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ABSTRACT

3D HUMAN POSE ESTIMATION FROM MULTI-VIEW

RGB IMAGES

Recovery of a 3D human pose from cameras has been the subject of intensive

research in the last decade. Algorithms that can estimate the 3D pose from a single

image have been developed. At the same time, many camera environments have an

array of cameras. In this thesis, after aligning the poses obtained from single-view im-

ages using Procrustes Analysis, median filtering is utilized to eliminate outliers to find

final reconstructed 3D body joint coordinates. Experiments performed on the CMU

Panoptic, MPI INF 3DHP, and Human3.6M datasets demonstrate that the proposed

system achieves accurate 3D body joint reconstructions. Additionally, we observe that

camera selection is useful to decrease the system complexity while attaining the same

level of reconstruction performance. We also derive that dynamic camera selection has

a more significant impact on reconstruction accuracy as against static camera selection.
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ÖZET

ÇOK AÇILI GÖRÜNTÜLERDEN 3 BOYUTLU İNSAN

POZU ÇIKARIMI

Son 10 yılda, görüntülerden 3 boyutlu insan pozu çıkarımı yoğun araştırma konu-

larından biri. Tek bir görüntüden 3 boyutlu poz çıkaran algoritmalar geliştirildiler.

Bununla beraber, çok fazla kameranın olduğu kurulumlar da mevcut. Bu tezde, Pro-

crustes Analiz tekniğini kullanarak tek görüntüden elde edilmiş pozları hizaladıktan

sonra aykırı değerlerden kurtulup nihai 3 boyutlu pozun kritik noktalarının kordinat-

larını bulabilmek için medyan filtreleme kullanacağız. CMU Panoptic, MPI INF 3DHP

ve Human3.6M verisetlerinde yaptığımız deneyler önerdiğimiz sistemin insan bedenin-

deki kritik noktaları birleştirmesini hassas bir şekilde başarıyor. Ayrıca, kamera seçimi-

nin, birleştirme performansını koruyarak sistem karmaşıklığını düşürmede faydalı oldu-

ğunu gözlemledik. Dinamik kamera seçiminin statik kamera seçime kıyasla birleştirme

başarımı üzerinde belirgin bir etkisi olduğununa da ulaştık.
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1. INTRODUCTION

The human communication system with each other and the environment is very

complicated. Body pose involves much information about behavior, willing, and our

current activity. Hence, the developed methods about body pose estimation can be

employed in many daily applications.

Practical applications of human pose information are excessive. For example,

an autonomous car can predict the intention of pedestrians by analyzing their body.

Besides, older people or people with disabilities need assistance in their daily tasks and

routines. Robots can utilize the body pose to fulfill the need of assistance.

Estimating a person’s pose in 3D is the problem that applies computer vision

techniques to obtain the form of the human body from a given single image or a se-

quence of images. This problem has recently received considerable attention from the

scientific community. The main reasons for this trend are the growing new areas of

applications which are driven by the latest technological advances. Although recent ap-

proaches and the advent of deep learning in computer vision have presented remarkable

results, 3D pose estimation remains a commonly unsolved issue.

Reconstruction from monocular RGB image is excessively more challenging since

strong self-occlusions and the inherent depth ambiguity cause a very ill-posed recon-

struction problem. Deep learning techniques contribute to the performance of current

state-of-art solutions to more acceptable levels. Despite all issues and the inherent

difficulty of the problem, upcoming techniques and observations can help to present

better results in benchmarks.

1.1. Key Contributions

In this thesis, we utilize a multi-view camera environment to obtain accurate 3D

human poses. First, we simultaneously recover 3D poses from each image coming from
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different views. For this purpose, we make use of the state-of-the-art HMR method [7]

as a single-view 3D human pose estimator. The HMR method is chosen because it can

recover human pose from in-the-wild images and has very competitive performance in

standard benchmarks like the Human3.6M protocol I-II [1]. After collecting 3D poses

from each image frame, we combine 3D pose information from multiple cameras using

the Procrustes Analysis.

The contributions of this thesis can be listed as follows:

• Procrustes Analysis based 3D pose reconstruction: We propose a statistical shape

alignment based reconstruction method for human pose estimation. In this

method, predictions coming from a multi-view environment are aligned to achieve

more accuracy in a pose.

• Camera Selection: We propose a naive approach to select camera locations to

achieve better accuracy than random selection. We also explain the effect of

purposedly placing cameras on the accuracy of pose estimation.

• Dynamic Camera Selection: We figure out how much improvement can be ob-

tained in the scenario that camera selection is made frame by frame. We also

propose body-orientation based dynamic camera selection. However, this method

does not contribute to overall reconstruction accuracy as we expect.

Overall, we propose Procrustes-Analysis based 3D human pose estimation method,

which combines the poses obtained from a multi-view setup to achieve more accuracy.

Procrustes Analysis uses the multi-view information, which is more robust to the chal-

lenges of 3D pose estimation.

1.2. Thesis Outline

First, Chapter 2 presents a literature survey of the existing methods, models, and

datasets to provide a summary of current and previous studies in the context of our

research.



3

In Chapter 3, we broadly explain the datasets used in this thesis. We also intro-

duce our preprocessing algorithm to handle different datasets.

Then, we explain our key contributions and their performance in the experiments

in Chapter 4 and Chapter 5, respectively. Specifically, in Chapter 4, we propose our

technique that reconstructs 3D human pose from multi-view images.

In Chapter 5, experimental scenarios, performance analysis of our method are

presented. We also compare the performance of our approach with current and previous

studies in the literature.

Lastly, in Chapter 6, we resume our contributions and review the results of the

proposed method in the thesis. Finally, we conclude by proposing future research

directions.
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2. RELATED WORK

In this chapter, we summarize a literature survey of the existing methods, models,

and datasets to provide a summary of current and previous studies in the context

of our research. First, we briefly introduce the 2D/3D pose datasets. Then, the

human body representation models are discussed by briefly describing their distinctive

features. Lastly, we look at single-view and multi-view pose estimation approaches in

the literature.

2.1. Human Body Pose Datasets

2.1.1. Human3.6M [1]

Human3.6M is a popular motion capture dataset and has well-defined 3D pose

benchmarks. There are 3.6 million poses and corresponding images. Six male and five

female actors perform 17 different scenarios (walking, discussion, eating . . . ) in a multi-

view camera environment. There are four calibrated high-resolution video cameras in

the setup.

As we see in Figure 2.1, the cloths on actors are regular, opposing to special

motion capture suits, to be more realistic. Ionescu et al. [1] utilize seven subjects

(three females and four males) as the training and validation set, and four subjects

(two males and two females) for the testing set.

3D pose annotations are skeleton-model based. The location 19 keypoints of the

human body are annotated in 3D space. Annotations are measured in meter.

2.1.2. MPI INF 3DHP [2]

Mehta et al. [2] propose this dataset captured in multi-view environment. The

authors make use of a commercial markerless motion capture tool [8] to obtain ground
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Figure 2.1. Sample images from the Human3.6M dataset, expressing the variation in

subjects, poses and viewing angles [1].

truths. The background is chosen as green to augmentation and segmentation issues.

