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ABSTRACT

BUILD.NET: A GRAPHICAL APPLICATION

GENERATOR FOR OBJECT-ORIENTED SOFTWARE

AND SAMPLE APPLICATIONS

Existing application and code generators are designed for domain- specific tasks.

They are used in the intermediate steps of software development process and are not

intended to develop full scale applications. BUILD.NET introduces a new graphical ap-

plication generation framework for object-oriented software implementation. It utilizes

a language-neutral representation of source code through dialog forms and flow dia-

grams. This representation method allows non-programmers to develop object-oriented

software easily. The designed framework can convert this graphical representation into

source code in four different programming languages. Generated source code can be

compiled into executable directly without using any external compiler or interpreter.

Proposed application generation framework is tested on a complex software de-

velopment project. An object-oriented discrete-event simulation package for flexible

manufacturing systems, FMS.NET, is implemented by using BUILD.NET. This field

study shows that this framework can easily be utilized on real life scenarios.
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ÖZET

BUILD.NET: NESNE TABANLI YAZILIMLAR İÇİN

ÇİZGESEL UYGULAMA ÜRETİCİSİ VE ÖRNEK

UYGULAMALARI

Mevcut uygulama ve kod üreticileri özel görevler için tasarlanmışlardır. Yazılım

geliştirme süreçlerinin bazı adımlarında kullanılırlar ve bir yazılımın bütününün gelişti-

rilmesi için yeterli değillerdir. BUILD.NET nesne tabanlı yazılımlar için yeni bir

çizgesel uygulama üretme çerçevesi ortaya koymaktadır. Diyalog formları ve akış

şemaları kullanarak kaynak kodunu programlara diline bağlı olmadan temsil edebilmek-

tedir. Bu yolla programlama dili bilmeyenlerde nesne tabanlı yazılımlar geliştirebilmek-

tedir. Geliştirilen çerçeve bahsedilen çizgesel gösterimi dört farklı programlama dilinde

kaynak koduna çevirebilmektedir. Oluşturulan kaynak kodu başka bir derleyici veya

yorumlayıcı kullanılmadan uygulamaya çevrilebilir.

Önerilen uygulama üretme çerçevesi karmaşık bir yazılım geliştirme projesinde

test edilmiştir. BUILD.NET kullanılarak esnek imalat sistemleri için nesne tabanlı

bir kesik olay benzetim paketi geliştirilmiştir. Bu saha çalışması geliştirilen çerçevenin

gerçek hayatta uygulanabilirliğini göstermiştir.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. APPLICATION GENERATION . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Application Generator Design . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2. Choosing the Right Dimension . . . . . . . . . . . . . . . . . . . 6

2.2.3. Different Approaches for Code Generation . . . . . . . . . . . . 7

2.2.3.1. Templates with Filtering . . . . . . . . . . . . . . . . . 8

2.2.3.2. Templates with Metamodel . . . . . . . . . . . . . . . 8

2.2.3.3. Frame Processing . . . . . . . . . . . . . . . . . . . . . 9

2.2.3.4. API-Based Generators . . . . . . . . . . . . . . . . . . 9

2.2.3.5. Inline Code Generation . . . . . . . . . . . . . . . . . 10

2.2.3.6. Code Attributes . . . . . . . . . . . . . . . . . . . . . 10

2.2.3.7. Code Weaving . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4. Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.5. Advantages and Disadvantages of Using Code Generators . . . . 13

2.3. Code Document Object Model . . . . . . . . . . . . . . . . . . . . . . 13

3. BUILD.NET: THE PROPOSED APPLICATION GENERATOR . . . . . . 19

3.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Target Users and Application Areas . . . . . . . . . . . . . . . . . . . . 20

3.3. Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1. Structure Definition Classes . . . . . . . . . . . . . . . . . . . . 22

3.3.1.1. ModelDefinition Class . . . . . . . . . . . . . . . . . . 24



vii

3.3.1.2. NamespaceDefinition Class . . . . . . . . . . . . . . . 24

3.3.1.3. DelegateDefinition Class . . . . . . . . . . . . . . . . . 24

3.3.1.4. ClassDefinition Class . . . . . . . . . . . . . . . . . . . 26

3.3.1.5. EventDefinition Class . . . . . . . . . . . . . . . . . . 26

3.3.1.6. FieldDefinition Class . . . . . . . . . . . . . . . . . . . 28

3.3.1.7. PropertyDefinition Class . . . . . . . . . . . . . . . . . 28

3.3.1.8. MethodDefinition Class . . . . . . . . . . . . . . . . . 29

3.3.1.9. ParameterDefinition Class . . . . . . . . . . . . . . . . 30

3.3.2. Operation Definition Classes . . . . . . . . . . . . . . . . . . . . 31

3.3.2.1. Statement Class . . . . . . . . . . . . . . . . . . . . . 31

3.3.2.2. StatementLinkPoint Class . . . . . . . . . . . . . . . . 31

3.3.2.3. StatementLink Class . . . . . . . . . . . . . . . . . . . 33

3.3.2.4. Expression Class . . . . . . . . . . . . . . . . . . . . . 33

3.4. Sample Source Code to Object Graph Conversions . . . . . . . . . . . . 35

3.5. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1. Logical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2. GUI Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.3. Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. AN APPLICATION: A NEW FMS SIMULATOR (FMS.NET) . . . . . . . . 42

4.1. Flexible Manufacturing Systems Simulation . . . . . . . . . . . . . . . 42

4.1.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1.1. Static Model Data . . . . . . . . . . . . . . . . . . . . 44

4.1.1.2. Dynamic Model Data . . . . . . . . . . . . . . . . . . 46

4.1.1.3. Operational Decisions . . . . . . . . . . . . . . . . . . 46

4.2. Design of FMS.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1. FMS.NET.Random Namespace . . . . . . . . . . . . . . . . . . 49

4.2.2. FMS.NET Namespace . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3. FMS.NET.Layout Namespace . . . . . . . . . . . . . . . . . . . 52

4.2.4. FMS.NET.Decision Namespace . . . . . . . . . . . . . . . . . . 54

4.2.4.1. Blockage Solving Algorithms . . . . . . . . . . . . . . 55

4.2.4.2. Matching Algorithms . . . . . . . . . . . . . . . . . . . 56

4.2.4.3. Dispatching Algorithms . . . . . . . . . . . . . . . . . 56



viii

4.2.4.4. Routing Algorithms . . . . . . . . . . . . . . . . . . . 56

4.2.4.5. Traffic Management Algorithms . . . . . . . . . . . . . 56

4.2.4.6. Operation Decision Algorithms . . . . . . . . . . . . . 56

4.2.4.7. Process Order Algorithms . . . . . . . . . . . . . . . . 57

4.2.5. FMS.NET.Operation Namespace . . . . . . . . . . . . . . . . . 57

4.3. Implementation of FMS.NET . . . . . . . . . . . . . . . . . . . . . . . 63

4.4. Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1. Experiment]1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2. Experiment]2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3. Experiment]3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. CONCLUSIONS AND FUTURE STUDIES . . . . . . . . . . . . . . . . . . 71

APPENDIX A: UML DIAGRAMS OF BUILD.NET CLASSES . . . . . . . . 74

APPENDIX B: SCREENSHOTS OF BUILD.NET . . . . . . . . . . . . . . . 87

APPENDIX C: UML DIAGRAMS OF FMS.NET CLASSES . . . . . . . . . . 93

APPENDIX D: SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

REFERENCES NOT CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



ix

LIST OF FIGURES

Figure 2.1. Application generation methodology . . . . . . . . . . . . . . . . . 5

Figure 2.2. Application generation framework . . . . . . . . . . . . . . . . . . 5

Figure 2.3. Trade off between expressive power for design and expressive power

for implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.4. An optimal tool design . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.5. Code generation patterns categorization . . . . . . . . . . . . . . . 8

Figure 2.6. Templates with filtering code generation pattern . . . . . . . . . . 8

Figure 2.7. Templates with metamodel code generation pattern . . . . . . . . 9

Figure 2.8. Frame processing code generation pattern . . . . . . . . . . . . . . 9

Figure 2.9. API-based code generation pattern . . . . . . . . . . . . . . . . . 10

Figure 2.10. Inline code generation pattern . . . . . . . . . . . . . . . . . . . . 10

Figure 2.11. Code attributes code generation pattern . . . . . . . . . . . . . . . 10

Figure 2.12. Code weaving code generation pattern . . . . . . . . . . . . . . . . 11

Figure 2.13. Example table for DOM . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.14. Graphical representation of the DOM of the example table . . . . 15



x

Figure 2.15. CodeDOM hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1. BUILD.NET framework . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.2. UML diagram of structure definition classes . . . . . . . . . . . . 23

Figure 3.3. C] code of a namespace declaration . . . . . . . . . . . . . . . . . 24

Figure 3.4. XML document of a namespace declaration . . . . . . . . . . . . . 25

Figure 3.5. C] code of a delegate declaration . . . . . . . . . . . . . . . . . . . 25

Figure 3.6. XML document of a delegate declaration . . . . . . . . . . . . . . 25

Figure 3.7. C] code of a class declaration . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.8. XML document of a class declaration . . . . . . . . . . . . . . . . 27

Figure 3.9. C] code of an event declaration . . . . . . . . . . . . . . . . . . . 27

Figure 3.10. XML document of an event declaration . . . . . . . . . . . . . . . 27

Figure 3.11. C] code of a field declaration . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.12. XML document of a field declaration . . . . . . . . . . . . . . . . 28

Figure 3.13. C] code of a property declaration . . . . . . . . . . . . . . . . . . 29

Figure 3.14. XML document of a property declaration . . . . . . . . . . . . . . 29

Figure 3.15. C] code of a method declaration . . . . . . . . . . . . . . . . . . . 30



xi

Figure 3.16. XML document of a method declaration . . . . . . . . . . . . . . 30

Figure 3.17. UML diagram of operation definition classes . . . . . . . . . . . . 33

Figure 3.18. Sample statement decomposition for an assignment statement . . . 35

Figure 3.19. Sample statement decomposition for a variable declaration statement 35

Figure 3.20. Sample source code for object graph conversion . . . . . . . . . . . 36

Figure 3.21. Object graph corresponds to sample source code . . . . . . . . . . 36

Figure 3.22. Method explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.1. Sample flow path layout . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2. Alternative operation routes of a job type . . . . . . . . . . . . . . 47

Figure 4.3. FMS.NET framework . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.4. System workflow in an FMS . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.5. Simulation framework information flow . . . . . . . . . . . . . . . 64

Figure 4.6. FMS layout used in experiments . . . . . . . . . . . . . . . . . . . 65

Figure 4.7. Completed job count with changing AGV fleet size . . . . . . . . . 67

Figure 4.8. Average flow time with changing AGV fleet size . . . . . . . . . . 68

Figure 4.9. Completed job count with changing AGV fleet size after doubling

AGV capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



xii

Figure 4.10. Average flow time with changing AGV fleet size after doubling AGV

capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure A.1. BUILD.NET class diagrams - I . . . . . . . . . . . . . . . . . . . . 75

Figure A.2. BUILD.NET class diagrams - II . . . . . . . . . . . . . . . . . . . 76

Figure A.3. BUILD.NET class diagrams - III . . . . . . . . . . . . . . . . . . . 77

Figure A.4. BUILD.NET class diagrams - IV . . . . . . . . . . . . . . . . . . . 78

Figure A.5. BUILD.NET class diagrams - V . . . . . . . . . . . . . . . . . . . 79

Figure A.6. BUILD.NET class diagrams - VI . . . . . . . . . . . . . . . . . . . 80

Figure A.7. BUILD.NET class diagrams - VII . . . . . . . . . . . . . . . . . . 81

Figure A.8. BUILD.NET class diagrams - VIII . . . . . . . . . . . . . . . . . . 82

Figure A.9. BUILD.NET class diagrams - IX . . . . . . . . . . . . . . . . . . . 83

Figure A.10. BUILD.NET class diagrams - X . . . . . . . . . . . . . . . . . . . 84

Figure A.11. BUILD.NET class diagrams - XI . . . . . . . . . . . . . . . . . . . 85

Figure A.12. BUILD.NET class diagrams - XII . . . . . . . . . . . . . . . . . . 86

Figure B.1. Model definition wizard . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure B.2. Namespace definition wizard . . . . . . . . . . . . . . . . . . . . . 87

Figure B.3. Delegate definition wizard . . . . . . . . . . . . . . . . . . . . . . 88



xiii

Figure B.4. Class definition wizard . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure B.5. Enumeration definition wizard . . . . . . . . . . . . . . . . . . . . 89

Figure B.6. Interface definition wizard . . . . . . . . . . . . . . . . . . . . . . 89

Figure B.7. Struct definition wizard . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure B.8. Event definition wizard . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure B.9. Field definition wizard . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure B.10. Property definition wizard . . . . . . . . . . . . . . . . . . . . . . 91

Figure B.11. Method definition wizard . . . . . . . . . . . . . . . . . . . . . . . 92

Figure C.1. FMS.NET class diagrams - I . . . . . . . . . . . . . . . . . . . . . 94

