$EXCHANGE(E$D.EMPTY):

ELSE CALL SET$EXCHANGE(E$D.FREEl:

IO''''"7'''ii::P [J- rr:

PAGE 1:

$EJECT

1**/
1** EXCHANGE SEi~D SERVICE H/
/n HI
/** PROCEDURE: SENDGET£XCHANGE H/
/** FUNCTION : SERVICE TO SEND & WAIT REQUESTS **1
I H CALL : CA:"L SEND$GEHEXCHANGE (E. SG.F) : HI
Iff HISTORY" : CREATED AT 05.31.1983 HI
/H'lfHHH********H***HH** HH H*H IH***H****** * I

204 SEND$GETiEXCHANG£: PROCEDURE (fRiO. SEND$G£T. EjIj~TY$FULU PUBLIC :

205;: DECLARE ELD POINTER.

206 2
207 ;:

209 3
209 4
210 4
~J ~ , C
<.II .;

212 5
213 5
214 5
215 4
216 4

217 3
[19 3
220 4
221 4
222 4

223 3
224 3
Z25 4
22& 4
m 4
22B 4
229 4

231 5
233 5
234 4
235 4
236 3

EXCHANGE$LfNK BASED E$L$D £XCHA~tiE$LINK$DESCRIPTOR.
£$D POINTER.
EXCHANGE BASED EiD EXCkANGE$DESCRIPTOR.
T$D POINTER .
I$T BASED T$D TASK$DESCRIPTOR.
SEND'iiGET POINTER.
£MPTY$FuLL BYTE!

E$D==EXCHANGc$L INit L:
00 CASE EXChANGE$LlNi<.K AND 3 :

/*--------------- wAIT UNTIL SEND---------------------- *1
DO:

END:

IF CnECK$EXCHA~GE(E$Di IS EMPTY$FULL THEN
DO.~

CALL R(MOVE~I~EADY$QUEUE (C$P) :
CAL~ INSERT$QUEUE(.EXCHANGE.L.C$P):
CALL DISPATCH:

END:
CALL SE~D$GET(E$L$D):

1*------------ DO NOT ~JAn IF NOT SEND ------------frl
IF CHECK$EXChANGE([$D) IS Elr;PTY$F'ULL THEN EXCi-lHNGE$UNK.S=FAIL.:
ELSE DO :

CALL SEND$GETIE$L$D):
EXCriANGE$LINK.S=SUCCESS:

END:

1*----------- wAIT TI~lE-OUT OR SEND -------------------*1
IF CHECK$EXCHANGE(E$D) IS £ltiPW$FULL THEN
DO :

END:

GlLL RE,r;OVE$READY~QUEUE (CiP)!

CALL I NSC:RT$QUEUE (. EXCHANGE. L C$P):
CALL INSbiTi>J)EUlY$QufUE (C$P) :
CAi...L DISPATCH:
IF CHECK$EXCHANGE(E$D) IS EMPTY$FULL

THEN DO:
IF EXCHANGE$LINK.EH {} NIL THEN CALL EXCHANGE$LINK.EH:

END:
ELSE CALL SEND$GET(E$L$Dl!

ELSE CALL SENOiGET(ELD):

PLlM-80 COMPILER

237 3

238
239

240
241

242
243

3
.-,
L

:2

2
.', ..

If--------- RESERVED ACTION ---------------------------*1

END:
END:

1**1
1* SEND EXCHANGE MESSAGE *1
1* *1
If PROCEDURE: SEND$EXCHANGE *1
1* FUNCTION : SEND EXCGAfliGE MESSAGE TO EXCHANGE *1
1* CALL : CALL SENDiEXCHANGE1E$LiD): II
If HISTORY : CiEATED AT 05.06.1983 *1
1**1
SEND$EXCHANGE: PROCEDJRE(E$L$D) PUB~IC:
DECLARE £LD PDINTtR:

CALL SENDGETEXCHANGE(ELD .• PUT$EXCHANGE$MESSAGE.FULL):
END:

PAGE :

PAGE

$EJECT
/**1
/* WAIT t::XCHANGE MESSilGE *1
/* */
1* PROCEDURE: WAIHEXCHANGE */
1* FUNCTION : G£T £XCGANGf MESSAGE FROM EXCHANGE *1
1* CALL : CALL WAIT$EXCHAi'iGE (E$L$\»: *'
1* HISTORY : CREATED AT 05.06.1983 II
I *****HHH**H*******HHHHH******HHHHH*H*****HH/

244 wAIT$£XCHANG£: PROCEDURE (E$L$D) ~uSLIC :
245 .; ... DECLARE ELD POINTER :

246 2 CALL SENDGET£XCHANGE(ELD .• GET$EXCnANGE$~ESSAGE.EMPTY):
247 2

24B 1
249 2

250 2
25i 2

$DECT
1***1
lu REMOVE INTERRUPT MASK OF A GIVEN LEVEL HI
1** HI
IH PROCEDURE: LEVEL$ON H/

1** FUNCTION : REXOVE INTERRUPT MASK OF A LEVEL **1
/** CALL : CALL FOX (LEVEL$ON. LEVEL} **1
1** HISTORY : CREATED 12.25.1933 **1
/** **1
/***/

LEVEL$ON: PROCEDURE (LEVEL) PUBLIC REENTRANT:
DECLARE LEVEL BYTE:

END:
OUTPUT (MASK$PORTl=INPUWiASK$PORTl AND NOT BITSiLEVEL):

PAGE it

A

PL/M-BO COMPl~ER

Zi2
253 .-, ...

