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B.S., Computer Engineering, Boğaziçi University, 2017
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Grant Number 18A01P7.

The numerical calculations reported in this thesis were partially performed at

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA re-

sources).



iv

ABSTRACT

HIERARCHICAL MIXTURES OF GENERATORS IN

GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) are deep neural networks that are de-

signed to model complex data distributions. The idea is to create a discriminator net-

work that learns the borders of the data distribution and a generator network trained

to maximize the discriminator’s loss to learn to generate samples from the data distri-

bution. Instead of learning a global generator, one variant trains multiple generators,

each responsible from one local mode of the data distribution. In this thesis, we re-

view such approaches and propose the hierarchical mixture of generators that learns

a hierarchical division in a tree structure as well as local generators in the leaves.

Since these generators are combined softly, the whole model is continuous and can be

trained using gradient-based optimization. Our experiments on five image data sets,

namely, MNIST, FashionMNIST, CelebA, UTZap50K, and Oxford Flowers, show that

our proposed model is as successful as the fully connected neural network. The learned

hierarchical structure also allows for knowledge extraction.
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ÖZET

ÇEKİŞMELİ ÜRETİCİ AĞLARDA HİYERARŞİK

ÜRETİCİ KARIŞIMLARI

Çekişmeli üretici ağlar (ÇÜA), karmaşık veri dağılımlarını modellemek için öne

sürülmüş derin sinir ağlarıdır. Ayırıcı ağ veri dağılımının sınırlarını öğrenirken üretici

ağ ayırıcı ağın hatasını yükseltmeye çalışarak örnekleme yapmayı öğrenir. Veri dağı-

lımlarında genelde birden fazla tepe bulunduğu için, ÇÜA’lar veri dağılımının hepsini

öğrenmekte zorlanırlar. Evrensel tek bir üretici öğrenmek yerine, her biri dağılımın

yerel bir kısmından sorumlu olan birden fazla üretici öğrenen sürümler de bulunmak-

tadır. Bu tezde bunları inceleyerek yeni bir mimari öne sürdük: hiyerarşik üretici

karışımları. Bu ağaç yapısı dağılımı hiyerarşik bir şekilde bölmeyi öğrenir; ağacın

yapraklarında ise yerel üreticiler bulunmaktadır. Bu üreticiler esnek bir biçimde birleş-

tirildiklerinden dolayı bütün model sürekli bir fonksiyondur ve türev bilgisine dayanan

en iyileme yöntemleriyle eğitilebilir. Beş farklı veri kümesinde (MNIST, FashionM-

NIST, CelebA, UTZap50K ve Oxford Flowers) yaptığımız deneyler öne sürdüğümüz

mimarinin yoğun katmanlı sinir ağları kadar başarılı olduğunu göstermiştir. Ayrıca

öğrenilen hiyerarşik yapının veri dağılımı hakkında damıtılmış bir bilgi verdiğini de

görüyoruz.
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1. INTRODUCTION

We are interested in the unsupervised problem of density estimation. That is, we

are given a set of data points X = {x(i) ∈ Rd}Ni=1 and assume that these are random

events generated from some unknown probability density function (PDF) p(x). Our

aim is to approximate p(x) with a proposal PDF p̂(x), using X. If we successfully

approximate p(x) with p̂(x), then we can use p̂(x) for later downstream tasks such as

detecting the probability of an event, classification and generating new instances by

sampling from p̂(x).

To be more concrete, we are in a search of a function f(x) that mimics p(x) using

X. We further say that the true f(x) should give the highest total probability for

points in X. This is sometimes interpreted as “the model that best explains the data”

and known as the maximum likelihood estimation:

argmax
f∈F

∏
x(i)∈X

f(x(i)) (1.1)

where F is the space of functions. We converted the problem into that of optimization.

There are many optimization methods that can help us solve Equation 1.1 analytically

and/or approximately.

In the parametric case, we assume that f(x) is a parametric model, for example,

Gaussian distribution with mean µ and covariance Σ. The problem then reduces to

estimating µ and Σ, for example, maximum likelihood estimation. The other possibility

is to assume that f(x) can be modeled by a mixture of parametric distributions, for

example, a mixture of Gaussians. Again, maximum likelihood estimation allows us to

estimate the parameters of the component densities as well as their proportions. The

third alternative is non-parametric estimation where we use the data points directly,

and do not estimate parameters explicitly. We define kernels that measures the distance

of the queried point with its neighbors. For example, the kernel density estimator can
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be written as:

f̂(x) =
1

nh

N∑
i=1

K

(
x(i) − x

h

)
(1.2)

where K is the kernel function, and h is called bandwidth. K and h are the hyperpa-

rameters that define the shape of the fit. Each approach has its own advantages and

disadvantages.

−10 −5 0 5 10 15
x1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

x
2

Figure 1.1. A spiral data set. If we know x1 = r ∗ cos(r), x2 = r ∗ sin(r), the data

become one-dimensional.

Another important point is the way the input is represented. For example in

Figure 1.1, if we use Cartesian coordinates, we probably fail, or find poor estimates

for p(x). If we know the transformation to polar coordinates, then we get a simpler

problem. Both parametric models and non-parametric models will likely yield better

results in polar coordinates for this specific problem. Therefore, the transformation is

the golden nugget.

One of the advantages of deep neural networks (DNNs) is that they can learn

appropriate transformations in their hidden layers. Here, the transformation means

that we map X to f1(X;w1), where f1 denotes the computation that is done in the
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first layer of a DNN using weights w1. In DNN, layers are organized serially:

DNN(X) = fL(fL−1(. . . f2(f1(X;w1);w2);wL−1);wL) (1.3)

where fi denotes the ith layer of the DNN with weights wi. Earlier layers of a DNN learn

basic primitives about X, and subsequent layers built more abstract transformations

using primitive transformations. Such abstract representations lead to better general-

ization, that is, they improve performance on unseen data [1]. DNNs have achieved

great success on a variety of real-world problems such as object recognition [2], speech

recognition [3] and statistical machine translation [4].

In this thesis, we focus on a method known as generative adversarial networks

(GANs) [5] for approximating densities with DNNs. We propose to use a hierarchical

mixture of generators as the generative part of GAN. This helps alleviate the problem

of mode collapse together with increased sample quality. Due to our hierarchical for-

mulation, the learned representation can also be interpreted in a post-hoc way to see

clusters in the data.

The rest of this work is organized as follows. Chapter 2 reviews the prerequisite

knowledge about GANs. In Chapter 3, we discuss previous works in literature that

also use multiple generators. We explain our proposed model in detail in Chapter 4.

Our experimental results are given in Chapter 5. We conclude and discuss future work

in Chapter 6.
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2. GENERATIVE ADVERSARIAL NETWORKS

2.1. Introduction

The generative adversarial network (GAN) has been proposed to learn a genera-

tive model to model a data distribution, p(x) [5]. GAN is composed of two learners, a

generator network G and a discriminator network D. G(z; θ) learns to map z sampled

from an arbitrary distribution p(z) to the target distribution p(x). It is a trained model,

generally a deep neural network, parameterized by θ. The discriminator D(x;φ), an-

other neural network with weights φ, is trained to assign low scores to “fake” samples

generated by G(z; θ) and high scores to samples from true p(x) given in the training set.

We do not show any true samples to G, instead train it to generate samples that will

get high score from D (see Figure 2.1). This is achieved with the following objective:

min
G

max
D

Ex∼p(x)[logD(x;φ)] + Ez∼p(z)[log (1−D(G(z; θ);φ))] (2.1)

We optimize Equation 2.1 by alternating between optimizing D and G with stochastic

gradient descent (SGD) (pseudo-code is given in Figure 2.2). In the original paper [5],

it is shown that if D and G have enough capacity, this optimization minimizes the

Jensen-Shannon divergence (JSD) between ptrue and pfake, and therefore will converge

to a point where G exactly generates the target distribution p(x). Note that we use

a parametric family of functions defined by neural networks, and this might limit our

functions’ capacity and break the convergence guarantee.

Once we learn a good θ, G can generate new data simply by sampling an input

point z and outputting G(z; θ). We can think of G as a counterfeiter, who tries to

produce fake coins. On the other hand, D is an inspector who tries to detect fake

coins. When D gets better at detecting fake coins, G must produce coins that are of

better quality to fool the inspector. This game will continue until G finds a way to

produce coins that exactly look like real ones. At that moment, D is helpless, and can

only make random guesses.
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z ∼ p(z)

x ∼ {x(1), x(2), …, x(N )}

G(z; θ ) xfake

xreal

D(x; ϕ) 0.3

Figure 2.1. GAN framework. Given an input z that is drawn from p(z), G produces a

fake sample, xfake. A real sample xreal that is drawn from the data set X and xfake

are given to D. D is trained to classify xfake as 0 and xreal as 1.

