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ABSTRACT

RADIO MAP ESTIMATION WITH NEURAL NETWORKS

AND ACTIVE LEARNING FOR INDOOR LOCALIZATION

In this thesis, a practical indoor localization technique is proposed. In contrast

to the state of art approaches, this practical approach does not deal with the multi-

path problems and shadowing effects of electromagnetic signals as well as it does not

require calculating the attenuation factors for each space because it does not apply the

propagation model. Instead, indoor localization, by exploiting electromagnetic scat-

tering properties of local area networks, is formulated as a tracking problem using a

Hidden Markov model with a radio map as the observation model. Because of the

non-linear relationship between radio frequency signals’ strength and location, a prob-

abilistic radio map is generated by using Neural Networks. Accurate estimation of the

radio map is key in accurate indoor localization but this requires dense sampling of the

electromagnetic field, also named as fingerprinting. To decrease the time consumption

of fingerprinting process, we train the neural network using an active learning strategy

based on uncertainty sampling, aided by a Gaussian process. With the radio maps

generated by a deep neural network, 30% of training data can be removed and this

results in an increase of 1.3% and 2.6% in median error in two different test areas. It

is concluded that without trading off localization accuracy training data size can be

reduced by one third.
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ÖZET

BİNA İÇİ KONUMLAMA İÇİN SİNİR AĞLARI VE AKTİF

ÖĞRENME YÖNTEMLERİ İLE RADYO HARİTASI

TAHMİNLEME

Bu tez çalışmasında, pratik bir bina içi lokalizasyon tekniği önerilmiştir. Gelişmiş

yaklaşımların aksine, bu yeni yöntem, elektromanyetik dalgaların çok yollu dağılım

problemi ve gölgeleme efekti ile ilgilenmez. Elektromanyetik dalgaların dağılım mod-

elini de uygulamadığı için bina için her alan için azalma faktörü hesaplamaya da gerek

duymaz. Bunun yerine bina içi pozisyon izleme problemi, gözlem modeli olarak radyo

frekans haritası ve geçiş modeli olarak difüzyon modeli kullanan Saklı Markov Modeli

ile modellenmektedir. Radyo haritasının doğru tahminlenmesi kapalı ortam lokaliza-

syonunun hatasız yapılabilmesi için büyük önem taşımaktadır. Tahminlemenin doğru

yapılabilmesi için ise elektromanyetik alandan yoğun parmak izi toplanması gerek-

mektedir. Radyo frekans sinyalleri ve lokasyon arasındaki lineer olmayan ilişki sebe-

biyle, yapay sinir ağları kullanılarak olasılıksal radyo haritası oluşturulmuştur. Elek-

tromanyetik parmak izi toplama sürecinde kurulum ve ölçüm maliyeti yüksek olduğu

için belirli noktalarda toplanan parmak izleri ile bir yapay sinir ağı eğitilmiş ve kapalı

alandaki diğer noktalardaki parmak izleri tahminlenmiştir. Yapay sinir ağını eğitmek

için kullanılacak parmak izlerinin radyo frekans haritası üzerinde çıkarılan belirsizlik

analizi doğrultusunda seçimi için Gauss Süreci yöntemi kullanılmıştır. Derin yapay

sinir ağı ile oluşturulmuş radyo haritaları ile eğitim verilerinin %30’unun çıkarılması

iki farklı bina içi ortamının medyan hatalarında %1.3 ve %2.6 artışla sonuçlanmıştır.

Bu durum konumlama doğruluğundan feragat etmeden toplanması gereken eğitim veri

setinin azaltılabileceğini göstermektedir.
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1. INTRODUCTION

Localization, stated also as positioning or geolocation, has become a widespread

research area since 2000s [3]. This substantial increase is originated from the extensive

use cases of location estimation such as emergency scenarios like fire, mine accidents,

navigation, logistics, warehouse operations, personalized marketing and so on. With

the help of GPS technology, studies have achieved approximately 10 meters localization

accuracy outdoor [4]. However, GPS signals can be faded in indoor spaces because

of the destructive multi-path signal propagation and dense obstacles shadowing the

signal [5], [6]. Therefore GPS can not be used for indoor localization. Although

various other techniques have been studied for indoor localization, there is still room

for progress to decrease the localization error under 1.5 meters.

Indoor localization approaches are mainly divided into three categories such as

geometry-based, propagation-based and fingerprinting-based techniques. Triangulation

and Trilateration are commonly used geometry based approaches [7], [8]. In lateration,

using Time of Arrival (TOA) or Time Difference of Arrival (TDOA) information, line

of sight (LOS) distance between the object and three access points (AP) are calculated.

Based on the triangulation principle, the position of the object is found. In angulation,

instead of using TOA, Angle of Arrival (AOA) information is used to find the position

of the object. Multi-path and shadowing effects make the signal difficult to propagate

directly from transmitter to receiver. Delay or distortion in TOA or AOA, decreases

the accuracy.

In propagation based approaches [5], attenuation of signal power is modeled with

various radio propagation models. The power of radio signals can be based on var-

ious parameters like transmitter distance and wall attenuation factor. Though radio

propagation based models are successful to model multi-path and shadowing effects,

this procedure should be repeated because of the attenuation characteristic of each

environment.
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The most reliable technique, fingerprinting is composed of two phases. The first

phase is collecting reduced signal strength indicator (RSSI) values at specified locations

and constructing a radio frequency map from the collected information. The second

phase is location estimation based on the radio map (RM) with several estimation

methods such as k-Nearest Neighbor (kNN), Neural Networks (NN), Support Vector

Machines (SVM) and Kernel Density Estimators [9]. In kNN approach [5, 10], when

a new RSSI is observed from an unknown location, k location candidates having the

closest RSSI value are selected. Weighted or unweighted average of these candidate

locations give the location estimate. On the other hand, neural networks are used for

generating radio maps, where the relationship between RSSI information and locations

are too complex to be solved with other techniques [11–14]. An estimate for the

most probable position is finally inferred by choosing the position that maximizes the

probability given the signal strength measurement [15], therefore, they are effective for

discrete positioning.

With the motivation of more accurate and more precise indoor localization, we

propose a fingerprinting technique called Radio Map Estimation with Neural Networks

and Active Learning.

