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ABSTRACT

PROBABILISTIC ARGUMENTATION SYSTEMS
ENTITY-TRANSITIVE RELATION-IMPLICATION MODEL
AND DOCUMENT RANKING AS AN EFFICIENT APPLICATION

This work is an endeavor towards analyzing complex networks. Mainly, a link
analysis ranking (LAR) algorithm will be introduced, and related background will be

developed.

Firstly, we introduce a graph based model we name Entity-Transitive Relation-
Implication Model (ETRI) for analyzing complex networks. The underlying mathematical
model is built on Probabilistic Argumentation Systems (PAS), which are a combination of
the use of propositional logic and probability theory. The ETRI model is a generic
framework, capable of dealing with entities (e.g. web pages) in a network linked by a
transitive relation (e.g. hypertext links). We apply ETRI modeling to the LAR problem.
This is desirable because it builds on established evidential reasoning techniques using
clear semantics, however a direct application involves an NP-hard problem. Thus we
present a family of novel algorithms we call ETRI Support Propagation for
approximations. We examine a member of these and show that it produces approximate
results in finite iterations. Its iterations are linear in the number of edges of the network
like PageRank. We run our algorithms on a snapshot of the CiteSeer citation network. We
present a comparative study of different ranking schemes. Our studies reveal the transition
of dominance from local to global influences as an important characteristic of LAR
algorithms. Our algorithms give results which can be highly correlated with citation count

or PageRank when parameterized correspondingly.
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OZET

OLASILIKSAL MUHAKEME (ARGUMANLAMA) SISTEMLERI
NESNE-GECISSEL LiSKi-GEREKTIRME MODELI
VE VERIMLI UYGULAMALARI

Bu calisma karmasik aglarin incelenmesine yonelik yapilmis bir cabadir. Temel
olarak, bir bag analizi tabanl seviyelendirme (BTS) algoritmasi tanitilacak ve ilgili altyap:

gelistirilecektir.

Oncelikle karmasik aglarin incelenmesi icin grafik tabanli Nesne-Gecissel Iliski-
Gerektirme (NGIG) modeli tanitilacak ve kullanimi incelenecektir. Altyapiy1 olusturan
matematik model Olasiliksal Muhakeme Sistemleri (OMS) tizerinde yapilmis olup bu
sistemler de matematik lojik ve olasilik teorisi iizerine kurulmuslardir. NGIG modeli genel
bir cerceve olup bir ag yapisi icindeki nesnelerle (6rn. ag sayfalari, makaleler) bunlari
baglayan gecissel bir bag (6rn: ag baglar1 (“link”ler)) incelemek igin yapilmistir. NGIG
modellemesini BTS problemi i¢in uygulamaktayiz. Bu islem i¢in yerlesmis kanitsal sebep
iiretme tekniklerini agik bir sekilde kullanmaktayiz, ancak direk hesaplamalar NP-zor bir
problem icermektedir. Bu sebeple yaklasik sonug iireten NGIG Destek Yayilmas: olarak
adlandirdigimiz algoritma ailesini sunmaktayiz. Bunlardan bir tanesini detayli inceleyerek,
sonlu sayida iterasyon ile yaklasik sonuglar iirettigini gosteriyoruz. Her iterasyon igin
yapilan islemler ag i¢cindeki bag sayist ile lineer sekilde baglantilidir. Algoritmalarimizi
CiteSeer bilimsel atif agmma uyguladik. Bu ag iizerinde seviyelendirme yapilarinin
karsilagtirmali sonuglarin1 sunmaktayiz. Calismamiz baskinligin kiiresel etkilerden yerel
etkilere gecisinin temel bir BTS algoritmasi karakteristigi oldugunu ortaya cikardi.
Algoritmamiz farkli parametreler ile kullanildiginda PageRank veya atif sayimu ile yiiksek

korelasyonlu olabilen sonuclar iiretmektedir.
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1. INTRODUCTION

1.1. Motivation and Essentials

Recent years have seen an increasing interest in two important fields of research.
These are document ranking algorithms and complex networks. In 1998 Page and Brin
(Page et al., 1998) along with Kleinberg (Kleinberg, 1999) have disclosed two similar
algorithms which since then have deeply affected the web experience by the creation of
very successful search engines. A foremost one is the Google search engine which is run

by the very authors who have discovered the algorithms (Page et al., 1998).

On the other hand, the research in complex networks from authors such as Watts and
Barabasi have resulted in interesting discoveries in the structure of the Web and some other
well known networks, and perhaps more importantly common properties were found to be
shared across complex network structures of vastly different kinds ranging from social
networks to computer networks. This created an exciting prospect in understanding the

essence of complexity and complex behavior.

Our work sits between the two as it resulted from an interest in analyzing complex
networks and as its initial focus has dealt with link analysis ranking. Towards this end the
third important component has come in the picture as our tool of analysis; Probabilistic
Argumentation Systems (PAS) (Haenni et al., 2000). Probabilistic reasoning is an ever
getting stronger discipline. One can see today’s probabilistic reasoning systems as the
accumulation of decades of work, as PAS builds on Dempster Shafer Theory of Evidence

(DST) (Shafer, 1976), (Shafer, 1990), (Dempster, 1968).

In our work we mainly present and analyze a link analysis ranking algorithm we
name ERank-0, which extends citation count using probabilistic argumentation. The
algorithm is iterative with linear time-complexity in the number of edges for each iteration
(like PageRank (Page et al., 1998)). This linear time-complexity is central for our work

because we intend its application on very large networks, like the Web.



In coming chapters we will introduce the algorithm formally and analyze its
theoretical aspects. We have used the CiteSeer (CIT) citation network for experimenting
with different algorithms which has around 300 000 nodes and 1 250 000 edges. In our

results we will present a comparative study of ERank-0, PageRank and citation count.

Forming the background for ERank-0 is a framework we call Entity-Transitive
Relation-Implication (ETRI). ETRI is a combination of a graph model and a corresponding
Probabilistic Argumentation Systems (PAS) instance (Haenni er al., 2000). The idea
originates in (Picard, 1998), and we essentially generalize and try to formalize that model
here. ETRI is a generic model which we perceive as a tool for analyzing complex

networks.

We built an efficient family of approximation algorithms on ETRI we call ETRI
Support Propagation (ESP) algorithms. ESP-0 is the 0™ order algorithm in that family, has
linear time-complexity in the number of edges, and is essentially the simplest to implement
and analyze. ERank-0 is a straightforward application of ESP-0 to the ranking problem.
Our theoretical analysis of ERank-0 is in ESP-0 the context.

The generic definition of the ETRI framework structure has offered us the possibility
to project our results on networks of a great variety of choice as there are many such
structures involving a transitive relation, links and nodes. To name a few; internet, citation
networks, disease spreading/epidemics analysis, forest fire prevention optimization,
software function call graphs. We hope the ESP algorithms and the ETRI framework to
prove to be useful tools in the future not only for ranking for but also for different purposes

such as community detection or network characterization.

1.2. Current Techniques

Two most important document ranking algorithms are citation count (in-degree) and
PageRank (Page et al., 1998). We focus on these, and compare them with our own

algorithms within our work.



Citation count is a very old, simple, and surprisingly effective ranking algorithm.
PageRank in its origin had the very same purpose like our work, “to extend citation count”

to incorporate the value of the citing party.

PageRank for this purpose introduces a novel concept “random walk” and uses this
as a popularity measure. We choose a different path, and perceive the situation from a DST

based evidence perspective.

PageRank has seen many extension and variations since its introduction. Also there
are various other link analysis ranking algorithms (Borodin et al., 2005). However,
PageRank and citation count still remain central and most researched algorithms, and have

served our purposes well for comparing algorithms.

PAS formalism combines propositional logic with probability in the form of
evidence as introduced in DST. There exists similar formalisms using first-order logic with
probability theory (Laskey, 2005), (Poole, 2003). Also of relevance are credal networks
(quasi-bayesian networks) which incorporate uncertainty in probabilities (Cozman, 2000).
We have found PAS to be very valuable in providing a compact and clear framework
which has a natural adeptness to our analysis purposes. In our opinion the concept of
“evidence” as opposed to uncertain probabilities serves the problem definition more

naturally.

1.3. Main Contributions

The ETRI idea is developed and introduced in (Picard, 1998), as an application
model for Information Retrieval. We believe that identification of ETRI as a general
network analysis tool for employing “evidential perspective” on analysis may provide
beneficial for further research. To help facilitate this we develop a formal treatment of the

model and try to enumerate useful applications.



Possibly our most important contribution is the introduction of ETRI Support
Propagation (ESP) family of algorithms. ESP algorithms provide a rapid way to calculate
close approximations in an ETRI network, a problem which is NP-hard otherwise. We
provide a theoretical treatment for the first member of these algorithms (ESP-0), and cover

topics such as convergence and accuracy.

ERank-0 which we base on ESP-0, appeared to be a promising algorithm in our
experiments on CiteSeer citation network. ERank-0 is desirable because it builds with clear
semantics on evidential reasoning in the sense of DST without making any unjustified

assumptions, and it is also capable of scaling to very large collections.

Our study reveals well a characteristic property of different ranking algorithms. It is
the transition of dominance from local to global influences on ranks. We believe our work
is valuable in that, we were able to track and exemplify these changes using different
parameters for on algorithm runs and making comparative studies of these different

settings.

1.4. Experimental Setup

For evaluating our work we have mainly worked on artificially generated scale free
networks and later the CiteSeer (CIT) citation network which had around 300 000 nodes
and 1 250 000 edges.

We have used the open-source JUNG codebase (JUN) for manipulating network data
structures, and eventually rewrote some core code to fit our performance and memory

limitations.

We set up an SQL database server, and stored content info on tables. This enabled

full-text queries on the whole network, eventually creating an experimental search engine.



Additionally, the background foundation required coding of an ETRI based PAS

implementation. The work-horse for the implementation has been the open-source

JavaBDD codebase (JBD), and indirectly the CUDD BDD implementation (CUD).

1.5. Organization of the Document

The rest of the document is organized as follows. Chapter 2 contains all the related
literature survey and preliminary offered. Three topics are treated, these are PAS, complex
networks, and link analysis ranking algorithms. Section 2.4 contains important additional

background that is used through-out the text.

Chapter 3 formally introduces the ETRI model, is a short treatment on its uses.
Chapter 4 explores the use of ETRI as LAR algorithm, and introduces the Minimal
Evidence (ME) concept, along with ArgRank scheme.

Chapter 5 is devoted to efficient approximations on the ETRI network. The ESP
family of algorithm are presented here, and ESP-0 is examined closely. ERank-0 is defined

in this chapter.

Chapter 6, contains all the experimental results we have obtained. These include,
general analyses of the CiteSeer citation network including the rank distributions on nodes.
The accuracy of ERank-0 as an approximation to ArgRank is examined. Comparative plots
are presented to investigate similarities in ranking schemes. A new measure called
“average position distance” is introduced and employed. Top ranking documents are listed,
and found to be different between different ranking schemes. The chapter concludes with

exemplary query results.

The conclusion and future work sections are in chapter 7. Appendix A contains the
proofs for all the theorems in this work. Appendix B is a brief treatment of the PAS-ETRI

implementation created as background work.



2. RELATED RESEARCH AND OTHER PRELIMINARIES

In this chapter we try to develop the foundation for three main topics of interest in
our work, and present further the mathematical background necessary for the rest of the

text.

In section 2.1, we focus on Probabilistic Argumentation Systems which form the
backbone of our work. A complete formal introduction is not necessary as it is available
elsewhere (Haenni et al., 2000), instead we try to develop a useful intuition using extended

examples and formally present only what is sufficient.

We conceive our work as an attempt to develop a useful tool for analyzing complex
networks. So in section 2.2, there is a brief survey of the concept which lays the foundation

for the experimental results we present in chapter 6.

Ultimately, in this text we develop an efficient link analysis ranking algorithm (LAR)
based on PAS, as our prime application of the ETRI model of complex networks and the
ETRI Support Propagation (ESP) algorithm. Thus, we present in section 2.3 an overview
of LAR algorithms primarily focusing on PageRank, which is the closest similar algorithm

in the literature.

Section 2.4 develops the mathematical background used through-out the text.

2.1. Probabilistic Argumentation Systems (PAS)

In our work, we have perceived PAS from a complex network analysis perspective,
and this will be our way of introducing the theory. In this section we will introduce the

necessary terminology, and the concepts on which we later on build our work.



This will allow us to depict an outline of the theory which should allow the reader to
develop an understanding on the general capabilities of PAS. On the other hand, we will
omit some important aspects; like non-monotonicity, and topics like efficient general
purpose implementations which did not have practical importance for us. The interested
reader is advised to consult the references (Haenni et al., 2000) for a comprehensive
treatment of PAS. The reader should note that the theory appears to have been modified

from the version in (Kohlas and Haenni, 1996).

Simply put, PAS provide a framework in which, variables with uncertainty relating
to a problem along with their relations with other variables are encoded in a
knowledgebase. The uncertainty factor is introduced with the use of random variables.
Then, solutions are found or hypotheses are justified using arguments in line with the
knowledgebase, and the associated confidence in them is derived using our combined

confidence in those supporting arguments.

As is often the case for PAS, we will focus on those knowledge bases encoded using
propositional logic. It is easier and more compact to deal with PAS in this case (Haenni e?

al., 2000).

We will start with introducing the propositional argumentation systems. Then, we
will present an example propositional system, and informally develop underlying ideas in
section 2.1.2. Then we will make a more formal introduction of the fundamental concepts.
Though, this section is consistent and presents enough basic information, the interested
reader is strongly advised to refer also to (Haenni ef al., 2000) for a wider background on
the topic. Note that, on PAS related topics, we share the terminology with (Haenni et al.,
2000) for preserving consistency. In section 2.1.4 we introduce the probabilistic aspect of
PAS, and then we attempt to develop the underlying intuition with an extended example. In
sections 2.1.5 and 2.1.6 we review an application of the PAS framework on Information

Retrieval (Picard, 2000), which will constitute a very important starting point for our work.



2.1.1 Representing Uncertainty Using Propositional Logic

For many, the impression is that it is not possible to express uncertainty using
propositional logic. However this is no longer the case when assumptions are introduced as

a new class of propositions.

In this framework, a proposition is taken as an undoubted fact. For example, “v;” can
signify “it is sunny”. It is possible to construct simple certain (undoubted) rules using

propositions; “v, — v;”.

When assumptions are introduced, propositional sentences can be used to express
uncertainty. For example, if “v3” is “it will rain tomorrow”, than an uncertain fact can be
expressed as; “a;—vs3” or in English “if assumption a; is true it will rain tomorrow”. When
we consider that a; is a random variable, what we effectively get is “it may rain

tomorrow’’.

Note here that propositions are used in two different ways. Depending on the context,
they are used both to refer to the corresponding statement *“v;”, or that the statement is true

“v1 =T”). In this sense, “q v;” is used as “v; = F” as in “it is not sunny”.

It is possible to create an uncertain rule. The rule “v;—v,”” can be made an uncertain
rule, when we write “a;—(v;—v;)”. Then this rule can affect inference results only if a; is

known to be true, and a; being an assumption thus inserts the uncertainty in the rule.

From here onwards, we will use “vi, va, v3 ... v,” to denote normal propositions (i.e.
facts) and “ay, ay, as4 ... a,” to denote assumptions. This is slightly a different terminology
compared to previous literature on the topic, yet it serves our purposes better when ETRI

terminology is included.

What we have seen so far are basic constructs. However, it is possible to create rules
with any desired complexity to the extent that it is possible to encode them using

propositional logic. Note that, the differences between assumptions and normal



propositions are differences only in our perception, so that they do not create a difference

in the way we deal with them using propositional logic.

Table 2.1. Knowledge representation in PAS

Logical Natural language
Type of knowledge giea’, . anguag
representation equivalent
a fact Vi “y; 18 true”
a simple rule Vi—Vy “y; entails vy”
) “if assumption a; is
an uncertain fact ar—vi p . ! '
true, then v, is true
a simple uncertain a1—(Vi—v2) “if assumption a; is
rule > (a; A v))—nm true, then v, entails v,”

2.1.2 Introductory Example

We will present here a simple introductory example to facilitate the following
theoretical discussion. This will also serve as an informal introduction to such concepts as;
knowledge-base, hypothesis, scenarios, and others. We will introduce different ways of

viewing the situation, to help develop an intuition of the underlying systematic.

The concept “knowledge-base”, is frequently used in the Al literature, for example to
describe an agent’s perception of the outer world. Here we will employ it to refer to a
conjunction of propositional sentences, which together will form the knowledge-base of a

PAS instance.

Consider the knowledge-base (set representation)

E={a—>vi,a—>Vvy, vy — (a3 —Vv1), a3 — V1 } (2.1)

which is equivalent to (sentence representation):
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¢ =(a1—v1) A (a2—v2) A (v2 = (a3 —>Vv1)) A (as — V1) (2.2)

We initially can observe that, this sentence is satisfiable, and also contains a

contradiction; a; and a4 can not be true at the same time.

Assume that we would like to investigate the situation of the proposition “v;” with
respect to the assumptions we can make (or observe in a system for that matter). This

eventually creates our hypothesis “h = v;”.

See Table 2.2 for the general picture of our example PAS instance containing all the
16 different assignments on our four assumptions. These are called “scenarios”, and are an

essential part of the PAS theory.