Require: Data set X = {x(i)}Ni=1, learning rate η.

Randomly initialize parameter sets θ of G and φ of D;

while stopping criterion satisfied do

Draw a batch of m real samples xr ∼ X;

Draw a batch of m noise vectors z ∼ N (0, 1);

xf ⇐ G(z; θ); {generated fake samples}

LD ⇐ − logD(xr;φ)− log(1−D(xf ;φ));

LG ⇐ log(1−D(xf ;φ));

φ⇐ φ− η∇φLD; {update discriminator}

θ ⇐ θ − η∇θLG; {update generator}

end while

Figure 2.2. The pseudo-code for training generative adversarial networks.
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2.2. Problems Related with GANs

GANs are used successfully especially in image generation. A well-trained GAN

can generate images that are almost indistinguishable by humans [6–8]. Yet, there

remain two main difficulties regarding the training: The first problem of mode collapse

means that G learns to generate some parts of p(x) but not all; there are ways of being

x that cannot be generated for any G(z). This is depicted in Figure 2.3.

The second problem is of vanishing gradients. In order to optimize Equation 2.1

for G, we should find gradients with respect to θ. However∇θ log(1−D(G(z))) becomes

zero in regions where D is perfectly able to discriminate ptrue and pfake. To remedy this,

it is suggested to use a proxy loss, also known as non-saturating loss: − logD(G(z)) [9].

This loss provides better gradients even when D is optimal. However, it is shown that

this loss no longer minimizes the JSD, but rather KL(pfake||ptrue)− 2JSD(pfake||ptrue),

where KL is the Kullback-Leibler divergence [10]. Moreover, they show that when D

gets better, the gradients of G increase with an increasing variance. They conclude

that this increasing variance might be the cause of the notorious instability of training

GANs.

Recent work in the literature mainly focuses on these two problems. To solve

problems related to training, researchers proposed either different GAN objectives [11–

14], or regularization methods [15–17], or architectures [6–8,17–20]. A good review can

be found in [21–23].

2.3. Variants of GAN

Before reviewing variants of GAN, we should first mention the variational auto-

encoder (VAE) [24] which also trains a generator but has a different network structure.

A regular auto-encoder (AE) consists of an encoder network E and a decoder network
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5 0 5 10

15

10

5

0

5
True data
Generated data

Figure 2.3. An example of a mode collapse. The data set consists of samples from two

Gaussian distributions, one on the top left with low variance and the other on the

bottom right with high variance. The generator fails to model the one on the top left.
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D. Given a data set X = {x(i)}Ni=1, AE minimizes the following:

Lrec =
N∑
i=1

1

2
‖x(i) −D(E(x(i);φ); θ)‖22 (2.2)

which is also known as the `2 reconstruction loss. VAEs transform the idea to graphical

models. They define the generative model as p(z; θ)p(x|z; θ) and approximate the true

posterior distribution p(z|x) with a variational distribution q(z|x;φ). Here, p(x|z; θ) is

the decoder and q(z|x;φ) is the encoder. A spherical Gaussian prior is assumed for p(z).

Two make computations easier, the variational distribution q(z|x;φ) is also chosen to be

a multivariate Gaussian with diagonal covariance. Therefore, q(z|x;φ) outputs a mean

and a standard deviation for each latent factor. To train the model, we simply minimize

the reconstruction loss as in regular AE, and also minimize the KL divergence between

p(z) and q(z|x;φ) to approximate posterior. The reparameterization trick which they

proposed [24] should also be noted because it yields a gradient estimator which have

lower variance then the näıve Monte Carlo gradient estimator, which then helps us to

train the variational model, q(z|x;φ). After training, we can simply draw z from p(z)

and use the decoder network to produce x.

σ

μ

E(x; ϕ)

x
z

x′�

D(z; θ )

Figure 2.4. Variational auto-encoder. Given x, E outputs µ and σ which defines a

multivariate Gaussian. We sample z from this Gaussian with reparameterization

trick; z = σ � ε+ µ where ε ∼ N (0, 1). D produces the output x′ given z.
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The conditional GAN (CGAN) [25] incorporates a label information y to approx-

imate class-conditional distribution p(x|y). The extension is simple: We concatenate

the one-hot label information y to the noise vector z and give it to G as input. To get

a conditioned gradient, we give y together with x as input to the D. Since D learns

the true class-conditional distribution p(x|y), it pushes G to approximate p(x|y). After

training, we can use G to generate a sample from a specific class. We can embed more

information in y, for example, in image-to-image translation, instead of class informa-

tion we give a sketch of an image as y and try to fill the image realistically [26]. Given a

real image (corresponds to x) and its sketch (corresponds to y), we ask D whether this

is a real example or not. Consequently, G learns to create an image from its sketch.

This is extended to translating from winter scenes to summer scenes, satellite views

to map views, and so on. The same idea is also applied to super-resolution [27] and

image inpainting [28] where we choose the (x, y) pairs accordingly. For example in

super-resolution, x is the high-resolution image and y is its low-resolution version. The

cycle GAN [29] further extends the idea to also work with unpaired images by intro-

ducing a cycle-consistency loss. Apart from these extensions of CGAN, some methods

incorporate the y information in a better way than concatenating it with the input [30].

In the original GAN, we learn a mapping from p(z) to p(x), but the reverse

direction from p(x) to p(z) is not available. In the bidirectional GAN (BiGAN) [18,

19] there is an additional encoder E. G, as usual, generates a sample G(z) given a

noise vector z. E generates a latent code E(x) given a real sample x. Both G and

E concatenate their input with their output producing pairs (z,G(z)) and (E(x), x)

respectively. The discriminator D learns to discriminate between these two pairs.

To maximize the loss of the discriminator, G must produce vectors that look like x,

likewise E must produce vectors that look like z. When the training converges, these

pairs (z,G(z)) and (E(x), x) must be coherent with each other in order to maximize

the loss of D. That is we expect E(G(z)) = z and G(E(x)) = x to hold.

There are many other ideas that are tried with GANs. The basic idea is the same:

We train a DNN for problem A, which helps us to train another DNN for problem B,

which in turn helps to learn A. Because they are trained in an iterative fashion, one
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can think that each DNN creates a curriculum for the other. For the case of GANs, G

first creates random noise. D learns to discriminate the random noise and the training

data, which is quite easy for high-dimensional data. With the help of D, G starts to

create better samples but not very good initially. The task gets iteratively harder for

D and likewise, when D gets proficient, G must learn finer details which is a harder

task. There is a problem when the curriculum becomes unfair and the gradients vanish

(or become unstable). In the next section, we review an approach to this problem,

which we also use in our experiments.

2.4. Wasserstein GAN

There are some shortcomings of the original GAN loss and its modified version,

the non-saturating GAN loss. If D becomes the optimal discriminator, then the gra-

dients of G vanish for the original loss. On the other hand, the non-saturating loss

makes gradients unstable. One can think of training D less, before we reach optimal-

ity, however there is no such principled way to control this optimality in the GAN

framework [10].

Based on these observations, the Wasserstein GAN [11] is proposed. The motiva-

tion is to build a new distance measure that has good convergence properties even when

the discriminator is optimal. They propose minimizing Earth-Mover (EM) distance,

also known as 1st Wasserstein distance. The advantage is that Wasserstein distance is

a convex function even when the supports of the two distributions do not intersect. It

is defined as follows:

W1(pt, pf ) = inf E(x,y)∼(pt,pf )[‖x− y‖] (2.3)

However, this formulation is known to be intractable. From the optimal transport view,

this formulation tells us that the distance is the minimum one out of all transportation
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plans. Instead, we use the Kantorovich-Rubinstein duality, as in [11]:

W1(pt, pf ) = sup
‖f‖L≤1

Ex∼pt [f(x)]− Ex∼pf [f(x)] (2.4)

where ‖f‖L ≤ 1 implies 1-Lipschitz functions. Equation 2.4 tells us that in order to

find W1 distance, we should find such f that will maximize the difference. If there is

no Lipschitz constraint, then we can find functions that will maximize the difference

indefinitely. The Lipschitz constraint ensures that we are searching the function in a

bounded region.

Now, to find the Wasserstein distance between two distributions, we can simply

create a random neural network f and maximize Equation 2.4 with SGD. The function

f can be thought as a “critic” (instead of discriminator) since the output of the critic

tells the generator how far it is from the true distribution. Then, for the generator,

we minimize Equation 2.4 since we know that doing so will bring two distributions

closer. This formulation is called the Wasserstein GAN (WGAN) [11]. The differences

between WGAN and GAN are:

• The discriminator outputs a real value, instead of a probability.