There are eight actors (four males and four females). The actors perform eight activity

sets involving complex poses. There are 14 high definition cameras from a wide range

of viewpoints and different elevations. As the authors report, there are more than 1.3

million frames captured with 3D skeleton-based annotations. There exist training and

test sets separately.

Figure 2.2. Sample images from test set of the MPI INF 3DHP dataset.
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2.1.3. CMU Panoptic [3]

The CMU Panoptic dataset is one of the richest multi-view cameras environment

in literature for human pose problems. There are 31 HD cameras and 480 VGA cameras

in the studio. The CMU Panoptic is publicly available with rich annotations. There are

3D annotations for body, hand, and face. The dataset consists of video sets involving a

single actor and multiple actors. In this thesis, we only use the single actor video sets

with 3D body landmark annotations. 3D annotations are in a skeleton-based form.

There are also Kinect-based annotations, but in this thesis, we do not make use of

them. ‘range of motion’ subset is suitable for 3D human pose estimation since there

is a single actor in the environment with 3D body annotations. There is no given 2D

annotation in the dataset, but 2D information is obtainable in the existence of 3D

annotations and camera calibration parameters.

Figure 2.3. The CMU Panoptic motion capturing environment [4].

2.1.4. Datasets with 2D annotations

The MPII Human Pose dataset [9] has 25K images containing 40K people with

2D body joint annotations. There is no 3D information about human keypoints. The

images are gathered from a large number of daily activities. Each image is obtained

from a Youtube video.
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Figure 2.4. Sample images of some daily human activities in MPII dataset.

The COCO dataset [10] is large-scale in terms of annotations and images. There

are more than 330K images and 250K people with 2D joint annotations.

Figure 2.5. Sample images with 2D annotations on the COCO dataset.

2.2. Human Body Representation Model

2.2.1. Skeleton Models

A pose is represented by the location of articulation points (neck, knees, elbows,

etc.) in 3D coordinate space. This representation model is generally sufficient for

action recognition problems. Likewise, the model is the simplest way to define human

body configuration. There is no standard in articulation point count in literature. The

point count can commonly change from dataset to dataset. A sample of the skeleton

model is seen in Figure 2.6.
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Figure 2.6. The skeleton model representation of human body pose.

2.2.2. 3D Shape Models

As mentioned before, recovering 3D human pose is a hard problem. Since there

are too many independent variables in a human pose, it is always attractive to convert

the problem into a well-defined parametric shape body model. In early literature, there

are many 3D shape models to tackle the problem, as seen in Figure 2.7.

In recent literature, current models, such as SMPL [11], DMPLx2, are more

representative to show body deformations and shape differences. SMPL is a learned

model of human body shapes, trained a large number of 3D meshes of different people

in varying poses. The model is vertex-based, and pose depended blend shapes are

linear functions of pose rotation matrices.

2.2.3. Volumetric Models

In volumetric representation, the human body is modeled as the voxel grid in

the 3D space. The 3D space is divided into fixed dimensions. Spaces belonging to the

human body are marked as one encoded voxels. All other spaces are encoded as zero

encoded voxels. Sample human body representation with volumetric model is given in

Figure 2.8.



9

Figure 2.7. Early shape models.

Figure 2.8. Volumetric representation of human body [5].
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2.3. Methods

In the context of 3D pose estimation from a single image, techniques with a con-

volutional network trained end-to-end are generally dominates the performance bench-

marks in recent years. Approaches using multi-view images are utilized for achieving

better accuracy or for handling more challenging poses and environments.

2.3.1. Single-view Methods

In the literature, some techniques utilize a 3D shape model to constitute a 3D

pose. Earlier methods used basic shapes; however, more recent methods use complex

parametric shape models like SMPL. The deformations and variations in the human

body are represented with parameters. During defining the pose estimation problem,

this shape model is fitted in an optimization problem so that the projection of a model

into the human in the image will correspond regarding a defined loss.

In Simplify [12], Bogo et al. use automatically detected 14 2D keypoint locations,

then use an optimization method to minimize the difference between 2D keypoints and

projection of the fitted SMPL model. Lassner et al. [13] upgrade Simplify by adding

more fitting objective (91 2D keypoints used).

Tung et al. [14] propose a framework to directly recover the parameters of the

3D model using a deep neural network (DNN). The DNN is trained with the direct

supervision of synthetic 3D data and weak-supervision of 2D landmarks.

Pavlakos et al. [15] combine the 2D landmark heatmaps and silhouette informa-

tion to produce SMPL model parameters. A differentiable renderer is used to reproject

the 3D shape model to 2D landmarks and silhouette. By maintaining differentiability,

the authors can produce 3D mesh from estimated model parameters and optimize the

surface by using 3D vertex-based loss. By keeping differentiability in the renderer,

their model can be trained end-to-end.
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Kanazawa et al. [7] propose Human Mesh Recovery (HMR), an end-to-end frame-

work for constructing a full SMPL-based 3D mesh of a human body from a single image.

HMR uses unpaired data: 2D keypoint annotation dataset and a separate dataset of

3D meshes to get around the lack of large-scale ground truth 3D annotation in the wild.

Moreover, the authors propose a discriminator network to prevent the generator net-

work that predicts the body parameters, from getting anthropometrically unpleasant

results.

In NeuralBodyFitting, Omran et al. [16] utilize body segmentation parameters

to estimate SMPL parameters. In DenseBody, Yao et al. [17] propose to utilize UV

position map to predict SMPL model parameters. The authors directly predict SMPL

model parameters without relying on any 2D representations.

In [18], Zhou et al. utilize 2D and 3D annotations with a weakly-supervised

transfer learning technique. Their model is trained in an end-to-end manner and takes

advantage of the relation between the 2D pose and 3D depth estimation. As a result,

the 3D pose information gathered in a controlled environment is transferred to images

in-the-wild.

Some researchers propose methods that estimate 3D pose directly from images.

Tekin et al. [19] train an autoencoder to find out the latent representation of human

pose, and then directly regress 3D human poses from 2D images.

Pavlakos et al. [20] utilize regression of 3D heatmaps instead of 3D coordinates.

A two-step technique is employed: a ConvNet estimates 2D keypoint locations and an

optimization process to recover 3D poses. The ConvNet predicts voxel likelihoods of

each keypoint. In Integral Pose Regression, Sun et al. utilizes combined volumetric

heatmaps with soft-argmax activation.

Some methods in the literature estimate a 3D pose in two-stages. First, 2D key-

points are detected with a 2D pose estimator. Then, to obtain a 3D pose, there are

some methods utilized: regression, model-fitting, dictionary lookup from 3D pose pool,
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etc. Two-stage approaches are more robust to environment shift, but they excessively

rely on the accuracy of 2D joint estimation. Another substantial disadvantage of the

two-stages approaches is not to make use of image information during 3D pose estima-

tion. However, the latest methods in the literature are commonly end-to-end trained,

directly makes use of image information to obtain a 3D pose.

