OPTIMIZATION OF QUANTUM RANDOM WALK SIMULATIONS

by
Ugur Kiiciik
B.S., Computer Engineering, Bogazi¢i University, 2003

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
Bogazi¢i University

2005

il

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. A. C. Cem Say for his invaluable guidance,
support and patience during this work as well as during my undergraduate and graduate years.
I am also grateful to Assist. Prof. Muhittin Mungan and Assoc. Prof. Can Ozturan for their

valuable criticisms and participating in my thesis jury.

I must specially thank to my family for their continuous support and trust in me. My dept

to them is certainly the biggest of all.

I should not forget my workmates at Yogurt Computer Technologies whose endless

cheer is one of the main contributions to my work. Thank you, comrades.

Last but not least, thank you little one, for your presence.

v

ABSTRACT

OPTIMIZATION OF QUANTUM RANDOM WALK SIMULATIONS

In computer science, an exponential performance gain is considered an important
achievement that can extend the set of practically computable problems. Behind the interest in
quantum computation, there is the fact that several quantum algorithms have been shown to
provide exponential speedup against their classical counterparts. Of these, the most recent one,
the one based on quantum random walks, is discussed in this work. The methods used in
demonstrating the exponential algorithmic speedup by quantum random walks are analyzed in
detail. This analysis comes after introductory parts where basic quantum computation
concepts, quantum simulation techniques and quantum random walk ideas are discussed. A
new optimization technique on the implementation of quantum random walks is also
introduced. This technique is based on the idea of manipulating the order in which the
constituent Hamiltonians are simulated for small durations in the iterative step of the
simulation algorithm. Our approach can be generalized to optimize any quantum simulation in

which the linear combination rule is used to simulate a collection of constituent Hamiltonians.

OZET

RASTSAL KUANTUM GEZINTILERININ BENZETIMININ
ENIYILENMESI

Bilgisayar bilimleri alaninda iistel ifadelerle Olgiilen bir basarim artisi, pratikte
¢Oziilebilir sayilan problemler kiimesinin tanimini genisletebilecek kadar 6nemli bir basaridir.
Kuantum bilgisayarlarina duyulan ilginin arkasinda bazi kuantum algoritmalarinin klasik
esdegerleri karsisinda {istel ifadelerle Olgililecek diizeyde hiz kazanimlar1 saglamalari
yatmaktadir. Bu ¢alismada, bu algoritmalarin en yenisi, rastsal kuantum gezintilerine dayali
olani ele alinacak. Rastsal kuantum gezintileri yoluyla iistel algoritmik hiz kazanimlar1 elde
etmenin metodlar1 detayli bi¢imde incelenecek. Bu inceleme, kuantum bilgisayarlarinin temel
kavramlarinin, kuantum benzetim tekniklerinin ve rastsal kuantum gezintisi fikrinin tartisildigi
tanitict boliimlerden sonra yer alacak. Ayrica rastsal kuantum gezintilerinin kuramsal
uygulamasina dair yeni bir eniyileme teknigi de tanitilacak. Bu teknik benzetim algoritmasinin
dongiisel adimlarinda kiigiik siireler i¢in benzetimlenen bilesen Hamilton operatdrlerinin sirasi
tizerinde yapilacak oynamalara dayanmaktadir. Yaklasimimiz dogrusal kombinasyonlar
kuralmin bir grup Hamilton operatoriiniin benzetiminde kullanildigt durumlar igin

genellestirilebilir.

Vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt sse e ssaenseenne s iii
ABSTRACT ...ttt ettt sttt et st b et site b eteeaee s v
OZET oottt ettt \
LIST OF FIGURES ...ttt sttt e X
I. INTRODUCTIONooiiiiiiiieieeeeeete ettt ettt ettt et sbeenteeneesseenneenean 1
2. BASICS OF QUANTUM COMPUTATION.....ccceeciiieieieeteeee st 3
2.1. Hilbert Space and Quantum Bitsccceeriiriiiniiiiieeie et 3
2.2. Tensor Product and Quantum RegiStersccceevverrriieniiieniieeniie e 11
2.3. The Time Evolution and Unitary Transformations.............ccccceeevveeerveercneeennne. 14
2.4. The Unitary Transformations and Quantum Gates..........ccccceeevuerveneevienecnenns 17
2.4.1. Single Qubit QUantum Gatesccceeveeriiienieeiieie e 20
2.4.2. Multiple Qubit QUantum Gates..........ccceerrrerrierrieeiieieeeieeree e eseee v 26
2.4.3. The Reversibility of Quantum Gatesccceeevveeeiieerciieeeiie e 30
2.4.4. The Universality of Quantum Gatescccccvveeverieneenenieneencnecncennn 31

2.5. The Quantum No-Cloning Theorem............cccoecieriieniieniiiiieieeieecee e 33
2.6, The MEASUICINENLccceeruietieiiiiieieeie ettt ettt ettt et et see et et e sseesbeeeesaeens 35
2.7, Entanglementccoooiiiiiiiiiiiieeiieeee e e e areeenes 37
2.8. Quantum Computational CompleXity........cccceeveereerieriiinieniniienieneeieneeseeees 39
2.9. Quantum AIOTItRMScccuiiiiiiiiiiiciiee e 42
2.9.1. Simon's Algorithm for Period FIndingcccoeevieviinciiiniiiiieieeenee 44
2.9.2. Grover's Algorithm for Unstructured Search..........c..ccccvveeiiieniieeniienee. 47
2.9.3. Shor’s Algorithm for Factorization...........ccceeveereevenieneencniicnieneneeees 51
2.10. There is More to Quantum Computation............cceevveecveerieesieenieenieenreenneens 55

3. A SHORT SURVEY ON QUANTUM SIMULATIONcccceootriininiieienieeieneenne 58
3.1. Universal Quantum Simulators.............coeeiiiiieiiiiiiceciieie e 60
3.2. Constraints on the Simulation of Hamiltonian Dynamicsc.ccccceecvenienncne 62

3.2.1. Simulation of Local Hamiltoniansccceeeeeeeeeeeeeeeeeeeeeeeeee e 63

vii

3.2.2. Rescaling of Hamiltonians............ccceeeviieeiiieniiiecieecie e 63
3.2.3. Unitary ConjuZationccceeceereeiierienieiienienieete ettt 63
324, COMMULALION ..titiiiiiiiiitieieete ettt sttt s 63
3.2.5. Addition of Hamiltoniansccceceeriereriiinieneeieeieseeesee e 64
3.2.6. Linear Combination of Hamiltonianscccccevieriiiniiiiinniienieniee 64
3.2.7. Tensor PrOAUCEScccciiieiiieciie ettt e 67
3.3. Quantum Simulation in Algorithmic Levelccocoveniiiiiiniiiiiiiiieieeiee, 67
3.3.1. An Algorithm for the Simulation of Local Interactions 68
3.3.2. Simulation of Hamiltonians with Non-local Terms.........c..ccceceenienuennee. 69
3.4. Quantum Simulation as a Model of Quantum Computationcccceeueeeee. 74
A SHORT SURVEY OF QUANTUM RANDOM WALKS......ccoooiviiririeeee 76
4.1. Classical Random WalKscccerieiiiriiniiienieeeeseeee e 76
4.1.1. Discrete Time Classical Random Walkcccccooiiiiiniiiie 77
4.1.2. Continuous Time Classical Random Walk...........c.cccooviiiiiiiiniiiiinne 77
4.1.3. Performance Measures for Classical Random Walks...........c.ccccevuennenne. 79
4.2, Quantum Random WalKS.........c.cccoouiiiiiiiiiiiii e 80
4.2.1. Continuous Time Quantum Random Walks.............cccccoooiiiiiiiinnannnn. 80
4.2.2. Discrete Time Quantum Random Walks..........cccoeeviieiiieiiiiecieeeieeeee, 83
4.2.3. Quantum Random Walk on a Hypercube...........c.cccceeviieriiniienieiieeene 85
4.2.4. The Relation Between Discrete and Continuous Time Quantum Walks.. 89
4.3. Algorithmic Use of Quantum Walksc.ccccouiiiiiiieiiiiiiiecieeeee e 89
A FAST ALGORITHM EMPLOYING THE QUANTUM RANDOM WAILK 92
5.1. The Graph Traversal Problem..........cccccoeviiriiiiniiiiieieeiieeeie e 93
5.2. The Algorithm for the Graph Traversal Problem on the Glued Trees.............. 95
5.3. The Quantum Walk with a Black BOX.........cccccoovuiiiiiiiiiiiciecceceee e, 96
5.4. Upper Bound on the Traversal TImMeccccuveviiieeiiiiiiiiieeieeeee e 106
5.4.1. The Quantum Walk on the Column Subspace.........cccccecuerverervuenicnnnenn 106
5.4.2. Quantum Walk on the Defective Lin€..........cccceeevveivciiiiciicciieeeieeee, 108
5.5. The Classical Lower Bound...........ccccoeoiirieiiiiinieiieieseceeeeeee e 120
5.5.1. Game 1: Find the EXit......cccooiiiiiiiiiiiii e 120

5.5.2. Game 2: Find a Path to the EXit.....covveeummeeeeeee e 121

viii

5.53. Game 3: EXit OF CYCle ..uvivviiiiiiieeiieceeeeeee e 122
5.5.4. Game 4: Exit or Cycle With a Binary Treec..ccccceverienieneniicnecnenn 123

6. AN IMPROVEMENT ON QUANTUM WALK SIMULATIONS........ccccceeuenee. 127
6.1. The Circuit Model for Quantum Walk Simulation...............ccceceevieeirireeneen. 127
6.2. An Improvement on the Quantum Walk Implementationccceeeuvennn. 130
6.3. Performance Analyses for Various Black Box Settings.........cccccccervveveeuenee. 135

7. CONCLUSION.....cottiieitieetet ettt et sttt st b et sbe et saeesaeenbeas 138

REFERENCES ...ttt st 139

X

LIST OF FIGURES
Figure 2.1. Cartesian and polar coordinates for the 3-dimensional space...........ccccceceeveruenncens 9
Figure 2.2. The Bloch sphere representation of the state of a qubitcccceeverieviinenenncne 10
Figure 2.3. The circuit representation for the computation U | l//1> = |l//2> 20
Figure 2.4. The circuit representation for the computation U V| 6?l> .. 20
Figure 2.5. n bit operator U acting on the register |l//1w2..t//n> .. 26
Figure 2.6. The alternative circuit representations for U | 1//> =U 1| 1//1> U 2| 1//2> 26
Figure 2.7. The circuit representation for the CNOT gate..........coceevervieniininniniinenienicene 28
Figure 2.8. Circuit representations for controlled-U (on the left) and zero-controlled-U 29
Figure 2.9. The circuit representation for the Toffoli gatec.cevevveriiniiiiniiniiiee 29

Figure 2.10. The circuit that generates the Bell states when initialized in the basis states 38

Figure 2.11. The circuit representation for the iterative steps of Simon's algorithm............... 46
Figure 2.12. The circuit representation for Grover's algorithmcccceeeeviininiininnennene. 50
Figure 3.1. The correspondence between the simulator and the simulated system................. 59

Figure 3.2. The circuit for simulating H = H, + H, + H, for duration 7 = rAf 69

Figure 3.3.

Figure 3.4.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

The circuit for simulating H = Z ® Z ® Z for duration Afccccocevvevvecnnenne. 72
The circuit for simulating H = X ® Y ® Z for duration Afccceevevvveevveennnen. 74
The straight line graph of €ight N0desccceeviiiiiiiiieiieiee e 82
The three dimensional hypercube............ccoevieiiiiiiiniii e 86
The 3-dimensional hypercube with labeled edgesccccoveveiiiiciiinciiiieeee, 88

The graph constructed by unifying the leafs of two binary trees of same size 90

An instance of G,, the glued trees of height 4. 93

The circuit for simulating the Hamiltonian A ® A ®..® A for duration Ar 102

The circuit for simulating the Hamiltonian 7 for duration Afccccceceevuenneee. 102
The defective line corresponding to the columns of G,c.cccoveeiininininene 108
The defective line corresponding to the columns of G, |cccevvevvieiinicnennnene. 109
The sketch of £(p)=sin((n+1)p)/sin(np) for n=5 ..oocovvvrrcvrrereeeerrerrernn. 115
The sketch of £(p)=sin((n +1)p)/sin(np) for 7 =8cevverrerrerreeeeercerreeenn. 116
The roots p', p' and p""' of the equation sin((r+1)p)/sin(np)= +2 117

The cycle depicted on the subtrees 0f G,ccccoeveririenieiiiiiccceeeecee 125

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

Figure 6.7.

Figure 6.8.

X1

The circuit for simulating 7' = s @ §@m2) g | g glm2m) ®[0)(0|........... 128
The circuit simulating H, = VJTVC for duration Afccevieviniiiniiiinicen 129

The simulation of quantum walk in r iterations of (e_iH 1ifrgmitlatlr g itk t] ’) 129

Two successive simulations of the Hamiltonian H, = VCTT Vo 132
The circuit representation for two successive simulations of 7c.cccu........ 133
The circuit that simulates 7" for duration 2A7cccooevieniiienienieieeieeeee 134

The circuit for simulating the sequence H,, Hz,..,H,f,Hk_1 yers le,Hz,..,H,f,.. 134

The ratio of total costs sketched against the ratio of query costs..........ccceeeuvennnee 136

Figure 6.9. The ratio of maximum number of iterations sketched against &cccceeeneee 137

1. INTRODUCTION

Determining the problems which quantum computers can solve qualitatively faster than
classical computers and constructing quantum algorithms for these problems are central issues
in the field of quantum computation. There are several techniques which are known to create

such performance gains, and there is a continuing research to explore new ones.

An important group of these techniques can provide sub-exponential speedups against
their classical counterparts. Among these, there is Grover’s famous search algorithm [1] which
can provide quadratic speedup for linear search problems. A sub-exponential speedup can
dramatically reduce the computational cost of some problems especially if they are of big
scales. However, such techniques are of secondary importance when compared to those which

can provide exponential gains.

An exponential gain is such an important achievement in computer science that it can
change the known contents of the set of practically computable problems. The existence of
such quantum algorithms which can provide exponential speedup over their classical
counterparts is known since the early 1990’s. In particular, Shor’s algorithm for factorization
[2] is one of the biggest achievements in the field of quantum computation. There are several
other problems for which quantum algorithms have been demonstrated to be exponentially
faster than the classical ones. However, it turns out that these problems are strongly related
and the quantum algorithms devised for them depend on similar principles. To be more
accurate, until very recently, exponential speedup had been demonstrated only for those
problems which can be formulated as a hidden subgroup problem and only by those

algorithms, which depend somehow on the quantum Fourier transformation method.

A recent result challenges this picture. A quantum algorithm, which does not involve the
quantum Fourier transformation and yet is able to provide exponential speedup over its

classical counterparts was demonstrated in [3]. The problem targeted with this algorithm is a

black box problem defined on a graph theoretical framework. The methods used to solve this
problem mainly depend on a quantum version of the random walk techniques and the concept

of quantum simulation is used to implement this idea.

The main objective of the current work is to develop an understanding of the exponential
speedup provided by quantum random walks, which is one of the most important and
promising results recently demonstrated in the field of quantum algorithms. The techniques
used in [3] will be examined in detail and an improvement in the quantum walk
implementation will be proposed. The main constraint in doing these is being accessible by an
average computer science person whose degree of familiarity with the topic is assumed to be

low.

Here is how the rest of this thesis is structured. Chapter 2 serves as a brief introduction to
quantum computation for those who have little (if any) familiarity with the field. In Chapter 3,
the concept of quantum simulation will be analyzed and some of the simulation techniques to
be used in later chapters will be introduced. Chapter 4 is a survey of quantum walks. It aims to
provide an understanding of how quantum versions of random walks are implemented and
lists some of the important results related to quantum walks. It is Chapter 5, where a
discussion of the methods used to demonstrate the exponential speedup by quantum walks can
be found. In Chapter 6, we will propose an improvement on the implementation of quantum

walks used in [3], and Chapter 7 will be a conclusion.

2. BASICS OF QUANTUM COMPUTATION

Two-valued classical logic can be viewed as the model for the classical theory of
computation in the sense that in both frameworks, complex systems are built upon two-valued
atomic units and various relations among them. A reason for this choice is that people are used
to think in the same manner and another is the ease of implementation of such two valued
models in practical computational devices. Various technologies from vacuum tubes to
microchips have been used for this purpose up to now, and most probably new technologies
are to be added to the list in the future. What makes quantum computation a challenge for us is
the projection that in the not so far future, it will be easy to build computational devices which
enjoy the advantages presented by the quantum mechanical laws. We will be calling such
devices quantum computers not because they are (or will be) the only ones which obey the
laws of quantum mechanics, but to indicate that they are the ones which find their
computational model in quantum mechanics. Once quantum computers come to be a part of
reality, there will be the need for an understanding of that quantum mechanical model of
computation. This is what the field of quantum computation tries to build and here, the basics

of this field are presented.

2.1. Hilbert Space and Quantum Bits

The central position that a "bit" (Shannon bit) occupies in the classical theory of
computation is reserved for what is called a qubit (quantum bit) in quantum computation.
Hence, a qubit can be said to be the basic unit of information for quantum computers. In
practice, a qubit can be any two state quantum system such as an electron with two spin states
or a hydrogen atom with two energy levels. (For a more exhaustive list, see [4].) Most of the
literature in the field of quantum computation refers to an abstract mathematical model of a
qubit rather than specific physical implementations of it. This will be the way to be followed
here. Building a formal mathematical definition for a qubit requires the introduction of the

concept of a Hilbert space which is often found useful for describing the states of quantum

systems. (For more detailed but still brief introductions to the concept of a Hilbert space and

its use in quantum mechanics, see [5, 6].)

Formally, a Hilbert Space H is an inner product space that is complete with respect to
the norm defined by the inner product. By an inner product space, we mean a vector space

over the complex numbers with an inner product (-): H x H — C satisfying

i) (u,u)>0 with equality if and only if u =0
i1) (u,v + w) = (u,v)+ (uw) and (u,/lv) = i(u,v)

iii) (u,v)= (vu)* , where " denotes the complex conjugate.

H 1is also required to be complete with respect to the norm” . || over this space, which is

defined as || u|| = J(u,u).

Although Hilbert space is also useful when handling infinite dimensional vector spaces,
quantum computation mostly deals with finite dimensional ones. (All n-dimensional Hilbert
spaces are isomorphic, hence they can be denoted by H,.) In quantum mechanics, the
dimension of a Hilbert space is a function of the number of observable states of the quantum
system which that Hilbert space is used to represent. In general, an n-dimensional Hilbert
space H, is a space of n-tuples of complex numbers. These n-tuples are called state vectors.
The state of a quantum system at a time is represented by one such member of the Hilbert

space of the appropriate size. State vectors are usually denoted by column vectors for which,

following the Dirac notation of vectors, we use the ket (|label>) formalism as in (2.1). Note

that u is just some label and u;, uy,.., u, are complex numbers.

U
u=|u)e H, and [u)=| " 2.1)

u,

Two kets |u> and |w> represent the same state if they differ by a non-zero multiplicative

constant: |u> = /I| w>. (|u> and |w> are said to be the same up to a global phase factor 4.) In

general, it is a convention to use a ket vector of unit length to represent the state of a quantum

system and this convention is followed in the present context.

What should immediately follow the ket vectors is the definition of the bra (<label|)

vectors. It is convenient in this domain to define bra vectors as the Hermitian conjugates

(complex conjugate transpose will be denoted by superscript dagger 1.) or adjoint vectors of

the members of a Hilbert space. Therefore, for u € H,, the adjoint v = u' is a row vector as

shown in (2.2). Again note that v is just some label and v;, v, .. v, are complex numbers.

O L () P ey (22)

Now we have bras and kets so that it is time to form the bra(c)ket (<labell|labe12>)

which is the origin of the naming of vectors in Dirac notation. A bracket is a natural way to

denote the inner product and hence it stands for a complex number. Therefore, for w,ze H,,

the inner product of w and z is a complex number as shown in (2.3).

(W,Z) =wiz= <w|| z> = <w|z> = i wz, eC (2.3)

i=1

So much mathematical formalism is enough that we can start to build our definition of a

qubit. The qubit is an inheritor of the classical bit in many aspects. Just like a classical bit, a

qubit is a two state system in principle. These states, following the tradition, are labeled by 0
and 1, and they correspond to two different (observable) physical states of the system, no
matter which physical implementation is used. The essential difference is that a qubit is a
quantum system. So unlike a classical bit, a qubit is not restricted to be in one of these two

principal states. Instead it is generally in a linear combination (or superposition) of them as

quantum mechanics suggests. Therefore the state of a qubit,

l//>, is a vector in a two

dimensional complex vector space where the principal states are natural candidates to serve as
a basis. We tend to call this basis the computational basis of a qubit and the complex vector
space this basis spans is in fact a two dimensional Hilbert space. So a qubit, in formal
mathematical terms, can be defined to be a quantum system whose state lies in a two

dimensional Hilbert space [7].

The computational basis that spans the state space of a qubit is shown in (2.4).

0)= | na =[] 24

The general state of a qubit,

y/> , 1s a linear combination or superposition of the base

states. Note that ¢ and £ are complex numbers so the overall state is a member of the two

dimensional complex vector space or H..

1 0 o
|1//>=a|0>+,8|1>=05 +4 . | = eH, (2.5)
0 1 p
Since the ket vectors we use are of unit length, we can assert the following.

o +|" =1 (2.6)

In the case of a classical bit, the state is identical to the outcome of a measurement that is
performed to retrieve the content. On the other hand, what one gets out of measuring a qubit is
not generally equivalent to the state of it. The quantum mechanical explanation of the action of
measurement is not a simple one. (A separate section will be devoted to this topic.) In the

simplest terms, one can assert that measuring a qubit which is prepared to be in the state

|l//> = a|0>+ ,8|1> in the computational basis, has two possible outcomes. These are what we

have been calling the principal states. The outcome of a measurement is |0> with probability

|05|2 and it is |1> with probability | ,6’|2 . These probabilities sum up to one by (2.6).

probability of observing 0: P(| 0>) = |0¢|2 2.7)

probability of observing 1: P(| 1>) = | ﬂ|2 (2.8)

Note that, in case of a ket vector which was not of unit length, the above equalities

would not hold. Instead one could say the probability of observing |0> and |1> are

proportional to |05|2 and | ,6’|2 respectively. This should be why ket vectors of unit length are

more favorable than the others.

Another important point is that after such a measurement, the state of the qubit settles on
the observed value so that if it is measured again, it is guaranteed that the result remains the
same. Therefore, for practical purposes it can be stated that measurements cause changes on

the state of the qubits provided that they are not in one of their base states.

It is straightforward to state that a qubit can be used to encode a much larger amount of
information than that a classical bit can. Although the space of two dimensional unit ket
vectors seems to be restricted, still (uncountably) infinitely many of these vectors are
available. So in principle a qubit can store infinite amount of information but in practice, the

important thing is how much one can retrieve from it. The task of preparing a qubit (or rather a

set of qubits) in a state that makes it possible to gather the information one seeks, belongs to

the quantum algorithms which will be examined soon.
As a last issue, let us consider the so-called Bloch sphere representation of the state of a
qubit, which is of use when to visualise the state of a qubit and the effect of the operators on it.

This representation maps the state of a qubit to a point on the surface of a unit sphere. Here a

derivation of the model is to be given. To begin with, we have the general state vector of a
qubit |t//>=a|0>+ ,8|1> and the normalisation constraint |0(|2 +|ﬂ|2 =1 where a and [are
complex numbers. If & and £ are expressed in polar coordinates, we then have the following

representation of the general state of a qubit.
|l//> =r,(cos@, +isiné,)| 0> +7y (cos 05 +isinb,)| l> =1, e'% |O> + rﬂemﬂ |l> (2.9)

We had seen that two kets represent the same state if they differ by a global phase factor.

So we are free to multiply |y/> with e % to get |t//'> which is equal to |l//> up to the global

phase factor, e "% | that has no observable effects.
0) =1 0) + P 1) = 1 [0) 4 1|1} (2.10)
Now, writing the coefficient of |1> again in Cartesian coordinates, we get,
ly") =7,]0)+(x+iv)|1). (2.11)
Then by the normalisation constraint, we have the following equation.

<z//'|l//'> = (ra)2 +(x+iy)*(x+iy): rw2 +x7+yt =1 (2.12)

The equation in (2.12) is the equation for a unit sphere in the real 3-dimensional space
with the Cartesian coordinates x,y,7,. Renaming the third coordinate as z gives the
coordinate system x,y,z. The same space can also be defined by the polar coordinates »,8,¢ .
Figure 2.1 demonstrates the relation between the Cartesian coordinates x,y,z and the polar

coordinates r,d,¢ which define the same point on the 3-dimensional space.

2 |

Figure 2.1. Cartesian and polar coordinates for the 3-dimensional space

As Figure 2.1 suggests we have the following transformations

x=rsinb cos ¢ (2.13)
y=rsindsing (2.14)
z=rcos6 (2.15)

Using the above rules with r =4/x* + y*> + z* =1 and using z for r,, (2.11) can be

transformed to,

|l//'> = COS 6’| O> + (sin@ cos @ +isin @ sin ¢)|l>

. 2.16
= Cos 6’| O> +e' sin 6’| 1>. ()

10

Now, we have only two real parameters € and ¢ defining the state |1//'>. The term e is

called a relative phase factor and unlike the global phase, it has important effects. Note that,
for 6=0,

") turns out to be |0) and for 6 =r/2,

1//'> turns out to be ei¢|l>. So our

mapping of the state of a qubit is not yet covering a full sphere. Instead, it covers the upper

half of it. We get over this problem by a small adjustment: We let the point (1, 0, ¢) on the
sphere to denote the state |l//> = cos§|0> +e' sin§|l> (instead of |l//> =cos t9| O> +e'’ sin 6’| 1>)

hence, the state space of a qubit covers the full surface of the unit sphere. The Cartesian

coordinates (sin@ cos ¢, sin@ sing, cos@) of the point is called the Bloch vector. This completes

our definition of the Bloch sphere.