1.1. What is Radio Frequency Map?

Radio frequency map is composed of radio frequency signals at each coordinate

in a place. They are electromagnetic waves oscillating with the frequency in the range

of 3 kHz to 300 GHz. WiFi, Bluetooth and Bluetooth Low Energy signals are radio

waves having 2.4 GHz frequency. They are measured with different units as Received

Signal Strength Indication (RSSI) or Signal-to-Noise Ratio (SNR). Therefore, either

RSSI or SNR values are stored in radio maps.

They are divided into two categories as deterministic and probabilistic. In some

sites, at each location receiver gets one RSSI value and radio maps storing only one

value is called deterministic. However, in most of the cases, because of reflections of
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Figure 1.1. Deterministic radio map Figure 1.2. Probabilistic radio map

electromagnetic waves from the walls and obstacles, different RSSI values are measured

by the receiver. Radio maps storing probability distribution of RSSI values are called

probabilistic.

Radio maps can be three or four dimensional depending on the representation of

locations. Though, it is more logical to write a location in three dimensions (x, y, z),

it is very hard to visualize a map with four dimensions. Figure 1.1 is a deterministic

radio map example displaying RSSI values drawn as a surface and standard deviation

drawn with a wireframe. On the other hand, drawing probabilistic maps is difficult

because at each location there are multiple values. Therefore, they can be visualized

with a heat map as in Figure 1.2. At each location summation of the probabilities over

the RSSI values should be one.

1.2. State of Art

One of the most leading studies is RADAR [5]. They collected signal strength

information transmitted from three base stations at 70 locations. First, they generated

a deterministic radio map by taking the mean signal strength at each location. Fin-
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gerprint at a location is in the form of ss = (ss1, ss2, ss3) where ss1, ss2, ss3 are the

signal strengths coming from three base stations. When they measured a new signal,

they calculated the Euclidean distance between the signal strength vectors at the loca-

tions, where they collected data. They selected the one which minimizes the distance

between the newly measured signal and the signal corresponding to that location. Af-

terwards, they selected the k-nearest locations and took the average location. Nearest

Neighbor technique gives 2.94 meters median resolution whereas selecting four nearest

neighbor increases the median resolution to 1 meter. As a second approach, in order

to reduce the data measurement cost, they model the propagation of signal with the

Wall Attenuation Model (1.1) which is an updated version of the Floor Attenuation

Factor model suggested in [16].

P (d) = P (d0)− 10n log
( d
d0

)
−

nW nW < c

c αWAF otherwise

(1.1)

where P (d) is the power of the propagated signal at distance d, P (d0) is the power at

reference distance d0, nW is number of walls between transmitter and receiver. aWAF is

the wall attenuation factor and c is the number of walls up to which aWAF is taken into

account in the model. They determined the parameters with regression and calculated

signal strengths based on these parameters at a grid of locations. Using this grid of

location as radio map, they followed the nearest neighbor technique and got 4.3 meters

resolution.

In [9], they constructed a probabilistic RM from RSSI observations collected at

275 locations. For location estimation, they focused on computing probability of loca-

tions given RSSI observations p(l|r). For being unbiased, they considered prior location

distribution as uniform distribution, from the Bayes rule, posterior distribution is pro-

portional with the likelihood probability p(r|l). For likelihood probability they used

two probabilistic location estimation techniques called Kernel method and Histogram

method. In the kernel method, the probability of RSSI observation of a given location
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is modeled with a Gaussian kernel function.

p(r|l) =
1

n

∑
li=l

K(r, ri)

K(r, ri) =
1√
2πσ

exp

(
− (r − ri)2

2σ2

) (1.2)

where n is the number of measurements in the location l, i is the index of RSSI

measurements and finally σ is the parameter of the kernel function which changes the

smoothness of the kernel. When a new RSSI is observed, p(r|l) is computed from

Equation 1.2 and location giving the maximum likelihood is selected. On the other

hand, in histogram method, they considered the number of bins and the boundary

values of bins as the parameters of their model and found the optimum values for

them with Bayesian estimation. Estimating these parameters resuls in estimating the

probability density of observations given locations, p(r|l). When they compared the

localization performance, they concluded that with the histogram method they find the

location with an error of 1.45 meters on average, whereas with the kernel method they

get 1.56 meters accuracy. Finally, they remarked that these two probabilistic methods

outperform the Nearest Neighbor method which gives 1.6 meters accuracy.

In [17], RSSI data coming from bluetooth low energy transmitters was collected

from 8 different locations in an environment. They handled the localization problem

as a multi-class classification as they think each location as a class. Therefore, they

trained a neural network with the RSSI values and found the value is coming from

which one of the locations. If the neural network gives the same output consecutively

n times, they look for the possibility of location as a double check. They did it by

checking if the new location is close to the previous known location. If they found a

position next to the previous one, they accept that they found the new location. With

this method, they achieved the mean positioning accuracy of 0.5 meter.

In [11], they approached localization problem with fingerprinting based on neural

networks. They collected channel impulse response (CIR) information including fea-
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tures such as the total energy over CIR, the total energy over the strongest received

path, delay, delay associated with the percentile of the received energy and TOA at 302

locations. They discarded some fingerprints with link quality indicator (LQI) metric

which computes the ratio of the maximum signal amplitude to the maximum noise

amplitude. They fed CIR information to a single layer neural network to predict the

position. After trying different feature combinations as input, they concluded that

using the total signal energy together with TOA, they could achieve 0.384 meter mean

accuracy. On the ground that the fingerprinting procedure is costly, they also sought

how fingerprint size effects the position accuracy and they demonstrated that there is

no significant improvement if 50% of fingerprint is used as training instead of 25%.

In [12], they used bluetooth low energy beacons for transmitting radio frequency

(RF) signals because of their low energy consumption hence high battery life. They

collected 200 measurements from 9 beacons at 36 different locations. They gave the

maximum RSSI value from these measurements to the deep neural network consisting

of two hidden layers. They got 1.25 meter accuracy on average.

