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ABSTRACT 
 

 

OPTIMIZATION OF QUANTUM RANDOM WALK SIMULATIONS 
 

 

In computer science, an exponential performance gain is considered an important 

achievement that can extend the set of practically computable problems. Behind the interest in 

quantum computation, there is the fact that several quantum algorithms have been shown to 

provide exponential speedup against their classical counterparts. Of these, the most recent one, 

the one based on quantum random walks, is discussed in this work. The methods used in 

demonstrating the exponential algorithmic speedup by quantum random walks are analyzed in 

detail. This analysis comes after introductory parts where basic quantum computation 

concepts, quantum simulation techniques and quantum random walk ideas are discussed. A 

new optimization technique on the implementation of quantum random walks is also 

introduced. This technique is based on the idea of manipulating the order in which the 

constituent Hamiltonians are simulated for small durations in the iterative step of the 

simulation algorithm. Our approach can be generalized to optimize any quantum simulation in 

which the linear combination rule is used to simulate a collection of constituent Hamiltonians.  
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ÖZET 
 

 

RASTSAL KUANTUM GEZİNTİLERİNİN BENZETİMİNİN 

ENİYİLENMESİ 
 

 

Bilgisayar bilimleri alanında üstel ifadelerle ölçülen bir başarım artışı, pratikte 

çözülebilir sayılan problemler kümesinin tanımını genişletebilecek kadar önemli bir başarıdır. 

Kuantum bilgisayarlarına duyulan ilginin arkasında bazı kuantum algoritmalarının klasik 

eşdeğerleri karşısında üstel ifadelerle ölçülecek düzeyde hız kazanımları sağlamaları 

yatmaktadır. Bu çalışmada, bu algoritmaların en yenisi, rastsal kuantum gezintilerine dayalı 

olanı ele alınacak. Rastsal kuantum gezintileri yoluyla üstel algoritmik hız kazanımları elde 

etmenin metodları detaylı biçimde incelenecek. Bu inceleme, kuantum bilgisayarlarının temel 

kavramlarının, kuantum benzetim tekniklerinin ve rastsal kuantum gezintisi fikrinin tartışıldığı 

tanıtıcı bölümlerden sonra yer alacak. Ayrıca rastsal kuantum gezintilerinin kuramsal 

uygulamasına dair yeni bir eniyileme tekniği de tanıtılacak. Bu teknik benzetim algoritmasının 

döngüsel adımlarında küçük süreler için benzetimlenen bileşen Hamilton operatörlerinin sırası 

üzerinde yapılacak oynamalara dayanmaktadır. Yaklaşımımız doğrusal kombinasyonlar 

kuralının bir grup Hamilton operatörünün benzetiminde kullanıldığı durumlar için 

genelleştirilebilir. 
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1.  INTRODUCTION 
 

 

Determining the problems which quantum computers can solve qualitatively faster than 

classical computers and constructing quantum algorithms for these problems are central issues 

in the field of quantum computation. There are several techniques which are known to create 

such performance gains, and there is a continuing research to explore new ones.  

 

An important group of these techniques can provide sub-exponential speedups against 

their classical counterparts. Among these, there is Grover’s famous search algorithm [1] which 

can provide quadratic speedup for linear search problems. A sub-exponential speedup can 

dramatically reduce the computational cost of some problems especially if they are of big 

scales. However, such techniques are of secondary importance when compared to those which 

can provide exponential gains.  

 

An exponential gain is such an important achievement in computer science that it can 

change the known contents of the set of practically computable problems. The existence of 

such quantum algorithms which can provide exponential speedup over their classical 

counterparts is known since the early 1990’s. In particular, Shor’s algorithm for factorization 

[2] is one of the biggest achievements in the field of quantum computation. There are several 

other problems for which quantum algorithms have been demonstrated to be exponentially 

faster than the classical ones. However, it turns out that these problems are strongly related 

and the quantum algorithms devised for them depend on similar principles. To be more 

accurate, until very recently, exponential speedup had been demonstrated only for those 

problems which can be formulated as a hidden subgroup problem and only by those 

algorithms, which depend somehow on the quantum Fourier transformation method.  

 

A recent result challenges this picture. A quantum algorithm, which does not involve the 

quantum Fourier transformation and yet is able to provide exponential speedup over its 

classical counterparts was demonstrated in [3]. The problem targeted with this algorithm is a 
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black box problem defined on a graph theoretical framework. The methods used to solve this 

problem mainly depend on a quantum version of the random walk techniques and the concept 

of quantum simulation is used to implement this idea.  

 

The main objective of the current work is to develop an understanding of the exponential 

speedup provided by quantum random walks, which is one of the most important and 

promising results recently demonstrated in the field of quantum algorithms. The techniques 

used in [3] will be examined in detail and an improvement in the quantum walk 

implementation will be proposed. The main constraint in doing these is being accessible by an 

average computer science person whose degree of familiarity with the topic is assumed to be 

low. 

 

Here is how the rest of this thesis is structured. Chapter 2 serves as a brief introduction to 

quantum computation for those who have little (if any) familiarity with the field. In Chapter 3, 

the concept of quantum simulation will be analyzed and some of the simulation techniques to 

be used in later chapters will be introduced. Chapter 4 is a survey of quantum walks. It aims to 

provide an understanding of how quantum versions of random walks are implemented and 

lists some of the important results related to quantum walks. It is Chapter 5, where a 

discussion of the methods used to demonstrate the exponential speedup by quantum walks can 

be found. In Chapter 6, we will propose an improvement on the implementation of quantum 

walks used in [3], and Chapter 7 will be a conclusion. 
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2.  BASICS OF QUANTUM COMPUTATION 
 

 

Two-valued classical logic can be viewed as the model for the classical theory of 

computation in the sense that in both frameworks, complex systems are built upon two-valued 

atomic units and various relations among them. A reason for this choice is that people are used 

to think in the same manner and another is the ease of implementation of such two valued 

models in practical computational devices. Various technologies from vacuum tubes to 

microchips have been used for this purpose up to now, and most probably new technologies 

are to be added to the list in the future. What makes quantum computation a challenge for us is 

the projection that in the not so far future, it will be easy to build computational devices which 

enjoy the advantages presented by the quantum mechanical laws. We will be calling such 

devices quantum computers not because they are (or will be) the only ones which obey the 

laws of quantum mechanics, but to indicate that they are the ones which find their 

computational model in quantum mechanics. Once quantum computers come to be a part of 

reality, there will be the need for an understanding of that quantum mechanical model of 

computation. This is what the field of quantum computation tries to build and here, the basics 

of this field are presented. 

 

2.1. Hilbert Space and Quantum Bits 

 

The central position that a "bit" (Shannon bit) occupies in the classical theory of 

computation is reserved for what is called a qubit (quantum bit) in quantum computation. 

Hence, a qubit can be said to be the basic unit of information for quantum computers. In 

practice, a qubit can be any two state quantum system such as an electron with two spin states 

or a hydrogen atom with two energy levels. (For a more exhaustive list, see [4].) Most of the 

literature in the field of quantum computation refers to an abstract mathematical model of a 

qubit rather than specific physical implementations of it. This will be the way to be followed 

here. Building a formal mathematical definition for a qubit requires the introduction of the 

concept of a Hilbert space which is often found useful for describing the states of quantum 
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systems. (For more detailed but still brief introductions to the concept of a Hilbert space and 

its use in quantum mechanics, see [5, 6].) 

 

Formally, a Hilbert Space H  is an inner product space that is complete with respect to 

the norm defined by the inner product. By an inner product space, we mean a vector space 

over the complex numbers with an inner product ( ) CHH →×⋅⋅ :,  satisfying 

 

i)  ( ) 0u,u ≥  with equality if and only if 0u =  

ii) ( ) ( ) ( )w,uv,uwv,u +=+  and ( ) ( )v,uv,u λλ =   

iii) ( ) ( )*u,vv,u = , where * denotes the complex conjugate. 

 

H  is also required to be complete with respect to the norm ⋅  over this space, which is 

defined as ( )uuu ,= .  

 

Although Hilbert space is also useful when handling infinite dimensional vector spaces, 

quantum computation mostly deals with finite dimensional ones. (All n-dimensional Hilbert 

spaces are isomorphic, hence they can be denoted by Hn.) In quantum mechanics, the 

dimension of a Hilbert space is a function of the number of observable states of the quantum 

system which that Hilbert space is used to represent. In general, an n-dimensional Hilbert 

space Hn is a space of n-tuples of complex numbers. These n-tuples are called state vectors. 

The state of a quantum system at a time is represented by one such member of the Hilbert 

space of the appropriate size. State vectors are usually denoted by column vectors for which, 

following the Dirac notation of vectors, we use the ket ( label ) formalism as in (2.1). Note 

that u is just some label and u1, u2,.., un are complex numbers.  
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nHuu ∈=  and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nu

u
u

u
M
2

1

 (2.1)

 

Two kets u  and w  represent the same state if they differ by a non-zero multiplicative 

constant: wu λ= . ( u  and w  are said to be the same up to a global phase factor λ .) In 

general, it is a convention to use a ket vector of unit length to represent the state of a quantum 

system and this convention is followed in the present context. 

 

What should immediately follow the ket vectors is the definition of the bra ( label ) 

vectors. It is convenient in this domain to define bra vectors as the Hermitian conjugates 

(complex conjugate transpose will be denoted by superscript dagger † .) or adjoint vectors of 

the members of a Hilbert space. Therefore, for nHu ∈ , the adjoint †uv =  is a row vector as 

shown in (2.2). Again note that v is just some label and v1, v2, .. vn are complex numbers. 

 

[ ] ( ) [ ]**
2

*
1

*
21

†
n

T
n uuuuuvvvvv LL =====  (2.2)

 

Now we have bras and kets so that it is time to form the bra(c)ket ( 21 labellabel ) 

which is the origin of the naming of vectors in Dirac notation. A bracket is a natural way to 

denote the inner product and hence it stands for a complex number. Therefore, for nHz,w ∈ , 

the inner product of w and z is a complex number as shown in (2.3). 

 

( ) Czwzwzwzwzw i

n

i
i ∈==== ∑

=1

*†,  (2.3)

 

So much mathematical formalism is enough that we can start to build our definition of a 

qubit. The qubit is an inheritor of the classical bit in many aspects. Just like a classical bit, a 
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qubit is a two state system in principle. These states, following the tradition, are labeled by 0 

and 1, and they correspond to two different (observable) physical states of the system, no 

matter which physical implementation is used. The essential difference is that a qubit is a 

quantum system. So unlike a classical bit, a qubit is not restricted to be in one of these two 

principal states. Instead it is generally in a linear combination (or superposition) of them as 

quantum mechanics suggests. Therefore the state of a qubit, ψ , is a vector in a two 

dimensional complex vector space where the principal states are natural candidates to serve as 

a basis. We tend to call this basis the computational basis of a qubit and the complex vector 

space this basis spans is in fact a two dimensional Hilbert space. So a qubit, in formal 

mathematical terms, can be defined to be a quantum system whose state lies in a two 

dimensional Hilbert space [7]. 

 

The computational basis that spans the state space of a qubit is shown in (2.4). 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

0  and ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

1  (2.4)

 

The general state of a qubit, ψ , is a linear combination or superposition of the base 

states. Note that α  and β  are complex numbers so the overall state is a member of the two 

dimensional complex vector space or H2. 

 

21
0

0
1

10 H∈⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+=

β
α

βαβαψ  (2.5)

 

Since the ket vectors we use are of unit length, we can assert the following. 