• The discriminator is constrained to be 1-Lipschitz.

• The discriminator should be trained till optimality (unlike GANs) since a better

discriminator implies a better W1 distance, and therefore better gradients to G.

The Lipschitz constraint is enforced through clipping weights of the critic function

[11]. A follow-up work introduced a more principled way by applying gradient penalty

to the critic [15].

The WGAN shows better convergence properties both in theory and in practice

when compared with the original GAN. For this reason, we use the WGAN formulation

with the gradient penalty [15] in our experiments.
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2.5. Evaluation Metrics

Another problem is of evaluating GANs. Unlike the Bayesian generative models

where we can evaluate the quality of a model using the marginal likelihood (or with

evidence lower bounds), there is no proper way of evaluating the GAN. The most

frequently used measures are the Inception score (IS) [31] and the Fréchet Inception

distance (FID) [32] since most of the papers include these scores. These two scores use

Inception v3 network [33] that is pre-trained on ImageNet [34].

2.5.1. Inception Score

In IS, the class-conditional distribution p(y|x) is compared with the marginal class

distribution
∫
x
p(y|x)p(x). Here, probabilities are provided by the Inception network.

The idea is that the entropy of p(y|x) should be low if x contains real-looking images

since we believe Inception v3 is a good image classifier. On the other hand, the entropy

of
∫
x
p(y|x)p(x) should be high if the model outputs images that are not natural looking

since no class will have high probability. The overall formulation is:

IS = exp(Ex∼pfKL(p(y|x)||p(y))) (2.5)

2.5.2. Fréchet Inception Distance

In IS, we never look at the distribution of real images which is a problem. In

FID, we take Inception network’s activations in the layer before the last layer for both

true samples and fake samples. These activations are then modeled with multivariate

Gaussian distributions. Let us denote the mean and the covariance of true samples and

fake samples as (µt,Σt) and (µf ,Σf ) respectively. Then, FID is calculated as follows:

FID = ‖µt − µf‖22 + Tr(Σt + Σf − 2(ΣtΣf )
1/2) (2.6)
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2.5.3. Nearest Neighbor Accuracy

In the classifier two-sample test (C2ST) [35], we train a classifier for two-class

classification where classes are the true samples and the fake samples, then we use

this classifier to assess whether the two distributions are close to each other. If these

two distributions are very close to each other, the classifier cannot perform better

than chance. In [36], they show that 1-nearest neighbor (1-NN) leave-one-out (LOO)

classifier can detect mode collapse, mode drop, and sample diversity. The procedure

is as follows. We take a set of real samples and fake samples. For each sample, we

look at its nearest neighbor’s label. This counts as the prediction of the model for the

current sample. If the overall accuracy is around 50%, we say these two distributions

are very close to each other. Let us make the test only for real images and call this

prediction accuracy metric 1-NN real. A higher 1-NN real accuracy implies samples

that are near real samples are also real, therefore a mode drop. If this is very low,

we can suspect that the generator overfits the target distribution. On the other hand,

1-NN fake accuracy assesses sample diversity. If 1-NN fake accuracy is high, then

the samples are not diverse. Apart from this, human judgment is generally used by

visualizing samples that are generated by the model to assess quality. Although this is

not a good approach and only works for the image domain, we have no choice until we

find a rigorous metric that can be trusted. An extensive review of evaluation methods

can be found in [37]. In this study, we use FID and 5-NN accuracy as evaluation

metrics where 5-NN accuracy is calculated with the same activations we calculate the

FID score with. We also show a set of generated samples to let the reader decide the

quality.
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3. COMBINING MULTIPLE GENERATORS IN GAN

The direction we pursue is to use multiple generators, each one responsible from

a local region of the p(z), and hence p(x). Different local generators will learn to cover

different modes and this will help alleviate the mode collapse problem. We review three

previously proposed approaches that use a set of generators but in different ways.

3.1. Multi Agent Diverse GAN

In the multi agent diverse GAN (MADGAN) [38], there are multiple generators

and each generator labels the fake data with its index. The discriminator not only

separates true examples from fakes, but also learns the index of the generator for a

fake. This additional classification problem forces generators to be local.

z ∼ p(z) h

G1(h)

G2(h)

G3(h)

Gs

Figure 3.1. Multi agent diverse GAN [38]. Given an input noise vector z, the shared

network Gs produces an intermediate representation h. From this representation,

each generator Gi outputs a sample.

The model is shown in Figure 3.1. Given z, a shared neural network Gs block

produces h, an intermediate representation that is higher dimensional than z, which

is used by a set of generators {Gi}Ki=1. The discriminator is a K + 1-class classifier

with 0 for true, and 1 to K as the index of the generator for the fake instances. The
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discriminator should push the different generators to different modes to be able to

solve the classification problem. More formally, the discriminator tries to minimize the

following:

min
φ

−Ex∼(pt∪pf )

[
K∑
j=0

rj(x) logDj(x;φ)

]
(3.1)

where pt and pf are the target and the fake distribution respectively, and r is a one-hot

vector with K + 1 length. This is the regular cross-entropy error function. The cost

function for the ith generator:

min
θ

Ez∼p(z) log(1−D0(Gi(z; θ))) (3.2)

where D0 represents the discriminator’s probability output for real class.

Though there are multiple generators, we do not mix them in a cooperative

manner. We also do not partition p(z) and use each partition for different generators.

This should rather be thought as each generator produces its interpretation of p(z).

Therefore, instead of partitioning p(z) we introduce alternative generator functions for

the same region in p(z).

3.2. Mixture GAN

The mixture GAN (MGAN) [39] is similar to MADGAN except that the classifer

and the discriminator are separate. The discriminator is two-class as usual discrimi-

nating between true and fake examples, and there is a separate K-class classifier only

for the fake examples.

The model is shown in Figure 3.2. There is also the difference that the split

of the generators is earlier. A set of generators {Gi}Ki=1, transform z and for all, the

shared network Gs produces the final output. A multinomial distribution is sampled to

randomly select one of the generators. The parameters of the multinomial distribution
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z ∼ p(z)

G1(z)

G2(z)

G3(z)

Gs(G1(z))

Gs(G2(z))

Gs(G3(z))

Gs(G1(z))

Gs

Gs

Gs

Figure 3.2. Mixture GAN [39]. Each generator Gi creates an abstract representation

which is fed to the shared network Gs to generate the output. One sample out of K

generated samples is selected at random and given to the discriminator.

are fixed. While the discriminator tries to discriminate between the fake and the real

data as usual, the classifier tries to predict the index of the generator that produced

the fake sample. These two networks share parameters treating the training of the

discriminator/classifier as a multi-task learning problem.

3.3. Mixtures of Experts GAN

In the MEGAN [40], inspired from the mixtures of experts [41], there is an addi-

tional gating model, which is also trained, that chooses among the different generators.

The model is shown in Figure 3.3. There is a set of generators {Gi}Ki=1 and

an additional gating function, which takes as its input z and some features from the

generated x. Then Straight-Through Gumbel Softmax is applied which only selects

one expert while allowing differentiability. The discriminator is still two-class. The

gating model also has its parameters that are updated together with the generators.

Although all generators generate an output, it is the gating model that decides which

one is to be used.
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z ∼ p(z)

G1(z)

G2(z)

G3(z) ∑ aiGi(z)

z′� = [z ; ϕ(x1); ϕ(x2); ϕ(x3)]

a3

a2

a1 a(z′�)

Figure 3.3. Mixture of experts GAN [40]. Given z, each generator Gi outputs a

sample xi. The gating network selects one generated sample among all based on

z and φ(xi). φ returns the activation map of xi from earlier layers of Gi.

Different from MADGAN and MGAN, in this approach p(z) is partitioned into

local parts. Since there is a gating network, each generator is only responsible for

a local part of p(z). However, this partitioning is rather hard since we only let one

generator to be used. Also, the gating network takes features from the generators’

outputs as its input, therefore the partitioning might be non-smooth.
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4. MIXTURES OF GENERATORS

All previous approaches use multiple generators yet these generators do not work

cooperatively. We propose to use a mixture of generators that work cooperatively

while also specializing in different regions of p(z). We propose two different models:

a flat mixture of generators and a hierarchical mixture of generators that are based

on mixtures of experts (ME) [41] and hierarchical mixtures of experts (HME) [42]

formulations, respectively. Unlike MEGAN which also uses the ME idea, we combine

generators softly and use only the noise vector z as the input.