In [15], they applied artificial neural networks and probabilistic fingerprinting for

indoor positioning. For the offline phase of fingerprinting, they used an altered path

loss model which is stated as

P (d) = P (d0)− 10n log
( d
d0

)
−Xσ

Xσ ∼ N (0, σ)

(1.3)

where P (d) is the power of the propagated signal at distance d, P (d0) is the power at

reference distance d0, n is the path loss exponent and Xσ is the shadowing factor which

is considered as a Gaussian variable with zero mean and σ standard deviation. They

computed propagated signal power distribution in 25 locations in a test environment

with 4 APs and stored them as a probabilistic radio map. By feeding the signal power

distribution to the neural network, they estimated 2 dimensional locations. Also, they

used this probabilistic map for calculating likelihood estimation for new observations.
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When a new measurement comes, they selected 4 locations giving the maximum like-

lihood estimation (MLE) and took the average of these locations. In addition to this

approach, they selected the weighted average of 25 locations based on their likelihood

probability. They achieved 0.27 and 1 meter positioning error on average with neural

network and MLE approaches respectively.

In [13], they generated a magnetic field map with the help of Gaussian Process

method for using in the positioning problem. Positioning is handled with Sequential

Monte Carlo Method (SMC), also known as Particle Filter. For the state transitions,

pedestrian dead reckoning model is used. Combining three of them, they achieved

4.87 meter median position accuracy. Also they propose using this indoor positioning

system with WiFi and BLE fingerprints instead of magnetic field variations in order

to increase the positioning accuracy.

In [10], they proposed a novel fingerprinting based localization method aiming to

generate probabilistic radio frequency map automatically from the RSSI data. They

collected with WiFi network cards and the location data, collected with the help of

a computer vision technique, SLAM. In the offline phase they constructed a radio

map with RSSI histograms at 20 locations from 6 APs, whereas in the online phase

they made localization with nearest neighbor, kNN with weighted sum and kNN with

unweighted sum methods. To evaluate the familiarity between the newly sampled RSSI

values with the RSSI histograms stored in the radio map, both Single Value based and

Divergence based metrics are used such as mean difference, Jeffrey divergence, and

Hellinger distance. For 50% of locations, they achieved an accuracy of 1.06 meter with

nearest neighbor and Hellinger distance.

In [14], they focused on RM generation and localization with an optimized es-

timation method called Stochastic Variational Bayesian Inference (SVBI) applied to

Auto Encoders (AE). AEs are composed of two deep neural network functioning as en-

coder and decoder.They are used for denoising purposes. They proposed a hybrid AE

estimation system that generates the location and RSSI data jointly. They conducted
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their experiments in a building in which RSSI data is collected via a mobile phone at

15 locations. They generated a RM with the fingerprints at these locations and made

localization with 2.92 and 1.634 meter accuracy of Shallow Neural Networks (SNN) and

Deep Neural Networks (DNN) with 3 layers as considering baseline methods. Training

AE with SVBI, they achieved 1.82 meter mean positioning accuracy.

Generating a deterministic radio map, by taking the mean or median over RSSI

samples, causes information loss of how signal strengths change over time. Localization

with kernel methods achieve great accuracy [9] but determining an appropriate function

class is difficult. Neural networks are mostly used directly for estimating the location

given RSSI information. Moreover, prediction models are mostly based on the collected

fingerprints. To reduce the time spent on fingerprint collection, it is better to estimate

in a dense grid of locations from the collected fingerprints. Considering these previous

works and with the motivation of accurate indoor localization without collecting too

many fingerprints, we propose a novel method called Radio Map Estimation with

Neural Networks and Active Learning in three perspectives. First, we consider tracking

problem as a time series problem and model it with a Hidden Markov model (HMM)

rather than directly using neural networks for location estimation which provides us an

estimation affected by the previous locations. Secondly, we use neural networks in order

to estimate the signal distribution at any position based on the collected fingerprints.

Finally, we use a Gaussian Process (GP) for selecting the training fingerprints in a way

that we reduce the training size.

The rest of the thesis is organized as follows. In Chapter 2, we explain the

methodology. In Chapters 3 and 4, we demonstrate the radio map generation experi-

ments and tracking results respectively. In Chapter 5, we highlight the conclusion of

this thesis.
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2. METHODOLOGY

In this chapter, the methodology used behind the indoor positioning problem is

explained step by step. In the first section, two approaches to model the tracking data,

Hidden Markov Model (HMM) and particle filter are explained. As the observation

model of HMM, a radio frequency map is used and the map is generated by a neu-

ral network. Therefore, in the second section, Neural Networks (NN) are explained.

Finally, as approaches which are followed to select the training data for the neural

networks, active learning and Gaussian Processes (GP) are explained.

2.1. Tracking with Probabilistic Radio Map

We consider the tracking problem as a Hidden Markov Model as in Figure 2.1.

The Hidden Markov Model is a special type of markov chain which we consider the

latent variables while we are calculating the probability of observations. In the model,

observations are the measured RSSI values and the latent variables are locations. With

an observation at a time t, together with the previous observations, we aim inferring

the position. To do so, conditional marginal distribution, p(xt|r1:t) is calculated and

the position maximizing this probability is selected. Conditional marginal distribution

is calculated by normalizing the joint distribution of latent variables and observations,

p(xt, r1:t).

x0 x1 ... xt ... xT

r1 rt rT

Figure 2.1. Graphical Model for Tracking Problem
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p(xt| r1:t) =
p(xt, r1:t)

p(r1:t)

p(xt| r1:t) ∝ p(xt, r1:t)

(2.1)

Finding p(xt, r1:t) is a recursive process because it can be written as follows:

p(xt, r1:t)︸ ︷︷ ︸
α(xt)

= p(rt|xt)︸ ︷︷ ︸
Observation Model

t∑
i=1

p(xt−i+1|xt−i)︸ ︷︷ ︸
Transition Model

p(xt−i, r1:t−i)︸ ︷︷ ︸
α(xt−1)

(2.2)

For the transition model, diffusion motion model is selected as explained in [2].

For the observation model, we provide the probabilistic radio map which is generated

by neural networks. Provided probabilistic radio map is a lookup matrix which stores

the probability of p(r|x). When the latent variable space is too big or continuous,

particle filtering is used to get the conditional marginal distribution, p(xt|r1:t).