 

122 =+ βα  (2.6)
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In the case of a classical bit, the state is identical to the outcome of a measurement that is 

performed to retrieve the content. On the other hand, what one gets out of measuring a qubit is 

not generally equivalent to the state of it. The quantum mechanical explanation of the action of 

measurement is not a simple one. (A separate section will be devoted to this topic.) In the 

simplest terms, one can assert that measuring a qubit which is prepared to be in the state 

10 βαψ +=  in the computational basis, has two possible outcomes. These are what we 

have been calling the principal states. The outcome of a measurement is 0  with probability 

2α and it is 1  with probability 2β . These probabilities sum up to one by (2.6).  

 

probability of observing 0: ( ) 20 α=Ρ  (2.7)

probability of observing 1: ( ) 21 β=Ρ  (2.8)

 

Note that, in case of a ket vector which was not of unit length, the above equalities 

would not hold. Instead one could say the probability of observing 0  and 1  are 

proportional to 2α  and 2β  respectively. This should be why ket vectors of unit length are 

more favorable than the others. 

 

Another important point is that after such a measurement, the state of the qubit settles on 

the observed value so that if it is measured again, it is guaranteed that the result remains the 

same. Therefore, for practical purposes it can be stated that measurements cause changes on 

the state of the qubits provided that they are not in one of their base states.  

 

It is straightforward to state that a qubit can be used to encode a much larger amount of 

information than that a classical bit can. Although the space of two dimensional unit ket 

vectors seems to be restricted, still (uncountably) infinitely many of these vectors are 

available. So in principle a qubit can store infinite amount of information but in practice, the 

important thing is how much one can retrieve from it. The task of preparing a qubit (or rather a 
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set of qubits) in a state that makes it possible to gather the information one seeks, belongs to 

the quantum algorithms which will be examined soon. 

 

As a last issue, let us consider the so-called Bloch sphere representation of the state of a 

qubit, which is of use when to visualise the state of a qubit and the effect of the operators on it. 

This representation maps the state of a qubit to a point on the surface of a unit sphere. Here a 

derivation of the model is to be given. To begin with, we  have the general state vector of a 

qubit 10 βαψ +=  and the normalisation constraint 122 =+ βα  where α  and β  are 

complex numbers. If α  and β  are expressed in polar coordinates, we then have the following 

representation of the general state of a qubit. 

 

( ) ( ) 101sincos0sincos βθ
β

αθ
αβββααα θθθθψ ii ereririr +=+++=  (2.9)

 

We had seen that two kets represent the same state if they differ by a global phase factor. 

So we are free to multiply ψ  with αθie−  to get 'ψ  which is equal to ψ  up to the global 

phase factor, αθie− , that has no observable effects. 

 
( ) 1010' θ

βα
αθβθ

βαψ ii errerr +=+= −  (2.10)

 

Now, writing the coefficient of 1  again in Cartesian coordinates, we get, 

 

( ) 10' iyxr ++= αψ . (2.11)

 

Then by the normalisation constraint, we have the following equation. 

 

( ) ( ) ( ) 1'' 222*2 =++=+++= yxriyxiyxr ααψψ  (2.12)
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The equation in (2.12) is the equation for a unit sphere in the real 3-dimensional space 

with the Cartesian coordinates αr,y,x . Renaming the third coordinate as z gives the 

coordinate system z,y,x . The same space can also be defined by the polar coordinates φθ ,,r . 

Figure 2.1 demonstrates the relation between the Cartesian coordinates z,y,x  and the polar 

coordinates φθ ,,r  which define the same point on the 3-dimensional space. 

 

 
Figure 2.1.  Cartesian and polar coordinates for the 3-dimensional space 

 

As Figure 2.1 suggests we have the following transformations 

 

φθ cossinrx =  (2.13)

φθ sinsinry =  (2.14)

θcosrz =  (2.15)

 

Using the above rules with 1222 =++= zyxr  and using z for αr , (2.11) can be 

transformed to, 

 

                                         
( )

.1sin0cos

1sinsincossin0cos'

θθ

φθφθθψ
φie

i

+=

++=
 (2.16) 

 



 10

Now, we have only two real parameters θ  and φ  defining the state 'ψ . The term φie  is 

called a relative phase factor and unlike the global phase, it has important effects. Note that, 

for 0=θ , 'ψ  turns out to be 0  and for 2πθ = , 'ψ  turns out to be 1φie . So our 

mapping of the state of a qubit is not yet covering a full sphere. Instead, it covers the upper 

half of it. We get over this problem by a small adjustment: We let the point ( )φθ ,,1  on the 

sphere to denote the state 1
2

sin0
2

cos θθψ φie+=  (instead of 1sin0cos θθψ φie+=  ) 

hence, the state space of a qubit covers the full surface of the unit sphere. The Cartesian 

coordinates ( )θφθφθ cos,sinsin,cossin  of the point is called the Bloch vector. This completes 

our definition of the Bloch sphere. 

 

 
Figure 2.2.  The Bloch sphere representation of the state of a qubit 

 

Note that πθ ≤≤0  and πφ 20 ≤≤  are the valid coordinates on the Bloch sphere. The 

θ  coordinate determines the probabilities for observing 0  and 1 . There are infinitely many 

points on the surface of the sphere for each value of πθ ≤≤0  with the exception of the 

endpoints where the second coordinate φ  is practically meaningless. The φ  coordinate is 
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called the phase angle and it determines the relative phase factor and hence the ratio of the 

magnitudes of real and imaginary parts in the amplitude of 1 . 

 

The Bloch sphere representation is useful when analyzing the state of a qubit and the 

effects of the operators on it. However there is no simple generalization of this model to 

systems of more than one qubits, and hence its uses are limited. 

 

2.2. Tensor Product and Quantum Registers 

 

A quantum register is simply a collection of qubits and hence it is a multiparticle 

quantum system. To understand the state and behavior of such a system, there is the need for a 

mathematical tool for putting vector spaces together to form larger vector spaces. This task is 

assigned to the tensor product operator ( ⊗ ).  

 

The tensor (or Kronecker) product of two matrices A and B, where A is m by n and B is r 

by s is a matrix mr by ns. The product is calculated as in (2.17). 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⊗

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⊗

BaBa

BaBa
B

aa

aa
BA

nmn

m

nmn

m

L

MOM

L

L

MOM

L

1

111

1

111

 (2.17)

 

The tensor product KH ⊗  of two Hilbert spaces H of dimension m and K of dimension 

n is a Hilbert space of dimension m times n. The members of KH ⊗  are linear combinations 

of the tensor products of the members of H and the members of K. In other words if 

mh,..,h,h 21  is a base for H and nk,..,k,k 21  is a base for K then { }njmikh ji ≤≤≤≤⊗ 1,1|  is 

a base for KH ⊗ . 

 

An informal abstraction for KH ⊗  can be constructed by the following properties it 

has: 
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1. ( ) ( ) ( )111111 khkhkh λλλ ⊗=⊗=⊗ , for all C∈λ , Hh ∈1 , Kk ∈1 , 

2. ( ) ( ) ( )1211121 khkhkhh ⊗+⊗=⊗+ , for all Hh ∈1 , Hh ∈2  , Kk ∈1 , 

3. ( ) ( ) ( )2111211 khkhkkh ⊗+⊗=+⊗ , for all Hh ∈1 , Kk ∈1  , Kk ∈2 , 

 

For state vectors u and w there are several ways to denote the tensor product wu ⊗ : 

 

uwwuwuwu ==⊗=⊗ . (2.18)

 

Most generally, a quantum register is a collection of n qubits, each with their individual 

computational basis of { }1,0=iB  for ni ≤≤1 , which spans their individual state spaces. 

Then the state of the overall system lies in a n2  dimensional Hilbert space H, which is the 

tensor product of these two dimensional Hilbert spaces nHHH ,..,, 21  for each individual qubit. 

The computational basis of this system is { }ni,Bb|b..bbB iin ≤≤∈⊗⊗⊗= 121 , hence it 

contains n2  states of the form { }n,10 . The general state of the system is described by a unit 

ket vector which is a linear combination of the members of this computational basis. The 

probability of observing the system in a base state is again related to the square of the 

amplitude for that base state in the general state vector.  

 

In particular, a quantum register of two qubits is a system whose state lies in a 422 =  

dimensional Hilbert space. The computational basis for this 4-dimensional Hilbert space is 

{ } { }11,10,01,001,0 =n , where the base states are given by  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗=

0
0
0
1

0
1

0
1

0000 , (2.19)
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗=

0
0
1
0

1
0

0
1

1001 , (2.20)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗=

0
1
0
0

0
1

1
0

0110 , (2.21)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗=

1
0
0
0

1
0

1
0

1111 . (2.22)

 

The general state vector ψ  of a quantum register of two qubits is therefore a linear 

combination of these four base states. Once again 3210 αααα ,,,  are complex numbers and 

since kets of unit length are preferred, the sum of their squares 2
3

2
2

2
1

2
0 αααα +++  is 

equal to one. 

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++=

3

2

1

0

3210 11100100

α
α
α
α

ααααψ , (2.23)

12
3

2
2

2
1

2
0 =+++ αααα  (2.24)

 

The state of the two-qubit register can be observed to be in one of the four base states 

with the following probabilities.  

 

probability of observing 00: ( ) 2
000 α=Ρ , (2.25) 

probability of observing 01: ( ) 2
101 α=Ρ , (2.26)



 14

probability of observing 10: ( ) 2
210 α=Ρ , (2.27)

probability of observing 11: ( ) 2
311 α=Ρ . (2.28)

 

Let us now consider a register of two qubits, whose individual states are known to be 

10 10 ααψ +=  and 10 10 ββθ += . Then the state of the overall register ψθ  is given 

by the tensor product of the two individual states as in (2.29).  

 

                 

( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++=

+⊗+=⊗

11

01

10

00

11011000

1010

11100100

1010

βα
βα
βα
βα

βαβαβαβα

ββααθψ

 (2.29)

 

The reader should be able to generalize the constructions above to quantum registers of 

larger size by the help of a straight analogy. As a last remark, we should note that it might be 

impossible to represent the state of a composite system as the product of the states of the 

individual components of it. Such states are called entangled. This issue will be examined in a 

separate section. For now just consider the following state which is a well known example of 

entangled states.  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
1

2
1ψ  (2.30)

 

2.3. The Time Evolution and Unitary Transformations 

 

In order to understand how to store information into qubits, manipulate their content and 

retrieve the useful data within them, we need to know in which ways the state of a quantum 
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system changes. In quantum mechanics the changes in the state of an isolated quantum system 

which is not subjected to observation are closely related to the total energy of this system.  

 

 A Hermitian (self-adjoint) operator called the Hamiltonian ( Η ) can be said to govern 

the evolution of the state of a quantum system. The eigenvalues and the eigenvectors of the 

Hamiltonian characterize the stationary energy states (or basis states) of the system, hence the 

Hamiltonian reflects the dynamical properties of the system it belongs to. (This means the 

Hamiltonian itself may be changing with time as the system changes.) The evolution is 

described by the Schrödinger equation, 

 

ψψ Η
dt
di =h . (2.31)

 

where 1−=i  and h  is Planck's constant divided by π2 . It is common practice to write the 

equation as in (2.32), where h  is absorbed into the Hamiltonian Η . 

 

ψψ Η
dt
di = . (2.32)

 

This continuous picture of the time evolution can be transformed to a discrete picture of 

the same phenomenon which is of more use for computational needs. Consider the general 

solution to Schrödinger's equation which can be verified to be 

 

( ) ( ) ( )0ψψ cHtiet +−= , (2.33)

 

where c is an arbitrary constant. Then the state of the system at discrete time points 1t  and 2t  

can be related as follows. 

