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time, support, guidance throughout the review of this document.

I would like to express my gratitude to my friends who cherished me with their

friendship and support during my dissertation.

Lastly, a special thanks to my parents Şefika Çalışkan, and Orhan Çalışkan for
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ABSTRACT

DATA STREAM ANALYSIS

In this thesis we give a survey of online machine learning algorithms for data

stream analysis. After giving an overview of standard batch algorithms, we explain

batch-to-online conversion, and we give a in-depth description and analysis of data

stream mining techniques. We particularly focus on online k-means algorithms and

multilayer perceptron models as representative examples of online clustering and clas-

sification algorithms. We also present theoretical and empirical analyses of different

approaches for online versions of these algorithms through numerical experiments.
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ÖZET

VERİ IRMAĞI ANALİZİ

Bu tezde veri ırmağı analizi için çevrimiçi makine öğrenmesi algoritmalarını araştır-

dık. Standart çevrimdışı algoritmaları gözden geçirdikten sonra çevrimdışından çevrim-

içine dönüştürmeleri açıkladık ve sonra veri ırmağı madenciliği tekniklerinin geniş kap-

samlı tanımlamasını ve analizini yaptık. Çevrimiçi gruplama ve sınıflandırma algo-

ritmalarından örnek olarak özellikle çevrimiçi k-ortalama ve çok katmanlı algılayıcı

modellerine odaklandık. Sayısal deneylerimizi yaptıktan sonra teorik ve deneysel ana-

lizlerimizi farklı bakış açıları kullanarak bu tezde algoritmaların çevrimiçi biçimleri için

bu deneyler üzerinden anlattık.
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1. INTRODUCTION

1.1. Motivation

Recent advances in technology created an explosion of data volume because rela-

tively simple, or even mundane everyday interactions, such as the use of a credit card or

a phone, creates some amount of data per individual. Telecommunications and social

networks often are awash in user-generated or system-generated data too. Considering

the scale, in aggregates, we have massive collections of data that need to be processed

effectively, and in some cases, in real-time if data arrives continually. Such large data

collections and continuous data streams present unprecedented challenges, especially in

resource-constrained scenarios. Unfortunately, most standard machine learning tech-

niques work within batch learning scenarios in which the algorithm has unfettered

access to the whole dataset. Traditional statistical or machine learning techniques do

not directly apply to such large collections, or data streams that arrive continually,

that need to be processed within tight time and resource constraints.

In situations where data is arriving continuously, and we cannot wait until algo-

rithm collects a static sample of data that faithfully represents the whole data, any

static model obtained at a certain time will be outdated sooner or later. So, under such

constraints, standard machine learning methods would have to revise their models by

re-executing the underlying learning algorithm in batches. But, the cost, both in terms

of computation power and available storage, for these algorithms to re-generate their

models from scratch with updated data is rather high. Incremental learning algorithms

are better suited for such scenarios in order to efficiently assimilate the novel data to

the existing model. These algorithms must be able to incorporate new data, adopt

their models to the most recent state of the data, and if necessary, forget outdated

data.
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In this thesis we give a survey on data analysis techniques, problems and algo-

rithms that work particularly well for large data collections, or continuous data streams.

We are going to investigate a handful of machine learning algorithms that are suitable

for analyzing data under tight time and memory constraints.

1.2. Overview

Most machine learning algorithms are posed as optimization problems, finding

optima for specific cost functions, and the algorithm needs to optimize this cost function

within certain constraints determined by the problem, the data, the processing type

and even platform on which the algorithms is run. As such optimization theory forms

the bedrock for the whole theory of data analysis and machine learning algorithms.

So, we start with Chapter 2 where introduce the general theory of optimization and

its relation with machine learning problems. We then discuss different optimization

techniques in the same chapter.

In Chapter 3, we introduce commonly used machine learning algorithms, but

without any resource constraints. We investigate these methods from the perspective

of optimization delving into the process of designing the cost function associated with

these machine learning problems in detail.

We discuss the main challenges of streaming data analysis in terms of solving basic

machine learning problems such as clustering, classification, regression and pattern

mining under different scenarios with tight memory and time constraints in Chapter 4.

We investigate using different optimization methods such as the stochastic gradient

descent in order to re-implement standard machine learning algorithms to process large

volumes of data that can not fit within the memory, or data that arrives continuously.

We also investigate online and iterative versions of perceptron models and competitive

neural networks.
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In Chapter 5, we focus on facility location problem and general clustering prob-

lems based on the k-means algorithm for streaming data. We begin with Lloyd’s

batch k-means algorithm, and derive an online version of the k-means algorithm using

the stochastic gradient descent method to solve the resulting optimization problem.

We also introduce a version of the competitive neural network algorithm called ART

which can also be used as an online clustering method. Then, we discuss semi-online

and fully-online k-means algorithms which are recently introduced by [6]. All of these

architectures had a lot in common, but some crucial distinctions.

We develop the standard backpropagation algorithm and then, introduce two

different versions of online backpropagation using stochastic gradient descent and re-

cursive least squares in Chapter 6. These algorithm use backpropagation to train a

neural network, and are similar algorithmically. The main difference between these

methods arise from their respective cost functions.

We analyze our numerical experiments in Section 7.1 and Section 7.2 for online

k-means and online multilayer perceptron algorithms respectively in Chapter 7. We

discuss the results of our experiments in Chapter 8. The code we used in our experi-

ments are listed in the Appendix.
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2. OPTIMIZATION

In this chapter, we are going to investigate optimization and its connections

with various machine learning algorithms. Optimization refers to the task of either

minimizing or maximizing an objective function that expresses the model at hand. We

can formulate any optimization problem as follows:

Given an objective function f : X→ R, where X is our search space, find a subset

X∗ of X such that:

X∗ = {x∗ | f(x∗) ≤ f(x), for all x ∈ X} (2.1)

In constraint optimization, we want our solutions to satisfy some properties expressed

by equations or inequalities, which restricts our search space X to S ⊂ X. The set S can

be defined in terms of functions that correspond to equality constraints and inequality

constraints. In this case, points x of S are called feasible points. In general, one has

the following type restrictions:

S = {x | g(i)(x) = 0 and h(j)(x) ≤ 0, for i ∈ I, and for j ∈ J} (2.2)

where {g(i)}i∈I and {h(j)}j∈J are two finite sets of constraint functions. Then the

optimization problem reduces to find a subset X∗ of X such that:

X∗ = {x∗ ∈ S | f(x∗) ≤ f(x), x ∈ X} (2.3)

There are two main categories of algorithms for solving optimization problem:
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(i) First order optimization algorithms use the gradient of the cost function with re-

spect to its parameters. The gradient gives the information whether the function

is increasing, or decreasing at a particular point.

(ii) Second order optimization algorithms use the Hessian of the cost function to

estimate the curvature of the objective function together with the information on

whether the first derivative is increasing or decreasing.

If an optimization algorithm uses the entire data set, then it is called a batch algorithm,

or a deterministic algorithm because the algorithms processes all of the data reserved

for building the model in a large batch. In contrast, an optimization algorithm that

processes a sample of data points at a time is usually referred as a stochastic algorithm,

or as an online algorithm. However, the term online is usually reserved for algorithms

that use a continuously arriving stream of data points instead of a fixed set of data

points on which the algorithm has random access. These concepts are discussed in

detail in Chapter 4.

2.1. Optimization for Machine Learning Models

The traditional optimization algorithms differ from the optimization algorithms

used for training machine learning models in several ways. In pure optimization prob-

lems, the data-generating probability distribution pdata is usually known. In contrast,

in most machine learning tasks we only have data samples and our objective is to mini-

mize the expected generalization error which is known as the risk. One can reformulate

a machine learning task as an optimization problem in which we aim to minimize the

expected loss function on the training set, which is called the empirical risk, expecting

to minimize the risk as well.

If we assume that we sampled the stream uniformly and independently then we

can expect that the training set and the test set share the same underlying data-

generating distribution. With this assumption the expected training error of a ran-

domly selected model is going to be equal to the expected test error of that model.
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However, we can only take samples from the training set in order to choose the pa-

rameters that reduce the error on the training set. We then sample the test data set

and measure the error without updating any parameters. Thus the expected error on

the test set is always going to be greater than or equal to the expected error on the

training set.

2.2. Expected Risk Function

A learning system is designed to minimize a function J(w) called the expected

risk function which is expressed as follows:

J(w) = E[d(f(x;w), y)] = E[d(ŷ, y)] (2.4)

where d is a non negative function, called the loss function. The loss function measures

the discrepancy between the real value y and its estimate f(x;w) = ŷ when x is the

input, and w is the parameter that must be adapted in the learning process by observing

events y occurring in the real world.

2.3. Empirical Risk Minimization

We emphasize in Equation (2.4) that the expected is calculated over the true

underlying distribution pdata such that:

J(w) = E[d(f(x;w), y)] (2.5)

In machine learning, we cannot minimize the expected risk function directly since the

data generating distribution is unknown. Instead, we minimize the empirical risk in the

training process and expect the true risk is going to decrease as well. So, the training

process corresponds to empirical risk minimization:

Ĵm(w) =
1

m

m∑
i=1

d(f(xi, w), yi) (2.6)
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The expected value of the empirical risk Ĵm(w) is calculated via the empirical distri-

bution p̂(x, y) given by the training set, and m is the number of training examples.

Optimizing the empirical risk function Ĵm(w) also yields a good estimate for the

minimum of the expected risk function J(w) if the training set is adequately large [7].

However, empirical risk minimization may cause overfitting. That is, models may

simply memorize the training set. This area of research is related with generalization

phenomenon. Generalization can be described as the capacity of a system to learn

from a set of examples from a finite training set, and yet provide results that are valid

in general.

Below, we present gradient based methods for batch and online processing.

2.4. Gradient Based Learning

Gradient based learning algorithms are first order optimization techniques which

only require first-order derivatives of the terms of the parameters w in the objective

function J . A commonly used variation is the gradient descent method. The gradi-

ent descent is an iterative optimization algorithm thats looks for the minimum of an

objective function by following the opposite direction of the gradient.

Here, we consider two different versions of the gradient descent algorithms. These

algorithms differ in how much data they consume in estimating the gradient of the

objective function. There creates a trade-off between the time it takes to perform an

update depending on the amount of data available to the algorithm in constructing a

model, and the accuracy of the parameter update.



8

2.4.1. Batch Gradient Descent

In the batch gradient descent method, the algorithm computes the gradient of

the objective function with respect to the parameters on the entire training dataset:

w = w − η∇wJ(w) (2.7)

For a convex cost function, the batch gradient descent algorithm converges to the

global minimum. Thus convexity of the cost function is desired since the algorithm

may converge to one of the local extrema points otherwise.

One can minimize the empirical risk function Ĵm(w) using a batch gradient de-

scent algorithm. Successive estimates wt are computed as follows:

w(t+ 1) = w(t)− ηt∇wĴm(w(t)) = w(t)− ηt
1

m

m∑
i=1

∇wd(f(xi;w), yi)

Here ηt determines how big the updates are, and it is called the learning rate. When

the learning rate ηt is small enough, the algorithm converges to a local minimum of the

empirical risk function Ĵm(w). We give the pseudocode of the batch gradient descent

algorithm below in Figure 2.1.

Initialize W

repeat

for all (xi, yi) do

∇wĴ(w)← 1
m

∑m
i=1∇wd(f(xi;w), yi)

w(t+ 1)← w(t)− η∇wĴ(w)

end for

until wi’s converge

Figure 2.1. Batch gradient descent algorithm.
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In the batch gradient descent, one needs to calculate the gradient for the whole

dataset. This process can be slow if the training set is large, or even intractable for

datasets that do not fit in memory. The batch gradient descent also does not allow us

to update our models online.

2.4.2. Stochastic Gradient Descent

The second variation of gradient descend algorithms we are going to consider in

depth in this thesis is called the stochastic gradient descent (SGD) method. The SGD

algorithm does an update on parameters for each data point (xi, yi) in the training

data set:

w = w − η∇wJ(w;xi, yi) (2.8)

Since the stochastic gradient descent method works with one data point, or sometimes

a mini-batch of data points, at a time, it is much less memory intensive. We give the

pseudocode of stochastic gradient descent algorithm in Figure 2.3. In each iteration, the

online gradient descent chooses an example x uniformly randomly, and then updates

the parameter w using the following formula:

w(t+ 1) = w(t)− ηt∇wd(f(xi;w), yi)

If we average the updates over all possible choices taken from the set of training ex-

amples, we would obtain the batch gradient descent algorithm.

The term stochastic comes from the fact that calculating the gradient on a single

training sample is a stochastic approximation of the gradient of the true cost function.
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Figure 2.2. Due to its stochastic nature, the path towards the global cost minimum

might be not direct as in batch gradient descent, but may make a zig-zag if we

visualize the cost surface in a 2D space.

Initialize W ← to small numbers

Learning rate schedule η1, η2, . . .

repeat

for (xi, yi) in random order do

∇wĴ(w)← d(f(xi;w), yi)

w ← w − η∇wJ(w)

end for

until wi’s converge

Figure 2.3. Stochastic gradient descent algorithm.
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2.4.2.1. Convergence. Batch gradient descent needs to make one full pass over the

data until an update is performed. This means each update has the time complexity

of O(nd), and also the computations are prone to be repeated on redundant data

points. Since SGD performs one update at a time, it can be used to for online learning

algorithms, and also it is usually much faster since the complexity is O(d).

Batch gradient descent is shown [8] to converge to a local or the global minimum

for non-convex and convex optimization functions, respectively. In stochastic gradient

descent, random sampling of m training examples introduces a source of noise which

causes fluctuations. This behavior of SGD enables to jump to a better local minimum,

however, a non-vanishing gradient may cause to skip the global minimum. Therefore,

the batch gradient descent algorithms can use a fixed learning rate effectively. However,

Robbins and Monro [9] showed that when we gradually decrease the learning rate, the

SGD algorithm converges as fast as the batch gradient descent for stationary data

streams.
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3. MACHINE LEARNING AS OPTIMIZATION

We continue with basic algorithms for unsupervised and supervised learning in-

cluding linear and logistic regression, regression trees, and support vector machines.

3.1. Linear Regression

In linear regression problems, given the input data X we want to find the pa-

rameters that predict the output Y in a linear fashion. In this model, the output is a

linear combination of the features. In other words,

yi = f(xi, w) = wT · xi (3.1)

Then we need to find the model parameters w that provides the best fit for the training

data set. The best fitting model is measured using the mean squared error (MSE) over

the training dataset:

J(w) =
1

|X|

|X|∑
i=1

(f(xi, w)− yi)2 (3.2)

In order to find the best fitting line, one needs to minimize the MSE function J(w).

One can derive a closed-form solution, but one can also use the gradient descent to

minimize J(w).

3.1.1. Least-Squares Estimation

We can estimate the solution of least squares by minimizing the sum of squared

errors over the whole data set. This leads to a closed-form expression for the estimated

value of the unknown parameter w.
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J(w) =
1

|X|
∑
i=1

ε2i

=
1

|X|
∑
i=1

(yi − wTi xi)2

=
1

|X|
‖y −XW‖22

=
1

|X|
(y −XW )T (y −XW )

The minimum of J(w) is obtained by setting the derivatives of J(w) equal to zero.