Adversarial learning is powerful to distinguish samples of a source domain from

samples of another domain. Yang et al. [21] make use of adversarial learning to rectify

the 3D human pose structure from large scale mocap datasets to the images in-the-

wild with only 2D pose annotations. The authors propose a discriminator network

to differentiate the predicted poses and the ground truth poses. By the end of the

training, discriminator enforces the generator to produce more reasonable poses even

in the wild images.

Motion capture datasets are hard to produce since framework cost and inevitable

nature of the indoor setup. These datasets can contribute to inference in the training

of motion structure and dynamics, but not contribute well to the uncontrolled envi-

ronment. In the literature, there are some works that are less depended on the direct

supervision of mocap datasets. They need less 3D annotated data or only need 2D

annotated data to train a 3D pose estimator model.

2.3.2. Multi-View Methods

Many approaches [22], [23], [24] uses the pictorial structures model [25] to recover

3D pose taken from multiple cameras. Pavlakos et al. [26] use a generic convolutional

network for 2D pose estimation and obtain 2D pose heatmaps for each view. Then,

by employing a 3D pictorial structures model, single view prediction heatmaps are

combined to estimate 3D pose. However, as stated in [26], an application of the basic

pictorial structures model in 3D has high computational cost because of the six degrees

of freedom.
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In [6], Rhodin et al. propose multi-view constraints as weak supervision. Their

approach makes it possible to train a deep neural network to predict 3D pose for actions

with little labeled data. The system is forced to predict the same pose in all views as

in Figure 2.9. In their experiments, it has shown that a small dataset of images with

corresponding 3D poses can be effectively complemented by a bunch of images obtained

from multiple synchronized cameras, even if the relative positions of the cameras are

not specified.

Figure 2.9. Multi-view constraints as weak supervision in [6].

In BodyNet [27], Varol et al. fits SMPL to ConvNet volumetric outputs as a

post-process step. A synthetic dataset of rendered SMPL bodies is utilized for training

a convolutional model for depth and body part segmentation. The authors also propose

the multi-view re-projection loss to cope with the complexity in the human body artic-

ulation. When deep–net trained with re-projection losses, the performance increases

both with single-view constraints. They show that the multi-view re-projection loss

emphasizes on the body surface, which yields a better SMPL fit.

In EpipolarPose [28], Kocabas et al. present a self-supervised learning method,

which does not need 3D annotations or camera extrinsic. In the training phase, the

method estimates 2D poses from multi-view images, and obtain 3D pose and camera

geometry by using epipolar geometry. Thereafter, the 3D pose estimator is trained

with self-obtained 3D poses and camera parameters.
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3. DATASETS

In this chapter, we mention the mocap datasets in detail. Then, we give statistics

about datasets. Also, the details of preprocessing on the datasets are described.

3.1. Datasets Preprocessing

In general, there is no standardization in annotation techniques. So, it is necessary

to preprocess the datasets that are planned to be used in a shared format before using.

In this thesis, we process all the datasets in a standard format to feed them to the

Deep Learning model and evaluate the performance.

In Figure 3.1, we plot the denotation of the 14 joints based skeleton-model used

in this thesis. We transform the ground truths of skeletons for all datasets into 14

joint-based skeleton configuration.

L.WRIST

L.ELBOW

L.SHOULDER

L.HIP

L.KNEE

R.SHOULDER

L.ANKLE

R.HIP

R.KNEE

R. ANKLE

NECK R.ELBOW

R.WRIST

HEAD
TOP

Figure 3.1. The denotation of keypoints in human body.
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Table 3.1. Statistics about the CMU Panoptic ‘Range of Motion’ sequences.

Sequence Name Duration # of Frames # of Annot’ed Frames # of Cams

171204 pose1 17:30 31661 27561 31

171204 pose2 22:30 40689 37751 31

171204 pose3 5:00 9204 8920 30

171204 pose4 17:30 31671 31397 30

171204 pose5 15:00 27200 26902 30

171204 pose6 12:50 23301 22886 30

171026 pose1 13:20 24220 22466 31

171026 pose2 9:00 16366 14974 31

171026 pose3 4:20 7994 7181 31

3.1.1. CMU Panoptic

There are too many action sets in the CMU Panoptic. This dataset consists

of video sets involving a single actor and multiple actors. We use only the single

actor video sets with 3D body landmark annotations. Among all sequences with body

annotations, we choose only ‘Range of Motion’ sequences.

In Table 3.1, duration, number of frames, number of annotated frames, and num-

ber of available HD cameras are given for corresponding motion sequences. In our

experiments, we use each 30th frame of sequences.

In Figure 3.2, we plot the simultaneous frames of all HD cameras. The camera

angles and elevations are highly diversified. As seen in Figure 3.2, Camera21 is green.

For some sequences, Camera20 is not published. Therefore, we do not utilize Camera20

and Camera21 for all sequences for standardization concern.
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Figure 3.2. Frames from all HD cameras from different views in the CMU Panoptic.

Our preprocessing operations on the CMU Panoptic dataset are as follows:

(i) Convert HD videos to HD frames.

(ii) Check the existence of green or erroneous frames.

(iii) Get 3D body annotations, filter annotations with the incomplete skeleton.

(iv) Create 2D annotations by using camera parameters and 3D ground truths.

(v) Map the joint annotations of CMU Panoptic to our common joint denotation.

(vi) Filter the frames (like in Figure 3.3) with less than MIN V ISIBLE POINT

(We set this parameter 8).

(vii) With proper frames, preprocessing is applied to the frames:

• Images are cropped so that skeleton stays in a tight bounding box with size

150 pixel.

• If necessary, images are padded to complete images to 224x224 frame size.

• 2D skeleton ground truths, camera parameters are updated regarding crop-

ping and padding operations.
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Figure 3.3. A sample skipped frame due to having fewer visible keypoints than the

parameter of MIN V ISIBLE POINT .

3.1.2. Human3.6M

There are 11 subjects: six male and five female actors. Four subjects are separated

for testing; seven subjects are for training issues as referred to in Table 3.1.2. Each

actor performs 15 different action sequences while four different cameras are recording

from different viewpoints. In the Human3.6M setup, cameras are placed such that all

keypoints of the actor are visible in the frame.

In the preprocessing, there is no need to check the number of visible keypoints.

Different from the CMU Panoptic, there are also 2D annotations together with 3D

annotations for each camera. The remaining processes are as follows:

(i) Convert HD videos to HD frames.

(ii) Images preprocessing are applied to the frames:

• Images are cropped so that skeleton stays in a tight bounding box with size

150 pixel.
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Table 3.2. Subjects in Test/Train Set of the Human3.6M dataset.

Subject ID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Set Train Test Test Test Train Train Train Train Train Test Train

Gender F F M M F M F M M M M

• If necessary, images are padded to complete images to 224x224 frame size.

• 2D skeleton ground truths, camera parameters are updated regarding crop-

ping and padding operations.

Figure 3.4. Action sets in the Human3.6M dataset.

