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ABSTRACT

PARALLEL POINT CLASSIFICATION INTO

GEOGRAPHICAL REGIONS

The amount of data generated by social media, social networks and distributed

platforms such as blockchain, have reached quite high levels. There are various use-

cases to process this huge amount of data. One is to classify the geo-tagged data

which is produced by social networks into geographical regions. We propose an effi-

cient parallel classification approach and implement a classifier tool which is capable of

processing huge geographical point data in parallel. Twitter data from five major cities

of Turkey is used as classification test set considering the density of the regions. There

are important factors effecting the classification performance such as spatial indexing

and parallelization strategy. Hierarchical Triangular Mesh (HTM) and R-Tree spatial

indexes are used for indexing regions and open-source Apache Spark and Kafka plat-

forms are used to implement our classification application in a distributed and scalable

environment. The mentioned platforms are designed to handle huge data streams and

quickly respond varying volume of data traffic. Benchmarks are provided in thesis

to show effectiveness of our approach against built-in spatial index of Microsoft SQL

Server and approach of Kondor et al. [1] in which HTM is applied on SQL Server. Our

method has significant advantage since it is built upon Apache Spark platform which is

crafted for processing chunks of data stream in real-time, however other approaches are

based on SQL Server which cannot efficiently process massive streaming data. 1.6-4.5

fold speed-ups have been obtained in classification performance. The speed-up factor

may change according to the query set size. Since our system has a scalable archi-

tecture it is possible to expand query set to billions of records. Apart from improved

performance, our method is cost-effective since Twitter data collected over a month

can be processed on cloud in around 3 hours with a small cost.
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ÖZET

NOKTALARIN COĞRAFİ BÖLGELERE PARALEL

SINIFLANDIRILMASI

Sosyal medya, sosyal ağlar ve blokzincir türevi dağıtık platformlar tarafından

üretilen veri miktarı son yıllarda hissedilir seviyede artmıştır. Veri miktarının bu

derecede artması ile, toplanan verinin analiz edilmesi ve işlenmesi ile ilgili uygula-

malar ortaya çıkmıştır. Bu uygulamalardan bir tanesi coğrafi olarak etiketlenmiş

olan verinin hangi coğrafi bölgeye ait olduğunun efektif ve hızlı bir biçimde bulun-

masıdır. Bu çalışmada, coğrafi noktaları coğrafi alanlar üzerine paralel sınıflandıran

bir metod önerilip, bir yazılım aracı olarak kodlanmıştır. Kodlanan yazılımı test et-

mek amacıyla Twitter üzerinden, nüfus yoğunluğunu hesaba katarak Türkiye’nin en

yoğun bölgelerinin beşinden veri toplanmıştır. Coğrafi sınıflandırma performansını etk-

ileyen en önemli faktörler kullanılan coğrafi endeks ve parallelleştirme stratejisidir.

Uygulamamız, Hierarchical Triangular Mesh (HTM) ve R-Tree coğrafi endekslerden

ve açık kaynak kodlu, dinamik veri miktarina göre uygulama ihtiyaçlarına cevap veren

Apache Spark ve Kafka platformlarından faydalanılarak ölçeklenebilir ve dağıtık yapıda

geliştirilmiştir. Microsoft SQL Server’in sunduğu coğrafi endeks ve Kondor et al.

[1] tarafından HTM ile SQL Server’da geliştirilen metod, önerdiğimiz metod ile per-

formans yönünden karşılaştırılmıştır. Uygulamamız, veri akımlarını hafıza üzerinde

işleyen Spark üzerine inşa edildiği için, akımları efektif olarak işleyemeyen İlişkisel

Veri Yönetim Sistemi bağımlı yaklaşımlara göre yüksek performans göstermektedir.

Geliştirdiğimiz metod ile sorgu kümesinin büyüklüğüne bağlı olarak sınıflandırma süresi

1.6 ila 4.5 kat arasında hızlanma göstermiştir. Ayrıca tasarladığımız sistem, ölçeklenebilir

mimarisi sayesinde milyarlar mertebesinde veriyi işleme olanağı sunmaktadır. Meto-

dumuz performans artırmanın yanında maliyeti azaltmaktadır. Zira üç saat gibi kısa

bir sürede bulut üzerinde bir aylık Twitter verisini çok düşük maliyet ile sınıflandırır.
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1. INTRODUCTION

Point classification addresses the problem of mapping geographical points into

the regions on Earth surface where the points are contained in. In context of point

classification, the region and points could be defined with various coordinate systems

however most commonly used one is latitude/longitude based spherical coordinate sys-

tem which is used in this thesis work. A point corresponds to a latitude/longitude pair

showing a location on sphere. On the other hand, regions are represented with poly-

gon shapes that correspond to an array of latitude/longitude pairs defining an enclosed

area on sphere. In Figure 1.1 shows basic polygons on an arbitrary region where points

inside these polygons and their corresponding classification mappings are shown.

Figure 1.1. Basic classification example of randomly selected simple polygons and

points.

At first glance, point classification problem looks straightforward. However, if we

consider that the volume of spatial data generated by social networks like Twitter is

increasing rapidly, classification of big volume of spatial data in reasonable time and

resources becomes a quite complex challenge. According to the recent statistics, on

Twitter platform there are around 330M active users and the total number of tweets

produced in a day is around 500M which corresponds to an enormous amount of data on

the network. On the other hand, point classification and spatial search operations such
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as range or k-nearest-neighbour queries have been increasingly popular since extracting

information from raw location data proposes valuable analytic outcomes. To overcome

the complexity of problem and effectively classify the large data sets, the general ap-

proach of research studies is to apply spatial index structures. Also, processing the

large sets in parallel improves performance and community Cloud environments pro-

vide economical infrastructure to the parallel classification. In this study, we propose

a parallel point classification method that works on Cloud environment and exploits

from spatial indexing strategies. The spatial indexing strategies that we use are Hier-

archical Triangular Mesh (HTM) [2] and R-Tree [3] indexing. In Chapter 2, we provide

details of HTM and in Chapter 4 we get into details of performance effect of HTM and

R-Tree structures and architectural and procedural details of our method.

In context of our approach, the first step is to generate HTM spatial index struc-

ture over administrative regions which are loaded as polygons. In Figure 1.2, we provide

a visual illustration of HTM index grid and a complex polygon residing over the grid.

Figure 1.2. Polygon of Istanbul on HTM index grid with HTM hierarchy projection.

Besides the HTM index we generate an R-Tree index with the very same polygons.

The reason behind the R-Tree index generation is to resolve partial trixel problem of

HTM indexing structure. In further chapters, HTM internals and partial trixel problem
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are discussed in detail. Briefly, HTM subdivides regions into trixels and there are

three different trixel types which are full, partial and outer trixels. The full and outer

trixels are straightforward since the prior one is completely inside the indexed region

and the latter one is outside the region. However, partial trixels partially intersect

with the region. That is why for points that are located inside partial, trixel creates

ambiguity from classification task perspective. Figure 1.3 depicts an HTM index grid

covering a region which includes partial trixels marked with green color. In case,

we have two neighboring regions both having the same partial trixel in their index

structure, this situation affects classification accuracy slightly. Even if the effect is not

major, ambiguity could cause flaw in results. To overcome partial trixel problem, we

exploit supportive R-Tree index which adds constant time complexity to the overall

time complexity of method since partial trixels can be part of two or at worst-case

three regions.

As it is mentioned before, spatial indexing techniques are important and necessary

with regards to geospatial data processing performance. Besides HTM and R-Tree

approaches, there are wide variety of index structures created in research studies about

Hierarchical Equal Area isoLatitude Pixelisation (HEALPix) [4], quad-tree and more

R-Tree variations. Among indexing approaches, HTM provides a uniform, globally

continuous and hierarchical representation of regions on sphere, so that it is found to

be beneficial for many academic studies. With the uniformly generated trixels by the

HTM indexing approach, regions in polygon shape are represented by a sequence of

trixel IDs namely HTM IDs. As of the continuous structure, it is possible to keep these

IDs as intervals, basically pairs of 64-bit integer numbers.