4.1. Flat Mixture of Generators

The flat mixture of generators model, which we call ME-GAN (although the name

is similar to MEGAN, we use the unmodified ME model unlike MEGAN, therefore keep

the name with a dash), consists of local generators {Gi(z)}Ki=1, and a gating function

a(z). The idea is that instead of learning a global generator, we divide the input space

into regions and learn a set of local generators.

ai(z) =
exp (viz + vi0)∑K
j=1 exp (vjz + vj0)

(4.1)

x =
K∑
i=1

ai(z)Gi(z) (4.2)

For a given input z, the gating function outputs probabilities to decide how much to

use each generator (Equation 4.1). Because the gating function outputs a probability,

we do not select just one generator but a convex combination of them (Equation 4.2).

For generators, we consider two options:

Constant model: Gi(z) = ci (4.3)

Linear model: Gi(z) = Wiz + wi0 (4.4)
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In the constant model (Equation 4.3), generators do not use the input but generate

a constant vector response ci. Although the generator response is constant, their

combination weights a are still dependent on the gating function and therefore depend

on z. Because the combination of generators is convex, the set of possible outputs

are constrained by the convex hull defined by {ci}Ki=1. The linear model (Equation

4.4) relaxes the job of the gating function by using a more general model. The error

that is propagated through the discriminator, ∂E/∂x, is distributed among generators

with respect to their contribution (due to the chain rule), and each generator becomes

responsible for modeling the input-output mapping in its region of expertise. In both

formulations, the parameters of the gating function {vi, vi0}Ki=1 and the parameters of

the generators {Wi, wi0}Ki=1 (or {ci}Ki=1 for constant model) are trained using SGD.

4.2. Hierarchical Mixture of Generators

Just like the hierarchical mixture of experts [42] go from the flat organization

of mixture of experts [41] to a tree, our proposed hierarchical mixture of generators

(HME-GAN) go from a flat mixture of generators to a tree. HME-GAN and ME-GAN

are the same except for the formulation of the gating functions. Let us think of a

binary decision tree. The generators are at the leaves of this tree. At each internal

node m of the tree, there is a logistic function σm(z) with parameters {vm, vm0}:

σm(z) =
1

1 + exp [−(vmz + vm0)]
(4.5)

Given an input z, this logistic function outputs a probability which serves as the

mixture weights of the left and the right child. The response of an internal node m

can be written as:

xm(z) =

 Gm(z) if m is a leaf

xLm(z)σm(z) + xRm(z)(1− σm(z)) otherwise

(4.6)

where xLm and xRm are the responses of the left and the right children, respectively. At

each internal node m, we make a soft split and use σm(z) of the response of the left
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tree and 1 − σm(z) of the response of the right tree. This is carried out recursively

until we arrive at the leaves where we have the generator responses, Gi(z). Again,

we are taking a convex combination of the generator responses. In ME-GAN, the ith

generator is mixed with the weight:

ai(z) =
exp (viz + vi0)∑K
j=1 exp (vjz + vj0)

(4.7)

whereas in HME-GAN, this is:

ai(z) =
∏

j∈Pred(i)

σ
δ
(j)
1
j (z)(1− σj(z))δ

(j)
2 (4.8)

(δ
(j)
1 , δ

(j)
2 ) =

(1, 0) if i lies in the left subtree of j

(0, 1) otherwise

(4.9)

where Pred(i) is the predecessors of the leaf i. This model is differentiable, too, which

lets us learn the set of parameters (in the gating nodes and the generators at the leaves)

with SGD.
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5. EXPERIMENTS

5.1. Data Sets

We test and compare our proposed mixture models ME-GAN and HME-GAN

with related models, namely, MADGAN, MGAN, and MEGAN, on five image data sets

that are widely used in GAN literature: MNIST [43], FashionMNIST [44], CelebA [45],

UTZap50K [46], and Oxford Flowers (which we shorten as “Flowers”) [47].

MNIST is a data set that contains gray-scale handwritten digits of size 28 × 28

pixels. There are 60,000 training samples and 10,000 test samples. FashionMNIST is

a data set of fashion products such as t-shirts, trousers, sneakers. It is inspired from

MNIST and has the same image size with the same number of examples. It is designed

to be a drop-in replacement from MNIST and known to be a harder baseline. For these

two data sets, we resize the images to 32× 32 pixels, to be able to use the same kind

of deconvolutional architecture repeatedly. We use all the 10,000 examples in the test

set for evaluation.

CelebA contains celebrity faces with 40 different annotated labels. There are

10,177 distinct people with a total of 202,599 images in color. We use the aligned-

and-cropped version of the data set. There is no separate test set. We randomly

select 10,000 test images and use them only for evaluation. These images contain very

different backgrounds so we center-crop an area of 148×148 and then resize it to 64×64

pixels.

UTZap50K is a shoe data set of 50,000 catalog images in color. There are four

major categories with many subcategories as brand names. We resize all images to

64× 64. We randomly select 5,000 test images and use them only for evaluation.

Oxford flowers is a flower data set with 102 different categories with a total of

8198 images in color. There are around 80 images per class. We resize all images to
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64× 64. We use 1,000 test images for evaluation.

Some examples from each data set are shown in Figure 5.1. All images contain

pixel intensities in the range [0, 255], which we normalized to range [−1, 1]. For MNIST

and FashionMNIST, there are 32 × 32 = 1024 input features. The other three data

sets are in color have three channels for red, green, blue pixel intensities; they hence

have 64 × 64 × 3 = 12,288 input features.

5.2. Experimental Setup

5.2.1. The Convolutional Pipeline

Our experiments are done in the image domain. It is known that using a convo-

lutional architecture for tasks that involve images increases performance dramatically.

For example, although the set of human face images contain many modes, textures are

quite the same. For this reason, we incorporate transposed convolutional (also known

as deconvolutional) layers in both of our models. Instead of generating samples directly

in the data domain x, our mixture models first generate an abstract representation h,

which is given to a transposed convolutional architecture Gs. This architecture then

produces the output x. For the human face example, local generators create an abstract

representation and Gs produces the actual image given this abstract representation.

For other domains where data points share common features, another domain specific

architecture can be used to increase the performance given that the architecture is dif-

ferentiable. The pipelines for ME-GAN and HME-GAN are depicted in Figure 5.2 and

5.3 respectively. Note that it is only G that is modeled with ME or HME, D remains

the usual deep convolutional neural network.

5.2.2. Network Architectures

The following settings are used in all experiments unless otherwise stated. We

introduce multiple generators at the earlier levels of the model, and use a parameter-

shared convolutional network on top of multiple generators as shown in Figures 5.2
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(a) MNIST

(b) FashionMNIST

(c) CelebA

(d) UTZap50K

(e) Oxford Flowers

Figure 5.1. Random examples from the five data sets used in this work.
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z ∼ p(z)

a(z)

a1

a2

a3

a4

G1(z)

G2(z)

G3(z)

G4(z)

h = ∑ aiGi(z) Gs(h)

Gs

Figure 5.2. ME-GAN model. Given z, each Gi outputs a latent representation. These

representations are mixed with weights ai which are provided by the gating function.

The shared network Gs produces the final output.

z ∼ p(z)

G1(z)

G2(z)

G3(z)

G4(z)

h = ∑ aiGi(z)
Gs(h)

σ1

σ3

σ2

a1

a2

a3

a4

Gs

Figure 5.3. HME-GAN model. Each Gi creates a latent representation from z as in

ME-GAN. However, each ai is calculated by multiplying the σ values along the path

from the leaf to the root (Equation 4.8). As in ME-GAN, ai values sum up to one.
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and 5.3. The discriminator part is the same for all models except MADGAN and

MGAN. In MADGAN, the last layer of the discriminator contains K+ 1 units, instead

of one. In MGAN, the last layer contains two parallel fully-connected layers, one of

which outputs K units for predicting the index of the generator and the other one

outputs a probability for real vs. fake classification. The convolutional architecture

that we use for both the discriminator and the generator is the deep convolutional

GAN (DCGAN) [17]. MNIST and FashionMNIST are 32 × 32 pixels and other data

sets are 64× 64 pixels, the architectures used for two cases are given in Tables 5.1 and

5.2. The layers two to five are convolutional (or transposed convolutional) layers. First

layer is a fully-connected (FC) layer for the baseline model, an ME layer for MEGAN

and ME-GAN, and an HME layer for HME-GAN. For MADGAN and MGAN, this

layer contains multiple fully-connected layers. The dimensionality of the input z is set

to 100. For the non-linearity, we used the rectified linear unit (ReLU) in the hidden

layers. We did not use any normalization in G but used layer normalization [48] in D

for ME-GAN and HME-GAN. We employed batch normalization both in G and in D

for MADGAN, MGAN, and MEGAN.