Particle filter uses Monte Carlo approximation with n particles. It consists of

three steps which are Initialization, Sequential Importance Sampling (SIS) and Re-

sampling (R). Since it is a sequential method after re-sampling, sequential importance

sampling and re-sampling are repeated with the newly obtained samples. At the be-

ginning, the location state at time t = 0 of particles, x
(i)
0 are sampled from a prior

distribution which is selected a uniform distribution in order to make the model un-

biased. Also weights of the particles for the initial state are equal to each other.

Afterwards, SIS and re-sampling phases starts. In SIS, importance distribution is com-

puted and particles are sampled from the computed distribution. Additionally, weights

of the particles at time t are calculated and normalized. In re-sampling phase, parti-

cles are distributed densely to the locations having higher probability and rarely to the

locations having lower probability. This procedure is repeated until all observation are

accounted.

To apply a particle filter to our problem, we need simultaneous RSSI and location

measurements in a time interval. For this purpose, we use the synthetically generated
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tracking data in [2] and evaluate the tracking performance of our probabilistic radio

map.

2.2. Neural Networks for Probabilistic Radio Map Estimation

For radio map estimation, we choose neural networks as the candidate because

there is a complex relationship between RSSI distribution measured at a location and

the location itself. Another reason is that we are looking for the RSSI distribution

instead of a single RSSI value and we know that neural networks are powerful models

used on multi class classification problems in which the output layer represents the

probability distribution of classes. We train a shallow and a deep neural network

respectively with five different feature sets, two different loss functions which are KL

Divergence and EMD2 and 25 different hidden unit size. Comparing the results of

these hyper-parameters on the validation data, we choose the best setting minimizing

the loss function.

The Shallow Neural Network (SNN) is depicted in the Figure 2.2. The input

vector is multiplied with the weights of the first layer, added a bias and the result

is fed into the hidden layer. Final layer is composed of units that represents the

probability of RSSI values ranging from −100 dB to −20 dB. Activation units in the

final layer are computed similarly as in the hidden layer. Activation unit calculation,

also known as forward propagation, is shown in Equation 2.5. By adding one more

hidden layer to SNN a Deep Neural Network (DNN) is constructed. Both models are

trained with the weights and biases initialized randomly and as zero respectively. The

optimum weight and bias values are computed with the back-propagation algorithm.

As any other optimization algorithm, it has two steps which are calculating gradients

of the loss function on the parameters (i.e. how sensitive the loss function is to the

parameters) and updating these parameters with gradients.
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k: -100, ..., -20j: 0,...,Ji: 0,...,I

Figure 2.2. Computation Graph of a Shallow Neural Network

f(x;W, b, g) = g2(W2 g1(W1

Input layer︷︸︸︷
x +b1)︸ ︷︷ ︸

Output of Hidden Layer

+b2)

︸ ︷︷ ︸
Output of Output Layer

(2.3)

where x is the input vector, W ’s are weight parameters, bs are bias parameters, g1

is the activation function in the hidden layer, and g2 is the activation function in the

output layer. For two hidden layered neural network, one more layer is added. Hidden

unit size is selected same for these layers. Therefore, the model is updated as follows:

x0

x...

xi

h(1)...

h
(1)
0

h
(1)
j

h(2)...

h
(2)
0

h
(2)
j

r ...

r0

rk

k: -100, ..., -20
j: 0,...,J j: 0,...,J

i: 0,...,I

Figure 2.3. Computation Graph of a Deep Neural Network
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f(x;W, b, g) = g3(W3g2(W2g1(W1x + b1) + b2) + b3) (2.4)

a(l) = g(z(l))

z(l) = w(l)a(l−1) + b(l)
(2.5)

where l is the index of the layer, g is the activation function, w(l) and b(l) are the

weight and bias vectors and finally a(l) is the activation unit vector in lth layer.

∂L
∂w(l)

=
∂L
∂a(l)

∂a(l)

∂z(l)

∂z(l)

∂w(l)

∂a(l)

∂z(l)
= g

′
(z(l))

∂z(l)

∂w(l)
= a(l−1)

(2.6)

where
∂L
∂a(l)

and g
′
(z(l)) are the derivatives of the loss function and the activation

function whose closed-forms change depending on the function themselves.

We conduct experiments with different input features as in Table 2.1. Feature

Set 1 is composed only of the Euclidean distance between the transmitter and the

location. Feature Set 2 includes the distance to the closest neighbor fingerprint and

its 80 dimensional RSSI distribution, p(r = −100,−99, ...,−20|xc1), as well as the

distance between the closest fingerprint and transmitter. Feature Set 3 contains the

information of Feature Set 2 for the second closest neighbor of the location. Feature

Set 4 and 5 contain the same information for the third and the fourth closest neighbor

of the location.

There are two layers other than the input layer which are hidden and output

layer, thus, two activation function are selected as follows:
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Table 2.1. Input Features

Feature Sets Features

S1 PT

S2 PF1, TF1,H1

S3 PF1,2TF1,2,H1,2

S4 PF1,2,3, TF1,2,3,H1,2,3

S5 PT, PF1,2,3,4, TF1,2,3,4,H1,2,3,4

PT stands for the distance of the position to the transmitter, PFi for the distance of

the position to the ith closest fingerprint, TFi for the distance between the ith closest

fingerprint and the transmitter and Hi for the histogram on the ith closest fingerprint,

with indexes depicting the rank of the proximity.

(i) g1 and g2 in DNN: As one of the most commonly used activation function, sigmoid

is selected for hidden layers. Sigmoid function and the derivative are as follows:

σ(z) =
exp(z)

1 + exp(z)

∂σ(z)

∂z
= σ(z)(1− σ(z))

(2.7)

(ii) g2 in SNN and g3: Based on the loss function, we use two different activation

functions for the output layer.

• To compare two probability distribution function(PDF), we need softmax

which is a normalized exponential function. It is by definition an N-dimen-

sional vector where each entry is in between [0, 1) and entries are summed to

1. Since we would like to get a probability distribution at the output level,

we decide to use softmax as the activation function at the output level.

