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ABSTRACT

STATISTICAL RETURN PERIODS OF EXTREME

WEATHER EVENTS

The Middle East & North Africa (MENA) region is one of the most populated

areas on Earth in terms of city population. There are 643 cities in MENA region with

population of urban agglomerations with 300,000 or more in 2018 according to United

Nations.

In this thesis, return periods of extreme temperature events are calculated using

the probability density functions. For this purpose, Global Climate Model (GCM)

outputs of Max Plank Institute Earth System Model Mixed Resolution (MPI-ESM-

MR) and Hadley Global Environment Model 2 - Earth System (HadGEM2-ES) are

dynamically downscaled to 50 km for the MENA region by using the Regional Climate

Model v4.4 (RegCM4.4) for 2 different Representative Concentration Pathways scenar-

ios, namely RCP 4.5 and RCP 8.5. Elevation correction is applied to each point for

sea level. Temperatures at city centers are calculated from the nearest 4 grid points

using inverse distance squared interpolation method. Daily maximum temperatures

histograms are plotted for each city and future predictions of return periods are com-

pared with the reference period of 1971-2000 using the means and standard deviations

obtained from Gaussian Mixture Model.

The results show that the frequency of extreme events increases for all cities

between 2070 and 2099. Peaks in temperature distribution are diverging from each

other which will cause more severe extreme events. This divergence would cause cities

to have shorter transition seasons and their climate would transform into only 2 seasons.
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ÖZET

AŞIRI HAVA OLAYLARININ İSTATİSTİKSEL GERİ

DÖNÜŞ PERİYODLARI

MENA (Middle East & North Africa) bölgesi Dünya’daki en kalabalık şehirlere

sahip yerleşim alanlarındandır. Dünya Bankası verilerine göre 2018 yılında MENA

bölgesinde nüfusu 300.000’den yüksek olan 643 şehir bulunmaktadır.

Bu çalışmada, MENA bölgesindeki aşırı hava olaylarının geri dönüş periyodları,

olasılık dağılım fonksiyonları kullanılarak hesaplandı. Bu amaçla, MPI-ESM-MR (Max

Plank Institute Earth System Model Mixed Resolution) ve HadGEM2-ES (Hadley

Global Environment Model 2 - Earth System) küresel iklim modeli, Bölgesel İklim

Modeli v4.4 (RegCM4.4) kullanılarak RCP 4.5 ve RCP 8.5 (Representative Concentra-

tion Pathways) senaryoları için 50km çözünürlüğe dinamik olarak düşürüldü. Karela-

jlamanın her bir noktası deniz seviyesine indirgendi. Şehir merkezlerindeki sıcaklıklar,

bu noktalara en yakın 4 karelaj noktasından ters mesafenin karesi ağırlıklı enterpo-

lasyon yöntemi kullanarak hesaplandı. Günlük maksimum sıcaklıkların histogramları

çizdirildi ve uygun Gauss Karışım Modeliyle elde edilen ortalama ve standart sapmalar

kullanılarak, aşırı hava olaylarının gelecekteki geri dönüş periyotları, referans yıllar

olan 1971-2000 ile karşılaştırıldı.

Aşırı hava olaylarının 2070 ve 2099 yılları arasında tüm şehirlerde artacağı bu-

lundu. Sıcaklık dağılım grafiğindeki tepelerin birbirinden uzaklaştığı gözlemlendi. Bu

açılma hem şehirlerde daha sert hava olaylarının, hem de daha kısa geçiş mevsimlerine

neden olarak şehirlerin ikliminin 2 mevsime dönüşmesine neden olacağı bulundu.
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1. INTRODUCTION

Climate change is the most important man-made problem the humanity has ever

faced. Usage of fossil fuels and deforestation are the main reasons that increase the

greenhouse gases in the atmosphere. Average temperatures have increased by about

1.0◦C with respect to pre-industrial levels and will reach 1.5◦C between 2030 and

2052 [1]. With the increasing energy in the atmosphere, effects of climate change

become clearer. Frequency, intensity and duration of extreme events increase with the

climate change [2]. Statistically, daily temperatures are shaped similar to a Gaussian

curve. Increase in means causes more extreme hot and less extreme cold days. However,

climate change also induces an increase in variance which causes more extreme hot and

more extreme cold days as shown in Figure 1.1. These effects cause more severe events

in places already experiencing extreme events. In addition to this, extreme events are

introduced in some new locations. Most importantly, increase in extreme events pose

great risks to human health.

Figure 1.1. Probability density function of daily temperature [2]



2

According to some estimations, more than 1,300 deaths per year are caused by

extreme heat in the United States [3]. In summer 2003, more than 70,000 additional

deaths were due to extreme heat in Europe [4]. More frequent and prolonged ex-

treme temperatures produce environmental and social results. Extreme temperatures

pose health risks for people with chronic illnesses, cardiovascular diseases, respiratory

diseases and diabetes-related diseases. Urban heat island effect further increases the

health risks. Therefore, estimating the change in the frequency of extreme events in

the future is very important for human health.

In this study, 643 cities with population more than 300,000 in MENA region are

analysed [5]. The MPI-ESM-MR and HadGEM2-ES general circulation model out-

puts are dynamically downscaled to 50 km resolution using Regional Climate Model

v4.4(RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics

(ICTP) for Representative Concentration Pathway Scenarios. Thereafter, the his-

tograms of daily maximum temperatures for 30-year periods are plotted for the pe-

riods 1971-2000 and 2070-2099. Means and standard deviations are calculated for each

Gaussian component contributed in bimodal distribution using Scikit-learn Machine

Learning package in Python. Change in return periods of extreme weather events (1-

year, 10-year, 30-year, 50-year and 100-year events) are calculated using empirical rule.

16 of the largest cities in the MENA region are presented in this thesis.
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2. CLIMATE CHANGE

2.1. The Industrial Revolution

In the 18th century, high growth in the population created a high demand on

food and new resources. In order to supply the needs of the population, new efficient

methods of production were required. Steam engines were in use for a long time,

but the critical improvements made by James Watt that improved the efficiency of

steam engines further accelerated the growth. Steam-powered engines allowed more

coal extraction from the Earth’s crust. Heat generated by the steam engines were used

to process iron ore which led to a boom in iron industry and resulted in more demand

of resources. Steam engines were used in factories and replaced the old systems such

as sails and horses in transportation. Agricultural land expansion sped up.

Figure 2.1. Historical growth of the world population since year 0 [6]



4

In those days, coal and fossil fuels, which are the nature’s way of carbon capturing

in billions of years, were the main energy sources for steam engines. With deforestation

and use of fossil fuels, this captured carbon dioxide re-released and increased the CO2

amount in the atmosphere, and this situation continues to date.

French scientist Joseph Fourier (1824) proposed that the Earth’s atmosphere

behaves like a greenhouse and provides moderate climatic conditions that support life.

There is a known physical process called black-body radiation. All objects emit invisible

infrared radiation and loose energy. Without an atmosphere, Earth would be -18◦C

due to its “albedo” which is the measure of reflection of sunlight by an astronomical

body [7]. The atmosphere insulates the Earth like a blanket and creates the natural

Greenhouse Effect, but Fourier did not know how the atmosphere trapped the heat.

In the following years, Irish physicist John Tyndall showed how different molecules

absorb infrared radiation and re-emit according to their molecular structure [8]. Thus,

the Earth’s atmosphere could store the heat to keep the planet warm at about 14◦C

(1951-1980 average).

2.2. The First Estimation

The first calculation of how the CO2 emissions from fossil fuels could affect the

global temperatures was made by Arrhenius in 1896 [9]. In this pioneering study, he

used an energy budget model that includes the solar and terrestrial radiation, and rela-

tion between them. He concluded that doubling the amount of CO2 in the atmosphere

would cause the temperatures rise by about 6◦C. Similarly, a decrease in the amount of

CO2 would lower the temperature and that was the cause of ice ages. We would argue

that this study was the first numerical modelling of atmosphere and the beginning of

many more studies, such as this thesis, to predict the future temperature anomalies.
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Figure 2.2. A page from Richardson’s book showing the gridded cells.

Building upon these studies, English mathematician and meteorologist Lewis Fry

Richardson (1922) presented a new method in his book to predict future climates by

dividing the atmosphere into gridded cells (See Figure 2.2) [10]. Unfortunately, his

efforts to produce a forecast by hand were in vain as it took six weeks for an 8-hour

forecast without computers. This gridded cell method is still used in climate modelling.

In the mid-20th century, Serbian geophysicist and astronomer Milutin Milankovich

(1920) worked out how the climate changes on Earth due to its orbit around sun [11].

The eccentricity of Earth’s orbit changes in every 100,000 years and this periodicity

causes the glacial and interglacial periods. When orbital cycles put Earth in ice ages,

Earth’s albedo increases as its surface is covered with ice and reflects more incoming

radiation. Therefore, more CO2 is solved in oceans as the solubility of gases in liquids

increases with decreasing temperature. When orbital cycles put Earth in warm inter-

glacial periods, warmed oceans emit more CO2 to the atmosphere and further amplify

the warming effect.
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Figure 2.3. CO2 records and temperature anomaly over the past 800,000 years [12]

This oscillation between temperature anomalies and the amount of CO2 can be

seen in Figure 2.3. The key importance of this graph is that the CO2 levels change

between 180-280 ppm over the course of 800,000 years. The amount of CO2 in the

atmosphere was about 180 ppm during ice ages and about 280 ppm during warm

interglacial periods. During the glacial periods, Earth’s average temperature dropped

by about 6◦C. These results were parallel with the ideas of Arrhenius.

Guy Stewart Callendar (1938) estimated that the amount of CO2 in the at-

mosphere was 290 ppm and there was an increase of 6% from 1900 to 1936 [13]. He

indicated that “The temperature observations at 200 meteorological stations were used

to show that world temperatures had actually increased at an average rate of 0.005◦C

per year during the past half century”. He showed the correlation between the rising

amount of anthropogenic CO2 and global temperatures, known as Callendar Effect.

Although, he thought that the combustion of fossil fuels and consequently increasing

temperatures were beneficial to mankind as it provided both power and also delayed
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the return of the deadly glaciers.

2.2.1. Continuous Measurement of CO2 Concentration

In the beginning of 20th century, the reliability of CO2 measurements was disputed

with the growing interest in increasing temperatures due to fossil fuel combustion. In

1953, Charles Keeling started to take precise CO2 measurements for his doctoral study.

He took measurements near Monterey and he soon realised a diurnal pattern with

steady values of about 310 ppm. He repeated these measurements at different part of

the world and obtained the same result: strong diurnal behaviour with steady values of

about 310 ppm in the afternoon. His measurements drew the attention and in March

1958, continuous measurements at Mauna Loa, Hawaii had started. These long-term

measurements showed that the CO2 reached a maximum value in May and declined to a

minimum value in October. Keeling explained this fact as “We were witnessing for the

first-time nature’s withdrawing CO2 from the air for plant growth during summer and

returning it each succeeding winter.” Another discovery these measurements provided

was the fact that average CO2 concentration was gradually increasing. These annual

fluctuations and increase in averages can be seen in Figure 2.4 which is now called as

“Keeling Curve”. CO2 concentrations have already exceeded 410 ppm in this day and

age.
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Figure 2.4. Full record of measurements at Mauna Loa Observatory

Now, we can place the measurements from Mauna Loa to 800,000 years of CO2

measurements obtained from ice cores (See Figure 2.3). Current CO2 levels are approx-

imately 50% higher than the maximum value of 280 ppm seen during warm interglacial

periods.

Figure 2.5. 800,000 years of CO2 levels.
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2.3. Computerised Forecasts

The World’s first electronic, large scale, general-purpose digital computer ENIAC

was proposed by John von Neumann to be used in numerical weather forecasting at

Princeton. In 1950s, ENIAC was used to compute forecasts with 2D gridded atmo-

spheric model in a similar way Richardson had proposed. In the later years, Norman

Philips created the first general circulation model (GCM) to forecast atmospheric dy-

namics. His model was successful in predicting seasonal patterns and jet streams [14].

Interest in numerical modelling of climate increasingly continued in those years

parallel with the developments in computers. However, in 1963, Müller showed that

calculations showing an increase in temperatures due to CO2 were highly suscepti-

ble to the model assumptions. This result made CO2 based warming theories very

questionable [15].

A study made by Manabe and Wetherald (1967) worked things out. In their

paper, they proposed the first sound climate model using a 1D radiative-convective

model. They found out the influence of clouds and water vapour on CO2 based warming

and concluded a 2.4◦C warming due to doubling CO2 [16]. Their findings still hold to

this day well within the limits of current predictions. Thanks to their results, more

realistic climate simulations can be carried out.

With the emerging consciousness about environment and climate change, the first

Earth Day was celebrated on 22 April 1970. Twenty million participants around the

country joined to the largest demonstration in American history. Later that year, the

Clean Air Act, a comprehensive air quality law, passed in the Senate.

The early climate models were not considering the atmospheric and oceanic in-

teractions. In reality, the climate system consists of several components. Manabe et

al. (1975) constructed a coupled ocean-atmosphere model which takes into account the

individual components and used a realistic topography rather than idealized one [17].

Their work was the first exemplary of coupled ocean-atmosphere GCM(AOGCM).
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Though, the resolution was coarse with grid sizes of 500 km as shown in Figure 2.6.

Figure 2.6. Topography of Earth surface used in the first coupled GCM [17]

2.4. IPCC

The Intergovernmental Panel on Climate Change (IPCC) was established in 1988

to provide an objective and scientific assessment of current studies on climate change

and its effects. The IPCC is an intergovernmental body of the United Nations and an

internationally accepted authority on climate change.

The first IPCC report published in 1990 stated that under the IPCC Business-

as-Usual emissions of greenhouse gases, a rate of increase of global-mean temperature

during the next century of about 0.3◦C per decade. The report also predicted a 6 cm

rise in sea-levels. The IPCC’s fifth assessment report published in 2013 predicted an

increase in temperatures with lower limit of 1.5◦C [2].

In 2000, IPCC’s special report presented future greenhouse gas emission scenarios.

Future emissions depend on socio-economic development, demographic development
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and technological change. As their future is uncertain, emission scenarios are used in

climate change analysis and future climate modelling. The Special Report on Emissions

Scenarios (SRES) followed four different schemes to describe the relationships between

emission driving forces and their evolution. The SRES storylines were divided into 4

types; A1, A2, B1 and B2. These scenarios were characterized to project the future

greenhouse gas pollution, economic developments, land-use and other driving forces

[18]. These scenarios were later replaced by “Representative Concentration Pathway”

scenarios, which were also used in this thesis.

IPCC’s Special Report on Global Warming of 1.5◦C published in 2018 stated that

approximately 1.0◦C increase in temperatures since pre-industrial period are caused by

anthropogenic emissions. It is expected that this increase is to reach 1.5◦C between

2030 and 2052. The report stated that climate-related risks to health, food secu-

rity, water supply, human security, economic growth increase as the global warming

increases but impact of these risks depend on not only rate of warming but also geo-

graphic location, levels of development and vulnerability, and climate adaptation and

mitigation [1].

2.5. Extreme Events

2003 heatwave caused 15,000 deaths in France. Multiple all-time maximum tem-

perature records were broken in different European cities. The United Nations En-

vironment Program estimated a death toll more than 30,000 people. Elderly people

were the most affected group. During the heatwave multiple nuclear reactors had to

shut-down due to either the water levels were dropped, or water temperatures exceeded

safety limits. Increased demand of electricity as people turned on the air conditioning

and refrigerators together with the insufficient electricity generation due to shutdowns

caused electric cut-outs in Europe, which further increased heat related deaths [19].

Robine et al. discovered that there were 70,000 additional deaths in Europe during the

summer of 2003 [4].
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Kuglitsch et al. (2010) found that about 7 times increase in the mean heatwave

intensity, length and frequency had occurred between 1960 and 2006 in the eastern

Mediterranean using data from 246 stations [20]. Lieveld et al. (2012) proposed that

rare hot summer conditions might be norm for the Balkan Peninsula and Turkey by

the end of the 21st century [21]. Leliveld et al. (2016) found that the extreme events in

MENA were stronger in summers rather than winters as shown in other areas and heat

extremes are projected to gradually increase in the future [22]. Öztürk et al. (2015)

found a shift and flattening in the probability distribution functions of temperatures

in the future with respect to reference period. They proposed that the frequency of

extreme heat events will increase in the future [23]. Sillmann et al. (2013) found that

changes in temperature and precipitation are most apparent in RCP8.5 scenario [24].