3.1.3. MPI INF 3DHP

There are eight different subjects in the training set. Each subject has two se-

quences involving 14 different camera views. Eight cameras are presented by default.

Extra six cameras (three wall cameras and three ceiling cameras) are optionally ob-

tainable. We do not process the frames of extra three ceiling cameras since we do not

use in this thesis.
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Our preprocessing operations on MPI INF 3DHP dataset are as follows:

(i) Convert HD videos to HD frames (Resolution: 2000x2000).

(ii) Map the joint annotations of MPI INF 3DHP to common joint labeling.

(iii) Filter the frames with less than MIN V ISIBLE POINT (We set this param-

eter 8).

(iv) With proper frames, preprocessing is applied to the frames:

• Images are cropped so that skeleton stays in a tight bounding box with size

150 pixel.

• If necessary, images are padded to complete images to 224x224 frame size.

• 2D skeleton ground truths, camera parameters are updated regarding crop-

ping and padding operations.

Table 3.3. # of frames and cameras of MPI INF 3DHP (subject, sequence) pair.

Subject ID Sequence ID Frame Count # of Camera

S1
1 6416 14

2 12430 14

S2
1 6502 14

2 6081 14

S3
1 12488 14

2 12283 14

S4
1 6171 14

2 6675 14

S5
1 12820 14

2 12312 14

S6
1 6188 14

2 6145 14

S7
1 6239 14

2 6320 14

S8
1 6468 14

2 6054 14
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Figure 3.5. Image processing pipeline.

3.2. Bounding Box Preparation

The Deep Learning based pose estimators generally require the person in a well-

centered tightly cropped images. We process the raw frames to prepare cropped frames

with well-centered human body. In Figure 3.5, we simply plot our image processing

pipeline. In detail, our processing method on frames are as follows in Figure 3.6:
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Require IMAGE, Margin=150, gt2ds ;

Result processed IMAGES, refined gt2ds ;

min pt⇐ min(gt2ds);

max pt⇐ max(gt2ds);

person height⇐ matrix norm(max pt−min pt);

center ⇐ average(min pt,max pt);

scale⇐ 150/person height;

scaledIMAGE, scale factor ⇐ resize img(IMAGE, scale);

height, width⇐ shape(scaledIMAGE);

scaled center ⇐ scale factor ∗ center;

scaled gt2ds⇐ scale factor ∗ gt2ds;

start pt⇐ max(center scaled−margin, 0);

end pt⇐ center scaled + margin;

end pt = [min(get width(end pt), width),min(get height(end pt), height)]

crop IMAGE ⇐ scaledIMAGE[start pt[1] : end pt[1], start pt[0] : end pt[0]]

refined gt2ds⇐ scaled gt2ds− start pt;

processed IMAGES ⇐ PAD IMAGES 224(scaledIMAGE)

return processed IMAGES, refined gt2ds;

Figure 3.6. Bounding box operation for images by centering the human.
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4. METHOD

4.1. Single View Pose Detector: Human Mesh Recovery

Figure 4.1. The overview of the HMR framework [7]

Kanazawa et al. [7] propose Human Mesh Recovery (HMR), an end-to-end system

for estimating a full 3D mesh of a human body from a single image. The overall HMR

framework is represented in Figure 4.1. Skinned Multi-Person Linear Model (SMPL)

is used as a 3D mesh model in the HMR method. The HMR method minimizes the

reprojection loss of joints, which allows the model to be trained using images that only

have ground truth 2D body annotations. In the HMR method, a 3D pose model can be

constructed with and without using any paired 2D-to-3D supervision. In our research,

we utilize the 3D joint predictions, not 3D mesh.

4.2. Multiview Reconstruction

In this thesis, we propose a 3D human body reconstruction method that uses

multiple cameras. We use a state-of-the-art single-view 3D pose estimator, namely the

HMR method, which produces 14 3D body joint coordinates from a single image [7].

In a multi-view camera setup, we obtain estimates of body coordinates from each view.

The integration of a set of joint positions to obtain the final reconstructed 3D model

is carried out by using the Procrustes Analysis. Procrustes Analysis enables us to find
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the best alignment of a set of ordered 3D points to a consensus shape. Consensus shape

is defined as the average shape of the initial 3D estimations obtained from a single-view

pose estimator. After the alignment of single-view 3D body coordinates to an average

body model via the Procrustes method, we apply the component median method to

the set of 3D joint coordinates to compute the final position of the combined 3D body

joint. Component median method for a set 3D vectors finds the median of each (x, y, z)

component. The use of the median approach is motivated by the fact that some of

the individual 3D joint estimations produced by the single-view pose estimator may

be unreliable. Thus, a statistically robust approach, e.g., use of the median method,

is needed to compute the final average position of a 3D body joint from a set of initial

estimates. The overall structure of the proposed approach is illustrated in Figure 4.2.

Obtaining the consensus 3D human shape from a set of single-view poses is one of

the most critical phases in our proposed approach. We utilize the Procrustes Analysis,

one of the primary statistical shape analysis method from the image analysis point of

view, to reconstruct accurate “combined” 3D human pose. Procrustes Analysis uses

the Procrustes distance measure and minimizes this distance to align two poses by

finding the best translation, rotation, and scaling parameters. Procrustes distance is

given as (4.1):

min
s,R,t

{
1

J

J∑
i=1

‖yi − (sRxi + t)‖2
}

(4.1)

where s is a scaling factor, R is a rotation matrix and t is a translation vector, J is the

number of joints, yi is the target pose, xi is the pose to be aligned.
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Figure 4.2. The cameras from different viewpoints, simultaneously generate images.

The chosen 3D pose estimator, HMR predicts 3D pose of the human in the scene for

each image. Then, the mean of predicted poses is calculated. All the poses are

aligned with the mean pose by Procrustes Analysis. Finally, median filtering is

applied to all aligned poses to reconstruct a “consensus” pose.

Input: Images from different cameras for time t

Output: 3D locations of body key points

1: n: usable camera count in the scene

2: select m cameras from all m ≤ n

3: for all time t do

4: fetch Ii from cami, i ∈ CAMm

5: for all Ii do

6: calculate posei

7: end for

8: avgPoset = 1
m

∑m
i=1 posei

9: for all posei do

10: calculate procrustPosei = Procrustes(posei, avgPoset)

11: end for

12: consensusPose = median(procrustPose0,.,procrustPosem)

13: end for

Figure 4.3. Multi-view reconstruction algorithm
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5. EXPERIMENTS AND RESULTS

In this chapter, the performance evaluation of our reconstruction method is ex-

plained. First, we describe the metrics. Then, the single view performance of each

camera is analyzed on each dataset. Experimental scenarios are described, then, per-

formance metrics are listed, and explained in detail. We examine the parameters of

the reconstruction approach.

5.1. Evaluation metrics

We report the mean per joint position error (MPJPE) [1] which calculates the

average Euclidean distance between ground truth and prediction for all keypoints.

MPJPE =
1

J

J∑
j=1

‖posej −GTj‖2 (5.1)

where posej is predicted position of the joints; GTj is correspondent ground truth of

the joints.