HTM ID intervals can form a basis of representation for regions as well as geo-

graphical points so that points could be mapped to unique HTM IDs. Our technique is

to store the generated HTM IDs for all regions in a space efficient and serializable data

structure called interval skip list which copes with distributed processing environment.



4

Figure 1.3. HTM index grid with partial trixels between two neighboring regions

marked as green.
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Interval skip list is a variation of the well-known data structure skip list. For

our method, standard interval skip list is not sufficient hence a customized version is

implemented. Besides HTM index, R-Tree indexes are stored in a serializable data

structure which can be shared across cluster workers.

Streaming huge amount of data and distributing the individual blocks of stream

among backing workers to classify points is a complex operation. In order to cope

with this challenge, we use Apache Kafka cluster as a mediator layer between client

and backing Apache Spark [5] workers. Kafka is one of the most scalable, robust

and open-source messaging platform among various queuing solutions. Architecture of

Kafka is organized around a few concepts such as topics, producers, consumers and

brokers. Kafka topic is a structure that holds stream of records. Producers by analogy

are clients writing messages to the topics and consumers read these messages from the

topics. Lastly, brokers are workers inside the cluster and they keep topics or small

portion of topic records which will be explained later. For each and every client that

communicates with point classifier server should send messages and expect response in

a specific format. On the other hand, for each client, a unique producer and a unique

consumer Kafka topic are defined so that any client could pump data stream upon

system through an exclusive channel. ”ProducerRecord” object of Kafka is taken as a

communication template for our program. In Figure 1.4, an overview of asynchronous

communication between client and Kafka is depicted with input, output templates and

example message content. Basically, the query input to our system is composed of a

unique key and an array of latitude/longitude pairs so that the system responds the

query with the same unique key and classification result of points which is an array of

corresponding region IDs.

1.1. Contributions of Thesis

Spatial indexing on geographical data helps applications processing spatial data

to achieve high performance on classification and query operations. RDBMS vendors

provide built-in spatial index support for increasing response time of SQL join oper-

ations. However, RDBMS systems do not perform well in streaming data operations
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Figure 1.4. Application Input/Output example and template.
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because of their disk I/O bounded nature and necessity to have data in a fixed model

or schema.

The aim of this study is to develop an efficient parallel point classification mech-

anism using HTM and R-Tree indexes and allow streaming point data to be classified

in a fast and scalable parallel execution environment. Scalability and accessibility of

a system are significant requirements for being able to process this high volume of

streaming data. In this context, programs that are working on Apache Spark platform

perform well against high data volumes given that Spark is specialized to process data

in-memory. What is more, the data to be processed is allowed to be schemaless unlike

it is in RDBMS. By using Spark platform in our method, our approach outperforms

conventional RDBMS based systems. In order to show performance improvement, we

conduct tests specifically against Microsoft SQL Server which is a well-known RDBMS

by using its built-in quad-tree based spatial index.

SQL Server has limitations on the aforementioned built-in index scheme besides

having restrictions in processing data streams. Spatial index of SQL Server constructs

a hierarchical decomposition of a surface with a four-level grid hierarchy. Each level

decomposes the predecessor level so each-level contains a complete grid of successor

levels. On a given level all grids have the same number of cells along columns and

rows of each grid and each cell in a level are equal sized. Thus, a 4× 4 grid produces

65,536 cells which is a hard limit for 4× 4 configuration. Number of grid cells can be

set 4× 4, 8× 8 or 16× 16. Thus, it provides 32-bit index depth at most, which is less

than 40 bit deep hash limit of the HTM indexing. As another constraint, SQL built-in

index has a hard limit of 8192 index entries per geography object. These limitations of

SQL built-in index cause less effective classification performance and decrease accuracy

of results. Limitations on indexing and inappropriate nature for processing streaming

data are main problems of RDBMS based systems. Hence, our method works well with

streaming data and outperforms the Microsoft SQL Server built-in spatial index and

HTM based indexing strategy employed on SQL Server. All in all, contributions of

thesis can be summarized as follows.
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• A parallel and scalable point classifier is implemented with HTM Indexing ap-

proach.

• Performance improvement is obtained on spatial join operation with a modified

version of customized interval skip list data structure which stores regional HTM

indexes.

• Partial trixel problem of HTM indexing strategy is resolved by exploiting sup-

portive R-Tree index structure.

• Benchmarks are collected against Microsoft SQL Server 2012 built-in spatial index

and Kondor et al. [1] HTM indexing approach on SQL Server.

• Performance metrics of parallel point classifier for Tweeter data are collected by

using variable sized resource configurations on AWS Cloud.

• Benchmarks for parallel point classifier by applying snappy [6] compression algo-

rithm to messages travelling on communication channel between query client and

Kafka cluster that streams spatial data to be classified, are provided.

The organization of the remainder of this thesis is as follows.

Chapter 2 details background information for index and data structures and tech-

nologies used in our thesis scope. HTM index structure and interval skip list are

analyzed. In addition, implementation details expressed as pseudocodes are given.

Next, relevant academic works are investigated through in Chapter 3. Research

methods conducted by using HTM Indexing, Hadoop and Apache Spark are presented

in this chapter.

Chapter 4 gets into more detail on our proposed method by providing more

implementation details and explaining how platforms and layers interact each other,

meanwhile giving information about flow of application.

Chapter 5 introduces the benchmarking strategies and provides results of our

tests with different resource configurations and strategies. We also present comparison

of our results with those of other approaches.
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Chapter 6 concludes the thesis with a wrap-up of topic. Possible areas of research

as extensions to our current approach are discussed and several ideas are given in this

chapter.
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2. BACKGROUND WORK

In this section, internals of HTM Indexing strategy and customized interval skip

list data structure which is implemented as part of this thesis are explained. Imple-

mentation details and platform overviews related to Apache Kafka and Spark platforms

are provided. Finally, a discussion on Amazon Cloud and EMR (Elastic Map Reduce)

is provided superficially.

2.1. Hierarchical Triangular Mesh Internals

Spatial indexing has been a complex problem so that various geographical in-

dexing strategies are proposed in research studies to store and access spatial data in

most optimized way. Several database providers such as Microsoft SQL Server and

MongoDB employ spatial index structures with built-in support. Besides the well-

known database vendors, JTS topology suite library [7] provides geometry operations,

algorithms in computational geometry and spatial index structures such as R-Tree and

quad-tree. HTM indexing strategy that indexes a sphere which is employed in our

study is created by Szalay and Grey [8] who are working for Microsoft Research. HTM

indexing approach is applicable on both geographical objects on the Earth and celestial

sphere which is an abstract sphere having an arbitrarily large radius taking Earth as

center. Therefore, HTM indexing is well-suited on astronomical applications as well

as spatial data processing applications such as classification of huge data generated

by social networks like Twitter in our study and blockchain applications having geo-

graphical tags on transactions. The HTM indexing is initially linked to Microsoft SQL

Server which is a relational database server within a study of Gray et al. [9].

HTM is a multilevel and recursive decomposition of the sphere. In order to

build a quad-tree based HTM index, the strategy is to subdivide sphere into evenly

sized triangles. The triangulation of sphere begins with an octahedron having eight

faces. Edges of the octahedron are projected on sphere and four spherical triangles are

generated on Southern hemisphere and the remaining four are on Northern hemisphere.
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Initial level of index is 0 which corresponds to the octahedron having eight faces and

can be subdivided repeatedly in a recursive manner. Number of triangles at a desired

depth d can be calculated with the formula 2.1. HTM index structures starting from

level 0 which embodies 8 triangles up to level 5 which has 8192 triangles are illustrated

in Figure 2.1. In the limit, the subdivision operation recursively approaches to the

sphere with finest detail.