254 2
,",er:
L.J.J 2

$EJECT
I ********H**itHH*****HH**HHHHH******H****HffHI
1** MASK INTERRuPTS OF A GIVEN LEVEL ftl
1** **1
If* PROCEDURE: LEVEL$OFF **1
/H FUNcrm~ : rr;ASK INTERRUPTS OF A GIVEN LEVEL HI
/f* CALL : CALL FOX(L£VEL$OFF.LEVEL) **/
In HISTORY : CREATED AT 12.25.1983 H!
/n HI
!H*************HH*****H**HHH***********fffHHflfHI

LEVEL$OFF: PROCEDURE (LEVEll PUBLIC REENTRANT ~
DECLARE LEVEL BYTE:

E.ND:
OUTPUT (MSK$PORn =INPUW1ASK$PORTi OR BITS (LEVC:U :

PAGE 1

PLiM-BO CO~PILER

25&
257
258

1
2
oj
L

$EJECT
/**/
1** ISSUE E~D OF INTERRUPT TO INTERRuPT DECODER **1
1** **1
1** PROCEDURE: END$INT HI
j** FUNCTION : iSSUE AND OF INTERRUPT T~ PIC [82591 **/
1** CALL : CALL FDX(END$INT.NIL) **1
/n HISTORY : CREATED AT 12.25.1983 HI
1** *fl
1**1*1

END$INT: PROCEDURE PUBLIC:
OUTPUT (PICftCONTROL$PORTl =EOI :

END~

PAGE 18

PUol1-BO CDNPL_£~

259

260 2
261 2

262 2
263 .'}

/..

264 3
265 3
26ti 4
267 4
~'tiB 4
269 4
270 3
271 2
272 2
273 2
274 .-,

i.

$EJ£CT

1**1
IH TIMER INTERRUPT SERVICE HI
In HI
1** PROCEDURE: TIMERiINTERRUPT **1
IH FUNCTION : SERVICE TO. TIMER INTERRUPTS HI
/n CALL : VIA TIMER INTERRUPT H/
1** HISTORY : CREATED AT 05.29.1983 H/

1**1

Tl~I£R$lNTERRUPT: PROCEDURE INTERriUPT 7 :

DECLARE D$T BASED DQ$HEAD TASK$DESCRIPTOR:
DECLARE T$D POINTER:

END:

IF DQ$HEAD () NIL THEN
DO:

DH.C=DH.C-l:
DO WiiILE W$T. C = 0) AND (DQ$HEAD () NIL):

END:
END:

CALL REJlIOVE$QUEUE W$T. L DQ$HEAD) !
CALL INSERhREADY$QiJEUEWQ$HEAD):
CALL REIYIOVaDEUW$QUEUE (DQ$HEADl!

CALL REi~OVE$READY$QLiEUE (C$P) : I*REMOVE CURRENT TASK*I
I*REINSSERT *1 CALL INSERT$READY$QUEUEIC$P):

CALL DrSPATCH:

I H********H******H****HHHHHHH*****HHHHUt un.Hi .. /
/************** END OF USER MODULE ****************************"I
I**H**H****H*******H***H********·H*************HHlfHHH/

275 END:

MODULE INFORMATION:

CODE AREA SIZE = 0850h 2128D
VARIABLE AREA SIZE :: 004EiH 72D
IY,AXIMUif; STACK SIZE = oooeh 12D
820 U NES READ
o PROGRAM ERROR(S)

END OF Pl..iJl1-80 COMPILATION

PAGE 1':

Ufli-1l0 CDMP 1 LER

ols-rr PL/M-BO V3.0 COMPILATION OF MODULE OBJECTDEFINITIONS
,~illiJECT MODULE RHiU£STED
~PIL£R INVOKED BY: PL~~O OBJECT WORKFILES(:FO:. :FO:) PRINT(:LP:} NOOBJECT

f*** /
1** MASTER THESIS CODE SECTION **
1** **
In THIS ~ODULE DEFINES ALL OF THE FOX OBJECTS ** IH H

fn MODULE NAMt: : OBJECT$DEFII~ITIONS **
In FILE NA~lE : OBJECT H

fn AUTHOR : SEDAT YILMAZER H

fn DATE : 5.12.1983 H

IH **
f***I

OBJECT$DEFINITIONS:
DO !

$NOLIST

15 1 DEC'lAR£ BITS (*) BYTE PUBLIC DATA IOli·/. 0211. 04H. OOH. 10H. 2OH. 40H. BOH) :

PAGE

PLIM-BO COrtlPIL£R

17 1

IB 2

19 r, ...
20 .,

'-

21 .'J
L

$EJECT
1111111*111111111111*11****1*11111****+111111*111111111

1** DISPATCH CPU BETWEEN TASKS HI
III *1/
11* PROCEDURE : DISPATCH *tl
Itt FUNCTION : GIVE THE CPU TO THE HIGHEST PRIORITY**I
1** READY TASK. WHICH IS BY DEFINITION H/
I H THE HEAD OF READY QUEUE If I
itt CALL : DISPATCH III

IHHISTORY :09.20.1983 HJ
11* 1*1

It •• ttt*tl****tll********.***t***t******t********.****I

DISPATCH: PROCEDURE PUBLIC :

DECLARE CURRENT$TASK BASED C$P TASK$DESCRIPTDR.
NEWiTASK BASED RQ$IifAD TASi{!liDESCRIPTOR:

CURRENT$TASK.SP=STACK$PTR:
STACK$PTR=NEw$TASK.SP:

END:

PAGE 2

PLii'l-BO COMPILER

$E]ECT
1**1
1* COMPARE TWO STRINGS *1
1* *f
1* PROCEDURE : CO~lPARE *f
1* FUNCTION : m~PARE TWO STRINGS *f
1* CALL : COMPARE(.Sl .. S2.LENGTH} *1
1* dISTORY : CREATED AT 05.14.1983 *1
1* *f

22 COMPARE: PROCEDURE(SPTR1.SPTR2.LNGTHi BOOLEAN PUBLIC REENTRANT:

23

24
'.r:
'.J
27
2&
29

", ...

2
3
~

oJ

2
2

DECLARE (SPTRi.5PTR2)
LNGTH
I

POINTER.
BYTE.
BYTE.

(51 BASED gPTRI) (l) BYTE.
(82 BASED 5PTR2) (11 BYTE:

DO I =0 TO LNGTIi-l ~

IF Si (IJ {} 52 (I) THEN RETURN FALSE =

END =

RETURN TRUE ~
END :

PAGE 3

$EJECT

1**1
1* SET PROCESS STATUS *1
J* *1
1* PROCEDURE : SET$STATUS *1
1* FUNCTION : SET THE STATUS OF THE CURRENT TASK *1
1* TO rNCOMI~INGSTATUS */
1* CALL : SfT$STATlJS(STATUS) *1
1* hISTORY : CREATED AT 05.14.1983 *1 Nt

*1

30 SEHSTATU5: PROCEDU,qE(T$D. STAT! PUBLIC REENTRANT:

31 2 DECLARE (STATE. STAT) BYTE.
HD POINTER .
liT BASED HiD TASK$DESCRIPTOR

32 2 SIATE=STAT AND 1:
33 oj

.I.. STAT=BITS(SHR(STAT.1)):
34 2
36 0' .i.

