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ABSTRACT

PARALLEL RESAMPLING FOR REAL-TIME

SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) methods are well known and widely used for state

estimation in nonlinear/non-Gaussian dynamical systems. However due to the heavy

computational requirements, they may not satisfy the real-time constraints in many

applications requiring a large number of samples. By means of parallel implementation,

real-time tasks such as online filtering can be achieved. However, the resampling stage

in SMC methods requires sample interaction, hence it is not trivial to parallelize.

In this thesis, we first provide a standard way to parallelize resampling algorithms,

and discuss the issues arising from its implementation. We then propose a parallel

resampling algorithm, resampling with butterfly communications (RBC), inspired by

butterfly resampling previously described in the literature. Our aim is to eliminate the

important bottlenecks of the standard approach such as communication overhead and

load imbalance by imposing constraints on the communication pattern. We conducted

experiments on different parallel computing architectures including computer clusters,

and GPUs. We compared the RBC algorithm with the standard approach in terms

of execution time and accuracy. We found that the RBC algorithm outperforms the

standard approach on computer clusters and GPUs, and successfully achieves high

speed and accuracy in exchange for negligible loss of effective sample size.
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ÖZET

GERÇEK ZAMANLI ARDIŞIK MONTE CARLO

ÖRNEKLEYİCİLERİ İÇİN PARALEL YENİDEN

ÖRNEKLEME

Ardışık Monte Carlo (SMC) yöntemleri, doğrusal ve Gaussian olmayan dinamik

sistemlerde iyi bilinen ve çokça kullanılan yöntemlerdir. Ancak, ağır hesaplama

gereklilikleri nedeniyle, çok sayıda örnek gerektiren birçok uygulamada gerçek zamanlı

kısıtlara uymayabilirler. Paralelleştirme sayesinde, çevrimiçi süzgeçleme gibi gerçek

zamanlı görevler gerçekleştirilebilir. Fakat, SMC yöntemlerinde yeniden örnekleme

aşaması örnek etkileşimini gerektirir ve dolayısıyla paralelleştirilmesi kolay değildir. Bu

tezde, ilk olarak, yeniden örnekleme algoritmalarını paralel hale getirmenin standart

yöntemini sunuyoruz ve bu yöntemin gerçekleşiminde açığa çıkan sorunları tartışıyoruz.

Daha sonra, literatürde daha önce tarif edilen kelebek yeniden örneklendirmesinden

esinlenerek, kelebek iletişimi (RBC) ile yeniden örnekleme yapan paralel bir yeniden

örnekleme algoritması öneriyoruz. Amacımız, iletişim örüntüsüne kısıtlar koyarak,

iletişim yükü ve yük dengesizliği gibi standart yaklaşımın önemli darboğazlarını ortadan

kaldırmaktır. Deneylerimizi bilgisayar grupları ve GPU’lar dahil olmak üzere farklı

paralel hesaplama mimarileri üzerinde yaptık. RBC algoritmasını standart yaklaşımla,

yürütüm süresi ve doğruluk açısından karşılaştırdık. RBC algoritmasının, bilgisayar

kümeleri ile GPU’lar üzerinde standart yaklaşımı geride bıraktığını ve etkin örneklem

büyüklüğünün ihmal edilebilir kaybına karşılık, yüksek hızı ve doğruluğu başarılı bir

şekilde elde ettiğini gördük.
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1. INTRODUCTION

Real-time inference from sequentially arriving data is required by many prob-

lems faced in domains as diverse as control systems, computer vision and finance. The

general state space models (SSM) allow us to model the streaming data and perform

inference. Inference in SSMs is basically the construction of a posterior distribution

using all the available data. In linear Gaussian SSMs (LGSSM), the posterior distribu-

tion can be computed using Kalman techniques [1], and if the model has a finite state

space, hidden Markov Model (HMM) methods [2] (forward and backward methods)

can provide the required posterior distributions. Unfortunately, most of the real-world

data are complex, highly nonlinear, and they have non-Gaussian characteristics. The

assumptions of Kalman and HMM methods does not fit with the real-world data, and

therefore they perform very poorly. In fact, except in a few simple cases, including

LGSSMs and finite state HMMs, it is not possible to obtain closed-form expression for

the posterior distribution [3]. Thus it is necessary to employ numerical methods to

approximate the required distributions.

Sequential Monte Carlo (SMC) methods encompass a large set of techniques that

approximate a sequence of posterior distributions. Unlike the previously proposed

approximation methods such as the extended Kalman filter [4], SMC methods do not

rely on any linearization technique or other assumptions to make sure the tractability

[5]. SMC methods sequentially construct an approximation to the posterior distribution

of the latent variables conditioned on all the available data, via weighted samples

randomly. Initially SMC methods were used to perform filtering tasks in time-varying

systems such as object tracking [3], then they were generalized and studied theoretically

[6].

With the flexibility combined with the increasing computation power, SMC meth-

ods have been widely used in diverse areas of science including engineering, economics

and biology [3]. Many SMC instances have been introduced for fighting with the de-

generacy [7], for reducing the variance of estimates [8], and for smoothing tasks [9].
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Moreover a new Markov chain Monte Carlo (MCMC) approach employs SMC to build

proposal distributions [10]. More recently a novel variational approximating family

combining variation inference and SMC methods has been introduced [11].

1.1. Motivation

Despite their flexibility, SMC methods are computationally expensive. The time

complexity of SMC methods grows linearly with the number of samples to be used.

In addition, the required number of samples increases with the dimensionality of the

target distribution and the discrepancy between the target and the proposal distribu-

tions. Therefore, many real-world SMC applications need a large number of samples

to provide good approximations for the target distribution.

Moreover, SMC methods are widely used in many computationally demanding

algorithms. For example, the SMC-based implementations of the probability hypothe-

sis density (PHD) filter [12,13], use particles to approximate the multi-target filtering

density. SMC-PHD filters can be very time consuming, and thus impractical, espe-

cially when the number of targets to be tracked is large. Another example is particle

MCMC [10], which makes Bayesian inference possible for numerous statistical models.

Particle MCMC methods run an SMC algorithm in each step of an MCMC algorithm,

thus the computational cost is considerably high.

Fortunately, SMC methods are convenient for parallel implementation. The sam-

ples can be easily assigned to different processing elements (PEs), and each sample can

be propagated and weighted independently without requiring any communication be-

tween PEs. The only stage in SMC methods requiring sample interaction is resampling,

which is crucial for the stability. Resampling redistributes the samples in such a way

that the samples with large weights are replicated and the samples with small weights

are eliminated. Resampling is evidently the bottleneck in parallel implementation of

SMC methods since all the samples must be combined in this stage.
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There are several aspects that must be taken into account when designing a

parallel resampling algorithm. First of all, the characteristics of parallel computing

architectures such as interconnection networks and memory hierarchy could affect the

execution time significantly, therefore they must be carefully considered. Second, the

communication overhead and the load imbalance among PEs could easily degrade the

performance. Therefore, a convenient parallel resampling algorithm should minimize

the communication time and achieve a good load balance, at the same time, it should

keep the effective sample size (ESS) reasonably high to ensure stability and high accu-

racy.

1.2. Approach and Contributions

In this thesis, we first provide a brief overview of the aspects of parallel computing

architectures that play a critical role in designing parallel programs. We then describe

a standard approach of parallelization of resampling algorithms, and we provide mathe-

matical expressions for the execution time on different computing environments. After

that, we propose a novel parallel resampling algorithm, resampling with butterfly com-

munications (RBC), inspired by butterfly resampling described in [14,15].

Our main contribution in this thesis is the proposed RBC algorithm. The RBC

algorithm imposes constraints on the communication patterns of the PEs such that

the communication overhead caused by a large number of messages or high latency

memory accesses is prevented. In RBC, PEs are grouped in pairs according to the

butterfly structure [14], and each PE can communicate with only the other PE in the

same group. We show that the RBC algorithm is scalable, and it keeps the ESS above a

reasonable threshold thereby guaranteeing stability. Furthermore, the RBC algorithm

is parameterized by the number of communicating pairs, thus the tradeoff between

performance and stability can be adaptively balanced.

We conducted experiments on different parallel computing architectures includ-

ing computer clusters and GPUs. We compared the RBC algorithm with the standard

approach in terms of execution time, resampling time, effective sample size and ac-
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curacy. We found that the RBC algorithm is superior to the standard approach on

clusters and GPUs, and successfully achieves high speed and accuracy in exchange for

negligible loss of effective sample size.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of

existing parallel resampling techniques. In Chapter 3, we discuss the characteristics of

widely used parallel computing architectures, and in Chapter 4 we outline a generic

SMC method. A standard parallel resampling algorithm is described in Chapter 5

while the proposed RBC algorithm is explained in Chapter 6. Our experiment design

and results are provided in Chapter 7. Finally, Chapter 8 draws conclusions.
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2. RELATED WORK

SMC methods approximate the posterior distributions using weighted point mass

samples called particles. Particles are propagated according to a state transition model,

and a weight is assigned to each particle and updated with the observations. The com-

mon approach in parallelization of resampling in the literature is to divide the particles

into distinct subsets, and to assign each subset to a PE. In this way, PEs are able to

independently update and propagate the particles in their local subsets. However, re-

sampling requires the weight information of all the particles, and may result in a highly

unbalanced subsets, that is, some subsets could have a large number of particles while

others only have few particles. Furthermore, both gathering the weight information

and the particle transmission require communication. Therefore, parallelization of the

resampling stage constitutes the main objective in designing parallel SMC methods.