NumOfTriangles(d) = 8× 4d−1 (2.1)

Figure 2.1. HTM index in ascending resolution level.
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Triangles of HTM index which are also called as trixels and next hierarchical level

is obtained by subdividing trixels into four triangles of nearly equal size. Subdivision

operation could be repeated infinitely, but the practical limit is level 30 since a 64-bit

integer can hold at most in level 30 trixel ID. Trixed ID is a unique identifier which maps

into triangles at different resolution level. Trixel ID which can also be called as HTM

ID, is an integer value encodes the depth and location of trixel ID. The encoding of

regions or address points is provided by HTM library [10]. The HTM naming strategy

is as follows. Level 0 trixels that forms the 8 faces of octahedron are named according

to the hemispheres they belong to. Naming of trixels on Northern hemisphere has a

prefix of N and the ones on Southern hemisphere has prefix of S. Initial four trixels

on north has names of N0, N1, N2, N3 and similarly the ones on south has names S0,

S1, S2, S3. As HTM is a quad-tree variant, each trixel has four children. The children

of each trixel is named by appending 0, 1, 2, 3 numbers to the parent trixel name.

The labeling implies that smaller trixels have longer labels and the length of the label

indicates its HTM ID level. Encoding strategy of the HTM node names into integer

HTM IDs is done by appending two bits for each level and initially encoding prefix

N as 11 and S as 10. As an example N11 encodes as binary 110101 and decimal 53.

Child trixel numbers are added as a decimal number between 0 and 3 to the name

and binary values between 00 and 11 to the HTM ID. The ID corresponds to a 64-bit

integer value from Java perspective. 64-bit integer can hold up to level 30 trixel IDs,

but for practical purposes level 20 trixel IDs which corresponds to a precision around

25 meters are used within the latest HTM library and in our study. The whole sphere

can be represented with 8∗420 = 8.796e+12 trixels (more than eight and three quarter

billion) in level 20 resolution.

Trixels at each level can be represented with a name or an interval of descen-

dant trixel names. As an example the four descendants of trixel with name N33 are

N330, N331, N332, N333, form the decimal interval 252-255. By using interval rep-

resentation, regions with variable sized trixels can be stated uniformly. Since trixels

subdivide the sphere uniformly, any location is inside a single trixel so if we consider

the resolution of level 20 trixels, HTM ID of a point is an accurate approximation to

the real position. Strategy of mapping points to the trixels is exploited in classification



13

algorithm. Similar to the locations, regions can be expressed with trixels, but with a

set of them intersecting with region. HTM library executes an algorithm to generate

HTM ID intervals namely HTM index for a region. Algorithm starts with octahedron

having eight level 0 trixels and recursively analyze unprocessed descendants and mark

them with a specific tag. The trixels marked with inner tag are completely inside that

region, the reject ones are outside the region and partial ones are on the frame of poly-

gon. Inner trixels are added directly to the regional index and reject ones are discarded

immediately. Partial trixels are split into four children which are processed further.

Eventually the algorithm reaches out to a specified depth and trixels are tagged as

inner or partial at desired level of the HTM index of region. In Figure 2.2, level 20

HTM ID intervals generated for randomly selected simple polygons are depicted.

HTM library supports three different coordinate systems. One of which is LatLon

spherical coordinate system which takes prime meridian (Greenwich) as initial point

and represents points with latitude and longitude parameters. The second one is an

equatorial system which is a celestial coordinate system having right ascension and

declination parameters (ra-dec) and which is mostly used by astronomers. The last

one is a cartesian coordinate system which is based on unit vectors representing the

axes of points, i.e., the unit vectors in the direction of the x, y and z define points.

2.2. Interval Skip List Internals

Skip list is a data structure that provides quick search within an ordered nodes

sequence. In this study, we use a custom implementation of skip list to store intervals

of HTM IDs instead of a single value on each node. Interval skip list allows fast

search by preserving a hierarchy of linked subsequences of intervals with each successive

interval skipping over less elements than the previous one as it is illustrated in Figure

2.3. Search operation starts in the sparsest interval subsequence until two consecutive

intervals have been found. One of these intervals could be smaller and the other one

could be larger than search key, or as a terminating condition it contains the key

searched for. Via the linked hierarchy, these two elements link to elements of the next

sparsest subsequence, where searching is continued until finally we are searching in
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Figure 2.2. Level 20 HTM ID intervals generated for randomly selected polygons.
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the full sequence. There are two known approaches to skip over elements which are

probabilistic [11] and deterministic [12]. Skip lists are formed with layers containing

linked lists and arrays. Each node contains an array of reference to the nodes with

larger values and structure contains ordered sequence of intervals. Each higher layer

is sparser than the predecessors and skip over more nodes. Nodes residing in ith layer

resides in i + 1th layer with a defined probability value p in probabilistic version. The

generally used p values are 1
2

and 1
4
. On average, each element appears in 1

1−p
lists and

the head element which is used as an initial dummy node appears in all lists. Totally

skip lists contains log 1
p
n lists on average.

Figure 2.3. Interval Skip List Visual Representation.

Interval skip list implementation has significant advantages over conventional skip

lists in terms of space and time as it contains fewer elements by keeping intervals. To

be more accurate, HTM IDs given in Table 2.1 which represents a polygon covering

Ankara (one of the densest regions in Turkey), correspond to 805306349 nodes in a

traditional skip list. By modification into interval skip list the node count decreased
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to 19. If we calculate the space allocation of the traditional skip list including the

805306349 nodes by taking into account the values kept in nodes that are of long data

type, we reach out 805306349 * 8 bytes that corresponds to 6143 MB space. In contrast,

interval skip list needs only 2 * 19 * 8 byte corresponds to 304 bytes space.

Table 2.1. Level 20 HTM ID intervals covering Ankara region which are stored inside

interval skip list nodes.

HtmID Start HtmID End

17338782973952 17338917191679

17338933968896 17338950746111

17338984300544 17339051409407

17360257810432 17360274587647

17360291364864 17360324919295

17360408805376 17360425582591

17360475914240 17360492691455

17368847745024 17368914853887

17368931631104 17369116180479

17369720160256 17369787269119

17369820823552 17369837600767

17369854377984 17369871155199

17369887932416 17369921486847

17544941404160 17544958181375

17566416240640 17566449795071

17566466572288 17566483349503

17566516903936 17566533681151

17566651121664 17566667898879

17575006175232 17575022952447
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Before conducting analysis on interval skip list search algorithm complexity, we

briefly explain how search operation is working and give pseudocode of interval search

in Figure 2.4.

Algorithm1 intervalSkipListSearch(skipList, key)

Input: List skipList in interval skip list form,

Key to search in skip list in number type.

Output: Node x of interval skip list contains key inside interval or NIL if not found.

result := Clone of skipList→head

currentNode := skipList→head

level := head→level (Loop count is number of longest level)

while level >= 0 do

while interval upper bound of currentNode link to next one at level position > key

do

currentNode := currentNode→links[level]

end while

result→links[level] := currentNode

level := level - 1

end while

currentNode := result[1]

if interval upper bound of currentNode >= key and interval lower bound of currentNode

<= key then

return currentNode

else

return NIL

end if

Figure 2.4. Interval skip list search algorithm.

Interval skip list operation of searching for a specific element starts at the top

element in the uppermost list. Then, it proceeds horizontally until the desired element

is found inside the interval of a node or greater than the end of interval. If the target is

inside the interval of node, that means the target node is found and the found interval

is returned. Otherwise, the operation is repeated with cursor moving down to the list

one level below and continue to compare interval values with target value until it ends

up with final node of bottom list. Expected number of searching an element in each

piece of linked list is at most 1
p
. If we consider the expected total cost of an overall
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search, that becomes
log 1

p
n

p
which is O(log n) , in case p is constant. [11] Skip list bears

trade off between storage costs and search costs associated to the value of constant p.

Average search complexity for both interval skip list and skip list is O(log n) ,, but

interval skip list provides great operational efficiency as it contains far fewer nodes than

normal one. If we consider p as 1
2

and calculate number of search steps with formula
log 1

p
n

p
is 59,169 for skip list and 8,643 for interval skip lists which is approximately

seventh one for list covering Ankara.