 
( )

1
12

2 ψψ ttiHe −−=  (2.34)
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Before proceeding we should refresh some basic linear algebraic facts. Recall that, those 

values ,.., 21 λλ  which satisfy the equation aaA λ=  for some vector a  are called the 

eigenvalues of the operator A and those vectors ,..., 21 aa  which satisfy aaA iλ=  are 

called the eigenvectors of the operator A corresponding to the eigenvalue iλ . An important 

representation theorem, known as spectral decomposition, makes use of these definitions to 

represent a normal operator A, in the form ii
i

i XX∑λ , where a normal operator is one that 

satisfies AAAA †† = . Then any function of ( )Af  of the operator A, can be rewritten as 

( ) ( ) ii
i

i XXfAf ∑= λ . Those matrices which satisfy AA =†  are called Hermitian, and 

they are trivially normal. The decomposition ii
i

i XXA ∑= λ  leads to a form 
†

UUA Λ=  

where Λ  is a diagonal matrix with eigenvalues iλ  of A on its diagonal entries and U  is a 

matrix whose columns are the normalized eigenvectors of A in the corresponding order. Since 

a Hermitian matrix is known to have a complete set of orthonormal eigenvectors, it turns out 

that the columns of U are orthonormal. Hence, it exhibits the interesting property 

IUUUU ==
††

, which means U is a unitary matrix. We will soon be listing some properties 

of unitary matrices, for now let us return to the original discussion.  (For more linear algebraic 

topics, see [8].) 

 

By the spectral decomposition theorem, we can write nn
niiiA xxexxee λλ ++= ..11

1  

and ( ) nn
niiiA xxexxee λλ −− ++= ..11

1†
 for an ordinary operator A. If A is a Hermitian 

operator then its eigenvecors are orthonormal (i.e. 0=ji xx , for ji ≠  ) and hence it turns 

out that ( )( ) ( ) ( ) Ieeee iAiAiAiA ==
††

. Therefore the term iAe  is equivalent to a unitary operator 

if A is Hermitian. Then the term ( )12 ttiHe −−  in (2.34) is indeed equivalent to a unitary operator 

which is a function of 1t  and 2t :  
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( ) ( )12
21

ttiHet,tU −−=  (2.35)

 

Then the equation in (2.34) becomes, 

 

( ) 1212 , ψψ ttU=  (2.36)

 

This result is important in several ways. First of all, it establishes a one to one 

correspondence between the continuous (which employs the Schrödinger equation and 

Hamiltonians) and discrete (which employs unitary operators) interpretations of quantum 

dynamics. So it can safely be stated that closed quantum systems can be transformed only via 

unitary transformations. However, quantum computation requires opening up the closed 

systems to retrieve the information within them. Hence, the continuous evolution governed by 

the Hamiltonian operators and the Schrödinger equation is not the only way the state of a 

quantum system changes in time. In cases where a quantum system is measured, the state of 

the system is said to perform a discontinuous and sudden jump into a basis state depending on 

the result of the measurement. The nature of quantum measurements and unitary 

transformations will be examined in the following sections. 

 

2.4. The Unitary Transformations and Quantum Gates 

 

A classical computational device can be said to be made up of logic gates and the links 

between them. Each logic gate is assigned a functionality according to which it transforms its 

inputs to produce the desired outputs. Every classical computational process should be 

expressible in terms of these unit functionalities. It is possible to develop an analogous 

formalism for quantum computation which employs the concept of quantum gates.  

 

A quantum gate U  is simply a linear operator whose input 1ψ  and output 2ψ  are 

members of the same Hilbert space and when U  is applied over 1ψ  the result is 2ψ . As it 

was shown in the previous section the transformation, applied to the input ket vector to 
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produce the output ket vector, has to be a unitary transformation. This is the only constraint on 

quantum gates. Therefore, any m by m unitary matrix defines a valid quantum gate on an m-

dimensional Hilbert space. The action of the gate U  over the state vector 1ψ  is simply 

denoted by the product of the matrix and the state vector. 

 

21 ψψ =U  (2.37)

 

A unitary operator is also linear on the bra vectors, although this is sometimes hard to 

visualize. The effect of a general linear operator U, on a bra vector can be defined as in (2.38). 

 

( )†† ψψ UU =  (2.38)

 

Then, the following equalities become straightforward. 

 

( ) ( )λψλψλψ ,, †UUU ==  (2.39)

 

It is useful to state that every unitary matrix U  has an inverse, which is in fact equal to 

the adjoint of it, IUUUU == †† . The adjoint operator †U  is also unitary, therefore it defines 

another valid quantum gate.  

 
†1 UU =−  (2.40)

 

Then, every quantum computational process can be inverted. The issue of the 

reversibility of quantum computation will be handled soon. For now, let us examine some 

further features of unitary operators.  It can be derived from (2.40) that, a unitary operator 

preserves the inner products and hence the lengths and of the vectors on which it is applied. 

For unitary operator U and the vectors v  and w  let 'vvU =  and 'wwU = . Then the 

inner products 'w'v  and wv  are equivalent by 
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( ) ( ) wvwUUvwUvU'w'v === ††    (2.41)

 

In particular, if wv =  we see that the length of a vector v  is also preserved under U. 

 

vvv'v'v'v ===    (2.42)

 

The reader should also note that two unitary operators U and V can be taken to be 

equivalent if they differ only by a multiplicative constant θλ ie= . Let UV λ= . U maps the 

state w  to wU  while V maps the same state to wUwV λ= . Since wU  and wUλ  

represent the same state U and V are said to be equivalent. 

 

In general, a quantum gate with n-bit input can be modeled by a 2n by 2n unitary matrix. 

This matrix acts linearly on each basis vector of the 2n dimensional Hilbert space. Hence 

describing how a quantum gate effects the 2n members of the computational basis is sufficient 

to describe its effect on the overall space. If the effect of an n-bit quantum gate U on the 2n 

members of the computational basis is given as kUk ='  for , 120 −≤≤ nk  then the 

unitary matrix U describing the gate is given by the following equation. 

 

kkU
n

k
∑

−

=
=

12

0
'  (2.43)

 

In circuit notation, a quantum gate is symbolized by a box with the name of the gate as 

its label. The straight lines from left to right should be taken to symbolize the passage of time 

rather than physical wires. (Other elements of the circuit notation will be introduced as the 

need arises in the context.) The computation 21 ψψ =U  can be represented as in Figure 2.3. 
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Figure 2.3.  The circuit representation for the computation 21 ψψ =U  
 

The expression 1θUV  defines the state of a register which was initially at state 1θ  and 

to which the gates V and U are succesively applied. The circuit representation for this 

computation is given in Figure 2.4. Care should be taken about the order of the operators being 

applied. 

 

 

Figure 2.4.  The circuit representation for the computation 1θUV  

 

Sections 2.4.1 and 2.4.2 will introduce the basics of single and multi-bit quantum gates. 

The issue of reversibility is discussed in Section 2.4.3 and the issue of universality for 

quantum gates is discussed in Section 2.4.4. 

 

2.4.1. Single Qubit Quantum Gates 

 

A single qubit quantum gate U is simply a unitary mapping defined on the two 

dimensional Hilbert Space, H2. Its linear effect on the computational basis has the following 

form, 

 

100 baU +=  (2.44)

101 dcU +=  (2.45)
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Then its effect on a general state vector, 10 βαψ += , can be shown as,  

 

( ) ( )
( ) ( ) 10

1010

10

dbca

dcba

UUU

βαβα

βα

βαψ

+++=

+++=

+=

 (2.46)

 

This operator can be represented by a 2 by 2 unitary matrix as in (2.47). Note the relation 

between the columns of the matrix and the equations in (2.46). 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

db
ca

U  (2.47)

 

Hence, the product of the matrix and the state vector is another way to formulate the 

effect of the operator on the state of a qubit. 

 

( ) ( )10 dbca
db
ca

db
ca

U βαβα
βα
βα

β
α

ψ +++=⎥
⎦

⎤
⎢
⎣

⎡
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=  (2.48)

 

The Bloch sphere formalism can be useful to visualize the effect of a single qubit 

operator. We had seen that the state of a qubit could be represented as a point on the surface of 

the Bloch sphere. The application of a unitary operator moves this state to another point on the 

surface. Then the Bloch vector can be said to be rotated about an axis n  and through an angle 

θ  by the unitary operator. This picture will soon be useful to define how to implement an 

arbitrary unitary operator. 

 

Let us now consider some of the most fundamental single-bit quantum gates in more 

detail. The Hadamard gate must be the most famous quantum gate and the Pauli operators 

should be the most useful ones to help our intuition. Let us begin with the Hadamard gate or 

the Walsh-Hadamard gate as it is sometimes referred. (The Hadamard gate is often symbolized 

by the capital letter H, which had been previously used to denote the Hilbert spaces and the 
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Hamiltonian operators. The reader should be able to distinguish between these, with the help 

of the context.) 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2
1H  (2.49)

 

When applied to a base state, the Hadamard gate generates an equal superposition of the 

members of the computational basis. Measuring these states returns 0  with probability 0.5 

and returns 1  with probability 0.5. 

 

1
2

10
2

1
1
1

2
1

0
1

11
11

2
10 +=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=H  (2.50)

1
2

10
2

1
1
1

2
1

1
0

11
11

2
11 −=⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=H  (2.51)

 

Many quantum algorithms start with the preparation of the equal superposition with help 

of the Hadamard gates. After this step, a so-called parallel computation can be carried over 

each base state. The effect of the Hadamard gate can be visualized as a shift in the 

computational basis. Or in other words, the Hadamard gate defines an alternative basis for 

computation (the Hadamard basis): { }−+ ,  where 0H=+  and 1H=− . (Note that the 

states +  and −  are the poles on the x-axis of the Bloch sphere.) In order to return to the 

original basis, again Hadamard gates should be used. Note that H is both Hermitian and 

unitary so IH =2 .  

 

An interesting group of one-bit quantum gates is called the Pauli matrices or Pauli spin 

matrices. These gates are the Pauli X ( xσ ), Pauli Y ( yσ ) and Pauli Z ( zσ ). 
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⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

X ,   ⎥
⎦

⎤
⎢
⎣

⎡ −
=

0
0
i

i
Y ,  ⎥

⎦

⎤
⎢
⎣

⎡
−

=
10
01

Z  (2.52)

 

The Pauli X operator, in particular, can be seen as an analogue of the classical NOT gate 

when it is applied to a base state. When it is applied to a superposition state it simply swaps 

the amplitudes for the base states as a result of linearity. 

 

1
1
0

0
1

01
10

0 =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=X  (2.53)

0
0
1

1
0

01
10

1 =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=X  (2.54)

 

The Pauli Z operator is also known as the phase-flip gate. It applies a phase factor of -1 

to the state 1  and leaves 0  unchanged. Its effect on a general state can again be deduced 

from linearity. 

 

0
0
1

0
1

10
01

0 =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=Z  (2.55)

1
1
0

1
0

10
01

1 −=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=Z  (2.56)

 

In the Hadamard basis, the Pauli Z operator acts as a not gate. 

 

−=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=+
1

1
2

1
1
1

2
1

10
01

Z  (2.57)

+=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

=−
1
1

2
1

1
1

2
1

10
01

Z  (2.58)

 

Together with the 2 by 2 identity matrix, the Pauli matrices form an orthogonal basis for 

the space of 2 by 2 matrices. So, any two-dimensional square matrix U can be uniquely 
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defined in the following form where zyxı u,u,u,u  are complex numbers and I is the two 

dimensional identity operator. 

 

ZuYuXuIuU zyxı +++=  (2.59)

 

The Pauli X, Y, Z operators are so called because when they are exponentiated they 

define the rotation operators zyx R,R,R  about the x-, y-, z-axes of the Bloch sphere. Let us 

consider the power series expansion of Aie θ  for an arbitrary operator A and the real angle θ . 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...
!5!4!3!2

...
!5!4!3!2
5432

5432

+++−−+=

++++++=

AiAAiAAiI

AiAiAiAiAiIe Ai

θθθθθ

θθθθθθ

 (2.60)

 

Now consider the case IA =2 . 