2.1. Distributed Implementation of Resampling

In early efforts such as [16], the resampling stage is performed locally, that is

to say, each PE resamples only the particles in its subset. This approach does not

require any communication between PEs, however it has a significant drawback. The

weights of the particles in all the subsets but one converges to zero very fast, and the

subsets with zero weighted particles do not have any effect on the result. In other

words, the parallelization does not provide any improvement in this scheme. In [17],

two additional resampling schemes are proposed to solve this stability problem. In the

first scheme, each PE sends their local particles to a master PE, then the master PE

performs resampling and redistributes the particles to all PEs. The major disadvantage

of this approach is that the transmission of the particles introduces a communication

overhead, and overloads the master PE. The second scheme alleviates the overhead

by compressing the replicated particles, but the compression ratio may not be good

enough for many applications.
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Another work [18] introduces two categories of parallel resampling algorithms:

resampling algorithms with proportional allocation (RPA) and non-proportional allo-

cation (RNA) of particles. In the former, each PE generates particles proportional to

the total weight of its particle subset and performs a particle exchange algorithm for

load balancing. The number of particles generated by PEs and the transmission of

the particles are controlled by a master PE. There is no difference between sequential

resampling and RPA in terms of particles generated. However, RPA requires a non-

deterministic and complicated interaction between the PEs, which negatively affects

the scalability of the algorithm. The second algorithm (RNA) restricts the interac-

tion between the PEs using grouping and local exchange strategies. In the grouping

strategy, the PEs form disjoint groups, and each PE is only allowed to communicate

the other PEs in its group. In this case, the number of particles in a group stays the

same after resampling. Different groups are formed in different sampling instants in

order to propagate the large weights to all of the PEs. The groups can also be formed

adaptively so that the groups will have similar weights. In the local exchange strategy,

the PEs resample their local particles, and they exchange a fixed number of particles

to decrease the weight variance among the PEs.

A study focusing on particle exchange is presented in [19]. In this study, new

particles are generated by a parallel resampling algorithm that is similar to RPA algo-

rithm in [18], the number of particles produced by each PE is proportional to the total

weight of its particle subset. However, here, a PE sends the surplus particles only if the

computational burden incurred by the surplus particles exceeds the transmission cost.

The surplus particles to be sent are distributed by a dynamic scheduling algorithm in

such a way that the PEs having more computing power will have more particles.

A modified version of RNA with the local exchange is proposed in [20]. In this

version, the particles to be transmitted are not chosen randomly. Instead, the particles

having the largest weights are exchanged before resampling. The work in [20] also

shows that these particles best represent the particle subset in terms of Kullback-Leibler

divergence, and therefore the exchange of these particles results in more diverse particle

subsets. A similar approach is also proposed in [21]. Unlike [20], here, the received
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particles are appended to the local particle subset instead of replacing the particles

which are sent. The approach in [21] also allows different particle exchange topologies.

However, we should note that the particle exchange scheme without replacement may

cause distortion in the estimates.

A recent work [22] provides a parallel particle filtering library containing imple-

mentations of RNA and RPA algorithms. The library uses a hybrid parallelization

model which combines Message Passing Interface (MPI) [23] and Java threads. In

addition, the library has three different particle exchange schemes for RPA algorithm:

greedy, sorted greedy, and largest gradient. The particle exchange schemes match the

PEs having surplus of particles with the PEs having shortage of particles such that the

communication overhead induced by the particle exchange is reduced.

A different approach [24] utilizes Independent Metropolis Hastings (IMH) method

to perform resampling. Each PE generates a Markov chain of local particles using a

uniform distribution as the proposal. A candidate particle is accepted or rejected

according to the ratio between the weight of the current particle and the weight of the

candidate particle. After sufficiently large number of particles are generated, the initial

particles are discarded as a part of the Markov chain burn-in period, and the remaining

particles compose the new resampled particle subset. One obvious disadvantage of

this method is that one particle subset eventually dominates the others by holding

all the weights as in [16]. Besides, the number of iterations needed to make the bias

insignificant could be very large especially when the weight variance among the particle

subsets is large.

Another different method with provable convergence is suggested in [25]. This

method performs resampling in two hierarchical steps. First, the particle subsets are

resampled according to their weights as if they are single particles (islands). Second,

the particles within the subsets are resampled locally by different PEs. The bottleneck

of this method in a distributed environment is to replicate and transmit the whole

particle subsets after the first step. The variants of this method, ε-bootstrap and

Effective Sample Size (ESS) interaction schemes, are described in the same article. In ε-
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bootstrap interaction scheme, a particle or a subset is not resampled with a probability

proportional to its weight. In ESS interaction scheme, resampling is skipped if the ESS

of local particles or subsets is higher than a particular threshold. The variance and bias

of the estimates calculated by these methods are also studied and compared in [25].

In [26], SMC methods with the constrained interaction are generalized and the-

oretically studied. The interaction between particles during resampling is represented

by a Markov transition matrix α. In this scheme, using a sparse matrix can signif-

icantly reduce the interaction between particles thereby reducing the communication

cost. However, the weight variance of the resultant particles could be very large. The

work in [26] shows that the stability of SMC methods can be guaranteed by ensuring a

few conditions controlling ESS. Motivated by this, a parallel implementation of resam-

pling [27], forest resampling, satisfying the required conditions is introduced. Forest

resampling operates on disjoint groups of particle subsets forming the subtrees of a

logical tree topology of a distributed computer architecture. The subtrees are selected

such that the tradeoff between the degree of interaction and the weight variance is

balanced.

2.2. GPU Implementation of Resampling

The GPU implementation of SMC methods has also been studied in the liter-

ature. An early study [28] introduces the GPU implementations of three resampling

algorithms: multinomial, systematic and minimum error resampling. The resampling

algorithms are described as the combination of core primitives of parallel computing:

scan, reduce and sort. The multinomial and minimum error resampling algorithms

use the parallel sort algorithm and therefore they have O(log(N)2) time complexity

instead of O(log(N)). After the calculation of the offspring numbers using the resam-

pling methods above, the offspring particles are produced and redistributed according

to a divide-and-conquer approach.

Another study in [29] proposes a general particle filter implementation developed

by using general-purpose computing techniques on GPUs. In [29], the cumulative sum
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of the weights are calculated by two-level upsweep/downsweep method [30], then a

parallel stratified or systematic resampling calculates the offspring numbers of particles.

After that, the offspring particles are produced and distributed using the rasterization

process, which is a graphics-specific feature of GPUs.

With the introduction of CUDA [31], the general-purpose computing on GPUs

have become more popular. CUDA is parallel computing platform for Single Program

Multiple Data (SPMD) parallel programming style. In CUDA, a kernel function is

executed by threads generated by CUDA runtime system. The threads are grouped in

blocks, and each block is run by only one streaming multiprocessor (SM). Threads in a

block can be cheaply synchronized, and they can access a shared memory which is much

faster than the global DRAM. A study [32] provides a localized resampling technique

which aims to reduce the the global memory accesses. The particle subsets are assigned

to thread blocks instead of PEs, and each block performs resampling locally. This

method suffers from the same problem as the method in [16], that is the weights of the

particles in all blocks but one converge to zero. Finite-redraw importance-maximizing

(FRIM) method is proposed to alleviate this problem. In this prior editing technique,

each particle is redrawn many times and the particle that maximizes the likelihood is

chosen, which results in more balanced weights. However, this only slows down the

degeneration of the weights, and the prior editing technique may distort the estimates

substantially.

Another CUDA implementation of resampling, Shared-Memory Systematic Re-

sampling (SMSR), is presented in [33]. In SMSR, first the cumulative sum of the

particle weights is calculated using upsweep/downsweep method [30]. After that, each

thread computes the offspring number of a single particle, and replicates the particle

accordingly. The main drawback of SMSR is the thread divergence during replication

of the particles. For example, if the offspring number of a particular particle is much

larger than the others, the replication of the particles is mostly done by a single thread.

A new resampling algorithm, Metropolis resampling, which is suitable for GPU

architectures is proposed in [34]. In Metropolis resampling, each thread runs an inde-
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pendent Metropolis method where the stationary distribution is a categorical distri-

bution over particles with their associated weights. As the number of iterations gets

larger and larger, Metropolis resampling converges to multinomial resampling. One

disadvantage of this method is that if the variance among the particle weights is high,

the number of iterations required for convergence may become very large. Metropolis

resampling is studied and extended in [35]. In addition, the work in [35] proposes an

alternative algorithm: rejection resampling. In rejection resampling, each thread uni-

formly draws a random particle and a random number on the interval [0, 1] repeatedly

until the random number is greater than the particle weight divided by the largest

weight. The weak point of rejection resampling is that the number of iterations exe-

cuted by each thread may not be the same. The resulting thread divergence could be

a serious issue in the GPU context.
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3. PARALLEL COMPUTING ARCHITECTURES

The clock rate of the processors have remained nearly constant throughout the

last decade because of the overheating problem. Furthermore, the architectural im-

provements involving bit level parallelism, pipelining, multiple functional units and

larger cache size have reached their limits. As a result, the annual increase in the per-

formance of processors dropped from 50% to 22% approximately [36]. The demand for

increased speed, on the other hand, keeps growing, and parallel computing has become

the prominent way to meet it.