We also use the rigid alignment of the prediction pose regarding the ground truth

using Procrustes Analysis. This error metric is referred to as PA-MPJPE in literature.

PA-MPJPE is better in evaluating the quality of the reconstructed 3D pose (skeleton)

since global misalignments are removed. Both MPJPE and PA-MPJPE are measured

in millimeters.

PA-MPJPE =
1

J

J∑
j=1

‖alignedPosej −GTj‖2 (5.2)
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where alignedPosej is Procrustes alignment of the predicted joints to the correspondent

ground truth of the joints.

5.2. Experiments on the CMU Panoptic

Figure 5.1. Reconstruction error for each camera on the CMU Panoptic.

In Figure 5.1, we present the average reconstruction error for each single camera,

excluding Camera 20 and 21. There are many extreme camera angles in the CMU

Panoptic Studio. We have observed that the performance of HMR is low on extreme

camera angles since the pre-trained model of HMR is not trained on cameras with upper

viewpoints. Hence, we do not utilize the cameras that are placed higher than 3 meters.

Excluded upper cameras are given in Figure 5.2. In our experiments, we also do not

use Camera 20 and Camera 21 since there are some technical issues (i.e., full green

record or not publicly available) in the motion sequences: 171204 pose3, 171204 pose4,

171204 pose5, 171204 pose6. Our last significant result in Figure 5.1, single-camera

performances are not excessively variated among the remaining 20 cameras, which also

demonstrates that HMR can run all horizontal viewpoints.

In Figure 5.3, we plot the camera views of the best three cameras in the top

row. Camera 3, 22, 23 are installed diagonally at the height of 1.5-2 meters. The

worst performances are obtained from Camera 6, 13, 19. In the bottom row of Figure

5.3, the views of the worst cameras are shown. We observe that the elevations of the
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Figure 5.2. Excluded camera views of the CMU Panoptic in our experiments.

Figure 5.3. The top row: the best three cameras, the bottom row: the worst three

cameras.
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worst cameras are over 3 meters. Upper camera elevation leads to depth ambiguity

and self-occlusion problems, which result in higher reconstruction errors.
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Number of Multiview Cameras
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Figure 5.4. Reconstruction error for different multi-view camera setups. For each

case, average, minimum, and maximum error rates are plotted, except for the

ALL(20) case.

We utilize the remaining 20 HD cameras since upper cameras and Camera 20/21

are excluded from our experiments. In Figure 5.4, we show the mean, minimum, and

maximum values of the reconstruction error (PA-MPJPE) in the case of a given number

of randomly chosen cameras. As seen in Figure 5.4, increasing the number of cameras

in the multi-view configuration improves the performance on the average. These results

are calculated by exhaustively searching camera combinations for a given camera count.

However, increasing the number of cameras more than four in a multi-view setup does

not improve the best accuracy.

We also inspect the reconstruction filtering methods for 4CAMs (4 Cameras) and

ALL(20). In Figure 5.5, we compare the performance of component-median, vector

median, and average. For ALL(20), there are only marginal differences in filtering

methods.
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Figure 5.5. Reconstruction error with different filtering methods. For 4CAMs,

average, minimum, and maximum error rates are plotted, except for ALL(20).

However, for the fewer number of camera configurations, there is no significant

difference between the two median-based filtering methods. However, AVG (taking

average of each component) is more exposed to the distorting effect of outliers than

component-median and vector median. When we compare the two median-based fil-

tering methods, component-median filtering is slightly better in the comparison of the

average and the best performance.

In Figure 5.6, we analyze the performance of filtering methods on joints for the

scenario that all cameras are utilized. The primary aim of this experiment is to figure

out which method is better in especially in outer joints. However, there is no significant

dominance of any method on outer joints.

5.2.1. Camera Selection

5.2.1.1. 4-CAMERA. In multi-view setups, like the CMU Panoptic, redundant infor-

mation is high. If we can choose the configuration of cameras efficiently, the perfor-

mance contribution of using more cameras may stay marginal. Using an extra camera

is important because adding additional cameras results in increased setup and main-
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Figure 5.6. The joint-based effect of filtering methods on reconstruction error on the

CMU Panoptic. (Using ALL(20))

tenance costs. We analyze two different multi-view camera configurations: Configura-

tion1 chooses four cameras from each diagonal; Configuration2 chooses four cameras

from left, right, front, and rear sets. Proposed configurations are as seen in Figure 5.8.

Regarding the results in Figure 5.8, Configuration1 presents 3.0% better performance

on average than Configuration2. A diagonally placed camera system produces a lower

reconstruction error than Configuration2. The BEST4 camera combination involves

the four cameras that produce the least reconstruction error for test video. Therefore,

BEST4 depends on the test sequences. If we can choose the configuration of BEST4,

the error will be 55.65mm. The performance gap between BEST4 and Configuration1

is only 4.1mm of reconstruction error. Moreover, Configuration1 can produce only

1.7mm of error close to the reconstruction of ALL(20).

In Figure 5.7, we observe that 4CAMs with diagonal configuration show close

performance to BEST4 (impractical to know) and ALL(20) (costly) with a marginal

loss. So, in Figure 5.9, we investigate the joint base reconstruction error of diago-

nally selected 4CAMs. There is no joint-based performance improvement or significant

degradation regarding BEST4 and ALL(20). All joints show close performance with a

marginal difference.
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Figure 5.7. Reconstruction error (PA-MPJPE) for different 4CAMs configurations.

For Configuration1 and Configuration2, variances of the errors are illustrated.
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Figure 5.8. Multi-view camera (4CAMs) configurations: Configuration1,

Configuration2.
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Figure 5.9. Joint-based reconstruction error analysis with diagonally selected 4CAMs.
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Figure 5.10. Reconstruction error (PA-MPJPE) for proposed 3CAMs configurations.

For Configuration1, Configuration2, Configuration3, and Configuration4, variances of

the errors are illustrated.
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Figure 5.11. Multi-view camera (3CAMs) configurations: Configuration1,

Configuration2, Configuration3, Configuration4

5.2.1.2. 3-CAMERA. In Figure 5.10, we analyze four different multi-view camera con-

figurations: Configuration1 chooses three cameras from front, left or right, and cross

diagonal regarding selected side camera; Configuration2 chooses two rear-diagonal cam-

eras and front camera; Configuration3 chooses three of four possible diagonal cameras;

Configuration4 chooses three of four cameras from left, right, front and rear sets.

Proposed configurations are as seen in Figure 5.11. The performances of proposed con-

figurations for three cameras are not close to the performance of BEST3. However,

Configuration3, diagonally placed three cameras, is the most acceptable configuration

among all four configurations. The configuration of BEST3 can yield 58.39mm of error.

Configuration3 produces 5.58mm of error more than BEST3.

