
COMPUTATION WITH CHAINED CLOSED TIMELIKE CURVES

by

Mert Can Çıkla

B.S., Computer Engineering, İzmir University of Economics, 2015

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2019

iii

ABSTRACT

COMPUTATION WITH CHAINED CLOSED TIMELIKE

CURVES

Discussions of Closed Timelike Curves (CTC) led to a few computation models

that when used in conjunction with a Turing Machine, yield much more efficient com-

putations. CTC assisted computation has the ability to send a piece of information

back in time which breaks the time causality and has various paradoxes associated

with it. Computation models deal with these paradoxes differently by making different

assumptions. Regardless of the practicality of CTCs, studying different computation

models has the possibility to grant valuable insight into complexity classes and their

relationships among each other.

The first of these models is proposed by Deutsch. The model avoids paradoxes

by assuming that the states that enter and exit the machine constitute a probabil-

ity distribution and that the machine outputs a stationary distribution. The second

model, proposed by Lloyd et al. has the ability to discard unwanted outcomes, via

the assumption of time-related paradoxes that can be caused by CTC interaction to

be impossible. The third model, proposed by Say and Yakaryılmaz improves upon

Deutsch’s model and deals with some of its shortcomings.

In this thesis, we demonstrate and analyze how these CTC based computation

models help solve NP-complete, and some other problems efficiently and propose a more

cost-efficient version of one such algorithm from the literature. Lastly, we explore and

discuss some odd and interesting properties of calculations in DCTCs.

iv

ÖZET

ZİNCİR HALİNDE KAPALI ZAMANSI EĞRİLER İLE

HESAPLAMA

Kapalı Zamansı Eğriler üzerine tartışmalar, bu eğrileri kullanarak Turing Maki-

nesi ile hesaplamaları daha efektif hale getiren hesaplama modellerine yol açmıştır. Bu

modeller verileri zamanda geriye gönderme gücüne sahip olmalarından ötürü zamanın

nedenselliğini bozarak paradokslara yol açabilmektedirler. Modeller kendi içlerinde bu

paradoksların önüne geçmek için yaptıkları varsayımlarına göre farklılık göstermektedir.

Farklı hesaplama modelleri üzerine çalışmaların karmaşıklık sınıfları ve bu sınıfların bir-

birleri ile olan etkileşimleri üzerine açıklık getirebildiği bilinmektedir.

Hesaplama modellerinin ilki Deutsch tarafından önerilmiş olup, paradoks oluşma-

sını engellemek için zamanda geri gönderilen bitlerin tek bir halde bulunmak yerine

bir olasılık dağılımı içinde bulunduklarını varsaymaktadır. İkinci model Lloyd vd

tarafından önerilmiştir ve istenilmeyen olasılık çıktılarının sonuç kümesinden çıkarılabil-

me gücüne sahiptir. Bu gücü ise makinenin her zaman kararlı olması ve makine

ile etkileşim sonucu çıkabilecek paradoksların olma ihtimalinin sıfır olduğu varsayımı

sayesinde elde etmektedir. Üçüncü model Say ve Yakaryılmaz tarafından önerilmiştir

ve Deutsch’un modelini geliştirerek modelin birkaç dezavantajını ortadan kaldıran iyi-

leştirmeler sunmaktadır.

Bu tezde, kapalı zamansı eğriler tabanlı hesaplama modelleri incelenip bu mod-

ellerin NP-complete problemlere nasıl efektif çözümler getirdiği analiz edilmektedir.

İkinci olarak literatürde geçen bu sınıfa ait bir algoritmanın aynı hatayı daha az devre

masrafı ile elde edebilen bir versiyonu önerilmiştir. Son olarak Deutsch’un modeli ile

hesaplamalarda ortaya çıkabilen bir durum üzerine tartışma ve analiz yer almaktadır.

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZET . iv

LIST OF FIGURES . vi

LIST OF SYMBOLS . viii

LIST OF ACRONYMS/ABBREVIATIONS . ix

1. INTRODUCTION . 1

1.1. Related Work . 1

2. PRELIMINARIES . 4

2.1. Quantum Computation . 6

3. COMPUTATION WITH DEUTSCHIAN CTCS 13

3.1. Primality Testing . 13

3.2. Boolean Satisfiability Problem . 16

4. COMPUTATION WITH PCTCS . 22

4.1. Postselection . 22

4.2. PCTCs . 23

4.3. Alternative to BW Algorithm for SAT 26

4.3.1. Probability Amplification . 29

4.4. Performance Comparison . 30

4.4.1. Performance Evaluation . 33

5. CHAIN-CTC MODEL . 37

5.1. Primality Testing with Chain-CTCs . 37

5.2. Chain-CTCs with multiple branchings 40

6. RANDOMIZED COMPUTATIONS WITH CTCS 44

6.1. Chain-CTC Examples . 47

7. CONCLUSION . 50

REFERENCES . 51

vi

LIST OF FIGURES

Figure 2.1. Markov chain with two states A,B and transition probabilities Tij 5

Figure 2.2. Measurement device on a quantum circuit. Single wire on the left

carries a qubit and the two wires on the right represent a classical

bit output . 7

Figure 2.3. Bloch Sphere for qubit representation. 12

Figure 3.1. Markov Chain representation, CTC transition matrix and the cor-

responding stationary distribution for CTC in Algorithm 1 if n is

prime. 14

Figure 3.2. Markov Chain representation, CTC transition matrix and the cor-

responding stationary distribution for CTC in Algorithm 1 if n is

composite. 15

Figure 3.3. DCTC algorithm for primality testing. 15

Figure 3.4. DCTC algorithm for the SAT problem. 17

Figure 3.5. Markov Chain representation of the CTC used in Algorithm 2, if θ

is satisfiable. 18

Figure 3.6. Markov Chain representation, CTC transition matrix and the cor-

responding stationary distribution for the CTC used in Algorithm

2, if θ is unsatisfiable. 21

Figure 4.1. Brun and Wilde’s PCTC circuit for SAT solving. 23

vii

Figure 4.2. Alternative PCTC circuit for SAT. 26

Figure 4.3. Alternative PCTC circuit for SAT with probability amplification. . 30

Figure 4.4. Error reduction per added circuit cost comparison for Algorithms

4.1 and 4.3. m = log n, s = 10. 34

Figure 4.5. Error reduction per added circuit cost comparison for Algorithms

4.1 and 4.3. M axis with logarithmic scaling. m = n, s = 10. . . . 35

Figure 4.6. Error reduction per added circuit cost comparison for Algorithms

4.1 and 4.3. M axis with logarithmic scaling. m = 2n−1, s = 10. . 36

Figure 5.1. Primality testing with Chain-CTCs. 38

Figure 5.2. Chain-CTC algorithm with multiple branchings. 40

Figure 6.1. Simple DCTC algorithm with a coin flip inside its CTC. 44

Figure 6.2. Simple DCTC algorithm with a coin flip outside its CTC. 45

Figure 6.3. Chained version of Algorithm 5. 47

Figure 6.4. Chained CTC algorithm example. 48

viii

LIST OF SYMBOLS

Cb Left stochastic transition matrix of CTC b

Cijk
b Left stochastic transition matrix of CTC b with i, j, k branch-

ing outcomes

MA Error reduction per cost measure for algorithm A

εA Error rate for algorithm A

θ A boolean formula

λA Circuit cost measure for algorithm A

φb Stationary distribution of CTC b

φijkb Stationary distribution of CTC b with i, j, k branching out-

comes

ix

LIST OF ACRONYMS/ABBREVIATIONS

CTC Closed Timelike Curve

PCTC Closed Timelike Curve based on Postselection

DCTC Closed Timelike Curve based on Deutsch’s model

SAT Boolean Satisfiability Problem

CRR Causality Respecting Register

1

1. INTRODUCTION

Time-travel has long been a subject of many science fiction books and movies.