∇wJ(w) = 0⇒ ∇w
1

|X|
‖y −XW‖22 = 0

⇒ ∇w(y −XW )T (y −XW ) = 0

∇w(y −XW )T (y −XW ) = (yTy − yTXW −W TXTy +W TXTXW )

= −2XTy + 2XTXw

= 0

This setting gives the normal equations as:

XTXw = XTy

Solving for w, we obtain parameters estimation formula:

w = (XTX)−1XTy

provided that the inverse of the matrix XTX exists. This happens when the matrix X

has rank k. Since X is an n× k matrix, we must have n ≥ k which means the number

of observations must be greater than or equal to the number of parameters.
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3.2. Logistic Regression

Linear regression is used to predict continuous valued outputs as a linear function

of continuous input while the logistic regression is used for predicting binary-valued

output values again on continuous input.

In logistic regression, for a given collection of data points {xi, yi}Ni=1 where each

xi ∈ Rd and yi ∈ {0, 1} we need to define a linear classifier. The logistic regression

algorithm defines an objective function using a likelihood function on this data set.

Then it optimizes this objective function using the gradient descent in order to to find

the optimum parameters that yields highest probability for this data set.

Let us assume that the conditional probabilities are given by

P (y = 1 | x;w) = hw(x) =
1

1 + e−wT ·x = σ(wT · x) (3.3)

P (y = 0 | x;w) = 1− P (y = 1 | x;w) = 1− hw(x) (3.4)

where

σ(z) =
1

1 + e−z

is called the logistic function or the sigmoid function. The logistic function maps the

value of the dot product wT · x into the interval [0, 1] so that we may interpret hw(x)

as a probability. Combining these probabilities we get:

P (y | x;w) = hw(x)y(1− hw(x))1−y

Assuming the training set was sampled independently, we write the likelihood function

as:
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L(w) = p(y | X;w)

=
m∏
i=1

p(yi | xi;w)

=
m∏
i=1

(hw(xi))
yi(1− hw(xi))

1−yi

In order to simplify the process, we can maximize the logarithm of the likelihood

function instead of the likelihood function:

`(w) = log(L(w))

=
m∑
i=1

yi log(h(xi) + (1− yi) log(1− h(xi)

Similar to linear regression, we can use gradient descent to maximize the likelihood.

Note that σ′(z) = σ(z)(1 − σ(z)). In order to optimize this function we need the

derivatives

∂`(w)

∂wj
=

m∑
i=1

(
yi

hw(wTxi)
− 1− yi

1− hw(wTxi)

)
∂hw(wTxi)

∂wj

=
m∑
i=1

(
yi

hw(wTxi)
− 1− yi

1− hw(wTxi)

)
hw(wTxi)(1− hw(wTxi))

∂wTxi
∂wj

=
m∑
i=1

(
yi(1− hw(wTxi))− (1− yi)hw(wTxi)

)
xij

=
m∑
i=1

(yi − hw(x))xij

Then the update rule for maximizing the log likelihood becomes

wj = wj + η

m∑
i=1

(yi − hw(xi))xij (3.5)
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3.3. Regression Trees

Figure 3.1. Tree model: Partition the feature space into a set of rectangles.

In regression trees, we create partitions of the feature space into a set of rectangles.

Then we fit a simple model, e.g. a constant, in each rectangle. Figure 3.1 shows

interpretation of these partitions.

Given input X ∈ Rn×p and corresponding outputs y ∈ Rn. Each observation

corresponds to (yi, xi) ∈ Rp+1, i = 1, . . . , n. Suppose we have a partition of Rp into M

regions R1, . . . , Rm. We predict the response using a constant on each Ri:

f(x) =
m∑
i=1

ci.χRi
(x) (3.6)

where χU is the characteristic function, which is also known as the indicator function,

of a subset U ⊆ Rp. In order to minimize
∑n

i=1(yi − f(xi))
2, one needs to choose:

ĉi = avg(yj : xj ∈ Ri) (3.7)
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3.3.1. Splitting and Pruning Criteria

For continuous variables, we picked a constant in each box Ri to minimize the

sum of squares in that region:

min
c∈R

∑
i

∑
xk∈Ri

(yk − ci)2 (3.8)

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk (3.9)

where Ni denotes the number of observations in Ri.

In order to determine the regions Ri, we need to decide on variable we are going

to split, and where to split that variable. Unfortunately, finding a globally optimal tree

is computationally infeasible. So, we use a greedy algorithm as follows:

(i) Take a splitting variable j ∈ {1, . . . , p}, and consider a splitting point s ∈ R.

(ii) Define the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s} (3.10)

(iii) We choose j, s to minimize:

min

[
min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
]

(3.11)

One can find the splitting point s very quickly, and therefore, determining the best

pair (j, s) is feasible. Then we repeat the same process for each block recursively.
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Figure 3.2. Support vector machine.

3.4. Support Vector Machines

Support vector machine is a supervised classification algorithm that aims to find

a suitable collection of hyperplanes that separate the data into a finite number of

classes. Given a labeled training dataset {(xi, yi)}, the algorithm outputs an optimal

arrangement of hyperplanes to categorize new examples.

In our model, separating hyper-planes are given by y = wTx + b where y cor-

responds to classification label, w is a normal to the plane, and b which moves the

hyperplane from origin. On the decision boundary we have wT · x + b = 0. Let us

define

yi =

1 if w · xi + b ≥ 0

−1 if w · xi + b < 0

The distance of the ith sample (xi, yi) to the hyper-plane is given as:

di =
‖w · xi + b‖
‖w‖

(3.12)
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We are looking for data points, called support vectors, for which this distance is

minimal, for these data points, we can add the constraint w ·xi+ b = 1. Then the total

distance, i.e. the margin M , is equal to 2
‖w‖ .

The problem of finding a classifier with the maximum margin, i.e. maximal total

distance of the support vectors, can be formulated as an optimization problem:

argmax
i

2di = argmax
w,b

2

‖w‖
= argmin

w,b
‖w‖ (3.13)

Therefore, maximizing 2
‖w‖ , is equivalent to minimizing ‖w‖. To turn the problem into

quadratic programming we can also minimize ‖w‖2. Hence, the original problem 3.13

is equivalent to finding

argmin ‖w‖2 subject to yi(w · xi + b) ≥ 1.

Now, we have a constrained convex optimization problem in which we have a convex

quadratic objective function with linear constraints. The solution gives us the optimal

margin classifier.
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4. DATA STREAM MINING

In this chapter, we are going to investigate data analysis techniques over data

streams.

4.1. Introduction

A data stream S is an ordered sequence of data objects S = {xi}Ni=1. Each data

object is usually described by a finite dimensional vector xi = [xij]
d
j=1. The components

of these vectors called features that belongs to an attribute space Ω. Attributes can

either be continuous, categorical, or mixed.

Most machine learning algorithms assume that there is a finite sequence of data

points generated by a fixed unknown probability distribution. In batch learning algo-

rithms, the algorithm passes over a static dataset, called the training dataset, at least

once. Then the model generated by the algorithm from this training set is used for

making predictions on a different dataset, called the test dataset. In this approach, we

assume the data available for the algorithm has stationary statistical properties that

do not change over time. Since the data is assumed to be stationary, one can store it

and analyze it in multiple steps.

For streaming data analysis data objects arrive continuously, and the unknown

distribution that generates the data might also be non-stationary. The changes in

probability distribution over time is also referred as the concept drift [10]. There is

also the possibility that we have no control on the order in which the data arrives and

is processed, or even the possibility that data objects need to discarded after they are

processed due to tight memory constraints.

The most common data streaming data analysis tasks are regression, clustering,

classification and frequent pattern mining. We particularly focus on online methods.

Roughly speaking, online methods are methods that “process one datum at a time.”
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We give a brief introduction to these data stream analysis tasks below. But before we

embark on this task, we are going to investigate the differences between batch learning,

streaming data analysis, and their variations.

4.2. Batch, Online and Incremental Learning

4.2.1. Batch vs. Stream Processing

Table 4.1. Differences between batch and stream data processing [5].

Batch Stream

Number of passes Multiple Single

Processing time Unlimited Restricted

Memory usage Unlimited Restricted

Type of result Accurate Approximate

Distributed No Yes

Machine learning algorithms that use the whole training dataset are usually called

deterministic or batch methods, because they process every point in the training ex-

ample at least once over a single pass. On the other hand, machine learning algorithms

that use only a single data point at a time are usually called stochastic, online or

incremental. The term “online” refers to the cases where examples are taken from a

data stream of continually arriving data points rather than from a static training set

over which the algorithm may perform several passes.

An online learning system does not rely on stationarity of the data, and makes

no distinction between the training and test datasets. An online learning model con-

tinuously learn by using the most recent information available since every data point

updates the model at hand with new information. As a result, if the statistical prop-

erties of the data change with new examples, the model easily adapts itself.
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4.2.2. Online vs. Incremental Processing

In an online learning scenario, we only know the features of the new data point

but without labels. Then the system reacts and suffer a loss or a penalty, and use the

loss to update our model. Our model here may be a set of different models so that

one can update them or remove the bad ones. In an incremental learning scenario, we

receive new data points with labels, and the system updates our already-trained model

without using the entire dataset.

Online learning may also refer to the case where each example is used only once

while incremental methods usually sample one example at a time from a static dataset

and may process the same examples multiple times. That said, the distinction between

incremental and online is not always clear. In fact, the same method can often be

applied to both situations. An example is stochastic gradient descent: in the online

case, each new example is a sample from the data distribution, while in the incremental

case typically one picks a uniformly random example from the dataset. Online meth-

ods typically require recursive techniques that update faster than the sampling rate.

Also, while the updates are similar the objective functions we need to optimize are

different: we calculate an expectation over the data distribution for the former, and an

expectation over the empirical distribution of the dataset for the latter.

Some of the oldest algorithms in machine learning are online. This comes from

the fact that many machine learning algorithms use stochastic optimization techniques

such as online backpropagation. There are also such online extensions of support vec-

tor machines (SVM) [11]. All prototype-based models such as radial basis function

networks (RBF), self-organizing maps (SOM) and supervised learning vector quanti-

zation (LVQ) are online learning algorithms, since they use stochastic optimization

techniques [12–15].
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4.2.3. Stochastic Descent

Many machine learning algorithms are either online by design, or can be made

online even though the standard implementations may not support it originally.

For example, decision trees has online variations [16]. The support vector machines

(SVM) method was first described [17] with traditional batch processing optimization

techniques. The stochastic gradient descent for perceptrons [18], and for the Adaline

method [19] are also examples. Table 4.2 illustrates tha way the stochastic gradient

descent is used in some classic machine learning algorithms [20]. There are also al-

gorithms which the standard implementation already supports online learning. For

example in nearest neighbor clustering [21] one simply adds a new instance to the set,

and from then on it is available to match as a nearest neighbor.

Table 4.2. Stochastic gradient algorithms for various learning systems.

Model Loss Stochastic gradient algorithm

Perceptron
Jperceptron = max{0,−ywTx}

y = ∓1
w ← w + ηytxt if ytw

Txt ≤ 0

k-means Jk−means = mink
1
2
(x− wk)2

k∗ = argmink(xt − wk)2

wk∗ ← wk∗ + η(xt − wk∗)

SVM
Jsvm = λw2 + max{0, 1− ywTx}

y = ∓1

w ← w − ηtλw if ytw
Txt > 1

w ← w − ηt(λw − ytxt) otherwise

For many machine learning schemes, stochastic gradient descent algorithm is use-

ful for processing data because it allows online processing. Traditional gradient descent

methods, such as the conjugate gradient descent, compute the gradient of the entire

dataset first, and then search the optimal learning rate along that gradient. Such

searches are expensive since they need to calculate likelihoods over the entire dataset

in order to update the parameters along the gradient. Each global gradient is unlikely

to point at the solution and the search curve resembles a zig-zag because each next up-

date direction must be orthogonal the previous update. On the other hand, stochastic

search methods, such as the stochastic gradient descent, move in the direction of the

contribution of a single training pattern and a scalar multiple of the prior gradient.
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With such incremental updates the algorithm searches the optimum more directly in

the direction of the global minimum by making small adjustments with each training

instance.

Stochastic approaches are commonly used with online machine learning algo-

rithms because they store only the parameters and a single training example, but they

need to make multiple passes either over the same data more than once, or over fresh

data. With a large volume of data, it is typically better to use an algorithm that visits

each data element once or a few times rather than sampling a small batch and feed it

to a batch algorithm. Hybrid algorithms that sample batches of larger than one but

smaller than the entire dataset are also frequently used, and called mini-batch methods.

4.3. Regression on Data Streams

In many machine learning applications, one often formulates the parameter es-

timation problem as a linear regression problem. Online or sequential, recursive es-

timation of such parameters can be done via the stochastic gradient descent, or the

recursive least squares (RLS) algorithm.

4.3.1. Recursive Least Squares Estimation

Suppose that at a given time we have a collection of input vectors X(n), and

corresponding output vectors Y(n). Recall that in linear regression problem we want

to find parameters W such that:

yi = W T · xi (4.1)
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Suppose that we have n observations on the m input variables. Let us write our data

set as a matrix.

X(n) =


xT1

xT2
...

xTn

 =


x11 · · · x1m

x21 · · · x2m
...

xn1 · · · xnm

 Y(n) =


y1

y2
...

yn



Then the least squares solution for the optimization problem is

Ŵ (n) = (XT
(n)X(n))

−1XT
(n)Y(n)

Here Ŵ (n) corresponds to estimation when we have n number of data pairs. When a

new data point (xn+1, yn+1) arrives, we must increase n by 1. This requires that we

need to calculate Ŵ (n+ 1) from scratch by inverting large matrices, but recalculating

an inverse matrix is expensive both in terms of time and storage. So, we are going

to develop an iterative method below utilizing the expansion calculation we performed

for already arrived data points X(n) and Y(n).

Let us define P−1n+1 = XT
(n+1)X(n+1).

P−1n+1 =
n+1∑
i=1

xix
T
i =

n∑
i=1

xix
T
i + xn+1x

T
n+1 (4.2)

= P−1n + xn+1x
T
n+1 (4.3)

As for the newly arriving data, we get

XT
(n+1)Y(n+1) =

n+1∑
i=1

xiyi =
n∑
i=1

xiyi + xn+1yn+1 (4.4)

= XT
(n)Y(n) + xn+1yn+1. (4.5)
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Then our calculation of Ŵ (n+ 1) yields

Ŵ (n+ 1) = Pn+1XT
(n+1)Y(n+1) (4.6)

We can derive recursive formula for Ŵ (n+ 1) using Ŵ (n)

Ŵ (n+ 1) = Pn+1(X(n+1)YT
(n+1))

= Pn+1(X(n)YT
(n) + xn+1yn+1) (Equation (4.5))

= Pn+1(P
−1
n Ŵ (n) + xn+1yn+1) (Equation (4.6))

= Pn+1((P
−1
n+1 − xn+1x

T
n+1)Ŵ (n) + xn+1yn+1) (Equation (4.3))

= Pn+1(P
−1
n+1Ŵ (n)− xn+1x

T
n+1Ŵ (n) + xn+1yn+1)

= Ŵ (n) + Pn+1xn+1yn+1 − Pn+1xn+1x
T
n+1Ŵ (n)

= Ŵ (n) + Pn+1xn+1(yn+1 − xTn+1Ŵ (n))

= Ŵ (n) +Kn+1εn+1

where

Kn+1 = Pn+1xn+1, and εn+1 = yn+1 − xTn+1Ŵ (n) (4.7)

Here K corresponds to gain vector at each weight update, similar to learning rate.