5.2.3. Hyperparameters

For ME-GAN and HME-GAN, the Wasserstein loss [11] with gradient penalty

[15] is used. We adopted the suggested hyperparameter setting for Wasserstein loss

recommended in [15], namely two-sided gradient penalty with a constant of 10.0. The

discriminator is trained five times per optimization step of the generator. We cannot

find a trivial way of using Wasserstein loss for MADGAN and MGAN since these

methods make multi-class classification. We experimented Wasserstein loss on MEGAN

but it did not give good results in our setting. Therefore, we use the vanilla log-

likelihood GAN loss (the non-saturating version) for MADGAN, MGAN, and MEGAN.

We used Adam optimizer [49] with amsgrad option [50]. The learning rate is set to

0.0001 with beta values of Adam set to (0.5, 0.999). The batch size is set to 128.
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Table 5.1. The generator and the discriminator networks that are used with MNIST

and FashionMNIST, which have 32× 32 gray-scale images. For convolutional layers,

kernel size is set to 4× 4 with a stride of 2× 2 and with a padding of 1.

Generator Network

Layer In Channels In Resolution Out Channels Out Resolution

Fully-Conn. 100 1× 1 256 4× 4

Transp. Conv. 256 4× 4 128 8× 8

Transp. Conv. 128 8× 8 64 16× 16

Transp. Conv. 64 16× 16 1 32× 32

Discriminator Network

Layer In Channels In Resolution Out Channels Out Resolution

Conv. 1 32× 32 64 16× 16

Conv. 64 16× 16 128 8× 8

Conv. 128 8× 8 256 4× 4

Fully-Conn. 256 4× 4 1 1× 1
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Table 5.2. The generator and the discriminator networks that are used with CelebA,

UTZap50K, and Oxford Flowers which are 64× 64 images in color. For convolutional

layers, kernel size is set to 4× 4 with a stride of 2× 2 and with a padding of 1.

Generator Network

Layer In Channels In Resolution Out Channels Out Resolution

Fully-Conn. 100 1× 1 512 4× 4

Transp. Conv. 512 4× 4 256 8× 8

Transp. Conv. 256 8× 8 128 16× 16

Transp. Conv. 128 16× 16 64 32× 32

Transp. Conv. 64 32× 32 1 64× 64

Discriminator Network

Layer In Channels In Resolution Out Channels Out Resolution

Conv. 1 64× 64 64 32× 32

Conv. 64 32× 32 128 16× 16

Conv. 128 16× 16 256 8× 8

Conv. 256 8× 8 512 4× 4

Fully-Conn. 512 4× 4 1 1× 1
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5.2.4. Evaluation

For the evaluation of GAN methods, we used the most popular evaluation criteria

that are the Fréchet Inception distance (FID) [32] and the two-sample test (C2ST) [35],

here, 5-nearest neighbor (5-NN) leave-one-out accuracy. Both FID and 5-NN accuracy

are calculated with the activations before the softmax layer (2048-dim) of Inception

v3 [33]. Lower FID scores are better and 5-NN accuracies that are close to 50% are

better. All models are run five times with different random seeds, and we report the

mean and standard deviations.

The seed numbers are set to 2019, 2020, 2021, 2022, 2023 for five different runs.

Except for CuDNN [51] operations which are not deterministic but do not affect ex-

periment results, all experiments are reproducible with given seeds. PyTorch auto-

differentiation library [52] is used to automatically calculate gradients by exploiting

the chain rule of Calculus.

5.3. A Toy Example

First, for the sake of the understanding of the model, we made a toy experiment

(Figure 5.4). We are given a spiral-like shaped two-dimensional data set. We trained

an HME-GAN model with a depth of three, so there are eight generators at the leaves.

At the top level, we see the trained model’s response. The input noise vector is drawn

from a one-dimensional Gaussian distribution with zero mean and unit variance. The

possible input range is shown with colors on the top box in Figure 5.4. The output of

the model is also colored, indicating which part of the input maps to which part of the

output. We visualized each node’s responsibility by softly counting the gating values.

On the first level of the tree, we see that the overall output of the model is divided into

two, the left responsible for the inner region, and the right responsible for the outer

region. When we go down in the tree, the responsibility is distributed among children.

At the final level, where the leaves are located, there are generator functions. Notice

that each generator is used in a local region. We also see that some generators are not

used at all.
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In Figure 5.5, we see the results for other approaches on the spiral data set.

MADGAN and MGAN do not use a gating function. Therefore, the output region of

the generators overlaps with each other (Figures 5.5a and 5.5b). MEGAN performs

better than MADGAN and MGAN (Figure 5.5c). Although MEGAN uses a gating

function, the output region of the generators still overlaps. This is because the gating

function also takes the outputs of generators as its input. Our formulation of ME

generator performs better by softly combining three generators (Figure 5.5d). Yet, it

is not as good as the HME structure.

This example shows that even when the distribution is very non-linear, we can

model it with simple linear models by hierarchically combining them. The hierarchical

combination dissects the problem into two at each level, easing the problem in a divide-

and-conquer fashion.

5.4. Flat Mixture vs. Hierarchical Mixture

We have shown two different ways of combining multiple generators, namely, the

flat mixture and the hierarchical mixture. Now, we want to see whether there is a

qualitative difference between these two models. We use trees of different depths, and

we also test a flat mixture of generators with the equal number of leaves. For example,

we have a tree of depth five with 32 leaves and a flat mixture of 32 leaves. In the former

case, for each leaf, we have five binary gatings; in the latter case, there is one gating

that chooses one of 32. For the hierarchical model, we tested trees with depths from

five to eight. To get the same number of leaves, we used 32, 64, 128 and 256 generator

experts in the flat mixture.

Some samples generated from ME-64 and HME-6 are shown in Figures 5.6 to 5.9

for visual inspection. It can be seen that these are quite realistic and contain diversity

for both models. We also visualized the average generator responses of ME and HME

for FashionMNIST data set in Figure 5.10. To calculate this, we count the gating values

of leaves for each generated image. Then, for each leaf, we take a weighted average of

generated images where weights are gating values of a leaf for each image. This will
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Figure 5.4. The average responses of tree nodes of HME-GAN on a spiral data set.

The data set is represented with black crosses. The output of the model is colored

dots. These colors represent different regions of the input.
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(a) MADGAN (b) MGAN

(c) MEGAN (d) ME-GAN

Figure 5.5. Generated samples for each generator on the toy data set. The data set is

represented with black crosses. Outputs of models are colored dots in each subfigure.

These colors represent different regions of the input.
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Figure 5.6. Samples generated using ME-64 on 32× 32 sized data sets.

Figure 5.7. Samples generated using HME-6 on 32× 32 sized data sets.
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Figure 5.8. Samples generated using ME-64 on 64× 64 sized data sets.
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Figure 5.9. Samples generated using HME-6 on 64× 64 sized data sets.
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give us a leaf’s average response. We can see from the figure that the HME leaves are

more diverse and local when compared with ME leaves. However, this figure is not

about sample quality or sample diversity. It is rather about the relation of leaves with

each other. Leaves of the ME model seem more blurry. This says that leaves of ME

are not specialized in a region of p(z) but rather used throughout in many regions of

p(z). To understand this clearly, we also show the covariance matrices of leaf gating

values in Figure 5.11. These are 64 × 64 matrices where each index corresponds to

a leaf. For example, for both matrices, we see that the diagonal values are higher

than others. This implies leaves are rather used alone, or used with high proportion.

For ME, correlations are randomly scattered. Its counterpart HME has correlations

gathered around the diagonal. Furthermore, we can see spectral squares of sizes 4× 4

and 8× 8. This shows that cooperations are done in a hierarchical way.

The 5-NN and FID scores for five different data sets are visualized in Figure 5.12

and 5.13. All results are also reported in Tables 5.3 to 5.7. The summary of qualitative

metrics implies that ME and HME perform around the same. We see that the results

for HME generally gets better with the increasing complexity (in terms of number of

parameters) as expected. For ME, the results do not get better as in HME. Especially

the ME-256 model performs worse than other smaller ME models.

When we make a comparison with the baseline, we see that ME and HME are not

as good as FC in terms of FID score or 5-NN accuracy (Figure 5.12 and 5.13). Their

performance improves as the structure gets larger; note that trees with depth five and

six are smaller than FC. Although 5-NN real accuracies are quite close, there is a gap

between 5-NN fake accuracies. High 5-NN fake accuracy implies that fake samples are

located near fake samples in p(x). So, the performance drop might be due to decreased

sample diversity.