The idea is rightfully associated with fiction and trying to explain it using the best

known scientific theorems that explain our universe leads to logical paradoxes, most

notably the Grandfather Paradox. Gödel’s solution to Einstein’s field equations of

General Relativity implies the possibility of the existence of Closed Timelike Curves

(CTCs) as a region in spacetime that enables time-travel to the past. The possibil-

ity is a highly debated topic amongst physicists. CTC-based computers have been

proposed to use CTCs to send bits of information back in time to speed up computa-

tions [1–3]. Regardless of whether it is possible to build such a device and use it for

computational purposes, the theory has insightful implications for complexity classes

and their relationships. Similar to nondeterminism or the concept of an oracle machine

that can answer decision problem-based questions, CTC-based computation is a use-

ful theoretical device to investigate limits of computation. Previous research indicates

that CTC-based computation is exceptionally powerful, capable of solving NP-complete

problems efficiently [2]. This extreme computation power suggests the impossibility of

closed time-like curves. From a computability perspective, a version of the model with

some additional unrealistic assumptions is able to break the Turing barrier, allowing

otherwise undecidable problems, such as the halting problem, to become decidable [4].

1.1. Related Work

Novikov’s self-consistency principle requires a realizable model of time travel to

avoid the Grandfather Paradox. The Grandfather paradox emerges when a time-

traveler goes back in time to kill his grandfather whereby the time-traveler is not

born which deems the killing of the grandfather impossible which in turn allows the

time-traveler to be born. Deutsch, in his seminal paper, proposed a model that resolves

the contradiction associated with the grandfather paradox [1].

2

The model based on the many-worlds interpretation, imposes that the traveled

state is not a single deterministic one. Deutsch explains the model using a proba-

bility distribution that leads to consistency by allowing the grandfather to live with

probability 1
2

which leads to the traveler being born with probability 1
2

hence able to

successfully travel. Brun demonstrated that a CTC-based computation is capable of

solving NP-complete or even PSPACE-complete problems in a short amount of time [2].

The demonstration, however, lacked a concrete computation model to be used in fur-

ther studies. Deutsch’s model has gained more acceptance in relevant work for its

self-consistency.

Another model that gained acceptance in the field, establishes a framework with-

out the aforementioned inconsistencies in which CTCs can exist. The PCTC model,

based on postselected quantum teleportation, is suggested by Lloyd et al. [5]. The

Postselection model inherently avoids the Grandfather Paradox but is computationally

weaker than Deutsch’s model [6]. In Ref. [6] Brun and Wilde also showed that a single

postselected CTC is sufficient to make any quantum measurement with certainty. A

third model called Transition probability CTC (TCTC) was proposed by Allen [7] to

deal with some of the shortcomings of previous models. Brun and Wilde showed that

TCTCs are equivalent to PCTCs in terms of computational power. Bacon showed

that 1-qubit CTCs allow NP problems to be solvable in polynomial time [3] . Later,

Aaronson and Watrous proved PCTC = BQPCTC = BPPCTC = PSPACE, namely, given

a polynomial width CTC, the computation power increases to be able to solve any

problem in PSPACE in polynomial time and that the powers of classical and quantum

polynomial time computers become equivalent with CTCs [8].

3

Say and Yakaryılmaz showed that weaker models of computation such as finite

and push-down automaton also gain power when augmented with CTCs [9]. They also

showed that CTCs give the power of limited nondeterminism to deterministic machines.

They examined the power granted by a single CTC bit and showed that BQPCTC[1] = PP

and BPPCTC[1] = BPPpath. O’Donnell and Say showed that increasing the number of

CTC bits up to log n does not grant any additional computation power [10] and they

generalized the result to logarithmically many qubits instead of classical and proved

the stronger result BQPQCTC[log] = BQPCTC[1] = PP [11].

Aaronson et al. used a looser model to examine the computability aspect of CTC-

based computation and showed that problems that are Turing-reducible to the infamous

halting problem are solvable by classical or quantum computers with CTCs [4]. They

also examined the less powerful PCTC model and showed that postselection does not

grant any additional power in terms of computability when the computation is required

to halt.

4

2. PRELIMINARIES

Markov Property. A stochastic process with random variables Xi and state space

xi has the Markov property if

P (Xn+1 = x|Xn = xn) = P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn).

In other words, the Markov property holds if the probability distribution of the

next state of a process is dependent only on the last state preceding it.

Markov Process. A stochastic process is a Markov process if it satisfies the

Markov Property.

Picking a ball from a bag that contains infinitely many, different colored balls is

a Markov process. However, if the number of balls with a certain color is finite, the

process does not hold the Markov property because selecting the next ball depends on

how many of the balls of the same color were picked previously.

Markov Chain. Markov Chain is a Markov process with a countable state space

S of size n, outcomes from random variables Xi defined with a column stochastic state

transition matrix T where

Tij = P (Xn+1 = xi|Xn = xj),

n∑
i=0

Tij = 1 for all j.

5

A B

T00
T01

T10

T11

Figure 2.1: Markov chain with two states A,B and transition probabilities Tij

Stationary Distribution. Let φ be a probability distribution over the state space

S of a Markov chain with transition matrix T . φ is a stationary of this Markov chain

if and only if φ = φT

BPP. Bounded-error polynomial time, BPP, is the class of problems decidable

by a Turing machine in polynomial time with error probability ε < 1
3

.

PP. Probabilistic polynomial time, PP, is the class of problems decidable by a

Turing machine in polynomial time with error probability ε < 1
2
. Note that the bound

of 1
3

is arbitrary for BPP and can be any p ≤ 1
2
−c for a positive constant c. This bound

allows probability amplification to be applied to BPP to decrease error rate by running

multiple instances of the same algorithm and taking the majority decision, whereas it

is not possible to do so for PP.

BQP. Bounded-error quantum polynomial time, BQP, is the class of problems

decidable by a quantum Turing machine in polynomial time with error probability

ε < 1
3

.