On this table, we can see two of the fundamental concepts relating to PAS; the sets of
quasi-supporting QSa(h, &) and supporting scenarios SPa(h, ). Simply put, a scenario is
said to be supporting, if the hypothesis can be shown to be true with the assignments a
scenario has (a truth value for each and every assumption), and that it does not contain

inconsistency. For quasi-supporting scenarios the consistency requirement is dropped.
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Table 2.2. Scenarios for the example propositional argumentation system with A=y,

Scer;ario ar | ar | as | as | h=vy s € s € s €
O84(h, Q) | SPa(h, &) | SPa(L, <)

S1 0/0[{0|0] O
52 0]0]0]1 0
53 0/]0|1]0] O
54 0]0|1]1 0
S5 0|1]{0[0] O
S6 0] 1]0]1 0
57 0O|1]1]0 1 X X
53 O 1]1]1 1 X X
59 1{0]0]O0 1 X X
510 11001 1 X X
S11 110[1]0 1 X X
512 1{0]1]1 1 X X
S13 1| 1[0]0 1 X X
S14 1{1]0]1 1 X X
S15 I1{1]1]0 1 X X
S16 I{1]1]1 1 X X

On Table 2.2 an “X” specifies that the membership relation specified on top of the

column holds for that particular row.

We see on the table that, the scenarios sg, 510, S12, S14 and 516 generate contradictions
but support 4, so they are included in the quasi-support. On the other hand for SP4(h, &) we
only have the consistent supporting scenarios, because intuitively they are the ones which
conform to “reality” for the model and thus are worthy of consideration. The quasi-support

is important only from a computational point of view.

As can be gathered from the table, additions of new variables would result in
exponentially big tables, and this is why we can use term representations instead of

scenarios.
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As we can directly infer from the knowledge base the quasi-support is:

OS(h, &) =a; v (ax A az) (2.3)

Or we can use the set representation:

OSth, ) ={ai,ax A a3 } (2.4)

Here “a,” and “a; A a3” are the quasi-supporting arguments.

We note that these can be made to include contradictions, and supporting arguments
should not contain contradictions. Excluding the inconsistent scenarios we get the support

for h:

SP(h’ é) = (a; A 1 as) Vv (ax A az A 1 as) (25)

Or:

SP(h, ) ={ai Nqas,a haz Aqay ) (2.6)

Note that Eq.(2.6) shows the minimal supporting arguments. We could also write:

SP(h,)={ai Nqas ANay,ai AqasAqaz a hasAqas ) 2.7)

Eq.(2.7) is also correct as it correctly specifies support for /. See that it yields exactly
the same scenario table as in Table 2.2. But it is not the minimal support anymore as it
contains unnecessarily long terms. The same is valid between quasi-support and minimal

quasi-support.
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2.1.3 Fundamentals on Propositional Argumentation Systems

In this section we will present a more formal introduction to propositional
argumentation systems. However, we will reveal as much as what is necessary for
understanding this work, the interested reader should consult (Haenni et al., 2000) for a

general purpose treatment.

Definition 2.1. Let A and P be two disjoint sets of propositions. If { is a propositional

sentence in the propositional language created using A U P, then a triple ASp = (&, P, A) is

called a propositional argumentation system. ¢ is called the knowledge base of ASp.

A literal is a proposition. A clause is a disjunction of literals, whereas a term is a

conjunction of literals.

A hypothesis is a sentence in the language L4 v p based on propositions in A u P. The

conditions under which hypothesis is true or false is a central point of focus.

Definition 2.2. Let & and h be two propositional sentences in Ly v p. Consider a term o
from Lsyupand that o ¥ L. o is called a
(1) quasi-supporting argument for h relative to &, if a AEEh

(2) supporting argument for h relative to &, if @ ANEEhand Vo' a,a'AEE L where

o is atermfrom Lyopand o ¥ L.
Note that these definitions may appear complicated because we have by-passed the

notion of scenarios in defining them. For a clearer and more intuitive introduction the

reader can consult (Haenni et al., 2000).
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Using the definitions of arguments as above, we define the quasi-support and support

relating to a hypothesis as:

Definition 2.3. Let & and h be two propositional sentences in Ly v p, &, a term from

Laupandthat a ¥ L. Then we define:

(1) the quasi-support for h relative to ¢ is the disjunction of all quasi-supporting

arguments.:

QSh, &)= V], : a, AEEFh} (2.8)

(2) the support for h relative to ¢ is the disjunction of all supporting arguments:

SP(h,&) = V[, : o, AEFhand Va'Da,,a'nE k1) (2.9)

where @ is a term from Lyopand o ¥ L.

Note that, we actually do not need all the arguments to define the support and quasi-
support. What is essentially needed are the minimal arguments. If for all terms in a set
there is no shorter term @'C & contained, then it is called a minimal term representation.
The minimal term representations for support and quasi-support are equally good, and are

called minimal support and minimal quasi-support respectively.

2.1.4 Extending to Probabilistic Argumentation Systems

We have dealt so far only with the qualitative aspect of the systems, now we will

introduce the probabilistic part.
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Definition 2.4. Given a propositional argumentation system ASp = (&, P, A), and a set T1
of probabilities assigned to propositions in A, then the quadruple PAS, =(&,P,AID) isa

called a probabilistic argumentation system (PAS).

With the probabilistic aspect introduced, it is possible to do quantitative as well as
qualitative analysis on hypotheses. Note that, all the random variables (probabilities of

assumptions) are assumed to be stochastically independent.

In this framework, degree of support and degree of quasi-support are two
fundamental figures. Recall the concept of a scenario from the example in 2.1.2. In that
sense, the degree of quasi-support for a scenario is simply the multiplication of the
probabilities of its assignments; p(a;) if an assumption a; is 1 and 1-p(q;) if it is 0. Then
simply, degree of quasi-support for a hypothesis is the sum of the quasi-support of its
scenarios. Note that, this can happen because the random variables are assumed to be

mutually independent.
Quoting from (Picard, 2000), “The degree of support is defined as the probability of

the quasi-support, conditioned on the fact that the knowledge base is satisfiable (not

contradictory).”

Definition 2.5 Let & and h be two propositional sentences in La v p.

(1) the degree of quasi-support of h relative to ¢ is:

dgs(h,&) = p(OS(h,&)) (2.10)

(2) the degree of support of h relative to £ is:

dsp(h,&) = p(SP(h,&)1=QS(L,&)) (2.11)
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For calculating dsp values, we see that:

dsp(h, &) p(SP(h,E)1=0S(L,¢))

= pl(OS(h.&) A=0S(L,E))I=0S(L,E))

p(OS(h,E) A=0S(L,E))
P(=0S (L&)

_ pleskhé)-p(0S(LE))
- 1- p(QS(L.&)) 12

The reader can consult (Haenni er al., 2000) for a theoretical treatment on the
calculation of dsp and dgs values, we will demonstrate it on an example in the following

section.

Degree of quasi-support corresponds to unnormalized belief in Dempster-Shafer
theory of evidence (DST) (Shafer, 1976). Degree of support corresponds to normalized
belief.

In PAS dsp values correspond to probabilities (Haenni et al., 2000). In this sense,
PAS create the bridge between DST and probability theory. For example, given the “prior”
probabilities of assumptions, the value dsp(h, &) is interpreted to be the posterior

probability that h is true.

There is also another value of interest in this regard. The plausibility (pla) of an

hypothesis £ is:

pla(h, &)=1-dsp(7 h, &) (2.13)

In a sense it represents an upper-bound for the probability of h, based on the current

information. Note that, PAS give a non-monotonic system of evaluation, so added
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information to the knowledge based can increase or decrease degrees of support without

being committed in one direction.

Note that:

dsp(h, &) + dsp(q h, H<1 (2.14)

and so that:

dsp(h, &) < pla(h, &) (2.15)

In our work on this text we will deal with ETRI systems where the plausibility of our

hypotheses will always be 1, and our focus will be on dsp values.

2.1.5 PAS Example

We finalize our treatment of PAS by presenting a probabilistic evaluation of our
earlier example from section 2.1.2. Let us assume now that we make the following

probability assignment II for our assumptions:

p(a)) =0.5, p(ax) =0.3, p(a3)=0.2, p(as) =0.1

This creates the previous table, this time enhanced with probabilities (Table 2.3)



Table 2.3. Scenarios for the example PAS instance

18

se | se | se

# | ar| pla) | ax | plar) | a3 | p(as) | as | plas) | p(s) | h=vi| 0s, | SP, | OS4

h|(hd | (L
s1 | O 0.5 0 0.7 0 0.8 0 0.9 | 0.252 0
s> | O 0.5 0 0.7 0 0.8 1 0.1 0.028 0
s3 | 0 0.5 0 0.7 1 0.2 0 0.9 | 0.063 0
s4 | O 0.5 0 0.7 1 0.2 1 0.1 0.007 0
ss | O 0.5 1 0.3 0 0.8 0 0.9 | 0.108 0
se | O 0.5 1 0.3 0 0.8 1 0.1 0.012 0
s7 |0 0.5 1 0.3 1 0.2 0 0.9 | 0.027 1 X X
sg | O 0.5 1 0.3 1 0.2 1 0.1 0.003 1 X X
so | 1 0.5 0 0.7 0 0.8 0 0.9 | 0.252 1 X X
s | 1 0.5 0 0.7 0 0.8 1 0.1 0.028 1 X X
s | 1 0.5 0 0.7 1 0.2 0 0.9 | 0.063 1 X X
sz | 1 0.5 0 0.7 1 0.2 1 0.1 0.007 1 X X
si3 | 1 0.5 1 0.3 0 0.8 0 0.9 | 0.108 1 X X
S14 | 1 0.5 1 0.3 0 0.8 1 0.1 0.012 1 X X
sis | 1 0.5 1 0.3 1 0.2 0 0.9 | 0.027 1 X X
S1e | 1 0.5 1 0.3 1 0.2 1 0.1 0.003 1 X X

Then the probabilities of scenarios are computed using:

p) =] p@)-a-pa@n*

Let s = (xj, ... x;») be a scenario where x; is the truth value of an assumption (0 or 1).

(2.16)

The computations for our example can be seen on column p(s) on Table 2.3. We see

that, the rows s7 to 516 are part of the quasi-support for our hypothesis. To get the degree of

quasi-support dgs(v, &) we simply add the corresponding probabilities for those scenarios:
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dgsn, &) =3 p(s)

=0.027 + 0.003 + 0.252 + 0.028 + 0.063 + 0.007
+0.108 + 0.012 + 0.027 + 0.003
=0.53

For computing dsp(vi, &) we have to find dgs(L,&) to be able to normalize the

degree of quasi-support. This is present in the right-most column (ss, S0, S12, S14, S16):

dgs(L,&) =0.003 +0.028 + 0.007 + 0.012 + 0.003
=0.053

Summing the values on column for SP4s(h, &) (s7, S9, S11, S13, $15) and normalizing

them we get:

0.027 +0.252 +0.063 + 0.108 + 0.027

dsp(vy, =
P <) 1—dgs(L.&)
_ 0477 _ 0477 ~0.504
1-0.053 0.947

Using Definition 2.6 we also get the same result:

p(0S(h,€))- p(0S(L,&))

1-p(QS(L,$))

— dq.S‘(l’l,é:) _qu(J-? é:)
l_qu(J-’ é)

~0.53-0.053 _ 0.477

©1-0.053  0.947

dsp(vi, §) =

=0.504

Now let us see how this result is reached using arguments instead of scenarios. For
adding the probabilities as we did with scenarios, we have to ensure that they are disjoint
sets. This is a classical problem in probability theory, and there is a range of algorithms to

deal with them. It actually is known to be NP-hard and related to the famous satisfiability
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(SAT) problem (Antoine et al., 2003). The most basic of these methods is known as
inclusion-exclusion principle, see (Antoine et al., 2003) for a quick review. Here, we deal

with the problem using manipulation on the logical equations.

dgs(L.&) =pla, v(a, nay))

=p(a1 Vv (az AN dy ATdy ))

Now we have made the two arguments disjoint, we proceed further;

dgs(L,¢) =p(a1)+p(a2 Ndsy /\_'al)
=05+0.3-0.2-(1-0.5)
=0.53

This shows well that instead of dealing with an exponentially increasing number of
scenarios, arguments serve our purpose better as long as it is possible to separate them into
disjoint sets in an efficient way. Note that inclusion-exclusion principle similarly yields an
exponential number of terms, so it is not a replacement in that sense. A commonly used
algorithm for creating disjoint terms is Heidthmann’s KDH algorithm (Heidtmann, 1989).
We use binary decision diagrams as a way of coping with this complexity as shown in

Appendix B.

Using similar techniques we get

dgs(—w,,§) = p(as) = 0.1
dsp(—w,,&) =0.05

and,

pla(vy, &) = 1-dsp(—w,,&)
1-0.05=0.95



21

This relates to the amount that our hypothesis contradicts with our system. Thus we
get that, our hypothesis has a degree of support 0.504 and a plausibility 0.95, the gap in

between these figures represents our ignorance.

2.1.6 Applying PAS to Information Retrieval (IR): Enhancing relevance

Application of PAS to IR is a topic first explored by Picard (Picard, 1998). Of the
many, we consider two aspects of interest in his application; enhancing relevance and
computing a popularity measure. In his work the first case of enhancing relevance is
widely explored and experimented, while the second one for computing popularities is not.

This second topic will actually be a main focus of interest in this text.

We will briefly review these topics in this and the following sub-sections, the
interested reader can consult (Picard, 1998), (Picard, 2000) and (Picard and Savoy, 2003)
for further information. Also, we will effectively re-introduce and cover these models

within our ETRI framework in chapters 2 and 3.

In his treatment of enhancing relevance, the author firstly considers spreading
activation as an established competing method. In this method, an initial retrieval status
value (RSV) is assigned for each document based on similarity for a query, and these

values are spread to neighboring documents which are linked by hypertextual links.

RSV(d) = initial_score(d, q) (2.17)

RSV(d™*") = RSV(d) + Y A,RSV(d") (2.18)

j=1
where d is the document, g represents a query, i the count of iterations run, and 4; (0
<A,< 1) is a parameter adjusting what fraction of the results will be propagated from a

document to its neighboring documents.
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The number of iterations this process is run (i) can be problematic because, it is

claimed that running more than one iteration may harm the retrieval effectiveness.

The PAS solution is conceived in a similar manner. Instead of using an adhoc
method of propagating values, PAS offers a clean and principled way of achieving a
similar end not by propagation but by finding supporting arguments for a document’s

relevance, and using them to enhance values.

For this purpose a PAS knowledge-base is created using the document collection.
Firstly, each document d; receives a proposition v; signifying its relevance stating
“document d; is relevant”. For each such proposition a corresponding assumption variable

a; 18 associated such that:
ai — Vi
If the retrieval system assigns an initial relevance value to this document (retrieves
it), then p(a;) > 0. These initial values can be assigned directly by the retrieval system, or
may be cast using logistical regression (Picard, 1998).
Secondly, the hypertext structure of the collection is reflected in the PAS knowledge.

For each hypertextual link from a document d; to a document d; we gather that, if d; is

relevant than so must be d;. In PAS we can encode this using:

v,~/\l,~j—>vj

where /;; is the “link” assumption from d, to d; denoting the condition under which this link

implies relevance.

This rule can be read as: “If document d; is relevant, then, under some condition /;;

(that the link from d; to d; implies d;’s relevance), d; is also relevant.”



23

Using these two constructs the whole PAS knowledge base is built. It is pre-
processed once, and the supporting arguments are found for each document. Then, disjoint

sets for computing degrees of support are computed and stored for each document.

The value assignments for link assumption probabilities p(/;;) are explored in (Picard,
1998). The only option considered is assigning a constant value. Simply put, the average
ratio of relevant documents out of the neighboring documents of a document is used as an

estimate for this value.

Thus when the initial relevance values are assigned by a retrieval system, they can be
enhanced using the pre-computed degrees of support formulations for the involved
documents.

Note that both forward links and backward links represent evidence of relevance, and
each of them can be used for this purpose. Since PAS formulation inherently deals with
cycles without problem, both can be used at the same time as well. In contrast this would

pose a problem spreading activation.

For example, let us assume backward links are used, and we have the following

knowledge base:

&= (ar—vi) A (@—v2) A (az—v3) A (va A L= vi) A (V3 A 31— vy)

The support for document d; can then be inferred using the knowledgebase:

SP(vi,$)=a; V(ax A1) Vv (az A l3)

The degree of support can then be computed by creating disjoint sets and adding

their probabilities:

dsp(v1, ©)= p(SP(v1, <))
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:p(al) + p(ax A by A 1 ap) + plasz A I3 A 741 A A (ar A by))

= pla1) + p(az) p(lay) (1- p(a)) +
p(az) p(l31) (1- p(ay)) (1-p(az) p(l21))

In our experiments throughout this text we will stick to a forward links model, but
our results are readily applicable for a backwards link model as well. However, as we will
explore in chapter 4, our simplest model named ESP-0 is not capable of dealing with short-
cycles properly, and it would reduce its effectiveness to use both backward and forward

links at the same time.

2.1.7 Measuring Popularity with PAS

The authors Picard and Savoy explain briefly in (Picard and Savoy, 2003) how their
PAS model may be used as a popularity measure. This will be a starting point for our work

and this topic will constitute a major focus for us.

The PAS construction is very similar to the one in section 2.1.6. This time, the
proposition p; assigned to each document is taken to mean “document d; corresponds to the

user’s interest”.

It is assumed that an external source provides the initial values for the corresponding
assumption probabilities p(a;). This may be gathered using a profile constructed from
bookmarks, tracked from user’s surfing pattern or specified explicitly using keywords by
the user. Then we have in the PAS knowledgebase:

a; — pi

Similarly the relevance measure similar to the previous sub-section, is taken to mean

similarity in the user’s interest, such that:

pi Nl — p;
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The authors state that this way a personalized ranking scheme can be constructed,
and that if each page is assigned an equal probability than it corresponds to PageRank (see

section 2.3).

In our work we will focus on this non-personalized ranking scheme mentioned,
explore its theoretical foundation, create efficient approximation methods, and try to

demonstrate that it actually creates a powerful ranking scheme competing with PageRank.

2.2. Complex Networks

Our work is an attempt towards adding a new tool of research for complex networks.
In that, as an initial and primal way of using it we have dealt with link analysis ranking.
Yet we believe that our work can be put to good use also for other network analysis means
like community/topic detection, examination of components/hierarchies amongst others. In
chapter 6, we examine the small-world properties of our experimental network and also

investigate complex network properties of the ranking algorithms we have introduced.