Efthymiadis et al. (2011) found that trends in Mediterranean temperature extremes are

consistent with the global trends with decreases in cold extremes and increases in hot

extremes [25]. Sheerwood et al. (2010) stated that the current wet-bulb temperatures,

the lowest temperature for air to be cooled by the evaporation of water, are similar

across different climates and never exceed 31◦C. If wet-bulb temperatures reach 35◦C

in the future for extended periods with global mean temperature increase of about 7◦C

as seen in climate projections, this will induce hyperthermia in humans as it would be

impossible to dissipate metabolic heat by perspiration [26].

Several studies presented the impacts of extreme events on human health, en-

vironment, water resources and economy. Therefore, knowing how the frequency of

extreme events will change in the future is very important to take precaution against

climate-related disasters in the future.
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3. METHODOLOGY

3.1. The Climate System

The Earth’s climate system consists of five major components: the atmosphere

(air), the hydrosphere (water), the cryosphere (ice and permafrost), the land surface

and the biosphere. In addition to these, external climate forcing is also responsible for

change in climate such as incoming sunlight, volcanism, plate tectonics and greenhouse

gases due to human activity.

The atmosphere is the most unstable, rapidly changing and most effective part of

Earth’s climate. Even though the large part of the gases in the atmosphere, i.e. nitrogen

(78.1% N2), oxygen (20.9% O2) and argon (0.93% Ar), have only limited interaction

with the incoming solar radiation and does not absorb and emit the infrared radiation

emitted by Earth. On the other hand, carbon dioxide (CO2), methane (CH4), nitrous

oxide (N2O) and ozone (O3) are called greenhouse gases and they play an essential role

in the Earth’s energy budget by absorbing and emitting infrared radiation. Besides,

aerosols and clouds are also influential in climate.

The hydrosphere comprises all liquid surface and subterranean water. 75% of

Earth surface is covered with water. The oceans are important regulators on Earth’s

climate due to their ability to store and transport large amount of energy and carbon

storage. The cryosphere consists of ice sheets and glaciers, and effective on climate

system due to its albedo. Also, water stored in glaciers is a potential of sea level rise.

Land surfaces affect how the wind blows over topography and aerosolizes the dust from

the surface, and how the energy absorbed by the earth and changes the soil moisture

which brings water vapour back to the atmosphere [27].
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Figure 3.1. Schematic view of the components of the global climate system (bold),

their processes and interactions (thin arrows) and some aspects that may change

(bold arrows) [27]

3.2. General Circulation Model GCM

General Circulation or Global Climate models (GCMs) are primary tools used to

project the Earth’s climate in the future using mathematical equations that describe the

movement of energy (first law of thermodynamics) and momentum (Newton’s second

law of motion), along with the conservation of mass (continuity equation) and water

vapour (ideal gas law) that simulate atmospheric and oceanic processes, interactions

and feedbacks [28]. GCMs use 3D grids over the globe with horizontal and vertical

levels. In each cell, atmospheric interactions, radiation, precipitation, snow cover, sea

ice, heat and moisture are computed. Grid resolutions are generally quite course with

a range of 100 to 500 kilometers in horizontal and 10 to 20 layers in vertical.
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Figure 3.2. Climate models are systems of differential equations based on the basic

laws of physics, fluid motion, and chemistry. Atmospheric models calculate winds,

heat transfer, radiation, relative humidity, and surface hydrology within each grid

and evaluate interactions with neighbouring points [29]

In GCMs, many physical processes cannot be properly modelled as they occur at

smaller scales. Their known properties must be averaged over the larger scales and this

is a source of uncertainty in future climate models. Also, various feedback mechanisms

such as water vapour and warming, clouds and radiation, ocean circulation and albedo

are other sources of uncertainty. Therefore, GCMs may project different responses

depending on how processes and feedbacks are modelled.

3.3. The Max-Planck-Institute Earth System Model

The Max-Planck-Institute Earth System Model Mixed Resolution (MPI-ESM-

MR) is one of the models used in this study. The mixed resolution (MR) version of

MPI-ESM (MPI-ESM-MR) has higher vertical resolution in the atmosphere and higher

horizontal resolution in the ocean. The MR configuration doubles the number of levels

in the atmosphere and decreases the horizontal grid spacing of the ocean, compared to

the low resolution (LR) configuration.
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MPI-ESM couples the atmosphere, ocean and land surface through the exchange

of energy, momentum, water and carbon dioxide. The model consists of the coupled

general circulation models ECHAM6 for the atmosphere, MPIOM for the ocean, JS-

BACH for terrestrial biosphere and HAMOCC for the marine biogeochemistry as shown

in Figure 3.3. Included carbon cycle to the model is the largest conceptual difference

compared to predecessors. In addition to these, geographic distribution of vegetation

has been improved by a climate-consistent development. Anthropogenic land-cover

change, and the surface albedo scheme have been also improved [30].

Figure 3.3. Schematic view of MPI-ESM [30]

3.4. Hadley Centre Global Environment Model version 2

The Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-

ES) is another model used in this study. The HadGEM2 model includes atmosphere,

ocean and sea-ice components. Dynamic vegetation, ocean biology and atmospheric

chemistry are included in the Earth-system configuration.

The standard atmospheric component has 38 levels extending to 40km height,

with a horizontal resolution of 1.25 degrees of latitude by 1.875 degrees of longitude,

which produces a global grid of 192 x 145 grid cells. This is equivalent to a surface

resolution of about 208 km x 139 km at the Equator, reducing to 120 km x 139 km
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at 55 degrees of latitude. A vertically extended version, with 60 levels extending to

85km height, is also used for investigating stratospheric processes and their influence

on global climate. The HadGEM model takes all months as 30 days [31].

Figure 3.4. Processes included in the HadGEM2 model family [31]

3.5. Regional Climate Model RegCM

GCMs are valuable but due to their coarse resolution, they are not useful for high-

resolution regional climate variability analyses. Geographical features of a region affect

its climate and local atmospheric interactions. To assess the effects of climate change

on fine-scale processes such as crop production, hydrology and such, high-resolution

climate models are needed at scales of 10-50 kilometres.

Regional Climate Models (RCM) use GCM output as input and incorporate more

complex topography, the land-sea distribution and surface features in order to generate

realistic climate outputs at higher spatial resolution. The concept of downscaling is

shown in Figure 3.5.

In this study, the RegCM is used for generating regional climate model outputs

for MENA region. The RegCM has started to be developed since 80s starting with the
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version 1 and today has reached the version 4. It is designed and developed by a varied

community and distributed as an open source and portable code. The distribution and

maintenance are coordinated by the Earth System Physics section of the Abdus Salam

International Centre for Theoretical Physics (ICTP).

Figure 3.5. The concept of downscaling. (Source: David Viner, Climatic Research

Unit, University of East Anglia, UK)

3.5.1. Model components

The RegCM uses four components: Terrain, ICBC (Initial Conditions Boundary

Conditions), RegCM and Post-processor. Elevation, land use, sea surface temperature

and 3D isobaric meteorological data are horizontally interpolated using Terrain and

ICBC preprocessors from a coordinate mesh to high-resolution domain on either a Ro-

tated (and Normal) Mercator, Lambert Conformal, or Polar Stereographic projection.
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Sigma coordinate system, σ̇, which is a vertical coordinate system used in compu-

tational models defined as the ratio of the pressure at a given point in the atmosphere

to the pressure on the surface of the earth underneath it, is used for vertical interpola-

tion from pressure levels to the σ̇ coordinates. The σ̇ surfaces near the ground closely

follow the terrain as shown in Figure 3.6 [32].

Figure 3.6. Schematic representation of the vertical structure of the model [32]

3.5.2. The RegCM Model Horizontal and Vertical Grid

Data is generated on pressure surfaces and then interpolated to model’s vertical

coordinates before input to model. The vertical coordinates follow the terrain as getting

closer to surface and flattens at higher levels. The model levels are defined by the

Hydrostatic solver using a dimensionless σ̇ coordinate where p is the pressure, pt is a

specified constant top pressure and ps is the surface pressure,

σ̇ =
(p− pt)
(ps − pt)

(3.1)



20

where we can define:

p∗(x, y) = ps(x, y)− pt (3.2)

For the Non-hydrostatic solver, a similar dimensionless coordinate is used, but it

is defined entirely from the reference pressure. Given a reference atmospheric profile

the values:

p(x, y, z, t) = p0(z) + p′(x, y, z, t) (3.3)

T (x, y, z, t) = T0(z) + T ′(x, y, z, t) (3.4)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t) (3.5)

are changing on the vertical axis where (p′, T ′,ρ′) are the perturbations of the reference

atmospheric profile, the vertical sigma coordinate is defined as:

σ̇ =
(p0 − pt)
(ps − pt)

(3.6)

where ρ is the air density, T is the temperature, ps is the surface pressure, pt is a

specified constant top pressure and p0 is the reference pressure profile. The total

pressure at each grid point is thus given as:

p = p∗σ̇ + pt + p′ (3.7)

with p∗ defined as in the hydrostatic solver. It can be seen from the Equation 3.6 and

Figure 3.6 that σ̇ is 0 at the top and 1 at the surface, and each model level is defined

by a value of σ̇, which do not necessarily have to be evenly spaced.

The horizontal grids use the Arakawa grid system, specifically Arakawa-B stag-

gering, to define the scalars at the center of the grid box and to evaluate the eastward

and northward velocity components at the grid corners as shown in Figure 3.7. The
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center points of grid squares are referred to as cross points, and the corner points are dot

points. Necessary interpolations are made by the preprocessors to assure consistency

with the grid.

Figure 3.7. Schematic representation showing the horizontal Arakawa B-grid

staggering of the dot and cross grid points.

3.6. Representative Concentration Pathways (RCP)

Climate models are used to predict the changes in climate in the future. As the

effects of climate change depends on socio-economic and emission scenarios, plausible

descriptions of how the future may evolve is needed. For this purpose, different sce-

narios with a range of variables including socio-economic change, technological change,

energy and land use, and emissions of greenhouse gases and air pollutants were defined

to be used as input for climate model runs. Representative Concentration Pathways

(RCP) are defined to provide possible development trajectories for the main drivers of

climate change.
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The RCPs describe possible climate situations in the future which emphasize

how much greenhouse gases are emitted and how socio-economic factors are changed.

The four RCP scenarios, namely RCP2.6, RCP4.5, RCP6 and RCP8.5; are defined by

their target radiative forcing values for 2100 in the range between, 2.6 to 8.5 W/m2.

Description of scenarios and corresponding studies are shown in Table 3.1.

Table 3.1. Overview of representative concentration pathways (RCPs) [33].

Description Publication

RCP8.5

Rising radiative forcing pathway

leading to 8.5 W/m2 (∼1370 ppm

CO2 eq) by 2100.

Riahi et al. (2007) [34]

RCP6

Stabilization without overshoot

pathway to 6 W/m2 (∼850 ppm

CO2 eq) at stabilization after 2100

Fujino et al. (2006) [35]

Hijioka et al. (2008) [36]

RCP4.5

Stabilization without overshoot

pathway to 4.5 W/m2 (∼650 ppm

CO2 eq) at stabilization after 2100

Clarke et al. (2007) [37]

Smith and Wigley (2006) [38]

Wise et al. (2009) [39]

RCP2.6

Peak in radiative forcing at ∼3 W/m2

(∼490 ppm CO2 eq) before 2100 and

then decline (the selected pathway

declines to 2.6 W/m2 by 2100).

Van Vuuren et al. (2006) [40]

Van Vuuren et al. (2007) [41]

In this study, RCP 4.5 and RCP 8.5 scenarios are used. RCP4.5 and RCP8.5

scenarios lead to a radiative forcing of 4.5 W/m2 and 650 ppm CO2 eq., and 8.5 W/m2

and 1370 ppm CO2 eq., respectively. RCP 2.6 scenario is the best case scenario for

limiting the anthropogenic climate change and keeping the temperatures below 2◦C

above pre-industrial levels. RCP 4.5 is a stabilization scenario with emissions peak

around mid-century and then decline. This scenario is between RCP2.6 best case and

RCP8.5 worst-case scenarios and predicts 2.4◦C increase and 0.47 m sea level rise at

the end of the century. RCP 8.5 is also referred as business-as-usual scenario as it

does not include any specific climate mitigation target. This scenario predicts 4.3◦C

increase at the end of the century, 0.63 m sea level rise and large increase in extreme
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weather events.

Figure 3.8. Greenhouse Gases emissions of RCP scenarios [33]

3.7. The Coordinated Regional Climate Downscaling Experiment

(CORDEX)

The CORDEX is an international coordinated framework established by World

Climate Research Programme (WCRP) to organize, evaluate and improve regional

climate modelling techniques. CORDEX aims to bridge the gap between the climate

modelling community and end users of climate information.

The grid resolutions are set to 0.44◦ by 0.44◦ for the RCMs using a rotated

pole system where the model operates over an equatorial domain with a quasi-uniform

resolution of approximately 50km. The globe is divided into 14 domains where the

regional downscaling takes place:

• Region 1: South America

• Region 2: Central America

• Region 3: North America

• Region 4: Africa

• Region 5: Europe (EURO)

• Region 6: South Asia
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• Region 7: East Asia

• Region 8: Central Asia

• Region 9: Australasia

• Region 10: Antarctica

• Region 11: Arctic

• Region 12: Mediterranean (MED)

• Region 13: Middle East North Africa (MENA)

• Region 14: South-East Asia (SEA)

Figure 3.9. CORDEX Domains [42]

In this study, Region 13: Middle East & North Africa (MENA) is used. The

GCM outputs of MPI-ESM-MR and HadGEM2 models are dynamically downscaled

to 50×50 km grid for MENA region.

3.7.1. Region 13: MENA

The CORDEX MENA region used in this study spans an extensive area bordered

by the Europe to the north, Democratic Republic of the Congo to the south, Atlantic

Ocean to the west and India to the east. CORDEX MENA region is showed in Figure

3.10. Total population of 643 cities with population higher than 300,000 used in this

study is approximately 550 million [5]. Total population of 16 cities presented in this

thesis is about 100 million. Therefore, a change in extreme events in this region would

potentially affect approximately 10% of the World’s population.
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Figure 3.10. CORDEX Region 13: Middle East North Africa (MENA)

The Köppen-Geiger climate classification is widely used in climate systems. Cli-

mate is divided into 5 main climate groups with certain temperature and precipitation

patterns. Each group is represented by a letter, namely A (tropical), B (arid), C (tem-

perate), D (continental), and E (polar). As it can be seen in Figure 3.11, most of the

MENA region falls into tropical(A), arid(B) and temperate(C) climates. Among 643

cities with population higher than 300,000 in MENA region, 16 cities with population

higher than 1 million from different countries are chosen to be presented in this thesis.

These cities are shown in Figure 3.11.
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Figure 3.11. Köppen-Geiger Classification [43]

3.8. Data Preparation

Daily city maximum temperature data are obtained from the RegCM outputs

of MPI-ESM-MR and HadGEM2 model for RCP4.5 and RCP8.5 scenarios for MENA

region. First, as the raw data changes with topography and is in 50-by-50 km grid

format, elevation correction to sea level is applied to all dataset using temperature

lapse rate of 6.5◦C/km to get rid of the effects of sudden changes in elevation due to

coarse grid resolution at city scale [44].

Tsea level = (Ti − 273.15) + 0.0065H (3.8)
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where Tsea level is the temperature of the grid point reduced to sea level, Ti is the

initial temperature of the grid point and H is the elevation of that grid point. In the

parenthesis, unit of temperature is changed from Kelvin to Celsius scale. Then, daily

temperatures at city centers are calculated using inverse distance squared weighted

interpolation method from the nearest 4 grid points:

T (x) =

4∑
1

T (xi)

d(x, xi)
2

4∑
1

1

d(x, xi)
2

(3.9)

where T (x) is the interpolated temperature at city center, T (xi) is the temperature at

ith nearest grid point and d(x, xi)
2 is the square of the distance between the city center

and the ith nearest grid point. Daily temperature histograms for each city center are

plotted using this elevation corrected data.

3.9. Scikit-learn Machine Learning Library for Python

Scikit-learn is a Python library that provides many supervised and unsupervised

learning algorithms such as regression, classification, clustering, model selection and

preprocessing. For this study, Gaussian mixture model is used for analysis [45].

When the city histograms are plotted, the prominent feature was that the daily

temperatures follow a bimodal distribution, a continuous distribution with two differ-

ent modes, i.e. two peaks. Therefore, a unimodal (one ’peak’) fit on a multi-modal

distribution gives a poor fit. A Gaussian distribution is defined by two parameters,

mean µ and standard deviation σ. To analyse the return periods of extreme temper-

ature events, mean and standard deviation of each Gaussian component in daily city

temperature histograms should be known. Thus, Gaussian mixture model is used to

find the means and standard deviation for each Gaussian component in multimodal

distribution.
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Figure 3.12. A Gaussian mixture of three normal distributions [46]

3.9.1. Gaussian Mixture Model

A Gaussian mixture model is a probabilistic model that assumes all the data

points are generated from a mixture of a finite number of Gaussian distributions with

unknown parameters. Mixture models do not require knowing subpopulation and learn

the population automatically in a form of unsupervised learning [46].