Apart from search algorithm of interval skip list, we put an effort on algorithm

that is adding new intervals for specific region IDs. Challenging part of adding interval

is that conflicting intervals arising from partial trixels occur between neighbouring

regions. While adding intervals in skip list we take into account all edge-cases and

presented pseudocode of corresponding algorithm in Figure 2.5.

Figure 2.5. Interval skip list algorithm to add new interval.
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Figure 2.5. Interval skip list algorithm to add new interval.(cont.)



20

Figure 2.5. Interval skip list algorithm to add new interval.(cont.)

2.3. Overview of Apache Kafka

Apache Kafka can be defined as a distributed streaming platform that works as

a mid-layer to publish and subscribe to streams of records in a way similar to message

queue. Besides being a messaging platform, it possesses features such as storing records

in a fault-tolerant way and provides user-defined processing capability over records.

Kafka is beneficial in two use-cases. First is working as a real-time streaming pipeline

between applications and second one is being a layer that enables an application to

react of transform real-time streams. Kafka serves our goal in building-up a real-

time spatial data processing tool as being a geo-location data pipeline between clients

sending spatial queries and backing Spark workers processing these queries.
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Kafka platform has a lot of features to gain applications scalability and robust-

ness while reacting real-time events. Platform operates as a cluster either on private

infrastructure or on cloud and it can be distributed over multiple data centers as well.

Kafka provides APIs to establish communication between clients and cluster easily. As

a communication message template records which consist of a value, key and timestamp

are used. These records are separately stored and identified with topics. So-called Pro-

ducerAPI enables a client to publish records to topics of their selection. ConsumerAPI

allows a client to subscribe topics and process the records. Besides ConsumerAPI,

Kafka provides StreamsAPI that is specialized for transforming an application into a

stream processor which gathers input streams from multiple sources specifically topics

and produce an output stream to a single or multiple topics after transforming records.

Last core API of Kafka is ConnectorAPI is that the one allows building up reusable

components either producing or consuming records by connecting topics to existing

systems or applications. In our approach we are using Spark Streaming integration for

Kafka 0.10 version which provides parallelism an one-to-one correspondence between

Kafka and Spark partitions and access to metadata over ConsumerAPI.

It is mentioned that Kafka provides stream of records with a well-known abstrac-

tion called topics. Topic can be explained to be a category in which stream records are

published or subscribed. Kafka topics allow single or multiple subscribers to consume

written records by design. Each and every topic maintains a partitioned structure

called log. Partitions are ordered and immutable sequence of records and each record

inside a partition is represented by a sequential unique id number called the offset.

Kafka cluster is able to persist published records for a configurable period of retention.

By these offsets consumers can trace partition and reprocess past data or skip forward

again to consume or process current records. Topics may have multiple partitions span

along different cluster machines so that arbitrary amount of data can be assigned to

a partition. In our application, each topic has more partition than number of Spark

executors so that we can achieve a totally parallelized architecture. Partitions are repli-

cated across cluster servers in a configurable number for fault tolerance. Consumers

and Producers are first-class users of Kafka topics. Producers simply publish records to

a topic and even partition of their choice. If they do not specify a partition then parti-
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tion assignment of records can be done in round-robin for load balancing. Consumers

are receivers of published records in a way that one consumer in each subscribing con-

sumer group receives the record. Consumer group label is a configuration to determine

delivery strategy so that if all consumer instances belong to same group, records would

be load balanced evenly, In this sense, Kafka provides order inside each partition, but

inter partition ordering is not guaranteed. We exploit from consumer group labeling

in distributing incoming query messages evenly on processors as well.

Kafka has two different streaming models queuing and publish-subscribe. In queu-

ing model, a consumer pool may read from a single queue and records are load balanced

among consumers, in contrast publish-subscribe model is based on broadcasting record

to all consumers. Kafka generalizes these two models with the consumer group concept.

Consumer group allows user to divide up processing with a queue, on the other hand

publish-subscribe allows to broadcast messages to multiple consumer groups. Kafka

can be used as a message broker for various reasons such as buffering messages or de-

couple processing from data producers with providing better throughput, partitioning,

fault-tolerance and message compression. In case data streaming of an application is

at high level, the bottleneck of overall system becomes network bandwidth not disk

or CPU. In order to improve throughput of applications with untangling network bot-

tleneck, GZIP [13], snappy and LZ4 compression protocols supported transparently

by Kafka are promising. Moreover, Kafka allows end-to-end batch compression which

leads to very high compression ratios as compressing batch of messages together which

would be decompressed in consumer end consequently.

2.4. Overview of Apache Spark

Apache Spark is an in-memory, scalable and general purpose cluster computing

system. It provides an execution engine for processing general execution graphs. Ap-

plications can adopt framework and leverage from platform capabilities with high level

APIs provided in Scala, Java and Python languages.
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Spark programming brings several concepts into stage such as RDDs and Datasets.

Main abstraction that is given by Spark API is Resilient Distributed Dataset. It con-

tains collections of objects with partitioning all over the Spark cluster nodes. With

the RDD abstraction, parallel processing of huge collections become practical and opti-

mized. RDDs can be created based on a HDFS, HBase file or parallelizing an existing

Scala collection in driver. They can be persisted in shared memory which is to be

used across parallel operations. RDDs have support on two operations such as trans-

formation and action. Transformation is to create a dataset from an existing dataset.

Action is to retrieve values from a computation task on any dataset to driver program.

Map can be classified as a transformation which traverses each element of a dataset

and produces a RDD keeping result set. On the other hand, reduce can be classified

into action type which is aggregation of elements in a RDD using a given function and

provides result to driver program. By the transformations and actions possible bottle-

necks could occur on driver node arising from streaming large dataset are prevented by

map and reduce tasks executed merely on cluster workers. Transformation functions

are lazily evaluated during program flow. A transformation such as map is actually

computed at the time a terminating action is triggered which returns stream result to

driver program. Spark provides persist or cache operations for transformed RDDs to

prevent re-computation cost and provide quick access for multiple queries.

Another fundamental concept of Spark programming is shared variables. Shared

variables can be used in parallel execution steps. Normally Spark ships a copy for

every variable in functions that are executed within scope of tasks. In some cases,

variables are essentially shared between tasks and driver program or across some tasks.

There exists two shared variables provided such that accumulators like sums and coun-

ters and broadcast variables which caches values in memory on every cluster node.

In order to run up a Spark program, SparkContext object should be created initially.

SparkContext is initiated with a SparkConf object which holds all configuration pa-

rameters regarding to application and cluster. With the SparkContext object program

can access cluster. We mainly used standalone cluster mode so cluster manager of our

program is Spark. In Figure 2.4 the associations between Spark components and where

our point classifier and driver reside are clearly shown.
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Figure 2.6. Overall Spark architecture of parallel point classifier.

2.5. Overview of Amazon Cloud and EMR

AWS as a vendor offers reliable, scalable and easy to access and use cloud services

publicly. The services that we use are Amazon EC2 (Elastic Cloud) and Amazon EMR,

additionally we created Amazon CloudFoundry scripts for Kafka cluster setup.

Amazon EC2 instances are used as an infrastructure resource in classification

application and exploit from Amazon CloudFoundry scripts in setting up cluster envi-

ronment. Amazon EMR is a service that provides popular big data and data processing

distributed frameworks such as Hadoop, Apache Spark, Flink, HBase and Presto. It

allows researchers or commercial users to process large amount of data across dynam-

ically scalable EC2 instances. Also, EMR can interact with data stores provided by

Amazon such as S3 and DynamoDB.
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3. RELATED WORK

Spatial indexing has been a significant problem of GISs (Geographic Information

Systems) and astronomical applications. Various schemes to efficiently index spherical

data are proposed such as HTM, HEALPix, R-Tree, R*-Tree, quad-tree and Geohash

[14].