Interest in complex networks has seen a recent increase, and many properties have
been studied. This is partly because networks of different kinds like World Wide Web have
started to play an important role in human life. Earlier interest had been mostly on random
graphs also referred to as Erdos-Renyi graph models, but more recent work has focused on

complex/social networks (Newman, 2003) or the “small-world model”.

Social networks such as the web, internet, affiliation networks and many others have
been shown to share some interesting “small-world” properties, which we deal shortly in
the next section. In section 2.2.2 we will present Zipf plot which has been a useful tool for

us in identifying power-law distribution exponents for the networks we have examined.
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2.2.1 Small-world Network Model

Watts and Strogatz have initially introduced the small-world network model (Watts
and Strogatz, 1998). The term is mainly meant to refer to three characteristics of complex

networks. These are:

i. Average path length

The geodesic average path length of small-world networks have been shown to be
unexpectedly short, in comparison to purely random networks. This was firstly exemplified
in Milgram’s classic work (Milgram, 1967). For example, a 200 million node snap-shot of
WWW has been shown to have an average path length of 16.18 (Newman, 2003), where as

Milgram had found an average separation of 6.

ii. Clustering coefficient

A clear deviation from random behavior has been observed in complex networks
towards clustering. That is, if a vertex A has a link with B, and B with C, then A has a
heightened probability to have a link with C. There are two versions of clustering
coefficients offered in the literature both of which work to present a measure of this
behavior. In (Watts and Strogatz, 1998), authors present a re-wiring based generative

model to create a network which desired clustering coefficients. The two formulas are:

C\ =3 x number of triangles in the network | number of connected triples of
vertices

(2.19)

C, = 6 x number of triangles in the network | number of paths of length 2 (2.20)
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iii. Degree distributions

It has been observed that many complex networks exhibit a skewed degree

distribution, and that most of them can best be described using a power-law distribution.

That is, for some characteristic exponent a the degrees follow:

N(x) o< x ¢ (2.21)
where N(x) can be in-degree (citation count), or out-degree.

This property has been termed “scale-free”. It has also been shown that other vertex
properties like PageRank also follow this distribution (Pandurangan et al., 2002). We detail
more on this in section 2.3. Some of our introduced measures have also shown this

distribution as shown in section 5.7.

An interesting point is that, two networks of high interest have different
characteristic exponents. For the web graph, the value is ~ 2.1 (Newman, 2003), whilst for
scientific citation networks it is rather ~ 3.0 (Redner, 1998)(Redner, 2004). Our findings

on our examined citation network confirm the value 3.0.

2.2.2 Zipf-plot

Zipf-plot is a valuable tool firstly introduced in (Zipf, 1949). We follow the example
in (Redner, 1998) to determine the power-law exponents in our experiments. Quoting from

(Redner, 1998):

“To help expose the differences in the citation distribution, it is useful to construct a
Zipf plot (Zipf, 1949), in which the number of citations of the k™ most-ranked paper out of
an ensemble of M papers is plotted versus rank k (as in Figure 6.8). By its very definition
(see Eq.(2.22)), the Zipf plot is closely related to the cumulative large-x tail of the citation

distribution. This plot is therefore well-suited for determining the large-x tail of the citation
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distribution. The integral nature of the Zipf plot also smooths the fluctuations in the high-

citation tail and thus facilitates quantitative analysis.

Given an ensemble of M publications and the corresponding number of citations for
each of these papers in rank order, Y; > Y, > ... > Yy, then the number of citations of the

k™ most-cited paper, Y, may be estimated by the criterion:

[N()de=k (2.22)

¥y
where N(x) is the number of papers with x citations.

This specifies that there are k publications out of the ensemble of M which are cited
at least Y times. Eq.(2.22) also represents a one-to-one correspondence between the Zipf
plot and the citation distribution. From the dependence of Y; on k in a Zipf plot, one can

test whether it accords with a hypothesized form for N(x).”
Similar to citation count, PageRank and our introduced ranking algorithms have
large and fluctuating tails. Therefore we have used Zipf plots successfully to determine

their power-law exponents as well.

It is straightforward to determine the power-law exponent after fitting a line to the

Zipf plot. For a power-law distribution of the form in Eq.(2.21), Eq.(2.22) gives for large x:

oa=1-— (2.23)

where b is the slope of a fitted line (see Figure 6.8, Figure 6.11, Figure 6.12 as examples).
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2.3. Link Analysis Ranking (LAR) Algorithms

In 1998, two influential papers have created a new research area which might be
termed as “link analysis ranking” (Langville and Meyer, 2004) (Borodin et al., 2005).
These introduced the PageRank ranking algorithm (Page et al., 1998), and HITS algorithm
(Kleinberg, 1999).

A great deal of effort has been made on analysis of these algorithms, and extensions
and enhancements have been suggested. For our part, we will focus on PageRank because
it has been part of our inspiration for our algorithms along with PAS based ranking (Picard

and Savoy, 2003).

A good general treatment of ranking algorithms with experimental evaluations using
human testers can be found in (Borodin ef al., 2005). Another evaluation of PageRank

along with a PAS based ranking algorithm is presented in (Savoy and Rasolofo, 2000).

In the sub-sections to follow we present an introduction to the PageRank algorithm,

and later on we review some of its critical evaluations.

2.3.1 PageRank Algorithm

PageRank has been studied extensively by numerous authors, certainly in part due to
its impact on the internet experience being used in the Google search engine. There has
been interest in its mathematical foundations (Langville and Meyer, 2004), its efficient

application (Haveliwala, 1999), and its approximations (Chen et al., 2004) amongst others.

With more direct implication for our work are the ones which propose extensions to
the basic algorithm, because most of these are readily applicable to our algorithms as well
(Richardson and Domingos, 2001) (Ingongngam and Rungsawang, 2003) (Haveliwala,
2002) (Kao et al., 2002). These provide a natural future direction of extension for our

work.
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PageRank is conceived as an extension to citation counting, in which the significance
of the citing document is also taken into account. This way it becomes a global measure of
importance, and it is considered to contain more information. A well quoted example is
that, the main page of Yahoo! search engine has more significance than an ordinary page.
So, if a web-page receives a citation from the Yahoo main page, that citation should have

more significance.

PageRank is presented in two different formulations. The first one, termed as the

simple (iterative) formulation is:

Rank,,,(v) = ZW (2.24)
ueB,

where B, is the set containing the parents of a vertex v, and N, is the number of links going

out of document u (out-degree).

While presenting the idea clearly, this fails to be applicable for the web because in
this model ranks can get trapped in an isolated cluster of the graph, in which two pages

only link to each other acting as a “rank sink”.

The second formulation addresses this problem, by adding a rank source, and

discounting for the additional source using a damping factor d.

Rank,, (v)= [%j +d Zw (2.25)

ueB, u

Here n is the number of vertices in the network. It is assumed that, either all vertices
with 0 out-degrees are iteratively pruned (and added back after ranking is done), or that
virtual links going out from such vertices to all the vertices in the network are added to the

network.
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There are a number of additional ways of interpreting this formulation. One is the
random surfer model. In this, a random surfer is assumed to be surfing the web following
random outgoing links on a page with probability d, and making a completely random
jump to a page in the web with probability 1-d. In this sense, the PageRank vector is the

stationary probability of a random walk on a Markov chain created using the “Web graph”.

It is also possible to view it as the primary eigenvector of the created transition
matrix which has been made stochastic and irreducible thus ensuring the existence of a
stable eigen-vector. For example, in (Jeh and Widom, 2003) the authors take this vector
interpretation further ahead. These and other important mathematical details like

convergence are deeply explored in (Langville and Meyer, 2004).

We have seen variations of the formula in 1.12 in the literature. The denominator n in
the first half of the equation is missing in some papers on PageRank. Confusingly, it
appears to be given wrong in the initial technical report which introduced PageRank! (Page

et al., 1998).

2.3.2 Usefulness of PageRank and PageRank vs. Citation Count

The usefulness of PageRank appears to be doubted in the literature. On the one hand,
the original authors report impressive enhancements (Page et al., 1998)(Brin and Page,
1998) coupled with the commercial success of the Google search engine which reportedly

uses it.

There are findings which claim that PageRank experimentally performs worse than
simple citation counting (Borodin et al., 2005). Some authors claim that PageRank’s of
pages are highly related to citation counts (Ding et al., 2002) (Upstill et al., 2003), while
others dispute that (Pandurangan et al., 2002).

Authors in TREC conferences have not found any improvements in using PageRank

(Ingongngam and Rungsawang, 2003) (Savoy and Rasolofo, 2000)(Picard and Savoy,
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2003) or citation based algorithms (Savoy and Picard, 1999) over content based ranking

schemes.

It appears that whilst there is consensus in the usefulness of employing link based
information, more research is necessary in this area. The way of using link information
along with the rank merging problem (combining different sources of ranking) may surface

to be foremost issues to be addressed.

We will be applying PageRank to a scientific citation network in our work. Its
usefulness in this sense might be doubted as the random surfer intuition does not apply as
readily to the scientific research process. Yet still, there is some truth in this model even
for scientific research, and even if not, the initial justification for extending simple citation

counts to a more global ranking scheme still fully apply.

2.4. Mathematical Background for Our Models

In this section we explore the background for, and introduce an important
mathematical operator we use extensively in the rest of the text. It is not necessary for
following the text (we also give the equations without using it), but we have found it very
useful in assisting our proofs and shortening our equations ultimately making them much

more intuition friendly.

2.4.1 Sylvester-Poincare Formula for Pair-wise Disjoint Terms

We review here a useful application of the Sylvester-Poincare (Inclusion-Exclusion)
formula for disjunction of disjoint terms. Consider the following situation for computing
the probability for the disjunction 7, v T, of two terms of arbitrary order (num. of literals)
T and T,, which we know, are pair-wise disjoint. Using the Sylvester-Poincare

development we get:
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(L vT,) p(T7) + p(T2) — p(TT2)

p(T) + p(T2) — p(Th) p(T>)

= 1-(-p@)) (1 -p(T) (2.26)

We illustrate the idea below that, using incremental application of Eq.(2.26) along
with associativity and commutativity of disjunction, it can be shown that the probability of
the disjunction with additional pair-wise disjoint terms 73 T4, ... T,  creating

I,vT,vT,vT,..vT, is:

p(\iz{Ti )

Il
[E—
|
~
[E—
|
S
S
=
7\
[
|
g~
~
1 <3
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N——

= 1= (1-p(T) 1—(1—’7_ (l—p(T,»))H

= 1= (1-p(Ty) H(l—p(Ti))J

= 1-[]0-p@) (2.27)

Note that, this actually is the formulation for the noisy-or gate (Heckerman and

Breese, 1996).

2.4.2 Noisy-or Operator

In this section we introduce the noisy-or operator “</” which give us convenience

for expressing certain types of mathematical formulations in the following sections.
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Definition 2.7. (noisy-or operator) For a,be R and 0< a,b <1 we define the binary

operator “~ " in the infix form such that:

avb=1-(1-a)1-b) (2.28)
Theorem 2.1. Noisy-or operator has the following properties:

(1) Commutativity
(2) Associativity

Definition 2.8 (noisy-or operator / prefix form) We define a pre-fix form of the noisy-or

operator “~ " such that

(2.29)

where 0<a, <1, 1 <i<n, and n,i are positive integers.

Definition 2.9 (precedence of noisy-or) We define the precedence of the noisy-or
operator such that it has higher priority than addition/subtraction, and lower priority than
multiplication/division.

Example: a-b¥c+d=((a-b)Vc)+d

Note that;
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VoS
‘\/aAzal\A/az\A/...\A/a =1-[]0-aq,) (2.30)

We can thus re-write the probability of the propositional sentence of Eq.(2.27)

I,vT,vT,vT,..vT, with pair-wise disjoint terms using the noisy-or operator:

n A
V1)=Va 231

i=l..n

Theorem 2.2 Let a, b € R be such that 0< a,b <1. Then the following equality using the

noisy-or operator holds:

avb2a (2.32)
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3. PAS ENTITY-TRANSITIVE RELATION-IMPLICATION (ETRI)
MODEL

3.1. Introducing the PAS-ETRI Model

In this section we define a graphical model for describing transitive relations

between different entities of a domain.

Definition 3.1 (PAS-ETRI Model)
A PAS-ETRI is a tuple ETRI(G, PAS ., .R) where G is a directed graph G =(V ,E),

PAS ., is a type of PAS such that PAS ., = (&, P, A,I), R is a semantic transitive

relation. We further specify the following:

Let n be the number of vertices, m be the number of arcs (directed edges) in G, we specify

V, P, and E as:

V={v,vy,v,} =P (3.1
E={e,,e,,....e,} (3.2)
We will refer to the elements of sets V = P as entities.
The assumptions A in PASgrrr are defined as:
A={a,,a,,...a, v
{ZU:ISi,an,i;tj,lSkSm, (3.3)

such that there exists an arc ey from vertex v; to vjin G/
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We will refer to the subset a; € A as node assumptions, and the subset [, € A as link

assumptions.

The knowledge-base & is specified as:

E={a, > v,:a,€e AyU{v, Al; v, 1, € A} (3.4)
For the semantic transitive relation R we specify:

Let a,b,ce D be entities of a domain D where R holds. Then the following should

be correct:

Ya,b,ce D:(R(a,b) AR(b,c))— R(a,c) (3.5)

The PAS-ETRI model is built on the work Picard to apply PAS for Information
Retrieval which we survey in sections 2.1.5 and 2.1.6 (Picard, 1998) (Picard, 2000) (Picard
and Savoy, 2003). Here, we essentially formalize and generalize the “hypertext retrieval
model” presented in (Picard, 2000), along the lines of (Picard and Savoy, 2003) for a

general entity-relation setting.

PAS-ETRI model corresponds to a particular type of PAS where the knowledge base
is made of horn clauses. The propositional sentences inferred using this knowledge-base

have the following basic form:

(anbar.AVeAdAn. A)V.VeAfr.A)>g (3.6)

It is known that deciding entailment for a proposition in such a knowledge base can
be done in linear time in the size of the knowledge-base (Russell and Norvig, 2003).

Effectively, this kind of inference can be perceived as a path finding process in a graph.
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Theorem 3.1. (Support for a Vertex)

Given an ETRI(G, PAS ;4 »R), the support SP,,, (h,&) for h = v; is:

SPo (v,6) =a, Vg[lji A SPprg (vj’é:)] (3.7

This is identical to saying that supporting arguments for a vertex contain all of its
parents’ arguments (conjuncting with relating link assumptions) in addition to its own

assumption. This formulation is shown for hypertext retrieval model in (Picard, 2000).

For listing supporting arguments, we will use the set representation (as a collection

of terms/scenarios) and sentence representation (as a DNF sentence) for SP,, (v,,&)

interchangeably.

This kind of knowledge base contains no contradictions. Computing degrees of
support for vertices is easier as the quasi-support for an hypothesis is equal to its support,
and as pointed out in (Haenni, 2003) there exists many efficient satisfiability (SAT)
problem based methods for dealing with such knowledge bases. In Appendix B, we
introduce our implementation of a PAS-ETRI using Binary Decision Diagrams (BDD)

(Bryant, 1986), which form the basis of some such efficient methods.

Intuitively, a PAS-ETRI is a semantic network containing one type of link, backed
by PAS, and containing associated probabilities for nodes and links representing their
significance. PAS are a special-case of Dempster-Shafer theory of evidence (Haenni et al.,
2000). Thus it is natural to expect that “significance” is the belief in some evidence which
assumes its true meaning depending on what the semantic relation contained is. In the
following section, we try to explore a variety of such systems to elaborate on the

usefulness of the model introduced.

Example 3.1.

Consider a PAS instance where the knowledge-base is:
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E={ai—v,a—vy,vr— (a3 —vy) }

This is essentially our previous PAS example with the last clause removed. Here we
can see that the knowledge base has no contradictions, and is made of only Horn clauses.

We see that for & = v; the support and the quasi-support are the same:

OS(h, &) =SP(h, &) = a1 v (az A as)

See Figure 3.1 for a graphic representation. Here the literals in squares are the
assumptions, and the literals in the circles are the propositions. We can also see how a
graphical structure is mapped to a PAS instances, replacing implication “arrows” in the

knowledgebase with graph “arrows”.

We can see how finding the support corresponds to walking backwards from the

hypothesis node vy, to the “supporting” nodes.

DAt 8.3 < V2

Figure 3.1. Example PAS-ETRI network
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3.2. Possible Applications of the PAS-ETRI Model

The PAS-ETRI model can find application in a variety of different domains where a
network based modeling has made sense. We perceive it as a tool for analyzing complex

networks of all kinds.

Many different kinds of such networks can be named; different kinds of complex
networks (www, citation networks, friendship/acquaintance networks, networks for
spreading of diseases, ...), trust networks, different social networks such as organizational
hierarchies, information retrieval networks (hypertext retrieval), software function call
graphs, biological networks (e.g. neural networks). This list can be further extended,

instead we will focus on a few models to illustrate the motivation for the model.

When PAS-ETRI is applied for Information Retrieval (IR) (see section 2.1.5 and
2.1.6), the semantic relation contained can be “relevance”. Picard defines relevance using
the concept of “infons” (Picard, 2000). Infons are defined to be elementary items of
information individuated by a cognitive agent. The probabilities of the node assumptions
then represent our prior “evidence” that a document is relevant (i.e. contains infons that are
relevant given a query), whilst the link assumptions can be thought of as further evidence
as for which this relevance can be expanded, thus resulting in posterior probabilities of

relevance, namely “degree of support”.

As pointed out in (Page et al., 1998) recall is not the only problem for IR in large
collections. The ranking of documents becomes a focal point when there are many equally
relevant documents. PAS-ETRI forms naturally a tool for link based ranking of documents
in a collection as suggested in (Picard and Savoy, 2003) (surveyed in section 2.1.6). The
solution of the ranking problem necessitates another ETRI model. In chapter 3, we focus
on this problem, and introduce a model centered on the concept of “information value”

instead of relevance.