Figure C.2. FMS.NET class diagrams - II . . . . . . . . . . . . . . . . . . . . 95

Figure C.3. FMS.NET class diagrams - III . . . . . . . . . . . . . . . . . . . . 96

Figure C.4. FMS.NET class diagrams - IV . . . . . . . . . . . . . . . . . . . . 97

Figure C.5. FMS.NET class diagrams - V . . . . . . . . . . . . . . . . . . . . 98

Figure C.6. FMS.NET class diagrams - VI . . . . . . . . . . . . . . . . . . . . 99

Figure C.7. FMS.NET class diagrams - VII . . . . . . . . . . . . . . . . . . . . 100

Figure C.8. FMS.NET class diagrams - VIII . . . . . . . . . . . . . . . . . . . 101



xiv

Figure C.9. FMS.NET class diagrams - IX . . . . . . . . . . . . . . . . . . . . 102

Figure C.10. FMS.NET class diagrams - X . . . . . . . . . . . . . . . . . . . . 103



xv

LIST OF TABLES

Table 3.1. Structure definition classes . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.2. Operation definition classes . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.3. Operation definition classes derived from Statement class and sam-

ple programming language statements . . . . . . . . . . . . . . . . 32

Table 3.4. Operation definition classes derived from Expression class and their

tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 4.1. FMS.NET namepaces . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.2. FMS.NET.Random namespace classes . . . . . . . . . . . . . . . . 51

Table 4.3. FMS.NET namespace classes . . . . . . . . . . . . . . . . . . . . . 51

Table 4.4. FMS.NET.Layout namespace classes . . . . . . . . . . . . . . . . . 53

Table 4.5. Algorithms in FMS.NET.Decision namespace . . . . . . . . . . . . 55

Table 4.6. Job-related classes in FMS.NET.Operation namespace . . . . . . . 57

Table 4.7. Event-related classes in FMS.NET.Operation namespace . . . . . . 59

Table 4.8. Management-related classes in FMS.NET.Operation namespace . . 61

Table 4.9. Operations used in experiments and their processing times . . . . . 66

Table 4.10. Job set used in experiments . . . . . . . . . . . . . . . . . . . . . . 66



xvi

Table 4.11. Decision algorithms used in experiments . . . . . . . . . . . . . . . 66

Table 4.12. Completed job count before and after increasing flexibility . . . . . 70

Table 4.13. Average flow time before and after increasing flexibility . . . . . . 70

Table D.1. Completed job count results for Experiment]1 . . . . . . . . . . . . 104

Table D.2. Average flow time results for Experiment]1 . . . . . . . . . . . . . 104

Table D.3. Completed job count results for Experiment]2 . . . . . . . . . . . . 105

Table D.4. Average flow time results for Experiment]2 . . . . . . . . . . . . . 105

Table D.5. Completed job count and average flow time results for Experiment]3 105



xvii

LIST OF ABBREVIATIONS

AGV Automated Guided Vehicle

API Application Programming Interface

BNF Backus-Naur Form
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1. INTRODUCTION

Software development cycle starts with collecting requirements from the potential

users. These requirements are converted into formal specifications. Software engineers

take an active part in the process after this step. They convert the formal specifications

into source code by utilizing a programming language. This programming step requires

a good knowledge of the programming language to perform the conversion operation

adequately. The potential users of the developed software typically can not participate

the implementation phase actively due to lack of technical ability. Possible flaws in the

requirements modeling phase can lead up to differences between the requirements and

the resulting software. Incorporating the potential users into development process can

solve this communication problem.

Programming languages have evolved over decades due to changing requirements

and technological achievements. High-level programming languages are designed to

overcome difficulties in programming with machine language or assembly language.

After this breakthrough, application-oriented languages drew attention. Application-

oriented languages are typically utilized in database management systems, user in-

terface generators and report generators. They are also used in developing domain-

specific application generators which target especially embedded and real-time systems.

Domain-specific application generators had great success and are used extensively as

support tools in software development (Rockstrom and Saracco, 1982; Lewis, 1990;

Guerrieri, 1994; Batory et al., 1998; Harada and Mizuno, 1999; Fertalj et al., 2002; Hel-

man and Fertalj, 2004).

Instead of concentrating on a specific domain, developing a general-purpose appli-

cation generator could be a different approach. This application generator can be used

by non-programmers to develop, modify and extend software without using any pro-

gramming language. A smart input collection mechanism should be provided to enable

the users to give their specifications to application generator. A graphical modeling

approach is suitable to give and interpret the entered specifications easily.
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In this thesis, a general-purpose application generation framework, BUILD.NET,

for object-oriented software is proposed. In this framework, specifications are collected

in a language-neutral manner from the users. Source code generation in four different

programming languages and application generation - compilation - are performed au-

tomatically without user intervention. The designed framework can be easily extended

to support other programming languages and used as an infrastructure for domain-

specific application generators. Graphical representation forms such as dialog forms

and flow diagrams are selected to gather information from the users in order to simplify

input collection process and give more interpretability to the framework.

After developing the application generator, it was tested on the implementa-

tion of a complex software. Target application area was selected as developing an

object-oriented discrete-event simulation package for flexible manufacturing systems.

Mentioned simulation package was completely implemented by using BUILD.NET.

In the next chapter, application generation methodology and patterns are ana-

lyzed in detail. Example code and application generators from different domains are

listed. The particular infrastructure used in the implementation of the proposed ap-

plication generator is explained. Then, in Chapter 3, the design and implementation

details of BUILD.NET are described. Language-neutral representation method is illus-

trated by examples in this chapter. Chapter 4 gives information about the simulation

package developed by using BUILD.NET. This chapter also introduces flexible manu-

facturing systems briefly to the reader. Finally, conclusions drawn from this study and

future research directions are explained in Chapter 5.
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2. APPLICATION GENERATION

2.1. Motivation

The first generation of languages used to program a computer, is called ma-

chine language or machine code. It is actually the only language a computer really

works with, a sequence of zeros and ones that the computer’s controls interpret as

instructions, electrically. The main advantage of using a first generation programming

language is that the code can run very fast and efficiently since it is directly executed

by the processor. Maintenance difficulty is a major problem for machine language, for

example, if new instructions are added to memory at some location, all the instruc-

tions that come after new instructions should be moved down to make room for new

instructions. Another problem is portability, transferring written code to a different

computer is not always possible due to changes in architecture and machine language.

The second generation of languages is called assembly language. Assembly lan-

guage turns the sequences of zeros and ones into mnemonics like add, load and save.

Unlike first generation programming languages, the code can be read and written fairly

easily by a human. Assembly language is always translated back into machine code by

programs called assemblers. The language is specific to and dependent on a particular

processor family and environment. Since it is the native language of a processor it has

significant speed advantages, but it requires more programming effort and is difficult

to use effectively for large applications due to following reasons:

• The programmer has to have a knowledge of the processor architecture and the

instruction set.

• Many instructions are required to achieve small tasks.

• Source programs tend to be large and difficult to follow.

• Programs are machine dependent, requiring complete rewrites if the hardware is

changed.
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The third generation of languages, is called high-level languages, which are closer

to natural languages and syntax (like words in a sentence). In order for the com-

puter to understand any high-level language, a compiler or an interpreter translates

the high-level language into either assembly language or machine code. All software

programming languages need to be eventually translated into machine code for a com-

puter to use the instructions they contain.

High-level programming languages like Ada, C (Kernighan and Ritchie, 1988) and

C++ (Stroustrup, 1997) are designed to overcome the difficulties in designing complex

software systems by using assembly language. It is inefficient to code and analyze such

large systems in conventional methods. Similar problems emerge now with high-level

programming languages as the applications are no longer small enough to perform

detailed analysis. For this reason, fourth generation of programming languages and

automatic application generators are proposed to deal with these problems and to

decrease development efforts.

Software engineers typically need Computer-Aided Software Design (CASE) tools

to speed up the development process. Sommerville (2000) defines CASE tools as tools

that are used to support software process activities such as requirements engineering,

design, program development and testing. CASE tools therefore include code editors,

compilers, interpreters, user interface generators, debuggers, code generators and so

on.

The fourth generation of languages, called application-oriented languages, which

take specifications that describe the problem or task to be done by the program. These

specifications are taken in the form of interactive dialog forms, graphical form or writ-

ten in a fourth generation language. Query languages and report writers are fourth

generation languages. Any computer language with English-like commands that does

not require traditional input-process-output logic falls into this category. Many fourth

generation language functions are built into graphical interfaces and activated by click-

ing and dragging.
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Application generators get specifications from the user and convert them into

executable applications. An application generator, operating much like a language

compiler, translates the high-level information into a low level implementation. To

change or modify the final program, it is sufficient to change the input specifications

and return them through the generator. Figure 2.1 and Figure 2.2 show the application

generation methodology and the basic processes that are needed to develop a program

using an application generator.

Specification
Construction

Requirement
Modeling

Application
Construction

Application
User

Requirements

Figure 2.1. Application generation methodology

Specification

Application
Generator

Source Code

Compiler

ExecutableInput Output

Figure 2.2. Application generation framework
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2.2. Application Generator Design

2.2.1. Requirements

The goal of code generation from high-level formal requirements models is to

increase productivity and quality by directly deriving production code from the formal

model. Unfortunately, having a fully formal and correct requirements model does not

guarantee the success of a development approach based on automated code generation;

the translation and the translation tool must also be correct. Whalen and Heimdahl

(1999) established a benchmark set of requirements for high integrity code generation:

• The source and target languages must have formally well defined syntax and

semantics.

• The translation between a specification expressed in a source language and a

program expressed in a target language must be formal and proven to maintain

the meaning of the specification.

• Rigorous arguments must be provided to validate the translator and/or the gen-

erated code.

• The implementation of the translator must be rigorously tested and treated as

high-assurance software.

• The generated code must be well structured, well documented, and easily trace-

able to the original specification.

2.2.2. Choosing the Right Dimension

Audsley et al. (2003) defined a trade-off relation between expressive power for

design and expressive power for implementation. Figure 2.3 highlights four common

types of CASE tools currently exist. Attempts to maximize both powers often give

a tool that is not only complex but also inflexible. It is unrealistic to expect high

expressive power on both axes from a single design tool. It is reasonable to split the

process into different subprocesses, namely designing and generating code. Figure 2.4

illustrates the optimum and most achievable path from high expressive power for design
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to high expressive power for implementation. Breaking the process up in this way

simplifies the problem and reduces it to two different small problems. An application

generator has two different tools: design tool and generator. Design tool is responsible

for collecting specifications from user and storing them in a fourth generation language

format. Generator can convert these specifications into source code or executable

application after reading the specifications by using the same language design tool

uses.

Design
Representations

Integrated
Development
Environments

Differentiated
Development

Tools
Software

Development

Expressive Power
for Implementation

Expressive Power
for Design

Figure 2.3. Trade off between expressive power for design and expressive power for

implementation (Audsley et al., 2003)

Expressive Power
for Implementation

Expressive Power
for Design Design Tool

Generator

Figure 2.4. An optimal tool design (Audsley et al., 2003)

2.2.3. Different Approaches for Code Generation

In this section, seven basic design patterns for code generation are listed and

explained (Voelter, 2003). Each pattern is not analyzed in detail here but a quick

preview and sample applications are presented to give necessary insights.
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These seven patterns can be grouped into two main categories: API (Application

Programming Interface) based approaches and template-based approaches. API-based

generators are the most fundamental pattern in API-based approaches and other pat-

terns can use it as a subcomponent. Templates with metamodel pattern is an extension

to templates with filtering pattern in template-based approaches. This categorization

is represented in Figure 2.5.

Code Attributes

Code Weaving
Inline Code
Generation

Frame Processing

API-Based

Templates with
Metamodel

Templates with
Filtering

can use

extension of

Figure 2.5. Code generation patterns categorization (Voelter, 2003)

2.2.3.1. Templates with Filtering. This is basically generating source code, simple

class skeletons, from UML (Unified Modeling Language, 2005) models. UML mod-

els are generally formed by using XMI (XML Metadata Interchange, 2005) standard.

XMI files are large files and contain a lot of information that are not useful in code

generation. Before generating source code, these parts should be filtered out and the

remaining part is used in generation process. This conversion can be made easily with

the use of XSLT (XML Stylesheet Language Transformation, 2005) and XQuery (XML

Query Language, 2005) but only class skeletons are obtained as final product.

Specification Target Code
Specification

Subset

Apply Filters Apply Templates

Figure 2.6. Templates with filtering code generation pattern

2.2.3.2. Templates with Metamodel. This pattern is suitable for domain specific ap-

plication generators. Architectural building blocks are defined and the application is

modeled by using these blocks. Blocks are mapped to implementation platform. The

user is only concerned about domain specific issues but not implementation details.
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UML models can be made more domain specific by using OCL (Object Constraint

Language, 2005). EJB (Enterprise JavaBeans, 2005) bean types could be examples of

this pattern. Activities, transitions and processes in a workflow system are modeled as

building blocks and code generation is performed on these building blocks.