For a Gaussian mixture model with K components, the kth component has a

mean of µk and variance of σ2
k for the unimodal case and a mean of ~µk and covariance

matrix of Σk for multimodal case. The mixture component weights are defined as φk

such that the total probability distribution normalizes to 1.
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Unimodal case:

p(x) =
K∑
i=1

φiN (x | µi, σi) (3.10)

N (x | µi, σi) =
1

σi
√

2π
exp

(
− (x− µi)

2

2σ2
i

)
(3.11)

K∑
i=1

φi = 1 (3.12)

where p(x) is the probability function, N (x | µ, σ) is the normal distribution of x with

mean µ and variance σ2 and φ is the component weights.

Multimodal case:

p(~x) =
K∑
i=1

φiN (~x | ~µi,Σi) (3.13)

N (~x | ~µi,Σi) =
1√

(2π)K |Σi|
exp

(
− 1

2
(~x− ~µi)

TΣ−1i (~x− ~µi)

)
(3.14)

K∑
i=1

φi = 1 (3.15)

where ~µ is a d dimensional vector denoting the mean of distribution, K is the number

of Gaussian components and Σ is the d× d covariance matrix.

For known number of componentsK, for this study K=2, expectation-maximization

(EM) algorithm is used to predict the mixture model’s parameters. The main diffi-

culty in learning Gaussian mixture models is that which points have come from which

latent component is unknown. Expectation-maximization algorithm gets around this

problem by an iterative process. At the first step, expectation step, random Gaussian

components with random model parameters µ, Σ and φ are used to calculate for each

point the probability of being generated by each component. Then, in the second step,

maximization step, model parameters are adjusted to maximize the likelihood of a

point being generated by these components. This process repeats until the algorithm

converges.
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3.10. Empirical Rule of Normal Distribution

The empirical rule is a statistical method used to determine how many σ away a

value is from the mean in a normal distribution. The expected percentage of population

inside µ± xσ range is defined as:

E(µ± xσ) = erf

(
x√
2

)
(3.16)

Figure 3.13 shows the approximate percentage of population that falls into 1σ, 2σ, 3σ

away from the mean.

Figure 3.13. 68-95-99.7 Rule

The return period of an event is determined by the frequency of event that falls

outside of µ± xσ range. The approximate expected frequency outside range is defined

as:

1 in
1

1− erf

(
x√
2

) (3.17)
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In this study, 1-year, 10-year, 30-year, 50-year and 100-year events are calcu-

lated. The mean and standard deviation of each Gaussian component of bimodal daily

temperature histogram for the past and the future are found. 2 Gaussian components

in bimodal distribution for the past and the future are defined as N (µpast
cold , σ

past
cold ) and

N (µpast
hot , σ

past
hot ), N (µfuture

cold , σfuture
cold ) and N (µfuture

hot , σfuture
hot ), respectively. The data are

of daily temperatures for 30 years, thus the number of days falls into a period in a year

is needed for calculating the return periods. Using Equation 3.16, the number of days

with temperatures higher than µ− σ is found to be approximately 83.14% of the total

population as shown in Figure 3.14.

Figure 3.14. The population higher than µ− 1σ is ∼83.14% of total population

Then, total population of hot period in a year can be found. Let T is the set of

days hotter than µpast
hot − σ

past
hot ,

T = {t : ∀t ≥ µpast
hot − σ

past
hot } (3.18)

where t is the temperature of a day. T consists 30-year data.
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Thus, the number of days in the normal distribution of hot period for a year is

found as:

|N (µpast
hot , σ

past
hot )| = |T |

15

(
1 + erf

(
1√
2

)) (3.19)

where |N (µpast
hot , σ

past
hot )| is the cardinality of the normal distribution for the past hot

period in a year, |T | is the cardinality of the set of days hotter than µpast
hot − σ

past
hot . In

other words, length of a year is defined by |N (µpast
hot , σ

past
hot )| .

Then, expected frequency of n-year events, where the number of days in a year

is defined as |N (µpast
hot , σ

past
hot )|, is calculated.

fpast
n = n× |N (µpast

hot , σ
past
hot )| (3.20)

where fpast
n is the expected frequency outside range and n is the number of year. For

example, a city with |N (µpast
hot , σ

past
hot )| = 170 will have a frequency of 1-in-17,000 for a

100-year event. Then, Equation 3.17 is solved for the σ range of that event.

xpast = erf−1
(

1− 1

fn

)√
2 (3.21)

The temperature limit τ of n-year event can be calculated as,

τ = µpast
hot + xpastσpast

hot (3.22)

Now, the change in n-year event in the future can be found by solving Equation 3.22,

3.21 and 3.20 backward using µfuture
hot and σfuture

hot for xfuture, f future
ṅ and ṅ, respectively.
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xfuture =
τ − µfuture

hot

σfuture
hot

(3.23)

f future
ṅ =

1

1− erf

(
xfuture√

2

) (3.24)

ṅ =
f future
ṅ

|N (µfuture
hot , σfuture

hot )|
(3.25)

where ṅ is the changed value of n-year event.



34

4. RESULTS

4.1. Alexandria

Alexandria is the second largest city in Egypt with a population of 5,086,000 in

2018 [5]. It is located on the Mediterranean coast where the Nile flows into the sea.

Its location near water masses causes the city to be vulnerable against sea level rise

due to its low elevation. Alexandria has an arid desert hot climate BWh according to

Köppen-Geiger climate classification as shown in Figure 3.11. Also, the Mediterranean

Sea affects the city’s climate by moderating its temperatures and causing rainy winters.

Alexandria’s daily maximum temperature histogram shows a bimodal distribution in

1971-2000 and 2070-2099 periods for both MPI-ESM-MR and HadGEM2-ES dataset

for both RCP4.5 and RCP8.5 scenarios.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

18.08◦C, σpast
cold = 3.4◦C for the cold side, µpast

hot = 29.58◦C, σpast
hot = 3.43◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 20.02◦C,

σfuture
cold = 3.47◦C for the cold side, µfuture

hot = 31.62◦C, σfuture
hot = 3.48◦C for the hot

side. The peaks will diverge about 0.09◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.1, which will further increase the occurrence of

extreme events. The hot period has 199.2 days in the past as shown in Table 4.1

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the future that they would be seen in every 0.179,

1.181, 2.957, 4.545 and 8.167 years, respectively. This means that a 1-year temperature

would be seen once in every month, a 10-year temperature would be seen once in every

year, a 30-year temperature would be seen once in every 3 years, a 50-year temperature

would be seen once in every 5 years, and a 100-year temperature would be seen once

in every 8 years. Additional variables are given in Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

17.84◦C, σpast
cold = 3.43◦C for the cold side, µpast

hot = 29.85◦C, σpast
hot = 3.68◦C for the hot
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side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 20.5◦C, σfuture

cold =

3.55◦C for the cold side, µfuture
hot = 33.41◦C, σfuture

hot = 3.91◦C for the hot side. Also, the

peaks will diverge about 0.89◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.1, which will further increase the occurrence of extreme events.

The hot period has 192.9 days in the past as shown in Table 4.5 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the future that they would be seen in every 0.062, 0.285, 0.606, 0.864

and 1.404 years, respectively. This means that a 1-year temperature would be seen

once in every 11.8 days, a 10-year temperature would be seen once in every 2 months,

a 30-year temperature would be seen twice in every year, a 50-year temperature would

be seen once in every years and a 100-year temperature would be seen twice in every

3 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

18.08◦C, σpast
cold = 3.4◦C for the cold side, µpast

hot = 29.58◦C, σpast
hot = 3.44◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 21.44◦C,

σfuture
cold = 3.79◦C for the cold side, µfuture

hot = 33.61◦C, σfuture
hot = 3.74◦C for the hot side.

Also, the peaks will diverge about 0.67◦C from each other in the future with respect to

1971-2000 as shown in Figure 4.1, which will further increase the occurrence of extreme

events. The hot period has 199.3 days in the past as shown in Table 4.3 and taken as

the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the future that they would be seen in every 0.039, 0.151, 0.298,

0.411 and 0.636 years, respectively. This means that a 1-year temperature would be

seen once in every week, a 10-year temperature would be seen once in every month,

a 30-year temperature would be seen once in every 2 months, a 50-year temperature

would be seen 3 times in every year, a 100-year temperature would be seen twice in

every year. Additional variables are given in Table 4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

17.85◦C, σpast
cold = 3.44◦C for the cold side, µpast

hot = 29.86◦C, σpast
hot = 3.68◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 24.73◦C, σfuture

cold =

3.89◦C for the cold side, µfuture
hot = 36.82◦C, σfuture

hot = 3.75◦C for the hot side. The peak
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diverge is about 0.09◦C from each other in the future with respect to 1971-2000. The

hot period has 192.7 days in the past as shown in Table 4.7 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the future that they would be seen in every 0.014, 0.043, 0.077, 0.102 and

0.151 years, respectively. This means that a 1-year temperature would be seen once

in every 2.7 days, a 10-year temperature would be seen once in every week, a 30-year

temperature would be seen once in every 2 weeks, a 50-year temperature would be seen

once in every 19.5 days, a 100-year temperature would be seen once in every month.

Additional variables are given in Table 4.7.
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Figure 4.1. Alexandria Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c)HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.2. Algiers

Algiers is the capital of Algeria. Its population of urban agglomeration is 2,694,000

in 2018 [5]. Algiers has a temperate dry hot summer Csa climate according to Köppen-

Geiger classification 3.11. The city’s climate is influenced by the Mediterranean Sea.

This effects the city’s climate and moderate its temperatures. Algires’ daily maximum

temperature histogram shows a bimodal distribution in 1971-2000 and 2070-2099 peri-

ods for both MPI-ESM-MR and HadGEM2-ES dataset for both RCP4.5 and RCP8.5

scenarios.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

15.42◦C, σpast
cold = 3.4◦C for the cold side, µpast

hot = 27.4◦C, σpast
hot = 4.56◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 17.15◦C,

σfuture
cold = 3.53◦C for the cold side, µfuture

hot = 29.72◦C, σfuture
hot = 4.65◦C for the hot side.

The peaks will diverge about 0.59◦C from each other in the future with respect to 1971-

2000 as seen in Figure 4.2 according to 1971-2000 base., which will further increase the

occurrence of extreme events. The hot period has 168.6 days in the past as shown in

Table 4.1 and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year

and 100-year temperature events are calculated for the length of future hot period that

they would be seen in every 0.218, 1.486, 3.767, 5.821 and 10.531 years, respectively.

This means that a 1-year temperature would be seen once in every month, a 10-year

temperature would be seen twice in every 3 years, a 30-year temperature would be seen

once in every 4 years, a 50-year temperature would be seen once in every 6 years, a

100-year temperature would be seen once in every 10 years. Additional variables are

given in Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

15.21◦C, σpast
cold = 3.42◦C for the cold side, µpast

hot = 27.25◦C, σpast
hot = 3.93◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 17.7◦C, σfuture

cold =

3.7◦C for the cold side, µfuture
hot = 31.44◦C, σfuture

hot = 4.35◦C for the hot side. The

peaks will diverge about 1.7◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.2, which will further increase the occurrence of extreme events.
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The hot period has 147.1 days in the past as shown in Table 4.5 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.046, 0.184, 0.362, 0.499 and 0.773 years, respectively. This means that a 1-year

temperature would be seen once in every week, a 10-year temperature would be seen

once in every month, a 30-year temperature would be seen once in every 2 months, a

50-year temperature would be seen twice in every year, a 100-year temperature would

be seen 3 times in every 2 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

15.42◦C, σpast
cold = 3.4◦C for the cold side, µpast

hot = 27.4◦C, σpast
hot = 4.57◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 19.11◦C,

σfuture
cold = 3.82◦C for the cold side, µfuture

hot = 32.21◦C, σfuture
hot = 4.93◦C for the hot

side. The peaks will diverge about 1.11◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.2, which will further increase the occurrence of

extreme events. The hot period has 168.6 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.049, 0.207, 0.421, 0.588 and 0.93 years, respectively. This means

that a 1-year temperature would be seen once in every 8.6 days, a 10-year temperature

would be seen once in every month, a 30-year temperature would be seen twice in

every year, a 50-year temperature would be seen 3 times in every 2 years, a 100-year

temperature would be seen once in every year. Additional variables are given in Table

4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

15.21◦C, σpast
cold = 3.42◦C for the cold side, µpast

hot = 27.25◦C, σpast
hot = 3.93◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 21.64◦C, σfuture

cold =

4.24◦C for the cold side, µfuture
hot = 36.3◦C, σfuture

hot = 4.46◦C for the hot side. The

peaks will diverge about 2.62◦C from each other in the future with respect to 1971-

2000 as shown in Figure 4.2, which will further increase the occurrence of extreme

events. The hot period has 147.1 days in the past as shown in Table 4.7 and taken as
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the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.009, 0.018, 0.028, 0.034 and 0.045 years, respectively. This means that a 1-year

temperature would be seen twice in every 3 days, a 10-year temperature would be seen

once in every 3 days, a 30-year temperature would be seen once in every 4.5 days,

a 50-year temperature would be seen once in every 5.5 days, a 100-year temperature

would be seen once in every week. Additional variables are given in Table 4.7.
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Figure 4.2. Algiers Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.3. Amman

Amman is the capital of Jordan and has a population in urban agglomeration of

2,065,000 in 2018. Its mountainous terrain and high elevation affect its climate. Sur-

rounding mountains prevents moderating effect of the Mediterranean Sea. Amman has

an arid steppe hot climate BSh according to Köppen-Geiger classification as summers

are hot and breezy and winters are moderate.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

18.76◦C, σpast
cold = 5.02◦C for the cold side, µpast

hot = 34.79◦C, σpast
hot = 4.88◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 20.81◦C,

σfuture
cold = 5.33◦C for the cold side, µfuture

hot = 37.26◦C, σfuture
hot = 4.95◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.3 according to 1971-2000

base. Also, the peaks will diverge about 0.41◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 206.9 days in the past as shown in Table 4.1 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.215, 1.483, 3.784, 5.863 and 10.647 years, respectively. This means that a 1-

year temperature would be seen 5 times in every year, a 10-year temperature would be

seen twice in every 3 years, a 30-year temperature would be seen once in every 4 years,

a 50-year temperature would be seen once in every 6 years, a 100-year temperature

would be seen once in every 10 years. Additional variables are given in Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

18.57◦C, σpast
cold = 4.94◦C for the cold side, µpast

hot = 34.07◦C, σpast
hot = 4.51◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 21.53◦C, σfuture

cold =

5.16◦C for the cold side, µfuture
hot = 38.21◦C, σfuture

hot = 4.58◦C for the hot side. The

peaks will diverge about 1.18◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.3, which will further increase the occurrence of extreme events.

The hot period has 191.4 days in the past as shown in Table 4.5 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature
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events are calculated for the length of future hot period that they would be seen in

every 0.08, 0.434, 0.997, 1.474 and 2.515 years, respectively. This means that a 1-year

temperature would be seen once in every 15.4 days, a 10-year temperature would be

seen twice in every year, a 30-year temperature would be seen once in every year, a 50-

year temperature would be seen twice in every 3 years, a 100-year temperature would

be seen twice in every 5 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

18.79◦C, σpast
cold = 5.04◦C for the cold side, µpast

hot = 34.81◦C, σpast
hot = 4.86◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 22.44◦C,

σfuture
cold = 5.73◦C for the cold side, µfuture

hot = 39.63◦C, σfuture
hot = 5.04◦C for the hot

side. The peaks will diverge about 1.16◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.3, which will further increase the occurrence of

extreme events. The hot period has 206.5 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.063, 0.31, 0.678, 0.98 and 1.624 years, respectively. This means that

a 1-year temperature would be seen once in every 12.8 days, a 10-year temperature

would be seen 3 times in every year, a 30-year temperature would be seen 3 times

in every 2 years, a 50-year temperature would be seen once in every year, a 100-year

temperature would be seen twice in every 3 years. Additional variables are given in

Table 4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

18.57◦C, σpast
cold = 4.94◦C for the cold side, µpast

hot = 34.07◦C, σpast
hot = 4.51◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 25.75◦C, σfuture

cold =

5.71◦C for the cold side, µfuture
hot = 42.63◦C, σfuture

hot = 4.99◦C for the hot side. The

mean temperatures will increase as shown in Figure 4.3 according to 1971-2000 base.