Szalay [8] from Microsoft Research Center offers to apply HTM indexing strategy

on sphere. The proposed method is to divide the Earth surface into spherical triangles

of similarly sized shapes. Basically, HTM is a quad-tree based index which provide

results from search operations at different resolutions. Their proposed indexing scheme

provides basis for addressing and fast look-ups. HTM provides very efficient geospatial

indexing structure appropriate for relational databases in case corresponding data have

an inherent location on the Earth surface.HTM algorithms create triangulation over

regions that are represented in polygons on the Earth by transforming regions of sphere

into unique identifiers. These IDs can be used to address an area or to use for indexing.

HTM trixels of a given depth covering an arbitrary region are called that region’s HTM

cover. We are using these set of IDs to classify points into regions. While doing the

classification task, we generate HTM ID mapping of specific coordinates with the help

of HTM algorithms. Computing a list of trixels that cover a region is a quite complex

task and in classification perspective resulting trixels may have pitfalls. These trixels

can be either inside or partially inside of a region so that this yields to a false-positive

classification result in case query point falls inside a partial trixel. In our approach,

we solve the problems that arise from partial trixels by adopting a supportive indexing

strategy.

Budavári and Szalay propose an extension scheme on their HTM indexing ap-

proach [10]. Within the scope of their study, they focus on application of HTM on

astronomical observations, especially most significant area of it which is named as sky

coverage. They present algorithms to manipulate shapes composed of arbitrarily sized

and complex polygons on celestial sphere. HTM indexing tools are enhanced in terms
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of performance and capabilities like compliance with the mentioned shapes. Toolbox is

simplified to easily interact within runtime of SQL server and an internal representation

of various regional shapes like convex, polygon and circle are provided. Pixelization

schemes benefit from the improved representation. An optimal set of HTM pairs of

an administrative region can be computed by their improved library in considerably

less amount of time compared to earlier library versions. Moreover, C# language and

.NET framework is used in implementation which means that the provided libraries

become platform and OS independent. This makes the solution very compact and easy

to integrate in applications hence we use this improved version of HTM toolbox while

building-up our method architecture.

Kondor et al. [1] propose a method and framework where they adopt HTM in-

dexing to enable HTM indexing to be applicable for spatial filtering and spatial join on

Microsoft SQL Server. They collect approximately a billion tweets from Twitter social

network data stream, specifically from 51 states of USA which is used for benchmarks

and verification. In their paper, they present results of index generation time for 50

continental states of United States using two different depths of SQL Server grid levels

like 8 × 8 and 16 × 16 and three different resolution of HTM index such as 12, 14

and 16. If Microsoft SQL Server indexing scheme is considered, according to the test

results it is evident that increasing the resolution of index makes things worse as there

is a strict limit of 8192 cells on number of index rows for SQL server. Therefore, SQL

server spatial index does not perform well for complex polygons. It performs well only

in case there are large number of relatively small and simple polygons. Benchmarks

are collected on a 16-core single instance RDBMS with 96 GB memory. The results of

HTM based filtering shows that their approach outperforms Microsoft SQL Server ten

times faster and spatial joins against SQL Server performs roughly a factor of hundred

times faster. Their study shows that HTM indexing on SQL server utilizes in spatial

data operations.

Gorski [4] offers another index structure for pixelization of data on the Earth.

The indexing scheme originally designed to address the processing and analyzing huge

volume of astronomical data needs. In addition, it is exploited on cosmic microwave
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background experiments. In the study, Gorski provides the constraints and require-

ments of HEALPix hierarchical indexing framework and explain the details of designed

hierarchical indexing concept.

In addition to HTM based indexing solutions, there are several research studies

that investigate spatial operations leveraging from big data processing capabilities of

different scalable platforms. One of these approaches of processing large-scale spatial

data on Cloud environment is proposed by You and Zhang [15]. Their primary objective

is to compare two widely used platforms namely Apache Spark and Cloudera Impala

to process spatial join task on Cloud environment. Recently, general approach while

working with spatial data or other large datasets, is using in-memory analytic platforms

like Apache Spark on commodity server environments. Underlying reason for research

and enterprise community to divert from Hadoop based spatial processing systems such

as SpatialHadoop [16], HadoopGIS [17] and ESRI Spatial Framework for Hadoop [18]

is performance weaknesses of Hadoop based platforms against Spark. Even if Hadoop

based systems provide high scalability, they output intermediate results onto disk which

causes excessive amount of disk I/O and performance degradation. On the other hand,

Spark is more efficient in cutting unnecessary disk operations so that You preferred

to use Spark for their study. They make benchmarks on spatial join queries utilizing

R-Tree index on cloud environment composed of 10 g2.2xlarge Amazon EC2 instances.

Two different datasets are used in experiments, one of them is New York Taxi pickup

locations includes around 170M points and 10M global species occurrences of GPS

points. They conclude with higher performance rate against Hadoop based platforms

by conducting experiments with Spark and Impala which is similar to our conclusions.

Yu and Wu [19] build a platform which has a basis of Apache Spark as well. They

introduce a cluster computing framework for spatial data operations called GeoSpark

[20]. GeoSpark has a layered structure and these layers are Apache Spark Layer, Spatial

RDD Layer and Spatial Query Processing Layer. Apache Spark Layer is responsible

for providing fundamental Spark functionality such as RDD operations and data stor-

ing operations on disk. They create an extension of Spark RDD structure which is

specialized for spatial and geometrical objects and called Spatial Resilient Distributed
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Dataset (SRDD). The last one called Spatial Query Processing Layer processes spa-

tial query and algorithms such as spatial range and join with backing SRDDs. Logic

behind leveraging Spatial RDDs is to partition data across machines using a grid struc-

ture in which each grid is assigned to a machine. In contrast, in scope of our method

we distribute incoming data stream in Kafka level into classifier processes instead of

collecting whole input data inside a single partitioned RDD. There is a decomposi-

tion point between our approach and Yu’s in spatial index structure-wise as they use

quad-tree and R-Tree indexes but we use HTM with supporting and optional R-Tree

index. Their framework generates R-Tree or quad-tree indexes in grid cell level based

on the decision taken in query runtime depending on trade-off between efficiency im-

pact of indexing according to the quantity of objects inside a specific grid and indexing

overhead of the mentioned grid. As another optimization, the platform puts effort to

minimize data shuffling to achieve good performance. There exists different amount

of shuffling overhead in applications given in paper such as spatial join, spatial range,

aggregation or co-location and for each case it is optimized or nearly-optimized. The

reason behind founding an architecturally complex and layered platform is that in the

current state they make GeoSpark evolve to an enterprise platform. The experiments

within scope are conducted on Amazon cluster EC2 machines with 16 r3.2xlarge slaves

and 1 c4.2xlarge with Apache Spark set-up on these machines. Tests are done with

a dataset used in TIGER project [21] which contains all cities, lakes and boundaries

of US in rectangular shapes corresponding to approximately 65 GB of data. They

make a comparison with SpatialHadoop [16] by applying R-Tree and quad-tree indexes

over regions separately. In conclusion, the results show that GeoSpark outperforms

its Map-Reduce [22] based counterparts like SpatialHadoop in terms of query response

time, memory and CPU usage metrics.

3.1. Summary

In table 3.1 contributions of our thesis and techniques that are used in our study

are compared against other studies that are also related with spatial indexing and

spatial data processing. The table can be accepted as summary of related work section.



29

The critical separation points between studies are indexing techniques and platforms

used. Szalay proposes to apply HTM indexing on sphere his study. Kondor extends

HTM framework with a SQL server compatible version and develop an algorithm which

separates partial trixels from regional index to increase false-positive detection rate

and improve spatial join performance against SQL server built-in index. The studies

related to HTM structure has application on RDBMS, in contrary our study adopts

HTM indexing into Spark processing environment which is capable of working under

large volume of streaming data. In that sense our method becomes a scalable solution

moreover solves partial indexing problem by combining two index types. Also, huge

amount of streaming data can be classified faster than RDBMS and in parallel with

Spark. You, Zhang and Yu, Wu exploit from high-performance distributed computing

platforms such as Spark and Impala and develop methods in spatial data operations,

but they take advantage of different indexing strategies such as quad-tree and R-Tree

exclusively, from our study.