Specification

Target Code
Metamodel

Instance

Metamodel

Parse

Apply Templates

Figure 2.7. Templates with metamodel code generation pattern

2.2.3.3. Frame Processing. This pattern uses frames which are functions that gener-

ate code as the result of their evaluation. These frames can accept primitive data

types or other frames as input parameters. Frame processing can be applied in two

different ways: script-based frame processors whose frames are parameterized by filling

slot values and injection-based frame processors whose frames are parameterized by

inserting code directly. This method is not as efficient as the first two methods due to

its imperative nature.

Code Frames Code Fragments Target Code

Parameterize Combine

Figure 2.8. Frame processing code generation pattern

2.2.3.4. API-Based Generators. API-based systems depend on the syntax of the tar-

get language. The processor provides an API in terms of the syntax and abstractions.

There are no templates or models to create code, instead a manually written pro-

gram creates the code. Microsoft.NET CodeDOM (Code Document Object Model)

(Microsoft Developer Network Library, 2004) technology is the most recent and ad-

vanced application of this pattern.
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Client Program Target CodeAPI

Call Functions Generate Code

Formulated in terms of target language

Figure 2.9. API-based code generation pattern

2.2.3.5. Inline Code Generation. Code is generated at compile time by means of a

precompiler. Precompilation translates the original program into target program, then

target program is compiled to generate final output. C++ template and preprocessing

mechanisms are examples of inline code generation.

Source Code
with Variants

Target Code

Preprocess until all variants are resolved

Figure 2.10. Inline code generation pattern

2.2.3.6. Code Attributes. Source code is composed not only of programming languages

statements. Additional information is supplied with another representation other than

the programming language. The code generator parses the code and uses this extra

information to generate additional source code. XML configuration files and attributes

in Microsoft.NET Framework are the most well-known applications of this approach.

Microsoft.NET Framework compilers check these attributes and generate necessary

source code and embed it to the written source code at compile time. Detailed infor-

mation about code attributes in Microsoft.NET Framework can be found in Microsoft

Developer Network Library (2004).

Source Code
+

Attributes
Target Code

Internal
Representation

Parse Generate

Figure 2.11. Code attributes code generation pattern

2.2.3.7. Code Weaving. Source code is written as different modules and connection

specifications between these modules are specified to system. A code-weaver will then
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join the different modules according to these specifications. The important step in this

process is defining relationships between modules clearly. The most famous member

of this pattern is AspectJ (AspectJ Project, 2005), a code-weaver for aspect-oriented

programming in Java. IBM has also developed another tool named Hyper/J (Hyper/J

Project, 2005) which allows composition and extraction of code artifacts for Java.

Module A Module CModule B

Connection

Artifact BArtifact A

Target Code

Weave

Figure 2.12. Code weaving code generation pattern

2.2.4. Existing Work

Automatic code and application generation has been extensively studied and a lot

of work has been reported. In this section, some selected examples and their application

areas are listed.

As an early attempt, Rockstrom and Saracco (1982) designed an application gen-

erator for telephony applications. They aimed to develop a representation form, called

Specification and Description Language which enables construction of a telephony ap-

plication by means of a graphical representation. They use different types of blocks

namely, state, input, task, output, decision and save, to describe the functionality of

the desired program. The user constructs the graph by using these blocks, connects

them appropriately and the generator converts this flow diagram into an application.

Application generation was applied initially also to embedded and information

systems. Lewis (1990) presents four different generators from different domains. The

first one, called as Tags, is from the real-time control systems domain. Microstep is a
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similar kind of tool for data-processing applications. Escort is another generator for

telephony applications. These three generators use flow diagrams as input method.

The last generator is Programming System Generator which generates programming

environments from formal-language definitions.

A different usage is reported from relational database systems domain (Guerrieri,

1994). Digital Equipment Corporation developed DECAdmire, an application genera-

tor that provides code generation for database management systems, and saved 80 to

95 percent from development time through reuse.

Batory et al. (1998) used a component-based approach in code generation. Their

code generator uses basic data structures to design complex data structures. Harada

and Mizuno (1999) tried to build a code generator that generates C++ code from

object-oriented design diagrams and decision tables in a domain-independent manner.

Class skeletons are derived from object-oriented design diagrams and method imple-

mentations are implemented by using decision rules given in a formal language. Park

and Kim (2001) proposed an XML specification format to store and describe source

code generator input to avoid different storage representations of distinct UML tools.

McLaren and Wicks (2001) also proposed an XML-based generation methodology and

showed that XSLT can be effectively applied to transformation from specifications to

source code.

Fertalj et al. (2002) proposed a template-based code generator for managing data-

bases. Complex statements are generated from the high level specifications. A similar

approach is also used to generate source code in different programming languages by

using same templates (Helman and Fertalj, 2004).

Another example of domain-specific application generators comes from scheduling

and optimization field. ICRON (Icron Technologies, 2005) is designed to perform

planning and scheduling activities of enterprises. It allows to construct and execute

scheduling algorithms by using its graphical modeling tool. Knowledgeable planners

can easily perform their tasks without programming.
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2.2.5. Advantages and Disadvantages of Using Code Generators

There are numerous advantages of using code generators in software development.

Some of the advantages that are reported in the literature are:

• Customizing and reusing general software design easily.

• Increasing productivity during development and maintenance.

• Easier to read, write and change the input.

• Reducing programming errors, letting the designer concentrate on specification

errors.

• Generating and maintaining application by non-programmers.

• Ease of prototyping and testing alternative specifications.

• Ease of standards implementation by using the generator to automatically create

a standard interface or output format. It is especially important for concurrency,

replication, security, availability and persistence issues.

There are also disadvantages of using code generators. Main disadvantages are:

• A single application generator can be used effectively only in a few situation.

• Application generators are difficult to build. They require carefully designed spec-

ification languages and user interfaces. In fact, building an application generator

requires knowledge and skill in building parsers and language translators.

• Recognizing where an application generator can be used is difficult and often

occurs late in life cycle, when there is less motivation to redo development.

2.3. Code Document Object Model

DOM (Document Object Model) is a specification provided by the W3C (World

Wide Web Consortium). The W3C DOM is a platform and language-neutral inter-

face that permits scripts to access and update the content, structure, and style of a

document (DOM Level 3 Core Specification, 2004). The W3C DOM includes a model

for how a standard set of objects representing HTML (Hyper-Text Markup Language)
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and XML (Extensible Markup Language) documents are combined, and an interface

for accessing and manipulating them.

Programmers can create documents, explore their structure, and insert, change,

or remove elements and content via DOM. Any data found in an HTML or XML docu-

ment can be accessed, changed, deleted, or added by using DOM. W3C aims to provide

a standard programming interface that can be used in a wide variety of environments

and applications while designing DOM. Basically, DOM is a programming API for

document management. It is based on an object structure that closely resembles the

structure of the documents it models. For instance, consider this table, taken from an

XHTML (Extensible Hyper-Text Markup Language) document:

<table>

<tbody>

<tr>

<td>Computer Engineering< /td>

<td>CMPE< /td>

< /tr>

<tr>

<td>Industrial Engineering< /td>

<td>IE< /td>

< /tr>

< /tbody>

< /table>

Figure 2.13. Example table for DOM

Figure 2.14 shows the graphical representation of the DOM of the above table.

Documents have a logical structure very much like a “forest” which can have more

than one tree. Documents are modeled using objects, and the model includes not only

the structure of a document, but also the behavior of a document and the objects

of which it is composed. In other words, the nodes in the figure do not represent a

data structure, they represent objects, which have functions and identity. As an object

model, the DOM identifies:
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• the interfaces and objects used to model a document

• the semantics of these interfaces and objects

• the relationships between these interfaces and objects

<table>

<tbody>

<td> <td> <td> <td>

<tr> <tr>

Computer
Engineering

CMPE
Industrial

Engineering
IE

Figure 2.14. Graphical representation of the DOM of the example table

CodeDOM, a concept similar to DOM, is a language-neutral programmatic rep-

resentation of source code. The basic intuition behind CodeDOM is to express the

source code as an object graph as in DOM and use this graph as the basis in code

generation. This object graph can be converted easily into any programming language

that supports CodeDOM. Formal description of CodeDOM grammar is specified by

using BNF (Backus-Naur Form) representation (CodeDOM Grammar, 2005). Figure

2.15 shows the hierarchical structure of basic CodeDOM elements.

Microsoft.NET Framework has two different namespaces to support CodeDOM.

The first one is System.CodeDOM and it consists of classes that are required to build

object graphs. The other one is System.CodeDOM.Compiler and it consists of classes

that are used to convert an object graph into source code or executable. Important

classes of these namespaces are explained in the following paragraphs. A detailed

discussion about System.CodeDOM and System.CodeDOM.Compiler namespaces can

be found in MSDN (Microsoft Developer Network Library, (2004)).
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CodeCompileUnit

CodeNamespace

CodeNamespaceImport

CodeTypeDeclaration

CodeMemberEvent

CodeMemberMethod

CodeMemberField

CodeMemberProperty

CodeStatement

CodeExpression

CodeDelegateDeclaration

Figure 2.15. CodeDOM hierarchy

CodeCompileUnit is at the highest level of CodeDOM hierarchy because it is the

complete object graph of a program and only it can be compiled by a CodeDOM com-

piler. CodeCompileUnit holds the global information about the represented program

such as referenced assemblies1 and project attributes.

Namespaces are used to provide fully qualified names to types and variables to

avoid potential naming ambiguities in large software projects. CodeNamespace holds

a namespace declaration and its imported namespaces, delegate declarations and type

declarations.

CodeNamespaceImport holds the name of an imported namespace. Importing

namespace can reference types in the imported namespace directly without using fully

qualified names.

1is primary unit of a .NET application and a self-describing collection of code, resources, and
metadata.
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CodeTypeDelegate is used to represent a delegate2 definition in source code. It

contains information about return type and parameters of underlying delegate.

CodeTypeDeclaration is used to define a class, structure, interface or enumeration

in source code. It also stores the members of the declared type such as fields, properties,

methods and events. Object-oriented concepts such as inheritance and polymorphism

can be applied to type declarations.

CodeMemberEvent, CodeMemberField, CodeMemberMethod and CodeMember-

Property are used to add events, fields, methods and properties, respectively, to a

given type. These members defines static and dynamic structure of a type. CodeMem-

berMethod and CodeMemberProperty require code statements to be meaningful.

CodeStatement is the base class for all different types of code statements. Code-

AssignStatement, CodeConditionStatement and CodeGotoStatement are some types of

code statements that are supported in CodeDOM. CodeSnippetStatement is also intro-

duced to CodeDOM to represent statements not presently supported. This enables the

user to enter regular source code into anywhere of a CodeDOM object graph.

CodeExpression is the base class for all different types of expressions that are

used in building complex statements. CodeCastExpression, CodeObjectCreateExpres-

sion and CodePrimitiveExpression are some types of code expressions that are sup-

ported in CodeDOM. CodeSnippetExpression is also added due to same reasoning in

CodeSnippetStatement.

CodeDOM also has other objects to support creating, compiling and running

programs. Above mentioned objects are responsible for modeling the program as an

object graph but there must be some other mechanism to convert them to source code

and compile the obtained source code.

2is a reference type that can be used to encapsulate a method with a specific signature. Delegates
are roughly similar to function pointers in C++; however, delegates are type-safe and secure.
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CodeDomProvider can be used to create and retrieve instances of code genera-

tors and code compilers. Code generators can be used to generate source code for a

particular language, and code compilers can be used to compile the source code into

assemblies. CodeGenerator is capable of rendering source code in a specific language

according to the structure of a CodeDOM object graph. CodeCompiler is like a regular

compiler but it compiles a CodeDOM object graph not a text file. It gives compilation

results such as compilation errors and warnings to provide information.
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3. BUILD.NET: THE PROPOSED APPLICATION

GENERATOR

In this study, a graphical application generation framework, called BUILD.NET,

is designed and implemented. The designed application generator is capable of convert-

ing formal requirements that are collected via dialog forms and diagrams into source

code (namely C++, C], J] and VB.NET) and compiling the generated source code.

This is achieved by the help of CodeDOM libraries of Microsoft.NET Framework.

BUILD.NET represents source code as an object graph and stores it in an XML file.

Figure 3.1 shows the basic elements of BUILD.NET framework.

Figure 3.1. BUILD.NET framework

3.1. Requirements

Commercial application and code generators are designed to achieve domain-

specific tasks such as database management, report generation and user interface gen-

eration. They help users to develop programs but are not capable of generating a pro-

gram completely from scratch. A different approach is constructing a general-purpose

application generator which does not specialize on a task.

The first concern should be representing a programming language completely

in an application generator to develop any kind of application. This is possible by

modeling all different statement (assignments, loops, branches, etc.) and expression

types (casting expressions, method invocation, primitive expressions, etc.) that can be

found in programming languages. The user can form any statement easily by using

what the application generator provides.
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The second concern is the input collection mechanism: the application generator

should have necessary tools to collect input from the user. This can be achieved in

different ways, but flow diagram representation is a good candidate for this task due to

its easy interpretability. The user can be a non-programmer and the application gen-

erator should not expect a deep programming language knowledge from the user. The

application generator must provide a high level abstraction of the target programming

language.