Also, the peaks will diverge about 1.37◦C from each other in the future with respect

to 1971-2000, which will further increase the occurrence of extreme events. The hot

period has 191.4 days in the past as shown in Table 4.7 and taken as the length of

a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are
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calculated for the length of future hot period that they would be seen in every 0.012,

0.033, 0.056, 0.071 and 0.099 years, respectively. This means that a 1-year temperature

would be seen once in every 2.4 days, a 10-year temperature would be seen once in

every week, a 30-year temperature would be seen 3 times in every month, a 50-year

temperature would be seen once in every two weeks, a 100-year temperature would be

seen once in every 19 days. Additional variables are given in Table 4.7.
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Figure 4.3. Amman Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.4. Baghdad

The capital of Iraq is located on the Tigris riverbed which splits the city in half.

Thus, city lies on almost flat and low-lying land. The climate of Baghdad is arid hot

desert Bwh according to Köppen-Geiger classification as shown in Figure 3.11 with

extremely hot, dry summers and mild winters. Urban agglomeration of the city is

6,812,00 in 2018 [5].

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

18.66◦C, σpast
cold = 5.81◦C for the cold side, µpast

hot = 39.11◦C, σpast
hot = 5.28◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 20.81◦C,

σfuture
cold = 6.33◦C for the cold side, µfuture

hot = 41.99◦C, σfuture
hot = 5.31◦C for the hot

side. The peaks will diverge about 0.73◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.4, which will further increase the occurrence of

extreme events. The hot period has 185.1 days in the past as shown in Table 4.1 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.205, 1.421, 3.64, 5.654 and 10.303 years, respectively. This means

that a 1-year temperature would be seen 5 times in every year, a 10-year temperature

would be seen twice in every 3 years, a 30-year temperature would be seen once in

every 3.6 years, a 50-year temperature would be seen once in every 5.6 years, a 100-

year temperature would be seen once in every 10 years. Additional variables are given

in Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

18.14◦C, σpast
cold = 5.75◦C for the cold side, µpast

hot = 38.19◦C, σpast
hot = 5.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 21.11◦C, σfuture

cold =

6.31◦C for the cold side, µfuture
hot = 42.62◦C, σfuture

hot = 4.97◦C for the hot side. The

peaks will diverge about 1.45◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.4, which will further increase the occurrence of extreme events.

The hot period has 174.3 days in the past as shown in Table 4.5 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are
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calculated for the length of future hot period that they would be seen in every 0.152,

1.154, 3.137, 5.021 and 9.556 years, respectively. This means that a 1-year temperature

would be seen once in every month, a 10-year temperature would be seen once in every

year, a 30-year temperature would be seen once in every 3 years, a 50-year temperature

would be seen once in every 5 years, a 100-year temperature would be seen once in

every 10 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

18.66◦C, σpast
cold = 5.81◦C for the cold side, µpast

hot = 39.11◦C, σpast
hot = 5.28◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 22.29◦C,

σfuture
cold = 6.58◦C for the cold side, µfuture

hot = 44.38◦C, σfuture
hot = 5.59◦C for the hot

side. The peaks will diverge about 1.64◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.4, which will further increase the occurrence of

extreme events. The hot period has 185.1 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.059, 0.269, 0.569, 0.81 and 1.314 years, respectively. This means

that a 1-year temperature would be seen once in every 11 days, a 10-year temperature

would be seen 5 times in every year, a 30-year temperature would be seen twice in every

year, a 50-year temperature would be seen once in every year, a 100-year temperature

would be seen 4 times in every 3 years. Additional variables are given in Table 4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

18.13◦C, σpast
cold = 5.75◦C for the cold side, µpast

hot = 38.19◦C, σpast
hot = 5.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 26.04◦C, σfuture

cold =

6.19◦C for the cold side, µfuture
hot = 46.69◦C, σfuture

hot = 5.6◦C for the hot side. The peaks

will diverge about 0.58◦C from each other in the future with respect to 1971-2000 as

shown in Figure 4.4, which will further increase the occurrence of extreme events. The

hot period has 174.4 days in the past as shown in Table 4.7 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.022,

0.075, 0.14, 0.189 and 0.284 years, respectively. This means that a 1-year temperature
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would be seen once in every 4 days, a 10-year temperature would be seen once in

every 2 weeks, a 30-year temperature would be seen once in every 24.4 days, a 50-year

temperature would be seen once in every month, a 100-year temperature would be seen

5 times in every year. Additional variables are given in Table 4.7.
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Figure 4.4. Baghdad Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.5. Basrah

Basrah is the economic capital of Iraq located on the Shatt-Al-Arab waterway

with an urban agglomeration of 1,299,000 in 2018. Complex network of canals and

streams of the city are of value for agricultural use. The city has an arid hot desert

Bwh climate according to Köppen-Gieger classification with slightly more precipitation

due to its location near the coast.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

20.98◦C, σpast
cold = 5.77◦C for the cold side, µpast

hot = 40.35◦C, σpast
hot = 4.87◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 23.0◦C,

σfuture
cold = 6.17◦C for the cold side, µfuture

hot = 43.15◦C, σfuture
hot = 4.81◦C for the hot

side. The peaks will diverge about 0.78◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.5, which will further increase the occurrence of

extreme events. The hot period has 183.3 days in the past as shown in Table 4.1

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would be

seen in every 0.211, 1.538, 4.037, 6.344 and 11.751 years, respectively. This means that

a 1-year temperature would be seen once in every 38.8 days, a 10-year temperature

would be seen twice in every 3 years, a 30-year temperature would be seen once in

every 4 years, a 50-year temperature would be seen once in every 6 years, a 100-year

temperature would be seen once in every 12 years. Additional variables are given in

Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

20.19◦C, σpast
cold = 5.77◦C for the cold side, µpast

hot = 39.92◦C, σpast
hot = 4.84◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 23.93◦C, σfuture

cold =

6.83◦C for the cold side, µfuture
hot = 44.88◦C, σfuture

hot = 4.12◦C for the hot side. The

peaks will diverge about 1.22◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.5, which will further increase the occurrence of extreme events.

The hot period has 173.0 days in the past as shown in Table 4.5 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature
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events are calculated for the length of future hot period that they would be seen in

every 0.149, 1.377, 4.181, 7.068 and 14.525 years, respectively. This means that a 1-year

temperature would be seen once in every 24.2 days, a 10-year temperature would be

seen twice in every 3 years, a 30-year temperature would be seen once in every 4 years,

a 50-year temperature would be seen once in every 7 years, a 100-year temperature

would be seen once in every 15 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

20.98◦C, σpast
cold = 5.77◦C for the cold side, µpast

hot = 40.35◦C, σpast
hot = 4.87◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 24.71◦C,

σfuture
cold = 6.5◦C for the cold side, µfuture

hot = 45.4◦C, σfuture
hot = 5.13◦C for the hot

side. The peaks will diverge about 1.32◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.5, which will further increase the occurrence of

extreme events. The hot period has 183.3 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.054, 0.246, 0.518, 0.737 and 1.192 years, respectively. This means

that a 1-year temperature would be seen once in every 10 days, a 10-year temperature

would be seen 5 times in every year, a 30-year temperature would be seen twice in

every year, a 50-year temperature would be seen 3 times in every 2 years, a 100-year

temperature would be seen 5 times in every 6 years. Additional variables are given in

Table 4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

20.18◦C, σpast
cold = 5.77◦C for the cold side, µpast

hot = 39.92◦C, σpast
hot = 4.85◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 28.28◦C, σfuture

cold =

6.13◦C for the cold side, µfuture
hot = 47.79◦C, σfuture

hot = 4.64◦C for the hot side. The

peaks will converge about -0.23◦C to each other in the future with respect to 1971-2000

as shown in Figure 4.5. The hot period has 173.1 days in the past as shown in Table 4.7

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.025, 0.104, 0.214, 0.302 and 0.487 years, respectively. This means
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that a 1-year temperature would be seen once in every 4 days, a 10-year temperature

would be seen once in every 2 weeks, a 30-year temperature would be seen once in

every month, a 50-year temperature would be seen 3 times in every year, a 100-year

temperature would be seen twice in every year. Additional variables are given in Table

4.7.
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Figure 4.5. Basrah Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.6. Cairo

Cairo is the capital of Egypt with an urban agglomeration of 20,076,000 in 2018.

The city is located along the Nile River in Lower Egypt. The city has an arid hot

desert climate BWh according to Köppen-Geiger classification as shown in Figure 3.11.

Frequent windstorms brings Saharan dust into city which decreases the air quality and

the air is often very dry.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

19.83◦C, σpast
cold = 4.41◦C for the cold side, µpast

hot = 34.94◦C, σpast
hot = 4.22◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 22.14◦C,

σfuture
cold = 4.75◦C for the cold side, µfuture

hot = 37.45◦C, σfuture
hot = 4.14◦C for the hot

side. The peaks will diverge about 0.19◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.6, which will further increase the occurrence of

extreme events. The hot period has 202.7 days in the past as shown in Table 4.1 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.216, 1.603, 4.251, 6.714 and 12.521 years, respectively. This means

that a 1-year temperature would be seen once in every 42 days, a 10-year temperature

would be seen twice in every 3 years, a 30-year temperature would be seen once in

every 4 years, a 50-year temperature would be seen once in every 7 years, a 100-year

temperature would be seen once in every 13 years. Additional variables are given in

Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

19.59◦C, σpast
cold = 4.54◦C for the cold side, µpast

hot = 35.25◦C, σpast
hot = 4.38◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 22.34◦C, σfuture

cold =

4.74◦C for the cold side, µfuture
hot = 39.08◦C, σfuture

hot = 4.61◦C for the hot side. The

peaks will diverge about 1.08◦C from each other in the future with respect to 1971-2000

as shown in Figure 4.6, which will further increase the occurrence of extreme events.

The hot period has 193.6 days in the past as shown in Table 4.5 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature



55

events are calculated for the length of future hot period that they would be seen in

every 0.076, 0.377, 0.829, 1.201 and 1.992 years, respectively. This means that a 1-year

temperature would be seen once in every 2 weeks, a 10-year temperature would be seen

3 times in every year, a 30-year temperature would be seen once in every year, a 50-

year temperature would be seen 5 times in every 6 years days, a 100-year temperature

would be seen once in every 2 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

19.83◦C, σpast
cold = 4.41◦C for the cold side, µpast

hot = 34.94◦C, σpast
hot = 4.22◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 23.63◦C,

σfuture
cold = 5.04◦C for the cold side, µfuture

hot = 39.69◦C, σfuture
hot = 4.47◦C for the hot

side. The peaks will diverge about 0.94◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.6, which will further increase the occurrence of

extreme events. The hot period has 202.7 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.046, 0.196, 0.404, 0.568 and 0.905 years, respectively. This means

that a 1-year temperature would be seen once in every 9 days, a 10-year temperature

would be seen 5 times in every year, a 30-year temperature would be seen 5 times in

every 2 years, a 50-year temperature would be seen 3 times in every 2 years, a 100-year

temperature would be seen once in every year. Additional variables are given in Table

4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

19.59◦C, σpast
cold = 4.54◦C for the cold side, µpast

hot = 35.25◦C, σpast
hot = 4.38◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 27.63◦C, σfuture

cold =

5.11◦C for the cold side, µfuture
hot = 42.37◦C, σfuture

hot = 4.4◦C for the hot side. The peaks

will converge about -0.92◦C to each other in the future with respect to 1971-2000 as

shown in Figure 4.6, which means number of cold days will decrease. The hot period

has 193.6 days in the past as shown in Table 4.7 and taken as the length of a year.

Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated

for the length of future hot period that they would be seen in every 0.021, 0.078, 0.152,
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0.209 and 0.325 years, respectively. This means that a 1-year temperature would be

seen once in every 4 days, a 10-year temperature would be seen once in every 2 weeks, a

30-year temperature would be seen once in every month, a 50-year temperature would

be seen 5 times in every year, a 100-year temperature would be seen 3 times in every

year. Additional variables are given in Table 4.7.
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Figure 4.6. Cairo Daily Maximum Temperatures histogram at sea level for 1971-2000

and 2070-2099 and corresponding Gaussian Mixture Model fits: (a) MPI-ESM-MR

RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d) HadGEM2-ES

RCP8.5
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4.7. Casablanca

Casablanca is the largest city in Morocco with an urban agglomeration of 3,684,000

in 2018. The city is located on the coast of Atlantic Ocean. The climate of the city

falls into temperate dry hot summer Csa climate category according to Köppen-Geiger

classification. City’s moderate temperatures are due to the cool Canary Current of

Atlantic Ocean.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

17.34◦C, σpast
cold = 3.1◦C for the cold side, µpast

hot = 26.35◦C, σpast
hot = 4.3◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 18.98◦C,

σfuture
cold = 3.33◦C for the cold side, µfuture

hot = 28.64◦C, σfuture
hot = 4.46◦C for the hot

side. The peaks will diverge about 0.64◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.7, which will further increase the occurrence of

extreme events. The hot period has 164.7 days in the past as shown in Table 4.1

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would be

seen in every 0.184, 1.166, 2.856, 4.342 and 7.684 years, respectively. This means that

a 1-year temperature would be seen once in every month, a 10-year temperature would

be seen once in every year, a 30-year temperature would be seen once in every 3 years,

a 50-year temperature would be seen once in every 4 years, a 100-year temperature

would be seen once in every 8 years. Additional variables are given in Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

16.5◦C, σpast
cold = 3.12◦C for the cold side, µpast

hot = 25.48◦C, σpast
hot = 4.23◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 18.98◦C, σfuture

cold = 3.16◦C

for the cold side, µfuture
hot = 27.67◦C, σfuture

hot = 4.36◦C for the hot side. The peaks will

converge about -0.29◦C to each other in the future with respect to 1971-2000 as shown

in Figure 4.7. The hot period has 157.0 days in the past as shown in Table 4.5 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.169, 1.101, 2.732, 4.18 and 7.46 years, respectively. This means that
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a 1-year temperature would be seen once in every month, a 10-year temperature would

be seen once in every year, a 30-year temperature would be seen once in every 3 years,

a 50-year temperature would be seen once in every 4 years, a 100-year temperature

would be seen once in every 8 years. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

17.34◦C, σpast
cold = 3.1◦C for the cold side, µpast

hot = 26.35◦C, σpast
hot = 4.3◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 20.51◦C,

σfuture
cold = 3.3◦C for the cold side, µfuture

hot = 29.85◦C, σfuture
hot = 4.65◦C for the hot

side. The peaks will diverge about 0.33◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.7, which will further increase the occurrence of

extreme events. The hot period has 164.7 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.069, 0.331, 0.711, 1.017 and 1.661 years, respectively. This means

that a 1-year temperature would be seen once in every 2 weeks, a 10-year temperature

would be seen 3 times in every year, a 30-year temperature would be seen 3 times

in every 2 years, a 50-year temperature would be seen once in every year, a 100-year

temperature would be seen twice in every 3 years. Additional variables are given in

Table 4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

16.5◦C, σpast
cold = 3.11◦C for the cold side, µpast

hot = 25.48◦C, σpast
hot = 4.23◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 22.92◦C, σfuture

cold = 3.61◦C

for the cold side, µfuture
hot = 33.26◦C, σfuture

hot = 4.08◦C for the hot side. The mean

temperatures will increase as shown in Figure 4.7 according to 1971-2000 base. Also,

the peaks will diverge about 1.36◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

157.1 days in the past as shown in Table 4.7 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for

the length of future hot period that they would be seen in every 0.015, 0.053, 0.102,

0.14 and 0.217 years, respectively. This means that a 1-year temperature would be
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seen once in every 3 days, a 10-year temperature would be seen once in every 10 days,

a 30-year temperature would be seen once in every 20 days, a 50-year temperature

would be seen once in every 26 days, a 100-year temperature would be seen 5 times in

every year. Additional variables are given in Table 4.7.
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Figure 4.7. Casablanca Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.8. Dubai

Dubai is located on the coast of Persian Gulf at sea level and lies within the

Arabian Desert. Thus, the city has an arid hot desert climate BWh according to

Köppen-Geiger classification. In summers, humidity levels are very high which makes

the weather more uncomfortable. Population of urban agglomeration is 2,785,000 in

2018.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

23.75◦C, σpast
cold = 3.51◦C for the cold side, µpast

hot = 34.83◦C, σpast
hot = 2.96◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 25.38◦C,