PCTC. Class of problems decidable by a Turing machine assisted with a Deutschian

CTC that uses classical bits in polynomial time.

6

PQCTC. Class of problems decidable by a Turing machine assisted with a Deutschian

CTC that uses quantum bits in polynomial time.

BPPpath. Class of problems decidable by a Turing machine in polynomial time

with error probability ε < 1
3

and all computational paths of the machine are of the

same length.

BPPCTC[n]. Class of problems decidable by a classical Turing Machine with

bounded error with access to a Deutschian CTC that uses n classical bits.

2.1. Quantum Computation

Qubit. Basic unit of information analogous to a classical binary digit under

quantum mechanical rules. Due to the nature of quantum mechanics, the state is

described with a probability distribution based on amplitudes. Qubits are described

using the bra-ket notation as a superposition of two orthonormal basis states of which

the most used are |0〉 and |1〉.

|0〉 =

1

0

 |1〉 =

0

1

A qubit |q〉 is described in |0〉 , |1〉 basis as follows:

|q〉 = α |0〉+ β |1〉

α
β

α and β are called amplitudes and α2 gives the probability of the qubit being in state

0 and β2 gives the probability of the qubit being in state 1 when measured. After the

measurement, the qubit obeys classical probability laws hence, α2 + β2 = 1.

7

Measurement. A single qubit which can hold an infinite amount of information

on its amplitudes loses the information it carries after the measurement as described

above. While the type of measuring device changes depending on the circuit’s imple-

mentation, any measurement attempt done on a qubit collapses any superpositioned

state into one of its pure basis states. The cause of collapse is not the intent or act

but the measurement device’s destructive effect on the qubit itself. An oversimplified

example is shining a ray of light that carries several photons to observe a particular

photon’s polarization. Even if a single photon were to be used to measure it, the

process is still destructive.

Figure 2.2: Measurement device on a quantum circuit. Single wire on the left carries

a qubit and the two wires on the right represent a classical bit output

Quantum Gate. Basic unit of transformation used in quantum circuits. An n

bit quantum gate is described with a 2n × 2n unitary matrix.

Pauli-X Gate. Quantum analogue of the classical NOT logic gate in the standard

basis. Operates on a single bit and is described with the unitary matrix

X =

0 1

1 0

 .

8

When applied to a qubit |q〉 = α |0〉+ β |1〉, it flips the probability amplitudes of

|0〉 and |1〉

X |q〉 = β |0〉+ α |1〉

0 1

1 0

α
β

 =

β
α

Controlled Gates. A controlled gate acts on two sets of qubits, control and

target. Control qubit is used as an if conditional and depending on its value, the gate

applies a transformation to the second set of qubits, the target. In circuit form, the

operation ”apply f to t if c = 1” is represented as follows:

c •

t f

An anti-control gate that checks c for 0 is represented with:

c

t f

The circuit above applies f to t if c = 0.

9

Controlled-NOT gate. Most commonly referred to as the CNOT gate, it flips

the value of its second qubit if the first qubit is 1, otherwise, the second qubit’s value

remains the same. Two qubit CNOT gate has the following matrix representation.

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Two different circuit representations of the CNOT are given below,

•

X

•

Hadamard Gate. Most often used as a single qubit gate to transform the qubit

into a superposition of its two states in equiprobability. It is represented by H and has

the unitary matrix,

H =
1√
2

((
|0〉+ |1〉

)
〈0|+

(
|0〉 − |1〉

)
〈1|

)

=
1√
2

((1

0

+

0

1

) [1 0
]

+
(1

0

−
0

1

) [0 1
])

=
1√
2

(1 0

1 0

+

0 1

0 −1

)

=

 1√
2

1√
2

1√
2
− 1√

2

 .

10

After applying the gate to a |0〉,

H |0〉 =

 1√
2

1√
2

1√
2
− 1√

2

1

0

 =

 1√
2

1√
2

the qubit has probability
(

1√
2

)2
to be measured 0 or 1.

Hadamard gates can be applied to any number of qubits n as a 2n×2n transforma-

tion. The single qubit version explained earlier is the H. Higher dimension Hadamard

gates can be calculated by using the tensor product.

Tensor Product. Denoted by ⊗ is an operation that, within the context of

quantum computation, allows the representation of multiple lower dimension gates to

be combined into a single higher dimensional one. Let M and N be single qubit gates

in a circuit. We can obtain a two-qubit gate L by using the tensor product.

m1,1 m1,2

m2,1 m2,2

⊗
n1,1 n1,2

n2,1 n2,2

 =

m1,1

n1,1 n1,2

n2,1 n2,2

 m1,2

n1,1 n1,2

n2,1 n2,2

m2,1

n1,1 n1,2

n2,1 n2,2

 m2,2

n1,1 n1,2

n2,1 n2,2

L =

m1,1n1,1 m1,1n1,2 m1,2n1,1 m1,2n1,2

m1,1n2,1 m1,1n2,2 m1,2n2,1 m1,2n2,2

m2,1n1,1 m2,1n1,2 m2,2n1,1 m2,2n1,2

m2,1n2,1 m2,1n2,2 m2,2n2,1 m2,2n2,2

11

In a similar fashion, multipleH gates can be combined into a multi-qubit Hadamard

gate.

H ⊗H =

 1√
2

1√
2

1√
2
− 1√

2

⊗
 1√

2
1√
2

1√
2
− 1√

2

H⊗2 =

1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2

1
2

1
2
−1

2
−1

2

1
2
−1

2
−1

2
1
2

Rotation Gate. A qubit representing an electron’s spin in 3D space is best

visualized on a Bloch sphere as a vector. There are three rotation operators defined

Rx(α), Ry(α), Rz(α) for α radian rotations about each axis on a Bloch sphere about

x, y, z and are defined as follows,

Rx(α) =

 cos α
2
−i sin α

2

−i sin α
2

cos α
2

 ,

Ry(α) =

cos α
2
− sin α

2

sin α
2

cos α
2

 ,

Rz(α) =

e−iα/2 0

0 eiα/2

 .

12

x

y

z

|0〉

|1〉

Figure 2.3: Bloch Sphere for qubit representation.

This brief introduction to the quantum computation should be enough to cover

the background necessary for this thesis, for more information please refer to [12].

13

3. COMPUTATION WITH DEUTSCHIAN CTCS

Deutsch’s model for computation with CTCs (DCTC model) operates with two

sets of bits. The first set, called Chronology Respecting (CR), represents the finite

amount of classical or quantum information which obeys chronology and acts like reg-

ular memory. The second set represents the time traveling bits that goes through closed

timelike curve which we will be referring as the CTC bits from now on. The CTC bits

in Deutsch’s model are represented by a probability distribution as a countermeasure

to avoid the Grandfather Paradox. This restriction constricts the possible outcomes of

a CTC. It is assumed that the nature sets the CTC bits to a fixed point representing

a stationary distribution of the CTC transition.