Instead of concentrating on a domain-specific task, a general approach is selected

and an application generator for object-oriented software is proposed. Proposed appli-

cation generator will enable users to develop any kind of application without considering

its domain properties.

3.2. Target Users and Application Areas

Application generators are designed for helping software engineers in their tasks

but BUILD.NET has a different user profile. It is designed for non-programmers to

develop applications without using any programming language. They give their algo-

rithms with a high level abstract representation to the application generator and the

application generator will generate source code or executable for them. BUILD.NET

can also be used as a learning tool to teach programming languages. Users generate

their algorithms in the form of flow diagrams and see the corresponding source code.

Extensibility is a major goal for scientific software packages such as simulation

and optimization programs. This is achieved by providing APIs. Users can write

their programs by using API function calls. This method requires programming lan-

guage knowledge and user effort to learn API functions. Instead of providing APIs,

a software package can be extended by using BUILD.NET and additional algorithms

implemented by the user can be integrated into a commercial software product. This

extension method helps non-programmers to develop their algorithms in a high level

representation and combine them with already implemented algorithms by the vendor.



21

Another application area is updating released software packages. Vendors supply

setup programs for customers to update software packages. This is generally achieved

by DLL (Dynamically Linked Library) updates and this can cause some problems

such version conflicts. Update progress can be performed by replacing an XML file if

BUILD.NET is used to develop the software. Source code can be secured by utilizing

encryption on XML files.

3.3. Design Issues

CodeDOM constitutes the infrastructure of designed application generator. As

mentioned in Section 2.3, CodeDOM has the necessary classes to build an application

generator. BUILD.NET needs additional classes to fill the gap between requirements

for a graphical application generator and what the CodeDOM provides.

BUILD.NET can accept two forms of input from the user: dialog-based and

diagram-based. Dialog-based input is used to describe the structure definition of the

program such as namespace declarations, class declarations and method declarations.

Diagram-based input is used to enable the user to enter operation definitions of declared

properties and methods.

BUILD.NET is based on a combination of four different code generation patterns

that are explained in Section 2.2.3. Frame Processing pattern is utilized in collection of

structure definitions. The users should fill necessary slot values to define namespaces,

delegates, classes, events, fields, properties and methods. Implementation details of

methods and properties are collected via Templates with Metamodel pattern. Building

blocks for basic programming language statements are defined and each block is re-

sponsible of creating its corresponding source code. BUILD.NET saves the project file

as an XML file and this file contains information about implemented algorithms and

the graphical layout of algorithm blocks. Necessary parts of the project file is filtered

in code generation process by using Templates with Filtering pattern. Code genera-

tion process is achieved by using API-Based Generators pattern. Building blocks of

algorithms are converted into source code by using API function calls provided by
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Microsoft.NET Framework. Source code in different programming languages that are

not supported by Microsoft.NET Framework can also be generated after implementing

required conversion functions for these programming languages.

3.3.1. Structure Definition Classes

Structure definitions in Microsoft.NET Framework include namespace declara-

tions, delegate declarations, class declarations, event declarations, field declarations,

property declarations and method declarations. Structure definition classes are needed

to model these declarations in BUILD.NET. Table 3.1 shows the structure definition

classes and their roles. Figure 3.2 demonstrates the relationships between structure

definition classes.

Table 3.1. Structure definition classes

Class Name Explanation

ModelDefinition Stores project related information and namespaces

NamespaceDefinition Stores namespace information such as imported

namespaces, delegate definitions and class definitions

DelegateDefinition Stores delegate information such as return type and

parameter definitions

ClassDefinition Stores class information such as member definitions

EventDefinition Stores event information such as type and name

FieldDefinition Stores field information such as type and access mode

PropertyDefinition Stores property information such as return type

MethodDefinition Stores method information such as return type and

parameter definitions

ParameterDefinition Stores parameter information such as type and direction
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3.3.1.1. ModelDefinition Class. ModelDefinition is the main class that stores the entire

project and has the necessary methods to provide CodeDOM functionality. It manages

the namespaces that form the underlying program in a list and UML diagrams that

are generated by the user. Source code generation and compilation tasks are achieved

by ModelDefinition.

3.3.1.2. NamespaceDefinition Class. NamespaceDefinition class represents namespace

declarations that are defined in the project. It stores delegates and types that reside

in namespace which it represents and names of imported namespaces. NamespaceDe-

finition class is converted into a CodeNamespace object to properly join to a Code-

CompileUnit while source code generation or compilation. An example namespace

declaration and corresponding XML document that is generated by BUILD.NET are

shown in Figure 3.3 and Figure 3.4, respectively.

namespace FMS.NET {
using System;

using System.Collections;

using System.IO;

using System.Xml.Serialization;

}

Figure 3.3. C] code of a namespace declaration

3.3.1.3. DelegateDefinition Class. DelegateDefinition class is responsible for storing

delegate related information such as name, return type, access modifiers and parame-

ters. A CodeTypeDelegate object is created from delegate information to use it in a

CodeDOM object graph. An example delegate declaration and corresponding XML

document that is created by BUILD.NET are shown in Figure 3.5 and Figure 3.6,

respectively.

A delegate can reference a method only if the signature of the method exactly

matches the signature specified by the delegate type. When a delegate references an
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<Namespace>

<ID>52de3654-27ef-4ff5-916a-d6795d42a0e6< /ID>;

<Name>FMS.NET< /Name>

<Comment/ >

<Imports>

<Import>System< /Import>

<Import>System.Collections< /Import>

<Import>System.IO< /Import>

<Import>System.XML.Serialization< /Import>

<Imports/ >

<Delegates/ >

<Classes/ >

< /Namespace>

Figure 3.4. XML document of a namespace declaration

public delegate void MatchingDelegate();

Figure 3.5. C] code of a delegate declaration

<Delegate>

<ID>d06f73c6-91b7-48b8-a3ac-e390e7b55a9f< /ID>;

<Comment/ >

<Attributes/ >

<Access>public< /Access>

<Type>System.Void< /Type>

<Name>MatchingDelegate< /Name>

<Parameters/ >

< /Delegate>

Figure 3.6. XML document of a delegate declaration
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instance method, the delegate stores a reference to the method’s entry point and a

reference to an object, called the target, which is the class instance that the method

is invoked on. The target of an instance method cannot be a null reference. When

a delegate references a static method, the delegate stores a reference to the method’s

entry point. The target of a static method is a null reference.

3.3.1.4. ClassDefinition Class. ClassDefinition class is responsible for storing class re-

lated information such as name, access modifiers and managing its members. Events,

fields, properties and methods are included in corresponding lists. Different type de-

finitions, classes, interfaces, structures and enumerations can be declared by using

ClassDefinition class. A CodeTypeDeclaration object is created from delegate infor-

mation to use it in a CodeDOM object graph. An example class declaration and

corresponding XML document that is generated by BUILD.NET are shown in Figure

3.7 and Figure 3.8, respectively.

public class Agv : MovableObject {
}

Figure 3.7. C] code of a class declaration

3.3.1.5. EventDefinition Class. EventDefinition class represents events that are de-

clared in a class. It simply stores the name and type of the event. Event information is

converted into a CodeMemberEvent object to use it in a CodeCompileUnit. An example

event declaration and corresponding XML document that is created by BUILD.NET

are shown in Figure 3.9 and Figure 3.10, respectively.

An event is a way for a class to provide notifications to clients of that class when

some interesting thing happens to an object. The most familiar use for events is in

graphical user interfaces; typically, the classes that represent controls in the interface

have events that are notified when the user does something to the control. Events

provide a generally useful way for objects to signal state changes that may be useful

to clients of that object.
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<Class>

<ID>b30112d7-5f52-4922-bd1c-5e45a68f6703< /ID>;

<Comment/ >

<Attributes/ >

<Access>public< /Access>

<Name>Agv< /Name>

<Modifier/ >

<Base>MovableObject< /Base>

<IsClass>true< /IsClass>

<IsEnum>false< /IsEnum>

<IsInterface>false< /IsInterface>

<IsStruct>false< /IsStruct>

<Events/ >

<Fields/ >

<Methods/ >

<Properties/ >

< /Class>

Figure 3.8. XML document of a class declaration

private event System.EventHandler TestEvent;

Figure 3.9. C] code of an event declaration

<Event>

<ID>920eb953-68bd-4f45-ac4a-4722784148c0< /ID>;

<Comment/ >

<Attributes/ >

<Access>private< /Access>

<Type>System.EventHandler< /Type>

<Name>TestEvent< /Name>

< /Event>

Figure 3.10. XML document of an event declaration
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Events are declared using delegates. An event is a way for a class to allow clients

to give it delegates to methods that should be called when the event occurs. When the

event occurs, the delegate(s) given to it by its clients are invoked.

3.3.1.6. FieldDefinition Class. FieldDefinition class is responsible for storing informa-

tion that is required to declare a field properly. This includes field name, field access

modifiers, field type and initialization value if it has. FieldDefinition class is converted

into a CodeMemberField object to properly join to a CodeCompileUnit while source

code generation or compilation. An example field declaration and corresponding XML

document that is generated by BUILD.NET are shown in Figure 3.11 and Figure 3.12,

respectively.

private const int capacity;

Figure 3.11. C] code of a field declaration

<Field>

<ID>39f6bc7e-f301-4e62-9596-c499f2ba4455< /ID>;

<Comment/ >

<Attributes/ >

<Access>private< /Access>

<Type>System.Int32< /Type>

<Name>capacity< /Name>

<Modifier>const< /Modifier>

<Value/ >

< /Field>

Figure 3.12. XML document of a field declaration

3.3.1.7. PropertyDefinition Class. PropertyDefinition class is used to model property

declarations in classes. It has property name, return type, access modifiers and get/set

method implementations if they are defined. A CodeMemberProperty object is created

from property information that are contained in PropertyDefinition class. An example
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property declaration and corresponding XML document that is created by BUILD.NET

are shown in Figure 3.13 and Figure 3.14, respectively.

public int Speed {
get { . . . }
set { . . . }

}

Figure 3.13. C] code of a property declaration

<Property>

<ID>45c2afb3-a405-47a2-8c39-2f497c008d62< /ID>;

<Comment/ >

<Attributes/ >

<Access>public< /Access>

<Type>System.Int32< /Type>

<Name>Speed< /Name>

<Accessor>get-set< /Accessor>

<Modifier/ >

<GetMethod/ >

<SetMethod/ >

< /Property>

Figure 3.14. XML document of a property declaration

A property is a member that provides access to a characteristic of an object or

a class. Properties do not denote storage locations unlike fields. Instead, properties

have accessors that specify the statements to be executed when their values are read or

written. The get accessor is called when the property’s value is read; the set accessor

is called when the property’s value is written.

3.3.1.8. MethodDefinition Class. MethodDefinition class represents method declara-

tions and statements that determine execution context. It has method name, return

type, access modifiers, parameters and statements. MethodDefinition class is converted

into a CodeMemberMethod object and CodeStatement objects that correspond to state-
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ments in that method definition are added to CodeMemberMethod. An example method

declaration and corresponding XML document that is generated by BUILD.NET are

shown in Figure 3.15 and Figure 3.16, respectively.

public void ReadLayoutFromXML(in string layoutPath);

Figure 3.15. C] code of a method declaration

<Method>

<ID>824d2392-27a4-4682-a23e-d1565fa7314d< /ID>;

<Comment/ >

<Attributes/ >

<Access>public< /Access>

<Type>System.Void< /Type>

<Name>ReadLayoutFromXML< /Name>

<Modifier/ >

<Parameters>

<Parameter>

<ID>367e5258-bae9-4112-8c09-748d5a3e3871< /ID>;

<Modifier>in< /Modifier>;

<Type>System.String< /Type>;

<Name>layoutPath< /Name>;

< /Parameter>

< /Parameters>

<Statements/ >

< /Method>

Figure 3.16. XML document of a method declaration

3.3.1.9. ParameterDefinition Class. ParameterDefinition class is used to create the

parameters of DelegateDefinition and MethodDefinition classes. It includes parameter

name, parameter type and parameter direction. CodeParameterDeclarationExpression

object is created and added to corresponding CodeTypeDelegate or CodeMemberMethod

object when necessary.
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3.3.2. Operation Definition Classes

The program becomes meaningful with the way it implements its operation defini-

tions. Methods and properties consists of statements to perform desired actions. These

include variable declarations statements, assignment statements, conditional branches,

loops, etc. BUILD.NET models method and property implementations as graphs which

are composed of statement nodes and links between nodes represent execution flow.

Operation definition classes are introduced to BUILD.NET to construct this kind of

execution graphs. Table 3.2 shows the operation definition classes and their roles.

Figure 3.17 demonstrates the relationships between operation definition classes.

Table 3.2. Operation definition classes

Class Name Explanation

Statement Stores statement information such as expressions

StatementLinkPoint Connection points of statement nodes

StatementLink Connects statements, defines execution flow

Expression Stores expression information such as variable names

3.3.2.1. Statement Class. Statement class is the basic building block for operation

definitions. As mentioned, method and property implementations are modeled by

graphs and Statement class represents nodes in the graphs. Different classes are derived

for each type of programming language statements. Each statement class is responsible

for creating corresponding CodeDOM object that represents itself. Table 3.3 shows

statement classes that are defined in BUILD.NET and sample programming language

statements for each statement type. UML diagrams of statement classes can be found

in Appendix A.