σfuture
cold = 3.52◦C for the cold side, µfuture

hot = 37.06◦C, σfuture
hot = 3.03◦C for the hot

side. The peaks will diverge about 0.61◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.8, which will further increase the occurrence of

extreme events. The hot period has 175.4 days in the past as shown in Table 4.1 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.112, 0.644, 1.517, 2.269 and 3.93 years, respectively. This means

that a 1-year temperature would be seen once in every 20 days, a 10-year temperature

would be seen once in every 116.2 days, a 30-year temperature would be seen twice in

every 3 years, a 50-year temperature would be seen once in every 2 years, a 100-year

temperature would be seen once in every 4 years. Additional variables are given in

Table 4.1.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

22.63◦C, σpast
cold = 3.38◦C for the cold side, µpast

hot = 34.05◦C, σpast
hot = 2.79◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 25.74◦C, σfuture

cold =

3.5◦C for the cold side, µfuture
hot = 37.45◦C, σfuture

hot = 2.8◦C for the hot side. The peaks

will diverge about 0.28◦C from each other in the future with respect to 1971-2000 as

shown in Figure 4.8, which will further increase the occurrence of extreme events. The

hot period has 188.8 days in the past as shown in Table 4.5 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are
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calculated for the length of future hot period that they would be seen in every 0.045,

0.214, 0.465, 0.672 and 1.111 years, respectively. This means that a 1-year temperature

would be seen once in every week, a 10-year temperature would be seen 5 times in every

year, a 30-year temperature would be seen twice in every year, a 50-year temperature

would be seen 3 times in every 2 years, a 100-year temperature would be seen once in

almost every year. Additional variables are given in Table 4.5.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

23.75◦C, σpast
cold = 3.51◦C for the cold side, µpast

hot = 34.83◦C, σpast
hot = 2.96◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 27.08◦C,

σfuture
cold = 3.64◦C for the cold side, µfuture

hot = 39.0◦C, σfuture
hot = 3.12◦C for the hot

side. The peaks will diverge about 0.84◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.8, which will further increase the occurrence of

extreme events. The hot period has 175.4 days in the past as shown in Table 4.3 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.028, 0.104, 0.201, 0.275 and 0.424 years, respectively. This means

that a 1-year temperature would be seen once in every 5 days, a 10-year temperature

would be seen once in every 3 weeks, a 30-year temperature would be seen 5 times

in every year, a 50-year temperature would be seen 3 times in every year, a 100-year

temperature would be seen twice in every year. Additional variables are given in Table

4.3.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

22.63◦C, σpast
cold = 3.38◦C for the cold side, µpast

hot = 34.05◦C, σpast
hot = 2.79◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 29.34◦C, σfuture

cold =

3.24◦C for the cold side, µfuture
hot = 40.54◦C, σfuture

hot = 2.89◦C for the hot side. The

peaks will diverge about -0.22◦C from each other in the future with respect to 1971-

2000 as shown in Figure 4.8, which will further increase the occurrence of extreme

events. The hot period has 188.8 days in the past as shown in Table 4.7 and taken as

the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in
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every 0.009, 0.021, 0.033, 0.042 and 0.058 years, respectively. This means that a 1-year

temperature would be seen twice in every 3 days, a 10-year temperature would be

seen twice in every week, a 30-year temperature would be seen once in every 6 days,

a 50-year temperature would be seen once in every 7.6 days, a 100-year temperature

would be seen once in every 10.5 days. Additional variables are given in Table 4.7.
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Figure 4.8. Dubai Daily Maximum Temperatures histogram at sea level for 1971-2000

and 2070-2099 and corresponding Gaussian Mixture Model fits: (a) MPI-ESM-MR

RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d) HadGEM2-ES

RCP8.5
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4.9. Istanbul

Istanbul is the most populous city of Turkey with an urban agglomeration of

14,751,000 in 2018. The city is surrounded by the Sea of Marmara at south and

the Black Sea at north connected by the Bosporus which divides Istanbul in half by

separating Asia from Europe. Furthermore, the Golden Horn divides the city, shaping

a natural peninsula. The city shows the characteristics of multiple Köppen-Geiger

classifications, temperate dry summer hot summer Csa, temperate no dry season hot

summer Cfa and temperate no dry season warm summer Cfb due to its transitional

climatic zone.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

11.83◦C, σpast
cold = 3.89◦C for the cold side, µpast

hot = 23.54◦C, σpast
hot = 3.81◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 13.41◦C,

σfuture
cold = 3.77◦C for the cold side, µfuture

hot = 25.32◦C, σfuture
hot = 3.92◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.9 according to 1971-2000

base. Also, the peaks will diverge about 0.19◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 176.3 days in the past as shown in Table 4.2 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.23, 1.556, 3.924, 6.046 and 10.894 years, respectively. This means that a 1-year

temperature would be seen 5 times in every year, a 10-year temperature would be seen

twice in every 3 years, a 30-year temperature would be seen once in every 4 years,

a 50-year temperature would be seen once in every 6 years, a 100-year temperature

would be seen once in every 11 years. Additional variables are given in Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

12.05◦C, σpast
cold = 3.88◦C for the cold side, µpast

hot = 23.62◦C, σpast
hot = 3.65◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 14.52◦C, σfuture

cold =

4.03◦C for the cold side, µfuture
hot = 27.47◦C, σfuture

hot = 4.13◦C for the hot side. The

mean temperatures will increase as shown in Figure 4.9 according to 1971-2000 base.
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Also, the peaks will diverge about 1.37◦C from each other in the future with respect to

1971-2000, which will further increase the occurrence of extreme events. The hot period

has 162.4 days in the past as shown in Table 4.6 and taken as the length of a year.

Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated

for the length of future hot period that they would be seen in every 0.044, 0.166, 0.318,

0.432 and 0.658 years, respectively. This means that a 1-year temperature would be

seen once in every week, a 10-year temperature would be seen once in every month, a

30-year temperature would be seen 3 times in every year, a 50-year temperature would

be seen twice in every year, a 100-year temperature would be seen 3 times in every 2

years. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

11.83◦C, σpast
cold = 3.89◦C for the cold side, µpast

hot = 23.54◦C, σpast
hot = 3.81◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 14.62◦C,

σfuture
cold = 4.02◦C for the cold side, µfuture

hot = 27.37◦C, σfuture
hot = 4.06◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.9 according to 1971-2000

base. Also, the peaks will diverge about 1.03◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 176.3 days in the past as shown in Table 4.4 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.058, 0.26, 0.545, 0.773 and 1.246 years, respectively. This means that a 1-year

temperature would be seen once in every 10.2 days, a 10-year temperature would be

seen 4 times in every year, a 30-year temperature would be seen twice in every year,

a 50-year temperature would be seen 4 times in every 3 years, a 100-year temperature

would be seen 4 times in every 5 year. Additional variables are given in Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

12.05◦C, σpast
cold = 3.88◦C for the cold side, µpast

hot = 23.62◦C, σpast
hot = 3.65◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 17.42◦C, σfuture

cold =

3.25◦C for the cold side, µfuture
hot = 28.5◦C, σfuture

hot = 3.67◦C for the hot side. The peaks

will converge about -0.49◦C to each other in the future with respect to 1971-2000 as
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shown in Figure 4.9. The hot period has 162.5 days in the past as shown in Table 4.8

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.038, 0.162, 0.339, 0.48 and 0.776 years, respectively. This means that

a 1-year temperature would be seen once in every week, a 10-year temperature would

be seen once in every month, a 30-year temperature would be seen 3 times in every

year, a 50-year temperature would be seen twice in every year, a 100-year temperature

would be seen 3 times in every 2 years. Additional variables are given in Table 4.8.
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Figure 4.9. Istanbul Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.10. Jeddah

Jeddah is located on the coast of Red Sea, which it is the largest seaport. Popu-

lation of urban agglomeration is 4,433,000 in 2018. City has an arid desert hot climate

according to Köppen-Geiger classification and is affected from dust storms coming from

the deserts in Arabian Peninsula.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

26.43◦C, σpast
cold = 2.85◦C for the cold side, µpast

hot = 34.95◦C, σpast
hot = 2.29◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 27.79◦C,

σfuture
cold = 3.01◦C for the cold side, µfuture

hot = 37.0◦C, σfuture
hot = 2.44◦C for the hot side.

The peaks will diverge about 0.69◦C from each other in the future with respect to 1971-

2000 as shown in Figure 4.10, which will further increase the occurrence of extreme

events. The hot period has 199.6 days in the past as shown in Table 4.2 and taken as

the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.066, 0.314, 0.675, 0.967 and 1.579 years, respectively. This means that a 1-year

temperature would be seen once in every 2 weeks, a 10-year temperature would be seen

3 times in every year, a 30-year temperature would be seen 3 times in every 2 years, a

50-year temperature would be seen once in every year, a 100-year temperature would

be seen twice in every 3 years. Additional variables are given in Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

26.14◦C, σpast
cold = 2.85◦C for the cold side, µpast

hot = 35.46◦C, σpast
hot = 2.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 28.97◦C, σfuture

cold =

3.14◦C for the cold side, µfuture
hot = 39.16◦C, σfuture

hot = 2.27◦C for the hot side. The

peaks will diverge about 0.87◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

196.4 days in the past as shown in Table 4.6 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for the

length of future hot period that they would be seen in every 0.025, 0.105, 0.217, 0.307

and 0.496 years, respectively. This means that a 1-year temperature would be seen
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once in every 5 days, a 10-year temperature would be seen 10 times in every year, a

30-year temperature would be seen 5 times in every year, a 50-year temperature would

be seen 3 times in every year, a 100-year temperature would be seen twice in every

year. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

26.43◦C, σpast
cold = 2.85◦C for the cold side, µpast

hot = 34.95◦C, σpast
hot = 2.29◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 29.85◦C,

σfuture
cold = 3.28◦C for the cold side, µfuture

hot = 39.46◦C, σfuture
hot = 2.55◦C for the hot

side. The peaks will diverge about 1.09◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.10, which will further increase the occurrence of

extreme events. The hot period has 199.6 days in the past as shown in Table 4.4 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.011, 0.029, 0.047, 0.06 and 0.083 years, respectively. This means

that a 1-year temperature would be seen once in every 3 days, a 10-year temperature

would be seen once in every 6 days, a 30-year temperature would be seen once in

every 10 days, a 50-year temperature would be seen once in every 12 days, a 100-year

temperature would be seen once in every 16 days. Additional variables are given in

Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

26.14◦C, σpast
cold = 2.85◦C for the cold side, µpast

hot = 35.46◦C, σpast
hot = 2.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 33.16◦C, σfuture

cold =

2.77◦C for the cold side, µfuture
hot = 42.01◦C, σfuture

hot = 2.25◦C for the hot side. The

peaks will converge about -0.47◦C to each other in the future with respect to 1971-

2000. The hot period has 196.4 days in the past as shown in Table 4.8 and taken as

the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.005, 0.011, 0.017, 0.021 and 0.028 years, respectively. This means that a 1-year

temperature would be seen every day, a 10-year temperature would be seen once in

every 2.1 days, a 30-year temperature would be seen once in every 3.2 days, a 50-year
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temperature would be seen once in every 3.9 days, a 100-year temperature would be

seen once in every 5.3 days. Additional variables are given in Table 4.8.
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Figure 4.10. Jeddah Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.11. Khartoum

Khartoum is the capital of Sudan. The city is the largest city of the country

with an urban agglomeration of 5,534,000 in 2018. Khartoum is located where the

White Nile and the Blue Nile meet and forms the Nile. City features an arid desert hot

climate BWh according to Köppen-Geiger classification and one of the hottest major

cities on Earth.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

30.81◦C, σpast
cold = 3.73◦C for the cold side, µpast

hot = 39.92◦C, σpast
hot = 2.42◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 32.48◦C,

σfuture
cold = 4.07◦C for the cold side, µfuture

hot = 42.69◦C, σfuture
hot = 2.64◦C for the hot

side. The peaks will diverge about 1.1◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.11, which will further increase the occurrence of

extreme events. The hot period has 228.7 days in the past as shown in Table 4.2 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.037, 0.145, 0.288, 0.397 and 0.617 years, respectively. This means

that a 1-year temperature would be seen once in every 8.5 days, a 10-year temperature

would be seen once in every month, a 30-year temperature would be seen once in every

2 months, a 50-year temperature would be seen 5 times in every 2 years, a 100-year

temperature would be seen 3 times in every 2 years. Additional variables are given in

Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

30.51◦C, σpast
cold = 4.01◦C for the cold side, µpast

hot = 40.36◦C, σpast
hot = 2.9◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 33.51◦C, σfuture

cold = 4.29◦C

for the cold side, µfuture
hot = 44.2◦C, σfuture

hot = 2.94◦C for the hot side. The peaks will

diverge about 0.85◦C from each other in the future with respect to 1971-2000, which

will further increase the occurrence of extreme events. The hot period has 208.0 days

in the past as shown in Table 4.6 and taken as the length of a year. Then, 1-year,

10-year, 30-year, 50-year and 100-year temperature events are calculated for the length
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of future hot period that they would be seen in every 0.033, 0.14, 0.289, 0.409 and

0.657 years, respectively. This means that a 1-year temperature would be seen once

in every week, a 10-year temperature would be seen once in every month, a 30-year

temperature would be seen once in every 2 months, a 50-year temperature would be

seen 5 times in every 2 years, a 100-year temperature would be seen 3 times in every

2 years. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

30.82◦C, σpast
cold = 3.74◦C for the cold side, µpast

hot = 39.92◦C, σpast
hot = 2.42◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 34.56◦C,

σfuture
cold = 4.46◦C for the cold side, µfuture

hot = 45.19◦C, σfuture
hot = 2.96◦C for the hot

side. The peaks will diverge about 1.54◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.11, which will further increase the occurrence of

extreme events. The hot period has 228.5 days in the past as shown in Table 4.4 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.007, 0.016, 0.023, 0.028 and 0.036 years, respectively. This means

that a 1-year temperature would be seen once in every 1.7 days, a 10-year temperature

would be seen once in every 3.6 days, a 30-year temperature would be seen once in

every 5.4 days, a 50-year temperature would be seen once in every 6.5 days, a 100-year

temperature would be seen once in every 8.4 days. Additional variables are given in

Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

30.51◦C, σpast
cold = 4.01◦C for the cold side, µpast

hot = 40.36◦C, σpast
hot = 2.9◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 40.37◦C, σfuture

cold = 3.13◦C

for the cold side, µfuture
hot = 48.27◦C, σfuture

hot = 2.18◦C for the hot side. The peaks

will diverge about -1.94◦C from each other in the future with respect to 1971-2000 as

shown in Figure 4.11. The hot period has 208.0 days in the past as shown in Table 4.8

and taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.005, 0.014, 0.027, 0.037 and 0.059 years, respectively. This means
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that a 1-year temperature would be seen once in every 1.1 days, a 10-year temperature

would be seen once in every 3.2 days, a 30-year temperature would be seen once in

every 6.1 days, a 50-year temperature would be seen once in every 8.4 days, a 100-year

temperature would be seen once in every 13.2 days. Additional variables are given in

Table 4.8.
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Figure 4.11. Khartoum Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.12. Madrid

Madrid is the capital of Spain with an urban agglomeration of 6,497,000 in 2018.