σ(z)i =
exp(zi)∑
i exp(zi)

(2.8)

∂σ(z)i
∂z

=

 σi(1− σi) i = j

−σi σj i 6= j
(2.9)
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where i ∈ {1, 2, ..., N}

• To compare cumulative distribution functions (CDF), we can use sigmoid

again because we do not need a normalized function.

As mentioned above biases are initialized as 0 and weights are initialized with

the Glorot Initializer as [18] suggests:

Wij ∼ U

[
−6√

nin + nout
,

6√
nin + nout

]
(2.10)

where nin is the input size of the layer whereas nout is the output size of layer.

Since we predict a distribution, we need to compare two distributions and find a

metric to measure the difference between them. This is the loss function which we can

continue to optimize the parameters with in the training phase. As [19] suggests we can

compare two distributions either bin by bin or cross bins. We select Kullback-Leibler

(KL) Divergence from bin by bin methods. It’s mathematical definition is as follows:

KL(p||q) =
N∑
i=1

pi(x) log

(
pi(x)

qi(x)

)
(2.11)

where x is a discrete random variable, pi is the true probability distribution of x in

the ith value/class and qi is the predicted probability distribution of x in the ith value.

Nevertheless, as it is seen in the formula, KL Divergence has the drawback that it

compares distributions bin by bin. KL Divergence between the distributions which are

shown in Figure 2.4 and Figure 2.5 are exactly the same. Thus, we need a cross-bin

method.

KL(p||q) =
N∑
i=1

pi(x) log

(
pi(x)

qi(x)

)

=
N∑
i=1

pi(x) log pi(x)−
N∑
i=1

pi(x) log qi(x)

(2.12)
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Figure 2.4. KL Divergence between

Distribution 1 and 2

Figure 2.5. KL Divergence between

Distribution 3 and 4

As a cross-bin method, we select Earth Mover’s Distance (EMD). In an ordered

multi-class classification problem they become equivalent to Mallows distance, therefore

their closed form solution is stated as [20], [21]:

EMD(p, q) =
(1

c

) 1
l ||FP (p)− FQ(q)||l (2.13)

where p and q are original and predicted distributions to be compared, c is the number

of classes, l stands for representing the norm, FP (p) and FQ(q) are the cumulative

distribution functions defined for a discrete random variable as follows:

FQ(q) = P (Q ≤ q)

We calculate the cumulative distribution of true and predicted distribution, then get

the Mean Squared Error (MSE) between them which is equivalent to the EMD2 between

them. We train two networks with KL Divergence and EMD2 loss, find the optimum

weights. Then we predict histograms for the test data. In order to make a comparison

between these two methods, we report the EMD2 performance on the test data. We

train the SNN with the hidden units ranging from 20 to 520 by 20. While training the

network with these hidden units, we compare the loss functions results in the validation

set. To prevent over-fitting and decrease generalization error, we select the activation

unit number which gives the smallest loss on the validation data. As the DNN, we
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select two hidden layers each of which has hidden units ranging from 10 to 110 by 10.

Looking at the generalization error, we decide the best unit size of both layers for the

two layer network.

2.3. Gaussian Processes for Active Learning

To train the neural networks, we need to collect fingerprints from the specified

site. In most of the machine learning problems, data collection and labeling part

is time consuming. In the problem of radio map generation, there is a tremendous

fingerprinting cost including both setup and data collection costs. Therefore, it is

important to choose the training fingerprints in a way that we decrease the number of

fingerprints down to the number with which we achieve less than or equal positioning

error. The field of specifying how many data is required to train a prediction model is

called active learning. As an active learning strategy, we follow uncertainty sampling.

It suggests sampling fingerprints at the locations that we are the least confident of our

predictions. To model the uncertainty at locations, we use a Gaussian Process.

A Gaussian Process is composed of random variables, f ′s any finite set of which

have a joint Gaussian distribution from its definition. As it is seen in Figure 2.6, func-

tions are considered as observations whereas locations and RSSI values are considered

as latent variables. When locations and RSSI values are given, functions can be implied

and functions imply a new function value in a new location. The Gaussian Process is

formulated as follows:

f(x) ∼ N (m(x), K(x,x)) (2.14)

where

k(xi,xj) =


σf exp

(
− 1

2l2
‖(xi − xj)‖22

)
if i 6= j

σ2
n + σf exp

(
− 1

2l2
‖(xi − xj)‖22

)
if i = j

(2.15)
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x1 x2 x... x∗

f1 f2 f... f∗

r1 r2 r... r∗

Figure 2.6. Graphical Model of Gaussian Process Regression [1]

where m(x) is the mean of the Gaussian Distribution of the random variable x and

K(x,x) is the covariance function. Covariance functions are used to reflect the corre-

lation between inputs to function values. In our case, distance between the locations

make difference in RSSI values regardless of its direction. Therefore, we select Squared

Exponential function as the covariance function. Covariance matrix is composed of

k(xi,xj) entries. σf , l and σn are the hyper-parameters of the model. We find the op-

timum hyper-parameters with the gradient ascent optimization algorithm maximizing

the log marginal likelihood as in A.1

(i) σ2
n is the noise term which is added only to the diagonal elements of the covariance

matrix because the data is independent and identically distributed (i.i.d).

(ii) σf represents the coefficient of the exponential term.

(iii) Finally, l is the characteristic length scale specifying how related two locations

are based on the ratio of the squared distance between them to l2

At a new coordinate, the mapping function has the following prior

f∗ ∼ N (m(x), K(x∗,x∗)) (2.16)
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Since each function at each input value is treated as a random variable and they

are said to have a joint Gaussian distribution in GP, joint distribution can be written

as

 r

f∗

 ∼ N(m(x),

K(x,x) + σ2
nI K(x,x∗)

K(x∗,x) K(x∗,x∗)

) (2.17)

where r and x are the RSSI observations and locations. Using the marginalization

property, predictive distribution of RSSI values is computed as follows:

f∗|x∗,x, r,∼ N (µ∗ ,Σ∗)

µ∗ = m(x) +K(x∗,x)[K(x,x) + σ2
nI]−1 (r−m(x))

Σ∗ = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2
nI]−1K(x,x∗)

(2.18)

This states that only by calculating the correlation between existing locations and the

new coordinate, function value can be predicted. The output value r∗ differs from f∗

only in the sense that it has additional noise term in its covariance, Σ∗ + σ2
nI.