37 2

1F STATE THEN HiT. ST=IH. ST OR STAT
ELSE I$T. ST=IH. ST AND (NOT STAT):

END :

PAGE 4

$EJECT

1**1
1* CHECK PROCESSOR STATUS *1
1* *1
1ft PROCEDURE : CHECKiSTATUS *1
1* FUNCTION : CHECK PROCESS STATUS OF THE CURRENT *1
1* TASK *1
1* CALL : CHECK$STATUS(STATUSl *1
/* HISTORY : CREATED gT 05.14.1'383 *1
1* */
1***1********1

~B CHECKfSTATUS: PROCfDUREmp.STATl BYTE PUBLIC REENTRANT:

~9:2 DECLARE (STATL STAn BYTE .
T$P POINTER.
liT BASED TiP TASKiDESCRIPTOR

40 2 STATE=STAT A,"JD 1 :
41 .,

"'- STAT=iB1TS(SHK(STAT.1» AND HiT.8Tl 00:
42 '~.' IF STATE THEN RETuRN STAT: k

44 ., ELSE RETuRN NOT STAT: <-

45 .; END L

PAGE 5

pL/M-iIO COMP 1 L.Ei<

$UECT
IHHHfHHHHH****fHHHH*HHHHHHHHHHH*1
If SET EXCHANGE STATuS *1

1* *1
If PROCEDURE : SEhEXCHANGE *1
1* FUNCTION : SET THE STATUS OF THE EXCHANGE *1
If< TO Ii\COr'iMINGSTATUS *1
If CALL : SEHEXCrlANGE(EiP.STATUSl *1
1* HISTORV : CREATED AT 05.14.1983 *1
1* *1
/HHHHfH************HHH****HHH1HHH*HHH*HI

46 SEHCXCHANGE:. PROCEDURE (ap. STATUS) ~UBUC REENTRANT:
47 2 DECLARE E$P PTR.

STATUS BYTE.
EXCHfl,liGE BASED E$P EXCHANGE$DESCRIPTOR:

48 2 EXCHANGE. S;:STATUS:

49 2 END:

50

I ********If*************H**HH******HHHHlfHlfHHHI
1* CHECK EXCHANGE STATUS *1
1* *1
1* PROCEDURE : CHECk$EXCHANGE *1
1* FLNCTIDN : CHECK THE STATUS OF THE EXCHANGE *1
1* CALL : CHECK$EXCHANGE(E$P) *1
1* ii I STORY : CREATED AT 05.14.1983 *1
If. *1
i*********lf*************************f******************1
CHECK$EXCHANGE: PROC~DuRE(E$Pi BYTE PUBLIC REENTRk~T:

'51 :2 DECLARE E$P PTR.

I
I
l

l

52

EXCHANGE BASED EiP EXCHANGciDESCRIPTDR:

RETURN EXCHANGE.S:
END:

PAGE 6

1ii'l-BO COMPILER

5~

cc
JJ

r,
L

5& 2
57 2

5a .J
"-

5'3 c)

.l.

60 .j
L

61 2

$EJECT
1**·****1
/n INSERT A DESCRIPROR INTO ANY OF THE QUEUES HI
IH *~
1** PROCEDURE: INScRT$QUEUE **1
IH FUNCTION : INSERT A DESCRIPTOR IN TO A QUEUE HI
/** INPUTS : QUEuE HEADER AND THE DESCRIPTOR ADR HI
Ju OUTPUTS : DESCRIPTOR INS£RTTED TO THE QuEU~ HI
/** filM CALL : CALL INSC.RT$QUEUE (. QuEuEihEAD. Dl : H/
JH: HISTORY : CREATED AT 11.06.;983 HI
1** NOTICE : CURRENTLY ONLY SUSPEND QUEUE **1
IH
/n ARE SuPPORTED

EXChANBE QUEuE ·HI
HI

1*************Hli·HUU**HHlfHHfH**U**HUHHH**1

I~SERT$QUEuE: PROCEDuRE (Q$P. I$Pl PUBLIC REENTRANT:

DECLARE (Qw.
l$P

1* POINTER TO QUEUE DESCRIPTOR *1
J* POINTER TO INCO~lJllING DESCRIPTOR *1

) POINTER:
DECLARE Q$D BASED Q$P DESCRIPTOR: 1* QUEUE DESCRIPTOR *1
DLCLAR£ 1$0 BASE.D 1$;J DESCRIPTOH: 1* INCOI~M1NG DESCRIPTOR 1/

CALL SEHSTATUS (I lP. SUSPENDED) ~

l$D.L=Q$D.l..:
Q$D.L=I$P:

END lil<S£RHQUEUt:

PAGE 7

62

63 2

64 "
&5 ::

66 .,
.L

67 3
68 3
69 .-,

L

70 2
71 .)

72 3
73 3

74 ". i.

$EJECT

1***HHHHfHHHHHHHHHHHHHHHHHHHHlflfl

In REMOVE A DESCRIPI10fI FROM ANY OF THE QUEUES HI
IH

H/
1** PROCEDURE: REMOVEiQUEUE **1
1** FUNCTION : REJ~OVE A DESCRIPTOR FROM A QUEUE HI
in INPUTS : QUEuE HEADER AND THE DESCRIPTOR ADR HI

1** OUTPUTS : DESCRIPTOR RErr.uVEO TO THE QUEUE HI

In PLftl CALL : CAL.. REMOVE$QUEUE (. QUEUE$HEAD. D) ~ HI

In HlSTO.~Y : CREATED AT 11.06. 19B3 HI
In NOTICE : CURRENllY ONLY READY QUEUE. HI

1** SUSPEND QUEuE. **1
In EXCHANGE QUEUE. **1
In ARE SUPPORTED HI

I**H****/
REMDVE$QUEUE: PRDCEDURE{Q$P .. I$P) PUBLIC REENTRANT:

DECLARE (Q$P. It PIONTER TO QUEUE DESCRIPTOR *1
l$P 1* POINTER TO I~COMMING DESCTRIPTOR *1

) POINTER:
DECLARE Q$D BASED Q$P DESCR1PTOR: 1* QUflJE DESCRIPTOR 1/
DLeUHiE l$D lJi-lSEO HoP DEJ.iLfUPTUtI: 1* INCUi'IMlfiG [)t.SCili~rUR *1

DO WHILE (Q$P{)NIL) A~D (Q$D.L(}I$P):
Q$P=Q$D.L:

END:
IF Q$PO NIL THeN
DO:

Q$D.L=I$D. L:
CALL SET$STATUS (J $P.. NOTSUSPENDEDl :

END:

END REMOVE$QUEUE:

PAGE ,g

75

7& 2

77 oj
"-

7& 2

79 :2

$EJECT
1************Hlf***********H**********HHH**********1
1* INSERT INTO SYSTEM LINK *1
1* itl

1* PROCEDURE : INS£RT$SYSTEM$LINK *1
1* FUNCTION : lNSER

O

[INCOMI'11NG TASK OR EXCAHANGE *1
1* DESCRIPTOR INTO THE SYSTEM LINK *1
1* CALL : INSERHSYSTEM$UNK (. DESCRIPTOR) *1
1* HISTORY : CREATED AT 05.14.1983 *1
fir *i
1**1

INS£RHSYSTE/II$UNK: PROCEDURE(P) PUBLIC REENTRANT!

DECLARE P POINTER _
1$D BASED P

l$D.SL=Fl'iriEAD:
FUH£Al)=P:

END :

1* DESCRIPTOR POINTER *1
DEseRl filOR :

PAGE 9

$EJECT
1**/
1* REMOVE FROM SYSTEM LINK *1
1*

1 1 PROCEDLIRE : REMOVE$SYSTEM$LINK *1 It FliNCTION : REMOVE I~COMMING DESCRIPTOR *1
1-* FRO:ri THE SYSTEM LINK 'ttl
1* CALL : REj1JOVE$SYSTE~I$L1NK (. DESCRI PTOr<) *1 1* HISTORY : CREATED AT 05.14.1'383 *1 1*

*1

BO REMOVE$SY~lTEM$1..1NI\: PROCEDURE lI$P) PUBLI C REENT RANT:

B1

82 .-.
J.

84 .-,
<-

as :}

86 < u

97 4
B8 4
H9 .,

oJ

91 3
92 r, ..

DECLARE (I$P.P) POINTER.
liiD BASED
PiD BASED

I$P DESCRIPTOR.
P DESCRIPTOR:

IF Fl~HEAD = l$P THEN FL$HEAD=l$D. SL :
ELSE DO :

P=FLiHEAD:
DO wHILE (P$D. SL () P) AND (PiiD. SL () NIL i

P=PliD. SL :
END :
IF P()NIL THEN P$D.SL=I$D.SL:

eND :
END :

PAGE lCl

PL/JI1-BO CDMP lLER PAGE 11

$EJECT
I*************t**I
1* INSERT INTO READY QLiEUE *f
1* *f
It PROCEDURE : INSERT$READY$QUEUE *f
1* FUNCTION : INSE,iT INCOr~iI'jING TASK DESCRIPTOR *f
1* INTO THE SYSTEM READY TASK QUEUE *f
1* CALL : iNSERHR£ADY$QUEuE (. TASK$DESCRl PTOR) *1
1* HISTORY : CREATED AT 05.14.1983 *1
It *1

93 INSERHREADY$OUEU£: P@CEDURE/T$P) PUBUC REENTRANT:

94 2

95 2

'l& .,
L

'3i .-J ...
'38 3
'39

.,

..l

ilj(1 4

iOI 4
jl·j2 4
103 3
104 3
10j ;:,
10& 3
!07 2

DeCLARE (T$P. litINCOMMING TASK DESCRIPTOH POiNTER*f
I*DUII'j/liY TASK DESCRIPTOR £TEMP] POINTER *1
J* PREVIOUS TASK POINTER *1

D$P.
P$P

liDlNTER:

DECLARE IH BASED TtP TASI{$DC:SCRIPTOR.
D$T BASED DfiP TASK$DcSCRIPTOR.
PH BASED p$p TASK$l}ESCRIPTOR:

IF CHcD'$STATUS(T$P.NOTREADY) THEN
DO:

END:

D$P. P$P=RQ$HEAD: I*START AT THE BEGINING *1
l}O wHILE I$T.P {= DH.P: l*wHILE DUMMY P IS HIGHER *f

P$P=D$P:

END:
I$T, L=P$T. L: If ADJUST FORFARD LINK *1
PH.L=T$P:
CALL SET$STATUS(T$P.READY):

END:

r~Lm-BO COMPILER

t

! 108
I
r

I
i 109 .-,
!

....

[

!110 . -,
1.

l
illl 2
il12 2
fin 3
fli4 'I ..,
fU5 4
tUb
I 4
[117 3
• 1118 J
1119 4
!liO 4
t121 4
1122 3
f123 '·i

'-

$EJECT

1**1
1* REMOVE FROM READY QuEuE *1
1*
1ft PROCEDURE : iqEltiOVE$READY$QUEUE
1* FLNCTION : Rt,~OV£ INCOI~MING TASK DESCRIPTOR
1* PROM THE SYSTEM READY TASi< QuEUE
/* CALL : R£'~OVE$READY$QUEUE (. TASK $DESCRI PTORi
1* hISTORY : CREATED AT 05.14.1983
1*

REMOVE$RcADY$QUEUE: P~OCEDURE(T$P) PUBLIC :

DECLARE (T$P. I*INCOMMING TASK DESCRIPTOR POINTER*/
D$P I*DiJlliMY TASK DESCRIPTOR (TEMP)*I
) POINTER:

DECLARE I$T BASED HP TASK$DESCRIPTOR .
D$T BASED D$P TASI{$DESCRIPTOR :

IF CHfCh$STATUS(T$P.READY) THEN
DO :

END:

1M=. R()$HEAD:
DO WHILE D$P () NIL AND DH. L () T$P~

. D$p=Dn. L:
END~

IF DiP () NIL THEN
DO:

D$Ll:::I $T. L:
CALL SET$STATUS(T$P.NOTREADY):

END:

E.ND fIEMOVE$REnDY$QUEUE:

*1
*1
*1
*1
*1
'AI

*1

PAGE 12

ill~-BO COMPILER PA6£ 13

$EJECT

f**************************************.***.*.**.*******I
1* INSERT INTO DELAY QUEUE *1
f* *1 1* PROCEDURE : INSERT$DELAY$QUEUE .1 1* FUNCTION : INSERT INCOMMING TASK DESCRIPTOR *1 I. INTO THE SYSTEM DELAYED TASK QUEUE *1 f* CALL : INSERHD£LAY$QUEU((. TASK$DfSCRIPTOR} *1 1* HISTORY : CREATED AT 05.15.1983 */ 1* ¥ol
1***I

124 INSERHDELAY$QUEUE: PROCEDURE (T$D) PUBLIC: .

125 2 DECLARE (T$D. I*INCOMMING TASK DESCRIPTOR *1
PiD. I*PREVIOUS TASK DESCRIPTOR *1

126 .") ..
127 .-,

L

128 -r ...,
, ;29 3
, 130 3

131 4
132 4
133 4

;134 4
.135 3
137 .,-

....

139 4
140 4
141 4
142 3
'143 4
·144 4

145 4
146 3
14) 3
.148 .,

....
149 2

N$D I*NEXT TASK DESCRIPTOR *1
) POINTER.

TOTAL INTEGER.

liT BASED TiD TASK$DESCRIPTOR _
PiT BASED P$D TASK$DESCRIPTOR .
N$r BASED N$D TASK$DESCRIPTOR :

IF CHECK$STATUSmD.NOTDELAYED) THEN
DO :

END:

T01'AL=O:
N$D. P$D=DQ$HEAD : .
DO WHILE (TOTAL (I$T.C) AND INiO (} NIL }:

TDTAL=TOTAL+N$T.C:
P$O=N$O:
N$D=Nn.D:

END:

IF NiD () NIL THEN TOTAL=TOTAL-N$T.C:
IF P$D ;:: DQ$HEAD
THEN DO:

IH.D=DQ$HEAD:
DQ$rfAD=T$D:

END:
ELSE DO :

l$T.D=P$T.D:
PH. D=I$T. D:

END:
I$T.C=I$T.C-TOTAL :
CALL StT$STATUS(T$D.DELAYED):

END INSERT$DELAY$QUfUE:

$EJECT
J*** .. I
1* REMOVE FROM DELAY QUEUE *1
1* *1
1* PROCEDURE : REMOV£$D£lAY$QUEUE *1
1* FUNCTION : REMOVE INCO~~ING TASK DESCRIPTOR *1
1* FROI~ THE SY5TEr~ DELAYED TASK QUEUE *1
1* CALL : REMOVE$DELAY$QUEU[I. TASKiD£SCRIPTORJ *1
1* HISTORY : CREATED AT 05.15.1983 *1
1* *1
1***1

150 REMOVE$DELAY$QUEUf: PROCEDUREmDJ PUBL1C !

151 2 DECLARE mD. I*INCOMMING TASK DESCRIPTOR *1

152 2
153 -j ..
154 3

156 4
157 4
15B 4
159 4
160 3
161 4
162 4
163 5
164 5
165 II
167 4
1GB 4
169 4
170 4
171 3
172 3
173 2

P$D I*PREVlOUS TASK DESCRIPTOR *J
) POINTER.

1$T BASED T$D TASK$DESCRIPTOR .
PH BASED MD TASI~$DESCRIPTOR !

IF CHECK$STATUS(T$D.DELAYED) THEN
DO:

IF HD=DQ$HEAD
THEN DO :

DQ$HEAD=I$T.D :
P1iD=DQ$HEAD :
P$T.C=P$T.C+I$T.C:

END :

END:

ELSE DO :

END:

P$D=DQ$liEAD :
DO WHILE (PH.D () HDl AND (PH.D 0 NIL)!

P$D=P$T.D :
END:
IF P$D ::0 NIL THEN RETUflN !

P$T.D=I$T.D:
P$D=P$T.D:
P$T.C=P$T.C+IH.C:

CALL S£T$STATusmD. NOHDELAYEDl:

END REMOVEiDELAY$QUEUE:

I***i

174 1 END:

CODE AREA SIZE = 055BH i36BD
VARIABLE AREA SIZE = 0020H 32D
MAXIMUM STACK SIlE :: 0010H lbD
695 UtliES READ
o PROGRAM ERROR(S)

&in OF PL/M-BO COMPILATION

PAGE 14

APPENDIX C SAMPLE APPLICATION

Ifl UV loI''''nr.a. n

I~IS-II PLiM-BO V3.0 COMPILATION OF MODULE INITIALIZATION
~M£CT /liODULE PLACED IN :Fl :THESIS. OBJ
~mL£R INVOKED BY: P :Fl:THESIS.EXP

1**1
In SYSTEM INITIALIZATION HI

1** *tl
1** PROCEDURE : INITSK **1
Iu FUNCTlON : INITIALIZE THE SAfllPLE SYSTEM HI
1** AUTHOR : SEDAT YILMAZER **1
1**u*'IfHUU******JH**HHHH***UHHHHHHHHHHI

, 1 INITIALIZATION: DO:

$NOLIST
14 FOX: PROCEDURE(GAT£$CODE.DESCRIPTOR$ADH) EXTERNAL:
15 2 DECLARE DESCRIPTOR$ADR ADDRESS:
16 2 DECUiRE GATE$CODE BYTE!
17 2 END:

11-------- DEFINE TASK STACK POINTERS -----------*1

lB DECLARE (DEBUG$STACK.CI$STACK.CO$STACK) (40) BYTE PUBLIC:

/*-------- DEFINE TASK DESCRIPTORS --------------*1

19 1 DECLARE WEBUG$TASK$DESCRIPTOR. If: FOR DEBUGGER TASK *1
CIHASK$DESCRIPTOil. 1* FOR CONSOLE INPUT TASK *1
CO!HASK!pDESCRIPTOR 1* FOR CONSOLE OUTPUT TASK *1

) TASK$DESCRIPTOR:

20 DECLARE C$P ADDRESS EXTERNAL:

21 DEBUG: PROCEDURE EXTERNAL:
22 2 END:

23 D~CLARE DEBUGSTASK$DfSCRIPTOR STATIC$TASKiDfSCRIPTOR

24 1

25 1

DATAi.DEfJUG$TASK$DESCRIPTOft 1* POINTER TO ACTUAL TASK DESCRIPTOR *1
'DEBUG' .
10 .
• DEBUG.
NIL

) :

DECLARE CISTASK$DESCRIPTOR
DATA(.Cl~TASK$DESCRIPTQR.