Parallel computing has been extensively used in high performance computing

(HPC) for decades. Today, HPC clusters are even available in the cloud, on demand.

Examples include Amazon Elastic Compute Cloud [37] and Microsoft Azure [38]. More-

over, thanks to recent advancements, multicore processors and many core GPUs have

become available in standard desktops, which makes parallel computing architectures

accessible to a broad community [36]. However, designing generic parallel algorithms

that can efficiently run on these architectures is not a straightforward task since these

architectures have different design philosophies. The performance of a parallel program

strongly depends on how the program is mapped the resources of the architecture. Here

we discuss the important aspects of cluster systems, shared memory architectures and

general purpose GPUs.

3.1. Cluster Systems

Cluster systems consist of independent nodes connected by an interconnection

network. The architecture of clusters is based on Multiple Instruction, Multiple Data

(MIMD) model according to Flynn’s taxonomy. In MIMD model, each PE has a

private program memory i.e. each PE runs its own instruction set independently and

asynchronously. Besides PEs could load and process different pieces of data, and they

are capable of writing values to the data memory.
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Flynn’s taxonomy is inadequate to capture the characteristics of cluster systems.

Their distributed memory organization distinguishes cluster systems from other MIMD

architectures. A classification based on memory organization is shown in Figure 3.1.

Each node in a cluster has an independent processor having a private memory that

cannot be accessed by other nodes. The only way to exchange information between

cooperating nodes including synchronization is to perform message-passing communi-

cations [36].

Interconnection Network

PE

LM

PE

LM

PE

LM

PE

LM

Interconnection Network

PE PE PE PE

Shared Memory

Shared Memory Organization Distributed Memory Organization 

PE: Processing Element 
LM: Local Memory 

Figure 3.1. Shared and Distributed Memory Organization of MIMD

Architectures [36].

Communicating a message in a cluster system is a lot slower than a local memory

access, and it can be affected by a number of factors, such as network topology, routing

algorithm and switching strategy [36]. Therefore, a computational model is needed to

develop and evaluate parallel algorithms. The model should hide the unnecessary de-

tails of specific systems, but at the same time it should be expressive enough to reflect

important aspects of clusters. Parallel random-access machine (PRAM), bulk syn-

chronous parallel (BSP) and LogP [39] models are popular examples for computational

models.

We use LogP as the computational model for cluster systems, because it provides

more general parameters capable of representing a broad range of parallel machines.

LogP model characterizes distributed MIMD based computing systems by four param-
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eters:

• L (Latency): an upper bound on the latency incurred in transmitting a message

from a source PE to its target PE.

• o (overhead): the time required by a PE to perform the transmission or reception

of a message. A PE cannot execute any other operation during this time.

• g (gap): minimum possible time interval between consecutive transmission or

reception operations at a PE.

• P (Processors): the number of processing units.

Moreover, this model assumes that the network has a finite capacity, which is

to say that at most dL/ge messages can be communicated at any time. L, o and g

reflects the important bottlenecks of cluster systems, and must be considered carefully

in designing parallel algorithms.

PE1 

PE2 PE3 

PE4 

PE1 

PE2 

PE3 

PE4 

L 
L 

L 

o o

o

o o

o

g

Time

Figure 3.2. An example of broadcasting algorithm based on the optimal broadcasting

tree in [40].

The communication tree and the timing diagram of a broadcasting algorithm is

shown in Figure 3.2. In this algorithm, PE1 does not send the data to all the other

PEs, because the overhead of successive transmission operations and the gap required

between them dominates the network latency. Instead, PE1 broadcasts the data to
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PE2 and PE3, and PE3 sends the data to PE4 right after it receives. By means of this,

the total execution time is reduced.

3.2. Shared Memory Architectures

The number of transistors on an integrated circuit doubles approximately every

two years, according to Moore’s law. The increase in the number of transistors has

been used to increase the number of cores in a processor for the last decade. Today,

quad-core processors are the standard for desktop computers, and octa-core even 16-

core processors are available off the shelf [36]. Similar to cluster systems, each core in a

multicore processor could execute its separate instructions on different data elements.

However the cores do not communicate explicitly via message passing, instead, cores

exchange information by writing and reading a shared memory.

Accessing a global shared memory is a lot faster than communicating a message

through a network. The price to pay for this advantage is that the collisions incurred

by concurrent accesses may result in unpredictable race conditions. To avoid race

conditions, the cores must be synchronized, which could also lead an overhead. The

goal in designing efficient parallel programs for shared memory architectures such as

multicore processors is to achieve a good load balance between synchronization points

while keeping the number of synchronizations as small as possible.

3.3. General Purpose GPUs

Graphics processing units (GPUs) are another type of shared memory architec-

tures, however the design philosophy of GPUs is fundamentally different from that

of multicore processors. Their original purpose is to accelerate graphics operations,

which are inherently massively parallelizable, and therefore they have been designed

to optimize execution throughput of parallel algorithms. The throughput oriented de-

sign of GPUs saves the the chip area to put more compute cores in exchange for long

latency [41].
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The performance of GPUs is much greater than CPUs in terms of execution

throughput. This performance gap has attracted considerable interest from both re-

search and developer communities. At the beginning, a parallel algorithm must be

implemented using graphics operations provided by a high level library such as Di-

rectX or OpenGL to leverage GPUs. Therefore general purpose computing on GPUs

(GPGPU) was limited and very difficult to use at that time. Later Nvidia realized the

growing demand for GPGPU and released CUDA (Compute Unified Device Architec-

ture) to meet it [41].

A CUDA program runs on a heterogeneous computing platform with a CPU

(host) and one or more GPUs (devices). The execution of a CUDA program starts

with the execution of the host program. The host program can invoke data-parallel

device programs by launching kernels. A kernel function generates a number of threads,

called a grid, which are organized and mapped to the compute cores on the device. A

typical CUDA-capable device consists of independent streaming multiprocessors (SMs)

that are connected to a global high bandwidth memory. Each SM has a number of

CUDA cores, also called streaming processors. A grid of threads are divided into

thread blocks and each block are assigned to a SM in arbitrary order [41]. An example

is shown in Figure 3.3.

Thread blocks are partitioned into 32-thread warps, after they are assigned to a

SM [41]. The SM schedules the warps instead of individual threads, and the warps

are executed by a Single Instruction, Multiple Data (SIMD) hardware. That is, each

thread in a warp applies the same instruction on its private data element. If the threads

in a warp have different execution paths (e.g. if-else statements), the SIMD hardware

passes through all the divergent paths sequentially thereby increasing the execution

time.

Global memory access is another critical factor that can affect the performance

of a CUDA program. The global memory is based on DRAM technology having long

access latencies. Accessing the global memory frequently results in a considerable per-

formance degradation, which could make the program impractical. The global memory
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Figure 3.3. Automatic Scalability in CUDA, image taken from [31].

Figure 3.4. CUDA Memory Hierarchy, image taken from [31].
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traffic can be reduced by utilizing the shared memory, another programmable memory

type provided by CUDA. The size of the shared memory is limited, but it is extremely

fast compared to the global memory. During the execution, the threads in a block can

access a shared memory allocated for the block, and thus they can share information

and store intermediate values at a low cost. The memory hierarchy of CUDA is shown

in Figure 3.4. Another important technique to increase the efficiency of global memory

operations is memory coalescing. The hardware is able to combine the load or store

operations issued by the threads in a warp when the corresponding memory locations

are consecutive. Therefore the data access patterns of a CUDA program should be

designed to enable memory coalescing in order to achieve a high data access rate.



18

4. SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) methods are a set of Monte Carlo techniques for

sampling from a high dimensional target distribution π(x1:t) defined on a product space

X n. The key idea in SMC is to combine Sequential Importance Sampling (SIS) with

resampling.

4.1. Sequential Importance Sampling

Sequential Importance Sampling (SIS) is an instance of Importance Sampling

(IS) which allows to sample from high dimensional distributions in an efficient way.

In SIS, instead of sampling directly from the target distribution π(x1:t), the samples

are sequentially drawn from a sequence of simpler proposal distributions. Consider the

proposal distribution q(x1:t) which is factorized as

q(x1:t) = q(x1)
t∏

k=2

q(xk|x1:k−1). (4.1)

SIS constructs the samples X i
1:t recursively. At the initial step, SIS samples X i

1 ∼

q(x1), then for k = 2, . . . , t SIS samples X i
k ∼ q(xk|X i

1:k−1) using the previous samples

X i
1:k−1 := {X i

1, . . . , X
i
k−1}. SIS assigns proper weights (importance weights) to the

samples, and updates the weights at each time step to correct the discrepancy between

the target distribution π(x1:t) and the proposal distribution q(x1:t).