Now we take attention to recursive formula for P where Pn+1 =
(
P−1n + xn+1x

T
n+1

)−1
.

We will use Woodburry’s [22] matrix inversion formula:

If A,C,BCD are non-singular square matrix (the inverse exists) then

[A+BCD]−1 = A−1 − A−1B[C−1 +DA−1B]−1DA−1 (4.8)
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Now, in Equation (4.8) we identify A,B,C,D as follows:

A = P−1n+1 B = xn+1 C = 1 D = xTn+1 (4.9)

So that, we have:

Pn+1 = Pn + Pn+1xn+1[I + xTn+1Pn+1xn+1]
−1xTn+1Pn (4.10)

Here the term which its inverse is calculated is scalar since Pn is m × m and XT is

1×m and X is m× 1 matrices.

Error term decides the magnitude of change, and it is scalar. K decides the

direction of the change should be made, because W is a vector.

The pseudocode of this procedure is given in Figure 4.1 where λ is a parameter

called forgetting factor.

Initialize w0 = 0, P0 = σI

repeat

for t = 1→ |X| do

wt ← wt−1 + Ptxt(yt − wTt−1xt)

Pt ← 1
λ+xTt Pt−1xt

(Pt−1 − Pt−1xtxTt Pt−1)

end for

until wi’s converge

Figure 4.1. RLS algorithm.

4.3.2. Least Mean Squares Estimation

One can solve the least squares optimization problem by using the least-mean

squares estimation (LMS) algorithm, which is also known as the delta rule. The algo-

rithm starts by randomly assigning small positive values to the weight parameter w.
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Then we update the weights in each step by finding the gradient of the mean square

error (MSE). The LMS algorithm uses the stochastic gradient descent to minimize the

MSE by recursively estimating of the optimal weight vector argminw J(w) for

J(w) =
1

m

m∑
i=1

(yi − wTxi)2. (4.11)

Using batch gradient descent we derive our update rule as:

w(t+ 1) = w(t)− η∇J(w) = w(t) +
2η

m

m∑
i=1

(yi − wTxi)xij (4.12)

We can use the stochastic gradient descent for online processing as follows:

w(t+ 1) = w(t) + η(yi − wTxi)xij (4.13)

Figure 4.2 shows the pseudo-code for a solution with stochastic gradient descent.

Initialize w(0) to random small values

repeat

for j = 1, . . . , |X| do

w(t+ 1)← w(t) + η(yi − wTxi)xij
end for

until w’s converge

Figure 4.2. LMS algorithm.

4.3.3. RLS vs. LMS

The LMS algorithm is the standard first order SGD and takes a scalar as learning

rate. The recursive least squares algorithm (RLS), on the other hand, is based on

weighted least squares in which past values are taken in account to determine future

values. It considers an online approach to the least squares problem, and optimizes the

mean square error by processing the input deterministically rather than stochastically.
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Compared to the LMS, we need higher precision implementations for the RLS. In

other words, in comparing the computational costs of the LMS and the RLS in terms

of the number of operations, these numbers should be interpreted along with the fact

that the calculations used by RLS have to have higher precisions. Otherwise, the result

may diverge which adds another computational disadvantage of the LMS.

Additionally, if the input data is non-stationary, we must set a suitable forgetting factor

λ in order to determine the covariance (gain) matrix Pt that controls the convergence

speed.

Because of the matrix-product operations, the complexity of the RLS algorithm is

O(m2) per iteration. On the other hand, the complexity of LMS is O(m). This means

the RLS algorithm does not scale well with dimensionality. The main advantage of

the RLS algorithm is that it converges much faster than the least mean squares (LMS)

method [23].

4.4. Classification Algorithms for Data Streams

Recent research on streaming classifiers similar to data stream clustering are

mainly based on modifying batch methods to obtain incremental versions, or batch

methods applied to sketch of the data provided from summarization techniques such

as frequent pattern mining which we introduced in Section 4.5. For example, support

vector machine can be made incremental using stochastic gradient descent to by updat-

ing the training data with the continuous data stream. Hoeffding trees [24] is presented

for tree based data streaming classification. It relies on the idea that in the split stage

of a decision tree a small subset of the training examples may be sufficient. The size of

this subset relates with Hoeffding bound [24]. This algorithm has advantage with lim-

ited memory necessity. The drawback is, when a concept drift occurs its architecture

does not allow to handle this, since once a node is created, it can never change.
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Most neural network algorithms need to iterate through the training data many

times to determine their model parameters. Even though in the streaming scenario

this is not possible, it may not be necessary if the number of samples are large enough.

Incremental approach to the model update process of neural network algorithms makes

them particularly suitable for data stream scenario. The extensions of multilayer per-

ceptron to the stream scenario is discussed in the Chapter 6. Below we first introduce

basic units of a neural network, perceptron model, to compare its online structure with

different algorithms that can be converted to online using stochastic gradient descent.

There is a number of different neural network architectures [25] specifically designed

for clustering which are mostly based on the concept of competitive learning [26]. In

Section 4.6.1 we introduce competitive neural networks, and in Chapter 5 Section 5.5

we discuss its variation adaptive resonance theory.

4.4.1. Perceptron

In machine learning, a perceptron is a supervised learning algorithm used for

binary classification problems. Original model is proposed by Rosenblatt [18]. It is a

linear method because the classification model is represented by a linear function. Its

task is to learn a classification function which corresponds to a hyper-plane separating

two classes of data points that lie in a vector or an affine space. The perceptron takes

a linear combination of the weights (parameters) in combination with the features of a

data point, and feeds it through a step function. The neuron fires if the linear combi-

nation of the inputs exceeds the threshold, and it lays dormant otherwise. Figure 4.3

shows the architecture of the perceptron model. We are going to investigate multi-layer

perceptron methods in Chapter 6 in detail.

Assume we have n points in the training dataset (xi, yi)
n
i=1 where each xi has d

features. We need to obtain a classification function f : Rd → Y. Let

f(x) = sign(x) =

1 if w · x+ b > 0

−1 otherwise.
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Figure 4.3. Perceptron model.

We minimize the following objective function:

J(w) =
1

2

n∑
i=1

(f(xi;wi)− yi)2 (4.14)

Here, w represents the real-valued weights, w · x represents the ordinary inner product∑m
i=1wixi where m is the number of inputs, and b represents the bias. The bias does

not depend on input values, and pushes the decision boundary away from the origin.

The algorithm looks for an optimal hyperplane w · x = b that separates two classes of

input by updating the parameters w using the gradient descent

w(k + 1) = w(k) + η.(y − ŷ)x (4.15)

where η is learning rate. The convergence is guaranteed only when the two classes are

linearly separable [27].
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Initialize W to random small values

repeat

for (xi, yi) ∈ X in random order do

if yiw · xi ≤ 0 then

w(t)← w(t− 1) + yixi

else

w(t)← w(t− 1)

end if

end for

until T time step

return w ←
∑T

t=1w(t)

Figure 4.4. Perceptron algorithm.

4.4.1.1. LMS vs. The Perceptron. Difference between the LMS and the perceptron is

that for the latter we can construct a differentiable cost function J while for the former

the hard non-linearity f is replaced with a linear function. Also, LMS has a continuous

error while for the perceptron error is discrete: it is either 0 or ±2.

∇w = η(y − ŷ)f
′
(.) · x (4.16)

If we set a linear activation function, e.g f(x) = x ⇒ f
′
(x) = 1

⇒ ∇w = η(y − ŷ) · x (4.17)

If we choose activation function as the logistic (sigmoid) function, the single-layer

network is identical to the logistic regression model.
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4.4.2. Logistic Regression

Recall that in Section 3.2 we defined a linear classifier optimizing likelihood

objective function for a given collection of data points {xi, yi}Ni=1 with xi ∈ Rd and

yi ∈ {0, 1} as follows:

`(w) =
m∑
i=1

yi log(h(xi) + (1− yi) log(1− h(xi) (4.18)

We have the following update rule:

wj = wj + η
m∑
i=1

(yi − hw(xi))xij (4.19)

Using stochastic gradient descent for a sample (xi, yi) the update rule becomes:

wj = wj + η(yi − hw(xi))xij (4.20)

We note that the stochastic gradient descent update is identical with the update rule of

the linear regression with a squared error objective function as given in Equation (4.13),

with the logistic regression update rule with a log likelihood objective function as given

in Equation (4.20), and finally with the perceptron update rule with a sign objective

function as given in Equation (4.15). However, in each case the model is different where

we have ~w · ~x, 1
1+e−~w·~x , and sign(~w · ~x), respectively.

4.4.3. Online Support Vector Machines

Our task is to find a suitable w that minimizes an objective function of the form

min
w

m∑
i=1

fi(w) (4.21)
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The stochastic gradient descent iterates over such functions fi, and updates the vector

w as in

wt+1 ← wt + ηt∇wtfi(wt) (4.22)

after each iteration where ∇wfi(w) denotes the gradient of the function fi(w).

Recall that the SVM optimization problem is defined as:

w∗ = argmin
w

1

m

m∑
i=1

max{0, 1− yiw · xi}+
λ

2
‖w‖2 (4.23)

If we apply SGD to SVM optimization problem we see that here the functions fi are

of the form fi(w) = max{0, 1− yiw · xi}. The gradient of these functions are not easily

defined. But we can use their sub-gradients which are defined as follows:

∇w max{0, 1− yw · x} =

−yx if 1− yw · x ≥ 0

0 otherwise

Hence, the sub-gradient of Equation (4.23) for a sample i is:

−yx+ λw if 1− yw · x ≥ 0

λw otherwise

We can now use this in our iterative updates.

4.5. Frequent Pattern Mining

Frequent pattern mining refers to extracting frequency information from a given

dataset of the form of item sets, sequences, or subtrees depending on the type of

the dataset and the mining tasks. One can also consider any such information on

frequent patterns within a dataset as a particular form of a summary of that datasets.



35

Initialize λ, η0

W ← 0

repeat

for (xi, yi) ∈ X in random order do

ηt ← η0/
√
t

if 1− yiw · xi ≥ 0 then

w(t)← (1− ηtλ)w(t− 1) + ηtyixi

else

w(t)← (1− ηtλ)w(t− 1)

end if

end for

until T time step

return w ←
∑T

t=1w(t)

Figure 4.5. SVM by stochastic gradient descent.

The method can also be used for other machine learning tasks, such as classification,

clustering, and change detection [28–31].

Many frequent pattern algorithms require multi-passes over the dataset, therefore

they need persistent storage for the datasets they process [32–34]. With recent interest

in mining data streams, where only one-pass is allowed, new frequent mining algorithms

are proposed over data streams. However, such streaming algorithms can only yield

approximate results.

Lossy counting is introduced by Manku and Motwani as a one-pass algorithm

to find all frequent item sets over over the entire history of a stream [35]. Their

algorithm does not allow false negatives, and has a provable bound on false positives.

The algorithm uses a user-provided error parameter E that controls the quality of the

model.
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A popular approach in data stream clustering is using a time window, a con-

tiguous subsequence of the data of a fixed length, that covers the most recent data to

summarize the continuously arriving stream of data by giving greater importance to

most recent objects appearing in the stream. Among the distinct window models used

in the literature, we highlight the landmark model, sliding-window model, and damped

model [36, 37].

The landmark models consider the data points in the stream starting from the

beginning. Algorithms processing a stream using landmark windows perform their

task on disjoint chunks of the stream separated by relevant objects called landmarks.

Landmarks can be determined in terms of time, or in terms of the number of elements

observed since the previous landmark [36].

Objects arriving after a landmark are kept and the algorithm creates suitable summary

statistics within that window of recent data. All objects kept previously are removed

once a new landmark arrives, and the algorithm repeats the summarization process in

the new window.

Figure 4.6. Landmark model [1].

In the sliding-window model, we consider a specific interval of data between

now extending to a certain range into the past. Algorithms using the sliding window

model store only the most recent information from the stream. Algorithms using the

sliding window model maintain their frequent item sets in sliding windows usually by

employing a first-in-first-out (FIFO) data structure. Such algorithms store and process

only the part of the data stream within the sliding window.
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The particular size of the sliding window depend on the application and system

constraints. All the transactions within the window are kept until they move out of

the range of the sliding window. The challenge of using sliding window method is in

avoiding load shedding effect. This happens when the data arrival rate in the stream is

higher than the processing rate of the algorithm, and packets of data may be dropped

which may never be processed.

Figure 4.7. Sliding window model [1].

Damped model, also referred to as time-fading model, associates weights to data

points in the stream in such a way that recently arriving data has higher weights than

the data that arrived earlier [37]. We do this by assigning each data point, or a trans-

action, a weight that decreases with age. In calculating the result, older transactions

contribute less than the newer transactions. This is suitable for applications in which

newly arrived data has more effect on the results, or the effect reduces with time.

Figure 4.8. Damped model [1].
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4.6. Clustering Algorithms for Data Streams

In this section, we are going to give an overview of clustering algorithms for data

streams, and briefly mention commonly used methods. We will investigate the k-means

algorithm in depth later in Chapter 5.

Clustering algorithms belong ta a basic class of unsupervised machine learning

algorithms that assigns data points labels from a fixed finite set in order to split them

into partitions. We would like to form such partitions in such a way that points within

each group are more similar than the points in different groups.

For static data sets one can use a number of algorithms such as k-means, k-

medoids, hierarchical clustering, and density-based methods [38]. The standard clus-

tering algorithms need to access all of the data points and typically iterate over the

available data multiple times. This requirement renders these algorithms unsuitable for

large data streams especially for datasets that are too large to fit within the memory

available, or for datasets where data points arrive continuously.

Figure 4.9. Data stream clustering framework with abstraction [1].
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Most stream clustering algorithms can be thought as object clustering algorithms.

One strategy is to apply a data abstraction step, such as using a summary of frequent

items (see Section 4.5), and then obtain a data partition via an offline clustering step.

This strategy is usually very efficient in practice [39]. In this setup, traditional cluster-

ing algorithms such as DBSCAN [40] or k-means [41, 42] can be used very effectively

to partition data into relatively small clusters over the summaries.

4.6.1. Competitive Neural Networks

Figure 4.10. The winner-take-all competitive neural network. This is a network of k

perceptrons with recurrent connections at the output. Each unit at the output

reinforces its value and tries to suppress the other outputs. Under a suitable

arrangement of recurrent weights, the maximum suppresses all the others.

Competitive neural networks are used mainly for online clustering problems. The

input layer contains the input vector x, outputs are fully connected and there is no

bias unit. Only binary inputs and outputs are considered. Figure 4.10 shows the

basic structure of a competitive neural network. The values of the output units hi are

perceptrons:
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hi = wTi · x

The activation, of the ith output node is just the inner product of the weight vector of

the node and the current input vector:

hi =
d∑
j=1

wij · xtj = wTi · xt = ‖wi‖ · ‖xt‖ · cos(θ) (4.24)

which is closely related to the difference between the two vectors:

‖wi − xt‖2 = ‖wi‖2 + ‖xt‖2 − 2‖wi‖ · ‖xt‖ · cos(θ)

where θ is the angle between the two vectors.