The city is located at the center of Spain. Madrid has borderline temperate dry hot

summer Csa and arid steppe cold BSk climate according to Köppen-Geiger classifica-

tion system.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

14.77◦C, σpast
cold = 4.35◦C for the cold side, µpast

hot = 30.68◦C, σpast
hot = 5.21◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 15.99◦C,

σfuture
cold = 4.4◦C for the cold side, µfuture

hot = 33.22◦C, σfuture
hot = 5.43◦C for the hot

side. The mean temperatures will increase as shown in Figure 4.12 according to 1971-

2000 base. Also, the peaks will diverge about 1.32◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events. The

hot period has 136.5 days in the past as shown in Table 4.2 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.188,

1.186, 2.898, 4.401 and 7.772 years, respectively. This means that a 1-year temperature

would be seen once in every month, a 10-year temperature would be seen once in every

year, a 30-year temperature would be seen once in every 3 years, a 50-year temperature

would be seen once in every 4 years, a 100-year temperature would be seen once in

every 8 years. Additional variables are given in Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

14.58◦C, σpast
cold = 4.55◦C for the cold side, µpast

hot = 31.57◦C, σpast
hot = 5.2◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 16.96◦C, σfuture

cold = 4.83◦C

for the cold side, µfuture
hot = 36.14◦C, σfuture

hot = 5.66◦C for the hot side. The mean

temperatures will increase as shown in Figure 4.12 according to 1971-2000 base. Also,

the peaks will diverge about 2.19◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

145.6 days in the past as shown in Table 4.6 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for
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the length of future hot period that they would be seen in every 0.069, 0.31, 0.648,

0.916 and 1.47 years, respectively. This means that a 1-year temperature would be

seen once in every 10 days, a 10-year temperature would be seen 3 times in every year,

a 30-year temperature would be seen 3 times in every 2 years, a 50-year temperature

would be seen once in every year, a 100-year temperature would be seen twice in every

3 years. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

14.77◦C, σpast
cold = 4.35◦C for the cold side, µpast

hot = 30.68◦C, σpast
hot = 5.21◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 17.58◦C,

σfuture
cold = 4.46◦C for the cold side, µfuture

hot = 36.08◦C, σfuture
hot = 5.67◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.12 according to 1971-2000

base. Also, the peaks will diverge about 2.59◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 136.5 days in the past as shown in Table 4.4 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.048, 0.198, 0.399, 0.555 and 0.873 years, respectively. This means that a 1-year

temperature would be seen once in every week, a 10-year temperature would be seen

once in every month, a 30-year temperature would be seen 5 times in every 2 years, a

50-year temperature would be seen twice in every year, a 100-year temperature would

be seen 8 times in every 7 years. Additional variables are given in Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

14.57◦C, σpast
cold = 4.54◦C for the cold side, µpast

hot = 31.55◦C, σpast
hot = 5.21◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 19.08◦C, σfuture

cold =

4.34◦C for the cold side, µfuture
hot = 39.57◦C, σfuture

hot = 6.67◦C for the hot side. The

peaks will diverge about 3.51◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

145.7 days in the past as shown in Table 4.8 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for

the length of future hot period that they would be seen in every 0.014, 0.036, 0.056,
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0.069 and 0.093 years, respectively. This means that a 1-year temperature would be

seen 3 times in every week, a 10-year temperature would be seen once in every week,

a 30-year temperature would be seen once in every 10.7 days, a 50-year temperature

would be seen once in every 13.2 days, a 100-year temperature would be seen once in

every 17.7 days. Additional variables are given in Table 4.8.
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Figure 4.12. Madrid Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5



82

4.13. N’Djamena

N’Djamena is the capital of Chad with an urban agglomeration of 1,323,000 in

2018. The city lies along the Chari River at the confluence with the Logone River. The

city features arid steppe hot BSh climate according to Köppen-Geiger classification.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

33.6◦C, σpast
cold = 3.66◦C for the cold side, µpast

hot = 39.1◦C, σpast
hot = 2.66◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 36.25◦C,

σfuture
cold = 3.76◦C for the cold side, µfuture

hot = 42.07◦C, σfuture
hot = 2.78◦C for the hot

side. The peaks will diverge about 0.33◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.13, which will further increase the occurrence of

extreme events. The hot period has 250.9 days in the past as shown in Table 4.2 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.044, 0.2, 0.421, 0.597 and 0.966 years, respectively. This means

that a 1-year temperature would be seen once in every 11 days, a 10-year temperature

would be seen 5 times in every year, a 30-year temperature would be seen 5 times in

every 2 years, a 50-year temperature would be seen 3 times in every 2 years, a 100-year

temperature would be seen once in every year. Additional variables are given in Table

4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

33.43◦C, σpast
cold = 3.78◦C for the cold side, µpast

hot = 39.7◦C, σpast
hot = 3.08◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 36.69◦C, σfuture

cold = 3.76◦C

for the cold side, µfuture
hot = 43.67◦C, σfuture

hot = 2.82◦C for the hot side. The mean

temperatures will increase as shown in Figure 4.13 according to 1971-2000 base. Also,

the peaks will diverge about 0.72◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

236.6 days in the past as shown in Table 4.6 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for

the length of future hot period that they would be seen in every 0.049, 0.289, 0.702,
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1.07 and 1.909 years, respectively. This means that a 1-year temperature would be seen

once in every 11.4 days, a 10-year temperature would be seen 4 times in every year,

a 30-year temperature would be seen 3 times in every 2 years, a 50-year temperature

would be seen once in every year, a 100-year temperature would be seen once in every

2 years. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

33.6◦C, σpast
cold = 3.66◦C for the cold side, µpast

hot = 39.1◦C, σpast
hot = 2.66◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 38.53◦C,

σfuture
cold = 4.04◦C for the cold side, µfuture

hot = 44.56◦C, σfuture
hot = 3.03◦C for the hot

side. The peaks will diverge about 0.54◦C from each other in the future with respect

to 1971-2000 as shown in Figure 4.13, which will further increase the occurrence of

extreme events. The hot period has 250.9 days in the past as shown in Table 4.4 and

taken as the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year

temperature events are calculated for the length of future hot period that they would

be seen in every 0.009, 0.021, 0.033, 0.041 and 0.056 years, respectively. This means

that a 1-year temperature would be seen once in every 2.1 days, a 10-year temperature

would be seen once in every 5.2 days, a 30-year temperature would be seen once in

every 8.3 days, a 50-year temperature would be seen once in every 10.4 days, a 100-year

temperature would be seen once in every week. Additional variables are given in Table

4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

33.43◦C, σpast
cold = 3.78◦C for the cold side, µpast

hot = 39.7◦C, σpast
hot = 3.08◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 44.75◦C, σfuture

cold = 2.58◦C

for the cold side, µfuture
hot = 50.1◦C, σfuture

hot = 2.09◦C for the hot side. The peaks will

converge about -0.92◦C to each other in the future with respect to 1971-2000. The hot

period has 236.8 days in the past as shown in Table 4.8 and taken as the length of

a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.003,

0.006, 0.01, 0.012 and 0.018 years, respectively. This means that a 1-year temperature

would be seen once in every 0.6 days, a 10-year temperature would be seen once in
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every 1.2 days, a 30-year temperature would be seen once in every 1.9 days, a 50-year

temperature would be seen once in every 2.4 days, a 100-year temperature would be

seen once in every 3.4 days. Additional variables are given in Table 4.8.
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Figure 4.13. NDjamena Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5



86

4.14. Riyadh

The capital of Saudi Arabia is located on the east of the Najd plateau with urban

agglomeration of 6,907,000 in 2018. Riyadh features arid desert hot BWh climate

according to Köppen-Geiger.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

26.4◦C, σpast
cold = 5.34◦C for the cold side, µpast

hot = 41.91◦C, σpast
hot = 3.82◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 30.46◦C,

σfuture
cold = 7.1◦C for the cold side, µfuture

hot = 46.08◦C, σfuture
hot = 2.65◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.14 according to 1971-2000

base. The hot period has 187.1 days in the past as shown in Table 4.2 and taken as

the length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in every

0.436, 9.941, 48.37, 102.518 and 288.044 years, respectively. This means that a 1-year

temperature would be seen once in every 2 months, a 10-year temperature would be

seen once in every 10 year, a 30-year temperature would be seen once in every 50 years,

a 50-year temperature would be seen once in every 100 years, a 100-year temperature

would be seen once in every 290 years. To clarify, the frequencies seems to be not

changing or even decreasing for this dataset. This is because the standard deviations

would be decreasing thus causing more days to be at mean temperatures in the future,

which would be 4.17◦C hotter than the past. Additional variables are given in Table

4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

27.17◦C, σpast
cold = 6.54◦C for the cold side, µpast

hot = 42.71◦C, σpast
hot = 2.68◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 30.45◦C, σfuture

cold =

7.06◦C for the cold side, µfuture
hot = 46.52◦C, σfuture

hot = 2.72◦C for the hot side. The

mean temperatures will increase as shown in Figure 4.14 according to 1971-2000 base.

Also, the peaks will diverge about 0.53◦C from each other in the future with respect to

1971-2000, which will further increase the occurrence of extreme events. The hot period

has 158.4 days in the past as shown in Table 4.6 and taken as the length of a year.
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Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated

for the length of future hot period that they would be seen in every 0.032, 0.125, 0.252,

0.352 and 0.556 years, respectively. This means that a 1-year temperature would be

seen once in every 5 days, a 10-year temperature would be seen once in every 20 days, a

30-year temperature would be seen 4 times in every year, a 50-year temperature would

be seen 3 times in every year, a 100-year temperature would be seen twice in every

year. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

26.4◦C, σpast
cold = 5.34◦C for the cold side, µpast

hot = 41.91◦C, σpast
hot = 3.82◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 32.53◦C,

σfuture
cold = 7.42◦C for the cold side, µfuture

hot = 48.6◦C, σfuture
hot = 2.93◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.14 according to 1971-2000

base. Also, the peaks will diverge about 0.55◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 187.2 days in the past as shown in Table 4.4 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.037, 0.256, 0.712, 1.164 and 2.307 years, respectively. This means that a 1-year

temperature would be seen once in every 5.6 days, a 10-year temperature would be

seen 4 times in every year, a 30-year temperature would be seen 3 times in every year,

a 50-year temperature would be seen once in every year, a 100-year temperature would

be seen 3 times in every 7 years. Additional variables are given in Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

27.17◦C, σpast
cold = 6.54◦C for the cold side, µpast

hot = 42.71◦C, σpast
hot = 2.68◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 34.76◦C, σfuture

cold =

6.38◦C for the cold side, µfuture
hot = 49.79◦C, σfuture

hot = 2.68◦C for the hot side. The

hot period has 158.4 days in the past as shown in Table 4.8 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.007,

0.015, 0.023, 0.029 and 0.038 years, respectively. This means that a 1-year temperature
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would be seen once in every 1.1 days, a 10-year temperature would be seen once in

every 2.3 days, a 30-year temperature would be seen once in every 3.4 days, a 50-year

temperature would be seen once in every 4.2 days, a 100-year temperature would be

seen once in every 5.6 days. Additional variables are given in Table 4.8.
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Figure 4.14. Riyadh Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.15. Sana’a

Sana’a is the capital of Yemen with urban agglomeration of 2,779,000 in 2018.

Sana’a is located at an elevation of 2,300 metres which makes it one of the highest

capitals and this situtation affects the climate of the city. Sana’a features arid steppe

cold BSk climate and has moderate temperatures due to its elevation.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

33.87◦C, σpast
cold = 2.4◦C for the cold side, µpast

hot = 39.49◦C, σpast
hot = 2.17◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 35.9◦C,

σfuture
cold = 2.44◦C for the cold side, µfuture

hot = 42.05◦C, σfuture
hot = 2.27◦C for the hot

side. The mean temperatures will increase as shown in Figure 4.15 according to 1971-

2000 base. Also, the peaks will diverge about 0.53◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events. The

hot period has 199.0 days in the past as shown in Table 4.2 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.041,

0.178, 0.369, 0.52 and 0.833 years, respectively. This means that a 1-year temperature

would be seen once in every 8.3 days, a 10-year temperature would be seen once in

every month, a 30-year temperature would be seen 3 times in every year, a 50-year

temperature would be seen twice in every year, a 100-year temperature would be seen

once in every year. Additional variables are given in Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

34.01◦C, σpast
cold = 2.2◦C for the cold side, µpast

hot = 39.46◦C, σpast
hot = 1.96◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 37.31◦C, σfuture

cold = 2.19◦C

for the cold side, µfuture
hot = 42.67◦C, σfuture

hot = 2.05◦C for the hot side. The peaks will

converge about -0.09◦C to each other in the future with respect to 1971-2000. The hot

period has 173.9 days in the past as shown in Table 4.6 and taken as the length of

a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.018,

0.06, 0.111, 0.149 and 0.223 years, respectively. This means that a 1-year temperature
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would be seen once in every 3.5 days, a 10-year temperature would be seen once in

every 11.8 days, a 30-year temperature would be seen once in every 21.8 days, a 50-year

temperature would be seen once in every month, a 100-year temperature would be seen

4 times in every year. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

33.87◦C, σpast
cold = 2.4◦C for the cold side, µpast

hot = 39.49◦C, σpast
hot = 2.17◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 38.2◦C,

σfuture
cold = 2.44◦C for the cold side, µfuture

hot = 44.55◦C, σfuture
hot = 2.5◦C for the hot side.

The mean temperatures will increase as shown in Figure 4.15 according to 1971-2000

base. Also, the peaks will diverge about 0.72◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events.

The hot period has 199.0 days in the past as shown in Table 4.4 and taken as the

length of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature

events are calculated for the length of future hot period that they would be seen in

every 0.007, 0.015, 0.023, 0.028 and 0.036 years, respectively. This means that a 1-year

temperature would be seen once in every 1.5 days, a 10-year temperature would be seen

once in every 3.1 days, a 30-year temperature would be seen once in every 4.7 days,

a 50-year temperature would be seen once in every 5.7 days, a 100-year temperature

would be seen once in every 7.4 days. Additional variables are given in Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

34.01◦C, σpast
cold = 2.2◦C for the cold side, µpast

hot = 39.46◦C, σpast
hot = 1.96◦C for the hot side

in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 41.71◦C, σfuture

cold = 2.62◦C

for the cold side, µfuture
hot = 46.76◦C, σfuture

hot = 2.15◦C for the hot side. The peaks will

converge about -0.39◦C to each other in the future with respect to 1971-2000. The hot

period has 174.0 days in the past as shown in Table 4.8 and taken as the length of

a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.003,

0.004, 0.005, 0.005 and 0.006 years, respectively. This means that a 1-year temperature

would be seen once in every 0.6 days, a 10-year temperature would be seen once in

every 0.8 days, a 30-year temperature would be seen once in every 1.0 days, a 50-year
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temperature would be seen once in every 1.1 days, a 100-year temperature would be

seen once in every 1.3 days. Additional variables are given in Table 4.8.
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Figure 4.15. Sanaa Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5
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4.16. Tehran

Tehran is the capital of Iran with an urban agglomeration of 8,896,000 in 2018.

Tehran features temperate dry hot summer climate Csa according to Köppen-Geiger

classification influenced by the Alborz mountains to its north and desert to its south.

For MPI-ESM-MR RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

16.97◦C, σpast
cold = 6.09◦C for the cold side, µpast

hot = 35.58◦C, σpast
hot = 5.6◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 18.62◦C,

σfuture
cold = 6.43◦C for the cold side, µfuture

hot = 38.19◦C, σfuture
hot = 5.76◦C for the hot

side. The mean temperatures will increase as shown in Figure 4.16 according to 1971-

2000 base. Also, the peaks will diverge about 0.96◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events. The

hot period has 184.6 days in the past as shown in Table 4.2 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events

are calculated for the length of future hot period that they would be seen in every

0.218, 1.479, 3.733, 5.755 and 10.375 years, respectively. This means that a 1-year

temperature would be seen once in every 41.3 days, a 10-year temperature would be

seen 2 times in every 3 years, a 30-year temperature would be seen once in every 4 years,

a 50-year temperature would be seen once in every 6 years, a 100-year temperature

would be seen once in every 10 years. Additional variables are given in Table 4.2.

For HADGEM2-ES RCP4.5 dataset, parameters of the Gaussians are µpast
cold =

15.35◦C, σpast
cold = 5.65◦C for the cold side, µpast

hot = 34.67◦C, σpast
hot = 5.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 18.94◦C, σfuture

cold =

6.4◦C for the cold side, µfuture
hot = 39.25◦C, σfuture

hot = 5.48◦C for the hot side. The mean

temperatures will increase as shown in Figure 4.16 according to 1971-2000 base. Also,

the peaks will diverge about 0.99◦C from each other in the future with respect to 1971-

2000, which will further increase the occurrence of extreme events. The hot period has

171.2 days in the past as shown in Table 4.6 and taken as the length of a year. Then,

1-year, 10-year, 30-year, 50-year and 100-year temperature events are calculated for

the length of future hot period that they would be seen in every 0.091, 0.492, 1.127,
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1.663 and 2.831 years, respectively. This means that a 1-year temperature would be

seen once in every 2 weeks, a 10-year temperature would be seen 2 times in every year,

a 30-year temperature would be seen once in every year, a 50-year temperature would

be seen 3 times in every 5 years, a 100-year temperature would be seen once in every

3 years. Additional variables are given in Table 4.6.

For MPI-ESM-MR RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

16.97◦C, σpast
cold = 6.09◦C for the cold side, µpast

hot = 35.58◦C, σpast
hot = 5.6◦C for the

hot side in 1971-2000 curve. Between 2070-2099, parameters are µfuture
cold = 20.21◦C,

σfuture
cold = 6.84◦C for the cold side, µfuture

hot = 40.29◦C, σfuture
hot = 6.02◦C for the hot

side.The mean temperatures will increase as shown in Figure 4.16 according to 1971-

2000 base. Also, the peaks will diverge about 1.48◦C from each other in the future with

respect to 1971-2000, which will further increase the occurrence of extreme events. The

hot period has 184.6 days in the past as shown in Table 4.4 and taken as the length

of a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.075,

0.358, 0.771, 1.104 and 1.805 years, respectively. This means that a 1-year temperature

would be seen once in every 2 weeks, a 10-year temperature would be seen 3 times in

every 3 years, a 30-year temperature would be seen 3 times in every 2 years, a 50-year

temperature would be seen once in every year, a 100-year temperature would be seen

once in every 2 years. Additional variables are given in Table 4.4.