For analyzing community structures for authors of scientific papers, a PAS-ETRI can

be constructed using a relation “influences”. Obviously, this is not a strictly transitive
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relation. Yet, useful analysis can still be made, keeping this fact in mind and interpreting
the results with according reservation. In such a setting, a PAS-ETRI system can be asked
to identify the most “influential” author, or with additional modeling (e.g. using

disjunctions of vertices) an attempt to reveal community structures may be made.

For social networks, the emphasis may be on different kinds of relations. One such
example is spreading of diseases. A virtually transitive relation “infects” can be used. Note
that, when using PAS-ETRI, detailed and more precise modeling of interactions between
each individual can be specified. The inability of some models to do this has previously
been criticized (Handcock et al., 2003). In such a system, one could ask to identify the
most “infectious” individuals. As such, possible changes to the network such as effects of

vaccination can be investigated under clear semantics.

It is important here to point out that, all the results derived from PAS are derived
under strong independence assumptions. That is, all link and node assumptions are
assumed to be stochastically independent. Obviously, for the disease setting above like
some others, it is a reasonable assumption to make that the infections of two completely
stranger individuals would be independent. Yet we believe that the way of modeling a
particular phenomenon would benefit from paying attention to expressing the system in a
way that maximizes the correspondence of independence assumptions to the modeled

system.
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4. PAS-ETRI AS A LAR TOOL

4.1. Applying PAS-ETRI for Information Retrieval

As has been suggested in the previous chapter, a PAS-ETRI based analysis can be
made in various ways even for the same problem. For the task of finding appropriate
documents in a collection for a query, we will present two candidate models. The first one
focuses on ranking the documents according to their “information value”, while the second
one focuses on finding the relevant documents. Combined together these two models are
meant to return the “relevant” documents which have a “high information value”, thus
resulting in an effective method of retrieval. We essentially build on the models developed
in (Picard and Savoy, 2003) and (Picard, 1998) (presented in sections 2.1.6 and 2.1.5)

using the introduced ETRI framework.

This way of combining relevance and value of information content has been
suggested and applied successfully in a slightly different context in (Page et al., 1998). As
was reviewed in section 2.3, it was suggested to rank documents according a popularity
measure based on random walks on the graph. In our work we differ by replacing the
concept of popularity with a new one; “information value” which we will define in the
following sections. Our definition of information value will more closely follow “citation

count” which predates PageRank as possibly being the earliest measure of importance.

In this chapter we introduce ArgRank, a novel ranking algorithm, which we build on
a concept of Minimal Evidence (ME) on the PAS-ETRI model. For the ranking approach
each document receives a value representing its information value and this represents the
“link evidence” gathered from the network. This approach of using PAS is firstly presented
in (Picard and Savoy, 2003), but the idea is not fully explored. Thus, in this chapter we try

to develop the idea in full detail.

In contrast, applying PAS for the relevance problem has been widely studied in

(Savoy and Rasolofo, 2000) (Picard, 1998) as shown in chapter 2, from which we borrow
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many ideas. In these papers, the authors have demonstrated the use of argumentation for
“spreading” an initial relevance of documents to neighboring documents, thus enhancing

the results.

In our work we will use a very simplified model for assessing relevance and focus on
the ranking model. Once the ranks are assigned, a simple keyword match will be used to
filter out documents, and this will be the way to combine two different sorts of evidence
(rank merging) for relevance and information value. An analogous to this approach was

suggested in (Page et al., 1998).

4.2. ETRI models for Information Retrieval

In this part we will introduce the two IR related PAS-ETRI models which are
designed to deal with the ranking and relevance assessment problems. In the ETRI, the
vertices in the graph will represent documents (e.g. a web-page, a paper), and links are
present whenever a documents cites or is cited by (or both) another document (depending

on the way the graph is constructed).

For the first model, we define the transitive relation R to be “is informative”. Then, a
link from document i to j is taken as “according to document i, document j is informative
with probability p(l;;)”. The node assumptions are the a priori judgment that a document is
informative. The term “informative” is used to judge the information quality of a
document. In analogy with (Picard, 2000), it may be referred to as a measure for the
amount of infons a document contains. This model mimics the PAS alternative to

PageRank model presented in (Picard and Savoy, 2003) using PAS-ETRI terminology.

We will refer to this model as document/information value model (DIM). We will
use it to assess the quality of documents. Thus given a set of relevant documents, it will be

possible to order and present them in decreasing quality.

The quality of a document in being informative, is not directly observable in an

objectively measurable way, if not a speculative issue. Also, although a document’s
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references certainly signify that the author of the given document has found at least some
of the referenced papers “informative”, it remains a non-trivial issue to determine how the
link assumptions should be assigned. In the rest of this work, we will try to address these

problems.

Below we will introduce the PAS-ETRI model dealing with relevance. Although in
the experimental part we will be using a simplified relevance model as mentioned above,

we introduce this second model for the sake of completeness.

We define our transitive relation R as “is relevant to”. So, a link from a document i to
j is taken as “according to document i, document j is relevant to document i with
probability p(l;)” (reading backwards from the arrow direction). The node assumptions
then represent our prior belief that a document is relevant. This may be supplied by a
different IR system, or another source. This model is essentially developed and used in

(Picard, 1998) and (Picard, 2000), and stated here using PAS-ETRI terminology.

We will refer to the PAS-ETRI model defined above, as document/relevance model
(DRM). Its counterpart is “hyper-text retrieval model” in (Picard, 2000). This model is

useful for identifying documents that are relevant, given a query.

It should be noted that, for a given document the quality of being informative can be
safely assumed to be independent of the topic of the document — although presumably
there will be exceptions. This means that whether a document is relevant or not is not
dependent on its information value. Thus as suggested in the previous section, the two

models DRM and DIM are meant to be used in a complementary manner.

4.3. Minimal Evidence (ME)

We present here a node assumption probabilities assignment which we will use for

facilitating discussions about merits of different link analysis ranking algorithms.

We define:
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Definition 4.1 (Minimal Evidence) For an ETRI(G, PAS, R) with n documents in the

collection P, we define the partial assignment:

pla;)= ln where p(a;)ell , i=1,2..n 4.1)

to be the Minimal Evidence (ME). Link probabilities are left unspecified in ME.

Intuitively, this way of assigning prior probabilities corresponds to the minimal
evidence one has that, at least one document (and possibly, only one document) in the
collection has the desired quality dictated by the transitive relation (e.g. is informative or is

relevant).

Obviously, if we have prior knowledge that there is no document in the collection

which is, say relevant, it does not make sense to look for it in the collection!

One may have noticed the similarity between the maximum-likelihood (ML)
hypothesis for maximum a posteriori (MAP) learning and ME assignment. This actually is
not a coincidence. In MAP learning, setting priors in this way corresponds to a distrust of
priors, and it is useful for large data-sets where all hypotheses are equally complex and
likely to be true (Russell and Norvig, 2003). Note the reminiscence of our setting with the
situation described. It is our intention to “extract” the link based evidence on the graph,
and this way of setting the prior assumptions thus allows us to focus on utilizing this

information.

In the rest of the text, the soundness of the use of ME will become further clearer by

the cases examined.
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4.4. Introducing ETRI Ranking: ArgRank

In this section, we introduce a document ranking algorithm based on the ETRI

model. We will refer to it shortly as ArgRank.

Definition 4.2 (ArgRank) Given an ETRI(G, PAS, R) with the ME partial-assignment, we

define the ArgRank of a document v; as:

ArgRank; = dsp(v;,{)= dsp; 4.2)

We have used the short notation dsp; for the degree of support of a node. We will use

this notation further on.

In the following sections we will use ArgRank to get a query and user independent
ranking scheme that ranks the whole collection. Note that, while we have defined ArgRank
using ME, it is possible to generate similar rankings for more “personalized” results by
altering node assumption probabilities depending on the context (e.g. the inquirer) as in
PageRank. So, we will sometimes use the term ArgRank to refer to such a family of

rankings including the ones with altered (e.g. personalized) node assumptions.

A very similar ranking scheme based on PAS is suggested and examined in (Picard
and Savoy, 2003) as an alternative to PageRank. However, the significance of ME is
omitted and an emphasis is made on producing a personalized popularity measure using

external evidence sources such as bookmarks.

4.5. Time-complexity Considerations for ArgRank Calculations

The computation of degree of support can have a high time-complexity if the number
of arguments is high. In the PAS-ETRI model we need to find the disjoint terms of a DNF

sentence for calculating the degrees of support. This problem is known to be NP-hard,
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being related to counting all the solutions to the satisfiability (SAT) problem (Antoine et
al., 2003).

For many DRM settings, link assumptions are set to be relatively low (e.g. 0.05 to
0.3). Thus for the case of enhancing relevance, this results in not needing terms with more
than a few literals in the arguments, as the marginal contribution of additional literals
would not be worth paying the computation costs. Previous PAS related work includes
projects with an order limit (max. number of literals in each supporting argument) of two
(immediate neighbors) and three on the terms (Savoy and Rasolofo, 2000) (Picard, 1998).

These authors report of no difficulties of calculations relating to collection size.

For the DIM case however, such an order limit may cause a high degradation on the
accuracy of the results. In ArgRank, because of ME assignment the collective evidence
provided by all the nodes is evenly spread in the collection. So in a larger collection with
sufficient connectivity, this in effect may create concentrations of evidence for different
“areas” of nodes. Rankings computed using a strict order limit would be less capable of
reflecting this characteristic the bigger and more concentrated such areas are (e.g. a large

group of documents with high citations referencing each other).

Also even when an order limit is imposed, while the question of time complexity
may not be a significant issue for relatively smaller collections, the web is vast and its size
is doubling in less than a year (Broder et al., 2000a) (Page et al., 1998). Any algorithm that
has a time complexity significantly higher than linear amortized time would pose a very

high challenge of application to scale to the web.

Following this discussion, it can be seen that an unlimited and straightforward
application of ArgRank to a sizeable collection may be a very difficult if not an impossible
task. To address this problem, in chapter 4 we explore a variety of methods including the
order limit, and introduce a family of novel algorithms for approximating dsp values in an

ETRL



48

4.6. Comparing ArgRank and PageRank

PageRank is a link analysis ranking algorithm that certainly scales to the web
currently being used in the famous Google search engine. This can be mainly attributed to
the calculate-once nature (ignoring updates to the collection) for the initial ranking process.
Only local computations (i.e. from immediate neighbors of a node in a graph) are used in a

quickly converging scheme, yielding linear time-complexity in the number of edges.

While PageRank appears to be successful, it is unclear how the values produced by
the algorithm should be interpreted from an Al or evidential reasoning perspective or
should be combined with later evidence (e.g. rank merging). This may have contributed to

the dispute on the usefulness of PageRank which we have presented section 2.3.2.

ArgRank on the other hand builds on evidential reasoning with clear semantics. The
rankings obtained by ArgRank are, degrees of support defined within the PAS-ETRI
model, which are in turn posterior probabilities for the relation (i.e. being informative)
being true. Being a special case of Dempster & Shafer Theory, PAS effectively builds
upon the theory of evidence. The ME closely mimics maximum likelihood (ML) hypo-
thesis in MAP learning, a well-known method in statistics, for the evidence domain. Thus
in effect, ArgRank is a result of combining some well established methods in a novel yet

clearly demonstrable manner.

While the prospect of using ArgRank appears promising, it is set back by its reliance
on requiring to perform computations for an NP-hard problem for each node in a vast
collection. In the following part, we focus on tackling this problem for the general ETRI

case, examining various solutions, and present novel ones.
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S. EFFICIENT APPROXIMATE SOLUTIONS OF AN ETRI SYSTEM

5.1. An Assessment of Approximation Techniques

Following the discussion in section 4.5, it is quite obvious that an unlimited and
direct application of ArgRank is unfeasible. As ArgRank is relying exclusively on NP-hard
problem computations for a possibly vast collection of documents, we certainly do not

have any good reason to expect that this situation should get better in the future.

Ruling out direct and unlimited application, this effectively makes the question of
how to approximate ArgRank accurately and efficiently, a focal part of our work further

on.

Reflecting on the discussion of chapter 4, we may formulate desirable characteristics

of a link analysis ranking algorithm:

¢ Incorporate as much evidence from links as possible.
e Scale well to vast collections. Preferably require at most near linear time operations
when dealing with the whole collection.

¢ Be theoretically sound.

These will also be our guidelines for devising and evaluating different approaches for

the approximation methods.

In the following sections we explore and analyze various methods of approximating
dsp values. Inspired by PageRank, we have a focus on methods using local computations

(i.e. relating to immediate neighbors of a node).

The methods we will introduce for approximations are all applicable for dsp
calculations for the general ETRI case independent of the model used. However, we will

choose to focus on the DIM and the ArgRank for evaluations.
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5.2. Imposing a Limit of 2" Order for Supporting Arguments

An immediate candidate method fitting the criteria of the preceding section is the
simplified ArgRank which imposes a 2-literal limit on arguments. As only the immediate
neighbors are considered, the algorithm relies only on local-computations, and works in
exactly linear time in the number of edges. This approximation for the ETRI-DRM context

has been used in (Savoy and Rasolofo, 2000) previously.

It is interesting to note that in this model, for dsp calculations we effectively get the

formulation for the noisy-or gate (Heckerman and Breese, 1996).

Using the ME assignment with a fixed link assumption probability p;, and choosing
to use “forward links” (i.e. link from v; to v; means “document i has cited document ;) we

get:

1=(-pa)[ - p;) pa))

Jjek,

dsp;

= 1--p)[Ja- 0

Jek

InDegree;

= 1-(-p,) [Ja-0

= 1-(1-p)A-c)" 5.1

plpa
n

where ¢ = s D, = i, P; represents parents of node i, dsp; = dsp(v,,&) .
a.

L

Note that since we have used the “forward links”, it follows that there is a link from

node v; to v; if document i has cited j. So, the parents of a document are the documents
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which cited it. Thus, multiplying dsp’s from all the citing documents has yielded InDegree;

above.

We observe here that ¢ << 1 for any sizeable collection. In this case, as long as dsp;

<< 1, the following holds:

dsp,=1—(1—p, Y1—c)" = p_+c-InDegree, < InDegree, (5.2)

We identify Eq.(5.2) as possibly the oldest link analysis ranking algorithm, namely
the citation count. Note that p, values are the same for all nodes, and that is how we can

relate the ranks solely on in-degree.

The condition dsp; << 1 holds as long as a document is not cited by a significant
fraction of the collection, which is virtually impossible for most of the collections. This
appears supportive for the soundness of our approach of using ME for evaluating link

analysis ranking algorithms.

Note that, we have implicitly used the Boole-Bonferroni bounds in Eq.(5.2) for
approximating the dsp value (Antoine et al., 2003).

5.3. Total Independence Assumption for Supporting Arguments

Relating the dsp values of neighboring nodes is a promising approach as it relies on
only locally available data, and re-uses calculations already made boosting the speed of

computation.

Focusing exclusively on the ME assignment, we evaluate here a model which relies
on an assumption that neighboring nodes of a node have pair-wise disjoint supporting
arguments. The initial motivation for this kind of modeling is the 2-term order limit

example of the previous section.
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The formulation for this model is presented below. It amounts to combining the dsp
values of neighboring nodes with the related assumption probability of the node, using a
noisy-or gate. We will examine when this formulation is a good approximation later in this

section.

o\
dip, =1=(1= pa)[T1=p,)dsp) = p(a) 9 ¥ p(t)dsp, 53)

where dSp represents an approximation to the dsp value, P; is the set of parents for node i,

l;; denotes the link assumption linking from j to i. Note that for this to be useful we have to
know the dsp values for the neighboring nodes in advance, we will deal with this problem

in section 5.6 when we introduce the ESP algorithms.

Let us now examine Eq.(5.3). For the ETRI setting, it follows from Theorem 3.1 that

for any node:

P (v128) =a;v Y[, A 5P, &)] (54)

We exclusively refer to supporting arguments SPgrg; in the context of ETRI in the

following, so we drop the subscript ETRI unless we state explicitly otherwise.

If we know a priori that all supporting arguments for all parents v; of document v;

SP(v j,é_‘,‘) are pair-wise disjoint then we can use the Sylvester-Poincare development as in

Eq.(2.27):

dsp (v;,6) = dsp{ai v \{[Iw A SP(vj,f)]}
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= 1=~ p@) ][]0~ pt,dsp,.)

Jek

e\
p(a) VY plt,dsp, (5.5)

This is the exact value counter-part of Eq.(5.3). This shows us the condition it should
always yield exact values. We use the term fotal independence of (supporting) arguments
to refer to this situation. As such when we assume it to be true, it is the fotal independence

assumption.

Total independence assumption is equivalent to assuming that all the paths leading to
a document from its ancestors are non-overlapping. This kind of graph is actually a tree.
Obviously this is not the reality most of the time, as say the web does not have a tree

structure!

Yet still, intuitively we would expect this approximation to yield relatively better
results when links amongst nodes in the underlying graph are sparse and fairly uniformly

distributed.

5.4. The Common Conjunction Model for Local Approximation of dsp Values

As we intend mainly to deal with small-world networks (e.g. citation networks, web),
the total independence assumption is not a good representation of the underlying structure.
We have shown in section 2.2 (Watts and Strogatz, 1998)(Newman, 2003) that social

networks exhibit a property known as “clustering” which basically states that:

“If two vertices in a network are connected, then a third vertex connected to one of the first
two, is more likely to be connected to the other as well in a social network compared to a

random network.”
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We use this phenomenon to basically reason that, supporting arguments for a node

are more likely to be related to some extent than be completely disjoint.

To accommodate for this we re-formulate the approximation in Eq.(5.3) as:

dsp. = 1-(1-p(a)), (vl.)H(l— p(,)dsp))
VN
= p@)9|d.0) Y pdsp, (5.6)

where dSp is an approximation to the dsp value, P; parents of i, d_(v,) — R is a function

(described below) where 0<d_(v,) <1.