5.2.1.3. 2-CAMERA. In Figure 5.12, we analyze six different multi-view two-camera

configurations: Configuration1 chooses two cameras from front and side cameras (left/right);

Configuration2 chooses two mutually opposite diagonal cameras; Configuration3 chooses

two of rear diagonal cameras; Configuration4 chooses two of front diagonal cam-

eras; Configuration5 chooses two front and rear cameras; Configuration6 chooses side

(left/right) cameras. The camera positioning in proposed configurations are as seen in
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Figure 5.13. Our proposed poses are not close enough BEST2. But, Configuration3

is the most acceptable configuration among all six configurations. If we can choose the

configuration of BEST2, the error will be 63.11mm. On average, Configuration3 can

produce 2.13mm close to BEST2.

Configuration3 is highly acceptable to be chosen as a camera configuration. How-

ever, even though Configuration3 and Configuration4 are similar, Configuration3 yields

lower error since the actors in the studio perform close to front cameras and their lower

bodies cannot be visible in the frames. In other words, Configuration4 is more exposed

to partial visibility of the human body. Unseen lower body results in high reconstruc-

tion errors in lower joints.
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Figure 5.12. Pose estimation errors (PA-MPJPE) for different camera configurations.

For Configuration1, Configuration2, Configuration3, Configuration4, Configuration5,

and Configuration6 variances of the errors are illustrated.

5.2.2. Dynamic Camera Selection

Up to now, camera configurations in our experiments are static. We utilize the

same cameras until the end of the sequence. Dynamically selecting active cameras

means possible changes in camera configuration frame by frame. In Figure 5.14, we

analyze the performance contribution of dynamic camera selection frame by frame. We

plot the reconstruction error for one, and up to five cameras, then we also plot using

ALL(20), which results in the same configuration for each frame since there is only one

combination when all cameras are used.
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Figure 5.13. Multi-view camera (2CAMs) configurations: Configuration1,

Configuration2, Configuration3, Configuration4, Configuration5, Configuration6.
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Figure 5.14. The reconstruction performance of dynamic camera selection with

different number of multi-view cameras.
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The motivation of dynamic camera selection is to re-configure cameras regarding

the actor in the scene for achieving more accurate poses. As in Figure 5.14, dynamically

selected 4CAMs can yield 44.21mm of reconstruction error. Another significant result is

that dynamically selected single-camera performance results in 56.94mm while ALL(20)

can yield 58.05mm. However, these results are obtained by utilizing ground-truth

information. It is not trivial to estimate the best n camera configuration that provides

the lowest error for a given frame. Our experiments with dynamic selection aim to

present the limits of our approach. It provides an idea of how further we can improve

our results.

5.2.2.1. Body-orientation based Dynamic Camera Selection. In this section, we pro-

pose a naive approach for dynamic camera selection. As seen in Figure 5.15, we calcu-

late the angle between shoulders and the line between neck joint and camera position

from the bird-eye view. Body orientation is obtained by getting a perpendicular vector

to the line of shoulders. We retrieve the position of neck and shoulders from ground-

truth since our motivation is first to observe the contribution of the proposed approach.

Camera Angle

L.Shoulder R.ShoulderNeck

Body Orientation

Figure 5.15. Calculation of body orientation and camera angle.

In the first scenario, we measure the performance of dynamic selection for the

single-camera case. As in Figure 5.16, we propose four different camera positions

regarding body orientation: Configuration1 chooses a camera with orientation that

is parallel with body orientation; Configuration2 chooses a camera with orientation

that creates intersects diagonally; Configuration3 chooses a camera with orientation
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that is perpendicular to body orientation; Configuration4 chooses a rear camera with

orientation that is parallel with body orientation.

Front Front

Rear

Configuration 1 Configuration 2

Rear Rear

Configuration 3 Configuration 4

Front Front

Rear

Figure 5.16. Different configurations for dynamic single camera.

In Figure 5.17, to analyze the performance of body orientation based dynamic

camera selection, we compare the results of the experiments. dynamic-1CAM seems

highly successful, but it is a symbolic lower-bound value to observe the other results.

One of the significant results is that Configuration2, diagonally selecting a front cam-

era, is the most successful among our proposed configurations. Another significant

result is that Configuration2 has almost same performance with best-static-1CAM. It

is not trivial to know the best camera without any prior information about the motion

sequence. dynamic-1CAM has significantly better performance than Configuration2,

which is even the best configuration we propose. However, Configuration2 seems to

achieve similar performance to static best-camera. However, only using the supervision

of body orientation does not yield similar performance to dynamic-1CAM, which is the

ideal case, since the best camera configuration does not only depend on body orienta-

tion. Other factors are effecting the superiority of the camera, among all cameras. For

example, the invisibility of exterior joints profoundly degrades the overall performance.
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Figure 5.17. Performance analysis of proposed configuration for dynamic single

camera selection.

In the case of four cameras utilized, we evaluate the same two configurations as

used for static camera selection. We use dynamically these two configurations plotted

in Figure 5.8: Configuration1 chooses frame by frame four cameras from each diago-

nal regarding body orientation; Configuration2 chooses frame by frame four cameras

from left, right, front and rear regarding body orientation. While Configuration1 yields

62.21mm reconstruction error, Configuration2 yields 67.14mm of error. Configuration1

achieves better reconstruction, but body-orientation based dynamic camera selection

with four cameras does not improve reconstruction accuracy more than static diago-

nally placed four cameras.

5.2.3. Action Complexity

In Figure 5.19, we study the joint-based accuracy of our reconstruction method on

actions from different complexity. As plotted in Figure 5.20, in the complex sequence,

the actor performs a dance with extreme poses. Therefore, there are more articulation

and self-occlusion in the poses in the complex action. Sample frames from simple action

are plotted in Figure 5.21. In the simple action, the actor does not perform significant

changes in body-orientation. As seen in Figure 5.19, exterior joints, like ankles and

wrists, are exposed to more reconstruction errors than the inner joints, like shoulders.
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Figure 5.19. Joint-based error analysis on actions from different level of complexities

(Simple Action vs Complex Action).
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Figure 5.20. Frames from 170307 dance5 sequence on the CMU Panoptic (Complex

Action).
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Figure 5.21. Frames from 171204 pose3 sequence on the CMU Panoptic (Simple

Action).
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Figure 5.22. Effects of Procrustes analysis iteration count.

5.2.4. Effect of Procrustes Analysis Iteration

We have also examined the iteration of the Procrustes analysis process that pro-

duces the consensus pose. In Figure 4.3, we have proposed our multi-view reconstruc-

tion algorithm. As proposed in the algorithm, by default at the 10th line, we calculate

procrustPose by aligning poses coming from each view to avgPose. In this case, we

feed the final consensus pose of the previous iteration as the avgPose of the next iter-

ation. In Figure 5.22, our experiment results show that reconstruction error decreases

62.97mm to 60.11mm in the second iteration. From the second iteration to the third

iteration, 0.5mm marginal improvement is obtained. However, it is efficient to iterate

the algorithm twice to obtain a significant improvement in the average of the recon-

struction error. We perform these experiments on diagonally configured 4CAMs. By

the betterment of the further iteration, the performance difference among the combi-

nations of diagonally configured 4CAMs decreases. So, camera selection regarding our

proposed configurations can yield close and better performance.