For HADGEM2-ES RCP8.5 dataset, parameters of the Gaussians are µpast
cold =

15.35◦C, σpast
cold = 5.65◦C for the cold side, µpast

hot = 34.67◦C, σpast
hot = 5.34◦C for the hot

side in 1971-2000 curve. For 2070-2099, parameters are µfuture
cold = 22.13◦C, σfuture

cold =

6.49◦C for the cold side, µfuture
hot = 43.05◦C, σfuture

hot = 5.79◦C for the hot side. The

mean temperatures will increase as shown in Figure 4.16 according to 1971-2000 base.

Also, the peaks will diverge about 1.6◦C from each other in the future with respect

to 1971-2000, which will further increase the occurrence of extreme events. The hot

period has 171.2 days in the past as shown in Table 4.8 and taken as the length of

a year. Then, 1-year, 10-year, 30-year, 50-year and 100-year temperature events are

calculated for the length of future hot period that they would be seen in every 0.021,
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0.067, 0.122, 0.162 and 0.239 years, respectively. This means that a 1-year temperature

would be seen once in every 3.7 days, a 10-year temperature would be seen once in

every 11.8 days, a 30-year temperature would be seen once in every 3 weeks, a 50-year

temperature would be seen once in every month, a 100-year temperature would be seen

4 times in every year. Additional variables are given in Table 4.8.
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Figure 4.16. Tehran Daily Maximum Temperatures histogram at sea level for

1971-2000 and 2070-2099 and corresponding Gaussian Mixture Model fits: (a)

MPI-ESM-MR RCP4.5, (b) MPI-ESM-MR RCP8.5, (c) HadGEM2-ES RCP4.5, (d)

HadGEM2-ES RCP8.5



Table 4.1. Gaussian Parameter for city histograms (MPI-ESM-MR RCP4.5)

Alexandria Algiers Amman Baghdad Basrah Cairo Casablanca Dubai

µpast
hot 29.6 27.4 34.8 39.1 40.3 34.9 26.4 34.8

σpast
hot 3.4 4.6 4.9 5.3 4.9 4.2 4.3 3.0

µpast
cold 18.1 15.4 18.8 18.7 21.0 19.8 17.3 23.8

σpast
cold 3.4 3.4 5.0 5.8 5.8 4.4 3.1 3.5

|N (µpast
hot , σ

past
hot )| 199.2 168.6 206.9 185.1 183.3 202.7 164.7 175.4

∆µpast 11.5 12.0 16.0 20.4 19.4 15.1 9.0 11.1

µfuture
hot 31.6 29.7 37.3 42.0 43.1 37.5 28.6 37.1

σfuture
hot 3.5 4.6 5.0 5.3 4.8 4.1 4.5 3.0

µfuture
cold 20.0 17.1 20.8 20.8 23.0 22.1 19.0 25.4

σfuture
cold 3.5 3.5 5.3 6.3 6.2 4.7 3.3 3.5

|N (µfuture
hot , σfuture

hot )| 193.6 166.6 204.2 186.0 183.4 195.0 166.8 180.4

∆µfuture 11.6 12.6 16.4 21.2 20.1 15.3 9.7 11.7

∆µfuture −∆µpast 0.1 0.6 0.4 0.7 0.8 0.2 0.6 0.6

1-year event 0.1786 0.2180 0.2147 0.2046 0.2114 0.2160 0.1840 0.1116

10-year event 1.1805 1.4855 1.4831 1.4206 1.5376 1.6026 1.1664 0.6438

30-year event 2.9569 3.7668 3.7837 3.6400 4.0370 4.2514 2.8562 1.5174

50-year event 4.5451 5.8209 5.8633 5.6538 6.3444 6.7144 4.3423 2.2690

100-year event 8.1671 10.5311 10.6473 10.3026 11.7506 12.5210 7.6839 3.9299



Table 4.2. Gaussian Parameter for city histograms (MPI-ESM-MR RCP4.5) (continued)

Istanbul Jeddah Khartoum Madrid NDjamena Riyadh Sanaa Tehran

µpast
hot 23.5 34.9 39.9 30.7 39.1 41.9 39.5 35.6

σpast
hot 3.8 2.3 2.4 5.2 2.7 3.8 2.2 5.6

µpast
cold 11.8 26.4 30.8 14.8 33.6 26.4 33.9 17.0

σpast
cold 3.9 2.8 3.7 4.4 3.7 5.3 2.4 6.1

|N (µpast
hot , σ

past
hot )| 176.3 199.6 228.7 136.5 250.9 187.1 199.0 184.6

∆µpast 11.7 8.5 9.1 15.9 5.5 15.5 5.6 18.6

µfuture
hot 25.3 37.0 42.7 33.2 42.1 46.1 42.1 38.2

σfuture
hot 3.9 2.4 2.6 5.4 2.8 2.7 2.3 5.8

µfuture
cold 13.4 27.8 32.5 16.0 36.2 30.5 35.9 18.6

σfuture
cold 3.8 3.0 4.1 4.4 3.8 7.1 2.4 6.4

|N (µfuture
hot , σfuture

hot )| 172.1 204.7 232.1 150.5 245.4 153.2 202.2 189.2

∆µfuture 11.9 9.2 10.2 17.2 5.8 15.6 6.2 19.6

∆µfuture −∆µpast 0.2 0.7 1.1 1.3 0.3 0.1 0.5 1.0

1-year event 0.2300 0.0662 0.0366 0.1875 0.0443 0.4361 0.0413 0.2181

10-year event 1.5557 0.3143 0.1455 1.1862 0.1996 9.9415 0.1782 1.4789

30-year event 3.9236 0.6750 0.2880 2.8982 0.4205 48.3704 0.3688 3.7333

50-year event 6.0461 0.9667 0.3973 4.4006 0.5975 102.5177 0.5200 5.7552

100-year event 10.8937 1.5790 0.6174 7.7724 0.9665 288.0444 0.8328 10.3750



Table 4.3. Gaussian Parameter for city histograms (MPI-ESM-MR RCP8.5)

Alexandria Algiers Amman Baghdad Basrah Cairo Casablanca Dubai

µpast
hot 29.6 27.4 34.8 39.1 40.3 34.9 26.3 34.8

σpast
hot 3.4 4.6 4.9 5.3 4.9 4.2 4.3 3.0

µpast
cold 18.1 15.4 18.8 18.7 21.0 19.8 17.3 23.8

σpast
cold 3.4 3.4 5.0 5.8 5.8 4.4 3.1 3.5

|N (µpast
hot , σ

past
hot )| 199.3 168.6 206.5 185.1 183.3 202.7 164.7 175.4

∆µpast 11.5 12.0 16.0 20.4 19.4 15.1 9.0 11.1

µfuture
hot 33.6 32.2 39.6 44.4 45.4 39.7 29.9 39.0

σfuture
hot 3.7 4.9 5.0 5.6 5.1 4.5 4.6 3.1

µfuture
cold 21.4 19.1 22.4 22.3 24.7 23.6 20.5 27.1

σfuture
cold 3.8 3.8 5.7 6.6 6.5 5.0 3.3 3.6

|N (µfuture
hot , σfuture

hot )| 193.9 176.2 202.9 184.7 186.4 196.4 195.0 182.8

∆µfuture 12.2 13.1 17.2 22.1 20.7 16.1 9.3 11.9

∆µfuture −∆µpast 0.673 1.106 1.164 1.643 1.317 0.941 0.334 0.840

1-year event 0.0386 0.0490 0.0632 0.0587 0.0542 0.0457 0.0693 0.0277

10-year event 0.1513 0.2066 0.3095 0.2686 0.2456 0.1962 0.3308 0.1036

30-year event 0.2982 0.4208 0.6779 0.5690 0.5182 0.4039 0.7106 0.2010

50-year event 0.4106 0.5882 0.9804 0.8102 0.7367 0.5678 1.0174 0.2754

100-year event 0.6364 0.9303 1.6243 1.3136 1.1922 0.9053 1.6606 0.4243



Table 4.4. Gaussian Parameter for city histograms (MPI-ESM-MR RCP8.5) (continued)

Istanbul Jeddah Khartoum Madrid NDjamena Riyadh Sanaa Tehran

µpast
hot 23.5 34.9 39.9 30.7 39.1 41.9 39.5 35.6

σpast
hot 3.8 2.3 2.4 5.2 2.7 3.8 2.2 5.6

µpast
cold 11.8 26.4 30.8 14.8 33.6 26.4 33.9 17.0

σpast
cold 3.9 2.8 3.7 4.4 3.7 5.3 2.4 6.1

|N (µpast
hot , σ

past
hot )| 176.3 199.6 228.5 136.5 250.9 187.2 199.0 184.6

∆µpast 11.7 8.5 9.1 15.9 5.5 15.5 5.6 18.6

µfuture
hot 27.4 39.5 45.2 36.1 44.6 48.6 44.5 40.3

σfuture
hot 4.1 2.5 3.0 5.7 3.0 2.9 2.5 6.0

µfuture
cold 14.6 29.8 34.6 17.6 38.5 32.5 38.2 20.2

σfuture
cold 4.0 3.3 4.5 4.5 4.0 7.4 2.4 6.8

|N (µfuture
hot , σfuture

hot )| 176.0 197.7 233.0 159.9 250.9 152.0 204.8 188.0

∆µfuture 12.7 9.6 10.6 18.5 6.0 16.1 6.3 20.1

∆µfuture −∆µpast 1.0 1.1 1.5 2.6 0.5 0.6 0.7 1.5

1-year event 0.0579 0.0112 0.0073 0.0478 0.0085 0.0371 0.0072 0.0748

10-year event 0.2600 0.0289 0.0156 0.1977 0.0208 0.2562 0.0153 0.3580

30-year event 0.5455 0.0473 0.0230 0.3990 0.0331 0.7116 0.0229 0.7706

50-year event 0.7732 0.0598 0.0277 0.5554 0.0413 1.1643 0.0278 1.1044

100-year event 1.2461 0.0829 0.0359 0.8734 0.0561 2.3068 0.0364 1.8054



Table 4.5. Gaussian Parameter for city histograms (HadGEM2-ES RCP4.5)

Alexandria Algiers Amman Baghdad Basrah Cairo Casablanca Dubai

µpast
hot 29.8 27.3 34.1 38.2 39.9 35.2 25.5 34.1

σpast
hot 3.7 3.9 4.5 5.3 4.8 4.4 4.2 2.8

µpast
cold 17.8 15.2 18.6 18.1 20.2 19.6 16.5 22.6

σpast
cold 3.4 3.4 4.9 5.7 5.8 4.5 3.1 3.4

|N (µpast
hot , σ

past
hot )| 192.9 147.1 191.4 174.3 173.0 193.6 157.0 188.8

∆µpast 12.0 12.0 15.5 20.1 19.7 15.7 9.0 11.4

µfuture
hot 33.4 31.4 38.2 42.6 44.9 39.1 27.7 37.5

σfuture
hot 3.9 4.3 4.6 5.0 4.1 4.6 4.4 2.8

µfuture
cold 20.5 17.7 21.5 21.1 23.9 22.3 19.0 25.7

σfuture
cold 3.5 3.7 5.2 6.3 6.8 4.7 3.2 3.5

|N (µfuture
hot , σfuture

hot )| 191.2 157.1 191.5 174.4 162.4 193.9 186.7 189.5

∆µfuture 12.9 13.7 16.7 21.5 21.0 16.7 8.7 11.7

∆µfuture −∆µpast 0.9 1.7 1.2 1.4 1.2 1.1 -0.3 0.3

1-year event 0.0615 0.0464 0.0804 0.1518 0.1493 0.0757 0.1689 0.0454

10-year event 0.2848 0.1836 0.4344 1.1541 1.3771 0.3771 1.1010 0.2144

30-year event 0.6058 0.3622 0.9969 3.1368 4.1807 0.8294 2.7324 0.4654

50-year event 0.8640 0.4988 1.4736 5.0214 7.0677 1.2011 4.1803 0.6716

100-year event 1.4039 0.7731 2.5147 9.5558 14.5248 1.9922 7.4604 1.1110



Table 4.6. Gaussian Parameter for city histograms (HadGEM2-ES RCP4.5) (continued)

Istanbul Jeddah Khartoum Madrid NDjamena Riyadh Sanaa Tehran

µpast
hot 23.6 35.5 40.4 31.6 39.7 42.7 39.5 34.7

σpast
hot 3.6 2.3 2.9 5.2 3.1 2.7 2.0 5.3

µpast
cold 12.0 26.1 30.5 14.6 33.4 27.2 34.0 15.3

σpast
cold 3.9 2.9 4.0 4.5 3.8 6.5 2.2 5.7

|N (µpast
hot , σ

past
hot )| 162.4 196.4 208.0 145.6 236.6 158.4 173.9 171.2

∆µpast 11.6 9.3 9.8 17.0 6.3 15.5 5.4 19.3

µfuture
hot 27.5 39.2 44.2 36.1 43.7 46.5 42.7 39.2

σfuture
hot 4.1 2.3 2.9 5.7 2.8 2.7 2.1 5.5

µfuture
cold 14.5 29.0 33.5 17.0 36.7 30.5 37.3 18.9

σfuture
cold 4.0 3.1 4.3 4.8 3.8 7.1 2.2 6.4

|N (µfuture
hot , σfuture

hot )| 165.2 192.0 216.5 153.4 231.7 159.6 196.6 170.6

∆µfuture 12.9 10.2 10.7 19.2 7.0 16.1 5.4 20.3

∆µfuture −∆µpast 1.4 0.9 0.9 2.2 0.7 0.5 -0.1 1.0

1-year event 0.0441 0.0253 0.0326 0.0691 0.0494 0.0315 0.0179 0.0912

10-year event 0.1656 0.1050 0.1395 0.3101 0.2886 0.1255 0.0600 0.4921

30-year event 0.3179 0.2173 0.2893 0.6480 0.7019 0.2525 0.1110 1.1267

50-year event 0.4321 0.3074 0.4086 0.9160 1.0697 0.3520 0.1489 1.6630

100-year event 0.6577 0.4958 0.6565 1.4700 1.9089 0.5559 0.2232 2.8314



Table 4.7. Gaussian Parameter for city histograms (HadGEM2-ES RCP8.5)

Alexandria Algiers Amman Baghdad Basrah Cairo Casablanca Dubai

µpast
hot 29.9 27.3 34.1 38.2 39.9 35.2 25.5 34.1

σpast
hot 3.7 3.9 4.5 5.3 4.8 4.4 4.2 2.8

µpast
cold 17.8 15.2 18.6 18.1 20.2 19.6 16.5 22.6

σpast
cold 3.4 3.4 4.9 5.7 5.8 4.5 3.1 3.4

|N (µpast
hot , σ

past
hot )| 192.7 147.1 191.4 174.4 173.1 193.6 157.1 188.8

∆µpast 12.0 12.0 15.5 20.1 19.7 15.7 9.0 11.4

µfuture
hot 36.8 36.3 42.6 46.7 47.8 42.4 33.3 40.5

σfuture
hot 3.8 4.5 5.0 5.6 4.6 4.4 4.1 2.9

µfuture
cold 24.7 21.6 25.7 26.0 28.3 27.6 22.9 29.3

σfuture
cold 3.9 4.2 5.7 6.2 6.1 5.1 3.6 3.2

|N (µfuture
hot , σfuture

hot )| 190.4 162.8 191.6 174.4 167.2 191.7 186.1 179.6

∆µfuture 12.1 14.7 16.9 20.6 19.5 14.7 10.3 11.2

∆µfuture −∆µpast 0.1 2.6 1.4 0.6 -0.2 -0.9 1.4 -0.2

1-year event 0.0139 0.0085 0.0124 0.0218 0.0254 0.0213 0.0151 0.0086

10-year event 0.0430 0.0185 0.0334 0.0748 0.1038 0.0783 0.0531 0.0208

30-year event 0.0773 0.0278 0.0556 0.1399 0.2139 0.1524 0.1023 0.0335

50-year event 0.1023 0.0339 0.0709 0.1886 0.3022 0.2094 0.1402 0.0422

100-year event 0.1510 0.0447 0.0993 0.2845 0.4870 0.3246 0.2170 0.0582



Table 4.8. Gaussian Parameter for city histograms (HadGEM2-ES RCP8.5) (continued)

Istanbul Jeddah Khartoum Madrid NDjamena Riyadh Sanaa Tehran

µpast
hot 23.6 35.5 40.4 31.6 39.7 42.7 39.5 34.7

σpast
hot 3.6 2.3 2.9 5.2 3.1 2.7 2.0 5.3

µpast
cold 12.0 26.1 30.5 14.6 33.4 27.2 34.0 15.3

σpast
cold 3.9 2.9 4.0 4.5 3.8 6.5 2.2 5.7

|N (µpast
hot , σ

past
hot )| 162.5 196.4 208.0 145.7 236.8 158.4 174.0 171.2

∆µpast 11.6 9.3 9.8 17.0 6.3 15.5 5.4 19.3

µfuture
hot 28.5 42.0 48.3 39.6 50.1 49.8 46.8 43.1

σfuture
hot 3.7 2.2 2.2 6.7 2.1 2.7 2.1 5.8

µfuture
cold 17.4 33.2 40.4 19.1 44.7 34.8 41.7 22.1

σfuture
cold 3.2 2.8 3.1 4.3 2.6 6.4 2.6 6.5

|N (µfuture
hot , σfuture

hot )| 162.1 189.3 224.6 190.7 191.9 147.2 223.2 175.8

∆µfuture 11.1 8.9 7.9 20.5 5.4 15.0 5.1 20.9

∆µfuture −∆µpast -0.5 -0.5 -1.9 3.5 -0.9 -0.5 -0.4 1.6

1-year event 0.0377 0.0053 0.0049 0.0144 0.0033 0.0073 0.0028 0.0208

10-year event 0.1625 0.0111 0.0143 0.0356 0.0063 0.0154 0.0037 0.0673

30-year event 0.3390 0.0169 0.0271 0.0559 0.0098 0.0233 0.0045 0.1220

50-year event 0.4805 0.0208 0.0373 0.0692 0.0124 0.0287 0.0050 0.1618

100-year event 0.7760 0.0279 0.0588 0.0928 0.0177 0.0383 0.0057 0.2389
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5. CONCLUSION

Gaussian mixture model and empirical rule are used to calculate the return peri-

ods of extreme weather events in 16 most populous cities in MENA region. The extreme

events consistently become more frequent for RCP8.5 scenarios for both GCM, except

Riyadh where the largest decrease in standard deviations occurs unlike other cities

as the city’s climate would change in the future. Even though it seems like frequen-

cies of extreme events are increasing in Riyadh, this would mean that there would be

constant heatwaves over Riyadh with mean temperatures much higher than current

temperatures.