Here we introduced the function of damping for conjunction d. or shortly damping
Junction, which represents a hypothetical amount of “common conjunction” incident on a

node.

As shown in Figure 5.1 this formulation is equivalent assuming that all supporting

arguments share a common assumption and be pair-wise independent otherwise.
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aq

Figure 5.1. The common conjunction model

Our numerical investigations on CiteSeer scientific citation networks have shown
rather high damping values close to 1. This was because link assumption probabilities we
have used were rather low (e.g. constant 0.05 to 0.3), so the discounting caused by the pair-

wise conjunction are limited. See section 6.5 for a full discussion of this.

An attempt to mathematically relate the small-world model parameters (especially
clustering coefficients) with the damping function may be an exciting prospect, but it has

been left out of the scope of this work.

5.5. The ETRI Support Propagation (ESP) Algorithms for PAS-ETRI

In this section we introduce a family of algorithms which build on the common
conjunction model. The basic idea is to use dsp estimates of the neighboring nodes
iteratively in a convergent scheme to calculate gradually better estimates for all the nodes

step by step.

An initial problem to address is the positive feedback created by closely linked nodes

— equivalents of “rank sinks” in PageRank calculations. Especially for the case of cross-
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linking (e.g. when a document both cites and is cited by another document), the problem

gets worse.

Firstly we introduce an iterative algorithm which has no “feedback protection”. We
will be mainly focusing on this algorithm because the experimental network we have
(CiteSeer citation network) does not have excessive cross-linking. One may think that
cross-linking should not exist in a citation network but it does, for example when two
papers from the same authors may cite each other if they appear in the same journal or

conference.

Then we will introduce a second algorithm which is based on message passing, and
provides first-order feedback prevention (i.e. prevents feedback from immediate
neighbors). This algorithm is reminiscent of Pearl’s Belief Propagation (BP) algorithm

(Pearl, 1988) for the ETRI framework which we discuss in section 5.7.

One can formulize higher order ESP algorithms which prevent higher order
feedbacks (i.e. feedback from neighbors which are further separated by two or more links).
Their structure and usefulness are left as future work and are not going to be addressed in

this work.

The ESP algorithms are usable on any ETRI based mode framework, and the
definitions presented here will be valid for any ETRI model. However, the evaluation for
the general case of ESP is out of the scope of this work. For evaluation purposes, we will

mainly be focusing on ETRI-DIM and particularly ArgRank approximations.

5.6. 0™ Order ESP: The Iterative Algorithm

In this section we introduce the 0" order ESP algorithm, ESP-0, which is a simple
iterative algorithm. We will examine its properties and usefulness by using some theorems
and propositions. This is an algorithm which works much better when there is no cross-

linking between nodes in an ETRI graph.
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Given an initial estimation of dsp values dSp, at any step, the algorithm iterates on

this equation:

dsp; = 1=(=plap)d. o[ T - p;)dsp,)
A
= p@)9|d.0) Y pl)dip, 57

where dSp; represents the best-estimation for dsp values (to be used next step) given the

current graph.

The pseudo-code then is as follows:
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Function: ETRI Support Propagation-0

Input: V ={v,,v,.....v,}, E={e.e,,....e,},

H = {p(al)’p(az),.,.’p(an)’p(lij )7p(lkl)"“’p(lmn)} > dc(vi) ’5

dsp ={0, 0, ..., 0} /* n elements */
dsp"={0,0, ..., 0} /* n elements */
s=1
do /* the iteration loop */
For each v;in V do
dsp,, =0 /* dsp for total independence assumption */
For each v; in Parent(v;) do
dsp,, =1~ (1—dsp, 1= p(,)dip,)
next
dsp; =1-(1- p(a))1-d,(v,)-dsp,,)
next
if difference(dsp”,dsp )<J then break
dsp =dsp”
s=s+1

loop
Output: dsp

Here we assume the availability of natural graph functionalities for locating parents
and related links, and difference(dsp”,dSp) is any preferred convergence detection

function (e.g. L1 norm on difference) for whichd assumes relevant meaning.

For assessing the capabilities of the algorithm, we present the following:
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Proposition 4.1

Given a PAS-ETRI system ETRI (G, PAS ., ,R) and a constant function of damping for
conjunctiond,(v;)=1, then the ETRI Support Propagation-0 function outputs exact

results (after finite iterations) for dsp; values if the underlying graph G is a tree.

A proof of this proposition is going to be outlined here. We know that a tree
necessarily has a node with no incoming edges, which we can refer to as the top node. So,

we know that after the first iteration of the algorithm, we have for the top node:

dsp; = p(a;) (5.8)

which is the correct value. For the second iteration, the children of the top node will

receive the dsp values from their parent, that is:

dsp; = p(a,) ¥ p(l,)dsp, (5.9)

This will also yield exactly correct values for those nodes because in a directed tree
graph there is only one incoming path to a leaf from the top node. Also note that the top

node will remain unchanged.

Our technique for the second iteration would actually be valid at any step in the
algorithm. Thus, we could create a proof which would use induction to show that after
some finite iterations, all the nodes in the tree would have a constant value which would be

the correct dsp values.
Theorem 5.1

When run on a given PAS-ETRI system ETRI(G,PAS.;,.,R) the ETRI Support

Propagation-0 function produces nondecreasing intermediate dSp value assignments
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compared to the previous iteration, at the end of each iteration loop. Stated

mathematically:

Vv, eV :dsp,(s+1) 2 dsp,(s) where s is the count of the iteration. (5.10)

Theorem 5.2

Given a PAS-ETRI system ETRI(G,PAS ., ,R), results dsp” output from the ETRI

Support Propagation-0 function run on ETRI, and the function of damping for

conjunction d_(v,) — R such that the following inequality holds:
Vv, e Vidsp, 21-(1=p(a))d, v [ - p;)dsp)) (5.11)
Jek

This implies that the following inequality holds:

Vv, eV :dsp; <dsp, (5.12)

Theorem 5.3

The ETRI Support Propagation-0 algorithm terminates after a finite number of
iterations, when vector difference is used as the difference function with a constant valued

O vector representing the desired termination values. More specifically, we use:

5 =e, (5.13)

l

where i is the index of the vertex to be examined, e, is the desired termination value where

O<e, <1 and,
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difference,(s)=dsp,(s)—dsp,(s—1) (5.14)

where s is the count of iteration, and s > 1. Then we state:

difference,(s) < 9, (5.15)

for some s > ).

We are not limited to vector difference for convergence. For example it can similarly

be shown that, the algorithm converges using L1 norm.

Thus, we have asserted that the ETRI Support Propagation-0 algorithm has the
following properties:

® Yields exact results for trees using d. =1

¢ The final results output by the algorithm are bound from above by the correct dsp
values given a corresponding d..

e Each iteration may only produce better estimates of the real dsp values (for any d,.),
or remain constant.

e The algorithm terminates after a finite number of iterations given corresponding
termination conditions (e.g. vector difference or L1 norm using a constant

termination value)

These properties imply that, given a d. for which the inequality (5.11) holds, the
ETRI Support Propagation-0 algorithm necessarily converges to a set of values bound
from above by the true dsp values, regardless of the underlying graph structure. A trivial
case for this assertion is where d. = 0. It can be shown that, this indeed is the case for some
settings. At the other extreme is the exact solution. So at this point, intuitively we can
expect that the higher the d. value (that obeys the inequality (5.11)) the better the

approximations output should be.
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These theorems make no claim regarding the accuracy of the results produced. That
is an issue we will address experimentally in chapter 6. Our experiments have shown us
that, for many PAS-ETRI setups, ESP converges fairly quickly to a reasonable
approximation given a good d, function. We have used a constant damping function in our
setups, although it is conceivable that one could come up with some heuristics to relax the

constant value assumption to yield better approximations.

What we have shown here is a worst-case situation where all the dsp estimates obey
an upper-bound set by the real dsp values. However, in an actual implementation relaxing
this strict pre-requisite may produce better approximation results which do not necessarily
observe the real dsp values as upper-bounds. As we will detail in chapter 6, we actually
choose to use the average damping value (not the minimum one as the theorem suggests),
which produces fairly good approximations. A theoretical assessment of the trade-off in
using higher d. values to get better approximations (against what the theorems suggest) is a
topic we leave to be addressed as a future work, we will deal with it using various

experimental results.

5.7. 1 Order ESP: The Message-Passing Algorithm

In this algorithm, within a step each node passes a message o (v) to all its children
nodes containing its best estimation for its dsp value, and receives such messages from its
parents. For the next step, a new estimate for its dsp, based on the recent messages is
calculated using Eq.(5.16). The algorithm goes on until the values converge within a

desired level.

Thus at a given message passing interval, using Eq.(5.5) we see that for each node

the following equation is evaluated:

dsp; =1-(1-p(a))d, )] [~ pU)o, (v))) (5.16)

Jjek,
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where 0“::_ (v;,)=dsp;(v,) is the message sent from the parent node v; to the child node v;

which contains the dsp value for node j excluding the effect from node i. For the next

interval, dsp, values will be used for the messages, and so on.

This far, the reader may have noticed a similarity between the algorithm being
suggested and the use of Pearl’s belief propagation (BP) algorithm (Pearl, 1988) on loopy
networks. In this algorithm, belief is propagated between nodes in a Bayesian network, but
convergence is not guaranteed. The similarity is more imminent with the two-color model
in (Broder et al., 2000b). Also, it is possible to observe a graphical similarity between
factor graphs and ETRI graphs, especially considering this approximation scheme
proposed, and also between Support Propagation algorithm and Sum-Product Algorithm
for factor graphs as in (Kschischang et al., 2001). This is related to the fact that the
corresponding algorithms on factor graphs and Bayesian networks are mathematically
equivalent, and the graphs are mutually convertible (Yedidia et al., 2003). Yet it is not
possible to apply these algorithms in our setting without modification because, informally
stating, for the PAS-ETRI model no Markov-Blanket localizing the “reasons” necessarily
exists. So we perceive the use of ESP algorithms on ETRI networks on a Dempster Shafer
theory based context (i.e. PAS), to be in a similar spirit to use of BP on loopy Bayesian

networks in a Bayesian context.

In this work we chose not to focus on ESP-1 in favor of ESP-0 which has the
advantage of being easier to implement and apply to bigger collections. A treatment of
ESP-1 thus remains as a future work. Additionally, ESP’s of higher order, effectively
mixing an actual PAS implementation calculation for the micro structure (lower orders)
within an ESP framework managing the macro structure are conceivable. This prospect is

however, out of the scope of our current treatment of the subject as well.
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5.8. Applying ESP-0 for Approximating ArgRank: ERank-0

Here we present a straight-forward application of ESP-0 for approximating ArgRank
values. We use the term ERank-0 in short for applying ESP-0 algorithm to find ArgRank

values on an ETRI with the ME assignment.

The main open question regarding the application is the choice of the damping

function. We specify a constant damping function d.:

d,(v,)=d, (5.17)

We propose that an actual PAS-ETRI implementation should initially be run on a
training set. For example, the training set could be randomly selected nodes from the actual
network. Then using Eq.(5.5) the “correct” d. can be obtained for the training set. Based on

these results, a selection would then be made for the value of dj.

Although we have proved the upper-boundedness only for the case where

d,<d_ (v;) for some d. representing correct results, it is conceivable that setting dj to a

higher value minimizing the errors for dsp values in the training set could give better

approximations.

Thus using Eq.(5.7) for ESP-0, we can formulate the following iterative evaluation:

dsp; = 1=(1-pa))d,[Ja-p(;)dsp;)
JeF,
VaN
= pa)v|d, ¥ pt,)ds, (5.18)

The results can then be obtained wusing the ESP-0 algorithm.
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6. ANALYSIS OF EXPERIMENTAL RESULTS

6.1. Overview of Results

We have tried to assess the utility of our introduced algorithms, examine their results
and thus gain a general understanding on their modes of working. We have made
comparative analysis, and in the process we hope to have established a better
understanding of both the previously known algorithms (citation count/in-degree and

PageRank) and our newly introduced algorithms (ArgRank and ERank-0).

The first problem to tackle is the selection of link assumption probabilities. We
evaluate two different approaches. Firstly, we use a constant value for all the links, then we
use a value inversely proportional to the out-degree of a node for the links going out of that

node.

Then the damping values are calculated. We have calculated actual ArgRank values
to orders between 3™ and 5™, and used them to approximate damping values for a sample
set. We chose to use the average damping values of the sample sets as damping values for

the ERank-0 algorithms.

Our choices for link assumptions and the damping values, have given us a total of
three different parameter settings to evaluate for the ERank-0’s; (a) (b) and (c). With the
addition of CitationCount and PageRank, we have run a total of 5 different algorithms on
our data. There is an additional (c2) setting. In this we have applied the (c) setting to the
pruned version of the network which we used for applying PageRank. (see section 5.9 for

further explanation)

Our first effort after the ERank-0 runs, was to evaluate the accuracy of obtained
results. The very reason we have proposed using an approximation has, not surprisingly,

caused for us the problem for assessing the quality of our obtained results. It can become
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exceedingly difficult to compute realistic estimates of ArgRank values when terms with
high orders are necessary. As we will demonstrate in this chapter, we have evidence that
higher order terms (e.g. higher than 5) may indeed become the dominant factors on

determining the ArgRank values for networks where the global influences dominate.

To attain an understanding on the character of the network we deal with, we have
examined the small-world network model characteristics such as, in-degree distributions
(the scale-free property), average distances and diameter (the small-world property). We
confirm with reasonable confidence the previous findings, we also find that similar

properties are exhibited by some of our introduced algorithms.

We introduce the transition of dominance between global vs. local influences as an
emergent characteristic on which to assess the results of different algorithm settings. In this
context, the CitationCount algorithm (in-degree), becomes the extreme end for
incorporating local-only data, and using two ERank-0 settings (a) and (b) we try to explore

the effect of more global influences.

In similar sprit as CitationCount is similar to ERank-O(a) and ERank-0(b), we use

ERank-0(c) as an “evidence based” analog for PageRank.

We present comparative analysis between the algorithm settings, in different forms
such as: various scatter plots, average position distances (introduced in this chapter), and

correlation coefficients.

A detailed assessment of the convergence characteristics was out of the scope of this
work. In our experiments we have observed that the convergence pattern is highly related
to link assumption probability assignments. The higher valued and globally dominated
settings take longer to converge to similar levels relatively. For example the (a) setting
converges in 10 iterations, whilst the others can take more than 50. We have assessed the
level of convergence by comparing the results with a previous iteration. An interesting

observation was that for setting (b) the results initially diverge (the difference between two
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consecutive results increase) for a while and then attain a converging trend (monotonically

decrease).

We use the top-ranking documents as a demonstration of our results, which we hope
can be useful for getting an idea of the promoted documents by the different algorithms

given the subjectivity of the topic we deal with.

One of the essential uses of an algorithm assessing information value, is assisting the
information retrieval process. As we argue and find suggesting evidence later on, the
global picture may not necessarily give a good understanding for the experience of the
information searching agent. So, we further our analysis in this direction, and give similar

analysis on a per-query basis.

6.2. Overview of Data: CiteSeer Citation Network

We have run our algorithms on data based on the CiteSeer (CIT) online paper
collection. CiteSeer is an open online database, and makes available scientific literature

mostly on computer and information sciences.

We have used the metadata provided by the archive as part of the Open Archive
Initiative (OAI) . It is a snapshot from 03-2005 based on an extended version of the Dublin
core standard including citation information along with some other useful additional meta-

data fields.

While being a fairly large set of documents, we have observed our collection had
some short-comings some of which are certainly shared with any limited collection one
may examine. Upon examining the result sets for some queries we have seen that, it is
possible some of the most influential papers along with others on a topic may not be
present in the collection. Also as being a best effort project, essentially indexing and
collecting literature freely available on the net, the citation information is not always
complete. This is possibly due to a failure in the automation process which extracts this

citation data from the papers’ text.
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Our data downloaded from the CiteSeer web site included information on only those
papers that were actually hosted with full content within the collection. It was not possible
to obtain the much more useful data which includes the “context” data which includes the

references — but not the content — of a document.

Unavoidably these must have degraded the quality of the rankings as we solely rely
on citation data on documents. Nevertheless, our impression has been that the collection
does contain a subset of the influential papers and reasonably accurate citation data, so this

enables us into asserting with some reservation that our results are representative.

The ETRI network is constructed such that, whenever a document “a” references a
document “b” there is a link from node “a” to “b”. This actually is one of the numerous
ways to construct such a network. However, given the amount of effort necessary to run
our analyses on a network, we have opted to concentrating our efforts on this single

structure for the scope of the work.
Some of the characteristic values of the network are listed in Table 6.1. The

distribution for the CitationCount algorithm (in-degree distribution) is presented along with

the other algorithms.

Table 6.1. CiteSeer (forward) citation network properties

Name of the value Value
num. of vertices 299 772
num. of (directed) edges 1 255 566
average path length 23
diameter 74
power-law exponent 3.01
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6.3. The Experimental Setup

To facilitate a comprehensive analysis of the collection, we have effectively built a
document search engine. We have used a relational database system (an SQL server) for

storing and indexing various data on documents.

Our setup enabled us to run queries on composite data consisting of
descriptions/abstracts of documents (the first 1000 characters), authors and titles. It also
enabled structured manipulation and analysis of our data, in many useful ways (e.g.

sorting, pruning, ...).

We did not need a text matching based similarity measure, so it sufficed to have a

basic keyword based matching in a boolean mode which was provided by the system.

We have used the open source Java Universal Network / Graph (JUNG) framework

as the basis framework for implementing our algorithms in Java (JUN).

We ran into performance and memory problems while dealing with our network data,
thus we had to re-write many of the core classes to suit our specific algorithm and
performance needs. Despite the difficulties however, the JUNG framework has been very
useful and instructive in defining a working software abstraction for dealing with networks
while incorporating flexible manipulation and data holding capabilities. It also provided us
with working code for importing and exporting data, and example algorithm

implementations.