5.2.5. Discussion on the CMU Panoptic

Our experiments on the CMU Panoptic dataset show that wisely chosen four

cameras (especially four diagonal cameras) with median filtering provide us better

reconstruction quality. Two iterations in our reconstruction algorithm also yield bet-



43

ter reconstruction performance. Doing more than two iterations does not contribute

further. The complexity of action affects the outer joints more than inner joints. Dy-

namic camera selection offers a significant improvement in reconstruction accuracy,

but it is not easy to decide a better configuration yielding higher accuracy. Our naive-

approach, body-orientation based camera selection, does not contribute to four cameras

as we expect. However, for a specific single-camera configuration, we can yield similar

performance to the best single-camera performance.

5.3. Experiments on the MPI-INF-3DHP

Figure 5.23. Frames from all cameras from different views in MPI-INF-3DHP.

In the MPI INF 3DHP dataset, there are eight cameras by default. Also, there

are an extra three wall cameras and three ceiling cameras available. In total, there are

14 available cameras, but we cannot utilize three ceiling cameras since our pre-trained

model is not trained on ceiling cameras. In Figure 5.23, the views of all available

cameras are given. The places of all utilized cameras are plotted in Figure 5.24.

In Figure 5.25, we plot single-camera reconstruction performances of each camera.

Camera 11, 12, and 13 (ceiling cameras) have significantly worse performance than

other cameras. Another important result of the experiment plotted in Figure 5.25 is

that there is no major variation in the performance of the remaining 11 cameras placed
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Figure 5.24. The cameras in the MPI-INF-3DHP studio from bird-eye view (except

ceiling cameras).

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Camera ID

0

25

50

75

100

125

150

175

PA
-M

PJ
PE

(m
m

)

Figure 5.25. Reconstruction error for each camera on the MPI INF 3DHP.
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on walls. This is because the motion sequence in which we do our experiments spans

the whole capture space. In Figure 5.26, we plot a sequence of a sample action from

MPI INF 3DHP.

Figure 5.26. Subject 8, Video 1 of Sequence 1 (every 100th frame).

In Figure 5.27, for each case, average, minimum, and maximum error rates are

plotted, except for the ALL(11) case. Increasing the number of cameras more than

four in a multi-view setup does not improve the best accuracy significantly. However,

using one more camera tends to decrease the average error slowly.
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Figure 5.27. Reconstruction error for different multi-view camera setups.

Figure 5.28. Reconstruction error (PA-MPJPE) for two different 4CAMs

configurations: Configuration1 and Configuration2
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As we do in our experiments on the CMU Panoptic, we compare two different

four-camera configurations. In Figure 5.28, we observe that 4CAMs with diagonal

configuration show close performance to BEST4 (impractical to know) and ALL(11)

(costly) with a marginal loss.

Figure 5.29. Joint-based reconstruction error analysis diagonal 4CAMs vs ALL(11).

In Figure 5.29, we evaluate joint-based performance of our proposed configuration

of 4CAMs and ALL(11). The reconstruction errors in inner joints like hips, neck, etc.

are similar for 4CAMs and ALL(11). Reconstruction performance even on outer joints

(ankles, wrists, knees, elbows) are not significantly dominated. In avarage, ALL(11) is

slightly better than 4CAMs. However, the performance of wisely chosen 4CAMs can

compete with ALL(11).

Table 5.1. MPI-INF-3DHP Reconstruction Error

Method S8-Seq1 S8-Seq2 S8-Total

HMR 77.27 89.54 83.21

Ours (4CAMs) 63.77 65.78 64.74

In Table 5.1, we present the reconstruction errors on Subject 8 of the MPI INF 3DHP

dataset. While the average single-camera performance of HMR is 83.21mm of error, our

reconstruction approach with four diagonal cameras with two iterations yields 64.74mm

of error.
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5.4. Experiments on Human3.6M

In the Human3.6M dataset, four different cameras are placed at the corners of

the studio, as seen in Figure 5.30. Cameras are far enough so that the keypoints of the

actor always stay in the frame.

CAPTURE
SPACE 3m

4m

Figure 5.30. The capture area and camera setup of the Human3.6M.

The cameras are identically located in terms of elevation and angle. Moreover,

all the cameras can see all human body keypoints in the frame. In the Human3.6M

setup, the cameras have almost the same characteristics, so the average reconstruction

errors are similar, as seen in Figure 5.31.
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Figure 5.31. Reconstruction error for each camera on the Human3.6M.

As can be seen in Figure 5.32, some joints are more erroneous. Regarding re-

construction errors, neck, hips, and shoulders are more robust to other exterior joints
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Figure 5.32. Joint-based reconstruction error analysis on the Human3.6M dataset.

like ankles. The reason why exterior joints are noisy is their higher degree of free-

dom. Exterior joints generally have more action-capability. The dynamicity of exterior

joints also results in self-occlusion, which is another source of the reconstruction error.

Another significant result is that our reconstruction improves the accuracy of exterior

joints by using all four cameras.

We choose two evaluation protocols from the Human3.6M dataset: Protocol-I

and Protocol-II:

• Human3.6M Protocol-I is defined such that S1, S5, S6, S7, S8 subjects are used as

training, and S9 and S11 subjects are for testing. Generally, testing is performed

on every 5th frame of the sequence. Error is evaluated without alignment. This

benchmark not only measures the reconstruction accuracy; but also evaluates

rotation and scaling correctness of the prediction technique.

• Human3.6M Protocol-II is defined by Bogo et al. [12]. The protocol-II is also

trained on the same subject set as Protocol-I. Train/Test set splits and frame
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Table 5.2. Human3.6M Results

Method MPJPE [Protocol-I] PA-MPJPE [Protocol-II]

HMR 86.20 57.21

Ours (4CAMs) 78.09 44.28

downsampling rates are also the same. The frontal camera is chosen from the only

trial-1 of each action set. Error is calculated after the predicted skeleton is aligned

with ground-truth. This error is commonly referred to as the reconstruction error.

In Table 5.2, for Protocol-I, using all four cameras shows the best performance.

While single-camera performance with using the frontal camera (as in the protocol) is

86.20mm, our reconstruction method with using all four cameras yields 78.09mm abso-

lute error (MPJPE). For Protocol-II, our method with four cameras obtains 44.28mm

reconstruction error (PA-MPJPE). In Table 5.3 and Table 5.4, we compare the perfor-

mance of our multi-camera reconstruction technique with the literature in the guidance

of Protocol-I and Protocol-II. In Protocol-I and Protocol-II, our method is better than

HMR in terms of the reconstruction performance on almost all actions.
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5.5. Generalization to Other Methods

In this section, we evaluate the performance of our multi-view reconstruction

when we use another 3D pose estimator method. Up to now, we use the HMR method

as the single-view 3D pose estimator. Now, we utilize the “pose-hg-3d” method [18],

which is also successful in-wild images as the HMR is. We do some experiments to

check the generalizability of our multi-view reconstruction approach to other methods.