The change in frequencies follow similar patterns in all cities. Also, mean tem-

perature increases are seen in all cities. The hot side means for daily maximum tem-

peratures will increase 2.56◦C, 4.83◦C, 3.88◦C and 7.68◦C on average for all cities in

the future for MPI-ESM-MR RCP4.5, MPI-ESM-MR RCP8.5, HadGEM2-ES RCP4.5

and HadGEM2-ES RCP8.5, respectively.

In general, the peak differences will further increase in the future. This divergence

would cause cities to have shorter transition seasons and transform into only 2 seasons.

In some cities, change in peak difference seems to be negative for HadGEM2-ES dataset

on the contrary to MPI-ESM-MR dataset, which might be resulted from the differences

in model components. These increases in peak differences would cause more severe

extreme events.

Temperatures of cities on south of the Sahara Desert show a single Gaussian as

they have tropical climates. These cities would have bimodal temperature distribu-

tion in the future as the climate classification pattern move northward with climate

change. Decrease observed in peak differences in some cities would also occur due to

this climate shift. 2 most populous cities in MENA region, Cairo and Istanbul, would

have hundredfold more frequent extreme hot weather events between 2070 and 2099.

These two cities would be exposed to temperatures never seen before throughout hu-
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man history. Considering their high population, extreme weather events would cause

devastating results.

The health effects of climate change become more apparent with extreme events

such as long heat waves. Sherwood and Huber proposed that humans cannot tolerate

wet-bulb temperatures exceeding 35◦C for long periods, as dissipation of metabolic

heat becomes impossible [26]. With the change in frequency of extreme events and

increase in means, probability of heat waves occurring would be expected to increase.

As the MENA region and the 16 cities in question have population of 556,246,000 and

95,621,000, respectively, the aftermath of an extreme event might be devastating. Also,

increased mean temperatures and frequent extreme events would affect agriculture

and vegetation, cause wildfires, black outs due to increased demand, and landslides

due to permafrost changes. IPCC’s Special Report on Climate Change and Land

states that climate change creates additional stresses on land, exacerbating existing

risks to livelihoods, biodiversity, human and ecosystem health, infrastructure, and food

systems. Increasing impacts on land are projected under all future Greenhouse Gas

emission scenarios [47].

In this study, coarse-resolution GCM outputs are dynamically downscaled to

50 km, elevation correction for sea level is applied and temperatures at city centers

are calculated from the nearest 4 grid points using inverse distance squared weighted

interpolation method from aforementioned 50-km resolution RCM dataset. For further

studies, higher resolution RCM outputs can be used to obtain better results on city

scale. Thus, the city topographies and their effects on city’s climate might be modelled

better and more robust statistics could be obtained.
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APPENDIX A: Gaussian Mixture Model Python code

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import pandas as pd

4 from sklearn.mixture import GaussianMixture

5 import math

6 from os import getcwd, chdir, mkdir, listdir

7 from os.path import isfile, join, exists

8 import re

9 from scipy import special as sps

10 from scipy import signal as spsig

11 ###########################################

12 pastStart = 1971

13 pastEnd = 2000

14 futureStart = 2070

15 futureEnd = 2099

16 areaName = ’THESIS’

17 model = ’MPI’

18 scenario = ’85’

19 ##########################################

20 titlefont = {’fontsize’: 12,’fontweight’: ’normal’}

21 labelfont = {’fontsize’: 12}

22

23 # CREATE DIRECTORY

24 chdir(’D:\\DATA\\graphs\\’)

25

26 if not exists(areaName + ’_’ + model + ’_’ + scenario + ’_’ +

27 str(pastStart) + ’-’ + str(pastEnd) + ’_vs_’ +

28 str(futureStart) + ’-’ + str(futureEnd)):

29 mkdir(areaName + ’_’ + model + ’_’ + scenario + ’_’ +
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30 str(pastStart) + ’-’ + str(pastEnd) + ’_vs_’ +

31 str(futureStart) + ’-’ + str(futureEnd))

32

33 chdir(’.\\’ + areaName + ’_’ + model + ’_’ + scenario + ’_’ +

34 str(pastStart) + ’-’ + str(pastEnd) + ’_vs_’ + str(futureStart) +

35 ’-’ + str(futureEnd))

36 outputGraphFolder = getcwd()

37

38 if not exists(’tas’):

39 mkdir(’tas’)

40 if not exists(’tasmin’):

41 mkdir(’tasmin’)

42 if not exists(’tasmax’):

43 mkdir(’tasmax’)

44

45 def round_down(num, divisor):

46 if num<0:

47 return num - (10-(-1*num % divisor))

48 else:

49 return num - (num % divisor)

50

51 def round_up(num, divisor):

52 if num % divisor <= 5:

53 return num + (5 - num % divisor)

54 else:

55 return num + (10 - num % divisor)

56

57 variable = {’tasmax’: ’Maximum Daily Temperature’,

58 ’tasmin’: ’Minimum Daily Temperature’,

59 ’tas’: ’Mean Daily Temperature’}

60

61 path = ’D:\\DATA\\’ + model + ’_RCP’ + scenario +

62 ’_shifttime_elecor_’ + areaName + ’\\’
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63 files = [f for f in listdir(path) if isfile(join(path, f))]

64 files = [f for f in files if f.endswith(’.csv’)]

65

66 excelColumns = [’city’, ’variable’, ’mu_hot_past’, ’sigma_hot_past’,

67 ’mu_cold_past’, ’sigma_cold_past’, ’hotPeriodDays_past’,

68 ’peakDiffPast’, ’mu_hot_future’, ’sigma_hot_future’,

69 ’mu_cold_future’, ’sigma_cold_future’,

70 ’hotPeriodDays_future’, ’peakDiffFuture’, ’changePeakDiff’,

71 ’1-year event’, ’10-year event’, ’30-year event’,

72 ’50-year event’, ’100-year event’]

73 excelHolder = pd.DataFrame(columns=excelColumns)

74

75 # READ FILE FOR EACH CITY AND DRAW HIST AND FIT

76 for file in files:

77 filename = path + ’\\’ + file

78 datafile = pd.read_csv(filename, sep=’\s+’, header=0)

79 datafile.columns = [’name’, ’lon’, ’lat’, ’year’, ’month’, ’day’,

80 ’value’, ’drop’]

81 datafile.drop(’drop’, axis=1, inplace=True)

82 regex = r’(.*)_’ + model + r’_RCP’ + scenario + r’_1970-2100.csv’

83 cityname = re.findall(regex, file)[0]

84 array = [’tas’, ’tasmin’, ’tasmax’]

85 HistMinMaxSelector = datafile.loc[datafile[’name’].isin(array)][’value’]

86 histMin = round_down(min(HistMinMaxSelector), 10)

87 histMax = round_up(max(HistMinMaxSelector), 10)

88

89 for key, value in variable.items():

90 dataFuture = datafile.loc[(datafile[’name’] == key) &

91 (datafile[’year’] >= futureStart) &

92 (datafile[’year’] <= futureEnd)]

93 histFuture = dataFuture[’value’]

94 dataPast = datafile.loc[(datafile[’name’] == key) &

95 (datafile[’year’] >= pastStart) &
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96 (datafile[’year’] <= pastEnd)]

97 histPast = dataPast[’value’]

98

99 # gmmFuture FIT

100 gmmFuture = GaussianMixture(n_components=2,

101 covariance_type=’full’,

102 n_init=5)

103 gmmFuture = gmmFuture.fit(X=np.expand_dims(histFuture, 1))

104

105 # gmmPast FIT

106 gmmPast = GaussianMixture(n_components=2,

107 covariance_type=’full’,

108 n_init=5)

109 gmmPast = gmmPast.fit(X=np.expand_dims(histPast, 1))

110

111 # CREATE GAUSSIAN FROM PARAMETERS

112 gmmFuture_x = np.linspace(int(min(histFuture)),

113 int(max(histFuture)),

114 1000)

115 gmmFuture_y = np.exp(gmmFuture.score_samples(

116 gmmFuture_x.reshape(-1, 1)))

117

118 # CREATE GAUSSIAN FOR FUTURE

119 gmmPast_x = np.linspace(int(min(histPast)),

120 int(max(histPast)),

121 1000)

122 gmmPast_y = np.exp(gmmPast.score_samples(

123 gmmPast_x.reshape(-1, 1)))

124

125 # PLOT HISTOGAM AND GAUSSIAN FIT

126 fig = plt.figure(figsize=(6.1,5), dpi=150)

127 ax = fig.add_subplot(111)

128 fig.subplots_adjust(left=0.125,right=0.98,bottom=0.1,top=0.95)
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129 # PLOT HISTOGRAM

130 n, bins, patches = ax.hist([histPast, histFuture],

131 bins=np.arange(histMin, histMax),

132 alpha=0.2,

133 color=[’teal’, ’firebrick’],

134 density=1,

135 label=[str(pastStart) + ’-’ + (pastEnd),

136 str(futureStart) + ’-’ +

137 str(futureEnd)])

138

139 # PLOT FUTURE AND PAST FIT

140 ax.plot(gmmPast_x, gmmPast_y,

141 color="blue", lw=2,

142 label=str(pastStart) + ’-’ + str(pastEnd) + ’ GMM’)

143

144 ax.plot(gmmFuture_x, gmmFuture_y,

145 color="red", lw=2,

146 label=str(futureStart) + ’-’ + str(futureEnd) + ’ GMM’)

147

148 # Annotate diagram

149 ax.set_ylabel("Probability density", fontdict=labelfont)

150 ax.set_xlabel(value + " ($^\circ$C)", fontdict=labelfont)

151

152 # DEFINE MU AND SIGMA

153 mu_past_cold = min(gmmPast.means_)

154 mu_past_hot = max(gmmPast.means_)

155 mu_past_cold_index = np.argmin(gmmPast.means_)

156 mu_past_hot_index = np.argmax(gmmPast.means_)

157 sigma_past_cold =

math.sqrt(gmmPast.covariances_[mu_past_cold_index])

158 sigma_past_hot = math.sqrt(gmmPast.covariances_[mu_past_hot_index])

159

160 mu_future_cold = min(gmmFuture.means_)
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161 mu_future_hot = max(gmmFuture.means_)

162 mu_future_cold_index = np.argmin(gmmFuture.means_)

163 mu_future_hot_index = np.argmax(gmmFuture.means_)

164 sigma_future_cold =

math.sqrt(gmmFuture.covariances_[mu_future_cold_index])

165 sigma_future_hot =

math.sqrt(gmmFuture.covariances_[mu_future_hot_index])

166

167 # CHOOSE HOTTER DAYS THAN MEAN-STD

168 # FIND THE TOTAL POPULATION FROM 84.13%

169 back1sigma = 50+100*sps.erf(1/math.sqrt(2))/2

170

171 hotterData = datafile.loc[(datafile[’name’] == key) &

172 (datafile[’year’] >= pastStart) &

173 (datafile[’year’] <= pastEnd)]

174

175 hotterDaysPAST = datafile.loc[(datafile[’value’] >= mu_past_hot[0]

176 - sigma_past_hot) &

177 (datafile[’name’] == key) &

178 (datafile[’year’] >= pastStart) &

179 (datafile[’year’] <= pastEnd)]

180

181 hotterDaysFUTURE = datafile.loc[(datafile[’value’] >=

182 mu_future_hot[0]

183 - sigma_future_hot) &

184 (datafile[’name’] == key) &

185 (datafile[’year’] >= futureStart) &

186 (datafile[’year’] <= futureEnd)]

187

188 hotPeriodNumberOfDays_Past = (hotterDaysPAST.shape[0] *

189 (100 / back1sigma))/ 30

190 hotPeriodNumberOfDays_Future = (hotterDaysFUTURE.shape[0] *

191 (100 / back1sigma)) / 30
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192

193 peakDiffPast = mu_past_hot[0] - mu_past_cold[0]

194 peakDiffFuture = mu_future_hot[0] - mu_future_cold[0]

195 changePeakDiff = peakDiffFuture - peakDiffPast

196 returnPeriodHolder = [cityname, key, mu_past_hot[0], sigma_past_hot,

197 mu_past_cold[0], sigma_past_cold,

198 hotPeriodNumberOfDays_Past, peakDiffPast,

199 mu_future_hot[0], sigma_future_hot,

200 mu_future_cold[0], sigma_future_cold,

201 hotPeriodNumberOfDays_Future, peakDiffFuture,

202 changePeakDiff]

203

204 for multiplier in [1, 10, 30, 50, 100]:

205 # expected frequency of n-year events in the past Equation 3.20

206 pastReturnPeriod = multiplier*hotPeriodNumberOfDays_Past

207

208 # the expected frequency outside range Equation 3.21

209 sigmaRange = math.sqrt(2) *

210 sps.erfinv(1 - (1 / pastReturnPeriod))

211

212 # temperature limit of range Equation 3.22

213 tau = mu_past_hot[0] + sigmaRange * sigma_past_hot

214

215 # calculation of x in mu-x*sigma for future Equation 3.23

216 futureSigmaRange = (tau - mu_future_hot[0]) / sigma_future_hot

217

218 # changed value of n-year event Equation 3.24

219 futureReturnPeriod = 1 / (1 - sps.erf(futureSigmaRange /

220 math.sqrt(2)))

221

222 # Equation 3.25

223 futureReturnPeriod_year = futureReturnPeriod /

224 hotPeriodNumberOfDays_Future
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225 returnPeriodHolder.extend([futureReturnPeriod_year])

226

227 df = pd.DataFrame([returnPeriodHolder], columns=excelColumns)

228 excelHolder = excelHolder.append(df)

229

230 # PLOT THE GRAPH

231 ax.set_title(cityname.capitalize() + ’ (’ + model + ’-ESM-MR RCP’ +

232 scenario[0] + ’.’+ scenario[1] + ’, ’ +

233 str(pastStart) + ’-’ + str(pastEnd) + ’ vs. ’ +

234 str(futureStart) + ’-’ + str(futureEnd) + ’)’,

235 fontdict=titlefont)

236 plt.xlim(min(gmmPast_x)-5, max(gmmFuture_x)+5)

237

238 # Draw legend

239 plt.legend(fontsize=10, loc=0)

240

241 # SAVE FIG

242 plt.savefig(outputGraphFolder + ’\\’ + key + ’\\’ +

243 cityname + ’_’ + model + ’_’ + scenario + ’_’ +

244 value.replace(’ ’, ’_’) + ’.png’)

245 plt.close()

246 excelHolder.to_excel(outputGraphFolder + ’\\’ + ’yearevents.xlsx’,

247 index=False)