 

AsiniIcos

...
!!

iA...
!
I

!
II

...
!
Ai

!
I

!
Ai

!
IAiIe Ai

θθ

θθθθθ

θθθθθθ

+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=

+++−−+=

5342

5432
5342

5432

 (2.61)

 

So depending on the fact that IX =2 , IY =2 and IZ =2 , we define the rotation 

operators zyx R,R,R  as follows 

 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=−=≡ −

22

22
22

2
θθ

θθ
θθθ θ

cossini

sinicos
XsiniIcoseR Xi

x , (2.62)
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( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=−=≡ −

22

22
22

2
θθ

θθ
θθθ θ

cossini

sinicos
YsiniIcoseR Yi

y , (2.63)

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=−=≡

−
−

2

2
2

0
0

22 θ

θ
θ θθθ i

i
Zi

z e
eZsiniIcoseR , (2.64)

 

The operator ( )θnR  is defined to be the one which rotates the Bloch vector about the axis 

n  and through the angle θ . Let us consider ( )πxR  as an example. It turns out that the Pauli X 

operator is equivalent to a rotation of π  radians about the x-axis.  

 

( ) iX
i

i

cossini

sinicos
Rx −=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

0
0

22

22
ππ

ππ

π  (2.65)

 

The rotation operators are important because if we had them for arbitrary real values of 

θ  then they would provide a basis on which we could build an arbitrary single qubit operator. 

There are several theorems stating this fact. One of them is the Z-Y decomposition theorem, 

which states that an arbitrary unitary operator U on a single qubit can be represented as 

 

( ) ( ) ( )δγβα
zyz

i RRReU = , (2.66)

 

where δγβα ,,,  are real numbers [4]. In practice, we can only have the approximations of 

some unitary operators in this way, since we are restricted to the rational approximations of 

the real values. Here are two other one-bit unitary operators that will be of use in the following 

sections; the phase gate phaseU  and the 8π  gate 8πU . 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

i
U phase 0

01
,   ⎥

⎦

⎤
⎢
⎣

⎡
=

48 0
01
ππ i

e
U  (2.67)
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2.4.2. Multiple Qubit Quantum Gates 

 

A quantum gate with n-bit input is a unitary mapping defined on the 2n dimensional 

Hilbert space. The action of such a gate can be defined by its effect on the 2n members of the 

computational basis. A unitary matrix is often used to model this action. Figure 2.5 contains 

the circuit representation for an n-bit operator U acting on a register nψψψ ..21  of n qubits. 

 

 

Figure 2.5.  n bit operator U acting on the register n..ψψψ 21  

 

An operator acting on a multi-particle system is called decomposable if its action on its 

input can be represented as the product of its action on the individual components of the input. 

Let U  be a decomposable operator acting on a two qubit register such as 21ψψψ = . Then 

there exist the single qubit operators U1  and U2 which satisfy the following equalities  

 

2211 ψψψ UUU ⊗=  (2.68)

21 UUU ⊗=  (2.69)

 

Then the two circuits shown in Figure 2.6 are equivalent and they both represent the 

same computation, 2211 ψψψ UUU ⊗= . 

 

 

Figure 2.6.  The alternative circuit representations for 2211 ψψψ UUU ⊗=  
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As another example, let V be a two bit operator which leaves the first bit unchanged and 

acts as a NOT (Pauli X) gate on the second bit. (Note that applying identity operator to a bit is 

equivalent to leaving it unchanged.) Then we have 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗=

0100
1000
0001
0010

01
10

10
01

XIV . (2.70)

 

The effect of V on the computational basis is defined by 

 

1011111000010100 ==== V,V,V,V . (2.71)

 

Multi-bit Hadamard gates are commonly used in the quantum computation literature. In 

general, an n-bit Hadamard gate is given by HH
n

n ⊗=
1

  where H denotes the familiar one-bit 

Hadamard gate. When applied to a base state k , nH  generates an equal superposition of the 

n2  members of the computational basis with varying relative phases depending on the initial 

state as shown in (2.72) where ∑
−

=
⋅=⋅

1

0

n

i
ii jkjk . 

 

( )∑
−

=

⋅−=
12

0
1

2

1 n

j

jk

nn jkH  (2.72)

 

Most of the interesting multi-bit quantum gates, including the CNOT and the Toffoli 

gates, are not decomposable. Their effect on a component of the input cannot be defined 

without reference to the other parts of the input. Let us examine some of these gates. 

 

The controlled-NOT or CNOT gate is a two qubit gate where the input register can be 

labeled as etargtcontrol . If we consider the computational basis, the effect of the CNOT 
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gate is like a conditional statement: if the control bit is in state 1  then apply NOT gate to the 

target bit. Hence it performs the transformation controletargtcontroletargtcontrol ⊕→  

where ⊕  is the logical XOR. The circuit representation for CNOT is shown in Figure 2.7. 

 

 
Figure 2.7.  The circuit representation for the CNOT gate 

 

The effect of CNOT on the computational basis is given by the following equations. 

 

1011111001010000 ==== CNOT,CNOT,CNOT,CNOT  (2.73)

 

Then, by equation (2.43), the matrix representation of CNOT can be calculated as 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++=

0100
1000
0010
0001

1110101101010000CNOT  (2.74)

 

For an arbitrary single-bit quantum gate U, we can define a two-bit controlled-U 

operation. Then in terms of the computational basis, the action is defined by the conditional 

statement: if the control bit is in state 1  then apply U to the target bit. It is also possible to 

define the zero-controlled-U operation in which case the action on the computational basis is 

defined by the conditional statement: if the control bit is in state 0  then apply U to the target 

bit. The circuit representations for controlled-U and zero-controlled-U operations are given in 

Figure 2.8. 
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Figure 2.8.  Circuit representations for controlled-U (on the left) and zero-controlled-U  

 

Let us now consider the two-bit swap (S) operator whose effect on the computational 

basis is simply swapping the states of the input bits. Hence, we have 

 

1111011010010000 ==== S,S,S,S  (2.75)

 

Then the unitary matrix for S is given by 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++=

1000
0010
0100
0001

1111011010010000S  (2.76)

 

Another interesting multi-bit quantum gate is the Toffoli gate which acts on a register of 

three qubits etargt2control1control . The first two bits are the control bits and the last bit 

is the target bit. The effect of the Toffoli gate on the computational basis is defined by the 

conditional statement: If both of the control bits are in state 1  then apply NOT to the target 

bit. The circuit representation for the Toffoli gate is given in Figure 2.9. 

 

 
Figure 2.9.  The circuit representation for the Toffoli gate 
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Note that it is possible to define operators with arbitrary number of control bits and 

arbitrary combinations of zero and one controls. In particular, the Toffoli gate is nothing but a 

double controlled not gate. The Fredkin gate on the other hand implements controlled swap 

operation and hence it is a three-qubit operator with single control bit. Below are the matrix 

representations for the Toffoli ( TU ) and Fredkin ( FU )gates. 

 

TU =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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00000010
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,  FU =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10000000
00100000
01000000
00010000
00001000
00000100
00000010
00000001

 (2.77)

 

2.4.3. The Reversibility of Quantum Gates 

 

A computational process is said to be reversible if its outputs can be used to uniquely 

determine its inputs. Such a process is one where there is no information loss. We are 

interested in reversible computation because the quantum gates have to be reversible as a 

result of unitarity and hence only those computational processes which can be implemented 

reversibly can be applied to quantum computers. In general, a quantum algorithm can be 

conceived as a unitary transformation U taking the state input  to the state output . Then we 

also have †U  which satisfies inputoutputU =† . 

 

The initial interest in reversible computation has much different roots. Most probably, it 

has developed in order to find a way of limiting the energy consumption of the computational 

processes since the laws of thermodynamics indicates that erasing every bit of information 

requires some energy dissipation (Landauer's principle) and the standard computational 

processes are in no way reversible. Note that none of the classical gates AND, OR, NAND are 

reversible and hence each of them requires some energy to be performed. 
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No matter what motivates it, there is a literature about classical reversible computation 

which puts it forward that every classical computational process can be implemented in a 

reversible manner. A simple proof of this fact can be built on the idea that any irreversible 

operation can be made reversible by additional input and output ports. In general, an 

irreversible operation with n inputs and m outputs can be implemented reversibly with mn +  

inputs and outputs. (Consider the classical AND operation which has two inputs x, y and one 

output, yx ∧ . This gate is surely not reversible. The reversible AND operation with three 

inputs and three outputs can be implemented by a gate which performs yxz,y,xz,y,x ∧⊕→  

with input x, y, 0.) Then any classical circuit can be transformed to a reversible one by just 

replacing the irreversible gates with their reversible counterparts. (There is, however, one 

extra issue here. There may be supplementary bits used in the computation which do not 

appear in the inputs and outputs. We name them ancilla bits. A reversible computational 

process needs to restore the initial values of these bits after the necessary computations are 

made. This task is known as uncomputation.) A more straight way to show the same result, is 

of course demonstrating the universality of 3-input nonlinear reversible gates (such as Toffoli 

and the Fredkin gates) for classical computation. We will skip this until the next section. 

 

Universality of reversible computation is an important result for quantum computation 

because any classical subroutine in a quantum algorithm has to be implemented reversibly. For 

a more detailed discussion the topic, please refer to [4, 9, 10]. 

 

2.4.4. The Universality of Quantum Gates 

 

In classical computation, a set of gates or operators is said to be universal if its members 

are sufficient to compute a complete set of the classical boolean functions and thus to 

construct general combinatory circuits. If a computational device supports a universal set of 

operations, than it can be said to support a full range of classical operations. The sets {AND, 

NOT}, {OR, NOT} are among the well known examples of the universal sets of operations for 

classical computation.  
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Let us consider the Toffoli gate that was introduced in Section 2.4.2. The lines below 

show that the operations in the universal set {AND, NOT} can be implemented with use of a 

Toffoli gate.  

 

xxUT ~,1,1,1,1 =  (2.78)

yxyxyxUT ∧= ,,0,,  (2.79)

 

Note that (2.78) and (2.79) demonstrate the universality of Toffoli gate for classical 

computation. (Hence, they also construct a proof for the universality of reversible 

computation.) Then, it can be stated that a quantum computer which supports the Toffoli gate 

can compute the complete set of the classical boolean functions and hence it can implement 

any classical algorithm. 

 

On the other hand, a set of quantum gates is said to be universal if its members are 

sufficient to construct quantum circuits that can approximate any unitary operation to arbitrary 

accuracy. There are several important results related to the universality of quantum gates. Here 

we will briefly mention some of these without dealing with how they are derived. For a 

detailed discussion of the topic, see [4, 11]. 

 

The first result to be mentioned here states that any unitary matrix can be represented as 

a product of two-level unitary matrices where a two level unitary matrix is one which acts 

non-trivially only on two or fewer vector components. (At most two of the rows and at most 

two of the columns differ from those for the identity matrix of the same size.) Then two level 

unitary matrices are said to construct a universal set of operations for quantum computation. 

 

The set of single qubit gates plus the CNOT operation can be used to implement 

arbitrary two level unitary matrices. Hence, single qubit gates plus the CNOT operation is 

another universal set for quantum computation. This set is more restricted but it is still infinite. 
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 A finite set of gates cannot implement arbitrary unitary gates exactly, however, there are 

such sets that can be used to approximate any unitary operation to arbitrary accuracy. 

Hadamard, phase, CNOT and 8π  gates construct a universal set in this sense. Another set 

with the same property contains the Hadamard, phase, CNOT and Toffoli gates. It should also 

be stated here that not all of the arbitrary unitary gates can be approximated by circuits of 

polynomial size. 

 

2.5. The Quantum No-Cloning Theorem 

 

We have seen that the state of a quantum system evolves only according to unitary 

transformations. It is the linear nature of these unitary transformations out of which, one of the 

most interesting results of quantum mechanics is immediately derived. This result is known as 

the no-cloning theorem and is of extreme value for quantum cryptography and quantum error 

correction.  