In a competitive network, only one output unit, called the winner unit, can be

become active at a time. The winner unit i∗ is the only node that fires and it has the

largest net input. Hence, we must have

wi∗ · x ≥ wi · x, for all i (4.25)

where the winning unit i∗ has hi∗ = 1. If we normalize all the weights to ‖wi‖ = 1 for

every i, since we have

‖x− y‖2 = ‖x‖2 − 2 〈x, y〉+ ‖y‖2 (4.26)

we see that the winner unit is the one that minimizes the squared distance

i∗ = argmin
i=1,...,k

‖wi − x‖ (4.27)

where the term k represents the number of nodes in that particular layer of the network.
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This means the unit with the minimum Euclidean distance is the same as the one

with the maximum dot product. In other words, the winner is the unit with normalized

w closest to the input vector x.

Initialize W ← the first k distinct vectors in X

repeat

for xt ∈ remainder of X do

i← argminj ‖xt − wj‖

wi ← wi + η(xt − wi)

wi ← wi

‖wi‖

end for

until wi’s converge

Figure 4.11. Competitive neural network.
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5. ONLINE K-MEANS

In this chapter we introduce the k-means algorithm and its variations using batch

and online processing. The k-means clustering algorithm, which is an iterative method,

is one of the most popular unsupervised clustering algorithms in machine learning for

partitioning data into representative clusters [43–47]. The standard k-means algorithm

requires renders data multiple times. This requires all of the data to be available. In

the online version, the algorithm takes action as each point arrives. In the stream-

ing case, the algorithm can defer action until a group of data points arrive, de facto

forming batches. The main difference between these different processing techniques

is the amount of memory available. Even though the nature of the data itself plays

an important role in determining which type of processing is suitable, it is crucial to

analyze trade-offs between these algorithms appropriately for our objectives and cost

constraints.

5.1. The K-means Problem

The k-means algorithms aims to find optimal centroids for different clusters of

data that lie in an Euclidean space for a desired number of partitions. One can refor-

mulate the k-means problem as an optimization problem as follows:

Given a finite set X ⊂ Rd and a positive integer k ∈ Z+, we need to find a function

w : X→ Rd such that |im(w)| = k and the following cost function is minimized:

∑
x∈X

‖x− w(x)‖2. (5.1)

Our search space for an optimal solution is the set of all functions w : X → Rd with

|im(w)| = k, i.e. we need

argmin
w

∑
x∈X

‖x− w(x)‖2.
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Since the sum of the squared Euclidean distances is minimized when w assigns the

mean of the cluster that the data point belongs to, this problem now is equivalent to

finding cluster centroids and writing the function w(x) that assigns the centroid of the

cluster to each point x ∈ X.

Finding globally optimal solution for this problem is known to be NP-hard [48].

So, rather than using an exhaustive search whose complexity is exponential, iterative

and refinement based algorithms are commonly used to approximate the solution of

the optimization problem we described above.

5.2. Facility Location Problem

In this problem we have a metric space with a multiset of demand points chosen

from the space. It is a version of the k-means problem in which the cost of adding a

centroid is added to the objective function to be minimized. For the facility location

problem, the number of clusters is not a part of the input, as it was for k-means.

Instead, we have a facility cost function. An algorithm designed to solve this problem

may have as many clusters as it desires in its output simply by denoting some point as

a facility. Then the optimal solution is going to be the sum of the resulting k-means

cost, which can be considered as the service cost, plus the cost for opening the facilities.

Our task is to find a set of locations in the metric space that minimizes the total service

cost and the assignment cost where the service cost for a demand point is its distance

to the nearest open facility. We determine the coordinates of the facilities we are going

to open so that the sum of the total facility cost and the service cost is minimized.

In the online version, the set of demand points is not known in advance. Demand

points arrive one at a time. After the arrival of a demand point, the algorithm has to

decide whether to open a facility without any information about the further demands.

In the plain k-means problem, |im(w)| which is the total number of facilities, must be

equal to k. In both cases, we are looking for solutions by optimizing a cost function.

In this case, the optimization problem we need to solve can be summarized as follows:
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Given a finite set X = {xt}Nt=1 of points xt ∈ Rd, find a function w : X→ Rd such

that

∑
x∈X

‖x− w(x)‖2 + Cost(w) (5.2)

is minimized where Cost(w) is the total cost to open the collection of facilities deter-

mined by w.

5.3. K-means Clustering Algorithm

The k-means clustering algorithm we are going to define in this section is a multi-

pass clustering algorithm, and it requires access to all of the data points multiple times.

The algorithm groups the data based on their mutual euclidean distances, and therefore

closer data points are more likely to be in the same group. The algorithm takes the

mean value of a group as the similarity parameter and forms clusters by assigning data

points based on the closest mean. This algorithm firstly reported by [49].

Given a data set X = {xt}Nt=1, and a positive integer k, the algorithm starts

by randomly selecting k points as the initial cluster centroids. Then it assigns each

data point to its closest cluster centroid. Let W = {w1, . . . , wk} be the initial cluster

centroids then each data point xt is assigned to a cluster based on:

w(x) = argmin
wi∈W

‖wi − xt‖2.

Then the algorithm recalculates the cluster centroids {wj}kj=1 as the mean of the data

points in the current clusters.

Let Si be the set of data point assignments for the ith cluster. Let us define

hti =

1 if i = argmin` ‖xt − w`‖

0 otherwise

(5.3)
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The batch algorithm, k-means, updates the centroids as

wi =

∑
t h

t
ix
t∑

t h
t
i

=
1

|Si|
∑
xt∈Si

xt (5.4)

Data points are reassigned to their new clusters with respect to the new cluster centroids

and centroids are updated until the cluster centroids stabilize. The first four iterations

of an example run of the k-means clustering algorithm is illustrated in Figure 5.1. The

pseudocode of the k-means algorithm is given in Figure 5.2.

Figure 5.1. Illustration of the four steps of the k-means clustering algorithm.

5.3.1. Cost, Convergence and Complexity

The cost function of k-means algorithm is the squared objective function:

J(k,W ) =
1

2

N∑
t=1

k∑
i=1

hti‖wi − xt‖2 (5.5)
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for i← 1 to k do

Randomly initialize wi

end for

repeat

for t = 1→ |X| do

` = argminj ‖xt − wj‖

for i← 1 to k do

if i = ` then

hti ← 1

else

hti ← 0

end if

end for

end for

for i← 1 to k do

wi ←
∑

t h
t
ix

t∑
t h

t
i

end for

until wi’s converge

Figure 5.2. k-means clustering algorithm.
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The k-means algorithm is guaranteed to converge because J is monotonically decreas-

ing, and J is bounded below. However, since J is a non-convex function, it is not

guaranteed to converge to its global minimum. In other words, k-means can stuck on

a local minimum. In other words, random initialization of the cluster centroids might

give different results. In batch processing, a simple strategy to avoid this situation is to

run k-means many times using different random initial values for the cluster centroids

wj, and then pick the one that gives the lowest value for J .

The complexity of this algorithm is O(kNdT ), where k is the number of clusters,

N is the input length, d is the dimension of the data points, and T is the iterative of

time for the algorithm. Normally, k � N and d� N , and we can see that k-means is

linear in the number of data points.

5.4. Online K-means with Stochastic Gradient Descent

In this section, we make the same assumption that there are k clusters. The

crucial difference is that we do not have the whole sample for the training, and we

receive instances one by one.

One approach [2] to obtain an online version of the k-means algorithm is to use

stochastic gradient descent. Let X = {xt}Nt=1 and xt ∈ Rd. Then the objective function

for a single instance is:

J t(k,W ) =
1

2

k∑
i=1

hti‖xt − wi‖2 =
1

2

k∑
i=1

d∑
j=1

hti(x
t
j − wij)2 (5.6)

where hti is defined as Equation (5.4). Using the gradient descent method on this

function, we get the following update rule for each instance xt:

∆wij = −η ∂J
t

∂wij
= ηhti(x

t
j − wij) (5.7)
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Given a data point xt, we update only a single centroid at a time, which we call

the winner unit as in Section 4.6.1, by moving the centroid in the direction of xt by η.

We give the pseudocode of the online version of the k-means algorithm in Figure 5.3.

Initialize W ← the first k distinct vectors in X

repeat

for t = 1→ |X| do

i = argminj ‖xt − wj‖

wi ← wi + η(xt − wi)

end for

until wi’s converge

Figure 5.3. Online k-means algorithm with SGD.

5.4.1. Cost, Convergence and Complexity

In order to gain convergence, we must let η go to 0 [9]. However, this may lead to

what is called the stability-plasticity dilemma: If η is going towards 0 we may achieve

stability but we may lose adaptivity because updates are now too small. On the other

hand, if we keep η large then the values wi may oscillate.

In a non-stationary environment, the initialization of cluster centroids with the

first k instances from the stream may cause the algorithm to stuck in a local optimum,

and give rise to centroids that are never used by the algorithm. For competitive

networks, these are the centroids that would always lose because the initialization step

put them too far away from most of the data points. There are algorithms for adding

new centroids if an input is far from the existing centroids defined by a threshold value.

One example is the ART model, which we discuss below in Section 5.5. To avoid this

problem, one can also include the information of the global cost function to obtain an

adaptive system as we do in Section 5.6.
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Figure 5.4. Centroid update in stochastic k-means: the closest centroid wi to the

input x moves along the direction of (x− wi) by a factor η [2].

Algorithm in Figure 5.3 keeps updating a set of k centroids using one sample at

a time, so the complexity is reduced to O(1) from O(N) in the batch case for each

iteration.

5.5. Adaptive Resonance Theory Networks

In the algorithms we discussed above, we needed to know the number of clusters

before the algorithm starts processing the stream. If the number of clusters is not

known, then we follow an incremental approach where we start with a single cluster,

and then we gradually open up new clusters as data flows in and we need new centroids.

The adaptive resonance theory (ART) algorithm [50] is an example of competitive

neural networks, and it can be effectively used for this purpose.

In the ART method, all of the output units of the network calculate their values of

similarity for any given input. Only one centroid, the one with the minimum Euclidean

distance of its weight vector and the current input, can become active at a time.
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Figure 5.5. Distance between xn and the closest centroid wi is less than the vigilance

value ρ and the centroid is updated as in online k-means. However, xm is not close

enough to any of the centroids and a new cluster should be created at that

position [2].
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The update is performed as in Algorithm 5.3 only when the minimum distance is

smaller than a chosen vigilance parameter. If this distance is larger than the vigilance

parameter, a new output unit is added and its center is initialized with this instance.

See Figure 5.5.

Let W = {w1, . . . , wk}

for t = 1→ |X| do

ri ← ‖wi − xt‖ = minkl=1‖wl − xt‖

if ri > ρ then

wk+1 ← xt

W ← W ∪ wk+1

else

wi ← wi + η(xt − wi)

end if

end for

Figure 5.6. The ART algorithm.

We can see in the algorithm in Figure 5.6 that each output unit wi corresponds

to a cluster formed within the disk centered at the centroid with radius given by the

vigilance. If an upcoming point does not fall into any cluster disk, a new cluster is

opened.

5.5.1. Cost, Convergence and Complexity

In the ART method, we do not make an assumption on the number of clusters.

However, we assume a prior knowledge about the density of the data in order to

specify the vigilance parameter. This parameter is used as similarity criteria based on

the Euclidean distance in our case.
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Given a data set X = {xt}Nt=1, one can write a function that relates the number

of clusters |W | to the vigilance parameter ρ. For a normalized data set, this function

is expected to have a minimum value of |W | = 1 for ρ = 1 and a maximum value of

|W | = N for ρ → 0. Forming clusters as disks of radius ρ limits the reconstruction

error per instance by the square of the vigilance ρ.

Using Equation (5.6) and summing all over t, the total error is calculated as:

J(k,W ) =
1

2

N∑
t=1

k∑
i=1

hti‖wi − xt‖2. (5.8)

Notice that since each cluster lies within a ball of radius ρ, and only one of the terms

hti is non-zero for each t, we can get a hard bound to the objective function as

J(k,W ) ≤
N∑
t=1

k∑
i=1

htiρ
2 ≤ N · ρ2

independent of the number of clusters k.

5.6. Semi-Online K-Means Algorithm

In this section, we are going to use a combination of streaming and online process-

ing for the k-means clustering algorithm. The algorithm we are going to define assigns

clusters using an online method while keeping the space and the time complexity at

most poly-logarithmic in the length of the stream. To do that we follow the steps as

in [6]. First, we need to introduce the semi-online k-means algorithm and then we are

going to derive the fully online k-means algorithm from the semi-online algorithm.

In the semi-online model, we assume we have a lower bound j∗ on the total cost of

the cost function J∗ of the k-means algorithm , and we have an estimate for the length

of the stream n. In the fully online model, we do not assume any prior knowledge nor

on the lower bound j∗, neither on the length of the stream n. Algorithm in Figure 5.9

operates in this setting and opens a comparable number of clusters with the algorithm

in Figure 5.7. But, its approximation factor guarantee degrades by a log(n)-factor.
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For the semi-online algorithm we are going to use ideas from the online facility

location algorithm [51]. In this algorithm whose pseudocode is given in Figure 5.7, we

begin with an empty set of clusters. In this setting, data points arrive in an arbitrary

order. When a new data point arrives, the algorithm either assigns it to one of the

existing clusters, or opens a new cluster which consists of this newly arrived point.

It also adds the cost of creating a cluster to the total cost. This is analogous to the

vigilance parameter in the ART algorithm. The cost of opening a facility is given in

Equation (5.2). Our task is to find an approximation for the optimal cluster centroids.

In this algorithm, we start with a facility cost f1 which is far less then the lower

bound of the total cost j∗. So, in the beginning the algorithm tends to open many

facilities (centroids). On the other hand, the algorithm also checks whether there are

too many facilities because the current facility cost might be lower than optimum. If

that is the case, the algorithm doubles the facility cost for future facilities.

In algorithm in Figure 5.7, the distances between a data point x and the cluster

centroids W is denoted as

D(x,W ) = min
w∈W
‖x− w‖.

Note that, if W = ∅ then D(x,W ) =∞ for any x.
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W ← ∅

r ← 1

q1 ← 0

f1 ← j∗

k log(n)

for x ∈ X do

z ← random(0, 1)

if z < min(D2(x,W )/fr, 1) then

W ← W ∪ {x}

qr ← qr + 1

end if

if qr ≥ 3k(1 + log(n)) then

r ← r + 1

qr ← 0

fr ← 2.fr−1

end if

end for

return W

Figure 5.7. Semi-online k-means algorithm.
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5.6.1. Cost, Convergence and Complexity

Let S∗1 , . . . , S
∗
k be an optimal solution with cluster centroids w∗1, . . . , w

∗
k. Let

J∗i =
∑
x∈S∗i

‖x− w∗i ‖22

be the cost of the i-th cluster in the optimal solution, and

J∗ =
∑

J∗i (5.9)

be the total value of the cost function for the optimal solution. In [6, Theorem 2]

Liberty et. al. (2015) prove that the estimated expected cost of the clusters opened

by algorithm in Figure 5.7 is

E[J ] = O(J∗)

where J is the cost function for algorithm in Figure 5.7. Moreover, if we write W for

the set of clusters defined by algorithm in Figure 5.7, then by [6, Theorem 1] we get

that the expected number of clusters opened by Algorithm 5.7 is

E[|W |] = O(k log n log
J∗

j∗
).