, 'CITASK'.
1l.
• CONSOLE$INPUHTASK.
NIL

l:

DECLARE CO$S'iiTASK'iiDESCRIPTOR
DATA(.CO$iASK$DESCRIPTOR.

1* NAME OF THE TASK
1* DEBUGER TAS~ PRIORITY
1* ADDRESS OF THE TASK START *1
1* EXCEPTlON HA~DLER IS NOT AVAILABLE./

STATIC$TASK$DESCRIPTOR
1* POIWER TO ACTUAL TASK DESCRIPTOR *1
1* NAME OF THE TASK *1
1* C1 TASK PRIORITY *1
1* ADDRESS OF THE TASK START *1
/* EXCEPTION HANDLER IS ~OT AVAILABLE*I

STATIC$TA&~$DESCRIPTOR

1* POINTER TO ACTUAL TASK DESCRIPTOi~ *1

PAGE

\ 26

'COTASK' .
09.
.CONSOLE$OUTPUT"
NIL

DECLARE £OM
T£RMINAL$OATA$PORT$ADDRESS
CONSOi..E$INPIJT$EVENHID
CONINT

1* NAME OF THE TASK *1
1* CO TASK PRIORITY *1
1* ADDRESS OF THE TASK START *1
1* EXCEPTION HANDLER IS NOT AVAILABLE*I

LITERALLY
LITERALLY
LITERALLY
LITERALLY

'000' .
'OCCH' •
'00' .
'01' :

27 DECLARE CO$EXCHANGE$DESCIH PTDR EXCHANGE$DESCRI PTOR:

. 28 DECLARE CI$EXCHANGE$DESCRIPTOR EXCHANGE$DESCRIPTOR:

29 DECLARE (Cl$INTERRUPT$DESCRIPTOR. 1* FOR CONSOLE INPUT INTERRUPTS *1
CO$INTERRUPT$DESCRIPTOR 1* FOR CONSULE OUTPUT INTERflUPTS*1

) INTERRUPT$DESCRIPTOR:

. 30 DECLARE CaS$INTERRUPHDESCRIPTOR STATIC$INTERRUPT$DESCRIPTOR
DATA(.CI$iNTERRUPT$DESCRIPTOR. 1* LINK TO INTERRUPT DESCRIPTOR *1

I CHINT' .
EXCHlil'JGE$TYPE.
NIL..
NIL.

1* NAME OF THE INTERRUPT *1
1* TYPE OF THE INTt:RRUPT SERVICUJ
1* SINCE NOT ~1 FAST TYPE INTERRUPlK-J
1* ~O EXCEPTION HANDLER *1
1* INTERRUPT LEVEL *1

31 1 DECLARE COSrNTERRUPHDESCRIPTOR STATlCiINTERRUPT$DESCRIPTOR
DATAL CO'fl;\rfERRUPHDEscrHPTOR" 1* LINK TO INTERRUPT DESCRI PTOR *1

I coma' . 1* NANf OF THE INTERRUPT *1
fXChHNGE$TYPf. If: TYPE OF THE lNTERRUPT SERVICE*I
Nt... Ii SINCE NOT A FAST TYPE H~TERRuPT*1

Nil. If: NO EXCEPTION HANDLER *1
2 1* INTERRUPT LeVEL il

l:

32 1 DECLARE COSEXCkANGE$DESCRIPTOR STATIC$EXCHANGE$DESCRIPTOR
DATA(.CO$EXCHANGEiDESCRIPTOR. 'CO~DUT'.1.80):

33 1 DECLARE CISEXCHANGC$DESCRIPTOR STATlC$EXCHAI~GE$DESCRIPTOR
DATA (. CUEXCHANGE$J)ESCiUPTOR. I CONI NP' . 1. 8(1) :

~I, 1
~ DECLARE X$TASK$LINK$DESCRIPTOR TASK$LINK$DESCRIPTOR:

3S 1 DECLARE I BYTE:

~ 1 INlTA5K: PROCEDURE PuBLIC:

'37 2
J8 2

CALL FOX (CRfATE$EXCHANGE .• CliS$EXCHANGE$DESCRIPTOR):
CALL FOX (CREATEiEXCHANGE.. COiSiEXCHANGE$DESCRIPTOR):

PAGE

2
2
2

2
2

CALL FOX
CiU mx
CALL FOX

CALL FOX
CALL FOX

(CREATE$TASK .• DEBUG$S$TASK$DESCRIPTO~):
(CREATE$TASK .• CI$S$TASK$DESCRIPTORI:
(CREATEiTASK .• COSTASK$DESCRIPTOR):

(CRUI1HINTERRUPT. • ClSlNTERRUPHDESCRI PTORI !

(CREATE$INTERRJPT .• CO$S$INTERRUPT$DESCRIPTOR):

2 CALL MOVE (. (I CITASK I) .• XfiTASKUNKDESCRIPTOR. NAME. &} :

2 CALL FOX (LINK$TASK .• X$TASK$lINK$DESCRIPTOR):
;; CALL FOX (RESLJ14£"XffASK$UNKiDESCRIPTORl:

2 CALL MOVE (, ('COTASK') .• X$TASK$LINK$DESCRIPTOR.NAME.6):
;; CALL FOX (LINKHASK .• XHASK$LINK$DESCRIPTOR) :
2 CALL FOX (RESUIr,E.. X$TASK$UNI{$DESCRIPTORI:

2 CALL MOVE (. (' DEBUG ') .• XUASKUNKDESCRIPTOR. NAIIiE. 61 :
2 CALL FOX (LINK$TASK .• X$TASK$LINK$DESCRIPTORi:
2 CALL FOX. (RfSUME .• X$TASK$lINK$DESCRIPTORl~

2 CALL FOX (SUSPEND.C$P):
2 END:

2
2

:2

f***t***1
fH CONSOLE INPUT TASK BODY H/
In HI
it* PROCEDURE: CONSOLE$INPUT$TASK **/
1** FUNCTION : COLLECT CHARACTERS FROM THE CONSOLE **/
In DEVICE AND AT THE AND SEND TO THE HI
IH DEBUGGER TASK FOR FURTHER PROCESSING HI
/H INPUTS : NONe: Hf
/H OUTPUTS : NONE H/