 

Consider a quantum system whose state lies in n-dimensional Hilbert space nH , where  

1>n . Then the no-cloning theorem simply says that an arbitrary state of such a system cannot 

be copied. 

 

The theorem is derived as easily as it is stated. Let us suppose that the cloning mentioned 

above was possible. Then there exists a unitary operator U which acts on two registers of same 

size and whose action is just copying the state of the first register into the second. Suppose 

ψ  and ϕ  are two distinct states valid for the first register. Then we should have 

 

ψψψ =0U  (2.80)

ϕϕϕ =0U  (2.81)

 

Let us consider the inner products side by side 
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ψψϕϕψϕ =00 †UU  (2.82)

 

Then, 

 

( )2ψϕψϕ =  (2.83)

 

Then it is either the case that 0=ψϕ  or 1=ψϕ . 1=ψϕ  can hold only if 

ϕψ = , since ψ  and ϕ  are assumed to be distinct it should be the case that 0=ψϕ . 

This holds only if ψ  and ϕ  are orthogonal. Then two distinct arbitrary states like ψ  and 

ϕ  can be copied by the same unitary operator only if they are orthogonal, which means that 

for 1>n , no unitary operator can copy arbitrary states in nH . Note that there exists only one 

distinct state denoted by the unit ket vectors in 1H . Hence, the quantum no cloning theorem 

excludes the systems whose state lies in one dimensional Hilbert space. 

 

In Section 2.4, we had stated that a quantum computer which supports the Toffoli gate 

can implement any classical algorithm. Now, is it not contradictory that quantum computers 

cannot make copies of the arbitrary states of a register while this is just an ordinary task for 

classical computers? The answer is no, since the task of copying the quantum mechanical 

information is not the same as copying the classical information. When implementing a 

classical algorithm with a quantum computer, it is only the base states of registers to be copied 

and not the superpositions of them. And since the base states are orthogonal to each other, 

there are unitary operations which achieve this task. The CNOT gate for example can copy the 

state of a one bit register which is known to be in a base state 0  or 1 .  

 

0000000 ,,,CNOT =⊕= ,  (2.84)

1110101 ,,,CNOT =⊕=  . (2.85)
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It should also be stated that imperfect copies which are good for some measure of 

interest can be built. For information about quantum copying in this sense, please see [5]. 

 

2.6. The Measurement 

 

In the previous sections, it was stated that the state of a closed quantum system evolves 

only according to unitary transformations, however it was said, when such a system is 

measured, the system no longer remains closed so its state is governed by different rules. In 

this section, we will briefly see what these rules are. We will introduce the measurement 

operators and this will help us to see with which probabilities the different outcomes of a 

measurement occur and what happens to the state of a measured system. This is of course 

what meets the practical computational needs. [5] presents useful sketches of various 

interpretations of quantum measurements and for a quantum mechanical point of view see 

[12].  

 

A collection { }iM  of measurement operators, one for each possible outcome, describes 

the nature of a quantum measurement. Each of these operators acts on the state space of the 

system to be measured and as a collection they have to satisfy the completeness condition 

given below.   

 

IMM i
i

i =∑ †  (2.86)

 

If  ψ  is the state of the system to be measured, then the probability that the outcome i 

occurs is given by 

 

( ) ψψ ii MMip †=  (2.87)

 

These probabilities sum up to 1 by the linearity condition: 
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( ) 1†† ==⎟
⎠

⎞
⎜
⎝

⎛== ∑∑∑ ψψψψψψ
i

ii
i

ii
i

MMMMip  (2.88)

 

The state of the system after a measurement where the i'th outcome is observed is 

 

ψψ

ψ

ii

i

MM

M
†

. (2.89)

 

It must be clear that the completeness relation does not define a unique set of 

measurement operators. The set to be used should be selected according to the type of 

information expected from the results of the measurement.  

 

In particular if we are to measure a qubit in the computational basis, then there are two 

possible outcomes, 0  and 1 . The operators defining this measurement are 000 =M  and 

111 =M . (Note that these operators satisfy the completeness condition.) Then if the qubit is 

in state 10 ba +=ψ  before the measurement, the probabilities for observing 0  and 1  

are calculated as follows. 
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If 0  is observed, the state of the qubit collapses to 0 , 
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and if 1  is observed, the state of the qubit collapses to 1 . 
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The same reasoning explains how we can make measurements of the state of a qubit in 

any orthogonal basis. If, for example, we want to measure the state of a qubit in the Hadamard 

basis, then we choose ++=+M  and −−=−M  as the measurement operations. These 

measurements are defined by orthogonal projection operators and hence they are called 

projective (or Von Neumann) measurements. For computational concerns, most of the interest 

is concentrated in projective measurements, so the measurements which are not projective are 

not considered here. See, however [4] for a detailed discussion of the topic. 

 

2.7. Entanglement 

 

We had seen that the state space sH  of a composite system is defined by the tensor 

product ii
H⊗  of the state spaces iH  for the individual components of the system. The state 

sψ  of the system is said to be decomposable if it can be represented as a product ii
ψ⊗  of the 

members iψ  of the state spaces iH . Notice however that not all members of sH  are 

decomposable. Those states which are not decomposable are called the entangled states. As 

one of the simplest but the most famous example to the entangled states, we can consider the 

following two qubit register sate which is a member of the family of states known as the Bell 

states or the EPR (Einstein, Podolsky, Rosen) pairs.  
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To show that ψ  is entangled, we simply need to show that it cannot be decomposed 

into two single qubit states. Let us suppose it was decomposable and let 21 ψψψ =  where 

101 ba +=ψ  and 102 dc +=ψ . Then we have 
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But then we have 21== bdac  and 0== bcad  which is a contradiction since we 

have 1,0,0,1 ==== bdbcadac  which implies ( )( ) ( )( )bcadbdac ≠ . Therefore, we can 

conclude that there are no such single qubit states 1ψ  and 2ψ , for which it holds that 

21 ψψψ = . So ψ  is not decomposable and hence it is an entangled state.  

 

The circuit shown in the Figure 2.10 generates the four Bell states 00β , 01β , 10β  

and 11β  when it is initialized with the four members of the computational basis 00 , 01 , 

10  and 11  respectively. Note that ψ  corresponds to the input 00  hence it is equivalent 

to  00β . 

 

 
Figure 2.10.  The circuit that generates the Bell states when initialized in the basis states 

 

Then the four Bell states are 
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All of the above states are entangled and they are the origin of the many interesting ideas 

and discussions such as quantum teleportation and super-dense coding. 

 

2.8. Quantum Computational Complexity 

 

In order to develop an understanding of the power of quantum computation, there is the 

need for a theory of quantum computational complexity which defines complexity classes for 

quantum computation and relates them with each other as well as their classical counterparts. 

Although the theory is relatively new, several important results have already been established. 

Here we will introduce two of the most important quantum complexity classes and mention 

some of the important results in the field without giving details of their derivation.  

 

Most of the researchers working on quantum computational complexity use a quantum 

analogue of the Turing Machine as a universal model of quantum computation after the 

introduction of the first universal quantum Turing machine (QTM) by Deutsch [13]. The QTM 

model proposed by Bernstein and Vazirani was the first which can simulate any other QTM 

with only polynomial slowdown [14]. Definition of several such models can also be found in 

[9, 15]. The quantum circuit model can be shown to be equivalent to QTM models in terms of 

the computational power [16]. Hence in the following parts we will continue to refer quantum 

circuits rather than QTMs. (A third equivalent model is that of quantum computation by 

adiabatic evolution, see [17].) 

 

The most trivial quantum complexity class is EQP (exact quantum polynomial time), 

which contains those problems that can be solved to certainty by quantum circuits of 

polynomial size in the worst case. As any classical circuit can be implemented as a quantum 
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circuit with at most a polynomial overhead, we can safely state that EQP is at least as large as 

the classical complexity class P.  

 

The most important quantum computational complexity class is BQP (bounded-error 

quantum polynomial time). A language *Σ⊆L  ( *Σ  denotes the set of strings that can be 

written with the symbols in the alphabet Σ .) is said to be in BQP if and only if there is a 

quantum circuit C of polynomial size which decides L in the sense that, for any *x Σ∈ , C 

accepts x  with probability at least 32  if Lx ∈  and it rejects x  with probability at least 32  

if Lx ∉ . In practice this amounts to running the circuit C on the input x. After the computation 

the decision, whether Lx ∈  or not, is encoded into one of the output qubits: 10 ba + . We 

measure this bit and take, for example, 0  as accept and 1  as reject. Then every time C is 

run on Lx ∈ , it should be the case that 322 ≥a  and every time C is run on Lx ∉ , it should 

be the case that 322 ≥b . The probability of error can be reduced to an arbitrarily small value 

ε , by running the circuit ( )ε1logO  times and taking the majority of the results. Hence, the 

problems in BQP are efficiently solvable on a quantum computer. By its definition BQP is at 

least as large as EQP. Then we have the following chain of inclusion relations. 

 

BQPEQPP ⊆⊆  (2.97)

 

A very important result states that BQP is contained in the classical complexity class 

PSPACE [18]. Since it is straightforward that quantum computers are at least as powerful as 

classical computers, we also know that BPP (bounded error probabilistic polynomial time) is 

contained in BQP. Then we have another chain 

 

PSPACEBQPBPP ⊆⊆  (2.98)

 

It is not yet known whether any of these inclusion relations are strict. Hence if one could 

show that BQP is strictly larger than BPP (or equivalently, that quantum computers can 
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effectively solve more problems than classical computers) then this will also provide a very 

important result for classical complexity theory saying that PSPACE is strictly larger than 

BPP and hence than P.  

 

Another important class is BQNP, which is the quantum analogue of the classical 

complexity class NP. A language L  is said to be in BQNP if and only if, there is a polynomial 

size quantum proof checker circuit C. For every Lx ∈ , there is a proof string y such that the 

proof checker accepts the input x,y with probability at least 32  and for every Lx ∉  and for 

every y, the proof checker rejects the input x,y with probability at least 32 . A quantum 

analogue of the Cook-Levin theorem has been demonstrated by Kitaev. It states that the 

problem QSAT (the quantum analogue of the 3-SAT problem) is complete for the BQNP class 

[19].  

 

When we assume there are no limits on the computational resources and that we cannot 

implement arbitrary complex numbers as amplitudes, the set of problems that can be solved on 

a quantum computer is exactly the same as that for a classical computer. So the quantum 

computers do not violate the Church-Turing thesis stating that any function that can be 

computed by any means can also be computed by a Turing machine. However when the 

efficiency is taken into the consideration quantum computation constructs a though challenge 

for the so called strong version of the Church-Turing thesis stating that any computable 

function can be computed on a Turing machine with at most a polynomial increase in the 

running time. 

 

There are many other important ideas and results in the quantum computational 

complexity domain. It is out of the scope of this work to mention all of them, however the 

reader is encouraged to see [15, 20] and chapter 5 of [9] for a more detailed discussion of the 

topic. 
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2.9. Quantum Algorithms 

 

A quantum computer is not necessarily faster than a classical computer when performing 

an ordinary task such as addition or multiplication. The superiority of quantum computers over 

the classical ones depends on mechanisms such as superposition, interference and 

entanglement. This superiority can be demonstrated by quantum algorithms which outperform 

their classical counterparts. This is why most of the literature about quantum algorithms has 

focused on these algorithms. So far, a few techniques are known to generate such algorithms 

and yet it is not known whether there are other such techniques to be discovered.  

 

We can categorize the quantum algorithms with respect to the nature of the problem they 

are devised for and the qualitative measure of the performance gain they provide against the 

classical algorithms. The first division is roughly between the conventional problems and 

black box problems. A black box (or an oracle), in computer science, can be taken as anything 

that computes and returns a function f(x) of any legal input x. A black box problem is one, 

which differs from conventional problems by providing access to a black box in its definition, 

with no care, and knowledge of what happens in it. Although they are artificial problems they 

are of theoretical importance in computer science. The second division is between the 

algorithms, which provide sub-exponential speedup over the classical algorithms and those, 

which provide exponential speedup. Although a sub-exponential speedup is still of great 

importance, it is only the exponential speedup, that demonstrates the full power of quantum 

computation.   