5.7. Fully Online K-Means Algorithm

Algorithm in Figure 5.9 processes the data points in a fully online manner. The

number of the data points n is unavailable to the algorithm. We initialize the cluster

centroids as the first k + 1 distinct vectors as the data points arrive. The algorithm

determines a lower bound j∗ based on the initial cluster centroids. Our task is again

to approximate the optimal centroids as data points arrive one by one. We again use

a threshold value similar to the vigilance parameter that we used in the ART method.
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Note that j∗ is trivially smaller that J∗. Any clustering of k + 1 points with at least

two points in one cluster incurs a cost of

‖x− x′‖2

2
≥ min

x,x′

‖x− x′‖2

2
.

Figure 5.8 shows an illustration of the steps of the fully online k-means clustering

algorithm.

x1

x5x3

‖x3 − x5‖2 > f

5
x9

p = ‖x9 − x5‖2/f

Figure 5.8. If the minimum squared distance between the entering point and the

existing cluster centroids is more than the cost of creating a new cluster f , a new

cluster is created. Otherwise, a new cluster is created with probability p. When the

number of created clusters with the current cost f is more than 3k(1 + log(n)) the

value of f is doubled.

The online k-means algorithm aims to bifurcate an online arriving stream of data

X into relevant clusters. The algorithm is conducted in r phases. It takes as input

a parameter k that denotes the minimum number of clusters that will be formed as

output of the algorithm. Hence, the algorithm produces at least k + 1 clusters. The

initial k + 1 points arriving from the online stream of data are assigned as the initial

cluster centers. The distance between each of the points in W calculated and the square

of the minimum distance divided by 2k is the initial facility opening cost.
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Let fr represent the facility opening cost for the rth phase of the algorithm. Let

us also use qr to denote the number of clusters in rth phase. Since no proper clusters

are formed, the value of qr remains zero in the beginning. New cluster is opened with

the probability p which is the minimum squared distance between the incoming point

x and the existing cluster centers divided by the cost fr of that phase. With each

successive phase, cost fr is double of the previous cost so as to ensure that lesser

clusters are opened in later phases. The algorithm moves to the next phase when

qr ≥ 3k(1 + log(n)) [52].

W ← the first k + 1 distinct vectors in X; and n = k + 1

j∗ ← minx,x′∈W
‖x−x′‖2

2

r ← 1; q1 ← 0; f1 = j∗/k

for t ∈ remainder of X do

n← n+ 1

z ← random(0, 1)

if z < min(D
2(x,W )
fr

, 1) then

W ← W ∪ {x}, qr ← qr + 1

end if

if qr ≥ 3k(1 + log(n)) then

r ← r + 1; qr ← 0; fr ← 2.fr−1

end if

end for

return W

Figure 5.9. Fully online k-means algorithm.

5.7.1. Cost, Convergence and Complexity

Let J be the cost function for the algorithm in Figure 5.9, and let J∗ be defined

as in Section 5.6, Equation (5.9).

E[J ] = O(J∗ log n)
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Let W be the set of clusters defined by Algorithm 5.9, and let

γ =
maxx 6=x′ ‖x− x′‖
minx 6=x′ ‖x− x′‖

.

Observe that,

J∗ ≤ nmax
x 6=x′
‖x− x′‖2.

Then, by [6, Theorem 3]

E[|W |] = O

(
k log n log

J∗

j∗

)
= O(k log n log γn).

The idea behind the proof is that if the cost for creating a cluster is too small, this fact

results in creating many clusters because the total cost, the sum of squared distances,

is going to be low. At the same time, every time 3k(1 + log(n)) clusters are added, the

cost for creating a cluster is doubled which increases total cost in the long run. On

the other hand, a large enough cost value for creating new clusters makes adding new

clusters hard enough in such a way that at most O(k log(n) log(n)) clusters are created

in expectation.
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6. ONLINE MULTILAYER PERCEPTRON MODEL

6.1. Introduction

In this section we introduce multilayer neural networks with its standard back-

propagation algorithm using batch gradient descent. Then we discuss stochastic gra-

dient descent and recursive least squares estimation to implement backpropagation

algorithm. The literature on the subject observes that neural networks need large vol-

umes of data [53] to train a machine learning model. With current availability of large

datasets in different applications, the main concern for implementing a neural network

algorithm to solve a machine learning task is the computation time. We also discuss

performance of these two models based on their training time, and accuracy.

Artificial Neural Networks are used for data approximation and data classifica-

tions problems. Originally, the inspiration for this architecture comes from biological

neurons [18]. In this architecture, we have a collection of nodes and directed edges

called arrows, and all computations flow through the network along the arrows. The

value of a node P is determined by the nodes flowing into P along the arrows connected

to P . Each arrow contains a weight which determines the strength of the connection.

Our discussion also contains the case of online network training. As in earlier

sections, any online training method seeks to adjust the parameters as training inputs

are presented rather than after a complete pass through the training set. In this case,

we are going to use online techniques to determine the network parameters.

In the standard backpropagation algorithm, both for the stochastic and the batch

cases, the weights are updated according to the generalized delta rule. In the recursive

least squares backpropagation algorithm, the algorithm minimizes the mean-square

error (MSE) between the target and the actual output with respect to the summation

outputs. Delta values come from the standard backpropagation algorithm to correct

the summation outputs.
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In this algorithm weights are adjusted using these estimates together with the

input vectors using a system of linear equations at each node. We solve these systems

of linear equations using a recursive least squares estimation which we discussed in

Section 4.3.1.

6.2. Multilayer Perceptron Model

The Multilayer Perceptron model is a modified single perceptron model which can

separate data even when the data is not linearly separable. It has several layers between

the input nodes and the output nodes. The data fed to a network flows from the

input nodes to the output nodes. The training is performed using the backpropagation

algorithm.

Figure 6.1. A multilayer perceptron model with 2 hidden layers, 3 input nodes, m

hidden nodes and a single output node.

In the feed forward neural networks the information travels only in one direction

as we calculate the sum of the the weights connecting one layer to the next. The value

at a node then passes through a transfer (or an activation) function to determine if

the neuron will produce a value propagating towards the output layer. See Figure 6.1.
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Hidden layers with a non-linear activation function creates and maintains an in-

ternal representation of the data that can then be combined in different ways to model

the functions we want to approximate. The nonlinearity of the activation functions

causes most loss functions to become non-convex, hence, without a guarantee for con-

vergence. For this reason, most neural networks use iterative gradient-based methods

to find a minimal value for the cost function instead of linear solvers that we used

in linear regression models, or the convex optimization algorithms which find global

minimum that we used earlier to obtain logistic regression models or SVMs. Thus,

initialization of a neural network becomes crucial since all feed-forward neural network

algorithms initialize weights to small random values while the biases are initialized to

zero, or to small positive values. In convex optimization, convergence of an iterative

approximations is independent from any initial parameters one can choose because of

the requirement of convexity on the objective function. However, the convergence of

a stochastic gradient descent method applied to a non-convex objective function is

sensitive to a chosen initialization.

6.3. Activation Function

A neuron in a layer of a neural network takes all its inputs from other neurons

that are connected to it from its previous layer. After it multiplies these input values

by their respective weights and calculates the sum, it passes this sum through an

activation function. The output of this function is in the range (0, 1) or (−1, 1).

We prefer non-linear activation functions because linear activation functions re-

duce successive layers of a neural network to a single layer. This is because if all

activation functions are linear, then the activation function on the last layer is just a

linear function of the inputs on the first layer, and one can replace all layers with a

single layer. In this way we loose the ability of stacking layers, and no matter how we

stack, the whole network reduces to a single layer neural network with a linear acti-

vation function since a linear combination of linear functions is another linear function.



62

Additionally, in the backpropagation algorithm we use gradient information of the

activations, and the derivative of a linear function with respect is constant. That

means, the gradient of an activation function has no relationship with its input, and

the descent is going to be on a constant gradient. If there is an error in the prediction,

the changes made by back propagation are constant and do not depend on the change

in input delta. So, the preferred activation functions are usually contractions which are

non-linear and differentiable. Below we introduce commonly used activation functions.

(i) Logistic (Sigmoid) function: σ(z) = 1
1+e−z where σ : R→ (0, 1)

(ii) Hyperbolic Tangent: tanh(z) = ez−e−z

ez+e−z where tanh : R→ (−1, 1)

(iii) Rectified Linear Unit: R(z) = max(0, z) where R : R→ (0,∞)

Figure 6.2. Graphs of sigmoid, tanh and ReLU.

6.4. Backpropagation Algorithm

The backpropagation algorithm is a recursive algorithm that searches for the

minimum of the mean square error function in the weight space using the gradient

descent. This means it adjusts each weight in the network in proportion to how much

it contributes to overall error. We expect that the iterative reduction of each error

associated with a weight eventually provides a series of weights that produce a good

prediction. It propagates errors backward to obtain gradient information from hidden

layers. This is crucial because for the hidden layers, the error Ek+1 is not defined

explicitly in terms of the weight parameters of the layer (k + 1).
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For input vectors x and target output vectors t in given a training data set,

the algorithm propagates the error back by scaling according to the weights in the

previous layer, and the gradients of the associated activation functions. After this

step, the parameters are updated by using the calculated gradients.

Figure 6.3. For given input vector x in a training data set of and target output vector

t, the algorithm backpropagates the error by scaling it by the weights determined by

the previous layer and the gradients of the associated activation functions [3].

The algorithm for a neural network with a single hidden layer (Figure 6.3) can

be decomposed as in the following four steps [54].

(i) Feed-forward computation

(ii) Backpropagation to the output layer

(iii) Backpropagation to the hidden layer

(iv) Weight updates
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The algorithm stops when the error is sufficiently small. The mean squared error

function we use has the form:

E =
1

2

∑
j∈J

(Oj − tj)2

where tj is the target value of node j, and Oj is the output value of node j which

is obtained by the sum of the weighted input values passed through the activation

function. The algorithm needs to find the best combination of weights to minimize the

error. For this purpose we need to find the rate of change of the error function with

respect to given connective weights.

6.5. Derivation

The cost function at the output layer (with index k + 1):

Ek+1 =
1

2

∑
j

(tj −Ok+1
j )2 (6.1)

where tj is desired signals at the output layer, and Ok+1
j is the actual output at the

output layer, and its output of a function γ whose variables include weights in all layers

such that:

Ok+1
j = γ(w1, w2, . . . , wh, x, t) = f(Sk+1

j ) where Sk+1
j =

∑
i

wkijO
k
i .

Our task is to minimize the error Ek+1 over the weight space of the network. To do

this, we need the gradient information at each layer. The gradient computation depend

on whether the nodes are on the output layer, or on the hidden layer. Nevertheless, we

deploy a single gradient descent to minimize the cost function.

∆w = −η∂E
k+1

∂w
(6.2)
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Since the equation above involves all the weights w, we can not compute the gradients

directly because errors do not have readily available gradients at the hidden layers.

But, in order to derive gradient equations we can use the chain rule.

We use the following notation:

k: Layer index

i: Neuron index of kth layer

j: Neuron index of (k + 1)th layer

wkij : The weight between ith neuron of kth layer and jth neuron of (k + 1)th layer

Ski : Net input to the ith neuron at the kth layer

Ok
i : The output value of node i at the kth layer

f : The activation function

tj: The target value of node j

6.5.1. Output Layer

∂E

∂ωkij
=

∂E

∂Sk+1
j

∂Sk+1
j

∂ωkij

=
∂E

∂Ok+1
j

∂Ok+1
j

∂Sk+1
j

∂Sk+1
j

∂ωkij

=(Ok+1
j − tj)

∂f(Sk+1
j )

∂Sk+1
j

∂Sk+1
j

∂ωkij

=(Ok+1
j − tj)f

′
(Sk+1

j )
∂
∑

i ω
k
ijO

k
i

∂ωkij

=(Ok+1
j − tj)f

′
(Sk+1

j )Ok
i (∗)

=⇒ ∂E

∂ωkij
= Ok

i δ
k+1
j where δk+1

j = (Ok+1
j − tj)f

′
(Sk+1

j )
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(*): In the second step the summation disappears because ωij is a specific weight

connecting i− th node to j − th node from hidden and output layer respectively.

6.5.2. Hidden Layer

Assume that we are at an arbitrary layer k. We would like to generate the update

rule for (k+1), ∇wkij. In this case layer (k+1) is a hidden layer, and there is no explicit

realization of the Ek+1 in terms of wkij. Let unit indices be i, j, l at layers k, (k + 1)

and (k + 2) respectively.

∂Ek+1

∂ωkij
=
∂Ek+1

∂Sk+1
j

∂Sk+1
j

∂ωkij

=
∂Ek+1

∂Sk+1
j

∂

∂ωkij

∑
i

ωkijO
k
i

=
∂Ek+1

∂Ok+1
j

∂Ok+1
j

∂Sk+1
j

Ok
i

=
∂Ek+1

∂Ok+1
j

f
′
(Sk+1

j )Ok
i

=
∑
l

∂Ek+2

∂Sk+2
l

∂Sk+2
l

∂Ok+1
j

f
′
(Sk+1

j )Ok
i (∗)

=
∑
l

∂Ek+2

∂Sk+2
l

∂

∂Ok+1
j

(∑
j

wk+1
jl Ok+1

j

)
f
′
(Sk+1

j )Ok
i

=
∑
l

∂Ek+2

∂Sk+2
l

wk+1
jl f

′
(Sk+1

j )Ok
i

= f
′
(Sk+1

j )Ok
i

∑
l

δk+2
l wk+1

jl

=⇒ ∂E

∂ωij
= Ok

i δ
k+1
j where δk+1

j = f
′
(Sk+1

j )
∑
l

δk+2
l wk+1

jl

(*): In this step we use total derivative concept.
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Combining the results, back propagation algorithm updates the weights itera-

tively by:

ωp+1 = ωp − b∇ωE(ωp)

The update rule for all the weights (output weights and the hidden layer weights) is

∆wkij = ηδk+1
j Ok

i = −η∂E
k+1

∂wkij
(6.3)

Let Sk+1
j =

∑
iw

k
ijO

k
i .

(i) If we are at output layer:

δk+1
j = (tj −Ok+1

j )f ′(Sk+1
j ) (6.4)

(ii) If we are at hidden layer, for index k + 1:

δk+1
j =

(∑
j

δk+2
l wk+1

jl

)
f ′(Sk+1

j ) (6.5)

Implementation of the algorithm is done with a backward recursion, hence the name.

We start the algorithm at the output layer, and go back through the hidden layers all

the way to the input layer. We propagate errors backward to obtain gradient informa-

tion from hidden layers. Algorithm in Figure 6.4 shows pseudocode backpropagation

algorithm using the batch gradient descent method.