Table 3.1. Comparison of research studies for spatial indexing and point classification

against our dissertation.

HTM R-Tree quad-tree Streaming Spark RDBMS

Our thesis X X - X X -

Kondor [1] X - X - - X

Szalay [8] X - - - - X

You and Zhang [15] - X - - X -

Yu and Wu [19] - X X - X -
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4. METHODOLOGY OF PARALLEL POINT

CLASSIFICATION

4.1. Data Collection and Data Cleaning

Tweeter is one of the most valuable data sources since source data is gathered from

society directly. Besides the content of tweets, bunch of meta data such as geographic

location and relations within social network are provided as a side set. Tweeter platform

broadcasts tweets via a streaming interface to be exploited for research and commercial

purposes. Tweeter streaming API delivers data to connected clients over a very long

lived HTTP request. HTTP is an application protocol for communication of distributed

and hypermedia information systems living in the World Wide Web. Clients that

establish a connection to Streaming API should form a HTTP request, consume the

resulting stream as long as it does not experience server or network errors and parse the

response content incrementally. Tweeter servers hold the Streaming API connections

open indefinitely as long as it is cut by a client or not having server malfunctions or

failures. Tweeter delivers tweet data in JSON format in a way that each client could

easily implement scripts to parse, analyze and modify them. JSON is a lightweight

and human-readable data-interchange format. Streaming JSON object accommodates

high amount of information. The most important part of data that we concerned is

tagged with ”geo” keyword and the valuable geographic location information is reside

under this tag. In Figure 4.1 an example of an anonymized geo-tagged JSON object

picked from Tweeter public stream data, for which redundant fields are filtered out.

In order to establish connections and deliver live stream, libraries in different

languages are provided. We use Tweepy [23] library written in Python language. Also,

we implement scripts which are used to store data with region and date based archiving

format and to post process validity of collected data. Tweeter provides regional filtering

option for streaming data and this feature is transparently available on Tweepy library.
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{
’ i d s t r ’ : ’ 1000000000000000000 ’ ,

’ geo ’ : {
’ type ’ : ’ Point ’ ,

’ coord inate s ’ : [

38 . 4499254 ,

27 . 21017361

]

} ,

’ user ’ : { . . . } ,

’ p lace ’ : { . . . } ,

’ c r ea t ed at ’ : ’ Sun Jun 10 12 : 51 : 02 +0000 2018 ’ ,

’ text ’ : ” . . . ”

}

Figure 4.1. Tweeter Stream response JSON object.

Istanbul, Izmir, Ankara, Kocaeli and Eskisehir are densest cities of Turkey so that

for verification purpose data is collected from these areas. Bounding boxes approxi-

mately covering these areas are defined for filtering out tweets collected via Tweeter

stream. However, Tweeter stream could provide incorrect geo-tags which point to

places out of these regions. Therefore, we need to post process collected tweets in or-

der to eliminate data discrepancies. After collecting and storing tweets, another Python

script is run to traverse all tweets and check their geocode if it points to correct city by

reverse geocoding. Reverse geocoding is the process of back coding of a point location

in latitude, longitude to a readable address or region name. We use Nominatim [24]

which is the search engine serving OpenStreetMaps data via RESTful API [25] pub-

licly. RESTful implies a web service implemented in accordance with REST service

architectural design principles and constraints. In Figure 4.2 the HTTP GET request

to reverse geocode a point in Ankara region and incoming response are shown. GET

type of HTTP method requests a representation of a resource from server.

Reverse geocoding improves the effectiveness of our test set by purifying Tweeter

data. In Table 4.1 ratio of useful data streamed for regions that we are concerned

about is presented.
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GET REQUEST: https : //nominatim . openstreetmap . org / r e v e r s e ? format=

json&l a t=38 . 9566025&lon=35 . 24322

RESPONSE:

{
” p l a c e i d ” : ”109855931” ,

” l i c e n c e ” : ”Data OpenStreetMap c o n t r i b u t o r s , ODbL 1 . 0 . https :

//osm . org / copyr ight ” ,

”osm type ” : ”way” ,

” osm id ” : ”169217006” ,

” l a t ” : ”38 . 9867281” ,

” lon ” : ”35 . 2888521” ,

” address ” : {
” suburb” : ” Esk iomer ler Maha l l e s i ” ,

” v i l l a g e ” : ” Eski Omerler” ,

” county ” : ” Kocasinan ” ,

” s t a t e ” : ” Centra l Anato l ia Region” ,

” postcode ” : ”38090” ,

” country ” : ”Turkey” ,

” country code ” : ” t r ”

} ,

” display name ” : ” Esk iomer ler Maha l l e s i , Eski Omerler ,

Kocasinan , Kayser i , Centra l Anato l ia Region , 38090 , Turkey” ,

”boundingbox” : [

”38 . 9504582” ,

”38 . 9868876” ,

”35 . 2464268” ,

”35 . 3431183”

]

}

Figure 4.2. Reverse geocoding response of Nominatim contains OpenStreetMapData.
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According to the results, it is obvious that without data cleaning, accuracy of the

system would be effected dramatically because of the false positive tweets that would

be included inside the verification set of all regions.

Table 4.1. Ratio of location correctness for Tweeter data collected via Tweeter public

stream across regions.

Istanbul Ankara Izmir Kocaeli Eskisehir

Data Correctness %71.6 %65.2 %77.4 %69.88 %70.2

4.2. Mechanism

Parallel point classification method described in this thesis has dependency on

Apache Spark and Apache Kafka platforms which are the main components boost-

ing our approach in establishing a scalable and a robust architecture. As a result of

dependency on Kafka and Spark, we heavily use their open-source Java and Python

libraries. Additionally, essential parts of HTM library are re-implemented in Java to

enable point classifier to work on Spark environment. Since our approach is based on

a complex mechanism and has dependency on the aforementioned platforms, in archi-

tectural perspective we come up with a layered structure. There are various steps in

classification flow and these steps are explained in detail throughout upcoming parts.

First step is to obtain necessary GeoJSON files to use for HTM Index gener-

ation. These GeoJSON files for administrative regions of Turkey are loaded from

OpenStreetMaps [26] which is a source providing free map data under open license.

Map data is given in several optional formats such as well-known text (WKT), GeoJ-

SON and poly. We prefer the most flexible JSON based GeoJSON format to achieve

ease of conversion into Java objects. The GeoJSON files loaded from OpenStreetMap

system are processed with Spherical Converter executable which depends on HTM

library toolbox in generating HTM ID pairs of complex polygons. These HTM ID

pairs are representing a set of trixels covering that specific polygon in level 20 depth

which is the wisely selected depth based on benchmarks performance and optimized

for internal floating point calculations in latest (3.1.2) version of HTM library. The
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generation of HTM index pairs has two steps, initially GeoJSON files are converted

into MultiGeometry objects defined with format stated in GeoJSON specifications [27]

and implemented by GeoJSON.Net library [28]. MultiGeometry object is assumed to

contain a single MultiPolygon object completely covering administrative region. Then,

for each Polygon given under MultiPolygon object, HTM library parser method is trig-

gered to generate HTM ID pairs as a list. To generate a list of pairs, BNF grammar

defined by the toolbox is used to represent spherical shapes for HTM index genera-

tion. BNF is a notation technique to define context-free grammars. It can be used to

describe syntax of languages in computing such as communication protocols, program-

ming languages and document formats. For each Polygon object under MultiPolygon

of region, program produces a statement as specified in HTM library with format of

BNF grammar given in Figure 4.3. As a result, program generates a generic JSON

object including region name, region id, list of HTM ID boundaries for each polygon.

Finally it dumps data into a JSON file which is used to generate interval skip list of

the processing region in the next step of execution.