Figure 2.2. The Bloch sphere representation of the state of a qubit

Note that 0< @ <7 and 0<¢ <27z are the valid coordinates on the Bloch sphere. The
@ coordinate determines the probabilities for observing |O> and |l> There are infinitely many

points on the surface of the sphere for each value of 0<6 <7 with the exception of the

endpoints where the second coordinate ¢ is practically meaningless. The ¢ coordinate is

11

called the phase angle and it determines the relative phase factor and hence the ratio of the

magnitudes of real and imaginary parts in the amplitude of |l> .

The Bloch sphere representation is useful when analyzing the state of a qubit and the
effects of the operators on it. However there is no simple generalization of this model to

systems of more than one qubits, and hence its uses are limited.
2.2. Tensor Product and Quantum Registers

A quantum register is simply a collection of qubits and hence it is a multiparticle
quantum system. To understand the state and behavior of such a system, there is the need for a
mathematical tool for putting vector spaces together to form larger vector spaces. This task is

assigned to the tensor product operator (®).

The tensor (or Kronecker) product of two matrices A and B, where 4 is m by n and B is r

by s is a matrix mr by ns. The product is calculated as in (2.17).

a4y ayB - a,B

AR®B=| : . I ®B=| : : (2.17)
a a.,B - a B

nl nm nl nm

The tensor product H ® K of two Hilbert spaces H of dimension m and K of dimension
n is a Hilbert space of dimension m times n. The members of H ® K are linear combinations
of the tensor products of the members of H and the members of K. In other words if

hy,hy,.. h, is abase for H and k,,k,,...k, is a base for K then {h,- ®k;[1<i<m,1<j Sn} is

a base for H®K .

An informal abstraction for H ® K can be constructed by the following properties it

has:

12

1. Al ® k)= (Ah)®k, =h, ®(Ak,), forall AeC, hy e H ,k €K,
2. (W +hy)®k; =(hy @k)+ (hy ®k,), forall e H, hyeH , k €K,
3.0 @k +ky)=(h ®k))+(h ®k,), forall e H, keK , k, ek,

For state vectors u and w there are several ways to denote the tensor product u ® w:
u®w:|u>®|w>:|u>|w>:|uw>. (2.18)

Most generally, a quantum register is a collection of n qubits, each with their individual

computational basis of B, = {| 0>, 1>} for 1<i<n, which spans their individual state spaces.

Then the state of the overall system lies in a 2" dimensional Hilbert space H, which is the

tensor product of these two dimensional Hilbert spaces H,,H,,..,H, for each individual qubit.

The computational basis of this system isB={b ®b, ®..®b, | b, € B;,1 <i<n}, hence it
contains 2" states of the form ‘{O,l}">. The general state of the system is described by a unit

ket vector which is a linear combination of the members of this computational basis. The
probability of observing the system in a base state is again related to the square of the

amplitude for that base state in the general state vector.

In particular, a quantum register of two qubits is a system whose state lies in a 2° =4
dimensional Hilbert space. The computational basis for this 4-dimensional Hilbert space is

foay” = {Joo)

1 1>}, where the base states are given by

01),

10),

1
|OO>:|O>®|O>:L1J®L1J: 8 , (2.19)
0

13

} : (2.20)

0

10)1)@0)[?}@@{? , (2.21)
;)

|11>:|1>®|1>=M®mz g (2.22)
1

The general state vector of a quantum register of two qubits is therefore a linear

combination of these four base states. Once again «,a,,,,a, are complex numbers and

since kets of unit length are preferred, the sum of their squares |0¢0|2 —|-|051|2 —|-|052|2 + |053|2 is

equal to one.

X

) =] 00) + & [01) + ar, [10) + a3 1) = 2 : (2.23)
a3

lto|” +ea|” + ||+ =1 (2.24)

The state of the two-qubit register can be observed to be in one of the four base states

with the following probabilities.

2 (2.25)

b

probability of observing 00: P(| OO>) = |a0

2 (2.26)

2

probability of observing 01: P(| 01>) = |a1

14

probability of observing 10: P(|10)) = |, |*

, (2.27)

probability of observing 11: P(|1 1>)= |053|2 . (2.28)

Let us now consider a register of two qubits, whose individual states are known to be
|l//> = a0|0>+a1|l> and |9> = ﬂ0|0>+ ﬂ1|1> . Then the state of the overall register |w0> is given

by the tensor product of the two individual states as in (2.29).

v) ®]6) = (e |0) + en 1))@ (5, 0) +] 1)

Py

a,p (2.29)
a1y

o fy

=0y Bo|00) + o 3| 01) + a1, By | 10) + ¢, B[11) =

The reader should be able to generalize the constructions above to quantum registers of
larger size by the help of a straight analogy. As a last remark, we should note that it might be
impossible to represent the state of a composite system as the product of the states of the
individual components of it. Such states are called entangled. This issue will be examined in a
separate section. For now just consider the following state which is a well known example of

entangled states.

V)=

: (2.30)

—_— O O

2.3. The Time Evolution and Unitary Transformations

In order to understand how to store information into qubits, manipulate their content and

retrieve the useful data within them, we need to know in which ways the state of a quantum

15

system changes. In quantum mechanics the changes in the state of an isolated quantum system

which is not subjected to observation are closely related to the total energy of this system.

A Hermitian (self-adjoint) operator called the Hamiltonian (/) can be said to govern
the evolution of the state of a quantum system. The eigenvalues and the eigenvectors of the
Hamiltonian characterize the stationary energy states (or basis states) of the system, hence the
Hamiltonian reflects the dynamical properties of the system it belongs to. (This means the
Hamiltonian itself may be changing with time as the system changes.) The evolution is

described by the Schrodinger equation,
L d
zh5|l//>=H|t//>. (2.31)

where i =+/—1 and 7 is Planck's constant divided by 27 . It is common practice to write the

equation as in (2.32), where # is absorbed into the Hamiltonian A .

d
ZE|V/>—H|W>. (2.32)

This continuous picture of the time evolution can be transformed to a discrete picture of

the same phenomenon which is of more use for computational needs. Consider the general

solution to Schrodinger's equation which can be verified to be
[(e) ="y 0)), (233)

where c is an arbitrary constant. Then the state of the system at discrete time points ¢, and ¢,

can be related as follows.

ya)=e 0y (234)

16

Before proceeding we should refresh some basic linear algebraic facts. Recall that, those

values A4;,4,,.. which satisfy the equation A| a> = /1|a> for some vector |a> are called the

eigenvalues of the operator 4 and those vectors |a1>,

a, >, which satisfy A| a> = /7,l.|a> are
called the eigenvectors of the operator 4 corresponding to the eigenvalue A,. An important

representation theorem, known as spectral decomposition, makes use of these definitions to

represent a normal operator 4, in the form z&i|X ; ><X :|» where a normal operator is one that
i

satisfies 44" = AT4. Then any function of f (A) of the operator 4, can be rewritten as

fla)=Xr (/1,-)|X ,-><X ; | Those matrices which satisfy 4" = 4 are called Hermitian, and

they are trivially normal. The decomposition 4 = Zﬂi|X ; ><X ,-| leads to a form 4 =UAU f

where A is a diagonal matrix with eigenvalues A, of 4 on its diagonal entries and U is a

matrix whose columns are the normalized eigenvectors of 4 in the corresponding order. Since
a Hermitian matrix is known to have a complete set of orthonormal eigenvectors, it turns out

that the columns of U are orthonormal. Hence, it exhibits the interesting property

i i e .
UU =U U =1, which means U is a unitary matrix. We will soon be listing some properties
of unitary matrices, for now let us return to the original discussion. (For more linear algebraic

topics, see [8].)

By the spectral decomposition theorem, we can write e = e"’h|x1 ><x1 | +.+ e’ﬂ”|xn ><xn |
and (eiA)T = eii;“1|x1 ><xl | +..+e_"ﬂ”|xn ><xn| for an ordinary operator 4. If 4 is a Hermitian
operator then its eigenvecors are orthonormal (i.e. |x,- ><x ; ‘ =0, for i# j) and hence it turns

out that (e[A)(eiA)T = (eiA)T (eiA): I . Therefore the term e is equivalent to a unitary operator

if 4 is Hermitian. Then the term e #(271) in (2.34) is indeed equivalent to a unitary operator

which is a function of ¢, and ¢,:

17

Ut t,)=eM2n) (2.35)
Then the equation in (2.34) becomes,
|v2) =U.6) |y) (2.:36)

This result is important in several ways. First of all, it establishes a one to one
correspondence between the continuous (which employs the Schrdodinger equation and
Hamiltonians) and discrete (which employs unitary operators) interpretations of quantum
dynamics. So it can safely be stated that closed quantum systems can be transformed only via
unitary transformations. However, quantum computation requires opening up the closed
systems to retrieve the information within them. Hence, the continuous evolution governed by
the Hamiltonian operators and the Schrodinger equation is not the only way the state of a
quantum system changes in time. In cases where a quantum system is measured, the state of
the system is said to perform a discontinuous and sudden jump into a basis state depending on
the result of the measurement. The nature of quantum measurements and unitary

transformations will be examined in the following sections.
2.4. The Unitary Transformations and Quantum Gates

A classical computational device can be said to be made up of logic gates and the links
between them. Each logic gate is assigned a functionality according to which it transforms its
inputs to produce the desired outputs. Every classical computational process should be
expressible in terms of these unit functionalities. It is possible to develop an analogous

formalism for quantum computation which employs the concept of quantum gates.

A quantum gate U is simply a linear operator whose input |l//1> and output |w2> are

members of the same Hilbert space and when U is applied over |w1> the result is |w2>. As it

was shown in the previous section the transformation, applied to the input ket vector to

18

produce the output ket vector, has to be a unitary transformation. This is the only constraint on

quantum gates. Therefore, any m by m unitary matrix defines a valid quantum gate on an m-

dimensional Hilbert space. The action of the gate U over the state vector |1,//1> is simply

denoted by the product of the matrix and the state vector.
Uly,) =|w2) (2.37)

A unitary operator is also linear on the bra vectors, although this is sometimes hard to

visualize. The effect of a general linear operator U, on a bra vector can be defined as in (2.38).

o=ty @39)

Then, the following equalities become straightforward.

(w|u|2) =(w.u2)=(UTy.2) (2.39)

It is useful to state that every unitary matrix U has an inverse, which is in fact equal to

the adjoint of it, UU "—UTU=1.The adjoint operator U T is also unitary, therefore it defines

another valid quantum gate.
Al (2.40)

Then, every quantum computational process can be inverted. The issue of the
reversibility of quantum computation will be handled soon. For now, let us examine some
further features of unitary operators. It can be derived from (2.40) that, a unitary operator

preserves the inner products and hence the lengths and of the vectors on which it is applied.

For unitary operator U and the vectors |v> and |w> let U |v> :|v'> and U |W> :|w'>. Then the

inner products <v’|w’> and <v|w> are equivalent by

19

<v’| w’> = (U|v>)T (U|W>)= <v|UTU| w> = <v|w> (2.41)

In particular, if |v> = |W> we see that the length of a vector |v> is also preserved under U.

=Y [v) =) = V) (2.42)

The reader should also note that two unitary operators U and V can be taken to be
equivalent if they differ only by a multiplicative constant A =e'?. Let ¥ = AU . U maps the

state |w> to U|w> while ¥ maps the same state to V| w> = /1U| w>. Since U|w> and /1U|w>

represent the same state U and V are said to be equivalent.

In general, a quantum gate with n-bit input can be modeled by a 2" by 2" unitary matrix.
This matrix acts linearly on each basis vector of the 2" dimensional Hilbert space. Hence
describing how a quantum gate effects the 2" members of the computational basis is sufficient
to describe its effect on the overall space. If the effect of an n-bit quantum gate U on the 2"

members of the computational basis is given as |k'> =U | k> for , 0<k<2"—1 then the

unitary matrix U describing the gate is given by the following equation.

2

U= |k')k| (2.43)
k=0

In circuit notation, a quantum gate is symbolized by a box with the name of the gate as
its label. The straight lines from left to right should be taken to symbolize the passage of time

rather than physical wires. (Other elements of the circuit notation will be introduced as the

need arises in the context.) The computation U | l//1> = |l//2> can be represented as in Figure 2.3.

20

|W|>— U —["T|W[>:|Wj>

Figure 2.3. The circuit representation for the computation U | 1//1> = |1//2>

The expression U V| 491> defines the state of a register which was initially at state |91> and

to which the gates V' and U are succesively applied. The circuit representation for this
computation is given in Figure 2.4. Care should be taken about the order of the operators being

applied.

oy—y V U |—uv

0

Figure 2.4. The circuit representation for the computation U V| 91>

Sections 2.4.1 and 2.4.2 will introduce the basics of single and multi-bit quantum gates.
The issue of reversibility is discussed in Section 2.4.3 and the issue of universality for

quantum gates is discussed in Section 2.4.4.
2.4.1. Single Qubit Quantum Gates

A single qubit quantum gate U is simply a unitary mapping defined on the two
dimensional Hilbert Space, H,. Its linear effect on the computational basis has the following

form,

U[0) = al0) +4{1) (2.44)

U|1) = |0) +d|1) (2.45)

21

Then its effect on a general state vector,

1//> = a|0> + ﬂ| 1> , can be shown as,

Uly)=aU|0)+ BU|1)
= a(a|0) +[1))+ B(c[0) + d|1)) (2.46)
= (aa + fc)|0) + (ab + Bd)|1)

This operator can be represented by a 2 by 2 unitary matrix as in (2.47). Note the relation

between the columns of the matrix and the equations in (2.46).

U= a ¢
=1, 4 (2.47)

Hence, the product of the matrix and the state vector is another way to formulate the

effect of the operator on the state of a qubit.

Uly)= {Z 2}{;} - {ZZ: g :J — (caa+ fe)0) + (b + fd 1) (2.48)

The Bloch sphere formalism can be useful to visualize the effect of a single qubit
operator. We had seen that the state of a qubit could be represented as a point on the surface of
the Bloch sphere. The application of a unitary operator moves this state to another point on the
surface. Then the Bloch vector can be said to be rotated about an axis » and through an angle
¢ by the unitary operator. This picture will soon be useful to define how to implement an

arbitrary unitary operator.

Let us now consider some of the most fundamental single-bit quantum gates in more
detail. The Hadamard gate must be the most famous quantum gate and the Pauli operators
should be the most useful ones to help our intuition. Let us begin with the Hadamard gate or
the Walsh-Hadamard gate as it is sometimes referred. (The Hadamard gate is often symbolized

by the capital letter H, which had been previously used to denote the Hilbert spaces and the

22

Hamiltonian operators. The reader should be able to distinguish between these, with the help

of the context.)

1o
H:ﬁ[l _J (2.49)

When applied to a base state, the Hadamard gate generates an equal superposition of the

members of the computational basis. Measuring these states returns |0> with probability 0.5

and returns |1> with probability 0.5.

R N N Rt 250

H|1>=L2B _ﬂﬂ:%{_ﬂ:%w)—%m (2.51)

Many quantum algorithms start with the preparation of the equal superposition with help
of the Hadamard gates. After this step, a so-called parallel computation can be carried over
each base state. The effect of the Hadamard gate can be visualized as a shift in the

computational basis. Or in other words, the Hadamard gate defines an alternative basis for

—>} where |+> =H | 0> and |—> =H | 1>. (Note that the

computation (the Hadamard basis): {]+>

states |+> and |—> are the poles on the x-axis of the Bloch sphere.) In order to return to the

original basis, again Hadamard gates should be used. Note that A is both Hermitian and

unitary so H> =1 .

An interesting group of one-bit quantum gates is called the Pauli matrices or Pauli spin

matrices. These gates are the Pauli X (o,), Pauli Y (o) and Pauli Z (o).

23

JO L e L I R
lro] oo T o -1 (2:32)

The Pauli X operator, in particular, can be seen as an analogue of the classical NOT gate
when it is applied to a base state. When it is applied to a superposition state it simply swaps

the amplitudes for the base states as a result of linearity.

X|0) = ﬁ ;m = m =|1) (2.53)

wi=[7 0] lo) 1 a3

The Pauli Z operator is also known as the phase-flip gate. It applies a phase factor of -1

to the state |1> and leaves |O> unchanged. Its effect on a general state can again be deduced

from linearity.

Z|0) = B _ﬂm = [é =10) (2.55)
avly T

'1o0] 1 [1] 1[1]
1011 [1] 11
zl-)= o 17| J = _ZL_ =|+) (2.58)

Together with the 2 by 2 identity matrix, the Pauli matrices form an orthogonal basis for

the space of 2 by 2 matrices. So, any two-dimensional square matrix U can be uniquely

24

defined in the following form where u,,u ,u,,u, are complex numbers and / is the two

dimensional identity operator.

U=ul+uX+uY+uZ (2.59)

The Pauli X, Y, Z operators are so called because when they are exponentiated they

define the rotation operators R,,R,,R, about the x-, y-, z-axes of the Bloch sphere. Let us

consider the power series expansion of e'*! for an arbitrary operator 4 and the real angle 8.

. 2 . 3 , 4 . 5
ei€A=I+i0A+(leA) +(149A) +(z<9A) +(19A) N

! 3! 4 5! (2.60)
2 3 4 5)
:I+i6A—(9A) —i(eA) +(0A) +i(9A) +
2! 3 4 5!
Now consider the case 4> =1 .
2 3 4 5
e"gA:I+i9A—91—ZHA 0’1 0°A4
3/ 4/ 5/
2 4 3 5
=(1—ﬂ+ﬂ—...j+l}4(9—0—+e——”} (2.61)
2/ 4/ 3/ 5/
=cos Ol +isinBA

So depending on the fact that X*> =7, Y*=7and Z? =1, we define the rotation

operators Rx,Ry,RZ as follows

o) 0 0 cos— —isin—
RX(G)E e =cos—I—isin—X = (2.62)
2 2 —isinE cos—

2

25

e 0) COSE —isinE
Ry(é’)z e =cos51—151nEY= o g (2.63)
1Sin— cos—
. 0 0 e 0
R.(0)= e%? =cos~T—isin"7 = . , 2.64

The operator R, (@) is defined to be the one which rotates the Bloch vector about the axis
n and through the angle . Let us consider R, (72') as an example. It turns out that the Pauli X

operator is equivalent to a rotation of 7 radians about the x-axis.
cos— —isin— 0 —i
R,(7)= 2 2= {_ . } =—iX (2.65)

The rotation operators are important because if we had them for arbitrary real values of
¢ then they would provide a basis on which we could build an arbitrary single qubit operator.
There are several theorems stating this fact. One of them is the Z-Y decomposition theorem,

which states that an arbitrary unitary operator U on a single qubit can be represented as
U =e“R.(BR,(r)R.(5), (2.66)

where «,f,7,0 are real numbers [4]. In practice, we can only have the approximations of
some unitary operators in this way, since we are restricted to the rational approximations of
the real values. Here are two other one-bit unitary operators that will be of use in the following

sections; the phase gate U and the 7/8 gate U /8 -

phase

fto T oo
Uphase_ 0 i > Uﬁ/S_ 0 61% (267)

26

2.4.2. Multiple Qubit Quantum Gates

A quantum gate with n-bit input is a unitary mapping defined on the 2" dimensional
Hilbert space. The action of such a gate can be defined by its effect on the 2" members of the

computational basis. A unitary matrix is often used to model this action. Figure 2.5 contains

the circuit representation for an n-bit operator U acting on a register l//ll/lz..l//n> of n qubits.

[y)
|W3>—+ U —

|W”>_' | "

Figure 2.5. n bit operator U acting on the register t//lwz..l//n>

An operator acting on a multi-particle system is called decomposable if its action on its

input can be represented as the product of its action on the individual components of the input.

Let U be a decomposable operator acting on a two qubit register such as y = |1//1y/2>. Then

there exist the single qubit operators U; and U which satisfy the following equalities

Uly)=U\|y) @ Us|w) (2.68)

U=U,®U, (2.69)

Then the two circuits shown in Figure 2.6 are equivalent and they both represent the

same computation, U| l//> = U1|l//1> ® U2|l//2> .

Ly,) [y,) Ui
U

lvy)—— — n) U, b——

Figure 2.6. The alternative circuit representations for U | w) =U 1| l//1> QU 2|l//2>

27

As another example, let V' be a two bit operator which leaves the first bit unchanged and
acts as a NOT (Pauli X) gate on the second bit. (Note that applying identity operator to a bit is

equivalent to leaving it unchanged.) Then we have

0 100
V=I®X= ®01—1000 2.70
- - 1ol oo o0 1| (2.70)
0 0 10
The effect of V" on the computational basis is defined by
]00)=|01), ¥|01)=|00), V[10)=|11), V|11)=|10). (2.71)

Multi-bit Hadamard gates are commonly used in the quantum computation literature. In

general, an n-bit Hadamard gate is given by H, =®H where H denotes the familiar one-bit
1

Hadamard gate. When applied to a base state |k>, H, generates an equal superposition of the

2" members of the computational basis with varying relative phases depending on the initial
n-1
state as shown in (2.72) where k- j =Yk, - j; .

i=0

1

2"
H |k)= ~1)%7]j 2.72
) \/2—20(V1) (2.72)

Most of the interesting multi-bit quantum gates, including the CNOT and the Toffoli
gates, are not decomposable. Their effect on a component of the input cannot be defined

without reference to the other parts of the input. Let us examine some of these gates.

The controlled-NOT or CNOT gate is a two qubit gate where the input register can be

labeled as |control>|targ et> . If we consider the computational basis, the effect of the CNOT

28

gate is like a conditional statement: if the control bit is in state |1> then apply NOT gate to the

target bit. Hence it performs the transformation |control>|targ et> - |control>|targ et® control>

where @ is the logical XOR. The circuit representation for CNOT is shown in Figure 2.7.

|control} |control}

|target) .~ |target €@ control)

Figure 2.7. The circuit representation for the CNOT gate

The effect of CNOT on the computational basis is given by the following equations.
CNOT|00) =|00), CNOTI|01)=|01), CNOT|10)=|11), CNOT|11)=|10) (2.73)

Then, by equation (2.43), the matrix representation of CNOT can be calculated as

100 0
0100

CNOT =[00)(00|+|01)(01|+[11)(10|+[10)(11| = 00 0 1 (2.74)
0010

For an arbitrary single-bit quantum gate U, we can define a two-bit controlled-U

operation. Then in terms of the computational basis, the action is defined by the conditional
statement: if the control bit is in state |1> then apply U to the target bit. It is also possible to
define the zero-controlled-U operation in which case the action on the computational basis is

defined by the conditional statement: if the control bit is in state |O> then apply U to the target

bit. The circuit representations for controlled-U and zero-controlled-U operations are given in

Figure 2.8.

29

|control) T |control) T

target) U target) U

Figure 2.8. Circuit representations for controlled-U (on the left) and zero-controlled-U

Let us now consider the two-bit swap (S) operator whose effect on the computational

basis is simply swapping the states of the input bits. Hence, we have
5|00) =|00), S|01)=|10), S[10)=|01), S|11)=]|11) (2.75)

Then the unitary matrix for § is given by

S =]00)(00[+[01)(10|+|10)(01]+[11)(11] = (2.76)

S O O =
oS = O O
S O = O
- o O O

Another interesting multi-bit quantum gate is the Toffoli gate which acts on a register of

three qubits |control]>| control 2>|targ et> . The first two bits are the control bits and the last bit

is the target bit. The effect of the Toffoli gate on the computational basis is defined by the

conditional statement: If both of the control bits are in state |1> then apply NOT to the target

bit. The circuit representation for the Toffoli gate is given in Figure 2.9.

|control 1)

|control 2)

|target) &

Figure 2.9. The circuit representation for the Toffoli gate

30

Note that it is possible to define operators with arbitrary number of control bits and
arbitrary combinations of zero and one controls. In particular, the Toffoli gate is nothing but a
double controlled not gate. The Fredkin gate on the other hand implements controlled swap
operation and hence it is a three-qubit operator with single control bit. Below are the matrix

representations for the Toffoli (U) and Fredkin (U)gates.

(2.77)

S O O = O O O O
S O = O O O O O
-_ o O O O O O O
S = O O O O O O
~
I
S O O = O O O O
S = O O O O O O
S O = O O O O O
—_ O O O O O O O

S O O O O O O =
S O O O O O = O
S O O O O = O O
S O O O = O O O

S O O O O O O
S O O O O O = O
S O O O O = O O
S O O O = O O O

2.4.3. The Reversibility of Quantum Gates

A computational process is said to be reversible if its outputs can be used to uniquely
determine its inputs. Such a process is one where there is no information loss. We are
interested in reversible computation because the quantum gates have to be reversible as a
result of unitarity and hence only those computational processes which can be implemented

reversibly can be applied to quantum computers. In general, a quantum algorithm can be

conceived as a unitary transformation U taking the state |input> to the state |0utput> . Then we

also have U which satisfies U T|0utput> = |input>.

The initial interest in reversible computation has much different roots. Most probably, it
has developed in order to find a way of limiting the energy consumption of the computational
processes since the laws of thermodynamics indicates that erasing every bit of information
requires some energy dissipation (Landauer's principle) and the standard computational
processes are in no way reversible. Note that none of the classical gates AND, OR, NAND are

reversible and hence each of them requires some energy to be performed.

31

No matter what motivates it, there is a literature about classical reversible computation
which puts it forward that every classical computational process can be implemented in a
reversible manner. A simple proof of this fact can be built on the idea that any irreversible
operation can be made reversible by additional input and output ports. In general, an
irreversible operation with » inputs and m outputs can be implemented reversibly with n+m
inputs and outputs. (Consider the classical AND operation which has two inputs x, y and one

output, x A y. This gate is surely not reversible. The reversible AND operation with three
inputs and three outputs can be implemented by a gate which performs x,y,z > x,y,z@xAy

with input x, y, 0.) Then any classical circuit can be transformed to a reversible one by just
replacing the irreversible gates with their reversible counterparts. (There is, however, one
extra issue here. There may be supplementary bits used in the computation which do not
appear in the inputs and outputs. We name them ancilla bits. A reversible computational
process needs to restore the initial values of these bits after the necessary computations are
made. This task is known as uncomputation.) A more straight way to show the same result, is
of course demonstrating the universality of 3-input nonlinear reversible gates (such as Toffoli

and the Fredkin gates) for classical computation. We will skip this until the next section.