6.5.3. Convergence

The total error function Ek+1 for the MLP model in the weight space can not

be easily determined since we have intermediate layers with non-linear activation func-

tions. In particular, we do not know if it is convex. This means it may have many

local minimum apart from the absolute minimum.
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Initialize each wij in the network to a small random number

repeat

for each sample (x, y) in examples do

for each node i in the input layer do

Oi ← xi

end for

for each layer k from 2 to L do

for each node j in layer k do

Sj ←
∑

iwijOi // forward pass

Oj ← f(Sj)

end for

end for

for each node j in the output layer do

δ[j]← f ′(Sj)(yj −Oj) // backward pass (6.4)

end for

for each layer k from L− 1 to 1 do

for each node i in layer k do

δ[i]← f ′(Si)(
∑

j wijδ[j]) // backward pass continued (6.5)

end for

end for

end for

for each weight wij in network do

wij ← wij + η ×Oi × δ[j] // update network weights

end for

until wij’s converge

Figure 6.4. Backpropagation algorithm using batch gradient descent.
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Initialize each wij in the network to a small random number

repeat

for each sample (x, y) in examples do

for each node i in the input layer do

Oi ← xi

end for

for each layer k from 2 to L do

for each node j in layer k do

Sj ←
∑

iwijOi // forward pass

Oj ← f(Sj)

end for

end for

for each node j in the output layer do

δ[j]← f ′(Sj)(yj −Oj) // backward pass (6.4)

end for

for each layer k from L− 1 to 1 do

for each node i in layer k do

δ[i]← f ′(Si)(
∑

j wijδ[j]) // backward pass continued (6.5)

end for

end for

for each weight wij in network do

wij ← wij + η ×Oi × δ[j] // update network weights

end for

end for

until wij’s converge

Figure 6.5. Backpropagation algorithm using stochastic gradient descent.
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The convergence of the update rule given with BP algorithm is not guaranteed

to converge to the global minimum. Error might get stable at a local minimum point.

Thus the choice of learning parameters gain importance in the update rule.

6.6. Backpropagation with Stochastic Gradient Descent

In the stochastic gradient descent (SGD) algorithm uses one sample at each it-

eration to update the weights of the model depending on the error determined by the

example instead of using the average of the errors of all examples at each iteration.

The only algorithmic difference between SGD and the ordinary gradient descent is

that each algorithm optimizes a different cost-function. The cost-function for gradi-

ent descent iterates over all training samples while the cost function for stochastic

gradient descent only accounts for one training sample chosen at random. Algorithm

in Figure 6.5 shows the pseudocode of this algorithm. The trade-off for this pair of

algorithms is between correctness (gradient descent) versus speed (stochastic gradient

descent.) However, SGD converges to the global minimum when the cost function is

convex, or pseudo-convex.

6.7. Backpropagation with Recursive Least Squares

Due to its fast convergence rate, Scalero et. al. [4] proposed using the recur-

sive least squares algorithm to speed up training process in the multilayer perceptron

model. The proposed algorithm uses the sum of squared error between the actual and

the desired inputs on the output layer. This objective function differs from the objec-

tive function used in the standard backpropagation algorithm which minimizes the sum

of squared error between the actual and the desired outputs on the output layer. The

reason behind this modification is to reduce the non-linear problem to a linear opti-

mization problem in order to apply recursive least squares estimation. Non-linearity of

the backpropagation algorithm come from the use of the non-linear activation functions

of the network.
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Given an input and desired output pair, the outputs from the output layer are

determined using forward propagation of the input, and the desired summation outputs

Sj, which are now inputs for the output layer, are calculated using the inverses of the

activation functions on the desired outputs tj. For the hidden layers, the summation

outputs Sk+1
j and the inputs Ok

i of a node are estimated. Since Ok+1
j = f(dk+1

j ), it is

sufficient to estimate the desired outputs dk+1
j only.

The estimates for the summation outputs Sk+1
j and the inputs Ok

i will be denoted

by d̂k+1
j and Ôk

i , respectively. The desired summation outputs can be estimated using

Equation (6.4) and Equation (6.5)

d̂k+1
j = Sk+1

j + η · δk+1
j (6.6)

Since these estimates do not provide an exact weight vector wkij at each node we

would need to update the desired summation output estimates d̂k+1
j according to the

error produced at the output layer of the network. Repetition of this procedure for

each training data points improves these estimates, and therefore, the weight vectors.

Training process of the network is starts with the propagation of the randomly

initialized weight vectors through the network. Then we update the desired summation

output estimates d̂k+1
j using calculated errors which we refer as deltas. This process

continued until the convergence is achieved. As in the case of stochastic gradient

descent, this method allows for stochastic updates to be performed for each incoming

training pattern.

6.7.1. Linear Equations

In this section we consider the system of linear equations that relates the weight

vectors to the input and the desired summation output on a node. Every time the

desired summation outputs d̂p are estimated, the weights of the networks are updated.
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In the following subsection we derive the system of linear equations considering

only a single neuron. For simplicity we drop the estimation identifier, since whether

we use the actual or estimate values are not our concern in this section.

6.7.2. Error Function

Our objective is to minimize the total mean-squared error E with respect to the

summation outputs Sp which is given as

E =
m∑
p=1

(dp − Sp)2 (6.7)

where dp is the desired summation output and Sp is the actual summation output for

the pth training pattern, and m is the number of points in the training dataset. This

objective function can be minimized by setting partial derivatives of E with respect

to each weight to zero. The result will be a set of linear equations of the number of

weights connecting to the neuron. Minimizing the error E with respect to a weight wn

produces

∂E

∂wn
= −2

m∑
p=1

(dp − Sp)
∂Sp
∂wn

= 0 (6.8)

The summation output Sp is given as:

Sp =
N∑
i=0

wiOpi (6.9)

where N is the number of weight of the neuron. So, the partial derivative with respect

to the specific weight wn is calculated as:

∂Sp
∂wn

= Opn (6.10)
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Substituting Equation (6.9) and Equation (6.10) to Equation (6.8) we get

∂E

∂wn
= −2

m∑
p=1

(dp −
N∑
i=0

wiOpi)Opn = 0 (6.11)

m∑
p=1

dpOpn =
m∑
p=1

N∑
i=0

wiOpiOpn (6.12)

Rewriting the right-hand side of Equation (6.12) as

m∑
p=1

N∑
i=0

wiOpiOpn =
m∑
p=1

Opn

N∑
i=0

wiOpi (6.13)

and changing the right summation to a vector multiplication, provide

m∑
p=1

Opnw
TOp =

m∑
p=1

OpnO
T
p w (6.14)

By defining

P =
m∑
p=1

OpO
T
p (6.15)

and

r =
m∑
p=1

dpOp (6.16)

we can express Equation (6.12) in matrix form as

r = P · w (6.17)
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This equation can be interpreted as the matrix P that corresponds to the correla-

tion matrix of the training patterns, and the vector r as the cross correlation between

the training patterns and their desired outputs.

Now, we have a system of linear equations, and the weight vector w in (6.17)

can be expressed by solving the normal equations in Equation (6.17)

w = P−1 · r (6.18)

Equation (6.17) is derived on a single neuron. This procedure must be repeated for

each neuron every time the weights of the network are updated.

Since the procedure requires all the training patterns to be propagated through

the network, in the case of large training sets solving such matrix equations at each

node might pose problem with the amount of computations required.

6.7.3. Stochastic Iteration

We can correct this deficiency by modifying the correlations in Equation (6.15)

and Equation (6.16), and also selecting the training patterns randomly. We rewrite

Equation (6.15) as

P (t) =
t∑

k=1

O(k)O(k)T (6.19)

and Equation (6.16) as

r(t) =
t∑

k=1

d(k)O(k) (6.20)
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Here t corresponds to the index of the current iteration. Now (6.18) takes the form of

w(t) = P−1(t)r(t) (6.21)

Equation (6.19) and Equation (6.20) produce estimates for the correlation matrix P

and correlation vector r, except for a factor of 1
t
, and they improve with increasing t.

Now, the weight at each node can be updated at every iteration as training patterns

propagated through the network one by one to calculate these estimates.

Stochastic iterations in this form may increase the training time of the network.

Because we obtain the estimates for each layer from the data we receive from the previ-

ous layer, and each iteration in some form contains information about older correlation

estimates even after the network updated its weights. To cope with this problem, we

will use a factor called forgetting factor.

6.7.4. Forgetting Factor

The forgetting factor λ allows the new data points to dominate while exponen-

tially reducing the effect of the earlier correlation estimates. It is inserted into the

correlation equations (6.19) and (6.20) as follows:

P (t) =
t∑

k=1

λt−kO(k)OT (k) (6.22)

r(t) =
t∑

k=1

λt−kd(k)OT (k) (6.23)

Now, we can write both Equation (6.22) and Equation (6.23) recursively as:

P (t) =λP (t− 1) +O(t)OT (t) (6.24)

r(t) =λr(t− 1) + d(t)O(t) (6.25)
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Although Equation (6.24) and Equation (6.25) are in recursive form, we need a recursive

equation for the inverse auto-correlation matrix P−1(t).

6.7.5. Recursive Least Squares

The recursive equation for the inverse auto-correlation matrix P−1(t) is calculated

as in Section 4.3.1

P−1j (t) = λ−1
(
P−1j (t− 1)− kj(t)OT

j P
−1
j (t− 1)

)
(6.26)

where for the (k + 1)th layer

kj(t) =
P−1j (t− 1)Oi(t)

λj +OT
i (t)P−1j (t− 1)Oi(t)

(6.27)

And the weight vectors in (6.21) are updated as

wij(t) =

wij(t− 1) + kj(t)(dj − Sj) for the output layer

wij(t− 1) + kj(t)ηδj(t) for the hidden layers

(6.28)

where t is the iteration number, and wij is the weight connecting the ith node in the

kth layer to the jth node in the (k + 1)th layer. Constants λ and η are the forgetting

factor and the learning rate, respectively. δj(t)’s are obtained from Equation (6.4) and

Equation (6.5).

6.7.6. The Algorithm

The proposed algorithm the authors used in [4] to train the neural network using

the recursive least squares back propagation and the sigmoid activation function can

be summarized as follows:
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(i) Initialize:

(a) Randomize all weights in the network.

(b) Set the forgetting factor λ, and learning rate η.

(c) Initialize the inverse of the auto-correlation matrix P−1j to the σI where I

is the identity matrix, and σ is a large constant.

(ii) Feed forward a randomly selected training pattern (x0, t0) to the network, and

evaluate the summation outputs for each layer

Sk+1
j =

∑
i

wkijO
k
i

and the sigmoid activation function outputs

Ok+1
j = f(Sk+1

j ) =
1

1 + exp(−Sk+1
j )

(iii) Calculate the Kalman gain Kj(t) for each node with index j in the (k+ 1)th layer

to update P−1j where Oi is the output of the kth layer with the node index i:

Kj(t) =
P−1j (t− 1)Oi(t)

λj +OT
i (t)P−1j (t− 1)Oi(t)

P−1j (t) = λ−1j
(
P−1j (t− 1)−Kj(t)O

T
i (t)P−1j

)
(iv) Backpropagate the errors through the network

(a) For output layer k + 1 the delta terms are

δk+1
j = f ′(Sk+1

j )(tj −Ok+1
j )

(b) And the delta terms for the interior hidden layer with index k + 1 is

δk+1
j = f ′(Sk+1

j )
∑
l

(δk+2
l · wk+1

jl )



78

Here the derivative of the sigmoid activation function f ′(Sk+1
j ) is given by

f ′(Sk+1
j ) = f(Sk+1

j )(1− f(Sk+1
j ))

(v) Adjust the weights in each layer using

wkij(t) =

w
k
ij(t− 1) +Kj(t)(d

k+1
j − Sk+1

j ) for output layers

wkij(t− 1) +Kj(t)(ηδ
k+1
j (t)) for hidden layers

where the desired summation output at the (k + 1)th output layer calculated by

using the inverse function

dk+1
j = ln

(
tj

1− tj

)
(6.29)

for every jth node in the output layer.

Figure 6.6. Linear and error portion of the neurons in the hidden and output

layers [4].

Let the number of the network parameters be M . The computational complexity

of computing the overall training set error and the gradients is O(M2) for standard

backpropagation algorithm. In the backpropagation algorithm using RLS, the matrix

inversion has complexity O(D3) where D is the dimension of the output layer. For

a single output neural networks, this inversion operation reduces to scalar division.
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The weight and auto-correlation matrix updates requires O(DM2), so that total com-

putational complexity is O(DM2 + D3). Even though training with RLS algorithm

requires more computational power, the adaptive Kalman gain parameter increases the

convergence rate of the algorithm [4].
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7. EXPERIMENTS

7.1. Online K-means

7.1.1. Data

The proposed algorithms in Chapter 5 are tested on different data sets including

a synthetically generated data set and data from UCI machine learning repository [55]

and LibSvm [56]. We also used same data sets as proposed in [6] to compare our

results.

For synthetically generated data we used make blobs module from python’s

scikit-learn library [57]. The available parameters are as follows:

(i) n samples: The total number of points equally divided among clusters.

(ii) n features : The number of dimensions of each point.

(iii) centers: The number of centers to generate, or the fixed center locations.

(iv) cluster std : The standard deviation of the clusters.

We refer our synthetically generated data with respect to their chosen parameters as

shown in Table 7.1

7.1.2. Implementation

We listed the source code for our implementations of the algorithms we investi-

gated in Chapter 5 in Appendix A.1.
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Table 7.1. Description of the synthetically generated dataset.

Name n samples n features centers cluster std

D1 2 · 103 2 20 0.6

D2 2 · 103 2 40 0.6

D3 5 · 104 2 20 0.6

D4 5 · 104 2 40 0.6

D5 5 · 104 2 60 0.6

D6 5 · 104 2 120 0.6

Table 7.2. Description of the datasets from UCI machine learning repository.

Name n samples n features centers

Iris 150 4 3

Bridge-binarized 4096 16 256

House 5 bits 34112 3 256

magic04 19020 10 40
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7.1.3. Evaluation Metrics

Evaluating the performance of a clustering algorithm requires more than mea-

suring errors, calculating precision and recall for the proposed classification algorithm.

One of the difficulties come from the fact that it is difficult to write a one-to-one match-

ing between the original labels, and the new cluster sets. But, we can use the original

cluster labels as a discrete similarity measure. For these reasons, we used homogeneity,

and completeness metrics to measure similarity within each cluster. For datasets with

unknown labels, batch k-means results is used as a baseline.

Given a data set with N points, let S = {si}ni=1 to represent a set of classes, and

W = {wj}mj=1 represent a set of clusters of these data points.

7.1.3.1. Homogeneity. Perfect homogeneity of a clustering is achieved when all points

in that cluster are instances of a single class. Clusters that include samples from

different classes are not considered as homogeneous. Homogeneity score is between 0.0

and 1.0. 1.0 score corresponds to perfect homogeneity [58].

h = 1− H(S|W )

H(S)

Here H(S|W ) is the entropy of classes S conditioned on cluster assignments W , and is

defined by:

H(S|W ) = −
n∑
s=1

m∑
w=1

as,w
N

˙log

(
as,w
aw

)
(7.1)

H(S) is the entropy of the classes and is given by:

H(S) = −
n∑
s=1

as
N

˙log
(as
N

)
(7.2)
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In the above equations, as and aw represent the number of data points belonging

to class s and assigned to cluster w respectively. The number of data points from class

s assigned to cluster w is given by as,w.

7.1.3.2. Completeness. Completeness is satisfied if all points of a given class are

grouped in the same cluster. Completeness score varies between 0.0 and 1.0, where

1.0 corresponds to perfect completeness [58].

c = 1− H(W |S)

H(W )

where H(W |S) is the entropy of clusters W conditioned on classes S and H(W ) is

the entropy of clusters W , and symmetrically defined as in Equation (7.1) and Equa-

tion (7.2).