Polygon Specification → POLY LATLON <latitude longitude> 3+

or POLY CARTESIAN <x y z> 3+

or POLY J2000 <ra dec> 3+

<...> 3+ implies 3 or more instances of the element specified inside braces

LATLON, CARTESIAN and J2000 implies coordinate system type

Figure 4.3. Polygon specification.

The next step of our approach is based on Apache Kafka cluster running on AWS.

Kafka cluster contains a Zookeeper instance and dynamic number of broker instances.

Amazon CloudFormation scripts are created to set up Kafka Cluster which contains

variable number of broker instances with all necessary networking configuration to

establish communication between cluster broker nodes and Zookeeper node. AWS

CloudFormation provides a common script language that allows to describe and manage

all infrastructure resources for Cloud environment. According to the stream volume

expectation, Kafka cluster can have 3, 5 or 10 brokers with selected EC2 instance
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type within CloudFormation script. Besides networking and instance configurations,

security configurations for cluster and VPC that hosts cluster are specified within these

scripts. Kafka cluster stands between client and point classifier executors running

on Spark cluster at the lower level. As mentioned earlier, each Kafka topic holds

configurable number of partition in accordance with load expectation of client by our

design. Spark cluster executors communicate with Kafka brokers via Kafka client.

Group id, which is a configuration value assigned by executors that consume stream

of records, is identical for each executor which yields executors to open up multiple

connections to Kafka brokers and retrieve even load from partitions on Kafka brokers.

In Figure 4.4 the visual representation of how architectural layers of system interact

with each other is shown.

Figure 4.4. Kafka topic partitioning and Spark executors processing data stream.

Third part of our method works on Apache Spark cluster which hosts and run

point classification tasks. Spark platform has vast amount of configurable components
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and provides a complex yet easy to adopt framework. The program is capable of run-

ning on AWS EMR with both Spark Standalone and Apache YARN (Hadoop NextGen)

cluster managers. For our mechanism, we select Standalone architecture that works in

master/slave mode on AWS cloud or local set-ups. In Spark architecture there are two

types of nodes such as master and slave nodes. Master node is the resource manager

for the Spark Standalone cluster and allocates CPU, memory and disk resources among

Spark applications by evaluating reports received from Worker nodes about resources.

The allocated resources are used for running Spark driver and executors running on

Workers. Slaves are the nodes hosting driver and executors.

Program executing by Spark driver initializes with generation of interval skip lists

for each specific region. There exists a JSON file accessed by point classifier executable

JAR which stores all HTM ID pairs of concerned regions. The file is used to generate

an interval skip list out of all HTM index pairs. After generation of interval skip

list, it is serialized and sent to executors wherein streaming coordinates are classified.

Another set of JSON files hold GeoJSON objects that represents regions in polygon.

The GeoJSON files are used to generate R-Tree index over each region which is optional

feature. In case R-Tree indexes are generated, region ids mapping to R-Tree indexes

are kept inside a Java map object in program context. R-Tree indexes take part as

a supportive index which resolves classification problem that arises because of partial

trixels between neighbouring regions. In case R-Tree index option is disabled, partial

trixels cause slight decrease of classification accuracy. Effect of enabling supportive

R-Tree index is shown within experiments chapter.

In this chapter, R-Tree indexing strategy is briefly explained without opening

a new section since it is supportive index used as a part of our architecture. The

main reasons why we chose not to assign a new chapter for deeper discussion of R-

Tree are that it is a well-known and broadly used index type and there are enough

resources to examine mathematical details and algorithms under the hood for R-Tree

itself and for its variations such as Hilbert R-Tree [29] and R*-Tree [30]. R-Tree stems

from rectangle tree since the idea behind tree structure is to group nearby objects and

represent these regions with a minimum bounding rectangle in the next higher level of
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tree. It is obvious that each MBR describes a single object in leaf level which is the

lowest level. R-Tree is a balanced tree very similar to B-Tree which is broadly used

data structure for indexing and storing data in disk in RDBMS. Like with most data

structures searching, more specifically spatial operations such as nearest neighbour

and intersection, is efficient. While searching a target point or area inside indexed 2D

space, MBRs on nodes are used to decide whether sub-tree contains target object or

not. The key difficulty of R-Tree lies under keeping MBRs with less overlapping and

empty space so that search efficiency does not decrease. The aforementioned R-Tree

variants all aim to improve the way how MBRs and the tree itself are built. We did not

implement R-Tree to use in our program, instead we use JTS library implementation

which is quite efficient and written in Java.

As the latest step of approach, executors begin streaming batches of records

that contain coordinates throughout Kafka direct stream channels after regional in-

dexes generated. In order to distribute incoming stream to the executors evenly, Kafka

topics are configured by setting partition count configuration parameter as a value

exceeding number of executors times number of consumer direct streams per execu-

tor. For the sake of improved utilization and fault-tolerance while consuming stream

data, we introduce an extra dimension by batching from multiple partitions in executor

level beyond task level parallelization. Multiple Kafka direct stream objects, which are

called as DStream (Discretized Stream) of Spark library, are created per executor and

data streams from these channels are concatenated by union operation of Spark con-

text before classification operation. DStream is an abstraction of Spark Streaming and

delivers a continuous stream of data received from sources like Kafka or TCP sockets.

DStream contains a series of RDDs covering a certain time interval that can be changed

according to the batch duration configured in streaming context. Any transformation

or action applied on DStreams are reflected upon underlying RDDs by Spark engine

thus programs operate with higher level API should not concern implementation de-

tails. As it is stated before, we are mapping partitions evenly on executors so that

DStreams contains records received from specific partitions in executor perspective.

Kafka ConsumerAPI configuration parameter called ”LocationStrategies” holds the

client strategy. We set ”LocationStrategies.PreferConsistent” as configured strategy
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Figure 4.5. End-to-end process scheme of parallel point classifier with all components.
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for client to distribute traffic on available executors. Moreover, Kafka consumer clients

are created and cached on executors since clients pre-fetch and buffer stream messages

so that these mentioned strategies lead to achievement of optimum performance. In

Figure 4.5 the overall architecture and process steps are expressed.

Algorithm3 classifyPoints(record)

Input: record provided within Spark DStream which is created from live

data of Apache Kafka stream of an arbitrary topic, namely client channel.

Output: Void, side-effect is response message sent via Kafka which contains

classification results.

String consumerTopic := record→ 1

Integer queryId := record→ 2

String[] pointArray := record→ 3

for each point in pointArray do

split point with ”, ” character

double longitude := splitPoint[0]

double latitude := splitPoint[1]

long pointHTMId := compute point HTM id with longitude and latitude

search regionIdSet inside interval skip list with pointHTMId

if regionIdSet is not found then

append empty string to classificationResultString

else if regionIdSet contains more than 1 element then

for each region in regionIdSet do

if point within region by R-Tree index then

append regionId string to classificationResultString

break

end if

end for

else

append regionId string to classificationResultString

end if

end for

create response to send client with producerTopic queryId and classificationResultString

send response in ProducerRecord template with Kafka client

Figure 4.6. Point classification algorithm.
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The detailed pseudocode of classification algorithm is given in Figure 4.6. In

pseudocode we assumed that a point classifier is expecting messages of query holding

multiple coordinates inside.

4.3. Software Package Details

All pieces of program are provided in a bundle within Github which is publicly

accessible via the link given in references section [31]. Under the root folder there are

several modules so that each one is accountable for execution of different tasks.

”TweeterGeoStream” module is responsible for data collection via Tweeter Stream-

ing API to use for experiments. The module is written in Python by using Tweepy [23]

library that allows application to connect Tweeter Streaming API with location fil-

tering option. There are two set of Python scripts inside this module, one of which

contains scripts that are responsible for streaming, shaping and storing tweets. Other

scripts are responsible for post processing the stored tweet data. While post process-

ing tweets, we take advantage of reverse geocoding to validate if a particular tweet

belongs to the region it attached with. For this specific reason, post processing scripts

are sending GET requests to Nominatim servers which present OpenStreetMap data.