The model’s constraint on the CTC to only accept Markov chains with stationary

distributions limits their usability classically. This constraint is less restraining in

the quantum world where every quantum operation has a fixed-point (analogous to

stationary distribution of a quantum operation) [8].

3.1. Primality Testing

The operation of DCTC based computation is demonstrated below. Algorithm 1

is a DCTC algorithm to calculate whether a given number is prime or not. The algo-

rithm is a simple demonstration of computational power that determines if a number n

is prime. We will analyze the algorithm by writing its left stochastic transition matrix

Cb first in two separate cases whether n is prime. If n is prime, the machine will never

set b = 1. With a small probability exponentially scaling with the input length, the

machine transitions to b = 0. So the machine has no means of setting b = 1 but a

small chance of setting b = 0. With the remaining probability the machine does not

alter the distribution of the CTC bit. Mapping this transition behaviour to a Markov

chain results in a stationary distribution of b = 0 with probability 1.

14

Cb =

1 2−n

0 1− 2−n

 φb =

1

0

0 1

1

2−n

1− 2−n

Figure 3.1: Markov Chain representation, CTC transition matrix and the

corresponding stationary distribution for CTC in Algorithm 1 if n is prime.

Assuming n is a composite number with k many factors, the machine transitions

into a state where b = 1 with probability k
n−2 because k many uniformly random

selections of i will satisfy n mod i = 0 out of n − 2. For any other i, it leaves b as it

is or sets it to 0. This transition behaviour corresponds to the transition matrix and

stationary distribution in Figure 3.2.

15

Cb =

1− k

n− 2
2−n

k

n− 2
1− 2−n

 φb =

2−n

k

n− 2
+ 2−n

k

n− 2
k

n− 2
+ 2−n

0 11− k

n− 2

k

n− 2

1− 2−n

2−n

Figure 3.2: Markov Chain representation, CTC transition matrix and the

corresponding stationary distribution for CTC in Algorithm 1 if n is composite.

Algorithm 1 Primality Testing

read b from CTC

print b

generate a random integer i ∈ {2, 3, . . . , n− 1}

if n mod i == 0 then set b = 1

with probability 2−n, set b = 0

send b via CTC

Figure 3.3: DCTC algorithm for primality testing.

16

Reading 0 from φb, ε is the algorithm’s probability of incorrectly identifying a

composite number as prime.

ε =

1

2n

k

n− 2
+

1

2n

=

1

2n

k2n + n− 2

(n− 2)2n

=
n− 2

k2n + n− 2

<
n

k2n + n

ε <
n

2n

ε is upper bounded by
n

2−n
which tends to 0 as n grows.

3.2. Boolean Satisfiability Problem

Boolean Satisfiability (SAT) is the canonical NP-complete problem. For a given

boolean formula θ with boolean variables x1, x2, . . . , xn, the objective is to answer

whether θ can be 1 for some X = x1x2 . . . xn.

θ = (x1 ∨ x2) ∧ (¬x3)

For the example above, the equation is satisfiable in three ways X = {100, 010, 110}

so an SAT solver is expected to return true for this instance.

A naive SAT algorithm that uses brute force requires 2n combinations of X to be

explored in the worst case to solve an SAT instance with n variables.

17

Algorithm 2 SAT

read b from CTC

with probability 2−n
2
, set b = 0

generate a random string x ∈ {0, 1}n

if x satisfies θ then set b = 1

send b via CTC

Figure 3.4: DCTC algorithm for the SAT problem.

In order to represent the CTC computation in Algorithm 2 as a Markov Chain

with a transition matrix requires four outcomes to consider depending on the success

and probabilities associated with the second and fourth lines of the algorithm. However,

because the matrix is column stochastic, we only need to calculate one entry from each

column of the matrix and we can calculate the other entry by subtracting it from 1.

In order to calculate the first column of the transition matrix, which considers the

case that b is received 0, we only need to consider the success probability of the fourth

line which sends b = 1 if a generated x is one of the k possible satisfying assignments

out of the 2−n possible

k

2n
,

and we obtain the other entry by subtracting it from 1

1− k

2n
,

Hence the first column of the transition matrix becomes

1− k

2n

k

2n

 .

18

The second column of the transition matrix where b is received 1 can be calculated

by considering the bit transitioning to 0. This transition occurs only if the probability

check on the second line succeeds and the x generated out of the possible 2n is not one

of the k that are satisfying the formula. Multiplying these two probabilities, we obtain

the first entry and by subtracting it from 1 we get the corresponding column vector,

1

2n2

(
2n − k

2n

)

1−
(

1

2n2

(
2n − k

2n

))
 =

2n − k
2n2+n

1−
(

2n − k
2n2+n

)
 .

Combining the two column vectors we obtain the transition matrix Cb.

Cb =

1− k

2n
2n − k
2n2+n

k

2n
1−

(
2n − k
2n2+n

)
 .

0 1

k

2n

1− k

2n

2n − k
2n2+n

1−
(

2n − k
2n2+n

)

Figure 3.5: Markov Chain representation of the CTC used in Algorithm 2, if θ is

satisfiable.

19

1− k

2n
2n − k
2n2+n

k

2n
1−

(
2n − k
2n2+n

)
φb = φb

Let φb =

 x

1− x

.

(
1− k

2n

)
x+

(1− x)(2n − k)

2n2+n
= x

(
k

2n

)
x+

(
1−

(
2n − k
2n2+n

))
(1− x) = 1− x

x =

(
1− k

2n

)
x+

(1− x)(2n − k)

2n2+n

x =
x2n − kx

2n
+

(1− x)(2n − k)

2n2+n

x =
x2n

2+n − kx2n
2

2n2+n
+

(1− x)(2n − k)

2n2+n

x =
x2n

2+n − kx2n
2

+ 2n − x2n − k + kx

2n2+n

x2n
2+n = x2n

2+n − kx2n
2

+ 2n − x2n − k + kx

0 = − kx2n
2

+ 2n − x2n − k + kx

0 = x
(
−k2n

2 − 2n + k
)

+ 2n − k

x =
2n − k

k2n2 + 2n − k

20

φb =

2n − k

k2n2 + 2n − k

1−
(

2n − k
k2n2 + 2n − k

)

The probability of reading 0 from b, the first entry in φb, corresponds to the error rate

of the algorithm ε, if θ is satisfiable.

ε =
2n − k

k2n2 + 2n − k
,

ε ≈ 0 for large n for any k where 0 < k ≤ 2n.

If k = 0 (θ is unsatisfiable), ε = 1 which is the probability of reading 0 from the

CTC. However, for an unsatisfiable formula, the actual error rate is 1− ε. Observing

this is much simpler by separately analyzing the algorithm for unsatisfiable θ. This

analysis is much simpler because the fourth line never executes and there is only one

branching possible. We can deduce that the algorithm detects unsatisfiable boolean

formulas with certainty because the stationary distribution always yields a 0.