3.3.2.2. StatementLinkPoint Class. In the execution flow, each node has two main

connection points which are connected to predecessor node and successor node. Some

statements like conditional branches and loops need additional connection points. Con-
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Table 3.3. Operation definition classes derived from Statement class and sample

programming language statements

Class Name Sample Statements

AssignStatement counter = 10;

counter = counter + 1;

AttachEventStatement this.TestEvent += new System.EventHandler(this.

TestMethod);

CommentStatement // This method calculates travel time

ConditionStatement if(test == true){
}
else{
}

ExpressionStatement Console.WriteLine(“Program terminated”);

GotoStatement goto testLabel;

IterationStatement for(int i = 0; i < count; i++) {
}

LabeledStatement testLabel:

MethodReturnStatement return result;

return;

RemoveEventStatement this.TestEvent -= new System.EventHandler(this.

TestMethod);

SnippetStatement Any statement

ThrowExceptionStatement throw new System.Exception();

TryCatchFinallyStatement try{
}
catch(System.Exception ex){
}
finally{
}

VariableDeclarationStatement int counter;

Point point = new Point(50, 50);
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Figure 3.17. UML diagram of operation definition classes

ditional branches need two additional connections: one for true branch and one for

false branch. StatementLinkPoint class models different connection types for nodes.

3.3.2.3. StatementLink Class. StatementLink class is the connection between two sta-

tement nodes. StatementLinkPoint and StatementLink classes do not produce any

CodeDOM objects but they determine the structure of object graph. A node with zero

in-degree is selected as the starting statement of method or property. All nodes are

traversed starting from this node and object graph is constructed properly.

3.3.2.4. Expression Class. A programming language statement is composed of one or

more expressions. Nodes in BUILD.NET represent statements, so nodes should be

decomposed into smaller elements. Expression class models the logical partitions of

statements such as array indexing, object creation and casting. Same reasoning, applied

to statements, is also applied to expressions and different expression classes are derived

from Expression class. Each expression class is responsible for creating corresponding

CodeDOM object that represents itself. Table 3.4 shows expression classes that are
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defined in BUILD.NET and their tasks. UML diagrams of expression classes can be

found in Appendix A.

Table 3.4. Operation definition classes derived from Expression class and their tasks

Class Name Task

ArgumentReferenceExpression Referencing a parameter of a method

ArrayCreateExpression Creating an array

ArrayIndexerExpression Referencing an index of an array

BaseReferenceExpression Referencing the base class

BinaryOperatorExpression Connecting expressions with an operator

CastExpression Casting an expression to target type

DelegateCreateExpression Creating a delegate

DelegateInvokeExpression Invoking a delegate

DirectionExpression Representing direction of a parameter

EventReferenceExpression Referencing an event

FieldReferenceExpression Referencing a field

IndexerExpression Referencing an index of a indexer property

MethodInvokeExpression Invoking a method

MethodReferenceExpression Referencing a method

ObjectCreateExpression Creating a new instance of a type

ParameterDeclarationExpression Declaring a parameter for a method

PrimitiveExpression Representing a primitive data type value

PropertyReferenceExpression Referencing a property

PropertySetValueReferenceExpression Representing the value argument

SnippetExpression Representing a literal expression

ThisReferenceExpression Referencing current local class instance

TypeOfExpression Returning type of an object

TypeReferenceExpression Referencing a type

VariableReferenceExpression Referencing a local variable
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3.4. Sample Source Code to Object Graph Conversions

This section provides different examples which show conversion process between

source code and object graph. Figure 3.18 and Figure 3.19 show two sample statements

and how BUILD.NET decomposes them into expressions. Figure 3.20 shows a complete

source code of a program and Figure 3.21 illustrates the object graph that corresponds

to this source code.

counter
VariableReferenceExpression

counter + 1
BinaryOperatorExpression

Operator :: Add

counter = counter + 1;
AssignStatement

counter
VariableReferenceExpression

1
PrimitiveExpression

Figure 3.18. Sample statement decomposition for an assignment statement

new Point(60, 80)
ObjectCreateExpression

Type :: Point

Dim startPoint as Point = new Point(60, 80)
VariableDeclarationStatement

Type :: Point

Name :: startPoint

60
PrimitiveExpression

80
PrimitiveExpression

Figure 3.19. Sample statement decomposition for a variable declaration statement
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namespace Math{
public class Addition{

private int a;

private int b;

public Addition(int aIn, int bIn){
this.a = aIn;

this.b = bIn;

}
public int Add(){

return a+b;

}
}

}

Figure 3.20. Sample source code for object graph conversion

public class Addition
ClassDefinition

namespace Math
NamespaceDefinition

private int a;
FieldDefinition

private int b;
FieldDefinition

public Addition(...)
MethodDefinition

public Add()
MethodDefinition

return a+b;
ReturnStatement

this.b = bIn;
AssignStatement

this.a = aIn;
AssignStatement

Figure 3.21. Object graph corresponds to sample source code
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3.5. Implementation Details

Designed application generator is implemented in C] by using Microsoft.NET

Framework. BUILD.NET is decomposed into two main parts: logical layer and graph-

ical user interface (GUI) layer. Logical layer performs the following tasks:

• Saving and loading project files

• Managing objects

• Managing relationships between objects

• Generating source code from object graph

• Generating executable from object graph

• Generating UML class diagrams from class definitions

• Generating documentation from source code

GUI layer performs the following tasks:

• Collecting information from user

• Displaying operation definition diagrams of methods and properties

• Displaying class diagrams of class definitions

• Displaying compilation errors to user

3.5.1. Logical Layer

Logical layer of BUILD.NET is implemented as a ClassLibrary3 in Microsoft

Visual Studio.NET. This layer is an independent assembly so that it can be also used

in an another program easily. Logical layer consists of classes that are described in

Section 3.3 and additional classes derived from Statement and Expression classes to

model CodeDOM objects appropriately.

Logical layer classes are implemented such that they can be serialized and de-

serialized. Serialization is the process by which objects or values are converted into

3is used to create reusable classes and components that can be shared with other projects.



38

a format that can be persisted or transported. Serialization can also be used to save

the state of objects from memory to a storage medium such as files or to transport

objects and values across the network. To read the state of the objects or values that

are persisted or transported using serialization, deserialization, complementary to seri-

alization, is used. The Microsoft.NET Framework supports two types of serialization,

binary serialization and XML serialization. By using serialization and deserialization,

BUILD.NET can easily save objects to an XML file or load objects from an XML file.

One other task, performed by logical layer, is managing objects in a project

and relate these objects properly. Delegates and classes are contained by namespaces,

members (events, fields, methods and properties) are contained by classes , statements

are contained by properties or methods, statements are connected by statement links

that determine the execution flow and finally expressions are contained by statements.

Code generation functionality is distributed to objects. Each object has a method

named GenerateCodeDOM and creates the corresponding CodeDOM object by itself.

The object at the root starts the code generation process and this request is sent

through the hierarchy to lower levels. Each object generates CodeDOM object as a re-

sponse to this request. Formed CodeDOM objects percolate up through the hierarchy

and at the topmost level of hierarchy, collection of these object becomes a CodeCom-

pileUnit. ModelDefinition class has functionality to convert this CodeCompileUnit to

source code.

Executable generation functionality is achieved by a similar approach. Source

code is generated by using same procedure from object graph and compiled. If com-

pilation fails, the compilation errors and warnings are passed to GUI layer to report

them to the user.

Logical layer has the class information of project and by using these information,

it can create UML class diagrams and passes these diagrams to GUI layer to show

them to the user. Logical layer also generates automatic documentation for the written

program from source code and comments that are signed as documentation notes.
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3.5.2. GUI Layer

GUI layer enables the user to interact with the logical layer objects and con-

sists of wizard forms and some GDI (Graphics Device Interface) related functions that

help to draw statement nodes, expression nodes and UML class diagrams. Adding,

removing and modifying objects are performed through GUI layer. Namespaces, dele-

gates, classes, fields, properties and methods are created and edited by using wizards.

Screenshots of these wizards can be found in Appendix B.

Statement nodes and expression nodes are also managed via wizards. These

wizards contain the necessary information to build a statement or an expression from

scratch. Input validation is also performed at the time statements and expressions are

created to prevent the model having an invalid state. For example, identifier names

are checked by using regular expressions to avoid possible syntax errors in generated

source code.

GUI layer has another important component, named MethodExplorer, which helps

to construct operation definitions of methods and properties. MethodExplorer can

contain statement nodes, statement links and statement link points. The user can

describe operational definition of any method by dragging and dropping statement

nodes and connecting statement nodes via statement links. MethodExplorer allows

only valid execution flows to be entered to the system. An invalid connection between

two statement nodes can not be inserted. An example BUILD.NET graph which

has four different types of statement nodes and connections between them can be

seen in Figure 3.22. Each statement node has at least two connection points, one

for incoming connection and one for outgoing connection, and some statement nodes

such as ConditionStatement in Figure 3.22 has additional connection points. Active

connection points become black to differentiate them from inactive connection points.
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Figure 3.22. Method explorer
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3.5.3. Experimentation

After developing a prototype of GUI layer, the program was tested on five differ-

ent subjects who are not very familiar with programming languages and their opinions

about input collection and code generation mechanisms were collected. The subjects

were asked to write small programs that implement graph algorithms such as topolog-

ical sort and shortest path problems.

The main concern of the subjects was seeing generated code right away after

adding a statement or an expression. MethodExplorer was modified so that corre-

sponding code statements for selected language is displayed on the screen without

generating the whole source code.

Another concern of two of the subjects was transferring some part of the project

into another project. For example, only a class definition is wanted to be transferred

to another project. GUI layer was modified to save a specific structure definition in

an XML file and load a structure definition from an XML file to achieve this transfer

mechanism.

One of the subjects also proposed a different way to differentiate statements that

cause errors after compilation process. After the user selects an error from the list,

the statement node that cause this selected error is animated for helping the user to

distinguish the cause of the error.

Source code automatically generated by BUILD.NET was compared with manu-

ally written source code. There are small differences between them:

• Generated source code has some extra parentheses to guarantee operator prece-

dence.

• Generated source code is well-structured in terms of standard coding style.

• Generated source could not have some programming language constructs such as

while and switch statements due to lack of CodeDOM support.
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4. AN APPLICATION: A NEW FMS SIMULATOR

(FMS.NET)

Flexible manufacturing systems (FMS) are integrated systems that can help com-

panies achieve the goal of increasing profitability through the increase of productivity.

An FMS is composed of an automated material handling system, CNC (Computer

Numerical Control) machines and a computer-controlled network that coordinates the

processing stations and the material handling system. FMS aim to produce a medium

variety of product types at medium volumes. Different product types can be produced

simultaneously in an FMS. The flexibility of an FMS, is primarily due to its capability

of performing different operations at the same processing station, machine flexibility.

Another source of the flexibility, routing flexibility, is the possibility of producing the

same product by alternative sequences of operations and performing a given operation

of a product on alternative machines. Although FMS can provide many benefits, its im-

plementation requires a high investment capital. Extensive analysis and careful design

must be conducted before implementation to avoid costly mistakes (Li et al., 1998).

Also continuous monitoring and intervention is required to operate the existing FMS

efficiently to respond changing production and market conditions.

4.1. Flexible Manufacturing Systems Simulation

Mathematical models are not adequate to study the dynamic nature of FMS op-

eration and to capture the many different situations arising from FMS operation. In

fact, mathematical models can not capture the congestion effect due to changing con-

ditions in material handling availability and ignore the effects of scheduling and control

policies. Conducting simulation studies is more reasonable to capture the stochastic na-

ture of an FMS. Computer simulation is a powerful tool for FMS planning, design and

operation. There is a general consensus in the literature that discrete-event simulation

is the most popular and appropriate approach for modeling FMS (Borenstein, 2000).
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There is a large number of commercially available simulators to evaluate the

design and operational decisions of FMS. There are two different approaches for de-

signing FMS simulators: using general programming languages (C++, Fortran) and

using simulation languages such as SIMAN (Arena Simulation, 2005) and SIMSCRIPT

(SIMSCRIPT II.5, 2005). In addition, commercial simulation packages such as ARENA

(Arena Simulation, 2005) and ProModel (ProModel Simulation, 2005) are specifically

designed for modeling manufacturing systems.

These simulation languages or packages are suitable for developing FMS models

small to moderate size. They have default entities to model FMS and perform statis-

tical analysis. However, major changes in the system model cannot easily be handled.

Also the user should rely on vendor description of the algorithms and procedures imple-

mented in the package. Implementing new decision algorithms and integrating them

with the simulation package requires vendor support through APIs and user effort.

These APIs provided by the vendor may not be sufficient to implement any decision

algorithm due to initial system design of the vendor.