Universality of reversible computation is an important result for quantum computation
because any classical subroutine in a quantum algorithm has to be implemented reversibly. For

a more detailed discussion the topic, please refer to [4, 9, 10].

2.4.4. The Universality of Quantum Gates

In classical computation, a set of gates or operators is said to be universal if its members
are sufficient to compute a complete set of the classical boolean functions and thus to
construct general combinatory circuits. If a computational device supports a universal set of
operations, than it can be said to support a full range of classical operations. The sets {AND,
NOT}, {OR, NOT} are among the well known examples of the universal sets of operations for

classical computation.

32

Let us consider the Toffoli gate that was introduced in Section 2.4.2. The lines below
show that the operations in the universal set {AND, NOT} can be implemented with use of a

Toffoli gate.

Ur

1,1,x> =

L1~ x) (2.78)

Ur

X, y,0> =|X,),X A y> (2.79)

Note that (2.78) and (2.79) demonstrate the universality of Toffoli gate for classical
computation. (Hence, they also construct a proof for the universality of reversible
computation.) Then, it can be stated that a quantum computer which supports the Toffoli gate
can compute the complete set of the classical boolean functions and hence it can implement

any classical algorithm.

On the other hand, a set of quantum gates is said to be universal if its members are
sufficient to construct quantum circuits that can approximate any unitary operation to arbitrary
accuracy. There are several important results related to the universality of quantum gates. Here
we will briefly mention some of these without dealing with how they are derived. For a

detailed discussion of the topic, see [4, 11].

The first result to be mentioned here states that any unitary matrix can be represented as
a product of two-level unitary matrices where a two level unitary matrix is one which acts
non-trivially only on two or fewer vector components. (At most two of the rows and at most
two of the columns differ from those for the identity matrix of the same size.) Then two level

unitary matrices are said to construct a universal set of operations for quantum computation.

The set of single qubit gates plus the CNOT operation can be used to implement
arbitrary two level unitary matrices. Hence, single qubit gates plus the CNOT operation is

another universal set for quantum computation. This set is more restricted but it is still infinite.

33

A finite set of gates cannot implement arbitrary unitary gates exactly, however, there are
such sets that can be used to approximate any unitary operation to arbitrary accuracy.

Hadamard, phase, CNOT and 7/8 gates construct a universal set in this sense. Another set

with the same property contains the Hadamard, phase, CNOT and Toffoli gates. It should also
be stated here that not all of the arbitrary unitary gates can be approximated by circuits of

polynomial size.
2.5. The Quantum No-Cloning Theorem

We have seen that the state of a quantum system evolves only according to unitary
transformations. It is the linear nature of these unitary transformations out of which, one of the
most interesting results of quantum mechanics is immediately derived. This result is known as
the no-cloning theorem and is of extreme value for quantum cryptography and quantum error

correction.

Consider a quantum system whose state lies in n-dimensional Hilbert space H,, where

n > 1. Then the no-cloning theorem simply says that an arbitrary state of such a system cannot

be copied.

The theorem is derived as easily as it is stated. Let us suppose that the cloning mentioned
above was possible. Then there exists a unitary operator U which acts on two registers of same

size and whose action is just copying the state of the first register into the second. Suppose

|w> and |g0> are two distinct states valid for the first register. Then we should have

Ulw)|0)=[wily) (2.80)

Ulp)0)=| o) o) (2.81)

Let us consider the inner products side by side

34

(0llelvTU]w)]0) = o) o)y v | (2.82)

Then,
(ely)=(o|w)) (2.83)

Then it is either the case that (p|y)=0 or (p|y)=1. (p|y)=1 can hold only if
lw)=|gp), since |) and |@) are assumed to be distinct it should be the case that (@[y)=0.
This holds only if |y) and |¢) are orthogonal. Then two distinct arbitrary states like |y) and
|@) can be copied by the same unitary operator only if they are orthogonal, which means that

for n>1, no unitary operator can copy arbitrary states in H,. Note that there exists only one

distinct state denoted by the unit ket vectors in H,. Hence, the quantum no cloning theorem

excludes the systems whose state lies in one dimensional Hilbert space.

In Section 2.4, we had stated that a quantum computer which supports the Toffoli gate
can implement any classical algorithm. Now, is it not contradictory that quantum computers
cannot make copies of the arbitrary states of a register while this is just an ordinary task for
classical computers? The answer is no, since the task of copying the quantum mechanical
information is not the same as copying the classical information. When implementing a
classical algorithm with a quantum computer, it is only the base states of registers to be copied
and not the superpositions of them. And since the base states are orthogonal to each other,

there are unitary operations which achieve this task. The CNOT gate for example can copy the

state of a one bit register which is known to be in a base state |O> or |1> .

CNOT|0,0)=[0,0®0)=|0,0), (2.84)

CNOT|1,0)=[10®1)=]L1) . (2.85)

35

It should also be stated that imperfect copies which are good for some measure of

interest can be built. For information about quantum copying in this sense, please see [5].
2.6. The Measurement

In the previous sections, it was stated that the state of a closed quantum system evolves
only according to unitary transformations, however it was said, when such a system is
measured, the system no longer remains closed so its state is governed by different rules. In
this section, we will briefly see what these rules are. We will introduce the measurement
operators and this will help us to see with which probabilities the different outcomes of a
measurement occur and what happens to the state of a measured system. This is of course
what meets the practical computational needs. [5] presents useful sketches of various
interpretations of quantum measurements and for a quantum mechanical point of view see

[12].

A collection {M,} of measurement operators, one for each possible outcome, describes

the nature of a quantum measurement. Each of these operators acts on the state space of the
system to be measured and as a collection they have to satisfy the completeness condition

given below.
ZM,TMi =1 (2.86)

If |1//> is the state of the system to be measured, then the probability that the outcome i

occurs is given by
p(i)=(w|Mfp|y) (2.87)

These probabilities sum up to 1 by the linearity condition:

36

5600~)= o | S0,)=o) 289

The state of the system after a measurement where the i'th outcome is observed is

Mi|'/’>

T 2.89
Jwialy) 25

It must be clear that the completeness relation does not define a unique set of
measurement operators. The set to be used should be selected according to the type of

information expected from the results of the measurement.

In particular if we are to measure a qubit in the computational basis, then there are two

possible outcomes,

O> and |1> The operators defining this measurement are M, = |0><O| and
M, = |1><1| (Note that these operators satisfy the completeness condition.) Then if the qubit is

in state |1//> = a| 0> + b| 1> before the measurement, the probabilities for observing |0> and |1>

are calculated as follows.

: (2.90)

R N P

ORI T b e W 1)

If |0> is observed, the state of the qubit collapses to |0> ,

Moly) [(1) g m :m o) (2.92)

Jwisgly)y N

37

and if |1> is observed, the state of the qubit collapses to |1>

0

M|y _{0 1m_m|l> (2.93)

=]

Sy b

The same reasoning explains how we can make measurements of the state of a qubit in

any orthogonal basis. If, for example, we want to measure the state of a qubit in the Hadamard
basis, then we choose M, :|+><+| and M _ :|—><—| as the measurement operations. These
measurements are defined by orthogonal projection operators and hence they are called
projective (or Von Neumann) measurements. For computational concerns, most of the interest

is concentrated in projective measurements, so the measurements which are not projective are

not considered here. See, however [4] for a detailed discussion of the topic.
2.7. Entanglement

We had seen that the state space H, of a composite system is defined by the tensor

product ® H; of the state spaces H,; for the individual components of the system. The state
v, of the system is said to be decomposable if it can be represented as a product ®y/, of the

members y; of the state spaces H,. Notice however that not all members of H, are

decomposable. Those states which are not decomposable are called the entangled states. As
one of the simplest but the most famous example to the entangled states, we can consider the
following two qubit register sate which is a member of the family of states known as the Bell

states or the EPR (Einstein, Podolsky, Rosen) pairs.

1
1[0
v)=Zlo (2.94)

1

38

To show that |1//> is entangled, we simply need to show that it cannot be decomposed
into two single qubit states. Let us suppose it was decomposable and let |l//> = |1//1 >| l,y2> where

|t//1>=a|0>+b|1> and |y/2> =c|0>+d|1>. Then we have

_|% el ad
=1, 12|, 17| . (2.95)

But then we have ac =bd = 1/ V2 and ad =bc=0 which is a contradiction since we
have ac=1,ad =0,bc =0,bd =1 which implies (ac)(bd)# (ad)(bc). Therefore, we can
conclude that there are no such single qubit states |1,y1> and |1//2>, for which it holds that

|ly> = |w1 >| 1//2> . So |w> is not decomposable and hence it is an entangled state.

The circuit shown in the Figure 2.10 generates the four Bell states | ﬂ00> ,

Bor)-

and | ﬂ11> when it is initialized with the four members of the computational basis |00> ,

Puo)
01),

|10> and |1 1> respectively. Note that |y/> corresponds to the input |00> hence it is equivalent

to |ﬂ00>.

) H

|J'I|rj'LI.)

) Ny

Figure 2.10. The circuit that generates the Bell states when initialized in the basis states

Then the four Bell states are

39

1 0 1 0
ﬂ—loﬂ—llﬁ—loﬁ—l : 2.96
00_\/50’ 01_\/51’ 10_\/5 0’ 11_\/5_1' ()
1 0 -1 0

All of the above states are entangled and they are the origin of the many interesting ideas

and discussions such as quantum teleportation and super-dense coding.

2.8. Quantum Computational Complexity

In order to develop an understanding of the power of quantum computation, there is the
need for a theory of quantum computational complexity which defines complexity classes for
quantum computation and relates them with each other as well as their classical counterparts.
Although the theory is relatively new, several important results have already been established.
Here we will introduce two of the most important quantum complexity classes and mention

some of the important results in the field without giving details of their derivation.

Most of the researchers working on quantum computational complexity use a quantum
analogue of the Turing Machine as a universal model of quantum computation after the
introduction of the first universal quantum Turing machine (QTM) by Deutsch [13]. The QTM
model proposed by Bernstein and Vazirani was the first which can simulate any other QTM
with only polynomial slowdown [14]. Definition of several such models can also be found in
[9, 15]. The quantum circuit model can be shown to be equivalent to QTM models in terms of
the computational power [16]. Hence in the following parts we will continue to refer quantum
circuits rather than QTMs. (A third equivalent model is that of quantum computation by

adiabatic evolution, see [17].)

The most trivial quantum complexity class is EQP (exact quantum polynomial time),
which contains those problems that can be solved to certainty by quantum circuits of

polynomial size in the worst case. As any classical circuit can be implemented as a quantum

40

circuit with at most a polynomial overhead, we can safely state that EQP is at least as large as

the classical complexity class P.

The most important quantum computational complexity class is BQP (bounded-error
quantum polynomial time). A language L = X" (X~ denotes the set of strings that can be
written with the symbols in the alphabet X.) is said to be in BQP if and only if there is a
quantum circuit C of polynomial size which decides L in the sense that, for any xe ", C
accepts x with probability at least 2/3 if xe L and it rejects x with probability at least 2/3
if x ¢ L. In practice this amounts to running the circuit C on the input x. After the computation

the decision, whether x € L or not, is encoded into one of the output qubits: a| 0> + b| 1>. We

measure this bit and take, for example,

0> as accept and |1> as reject. Then every time C is
run on x € L, it should be the case that |a|2 >2/3 and every time C is run on x ¢ L, it should

be the case that |b|2 > 2/3. The probability of error can be reduced to an arbitrarily small value

&, by running the circuit O(Zog 1/ 5) times and taking the majority of the results. Hence, the

problems in BQP are efficiently solvable on a quantum computer. By its definition BQP is at

least as large as EQP. Then we have the following chain of inclusion relations.
P c EQP < BQP (2.97)

A very important result states that BQP is contained in the classical complexity class
PSPACE [18]. Since it is straightforward that quantum computers are at least as powerful as
classical computers, we also know that BPP (bounded error probabilistic polynomial time) is

contained in BQP. Then we have another chain

BPP — BOP PSPACE (2.98)

It is not yet known whether any of these inclusion relations are strict. Hence if one could

show that BQP is strictly larger than BPP (or equivalently, that quantum computers can

41

effectively solve more problems than classical computers) then this will also provide a very
important result for classical complexity theory saying that PSPACE is strictly larger than
BPP and hence than P.

Another important class 1s BQNP, which is the quantum analogue of the classical
complexity class NP. A language L is said to be in BQNP if and only if, there is a polynomial
size quantum proof checker circuit C. For every x € L, there is a proof string y such that the

proof checker accepts the input x,y with probability at least 2/3 and for every x ¢ L and for
every y, the proof checker rejects the input x,y with probability at least 2/3. A quantum

analogue of the Cook-Levin theorem has been demonstrated by Kitaev. It states that the
problem QSAT (the quantum analogue of the 3-SAT problem) is complete for the BQNP class
[19].

When we assume there are no limits on the computational resources and that we cannot
implement arbitrary complex numbers as amplitudes, the set of problems that can be solved on
a quantum computer is exactly the same as that for a classical computer. So the quantum
computers do not violate the Church-Turing thesis stating that any function that can be
computed by any means can also be computed by a Turing machine. However when the
efficiency is taken into the consideration quantum computation constructs a though challenge
for the so called strong version of the Church-Turing thesis stating that any computable
function can be computed on a Turing machine with at most a polynomial increase in the

running time.

There are many other important ideas and results in the quantum computational
complexity domain. It is out of the scope of this work to mention all of them, however the
reader is encouraged to see [15, 20] and chapter 5 of [9] for a more detailed discussion of the

topic.

42

2.9. Quantum Algorithms

A quantum computer is not necessarily faster than a classical computer when performing
an ordinary task such as addition or multiplication. The superiority of quantum computers over
the classical ones depends on mechanisms such as superposition, interference and
entanglement. This superiority can be demonstrated by quantum algorithms which outperform
their classical counterparts. This is why most of the literature about quantum algorithms has
focused on these algorithms. So far, a few techniques are known to generate such algorithms

and yet it is not known whether there are other such techniques to be discovered.

We can categorize the quantum algorithms with respect to the nature of the problem they
are devised for and the qualitative measure of the performance gain they provide against the
classical algorithms. The first division is roughly between the conventional problems and
black box problems. A black box (or an oracle), in computer science, can be taken as anything
that computes and returns a function f{x) of any legal input x. A black box problem is one,
which differs from conventional problems by providing access to a black box in its definition,
with no care, and knowledge of what happens in it. Although they are artificial problems they
are of theoretical importance in computer science. The second division is between the
algorithms, which provide sub-exponential speedup over the classical algorithms and those,
which provide exponential speedup. Although a sub-exponential speedup is still of great
importance, it is only the exponential speedup, that demonstrates the full power of quantum

computation.

The best and probably the most famous example of sub-exponential speedup for a black
box problem is achieved by Grover's algorithm for unstructured search [1] which depends on
the amplitude amplification method [21]. This algorithm is applied to the cases where a linear
search seems to be the most rational classical choice and provides quadratic speedup over the
best classical algorithm for the same task. Grover's algorithm can be used to speed up the
solutions of NP complete problems, however neither this algorithm nor any other algorithm in

this category, provide meaningful results for the conventional complexity classifications.

43

One of the first problems for which quantum computers were shown to outperform the
classical computers is a black box problem (known as Deutsch's problem) about distinguishing
between constant and balanced functions [13]. It is for a generalization of this problem that
Deutsch and Jozsa suggested their famous algorithm which depends on the superposition and
interference principles and can easily be shown to be exponentially faster than any
deterministic classical algorithm for the same task [22]. However this algorithm is not superior

to a probabilistic classical algorithm, and hence its importance is limited.

Another important algorithm that provides exponential speedup for a black box problem
is Simon's algorithm, which is devised for the problem of finding the period of a 2 to 1
function [23]. This problem can be formulated as a hidden subgroup problem and Simon's
work on period finding can be said to provide the base on which Shor's factorization algorithm
is built. Unlike the Deutsch-Jozsa algorithm, Simon's algorithm is superior to all of its
classical counterparts, deterministic or probabilistic. Hence, in [24], Shor states that Simon's
algorithm provides "a moderately convincing argument that BQP is strictly larger than BPP,

although it is not a rigorous proof."

Probably the most celebrated achievement of quantum computation is the discovery of
Shor’s algorithm which provides exponential speedup (over the best known classical
algorithm) for a conventional problem, factorization [2]. The factorization problem is not
proven but highly suspected to be classically hard that even probabilistic classical algorithms
may not be able to provide polynomial solutions for it. Shor's algorithm, introduced in 1994,
shows that a polynomially large quantum circuit can solve the factorization problem
depending on the phase estimation technique which can be applied efficiently, with use of a
quantum implementation of the Fourier transformation method. This remains as one of the
most important results in the field of quantum computation, not only because the factorization
problem has many applications and hence is extensively studied in the classical domain, but
also because the methods used in this algorithm can be generalized to provide efficient
solutions for the samples of the other hidden subgroup problems [25, 26]. However, since the
complexity of factorization is not known, this algorithm does not provide means to understand

the relation between BPP and BQP.

44

It is out of the scope of this work to provide detailed discussions about all of these
algorithms. In sections 2.9.1, 2.9.2 and 2.9.3 below, we will provide sketches of Simon's,
Grover's and Shor’s algorithms to give an idea of the general characteristics of quantum
algorithms. The reader, however, is referred to [27] for a detailed analysis of each of the

algorithms mentioned above.

2.9.1. Simon's Algorithm for Period Finding

Problem: Given a black box U, which computes a function f': {0,1}" - {O,I}m (m=n)

that is known either to be one to one or to satisfy (2.99) for a non-trivial s, where @© denotes

bitwise addition modulo 2.

(x=y)A(fx)=f) o y=x@s (2.99)

The problem is to determine if /'is one to one, if it is not then to find 5. (We denote the

x)®|d))=|x)®|d @ f(x)))

functionality of Uy as a unitary transformation: U f(
Algorithm: Simon’s algorithm consists of the following steps.
n—1 m—1
Step 0: Initialize two quantum registers of n and m qubits in the states ®|0> and ® |0>
0 0

Step 1: Apply n-bit Hadamard gate H, to the first register of n bits. The overall state will
be as shown in (2.100). Note that this step puts the first register into an equal superposition of
the 2" principal states.

[Hn '%51| o>j ® ("%31| 0}) = [\/;_ Zgj k}} ® (mc:_ﬂ o}j . (2.100)

45

Step 2: Query the black box for the state prepared in Step 1. Then the next state is

UJ,[(LZ"ZT k>}@(”l%<)l|()>jj :ﬁjz;jk}@ f(k). (2.101)

2™ k=0

Step 3: Apply n-bit Hadamard gate H, to the first register again. The new state is

n

Ly =1)™/) ®|f(k)>} (2.102)

2" j=0

(H, ®1m)(;2”zl| k) ®| f(k)>} _ \/;_ 2;01[

2™ k=0

Now, if fis one to one then both the domain and range (mirror of the domain under f) of /'
has the same cardinality 2”. The state shown in (2.102) is a superposition of the members of

the Cartesian product of the domain and range of /. Therefore, 2"2" =2*" states of the form

| j>®| f (k)> are superposed, each with an amplitude equal to either 2% or —2%. Then, if the

state of the first register is measured after Step 3, the probabilities for observing each of the 2"

2
. 1
base states are equal and given by 2"+ —

1
= 2_” Hence the outcome of such a measurement

would be a random value between 0 and 2" —1.

If f'is not one to one, it satisfies (2.99). Then each state of the form | j>®| f (k)> has the

amplitude given by

2%((—1)'j “a(-1y '(k%)):zin((—l)" K (—1)UkRU)). (2.103)

If j-s#0 then the amplitude for | j>®| f (k)> becomes zero. So if fis not one to one,

then measuring the state of the first register after Step 3, returns a value of j such that j-s=0.

46

Step 4: Measure the state t of the first register.

lon) : H, |: | H, | M

Ur

|Um> E

Figure 2.11. The circuit representation for the iterative steps of Simon's algorithm

The circuit representation for steps 0 through 4 is shown in the Figure 2.11. If we run
this circuit succesively, until we observe n linearly independent values of 7, we get a system of

equations: ¢, -s=0,¢,-5s=0,..,¢, -5 =0. This is a system of » linear equations in » unknowns
and it can be solved for the n bits of s classically in polynomial time. Once we get the value

for s, we can query the black box for an arbitrary value v, between 0 and 2" —1 to see if
f(v)= f(v@®s). If this is not the case we can conclude that fis one to one and otherwise it

satisfies (2.99) for the value of s which has already been calculated.

The expected running time of the algorithm is O(n), however in the worst case it may
take too long to observe n linearly independent values for . A slightly modified version of the
algorithm can get over this problem by removing the observed values of ¢ from the initial

superpositions of the following iterations [28].

The best classical algorithm for the same task would require exponentially many queries
of the black box in terms of n. Therefore, Simon's algorithm is exponentially faster than the
best possible classical algorithm for the same task. Moreover, it is the first algorithm that
depends on the idea of realizing the periodic properties of a function in the relative phase
factors of a quantum state and then transforming it into information by means of probability
distribution of the observed states [27]. The ideas used in the period finding algorithm turned

out to be useful for developing algorithms for many other problems.

47

2.9.2. Grover's Algorithm for Unstructured Search

Problem: Given a black box Uy for the function f:{0,1]" — {0,1} such that there exists

exactly one x e {O,l}” satisfying f (x):l. The problem is to find that x. (We denote the

functionality of Uy as a unitary transformation: U , (| x> ® | d >) = |x> ® | de f (x)})

Algorithm: Grover's algorithm consists of the following steps.
Step 0: Initialize two quantum registers, o of n qubits and [of 1 qubit in the states

n—1
a= <§>|o> and B =|1).

Step 1: Apply Hadamard gate H to all of the qubits in the registers a and [. The

overall state will be as shown in (2.104).

VR
®
(=)
~—
N——
Ay
—_
~—
SN—"
VR
(@) Pk
B []
iz
=
~—
N—
—
[aw)
~—
S/l
=
~—
N—

= 2| 6)[0)=[1) (2.104)
1

Let X denote the set of all n-bit sequences x that satisfy f (x)zl and X, denote the

set of all n-bit sequences x that satisfy f(x)=0. We have XU X, ={0,1}" so that we can

rewrite the state in (2.104) as

J;T[fgjk>|o>—§ik>|l>]—f[Slolo)s Sl S-Sk} o9

xeXg xeXT xeXg xeXp

48

Step 2: Apply U ; on the registers a and [. The new state will be

J;—U[S0y Sljo)- Sl 2|x>|1>]

xeXg xeXp xeXg xeXT

-l 2o e+ e rte)- Slaie)= Slaie)| @100

xeXg xeXT xeXg xeXT
1
= 1 0)- 0)- 1
4/ 2n+1 ()CGZXLX>| > " xerlx>| > xerlvx>| > xerlx>| >]

If we consider the individual states of the registers & and £, we can rewrite the overall

state as follows

a®f= \/;_HLEZXP%XGZXL@]C@UOZ/_E']U' (2.107)

Now it is seen in the first register that the amplitudes for those bit sequences x that
satisfy f (x)zl are negative while the amplitudes for those bit sequences x that satisfy
f (x) =0 are positive. So the steps up to this point have created a difference between the states

we want to distinguish. However at this point the difference is not informative since the
difference in amplitudes is not reflected in the observation probabilities: any bit sequence has
equal probability of being observed. Hence, there is the need to transform the difference in
amplitudes into a difference in the observation probabilities. Since we want to learn which
particular bit sequences x satisfy f (x)zl we need to increase the probability of observing
those with negative amplitudes. This is done by the so-called “inversion around average”

operator (U). It simply maps each amplitude a; in the state vector to 24 —a, where A is the
average of all the amplitudes [5]. (Note that a, and 24 —a, are symmetric around A.) The 2"

by 2" U,, operator can be written as follows.

49

2z 2
2" 2"

UIA:i " é_lzn (2.108)
2" 2"

Step 3: Apply U, on the register o .

It is known by the problem statement that X contains only one bit sequence and X,

contains 2" —1 such bit sequences. Therefore, the average of the amplitudes in the state vector

for the register o before Step 3 is as follows, assuming large values for 7.

(—1)+ 2" 1
o2 A1 (2.109)
2" on

and it maps the amplitudes for the bit sequences in X to

2A—%<ﬁ- (2.111)

Hence if a measurement is made probability of observing the bit sequence x that satisfies
f (x): 1, is increased by almost nine times (assuming large n) after Step 3 while the

probabilities for observing the other sequences are relatively decreased. Step 2 and Step 3 can

be said to push the general state vector towards the solution of the problem by increasing the

50

amplitude of the solution state. (This is the technique known as amplitude amplification.)
However, the probability of observing the solution state is still small to be useful. It can be
increased more by further applications of Step 2 and Step 3 in a loop. (These steps are known

as Grover iteration.) The amplification factor changes at each iteration as the individual
. . T [n . .
amplitudes and their average change. It can be shown that 7 2" iterations would bring the

state vector to its optimal position and further iterations would destroy this optimality [29].

Therefore, the next step is a loop.

Step 4: Repeat Step2 and Step3 until the total iteration count is equal to the integer

4
nearest to —+/2" .

. T [: : o
If we measure the state of register o after [Z 2" —‘ Grover iterations, the probability of

observing the bit sequence x for which f (x) =1 is greater than 1— 1/ 2" . So we measure it.

Step 5: Measure the state of the first register o .