Also, as we detail in Appendix B, we have constructed a working PAS system
capable of analyzing ETRI graphs constructed within the JUNG framework. We have used
the open source JavaBDD package (JBD) for this purpose, which has been of great help by

providing us with an out of the box working BDD implementation.
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6.4. Choice of Link Assumption Probabilities

The calculation and choice of parameters are important issues for the application of

any of the algorithms we have used.

Firstly, for ArgRank and its approximations the way of assigning link assumption
probabilities need to be determined. This may not be a problem solved in a straight forward
manner. As mentioned in chapter 4, the concept of information value is not a directly
observable value in an objective way. That is to say, the quality of a scientific paper can
not be assigned a numerical value, even after it is read thoroughly. It may not even be
possible to assess the quality of it with current scientific knowledge, and it may require

some time before a realistic understanding of its qualities can be well understood.

A parallel discussion can be made for the link assumption probabilities. It is not
possible to accurately assess how much informative value an author attributes to a paper
s/he references. However much uncertainty pertains to its assessment, it is still natural to

think of citations as an evidence for the informative quality of paper (e.g. being good).

We have taken two approaches to address this problem. The first is the approach
taken in (Picard, 1998) and (Picard, 2000). For this a constant value is assigned on every
link in a collection. So, for the DRM, this can be thought of as our conceived evidence that
a certain ratio of the papers are likely to be related out of the reference list of a paper, given
the referencing paper is relevant. In (Picard, 1998), the authors develop a method for
extracting a sensible value for link assumption probabilities. It is important to note that
these values are specific to the sort of network they relate, and there is reason to expect that
they will change between different type of networks such as the web and a citation network

— maybe even within different types of citation networks.

There is a difference in the DIM compared to DRM. As we have discussed above it
is not possible to objectively estimate the information value attributed to a reference. So,
the methodology used for DRM in (Picard, 2000) (hyper-text retrieval model as referred to

in that work) is not directly applicable to DIM in this sense. Acknowledging the ambiguity,
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we chose to use two different constant values for link probabilities: 0.05 and 0.3. These
may be thought of as corresponding to the assumption that, at least five per cent and 30 per
cent of referenced papers are highly regarded papers (documents). Note that, as we are
dealing inherently with PAS based on positive literals (positive evidence), we specify only
the lower-bounds for the probabilities hence the use of “at least” 5-30 per cent. The higher-
bound (the plausibility) is always 1.0. As we detail in the following sections, these two

different damping values gave significantly different results.

As a reasonable method removing the ambiguity, we propose a second way of
assigning link assumption probabilities. In this scheme every link gets a value inversely

related to the number of outgoing links. More specifically:

p(ly) =1/N;j (6.1)

where N; is the number of outgoing links from a node (out-degree). Interpreting this
assumption assignment in the evidence context; it corresponds to the evidence that for each

document at least one of the referenced documents should be a “good” one.
One may have noticed a reminiscence of this way of assigning probabilities and the
PageRank algorithm. Indeed, the results yielded by these two algorithms are indeed very

similar.

A list summarizing the link assumption probability settings is given in Table 6.2.
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Table 6.2. Link assumption probabilities

algorithm link assumption probabilities
ArgRank(a) constant value 0.05
ArgRank(b) constant 0.3
ArgRank(c) 1/N;
ERankO(a) constant value 0.05
ERankO(b) constant value 0.3
ERankO0(c) 1/ N
PageRank 1/N;
CitationCount N/A

6.5. Calculation of Damping Constant

Once the choice of assigning link probabilities is made, the damping constant values
are needed to run the algorithm. The calculation of a damping value requires the dsp

calculation of a node to at least 3™ order, better yet to even a higher order.

We have constructed a PAS implementation, geared towards analyzing ETRI
networks using Binary Decision Diagrams (BDDs) (Bryant, 1986). This system enabled us
to analyze documents with a few hundred supporting arguments. The interested reader may

refer to Appendix B for further information on this implementation.

As we have earlier discussed, a direct calculation of ArgRanks (dsp values) for a
relatively bigger network is not feasible — if not impossible. In our example CiteSeer
network, the number of supporting arguments of the 3" or higher order for a highly cited
paper may easily explode up to 100 000s, where it becomes virtually impossible to
compute the dsp values with our current capabilities. Facing these difficulties, we have
opted to finding high order dsp values for nodes with relatively fewer citations. We

sampled approximately 200 nodes for each link probability setting. We calculated dsp
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values of 3 to 5™ order supporting arguments in this group. It is an open question whether

this choice should have affected our estimates of the damping values.

After a document’s ArgRank of n™ order is calculated, the ArgRank values of its
immediate neighbors for n-1% order are calculated. Then simply reversing the common
conjunction model formula of ERank-O (Eq.(5.7)), the following equation gives the

damping value estimation:

_ 1=dsp,
d ()= (1- p(a))

[Ta-pa,dip,)

Jek

(6.2)

We have chosen to use the average damping values from the sample set for use in the
calculation of ERank-0 rankings. We acknowledge that, more research and justification for

the methodology on computing the damping constants on sample data would be beneficial.

We have found out that the minimum damping value in all three cases is a pair of
cross-linking documents, whose only citations are each other. As we have discussed in
section 5.6, ERank-0 is not capable of dealing with direct positive feedback, this is a direct

consequence of this short coming.

For applying the PageRank algorithm, we have used the value 0.85 as it was the most
frequent damping value present in the literature. We know that this value affects the
stability of the results and we are not aware of any reason why there should be a change in

this value when applied to a scientific citation network as opposed to web.

To sum up, we have used four different damping values (including PageRank) to use

in all our experimentations. These settings are listed on Table 6.3.
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Table 6.3. Damping values for algorithm runs

Algorithm setting Constant damping value
ERankO(a) 0.9982986
ERankO(b) 0.9737562
ERankO(c) 0.9862921
PageRank 0.85

6.6. Evaluating ERank-0 Approximation Results

We have used the ArgRank samples as a measure of comparison to ERank-0
approximations. Also included are 2" order ArgRank values to give an idea on the effect

of additional orders used.

One should note that, with ERank-0 each iteration corresponds loosely to an order of
ArgRank. In ERank-0 calculations we have made, there were settings requiring at least 50
iterations. Thus, also recalling that the CiteSeer graph has an average path length of 23,
even a 5™ order ArgRank calculation is not necessarily a good approximation to the true

ArgRank value.

In figures Figure 6.1-Figure 6.4 we display the comparisons. As can be seen in these
figures ERank-0 values can be a close match to ArgRank values in some cases, while in

others we may get rather higher values for ERank-0’s.

ArgRank(a) values match ERankO(a) values closely in all orders (3, 4, 5) while we
see that for ArgRank(b) and ArgRank(c) calculations, there is a bigger deviation for 3™
order ArgRanks.

For link assignment (b), the differences get so big that it was not possible to include

3" order ArgRanks in a graph.
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Note that, the fact that a document’s ArgRank was calculated to, say, 3" order and
not 4™ is simply because it was not possible to do so, due most probably to a rapid increase
in the number of supporting arguments of the document. So, the deviation between

ArgRank3 and ERank-0 values is mostly an expected result given this.

We observe that for the documents exhibiting bigger differences between ERank-0
and ArgRank values, their corresponding PageRank values are also higher when compared
to neighboring documents sorted according to ArgRank values. We have noted from the
data also that they do not have a particularly high amount of citations (e.g. 10-30). This can
be taken to suggest that, these may be the documents with relatively fewer citations, which
are located in “dense” areas of the network. That is to say, their referencing documents
may be of higher information values (i.e. ranks), so that even with fewer citations, these

documents may be gaining higher ranks.
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To investigate the higher differences we observe between ArgRank(b) and
ERankO(b) compared to ArgRank(a) and ERank(a) we present Figure 6.5 and Figure 6.6.
Figure 6.5 is a log-log scatter plot of absolute differences between ArgRank and ERank
values between settings (a) and (b), for which we find a reasonable correlation with a
coefficient of 0.7130. Figure 6.6 is a semi-log plot showing corresponding log absolute
differences for each document. In these figures we also see that the higher link
probabilities for setting (b) occasionally result in higher than expected disturbances in

differences. Obviously this is not due to noise — as these are not measurements — but
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as we will show suggestive evidence in the following sections, this is due to the
domination of the macro structure (e.g. overall density of dsp values in the neighborhood
of the node) of the network, over the micro structure (immediate neighbor’s contribution).
We recall that, it is not possible to directly establish this by calculating dsp values of
higher order due to resource limitations. We employ indirect measures in the following

sections to explore this issue.

6.7. Distributions of Ranks

In this section we examine the distribution of rank values produced by the various
algorithms we have run. This may help to develop a better understanding on the working of

these algorithms.

6.7.1 Citation Count Distribution

Examining the log-log plot of the in-degree distribution (Figure 6.7) and the
corresponding Zipf plot (Figure 6.8), we see that our findings are inline with previous

findings on scientific citation networks.

When the data are fit directly over the scatter plot (Figure 6.7) in the citation range
between 18 — 56 (on the graph from 1.25 to 1.75) we get the exponent as -2.16. When a
Zipf plot is used (Figure 6.8) we get the exponent value o = 3 as detailed below. The line

shown has a -3 slope, presented as a visual aid.

In the Zipf plot (Figure 6.8), we have used the first 3000 documents with citations
ranging from 1404 down to 54. This best fit is the line with a slope of -0.4968, parallel to
the line shown in the figure as a visual aid. It corresponds to a power-law exponent value
ofa =1+ 1/0.4968 = 3.0129. Fitting instead for the top 316 documents ([0,2.5] on the
graph) yields a slope -0.4062, and an exponent 3.4618.



log(Mix)) (probability)

4.5

345

W]

h
in

o]

1.4

045

: : : : IR G0 SO

0.4

—_

15 2 25
loglx) (num. of citations)

Figure 6.7. Log-log plot of citation count vs. probabilities

345

81



82

35 T T T T T

log™x) (num. of citations)

D 1 1 1 1 1
0 1 2 3 4 ] a]

log(x) (rank from top)

Figure 6.8. Zipf plot for citation count

6.7.2 ERank-0 Distributions

We have found that, ERankO(a) and ERankO(c) settings exhibit a power-law
distribution, while ERankO(b) does not. This shows that, the different manner of assigning

link assumption probabilities does not have an effect on this difference.

As can be seen in the Figure 6.9, ERankO(a) has some fluctuation in the beginning. A
straightforward fit using top 1000 documents into consideration yields a line with slope -
0.4185 (shown in the figure), with a corresponding power-law exponent of 3.3895. Instead
if we fit between top documents range [4,158] ([0.5,2.2] in the graph) we get a slope -
0.3925 and a corresponding exponent 3.5478.
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We can see that ERank(Q(b) does not exhibit a power-law distribution in Figure 6.10.

ERankO(c) Zipf plot (Figure 6.11) has fluctuations in the beginning, so a direct line
fitting is not reasonable. To by-pass the fluctuation a visual scanning of the curve we have

used different ranges:

[32,316] ([1.5,2.5] on graph) gives slope -0.9050, and exponent 2.1050
[32,1000] ([1.5,3] on graph) gives slope -0.8819, and exponent 2.1339 (shown on graph)
[32,10000] ([1.5,4] on graph) gives slope -1.0072, and exponent 1.9928

We conclude that a realistic exponent value is around 2.1.
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6.7.3 PageRank Distribution

As seen in Figure 6.12, the PageRank distribution appears to be fairly linear. Fitting a
line for the tops 1000 documents yields a slope of -0.8155 with the corresponding
exponent 2.2263 (shown on the graph). Fitting instead for the top 316 documents ([0,2.5]
on graph), give a slope -0.7049 and exponent value 2.4186. A previous study on a web
graph had revealed an exponent value of 2.1. This difference is expected, as these two

graphs have different characteristics for in-degree distributions as demonstrated previously.
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6.8. Comparison of Algorithm Results: Global vs. Local Influences

We have made a comparative study of the algorithm settings we have run on our test
data. For this purpose we have employed multiple techniques. In the following sections we
make a case which we build on contrasting the global vs. local influences the algorithms
incorporate. As we have earlier mentioned, in this context citation count represents the
local extremum whereas PageRank is covered as an established ranking algorithm
incorporating global influences. We have intentionally designed our settings so that
ERankO(a) is closer to CitationCount yet using some global influence, and ERankO(b)
“over-emphasizes” the link evidence so that we end up having global influences dominate
in the results. This is vividly demonstrated in the log-log scatter plot of ERankO(b) vs.
CitationCount (Figure 6.16), where we see that a document with one citation may be
ranked well above about half of the collection. Because of the way we have designed the
link assumption settings in ERankO(c) in a similar spirit to PageRank, we have expected

the two to exhibit some similarities as well.

It is possible to get a rough overview of our results one can consult Table 6.4 for the
correlation coefficients matrix. It initially appears that, our expectations have received
reasonable backing. For example ERankO(a) and CitationCount are tied with a coefficient
0.98. We try to deepen our findings using scatter plots, and later introduce a measure we

call average position distance.

There is a second table for correlation coefficients (Table 6.5). This is because; we
had to apply the PageRank algorithm to the pruned version of our network, in which we
had to iteratively remove the 0 out-degree nodes. As we present in the background survey,
this is necessary to prevent “leaking” of the ranks. This resulted in the loss of about 1/3 of
the nodes. The nodes which were gone were occasionally important ones (e.g. with high
citations). In contrast, all the other algorithms are applicable to the whole network, so for
presenting comparisons with PageRank we use this pruned version of the network with
altered results in Table 6.5. Also, minding the similarities between PageRank and
ERankO(c), we have made a second run of ERankO(c), which we have called ERank0(c2)

on the pruned network, to get a deeper understanding of the extent of their similarity. It can
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be seen on the table that, this (c2) setting has a strong relation to PageRank with a

coefficient of 0.96.

It may not suffice to depict a global picture of the results to understand the
underlying structure. This is a problem we try to address in the following sections after

dealing with the global picture, using query results.

Table 6.4. Correlation coefficients

ERankO(a) ERankO(b) ERankO(c) | CitationCount
ERank0(a) 1.0000 0.5176 0.1701 0.9770
ERank0(b) 0.5176 1.0000 0.1509 0.4310
ERank0(c) 0.1701 0.1509 1.0000 0.1551
CitationCount 0.9770 0.4310 0.1551 1.0000

Table 6.5. Correlation coefficients for the pruned network

ERank0(c2) | PageRank | CitationCount
ERank0(c2) 1.0000 0.9079 0.1550
PageRank 0.9079 1.0000 0.2848
CitationCount 0.1550 0.2848 1.0000

6.9. Comparative Plots

In this section we present scatter plots between settings in an attempt to gain an

understanding of their relations.

6.9.1 CitationCount vs. ERank((a)

In Figure 6.13 we can clearly see that some documents with fewer citations are

favored over documents with more citations. Both in the high and low citation zones the
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hovering effect created by the ERankO(a) setting is observable. The log-log plot is also
included (Figure 6.14), it gives a better picture of lower citation count zone. For example,
in the lower zone we see that a document with one citation was ranked as higher than many
documents with 20 citations. Thus we clearly see how the global influences brought by
ERankO(a) algorithm affect the local rankings. Yet it is fairly apparent that, the results

from ERankO(a) setting increase along with increasing CitationCount (in-degree) values.

Shown lines on the graph are visual aids. On the linear plot (Figure 6.13), the line
corresponds to the minimum ERankO(a) value a node receives on the graph given the
citations. Similarly, on the log-log plot there is a line with slope 1.0 designating the linear

relationship for the data.

Yet we note that although this plot exhibits the effect of the ERankO(a) setting well,
does not provide an insight into how the internal rankings within a topic or community are

affected.

From a practical point of view, this internal ordering can be more important. Because
a cognitive agent would more often than not, be after reaching the most informative and
relevant documents regarding a query or a topic, and not comparing the relative importance
of different topics for the collections (e.g. size of the communities). This is a problem we

try to address using per query analyses.
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6.9.2 CitationCount vs. ERank0(b) and ERank((c)

We see that the linear plot of CitationCount vs. ERankO(b) (Figure 6.15) gives an
apparently unsystematic relation. When we examine the log-log plot though (Figure 6.16),

there appears some influence albeit small, caused by citation counts.

Comparing the ERankO(a) and ERankO(b) plots, we see more scattering in the (b)
plot, which is also in line with our expectations, as the higher confidence we have in the
link assumptions, the more influential community structures get. Thus, fewer citations have

more influence and selectively hover some documents due to global influences.
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A very similar situation is obtained by the CitationCount vs. ERank0(c) plot (Figure

6.17). The plot on the log-log plot shows the linear relation as a line with slope 1.
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6.9.3 ERankO(a) vs. ERank0(b)

The log-log plot between ERankO(a) vs. ERankO(b) (Figure 6.18) helps back our
expectation that the relation (a) setting has to (b), is not much stronger than that of

CitationCount in the overall sense.
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6.9.4 CitationCount vs. PageRank

The log-log plot in Figure 6.19 gives an unimpressive relation between
CitationCount and PageRank. Visually, it is similar to the (b) and (c) settings. Our
assessment on the similarity of PageRank and citation count admits some relation, but it is
not a strong one. In this sense our position is closer to (Pandurangan et al., 2002) than
(Upstill et al., 2003). Yet, similar to (Pandurangan et al., 2002), we are reluctant to
conclude our decision on both PageRank and our other ranking algorithms basing our
judgment purely on global properties. As a first step towards understanding community

structures we will conduct some query based analysis as demonstrated later in this chapter.
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6.9.5 ERank((c) and ERank0(c2) vs. PageRank

We have created two log-log plots, one for PageRank vs. ERankO(c), and the other
one for PageRank vs. ERankO(c2). As suggested by correlation figures on Table 6.5, while
the first graph shows some signs of a relation, in the second one a near linear relation is

exhibited.