First approach, using general programming languages, is preferred to gain more

flexibility in designed simulator. In this approach, any future extension to initial design

can be performed easily by directly changing source code. Increasing system flexibil-

ity causes system complexity to increase. Each entity in manufacturing environment

should be modeled in detail as opposed to default entities of general simulation pack-

ages.

Doğan (2001) developed an object-oriented discrete-event FMS simulator, called

FLEXIM, for BUFAIM (Boğaziçi University Flexible Automation and Intelligent Man-

ufacturing Laboratory). FLEXIM is used in the research projects of BUFAIM and

several undergraduate course projects. FLEXIM has been modified and extended to

add different decision types, algorithms and system entities by graduate and under-

graduate students throughout the years. During this process, it has been observed that

achieving continuous improvement, maintaining, documenting and teaching an FMS

simulator is a very challenging task and can best be achieved by using an application
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generator. An application generator will allow students to concentrate on the system

design instead of implementation details. Thus, the development of the system by dif-

ferent teams becomes easier. For this reason, designing an FMS simulator is selected

as target application area for the proposed application generator.

4.1.1. Problem Definition

The FMS model can be decomposed into three subcomponents: static model

data, dynamic model data and operational decisions.

4.1.1.1. Static Model Data. The static model data describe the operational environ-

ment of FMS and consists of the following entities:

• Material Handling System

– Automated Guided Vehicle (AGV)

– Lane

– Node

• Machining System

– Workcenter

– Queue

– Operation

AGV is a battery powered driverless cart with programming capabilities for path

selection and positioning. The following properties of the vehicles are important for

modeling the system properly:

• Capacity

• Speed

• Parking position

• Breakdown and repair distribution

• Load/unload transfer time
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Vehicles in the system travel on an actual or virtual flow path. Flow path layout

is composed of lanes and nodes. Nodes define starting and ending positions of lanes and

transfer positions. Nodes are classified as path nodes, park nodes and transfer nodes.

Path nodes are the intersection points of lanes. Park nodes are the parking positions of

empty AGVs. Transfer nodes are the points where transfers between material handling

system and machining system - pickups and deliveries - occur. Lanes and nodes are

used in zone control mechanisms to prevent collisions. A lane or a node can be used

by at most one vehicle at a time. Figure 4.1 shows a sample flow path layout.

Figure 4.1. Sample flow path layout

Workcenters are machining centers with identical processors. Workcenters can be

grouped into four categories: receival, shipment, processing and central buffer. Receival

and shipment workcenters are locations where orders enter to and leave from the sys-

tem, respectively. System can have more than one receival and shipment workcenters.

Processing workcenters perform operations on orders. Central buffer is a temporary

storage for loads on vehicles if these loads can not be transferred to their destinations

because of blockage. The following properties of the workcenters are parameters:

• Number of processors

• Workcenter type

• Input and output queue
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• Breakdown and repair distributions of processors

• Transfer time from/to queue

Queues are the storage and transfer positions of workcenters. Material handling

devices deliver/pickup loads to/from queues. These locations are also used as storage

location for finished and waiting loads.

Operations are the basic processes performed in workcenters. An operation can

be performed in different workcenters with different processing times. Processing time

of an operation is the same for all processors of a workcenter.

4.1.1.2. Dynamic Model Data. Dynamic model data describe product mix that is pro-

duced in an FMS and consists of job definitions. Job definitions give information about

each job type that the FMS is capable of producing. Following parameters form a job

definition:

• Alternative operation routes

• Interarrival time distribution

• Batch size distribution

Jobs can be produced by using different operation sequences. Directed graphs can

be used to represent alternative operation routes of a job type. Each directed path from

receival operation to shipment operation in the directed graph corresponds to a unique

operation route for the job type. Figure 4.2 shows a directed graph representation of

alternative operation routes of a job type and the linearized routes from this graph.

Interarrival time distribution can be specified by using standard statistical dis-

tributions or order arrivals taken as input data from high level planning agents.

4.1.1.3. Operational Decisions. Operational decisions are rules that define how the

system reacts to events. There are seven basic operational decision types:
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OpR Op1

Op2

Op3

Op4

Op5

Op6

OpS

OpR Op1 Op2 Op4 OpS

OpR Op1 Op3 Op5 OpS

OpR Op1 Op3 Op6 OpS

Figure 4.2. Alternative operation routes of a job type

• Blockage Solving

• Matching

• Dispatching

• Routing

• Traffic Management

• Operation Decision

• Process Order

Blockage Solving is used to avoid blockages in the system. If an AGV arrives to

its destination to deliver a unitload and the input queue of the workcenter is full, AGV

becomes blocked. If no action is taken, this may result in system deadlock depending

on the layout.

Matching is the process of pairing AGVs and unitloads that are required to be

transported. A unitload is transferred to output queue when its operation is completed

in current workcenter and this unitload should be transferred to another workcenter.

This unitload is assigned to one of the AGVs which have empty position. If there is
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no eligible AGV, this unitload is not assigned to any AGV and waits for an AGV to

become eligible.

Dispatching is the process of deciding the destination of an AGV. After an AGV

arrives to its destination and completes delivery or pick-up tasks, its new destination

should be provided. This is also required when a unitload is assigned to an AGV.

Routing is the process of selecting a route between an AGV’s current location

and its destination.

Traffic Management is the process of selecting an AGV from jammed AGVs when

a node becomes free. AGVs may become jammed if they want to enter an occupied

location. If more than one AGVs are jammed and they want to enter the same node, a

selection must be made to decide which AGV will move into the node when the node

becomes empty.

Operation Decision is the process of deciding next operation for a unitload. When

an operation is completed, next operation for this unitload is selected by using alternate

operation routes of the unitload.

Process Order is the process of deciding which unitload is processed first. When

a processor becomes empty, one of the unitloads that are in input queue and wait for

the processor is selected and transferred to processor.

4.2. Design of FMS.NET

FMS.NET needs three different information, namely layout definition, job mix

and simulation parameters, about FMS to simulate it properly. Layout definition

consists of properties of material handling and machining systems. Job mix specifies

job definitions that are produced in this FMS. Simulation parameters are composed

of selected decision algorithm names and run parameters that will be used in a given

simulation experiment such as end time, seed and warmup time. Figure 4.3 shows
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the basic input and output entities in the system and illustrates the operation of the

simulation system.

Figure 4.3. FMS.NET framework

Designed FMS simulator should have at least three basic layers to model FMS ad-

equately as described in problem definition. FMS.NET layers are designed as separate

namespaces and each namespace is analyzed in detail.

Table 4.1. FMS.NET namepaces

Namespace Name Explanation

FMS.NET Contains basic object definitions

FMS.NET.Decision Contains operation decision implementations

FMS.NET.Layout Contains static model data objects

FMS.NET.Operation Contains dynamic model data objects and simulation

related objects

FMS.NET.Random Contains random variate generators

4.2.1. FMS.NET.Random Namespace

L’Ecuyer (2001) stated that the availability of multiple independent streams of

random numbers is a must in a general-purpose discrete-event simulation environment.

Multiple streams simplify the application of certain variance reduction techniques and
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are also useful for simulation on parallel processors. One way of implementing such

multiple streams is to compute seeds that are random numbers generated by using one

common seed and to use these generated seeds as starting seeds in different streams.

However, the independence of these streams is not guaranteed. The other and rea-

sonable way of implementing multiple streams is to compute seeds that are spaced

far apart in the random number stream and to use the random number stream sub-

sequences starting at these seeds as if they were independent streams. These streams

are considered as distinct independent random number streams.

L’Ecuyer (2001) constructed a new random number generator package with mul-

tiple streams by using the second approach and this implementation is now used in

ARENA and AutoMod simulation environments. Random variate generators which

use L’Ecuyer’s random number generator reside in this namespace. Following random

variate generators are included in FMS.NET.Random namespace:

• Exponential (λ)

• Fixed (a)

• Normal (µ, σ)

• Triangular (a, b, c)

• Uniform (a, b)

• Weibull (α, β)

Classes that are included in FMS.NET.Random namespace are listed in Table 4.2.

UML class diagrams of random variate generator objects can be found in Appendix C.

4.2.2. FMS.NET Namespace

This namespace consists of basic object definitions that are required for FMS

simulation. These are Statistics, FMSObject, StaticObject and MovableObject. Classes

that are included in FMS.NET namespace are listed in Table 4.3. UML class diagrams

of these four classes can be found in Appendix C.
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Table 4.2. FMS.NET.Random namespace classes

Class Name Base Class Explanation

RVGenerator - Base class for random variate generators

ExponentialRVGenerator RVGenerator Exponential random variate generator

FixedRVGenerator RVGenerator Fixed random variate generator

NormalRVGenerator RVGenerator Normal random variate generator

TriangularRVGenerator RVGenerator Triangular random variate generator

UniformRVGenerator RVGenerator Uniform random variate generator

WeibullRVGenerator RVGenerator Weibull random variate generator

Table 4.3. FMS.NET namespace classes

Class Name Base Class Explanation

FMSObject - Base class for all simulation objects

MovableObject FMSObject Moving entities in FMS

StaticObject FMSObject Static entities in FMS

Statistics - Statistics object for performance measures

Statistics object is used to collect information about system performance and to

calculate statistics about collected performance measures such as standard deviation,

minimum, maximum and mean values. Statistics object can hold three different types

of information: count based statistics (submitted job count, completed job count, etc.),

average based statistics (average flow time, average travel time, etc.) and time-weighted

average based statistics (average queue length, average utilization of workcenters, etc.).

FMSObject is the base class for all objects in simulation package. It has com-

mon properties such as ID, Name, Statistics dictionary and Parent. ID is used to

differentiate an object from others and it is a 128-bit globally unique identifier. Statis-

tics dictionary stores key-value pairs where key holds statistics name and value holds

corresponding statistics object. FMSObject can access to its statistics objects by their

names and update them. Parent property is used to build a hierarchy between different

objects.
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StaticObject is used to represent static objects in FMS such as nodes, lanes,

queues and workcenters. It has three important properties: Capacity, Reserved and

Content. Capacity is the number of total slots in the object and Reserved is the

number of reserved slots. Content property is a linked-list that stores the objects that

are currently in the used slots.

MovableObject is used to model moving objects in FMS such as AGVs and unit-

loads. CurrentLocation and EntryTime are two properties that are used in simulation.

CurrentLocation gives current location object of the moving object and EntryTime

gives time value at which moving object entered to CurrentLocation.

4.2.3. FMS.NET.Layout Namespace

Static model data of FMS are modeled by using objects in this namespace. The

classes defined here hold two types of information: static data and dynamic data.

Static data define FMS configuration and it is given as an initial parameter to the

simulator. Dynamic data are formed at run-time to simulate the dynamic nature of

FMS. For example, AGVs and workcenters are empty at the start of the simulation but

their contents are changing throughout the simulation. Static data of these classes are

signed as serializable to store and retrieve them as XML documents. Classes that are

included in FMS.NET.Layout namespace are listed in Table 4.4. UML class diagrams

of these classes can be found in Appendix C.

Layout is the main class that represents the whole FMS layout. It has linked-lists

to store AGVs, lanes, nodes, operations and workcenters. Layout class has utility func-

tions to connect the layout objects appropriately. Nodes and lanes are connected to

determine AGV paths, nodes and queues are connected to determine transfer points,

AGVs are initialized at their park nodes. Layout class is also responsible for calculating

all routes in the system at the start of the simulation and store them in corresponding

route tables.
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Table 4.4. FMS.NET.Layout namespace classes

Class Name Base Class

Agv MovableObject

Lane StaticObject

Layout FMSObject

Node StaticObject

Operation FMSObjet

Queue StaticObject

Route FMSObject

Workcenter StaticObject

AGV class has properties of AGVs that are listed in problem definition and some

dynamic properties such as Assigned, Content, Destination, Route. Assigned linked-list

contains unitloads that are matched to AGV but not picked up yet. Content linked-list

stores unitloads that are currently on AGV. Destination is the next delivery or pickup

position of AGV and Route stores the path that is selected to travel to Destination.

AGV class also traces breakdown and repair operations and calculates next breakdown

time as the simulation progress. AGV class has some important utility functions: Get-

Delivery, GetPickup, MakeMatch, Receive and Release. GetDelivery method returns

the unitloads that are destined to CurrentLocation. GetPickup methods retrieves the

unitloads that are assigned to AGV and can be picked up from CurrentLocation. Make-

Match method inserts a unitload to Assigned list. Receive method inserts a unitload

to Content list and removes it from Assigned List. Release method removes a unit-

load from Content list. MakeMatch, Receive and Release methods also update AGV

statistics.

Lane class represents flow paths in the FMS layout and stores lane length, start-

ing and ending nodes. Begin and End properties gives starting and ending nodes of

the lane. Lane class also has Receive and Release methods. These methods are used

to model AGV entrances and AGV exits.
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Node class represents intersection points of lanes. A node may be ending node

or starting node of more than one lanes. So, Ending and Starting linked-lists store

lanes ending at node and lanes starting from node, respectively. Transfer nodes are the

transfer points between AGVs and queues, so, Node class has InQueue and OutQueue

properties to have this connection. Routes in flow path layout are also stored in node

classes. The reason is that routing algorithms need table lookups to find routes between

two locations. If these routes are stored in one big table, look up time is substantially

increased. In order to decrease look up time, routes are distributed to nodes. Each

node stores all routes that start from itself in a dictionary like data structure. Node

class has Receive and Release methods that are similar to Receive and Release methods

of Lane class.