Predictive variance, Σ∗, is used for active fingerprint selection. At first, a random

fingerprint is selected to train the GP. Afterwards, at each step of the selection process,

the fingerprint which has the greatest variance is chosen to be included in the training

set. Retraining with the newly added fingerprint, predictive variance for the remaining

locations are calculated and this procedure continues until all selection is completed.

An important remark is that in order to model the mapping function with GP,

a single RSSI value is used as the output. Therefore, we need to take one value out

of the signal strength distribution and the best candidate is the most probable value

which corresponds to the mode of the distribution.
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3. EXPERIMENTS

3.1. Datasets and Preprocessing

We conduct our experiments on three different datasets. Each of them is explained

in the following subsections.

3.1.1. Synthetic Fingerprints

To test the proposed algorithms for radio map generation with neural networks,

we sample synthetic fingerprints that imitate the true histograms formed with the

measured RSSI data. We model a very simple toy sampler, in which the histograms

are discretized Gaussians, whose means depend on a distance measure between the

positions of transmitter(i.e. beacon), b, and the receiver, x. The mathematical model

is given as in (3.1), and the corresponding graphical model can be seen in Figure 3.1.

µ = g(‖(x− b)‖)

R ∼ N (µ, σ2)
(3.1)

We aim to generate a mean value, µ, for the Gaussian using a scaling function of the

x b

µ

r1 ... ri ... rK

σ

i : 1..K

Figure 3.1. Graphical Model of Generative Model
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Euclidean Norm of the distance, g(‖(x− b)‖). We also set the variance, σ2, to a con-

stant real number. With µ and σ2, we have a Gaussian distribution defined. To make

the distribution look like the RSSI histograms, we discretize this distribution on the

integer values in a predefined interval. We use this discretized Gaussian as the finger-

print of the beacon b on the location, x. R = {ri}Ki=1 stands for fingerprint histogram

where ri defines the probability measure of the ith RSSI value and K represents the

total number of discrete RSSI values. We assume to have a two dimensional map in

R2 : U × V where U = {0, 1, ..., 10} and V = {0, 1, ..., 10}. From this map, we selected

36 fingerprint locations equidistantly. They are divided into training, validation and

test randomly with the percent of 70-15-15. Thus, we got 25 locations as training, 5

as validation and 6 as test.

x ∈ S ×W , where S = {0, 2, ..., 10} and W = {0, 2, ..., 10}

b ∈ {(5, 0), (0, 5), (5, 10), (10, 5)}

To simulate RSSI value distribution we calculate the mean from 3.2. α and β

are set to the following numbers in order to map the scale of distance to the scale of

RSSI values. So that, at the closest location to a beacon, which has 0m distance to it,

we have the mean RSSI value as −30 whereas at the furthest location, 14.14 meter far

from it, we have the mean RSSI value as −90.

g(‖(x− b)‖) = α ‖(x− b)‖+ β

α = −4.25

β = −30

(3.2)

For RSSI values ranging from −100 to −20, we calculate the probability from the

Gaussian Distribution formula below. Room configuration and generated discrete RSSI
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distribution is displayed in the Figure 3.2.

p(r) =
1

Z
φ(r)

Z =
∑
r

φ(r)

φ(r) = exp

(
− 1

2

(r − µ
σ

)2) (3.3)

Figure 3.2. Room configuration based on synthetic data

3.1.2. Real Fingerprints

Two different areas are used for fingerprint collection. The first area, A1, is

a living room (5.28 × 6.35 m2) containing 6 Bluetooth Low-Energy (BLE) beacons,

transmissions of which are logged at 50 locations each for 24 hours [2] (see Figure 3.3).

Discrete RSSI distributions are constructed from the collected data. We use 70% of

the preprocessed data as training, and the remaining for validation and test purposes.

The training data are used for calculating the optimum weights and biases, whereas

the validation data are left for deciding the best architecture. The test data are used
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only for evaluating RM estimation performance with the specified loss functions. The

second area A2 is a home simulation environment (10.40 × 5.95 m2) [22]. Fingerprint

data are collected for 20 minutes from 6 beacons mounted on the walls of the area (see

Figure 3.4). We follow the same procedure for data manipulation, as we did for the A1

fingerprints.

Figure 3.3. Fingerprints in A1 [2] Figure 3.4. Fingerprints in A2

3.2. Environment

Executions are run on a remote computer having 8 cores of Intel Core i7 running

at 4 GHz and 8GB RAM. Neural Network model is constructed on Keras 2.1.5 [23]

using Tensorflow in its backend.

3.3. Experiments

3.3.1. Synthetic Fingerprint Experiments

In our first experiment, we train our model for a single beacon at the location

of (0,5) with different number of hidden units in (20, 520). Our loss function is KL

Divergence and our optimization algorithms are RMSProp and Stochastic Gradient



24

Descent(SGD). We run these algorithms for 500 epochs with their default learning

rates of 0.001 and 0.01 respectively. At each epoch, we pass the entire dataset to the

network one by one which means our batch size is 1. To make a reliable comparison

between RMSProp and SGD, we train a shallow neural network with these optimization

algorithms 10 times and take the mean loss. As we can see in the Figure 3.5, RMSProp

find a better optimum than SGD does and 460 is the optimum hidden unit number

minimizing the generalization error. We store the weights of 460 hidden units and use

them for the prediction of test locations.

We follow the same procedure after changing the loss function to mean squared

error between cumulative distribution functions of predicted and original distributions

which is identical to EMD2. As displayed in Figure 3.6, when trained 10 times with dif-

ferent activation units, 420 and 440 units give the minimum validation loss on average.

Again, we use the weights causing the minimum EMD2 during 10 training phase in or-

der to predict RSSI distribution for the test locations. Using KL Divergence and EMD2

Figure 3.5. KL Loss Change Figure 3.6. EMD2 Loss Change

loss functions with 460 and 420 units respectively, we demonstrate the comparison of

these two model with respect to the EMD2 between predicted and true distributions.