21

0 11

1

2n2

1− 1

2n2

CTC =

1
1

2n2

0 1− 1

2n2

 φ =

1

0

Figure 3.6: Markov Chain representation, CTC transition matrix and the

corresponding stationary distribution for the CTC used in Algorithm 2, if θ is

unsatisfiable.

22

4. COMPUTATION WITH PCTCS

The second model of computation using CTCs is based on quantum postselection

as described by Lloyd et al. [5]. In this model, which will be referred to as PCTC,

logically contradicting events that are caused by time-travel never occur i.e. the time-

traveller can never succeed in killing their grandfather. This condition of the model

can be utilized to force the CTC qubit into a paradox for unwanted outcomes thereby

granting a computer with a PCTC bit the power of postselection.

4.1. Postselection

Postselection is the ability to discard a set of unwanted outcomes. For a proba-

bilistic algorithm with any non-zero success probability, postselection can be used to

improve that success probability by postselecting on the desired outcome, renormaliz-

ing the outcome probabilities excluding unwanted ones. Lets assume that we have a

probabilistic algorithm with the following outcomes.

P (Decided) = 0.25

P (Undecided) = 0.75

P (Accept ∧Decided) = 0.15

P (Reject ∧Decided) = 0.10

The algorithm decides with probability 0.25 and when it decides, it accepts with prob-

ability 0.6 and rejects with probability 0.4. Applying postselection to this algorithm

on outcome Decided, we assume and apply the condition that the option Decided al-

ready occurred. In other words, P (Accept) becomes P (Accept|Decided) and P (Reject)

becomes P (Reject|Decided).

23

By applying conditional probability rules, we get

P (Accept|Decided) =
P (Accept ∧Decided)

P (Decided)
=

0.15

0.25
= 0.6,

P (Reject|Decided) =
P (Reject ∧Decided)

P (Decided)
=

0.10

0.25
= 0.4.

Without any postselection this algorithm would have accepted only with probability

0.15 and rejected with probability 0.10. The accept and reject probabilities increased

four times because the initial P (Decided) = 0.25 probability becomes 1 with postse-

lection.

4.2. PCTCs

t = |0〉 H • t

W = |0〉⊗n /n H⊗n

f g
/n W

q = |0〉 • q

X

CTC

Figure 4.1: Brun and Wilde’s PCTC circuit for SAT solving.

Brun and Wilde proposed a PCTC circuit (Figure 4.1) for solving SAT instances

[6]. The circuit works with n + 2 qubits for an SAT instance of size n and a single

PCTC qubit. |t〉 is a qubit used as flag to control the unitaries f and g. W represents

n qubit sized register and q is a qubit used for postselection that interacts with the

PCTC.

24

The circuit works as follows:

(i) Qubits t, q and the register W are initialized to |0〉.

(ii) Hadamard gates are applied to both t and W .

(iii) Apply a controlled circuit f with t as control to W and q = |0〉 which maps

W |0〉 7→ W |1〉 if W does not satisfy θ, leaves it unchanged otherwise.

(iv) Apply a controlled circuit g with t as control to W and q = |0〉 which maps

W |0〉 7→ W |1〉 if W does not hold all 0’s and leaves it unchanged otherwise.

(v) Apply a CNOT gate from q to the PCTC qubit.

After circuit execution, if t = 1 is measured, the θ is deemed satisfiable with a satisfying

set of assignments stored in W . If t = 0, it is unsatisfiable with certainty and W holds

all zeros.

Step (ii) sets t and W in a superposition so that all of the possible outcomes are

equally likely. Circuits f and g in step (iii) and (iv) are applied in mutual exclusion.

Step (v) is the postselection step which introduces a paradoxical outcome to the circuit

if q is 1 which, by the definition of the PCTC model, cannot happen so at the end of

execution q = 0 with probability 1.

If the SAT instance θ is unsatisfiable, f can not run and change q because there

are no satisfying assignments possible. Because q = |0〉 option is discarded via post-

selection, this implies t = |0〉 and step (iv) is executed with probability 1. Step (iv),

which applies the gate g to W and q. After execution of g, W and q hold |00 . . . 0〉 |0〉

so we measure all zeros. The result is that the circuit detects unsatisfiable instances

with probability 1.

If the SAT instance is satisfiable for m assignments out of 2n possible: Step (iii) pro-

duces m satisfying assignments and the other 2n −m are discarded via postselection.

The only possible outcome from step (iv) is all zeros which is the erroneous outcome.

25

Overall the circuit finds satisfying assignments with probability

m

m+ 1
,

and the error rate of the circuit is

1

m+ 1
.

Brun and Wilde proposed applying probability amplification by repeating steps (i)-

(iv) to decrease error rate. Amplification is achieved by using k copies of t, W and q

registers with accompanying Hadamard gates as initiliazers and k many f and g gates.

All of the copies share the single PCTC qubit however the X gate on it now only runs

if one or more of the k many q registers are 1 which applies the postselection. A non

satisfying θ is only deemed so if all of the k many t registers are 0’s. This increases the

initial success probability to

(m+ 1)k − 1

(m+ 1)k
,

and reduces the error probability to

1

(m+ 1)k
,

with polynomial increase in circuit size for an exponential decrease in error rate, hence a

logarithmic overhead. Without any postselection and amplification, the circuit depicted

in Figure 4.1 can successfully identify an SAT instance with only a probability of m
2n

,

which is equivalent to randomly guessing and checking for a satisfying assignment.

26

4.3. Alternative to BW Algorithm for SAT

|0〉 Rx(α) t

|0〉 /n H⊗n

f
/n W

|0〉 • q

X
CTC

Figure 4.2: Alternative PCTC circuit for SAT.

The circuit depicted in Figure 4.2 has a lower error rate that can be further

improved for similar cost with probability amplification. The first difference to the

original is the removal of gate g which is required to set W to all zeros for nonsatisfiable

SAT instances. Secondly, the Hadamard gate that is applied to the qubit t is replaced

with the gate Rx(α) that rotates its qubit α degrees about the x axis and it has the

unitary matrix

Rx(α) =

 cos α
2
−i sin α

2

−i sin α
2

cos α
2

 ,
t = |0〉 just before the α rotation.

27

As an example, applying the gate for α = π
15

to rotate t:

t = Rx

(π
15

)
|0〉 =

 cos α
2
−i sin α

2

−i sin α
2

cos α
2

1

0

 =

 cos π
30

−i sin π
30

 ,

t ≈ 0.99 |0〉 − 0.1i |1〉 ,

with t applied to f as a control bit, f runs with probability |0.99|2 ≈ 0.98.

In order to inspect the algorithm, consider the three cases based on θ and t.

(i) θ is satisfiable.

• f runs with probability
∣∣cos α

2

∣∣2 (t = 0);

f outputs a satisfying W without altering its last qubit |0〉. All the non

satisfying W outputs are discarded via postselection.