Operation class has alternate workcenters list and processing time distribution

of operation on each alternative workcenter. GetProcessTime and GetExpectedTime

methods retrieves the processing time and expected processing time for an operation

at a given workcenter. Processing time is used as the simulation progress and calculated

by using corresponding random variate generator. Expected processing time is used in

process order and operation decision algorithms to get an estimated finishing time.

Queue class is basically a list of waiting unitloads. It has Receive and Release

methods to model unitload entrances and unitload exits.

Workcenter class has properties of workcenters that are listed in problem defin-

ition and some dynamic properties such as Processors and their contents. Processors

is a linked-list structure to represent identical processors. Working processors have

unitloads in their slots but free processors have nothing as their contents. Receive and

Release methods are similar to Receive and Release methods of Queue class.

4.2.4. FMS.NET.Decision Namespace

This namespace has seven classes and seven delegates for operational decisions.

Each of classes and delegates corresponds to one of the operational decisions. Each
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class has static methods that represent the algorithms that are provided in simulation

package. Algorithms that are included in FMS.NET.Decision namespace are listed in

Table 4.5. UML class diagrams of delegates and classes in this namespace can be found

in Appendix C.

Table 4.5. Algorithms in FMS.NET.Decision namespace

Decision Class Algorithm Names

BlockageSolving No Action

Output Buffer Availability

Matching Nearest Pickup

Minimum Remaining Output Queue Space/Nearest Pickup

Random

Dispatching Nearest Active Station

Random

Routing Shortest Path

Shortest Path Without Blockage

Random

TrafficManagement First Come First Served

Random

OperationDecision Earliest Expected Finish Time

Smallest Queue Workload

Random

ProcessOrder First Come First Served

Shortest Process Time

Random

4.2.4.1. Blockage Solving Algorithms. No Action algorithm, as the name implies, does

not take any action as a response to AGV blockage. Output Buffer Availability algo-

rithm checks the output queue of the corresponding workcenter. If the output queue

has available space, no action is taken and the blocked AGV waits at the current node

for the input queue to become available. If the output queue has no available space,

the blocked AGV is dispatched to another destination.
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4.2.4.2. Matching Algorithms. Nearest Pickup algorithm selects a unitload from the

output queue that is nearest to the eligible AGV. Minimum Remaining Output Queue

Space/Nearest Pickup algorithm assigns a unitload from the output queue that has

minimum number of free slots to the nearest eligible AGV . Random algorithm selects

a unitload from all output queues that have waiting unitloads randomly to the eligible

AGV.

4.2.4.3. Dispatching Algorithms. Nearest Active Station algorithm considers the de-

livery stations of unitloads that are on the AGV and the pickup stations of unitloads

that are assigned and selects the nearest station as the destination. Random algorithm

selects a random destination from all possible candidate workcenters.

4.2.4.4. Routing Algorithms. Shortest Path algorithm selects the shortest route be-

tween the current location and destination node. Shortest Path Without Blockage

algorithm selects the shortest route which currently has no blocked lanes or nodes be-

tween the current location and destination. Random algorithm selects a random path

from all possible routes.

4.2.4.5. Traffic Management Algorithms. First Come First Served algorithm moves

the AGV which arrived earliest to clear off a jammed junction. Random algorithm

randomly selects one of the jammed AGVs to move.

4.2.4.6. Operation Decision Algorithms. Earliest Expected Finish Time algorithm cal-

culates the expected finish time for all possible alternative operations and alternative

operation with the smallest expected finish time is selected as next operation. Smallest

Queue Workload algorithm compares the workload of candidate input queues of alter-

native operations and alternative operation with the smallest input queue workload

is selected as next operation. Random algorithm assigns a random operation from

alternative operations.
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4.2.4.7. Process Order Algorithms. First Come First Served algorithm takes the first

arrived unitload from input queue to the released processor. Shortest Process Time

algorithm assigns the unitload with smallest expected processing time to the released

processor. Random algorithm picks a unitload from input queue randomly.

Doğan (2001) explains the mentioned operational decision algorithms and some

other in detail except Operation Decision Algorithms. Bilge and Albey (2004) perform

a comparison between Operation Decision Algorithms and give insights about Earliest

Expected Finish Time algorithm.

4.2.5. FMS.NET.Operation Namespace

This namespace contains the classes that are required for simulation. There are

three different categories of classes in this namespace: management-related classes,

event-related classes and job-related classes. The most of these classes, event-related

and job-related ones, are created at run time when they are needed and destroyed

when they are no longer needed. UML class diagrams of these classes can be found in

Appendix C.

Table 4.6. Job-related classes in FMS.NET.Operation namespace

Class Name Base Class

Job FMSObject

JobDefinition FMSObject

JobMix FMSObject

JobRoute FMSObject

Unitload MovableObject

Job class is used to model orders that are submitted to simulated FMS. It has

ArrivalTime, Completed, Unitloads, BatchSize and JobDefinition properties. Arrival-

Time is used to calculate flow time of job when it is departing. Completed and Unit-

loads linked-lists are responsible for manipulating finished unitloads and in-progress

unitloads, respectively. BatchSize is the number of unitloads that belong to job.
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JobDefinition classes are the types of jobs that are defined in job mix. It has

properties of job definitions that are defined in problem definition. It has also two

utility functions to trace job arrivals and job departures: CreateJob and DisposeJob.

CreateJob method creates a Job object with given parameters and update submitted

statistics. DisposeJob method calculates job-related statistics and updates modified

Statistics objects.

JobMix class is a collection of job types that can be produced by the simulated

FMS. JobDefinitions linked-list holds these job types as JobDefinition classes.

JobRoute class defines an alternate operation route for a job type. Operations

linked-list stores an alternate operation route from receival operation to shipment op-

eration.

Unitload class represents single operational entities of jobs. Unitload class holds

valid alternate operation routes of its job type in Alternates linked-list when it is

created. Invalid operation routes are removed from Alternates linked-list by Complete-

Operation method when one operation is completed. Completed operations are stored

in Completed linked-list.

Discrete-event simulators have an event-calendar whose events are sorted in in-

creasing time order. Simulator executes the event with the minimum time, this event

can cause new events to be created and simulator add these newly created events to

its event calendar. Execution goes on like that till simulation end time is reached. The

events that are used in FMS.NET are listed in Table 4.7.

Event class is the base class for all events and has two important properties:

Manager and Time. Manager represents simulation manager and Time represents

execution time of event. It has two abstract methods: TraceEvent and Execute. Each

event defines its execution context in Execute method. TraceEvent method is used to

record information about each event in system trace file.
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Table 4.7. Event-related classes in FMS.NET.Operation namespace

Class Name Base Class Main Actor Class

Event - -

ArrivalEvent Event JobDefinition

DepartureEvent Event Job

EndLoadEvent Event Unitload

EndMoveEvent Event Agv

EndProcessEvent Event Unitload

EndSimulationEvent Event -

EndUnloadEvent Event Unitload

EndWarmupEvent Event -

ReleaseProcessorEvent Event Unitload

SeizeNodeEvent Event Agv

StartMoveEvent Event Agv

StartProcessEvent Event Unitload

ArrivalEvent class is used to model job arrivals to FMS. Its execution context

is simply creating a Job object and inserting this new job and its unitloads to cor-

responding data structures. ArrivalEvent also creates a new ArrivalEvent object by

using the interarrival time distribution of JobDefinition of the arrived job.

DepartureEvent class is responsible for job departures. It removes departing job

and its unitloads from corresponding data structures.

EndLoadEvent class models the end of loading activity of an AGV. Target unit-

load is removed from output queue and placed on AGV. If there is another loading or

unloading activity at this transfer node, an EndLoadEvent or an EndUnloadEvent is

scheduled. Otherwise a StartMoveEvent is scheduled. If workcenter of output queue

has blocked processor(s), a ReleaseProcessorEvent is scheduled.

EndMoveEvent class performs the movement of an AGV from a lane to a node

according to Route object of AGV. Target AGV is removed from lane and inserted
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into node. After the EndMoveEvent execution, a SeizeNodeEvent is scheduled if AGV

arrived to its destination. Otherwise a StartMoveEvent is scheduled. If there is an

AGV waiting to enter to emptied lane, a StartMoveEvent is scheduled.

EndProcessEvent class ends the current operation of target unitload. If next

operation can not be performed on current workcenter, a ReleaseProcessorEvent is

scheduled. If current workcenter is also selected for next operation, a StartProcessEvent

is scheduled.

EndSimulationEvent class clears the event-calendar and forces the simulator to

stop. This event also performs final operations such as converting statistics in a suitable

format before the results are reported.

EndUnloadEvent class models the end of unloading activity of an AGV. Target

unitload is removed from AGV and placed in input queue. If there is another loading

or unloading activity at this transfer node, an EndLoadEvent or an EndUnloadEvent

is scheduled. Otherwise a StartMoveEvent is scheduled.

EndWarmupEvent class clears the statistics after the transient period to apply

steady state analysis.

ReleaseProcessorEvent class takes target unitload from processor and places it to

output queue. If input queue of released processor has waiting unitload(s), a Start-

ProcessEvent is scheduled. A DepartureEvent is scheduled, if one of the operation

routes of unitload is completed.

SeizeNodeEvent class models the docking activity of an AGV. An AGV docks to

a node if AGV has a transfer activity at this node or AGV is jammed at this node

due to traffic. If there is a transfer activity at docked node, an EndLoadEvent or an

EndUnloadEvent is scheduled.
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StartMoveEvent class performs the movement of an AGV from a node to a lane

according to Route object of AGV. Target AGV is removed from node and inserted

into lane. An EndMoveEvent is scheduled for target AGV. If there are AGV(s) waiting

to enter to emptied node, an EndMoveEvent is scheduled.

StartProcessEvent class starts the current operation of target unitload. An End-

ProcessEvent is scheduled for target unitload. If there is an AGV waiting to deliver a

unitload to input queue of starting processor, an EndUnloadEvent is scheduled.

Figure 4.4 shows the relationships between events and operational decision algo-

rithms. All possible sources for event creation and algorithm execution can be traced

from the figure. Rectangles and diamonds represent event execution and algorithm

execution, respectively.

Table 4.8. Management-related classes in FMS.NET.Operation namespace

Class Name Base Class

JobManager FMSObject

LayoutManager FMSObject

SimulationManager FMSObject

SimulationParameter -

JobManager class is responsible of managing job mix that is given as input para-

meter to simulator. It has a utility function, named as ReadJobDefinitionsFromXML,

which deserializes and prepares a job mix for simulation. JobManager is also managing

all jobs and all unitloads that are currently in the system by using Jobs and Unitloads

linked-lists.

LayoutManager class is managing FMS layout and performs initialization tasks

for SimulationManager. This includes deserialization of layout information by calling

ReadLayoutFromXML method and preparing layout object for simulation by calling

PrepareLayout method.
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SimulationManager class is the main executing unit of proposed simulator. It

contains EventCalendar, JobManager, LayoutManager, delegates for operational de-

cision algorithms and simulation parameters. Simulation parameters are supplied to

constructor of SimulationManager as a SimulationParameter object. SimulationMan-

ager initializes LayoutManager from XML file of layout definition and JobManager

from XML file of job mix. After this step, operational decision algorithms are con-

nected to SimulationManager through delegates and simulation starts.

SimulationParameter class is used as an configuration object. It includes file

paths of layout definition and job mix, selected operational decision algorithm names,

warmup time, final arrival time, simulation end time and seed.

4.3. Implementation of FMS.NET

Simulation framework is implemented as three separate programs: simulation

package, editor program and experimentation program. Figure 4.5 illustrates the in-

formation flow between these three programs. Designed FMS simulator, FMS.NET,

was implemented by using BUILD.NET. All necessary namespaces, delegates, classes,

fields, properties and methods are declared by using definition wizards of BUILD.NET.

Property and method implementations are constructed by using drag-and-drop mech-

anism. Simulation package is compiled and converted into a DLL.

Operational decision algorithms are connected to simulation objects through del-

egates. Each user can implement new decision algorithms and integrate them into

FMS.NET easily by using BUILD.NET. New algorithms should be created in corre-

sponding classes, if so, they become eligible for simulation package automatically.

Editor program which enables users to draw an FMS layout and to describe

properties of system elements is implemented separately. The editor collects flow path

layout information such as node positions and lanes in the system from the user. The

user can specify machining system information after describing material handling sys-

tem. Workcenters, queues and operations are added to the defined system to describe
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Figure 4.5. Simulation framework information flow

processing environment. Editor is also responsible of collecting job mix information.

The user can create a new job mix by using operations that are defined in the FMS

layout. Editor converts these information into two different XML files. One of them is

layout definition XML, the other one is job mix XML. Experimentation program that

collects simulation parameters and animates the simulation progress is also developed

separately. This program also stores simulation parameters as an XML file. Simulator

can accept an order release schedule XML to generate arrivals instead of using interar-

rival distributions. Real life scenarios can be experimented to see the performance of

the designed FMS.