Figure 3.7 indicates EMD2 gives us smaller loss on average. When predictions of the

model, which is trained with EMD2 loss function, are examined one by one, it is seen

that they are well suited to the original distributions as in Figure 3.8.
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Figure 3.7. EMD2 loss calculated on the test data when model is trained with EMD2

and KL Divergence

Figure 3.8. Predictions on two test locations for the beacon at (0, 5)

3.3.2. Real Fingerprint Experiments

Due to the better results achieved with EMD2 loss and RMSProp optimization

in synthetic data experiments, we continue to our experiments with them. Also, we

keep experimenting with the number of units ranging from 20 to 520. Model estimation

success depends on training and test loss. If a model performs well on the training data

whereas poor on the validation data, it means it is over-fitted to the training data. On

the other hand, if the model does not perform well on the training data, it means it

is under-fitted. Therefore, we need to wait enough for the weights to converge their

optimum values. And, in this case, we suppose to get good predictions for training

data. Otherwise, we need to tune the features that are fed to the network. To prevent

over-fitting, we find the epoch at which validation loss starts to increase, i.e. early
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stopping point and use the weights for prediction at early stopping point.

For the test area of A1, we trained a SNN with 5 feature sets as previously

stated in Table 2.1 and 25 different unit sizes for 10 times with each beacon. To train

the model 10 times, we constructed 10 fingerprint configurations at the beginning by

dividing our data into training, validation and test fingerprints randomly and used

the same configuration to compare the results of these feature sets. To decide the

best architecture, we looked at the average validation loss over all beacons. Figure 3.9

shows that S1 yields much greater error than the remaining feature sets, meaning

that the estimations depending solely on transmission distances perform very poorly.

Among the remaining ones, S4 gives the minimum EMD2 loss with 60 units in the

hidden layer. This can be interpreted as that the best configuration of the feature sets

are constructed by the four nearest fingerprint data, transmission distances and their

histograms. On the other hand, for training the DNN, we experimented with hidden

unit sizes ranging from 10 to 100. While exploring the optimum hidden unit size, we

used the same number of units for each layer. We concluded that S4 and 40 unit is the

optimum architecture as seen in Figure 3.10. Calculated with the weights of the best

Figure 3.9. Loss of SNN in A1 Figure 3.10. Loss of DNN in A1

generalized model, the predictions for the test fingerprints in A1 resemble the original

distributions as seen in Figure 3.11 and Figure 3.12. Also, in these figures, it is depicted

that training either SNN or DNN does not result in a big difference on the predicted

distributions. Repeating the same experiments for the fingerprints collected in the A2,
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Figure 3.11. Predictions of SNN in A1 Figure 3.12. Predictions of DNN in A1

we found out that S3 and 40 hidden units gives the minimum generalization error for

SNN. Similarly for DNN, S3 and 40 hidden units for each hidden layer is observed as

the optimum architecture. Compared to the errors in A1, validation errors are in a

higher scale in A2. As a result, predictions for A2 test fingerprints, as we can see in

Figure 3.13 and Figure 3.14, fit to the original distribution worse than the predictions

for A1 test fingerprints do. As in A1, SNN and DNN does not make any difference on

the predictions of the RSSI distributions in A2.

Figure 3.13. Predictions of SNN in A2 Figure 3.14. Predictions of DNN in A2
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4. RESULTS

To evaluate the whole tracking system, we also report the trajectory estimation

errors. We first make estimations of probabilistic RMs over the entire test area by

constructing a fine grid of measurement positions chosen at 0.1 meter intervals [2].

Then we use these constructed maps as the observation distributions in the SMC filter

to estimate the trajectory points (for details on the SMC filter see [2]). To get a more

reliable score, 30 random radio maps are constructed and used to calculate the tracking

accuracy. For both areas, we generate 3 sets of 30 radio maps. One set is generated with

all of the collected fingerprints, whereas the others are generated with 70% randomly

selected fingerprints, 70% actively selected fingerprints. We apply particle filtering

with 2000 particles and 400 trajectory points in the A1 and A2. Filtering is performed

once for each RM and each time particles are initialized randomly. This prevents us

from getting poor performance because of unfortunate initialization scenarios.

We report the performance of the methods with median positioning error instead

of the mean absolute error, because errors form skewed distributions which are clearly

non-Gaussian. Constructed with different fingerprint sets with SNN and DNN, tracking

accuracy ofA1 andA2 are given in Figure 4.1. Looking at SNN results inA1, we observe

Figure 4.1. Positioning errors in A1 Figure 4.2. Positioning errors in A2
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a 2.6% decrease in accuracy when the training fingerprints are selected with active

selection instead of random selection. However, in the DNN, with active selection, we

observe a 2.6% increase in accuracy. Compared to the results in A1, median errors

are a bit higher in A2. However, we see again the decreasing effect of active selection

on the median error in both neural network models, SNN and DNN. Comparing the

performance of SNN and DNN with actively selected fingerprints in A1, the DNN gives

a lower median error than the SNN: 2.23 meter compared to 2.34 meter respectively.

Whereas in A2, using an SNN with actively selected fingerprints results in lower median

error than the DNN: 2.94 meter compared to 3.11 meter in the latter. We observe that

when the training size is decreased from 100% to 70% of data, median error increases in

both areas. It’s natural to have a higher error when we decrease the training size and

our aim was to find the best fingerprint configuration which enables us to decrease the

training size without increasing the error too much. Our results show that only having

an increase of 10% and 1.3% in the median error of two models we could decrease the

training size by 30% in A1. Whereas in A2, we achieve the same reduction on training

size with an increase of 3.8% and 2.6% in the median error of two models.

Table 4.1. Accuracy results of NNs in both areas. 50% corresponds to the second

quartile (median) error of positioning error distribution as 100% corresponds to the

fourth quartile error.
Area NN type Fingerprints 50% 100%

A1

SNN

All 2.10 3.13

Random 2.28 5.05

Active 2.34 3.20

DNN

All 2.20 2.39

Random 2.29 2.46

Active 2.23 2.44

A2

SNN

All 2.83 3.26

Random 3.21 4.31

Active 2.94 4.21

DNN

All 3.03 4.04

Random 3.22 3.68

Active 3.11 4.89
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5. CONCLUSIONS

In this chapter, the contributions of this thesis are listed and explained in detail.