As we have earlier mentioned, ERankO(c2) is a ERankO(c) setting run on the pruned
graph for PageRank. The similarity between the two algorithms dramatically diminishes
because of the altered structure of the graph after the pruning process. Some 100 000 nodes
are discarded in this process, which accounts for about 1/3 of all the nodes. Thus,

ERankO(c2) gives a better understanding of the similarity.

As we expect seeing Figure 6.20 using ERankO(c), it is not very obvious what kind

of relation to cast on the data. Yet, Figure 6.21 using ERank0(c2) gives a clearer picture.

The line on Figure 6.21 is given as a visual aid, and it marks the linear relationship
with a slope 1. Relying solely on visual analysis one can see the linearity of the
relationship between the two ranks. Curiously there seems to be a cluster structure with
two apparent big components. Being a log-log plot, these point to a dominating linear
relation between the ranks, yet the slope of the linearity (as indicated by the vertical
position of the clustered points) appears to change within the collection. This may be due
to community structures, with different slopes for relating ERankO(c) and PageRank

values.
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6.10. Average Position Distance Plots

In this section we introduce a new measure to compare different ranks, which we call

average position distance. We compute it by sorting the documents in their rank values and

then finding the absolute difference in their positions:

APD,, = i‘Post(i) —il

i=1

(6.3)

where APD is the average position distance of algorithm 1 with respect to algorithm 2, n

gives the number of documents from the top to include with respect to algorithm 2, Pos; »
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is a function that maps the position of the i"™ document with respect to algorithm 2 to its

corresponding position (from top) with respect to algorithm 1.

We have found this measure useful for a number of reasons. Firstly, it brings a
tangible measure for the similarity of the algorithms having an easily interpretable
numerical value. As various ranks assigned to documents range from integers to very small
floating point values, the significance of this value can be easier to understand rather than
directly comparing the values assigned. It is helpful in the sense that, to some extent it
reflects the experience of the searching agent. In this context, it is not the actual rank which
matters, rather it is the order of presentation of the documents. Also, it makes it possible to
plot the results from all the relevant algorithms in a clean and meaningful plot as we detail

below.

We have discovered that, relative distances between algorithms vary from within
documents with higher ranks (lower positions) to lower ranking ones as more documents
from the top are taken into consideration. To accommodate this phenomenon we have
plotted these distances using subsequently greater amount of documents from the top (e.g.
top 10, top 100, documents and so on). Each figure contains a log-log plot for top-N

documents with regard to the rank being examined.

We have two sets of APD plots. The first set includes ERankO(a), ERankO(b),
ERankO(c) and CitationCount algorithms. These algorithms are run on the full network,
while the second set of plots is produced on the pruned network as explained on section

5.9. The second set of algorithms are; ERankO(c) and PageRank.

When documents are ordered using the citations counts, ERankO(a) and
CitationCount appear to agree largely on importance of documents (i.e. their position from
top) when documents have a high amount of citations (Table 6.6). This gradually changes
when documents with fewer citations are included as seen in Figure 6.23. This difference
may have been amplified by the quasi-random ordering of the documents with fewer
citations within the group having the same number of citations. These observations match

with the scatter plot of Figure 6.14.
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We present in the next section, how these two settings return similar results when
filtered using actual queries. The situation is roughly the same also when documents are
ordered according to their ERankO(a) values (Figure 6.22). In our interpretation, this
suggests that, ERankO(a) has a tendency to favor documents with higher citation values

compared to others yet there is a nuance, as it also incorporates global influences.
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Figure 6.22. Distance plot with respect to ERankO(a)
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Figure 6.23. Distance plot with respect to CitationCount

Table 6.6. Average position distances for ERank(O(a) and CitationCount

Top-N nodes AvgPos(CitationCount) w.r.t. AvgPos(ERank0(a)) w.r.t.
ERankO0(a) CitationCount
10 1.6667 2.1111

100 30.0606 19.0000
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1000 225.0050 158.0320
10000 1516.0810 1031.3461
100000 5202.5903 4831.0420

4}

Average position distance
(log plot)
o

\

—_

o

10 100 1000 10000 100000
Top-N documents (log plot)

—— ERank0(a) ERankO(c) — CitationCount‘

Figure 6.24. Distance plot with respect to ERankO(b)

We see in Figure 6.24 and Figure 6.25 that ERankO(b) and ERankO(c) do not bear

any similarity in regard to this measure with the other algorithms.
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Figure 6.25. Distance plot with respect to ERankO(c)
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Figure 6.26. Distance plot with respect to ERank0(c2) on the pruned network
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Figure 6.27. Distance plot with respect to PageRank on the pruned network

Table 6.7. Average position distances for ERankO(c2) and PageRank

Top-N nodes Avg Posé(g:glf&?:g;() w.r.t. Avg POS(FI’EaRgZ%kaoéﬁz» w.r.t.
10 2 4.3333
100 40.7879 47.5051
1000 472.0581 486.1942
10000 3012.8408 1944.6846

Similar to what we see between ERank(O(a) and CitationCount, we see a similarity

between ERankO(c2) and PageRank (Table 6.7). The log-log plots (Figure 6.20 and Figure

6.21) demonstrate that the ranking positions generated by the two algorithms are decidedly

closer to each other, than the CitationCount algorithm also taken into account with them.

Although, it is not directly shown here, it would be reasonable to assume that ERankO(a)

would also be further away from these two algorithms as well.
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6.11. Top Rankers

We believe that the higher ranking documents are important because, they give an
idea for the kind of documents the algorithm/settings favor. As a general evaluation of the
quality of the whole scientific literature present and rated in this collection is not possible,
we opt to displaying the results, and speculate about some the qualities we observe on

them.
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Firstly, we note that ERankO(a) yields results with the highest citation counts, so
these are already the documents we have come to expect as highly regarded. Similarly, we

see that the top-20 results returned by ERankO(c2) and PageRank are highly similar.

In ERankO(b) we see that, a good ratio of the top ranks are dominated by groups of
authors (Herzinger, Alur, Lund, ...). Likewise, many of the papers appear to be about what
might loosely be termed “formal verification” and “theorem proving”. Comparing with the
results of (a), we interpret this as suggesting that with ERankO(b) a whole community of
papers seems have been lifted by a global domination of ranks. We contrast this with (a)
and citation count, in which we have greater variety of papers whose ranks rest more on
local influences, although with (a) — as indicated by its shift from citation count — the

communities still probably do exist.

In ERankO(c), we see a striking similarity to PageRank, and the results in top 20 are
very similar. In both ERank(O(c) and PageRank we see multiple papers from the same

author appear together in the top 20.

One fact is that, most of the papers ranked highly are dating from early 1990’s or
earlier. This shows that, in order to be ranked very highly, documents need time to have

developed a network of citations surrounding them.

Overall, we note that even for the top 20 documents the ranking algorithms are not in
good agreement. It is not possible to see from these results, if this is caused by differences
between the global rankings of communities the papers belong to, or do the ranking

algorithms also favor papers in a similar topic differently as well?

To investigate this question further on, in the following section we present numerous

query results using different ranking schemes.
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6.12. Sample Query Results

In this section, we present the results from two queries in detail out of the ones we
have run on our collection. The key words are searched in the title, author summary
(names, affiliation etc.), and description (approx. first 1000 characters) fields for each

document. We show the different rankings produced by different schemes.

The unavailability of some of the most influential papers in the related topics coupled
with the absence of also their citation data must unfortunately have compromised the

quality of the ranks computed, along with leaving gaps within the result sets returned.

We have selected queries such that the results are a subset selected from a larger set
of query hits available, and with higher number of citation counts, so that the effects of the
different ranking schemes can be observed. We retained, and display the number of

citations as a conventional measure of the information value of a paper.

Running other queries on topics with fewer citation counts — less “dense” areas — in
our data set, we have observed that the results returned appear simply to follow the citation
count order. This may happen both due to under representation of the topic in the dataset

(e.g. “small world”), or simply the lack of publications on the field.

ERankO(a) setting appears largely to follow citation count order, occasionally

altering the order with a few steps amongst returned documents.

ERankO(b) can make dramatic changes to the results (as compared to their citation
count ordering), and it may be favoring papers from authors who have a collection of

highly cited papers.

The similarity of the results returned by ERankO(c) and PageRank are also evident
here. On our numerous query runs the returned results were highly similar in the
documents returned and their ordering. This actually is not surprising, recalling the average

position distance figures on Table 6.7.
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Our general impression has been that, query based analysis is much likely to give a

valuable insight on the structure of the network. Yet the samples presented here only give

an example for the prospective insight to be gained.

Query: “dempster shafer”

Number of hits: 74 and 47 (pruned network)

Table 6.14. Top 10 query results sorted using ERank0(a) ranks

Query Title Author Citation | (b) | (¢) | (cc)
rank Count Pos | pos | pos
1 A Logic for Reasoning about Halpern, 86 1 > 1
Probabilities Fagin
Numerical Uncertainty Management in
2 User and Student Modeling: An Jameson 31 5 5 2
Overview of Systems and Issues
3 Rough I\i‘l‘ereolo_gy: A New Pa_radigm For Skowron o5 9 8 3
pproximate Reasoning
Cluster-based Specification Techniques
4 in Dempster-Shafer Theory Schubert il I 4
5 A New Approach to Updating Beliefs Hﬁfg?rr]n’ 11 4 1 5
Quantitative Modeling of User
6 Preferences for Plan Recognition Bauer 10 6] 15 6
7 Logic-based Plan Recognition for Paul, 8 3| 10 9
Intelligent Help Systems Bauer
Some qualitative approaches to applying
8 the Dempster-Shafer theory Parsons 10 171 33 6
Representing and Retrieving Structured
9 Documents using the Dempster-Shafer Ruthven, ol 18] 24 8
Theory of Evidence: Modelling and Lalmas
Evaluation
Possibilistic Semantics and
10 Measurement Methods in Complex Joslyn 8| 13| 16 9
Systems

Table 6.15. Average position distances for Top-10 results w.r.t. ERankO(a) results

ERank((a) ERank0(b) ERank0(c) CitationCount
ERankO(a) 0 4.2 8 0.6
ERankO(b) 4.2 0 4.8 4.8
ERankO(c) 8 4.8 0 8.2
CitationCount 0.6 4.8 8.2 0




Table 6.16. Top 10 query results sorted using ERank(0(c2) ranks
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Query Title Author Citation | (pr) | (cc)
rank Count pos | pos
1 A Logic for Reasoning about Probabilities H:g)g?;n, 86 1 1
2 A New Approach to Updating Beliefs Hgf(;;n’ 11 2 3
Finding A Posterior Domain Probability
3 Distribution By Specifying Nonspecific Schubert 7 3 9
Evidence
4 A Hybrid Frameyvork for Representing Saffiotti 4 4 15
Uncertain Knowledge
5 A Hybrid Belief System For Doubtful Agents Saffiotti 1 6 36
6 Possibilistic Semantics and Measurement Joslvn 8 8 5
Methods in Complex Systems y
7 A Defect in Dempster-Shafer Theory Wang 6 7 10
Numerical Uncertainty Management in User
8 and Student Modeling: An Overview of Jameson 31 5 2
Systems and Issues
Logic-based Plan Recognition for Intelligent Paul,
9 8 10 5
Help Systems Bauer
A Dempster-Shafer Approach to Modeling
10 Agent Preferences for Plan Recognition Bauer 6 1 10
Table 6.17. Average position distances for Top-10 results w.r.t. ERankO(c2) ordering
ERank0(c2) PageRank CitationCount
ERank0(c2) 0 0.8 6.3
PageRank 0.8 0 6.3
CitationCount 6.3 6.3 0
Query: “information retrieval”
Number of hits: 1309, 895 (pruned network)
Table 6.18. Top 10 query results sorted using ERankO(a) ranks
Query Title Author Citation | (a) | (b) | (cc)
rank Count | pos | pos | pos
1 Information Retrieval Rijsbergen 473 8 2 1
2 Querying tcvee\tl)Vorld Wide Mendelzon, Mihaila 210 | 22| 11 2
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Mobile Agents: Are They a Chess, Harrison,
3 Good Idea? Kershenbaum 1751 46 17 8
Searching Distributed
4 Collections With Inference Callan, Lu, Croft 152 | 56| 23 4
Networks
Visual Information Seeking:
Tight Coupling of Dynamic .
5 Query Filters with Starfield Ahlberg, Shneiderman 151 | 60 8 5
Displays
Automatic Resource list Chakrabarti, Dom,
Compilation by Analyzing Gibson, Keinberg,
6 Hyperlink Structure and Raghavan, 10} o1 27 8
Associated Text Rajagopalan
Using Linear Algebra for
7 Intelligent Information Berry, Dumais, O'Brien 132 | 57| 22 6
Retrieval
NewsWeeder: Learning to
8 Filter Netnews Lang 9| 4 26 1
9 SIFT - A '_I'ool f_or W|Qe-Area Yan 102 | 31 13 9
Information Dissemination
10 Affective Computing Picard 126 | 91 7 7
Table 6.19. Average position distances for Top-10 results w.r.t. ERankO(a) ordering
ERankO(a) ERankO(b) ERank0(c) CitationCount
ERank0(a) 0 40.8 10.7 0.9
ERank0(b) 40.8 0 30.7 40.7
ERank0(c) 10.7 30.7 0 10
CitationCount 0.9 40.7 10 0
Table 6.20. Top 10 query results sorted using ERankO(c2) ranks
Query Title Author Citation | (pr) | (cc)
rank Count pos | pos
1 Subtopic Structuring for Full-Length
Document Access Hearst 61 1 16
2 The Effectiveness of Navigable Bosman,
Information Disclosure Systems Bouwman, Bruza 14 5| 121
3 The Modelling and Retrieval of Bruza. Weide
Documents using Index Expressions ’ 12 6| 146
4 " Gorin, Riccardi,
How May | Help You* Wright 39 8 30
Distributed Indexing: A Scalable .
5 Mechanism for Distributed Information Dang%}:\cf;r;(,aNoll,
Retrieval 24 2 73
6 Visual Information Seeking: Tight Ahlberg,
Coupling of Dynamic Query Filters Shneiderman 151 3 2




119

with Starfield Displays

7 Applications of Approximate Word
Matching in Information Retrieval Powell, French 6 51| 279
8 Algorithms for Scoring Coreference .
Chains Bagga, Baldwin 6| 53| 279
9 Affective Computing Picard 126 4 3
10 Automatic Routing and Ad-hoc Buckley, Salton,
Retrieval Using SMART : TREC 2 Allan 21 7] 80

Table 6.21. Average position distances for Top-10 results w.r.t. ERankO(c2) ordering

ERank0(c2) PageRank CitationCount
ERank0(c2) 0 11.3 89.3
PageRank 11.3 0 102.8
CitationCount 89.3 102.8 0
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7. DISCUSSION AND CONCLUSION

7.1. A Review of Work Done

In this work we have introduced and analyzed a framework we named PAS-ETRI for
analyzing complex networks using Probabilistic Argumentation Systems (PAS). PAS-

ETRI offers a generic way to map a graph structure to a corresponding PAS instance.

An ETRI can be used to analyze a variety of complex networks like the Web,
citations networks and biological networks amongst others. Various aspects of networks
can be analyzed depending on the PAS-ETRI model designed such as relevance (of
documents) or ranking (of web pages) or community structures (of authors) amongst

others.

We have focused on two models; Document Relevance Model (DRM) and
Document Information Value Model (DIM). DRM deals with the relevance problem,
whilst DIM is used for ranking documents which has been our main focus. As a
fundamental concept for ranking we have introduced Minimal Evidence (ME) which
mimics maximume-likelihood (ML) hypothesis for maximum a posteriori (MAP) learning.
Using DIM and ME we define ArgRank, which involves computations for an NP-hard
problem. We intend to use PAS-ETRI based ranking for very large networks, so this
algorithm is not suitable. Yet ArgRank is based using clear semantics on well established

evidential reasoning techniques.

This brought us to the second main theme of this work, which is applying PAS-ETRI
in an efficient manner using approximation algorithms. We have introduced a novel
family of algorithms, which we have named ETRI Support Propagation (ESP). ESP is
based on the common conjunction model of a network. It is applicable for networks in
which neighboring nodes in a network share a fairly constant amount of common
conjunction in their supporting arguments which is represented by a damping function.

This becomes a valid assumption for ETRI models in which the link assumptions have a
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low value. The zeroth order ESP algorithm ESP-0 is susceptible to feedback from
neighboring nodes, thus ESP-0 based algorithms produce vulnarable results on networks
with many cross-links. ESP-1 on the other hand deals with this problem, by using a
message passing algorithm instead. ESP algorithms, and ESP-1 in particular are similar in

spirit to Belief Propagation (BP) algorithm of Pearl. (Pearl, 1988)

We have made particular emphasis on the analysis of ESP-0 algorithm, and present a
theoretical analysis, using which we reveal that under certain conditions ESP-0 produces
non-decreasing results (per iteration) which are bound from above by the true dsp values.
ESP-0 is inferior to ESP-1, thus these results have an indirect implication for ESP-1 as
well. We define ERank-0 as a straight-forward application of ESP-0 to ranking, using a

constant damping function.

We have presented various experimental results. We used a scientific citation
network using data from the CiteSeer network (CIT) which contained about 300 000 nodes
and 1 250 000 directed links. We have run three different algorithms for comparison;
ERank-0, citation count (in-degree), and PageRank. ERank-0 can produce dramatically
different results depending on the way link assumption probabilities are assigned. We have
run three different settings; (a) and (b) use constant values, (c) uses variable values

inversely proportional to the out-degree of a node.

We have initially studied the rank distributions produced by our various algorithms.
For citation count we have confirmed the generally accepted power-law distribution with
an exponent 3.0 (Redner, 1998) (Redner, 2004) (Newman, 20003). We have found a
power-law distribution for PageRank values as in (Pandurangan et al., 2002). For (a) and

(c) settings the power-law holds, whereas for (b) it did not.