• f does not run with probability
∣∣−i sin α

2

∣∣2 (t = 1);

t and q are measured 1 and 0 respectively while W is a uniformly random

bit string ∈ {0, 1}n

(ii) θ is unsatisfiable.

• f runs with probability
∣∣cos α

2

∣∣2 (t = 0);

This outcome is discarded because no W ∈ {0, 1}n satisfy θ, causing q = 1

with probability 1.

• f does not run with probability
∣∣−i sin α

2

∣∣2 (t = 1);

t and q are measured 1 and 0 respectively while W is a uniformly random

bit string ∈ {0, 1}n

28

At the end of the execution, if t is measured 1, θ is deemed unsatisfiable. If

t = 0, θ is satisfiable. Unsatisfiable instances are detected without error. Error rate

for satisfiable θ is equivalent to

ε = 1−
∣∣∣cos

α

2

∣∣∣2 =
∣∣∣−i sin

α

2

∣∣∣2 ,

=
∣∣∣sin α

2

∣∣∣2 .
Assuming α ≥ 0,

ε = sin2 α

2
.

Classical analogue for the Rx(α) is bounded by efficient computability. Assuming

the smallest probability that can be generated using a fair coin in polynomial time

with input size n and a constant c is bounded by

1

2cn
.

In this context, we use Rx(α) for probability generation so Rx(
π
2
) is equivalent to a

single fair coin toss for generating small probabilities because

sin2 π

4
=

1

2
and sin

π

4
=

1√
2
.

For generating probabilities equivalent to the power of cn coins, rotation gate’s angle

needs to be

α = arcsin
1√
2cn

.

29

4.3.1. Probability Amplification

Beyond error rate reduction with usage of small α values, the performance of Al-

gorithm 4.2 can be further improved using probability amplification as follows. Inputs

of the Rx(α) gates are replicated s many times as depicted in the circuit in Figure 4.3.

The gate C is essentially a multi controlled-NOT gate and it flips the value of the t

qubit if all of Rx(α) gate outputs are 1, otherwise leaving it 0. More formally, the only

transformation C does is:

|0〉︸︷︷︸
t

|11 . . . 1〉︸ ︷︷ ︸
s

→ |1〉 |11 . . . 1〉

t is left unchanged for any other configuration.

Selecting an α value equivalent to arcsin

(
1√
m

)
yields

1

m
probability for each

gate to output 1. Rx(α) used here should be easily achievable because, in classical

terms, it only requires logm fair coin tosses to reach the same probability, which is

much lower than the theoretical limit. Using s many inputs and Rx(α) gates, C only

flips t with probability
1

ms
.

30

|0〉 Rx(α)

C

|0〉 Rx(α)
...

|0〉 Rx(α)

|0〉 t

|0〉 /n H⊗n

f
/n W

|0〉 • q

X

s many

CTC

Figure 4.3: Alternative PCTC circuit for SAT with probability amplification.

4.4. Performance Comparison

In order to compare the performances of the two SAT algorithms in Figures 4.1

and 4.3, we assume the following circuit costs.

• Single qubit gate cost : 1

• Multi(n) qubit gate cost : n

• Controlled gate cost : gate’s cost + 1

31

BW’s algorithm, Algorithm 4.1 with probability amplification that uses s many

repetitions has total cost λBW ,

• s many 1 cost H gates

• s many n cost H⊗n gates

• s many n+ 2 cost f gates

• s many n+ 2 cost g gates

• One s cost quantum analogue of an AND gate

• One s cost quantum analogue of an OR gate

• One CNOT gate with cost 2

λBW = s+ sn+ 2s(n+ 2) + 2s+ 2 = 3sn+ 7s+ 2.

Alternative version, Algorithm 4.3 (in short, A) with probability amplification has total

cost λA,

• s many 1 cost Rx(α)

• n many 1 cost H gates

• One n+ 2 cost f gate

• One s+ 2 cost C gate

• One CNOT gate with cost 2

λA = s+ n+ (n+ 2) + (s+ 2) + 2 = 2n+ 2s+ 6.

32

Recall that Algorithm 4.1 has error rate εBW = 1
m+1

and the alternative version

has εA = sin2 α
2

without amplification. Error rates with s repetitions and using α =

arcsin 1√
m

are,

εBW =
1

(m+ 1)s
,

εA =
1

ms
.

Dividing the reciprocal of error rates by the added cost of amplification yield the

total error reduction/total cost functions M,

MBW =

1

εBW
λBW

=
(m+ 1)s

3sn+ 7s+ 2
,

MA =

1

εA
λA

=
ms

2n+ 2s+ 6
.

Dividing the metrics for comparing growth rates as n increases yield,

MA

MBW

=
ms(3sn+ 7s+ 2)

(m+ 1)s(2n+ 2s+ 6)
,

lim
n→∞

ms(3sn+ 7s+ 2)

(m+ 1)s(2n+ 2s+ 6)
=

3s

2

(
m

m+ 1

)s
.

33

For large m ≈ n and a small constant s,

lim
n→∞

MA

MBW

> 1,

MA >MBW .

which meansMA requires less circuit size for the same reduction in error rate, or that

it yields less error for the same circuit size. Hence, the Algorithm 4.3 is more cost

efficient.

4.4.1. Performance Evaluation

Performance metrics, MA and MBW , are compared for three different m values

and a constant s = 10. For the following plots, M (y-axis) is the performance metric

and n (x-axis) is the number of variables in the SAT instance.

The first case considers SAT instances with relatively low amount of satisfying

assignments, m = log n with s = 10 repetitions for amplification. Figure 4.4 shows the

plots of the two performance metrics for this case. It can be observed that MA grows

much faster than MBW until n ≈ 2000 after which the growth rates are observed to

be roughly the same.

MA =
(log n)10

2n+ 26
,

MBW =
(log n+ 1)10

30n+ 72
.

34

2000 4000 6000 8000 10000
n

2×106

4×106

6×106

8×106

ℳ

ℳA

ℳBW

Figure 4.4: Error reduction per added circuit cost comparison for Algorithms 4.1 and

4.3. m = log n, s = 10.

35

Second case considers SAT instances with m = n and s = 10 repetitions for

amplification. Figure 4.5 shows the plots of the two performance metrics for this case.

MA =
n10

2n+ 26
,

MBW =
(n+ 1)10

30n+ 72
.

200 400 600 800 1000
n

109

1013

1017

1021

1025

ℳ

ℳA

ℳBW

Figure 4.5: Error reduction per added circuit cost comparison for Algorithms 4.1 and

4.3. M axis with logarithmic scaling. m = n, s = 10.

36

Lastly, an SAT instance with half of all of its possible assignments satisfying its

equation is considered in Figure 4.6.

MA =

(
2(n−1))10
2n+ 26

,

MBW =

(
2(n−1) + 1

)10
30n+ 72

.