SIS works even when the normalization constant of π(x1:t) is intractable. Suppose

we are able to compute φ(x1:t) : X t → R+ where,

π(x1:t) =
φ(x1:t)

Zt
(4.2)

Zt =

∫
φ(x1:t)dx1:t. (4.3)
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Here Zt denotes the intractable normalization constant of φ(x1:t). In this case, the

weight updates to be performed by SIS can be formalized as follows:

Wt(x1:t) =
φ(x1:t)

q(x1:t)

=
φ(x1:t−1)

q(x1:t−1)

φ(x1:t)

φ(x1:t−1)q(xt|x1:t−1)

= Wt−1(x1:t−1)
φ(x1:t)

φ(x1:t−1)q(xt|x1:t−1)
. (4.4)

Using Equation 4.1 and 4.4, SIS algorithm can be easily constructed. We sum-

marize SIS algorithm in Figure 4.1. Here N denotes the number of samples.

for i = 1 to N do

X i
1 ∼ q(x1)

W i
1 ⇐

φ(X i
1)

q(X i
1)

end for

for t = 2, 3, . . . , do

for i = 1 to N do

X i
t ∼ q(xt|X i

1:t−1)

W i
t ⇐

φ(X i
1:t)

φ(X i
1:t−1)q(X i

t |X i
1:t−1)

W i
t−1

end for

end for

Figure 4.1. Sequential Importance Sampling

We can calculate the Monte Carlo approximation of π(x1:t) using the samples and

the weights for each time step t by the following equation:

π̂(x1:t) =
N∑
i=1

witδXi
1:t

(x1:t). (4.5)
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where wit denotes the normalized weight of the ith sample.

wit =
W i
t∑N

j=1 W
j
t

(4.6)

The SIS approximation of the expectation of a given test function of interest ϕ(x1:t) :

X t → R can be computed by

ISIS(ϕ(x1:t)) =
N∑
i=1

witϕ(X i
1:t). (4.7)

We can also obtain an unbiased importance sampling estimate of the normalization

constant by

Ẑt =
1

N

N∑
i=1

W i
t . (4.8)

Both ISIS(ϕ(x1:t)) and Ẑt approximations satisfy a Central Limit Theorem (CLT)

i.e. the asymptotic variances of these approximations are of order O(1/N) [5]. Al-

though SIS allows us to sample from the target distribution π(x1:t) in an efficient

way, it has a severe drawback. The variance of the SIS estimates increases, typically

exponentially, as t increases, which makes SIS impracticable.

4.2. Resampling and Sequential Monte Carlo

The estimates provided by SIS algorithm are not reliable for large t. In practice

after a few time steps, most of the weights of the samples are very close to zero and

they require many computational effort although they have little effect on the result.

This well-known phenomenon is called the weight degeneracy.

Resampling is an intuitive idea that partially addresses the weight degeneracy.

Resampling eliminates the samples with small weights and increases the number of

samples with large weights. There are many ways to perform resampling including
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popular systematic, residual and multinomial Resampling [42]. The goal is to obtain

equally-weighted samples approximating to π(x1:t) using the SIS samples. For example,

let the probability that the sample Xj
0:t at the index j becomes the ancestor of the

sample X̄ i
0:t at the index i after resampling be expressed by

p(X̄ i
0:t = Xj

0:t) =
W j
t∑N

k=1W
k
t

= wjt (4.9)

Performing resampling using the probabilities in Equation 4.9 is equivalent to

sampling from a multinomial distribution if the new samples are conditionally indepen-

dent. Let N i
t denote the offspring number associated with ith sample. The new equally-

weighted samples are drawn from a multinomial distribution: N1:N
t ∼ Mult(N,w1:N

t )

where N1:N
t := {N1

t , N
2
t , . . . , N

N
t }.

We can now construct a generic SMC method using SIS and resampling. We add

an extra step to SIS algorithm in Figure 4.1.

for i = 1 to N do

X i
1 ∼ q(x1)

W i
1 ⇐

φ(X i
1)

q(X i
1)

end for

for t = 2, 3, . . . , do

A1:N
t−1 ∼ F(a1:N

t−1|W 1:N
t−1 )

for i = 1 to N do

X i
t ∼ q(xt|X

Ai
t−1

1:t−1)

W i
t ⇐

φ(X i
1:t)

φ(X
Ai

t−1

1:t−1)q(X i
t |X

Ai
t−1

1:t−1)

∑N
j=1

W j
t−1

N

end for

end for

Figure 4.2. Sequential Monte Carlo
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In Figure 4.2, the ancestor indices A1:N
t−1 := {A1

t−1, . . . , A
N
t−1} are sampled from

F(at−1|W 1:N
t−1 ), which is the discrete probability distribution corresponding to the re-

sampling scheme. Here Ait−1 denotes the index of the ancestor of X i
t .

X1
1 X2

1 X3
1 X4

1

X1
2

A1
1 = 3

X2
2

A2
1 = 1

X3
2

A3
1 = 4

X4
2

A4
1 = 3

X1
3

A1
2 = 3

X2
3

A2
2 = 4

X3
3

A3
2 = 2

X4
3

A4
2 = 3

Figure 4.3. Ancestral Lineage Example

Figure 4.3 shows a synthetically generated example of ancestor lineages for 4

samples and 3 steps. For example, the ancestor index A2
2 of the sample X2

3 is 4, and

X2
1:3 is {X3

1 , X
4
2 , X

2
3}.

4.3. Particle Filtering

One of the most successful applications of SMC methods is filtering in state-space

models (SSMs). SSMs consists of a state process and an observation process. Consider

a Markov state process {Xt; t ≥ 1} having the following form:

X1 ∼ µ(x1) (4.10)

Xt|(Xt−1 = xt−1) ∼ f(xt|xt−1) (4.11)

where µ(x1) is the initial density and f(xt|xt−1) is the transition density. The state

process is observed through another process {Yt; t ≥ 1}. In SSMs, the observations are

independent given the states, and distributed by a likelihood density given by

Yt|(Xt = xt) ∼ g(yt|xt). (4.12)



23

The inference goals in SSMs involve filtering, marginal likelihood computation

and smoothing. The problem of filtering is to calculate p(xt|y1:t), the distribution of

the present state given all the available observations. The filtering distribution p(xt|y1:t)

is the marginal of the joint distribution p(x1:t|y1:t). Assume we choose π(x1:t) =

p(x1:t|y1:t), and φ(x1:t) = p(x1:t, y1:t) in Equation 4.2, then the normalization constant

becomes Zt = p(y1:t). By using

φ(x1:t)

φ(x1:t−1)
=

p(x1:t, y1:t)

p(x1:t−1, y1:t−1)

= f(xt|xt−1)g(yt|xt) (4.13)

we can simplify SMC algorithm in Figure 4.2 into a generic particle filter shown in

Figure 4.4.

for i = 1 to N do

X i
1 ∼ q(x1)

W i
1 ⇐

µ(X i
1)g(y1|X i

1)

q(X i
1)

end for

for t = 2, 3, . . . , do

A1:N
t−1 ∼ F(a1:N

t−1|W 1:N
t−1 )

for i = 1 to N do

X i
t ∼ q(xt|X

Ai
t−1

1:t−1)

W i
t ⇐

f(X i
t |X

Ai
t−1

t−1 )g(yt|X i
t)

q(X i
t |X

Ai
t−1

1:t−1)

∑N
j=1

W j
t−1

N

end for

end for

Figure 4.4. Particle Filter

The proposal distribution q(xt|x1:t−1) in Figure 4.4 is a design parameter. Though

the optimal choice for proposal distribution is q(xt|x1:t−1) = p(xt|xt−1, yt), it is not

always possible to sample from p(xt|xt−1, yt) [5]. Another popular choice is using the

transition density q(xt|x1:t−1) = p(xt|xt−1) as in the standard bootstrap filter [3, 43].

In that case, the initial weights become W i
t = 1, and the weights can be updated using
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just the likelihood density W i
t ⇐ g(yt|X i

t)
∑N

j=1

W i
t−1

N
.

The sample paths {X1
1:t, . . . , X

N
1:t} provided by the particle filter in Figure 4.4

could be used to approximate p(x1:t|y1:t), and thereby its marginals p(xk|y1:t) for k =

1, . . . , t (see Equation 4.5). However, the number of unique samples approximating

p(xk|y1:t) decreases very fast (exponentially) as the difference t − k gets larger and

larger. One simple solution to this sample degeneracy is the fixed-lag approximation

relying on

p(xk|y1:t) ≈ p(xk|y1:k+d). (4.14)

However, the approximation in Equation 4.14 also has its limitations. We do not here

include other particle smoothing methods, please refer to [5] for details.
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5. PARALLELIZATION OF RESAMPLING

All of the steps of an SMC method except for resampling are readily paralleliz-

able as they do not require sample interaction. Resampling gathers the weights of

the samples, replicates the samples according to their weights, and redistributes the

resulting samples. Thus, it is not trivial to design a parallel resampling algorithm. In

this chapter, we first describe the standard way to parallelize resampling algorithms by

taking into account the performance considerations of parallel computing architectures

discussed in Chapter 3. Then we provide mathematical formulations for the execution

time of the standard method on cluster systems and GPUs.

5.1. Ancestor Indices and Offspring Numbers

A standard resampling algorithm provides equally-weighted samples approximat-

ing to π(x1:t) by simply sampling from the IS approximation π̂(x1:t) in Equation 4.5.

Resampling can be performed by drawing ancestor indices from a categorical distribu-

tion with associated weights at time t+ 1

Ait ∼ Cat([N ], w1:N
t ), for all i ∈ [N ]. (5.1)

We denote by [N ] := {1, 2, . . . , N} and w1:N
t := {w1

t , w
2
t , . . . , w

N
t }. The conditional

independence between the ancestor indices A1:N
t = {A1

t , A
2
t , . . . , A

N
t } can be identified

by a bipartite directed graph. Let {Ait,0}i∈[N ] and {Ait,1}i∈[N ] denote the values in the

vertices of the disjoint subsets respectively, where Ait,0 = i and Ait,1 = Ait. There is an

edge from Ajt,0 to Ait,1 if and only if the probability p(Ait = j) is greater than zero.