 

The best and probably the most famous example of sub-exponential speedup for a black 

box problem is achieved by Grover's algorithm for unstructured search [1] which depends on 

the amplitude amplification method [21]. This algorithm is applied to the cases where a linear 

search seems to be the most rational classical choice and provides quadratic speedup over the 

best classical algorithm for the same task. Grover's algorithm can be used to speed up the 

solutions of NP complete problems, however neither this algorithm nor any other algorithm in 

this category, provide meaningful results for the conventional complexity classifications.  
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One of the first problems for which quantum computers were shown to outperform the 

classical computers is a black box problem (known as Deutsch's problem) about distinguishing 

between constant and balanced functions [13]. It is for a generalization of this problem that 

Deutsch and Jozsa suggested their famous algorithm which depends on the superposition and 

interference principles and can easily be shown to be exponentially faster than any 

deterministic classical algorithm for the same task [22]. However this algorithm is not superior 

to a probabilistic classical algorithm, and hence its importance is limited.  

 

Another important algorithm that provides exponential speedup for a black box problem 

is Simon's algorithm, which is devised for the problem of finding the period of a 2 to 1 

function [23]. This problem can be formulated as a hidden subgroup problem and Simon's 

work on period finding can be said to provide the base on which Shor's factorization algorithm 

is built. Unlike the Deutsch-Jozsa algorithm, Simon's algorithm is superior to all of its 

classical counterparts, deterministic or probabilistic. Hence, in [24], Shor states that Simon's 

algorithm provides "a moderately convincing argument that BQP is strictly larger than BPP, 

although it is not a rigorous proof." 

 

Probably the most celebrated achievement of quantum computation is the discovery of 

Shor’s algorithm which provides exponential speedup (over the best known classical 

algorithm) for a conventional problem, factorization [2]. The factorization problem is not 

proven but highly suspected to be classically hard that even probabilistic classical algorithms 

may not be able to provide polynomial solutions for it. Shor's algorithm, introduced in 1994, 

shows that a polynomially large quantum circuit can solve the factorization problem 

depending on the phase estimation technique which can be applied efficiently, with use of a 

quantum implementation of the Fourier transformation method. This remains as one of the 

most important results in the field of quantum computation, not only because the factorization 

problem has many applications and hence is extensively studied in the classical domain, but 

also because the methods used in this algorithm can be generalized to provide efficient 

solutions for the samples of the other hidden subgroup problems [25, 26]. However, since the 

complexity of factorization is not known, this algorithm does not provide means to understand 

the relation between BPP and BQP. 
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It is out of the scope of this work to provide detailed discussions about all of these 

algorithms. In sections 2.9.1, 2.9.2 and 2.9.3 below, we will provide sketches of Simon's, 

Grover's and Shor’s algorithms to give an idea of the general characteristics of quantum 

algorithms. The reader, however, is referred to [27] for a detailed analysis of each of the 

algorithms mentioned above. 

 

2.9.1. Simon's Algorithm for Period Finding 

 

Problem: Given a black box fU  which computes a function { } { }mn ,,f 1010: →  ( nm ≥ ) 

that is known either to be one to one or to satisfy (2.99) for a non-trivial s, where ⊕  denotes 

bitwise addition modulo 2.  

 

( ) ( ) ( )( ) sxyyfxfyx ⊕=↔=∧≠  (2.99)

 

The problem is to determine if f is one to one, if it is not then to find s.  (We denote the 

functionality of Uf  as a unitary transformation: ( ) ( )xfdxdxU f ⊕⊗=⊗ ) 

 

Algorithm: Simon’s algorithm consists of the following steps. 

 

Step 0: Initialize two quantum registers of n and m qubits in the states 0
1

0

−
⊗
n

 and 0
1

0

−
⊗
m

. 

 

Step 1: Apply n-bit Hadamard gate Hn to the first register of n bits. The overall state will 

be as shown in (2.100). Note that this step puts the first register into an equal superposition of 

the 2n principal states. 
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Step 2: Query the black box for the state prepared in Step 1. Then the next state is 
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Step 3: Apply n-bit Hadamard gate Hn to the first register again. The new state is 
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Now, if f is one to one then both the domain and range (mirror of the domain under f) of f 

has the same cardinality n2 . The state shown in (2.102) is a superposition of the members of 

the Cartesian product of the domain and range of f. Therefore, nnn 2222 =   states of the form  

( )kfj ⊗  are superposed, each with an amplitude equal to either n2
1  or n2

1
− . Then, if the 

state of the first register is measured after Step 3, the probabilities for observing each of the n2  

base states are equal and given by nn
n

2
1

2
12

2

=± . Hence the outcome of such a measurement 

would be a random value between 0 and 12 −n . 

 

If f is not one to one, it satisfies (2.99). Then each state of the form ( )kfj ⊗  has the 

amplitude given by 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )sjkjkj
n

skjkj
n

⋅⊕⋅⋅⊕⋅⋅ −+−=−+− 11
2
111

2
1 . (2.103)

 

If 0≠⋅ sj  then the amplitude for ( )kfj ⊗  becomes zero. So if f is not one to one, 

then measuring the state of the first register after Step 3, returns a value of j such that 0=⋅ sj . 
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Step 4: Measure the state t of the first register. 

 

 
Figure 2.11.  The circuit representation for the iterative steps of Simon's algorithm 

 

The circuit representation for steps 0 through 4 is shown in the Figure 2.11. If we run 

this circuit succesively, until we observe n linearly independent values of t, we get a system of 

equations: 000 21 =⋅=⋅=⋅ st,..,st,st n . This is a system of n linear equations in n unknowns 

and it can be solved for the n bits of s classically in polynomial time. Once we get the value 

for s, we can query the black box for an arbitrary value v, between 0 and 12 −n  to see if 

( ) ( )svfvf ⊕= . If this is not the case we can conclude that f is one to one and otherwise it 

satisfies (2.99) for the value of s which has already been calculated.  

 

The expected running time of the algorithm is O(n), however in the worst case it may 

take too long to observe n linearly independent values for t. A slightly modified version of the 

algorithm can get over this problem by removing the observed values of t from the initial 

superpositions of the following iterations [28].  

 

The best classical algorithm for the same task would require exponentially many queries 

of the black box in terms of n. Therefore, Simon's algorithm is exponentially faster than the 

best possible classical algorithm for the same task. Moreover, it is the first algorithm that 

depends on the idea of realizing the periodic properties of a function in the relative phase 

factors of a quantum state and then transforming it into information by means of probability 

distribution of the observed states [27]. The ideas used in the period finding algorithm turned 

out to be useful for developing algorithms for many other problems. 
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2.9.2. Grover's Algorithm for Unstructured Search 

 

Problem: Given a black box Uf for the function { } { }1010: ,,f n →  such that there exists 

exactly one { }n,x 10∈  satisfying ( ) 1=xf . The problem is to find that x. (We denote the 

functionality of Uf  as a unitary transformation: ( ) ( )xfdxdxU f ⊕⊗=⊗ ) 

 

Algorithm:  Grover's algorithm consists of the following steps. 

 

Step 0: Initialize two quantum registers, α  of n qubits and β  of 1 qubit in the states 

0
1

0

−
⊗=
n

α  and 1=β . 

 

Step 1: Apply Hadamard gate H to all of the qubits in the registers α  and β . The 

overall state will be as shown in (2.104). 
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Let SX  denote the set of all n-bit sequences x that satisfy ( ) 1=xf  and TX  denote the 

set of all n-bit sequences x that satisfy ( ) 0=xf . We have { }n
TS ,XX 10=∪  so that we can 

rewrite the state in (2.104) as 
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Step 2: Apply fU on the registers α  and β . The new state will be 
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If we consider the individual states of the registers α  and β , we can rewrite the overall 

state as follows  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⊗ ∑∑

∈∈ 2
10

2

1

SXxTXxn
xxβα . (2.107)

 

Now it is seen in the first register that the amplitudes for those bit sequences x that 

satisfy ( ) 1=xf  are negative while the amplitudes for those bit sequences x that satisfy 

( ) 0=xf  are positive. So the steps up to this point have created a difference between the states 

we want to distinguish. However at this point the difference is not informative since the 

difference in amplitudes is not reflected in the observation probabilities: any bit sequence has 

equal probability of being observed. Hence, there is the need to transform the difference in 

amplitudes into a difference in the observation probabilities. Since we want to learn which 

particular bit sequences x satisfy ( ) 1=xf  we need to increase the probability of observing 

those with negative amplitudes. This is done by the so-called “inversion around average” 

operator ( IAU ). It simply maps each amplitude ia  in the state vector to iaA −2  where A is the 

average of all the amplitudes [5]. (Note that ia  and iaA −2  are symmetric around A.) The n2  

by n2  IAU  operator can be written as follows. 
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Step 3: Apply IAU  on the register α .  

 

It is known by the problem statement that SX  contains only one bit sequence and fX  

contains 12 −n  such bit sequences. Therefore, the average of the amplitudes in the state vector 

for the register α  before Step 3 is as follows, assuming large values for n.  
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It can be stated that in Step 3, IAU  maps the amplitudes for the bit sequences in SX  to  

 

( )
nn
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and it maps the amplitudes for the bit sequences in TX  to 

 

( )
nn

A
2

1

2

12 <− . (2.111)

 

Hence if a measurement is made probability of observing the bit sequence x that satisfies 

( ) 1=xf , is increased by almost nine times (assuming large n) after Step 3 while the 

probabilities for observing the other sequences are relatively decreased. Step 2 and  Step 3 can 

be said to push the general state vector towards the solution of the problem by increasing the 
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amplitude of the solution state. (This is the technique known as amplitude amplification.) 

However, the probability of observing the solution state is still small to be useful. It can be 

increased more by further applications of Step 2 and  Step 3 in a loop. (These steps are known 

as Grover iteration.) The amplification factor changes at each iteration as the individual 

amplitudes and their average change. It can be shown that n2
4
π  iterations would bring the 

state vector to its optimal position and further iterations would destroy this optimality [29]. 

Therefore, the next step is a loop. 

 

Step 4: Repeat Step2 and Step3 until the total iteration count is equal to the integer 

nearest to n2
4
π . 

 

If we measure the state of register α  after ⎥⎥
⎤

⎢⎢
⎡ n2

4
π  Grover iterations, the probability of 

observing the bit sequence x for which ( ) 1=xf  is greater than n211− . So we measure it. 

 

Step 5: Measure the state of the first registerα . 

 

The circuit representation for steps 0 through 5 is shown in Figure 2.12. The probability 

of getting a wrong answer after running this circuit is less than n21 . 

 

 
Figure 2.12.  The circuit representation for Grover's algorithm 
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The same set of ideas can be applied to a more relaxed version of Grover's problem 

where it is allowed to have m different bit sequences of length n that satisfy ( ) 1=xf . 

Assuming m is small with respect to 2n, the problem can be solved (for one of the m solutions) 

by a modified version (which contains at most 
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

m

n2
4
π  Grover iterations) of the circuit in 

Figure 2.12, with a probability of error at most nm 2 . If m is not known to be smaller than 

22n , then it may be a good idea to enlarge the state space with the addition of n2 more bit 

sequences, none of which is a solution.  

 

The best classical algorithm for Grover's problem runs in ( )nO 2  time since it needs to 

check every alternative bit sequence until it finds one which satisfies ( ) 1=xf . Therefore 

Grover's search algorithm which runs in ( )nO 2  time can be said to provide a quadratic 

speedup over the best classical algorithm for the same task. It was further shown that Grover's 

algorithm is optimal for the unstructured search problem [30].  