The circuit representation for steps 0 through 5 is shown in Figure 2.12. The probability

of getting a wrong answer after running this circuit is less than 1/ 2",

T L
’71 32" —‘ iterations

w—HH H r 1 H —
: ; Una| UL M ‘
w—JaHUH T ok u
0—HH F—— -

Figure 2.12. The circuit representation for Grover's algorithm

51

The same set of ideas can be applied to a more relaxed version of Grover's problem

where it is allowed to have m different bit sequences of length n that satisfy f (x)=1.

Assuming m is small with respect to 2", the problem can be solved (for one of the m solutions)

: . : . Vs /2” o o
by a modified version (which contains at most {Z —w Grover iterations) of the circuit in
m

Figure 2.12, with a probability of error at most m/ 2" . If m is not known to be smaller than

2" / 2, then it may be a good idea to enlarge the state space with the addition of 2" more bit

sequences, none of which is a solution.

The best classical algorithm for Grover's problem runs in 0(2”) time since it needs to

check every alternative bit sequence until it finds one which satisfies f° (x):l. Therefore

Grover's search algorithm which runs in O(\/ 2”) time can be said to provide a quadratic

speedup over the best classical algorithm for the same task. It was further shown that Grover's

algorithm is optimal for the unstructured search problem [30].
2.9.3. Shor’s Algorithm for Factorization

Given a composite integer N, find its prime factors. This is how the factorization
problem, one of the classics in computer science, is stated. So simple in appearance, this
problem is the subject of a broad range of studies and yet can be solved by the best known
classical algorithm only in exponential time. Although there is no evidence, there is a strong
belief that the factorization problem is classically hard. And this is why many security systems

depend on the practical impossibility of factoring large integers with classical computers.

A quantum algorithm known with its inventor’s name, Peter Shor, presents efficient
means of solving the factorization problem. Shor’s algorithm depends on some number
theoretic observations and the idea of period finding first introduced with Simon’s work. Here

we discuss the main aspects of Shor’s algorithm.

52

We begin with the number theoretic preliminaries. First we define the order of an integer

a in the base of a positive integer N as the smallest positive integer 7 such that a” = l(mod N)
(Note that 7 is at the same time the period of the function f, y (x) = ax(mod N)) If r is even

then we can write
a" ~1=(a" =1)a"? +1)= 0(mod). 2.112)

We know (ar/ ? —1);& O(modN) since r is the smallest positive integer such that
a” =1(modN). If (ar/ : +1)¢ 0(mod N) is also true, then it should be the case that the prime

factors of NV are distributed into the prime factors of (ar/ 2 1) and (a "2 4 1). Then we have

ecd(V, (@ = 1))> 1, (2.113)

ged(V, (@ +1))>1. (2.114)

This is the first step in constructing Shor’s algorithm. The second step depends on the
observation that the period finding algorithm of Simon can be generalized to any periodic
function, hence one can compute the order of an integer in any base efficiently on quantum
computers while no efficient classical algorithm is known for this task. Hence, Shor’s
algorithm for factorization consists of the following steps and only Step 2 requires quantum

computers to be efficiently implemented.

Step 1: Take a positive integer m at random. Compute gcd(N ,m). If gcd(N ,m) # 1 then

gcd(N ,m) is a non trivial factor of N, the algorithm terminates.

Step 2: Compute the order, P, of m in the base N. If P is odd or (mP/2 + 1): O(mod N)

then go to Step 1.

Step 3: Compute gcd(N , (mP /2 _ 1)), which gives a non trivial factor of N.

53

Step 1 and Step 3 can be computed efficiently on a classical computer with use of the

Euclidean algorithm for finding greatest common divisors [31]. Step 2 can be efficiently

computed by a quantum computer. The probability that P is odd is given by 1/ 2% and the

probability that (mP 2 4 1): O(mod N) can occur is given by 1/ 2% where £ is the number of

distinct prime factors of V.

Recall that finding the order of an integer a in the base N is equivalent to finding the
period of the function f, (x)=a*(mod N). Let us now see how the period finding problem

can be solved efficiently on a quantum computer. First we should introduce the quantum
analogue of the Fourier transform operation. The quantum Fourier transformation operation

Uopr On a quantum register of L bits acts on the computational basis as described in (2.115).

= (ak)/2L] .
UQFT|k>=Fj§)e 2) (2.115)

In [4, 5] circuit models are presented for implementing this unitary transformation on
registers of arbitrary size. Now we define the period finding algorithm which consists of the

following steps.

Input: A circuit component U , for computing a periodic function f defined on the set

of natural numbers.

Step 0: Prepare two quantum registers X and Y in the initial state |X >| Y > :‘OLX>

oLy>

where the lengths Lx and Ly are chosen so that 2™ is greater than the anticipated value of the

period and Ly is large enough that register Y can store vlues of function f.

Step 1: Apply U gy to the register X.

54

If we let O =2 the new state can be represented as in (2.116)

U grr[0))®)0) {%QZ 2’”0")/Q|J>j®|0>=%§|j>lo> 2.116)

vr
Step 2: Apply the transformation |a>|b> - |a>|b(-B f (a)> on the registers |X >| Y > Then

the state of the two registers becomes
1 ¢) 1 € . '
Uf(_Z|J>|O>]:_Z|J>|f(J)>- 2.117)
0 j=o 0 j-o

Step 3: Apply U oy to the register X. The new state will be as follows.

1 &

Corr 1) 551 170) |5 5 S0l)
’ VO 5 0 e i (2.118)

._.
._

1 €19-
Q]=0k=0

o\274) /Q| k>| £])>

Step 4: Measure the state.
At this stage, the probability of observing the state |k>| f (J)> is given by

2
e(zmkx)/Q

AesO)-{5 St

(2.119)

where 0<x<Q-1. Because of the periodicity of f we have x = j+br, where r is the period

of fand b is an integer. If we insert this into the equation (2.119), we get

55

o) (ol
p(k,f(j))=§ b Jeak(jsoro| 2.120)

Since we are interested in the relative magnitudes of the probabilities for observing different

states we can factor out the term e™)/2 Then we get

ple=pr) ol
P15 2 LAk (2.121)

=]

where we define (r,k) so that it satisfies —%S(r,k)ﬁ% and (r,k)=rk(modQ—1). The

probability distribution in (2.121) can be verified to have peaks where (r,k) is small with

respect to 7 like in the case when r times £ is a multiple of Q. Hence for the values of k with

the highest probability of being observed, we have
rk =nQ (2.122)

where 7 is an integer. Since we know the value of Q and since we can locate the peaks of the
distribution by repeating the above steps, we can make use of (2.122) to find the period by
applying the continued fractions algorithm [32].

Since period finding can be solved in a polynomial number of steps, we have an efficient
way of finding the order of an integer in any base. This means we can efficiently solve the

factorization problem on quantum computers.
2.10. There is More to Quantum Computation
A variety of ideas from the relatively simple ones such as generation of truly random

numbers to more complex ones such as quantum copying, can be addressed in relation to

quantum computers. Some of these were discussed in the previous sections and quantum

56

simulation will be examined in detail in a later chapter. Of course, there is much more to
quantum computation than discussed here. Let us now devote a few words to some of those
interesting ideas which can be viewed to be in the field of quantum computation and quantum

information theory.

Quantum communication and quantum cryptography seem to be the most interesting
potential applications for quantum computation. In both fields, remarkable results have been
demonstrated. In the communication domain, it is shown that it takes practically no time to
transfer the quantum state information to any distance with use of the method known as
quantum teleportation depending on the entanglement and no cloning principles. There is
more: a technique known as dense coding can transmit two classical bits of information with
use of only a single qubit. In the cryptography domain, things are not so simple. The best
classical security measures depending on public key cryptography are only polynomially hard
to break, with a quantum computer which enjoys the advantages of quantum factorization and
discrete logarithms. On the other hand, a technique known as quantum key distribution is
shown to provide provably secure and efficient distribution of information. These ideas are the
source of most of the interest in quantum computation, and it is this interest which helps the

development of the field.

There are less 'popular' ideas which are of extreme value if quantum computers are ever
to be realized. Several physical models including ion traps, nuclear magnetic resonance,
harmonic oscillator, nonlinear optics and cavity electrodynamics, are studied in detail as
potential realizations of quantum computers or quantum information processing devices. The
main difficulty is that superpositional states can hardly survive when they are interacting with
the environment. (This phenomenon is known as decoherence.) As of today, only small scale
systems could be constructed for experimental issues and hence the physical realization
problem is still a challenging one. Another active field of research is quantum error correction
which aims to protect quantum states from the effects of decoherence and noise. This is a
crucial task for closing the gap between the theoretical and experimental development of

quantum computation and information theory.

57

There are lots of other interesting application areas such as distributed quantum
computation and quantum game theory. [33] presents a list of physically implementable
quantum functionalities, from a quantum gate to a quantum robot. It can be expected that the
list of such ideas may grow faster and faster as our intuition about the nature of quantum

systems gets stronger.

For most of the topics mentioned above [4] is a valuable reference for readers of various

levels. [6, 9, 34] are also informative in many aspects.

58

3. A SHORT SURVEY ON QUANTUM SIMULATION

Simulation is basically the task of calculating and describing a future state of a system
whose initial state is given as an input. This task is generally achieved by an analysis of a set
of differential equations which governs the time evolution of the state variables of the system.
The simulation of a quantum system by classical apparatus is theoretically possible but highly
inefficient to be useful. This is because the quantum mechanical state of a real system of a
reasonable size requires an exponentially large number of variables just to be fully described.
Analyzing the evolution of such a system also requires the multiplication of exponentially
large matrices. This difficulty was, in fact, one of the first inspirations to make scientists think

about the capabilities of quantum computers.

The simulation of quantum systems is the first classically hard problem for which
quantum computers were expected to provide efficient means of solution. In a paper, he wrote
in 1982, the famous physicist R.P. Feynman pointed out the practical impossibility of
simulating quantum systems on classical computers, and suggested that quantum physics
could be simulated with use of quantum computer elements [35]. He claimed that it was
possible to build a universal quantum simulator whose state and evolution could be

programmed to reproduce the behavior of any quantum system of interest.

This remained as a conjecture until 1996, when Lloyd [36], Wiesner [37], and Zalka [38]
separately showed that conventional quantum computers could be programmed to efficiently
perform universal quantum simulation of systems whose states evolve according to local
interactions. Since then, quantum simulation is considered to be one of the three main
applications of quantum computation, together with Shor's algorithm for factorization and
Grover's algorithm for unstructured search. Of the three, quantum simulation seems to be the
most promising one, since it forms a basis on which a variety of useful ideas can be

implemented to provide meaningful performance gains against classical computers.

59

Before going into a detailed analysis, let us build a notion of simulation. There are two
important decisions to be made for a successful simulation. The first one is related to the
representation of the simulated system. One must decide how to map the state space of the
simulated system to the state space of the simulator. The second decision is about the
evolution operator to be used on the simulator. It should be decided which operator mimics the
evolution of the simulated system best. These two decisions are strongly related to each other,
and the correlation between them is a factor in determining the success of a simulation. Let us
consider Figure 3.1, which depicts the correspondence between the simulator and the

simulated system.

Simulated System () Cuantum Simulator ()
[S71) > |O))
M
_C-IH[H-T]} V{D-T”
k4 -1 J
JIM

|5;r'_-*> < |Q;r':>

Figure 3.1. The correspondence between the simulator and the simulated system

Figure 3.1 suggests a scheme in which the states of the simulated system and the
simulator are related by a mapping M. Therefore, the initial state |ST1> of the simulated system
is represented by |QT1> =M (| S >) on the simulator. The unitary mapping V(72 —T1) mimics

the evolution of the simulated system from time point 71 to time point 72, where this

evolution is governed by the Hamiltonian H. The state on the simulator becomes

|QT2> =V(r2-r 11 QT1>. Then the state of the simulated system at time 72 is guessed to be

M _1(| Or, >) The accuracy of this guess depends on how well M maps the states of the two

systems and how closely V(72 —-T1) mimics the evolution of the simulated system

60

Note that, we generally use the phrase "simulating a Hamiltonian H" instead of
"simulating the system governed by the Hamiltonian H". The phrase "simulating the evolution
e ™" is also equivalent with the additional remark on the duration of simulation Af. In
general, a system, which evolves according to the Hamiltonian H for a duration Af,

—iHAt

undergoes a transformation described by e . If the state of the system before this

transformation is defined by |l//(0)> then at time ¢ = 0 + Az, the state of the system is described

by [y (e)) = e[y (0)).

We present a sketch of Lloyd's analysis of quantum simulation in Section 3.1. Then in
Section 3.2, we will examine what types of Hamiltonians can be simulated and will introduce
several useful tools for quantum simulation. Section 3.3 briefly discusses the power of

quantum simulation.

3.1. Universal Quantum Simulators

In [36], Lloyd defines a transformation U = ¢, where A lies in the algebra 4, generated
by commutation from the set of Hamiltonians which correspond to time evolution of a system
in various experimental setups, {ﬁ | H 5 L H ’ } The complexity of simulating such a
transformation can be measured by the number of elementary operations required to build this
transformation. The number of operations required to generate an arbitrary mxm

transformation, U, is of the order of m”, which is number of parameters required to specify U.

To simulate such a transformation of N quantum variables on a classical computer
requires the multiplication of a 2" dimensional state vector by a 2" x2" matrix and
computational time and memory space of the order 2°". A quantum computer can do the same
within a memory space of N qubits, however the number of operations required to build an
arbitrary U remains exponentially large even for a quantum computer. If a quantum system

which evolves according to local interactions is chosen instead of an arbitrary quantum

61

system, then as Lloyd has shown, the simulation of the system on a quantum computer is

much more efficient than the same on a classical computer.

Consider a quantum system of N variables, with Hamiltonian ZleH . » where each H,

acts on a space of dimension m,, encompassing at most k of the variables. Any Hamiltonian

system with local interactions can be written in this form. The quantum simulation of such a

system depends on the identity e’ = lim(e’H1 fn ..Mt)n , hence it works by evolving the
n—

system forward locally, over small, discrete time slices in loops.

The desired accuracy of simulation can be achieved by regulating the time slicing

according to the equation

oM — (eiHl tfn .. gitls f/")” +Y|H, 1,12 20+ 3 E(k). (3.1)
k=3

i>j

where the higher order error terms E(k) are bounded by ||E (k)|| wr S n||Ht/ n||§UP / k. ([4,B] is

the commutator of operators 4 and B given by [A,B] = AB - BA and ||A|| op 18 the supremum
or the maximum expectation value of the operator 4 over the states of interest.) The total error

is less than Hn(e”"’/” —l—th/n)HSUP, which can be made as small as desired by taking »

sufficiently large. (3.1) suggests that the minimum number of steps n required to simulate the
system to accuracy & over time ¢ is proportional to ¢* / ¢ . Therefore Lloyd states that, for any

& >0, one can pick a sufficiently large » to ensure that the simulator always tracks the correct

iHt

time evolution e"" to within &.

The quantum computational complexity of performing the simulation with a fixed

accuracy can be estimated. Since each H, acts on a local Hilbert space of only m;

. . iH .t
dimensions, e’ /" can be simulated with use of mj2 operations. The number of operations

62

/
needed to simulate the time evolution e”” to an accuracy &, is approximately n | ml-2 Afm s
i=1

taken to be the largest one of the m;'s then, one can insert nﬁm? as an upper bound on the

number of operations needed to achieve the simulation within the desired accuracy.

The above simulation method is efficient (in the manner that it can be achieved with use

of polynomially large computational resources) as long as ¢ =/(N) is a polynomial function

of N . The total simulation time ¢ is divided to n equal slices where # is proportional to > / £.

Then each coherent operation et , requires a duration proportional to #/n, that is, to 1/¢. It

turns out that the total duration needed to simulate a system for time ¢, is just proportional to ¢.
The level of desired accuracy affects only the number and (hence) the length of the slices into

which the overall time is divided.

To sum up, the number of qubits to be used in the simulation of a quantum system is
proportional to the size of that system and this simulation takes a time proportional to the
duration over which the simulated system evolves. This concludes Lloyd's proof of Feynman's
conjecture that quantum computers are able to simulate other quantum systems more

efficiently than classical computers.
3.2. Constraints on the Simulation of Hamiltonian Dynamics

We have seen that not all Hamiltonians can be simulated efficiently even with the use of
quantum computers. (This is in fact another way of saying that there exist unitary operations

which quantum computers cannot efficiently approximate. Recall that there is a one to one

relation between Hermitian and unitary operators defined by U =e”'.) We can say that a
Hamiltonian can be simulated if it defines the dynamics of a physical system that can be
realized. However, this remark is of little use for practical computations. Hence, there is the
need for expressing the same idea in a way compatible with the quantum circuit model of
computation. Such an analysis can be found in [39], where a set of techniques for quantum

simulation is listed. Here, we briefly introduce some of these tools to be used later .

63

3.2.1. Simulation of Local Hamiltonians

If a Hamiltonian H acts on a constant number of qubits, then it can be efficiently
simulated. This is just another way of stating the fact that a unitary evolution on a constant
number of qubits can be approximated with use of constant number of one and two qubit

gates.
3.2.2. Rescaling of Hamiltonians

If a Hamiltonian H can be efficiently simulated, then cH can also be simulated efficiently

as long as c is only polynomially big in terms of the size of the system that A acts son.
3.2.3. Unitary Conjugation

If a Hamiltonian H can be efficiently simulated and the unitary transformation U can be

implemented efficiently, then it is possible to simulate the Hamiltonian UHU T in an efficient

manner. This follows from the simple identity

Ue-Hiy T = e—iUHUTt. (3.2)

With use of unitary conjugation, it is possible to rotate the basis on which a Hamiltonian

is applied.
3.2.4. Commutation

If two Hamiltonians H; and H, can be simulated efficiently, then the Hamiltonian

i[H,,H,] can also be efficiently simulated. ([4, B] denotes the commutation of two operators
defined as [4,B]= AB—BA. If [4,B]=0, then 4 and B are said to be commuting operators.)

This follows from the identity

64

i{HH) _ lim(e—iHl tNr ity t/Nr il N ity /N)r . (3.3)
F—>0

e

3.2.5. Addition of Hamiltonians

If two Hamiltonians H; and H, can be simulated efficiently, then the Hamiltonian

H, + H, can also be simulated efficiently. This is a result of the Trotter formula, a proof for

which can be found in [4].

}i_l;g(eiH] t/reiH2 t/r)r _ ei(H1+H2)t . (3.4)

The following identities are also useful when approximating the sum of two

Hamiltonians. Of these, (3.7) is known as Baker-Campbell-Hausdorf formula.

ei(H1+H2)t _ oMt pit2t +0(t2). (3.5)
ei(H1+H2)t _ eiH]t/zeinteiHlt/Z +0(13) (3.6)
i(Hy+H>) iHt il Sl)2 3 (3.7)

e\ = ot gl g 27 +0(t”) '

3.2.6. Linear Combination of Hamiltonians

As a generalization of the addition rule, we can state that if a Hamiltonian / is a sum of

polynomially many Hamiltonians H,,.., H , each of which can be simulated efficiently, then

H can also be simulated efficiently. This depends on the same argument as Lloyd's analysis.

Let us see how this argument is built.

k
. . = X .
The Taylor expansion of the term e” is given as e* =). =—. Then we can write
k=0

65

—7 2
e MM =14 (—iHAt)+ﬂ+...
’ (3.8)
2
=[—iHAt—w+...
If H=H,+H,+..+ H,_, assuming Af is small we can write
y H,+H, +..+ H, J(Af)?
L A +...+Hq)At—(L J @ vol(ary)
2
: (2 2 2)(Af)2
—I—i(H +Hy+..+ H A —(H + H} +..+ H’ - (3.9)
2 2
- ¥ HH, (COi > H,H, mi+0((At)3)
I<i<j<q 2 I<i<j<q 2
The product e 14724 .. ™™ can be written as
o TN ity il A
2 2 H Ap?
= I—iHlAz—(HlAt) +... I—inAt—w+ I—inAt—(A1) +...
2 2 2 (3.10)

=1 -i(H, +H, +...+Hq)Az—[> Hl.HjJ(Az)z —(Hp v H2 12

1<i<j<q

can be calculated as

. —i\H\+Hy+..+H, At i1 At —iHAA —iH At
Then the difference e ettty —(el 1M om2AL o7)

e—i(H1+H2+...+Hq)At —(e”'HlA’e’inA’ _“einAz):(5 H,-H,-J (A;)z _(5 H/-H,-J (A;)z . 0((At)3)

1<i<j<q Isi<j<q

:(D HI.H./.—HJ.H,}(A;)Z+O((N)3) (3.11)

I<i<j<q

:(Y [w.m,]j (A;)Z +of(ary)

I<i<j<q

66

Taking the norms and ignoring O((AI)S) gives

—i\H|+Hy+..+H, At —iH1At —iH>At —iH At
He(IZ q) —(e'le'z---e q

(5 [H,»H,»]]%

1<i<j<q (3.12)
At)? '
<[zl
1<i<j<q
If we let ¢ = max(“ 1, H,]”) then we can write
L]
H e*i(H1+H2+...+Hq)At _ (e_l'HlAte_ﬂL[zAt L e*inAt) _ O(QZK(AZ‘)z) (3 13)

since the summation on the right hand side of (3.12) contains O(qzﬁ(At)z) terms. It is also

—iH|At _—iHpAt —iH gAt
, e ,. .

useful to note that the product of the terms e e could be arranged in any

order and still satisfy (3.13).

—iH|At _—iHyAt —iH g At
HA =i AL 7

Now let a denote the product (e) and b denote the error term

Hi+Hy+.+Hy At

O(qu(At)z). So we can write e_i(=a+b. Then

(e—i(H1+H2+...+Hq)At)” _ (a n b)r

(T ek gk
= a b

=a" +ra"'b+..
=a" +O0(rb)

_ (efiHlAtefinAf e e) + O(’”ng(At)z)

(3.14)

Now, if we let ¢ = rAt then we get the rule known as Lie product formula.

67

i —i 1 —i t . 1 r 2942
He (Hy+H+rH)i —(e Hlﬁe Y/ o Hq4j :0[(] ’t J (3.15)
r
In the limit case where r goes to infinity, we have
lim(eiHl [/,« . ein l‘/r)r _ ei(H1+“+Hq)t (316)

r—m

It is also possible to combine (3.16) with the rule about rescaling to produce a more

general result known as linear combination of Hamiltonians: If a Hamiltonian H can be

represented as Z;’: (CiH; , where for 1<i<gq, ¢; is a real number polynomially large, and H,

1

is a Hamiltonian which can be simulated efficiently, then / can also be simulated efficiently.

lim(eiclHl tr eichq tfr)r _ ei(c1H1+..+chq)t (3 17)
r—w

3.2.7. Tensor Products

If each of the Hamiltonians H,,.., H , acts on a constant number of qubits and the
product of their eigenvalues is efficiently computable, then the Hamiltonian /, ® ..® H, can

be efficiently simulated. This is done with a technique to be examined in Section 3.3.2.
3.3. Quantum Simulation in Algorithmic Level

In this section, we will analyze quantum simulation in algorithmic level. Section 3.3.1
will introduce an algorithm for quantum simulation of systems whose states evolve according
to local interactions. Then in Section 3.3.2, the simulation of Hamiltonians which act non-
trivially on all or nearly all parts of a large system will be considered. Our main reference for

both topics is [4].

68

3.3.1. An Algorithm for the Simulation of Local Interactions

In Section 3.1, we had briefly mentioned a process that Lloyd had suggested for the
simulation of systems which evolve according to local interactions. The following simulation

algorithm, which can be found in [4], depends on similar ideas.
The algorithm runs on the following inputs:

1. A Hamiltonian H =) H,, which acts on a system whose state lies in an N-

dimensional Hilbert space and where each H, acts on a small subsystem of size independent
of N.

2. An initial state |w0> , of the system at time # =0.

3. A positive accuracy & .

4. A time ¢ , at which the evolved state is desired.

The algorithm to simulate A on these inputs is defined as follows:

Choose a representation such that the state |1ﬁ> of n qubits (where n is polynomially big

in terms of the logarithm of N, n = poly(log N)) approximates the system, and the operators

oy
e "k

have efficient quantum circuit approximations. Select an approximation method
(consider for example (3.4-7) and (3.13)) and time slicing A¢, such that the expected error is

acceptable. Construct the corresponding quantum circuit for the iterative step U,, and do:

Lo W0) = |W0) 5 7 =0 oo initialize state

PR Y L /¥ 777 B — iterative update
3. > j=j+1;goto2until jAI2t, ... loop structure

E R L) E 7 T —— final result

69

The procedure described above needs O(poly(l/€)) operations and it outputs a state

21—5.

‘1/7(tf)> such that ‘ < (tf)‘ |‘//o

As an example, consider the simulation of a Hamiltonian A which can be written as a
sum /H, + H, + H, of three Hamiltonians, where H,, H, and H; can be efficiently simulated

—iHt

so that it is possible to build polynomial size circuits for approximating e , e

and

e 3" for arbitrary 7. Suppose the total simulation time is 7 and suppose we choose (3.13) as
the approximation method. First, we define the number of slices r that satisfies the accuracy
constraints on our simulation by considering the structure of the error term in (3.15). Then we

get the length for each slice: Af=17/r. Next we need to construct the circuits for e AL

e 2% and e 3% | which are combined together to construct the quantum circuit for the

. . i i _iHAAo
iterative step U,, = e /1% 724734 'What remains is to apply U,,, r times on the initial

state of the system. The circuit in Figure 3.2 demonstrates this process.

r iterations

UAI _ U&{ _ UAF

|y () = e 7 | w(0)

-tH1A:
-tH2A

| (0))

e
e
e

-tH3A

. -iHrAr
-iH2AL
CiHIA

&
&
&

Figure 3.2. The circuit for simulating / = H, + H, + H, for duration 7 = rAt

3.3.2. Simulation of Hamiltonians with Non-local Terms

The algorithm introduced in Section 3.3.1 is concentrated on simulating Hamiltonians
which are sums of local interactions, however, this is not a fundamental requirement for a
Hamiltonian to be efficiently simulated. It is also possible to efficiently simulate Hamiltonians

which act non-trivially on all or nearly all parts of a large system.