Figure 5.1 shows the conditional independence graph of a standard resampling

algorithm. As can be seen, the ancestor index of an offspring sample could be any

index. In the first part (a) of Figure 5.2 a random realization of ancestor indices is

shown. Since the order of the samples is not important, the ancestor indices can be

grouped according to their values as in the part (b) in Figure 5.2. This approach is
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Figure 5.1. Conditional Independecy Graph of Standard Resampling.

identical to drawing offspring numbers (replication numbers) N1:N
t from a multinomial

distribution: N1:N
t ∼ Mult(N,w1:N

t ). Multinomial resampling provides an unbiased

approximation for π̂(x1:t) where E[N i|w1:N
t ] = Nwi for all i ∈ [N ]. There exist other

unbiased resampling methods having smaller variance such as residual and systematic

resampling [42], but for the sake of simplicity we consider only multinomial resampling

throughout the thesis.
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Figure 5.2. An Example of Multinomial Resampling.
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5.2. A Parallel Two-Step Resampling Algorithm

Let us assume that the samples are distributed to PEs such that each PE has

M = N/P samples. In a typical parallelization approach, resampling is performed in

two steps. In the first step, each PE calculates the sum of local weights in parallel

Wk
t =

M∑
i=1

W i,k
t . (5.2)

Here k is the index of the PE and i is the local sample index. After that, the weight

sums, which we call the global weights, are normalized wk
t =

Wk
t∑P

l=1 Wl
t

, and the off-

spring numbers associated to PEs M1:P
t := {M1

t ,M
2
t , . . . ,M

P
t } are sampled multinomi-

ally M1:P
t ∼ Mult(N,w1:P

t ) where w1:P
t := {w1

t ,w
2
t , . . . ,w

P
t }. In the second step, each

PE independently performs a local resampling algorithm such that the PE k generates

Mk
t samples. Then the PEs exchange samples via message-passing communication or a

global memory to achieve the load balance. The two-step parallel resampling algorithm

is outlined in Figure 5.3.

for k = 1 to P do in parallel

Wk
t ⇐

∑M
i=1W

i,k
t

end for

w1:P
t ⇐ Normalize(W1:P

t )

M1:P
t ∼ Mult(N,w1:P

t )

for k = 1 to P do in parallel

A
1:Mk

t ,k
t ∼ F(a

1:Mk
t ,k

t |W 1:M,k
t )

end for

DistributeSamples(A
1:M1

t ,1
t , A

1:M2
t ,2

t , . . . , A
1:MP

t ,P
t )

Figure 5.3. A Parallel Resampling Algorithm

5.3. Message Passing Implementation

We want to provide some important implementation-specific details before dis-

cussing the performance of this algorithm. In our implementation, all the PEs have
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the same role, there is no master or slave PE. In a cluster system the global weights

w1:P
t are obtained by all the PEs through a all-to-all broadcast operation. In addition,

each PE uses a separate random number generator for global operations, which is ini-

tialized with a shared seed. Therefore, PEs are able to compute the same offspring

numbers M1:P
t without any communication. Another issue needed to be addressed is

redistribution of surplus samples. If the offspring number of a PE Mk
t is greater than

M , then the PE k must send Lkt = Mk
t −M samples to one or more other PEs. If Mk

t

is smaller than M , it will receive |Lkt | samples from other PEs. A matching algorithm

is needed to match the PEs having surplus of samples with the PEs having shortage

of samples. A good matching should keep the number of communications minimum.

for k = 1 to P do

Lkt ⇐Mk
t −M

end for

s⇐ 1

r ⇐ 1

while s ≤ P and r ≤ P do

if Lst ≤ 0 then

s⇐ s+ 1

end if

if Lrt ≥ 0 then

r ⇐ r + 1

end if

if Lst > 0 and Lrt < 0 then

Schedule(min(Lst , |Lrt |))

Lst ⇐ Lst −min(Lst , |Lrt |)

Lrt ⇐ Lrt +min(Lst , |Lrt |)

end if

end while

Figure 5.4. A Greedy Matching Algorithm

Here, we describe a simple greedy matching algorithm in Figure 5.4, however

other approaches can also be used [22]. The matching algorithm picks a sender s and
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a receiver r, and schedules a transmission of min(Lst , |Lrt |) samples. If Lst ≥ |Lrt |, then

another receiver is picked; likewise, if Lst ≤ |Lrt |, then another sender is picked by the

scheduler. The algorithm iterates over the PEs until all the senders and receivers are

matched.

The main bottleneck is the transmission the global weights and the surplus sam-

ples. The global weights can be broadcasted to all PEs in an efficient way. If PE k

sends the global weight to PEs k+ 1(mod P ), k+ 2(mod P ), . . . , k+P − 1(mod P ) in

that order, then the communication time becomes L+2o+(P −2)g according to LogP

model [40]. In transmission of samples, we assume a PE is either a receiver or a sender

since having exactly M samples (Mk
t = M) for a PE after resampling is unlikely. Let

Pmax denote one plus the maximum number of transmissions or receptions performed

by a PE, then communicating surplus particles takes L+ 2o+ (P − 2)g cycles. In the

worst case scenario, a PE receives samples from all of the other PEs. Another impor-

tant issue is that the offspring numbers sampled using the normalized global weights

could be highly unbalanced. In the worst case a PE produces N particles. Now we can

provide an expression for the execution time

T = Tweight + Tbroadcast + Tancestor + Texchange

= Mtw + L+ 2o+ (P − 2)g + max
k∈[P ]

Mk
t ta + L+ 2o+ (Pmax − 2)g

=
N

P
tw + max

k∈[P ]
Mk

t ta + 2L+ 4o+ (Pmax + P − 2)g. (5.3)

Here Tweight is time spent during the calculation of the sum of the local weights, which

is fixed for all time instants, Tancestor is the time spent by the PE having the largest

offspring number during producing the ancestor indices, and tw and ta denote the time

required to calculate the sum of two weights and one ancestor index respectively.

5.4. Shared Memory Implementation

In a shared memory architecture, an explicit barrier synchronization is needed

before the normalization of the global weights to make sure all the PEs have calculated
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the sum of the local weights. Another critical point is that after the offspring numbers

are sampled, many PEs may run idle while others generating the ancestor indices,

especially when the offspring numbers are highly unbalanced. This problem can be

solved easily since PEs can access all of the samples via a global memory. For example,

instead of sampling the offspring numbers from a multinomial distribution with the

parameter N (number of trials), each PE samples its own offspring numbers M1:P,k
t ∼

Mult(M,w1:P
t ) with M trials, then generates the ancestor indices according the M1:P,k

t ,

and this way, the number of ancestor indices to be generated by each PE is fixed

and equals M . A better approach exploiting data locality is to perform a matching

algorithm as in Figure 5.4 after the offspring numbers are sampled with N trials such

that the PEs having shortage of samples generate the surplus ancestor indices of other

PEs. The execution time of these approaches can be described as

T = Tweight + Tsync + Tancestor + Tsync

= Mtw + Tsync +Mta + Tsync

=
N

P
(tw + ta) + 2Tsync (5.4)

where Tsync is the amount of time required for synchronization.

5.5. GPU Implementation

The GPU implementation of the algorithm in Figure 5.3 is similar to the shared

memory implementation because they both utilize a global memory. However, the PEs

of GPUs, streaming multiprocessors (SMs), are not sequential computing units, they

are based on SIMD model (see Section 3.3). The sum of the local weights Wk
t are

calculated by a thread block having shared resources. There exist a plenty of efficient

techniques to be used to calculate the sum, we refer to [41] for details. Once the global

weights are calculated, the offspring numbers M1:P,k
t are produced for each block on

a host device (CPU). After that, each thread block copies the local weights from the

global memory to its shared memory, and calculates the cumulative (prefix) sum of

the local weights using work efficient upsweep/downsweep algorithm [30] summarized
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in Figure 5.5. Then, each thread in the block independently performs a binary search

to calculate an ancestor index.

Although it is not easy to express the execution time of an algorithm running on

a GPU in terms of some parameters, the long-latency global memory access is a well

known limiting factor for the performance. We can express the execution time of the

algorithm in Figure 5.3 as the sum of calculation time of the cumulative sum of the

weights Tcs, fetching time of the weights from the global memory Tgmem, and the time

required for a binary search Tbs as follows:

T = Tcs + Tsync + Tgmem + Tbs + Tsync

= (log2M)tw + Pmaxtgmem + (Pmaxlog2M)tbs + 2Tsync

=

(
log2

N

P

)
tw + Pmaxtgmem +

(
Pmaxlog2

N

P

)
tbs + 2Tsync. (5.5)

Here, tbs denote time required to perform one step of a binary search, and tgmem is the

latency of the global memory. Two synchronization points are needed, one to ensure

the cumulative sums are computed, and one to ensure the resampling is completed. We

assume the blocks can be executed concurrently. Both tw and tbs use only the shared

memory which is much faster than the global memory. We note that Tgmem does not

always have to be Ptgmem. In practice, however, the number of global memory accesses

is usually of order of P .
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for k = i to M do in parallel

W i
cs ← W i,k

t

end for

for d = 0 to log2M − 1 do

for i = 0 to M/2d+1 − 1 do in parallel

W
(i+1)2d+1

cs ⇐ W
(2i+1)2d

cs +W
(i+1)2d+1

cs

end for

end for

WM
cs ← 0

for d = log2M − 1 down to 0 do

for i = 0 to M/2d+1 − 1 do in parallel

temp⇐ W
(2i+1)2d

cs

W
(2i+1)2d

cs ⇐ W
(i+1)2d+1

cs

W
(i+1)2d+1

cs ⇐ temp +W
(i+1)2d+1

cs

end for

end for

Figure 5.5. A Work Efficient Parallel Cumulative Sum Algorithm
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6. PARALLEL RESAMPLING WITH BUTTERFLY

COMMUNICATIONS

The standard parallelization technique discussed in Chapter 5 provides an efficient

resampling algorithm. However, the execution time grows linearly with the number of

PEs on computer clusters and GPUs (see Equation 5.3 and 5.5), which is a limiting

factor for its scalability especially when the latency of the interconnection network or

the latency of the global memory of the GPU is high. In this chapter, we propose

a parallel resampling algorithm inspired by Butterfly resampling [14] to solve these

performance problems.