4.4. Experimentation

After the implementation, FMS.NET was tested to validate the design and the

implementation. Simple experiments were conducted and they showed that FMS.NET

reproduces the general results that are reported in the literature.

A hypothetical FMS environment whose flow path layout and workcenters are

shown in Figure 4.6 was used in the experimentation of FMS.NET. There are six

processing workcenters each with certain capacity of one, input queue and output queue
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capacities of three. There are one receival workcenter and one shipment workcenter

where jobs arrive to and leave the system, respectively. One central buffer workcenter

is used to store blocked jobs temporarily.

Figure 4.6. FMS layout used in experiments

Possible workcenters for each operation along with corresponding processing times

are given in Table 4.9 and the processing times shown in parenthesis belong to their

secondary machines. The job set that is produced in the described FMS is listed in

Table 4.10.

Each simulation experiment has a duration of 21 hours and warmup time is

specified as five hours. The statistical results belong to the last 16 hours after five

hours transient period. Each run is replicated five times with different initial seeds (46,

93, 281, 1758 and 2064). Table 4.11 lists decision algorithms used in experiments. The

performance measures evaluated are the number of outputs and the average flow time

of the jobs.
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Table 4.9. Operations used in experiments and their processing times

Operation Name WC1 WC2 WC3 WC4 WC5 WC6

Operation1 240 - - - - -

Operation2 - - 180 - - (200)

Operation3 (160) - 150 - - -

Operation4 - 200 - - - -

Operation5 - - - 300 - -

Operation6 (310) - - - 280 -

Operation7 - - - - - 140

Operation8 - (440) 400 - - -

Operation9 - - 400 - - -

Operation10 - - - (420) 380 -

Operation11 - - - - - 340

Table 4.10. Job set used in experiments

Job Name Operation Routes

JobA Operation2 - Operation6 - Operation7

JobB Operation4 - Operation10

JobC Operation1 - Operation8

JobD Operation3 - Operation4 - Operation6 - Operation5

JobE Operation9 - Operation5 - Operation11

Table 4.11. Decision algorithms used in experiments

Decision Class Algorithm Name

Blockage Solving Output Buffer Availability

Matching Nearest Pickup

Dispatching Nearest Active Station

Routing Shortest Path

Traffic Management First Come First Served

Operation Decision Earliest Expected Finish Time

Process Order First Come First Served
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4.4.1. Experiment]1

Determining AGV fleet size is one of the important decisions of FMS design.

There are numerous mathematical models in then literature to estimate AGV require-

ment. These models assume a deterministic demand structure and do not take dynamic

behaviour of FMS such as breakdowns and blockages into account. Simulation can be

used to estimate AGV fleet size more accurately.

FMS.NET is used to simulate the hypothetical FMS described above. Secondary

machine alternatives of operations are not used and five different randomly generated

shift orders are submitted to the system. Each AGV has one capacity which means it

can carry or travel to pick up only one unitload at a time. Figure 4.7 and Figure 4.8

show the results of the simulation runs. Completed job count is increasing with the

increasing number of AGVs. Average flow time exhibits an opposite behaviour. AGV

fleet with four, five and six AGVs achieve very close results. Cost factor comes into

play in deciding among these alternatives.
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Figure 4.7. Completed job count with changing AGV fleet size
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Figure 4.8. Average flow time with changing AGV fleet size

4.4.2. Experiment]2

Instead of using single load AGVs, AGV capacities are increased to two. Figure

4.9 and Figure 4.10 show the results of simulation runs. AGV fleet with three and four

double capacity AGVs achieve similar results as AGV fleet with five single capacity

AGVs. This configuration can be installed with less cost because it requires smaller

number of AGVs than initial configuration in Experiment]1.

4.4.3. Experiment]3

Secondary machine alternatives of operations are utilized to see the effect of

flexibility on system performance. AGV fleet is composed of five single capacity AGVs.

Table 4.12 and Table 4.13 gives simulation results for the base configuration and the

modified configuration after introducing more flexibility. Giving secondary machine

alternatives to operations significantly increases the performance of the system.
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Figure 4.9. Completed job count with changing AGV fleet size after doubling AGV

capacities
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Figure 4.10. Average flow time with changing AGV fleet size after doubling AGV

capacities
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Table 4.12. Completed job count before and after increasing flexibility

Base Case Routing Flexibility Case

EEFT MROQS EEFT MROQS

Average 231 231 307.8 294.6

Std. Dev. 7.58 7.58 3.77 5.13

Table 4.13. Average flow time before and after increasing flexibility

Base Case Routing Flexibility Case

EEFT MROQS EEFT MROQS

Average 14203.86 14203.86 4314.21 5724.86

Std. Dev. 788.87 788.87 485.07 644.76
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5. CONCLUSIONS AND FUTURE STUDIES

This thesis introduces a new application generation framework for object-oriented

software. Proposed framework is based on graphical input collection through dialog

forms and flow diagrams. The users give specifications through this graphical input

collection mechanism and the application generator converts this graphical represen-

tation into four different programming languages (C++, C], J] and VB.NET) and

compiles the generated source code into an assembly.

The main contribution of proposed application generator is providing a general-

purpose application generation mechanism as opposed to domain-specific application

generators. Commercial application generators are designed for helping software en-

gineers and specialized in a sub-problem of software development such as database

management, user interface design and report generation. These generators requires

programming language knowledge at least to some intermediate level.

Instead of concentrating to some specific domain, the proposed generator fo-

cuses on common properties of programming languages. Basic programming language

constructs, statements and expressions are modeled in the proposed generator as ap-

propriately. Programming language constructs such as namespace, classes, fields, etc.

are taken from user through dialog forms. Programming language statements and ex-

pressions are collected via flow diagram representation. This general approach allows

non-programmers to use this generator for building applications without using any pro-

gramming language knowledge. This tool can also be used as a learning tool to teach

programming languages that are supported in the generator. Novice users reported

that the usability of BUILD.NET is satisfactory for them.

The basic limitation of the proposed framework is that it only supports statements

and expressions that are defined in CodeDOM standard document. Statements and

expressions that are not supported by CodeDOM should be given in a programming

language syntax or converted into their correspondent statements or expressions.
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Providing extensibility is another important contribution of the proposed genera-

tor. Scientific software packages such as optimization and simulation software are basic

candidates for this feature. The users want to devise their own algorithms into com-

mercial products. This is achieved via a vendor-generated script language or coding

a completely different application by using a programming language and calling API

functions of target software. These methods do not guarantee an acceptable perfor-

mance after implementation and require user effort. APIs that are provided by software

vendor may not be adequate to implement intended algorithm. Software vendors may

provide a tool like proposed application generator to extend their software and added

algorithms are compiled directly into their software. This method is better than using

an external program or a script language in terms of performance measures.

An FMS simulator, FMS.NET, is designed and implemented in BUILD.NET to

show extensibility feature in a real-life scenario. Operational decision algorithms that

are rules that manage the manufacturing environment can be extended by the users.

New decision algorithms can be added to the system and these algorithms become

available in simulator program after compilation. FMS.NET simplifies algorithm de-

velopment and does not require implementation time and effort as much as coding

algorithm directly with a programming language. Also learning is much easier with

this new simulator, students can easily gain information about the system structure

and already implemented decision algorithms. FMS.NET will be used as a test-bed in

research projects of BUFAIM and undergraduate course projects.

The proposed framework can also be used for updating software packages with

a different approach. The compilation logic of proposed framework is integrated into

the released software. Required updates and fixes can be applied by sending an XML

file to customers and the software is rebuild at the client’s computer. This method

provides an easy method for updating the software without any configuration errors

such as DLL version problems in updating software by utilizing DLL replacements.

Confidentiality of source code can be achieved by encrypting XML file that contains

updates.
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Beside these features, this application generator can be used as infrastructure for

a domain-specific application generator. Entity blocks that are required for domain-

specific application generators can be derived from basic building blocks of the pro-

posed framework. This extension requires a new user interface and the source code is

generated still by the basic building blocks behind the scene.

The proposed framework can be extended to convert source code of a program

from the programming language in which it was implemented to another. Current

version is capable of only generating source code from object graph that is generated

in memory. If source code can be parsed and converted into object graph representa-

tion, constructed object graph can easily be converted into source code in a different

programming language. This extension requires a carefully implemented parser for the

target programming language.
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APPENDIX A: UML DIAGRAMS OF BUILD.NET

CLASSES

The design process of BUILD.NET is documented by using UML diagrams. This

chapter includes UML class diagrams of the classes that reside in BUILD.NET.
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Figure A.1. BUILD.NET class diagrams - I
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Figure A.2. BUILD.NET class diagrams - II
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Figure A.3. BUILD.NET class diagrams - III
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Figure A.4. BUILD.NET class diagrams - IV
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Figure A.5. BUILD.NET class diagrams - V
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Figure A.6. BUILD.NET class diagrams - VI
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Figure A.7. BUILD.NET class diagrams - VII
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Figure A.8. BUILD.NET class diagrams - VIII
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Figure A.9. BUILD.NET class diagrams - IX
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Figure A.10. BUILD.NET class diagrams - X
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Figure A.11. BUILD.NET class diagrams - XI
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Figure A.12. BUILD.NET class diagrams - XII
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APPENDIX B: SCREENSHOTS OF BUILD.NET

Figure B.1. Model definition wizard

Figure B.2. Namespace definition wizard
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Figure B.3. Delegate definition wizard

Figure B.4. Class definition wizard
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Figure B.5. Enumeration definition wizard

Figure B.6. Interface definition wizard
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Figure B.7. Struct definition wizard

Figure B.8. Event definition wizard
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Figure B.9. Field definition wizard

Figure B.10. Property definition wizard
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Figure B.11. Method definition wizard



93

APPENDIX C: UML DIAGRAMS OF FMS.NET CLASSES

The design process of FMS.NET is documented by using UML diagrams. This

chapter includes UML class diagrams of the classes that reside in FMS.NET.
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Figure C.1. FMS.NET class diagrams - I
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Figure C.2. FMS.NET class diagrams - II
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Figure C.3. FMS.NET class diagrams - III
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Figure C.4. FMS.NET class diagrams - IV
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Figure C.5. FMS.NET class diagrams - V
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Figure C.6. FMS.NET class diagrams - VI
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Figure C.7. FMS.NET class diagrams - VII
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Figure C.9. FMS.NET class diagrams - IX
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Figure C.10. FMS.NET class diagrams - X
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APPENDIX D: SIMULATION RESULTS

Table D.1. Completed job count results for Experiment]1

Agv Count 1 2 3 4 5 6

Run]1 57 117 176 227 236 235

Run]2 60 119 174 221 239 240

Run]3 54 111 170 213 233 235

Run]4 59 123 178 219 227 229

Run]5 60 115 169 214 220 225

Average 58 117 173.4 218.8 231 232.8

Std. Dev. 2.55 4.47 3.85 5.67 7.58 5.85

Table D.2. Average flow time results for Experiment]1

Agv Count 1 2 3 4 5 6

Run]1 38734.49 30481.41 21941.49 15352.72 13678.55 13622.04

Run]2 39608.85 30055.56 22442.14 15979.02 14906.97 14415.52

Run]3 38637.39 30670.77 23546.32 16192.34 13107.84 13433.57

Run]4 38239.39 29972.69 21313.60 15720.43 14559.29 14329.14

Run]5 38370.65 30379.53 22889.50 16186.12 14827.54 14318.17

Average 38665.68 30333.69 22402.83 15872.64 14203.86 14015.42

Std. Dev. 536.21 292.77 857.67 355.09 788.37 459.10
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Table D.3. Completed job count results for Experiment]2

Agv Count 1 2 3 4

Run]1 106 174 233 238

Run]2 85 174 230 243

Run]3 81 166 220 234

Run]4 88 182 218 231

Run]5 83 184 215 225

Average 88.6 176 223.2 234.2

Std. Dev. 10.06 7.21 7.85 6.83

Table D.4. Average flow time results for Experiment]2

Agv Count 1 2 3 4

Run]1 34019.90 22921.25 14607.60 13827.68

Run]2 35106.16 23533.00 15323.57 14131.64

Run]3 34810.53 24492.04 15022.25 12865.16

Run]4 34564.94 22314.46 15638.55 14935.14

Run]5 34291.29 24351.13 16068.85 14013.26

Average 34913.01 23438.84 15320.31 14025.66

Std. Dev. 425.73 928.39 560.74 741.49

Table D.5. Completed job count and average flow time results for Experiment]3

Operation Job Count Flow Time

Decision Algorithm EEFT SQW EEFT SQW

Run]1 310 295 4045.18 5216.21

Run]2 312 291 4256.25 6437.08

Run]3 307 299 5113.78 6255.43

Run]4 308 300 3839.64 4997.27

Run]5 302 288 4347.77 6054.39

Average 307.8 294.6 4314.21 5724.86

Std. Dev. 3.77 5.13 485.07 644.76
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