5 10 15 20
n

10-8

100

1012

1022

1032

1042

1052

ℳ

ℳA

ℳBW

Figure 4.6: Error reduction per added circuit cost comparison for Algorithms 4.1 and

4.3. M axis with logarithmic scaling. m = 2n−1, s = 10.

37

5. CHAIN-CTC MODEL

Chain-CTC model uses short DCTCs of fixed length to send a piece of information

back in time. This model has the modularity advantage as well as being possibly more

practical and “easier” to construct [9]. The model uses a single DCTC of length h

repeatedly to send a piece of information given to it at any time t to time t − h.

Reusing the DCTC available, the computer sends the information to a time between

t− h and t− 2h depending on the time spent between receiving and sending it.

5.1. Primality Testing with Chain-CTCs

We examine how the Chain-CTC model works on the chained version of Algo-

rithm 1 for primality testing in Algorithm 3 given below. For a given number n with

k many factors, if at the and of its execution b = 0 then the number given is deemed

prime, if b = 1 the number is deemed composite.

38

Algorithm 3

read c1

print c1

read c2

c1 ← c2

send c1

read c3

c2 ← c3

send c2

b← c3

generate a random integer i ∈ {2, 3, . . . , n− 1}

if n mod i == 0 then set b = 1

with probability 2−n, set b = 0

send c3 = b

Figure 5.1: Primality testing with Chain-CTCs.

It is relatively easier to analyze Chain-CTCs starting with the last one, because

previous ones often are dependent on the last. The transition matrix of c3 denoted by

C3 is equal to the transition matrix of the DCTC in algorithm 1.

If n is prime,

C3 =

1 2−n

0 1− 2−n

 , φ3 =

1

0

 .
C1 and C2 apply a transition that sets the value of their bits to the value of c3. This

transition matrix corresponds to a matrix that is formed of columns that are equivalent

to φ3.

39

C1 = C2 =

1 1

0 0

 , φ1 = φ2 =

1

0

 .
If n is composite,

C3 =

1− k

n
2−n

k

n
1− 2−n

 ,

φ3 =

2−n

k

n
+ 2−n

k

n
k

n
+ 2−n

,

C1 = C2 =

2−n

k

n
+ 2−n

2−n

k

n
+ 2−n

k

n
k

n
+ 2−n

k

n
k

n
+ 2−n

, φ1 = φ2 =

2−n

k

n
+ 2−n

k

n
k

n
+ 2−n

.

The algorithm identifies prime numbers with certainty. If a number is composite it is

wrongfully identified as a prime with probability

2−n

k

n
+ 2−n

,

which tends to 0 exponentially as n increases.

40

5.2. Chain-CTCs with multiple branchings

The transitions in Chain-CTCs that have more than one computational branching

that occur between CTC’s endpoints can be modelled just like DCTC’s because the

underlying model is the same. The additional ”tunneling” CTC’s where there is only

a single computational branch are easy to model as well because the columns in their

transition matrices are equivalent to the stationary distribution of the CTC where the

actual computation occurs.

Using Chain-CTCs with algorithms that have multiple branchings on different

times is more interesting. Chaining multiple DCTCs get increasingly complicated as

number of branchings increase as demonstrated below.

Algorithm 4

read ctc1

c1 ← FlipCoin

read ctc2

ctc1 ← ctc2

send ctc1

c2 ← FlipCoin

read ctc3

ctc2 ← ctc3

send ctc2

c3 ← FlipCoin

if c1 == c2 == c3 == 1 then
send ctc3 = 1

else
send ctc3 = 0

Figure 5.2: Chain-CTC algorithm with multiple branchings.

41

In order to construct C3 we need to analyze computation branches that correspond

to different coin flip outcomes. Let Cijk
m be the transition matrix that corresponds to

the transition that is applied to CTC Cm if the current branch coin flip outcomes are

c1 = i, c2 = j, c3 = k. We start analysis by considering C3 first. If at least one of c1

or c2 is 0, transitions are all the same because they are not dependent on the new c′3

value.

C00k
3 = C01k

3 = C10k
3 =

1 1

0 0

 ,
with corresponding stationary distributions

φ00k
3 = φ01k

3 = φ10k
3 =

1

0

 .
If c1 = c2 = 1, received value of the CTC bit is solely dependent on c′3,

C11k
3 =

1
2

1
2

1
2

1
2

 ,

φ11k
3 =

1
2

1
2

 .
All of the Cijk

3 transitions above with k as a random variable, occur with equal proba-

bility 1
4
. Combining their stationary distributions yield φ3,

φ3 =
1

4

1

0

+
1

4

1

0

+
1

4

1

0

+
1

4

1
2

1
2

 =

7
8

1
8

 .

42

C2 is analyzed similarly however in this case c2 is also subject to change in addition

to c3. If c1 = 0, we receive 0 from ctc3 with probability 1 regardless of c′2 or c′3,

C0jk
2 =

1 1

0 0

 , φ0jk
2 =

1

0

 .
C2 only sends 1 if both j = k = 1 which occurs with probability 1

4
so we have,

C1jk
2 =

3
4

3
4

1
4

1
4

 , φ1jk
2 =

3
4

1
4

 .

Combining these two stationary distributions of equiprobability yield,

φ2 =
1

2

1

0

+
1

2

3
4

1
4

 =

7
8

1
8

 .

In order to construct C1, first we consider the case c1 = 0 where ctc1 = 0. Hence

we have

C0jk
1 =

1 1

0 0

 , φ0jk
1 =

1

0

 .

43

If c1 = 1, we receive ctc1 = 1 with probability 1
4

C1jk
1 =

3
4

3
4

1
4

1
4

 , φ1jk
1 =

3
4

1
4

 ,

φ1 =
1

2
φ0jk
1 +

1

2
φ1jk
1 =

1

2

1 1

0 0

+
1

2

3
4

3
4

1
4

1
4

 ,

φ1 =

7
8

1
8

 .

Overall we have obtained,

φ1 = φ2 = φ3 =

7
8

1
8

 .
Algorithm 4’s three CTCs have different branchings depending on the coin flips among

them however they all have the same stationary distribution.

44

6. RANDOMIZED COMPUTATIONS WITH CTCS

Algorithm 5

read r

c← Flip Coin

if r == 0 then
send 1

if r == 1 then
send c

print r

Figure 6.1: Simple DCTC algorithm with a coin flip inside its CTC.

The CTC evolution in Algorithm 5 can be represented with the transition matrix

0 1
2

1 1
2

 ,
which has the stationary distribution

φr =

1
3

2
3

 .
Hence the algorithm prints 0 with probability 1

3
and 1 with probability 2

3
.

45

Algorithm 6

c← Flip Coin

read b

if b == 0 then
send 1

if b == 1 then
send c

print b

Figure 6.2: Simple DCTC algorithm with a coin flip outside its CTC.

Algorithm 6 is almost the same as the previous one except the coin flip step is

moved out of the CTC loop.