70

Consider the Hamiltonian H =®Z which acts on a system of n qubits where Z is the
1

Pauli Z operator given by

S0
=10 _il (3.18)

—iHAt

The interaction defined by e , (wWhere H =®Z) involves the whole of the system,
1

but it can still be efficiently simulated because it does so in a classical manner: it applies a
phase shift of either e ™ or €' to the system. It is the total parity of the » input qubits in the
computational basis which determines the exact shift to be applied. If the total parity is even
then the phase shift applied to the system is e ™', and if the total parity is odd then the phase

shift is e™'. This can be trivially seen in the case where 7 is taken to be 3. Let us consider

3
H =®Z givenin (3.19).
1

1 0 0 0 0 0 0 0
0O -1 0 0 0 0 0 0
0 0 -1 0 0 0 0 0

Jozez |0 0 0 1 0 0 0 0 5.19)
0 0 0 0 -1 0 0 0
0O 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
(0 0 0 0 0 0 0 -1]

Note that the diagonal entries d, in the above matrix are 1 if the total parity of the bits
which represent i in binary format is even and they are -1 if the total parity is odd. d, for

example is 1 since 0 is represented by "000" in binary format, which has even total parity
while d, is -1 since 4 is represented by "100" in binary format, which has odd total parity of

—iHAt

bits. Also note that the same property is reflected in the operator e given in (3.20).

71

_e—z’At 0 0 0 0 0 0 0
0 &~ 0 0 0 0 0 0
0 0 & 0 0 0 0 0

o il _ i(zez0z)A _ 0 0 0 ™ at 0 0 0 (3.20)

0 0 0 0 ¢ 0 0 0
0 0 0 0 0 oM 0 0
O 0 0 0 0 0 e—iAt 0

0 0 0 0 0 0 0 &)

So if the three input qubits have even total parity in the computational basis (like in the
cases for "000", "0O11", "101", "110") the phase shift to be applied is e, that is
e "™y)=e"|y), and if the total parity is odd (like in the cases for "001", "010", "100",

"111") the phase shift to be applied is e ™', that is e " e’m|t,//> . The reader should also

lv)=
be convinced that this is not specific to the case where n = 3, but it is valid for any value of ».

So in order to simulate the evolution e ™

, there is the need for a circuit which first
calculates the total parity of the input qubits in the computational basis and then applies the

appropriate phase shift as described above. The circuit in Figure 3.3 simulates the
3

Hamiltonian H = ® Z for the duration Az on three qubits initially prepared in the state |l//(0)>
1

with the use of an ancilla qubit initially prepared in the state |0> The circuit starts by

classically computing the total parity of the three input qubits in the computational basis with
the help of the CNOT gates and it stores the result in the ancilla qubit. Once the parity is
stored on a single qubit, the simplest way of applying the necessary phase shift to the system is

1
simulating the Hamiltonian H =®Z on this qubit. (This can be conceived as reducing the
1

problem of simulating Z ® Z ® Z on three qubits to the problem of simulating Z on a single
qubit.) So the circuit does this; it simulates Z on the ancilla qubit for the duration A¢ and

hence applies the necessary phase shift to the ancilla bit and thus to the system. The next step

72

1s uncomputing the ancilla bit and this is all the circuit does. This strategy is clearly extendible

to any value of n.

|y (0)) { ’ ’ b [(0) = e 2w (0))

0) —-D i g AL CL o-0—10)

Figure 3.3. The circuit for simulating H =Z ® Z ® Z for duration At

By extending the above procedure, it may also be possible to simulate more complicated

extended Hamiltonians. In particular, the procedure can be applied to any Hamiltonian of the
n

form H = ® o, , where o, is a Pauli operator or the identity operator acting on the £'th qubit.
k=1

By disregarding the qubits upon which the identity is applied and transforming X and Y terms
to Z operations with the help of single qubit gates, the Hamiltonian can be put into the form of
H=7Z®Z®..®Z, which can be simulated as described above. The next example will
clarify the idea.

Consider the Hamiltonian H = X ® Y ® Z which acts on a system of 3 qubits where X,

Y, Z are the Pauli operators given by

PO LU N L e I
ltool” " i o] T o -1 (3:21)

In order to simulate H with use of the technique introduced in Section 3.3.2, there is the
need for expressing the X and Y operators in terms of Z. This can be conceived as

implementing these operators in the Z basis. Simple linear algebra is of help here. The spectral

73

decomposition theorem states that every Hermitian matrix 4 can be decomposed into the form

A=UAU"", where U is unitary and A is a diagonal matrix of the same size as 4. Let us

consider the spectral decompositions of X and Y.

[0 R I VAVC TS VNG X I VY RS VNG IR TANG)
S B R v I (v B

[0 —i C[=ilN2 N2 o N2 N2
Y‘L o} el { TRERTAGY IO A M}

(3.23)

Both A, and A, are equivalent to Z . The operators U, and U, and their inverses are

all 2 by 2 and unitary matrices, and hence can be implemented as single bit quantum gates.
Therefore we can simulate H = X ® Y ® Z (for duration At¢) by first transforming into Z
basis, then simulating H =Z® Z® Z (for duration Af), and then returning to the original

basis. This is actually a result of the following identity:

=(X®Y®Z)At
(v.zvt)e U,z)o (1z1)ar
(v, ou, ®1) Z®Z®Z)(U ®U, ®1))Ar

X

v, ou, e1)(zozez)n)U; 0U; ®1)

(3.24)

Therefore, we should first apply U 'ouU y "®1 to transform into Z basis, then simulate

H=7Z®Z®Z for duration A¢ as described in the previous example and then return to the

original basis by applying U, ® U, ® . The circuit in Figure 3.4 implements this idea to

simulate H = X ® Y ® Z for a duration Afr.

74

lyo){ —uU,’ ' ' U, v (0) = e ™|y (0))

|0) o0 i o AL l S

Figure 3.4. The circuit for simulating H = X ® Y ® Z for duration At

57 |0)

N

A wide class of Hamiltonians with non-local terms can be simulated with this method. In
particular, it is possible to efficiently simulate a Hamiltonian of the form H = ZZZIH . as

long as L is polynomial in terms of the total number of particles in the system, and each

individual /H, can efficiently be simulated by a quantum circuit.

3.4. Quantum Simulation as a Model of Quantum Computation

We have briefly seen that simulation of quantum systems is one of the tasks for which
quantum computers are superior to classical computers. This result is important in itself but it
raises further important questions about the potential applications of the quantum simulation
ideas. Let us put aside the implications of quantum simulation on the areas such as physics and

chemistry and concentrate on what it means for computation.

A real quantum system can be efficiently simulated with the use of quantum simulation
methods introduced in the previous sections if there is information about the Hamiltonian
which governs it. This is rarely the case for real systems which are not of very small scales.
On the other hand, an artificially designed system and its Hamiltonian can be of interest
especially if they present a way of implementing some key algorithmic process. In other
words, it is possible to design quantum algorithms in terms of continuous interpretation of the

time evolution which is described by the Schrodinger equation and a specified Hamiltonian H.

75

Then, we can run these algorithms by simply simulating H on a quantum computer. This can
be better understood if we recall that in the quantum circuit model, an algorithm is represented
by a unitary operator U which is nothing but the evolution operator defined by some

Hamiltonian H and some duration Ar as U = e "7

Therefore, any problem computable on a quantum circuit can also be computed by the
simulation of some Hamiltonian H on the appropriately prepared quantum states for some
duration 4¢. And since the quantum circuit model is universal for computation, we can say
that every computable problem is associated to some Hamiltonian as a practical means for its
solution. There are important examples where this technique is of extreme use even though it
is not always simple to represent an algorithmic idea in terms of continuous quantum

dynamics.

In Section 3.2, we had stated that only the Hamiltonians of physically realizable systems
can be simulated efficiently on a quantum computer. Now we have also stated that any
computable problem can be solved by simulation of some Hamiltonian. This relation between
physically realizable systems and computable problems is one of the main insights of quantum

computation.

As a last remark, we should note that, so far we have considered simulations of only time
independent Hamiltonians and stated the universality of these Hamiltonians for computation.
Time dependent Hamiltonians can also serve as useful tools for computation. The techniques
depending on the simulation of time dependent Hamiltonians are known as adiabatic quantum
computation. These techniques have recently been the focus of increasing interest and several
important results (including the equivalence to the quantum circuit model) have been obtained.
A detailed discussion of the topic is out of the scope of the current work, however see [17, 40]

for more about adiabatic quantum computation.

76

4. A SHORT SURVEY OF QUANTUM RANDOM WALKS

In classical computer science, random walks have been extensively studied in various
contexts and for various tasks such as modeling of physical systems or graph coloring.
Random walks are found useful for many tasks because by use of simple local transitions, they
provide general means of exploring large numbers of combinatorial structures. It is natural to
ask whether quantum versions of random walk algorithms can also provide similar
advantages. This question has recently been the source of a considerable amount of research.
Quantum random walks have been shown to have different characteristics than their classical
counterparts, and several quantum algorithms that depend on quantum random walks have

been devised.

In this chapter, we aim to provide an introductory description of the fundamental
properties of quantum random walks. In doing this, we will mostly refer to definitions and
results from [41 - 44]. In the following, we first briefly introduce classical random walks in
Section 4.1. Then in Section 4.2, we will analyze how to implement the idea of a random walk
idea on a quantum computer. Section 4.3 will conclude this discussion by briefly mentioning

some of the important algorithmic results about quantum random walks.

4.1. Classical Random Walks

A classical random walk is most generally a model for random motion constrained by
the structure of a graph. An imaginary walker can be thought to be placed on one of the
vertices of the graph depending on a probability distribution which can be taken to describe
the global state of the motion. The walk starts with an initial probability distribution on the
vertices, which generally specifies a single starting node. The motion can be analyzed in
discrete or continuous time. Most generally, at a time, the walker either stays where it is or
moves to one of the neighbors of the vertex it is on, depending on some probabilistic transition

operator which reflects the structure of the graph. The overall process can be thought of as the

77

evolution of the probability distribution which defines the state of the walk. This evolution

converges to a stationary distribution after a while.
4.1.1. Discrete Time Classical Random Walk

In a discrete time random walk process, motion takes place in discrete time steps where
the walker is expected to move to one of the adjacent vertices with equal probabilities for

each. On an undirected graph G = (V(G), E(G)) with N vertices, this motion is defined by the
N x N stochastic operator K, the general term for which is given by (4.1) where d (a) denotes

the degree of the vertexa .

1
by ={a@ 0 =EO @)
0

otherwise

The state after the »’th discrete time step is defined by the probability distribution vector
P(n) which is related to the initial state P(O) through (4.2).

P(n)=K"P(0) (4.2)
4.1.2. Continuous Time Classical Random Walk

Following [44], we define a continuous time classical random walk on an undirected
graph G = (V(G), E (G)) with N vertices and no self loops. The probability of jumping to any
adjacent vertex in a time ¢ is defined to be y¢ in the limit case where £ — 0 and where y is
non-negative. The walk is defined by an N x N transition operator K, which is generally
known as the infinitesimal generator matrix of the random walk. The off-diagonal entries £,

of K are related to the probability of transition between the vertices a and b. Therefore, if there

is an edge between a and b, then k,, =y, and otherwise, k,, =0. The diagonal entries &, ,

78

are set to —d(a)y to satisfy normalization requirements, where d(a) denotes the degree of the
vertex a. Then the general term for the infinitesimal generator matrix is given in (4.3). (The
reader may have noted that K is in fact equal to y times the Laplacian matrix (L) of the graph
G. L =A- D, where 4 is the adjacency matrix of the graph and D is a diagonal matrix with
entries d; =d(i))

y i(a,b) € E(G)
k,, =3—d(a)y a=b 4.3)
0 otherwise

Let the N-dimensional vector P(t) denote the probability distribution among vertices of
the graph at time 7. Then the n’th component, p,(¢), of P(t) shows the probability of the
walker being at the n’th vertex of the graph at time ¢. The probability distributions P(t) and

P(t+¢&), where &€ — 0, are related by (4.4).

lim P(t + &)= P(t)+ KeP(t) (4.4)

-0

Then the continuous evolution of the probability distribution can be said to be governed

by (4.5).

% P = E){P(f + ?—P(z)j _ Kgf(t) _ kP()) @5

Therefore the probability p_(¢) of being at vertex a at time ¢ evolves according to

%pa(t)zg kabpb(t):kaapa(t)—l—bzkabpb(t)' (46)

79

Since the diagonal entries k,, of the generator matrix are set to—d(a)y , which is equal

to the negative of the sum of the other entries in the same column, the rows and columns of the
matrix sum to zero. Then the total change in the probabilities for being at individual vertices
can be shown to be zero as in (4.7). This is why an initially normalized distribution remains

normalized. For all values of #, it holds that)" p,(¢) =1.

) ipa(t)= > (kaapa(t)+ Zkabpb(t)]

as¥{c) dt ae¥(G) =
4.7
- z (kaapa(t)—i_ zkubpu(t)j . ()

QEV(G) b#a

4.1.3. Performance Measures for Classical Random Walks

The random walk on G, after a while, converges to a stationary probability
distributionP(s), which is independent of the initial state. The speed of convergence for a

random walk process is an important parameter that determines the efficiency of implementing
it. It is possible to define several measures of the convergence of a random walk process. One
of these measures, for example, is named mixing time and is defined as the smallest time
duration required for the walk to ultimately reach to some ¢ neighborhood of the stationary
state with respect to some measure of distance. The mixing time of a random walk is strongly
related to the spectral properties of the generator matrix for it. Other measures of convergence
include the filling time and dispersion time. See [41] for more details about these measures.

Another useful performance measure is named hitting time. The hitting time 4, of node v is

the expected time it takes until the walk, starting from node u, hits v for the first time [43].
Different measures can be good for measuring the performance of random walks for different
kinds of problems. Hitting time, for example, is critical for the problems like graph
connectivity and k-SAT, while mixing time is an important measure for many tasks like

sampling from a set of combinatorial structures.

80

4.2. Quantum Random Walks

Transforming the notion of a classical random walk to the notion of a quantum random
walk is relatively simpler in the continuous case than it is in the discrete case. In the
continuous case, it is of much help to note the similarity between the state of a random walk
defined by a probability distribution vector and the state of a quantum system defined by a unit
ket vector. It is further important to note the similarity in the differential equations governing
the evolution of these systems. However, in the discrete case, there is the need for introducing
some new ideas in addition to the same basic similarities. The idea will be better understood in

the following sections, where we will analyze the quantum walk on simple graphs.

Let us consider the simpler case first and begin with the formulation of the continuous
time quantum random walk in Section 4.2.1. Then in Section 4.2.2, we will analyze how to

implement the discrete time quantum random walk.
4.2.1. Continuous Time Quantum Random Walks

A continuous time random walk on an undirected graph G =(V(G), E(G)) with N

vertices and no self loops is classically implemented by the simple evolution of the state
N

vector |P(t)>= D De (t)|k> according to the equation %|P(t)>=K|P(t)> where K is the
k=1

infinitesimal generator matrix introduced in Section 4.1.3, and p,(¢) stands for the non-

negative real probability value of being at node £ at time ¢. Since the probabilities should sum

N
up to one at any time the p, (¢)s should satisfy 1= p, (¢).
k=1

If we revise the above statement according to the principles of continuous quantum
dynamics, we get the definition for a continuous time quantum random walk on the graph

G = (V(G), E(G)). Let us do so. First we replace the probability distribution vector which lies

in an n dimensional real space with the state of a quantum system which lies in an »n

81

dimensional Hilbert space. We let the basis states |1>,

2),...

represent the states of being at the nodes v,,v,,..,vy of the graph G. Therefore the general

N> of this space to respectively

N
state vector is of the form |1//(t)> => (t)|k> , where o, (t) represents the complex amplitude
k=1

N
of the base state |k> at time ¢. This time, the normalization constraint is 1= Z| a, (t)|2
k=1

Next, we need a Hamiltonian H to describe the evolution of the system. The infinitesimal
generator matrix K of the continuous time classical random walk is a good candidate to serve

as the Hamiltonian of our system. (Note that the generator matrix, K =)L, is Hermitian.)

However, this is not the only choice. In the classical case, the normalization constraint was
N . N 2 . : o

1= p,(t), however, it is 1= Z| a (t)| in the quantum case. This constraint is guaranteed
k=1 k=1

to be satisfied under any unitary transformation, hence, we can choose any Hermitian matrix

that reflects the structure and locality of the graph as the Hamiltonian. Simply using » times

the adjacency matrix of the graph as the Hamiltonian is therefore another choice. (The two

different Hamiltonians we suggest here are not equivalent as long as the graph is not regular,

that is, not all vertices have the same degree.)

N V4 (vi,v;) € E(G)
H. .= H = ! J
" <l| |]> {0 otherwise (4.8)
If we let ¥ =1 for simplicity, this becomes
1 (v;,v;)e E(G)
H, . =(ilH|j)= v 4.
b <l| |]> {O otherwise (4.9)

Finally, we let this system evolve according to the Schrodinger equation

ih%hp(t» = H|t//(t)> Therefore running the continuous time random walk for duration At is

82

simply equivalent to simulating H for duration A¢ :|1,//(t + At)> = e_iHA’|1//(t)> . What remains is

to implement this computation efficiently, and this can be done by simulation methods.

Let us now consider the continuous time random walk on a straight line graph (G) of
eight nodes as depicted in Figure 4.1. Each of the edges in the graph have equal transition

probabilities, hence the graph is said to be translationally invariant.

@ & & & & & & 9
0 l 3 4 5 b 7

[

Figure 4.1. The straight line graph of eight nodes

We have two candidate operators to serve as the Hamiltonian. These are H, =L and
H, =yA where L denotes the Laplacian matrix and 4 denotes the adjacency matrix of the

graph G. These operators are given in (4.10), where for simplicity y is taken to be 1.

]
1
]

S O O O = N = O

(4.10)

S = N = O O O O

—_ND-m O O O O O
|

—_ - O O O O O O
S OO = O = O O
S =k O = O O O O
—_ O =k O O O O O
O = O O O O O O

S O O O O O - O
S OO OO =k O -
S O O O = O = O
S O =k O = O O O

O OO O O O =

O OO OO = N =

S O O = N = O O
|

S O = N -k O O O

I
L
I

Therefore, the continuous random walk on the straight line of eight nodes can be

—iHAt

implemented on a quantum computer by simulating either the transformation e , or the

—iHyAt

transformation e . Both ways serve equally well even though they are not equivalent.

(Note that G is not regular.)

83

4.2.2. Discrete Time Quantum Random Walks

Beginning with an example will be helpful in understanding why building a quantum
model for discrete time random walks is not so straightforward. Then we will see how such a
quantum model can be built on a state space other than the vertices of the graph. Last, we will

see how this model can be generalized to make it useful for a larger set of graphs.

Let us consider the discrete time classical random walk on the straight line graph shown
in Figure 4.1. Note that the vertices of the graph are labeled so that n — (n + 1) is a transition
to the right for 0<n <6, n—> (n —1) is a transition to the left for 1<»n <7, and there is no
other choice. So if at a time step the walker is on a node n between 1 and 6, then in the next

step it moves to left with probability 0.5 and to the right with probability 0.5. A

straightforward quantum model for this step would be

1) = —=(|n 1)+ n+1)). @.11)

V2

The transition in (4.11) is not unitary however. (This can be verified by noting that

orthogonal states like |n> and |n + 2> are mapped to non-orthogonal states by this transition.)

It can be shown that no discrete time quantum random walk on the vertices of a straight line
(of any dimension) can be defined. This result can be extended to include many other graphs

with the exception of some special cases.

There are several ways to implement discrete time quantum walks. All of these depend
primarily on some extension of the state space. One such method for implementing a discrete
time quantum walk on a straight line can be found in [45]. Let us introduce this method, which
is built as an analogue of the real-life process where somebody flips a real coin to decide
whether to go left or right. (Also note that, an infinite straight line graph is assumed in this

process.)

84

We define the quantum walk on a state space spanned by the states of the form

n,c>,
where 7 is the usual register that represents the vertices of the graph and c is a bit we may
name as a coin. A step of the quantum walk consists of two operations. First, we ‘flip the coin’
by applying a unitary transformation on c¢. (Any 2x2 unitary operator can be used here, but

Hadamard gates are commonly used for this task.)
[m)le) = n)H]c) (4.12)

Then we apply a ‘shift” (S) to move either to the left or to the right depending on the

value of the “flipped coin”.

S

n,0) —|n—1,0) (4.13)

S

nl) —>|n+11) (4.14)

i,O), we reach a state (SH)

If we apply ¢ steps on the initial state i,0>. These are of

course implemented in quantum states and not in classical ones. Hence, the statistics we obtain
are much more complicated than the ones in the real analogue. However if at each step, we
first measure the value of the “flipped coin” before applying the ‘shift’, then the overall

process collapses exactly to the discrete time classical random walk.

Note that the infinite dimensional straight line graph is a regular one where the degree
for each node (and hence the possible directions to take at each step) is two. This is why a 2-
state coin is used in the above process. Using similar methods, a d-state coin can define the
discrete time random walk on a d-regular graph. In this case, for all vertices, each of the d
outgoing edges should be uniquely labeled by one of the d base states of the coin register so

that the values of the flipped coin at each step can determine a direction to take.

The above process is not yet applicable to the walks on a non-regular graph such as the

finite line in Figure 4.1. There are several alternatives to make it useful also for non-regular

85

graphs. One way is to use a conditional coin operator. In this case, the position on the graph
which is coded into the register » will be used to choose one among the alternative coin
operators for vertices of varying degrees. Another way is to add self loops to the graph to
make it regular. In this case, the transitions on the self loops will simply keep the walk where
it is. There may be other ways of going around this problem. No matter which is chosen, it is
possible to define and efficiently implement the corresponding quantum random walk for any

classically defined random walk.
4.2.3. Quantum Random Walk on a Hypercube

We have examined how to define random walks on quantum computers and while doing
this we have extensively used the straight line graph as a trivial example. For a less trivial
example, let us now consider quantum walks on a graph with different characteristics, the
hypercube. In the following parts, we will first give a formal definition for a hypercube, then

consider the continuous and discrete random walks on a hypercube of three dimensions.

A convenient way to define an n-dimensional hypercube graph,G = (V(G), E(G)), is

through binary labeling of its vertices and Hamming distances between the labels. (The

Hamming distance X-Y between two strings X and Y is defined to be the number of bits in
which these strings differ.) Hence, we use n-bit string to label the members of V(G) and allow
edges only between those pairs of vertices whose labels are separated by a Hamming distance
of 1. Then we have the set of vertices defined by V(G)={(xox,..x, ;)| x, € {01} for 0<i<n—1}
and the set of edges defined by E(G)={(X,Y)| X,Y e V(G)A X —Y =1}. Figure 4.2 depicts a

3-dimensional hypercube which is structured in this way.

86

Figure 4.2. The three dimensional hypercube

The continuous time quantum random walk on G = (V'(G), E(G)) can be defined in the
usual way. Note that G is regular so the choices of H, =)L or H, =y4 as the Hamiltonian
will be equivalent since they differ by a multiple of the identity operator. Let us use H =4 as

the Hamiltonian and let ¥ =1. Then H is given by

01 101000
10010100
100100 10

Hopo|0 1100001 @15)
10000 110
0100100 I
0010100 I
000 10110

Hence running the quantum walk on the 3-dimensional hypercube for duration At is
simply equivalent to simulating A for duration At :|1//(t + At)> = e_iHAt|t//(t)> . More generally,

the adjacency matrix for the n-dimensional hypercube is given by

n

A=YX, (4.16)

J=1

87

where X ; is the operator which acts as the Pauli X on the j°th qubit while leaving other qubits

untouched. Then, the continuous random walk on a general n-dimensional hypercube is
n

defined by the Hamiltonian H =) X ;» which is a sum of local terms and therefore it can be
j=1

simulated efficiently.

If we consider the discrete time random walk on G, we first note that G is regular, hence
we can define the discrete time random walk on G according to the coin flip model introduced
in 4.2.2 without any modifications. Note that G is 3-regular, and hence we need a coin of three
states. As stated before, any unitary matrix of the correct size can serve as the coin operator.
However, the choice of the coin operator determines the characteristics of the quantum walk
and hence is an important parameter in specifying the desired effects. Hadamard gates, for
example, can be used as coin operators to specify an unbiased walk. Another commonly used

coin operator is known as Grover’s diffusion (or Grover’s coin) operator which is defined on n

states by the general term: D, ; =%—5i’ ;- This operator is a member of the family of
i, .

permutation symmetric operators, which carry interesting features and in fact, Grover’s coin is

the one among these, which is farthest away from the identity operator.

By manipulating the coin flip operator we can define the discrete time quantum walk in a
flexible manner. This flexibility can be viewed as an advantage over the continuous time
quantum walk, where the only manageable parameter is the local features of the Hamiltonian.
Let us make use of this flexibility and use a 4-state coin to describe the discrete time quantum

walk on the graph G.

The state space for the discrete time walk on G is spanned by the state of the form
|x2x1x0,clco> where the first register x,x,x, defines the position on the graph by specifying
the label of the current vertex and the second register c,c, is the two-bit register for

representing the coin. We employ two-bit Hadamard operator as the coin flip operator

(C=1I®I®I®H®H) and associate one of the four outcomes of the coin flip with a ‘do

88

nothing’ action in the ‘shift’ phase, and the other three will be associated with the possible
motions at each step. But first, we need to label the edges of the graph to indicate directions. A
simple rule will guide us in doing so: an edge is labeled by r if the labels for the vertices
incident to this edge differs in the »’th bit. (We number bits from right to left and start with 0.)

Consider the 3-dimensional hypercube in Figure 4.3.