6.1. Effective Sample Size and Stability

The algorithm in Figure 5.3 allows any PE to interact with any other PE due

to the nature of multinomial distribution. Such a dependency between the PEs is

the reason why the execution time grows as the number of PEs increases. One way

to mitigate this problem is to put some constraints on the communication between

PEs. In such cases, PEs form disjoint groups, and each group independently performs

resampling as described in Chapter 5. The weights of the samples in a group become

equal after resampling, however the weights of the samples belonging to different groups

could be quite different, which may lead to degeneracy of the weights.

The weight degeneracy can be monitored by using effective sample size (ESS)

criterion. The ESS at each time instant can be calculated using the weights

N eff
t =

(
∑N

i=1 W̄
i
t )

2∑N
i=1(W̄ i

t )
2
. (6.1)

Here the bar in W̄ i
t indicates the weight after resampling. The ESS can take values be-

tween 1 and N , indicating the degree of degeneracy. The stability of an SMC method is

strongly dependent on the ESS. The study in [26] proposes a generalization of standard
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SMC methods, called αSMC, and provides a stability theorem for αSMC stating that

a suitable interaction keeping effective sample size (ESS) above a particular threshold

is sufficient to guarantee the stability. The αSMC algorithm at each time step picks a

matrix α representing the interactions between samples from a set of Markov transi-

tion matrices A, and performs resampling accordingly. The denser the matrix α is, the

higher ESS to be obtained. The stability theorem ( [26], Theorem 2) for αSMC states

that, under some regularity conditions on the HMM, there exists a finite constant c

such that for any N ≥ 1,

inf
t≥0

N eff
t

N
≥ τ ⇒ sup

t≥0
E

(Ẑt
Zt

)2
1/t

≤ 1 +
c

Nτ
(6.2)

and it follows from Equation 6.2 that,

inft≥0
N eff
t

N
≥ τ , and

Nτ ≥ tc

 ⇒ E

(Ẑt
Zt
− 1

)2
 ≤ 2tc

Nτ
. (6.3)

Equation 6.2 and 6.3 show the tradeoff between the stability and the degree of

interaction between samples. Increasing the group size i.e. decreasing the number of

groups improves the stability of the algorithm, on the other hand the intensive com-

munication within large groups substantially increase the execution time (see Equation

5.3).

6.2. Butterfly Resampling

Butterfly resampling is an instance of augmented resampling, which is a different

approach that divides resampling into K steps, where each sample can only interact

with a fixed set of other samples. Augmented resampling (AR) imposes constraints

on the interactions between samples by using a set of doubly stochastic transition

matrices {B1, B2, . . . , BK}, each of size N × N and (BKBK−1 . . . B1)i,j = 1/N . At

step k, the ancestor indices are sampled according to the conditional independence
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structure represented by Bk. At the end of the algorithm, equally weighted samples

are produced. The pseudocode of AR is given in Figure 6.1. The symbol δx denotes

the Dirac (unit) delta measure located at x.

for i = 1 to N do

Ait,0 ⇐ i

W i
t,0 ⇐ W i

t

end for

for k = 1 to K do

for i = 1 to N do

W i
t,k ←

∑N
j=1B

i,j
k W

j
t,k−1

Ait,k ∼

∑N
j=1 B

i,j
k W

j
t,k−1δAj

t,k−1

W i
t,k

end for

end for

for i = 1 to N do

Ait ⇐ Ait,K

W̄ i
t ⇐ W i

t,K

end for

Figure 6.1. Augmented Resampling

There are many ways to choose the interaction matrices, for example when K = 1

and Bi,j
1 = 1/N for , i, j ∈ [N ], we obtain the standard complete resampling method.

In butterfly resampling (BR), the main idea is to break down the complete interaction

matrix into well structured sparse matrices so that non-trivial limits for the moments

can be established [14]. Let N = r1r2 . . . rK be the factorization of N , then Bk matrices

of BR are formed as follows:

Bk := IrK ⊗ · · · ⊗ Irk+1
⊗ Urk ⊗ Irk−1

⊗ · · · ⊗ Ir1 . (6.4)

Here the symbol ⊗ denotes Kronecker product, Id denotes the d × d identity matrix,

and Urk is the rk × rk matrix which has 1/rk as every entry. We can see the matrices

satisfy the condition
∏

k Bk = UN and each matrix Ak ensures that the samples interact
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in small groups consisting of rk particles at step k. For example, assume we have N = 8

and r1 = r2 = r3 = 2, then the corresponding interaction matrices are

B1 =
1

2


1 1 · · · · · ·

1 1 · · · · · ·

· · 1 1 · · · ·

· · 1 1 · · · ·

· · · · 1 1 · ·

· · · · 1 1 · ·

· · · · · · 1 1

· · · · · · 1 1

 , B2 =
1

2


1 · 1 · · · · ·

· 1 · 1 · · · ·

1 · 1 · · · · ·

· 1 · 1 · · · ·

· · · · 1 · 1 ·

· · · · · 1 · 1

· · · · 1 · 1 ·

· · · · · 1 · 1

 ,

B3 =
1

2


1 · · · 1 · · ·

· 1 · · · 1 · ·

· · 1 · · · 1 ·

· · · 1 · · · 1

1 · · · 1 · · ·

· 1 · · · 1 · ·

· · 1 · · · 1 ·

· · · 1 · · · 1

 . (6.5)

The conditional independence graph of BR resampling is depicted in Figure 6.2

(a). As can be seen, the interactions in one step of BR are much more sparse than

the interactions in multinomial resampling in Figure 5.1. However, BR has two major

disadvantages. First, some extra noise is added in each step of BR. For instance, when

N is factorized as N = r × r × r . . . × r, the error associated with BR is of order√
logrN

N
which is larger than the standard error of order 1/

√
N . The other problem

is that after the completion of each step, a barrier synchronization is needed, which

significantly degrades the performance. The authors of [14] also propose another BR

instance, called mixed BR, in which N is factorized as N = r × N/r, and they show

mixed BR has
√
N scaling. The graph associated with mixed BR is shown in Figure

6.2 (b).

6.3. Butterfly Communications

We propose a new parallel resampling algorithm, which we call resampling with

butterfly communications (RBC), inspired by butterfly resampling in [14] and the adap-

tive strategies in [26]. Our aim is to eliminate the dependency of the performance on the

number of PEs, which limits the scalability. Consider the BR instance which factorizes

N as M×2×2×. . .×2, and the corresponding interaction matrices {B1, B2, . . . , Bp+1}.
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Figure 6.2. Conditional Independence Graph of Butterfly Resampling.

Here the number of steps is p + 1 where 2p = P . We define a new set of matrices

A = {Ci | Ci = Bi+1B1, i ∈ [p]}. For instance if P = 4, then C1 and C2 become

C1 =
1

2


UM UM · ·

UM UM · ·

· · UM UM

· · UM UM

 , C2 =
1

2


UM · UM ·

· UM · UM

UM · UM ·

· UM · UM

 (6.6)

At each time step t, RBC selects the matrix α = Ck where k = t mod p, and

performs resampling according to the αSMC algorithm. The interaction mechanism

specified by Ck is the following: each PE s is paired with r = p⊕ k where the symbol

⊕ denotes the bitwise xor-operation (exclusive or operation), and each pair performs

complete resampling as in Figure 5.3, and thus the ESS is always kept above 2M

(τ = 2/P ). PEs form different pairs at different time instants according to the but-

terfly structure outlined in the part (a) in Figure 6.2 (see also [36]). Intuitively, this

rapidly propagates the large weights to all of the PEs. We also note that RBC can be

seen as an instance of RNA in [18] with a certain re-grouping strategy.
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The constrained interactions in RBC lead to a significant speed improvement.

Recall from Equation 5.3 that the communication time incurred by inter-message gaps

(g) grows linearly with the number of PEs (P ) in RPA. On the other hand, in RBC, the

PEs are constrained to communicate in pairs, and therefore the gap term in Equation

5.3 is eliminated. The execution time on a computer cluster becomes

TRBC =
N

P
tw + max

k∈[P ]
Mk

t ta + 2L+ 4o. (6.7)

Moreover, the upper bound for the maximum number of ancestor indices produced by

a PE is max
k∈[P ]

Mk
t ≤ 2M , which is substantially smaller than max

k∈[P ]
Mk

t ≤ N . Similarly,

RBC removes the factor P , the number of PEs, from the global memory access time

Tgmem and the time spent in binary search Tbs in Equation 5.5. Thus the execution

time on a GPU is reduced to

TRBC =

(
log2

N

P

)
tw + 2tgmem +

(
2log2

N

P

)
tbs + 2Tsync. (6.8)

6.3.1. Number of Communicating Pairs

The latency of the network L with the overhead incurred by communications o

in Equation 6.7 could still reduce the performance of the RBC algorithm described

above, especially when PEs are interconnected by a network with limited bandwidth

and significant latency. We therefore put a limit on the number of communicating pairs

during resampling by using more sparse interaction matrices.