One possible cause for the decreased diversity is to use constant vectors in the

leaves. In an FC layer, the random vector z is gone through an affine transformation

and a ReLU non-linearity, the randomness is propagated linearly. ME and HME, on

the other hand, encapsulate the information of z (randomness) in their gating values.
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(a) ME-64

(b) HME-6

Figure 5.10. The average responses of generators at the leaves for ME-64 and HME-6.

We see that HME-6 responses are more localized compared to ME-64.
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(a) ME-64
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(b) HME-6

Figure 5.11. Covariance matrix of gating values of generators for ME-64 and HME-6.

We see spectral squares near diagonal for HME-6 model, which indicates generators

that are closer by index are used together.
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Figure 5.12. FID scores and 5-NN accuracies of ME-k and HME-k on MNIST and

FashionMNIST data sets. Lower FID and 5-NN scores are better. The parameter

count does not include the convolutional part.
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Figure 5.13. FID scores and 5-NN accuracies of ME-k and HME-k on CelebA,

UTZap50K, and Oxford Flowers data sets. Lower FID and 5-NN scores are better.

The parameter count does not include the convolutional part.
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Table 5.3. 5-NN accuracies and FID scores of ME and HME models on MNIST.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 74.90± 0.59 67.89± 0.30 11.13± 0.44 413K

HME-5 73.62± 0.91 73.24± 1.03 13.57± 0.31 134K

HME-6 73.70± 0.54 72.00± 1.10 12.61± 0.84 268K

HME-7 73.27± 0.48 70.97± 0.35 11.93± 0.44 537K

HME-8 73.39± 0.47 71.20± 0.48 11.84± 0.48 1.07M

ME-32 74.23± 0.58 74.11± 0.77 13.71± 1.19 134K

ME-64 74.00± 0.31 72.12± 0.74 12.08± 0.23 268K

ME-128 74.57± 0.86 72.65± 1.30 12.75± 0.77 537K

ME-256 76.31± 0.79 72.97± 0.52 14.58± 1.10 1.07M

Table 5.4. 5-NN accuracies and FID scores of ME and HME models on

FashionMNIST.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 75.01± 0.20 84.89± 0.39 26.50± 0.63 413K

HME-5 73.46± 0.68 89.32± 0.72 27.92± 0.91 134K

HME-6 73.22± 0.86 88.36± 0.95 26.85± 1.35 268K

HME-7 73.14± 1.47 87.47± 1.14 25.93± 1.48 537K

HME-8 72.45± 2.08 86.95± 1.27 25.51± 2.41 1.07M

ME-32 74.05± 0.81 90.23± 0.47 27.68± 0.83 134K

ME-64 73.54± 1.10 90.31± 0.59 27.86± 1.34 268K

ME-128 75.84± 2.43 90.50± 1.47 28.47± 2.90 537K

ME-256 75.63± 2.48 90.46± 1.65 29.49± 2.86 1.07M
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Table 5.5. 5-NN accuracies and FID scores of ME and HME models on CelebA.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 66.14± 1.17 80.96± 1.56 14.93± 0.48 827K

HME-5 72.16± 0.51 91.14± 0.40 21.40± 0.61 265K

HME-6 70.35± 0.63 89.93± 0.15 19.97± 0.27 530K

HME-7 68.61± 0.81 87.71± 0.95 18.21± 0.52 1.06M

HME-8 68.96± 1.39 88.12± 0.62 18.20± 0.47 2.12M

ME-32 72.22± 1.60 91.04± 1.86 20.96± 0.78 265K

ME-64 71.23± 1.07 90.56± 0.87 20.27± 0.70 530K

ME-128 69.66± 0.84 87.92± 0.48 18.78± 0.35 1.06M

ME-256 69.23± 1.29 87.83± 0.66 18.39± 0.76 2.12M

Table 5.6. 5-NN accuracies and FID scores of ME and HME models on UTZap50K.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 89.59± 1.40 81.51± 1.16 54.48± 5.36 827K

HME-5 91.64± 0.83 86.02± 0.67 63.67± 3.40 265K

HME-6 90.62± 0.59 85.13± 0.46 58.96± 1.28 530K

HME-7 90.47± 0.70 84.02± 0.43 57.43± 3.06 1.06M

HME-8 90.30± 0.73 83.71± 0.61 56.48± 2.39 2.12M

ME-32 91.07± 0.62 86.69± 1.18 63.72± 4.35 265K

ME-64 91.18± 0.34 85.67± 0.99 61.19± 2.02 530K

ME-128 90.95± 0.82 85.38± 0.42 61.51± 2.52 1.06M

ME-256 91.31± 1.18 86.06± 1.04 65.19± 3.85 2.12M



42

Table 5.7. 5-NN accuracies and FID scores of ME and HME models on Oxford

Flowers.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 93.80± 1.02 97.60± 0.71 135.28± 7.28 827K

HME-5 93.83± 0.95 97.48± 0.48 133.47± 6.22 265K

HME-6 93.41± 0.96 97.42± 0.35 131.05± 4.61 530K

HME-7 93.14± 0.83 97.46± 0.58 128.95± 3.49 1.06M

HME-8 93.38± 0.96 97.24± 0.74 128.62± 5.94 2.12M

ME-32 93.58± 1.26 97.88± 0.58 133.13± 4.31 265K

ME-64 93.69± 0.50 97.96± 0.30 131.83± 2.45 530K

ME-128 93.57± 1.41 97.76± 0.41 132.07± 7.28 1.06M

ME-256 94.40± 1.19 97.89± 0.48 137.08± 6.46 2.12M

Gating values are calculated with a set of sigmoid functions for HME, and with a

softmax function for ME. Both the sigmoid function and the softmax function get

saturated for values that are too low or too high. Therefore, if gating weights get too

high or too low, which also means that it mimics a hard split instead of a soft one, the

variety is lost.

To remedy this problem, we use linear functions as in Equation 4.4 at leaves of

both ME and HME models. We experimented with the number of generators set to 4,

8, 16, and 32. We call these models as ME-L-k and HME-L-k where k is the number

of generators for the flat mixture and the depth level for the hierarchical mixture.

The experimental results on five data sets are given in Tables 5.8 to 5.12. First,

we see that both ME-L and HME-L models outperform the baseline FC model. Though

one can expect these results since the number of parameters increases. Both 5-NN real

and 5-NN fake accuracy drops, which says our mixture models fit better to p(x) with

more variety. Some samples generated from ME-L-16 and HME-L-4 are visualized in

Figures 5.14 and 5.15.
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Figure 5.14. Samples generated using ME-L-16 on 32× 32 sized data sets.

Figure 5.15. Samples generated using HME-L-4 on 32× 32 sized data sets.
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Figure 5.16. Samples generated using ME-L-16 on 64× 64 sized data sets.



45

Figure 5.17. Samples generated using HME-L-4 on 64× 64 sized data sets.
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(a) ME-L-16

(b) HME-L-4

Figure 5.18. The average responses of generators at the leaves for ME-L-16 and

HME-L-4.
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When we compare ME-L and HME-L models, we see that ME slightly enjoys

more from having linear experts. We visualized the average generator responses for

FashionMNIST data set in Figure 5.18. We see that ME-L leaves are now more local

and diverse. Figure 5.19a also confirms this since the diagonal is now more prominent.

On the other hand, in Figure 5.19b HME seems to use its leaves more cooperatively

when compared with its constant counterpart. For both formulations, results stagnate

at their largest models. We argue that the training time may increase when the number

of generators increases since we distribute the error to multiple generators. More

generators imply we update generators with smaller gradients.

In Figure 5.20 and 5.21, we show some samples generated from different generators

at the leaves of ME-L-16 and HME-L-4. Each generator works in a different input

region. To find these input regions, we sample 10,000 input noise vectors and select

the top five most likely points. Here, the most likely point for a generator is the point

which maximizes the gating value of a generator.