Since Nominatim is an open-source tool, it has usage policy as follows that it limits in-

coming requests to prevent commercial or individual users abusing their system. That’s

why our script complies with their policy such a way that putting throttle control while

sending HTTP requests.

SphericalConverter module is the one which is used to generate JSON files includ-

ing HTM index pairs from complex geographical region specifications with GeoJSON

format. Later on point classifier process running on Spark cluster would use these

output JSON files. Module has a dependency on HTM library created by Szalay and

Budavari [10].

We provide two Java projects ”htmServer” and ”pointStreamClassifier” as sepa-

rate modules, however they are serving the same goal to be run on Spark within JVM
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environment providing necessary data structures and logic to parallel classification of

points into regions. A JAR file called ”point.stream.classifier-1.0.jar” is provided un-

der target directory and the both projects have maven support so that they can be

rebuilt easily after overriding default configuration and adding modifications. Maven

is an Apache project and a software project and dependency management tool. The

same JAR contains stream generators (parallel and sequential) which can generate

coordinates in a specified bounding box.

KafkaCluster module contains CloudFormation scripts which allow users to set

up and start Kafka cluster with desired configuration by setting instance types, account

specific security configurations and networking configurations. AWS has an informa-

tive console screen where users can monitor cluster creation steps and instance status

information. In Appendix A, a CloudFormation script to setup and run a small-sized

Kafka cluster is provided.
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5. EXPERIMENTS AND RESULTS DISCUSSION

Due to the fact that our program is running on Amazon Cloud, it is tightly

coupled with the Amazon infrastructure and network status. Therefore, performance

of the program can easily be affected by the hosting AWS region status, networking

vulnerabilities and other infrastructure issues. In order to minimize the Cloud related

problems, the method is tested several times with different configurations and average

of benchmark results are presented. In order to show improvements of our approach,

the method is compared against results of point classification method of Kondor et

al.which is built on Microsoft SQL Server and SQL Server built-in spatial index. At

first, administrative regions of Istanbul, Ankara, Izmir, Eskisehir and Kocaeli from

GADM (Database of Global Administrative Areas) [32] are loaded into SQL Server.

Afterwards spatial index with 16 × 16 grid cell configuration which corresponds to

approximately level 16 HTM index, is created and performance metrics of classification

task are collected.

Table 5.1. Classification accuracy of indexing strategies measured for regions over

Turkey.

Indexing Strategy Istanbul Ankara Izmir Kocaeli Eskisehir

SQL Server geography 16*16 %89 %90 %88 %73 %86

HTM Level 20 %98.2 %98.6 %97.9 % 96.3 %95.2

HTM Level 20

with R-Tree support
%99.1 %99.3 %97.9 %97.4 %96.1

Average latency values of parallel point classifier against changed set of infras-

tructure level and application level configurations are reported in the next sections.

Two infrastructure setups having different horizontal scaling level are prepared. The

number of Kafka producer and consumer topic partitions is tuned up for each config-

uration in accordance with estimation of executor count in Spark environment.
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5.1. Results of HTM Indexing on Apache Spark with small infrastructure

configuration

First cloud configuration that we run benchmarks on, includes a Kafka cluster

with 5 brokers and a Spark cluster with 8 executors each having 6GB RAM and 4

virtual CPU cores running on the AWS cloud. The EC2 instance type that is used

for benchmarks on AWS is m4.xlarge which has 4 virtual cores and 16GB memory.

The benchmarks of Microsoft SQL server are run on a 16 core machine with 92GB

memory. Single instance SQL server (with version 2012) is used on the infrastructure.

According to the results, it is obvious that SQL server’s built-in index cannot classify

large number of records since it cannot complete query for 1 billion records.

Table 5.2. Average classification time of HTM on Apache Spark with snappy

compression against SQL server built-in and HTM indexing.

Indexing Strategy 300k[sec] 500k[sec] 1M[sec] 5M[sec] 1G[sec]

SQL Server

geography 16 * 16
120 210 520 2110 -

SQL Server

HTM Level 16 [1]
6 7 10 40 967

SQL Server

HTM Level 14 [1]
6 8 11 49 1099

HTM Level 20

with R-Tree support

on Apache Spark

0.89 1.25 2.07 6.976 678

HTM Level 20

on Apache Spark
0.86 1.2 1.99 6.880 670

Apache Kafka provides compression support for communication channel between

producer and consumer. In our benchmarks, we provide results of queries that are

run with snappy compression support. The outcome of results show that compression

helps to increase total processing time in case the query contains large set of records.
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Classifying batches with small number of records compression causes increase in query

time since there is a trade-off between time loss of CPU time and network I/O time.

When the number of batch is large, query time is cut off since smaller sized network

packets are conveyed faster and it yields decrease in overall query time.

Table 5.3. Average classification time of HTM on Apache Spark without using Kafka

message compression.

Indexing Strategy 300k[sec] 500k[sec] 1M[sec] 5M[sec] 1G[sec]

HTM Level 20

with R-Tree support

on Apache Spark

0.664 0.995 1.718 6.509 752

HTM Level 20

on Apache Spark
0.670 0.987 1.7 6.440 745

5.2. Results of HTM Indexing on Apache Spark with large infrastructure

configuration

Other cloud configuration which is relatively larger than first one includes Kafka

cluster with 5 brokers and Spark cluster with 8 executors each having allocated 12GB

RAM and 6 virtual CPU cores running on AWS cloud. The EC2 instance type that

is used for benchmarks on AWS is m4.2xlarge which has 8 virtual cores and 32GB

memory. Since result comparison with SQL server dependent approaches are reported

in the previous section, the same results are not provided in Table 5.4 and Table 5.5.

Only results of experiments of our proposed method running on Spark are presented.
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Table 5.4. Average classification latency values of HTM on Apache Spark with

snappy compression against SQL server built-in and HTM indexing.

Indexing Strategy 300k[sec] 500k[sec] 1M[sec] 5M[sec] 1G[sec]

HTM Level 20

with R-Tree support

on Apache Spark

0.78 1.2 1.99 6.02 520

HTM Level 20

on Apache Spark
0.8 1.21 1.8 5.997 518

Table 5.5. Average classification latency values of HTM on Apache Spark without

compression.

Indexing Strategy 300k[sec] 500k[sec] 1M[sec] 5M[sec] 1G[sec]

HTM Level 20

with R-Tree support

on Apache Spark

0.664 0.995 1.718 6 660

HTM Level 20

on Apache Spark
0.670 0.987 1.7 5.98 655
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6. CONCLUSION

Experiment results show that HTM indexing has significant performance im-

provement over quad-tree based spatial index provided by Microsoft SQL Server with

built-in support. Besides, utilizing R-Tree index within JTS library [7] as an inhibitor

against partial trixel problem, we improve the accuracy of classification results. Above

and beyond, overall performance is much more increased since we scale up parallel

classification program on AWS Cloud Environment. As a further improvement to our

approach, different kind of spatial index structures like quad-tree provided by JTS

library and a practically efficient and improved variant of R-Tree called Priority R-

Tree [33] can be ported in our framework. Moreover, current implementation may be

improved by extending Spark RDD in a way to create and store HTM index on RDD

partitions distributed over Spark cluster machines which would be beneficial while

working with larger regional data. Also, with our current method, tests can be re-

peated with larger set of regions and using new set of tweets collected over those larger

region set. Experimenting and adopting the improved methods may lead to increased

accuracy in situations like points falling into partial trixel and may also yield better

containment testing results. Another future work topic may be the implementation

of spatial range based queries such as nearest-neighbour search with HTM indexing

as an extension to the current approach which implements spatial join based query

operations.
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APPENDIX A: KAFKA CLOUDFORMATION SCRIPT

Figure A.1. Amazon Cloudformation script to setup Kafka cluster.
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)
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Figure A.1. Amazon Cloudformation script to setup Kafka cluster.(cont.)