Let n denote the number of pairs allowed to communicate. For example, in

the standard RBC algorithm described above, n = P/2. We compose a new set of

interaction matrices A = {Ci,j | i ∈ [p], j ∈ [P/2n]}. At time step t, the matrix

Ci,j where i =

⌈
2nt

P

⌉
mod p, j = t mod

P

2n
is selected. The idea here is to separate

the communicating pairs at one time instant in the standard RBC into distinct sets,

each having n pairs, and to allow the sets of pairs to communicate one at a time. An

example of this communication pattern is illustrated in Figure 6.3.
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Figure 6.3. An Illustration of Pair Communications.

Suppose, for example, we set n = 1, then B2 is factorized as follows:

B2,l :=


I2M(l−1) · ·

· U2 ⊗ IM ·

· · IN−2Ml

 . (6.9)

Here we only explain how the matrixB2 is factorized, but the method can be generalized

without difficulty for the rest of the matrices. The corresponding interaction matrices

can be easily calculated by A = {Ci,j | Ci,j = Bi+1,jB1, i ∈ [p], j ∈ [P/2n]}. For

example, if P = 4 and n = 1, then C1,1, C1,2, C2,1 and C2,2 are the following matrices:

C1,1 =


UM/2 UM/2 · ·

UM/2 UM/2 · ·

· · IM ·

· · · IM

 , C1,2 =


IM · · ·

· IM · ·

· · UM/2 UM/2

· · UM/2 UM/2

 ,

C2,1 =


UM/2 · UM/2 ·

· IM · ·

UM/2 · UM/2 ·

· · · IM

 , C2,2 =


IM · · ·

· UM/2 · UM/2

· · IM ·

· UM/2 · UM/2

 (6.10)
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The RBC algorithm with n <
P

2
is suitable for pipelining. While some pairs are

communicating, others do not have to be idle, they can proceed to the next sampling

instant. Each PE has to communicate only once in
P

2n
time steps. As a result the

communication time is reduced by a factor
2n

P
. The execution time in Equation 6.7

can be updated as follows:

TRBCn =
N

P
tw + max

k∈[P ]
Mk

t ta + (2L+ 4o)
2n

P
. (6.11)

We can control the communication time by adjusting the parameter n. However,

the minimum possible ESS is decreased to M when n < P/2. Besides, partial mixing,

especially when n is small, may not be enough to propagate large weights to all of the

PEs. Therefore selecting n is a tradeoff between the execution time and the stability

of the RBC algorithm.
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7. EXPERIMENTS AND RESULTS

In this chapter, we present our simulation results. We conducted our experiments

on two parallel computing environments, a cluster of server nodes and a GPU. The

cluster consists of nodes having Intel(R) Xeon(R) CPU E5-2650L v3 @ 1.80GHz. We

ran the simulations on 16 separate cores each belonging to a different node. The GPU

we used in our experiments is Nvidia GeForce GTX 1070 which has CUDA compute

capability of 6.1. We used 1024 threads per block, which is the maximum possible

number of threads in a block on a device with CUDA compute capability 6.1. Each

thread block can perform operations on at most 1024 particles, since the resources

that can be allocated for a thread block is limited on a GPU. Therefore the number of

blocks used for N particles is N/1024.

We implemented the resampling algorithms in Python using the libraries Numba

[44] and MPI for Python [45]. Numba allows just-in-time compilation of Python

code into CUDA kernels, and supports explicit parallel loops for high performance

computing. MPI for Python (mpi4py) provides Python bindings for the Message

Passing Interface (MPI) standard. We ran our simulations for 512 time steps with

N = 29, 210, . . . , 215 particles. We recorded the total execution time and the amount

of time spent in resampling. Then we calculated the average execution and resam-

pling time for a single time step. We also calculated the effective sample size and the

accuracy of the approximations for each time step.

We used three particle filtering applications. The first application is a linear

Gaussian state space model (LGSSM) where we can compute the optimal filtering

estimates by the Kalman filter [1]. We compare the particle approximations of the

RBC and multinomial resampling algorithms with the optimal estimates to evaluate

the accuracy. The second application is indoor positioning using bluetooth low energy

(BLE) messages. We used the collected data set in [46] consisting of received signal

strength indicator (RSSI) values for different locations to construct an observation

model. Similarly we evaluate the accuracy of the algorithms by comparing with the
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optimal estimates calculated by the HMM filter [2]. In the third application, we used

the application of tracking the state of the chaotic Lorenz system, which has highly

nonlinear characteristics. We chose an observation model with small variance to observe

the effect of weight degeneracy on the performance of the algorithms.

7.1. Linear Gaussian State Space Model

Our first application is the tracking of the position of a target moving within x-y

plane according to a simple linear Gaussian state space model (LGSSM). Consider an

LGSSM having the following initial, transition and observation processes:

x0 ∼ N (0,Σ0) (7.1)

xt|xt−1 ∼ N (Fxt−1,Q), t ≥ 1 (7.2)

yt|xt ∼ N (Hxt,R), t ≥ 1. (7.3)

The state vector is four-dimensional xt = (x, vx, y, vy)
ᵀ
t where x and y are coordinates

of the target, and vx and vy are corresponding velocities. The matrices F and H are

the transition and observation matrices respectively

F =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 , H =

[
1 0 0 0

0 0 1 0

]
. (7.4)

The target starts with a random position and random velocity, and basically performs

a simple random walk in which a Gaussian noise is added to its position and velocity

at each time step. The velocity of target is hidden and it can be inferred by only using

noisy observation of the position. In our implementation all of the covariance matrices
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are diagonal matrices:

Σ0 =


1 0 0 0

0 4 0 0

0 0 1 0

0 0 0 4

 , Q =


4 0 0 0

0 1 0 0

0 0 4 0

0 0 0 1

 , R =

[
4 0

0 4

]
. (7.5)

An example trajectory generated by this model and the Kalman Filter estimates

with the error ellipsis are shown in Figure 7.1. The Kalman filter calculates optimal

state estimates with the associated covariance matrices recursively. The key idea is to

estimate the latent state as a weighted average of the predicted state and the observed

state. We refer reader to [47] for details.
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Figure 7.1. An Example of LGSSM Trajectory.

We used the optimal state estimates calculated by the Kalman filter as the ground

truth. The part (a) in Figure 7.2 shows a comparison of the mean squared errors (MSE)

of particle filtering approximations. The MSE values were computed by averaging over
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100 independent simulations, and the number of PEs used is 16.

Error =
1

T

T∑
t=1

∥∥∥∥∥x̂KF
t −

1

N

N∑
i=1

X i
t

∥∥∥∥∥
2

(7.6)

We observe that the errors of the standard multinomial resampling and the RBC al-

gorithm decreases at a similar rate as the number of particles increases. However, the

one-pair RBC algorithm converges slower since the interaction between PEs is sparse.
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Figure 7.2. MSE and ESS of Resampling Algorithms (LGSSM).

We plot the ESS ratio (ESS/N) of the RBC algorithm for a single simulation

in the second part (b) of the Figure 7.2. For better visualization, the ESS ratios are

smoothed by a 8-step moving average filter. We ran the simulation on 16 PEs and we

used 215 particles. We see that the RBC algorithm keeps the ESS ratio very close to 1.

However, when only one pair of PEs are allowed to communicate, the sparse interaction

between PEs decreases the ESS and the accuracy of the esimates.

Figure 7.3 shows the execution and resampling time of the algorithms on a cluster

system having 16 nodes for 215 particles. We observe the resampling time of the stan-

dard approach stops decreasing when the number of PEs (P ) is large. The intensive

communication between all the PEs clearly hinders the speed-up to be gained through

the parallelization. In the RBC algorithm, on the other hand, increasing the number
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Figure 7.3. Performance of Resampling Algorithms on a Cluster System (LGSSM).

of PEs does not impose an additional communication cost, therefore the resampling

time smoothly decreases with the number of PEs. The RBC algorithm with one com-

municating pair yields the best performance in terms of resampling time, since the

communication cost is significantly smaller than the others.
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Figure 7.4. Performance Comparison of Resampling Algorithms on a GPU (LGSSM).

In Figure 7.4 we depict the execution and resampling time of the algorithms on

a GPU. We observe that the consecutive high latency memory accesses slow down

the speed of the standard approach, which eventually limits its scalability. However,

the RBC algorithm does not require intensive global memory operations, each thread
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block fetches the weights of the particles from the global memory two times during the

calculation of the ancestor indices at each time step. Thus, increasing the number of

blocks does not have a substantial negative impact on the performance of the RBC

algorithm.

7.1.1. Indoor Localization using Bluetooth Low Energy Beacons

SMC filtering can be used to track a mobile sensor receiving Bluetooth Low

Energy messages in a building. Bluetooth Low Energy (BLE) technology provides low

energy consumption which makes the duration of the transmitters, called beacons, to

years. Therefore, BLE beacons are able to be deployed at the positions where the

power supply is not availabe. BLE messages also provide Received Signal Strength

Indicator (RSSI) to be used in localization.