100 000

Figure 4.3. The 3-dimensional hypercube with labeled edges

Then the shift operator acts on the base states as follows

S| x,x,x0,00) = | x,x,%,,00) (4.17)
S| x,%,%0,01) = | x,%,x,01) (4.18)
S|x3x,x0,10) = | %,x,x0,10) (4.19)
S|xy3,x0,1 1) = [x,x,%0,1 1) (4.20)

where the complement operation is defined as 0 =1 and 1 = 0. Note that the shift operation is

defined so that if the coin is in state |3>(: |1 1>) then we take no action and if the coin is in a

base state |r> other than |3>, we follow the edge incident to current vertex and labeled by 7,

which is equivalent to taking the complement of the »’th bit in the position register.

89

Finally we can define the state after ¢ steps in the usual way as (SC)t|000,00> , where we

assumed the initial state |OO0,00> .

4.2.4. The Relation Between Discrete and Continuous Time Quantum Walks

In the classical case, a continuous time random walk is the limit case for a discrete time
random walk where the time spacing between the discrete steps approaches to zero. The
relation between the quantum versions is not so clear. It is yet an open question whether the
models for discrete and continuous time quantum walks can be derived from each other. The
difficulty is mainly due to the use of extra registers (or coins) in the discrete time quantum

walk, while these are not needed in the continuous time quantum walk.

Although the two models seem to be quite different, the results obtained by use of them
are similar in efficiency and computational cost. This has been observed by several researchers
in different contexts [39, 39]. In [42], some statistical measures of performance like the
quantum counterpart of mixing time and absorption probability are stated to be the same for
the two models. These similarities are sometimes viewed as evidence for the equivalence of
the two models in computational power, however there are also results which point out the

algorithmic differences between the discrete and continuous walks [46].
4.3. Algorithmic Use of Quantum Walks

Quantum walks are widely known to have different properties than their classical
counterparts, mostly due to the nature of quantum interference which can act in a destructive
manner unlike in the classical case. An important observation is that unlike their classical
counterparts, quantum walks do not converge to a stationary state but instead a time average of
the state of the walk does converge to a limit [41]. It is on this convergence that one can define
a mixing time for quantum walks, and it is known that quantum walks for many graphs have

quadratically smaller mixing times when compared to their classical counterparts.

90

A more interesting difference between classical and quantum walks is that of hitting
times. It can be shown that quantum walks have exponentially smaller hitting times on some
graphs when compared to classical walks. This exponential gain against the classical walks is
the inspiration for some algorithms depending on quantum walks. Such an example can be
found in [47], where quantum random walks were shown to be exponentially faster than
classical walks for the task of finding the exit node starting from the entrance node of the sort
of graphs shown in Figure 4.4. (A similar problem, where the structure of the graph is

modified, will be examined in detail in Chapter 5.)

entrance exif

Figure 4.4. The graph constructed by unifying the leafs of two binary trees of same size

A set of similar results are also demonsrated in [43]. However it should be noted that
what we are talking about is not yet an exponential algorithmic gain since there are classical
algorithms other than random walks, against which the gain of quantum walks is only

polynomial in solving the mentioned problems.

Quantum walk search algorithms form another interesting group of quantum algorithms
depending on quantum walks. In the general scenario, the walk takes place on a graph, some
vertices of which are marked. The task is to find such a vertex. At each step, the walk either
proceeds to an adjacent vertex or it queries a black box to see if the current vertex is a marked

one. When the search problem is formulated in this way, Grover’s algorithm runs in
O(M JN) steps, where N is the number of vertices in the graph and M is the maximum

distance between two vertices of the graph.

91

The hypercube graphs introduced in the previous section are particularly useful in

studying quantum search algorithms. In an n-dimensional hypercube graph, the maximum
distance between two vertices is n and the number of vertices is N =2". Therefore Grover’s

algorithm can solve the search problem on the » dimensional hypercube in O(log NN) steps

while it is shown in [48] that quantum walk search can do the same in O(\/ﬁ) steps.

The quantum walk search on an n-dimensional grid of N vertices is another interesting
application. It is studied by use of continuous time quantum walks in [49] and by use of
discrete time quantum walks in [46]. The results obtained by use of discrete time quantum
walks seem to be dependent on the choice of the coin operator and for various values of #,

they are better than those obtained by use of continuous time quantum walk.

Quantum walks on various graphs exhibit interesting behavior and thus the algorithms
employing them can come up with striking results. The exponential algorithmic speedup by a

quantum walk is one such result and it will be discussed in Chapter 5.

92

5. A FAST ALGORITHM EMPLOYING THE QUANTUM RANDOM
WALK

Determining the problems which quantum computers can solve qualitatively faster than
classical computers and designing quantum algorithms which exhibit this speedup against
classical algorithms, is a central issue in the field of quantum computation. A polynomial
speedup over the best classical algorithms for a task is almost always considered as valuable,
however it is exponential speedup that is thought to fully demonstrate the power of quantum
computation. Until very recently, only those quantum algorithms which are essentially based
on the quantum Fourier transformation had been shown to provide exponential speedup over
their classical counterparts, and these algorithms could only solve several variants of hidden

subgroup problems [25].

Meanwhile, quantum random walks were widely known to be superior to classical
random walks in various degrees for various problems, however, there was no result
demonstrating the advantage of quantum random walks over the general class of classical
algorithms. The work by Childs et al/ showed that an algorithm based on the continuous time
quantum random walk can provide exponential speedup over the best classical algorithm for
the solution of a black box problem defined on some special graph [3]. (It was later claimed
that the discrete time quantum walk could serve as well for the same task. [50]) This result is
important in several ways. The quantum algorithm introduced in [3] is in no way similar to the
ones depending on the quantum Fourier transformation technique and yet it is able to provide
exponential speedup over the best possible classical algorithm. This encourages researchers to
search for other quantum computation techniques that can provide exponential speedup.
Another point is that we can expect this new technique (or some variants of it) to be used also
in speeding up the solutions of some real life problems on quantum computers. This
expectation is primarily based on the widespread use of random walk algorithms in classical

computation.

93

In the following parts we will examine, in detail, how Childs et al demonstrated
exponential speedup by quantum random walks. First, we will provide a definition of their
problem in Section 5.1. Then in Section 5.2 we will briefly introduce the algorithm they
proposed. Section 5.3 will aim to show how to implement the quantum random walk
efficiently on an arbitrary graph with the help of the black boxes. Section 5.4 provides an
analysis of the performance of the proposed method in terms of time requirements and
probability of success. Finally, in Section 5.5, we will discuss why classical algorithms can not

solve the same problem effectively in subexponential time.

5.1. The Graph Traversal Problem

The problem we are dealing with, is a black box graph traversal problem defined on the
graphs G, of a specific form, where 7 is a positive integer. G, consists of two binary trees of
height n, connected by a random cycle that alternates between the leaves of the two trees. The
cycle is arranged in a way that every leaf of a tree is connected to two of the leaves of the
other tree. Figure 5.1 contains a typical graph of the form G,. (The graphs G, and some

variants of them are sometimes called “glued trees”. We will use this term only for the sort of

graphs shown in Figure 5.1.)

ENTRANCE EXIr

Figure 5.1. An instance of G,, the glued trees of height 4

94

The problem assumes the existence of a black box, the functionality of which would be
better understood after the following definitions. Let G = (¥(G), £(G)) be an undirected graph

with N vertices.

Each vertex u € V(G) is assigned a distinct m-bit string as its name where 2" > N. In

particular, the string, 1" =11..1, is not assigned as name of any vertex. (The reason will be
clear soon.) For each vertex, u € V(G), the outgoing edges of u are assigned labels from a set

L of size k, where £ is at least as large as the maximum vertex degree in G.

Next, we define the function v, (1) for u € {0,1}" and ¢ € L as follows: If u € V(G) and
if u has an outgoing edge labeled by ¢ then v, (u) is the name of the vertex reached by
following the outgoing edge of u labeled by c¢. If uéV(G) or if u does not have an

outgoing edge labeled by ¢, then v, (u)=1".

We define a black box ¥ for computing v, (x) on the input ¢ € L and u € {0,1}". The

functionality of V' can be formulated as a unitary transformation as in (5.1), where a and b are

m-bit registers.

v

c,a,b> =

c,a,b@vc(a» (5.1)

In the following parts, we will sometimes combine the black box V' and its first input

c € L to form a component V. of the black box for answering the queries whose first input is

c. Then for each ¢ € L we define ¥, as a circuit component that computes v,(«) on input

ue{01}".

VC

a,b> =

a,b@vc(a» (5.2)

95

Finally, a formal definition of the graph traversal problem is as follows:

Let G be a graph and ENTRANCE and EXIT be two vertices of G. The input of the
traversal problem is a black box for G and the name of the ENTRANCE. The output is the
name of the EXIT.

In the following, we will be dealing with the graph traversal problem on the graphs of

the form G, . Then the task is to develop an efficient mechanism which, when given the name
of the ENTRANCE node of a graph of the form G,, can manage to find out the name of the

EXIT node by querying the black boxes.

5.2. The Algorithm for the Graph Traversal Problem on the Glued Trees

In [3], it is shown that the instances of the graph traversal problem on the special graphs

of the form G,, can be efficiently solved to any accuracy by a quantum algorithm. The
algorithm depends primarily on running a continuous time quantum random walk on G,. It

roughly consists of the following steps.

Inputs: A black box for an undirected graph G, ofthe special form introduced in Section

5.1 and a positive value for acceptable accuracy.

Step 0: Determine an interval I according to the size of the graph, the desired accuracy

of results and some statistical measures of the structure of the graph.

Step 1: Pick a random value t from the interval I.

Step 2: Run the continuous time quantum random walk on G, (with the help of the black

box), for duration t, starting from the ENTRANCE node.

96

Step 3: After duration t perform a measurement to get the name of a vertex in the graph.
Check if this is the name of the EXIT node. If yes, return this name and terminate.

If not, go to step 1.

The algorithm depends on running the continuous time quantum random walk on the
graph G, for a duration randomly chosen from a predefined interval. This step is repeated
until the desired result is obtained from a measurement, which is performed at the end of each
separate run. This is just a sketch of the algorithm. The details of each step will be examined
soon, but we will not be doing this in the order specified above. We should begin with

describing how to implement the continuous time quantum random walk on the graph G, . The

reasoning behind the other steps comes after this.
5.3. The Quantum Walk with a Black Box

In this section, we will examine how to implement the quantum walk on a graph
G = (7(G), E(G)), with the help of the black box V. We have examined the continuous time

quantum random walk model in detail, in Chapter 4. So we can now apply it.

As we had seen, running the continuous time random walk on a graph G = (v(G), £(G)),
for duration ¢ is simply equivalent to simulating a Hamiltonian H for that duration where H
reflects the local properties of the graph. The adjacency matrix of the graph whenever it is

available serves well for this task. (We simply let y =1.)

H, - {1 (a,b)e E(G) 53

0 otherwise

The problem introduced in Section 5.1 does not give information about the internal

structure of the graph but it provides access to a black box instead. This will be helpful in

97

simulating e, which is equivalent to running the continuous time random walk on the

graph G = (¥(G), £(G)), for duration ¢.

At this point, we need to make a separation between the graphs whose edges are
symmetrically labeled and the others. A symmetrically labeled graph is one where v, (a) =b
implies v,(b)=a. (Hence, note that v,(v.(a))=a for a symmetrically labeled graph.) We will

iHt

first show that for a symmetrically labeled graph, e™™" can be simulated efficiently with the

help of black box queries. Then we will generalize this result to the graphs which are not

symmetrically labeled. We have the following theorem:

Theorem 5.1. Given the black box for a symmetrically labeled graph G, a continuous

time quantum walk on G can be simulated for time t with precision & by using O(kztz/g)

black box queries and O(k2t2 m/ 6‘) auxiliary operations.

The Hilbert space for the quantum walk on G is spanned by states of the form

a,b,r>

where a and b are m-bit strings and 7 is a bit. The states of the form

u,0,0> correspond to

the vertices u € V(G).

Since we do not have direct access to the structure of the graph (and hence to the
adjacency matrix), and can reach it only through access to a black box, we need to redefine the
Hamiltonian H of the system without referring to the structure of the graph, but with the

freedom to use the black box queries.

First, note that, for all a e V(G), H maps a to an equal superposition of all neighbors of

a . In other words H maps

a,0,0> to > | v, (a),0,0> . Then it may be useful to write,
cve(a)eV (G)

H=3H, (5.4)

cel

98

where for each c € L, H, acts on the state

a,0,0) as in (5.5)

HC

a,0,0> _ {|Ovc (a),0,0> v.(a)e V(G) (5.5)

otherwise

The linear combination rule (which we mentioned in Section 3.2.6) suggests that if we

could efficiently simulate the individual terms, A, in the summation (5.4), then it would also
be possible to efficiently simulate their combination H. But each individual term H_ has the

same form shown in (5.5). So the problem is reduced to simulating this simpler process in
which we make use of the black box queries and an additional operator 7, to be explained

shortly.

The black box queries enable us to access the structure of the graph. For a vertex a and

a label ¢, we can extract v, (a), the name of the vertex on the other side of the edge ¢, by
querying the black box component V, on input a. (Recall that this is equivalent to querying

the black box V' on the inputs ¢ and a.) However, we also want to know if the result is a

name of a vertex or 11..1, which is the case when a ¢ V'(G) or there is no edge labeled by ¢

adjacent to a. So we make use of the third register in the general state vector

a,b,r) for this

task. Then the black box queries are represented unitarily as

V. a,b,r>= a,b@vc(a), r@fc(a» (5.6)
where the function f, is defined by
B v,(a) eV(G)
Jel@)= {l otherwise ©-7

Now since v, (v.(a))=a for a symmetrically labeled graph, we have

99

v.(v.a,0,0)=,

a,v (a). f.(a))=|a.v.(a)®v.(a). £.(a)® /. (a)) =

a,0,0), (5.8)
which suggests
vi=v'=v,. (5.9)

We need to introduce one more operator, 7, whose action is defined by

Ta,b,0>= b,a,0> and T

a,b, 1> = 0. This can be written in a more compact form as

T

a,b, r> =0,

b,a,0) (5.10)

where 6, =1 if r=0 and J,, =0 otherwise. Let us now see what V, and T can do together,

when they are combined in the form V[TV, .

viry,

a.0.0)=V/T|a.v.(a). /. (a))
= §O,fc(a) VCT|vc (a)’a’0>

(5.11)
= 50,fc(a)|vc (Cl), a® Ve (vc (a))’ fc (vc (Cl))>
=8, 1.(a)| v (@)0,0)
We can translate this as follows: Foreach ce L, H, =V, 'TV,.
Hc a,0,0> — VLTTVL a,0’0> — {| Ve (a)>0’0> fc (a) =0 (Vc (a) € V(G)) (5 12)
0 fo(@)=1(v,(a) 2 V(G))

We have been looking for an efficient simulation of H, for each c € L and we have

noted that H, =VTV,. Since we are provided with the black box components ¥, =V, in

order to conclude that A, can be simulated efficiently for each ¢ € L, we only need to show

100

that the operator 7 can be simulated efficiently. We will be doing this in the following parts.

First, note that 7' can be formulated as

T=stm e st g @ st e|0)o| (5.13)

where S®7) is the two-bit swap operator that acts on the i'th and j'th bits and |0><0| (the
projector onto |0>) acts on the third register. In the computational basis, if the third register's
content is |0> the swap operators exchange the content of the first two registers, otherwise if
the third register's content is |1> , the whole state is reduced to 0, which is the amplitude of the

projection of the third register on |O> . The two bit swap operator S is given by

(5.14)

S O O =
oS = O O
S O = O
- O O O

Recall that in Section 3.3.2 we had developed a model for the simulation of
Hamiltonians with non-local terms. We will extend this model for the simulation of 7. Let us
begin with examining the diagonal form of the two-bit swap operator S, obtained by spectral
decomposition. (Note that all unitary operators U, are normal: UU' =U'U . Hence spectral

decomposition can be applied to them.)

! 1 1 1
— 0 — 0 — 0 0 —
V2 V2 V2 V2
0 1 0 1 1 0 0 O 0 1 1 0
NG L1101 0 o0 NNz
S=WT'AW = V2 V2 V2 V2 (5.15)
0 L 0 __1 0 01 0 L 0 0 __1
V2 V2{lo 0 o —1||+2 V2
1 -1 1 -1
— 0 — 0 0 — — 0
V2 V2 V22

101

The diagonal entries of A are the eigenvalues of S and the columns of the unitary
matrix W' are the corresponding eigenvectors. This picture suggests that if we could first
perform W, then simulate A for a time Az, and then perform W', the overall effect of these

operations would be to simulate S for a time Az. W and W' are two qubit unitary operators,
so they can be approximated to arbitrary accuracy. In between the two, there is the need for

simulating the operator A, which acts on the computational basis according to

A|00) =]00), (5.16)
A|01) =]01), (5.17)
A[10)=10), (5.18)
A1) =—11). (5.19)

Then speaking in the computational basis we can say, if the input state is |11> , A applies

a phase shift of —1 to this state and if the input state is not |11> then A leaves it unchanged.
Note the similarity between A and the one-bit operation Z which applies a phase shift of —1
to its input if it was initially at state |1> We will make use of this similarity to modify the

circuit for simulating Hamiltonian Z® Z ®.. ® Z (see Section 3.3.2 for the details) to

construct a circuit which simulates the Hamiltonian A® A®..® A . The thing to do is to use
Toffoli gates to count the parity of the total number of qubit pairs in the state |11> instead of
using CNOT gates to count the parity of the total number of single qubits in the state |1> The

circuit shown in Figure 5.2 implements this idea to simulate the Hamiltonian AQA®..® A

for time Af.

102

|y (©))) ! |w (D) = ¢ TAPAS-BNL |)y

o) —-&—B AL —HO—D-D—I0)

Figure 5.2. The circuit for simulating the Hamiltonian A ® A ®..® A for duration At

We can transform the circuit in Figure 5.2 to one that simulates S® S ®..® S by
adding the operators W and W' into the picture in the appropriate way. Then, extending the

state space by one qubit on which the Hamiltonian |O><0| acts, we can form a circuit for

simulating 7. The last qubit, on which the Hamiltonian |0><0| acts, is effectively a control bit

i(S®S®.QS)

on the evolution e~ . Speaking in the computational basis, if the state of the last

qubit is |0), the evolution ¢ (585805

is carried over the other qubits, and if the state of the
last qubit is |1> , no change is applied to the overall input state. Then the circuit for simulating

T for duration At can be constructed as in Figure 5.3.

[Ja) N
g w)
|GE}_ .1._
|ﬂ,f},}'>'1 | b2y — I/fy I - - I PI:’ — }g_”ﬁ'rlﬂ,f?,!‘>
|am)_ : i i : 1'_
by —] I WL
e ?)
o) —D-b—B- A” O—D-C—10)

Figure 5.3. The circuit for simulating the Hamiltonian 7 for duration At

103

The circuit in Figure 5.3 can simulate e ™ for arbitrary At, using only O(m) one and
two qubit gates. Then, as a result of the unitary conjugation rule, we can efficiently simulate

VITV, for celL. Finally, by the linear combination rule, Y VTV, can be simulated

efficiently.

For the sort of graphs we are dealing with, the number of H;, H ; pairs in the error term
of (3.12) which fail to commute is in the order of O(q). Therefore we can establish a tighter
bound for the error term in Lie product formula (See equation (3.15).) which is O(qft2 / r).

Hence, Y. V./TV, can be simulated with precision & in re O(kt2 / 3) iterations, each with &k

c

runs of V'TV, for k distinct ¢ € L . Then, the overall complexity of simulating H = > VJT v,

for duration ¢ with precision ¢ is O(kztz/e) black box queries and O(kztzm/g) auxiliary
operations. This completes the proof of Theorem 5.1. Next, we will generalize this result to

the case where symmetric labeling is not required.

Theorem 5.2. If G is bipartite and a € V(G) then, given any black box for G, a quantum

walk on G starting in state |a> can be simulated for time t with precision & by using

O(k4t2 / 6‘) queries and O(k4t2m/ 6‘) auxiliary operations.

To prove Theorem 5.2, we need to transform the case of a general graph to the case of a

symmetrically labeled graph and then achieve the desired result by employing Theorem 5.1.

Recall that for a symmetrically labeled black box we had decomposed the Hamiltonian H

into the constituents H, for c € L . Each of these constituents could be written as H, =V, TV,
depending on the fact that v, (vc (a)): a for symmetric labeling. An asymmetrically labeled

black box does not necessarily satisfy v, (v,(a))=a. Hence we need another way of defining

104

the constituent Hamiltonians which build up the global Hamiltonian H for the case of

asymmetric labeling.

In asymmetric labeling, each edge (a,b) € E(G) is associated with two labels ¢, € L and
¢, € L, one from each of the two endpoints of the edge. (The symmetric labeling can be
viewed as a special case of this, where ¢, and ¢, have to be same.) To simplify things, we
desire a single label for each edge (a, b) ek (G) This can be done by putting the two labels c,
and ¢, together as (c,.c;) or (c,,c,) to form a unique label (cl.,c j)e L x L of the edge. Note

however that, this is not the way the black box codes the graph and there is the need for

implementing our view in terms of the black box’s functionality.

We begin with redefining the Hamiltonian H as

H= 2 Hep)s (5.20)

(cl',cj')eLxL

where we require that each constituent should satisfy (5.21).

Hi) 2.0.0) = {ovc" aoc) vo bl (521)

otherwise

Next, we define the function f(cl,’cj)(a) as in (5.22). Note that computing f(cl_,cj)(a) requires

two queries of the asymmetric black box and O(m) additional one and two qubit gates in the

simplest construction.

0 Ve, (vcl, (a)) =a
Sepla)= (5.22)

1 otherwise

105

We define the component V[, ;) 33

"

Cl',Cj)

a,b,r> =

a,b®v, (a),r® f(Cl,,Cj)(a)> (5.23)

Implementing V(C[,’cj) requires three queries of the asymmetric black box, two for
computing f(c]~,c,-)(a) and one for the usual task of computing v, (a). O(m) additional one and

two qubit gates are also needed. Finally let us examine the functionality represented by

V(cj’cl,)TV(CZ,,CJ,) where the definition for 7 is the same as before.

"

c]-,c,-)

TV(Ci <)

a,0,0) = ey

a, vc,- (a)’ f(c,- ,c‘]-) (a)>
- 50’1"(01'»0‘/)(”) V(Cj ’Ci) Ve (a), a,0>
vcl- (Cl), a® Ve j (Vc,- (a))7 f(c j5Ci) (vc,- (a))>

v, (a),0,0>

(5.24)

= 50’f(ci €) ((1)

= 0, ci,Cj)(a)

Hence, we have

H(ci,cj')_V(cj',ci)TV(ci,cj')’ (525)

H = Z V(cj,ci)TV(ci,Cj) : (526)

(¢ €)elxL

This completes our construction of a model which can mimic the model for symmetric
labeling case. Instead of & labels in the set L, we now have k? labels in the set Lx L . So by
Theorem 5.1 the quantum walk on G can be simulated for time ¢, with precision & by using
O((kz)ztz/ 8) queries and O((kz)ztzm/g) auxiliary operations. This concludes the proof of
Theorem 5.2.

106

By proving Theorem 5.1 and Theorem 5.2, we have shown that a continuous time
quantum random walk can be implemented efficiently on an arbitrary undirected graph as long
as the access to a black box (like the one specified in Section 5.1) for that graph is provided.
For this result to be useful in the solution of the graph traversal problem, we need to analyze

how fast the quantum walk traverses the glued trees graph G, .

5.4. Upper Bound on the Traversal Time

In this section we will consider the quantum walk on the specific family of graphs G,

we had introduced in Section 5.1. We are going to try to prove that the quantum walk on this

family of graphs reaches the EX/T node within polynomial time.
5.4.1. The Quantum Walk on the Column Subspace

The state vector describing the quantum walk on a graph lies in an N dimensional Hilbert
space where N is the number of vertices in the graph. The sort of graphs we are dealing with
have the nice property that we can move to a smaller space where the analysis would be
simpler. This space is known as the column subspace and it will be introduced in this section.

First, we should clarify what we mean by a column.

A vertex u € V(G) is said to be on column j of graph G, =(V(G),E(G)), if the shortest

path from this vertex to the ENTRANCE vertex has length j. We prefer the name “column”
since those vertices which are in the same column are depicted as vertically aligned in Figure

5.1, which we used while introducing the type of graphs we are dealing with.

The column subspace is a 2n+2 dimensional subspace spanned by the states

\CJ>ZW >|a), (5.27)

a € column j

107

where N is the number of vertices in column j. It should be noted that ‘Cj> is the unit ket
vector which lies in the same direction as the sum of the N dimensional unit ket vectors

)

can be represented in the column subspace if and only if the vertices sharing the same column

b>,.. standing for the vertices on column j. Therefore, a general state of the quantum walk

also share the same amplitude in the N dimensional general state vector. Only these states can

be represented as a linear combination of the vectors ‘C j> for 0<j<2n+2. Let

2n+2

)= ZIA_]-\C,)- (5.28)

The amplitude of ‘C j> in the general state vector is 4, if all the vertices in column j have

individual amplitudes of 4, / JN; . These constraints are not restrictive in analyzing the
quantum walk on the glued trees, because the column subspace is invariant under the quantum
walk (i.e. a quantum walk starting from a state in the column subspace remains in the column

subspace) and we begin the walk from a state (|ENTRANCE>) which is in the column

subspace. The invariance is a result of the structure of the graph, which guarantees uniform

distribution of amplitudes between the members of the same column.

If we are to analyze the quantum walk on the column subspace, we need to examine the

structure of the transitions available in this new space. We should determine the pair of

columns | Cl.> ,

C j> which are linked in the sense that a transition among them is possible. We

should also determine the relative strength of these links. This analysis will give us a new

graph on which we will analyze the quantum walk.

It is trivial to state that a transition is possible only between the adjacent columns since

only those vertices in the adjacent columns are linked to each other in G,. Then we say that

column 7 and column j are linked if and only if |z' - j| =1. Next, we should determine the

108

relative strength of these links. The way we defined the amplitudes for the columns suggests
that we should define the strength of the link between column i and column j to be

proportional to

: (5.29)

where e; denotes the number of edges between column 7 and column j in the original graph.