Starting with the case c = 0, the transitions in the CTC becomes deterministic

0 1

1 0

 ,
which has the stationary distribution

φ0
b =

1
2

1
2

 ,
hence the algorithm prints 0 and 1 with probability 1

2
if c == 0.

46

If the coin flip results in c = 1, the transition matrix becomes

0 0

1 1

 ,
with its corresponding stationary distribution

φ1
b =

0

1

 ,
and the algorithm prints 1 with probability 1.

Combining the two initial fair coin flips results we get φb = 1
2
φ0
b + 1

2
φ1
b =

1
4

3
4

 .
1

2
· 1

2
+ 0 =

1

4
chance to print 0,

1

2
· 1

2
+

1

2
· 1 =

3

4
chance to print 1.

Hence, the Algorithm 5 prints 0 with probability 1
3

whereas Algorithm 6 has probability

1
4

to print 0 using fair coins.

If the coin is biased with P (0) = 1
3
, Algorithm 5 have probabilities of printing 0

and 1, 1
4

and 3
4

respectively whereas its 1
6

and 5
6

for the Algorithm 6, interestingly. The

difference in their results get even larger as a more biased coin is used. This behaviour

is generalized to a biased coin with P (0) = 1
n

as

φr =

 1
n+1

n
n+1

 , φb =

 1
2n

2n−1
2n

 .

47

Despite doing seemingly the same operation and transitions, here we have two

algorithms that produce two different outcomes. This shows that even if quantum gates

were implemented perfectly with no errors, designing algorithms to work as intended

with CTCs might require extra attention. Regarding this atypical behaviour, Aaronson

and Watrous discussed how two quantum operations that are arbitrarily close can have

drastically different fixed points [8].

6.1. Chain-CTC Examples

Algorithm 7

read c1

c← c1

print c

read c2

c1 ← c2

send c1

read c3

c2 ← c3

send c2

c← FlipCoin

if c3 == 0 then
send c3 = 1

if c3 == 1 then
send c3 = c

Figure 6.3: Chained version of Algorithm 5.

48

The analysis of Algorithm 7’s CTC’s transition matrix is fairly straightforward.

As C3 does a simple transition same as the only CTC in Algorithm 5.

C3 =

0
1

2

1
1

2

 , φ3 =

1
3

2
3

 .

Because we have C1 = C2 as tunneling CTCs, they simply copy the distribution that

comes from C3 to their CTC bits hence we have

C1 = C2 =

1

3

1

3

2

3

2

3

 , φ1 = φ2 =

1
3

2
3

 .

Algorithm 8

c0 ← FlipCoin

read c1

c1 ← FlipCoin

read c2

c1 ← c2

send c1

c2 ← FlipCoin

read c3

c2 ← c3

send c2

c3 ← FlipCoin

if c0 == c1 == c2 == c3 == 1 then
send c3 = 1

else
send c3 = 0

Figure 6.4: Chained CTC algorithm example.

49

Algorithm 8 is analyzed by considering c0’s outcomes separately.

(i) if c0 == 0,

c3 is received 0 and sent 0 with probability 1, regardless of other coins’ results.

C0jkl
3 =

1 1

0 0

 , φ0jkl
1 = φ0jkl

2 = φ0jkl
3 =

1

0

 .
(ii) if c0 == 1,

The algorithm branches just like Algorithm 7 which has stationary distributions

corresponding to

φ1jkl
1 = φ1jkl

2 = φ1jkl
3 =

7
8

1
8

 .
Combining the stationary distributions for both c0 outcomes of equiprobability

yields

φ1 = φ2 = φ3 =
1

2

1

0

+
1

2

7
8

1
8

 =

15
16

1
16

 .
This result, which is in line with expectations of four classical coin flips, suggests

the odd behaviour in Algorithms 5 and 6 are most likely rare and require specific

transitions and branchings concurrently to be observed.

50

7. CONCLUSION

In this thesis, we have studied the powerful models of computation in the pres-

ence of Closed Timelike Curves. We have demonstrated their computation power by

showing how they can solve a Boolean Satisfiability problem efficiently. We examined

how DCTC computation can result in atypical results under some circumstances with

randomization. We have proposed an alternative version to Brun and Wilde’s postse-

lection based Boolean Satisfiability algorithm. We compared our proposed algorithm

against BW’s for various SAT instance types which shows that our proposed version is

more cost efficient per same error reduction. Lastly, we have investigated the Chain-

CTC model which streamlines the utilization of DCTCs and analyzed how they work

with various branchings of randomized algorithms.

51

REFERENCES

1. Deutsch, D., “Quantum mechanics near closed timelike lines”, Physical Review D ,

Vol. 44, No. 10, p. 3197, 1991.

2. Brun, T. A., “Computers with closed timelike curves can solve hard problems

efficiently”, Foundations of Physics Letters , Vol. 16, No. 3, pp. 245–253, 2003.

3. Bacon, D., “Quantum computational complexity in the presence of closed timelike

curves”, Physical Review A, Vol. 70, No. 3, p. 032309, 2004.

4. Aaronson, S., M. Bavarian and G. Gueltrini, “Computability Theory of Closed

Timelike Curves”, arXiv preprint arXiv:1609.05507 , 2016.

5. Lloyd, S., L. Maccone, R. Garcia-Patron, V. Giovannetti, Y. Shikano, S. Pirandola,

L. A. Rozema, A. Darabi, Y. Soudagar, L. K. Shalm and A. M. Steinberg, “Closed

timelike curves via postselection: theory and experimental test of consistency”,

Physical review letters , Vol. 106, No. 4, p. 040403, 2011.

6. Brun, T. and M. M. Wilde, “Perfect state distinguishability and computa-

tional speedups with postselected closed timelike curves”, Foundations of Physics ,

Vol. 42, No. 3, pp. 341–361, 2012.

7. Allen, J., “Treating time travel quantum mechanically”, Phys. Rev., Vol. A90,

No. 4, p. 042107, 2014.

8. Aaronson, S. and J. Watrous, “Closed timelike curves make quantum and classical

computing equivalent”, Proceedings of the Royal Society of London A: Mathemat-

ical, Physical and Engineering Sciences , Vol. 465, pp. 631–647, The Royal Society,

2009.

9. Say, A. C. C. and A. Yakaryılmaz, “Computation with multiple CTCs of fixed

52

length and width”, Natural Computing , Vol. 11, No. 4, pp. 579–594, 2012.

10. O’Donnell, R. and A. C. C. Say, “One time-traveling bit is as good as logarith-

mically many”, LIPIcs-Leibniz International Proceedings in Informatics , Vol. 29,

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

11. O’Donnell, R. and A. C. C. Say, “The Weakness of CTC Qubits and the Power

of Approximate Counting”, ACM Trans. Comput. Theory , Vol. 10, No. 2, pp.

5:1–5:22, May 2018, http://doi.acm.org/10.1145/3196832.

12. Nielsen, M. A. and I. Chuang, Quantum Computation and Quantum Information,

AAPT, 2002.