In an open area, RSSI values received decrease as the distance from the trans-

mitter increases. Unfortunately, this is not the case in buildings. Due to the external

factors such as reflection and scattering, RSSI values measured are highly corrupted.

One of the prominent methods for indoor localization is fingerprinting which relies on

prior scene analysis and works as follows: first, RSSI values are collected for particu-

lar locations and corresponding RSSI vectors, also called fingerprints, are constructed,

then the location of a sensor is estimated by comparing the RSSI values received by the

sensor with the fingerprints. The accuracy of the estimates in this method increases

as the grid density of the fingerprints increases. However obtaining dense fingerprints

may not be possible due to the installation overhead. There are a couple of methods

to overcome this problem such as vector interpolation. A recent approach has been

introduced in [46], which increases the number of available fingerprints by exploiting

Wasserstein distance interpolation.

We used the data used in [46] in our simulations. The collected fingerprint data

consists of RSSI values transmitted by 5 different beacons in a living room for 50

points. This collected data were extended to 50K points using Wasserstein interpolation

technique [48]. The distance between two consecutive points is 10 cm. For each grid
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point x := [x, y] where x and y denote the position, we store the RSSI values of each

beacon as pairs zx
(i) := [r

(i)
x , b

(i)
x ]. Here r

(i)
x and b

(i)
x denote the RSSI value and beacon

MAC address respectively.

In our observation model, the probability of observing an RSSI of a beacon z at

the position x is fixed for all t and given by

p(Zt = z | Xt = x) =
1

|B|

∑
i δz(i)x z

δ
b
(i)
x b∑

i δb(i)x b

. (7.7)

In this equation, B denotes the set of MAC addressed of all beacons and δ denotes the

Kronecker delta. We plot the heatmap of probabilities for a particular beacon and for

RSSI values -80 and -85 in Figure 7.5. We can observe that the heatmaps are totally

different from each other altough the RSSI values are close.
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Figure 7.5. An Example of Heatmap of RSSI values.

We calculated the filtering distributions of a moving reciever for each time step

using the received RSSI values using the HMM filter [2]. We used a uniform distribution
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as the initial distribution, and we adopted the following simple transition probabilities:

p(Xt+1 = xt+1 | Xt = xt) =
exp
(
− ||xt+1 − xt||2

2σ2

)
∑

x∈Xexp
(
− ||x− xt||2

2σ2

) . (7.8)

We display the heatmaps of the calculated filtering distributions with the actual posi-

tions for time steps 50 and 100 in Figure 7.6.
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Figure 7.6. Heatmap of Filtering Distributions calculated by the HMM filter.

We used the filtering distributions provided by the HMM filter to evaluate the

accuracy of the particle filtering approximations. However, we did not calculate the

MSE of the expected positions of the target to avoid potentially misleading results.

Instead, we used Wasserstein distance [48] with square loss to evaluate the accuracy

of the approximations. We plot the distances in the part (a) of Figure 7.7, and we

show the ESS ratio of the algorithms in part (b). We see that there is no significant

difference between multinomial resampling and the RBC algorithm.

We display the execution and resampling time of the algorithms on a cluster

system in Figure 7.8. The resampling time of the standard multinomial method does

not decrease as the number of PEs increases, which eventually degrades the overall
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Figure 7.7. Wasserstein Distance and ESS of Resampling Algorithms (Indoor

Localization).
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Figure 7.8. Performance Comparison of Resampling Algorithms on a Cluster System

(Indoor Localization).
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performance, whereas the resampling time of the RBC algorithms decreases almost

linearly. Figure 7.9 shows the comparison of the performance of the algorithms on a

GPU. We can see that though the propagation and update operations take most of the

time in this application, the RBC algorithm still provides significant performance gain.
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Figure 7.9. Performance Comparison of Resampling Algorithms on a GPU (Indoor

Localization).

7.1.2. Lorenz System

We used the application of tracking the state of the chaotic Lorenz system to

evaluate our methods. The Lorenz system is non-periodic and highly nonlinear, and

small errors in its estimated state result in larger errors in a later state [49]. We used

the discrete time version as the state transition model in our simulations described

in [50]. The state vector is 3-dimensional (x1,t, x2,t, x3,t) and it is updated over time

according to the following propagation equations:

x1,t = x1,t−1−ST (x1,t−1−x2,t−1)+
√
Tu1,t (7.9)

x2,t = x2,t−1+T (Rx1,t−1−x2,t−1−x1,t−1x3,t−1)+
√
Tu2,t (7.10)

x3,t = x3,t−1−T (Bx3,t−1−x1,t−1x2,t−1)+
√
Tu3,t. (7.11)
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We can only make noisy measurements on the first dimension every 4 time steps.

zt = x1,t + νk (7.12)

S,R,B are the system constants and their default values are 10, 28, 8/3 respectively.

T is the time step which equals 0.025 time units and νt, ui,t are zero-mean Gaussian

white noise with the variance σ2
ν = 0.01 and σ2

u = 1 respectively.. The initial state is

distributed from a Gaussian distribution with the standard mean (-5.91652, -5.52332,

24.5723) and the covariance 10−2 · I3. Figure 7.10 shows the generated trajectory and

the measurements on the first dimension.
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Figure 7.10. An Example of Lorenz Trajectory.

We cannot calculate the optimal filtering distributions for the Lorenz system since

it does not have a finite state space, and it is nonlinear and non-Gaussian. Therefore

we calculated the MSE values of the state approximations using directly the actual

states.

Error =
1

T

T∑
t=1

∥∥∥∥∥xt − 1

N

N∑
i=1

X i
t

∥∥∥∥∥
2

(7.13)
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The MSE values of the algorithms are shown in the part (a) of Figure 7.11, and the

ESS ratios of the RBC algorithms are shown in part (b). We see that MSE curves of

the standard multinomial resampling and the RBC algorithm are so close that they

overlap, which confirms that the complete interaction is indeed not needed for many

models including highly nonlinear models such as the Lorenz System.
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Figure 7.11. MSE and ESS of Resampling Algorithms (Lorenz).

The performance comparison of the algorithms on a cluster system and on a

GPU are shown in Figure 7.12 and Figure 7.13 respectively. The results are similar

to those of the LGSSM and the indoor localization applications. We can observe

in Figure 7.12 that the RBC algorithm outperforms the standard approach, and the

RBC with one communicating pair has the least resampling time. Similarly, we can

also see in Figure 7.13 that the global memory access term in Equation 5.5 becomes

dominant as the number of particles (therefore blocks) increases, hence the standard

multinomial resampling performs poorly compared to the RBC algorithm for large

number of particles.
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Figure 7.12. Performance Comparison of Resampling Algorithms on a Cluster System

(Lorenz).
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Figure 7.13. Performance Comparison of Resampling Algorithms on a GPU (Lorenz).
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8. CONCLUSION

In this thesis, we investigated the implementation of parallel resampling algo-

rithms on different computing architectures. In Chapter 3 we discussed the key as-

pects of parallel computing architectures including computer cluster systems, shared

memory architectures and GPUs, which can affect the speed of a parallel resampling

algorithm. Based on these considerations, we presented a standard way to parallelize

resampling algorithms in Chapter 5. We then described the bottlenecks of the standard

approach, and we provided mathematical formulations for the execution time on both

cluster systems and GPUs.

We showed that the standard parallel resampling algorithm suffers from two main

problems in a cluster system. First, the consecutive message transmissions and re-

ceptions incur a significant overhead as the number of processing elements increases.

Second, the standard method performs poorly when the interconnection network has

high latency. We also demonstrated intensive global memory operations performed by

the standard method limits its scalability on a GPU.

In Chapter 6 we proposed, a novel parallel resampling algorithm, resampling with

butterfly communications (RBC), inspired by butterfly resampling previously described

in [14]. The RBC algorithm puts some constraints on the communication pattern

according to the butterfly structure such that the nodes communicate only in pairs.

We showed that the RBC algorithm is an instance of augmented resampling, and it

satisfies the stability conditions. We also showed the RBC algorithm eliminates the

important limitations of the standard approach.

In the RBC algorithm, the number of received or transmitted messages does not

increase with number of processing elements, because each processing element com-

municates only one other processing element during the entire resampling operation.

Similarly, the thread blocks access at most two separate global memory locations during

kernel execution on a GPU.
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We further proposed a parameterized version of the RBC algorithm by the number

of communicating pairs during resampling in order to alleviate the high network latency.

As the number of communicating pairs gets smaller, the effect of the high latency is

reduced. However, the sparse interaction between the processing elements makes the

RBC algorithm less stable and may result in loss of accuracy. The appropriate choice

of the number of communicating pairs to balance the tradeoff between accuracy and

speed depends on the transition and the observation model, as well as the discrepancy

between the target and the proposal distribution.

We reported the experimental results in Chapter 7. We ran simulations on a

GPU with CUDA compute capability 6.1 and a computer cluster system having 16

server nodes for three particle filtering applications: tracking of the position of a target

moving within x-y plane according to a simple LGSSM, indoor localization using BLE

Beacons, and tracking the state of the chaotic Lorenz system. We found that the

standard approach fails to scale due to the intensive communications it requires. On

the other hand, the RBC algorithm provides substantial speed-up while keeping the

accuracy of the estimates significantly high. In addition, decreasing the number of

communicating pairs further increases the speed-up in exchange for negligible loss of

accuracy.
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