Figure 5.33. Reconstruction error (PA-MPJPE) for each single camera.

In Figure 5.33, we plot the single-camera performance of the “pose-hg-3d” method

on all possible cameras on the CMU Panoptic dataset. In terms of the single-camera

reconstruction performance, the “pose-hg-3d” method is worse than the HMR. Another

important result is that the single-camera performance is not so similar among the

remaining cameras. For HMR, the variation of the performance among remaining

cameras is not so significant as in “pose-hg-3d”. This shows that HMR is more robust

to changes in camera view than “pose-hg-3d”.

The experiments in this section show that our multi-view reconstruction approach

can be combined with different single pose estimation methods. Another significant
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result is that while the average single-camera performance of HMR is profoundly better

than “pose-hg-3d”, multi-view reconstruction performances of diagonally placed four-

camera are highly similar for HMR and “pose-hg-3d” methods.
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Figure 5.34. Reconstruction error (PA-MPJPE) for different multi-view camera

setups.

Our experiments in this section are on the CMU Panoptic dataset. We also

exclude the same upper cameras to keep the testing scenarios fixed. So, we repeat the

experiments with the same remaining 20 HD cameras. As seen in Figure 5.34, while

adding one more camera decreases the average reconstruction error, the best accuracy

stays almost similar for the cases that more than four cameras are utilized. This result

validates the conclusion of which the HMR is used as the single-view pose estimator.

In Figure 5.35, we compare the two different four-camera configurations: Configu-

ration 1 is diagonally selected four cameras, Configuration2 is perpendicularly selected

four cameras. As seen in Figure 5.35, diagonal configuration is significantly better than

perpendicular configuration. In “pose-hg-3d”, the difference between two four-camera

configurations is more significant since HMR is more view-invariant than “pose-hg-

3d”. Also, BEST4 is better than Configuration 1, but the difference is acceptable.

Another significant result is that the performance of Configuration 1 is highly similar

to ALL(20). Configuration 1, diagonal four-camera, is a highly cost-effective solution

when regarding the difference between ALL(20) and itself.
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Figure 5.35. When “pose-hg-3d” is used, reconstruction error (PA-MPJPE) for two

different 4CAMs configurations: Configuration1 and Configuration2.

5.6. Run Time Analysis

To examine the run time of the proposed framework, we use a computer with

Intel R© CoreTM i7-3770 (3.40GHz × 8), 12GB RAM, GTX1070 8GB RAM GPU, and

512GB SSD space. The operating system is Ubuntu 18.04 LTS.

In Table 5.5, we plot the average execution time of our multi-view reconstruc-

tion algorithm when the predictions of the camera views are already calculated. In

our physical environment, multi-view reconstruction costs 2.68ms for 20 camera views.

Time cost decreases to 0.66ms for the case of four-camera views. In our testing envi-

ronment, our Procrustes-based multi-view reconstruction can be calculated fast enough

to be used in a real-time application.

In Table 5.6, we plot the time cost of HMR’s single-view pose prediction. We

can feed the batches of images to the model for 3D pose prediction. When we use all

20 cameras, we feed all 20 images as a batch to the model. In our GPU environment,

this calculation takes 76.28ms in an average of 1000 times repetition. When we use

four cameras, feeding four images as a batch takes 20.40ms in an average of 1000 times

repetition. In this time analysis, we assume that images are given as cropped and sized
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Table 5.5. Run Time Cost of Multi-view Reconstruction

# of Camera Exec.Time(sec)

20 0.00268

15 0.00207

10 0.00144

5 0.00079

4 0.00066

3 0.00055

2 0.00041

224x224, which is the acceptable image size of the encoder part of the HMR.

Table 5.6. Run time of Single-view 3D Pose Predictions as a Batch.

# of Camera Exec.Time(sec) Var.of Exec.Time

20 0.076821 0.00140

4 0.020404 0.00109

As a result, if we decide to use all 20 cameras, the total time cost of one multi-view

reconstruction in our testing environment is 78.96ms on average. Such performance

means almost 12 predictions per second (PPS) on average. For a real-time application,

12 PPS is slightly slow in our environment. For the case of four cameras is utilized,

the total time cost is 21.06ms on average. This yields almost 47 PPS, which is enough

to be used in a real-time application.
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6. CONCLUSION

In human pose estimation systems, techniques that utilize multi-view information

are more robust to self-occlusions. If particular views cannot estimate body coordi-

nates reliably, integration of the information obtained from other views can mitigate

the performance loss. In this thesis, we showed that using a multi-view camera config-

uration improves the 3D pose estimation performance in terms of the reconstruction

error of body joint coordinates. For this purpose, we have employed a state-of-the-art

single-view human pose estimator (the HMR method) and showed that estimated body

coordinates become more accurate if we use multiple camera views. In the proposed

framework, individual 3D body pose information obtained from each camera view is

combined with the Procrustes Analysis.

In our experiments, we have found that increasing the number of cameras results

in lower reconstruction error. We have observed that carefully selected four-camera

configurations offer the best trade-off in terms of reconstruction error and system com-

plexity, i.e., the number of cameras used in a multi-view setup. Adding more cameras

to the four-camera configurations yields marginal accuracy improvement. In our exper-

iments, we have found that four cameras that are placed diagonally achieve sufficiently

accurate pose estimation performance.

We have also observed that the positive impact of diagonal four-camera selec-

tion decreases when the motion sequence spans the whole studio. Another case that

decreases the positive impact of diagonal camera selection is the existence of extreme

poses in action. However, selecting four cameras from each quadrant still contributes

more than the other four-camera configurations.

In our experiments, we have shown that dynamic-camera selection has a signif-

icant effect on reconstruction accuracy. However, our method, body-orientation based

dynamic-camera selection for four cameras, did not improve the reconstruction per-

formance. As one of our future work, we plan to design an effective way of dynamic
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camera selection.

As another future work, we plan to define a Procrustes Analysis based loss func-

tion to train a ConvNet-based model on multi-view images to obtain further inference

in terms of pose accuracy.

We also demonstrated that two iterations for our Procrustes Analysis based re-

construction algorithm yields lower reconstruction errors. Further iterations have pre-

sented almost the same performance. By default, our experiments on the MPI INF 3DHP

and the Human3.6M datasets are obtained by two iterations.

We have also checked the generalization of our multi-view reconstruction method

to another single-view 3D pose estimator: “pose-hg-3d”. Even though in terms of

the single-view performance, the “pose-hg-3d” method is not better than HMR, the

multi-view reconstruction performance of both two methods are highly similar in our

experiments. We have also found out that “pose-hg-3d” can perform similarly in our

multi-view reconstruction, even though it is not as robust to changes in camera-view

as HMR is. We have observed that our reconstruction with multiple cameras can

compensate for the weakness of the single-view method in camera-view dependency.

Therefore, we can state that our multi-view reconstruction method can cooperate with

other single-view 3D pose estimator than HMR.

We have achieved to significantly improve the performance of the HMR method

in the benchmarks: Protocol I, and II. Notably, in Protocol II, our results are highly

competitive in the literature.
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