This analysis shows that all but one of the links between the adjacent columns of G, are
equivalent in strength. The one between column n and column n+1 is stronger than the others

by a factor of V2. (This difference is sometimes called a defect.)

Then the quantum walk on G, is reduced to the quantum walk on a “defective” line
graph where each vertex c¢; stands for column i of G, and is represented by the state |Cl.> in
the column subspace. In particular, the vertex ¢, stands for ENTRANCE and the vertex c,, .,

stands for EXIT. The defective line graph for G, is depicted in Figure 5.4.

C C C C C C C C

1] 1 n-1 n n+l n+2 2n 2n+l

Figure 5.4. The defective line corresponding to the columns of G,

5.4.2. Quantum Walk on the Defective Line

We have seen that the analysis of the quantum walk on G, starting from ENTRANCE

can be reduced to an analysis on a line with 2n+2 vertices, one for each column of the

original graph. This graph is called defective because of the edge between ¢, and c,,,, which

n+l

has a transition probability larger than the others. In this section we will analyze continuous

109

time quantum walks on a defective line. While doing this, we will be referring to the graph

G instead of G,, which will simplify the analysis. The defective line graph shown in

n—1»

Figure 5.5, is the reduced form of G, ; and hence contains 2n vertices which we prefer to

n—1

label as ¢,,c,,..,c, . This time the vertex ¢, stands for ENTRANCE and the vertex c,, stands

for EXIT.
| 1 J2 | 1
> —=eo --- @ ® ® > .- 0—o
E] Ej I::n-l I::n |::n+| I::n-i-l I::Irl—l Eln

Figure 5.5. The defective line corresponding to the columns of G,_;

The continuous time quantum random walk on this graph is governed by the
Hamiltonian H, which is specified by the following non-zero terms and their symmetrics due

to hermiticity. (We let y =1, for simplicity.)

| 0<j<2n,j#n

H; :<Cj ‘H‘Cj+l>:{\/5 i=n) (5.30)

An investigation of the eigenvectors of H will be useful in the following analysis of the

quantum walk on the defective line. Introducing a reflection operator R such that
R‘C j>=‘C2n 1o j> will make this investigation easier. It can easily be verified that R
commutes with A on the column subspace. The simultaneous diagonalization theorem states

that commuting operators share the same eigenvectors [8]. Then the eigenvectors of R are also

eigenvectors for H.

It is trivial that R* =17, so R has eigenvalues +1. The eigenvectors of R for the

eigenvalue 1 should satisfy R|S1> = |S 1> . These are of the form

110

|8)) = 4| C)+ Ay Cy) +...+ 4,|C)+ 4, Cpy) + 4,4 |Crin) + .+ 4 Cyy) (5.31)

where A4,,..,4, are complex amplitudes. Similarly the equation R| S2> =—| S2> should be

125 “%p

satisfied by the eigenvectors of R for the eigenvalue —1. These are of the form

18,) = 4|C))+ 4| C))+..+ 4,|C,) = 4,|Cpy) = 4,4 Cria) == 4] Cyyy) - (5.32)
2n
The eigenvectors |E > = ZAk|Ck> of H should also be of the same form. Hence we have
k=1

<E|C2n+lfk > = Ay =4, (5.33)

If 4 is the corresponding eigenvalue, then considering the structure of H, the equation

H |E > = /1|E > produces the following set of equations.

A, = 4, (5.34)

Ay = A, + 4y (5.35)
Ady =4, + 4, (5.36)
/1An—1 = An—Z + An (537)
Mn = An—l + \/EAI’I+1 (538)

The solution to the set of equations (5.33) — (5.38) is of the form,

(E[C,) = A, - sin(pk) 1<k<n (539)
TR \4sin(p(n+1-k)) n+1<k<2n '

where p is some real value and the eigenvalue A corresponding to the eigenvector |E > is

111

A= ZCos(p). (5.40)

The solution can be verified by the help of the following simple trigonometric identities.

sin(x)+sin(y)=2sin(x;yjcos(x;yj (5.41)

sin((k —1)p)+sin((k +1)p) = 2sin(kp) cos(p) (5.42)

To investigate the exact value of p and hence the values for E,E,,..,E,,, we need to

evaluate the quantization condition, which comes from the equation (5.38).

2cos(p)sin(np) = sin((n —1)p) = /2 sin(np) (5.43)

This can be simplified by use of (5.42) to

sin((n - 1)p)+ sin((n + l)p) = sin((n - l)p)ﬁ_L 2 sin(np) (5.44)

sin((n + l)p) =142 sin(np) (5.45)

So much about the eigenvectors of H is enough that we can continue to examine the
quantum walk governed by H. In the following parts, we will be proving a set of theorems,
which will ultimately lead to the desired result that the quantum walk on the defective line can

reach the EXIT node (c,,) in polynomial time, and so can the quantum walk on G, .

Theorem 5.3. Consider the quantum walk in G,_, starting at the ENTRANCE. Let the

walk run for a time t chosen uniformly in [0, r] and then measure in the computational basis.

4n
If 2
7 & AE

for any constant € >0, where AE is the magnitude of the smallest gap between

any pair of eigenvalues of H, the probability of finding the EXIT is greater than %(l - 8).
n

112

Let us consider the walk on the defective line for G,_,. Starting from the ENTRANCE
node (¢,), letting the walk run for a time # results in a state equivalent to e*’H’|Cl>. At this

final state the amplitude of the component parallel to EXIT node,

C2n>, is given

by<C2n |e"”’ |Cl>. Hence the probability of finding the EXIT when measured in the
: - —iHt 2

computational basis is KCZn |e |Cl>‘ .

If ¢ is uniformly chosen in [O,z'], then the effective probability of finding the EXIT can be

calculated by taking the average of KCZ" |e*iH’| C >‘2 over the continuous interval [O,z'].

P(EXIT) = P(c,,)= %jo (

(Cp e, ﬂm

=1zt el) Y

T

(5.46)

Let 4,,4,,.. denote the eigenvalues of H and let |E1>,

E, >,.. denote the corresponding

eigenvectors. If we apply spectral decomposition separately to the terms <C2n |e_th|C1> and

(<C2n |e_th| C >)* then the expression becomes

% N ((Z e 4(c, |(ENE, |)Cl>j(§e”f’<C2n |qu NE; u C >J*Jdt

- | (zeicalmeicn [5 ale e)
= %IOT [%e_i(}d_ij)%Czn |E,- ><Ez |Cl ><C1 ‘Ei ><EJ ‘Czn >]dt
- lzjof (eii(ﬂi%j)%czn |E,- ><Ez |C1 ><C1 ‘Ei ><EJ ‘Cz” >)dt

Ti,j

(5.47)

113

Now, the last summation can be broken into two parts; one for the case where i = j and
the other for the case where i # j. Rearranging the expression and taking the integrals in the

appropriate way produces:

—i(4—-A)T
s) Bl ENE |G G

i#j l(ﬂyl —lj)f

SK8 1B o)

By equation (5.33), we have <E|C1> = i<E|C2n> for any eigenvector |E> of H. Hence,

the first term in (5.48) becomes

IZ_KE,» [(E|Conlf = ;KE,- e (5.49)

The eigenvectors of a Hermitian matrix, when they are set as the columns of a matrix,

are known to form a unitary operator by the spectral decomposition theorem. Hence, for any

value of i, we have (ZKEZ | (O >‘2j =1. Then it is easily established that

1
SEla) =, (5.50)

Recall that in Theorem 5.3, AE was defined to be the magnitude of the smallest gap

o AT

between any pair of eigenvalues of the Hamiltonian H. Then using the facts ‘1 — <2

and ‘i(ﬂi -4;)‘ > AE , the second term in (5.48) can be bounded as follows.

114

_ i
zﬁl—)@n|EZ.><EI»|c1><c1\E,~><Ej\czn>

i#) i(ﬂ“i _ﬂ-)T

Z\EICH i)

(zma F) ke fe)

(5.51)

|

Finally, choosing 7 > % as Theorem 5.3 suggests, and using the results in (5.50) and
&

(5.51), we have,

l - > 1 2
~far[(Caule ey >Z‘E>z_“ £). (5.52)

Then the probability of finding the EXIT after running the walk for a time ¢ chosen

uniformly in [0,7] where 7>

. 1 .
" is shown to be greater than — (1—&). This result
e AE 2n

completes the proof for Theorem 5.3.

Note that if AE is too small then 7 can become too large. In this case the above theorem
can become practically useless. Therefore, we need to show that AE is at most polynomially

small in terms of » and hence, 7 is at most polynomially big. Theorem 5.4 states this.

Theorem 5.4. The smallest gap between any pair of eigenvalues of the Hamiltonian H

, 27 (1 j
satisfies AE > ————+ 0| — |.
f (1+~/2)n n’

115

We had shown that the eigenvalues of H are of the form A =2cos(p) where the values

for p come from the roots of equation (5.45), which we refer to as the quantization condition.

A rewriting of (5.45) gives

sin((n + l)p) _ 2.

- 5.53
sin(np) (5-53)
In order to evaluate the spacings between the eigenvalues, we need to examine the roots
of this equation. To give an idea about its behavior we sketch the left hand side of the equation
for n=5 in Figure 5.6 and for n=8 in Figure 5.7. The two figures show similar
characteristics on which we can make generalizations to build an analysis of the eigenvalues

of the Hamiltonian H.

0 /5 2n/s p In/s 4n/s m

Figure 5.6. The sketch of f(p)=sin((n+1)p)/sin(np) for n=5

116

Figure 5.7. The sketch of f(p)=sin((n+1)p)/sin(np) for n =8

It is seen in both graphs that the roots of the equation f(p)=sin((n+1)p)/sin(np)= 2

lie to the left of the roots of the equation sin(np)=0, which occur at (x/n), for

[=1,2,...,n—1. Therefore we can say that f(p) intersects —/2 for p= (d/n)-5 where & is

non-negative. Replacing p with (71'[/ n)—5 and then rearranging the terms, Equation (5.53)

with —+/2 on the right hand side can now be rewritten as

- 2sinn5:sin(n5—l—ﬂ+5j. (5.54)
n

Without loss of generality, we can assume & =(c/n)+ (d/n2)+ 0(1/n3). Then as n — ©
equation (5.47) becomes —\2 sin(c)=sin(c), which implies c¢=0. So we use

0= (d/n2)+ O(l/n3) instead, to get

117

~2 sin(% + OLn%D = sin(% —17” + o(nizjj , (5.55)

Iz
1+\/E.

the right hand side are of the form

which as n — o0 gives d = Hence, we can state that the roots of (5.53) with —/2 on

p:l_ﬂ._l—ﬁ_ko(ij 5.56
n (1++2)n° n*) (5:56)

Let p' be a root of (5.53) with —+/2 on the right hand side. Then p' is of the form
shown in (5.56). Let p'' and p'" be the roots of (5.53) which lie respectively to the left and to

the right of p'. It is clear in Figure 5.8 that the closest root to p' is either p'' or p'"', both of

which are roots of (5.53) with + V2 on the right hand side.

Figure 5.8. The roots p', p'" and p'" of the equation sin((n+1)p)/sin(np)= +2

118

Note that p'"' lies to the right of the zero of sin(np) at p = (2/n) and p'" lies to the left

2 3

of the zero of sin((n+1)p) at p=(al/n+1). Therefore, we have p''< l—ﬂ—l—”+O(Lj and
non n

"

p''> l—” From these, we can conclude the following for / =1,2,...,n—1:
n

lﬁ\/z 1

AT o —
p-p >(1+\/5)n2 + (n3j (5.57)
m_ '>l—”+0£ij 8
pop (1++2)n? n’ (5-58)

Thus, the smallest spacing between the roots of (5.53) is at least ”+0(1j
n

(1++/2)n? 3
which is the value of p'''-p' for [=1.

Now, we should translate the result about Ap, the minimum spacing between the roots

of (5.46), to a result about the AE, the minimum spacing between the eigenvalues of H. It was

shown that the eigenvalues of H are of the form 2cos(p), where p 1is a root of (5.53). Then

AE and Ap are related by AEchos(p+Ap)—2cos(p). For small values of Ap, this

relation becomes
AE = 2Apsin(p)|+ 0l(ap)?). (5.59)
The factor sin(p)= sin(7rl/ n+ 0(1/ n’)) is smallest when / =1. If we place the smallest

possible terms for Ap and sin(p) in equation (5.59) we can find a lower bound for the value

of AE . Then, for sufficiently large n we write

272 (1] 8
AE>———+ 0| — |>—. 5.60
(1+\/5)n3 nt) n’ (5.60)

119

This concludes the proof of Theorem 5.4, which stated that the smallest gap between any
pair of eigenvalues of H is only polynomially small. Now we have sufficient results to form a

general statement about the quantum walks on the glued trees.

Theorem 5.5. For sufficiently large n, running the quantum walk on G, for a time
4

chosen uniformly in {O,Z—} and then measuring in the computational basis, yields a
g

probability of finding the EXIT that is greater than 2i(1 - 8).
n

Theorem 5.4. states that the spacing AE between the eigenvalues of H is only

4n

polynomially small. With this insight, we can state that 7 > is only polynomially large.

EAE
Hence, by the statement of Theorem 5.3, for any graph of the form G,, we can efficiently run

the quantum walk, with use of the methods introduced in Section 5.3, for a randomly decided,

polynomially big time. Measuring in the computational basis, then gives a probability of

finding the EXIT, which is greater than %(l —&). We can check whether the observed state is
n

EXIT. A constant number of black box queries may be used to see if the degree of the
observed state is equal to two, in which case we can safely conclude that the observed state is
EXIT as long as it is not equal to ENTRANCE. (Note that only these two nodes have degrees

equal to two in a graph of the form G,.)

A success probability which is arbitrarily close to 1 can be achieved by the repetition of
this process by a polynomially big number of times. To conclude, the quantum random walk
algorithm can solve the black box graph traversal problem for the graphs of the form G, to an
arbitrary degree of certainty, with use of polynomially big number of black box queries and

other one and two qubit gates.

120

5.5. The Classical Lower Bound

In Section 5.4 we have derived a result that a quantum algorithm depending on
continuous time quantum random walks can efficiently solve the graph traversal problem on

graphs of the form G, to an arbitrary degree of certainty. (In [50], it is stated that a discrete

time quantum walk employing the Grover coin can serve for the same task as well.) The
importance of this result is due to the fact that no classical algorithm can do the same in sub-
exponential time. In this section, we will show the truth of this statement. In particular, we will

be constructing a proof for the following theorem.

Theorem 5.6. Any classical algorithm that makes at most 2"° queries to the oracle finds

the EXIT with probability at most 4-27"°.

In [3], a set of games are introduced which serves for the proof of Theorem 5.6. We will
follow the same way and go through these games, the first of which will be equivalent to the
graph traversal problem. Each new game will be essentially as easy to win as the previous one.
At the end, we will try to show that the easiest game cannot be won in subexponential time,

which is the desired result.

In the following, we will be using P$(4)= Pr [4 wins game X on graph G| to denote

the probability that the algorithm 4 wins the game X played on the graph G where the vertices
are randomly named.
Let us begin with the first game.

5.5.1. Game 1: Find the Exit

The following game is equivalent to the graph traversal problem.

121

Given a randomly chosen graph G, such that each vertex has a distinct 2n-bit string as
its name and the ENTRANCE vertex has the name 00..0. (The string 11..1 is not used as the
name of any vertex.) Also given a black box for this graph, which returns the names of the
neighbors of a vertex if it is queried with the name of that vertex. An algorithm wins the game

if it ever sends the black box the name of the EXIT vertex.

In this game, there is no restriction on the inputs to the black box, so an algorithm could
traverse a disconnected subgraph of G,. But since the number of strings that can be written in
2n bits is exponentially larger than the number of vertices in the graph, it is highly unlikely

that any algorithm could ever guess the name of a vertex which was not sent by the oracle.

Therefore Game 1 is essentially equivalent to the following game.
5.5.2. Game 2: Find a Path to the Exit

Game 2 is defined in the same way as Game 1 with the exception that a string to be sent
to the black box should either be the name of the ENTRANCE node or the name of a vertex
that has previously been returned by the black box.

Let 4 be an algorithm for Game 1. One can define an algorithm A' for Game 2 in the
same way as 4, but in the cases that 4 sends the black box a string which is not the name of
the ENTRANCE node or a name previously returned by the oracle, 4' considers the result of
the query as 11..1.

The two algorithms 4 and A' will have similar behavior unless 4 guesses the name of

a new vertex correctly. The probability, P, (guess), that 4 does so at least once in ¢ trials is

given by

N springs =N vertices t 20 _1)= (272 o)Y n+2
R

122

which is in the order of O(t/ 2") (N is the number of strings different from 11...1 that can

strings

be written in 2z bits and Nyeqices 15 the number of vertices in the graph G, .) Therefore the

success probabilities P.(4) and Py (4') differ by a factor at this order.

PC(4)<PY(4)+ 0(2inj (5.62)

It should be noted that winning Game 2 is essentially as easy as solving the graph
traversal problem by querying the black box with randomly chosen strings at each step.
However if an algorithm can develop a mechanism of inference about its position of the
known vertices on the graph then it can perform better than random by querying the black box
for carefully chosen vertices. An algorithm knows the column on which a particular vertex v is
if it has seen a path shorter than n+2 edges from ENTRANCE to v. This is of no use for the
columns which lie to the right of column #» +1. However if an algorithm ever sees a cycle in
the graph then the structure of this cycle may reveal some non-trivial information about the
position of the vertices on the graph. Of course this information may not be so critical in
winning Game 2, however we should take this probability into the account to find an upper
bound on the probability of solving the graph traversal. The definition of the next game is a

step in this way.
5.5.3. Game 3: Exit or Cycle

Game 3 is defined in the same way as Game 2 except the winning condition. An
algorithm wins Game 3 if it ever sends the oracle the name of the exit vertex, or if the

subgraph it has seen contains a cycle.

Trivially, Game 3 is easier to win than Game 2 is as stated in (5.63). Therefore an upper
bound on the probability of winning this game in ¢ steps also bounds the probability that one

can solve the graph traversal problem with use of ¢ queries.

123

Py (4)< P{(A) (5.63)

We define an embedding of a rooted binary tree 7 into a graph G to be a mapping 7,
from the vertices of T to the vertices of G such that 7(ROOT)= ENTRANCE and for all
vertices u and v that are neighbors in 7, z(x) and z(v) are neighbors in G. We say that an
embedding of T is proper if n(u) # #(v) for u #v. A tree T is said to exit a graph G under an
embedding 7 if 7(v)=EXIT for some veT. It is not hard to show that the subgraph an

algorithm sees must be a proper random embedding of a rooted binary tree if it could not win

Game 3. The definition of the next game depends on this observation.
5.5.4. Game 4: Exit or Cycle With a Binary Tree

In this game, an algorithm simply produces a rooted binary tree T with ¢ vertices. Every

vertex of 7" which is not a leaf is required to have two children. An embedding 7 of T'into G,

is produced randomly. The algorithm wins Game 4 if 7 is an improper embedding or if 7

exits G, under .

A random embedding of a tree T is obtained by setting 7(ROOT) = ENTRANCE and

then mapping the rest of 7" into G at random. For a binary tree in particular, the following

algorithm can be used to obtain a random embedding.

1. Label the root of T as 0, and label other vertices of 7" with consecutive integers

so that if vertex i lies on the path from the root to the vertex j,then i< j.

2. Set 7(0)= ENTRANCE .

3. Let i and j be the neighbors of 0 in 7.

4. Let u and v be the neighbors of ENTRANCE in G.

5. Set 7(i)=u, z(j)=v or z(i)=v, z(j)=u, with probability 1/2 for each.

6. For i =1,2,3.. if vertex i is not a leafin T'and 7(;) is not ENTRANCE or EXIT,

124

(a) Let j and & denote the children, and / denote the parent of vertex i.
(b) Let u and v be the neighbors of 7(;i) in G other than 7(l).

(c) Set 7(i)=u, z(j)=v or z(i)=v, z(j)=u, with probability 1/2 for each.

Let 4 be an algorithm which wins Game 3 that uses at most ¢ queries to the black box.
One can define an algorithm A' for Game 4 to generate a random tree by simulating A4 as
follows. Suppose that a vertex a in graph G corresponds to vertex a' in the tree that A4' is
generating. If A4 asks the black box for the names of the neighbors of a, A’ generates two
unused names b' and ¢' at random and uses them as neighbors of a'. Now corresponding to b
and c, the neighbors of a in G, the tree has »' and c¢'. It is easy to verify that using the tree

generated by 4’ wins Game 4 if and only if 4 wins Game 3. Therefore we say

PY(A)=PJ(A"), which means that Game 3 and Game 4 are equivalent.

Now, we have a chain of games, the first of which is equivalent to the graph traversal
problem. Assuming # is large Game 1 and Game 2 are essentially equal in difficulty. The
easiest ones to win are Game 3 and Game 4. Therefore an upper bound on the probability of
winning Game 4 in a finite number of steps is also an upper bound on the probability that a
classical algorithm can solve the graph traversal problem in that many steps. Therefore we are

going to establish such a bound. In particular we will be proving that the expected probability

that a rooted tree T of at most 2"’¢ vertices can win Game 4 on a randomly selected graph G,

is at most 3-2"/¢.

Let 7 be a tree with ¢ vertices (¢ <2"'®). T wins Game 4 if it satisfies one of the two

winning conditions. Let 7 be a random embedding of 7 into G, . Then 7Z'(T) is the image of T’
in G, under 7. T wins Game 4 if 7(T') contains the EXIT node of G,, which is the first
winning condition. Note that in order for 7(T’) to contain a node in the k ’th column of G,

(n+1<k<2n+2), there should be a subbranch in 7, whose image under 7 is a path from

column n+1 to column k of G,. The probability of this for a single branch of length

125

k—(n+1) is 1/ pk-lr+1) , since the random embedding of this branch should choose to move
right & —(n+1) times in a row to reach the % ’th column. Since there are at most ¢ tries on
each branch of T and there are at most ¢ such branches, the probability that z(7") contains a

node in the k’th column is bounded by ?/ 2**) In particular, a node in the 3n/2’th

column of G, can occur in 7(T') with a probability at most 222 and we can take this as

an upper bound on the probability that 7 satisfies the first condition.

T wins Game 4 also if 7(T') contains a cycle, which is the second winning condition. If
7(T) contains a cycle, then there are two vertices a,b in T such that 7z(a)=7z(b). If P is the
path between @ and b in T, then 7(P) is a cycle in G,. Let ¢ be the vertex nearest to the root
in z(P) and divide z(P) into two paths z(P), from ¢ to a and 7(P,), from ¢ to b.
Without loss of generality one can take 7(c) to be in the left half. Consider Figure 5.9 where

every triangle stands for a subtree of depth n/2 .

0 n'2 n ontl 32 2n+1

ENTRANCE EXTT
nA)----
n(B) v =mla)= n(b)

Figure 5.9. The cycle depicted on the subtrees of G,

126

The 2"'? subtrees populating the columns #n+1 through 3n/2 are named SI,SZ,..,SZ,,,2
and the 2"'* subtrees populating the columns n/2 through n are named §,,S,...,S,,. Both
z(P) and 7(P,) visit a sequence of these subtrees and since 7(a) = 7(b), these sequences
should end with the same subtree. The other possibility where 7(a) = z(b) lies in a column
greater than 3n/2 or less than n/2 is bounded by the same probability as the one calculated

for a path from the column 7 +1 to the column 3n/2.

If both sequences had contained only one subtree, then all the vertices visited should be
in the left half, which would not create a loop. So at least one of the sequences contains more

than one subtree. The probability that the last terms in the two sequences are the same is

bounded by 2”2/ (2” - t), because of the random cycle that connects the two halves of G,. As

t
long as ¢ < 2", it is guaranteed that 2”/2/(2” —t)S 2-27"2 . Since the number of paths is [J ,

which is less than #°, one can conclude that the probability of a cycle is less than 727"/,
Then the probability that a rooted tree 7 with ¢ vertices can win Game 4 on a randomly

selected graph G, is bounded by ¢’ 2172 412272 If a tree with at most 2"'® vertices is

considered, 3-2"'® can be set as an upper bound on that probability. This completes the proof

of Theorem 5.6. It is shown that a classical algorithm for solving the graph traversal problem

requires exponential time.

127

6. AN IMPROVEMENT ON QUANTUM WALK SIMULATIONS

In the preceding chapter we analyzed the results demonstrated in [3], where a quantum
algorithm depending on a black box based implementation of a continuous time quantum walk
was shown to provide an exponential gain against the best classical algorithm for a graph
traversal problem. In this chapter, we present an optimized version of the quantum random
walk implementation used in [3]. Our approach can be generalized to optimize any quantum
simulation in which the linear combination rule is used to simulate a collection of constituent
Hamiltonians. The method involves manipulation of the order in which the constituent
Hamiltonians are simulated for small durations in the iterative step of the simulation
algorithm. An analysis to illustrate the benefits of the new approach in oracle-based

simulations is also given.

In Section 6.1 we will construct a circuit model for the quantum walk implementation
introduced in Section 5.3. Then a method for optimizing this implementation will be
demonstrated in Section 6.2. An analysis of the gain of this technique in various black box

scenarios will be presented in Section 6.3 and Section 6.4 will conclude the discussion.

6.1. The Circuit Model for Quantum Walk Simulation

Circuit models are often useful to visualize quantum algorithms. In this section we will
construct a circuit model for the quantum walk implementation of Section 5.3. Let us first

recall the details of the proposed implementation.