 

2.9.3. Shor’s Algorithm for Factorization 

 

Given a composite integer N, find its prime factors. This is how the factorization 

problem, one of the classics in computer science, is stated. So simple in appearance, this 

problem is the subject of a broad range of studies and yet can be solved by the best known 

classical algorithm only in exponential time. Although there is no evidence, there is a strong 

belief that the factorization problem is classically hard. And this is why many security systems 

depend on the practical impossibility of factoring large integers with classical computers.  

 

A quantum algorithm known with its inventor’s name, Peter Shor, presents efficient 

means of solving the factorization problem. Shor’s algorithm depends on some number 

theoretic observations and the idea of period finding first introduced with Simon’s work. Here 

we discuss the main aspects of Shor’s algorithm. 
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We begin with the number theoretic preliminaries. First we define the order of an integer 

a  in the base of a positive integer N as the smallest positive integer r such that ( )Nar mod1= . 

(Note that r is at the same time the period of the function ( ) ( )Naxf x
Na mod, = . ) If r is even 

then we can write 

 

( )( ) ( )Naaa rrr mod0111 22 =+−=− . (2.112)

 

We know ( ) ( )Nar mod012 ≠−  since r is the smallest positive integer such that 

( )Nar mod1= . If ( ) ( )Nar mod012 ≠+  is also true, then it should be the case that the prime 

factors of N are distributed into the prime factors of ( )12 −ra  and ( )12 +ra . Then we have  

 

( )( ) 11,gcd 2 >−raN , (2.113)

( )( ) 11,gcd 2 >+raN . (2.114)

 

This is the first step in constructing Shor’s algorithm. The second step depends on the 

observation that the period finding algorithm of Simon can be generalized to any periodic 

function, hence one can compute the order of an integer in any base efficiently on quantum 

computers while no efficient classical algorithm is known for this task. Hence, Shor’s 

algorithm for factorization consists of the following steps and only Step 2 requires quantum 

computers to be efficiently implemented. 

 

Step 1: Take a positive integer m at random. Compute ( )mN ,gcd . If ( ) 1,gcd ≠mN  then 

( )mN ,gcd  is a non trivial factor of N, the algorithm terminates.  

 

Step 2: Compute the order, P, of m in the base N. If P is odd or ( ) ( )NmP mod012 =+  

then go to Step 1.  

 

Step 3: Compute ( )( )1,gcd 2 −PmN , which gives a non trivial factor of N.  
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Step 1 and Step 3 can be computed efficiently on a classical computer with use of the 

Euclidean algorithm for finding greatest common divisors [31]. Step 2 can be efficiently 

computed by a quantum computer. The probability that P is odd is given by k21  and the 

probability that ( ) ( )NmP mod012 =+  can occur is given by 121 −k , where k is the number of 

distinct prime factors of N.  

 

Recall that finding the order of an integer a  in the base N is equivalent to finding the 

period of the function ( ) ( )Naxf x
Na mod, = . Let us now see how the period finding problem 

can be solved efficiently on a quantum computer. First we should introduce the quantum 

analogue of the Fourier transform operation. The quantum Fourier transformation operation 

QFTU  on a quantum register of L bits acts on the computational basis as described in (2.115).  
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In [4, 5] circuit models are presented for implementing this unitary transformation on 

registers of arbitrary size. Now we define the period finding algorithm which consists of the 

following steps. 

 

Input: A circuit component fU  for computing a periodic function f  defined on the set 

of natural numbers. 

 

Step 0: Prepare two quantum registers X and Y in the initial state LyLxYX 00=  

where the lengths Lx and Ly are chosen so that Lx2  is greater than the anticipated value of the 

period and Ly is large enough that register Y can store vlues of function f. 

 

Step 1: Apply QFTU  to the register X.  
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If we let LxQ 2=  the new state can be represented as in (2.116) 
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Step 2: Apply the transformation ( )afbaba
fU

⊕→  on the registers YX . Then 

the state of the two registers becomes  
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Step 3:  Apply QFTU  to the register X. The new state will be as follows. 
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Step 4:  Measure the state.  

 

At this stage, the probability of observing the state ( )jfk  is given by 

 

( )( ) ( )

( ) ( )

2
21, ∑

=
=

jfxf

Qikxe
Q

jfkP π  (2.119)

 

where  10 −≤≤ Qx . Because of the periodicity of f we have  brjx += , where r is the period 

of f and b is an integer. If we insert this into the equation (2.119), we get 
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Since we are interested in the relative magnitudes of the probabilities for observing different 

states we can factor out the term ( ) Qikje π2 . Then we get 
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where we define ( )kr,  so that it satisfies ( )
2

,
2

QkrQ
≤≤−  and ( ) )1(mod, −= Qrkkr . The 

probability distribution in (2.121) can be verified to have peaks where ( )kr,  is small with 

respect to r like in the case when r times k is a multiple of Q. Hence for the values of k with 

the highest probability of being observed, we have 

 

nQrk =  (2.122)

 

where n is an integer. Since we know the value of Q and since we can locate the peaks of the 

distribution by repeating the above steps, we can make use of (2.122) to find the period r by 

applying the continued fractions algorithm [32]. 

 

Since period finding can be solved in a polynomial number of steps, we have an efficient 

way of finding the order of an integer in any base. This means we can efficiently solve the 

factorization problem on quantum computers.  

 

2.10. There is More to Quantum Computation 

 

A variety of ideas from the relatively simple ones such as generation of truly random 

numbers to more complex ones such as quantum copying, can be addressed in relation to 

quantum computers. Some of these were discussed in the previous sections and quantum 
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simulation will be examined in detail in a later chapter. Of course, there is much more to 

quantum computation than discussed here. Let us now devote a few words to some of those 

interesting ideas which can be viewed to be in the field of quantum computation and quantum 

information theory.  

 

Quantum communication and quantum cryptography seem to be the most interesting 

potential applications for quantum computation. In both fields, remarkable results have been 

demonstrated. In the communication domain, it is shown that it takes practically no time to 

transfer the quantum state information to any distance with use of the method known as 

quantum teleportation depending on the entanglement and no cloning principles. There is 

more: a technique known as dense coding can transmit two classical bits of information with 

use of only a single qubit. In the cryptography domain, things are not so simple. The best 

classical security measures depending on public key cryptography are only polynomially hard 

to break, with a quantum computer which enjoys the advantages of quantum factorization and 

discrete logarithms. On the other hand, a technique known as quantum key distribution is 

shown to provide provably secure and efficient distribution of information. These ideas are the 

source of most of the interest in quantum computation, and it is this interest which helps the 

development of the field. 

 

There are less 'popular' ideas which are of extreme value if quantum computers are ever 

to be realized. Several physical models including ion traps, nuclear magnetic resonance, 

harmonic oscillator, nonlinear optics and cavity electrodynamics, are studied in detail as 

potential realizations of quantum computers or quantum information processing devices. The 

main difficulty is that superpositional states can hardly survive when they are interacting with 

the environment. (This phenomenon is known as decoherence.) As of today, only small scale 

systems could be constructed for experimental issues and hence the physical realization 

problem is still a challenging one. Another active field of research is quantum error correction 

which aims to protect quantum states from the effects of decoherence and noise. This is a 

crucial task for closing the gap between the theoretical and experimental development of 

quantum computation and information theory. 
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There are lots of other interesting application areas such as distributed quantum 

computation and quantum game theory. [33] presents a list of physically implementable 

quantum functionalities, from a quantum gate to a quantum robot. It can be expected that the 

list of such ideas may grow faster and faster as our intuition about the nature of quantum 

systems gets stronger.  

 

For most of the topics mentioned above [4] is a valuable reference for readers of various 

levels. [6, 9, 34] are also informative in many aspects. 
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3.  A SHORT SURVEY ON QUANTUM SIMULATION 
 

 

Simulation is basically the task of calculating and describing a future state of a system 

whose initial state is given as an input. This task is generally achieved by an analysis of a set 

of differential equations which governs the time evolution of the state variables of the system. 

The simulation of a quantum system by classical apparatus is theoretically possible but highly 

inefficient to be useful. This is because the quantum mechanical state of a real system of a 

reasonable size requires an exponentially large number of variables just to be fully described. 

Analyzing the evolution of such a system also requires the multiplication of exponentially 

large matrices. This difficulty was, in fact, one of the first inspirations to make scientists think 

about the capabilities of quantum computers.  

 

The simulation of quantum systems is the first classically hard problem for which 

quantum computers were expected to provide efficient means of solution. In a paper, he wrote 

in 1982, the famous physicist R.P. Feynman pointed out the practical impossibility of 

simulating quantum systems on classical computers, and suggested that quantum physics 

could be simulated with use of quantum computer elements [35]. He claimed that it was 

possible to build a universal quantum simulator whose state and evolution could be 

programmed to reproduce the behavior of any quantum system of interest.  

  

This remained as a conjecture until 1996, when Lloyd [36], Wiesner [37], and Zalka [38] 

separately showed that conventional quantum computers could be programmed to efficiently 

perform universal quantum simulation of systems whose states evolve according to local 

interactions. Since then, quantum simulation is considered to be one of the three main 

applications of quantum computation, together with Shor's algorithm for factorization and 

Grover's algorithm for unstructured search. Of the three, quantum simulation seems to be the 

most promising one, since it forms a basis on which a variety of useful ideas can be 

implemented to provide meaningful performance gains against classical computers. 
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Before going into a detailed analysis, let us build a notion of simulation. There are two 

important decisions to be made for a successful simulation. The first one is related to the 

representation of the simulated system. One must decide how to map the state space of the 

simulated system to the state space of the simulator. The second decision is about the 

evolution operator to be used on the simulator. It should be decided which operator mimics the 

evolution of the simulated system best. These two decisions are strongly related to each other, 

and the correlation between them is a factor in determining the success of a simulation. Let us 

consider Figure 3.1, which depicts the correspondence between the simulator and the 

simulated system.  

 

 
Figure 3.1.  The correspondence between the simulator and the simulated system 

 

Figure 3.1 suggests a scheme in which the states of the simulated system and the 

simulator are related by a mapping M. Therefore, the initial state 1TS of the simulated system 

is represented by ( )11 TT SMQ =  on the simulator. The unitary mapping )12( TTV −  mimics 

the evolution of the simulated system from time point 1T  to time point 2T , where this 

evolution is governed by the Hamiltonian H. The state on the simulator becomes 

( ) 12 12 TT QTTVQ −= . Then the state of the simulated system at time 2T  is guessed to be 

( )2
1

TQM − . The accuracy of this guess depends on how well M maps the states of the two 

systems and how closely )12( TTV −  mimics the evolution of the simulated system 
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Note that, we generally use the phrase "simulating a Hamiltonian H" instead of 

"simulating the system governed by the Hamiltonian H". The phrase "simulating the evolution 
tiHe Δ− " is also equivalent with the additional remark on the duration of simulation tΔ . In 

general, a system, which evolves according to the Hamiltonian H  for a duration tΔ , 

undergoes a transformation described by tiHe Δ− . If the state of the system before this 

transformation is defined by ( )0ψ  then at time tt Δ+= 0 , the state of the system is described 

by ( ) ( )0ψψ tiHet Δ−= . 

 

We present a sketch of Lloyd's analysis of quantum simulation in Section 3.1. Then in 

Section 3.2, we will examine what types of Hamiltonians can be simulated and will introduce 

several useful tools for quantum simulation. Section 3.3 briefly discusses the power of 

quantum simulation.  

 

3.1. Universal Quantum Simulators 

 

In [36], Lloyd defines a transformation iAteU = , where A lies in the algebra A, generated 

by commutation from the set of Hamiltonians which correspond to time evolution of a system 

in various experimental setups, { }lH~,..,H~,H~ 21 . The complexity of simulating such a 

transformation can be measured by the number of elementary operations required to build this 

transformation. The number of operations required to generate an arbitrary mm×  

transformation, U, is of the order of 2m , which is number of parameters required to specify U. 