/H*********HHHH****H**************HHH***Ht**H/

CONSOLE$lNPLJT$TASK: PROCEDURE PUBLIC:

DECLARE
DECLARE

DECLARE
DECLARE

CONOUHEXCHANGE$L!N:<· EXCHANGE$LINi<$DESCRIPTOR:
CHR$BUF(2) BYTE:

CI$EXCiiANGEiUNI{ EXCHANGE$L!NK$DESCRI PTOR!
CHBLiF !SO} BYTE:

2 CALL MOVE(b .• ('CONOUT' }.CONOUT$EXCrlANGEiLINi<.NAME(O)}:
2 CONOUH£XCHANGE$UNK. ~l=. CHiiiBuF!l) : 1* IIIfSSAG£ ADDRESS *1
2 D1R$BUF<O)=1:
2 CALL FOX (LINK$EXCHANGE .• CONOUT$EXCHANGE$LINK):
2 CALL ~~VE(b .• ('CONINP') .• CliEXCHANGEiLINK.NAME(O}):
2 CALL FOX (LINK$EXCHANGE .• CliEXCHANG£iLINK):
2 CI$EXCHANGEiLINK.M=.CI$BUF:
2 CI$BUF(O)=O: 1* USE~AS CHARACTER COUNT *1
2 DO WHILE i:
3 CALL FOX (EVENT.CONSOLEi!NPUT$EVENT$lD):
3 CkRiBuF(l).CliBUF(CliBUF(O))=INPUT(TERMINAL$DATA$PORTiADDRESS}:
3 CALL FOX ISEND .• CONOUT$£XCHANGE$LINK}:
3 IF CHR$BUF(l)=EOM THEN

-rnLK:. u

2
2
2

2
2

2
r; ..
2

2
2
2

2
2
.'.
.L

.',

.I-

:2

:2
2

:2
....
£.

CALL FOX (CREATE$TASK .• DEBUG$S$TASK$DESCRIPTORl:
(iU fOX (CREATE$TASK .• Cl$S$1ASK$DESCRlPTORl:
CALL FOX (CREATEHASK.. COSTASK$DESCRIPTOR) :

CALL FOX (CRfAT£$I NTERRuPT. • C1 'liS$I NTERRUPHDfSCRI PTORI !
CALL FOX (CREATE'liINTERRUPT .• CO'liS$INTERRUPT$DESCRIPTOR):

CALL MOVE t. ('CITASK'l,.X$TA5K$UNl($DESCRIPTOR.NAME.6):
CALL FOX (LINK$TASK,.X$TASl($LINK$DESCRIPTOR):
CALL fOX (RESUM£.. XffASK$UNK'liDESCRIPTORl:

CALL MOVE (. ('COTASK') .• X$TASK$LINK$DESCRIPTOR.NAME.6):
CALL fOX (UNi(ffASK .• X$TASK$LINK$DESC~I PTOHl :
CALL FOX (RESUitoE.. X$TASK'liLINK'liDESCRIPTORl:

CALL PiOVE (. (' DEBUG ') •• X$TASK$UNK$DESCfUPTOR. NAlti£. 6) :
CALL FOX (LINK'liTASK .• X$TASl($LINK$DESCRIPTORi:
CALL FOX. (~ESUME,.X$TASl($lINK$DESC~IPTOR)=

CALL FOX (SUSPEND.C$P) :
END:

J******************.************************************/
/** CONSOLE INPUT TASK BODY H:/
iff H/
1** PROCEDURE: CONSOLE$INPUT$TASK ttJ

1** FUNCTION : COLLECT CHARACTERS FROM THE CONSOLE **1
I*l DEVICE AND AT THE AND SEND TO THE t*1
In DEBUGGER TASK FOR FURTHER PROCESSING H/
1** INPUTS : NONE HI
In OUTPUTS : NONE H/

/ UU*uuHHUHnl:***u****************************** J

CONSOLE$INPUT$TASK: PROCEDURE PUBLIC:

DECLARE
DECLARE

DECLARE
DECLARE

CONOUHEXCHANGE$UN:{· EXCHANGE$LINK$DESCRI PTOR:
CHR$BUF(2) BYTE:

CI $EXCHANGE$LINi~ EXCHANGE$L!NK$DESCRI PTOR:
Cl$BLlF(BO) BYTE:

:2 CALL MOVE(b .• ('CONOUT').CONOUT$EXCrlANGEiLINK.NANE(O):
2 CONOUT$£XCHANGE$L1NK. M=. CHR$BuF ll) : I * MESSAGE ADDRESS */
2 CI,R$BUFlO)==i:
2 CALL FOX (LINK$fXCHANGE .• CONOUT$EXCHANGE$LINK):
2 CALL ~~VE(b .• ('CONINP') .. Cl$EXCHANGE$LIN~.NAMc(O):
2 CALL FOX (LINK$EXCHANGE,.CI$£XCHANGE$LINK):
2 CI$EXCHANGE$LINK.M~.CI$BUF:

2 CI$BUF(O)=O: 1* USE~AS CHARACTER COUNT */
I 2 DO WHILE 1:
I 3 CA~L FOX (EVENT. W%OLE$INPUT$£VENT$XO)!
, 3 CliRiBLiF(i). CI$BLiF (CI$BUF (O)) ~INPUT nfRMINAL$DATA$PORT$ADDRESS):

3 CALL FOX (SEND .• CONOUT$£XCHANGE$LINK):
, 3 IF CHR$BUF(1)~EOM THEN

'rn~ \oJ

Pi./M-80 COMPILER

n 3 00:
74 4 CALL FOX (SfND .• Cl$EXCH~~GE$LlNK): 1* SENT TO DEBUGGER *1
75 4 CI$BUF(O)=O! 1* AFTER SEND OPERATION BUFFER CAN BE MODIFIED *1
76 4 END:
77 3 ELSE CI$BUF(O)=CI$BUF(O)+l!
78 3 END:
79 2 END:

1***1
I" CONSOLE OUTPUT TASK BODY H/
IH *~

1** PROCEDuRE 1 CONSOLEiOUTPUT$TASK **/
/H FUNCTiON : SENDS CHARACTERS TO THE CONSOLE HI
/H DEVICE • HI
IH INPUTS : NONE HI
in OuTPUTS : NONE HI

1*************************H***********************f**H/

80 CONSOLE$OUTPUT: PROCEDURE PUBLIC:

81 2
82 2

83 2
84 2
85 'I

L

B6 2
87 3
BS 3
89 3
90 4
91 4
92 4
93 3
94 2

DECLARE
DECLARE

CO$EXCHAN8E$LINK EXCHANGE$LINK$DESCRIPTOR:
CO$BUF(80) BYTE:

END~

CALL MOVE(b .• ('CDNOUT') .• ODiEXCHANGE$LINK.NAME(O):
CALL FOX (LINKiEXCHANGE .• CO$£XCHANGE$LINK):
CO$EXCHANGf$UNi\. 1'1=. CO$BUF:

DO WHILE 1:

END:

CALL FOX (WAIT •• CO$EXCHANGE$UN10:
IF CO$EXCHANGE$LINK.S=SUCCESS THEN
DO I =0 TO OD$BUF (0) :

CALL FOX (EVENT.CONINT)~

OmpUT nERMINAL$DATA$PORWlDDRfSS) =CO$fJLJF II + 1) :

END:

95 END! 1* OF DEMOSl"RATlDN MODULE *1

~,ODULE INFORMATION:

CODE AREA SIZE = 0217H 535D
VARIABLE AREA SIZE = 020EH 526D
MAXl~UM STACK SIZE = OO{I:LH 2D
463 LINES READ
(I iiROGRA,'l ERROR (S)

&in OF PL/M-80 COMPILATION

PAGE:

REFERENCES

Brinch. Hansen. Operating System Principles.

Henry. Katzan. Operating Systems.

P(21; e I~, Wag l'iE! I'" Introduction to System Programming.

Design of Real Time Applications.

Dionysios, C. Tsichritizis. Operating System Pri~ciples.

lylTCX I..ISf.?r quidEI.

Intel. PL/M Programmer User Manual.

Intel. SBC 80/20 and SBC 80/20-4 SIngle Board Computers
Hardware Reference Manual.

IntE'l. Intellec Series II Microcomputer Development System

Hardware Interface Manual.

Int02l" Intellec Series II ril i c \' 0 c 0 I¥I put e J"

System Hardware Reference Manual.

I ntt:.~ 1. PL/M-80 Programming Manual.

ISIS-II PL/M Compiler Operator's Manual.

I nt e 1: Component Data Catalog.

Digital Research. MP/M-II System programmer guide.

	KTEZ173001
	KTEZ173002
	KTEZ173003
	KTEZ173004
	KTEZ173005
	KTEZ173006
	KTEZ173007
	KTEZ173008
	KTEZ173009
	KTEZ174001
	KTEZ174002
	KTEZ174003
	KTEZ174004
	KTEZ174005
	KTEZ174006
	KTEZ174007
	KTEZ174008
	KTEZ174009
	KTEZ174010
	KTEZ174011
	KTEZ174012
	KTEZ174013
	KTEZ174014
	KTEZ174015
	KTEZ174016
	KTEZ174017
	KTEZ174018
	KTEZ174019
	KTEZ174020
	KTEZ174021
	KTEZ174022.01
	KTEZ174022
	KTEZ174023
	KTEZ174024
	KTEZ174025
	KTEZ174026
	KTEZ174027
	KTEZ174028
	KTEZ174029
	KTEZ174030
	KTEZ174031
	KTEZ174032
	KTEZ174033
	KTEZ174034
	KTEZ174035
	KTEZ174036
	KTEZ174037
	KTEZ174038
	KTEZ174039
	KTEZ174040
	KTEZ174041
	KTEZ174042
	KTEZ174043
	KTEZ174044
	KTEZ174045
	KTEZ174046
	KTEZ174047
	KTEZ174048
	KTEZ174049
	KTEZ174050
	KTEZ174051
	KTEZ174052
	KTEZ174053
	KTEZ174054
	KTEZ174055
	KTEZ174056
	KTEZ174057
	KTEZ174058
	KTEZ174059
	KTEZ174060
	KTEZ174061
	KTEZ174062
	KTEZ174063
	KTEZ174064
	KTEZ174065
	KTEZ174066
	KTEZ174067
	KTEZ174068
	KTEZ174069
	KTEZ174070
	KTEZ174071
	KTEZ174072
	KTEZ174073
	KTEZ174074
	KTEZ174075
	KTEZ174076
	KTEZ174077
	KTEZ174078
	KTEZ174079
	KTEZ174080
	KTEZ174081
	KTEZ174082
	KTEZ174083
	KTEZ174084
	KTEZ174085
	KTEZ174086
	KTEZ174087
	KTEZ174088
	KTEZ174089
	KTEZ174090
	KTEZ174091
	KTEZ174092
	KTEZ174093
	KTEZ174094
	KTEZ174095
	KTEZ174096
	KTEZ174097
	KTEZ174098
	KTEZ174099
	KTEZ174100
	KTEZ174101
	KTEZ174102
	KTEZ174103
	KTEZ174104
	KTEZ174105
	KTEZ174106
	KTEZ174107
	KTEZ174108
	KTEZ174109
	KTEZ174110
	KTEZ174111
	KTEZ174112
	KTEZ174113
	KTEZ174114
	KTEZ174115
	KTEZ174116
	KTEZ174117
	KTEZ174118
	KTEZ174119
	KTEZ174120
	KTEZ174121
	KTEZ174122
	KTEZ174123
	KTEZ174124
	KTEZ174125
	KTEZ174126
	KTEZ174127
	KTEZ174128
	KTEZ174129
	KTEZ174130
	KTEZ174131
	KTEZ174132
	KTEZ174133
	KTEZ174134
	KTEZ174135
	KTEZ174136
	KTEZ174137
	KTEZ174138
	KTEZ174139
	KTEZ174140
	KTEZ174141
	KTEZ174142
	KTEZ174143
	KTEZ174144
	KTEZ174145
	KTEZ174146
	KTEZ174147
	KTEZ174148
	KTEZ174149
	KTEZ174150
	KTEZ174151
	KTEZ174152