The quantum walk on a graph G was shown to be governed by a Hamiltonian H which

could be written as a sum of smaller terms. We have

H=2H., 6.1)

cel

128

where L is a set of k labels used for the edges of G. For each c € L, the corresponding local

term, H_ is of the form
H, =VTV,, (6.2)
where for each ce L, V. is the component that queries the black box that satisfies

vi=v . (6.3)

Cc c

and T is the operator given by 7=st"gstm) g S(’"’z’”)®|0><0| where S

denotes the swap operator acting on the bits # and v. Recall also that the circuit in Figure 6.1

simulates 7 for an arbitrary duration A¢ on the states of the form

a,b,r). The last qubit

initially set to |0> is an ancilla bit and it is uncomputed at the end.

| |}_ L
prmpgw g
) —] i
g mmn)y
a7 : : 1+
by —] I W
.l') FaY
| T

|0) —-b—D Q-M‘IZ So—D-D—I|0)

Figure 6.1. The circuit for simulating 7 = st @ gm2) g | @ glm2m) ®|0)(0|
The unitary conjugation rule suggests that

e—i(VjTchAt ey, (6.4)

c*

129

Then, if the circuit for simulating 7 for a duration Az is represented by a component labeled as

—iTAt

e "™, we can construct the circuit which simulates H_ = VjTVC as in Figure 6.2.

|ﬂ|>_:

|a,) —

| bl.)_l
|bm>_-

|7y —

e-iTAr

Figure 6.2. The circuit simulating #H,_ = VCTTVC for duration At

Let L:{ll,lz,..,lk}, in which case it is natural to name the local Hamiltonians as

H,,H,,.H;,sothat H = H, + H, +..+ H; . Then by linear combination, we have

H e—i(H1+...+Hk)t _(e*iHl tr “e—in t/r)r

:0[

k21t?
—

(6.5)

If only non-commuting pairs of constituent Hamiltonians are considered, the right hand side of

(6.5) becomes O(klt2 / r). Then, depending on the desired accuracy, the total simulation time ¢

is divided into 7 slices and simulated in iterations of (e_iH 1ifr =iyt omiHk 1 ’). All of these

iterations are identical and the overall simulation can be represented as in Figure 6.3, where

we take Ar =t/r and let the components e MM denote the circuit in Figure 6.2 for l.eL.

iteration 1 iteration 2
— —— — ——
| a)—] B
Ia;”)_' g
|b1)—] it AL ciHae| L iHA | ithae e i AL A
lB—€ e < L Je ¢ e Jde = L Je
n—___H

Figure 6.3. The simulation of quantum walk in r iterations of (eiiHl reTH2tlr g

iteration »

N

7] -rHl AF
&

T -I'Hﬂ-"\lr-..
e - i

i
Je

—iH} t/r)

130

In Sections 5.3 and 5.4, it was shown that running the circuit in Figure 6.3 requires
O(k212 / 5) black box queries and O(k212 m/ 6‘) auxiliary operations for symmetric labeling. It

was also shown that for the graphs of the form G, where n is sufficiently large, running the

circuit designed for a time ¢ uniformly chosen in [0,714 / 25] on the initial state

a,b,r>:|ENTRANCE,0,0>, and then measuring in the computational basis yields a

probability of finding the EXIT that is greater than 2L(1 —2¢). Therefore, the graph traversal
n

problem on the graphs G, (which is classically hard) can be solved to arbitrary accuracy by a

polynomially big number of repetitions of this process.

6.2. An Improvement on the Quantum Walk Implementation

The complexity of a quantum algorithm is measured in terms of the number of
conventional quantum gates and oracle calls (if any) that it needs to solve a problem. A
reduction in these numbers is often regarded as a valuable optimization. The quantum walk
simulation algorithm introduced above is open to such optimization in several ways. Here is a

discussion of such an effort to improve this algorithm.

The simulation algorithm is based on the trivial fact that the Hamiltonian H, which

governs the random walk, can be written as a sum of several smaller Hamiltonians H, where

ce L. The iterative part of the algorithm is the successive simulation of these smaller
Hamiltonians for small time slices. The order in which these simulations will take place is a
natural candidate to serve as an instrument for a potential optimization. In the following we
will first show that manipulating this order does not effect the expected accuracy of the overall
simulation algorithm and next we will build an optimization method depending on this

observation.

131

—iH|At _—iHyAt —iH g At
b b

The terms e e € can be ordered in ¢! different ways. Let each of
a,,a,,..,a, denote the product of these terms in arbitrary orders. (4,,a,,..,a, can be distinct
or not.) By (3.13) for each 1 <i <r, we have

e—i(H1+H2 tAHg N

=a. +b (66)

4

2
t .
where b denotes the error term O qzﬁt—j . Now we can write
r

(e—"(H1+H2+~~+Hq)At) = ﬁ(ai + b)

=Hal. —i—i Haj b+...

i=1 i=1| 1< j<r

s 6.7)
=[]a; + O(rb)

- 2,2
=[]a; +O[&J

r
The error term is in the same order as in the original case. (In particular case of

simulating random walk on a graph G, , this error term reduces to O(qft2 / r) since only O(q)

pairs of ¢ constituents fail to commute.)

ay
-

H(e—i(H1+H2+...+Hq)At) 4

25,2
=0(q t j (6.8)

k=1

Therefore, we can state that alternating the orders at each iteration does not affect the
average accuracy of the simulation algorithm. Let us now see how this observation can be

used to build an optimization method on the simulation algorithm.

132

A simple idea is to start each iteration (with the trivial exception of the first one) with the

simulation of that constituent /. which was the last in the previous iteration. This can be

achieved by simply reversing the order at each iteration as in (6.9).

—iHWAt —iH At —iH g At ip e
(e" e MR e Tl) if iisodd

a. =
—iHgAt —iH g, 1At _jH At
e 4TI it

1

(6.9)
if iiseven

Then the overall algorithm runs by simulating the constituent Hamiltonians in the order

specified by the string H,,H,,.,.H,,H,,H,_,,...H,,H,,H,,..,H,,... If this method is applied,
two successive simulations of the same Hamiltonian occurs r—1 times, like in the cases of

wH,H,,. and ..,H,H,,.. Such successive simulations of a Hamiltonian, which is of the

form H, = VCTT V., bring in a potential for optimization due to the fact that VCVCT =1.
HH, =viTvyity, =virrv,. (6.10)

With the successive simulations of H, = VCTT V., one can save two black box queries by

simply canceling VCVCT =1 . Therefore, the circuit that simulates the Hamiltonian H_H_ can

be constructed as in Figure 6.4.

) —] ¥y m ¥ 0

la,) — i | - -

i?l ——]] ‘ -] B
| } . V .. €'IT£I - .EJ-IT&I - V-]- .

by— ¢ = - e |

I — — — -

Figure 6.4. Two successive simulations of the Hamiltonian H_ = VCTT V.,

133

With this optimization, the number of oracle calls needed for these successive
simulations is reduced by half. The ratio of the improvement in the overall algorithm is
dependent on £, the number of local interactions that make up the global Hamiltonian H. Each
of the r iterations of the old method requires 2k oracle calls, while this number is reduced to
2k —1 for the first and last of the r iterations, and to 2k—2 for the others with the
arrangement in the order of simulations. The maximum vertex degree for the sort of graphs
contained in our problem is three, so k can be taken to be 3 for this problem. In this case, the
total number of oracle calls is reduced by a factor in the order of one thirds of that number for
the original algorithm, which is a valuable optimization, considering how hard it is to build
quantum circuits. However the circuit shown in Fig. 6.4 is open to further improvement. A

more detailed look (as in Figure 6.5) at the center of this circuit would reveal the idea.

AR Halds: s
4 Wi w i
P [T et
” ;i ;i

o) —— e'm‘z S—DD S-O— e'm‘z So—Bb—|0)

Figure 6.5. The circuit representation for two successive simulations of 7'

Figure 6.5 offers an opportunity to improve the circuit by canceling the unitary operator

w®™ and its adjoint, which, when applied one after another, act as the identity operator. Then
a further improvement becomes trivial by canceling the Toffoli gates to produce a circuit
where two of the components for simulating the Pauli Z operator for duration A¢ come
together at the center. A natural choice is to replace these gates with a simulation of the Pauli

Z operator for duration 2A¢. Then we end up with a circuit like the one in Figure 6.6.

134

| @) — -

m g o

| ay) — ++

la,) — i - - -

by —] I W
" o
1

|0y —<b—b e-s‘(zm)z S—Db—|0)

Figure 6.6. The circuit that simulates 7 for duration 2At¢

Now it is also apparent that the circuit in Figure 6.4 simulates H_ for time 2A¢. With

one more arrangement we replace the successive terms, ..,H.,H_,.. in the sequence

H,H,, H, ,H ,H,_, ,H,H,H,,. H,,. with H?, which stands for the simulation of

c

the Hamiltonian /, for a duration twice as large as that for others. Then we get the sequence

HI,HZ,..,H,f,Hk_l,..,le,Hz,..,H,f,... Note that the last term of such a sequence is

determined by the parity of ». The circuit for implementing the quantum walk with the new
method is depicted in Figure 6.7 for the case where & =3 and r is even. Note that in this case

the iterations are not separated by strict lines.

iteration | iteration 2 s iteration r
— — - — _— . — — _— - —~—
@) — H B B i P] i B A
|am> — a a a - - - - - -
|b1)—] -ithAr 1| -ityar | -iH 28| siHaar [il 2aefs t T iAo | A T
|b'>_ é lle < e - e < B¢ - Je - e < e -
m— _H H H H +F {1 _H H F

Figure 6.7. The circuit for simulating the sequence Hl,Hz,..,H,f,Hk_l,..,le,Hz,..,H,f,..

This method brings an improvement over the old one, not only because it is
computationally less expensive, but also because it eliminates more failures due to potential

problems in physical implementations.

135

6.3. Performance Analyses for Various Black Box Settings

The method introduced can be more beneficial for implementing the quantum walk with
a slightly modified version of the original black box settings. This section briefly discusses

several such cases.

As the first example, consider a scenario that is the same as the original one, except that
this time, the costs for the black box queries are not uniform. That is, different costs are
associated with querying the black box for different edge labels c e L. In this case, the
improved algorithm performs better if it economizes on the types of calls which are more
expensive. Suppose that the two most expensive types of queries are those associated to the

labels /, and /, in decreasing order of costs. To achieve the best performance, the simulation
should start the first of the r iterations with the second most expensive label /, and end with

the most expensive one /,, not caring about the order of other labels between the two. Then

reversing this order at each iteration would produce a sequence like H,,.., H 5,..,H ,f,..,H 5,..
thus at each iteration it saves two queries which are of one of the two most expensive types /,

and /.

In this scenario, the ratio of improvement with respect to the original method is

dependent on how the costs are distributed. A simplified scenario contains three labels /,, /,
and /., two of which (/, and /,) have the same cost C,, which is z times as big as the cost
C. of the third one (/). The original method would use two queries for each label at each
iteration, and thus would have a total query cost of 4rC_, +2rC.. With the method we

propose, » —1 successive simulations are transformed to longer simulations, hence saving two
queries for a label, which we arrange to be one of the expensive ones. Therefore the total

saving from the query cost is 2(r —l)Ca . Then the total query cost of the proposed method is

(4rc,+2rC,)-2(r-1)C, =(2r+2)C, +2rC,.

136

The ratio R of the cost for the proposed method to the cost for the original one varies

according to the number of iterations r, and the ratio of the costs, z=C,/C, . A sketch of R
against z=C,/C, is given in Figure 6.8, where r is assumed to be large. It is seen that for

uniform label costs, the improvement over the original algorithm is in the order of one thirds
of the total cost for the original algorithm, while that ratio increases to a half with the increase

in the ratio of the non-uniform costs.

0.8 T T T T T T T T T

075 .

0.65 -

0BF .

0.85¢- -

o= e e =

total cost (improved/original)

D“l 1 1 1 1 1 1 1 1 1
0 10 20 30 40 a0 B0 /0 80 a0 100

z=C/C,

Figure 6.8. The ratio of total costs sketched against the ratio of query costs

Another interesting case occurs when the number of black box queries that a quantum
walk implementation can perform is limited. Several variations of this scenario can be
considered. The most interesting alternative imposes independent limits for queries of
different labels. The performance criterion in such a case is the precision of the simulation,
which is a polynomial function of the number of iterations that the simulation can run. The
maximum number of iterations that the original algorithm can run is half the number of the
allowed queries for the label with the tightest limitation, since with this method each iteration

would need two queries of each type. The method introduced in Section 6.2 can be adjusted to

137

run for twice as many iterations (if limitations on other labels are not so tight) and hence
returns more precise results. For a better comparison of the two algorithms, the maximum
number of queries allowed for each label should be taken to be the same. The number of
iterations that the original algorithm can run is half that number. The performance of the
improved algorithm is dependent on the number of labels 4, as depicted in Figure 6.9. For
large values of k, the two algorithms return similar results, while for small values, the method

we propose can run notably more iterations, which means better precision.

;E\ T T T T T T T T T

5h

E 1B -
T 15; .
£

E 1.4F -
2 13r .
E 12t §
=

S o1t i
L

=

B T -
E 0ot i
=

& 0B8f -
£

._‘E D? 1 1 1 1 1 1

1 1 1
0 a 10 14 20 28 a0 35 40 45 50
the number of labels (k)

Figure 6.9. The ratio of maximum number of iterations sketched against k

Various other scenarios can be constructed, where the improved algorithm can be shown
to perform significantly better than the original one. The overall improvement in complexity,
together with a flexibility that can be used in favor of more preferable types of queries, can be

seen to be the reasons for that improved performance.

138

7. CONCLUSION

In this work, we aimed to develop an understanding of the techniques used in
demonstrating exponential algorithmic speedup by quantum walks. For this purpose, we
examined the necessary simulation techniques and some of the many ideas in the domain of
quantum random walks. Then we presented a detailed analysis of how to achieve the
exponential algorithmic speedup by quantum walks. We also presented an optimization
technique to reduce the computational cost of the quantum walk implementation used in this

process.

It is evident that the optimization technique we presented is not limited to the simulation
of quantum random walks, but it can be generalized to optimize any quantum simulation, not
necessarily involving oracle calls, in which the linear combination rule is used to simulate a
collection of constituent Hamiltonians. A straightforward extension of the analysis in Chapter
6 shows that the performance gain that would be achieved through the use of this technique is
inversely proportional to the number of constituent Hamiltonians of the simulated system, and
the quantum random walk of [3], where this number is only three, is a particularly suitable

example for demonstrating a significant gain.

The sequence of ideas presented in this work is naturally tied to the question “What other
problems can be solved exponentially faster on quantum computers than on classical ones?”
More specifically, we can ask for what other problems quantum random walks can provide
exponential algorithmic speedup. It is yet unknown whether this sort of questions can take us
to a family of problems in speeding up the solution of which quantum random walks play a
role similar to that of quantum Fourier transformation in case of solving hidden subgroup
problems. However, it can be expected that there may be other families of graphs on which
similar results can be shown. The variety of ideas that can be abstracted in graph formalism
encourages us about the existence of useful computational problems which can efficiently be

solved with use of the methods discussed here, or some modification of them.

139

REFERENCES

Grover, L., "A Fast Quantum Mechanical Algorithm for Database Search",
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp 212-
219, 1996.

Shor, P. W., “Algorithms for Quantum Computing: Discrete Logarithm and
Factoring”, Proceedings of 35" Annual Symposium on Foundations of Computer

Science, pp. 124-134, 1994.
. Childs, A.M., R. Cleve, E. Deotto, E. Farhi, S. Gutmann and D.A. Spielman,
“Exponential Algorithmic Speedup by Quantum Walk”, Procedings 35" ACM

Symposium on Theory of Computing, pp. 59-68, 2003.

. Nielsen, M. A. and 1. L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, 2000.

. Hardy, Y. and W. H. Steeb, Classical and Quantum Computing, Birkhauser Verlag,
Basel, Boston, Berlin, 2001.

. Hirvensalo, M., Quantum Computing, Springer Verlag, Berlin, 2001.

. Lomonaco, S. J., “A Rosetta Stone for Quantum Mechanics with an Introduction to

Quantum Computation”, AMS Proceedings of Symposia in Applied Mathematics, Vol.
58, pp 3 - 65, 2002.

Strang, G., Linear Algebra and Its Applications, Academic Press, New York, 1976.

Gruska, J., Quantum Computing, Mc Graw Hill, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

140

Bennett, C. H., "Logical Reversibility of Computation" IBM Journal of Research and
Development, Vol 17, pp. 525-532, 1973.

Barenco, A., D. Deutsch and A. Ekert, Universality in Quantum Computation,
http://arxiv.org/pdf/quant-ph/9505018, 1995.

d'Espagnat, B., Conceptual Foundations of Quantum Mechanics, Perseus Books,

Reading, Massachusetts, 1999.

Deutsch, D., “Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer”, Proceedings of Royal Society of London, Vol. A 400, pp. 97-
117, 1985.

Bernstein, E. and U. Vazirani, "Quantum Complexity Theory", Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, pp 11 - 20, 1993.

Vazirani, U., “A Survey of Quantum Complexity Theory”, AMS Proceedings of
Symposia in Applied Mathematics, Vol. 58, pp 193-217, 2002.

Yao, A., "Quantum Circuit Complexity", Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science, pp 352 - 360, 1993.

Aharonov, D., W. van Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev, Adiabatic
Quantum Computation is Equivalent to Standard Quantum Computation,

http://arxiv.org/pdf/quant-ph/0405098, 2005.

Bernstein, E. and U. Vazirani, “Quantum Complexity Theory”, SIAM Journal of
Computing, Vol. 26, No.5, pp. 1411-1473, 1997.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

141

Kitaev, A., A. H. Shen and M. N. Vyalyi, Classical and Quantum Computation,
volume 47 of Graduate Studies in Mathematics, American Mathematical Society

(AMS), Providence, 2002.

Fortnow, L., "One Complexity Theorist's View of Quantum Computing", Theoretical

Computer Science, Vol. 292, pp. 597-610, 2003.

Brassard, G., P. Hoyer, M. Mosca and A. Tapp, Quantum Amplitude Amplification and
Estimation, http://arxiv.org/pdf/quant-ph/0005055, 2000.

Deutsch, D. and R. Jozsa, “Rapid Solution of Problems by Quantum Computation”,
Proceedings of Royal Society of London. Vol. 439A, pp. 439-553, 1992.

Simon, D. R., “On the Power of Quantum Computation”, Proceedings of 35" Annual

Symposium on Foundations of Computer Science, pp. 116-123, 1994.

Shor, P. W., Introduction to Quantum Algorithms, http://arxiv.org/pdf/quant-
ph/0005003, 2000.

Lomonaco, S. J. and L. H. Kauffman, Quantum Hidden Subgroup Problems: A
Mathematical Perspective, http://arxiv.org/pdf/quant-ph/0201095, 2002.

Jozsa, R., Quantum Factoring, Discrete Logarithms and the Hidden Subgroup
Problem, http://arxiv.org/pdf/quant-ph/0012084, 2000.

Pittenger, A. O., An Introduction to Quantum Computing Algorithms, Birkhauser
Verlag, Boston, Basel, Berlin, 2001.

Brassard, G. and P. Heyer, An Exact Quantum Polynomial-Time Algorithm for Simon's
Problem, http://arxiv.org/pdf/quant-ph/9704027, 1997.

29.

30.

31.

32.

33.

34.

35

36.

37.

38.

142

Lomonaco, S. J., “Grover's Quantum Search Algorithm”, AMS Proceedings of

Symposia in Applied Mathematics, Vol. 58, pp 181 - 192, 2002.

Bennett, H.C., E. Bernstein, G. Brassard and U. Vazirani, “Strengths and Weaknesses
of Quantum Computing”, SIAM Journal of Computing, Vol. 26, No.5, pp. 1510-1523,
1997.

Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York,
1986.

Baker A., A Concise Introduction to the Theory of Numbers, Cambridge University
Press, Cambridge, 1994.

Brandt, H. E., “Qubit Devices”, AMS Proceedings of Symposia in Applied
Mathematics, Vol. 58, pp 67-139, 2002.

Lomonaco, S. J. (editor), Quantum Computation: A Grand Mathematical Challenge
for the Twenty-First Century and the Millennium, volume 58 of Proceedings of
Symposia in Applied Mathematics, American Mathematical Society (AMS),
Providence, 2002.

. Feynman, R.P., “Simulating physics with computers,” International Journal of

Theoretical Physics Vol. 21, pp. 467488, 1982.

Lloyd, S., "Universal quantum simulators", Science, Vol. 273, pp. 1073-1078, 1996.

Wiesner, S., Simulations of Many Body Quantum Systems by a Quantum Computer,
http://arxiv.org/pdf/quant-ph/9603028, 1996.

Zalka, C., Efficient Simulations of Quantum Systems by Quantum Computer,
http://arxiv.org/pdf/quant-ph/9603026, 1996.

39.

40.

41.

42.

43.

44,

45.

46.

47

48.

143

Childs, A, M., Quantum Information Processing in Continuous Time, (Doctoral
Dissertation, Massachusetts Institute of Technology), http://www.cs.caltech.edu/
~amchilds/thesis.pdf, 2004.

Farhi, E., J. Goldstone, S. Gutmann and M. Sipser, Quantum Computation by
Adiabatic Evolution, http://arxiv.org/pdf/quant-ph/0001106, 2000.

Aharonov, D., A. Ambainis, J. Kempe and U. Vazirani, Quantum Walks on Graphs,
(version 2), http://arxiv.org/pdf/quant-ph/0012090, 2002.

Kempe, J., Quantum Random Walks — an Introductory Overview,

http://arxiv.org/pdf/quant-ph/0303081, 2003.

Kempe, J., Quantum Walks Hit Exponentially Faster, http://arxiv.org/pdf/quant-
ph/0205083, 2002.

Farhi, E., S. Gutmann, Quantum Computation and Decision Trees, (version 2),

http://arxiv.org/pdf/quant-ph/9706062, 1998.

Ambainis, A., Quantum Walks and Their Algorithnic Applications, (version 3),
http://arxiv.org/pdf/quant-ph/0403120, 2005.

Ambainis, A., J. Kempe, A. Rivosh, Coins Make Quantum Walks Faster,
http://arxiv.org/pdf/quant-ph/0402107, 2004.

. Childs, A. M., E. Farhi, S.Gutmann, An Example of the Difference Between Quantum

and Classical Random Walks, http://arxiv.org/pdf/quant-ph/0103020, 2001.

Shenvi, N., J.Kempe, K.Whaley, Quanrum Random Walk Search Algorithm,
http://arxiv.org/pdf/quant-ph/0210064, 2005.

144

49. Childs, A. M., J. Goldstone, Spatial Search by Quantum Walk, (version 2),
http://arxiv.org/pdf/quant-ph/0306054, 2004.

50. Tregenna, B., W. Flanagan, R. Maile and V. Kendon, Controlling Discrete Time
Quantum Walks: Coins and Initial States, (version 2), http://arxiv.org/pdf/quant-
ph/0304204, 2003.

	ACKNOWLEDGMENTS
	ABSTRACT
	ÖZET
	LIST OF FIGURES
	1. INTRODUCTION
	2. BASICS OF QUANTUM COMPUTATION
	2.1. Hilbert Space and Quantum Bits
	2.2. Tensor Product and Quantum Registers
	2.3. The Time Evolution and Unitary Transformations
	2.4. The Unitary Transformations and Quantum Gates
	2.4.1. Single Qubit Quantum Gates
	2.4.2. Multiple Qubit Quantum Gates
	2.4.3. The Reversibility of Quantum Gates
	2.4.4. The Universality of Quantum Gates

	2.5. The Quantum No-Cloning Theorem
	2.6. The Measurement
	2.7. Entanglement
	2.8. Quantum Computational Complexity
	2.9. Quantum Algorithms
	2.9.1. Simon's Algorithm for Period Finding
	2.9.2. Grover's Algorithm for Unstructured Search
	2.9.3. Shor’s Algorithm for Factorization

	2.10. There is More to Quantum Computation

	3. A SHORT SURVEY ON QUANTUM SIMULATION
	3.1. Universal Quantum Simulators
	3.2. Constraints on the Simulation of Hamiltonian Dynamics
	3.2.1. Simulation of Local Hamiltonians
	3.2.2. Rescaling of Hamiltonians
	3.2.3. Unitary Conjugation
	3.2.4. Commutation
	3.2.5. Addition of Hamiltonians
	3.2.6. Linear Combination of Hamiltonians
	3.2.7. Tensor Products

	3.3. Quantum Simulation in Algorithmic Level
	3.3.1. An Algorithm for the Simulation of Local Interactions
	3.3.2. Simulation of Hamiltonians with Non-local Terms

	3.4. Quantum Simulation as a Model of Quantum Computation

	4. A SHORT SURVEY OF QUANTUM RANDOM WALKS
	4.1. Classical Random Walks
	4.1.1. Discrete Time Classical Random Walk
	4.1.2. Continuous Time Classical Random Walk
	4.1.3. Performance Measures for Classical Random Walks

	4.2. Quantum Random Walks
	4.2.1. Continuous Time Quantum Random Walks
	4.2.2. Discrete Time Quantum Random Walks
	4.2.3. Quantum Random Walk on a Hypercube
	4.2.4. The Relation Between Discrete and Continuous Time Quantum Walks

	4.3. Algorithmic Use of Quantum Walks

	5. A FAST ALGORITHM EMPLOYING THE QUANTUM RANDOM WALK
	5.1. The Graph Traversal Problem
	5.2. The Algorithm for the Graph Traversal Problem on the Glued Trees
	5.3. The Quantum Walk with a Black Box
	5.4. Upper Bound on the Traversal Time
	5.4.1. The Quantum Walk on the Column Subspace
	5.4.2. Quantum Walk on the Defective Line

	5.5. The Classical Lower Bound
	5.5.1. Game 1: Find the Exit
	5.5.2. Game 2: Find a Path to the Exit
	5.5.3. Game 3: Exit or Cycle
	5.5.4. Game 4: Exit or Cycle With a Binary Tree

	6. AN IMPROVEMENT ON QUANTUM WALK SIMULATIONS
	6.1. The Circuit Model for Quantum Walk Simulation
	6.2. An Improvement on the Quantum Walk Implementation
	6.3. Performance Analyses for Various Black Box Settings

	7. CONCLUSION
	REFERENCES