In Figure 5.20, we see that each generator is localized in a different input-output

mapping region. When we look at columns from five to eight in Figure 5.20b, they

are all digits that contain a vertical stroke. Since HME-L-4 is a tree with a depth of

four, generators from five to eight have the same ancestor at the second level of the

tree. We see that digits that contain a vertical stroke are split from others at the

second level of the tree. These digits are further split into different leaves when we

go down at the bottom of the tree. This further confirms our hypothesis that HME

hierarchically splits the data generation task. Likewise in Figure 5.21b, for HME model

we see that generators that are neighbors create images that share common features

such as background color, hair type, gender. For example, male faces are generally

located in the first eight columns which indicates that the tree is softly split by the

gender feature at the first level. This is a good split since the split by the gender

approximately splits p(x) by half. When we go down in the tree, splits become more

detailed. In columns 11 and 12, we see women with different hair colors but with the

same orientation and hair type.
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(b) HME-L-4

Figure 5.19. Covariance matrix of gating values of generators for ME-L-16 and

HME-L-4. As in Figure 5.11, we see spectral squares near diagonal for HME-L-4

model.
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(a) ME-L-16

(b) HME-L-4

Figure 5.20. Some samples generated from generators at the leaves of ME-L-16 and

HME-L-4 for MNIST data set. Samples in the ith column are generated from ith

generator.
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(a) ME-L-16

(b) HME-L-4

Figure 5.21. Some samples generated from generators at the leaves of ME-L-16 and

HME-L-4 for CelebA data set. Samples in the ith column are generated from ith

generator.
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5.5. Comparison with Related Works

In this section, we compare our models with related works that we mentioned

in Chapter 3. We test each method for different number of generators. MADGAN-

k, MGAN-k, MEGAN-k and ME-GAN-k denote models with k generators. We also

report the parameter count of each model; these do not include the convolution pa-

rameters shared across all models. Our experiment results on five different data sets

are summarized in Figures 5.22 and 5.23. We also report the results in Tables 5.8 to

5.12.
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MADGAN

MEGAN

MEGAN

MEGAN

FC

FC

FCME-L

ME-L
ME-L

HME-L

HME-L HME-L

(a) MNIST

MGAN MGAN
MGAN

MADGAN MADGAN

MADGAN

FC

FC

FC

ME-L

ME-L ME-LHME-L

HME-L HME-L

MEGAN
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(b) FashionMNIST

Figure 5.22. FID scores and 5-NN accuracies on MNIST and FashionMNIST data

sets. The parameter count does not include the convolutional part.

From the results, we see that MADGAN and MGAN perform worse than the

baseline in terms of FID score. Only on the MNIST data set, MADGAN performs
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Table 5.8. 5-NN accuracies and FID scores on MNIST.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 74.90± 0.59 67.89± 0.30 11.13± 0.44 413K

HME-L-2 74.03± 0.81 66.73± 0.61 10.27± 0.41 1.65M

HME-L-3 73.48± 0.53 66.41± 0.74 9.86± 0.24 3.31M

HME-L-4 72.10± 0.74 66.21± 0.82 9.15± 0.45 6.62M

HME-L-5 72.14± 0.54 65.63± 0.25 9.07± 0.44 13.24M

ME-L-4 72.91± 0.93 66.29± 0.97 9.74± 0.64 1.65M

ME-L-8 71.46± 1.02 66.25± 0.72 8.95± 0.28 3.31M

ME-L-16 70.91± 0.83 65.38± 0.70 8.56± 0.53 6.62M

ME-L-32 71.68± 0.60 65.86± 0.84 8.90± 0.56 13.24M

MADGAN-4 75.30± 2.51 73.59± 1.50 10.87± 1.29 1.68M

MADGAN-8 74.25± 3.50 74.28± 2.46 10.59± 1.26 3.37M

MADGAN-16 70.40± 2.01 73.02± 1.07 8.64± 0.55 6.75M

MADGAN-32 67.96± 2.37 75.00± 2.66 7.97± 0.34 13.50M

MGAN-4 82.26± 2.00 80.95± 2.59 14.87± 1.09 1.68M

MGAN-8 82.09± 3.01 82.88± 4.44 14.81± 1.84 3.37M

MGAN-16 83.32± 4.32 83.01± 4.05 17.16± 5.82 6.75M

MGAN-32 87.60± 2.32 90.82± 2.73 24.60± 3.82 13.50M

MEGAN-4 80.99± 3.41 85.34± 2.26 14.16± 1.91 2.09M

MEGAN-8 77.65± 2.62 85.38± 1.80 12.11± 1.92 3.79M

MEGAN-16 73.11± 3.59 82.88± 3.98 9.85± 1.90 7.18M

MEGAN-32 73.47± 2.61 86.23± 3.17+ 10.53± 1.69 14.01M
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Table 5.9. 5-NN accuracies and FID scores on FashionMNIST.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 75.01± 0.20 84.89± 0.39 26.50± 0.63 413K

HME-L-2 72.18± 0.38 79.96± 0.35 20.88± 0.17 1.65M

HME-L-3 71.15± 0.88 79.14± 0.73 19.64± 0.89 3.31M

HME-L-4 70.08± 0.84 78.67± 0.78 18.79± 0.77 6.62M

HME-L-5 69.99± 0.70 78.10± 0.60 18.24± 0.91 13.24M

ME-L-4 72.28± 0.60 79.81± 0.93 20.90± 0.87 1.65M

ME-L-8 70.90± 0.96 78.64± 0.51 19.37± 0.90 3.31M

ME-L-16 69.45± 0.71 78.09± 0.73 18.09± 0.89 6.62M

ME-L-32 70.18± 0.94 79.10± 0.86 19.28± 0.67 13.24M

MADGAN-4 86.98± 0.91 93.72± 1.07 39.72± 2.95 1.68M

MADGAN-8 85.22± 1.82 93.64± 1.13 36.47± 2.40 3.37M

MADGAN-16 81.95± 1.95 91.80± 1.27 31.54± 3.48 6.75M

MADGAN-32 82.16± 1.28 93.18± 1.18 33.93± 2.75 13.50M

MGAN-4 88.14± 1.55 94.50± 0.70 42.82± 3.50 1.68M

MGAN-8 87.87± 1.24 94.97± 0.87 41.68± 3.34 3.37M

MGAN-16 87.10± 1.08 95.32± 0.39 42.72± 1.66 6.75M

MGAN-32 89.64± 0.69 97.22± 0.85 51.19± 3.91 13.50M

MEGAN-4 84.59± 0.47 92.49± 0.30 36.32± 2.10 2.09M

MEGAN-8 82.04± 0.40 92.57± 0.60 31.75± 0.61 3.79M

MEGAN-16 80.44± 1.98 92.58± 1.10 29.52± 3.19 7.18M

MEGAN-32 79.44± 3.32 93.08± 1.09 28.53± 3.31 14.01M
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Table 5.10. 5-NN accuracies and FID scores on CelebA.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 66.14± 1.17 80.96± 1.56 14.93± 0.48 827K

HME-L-2 62.96± 0.81 77.91± 0.83 12.41± 0.40 3.30M

HME-L-3 63.15± 1.42 77.68± 1.91 12.48± 0.65 6.61M

HME-L-4 62.07± 0.88 77.18± 0.82 12.23± 0.56 13.23M

HME-L-5 62.02± 1.02 77.02± 0.98 12.09± 0.56 26.47M

ME-L-4 62.56± 0.88 77.87± 1.33 12.30± 0.56 3.30M

ME-L-8 61.44± 1.27 77.36± 0.50 11.99± 0.27 6.61M

ME-L-16 62.63± 0.67 78.11± 0.96 12.41± 0.45 13.23M

ME-L-32 63.01± 1.08 77.74± 1.31 12.64± 0.63 26.47M

MADGAN-4 77.87± 2.38 94.91± 2.15 26.91± 4.03 3.37M

MADGAN-8 74.21± 2.68 92.33± 1.78 23.12± 2.80 6.75M

MADGAN-16 71.22± 1.55 90.55± 1.18 22.28± 0.55 13.50M

MADGAN-32 69.46± 2.09 87.94± 0.86 20.16± 1.42 27.00M

MGAN-4 76.50± 1.28 96.72± 0.76 33.56± 3.78 3.37M

MGAN-8 76.42± 1.87 96.05± 2.13 31.46± 3.55 6.75M

MGAN-16 75.37± 3.79 96.94± 1.34 34.62± 6.14 13.50M

MGAN-32 94.55± 1.33 99.97± 0.02 73.38± 8.15 27.00M

MEGAN-4 61.20± 2.04 87.20± 1.11 13.69± 0.67 4.19M

MEGAN-8 60.83± 2.06 88.59± 0.42 14.46± 0.73 7.57M

MEGAN-16 61.67± 1.96 90.30± 0.48 15.36± 0.58 14.34M

MEGAN-32 65.72± 2.25 95.60± 1.20 19.41± 1.24 27.92M
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Table 5.11. 5-NN accuracies and FID scores on UTZap50K.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 89.59± 1.40 81.51± 1.16 54.48± 5.36 827K