Our study reveals that a main characteristic in defining ranking algorithms is how
they balance local versus global influences. Citation count represents the local extremum
in this sense, whereas ERank-0 algorithms can be parameterized to lie on a wide range. In
this sense we identify PageRank as a globally dominated ranking algorithm, which can

highly disagree with citation count.
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We introduce and use a measure we call average position distance (APD), and use it
for generating comparison plots. These are helpful because APD provides a way to
compare all the ranking algorithms on the same basis; the ranks they create, which yields
easy to interpret and tangible results. Our APD plots have checked with our scatter plots

for disclosing similarities between the algorithms.

We have presented top ranking documents as a way to demonstrate results favored
by different algorithms. Similarly we have presented example query results along with
corresponding APD plots. These were helpful in showing concrete examples for the
agreements and disagreements of ranking algorithms for actual usage from the point of a

cognitive agent.

7.2. Discussion and Directions for Theoretical Aspects

We hope our work to stimulate interest in evidential reasoning techniques for
analyzing complex networks. The ETRI framework provides a generic way to this, and

what we have presented in this work is a limited picture of the possible uses.

A variety of uses for PAS-ETRI can be formulated. An immediate such use as future
work for us is its use as a tool for detecting community structures in a social network (or
topics in a scientific citation/author network). It can also be used as an analysis tool where
more fine grained results are needed, as PAS offers a systematic way to deal with “detail”.
It can be anticipated this list can be extended to many systems where a network based

modeling has made sense.

We believe, for Information Retrieval PAS based approaches may have an important
potential. (Picard and Savoy, 2003) We do our part in this work by introducing the ESP
family of algorithms which make it possible to apply PAS-ETRI based algorithms to very

large networks with acceptable accuracy.
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For an effective IR scheme, the rank merging problem is one of the foremost issues
to be addressed. In this sense, a more general application combining DRM and DIM could

create a far more effective search engine, this remains as an important future work.

As we have earlier mentioned PageRank builds on a very similar network structure
like DIM. Thus extensions to PageRank create a natural direction future work for further
research on this topic (Richardson and Domingos, 2001) (Ingongngam and Rungsawang,

2003) (Haveliwala, 2002) (Kao et al., 2002).

In this work we have mainly focused on a general ranking scheme. However, it is
well possible to alter it to include personalization and specialization. In this sense, these
can be perceived as simply incorporation of extra “evidence” to the network structure in

addition to the minimal evidence (ME).

The common conjunction model presents a clear way of modeling and simplifying
relations between nodes in a network structure. While it has experimentally proven to be
useful in our applications, its relationship with complex network features such as clustering
and degree distributions is a topic to be addressed. In relation, it would be beneficial to
study the damping function value distributions as a complex network characteristic. In this
context its relation to generative models of complex networks could prove to be useful, and

may be employed in generating more accurate models.

The ESP algorithms we have presented have had only two orders 0 and 1. Although
we have covered an extent of the properties of ESP-0 there is yet left to be done. Whilst we
have shown a worst-case convergence property for ESP-0 using the lowest-only estimates
for damping values, the actual usage is not like this. Our initial experimentation using
incrementally increasing damping values and examining the top ranking documents (which
we did not show here) has shown that the deviation from results by using different

damping values is not very significant. Yet we believe this remains a fact to be established.

Also, we have discovered for some settings a “first-diverge then converge” behavior

in experimentations (also not shown in this work). This is possibly due to the capping of
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possible dsp values by 1.0 (as they are probabilities) from above, so an indefinite
divergence behavior is not possible anyway. This remains an attitude of our algorithms to

be examined.

Our study of ESP family has fallen short of presenting a detailed study of the
properties of ESP-1, focusing instead on ESP-0. We consider an implementation and
experimentation of ESP-1 along with a theoretical treatment as a direct and necessary

follow-up for our work.

Once the theoretical implications of ESP-1 is revealed, it may prove useful to
introduce higher order ESP-n algorithms, partially employing n™ order calculations for
revealing the micro-structure and using the support propagation paradigm for the global
picture. This may prove to be a very useful tool against link spamming and manipulation
because it would have virtually no algorithmic weaknesses for such manipulation up to n™

order.

We have used a constant damping value for our experimentations. However, this is
not the only option available. A damping function employing some heuristics may yet
emerge to yield better approximation results, especially on networks where the common
conjunction model with a constant value is not a good representative. For example a
network with highly variable clustering properties with frequently high link assumption

probabilities would be difficult to analyze using a constant damping function.

7.3. Discussion and Directions for Experimental Results and Methodology

We have used the CiteSeer citation network as our main data. Occasionally we have
also used scale-free random networks for experimentation. Our choice of a citation
network over a web sample had pros and cons. Firstly, we believe that a citation network
constitutes a more significant and more important network structure, because references on
a paper represent a much intenser study behind and thus are by any means a stronger
evidence of a real relationship. We are building all our effort on this aspect of the network;

that it ultimately encodes evidence, or relationship information. So the more the quality of
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evidence present, the better our algorithms should work, and thus a citation network is a
better demonstration bed for the usefulness of our algorithms than a Web sample. Also,
related to the former, is that the Web has grown very complicated in its link structure.
Dynamically produced documents (as opposed to static HTML pages of 90’s) have
complex page and link structures, a significant amount of commercial ads, and
manipulation by link spammers which create an essentially polluted link structure, and thus
present an additional challenge towards adapting the application of any link algorithm to

distill any results. (see for example (Kao et al., 2002))

Yet ultimately the goal of our algorithms are to be applicable to all sorts of networks,
and the Web is one of the biggest — if not the biggest — of the complex network. Ranking
algorithms certainly have great and important prospects for use in search engines, and so
we believe that an application and evaluation of our algorithms to a Web structure is an

important follow-up.

We have experimented with various link assumption probability assignment
schemes. A study focused on this very aspect should prove useful. An establishment of the
conventional assignments for different complex network types (e.g. citation networks, the

Web), and possibly new schemes would prove very beneficial.

An interesting product of our study was to reveal that some ERank-0’s produce
power-law distributions while others may not. The character of generating and deviating
form a power-law distribution and its relation in affecting actual results would be a very

interesting relationship to disclose.

Our results revealed that ERank-0 results can be highly correlated to citation count,
as well as PageRank. While we have presented a good deal of results on this, we believe
there is still more to be done on this, possibly evaluating different types of networks and

link assumption probability schemes.

The similarity of ERank(O(c) and PageRank may deserve extra attention. As their

mathematical formulations suggest, their similarity is more than experimental, but that
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actually PageRank under certain assumptions can be interpreted as an approximate form of
ERankO(c) or vice-versa. This actually, may prove useful in shedding light on the success
of PageRank from an evidential reasoning perspective, and remains as an interesting future

work for us.

Our discussions have essentially been on the characteristics of ranking algorithms, on
their balancing local and global influences. There are other LAR algorithms, and an
examination of them in this perspective should bring an interesting insight for their

workings.

While we have presented some example query results, and have run and examined
numerous such, it has been out of scope of this work due to time and space limitations to
include a comprehensive query-based analysis. It remains a desirable future work to do a
systematic treatment of the subject, for example running many queries from a controlled
keyword repository of a publisher and examine the results. Such an analysis could be a key
to disclosing the inherent community structures in a citation network, and most important
of all would show us the effect of different ranking schemes on intra- and inter-community
ranks. We perceive the work of (Upstill ef al., 2003) as one initial effort towards such a
query based analysis. This analysis would bring us an important insight which is not

possible to attain examining a general and overall picture.



APPENDIX A. PROOFS

A.1l. Proof of Theorem 2.1

1. Clearly,

avb=1-(1-a)1-b)=bVa

2. Using the definition;

av (bvc) =1-(1-a)1-bVc)
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=1-(1-a)1-(1-(1-b)1-0¢))]| =1-(1-a)1-b)1-c)

=1-[1-(1-(1-a)1-b))[1-c) =1-(1-a ¥ b)(1-c)

=(avb)Vc

A.2. Proof of Theorem 2.2

Using Ineq.(2.32) we get:

avb > a
(a¥b)—a > 0
Let us define:
=(avb)—

= (I-(-a)1-b))-a
=(1-(l—a=b+ab))-a
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=(a+b—ab)-a
=b—ab
=b(l—-a)
Asweknow 0<a<1and 0<bH <1, we see:
(I-a)=0
So, it follows for A:

A=b(1-a)=0

This proves that inequality(2.32) holds, concluding the proof.

A.3. Proof of Theorem 3.1

We will outline a constructive proof here using the path finding paradigm. We can

simply write the support for a node as follows:

k max

SP (Vi’f):ai VXTk(Vﬂf)

where T, (v,,&) € SP(v,,&) is a set representing the disjunction of all the supporting terms

of a vertex v; of the K™ order (i.e. with k literals), and kmax is the order of the longest

supporting argument of the give node.

Re-writing it more explicitly and recalling the path-finding process for finding the

supporting arguments give us:



129

SP(v;,é)=a,v

[{vmj (vvm Az]{vvvm o, Az)] ]

veP.(0) ve P.(1) we P, (0) ve P.(1) we P, (1) e P, (0)

where P.(0) < P. denotes parents of i which have no parents, and P,(1) € P. nodes which

have parents. Re-arranging it gives us:

SP (v;,{)=a, v
H\/l/\a}v{\/l/\\/l /\a} {\/l/\\/l /\\/l /\a} }
veP.(0) veP.(1) we P, (0) veP.(1) weP, (1) xeP, (0)

SP(v;,{)=a, v \/lw./\ ava\/(lm,/\a J [\/l /\\/ (I, ~a, J ]
ve P, we P, (0) weP, (1) xe P, (0)

Note here how the expression inside the set parenthesis is actually the support for vertex v

SP (v ,&).
SP (v, &) =a, v {\{ I ASP (vv,é‘)]

This gives us the equation of Theorem 3.1 as desired.

A.4. Lemma A.1

Given real numbers 0<a,,a,,...,a, <1, 0<b,,b,,...b, <1, 0<c¢,,c,,....,c, <1 and:

02V

n<>



Then it follows that:

Va\ Va\
\/ciai > \/cib[
i=l.n i=l.n

A.5. Proof of Lemma A.1

Using the given equation with Eq.(2.30):

VoS VoS
\/ai > \/bi
i=l.n i=l.n

We can get log of both sides recalling a, #1, b, #1:

log( Anl (1-b, )J > log(I:I (1-aq, )J

i=1 i=1

130
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Thus given ¢; #0 (to avoid getting log of 0), to make the proof we need to show

that:

given

We can simply divide each side by c,’s on both sides giving the required inequality.

For the case when ¢, =0, we note that O has no effect on the results as in:

av0=a

So, we can simply remove the members of the series where ¢, =0, and proceed with

the proof.

A.6. Proof of Theorem 5.1

We will use induction to prove our theorem.

We will deal here with the case where dsp,(s)#1 for any s, but this case can be

shown to hold similarly.

BASIS STEP:

We will show that the following inequality holds:
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Vv, eV :dsp,(1) = dsp,(0)

Note that dsp,(0) represents the initial value assignment by the algorithm. So

dsp,;(0) is a set with n elements such that:
dsp,(0)={0, 0,..,0}
Using equation (5.7) we get:
A
dip, () =p(a)|d. )V pll,)dip, (0)

= p(a,)¥d.(v)-0]

= pa;)
We know by definition that p(a,)=0.

INDUCTIVE STEP:
We will assume that the following inequality holds for any s:
Vv, eV :dsp,(s)2dsp,(s—1)

Using Eq.(5.7) we get:
VaN
dip,(s) = p(a)9| ;)Y p(,)dip,(s=1)

We also know that:
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VaN
dip,(s +1) = p(@) 9| d.0:) ¥ pll,)dip,(s)

Let us define A such that:
A=dsp,(s+1)—dsp,(s)
We can write:

A = dsp,(s+1)—dsp,(s)

aN aN
= (@) 9| d. )V pll)dsp () |- pla) < dc<vi)]\e{p<l,i)d§p,(s—1>

Va\ o\
=d, ;) Y p,)dsp; ()= Y pl,)dsp;(s=1)

VaN VaN
=d.0) Y r,)-Vr,s-1)

where we define r;(s) = p(l;)dsp;(s) . So, we get:
VN VN
Al V()= Vr(s-1)
ek ek

But using Lemma A.1 on Eq.(5.7) we can show that:



134
VaN VN

dip,(s) > dip,(s—1) implies | ¥ r,(5)> V7 (s-1)
JEL; JEL;

This, in turn implies that:
A>0

which shows that Vv, € V :dsp,(s+1) > dsp,(s) .

Thus, by induction we have proved our initial assumption, this concludes the proof.

O

A.7. Proof of Theorem 5.2

We will deal here with the case where dsp, #1 and dsp,(s)#1 for any s, but this

case can be shown to hold similarly.

Firstly, we are given the following equality by the theorem.

Vv, eV :dsp; 2 1_(1_p(a[))dc(vi)n(l_p(lji)dspj)

jeP

We can re-write the inequality using the noisy-or operator:

VaN
Vv, eV idsp. 2 p(a)Vd. (vi)\{ p(,)dsp,
JEL;

We will use induction to prove our theorem.
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BASIS STEP:
We know that the following inequality holds.

dsp,(0) < dsp,
as we know that dsp,(0)={0, 0,..,0} by definition of the ESP-0 algorithm.

We will show that this implies

dsp, (1) < dsp,

Using Eq.(5.7) we know that:

Va\
dip,(0= p(a)d, ;) ¥ p(L,)dip,(0)

pla;) <dsp,

which provides our basis step.

INDUCTIVE STEP:

Let us assume now the following equation holds.

dsp,(s) <dsp, (A.1)

We will show that this implies:

dsp,(s+1) < dsp,

Let us first define:
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A
dsp; = p(a,)¥|d, (vi)x pU;)dsp,

(A.2)
so by the theorem we are ensured that:
dsp; < dsp,
We also know that:
VaN
dip,(s+1)= pa)¥|d. )V pll,)dip,(s) A3

Using Lemma A.1 and Ineq. (A.1) we can show:

A A
V pttpdsp, 9V, pit,dsp,

which after some manipulation becomes:
VaN Va\N
p(@)¥|d )Y pdip () |< pla)¥| d.v) Y (pdsp,)

Using Eq.(A.2) and Eq.(A.3) on this we get:
dsp.(s+1) <dsp;

But using Eq.(A.1) we get:
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dsp,(s+1) < dsp, <dsp,

dsp,(s+1) < dsp,

Thus, by induction we conclude the proof.

A.8. Proof of Theorem 5.3

We will use proof by contradiction. Let us assume now that the algorithm runs

indefinitely. Then for any s > 1 we have:

difference,(s) > 9,

S0,

difference,(s) > e,

Using Eq. (5.4) we can get:

dsp,(s)>dsp,(s—1) +e,

We see that:

d§pi (D> d§p; 0)+e, =¢,

dsp,(2)>dsp,(1)+e, >2-¢,

dsp,(s)>s-e,

and,



138

recalling that 0<dsp,(s)<1. This inequality shows that s has to remain a finite value,

which contradicts with our initial assumption. Thus by contradiction we proved that the

algorithm terminates after a finite number of iterations.
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APPENDIX B. A BDD BASED PAS-ETRI IMPLEMENTATION

In this appendix we will present a brief overview of the PAS-ETRI implementation
we have created. Within the context of this work, we have used it to approximately

calculate damping constants, and compare results from ERank-0 outputs.

Our implementation has been capable of handling mostly around 100-200 supporting
arguments when the argument order is higher than 2. This number is influenced by how the
nodes and links in the network are arranged. This has made it possible for us to examine

support with arguments up to the 5™ order on our CiteSeer citation network.

For this work, we leave aside a proper introduction of BDDs and related technical
aspects of our application, as this in itself is a wide topic which deserves a dedicated
treatment and would diverge our focus from approximating PAS-ETRI results. We leave
this as a future work. Targeting those who are familiar with the topic we will essentially
relate some important choices we have made, their justifications, and the results. The
interested reader can consult (Antoine et al., 2003) for a targetted treatment of the use of

BDDs for a similar purpose (i.e. calculating the probability for a sum-of-products formula).

We have chosen to use a static variable ordering for our BDD implementations as
opposed to dynamic ordering. This is mainly because, in our preliminary research it was
possible to find various highly efficient and stable open source implementations for this
type of BDD, whilst the use of dynamic variable ordering was not available. A useful
prospect of this use is the ability to operate on the support of different nodes, thus allowing
various different schemes (comparing, joining, ...) for analyzing complex network

properties.

The immediately following pertinent issue is the ordering of the variables within the
BDD. A significant amount of research appears to have been made on this topic, and there
are various heuristics developed in the literature. We have used the variable ordering

created by a depth-first path finding algorithm with a limited depth (corresponding to the
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desired maximum argument order) incrementally assigning the variable order for each
node met. This sufficed for the creation of a reasonably powerful system serving our

purpose, yet much remains to be done on the topic for establishing related facts.

Our algorithm recursively explores the graph backwards on the links starting from
the target node using the limited depth first search scheme. A supporting argument which
is a product of the literals (on the path) is revealed this way in each step, and is represented
by a corresponding BDD. This product is added to the support of the node, thus effectively
creating the sum-of-products propositional sentence which is also a BDD. Once this
sentence is obtained, the probability of the sentence is computed by traversing the BDD
downwards (towards the terminal nodes 1 and 0) on the nodes of the BDD as in (Antoine
et al., 2003). This way of calculating the probability is faster than adding the probabilities

of individual disjoint terms.

In our implementation we have used an iterative approach in which we have
incremented the order limit starting from 2 up to 5, thus obtaining the best possible result.
The analysis aborts when a limit is exceeded for the number of the nodes of the BDD (e.g.

2 000 000 nodes), which is determined by the RAM available.

We have used the open source BDD implementation in Java called JavaBDD (JBD),
using which through the native interface we have employed the CUDD package (CUD)
written in C. The running time for disclosing the support of a node could go up to the order

of 1000 seconds.
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