7.1.3.3. V-Measure. A clustering that splits classes into more than one clusters can

also be homogeneous. On the other hand, a clustering that assign two different classes

to the same cluster is still considered as complete. This means, any homogeneity or

completeness measure by themselves cannot be enough to evaluate the success of a

proposed clustering algorithm. We are going to combine these measure under a single

measure called the V-measure. V-measure score is calculated by the harmonic mean

between homogeneity and completeness [58].

v = 2 · h · c
h+ c

7.1.3.4. Number of Clusters Ratio. This measure is the ratio of the number of clusters

calculated by the algorithm and the desired number of clusters. Recall that, in online

clustering algorithms the number of clusters is adjusted as new data points arrive.
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Hence, this metric is used for online clustering algorithms where the algorithm takes a

user-defined input for the target, i.e. the desired number of clusters, but may yield a

larger number of clusters. A smaller ratio means the number of calculated clusters is

closer to the target number of clusters.

7.1.4. Results

We used homogeneity and completeness as the main metrics to evaluate the

success of a clustering algorithm. In addition, we also compared algorithms in terms of

their time complexity and clustering cost. For the fully online k-means, we also used

the ratio of ktarget and kactual as a metric [6].

In online k-means we use the stochastic gradient descent to update cluster cen-

troids, but the number of clusters must be specified a priori. For the ART method

one has to choose a vigilance threshold. This threshold allows for creation of new

clusters as new instances of data points are fed to the algorithm. In the ART method,

choosing a convenient value for the vigilance threshold is the major drawback. With

a large vigilance value, even points that are too far from each other might fall in the

same cluster. On the other hand, a small vigilance value may cause generation of too

many clusters. In our experiments we observed that ART algorithm is too sensitive

to vigilance parameter. However, this sensitivity does not impact the homogeneity or

completeness metrics visibly.

The fully online k-means algorithm proposes using the same objective function

as the k-means clustering algorithm, but adds a new term for the cost of opening a

new cluster for an incoming data which comes from the online facility location problem.

The cost of opening a new cluster changes with the number of clusters created. Even

though some of the initially created cluster centroids may fail to attract points arriving

later in the stream Liberty et. al. (2015) in [6] showed that algorithm in Figure 5.9

creates only slightly more than the desired number of clusters. However, results of

our experiments on this algorithm are not on par with the results obtained in [6].
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Figure 7.1. Clustering result of ART algorithm on D1.

Figure 7.2. Clustering result of online k-means algorithm on D1.

In the same paper the authors also suggest some practical adjustments on the fully

online k-means algorithm. With this modified online algorithm, initial k value is set

to (ktarget − 15)/5. The authors also modify the hyper-parameter f from 2 to 10.

This modified version of the online algorithm in our implementation shows results

similar with their experiments. However, on our datasets this algorithm creates less

than k centers, and the ratio between kactual and ktarget ranges between 0.5 and 0.75.

Figure 7.3 shows clustering on the data set D1. It can be seen that interior clusters are

successfully detected by the algorithm, and outer clusters did not form correctly. Since

these algorithms do not update the cluster centroids, the centroids are not located in

the cluster centers.
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Figure 7.3. Clustering result of modified online algorithm on D1.

Table 7.3. The results of online k-means experiments.

Model Data k0 η ρ Homogeneity Completeness V-measure CPU Ratio

Online k-means Iris-normalized 3 0.3 - 0.913 0.915 0.914 0.005 1

Online k-means Bridge-binarized 256 0.3 - 1 1 1 0.196 1

Online k-means House-5 bits 256 0.3 - 0.814 0.849 0.831 0.0451 1

Online k-means magic04 40 0.3 - 0.707 0.728 0.717 0.297 1

ART Iris-normalized - 0.3 0.02 1 1 1 0.009 1

ART Iris-normalized - 0.3 0.01 0.930 0.931 0.931 0.0117 1.6

ART Iris-normalized - 0.3 0.07 0.579 1.000 0.734 0.010 0.6

ART Bridge-binarized - 0.3 4 00.601 0.658 0.628 0.126 1.16

ART Bridge-binarized - 0.3 0.7 1 1 1 0.4933 10.98

ART Bridge-binarized - 0.3 1.2 0.866 0.876 0.871 0.310 6.48

ART House-5 bits - 0.3 100 0.843 0.864 0.854 0.073 2.42

ART House-5 bits - 0.3 1.6 0.940 0.996 0.967 0.119 7.17

ART magic04 - 0.3 10000 0.394 0.433 0.413 0.541 6.8

Fully-online Iris-normalized 3 - - - - - 0.010 48.6

Fully-online Bridge-binarized 256 - - - - - 0.456 11.9

Fully-online House-5 bits 256 - - - - 0.262 8.17

Fully-online magic04 40 - - - - - 12.62 465.725

Modified-online Iris-normalized 3 - - - - - 0.008 3.3

Modified-online Bridge-binarized 256 - - - - - 0.06918 0.25

Modified-online House-5 bits 256 - - - - - 0.043 0.28

Modified-online magic04 40 - - - - - 0.314 0.52
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Table 7.4. The results of online k-means experiments on synthetically generated data.

Model Data k0 η ρ Homogeneity Completeness V-measure CPU Ratio

Online k-means D1 20 0.3 - 0.839 0.916 0.876 0.039 1

Online k-means D2 40 0.3 - 0.855 0.905 0.879 0.074 1

Online k-means D3 20 0.3 - 0.835 0.938 0.883 1.638 1

Online k-means D4 40 0.3 - 0.822 0.879 0.849 1.791 1

Online k-means D5 60 0.3 - 0.793 0.848 0.820 1.813 1

Online k-means D6 120 0.3 - 0.751 0.798 0.774 2.035 1

ART D1 - 0.3 0.6 0.918 0.921 0.920 0.117 7.75

ART D2 - 0.3 0.6 0.891 0.893 0.892 0.133 5.7

ART D3 - 0.3 0.6 0.930 0.930 0.930 3.874 20.35

ART D4 - 0.3 0.6 0.833 0.834 0.833 4.234 11.8

ART D5 - 0.3 0.6 0.801 0.804 0.803 4.65 9.2

ART D6 - 0.3 0.6 0.755 0.761 0.758 4.92 5.14

Fully-online D1 20 - - - - - 0.093 101.5

Fully-online D2 40 - - - - - 0.218 51

Fully-online D3 20 - - - - - 28.99 710.95

Fully-online D4 40 - - - - - 48.67 740.75

Fully-online D5 60 - - - - - 60.09 783.46

Fully-online D6 120 - - - - - 60.09 417.675

Modified-online D1 20 - - - - - 0.041 0.65

Modified-online D2 40 - - - - - 0.074 0.5

Modified-online D3 20 - - - - - 1.812 0.7

Modified-online D4 40 - - - - - 1.829 0.72

Modified-online D5 60 - - - - - 1.868 0.63

Modified-online D6 120 - - - - - 1.944 0.625
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Figure 7.4. Normalized facility cost of the modified online k-means algorithm

decreases as ktarget increases.

7.2. Online Multilayer Perceptron

7.2.1. Data

We tested our implementations of the algorithms we investigated in Chapter 6 first

on XOR and HTRU 2 data set [59]. HTRU 2 dataset consists of approximately 18 thou-

sand datapoints each with 9 numerical features. Data comes from pulsar candidates

collected during the High Time Resolution Universe Survey [60]. We also used a syn-

thetically generated data set. For the data generation we used make classification

function in datasets module from python’s scikit-learn library [57] which has param-

eters as follows:

(i) n samples : The total number of points.

(ii) n features : The number of dimensions of each point.

(iii) n classes : Desired number of classes.

(iv) random state : Random seed.
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Table 7.5. Description of the datasets for classification.

Name n samples n features n classes

XOR 4 2 2

HTRU 2 17898 9 2

DD1 2000 2 2

DD2 5000 10 2

DD3 2000 10 2

DD4 5000 20 2

DD5 5000 4 2

DD6 5000 40 2

7.2.2. Implementation

We listed the source code written in Python for our implementations of the al-

gorithms we investigated in Chapter 6 in Appendix A.2 In the algorithms we use the

sigmoid activation function whose derivative is

f ′(x) =

(
1

1 + e−x

)(
1− 1

1 + e−x

)
= f(x)(1− f(x)) (7.3)

7.2.3. Results

We evaluated the multilayer perceptron model using stochastic gradient descent

and recursive least squares backpropagation algorithms for two-class classification tasks.

The results are based on accuracy, the number of iterations, training time, and mean

squared error (MSE). Training and test sets are randomly sampled, and with a ratio

0.20. Then %75 of the training set is randomly chosen to be the actual training set

and the remaining to be the validation set. We selected the parameter values of the

models which provide the minimum cost on the validation set with minimum training

iterations needed. During testing, we used 0.5 as classification probability threshold.
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Figure 7.5. Visualization of the data points in DD1.

For HTRU 2 data set [59] we did our experiment fully online with only one epoch.

For this data set we also added a momentum term [61] for the SGD algorithm with a

factor 0.7. Table 7.6 shows our results.

Even though computational complexity of the RLS algorithm is higher than the

SGD algorithm, in our experiments we observed that RLS has faster convergence speed

than SGD. Figure 7.8 and Figure 7.7 shows cost values over epochs for XOR data set.

These results suggest that the adaptive coefficient (Kalman gain) of the RLS algorithm

makes the training algorithm less prone to get stuck in a local minimum. On the other

hand, we observed that on the HTRU 2 data set which is trained in a fully online

manner, SGD algorithm performed slightly better than RLS algorithm. This suggests

that the momentum term in the SGD algorithm makes it more effective than the RLS

algorithm is the online case.
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Table 7.6. The results of classification with online MLP training on synthetically

generated data.

Model Data η λ Maximum Accuracy Iterations CPU (Training) Training Cost Test Cost

SGD backprop DD1 0.1 - 0.9833 5 2.6529 59.02326 27.92

SGD backprop DD2 0.1 - 0.9884 8 7.20573 199.808 84.757

SGD backprop DD3 0.1 - 0.9075 80 30.6813 48.9132 23.22045

SGD backprop DD4 0.1 - 0.95 20 20.7066 118.187 59.598

SGD backprop DD5 0.1 - 0.938 10 8.6474 117.408 58.812

SGD backprop DD6 0.1 - 0.817 20 79.55414 286.7083824 137.8

RLS backprop DD1 0.1 0.95 0.9833 2 0.8417 15.18359 5.7204

RLS backprop DD2 0.01 0.95 0.9848 2 2.14675 33.9065 15.636

RLS backprop DD3 0.1 0.95 0.9045 4 2.33173 50.9307 22.5615

RLS backprop DD4 0.1 0.95 0.9606 3 4.1198 44.0093 24.6517

RLS backprop DD5 0.1 0.90 0.95151 2 1.87012 100.212 36.9373

RLS backprop DD6 0.1 0.85 0.8951 5 22.23 142.4299 63.4879

Table 7.7. The results of classification on XOR with online multilayer perceptron

models experiments.

Model Data η λ Network size Iterations CPU (Training) Test Cost MSE Threshold

SGD backprop XOR 0.9 - (2,8,1) 2527 1.7387 0.0006 1e-4

SGD backprop XOR 0.7 - (2,8,8,1) 5935 3.5409 0.0005 1e-4

SGD backprop XOR 0.7 - (2,8,8,1) 503 0.41977 0.0793 1e-2

RLS backprop XOR 0.7 0.3 (2,8,1) 9 0.13543 0.940 1e-4

RLS backprop XOR 0.9 0.1 (2,8,8,1) 3 0.10729 0.96316 1e-4

RLS backprop XOR 0.9 0.3 (2,8,8,1) 2 0.10779 0.95 1e-2

RLS backprop XOR 0.5 0.8 (2,8,8,1) 876 1.1520 1.4596279930479618e-07 1e-10
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Figure 7.6. Data points in DD5.

Table 7.8. The results of fully online training with online MLP models on HTRU 2

data set.

Model Data η λ Network size Accuracy CPU (Training) Training Cost Test Cost

SGD backprop HTRU 2 0.6 - (8,4,1) 0.96935 2.96438 326.245631588 133.34895

SGD backprop HTRU 2 0.5 - (8,10,1) 0.975 2.90968 210.0264 80.6184

SGD backprop HTRU 2 0.8 - (8,4,4,1) 0.978 2.50676 258.0811 55.6441

RLS backprop HTRU 2 0.1 0.85 (8,4,1) 0.91 2.60155 483.15869 226.14187

RLS backprop HTRU 2 0.5 0.9 (8,10,1) 0.9649 2.73465 557.4692 251.13751

RLS backprop HTRU 2 0.7 0.85 (8,4,4,1) 0.9673 3.45767 377.92 75.608
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Figure 7.7. The cost changes over the number of epoch of the backpropagation

algorithm using RLS on XOR.

Figure 7.8. The cost changes over the number of epoch of the backpropagation

algorithm using SGD on XOR.
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8. CONCLUSION

This thesis is written as a survey of online and stochastic methods used in machine

learning algorithms. Along with standard machine learning algorithms, we investigated

the k-means algorithm and multilayer perceptron model in detail from this perspective.

We wrote out own implementations (the python code for these experiments are listed

in the Appendix) and did numerical experiments to compare our implementations of

these different algorithms. The results of these experiments are analyzed in Chapter 7.

We hope that this thesis gives a good starting point to any researcher who would like

to learn more about the use of online and stochastic methods in machine learning

algorithms and neural networks.
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APPENDIX A: SOURCE CODE FOR THE

EXPERIMENTS

A.1. ONLINE K-MEANS

#syn th e t i c a l data gene ra t i on

de f s yn th e t i c a l d a t a g en e r a t o r (N, k , d , std , seed ) :

from sk l ea rn . da ta s e t s . sample s genera to r import make blobs

X, y t rue = make blobs ( n samples=N, c en t e r s=k , n f e a t u r e s=d ,

c l u s t e r s t d=std , random state=seed )

re turn X, y t rue

#i n i t a l i z a t i o n o f the c en t r o i d s

de f i n i t i a l i z e c e n t r o i d s ( po ints , k , s h u f f l e=Fal se ) :

””” r e tu rn s k c en t r o i d s from the i n i t i a l po in t s ”””

c en t r o i d s = po in t s . copy ( )

i f s h u f f l e :

np . random . s h u f f l e ( c en t r o i d s )

re turn c en t r o i d s [ : k ]

Figure A.1. Data generation and initialization.
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# to ad jus t obta ined c l u s t e r l a b e l s to t a r g e t l a b e l s

de f a d j u s t l a b e l s ( l ab e l s , l a b e l s t r u e , k ) :

l a b e l s a d j u s t e d = np . z e r o s l i k e ( l a b e l s )

f o r i in range (k ) :

mask = ( l a b e l s == i )

l a b e l s a d j u s t e d [ mask ] = mode( l a b e l s t r u e [ mask ] ) [ 0 ]

r e turn l a b e l s a d j u s t e d

Figure A.2. Data postprocessing.

de f kmeans ( points , k , epochs ) :

c en t r o i d s = i n i t i a l i z e c e n t r o i d s ( po ints , k )

t r a j e c t o r i e s =[ c en t r o i d s ]

f o r epoch in range ( epochs ) :

d i s t an c e s = np . sq r t ( ( ( po ints−c en t r o i d s [ : , np . newaxis ] ) ∗∗2) . sum(

ax i s=2) )

c l o s e s t = np . argmin ( d i s tance s , ax i s=0)

c en t r o i d s = np . array ( [ po in t s [ c l o s e s t==k ] . mean( ax i s=0)\

f o r k in range ( c en t r o i d s . shape [ 0 ] ) ] )

i f epoch%5 == 0 :

t r a j e c t o r i e s . append ( c en t r o i d s )

re turn cent ro id s , t r a j e c t o r i e s

Figure A.3. K-means (Batch).
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de f onl inekmeans (X, k ) :

””” Online k−means us ing s t o c h a s t i c g rad i en t descent .