HME-L-2 87.26± 0.80 77.46± 1.09 42.35± 3.27 3.30M

HME-L-3 87.39± 0.96 78.21± 0.32 42.99± 2.08 6.61M

HME-L-4 87.61± 1.21 78.10± 0.43 44.88± 3.48 13.23M

HME-L-5 87.77± 1.17 78.42± 1.36 45.54± 3.46 26.47M

ME-L-4 87.30± 1.27 77.82± 1.40 43.05± 3.83 3.30M

ME-L-8 86.83± 1.12 77.25± 1.53 41.95± 2.82 6.61M

ME-L-16 86.97± 0.54 77.50± 1.13 41.45± 1.99 13.23M

ME-L-32 87.68± 0.76 77.96± 0.68 44.80± 2.39 26.47M

MADGAN-4 98.78± 0.28 96.48± 0.81 123.40± 10.00 3.37M

MADGAN-8 98.69± 0.39 96.36± 1.84 120.72± 15.21 6.75M

MADGAN-16 98.33± 0.39 95.33± 0.98 113.06± 9.51 13.50M

MADGAN-32 97.78± 1.00 95.13± 2.80 112.34± 24.69 27.00M

MGAN-4 98.97± 0.49 97.24± 1.54 136.08± 17.81 3.37M

MGAN-8 99.32± 0.26 98.66± 0.81 153.28± 15.75 6.75M

MGAN-16 99.59± 0.13 99.38± 0.54 167.76± 17.43 13.50M

MGAN-32 99.72± 0.10 99.83± 0.10 184.21± 10.32 27.00M

MEGAN-4 92.67± 0.85 87.16± 1.50 58.49± 5.52 4.19M

MEGAN-8 92.52± 1.04 88.90± 1.63 59.14± 4.22 7.57M

MEGAN-16 92.10± 1.09 90.16± 1.82 59.00± 5.40 14.34M

MEGAN-32 95.20± 1.03 96.33± 0.39 86.43± 11.55 27.92M



56

Table 5.12. 5-NN accuracies and FID scores on Oxford Flowers.

Model 5-NN Real 5-NN Fake FID Param.

FC (baseline) 93.80± 1.02 97.60± 0.71 135.28± 7.28 827K

HME-L-2 88.96± 0.93 96.58± 0.58 111.06± 4.84 3.30M

HME-L-3 89.30± 1.49 96.43± 0.65 111.85± 3.65 6.61M

HME-L-4 88.89± 1.51 96.61± 0.41 112.78± 3.13 13.23M

HME-L-5 90.15± 1.60 96.55± 0.76 114.79± 4.20 26.47M

ME-L-4 89.25± 2.64 96.84± 0.85 112.05± 6.88 3.30M

ME-L-8 88.59± 1.43 96.79± 0.69 113.37± 3.92 6.61M

ME-L-16 89.33± 1.39 96.93± 0.36 115.45± 3.02 13.23M

ME-L-32 90.12± 1.17 97.11± 0.80 118.00± 4.52 26.47M

MADGAN-4 93.70± 1.52 98.47± 0.66 150.46± 9.03 3.37M

MADGAN-8 91.50± 1.50 98.29± 0.32 137.43± 6.85 6.75M

MADGAN-16 92.36± 1.09 98.40± 0.20 141.20± 6.56 13.50M

MADGAN-32 92.92± 0.93 98.71± 0.23 142.47± 2.85 27.00M

MGAN-4 94.76± 0.87 99.03± 0.25 154.95± 8.52 3.37M

MGAN-8 94.54± 0.98 99.21± 0.16 152.33± 5.20 6.75M

MGAN-16 94.10± 2.03 99.26± 0.22 152.38± 10.83 13.50M

MGAN-32 95.08± 0.50 99.34± 0.12 157.90± 8.02 27.00M

MEGAN-4 87.04± 1.70 96.29± 0.50 104.75± 3.00 4.19M

MEGAN-8 85.83± 1.34 96.45± 0.70 104.04± 2.75 7.57M

MEGAN-16 85.67± 1.50 96.71± 0.68 106.73± 4.21 14.34M

MEGAN-32 85.80± 1.27 97.23± 0.26 107.37± 3.72 27.92M
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Figure 5.23. FID scores and 5-NN accuracies on CelebA, UTZap50K, and Oxford

Flowers data sets. The parameter count does not include the convolutional part.



58

better than the baseline. This might suggest that forcing discriminator to classify

generators may not always work, which is the idea behind MADGAN and MGAN. On

the other hand, we can say that MEGAN performs on par with the baseline, sometimes

even better. Note that unlike MADGAN and MGAN, MEGAN uses a gating function

to select among its generators. This also hints the importance of training different

generators in different input regions and combining them based on the input, instead

of only relying on the discriminator to force multiple generators to different modalities.

When we compare our mixture of experts formulation (ME-L-k) with MEGAN at

the same complexity, we see that our model gets better results in terms of FID scores

and 5-NN accuracies. As opposed to MEGAN, our mixture of generators is a soft one

and the input to the gating model is only the noise vector z. This reduces the number

of parameters significantly (890K parameters for the model with four generators).

5.6. Interpretation of the Learned Model

The main advantage HME model is its interpretability. To investigate the learned

representation, we generate 500 samples from the generated model and for each node

m, we take a weighted average of the generated samples. These weights are counts

that correspond to the number of times node m is used. In a hard decision tree

where we choose left or right, a hard count corresponds to the path from the root

to the prediction leaf. Here, we instead find the soft count of a node by multiplying

the gating values up to that node. As in Figures 5.10 and 5.18, we show the average

responses but for all nodes. In Figure 5.24, the right subtree of HME-5 model is shown.

We see the average response values at each node. At the top node, the response is like

a mixture of digits. When we look at the leaves, they are diversified, each one is more

specialized on a specific digit. We see that the diversification does not happen instantly

but progressively at each level.

Another example is shown in Figure 5.25. Here, the splits are done by the color

feature in general. Each level of the tree can be thought as a color spectrum with

the nodes representing different colors. The resolution of the spectrum increases when
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Figure 5.24. The average node responses of the right subtree of HME-5 model on

MNIST.

Figure 5.25. The average node responses of the left subtree HME-5 model on Oxford

Flowers.
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we go down to the leaves. This can be analogous to the difference between 8-bit and

16-bit music. Although one can create music in both resolutions, 16-bit provides more

capacity, and therefore more detail.

Although this is applied to the image domain here, it can be used in other domains

as well. Note that we cannot do such analysis for ME or other methods that use multiple

generators mentioned in Chapter 3 since none of these approaches are hierarchical. The

whole trees for different data sets are also visualized in Figures 5.26 to 5.30.
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6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

• We propose two mixture of generators architectures for the GAN framework: the

flat mixture of generators and the hierarchical mixture of generators. Other works

also incorporate multiple generators, however they train the different generator

models with some kind of regularizing effect that pushes different generators to

different modes. Our formulation is the first to our knowledge that uses multiple

generators cooperatively by mixing them.

• As in regular GAN, the parameters of our proposed models can be trained using

the gradient information which can be calculated for each parameter with back-

propagation.

• Our experimental results show that the model can generate samples that are

realistic and diverse for five different data sets.

• When local generators of ME and HME are constant, the model with an FC

layer performs better. In this setting, there is too much burden on the gating

functions which are quite simple units. When we make a relaxation by using

linear models as local generators, 5-NN accuracy levels show that the plausibility

and the diversity of samples gets better. Furthermore, these models perform

better than the model with an FC layer, whereas the number of parameters gets

bigger.

• When ME and HME are compared, we see that they perform around the same.

Incrementing the number of generators generally enhances results. For the con-

stant generators, results saturated more quickly for ME than HME as the number

of generators is increased. However, both approaches get saturate when the gen-

erators are linear models. This might be caused by insufficient training or some

other bottleneck.

• An important advantage of HME is its interpretability. Since HME is a tree

architecture, we can make a post-hoc analysis of the learned tree to gain insight

about the data. At each level of the tree, nodes can be seen as clusters. When
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we go deep in the tree, clusters get more local.

6.2. Future Work

• Constant leaves are cheap but restrict model performance, linear leaves are ex-

pensive but enhance performance. Another feature is the input resolution of the

convolutional architecture. One option might be to use a bottleneck structure

in between these layers as in deep residual network [53]. Another option might

be to increase gating functions’ complexity while having constant leaves but we

think that gating functions should be simple models as it is now, which lets the

model act as a soft decision tree.

• As we have seen in Figure 5.4, some leaves are not used at all. This is something

we cannot control when we state the structure of the tree beforehand. Instead

of fixing the tree structure, we can adaptively increase and decrease the tree

structure as proposed in [54,55].

• There is also no related work that uses the competitive version of ME formulation.

We plan to experiment and compare competitive formulation with the cooperative

formulation that we did.
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