(i) Considering the localization problem as a time series problem and modeling it

with a Hidden Markov Model

(ii) Probabilistic radio map estimation with the help of neural networks

(iii) Reduction in fingerprint size with the help of active learning

First of all, most of the state of art approaches do not take localization problem

as a time series problem. This results in the predictions of current location without

considering the previous location information. However, being in two distant locations

at time (t) and (t− 1) is not possible. Therefore, in this thesis, localization problem is

considered as a tracking problem and modeled with a Hidden Markov Model.

For the observation model, the probability of RSSI observations given location

is required. Calculating this probability for each location in a space is a long and

costly process. Here comes the second contribution which is estimating this value for

each location in a fine grid with neural networks. During the fingerprinting phase in

two test areas, A1 and A2, RSSI values are collected. Giving the collected fingerprint

information as well as the location information as in the Table 4.1 as input, a neural

network is able to estimate the fingerprints in the remaining locations. In this way,

the burden of collecting RSSI data at each and every location in the space is omitted.

The estimated fingerprints are stored in a probabilistic radio map to be used in the

observation model of HMM later on. Most of the current studies do not focus on

estimating fingerprints using the collected fingerprints. Therefore, they could make

predictions for locations based on the collected fingerprints which are most of the time

a limited amount.
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The last but not the least contribution is the active selection of locations for

fingerprint collection. In the most of the state-of-art approaches, locations to collect

fingerprints are selected in a way that they cover the whole area. However, selecting the

locations at which the model is uncertain about its prediction helps us to decrease the

number of fingerprint locations. Our results prove that when we pick the fingerprint

positions in an active manner, we estimate locations with a deep neural network better

than we do with the randomly selected fingerprints. In this way, no more time is spent

to collect fingerprint at the locations that does not increase the localization accuracy

by no more than 2.6% in two test areas.

We reduced training size by 30% with a small increase in the median error by

following uncertainty sampling approach. As a future work, other techniques than

Gaussian Processes can be explored to model the uncertainty. In addition, various other

active learning strategies such as balanced exploration and exploitation, expected error

reduction and exponential gradient exploration would be followed to select fingerprints.

Conclusion of this thesis would be more comprehensive if these strategies would be tried

and their results in the reduction of fingerprint size would be included.
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2. Daniş, F. S. and A. T. Cemgil, “Model-Based Localization and Tracking Using

Bluetooth Low-Energy Beacons”, Sensors , Vol. 17, No. 11, p. 2484, 2017, http:

//www.mdpi.com/1424-8220/17/11/2484.

3. Liu, H., H. Darabi, P. Banerjee and J. Liu, “Survey of Wireless Indoor Positioning

Techniques and Systems”, IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), Vol. 37, No. 6, pp. 1067–1080, November 2007.

4. Djuknic, G. M. and R. E. Richton, “Geolocation and assisted GPS”, Computer ,

Vol. 34, No. 2, pp. 123–125, February 2001.

5. Bahl, P. and V. N. Padmanabhan, “RADAR: an in-building RF-based user location

and tracking system”, Proceedings IEEE INFOCOM 2000. Conference on Com-

puter Communications. Nineteenth Annual Joint Conference of the IEEE Com-

puter and Communications Societies (Cat. No.00CH37064), Vol. 2, pp. 775–784

vol.2, 2000.

6. Battiti, R., T. L. Nhat and A. Villani, Location-Aware Computing: A Neural

Network Model For Determining Location In Wireless LANs , Tech. rep., 2002.

7. Fang, B. T., “Simple solutions for hyperbolic and related position fixes”, IEEE

Transactions on Aerospace and Electronic Systems , Vol. 26, No. 5, pp. 748–753,

September 1990.

8. Peterson, B. B., C. Kmiecik, R. Hartnett, P. M. Thompson, J. Men-

doza and H. Nguyen, “Spread Spectrum Indoor Geolocation”, Navigation,

Vol. 45, No. 2, pp. 97–102, https://onlinelibrary.wiley.com/doi/abs/

10.1002/j.2161-4296.1998.tb02374.x.



33
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APPENDIX A: MATHEMATICAL DETAILS

A.1. Hyper-parameter Optimization with Gradient Ascent Algorithms

We compute the log marginal likelihood term and its derivatives based on the

parameters of the kernel function used in our Gaussian Process. First we compute the

likelihood term marginalized over functions.

p(r|x, θ) =

∫
p(r|f,x, θ)p(f |x, θ) df (A.1)

where θ is the hyper-parameter tuple, (l, σf , σn).

(i) Likelihood term: p(r|f,x, θ) is equivalent to p(r|f) since r becomes only condi-

tional on f when f is given. Therefore,

p(r|f,x, θ) = p(r|f) = N (f, σ2
nI)

(ii) Prior term:

p(f |x, θ) = N (µ(x), K(x,x))

as defined in 2.14.

By using the rule of product of two Gaussians, A.7 formula in [1], we get

p(r|x, θ) ∼ N (0, K + σ2
nI) (A.2)

Taking the log of it,

log(p(r|x, θ)) = −1

2
rT (K + σ2

nI)−1r − 1

2
log |K + σ2

nI| −
n

2
log(2π) (A.3)
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A.1.1. Derivative of Log Marginal Likelihood:

In A.3, only (K + σ2
nI) term includes the hyper-parameters, therefore derivative

is calculated as:

∂ log(p(r|x, θ))
∂θ

=
1

2
rTK−1r

∂Kr

∂θ
K−1r r − 1

2
tr(K−1r )

∂Kr

∂θ

Kr = K + σ2
nI

(A.4)

From αTAα = tr(ααTA),

∂ log(p(r|c, θ))
∂θ

=
1

2
tr((ααT −K−1r )

∂Kr

∂θ
)

α = K−1r r

(A.5)

(i) When θ is l:

∂Kr

∂l
= σf exp

[
− 1

2l2
‖(x− x′)‖22

][
‖(x− x′)‖22

l3

]
(A.6)

(ii) When θ is σf :

∂Kr

∂σf
= exp

[
− 1

2l2
‖(x− x′)‖22

]
(A.7)

(iii) When θ is σn:

∂Kr

∂σn
= 2σnI (A.8)