X : data matrix , C : i n i t i a l c en t e r s

eta : 1 / n k gradua l l y dec r ea s ing l e a rn i ng ra t e

”””

C = i n i t i a l i z e c e n t r o i d s (X, k )

e ta s = np . z e ro s (C. shape [ 0 ] )

f o r x in X:

idx = np . argmin ( ( (C − x ) ∗∗2) . sum(1) )

e ta s [ j ] += 1

eta = 1 .0 / e ta s [ j ]

# update only the c en t r o id with minimum d i s t anc e

C[ j ] = ( 1 . 0 − eta ) ∗ C[ j ] + eta ∗ x

return C

Figure A.4. Online k-means with stochastic gradient descent.

de f a r t (X, rho , eta =0.3) :

”””

rho : v i g i l a n c e parameter

”””

C = i n i t i a l i z e c e n t r o i d s (X, 1 )

f o r x in X:

d = np . min ( ( (C − x ) ∗∗2) . sum(1) )

i f d < rho :

j = np . argmin ( ( (C − x ) ∗∗2) . sum(1) )

C[ j ] = ( 1 . 0 − eta ) ∗ C[ j ] + eta ∗ x

e l s e :

C = np . append (C, np . array ( [ x ] ) , ax i s=0)

re turn C

Figure A.5. Adaptive resonance theory.
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de f f u l l y o n l i n e (X, k , e p s i l o n=1e−10) :

”””

X : data matrix

C : i n i t i a l c en t e r s

f : f a c i l i t y co s t

”””

C = i n i t i a l i z e c e n t r o i d s (X, k+1)

n = k+1

d i s t s = [ ]

f o r x in C:

d = ( (C − x ) ∗∗2) . sum(1)

d = [ i f o r i in d i f math . abs ( i ) > ep s i l o n ]

d i s t s . append (d)

j = np . min ( d i s t s ) /2

f = j / k

r=1

q = 0

f o r x in X:

n += 1

D2 = np . min ( (C − x ) . sum(1) ) ∗∗2

p = np . min ( (D2/ f , 1) )

random number = np . random . random ( )

i f random number < p :

C = np . append (C, np . array ( [ x ] ) , ax i s=0)

q += 1

i f q >= 3∗k∗(1+np . l og (n) ) :

r += 1

q = 0

f = 2∗ f

r e turn C

Figure A.6. Fully online k-means.
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de f mod i f i e d f u l l y o n l i n e (X, k ta rge t , e p s i l o n=1e−10) :

”””

Modif ied a lgor i thm in ( L iber ty et a l . ) f o r exper imenta l des ign

in which they did pragmatic d e c i s i o n s about , e . g

how to s e t the i n i t i a l f a c i l i t y .

k t a r g e t : the number o f c l u s t e r s we would l i k e

the a lgor i thm to output

”””

k = ( k t a r g e t − 15) / 5

C = i n i t i a l i z e c e n t r o i d s (X, 1 0 )

n = k+1

d i s t s =[ ]

f o r x in C:

d = ( (C − x ) ∗∗2) . sum(1)

d = [ i f o r i in d i f math . abs ( i ) > ep s i l o n ]

d i s t s . append (d)

j = np . sum( so r t ed ( d i s t s ) [ : 1 0 ] ) /2

f = j

r = 1

q = 0

f o r x in X:

n += 1

D2 = np . min ( (C − x ) . sum(1) ) ∗∗2

p = np . min ( (D2/ f , 1) )

i f np . random . random ( ) < p :

C = np . append (C, np . array ( [ x ] ) , ax i s=0)

q += 1

i f q >= k :

r += 1

q = 0

f = 10∗ f

r e turn C

Figure A.7. Modified fully online k-means.
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de f e s t imated c lus te r num ( c en t r o i d s ) :

k = len ( c en t r o i d s )

re turn ( ’ Estimated number o f c l u s t e r s : %d ’ % k)

de f homogenity completeness v measure ( l ab e l s , l a b e l s t r u e ) :

homogeneity , completeness , v measure \

= metr i c s . homogene ity completeness v measure ( l a b e l s t r u e , l a b e l s )

p r i n t ( ”Homogeneity : %0.3 f ” % homogeneity )

p r i n t ( ”Completeness : %0.3 f ” % completeness )

p r i n t ( ”V−measure : %0.3 f ” % v measure )

de f ad jus t ed rand index ( l ab e l s , l a b e l s t r u e ) :

r e turn ( ”Adjusted Mutual In format ion : %0.3 f ”% metr i c s .

ad j u s t ed mutua l i n f o s c o r e ( l a b e l s t r u e , l a b e l s )

de f ad jus ted mutua l in fo rmat ion ( l ab e l s , l a b e l s t r u e ) :

r e turn ( ”Adjusted Mutual In format ion : %0.3 f ”% metr i c s .

ad j u s t ed mutua l i n f o s c o r e ( l a b e l s t r u e , l a b e l s ) )

de f s i l h o u e t t e c o e f (X, l a b e l s ) :

r e turn ( ” S i l h ou e t t e Co e f f i c i e n t : %0.3 f ”% metr i c s .

s i l h o u e t t e s c o r e (X, l ab e l s , metr ic=’ sqeuc l i d ean ’ ) )

Figure A.8. Evaluation metrics.
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A.2. MULTILAYER PERCEPTRON

c l a s s Mult iLayerPerceptron :

de f i n i t ( s e l f , ne twork s i ze , model=’SGD’ ) :

””” I n i t i a l i z e the network

ne twork s i z e = ( n input , n hidden1 , . . . , n hiddenk , n output )

n input : number o f neurons in input l ay e r

n h idden j : number o f hidden neurons in hidden l ay e r j

where j = 1 , 2 , . . k

n output : number o f output neurons

”””

# se t l ay e r va lue s

s e l f . i n d i c e s = len ( ne twork s i z e ) − 1

s e l f . shape = network s i z e

s e l f . i n v e r s e = inve r s e exp

s e l f . model = model

# to s t o r e inputs and outputs a f t e r forward propagat ion

s e l f . S = [ ]

s e l f . O = [ ]

# I n i t i a l i z e weights

l a y e r a r r a y = np . array ( [ ne twork s i z e [ : −1 ] , n e twork s i z e [ 1 : ] ] ) .T

s e l f . we ights = [ ]

f o r ( l a y e rpa i r 1 , l a y e r p a i r 2 ) in l a y e r a r r a y :

# c r ea t e a random array

temp = np . random . uniform ( low=−1.0, high =1.0 , s i z e=l a y e r p a i r 2

∗( l a y e r p a i r 1 + 1) )

s e l f . we ights . append ( temp . reshape ( l a y e rpa i r 2 , l a y e r p a i r 1 +

1) )

Figure A.9. Algorithms.
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i f s e l f . model = =’RLS ’ :

s e l f . P inv = [100∗np . eye (x+1) f o r x in ne twork s i z e [ : − 1 ] ] +

100∗ [ np . eye ( ne twork s i z e [−1]) ]

#Forward Propagation

de f FeedForward ( s e l f , incoming ) :

”””Feed the network with inputs ”””

# Reset va lue s

s e l f . S = [ ]

s e l f . O = [ ]

# Feedforward

f o r k in range ( s e l f . i n d i c e s ) :

# i f we are at the input l ay e r

i f k == 0 :

# we a l s o add b ia s

i npu t w i th b i a s = np . array ( [ np . append ( i , 1 ) f o r i in

incoming ] )

S = s e l f . we ights [ 0 ] . dot ( i npu t w i th b i a s .T)

# e l s e we are the hidden l ay e r

e l s e :

# we take the data from prev ious l ay e r

# h idden input w i th b i a s

b = np . ones ( [ 1 , incoming . shape [ 0 ] ] )

S = s e l f . we ights [ k ] . dot (np . vstack ( [ s e l f . O [−1] , b ] ) )

# l ay e r inputs

s e l f . S . append (S)

# lay e r outputs

s e l f . O . append ( s igmoid (S) )

# return output from the l a s t l a y e r

re turn s e l f . O [ −1 ] .T

Figure A.9. Algorithms (cont.).
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# Backpropagation

de f RLS BP( s e l f , incoming , target , eta , f o r g e t t i n g f a c t o r ) :

”””

Backpropagate the network f o r one epoch

eta : l e a rn i ng ra t e

”””

# to s t o r e d e l t a s

de l t a = [ ]

i = np . random . rand int (np . array ( incoming ) . shape [ 0 ] )

x = np . array ( [ incoming [ i ] ] )

y = ta rg e t [ i ]

# FeedForward the network

s e l f . FeedForward (x )

# Compute d e l t a s

# s t a r t from Output Layer and move backwards

f o r k in range ( s e l f . i n d i c e s ) [ : : − 1 ] :

# i f we are at Output Layer

i f k == s e l f . i n d i c e s − 1 :

e = s e l f . O [ k]−y .T

output de l t a = e∗ s i gmo id d e r i v a t i v e ( s e l f . S [ k ] )

e r r o r = 0 .5∗np . sum( e ∗∗2)

de l t a . append ( output de l t a )

# e l s e we are at hidden l ay e r

e l s e :

# de l ta h−−> f o l l ow i n g l ay e r ’ s d e l t a

de l t a h = s e l f . we ights [ k + 1 ] .T. dot ( de l t a [−1])

f d e r i v S = s i gmo id d e r i v a t i v e ( s e l f . S [ k ] )

# takes a l l the but l a s t rows that correspond to b i a s e s

h idden de l t a = de l t a h [ :−1 , : ] ∗ f d e r i v S

de l t a . append ( h idden de l t a )

Figure A.9. Algorithms (cont.).
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# Compute weight changes

f o r k in range ( s e l f . i n d i c e s ) :

i f k == 0 :

# i f we are in input l ay e r

# add b i a s e s a l s o

i npu t w i th b i a s = np . array ( [ np . append ( i , 1 ) f o r i in x ] )

O = inpu t w i th b i a s .T

e l s e :

# output f o r prev ious l ay e r

# add b i a s e s a l s o

b = np . ones ( [ 1 , s e l f . O [ k − 1 ] . shape [ 1 ] ] )

O = np . vstack ( [ s e l f . O [ k − 1 ] , b ] )

# kalman gain

d i v i d e t o = np . dot (np . dot (O.T, s e l f . P inv [ k ] ) , O) \

+ f o r g e t t i n g f a c t o r

K = np . dot ( s e l f . P inv [ k ] , O) / d i v i d e t o

s e l f . P inv [ k ] = np . d i v id e ( ( s e l f . P inv [ k ] \

− K ∗ O.T ∗ s e l f . P inv [ k ] ) , f o r g e t t i n g f a c t o r )

# adapt index o f de l t a f o r r e v e r s e order

k de l t a = s e l f . i n d i c e s − 1 − k

# take cur rent d e l t a s and mult ip ly i t with kalman gain

De l ta w current = de l t a [ k d e l t a ]

# update the weights

i f k == s e l f . i n d i c e s − 1 :

# output l ay e r update

des i red summation output = s e l f . i n v e r s e ( y )

s e l f . we ights [ k ] −= \

np . dot ( ( s e l f . S [−1]−np . array ( [ \

des ired summation output ] ) .T) ,np . array (K) .T)

e l s e :

s e l f . we ights [ k ] −= eta ∗( De l ta w current ) ∗(np . array (K) .T)

# re tu rns e r r o r

re turn e r r o r

Figure A.9. Algorithms (cont.).
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# Backpropagation a lgor i thm f o r s t o c h a s t i c g rad i en t descent

de f SGD BP( s e l f , incoming , target , eta ) :

”””

Backpropagate the network f o r one epoch

eta : l e a rn i ng ra t e

”””

# to s t o r e d e l t a s

de l t a = [ ]

i = np . random . rand int (np . array ( incoming ) . shape [ 0 ] )

x = np . array ( [ incoming [ i ] ] )

y = ta rg e t [ i ]

# FeedForward the network

s e l f . FeedForward (x )

# Compute d e l t a s

# s t a r t from Output Layer and move backwards

f o r k in range ( s e l f . i n d i c e s ) [ : : − 1 ] :

# i f we are at Output Layer

i f k == s e l f . i n d i c e s − 1 :

e = s e l f . O [ k]−y .T

output de l t a = e∗ s i gmo id d e r i v a t i v e ( s e l f . S [ k ] )

e r r o r = 0 .5∗np . sum( e ∗∗2)

de l t a . append ( output de l t a )

# e l s e we are at hidden l ay e r

e l s e :

# de l ta h−−> f o l l ow i n g l ay e r ’ s d e l t a

de l t a h = s e l f . we ights [ k + 1 ] .T. dot ( de l t a [−1])

f d e r i v S = s i gmo id d e r i v a t i v e ( s e l f . S [ k ] )

# takes a l l the but l a s t rows that correspond to b i a s e s

h idden de l t a = de l t a h [ :−1 , : ] ∗ f d e r i v S

de l t a . append ( h idden de l t a )

Figure A.9. Algorithms (cont.).
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#Compute weight changes

f o r k in range ( s e l f . i n d i c e s ) :

’ ’ ’

∗ get outputs o f the l a y e r s

∗ mult ip ly a l l the outputs from prev ious l ay e r

by a l l o f the d e l t a s from the cur rent l ay e r

∗ update the weights that connect

prev ious l ay e r to the cur rent l ay e r

∗ re turn e r r o r

’ ’ ’

i f k == 0 :

# i f we are in input l ay e r

# add b i a s e s a l s o

i npu t w i th b i a s = np . array ( [ np . append ( i , 1 ) f o r i in x ] )

O = inpu t w i th b i a s .T

e l s e :

# output f o r prev ious l ay e r

# add b i a s e s a l s o

b = np . ones ( [ 1 , s e l f . O [ k − 1 ] . shape [ 1 ] ] )

O = np . vstack ( [ s e l f . O [ k − 1 ] , b ] )

# adapt index o f de l t a f o r r e v e r s e order

k de l t a = s e l f . i n d i c e s − 1 − k

# take cur rent d e l t a s and mult ip ly i t

# with prev ious l a y e r s ’ outputs

de l ta x O = de l t a [ k d e l t a ] [ np . newaxis , : , : ] . t ranspose (2 , 1 , 0)

∗ O[ np . newaxis , : , : ] . t ranspose (2 , 0 ,1 )

De l ta w current = eta ∗np . sum( delta x O , ax i s = 0)

# update the weights

s e l f . we ights [ k ] −= eta ∗Del ta w current

# re tu rns e r r o r

re turn e r r o r

Figure A.9. Algorithms (cont.).