 

To simulate such a transformation of N quantum variables on a classical computer 

requires the multiplication of a N2  dimensional state vector by a NN 22 ×  matrix and 

computational time and memory space of the order N22 . A quantum computer can do the same 

within a memory space of N qubits, however the number of operations required to build an 

arbitrary U  remains exponentially large even for a quantum computer. If a quantum system 

which evolves according to local interactions is chosen instead of an arbitrary quantum 
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system, then as Lloyd has shown, the simulation of the system on a quantum computer is 

much more efficient than the same on a classical computer. 

 

Consider a quantum system of N variables, with Hamiltonian ∑ =
l

1i iH , where each iH  

acts on a space of dimension im , encompassing at most k  of the variables. Any Hamiltonian 

system with local interactions can be written in this form. The quantum simulation of such a 

system depends on the identity ( )nntiHntiH

n

iHt eee l⋅⋅⋅=
∞→

1lim , hence it works by evolving the 

system forward locally, over small, discrete time slices in loops. 

 

The desired accuracy of simulation can be achieved by regulating the time slicing 

according to the equation 

 

( ) [ ] ( )∑∑
∞

=>
++⋅⋅⋅=

3

21 2,
kji

ji
nntiHntiHiHt kEntHHeee l , (3.1)

 

where the higher order error terms ( )kE  are bounded by !)( knHtnkE k

SUPSUP
≤ . ( [ ]BA,  is 

the commutator of operators A and B given by [ ] BAABBA −=,  and 
SUP

A  is the supremum  

or the maximum expectation value of the operator A over the states of interest.) The total error 

is less than 
SUP

niHt niHten )1( −− , which can be made as small as desired by taking n 

sufficiently large. (3.1) suggests that the minimum number of steps n  required to simulate the 

system to accuracy ε  over time t  is proportional to ε2t . Therefore Lloyd states that, for any 

0>ε , one can pick a sufficiently large n to ensure that the simulator always tracks the correct 

time evolution iHte  to within ε . 

 

The quantum computational complexity of performing the simulation with a fixed 

accuracy can be estimated. Since each jH  acts on a local Hilbert space of only jm  

dimensions, ntHi je  can be simulated with use of 2
jm  operations. The number of operations 
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needed to simulate the time evolution iHte  to an accuracy ε , is approximately ∑
=

l

1

2

i
imn . If m  is 

taken to be the largest one of the jm 's then, one can insert 2
jmnl  as an upper bound on the 

number of operations needed to achieve the simulation within the desired accuracy. 

 

The above simulation method is efficient (in the manner that it can be achieved with use 

of polynomially large computational resources) as long as )(Nll =  is a polynomial function 

of N . The total simulation time t  is divided to n  equal slices where n is proportional to ε2t . 

Then each coherent operation ntHi je , requires a duration proportional to nt , that is, to t1 .  It 

turns out that the total duration needed to simulate a system for time t, is just proportional to t. 

The level of desired accuracy affects only the number and (hence) the length of the slices into 

which the overall time is divided. 

 

To sum up, the number of qubits to be used in the simulation of a quantum system is 

proportional to the size of that system and this simulation takes a time proportional to the 

duration over which the simulated system evolves. This concludes Lloyd's proof of Feynman's 

conjecture that quantum computers are able to simulate other quantum systems more 

efficiently than classical computers.  

 

3.2. Constraints on the Simulation of Hamiltonian Dynamics 

 

We have seen that not all Hamiltonians can be simulated efficiently even with the use of 

quantum computers. (This is in fact another way of saying that there exist unitary operations 

which quantum computers cannot efficiently approximate. Recall that there is a one to one 

relation between Hermitian and unitary operators defined by iHeU = .) We can say that a 

Hamiltonian can be simulated if it defines the dynamics of a physical system that can be 

realized. However, this remark is of little use for practical computations. Hence, there is the 

need for expressing the same idea in a way compatible with the quantum circuit model of 

computation. Such an analysis can be found in [39], where a set of techniques for quantum 

simulation is listed. Here, we briefly introduce some of these tools to be used later . 
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3.2.1. Simulation of Local Hamiltonians 

 

If a Hamiltonian H acts on a constant number of qubits, then it can be efficiently 

simulated. This is just another way of stating the fact that a unitary evolution on a constant 

number of qubits can be approximated with use of constant number of one and two qubit 

gates. 

 

3.2.2. Rescaling of Hamiltonians 

 

If a Hamiltonian H can be efficiently simulated, then cH can also be simulated efficiently 

as long as c is only polynomially big in terms of the size of the system that H acts son. 

 

3.2.3. Unitary Conjugation 

 

If a Hamiltonian H can be efficiently simulated and the unitary transformation U can be 

implemented efficiently, then it is possible to simulate the Hamiltonian †UHU  in an efficient 

manner. This follows from the simple identity  

 

tiUHUiHt eUUe
†† −− = . (3.2)

 

With use of unitary conjugation, it is possible to rotate the basis on which a Hamiltonian 

is applied. 

 

3.2.4. Commutation 

 

If two Hamiltonians H1 and H2 can be simulated efficiently, then the Hamiltonian 

[ ]21 H,Hi  can also be efficiently simulated. ( [ ]B,A  denotes the commutation of two operators 

defined as [ ] BAABB,A −= . If [ ] 0=B,A , then A and B are said to be commuting operators.) 

This follows from the identity 
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[ ] ( )rrtiHrtiHrtiHrtiH

r

tHHi eeeee 21212,1 lim −−

∞→
= . (3.3)

 

3.2.5. Addition of Hamiltonians  

 

If two Hamiltonians H1 and H2 can be simulated efficiently, then the Hamiltonian 

21 HH +  can also be simulated efficiently. This is a result of the Trotter formula, a proof for 

which can be found in [4]. 

 

( ) ( )tHHirrtiHrtiH

r
eee 2121lim +

∞→
= . (3.4)

 

The following identities are also useful when approximating the sum of two 

Hamiltonians. Of these, (3.7) is known as Baker-Campbell-Hausdorf formula. 

 
( ) )( 22121 tOeee tiHtiHtHHi +=+ . (3.5)

( ) )( 32122121 tOeeee tiHtiHtiHtHHi +=+  (3.6)

( ) [ ]
)( 3

2
2,12

1
2121 tOeeee

tHHtiHtiHtHHi +=
−+  (3.7)

 

3.2.6. Linear Combination of Hamiltonians 

 

As a generalization of the addition rule, we can state that if a Hamiltonian H is a sum of 

polynomially many Hamiltonians qH,..,H1 , each of which can be simulated efficiently, then 

H can also be simulated efficiently. This depends on the same argument as Lloyd's analysis. 

Let us see how this argument is built. 

The Taylor expansion of the term xe  is given as ∑
∞

=
=

0 !k

k
x

k
xe . Then we can write 
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If qHHHH +++= ...21 ,  assuming tΔ  is small we can write 
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The product  tqiHtiHtiH eee Δ−Δ−Δ− ⋅⋅⋅21  can be written as 
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Then the difference ( ) ( )tqiHtiHtiHtqHHHi eeee Δ−Δ−Δ−Δ+++− ⋅⋅⋅− 21...21  can be calculated as 
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(3.11)
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Taking the norms and ignoring ( )( )3tO Δ  gives 

 

( ) ( ) [ ] ( )

[ ] ( )
2

,

2
,

2

1

2

1

21...21

tHH

tHHeeee

qji
ij

qji
ji

tqiHtiHtiHtqHHHi

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅⋅⋅−

∑

∑

≤<≤

≤<≤

Δ−Δ−Δ−Δ+++−

 (3.12)

 

If we let [ ]( )jiji
HH ,max

,
=l   then we can write  

 
( ) ( ) ( )( )2221...21 tqOeeee tqiHtiHtiHtqHHHi Δ=⋅⋅⋅− Δ−Δ−Δ−Δ+++−

l  (3.13)

 

since the summation on the right hand side of (3.12) contains ( )( )22 tqO Δl  terms. It is also 

useful to note that the product of the terms tqiHtiHtiH eee Δ−Δ−Δ− ⋅⋅⋅ ,,, 21  could be arranged in any 

order and still satisfy (3.13). 

 

Now let a denote the product ( )tqiHtiHtiH eee Δ−Δ−Δ− ⋅⋅⋅21  and b denote the error term 

( )( )22 tqO Δl . So we can write ( ) bae tqHHHi +=Δ+++− ...21 . Then  

 

( )( ) ( )

( )

( ) ( )( )2221

1

0

...21

...

trqOeee

rbOa

braa

ba
k
r

bae

rtqiHtiHtiH

r

rr

k
r

k

kr

rrtqHHHi

Δ+⋅⋅⋅=

+=

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+=

Δ−Δ−Δ−

−

=

−

Δ+++−

∑

l

 (3.14)

 

Now, if we let  trt Δ=  then we get the rule known as Lie product formula. 
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⎠
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⎝
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tqOeeee

r
r
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22

21...21 l  (3.15)

 

In the limit case where r goes to infinity, we have 

 

( ) ( ) tqHHirrtqiHrtiH

r
eee ++

∞→
=⋅⋅⋅ ..11lim  (3.16)

 

It is also possible to combine (3.16) with the rule about rescaling to produce a more 

general result known as linear combination of Hamiltonians: If a Hamiltonian H can be 

represented as ∑ =
q
i ii Hc1 , where for qi ≤≤1 , ic  is a real number polynomially large, and iH  

is a Hamiltonian which can be simulated efficiently, then H can also be simulated efficiently.  

 

( ) ( ) tqHqcHcirrtqHqicrtHic

r
eee ++

∞→
=⋅⋅⋅ ..1111lim  (3.17)

 

3.2.7. Tensor Products  

 

If each of the Hamiltonians qH,..,H1  acts on a constant number of qubits and the 

product of their eigenvalues is efficiently computable, then the Hamiltonian qH..H ⊗⊗1  can 

be efficiently simulated. This is done with a technique to be examined in Section 3.3.2.  

 

3.3. Quantum Simulation in Algorithmic Level 

 

In this section, we will analyze quantum simulation in algorithmic level. Section 3.3.1 

will introduce an algorithm for quantum simulation of systems whose states evolve according 

to local interactions. Then in Section 3.3.2, the simulation of Hamiltonians which act non-

trivially on all or nearly all parts of a large system will be considered. Our main reference for 

both topics is [4]. 

 



 68

3.3.1. An Algorithm for the Simulation of Local Interactions 

 

In Section 3.1, we had briefly mentioned a process that Lloyd had suggested for the 

simulation of systems which evolve according to local interactions. The following simulation 

algorithm, which can be found in [4], depends on similar ideas.  

 

The algorithm runs on the following inputs:  

 

1. A Hamiltonian ∑= k kHH , which acts on a system whose state lies in an N-

dimensional Hilbert space and where each kH  acts on a small subsystem of size independent 

of N.  

2. An initial state 0ψ , of the system at time 0=t .  

3. A positive accuracy ε .  

4. A time ft  at which the evolved state is desired. 

 

The algorithm to simulate H on these inputs is defined as follows: 

 

Choose a representation such that the state ψ~  of n qubits (where n is polynomially big 

in terms of the logarithm of N, )(log Npolyn = ) approximates the system, and the operators 

tkiHe Δ−  have efficient quantum circuit approximations. Select an approximation method 

(consider for example (3.4-7) and (3.13)) and time slicing tΔ , such that the expected error is 

acceptable. Construct the corresponding quantum circuit for the iterative step tUΔ  and do: 

 

1.  0;~
00 =← jψψ  ..................................initialize state 

2.  jtj U ψψ ~~
1 Δ+ =→  .................................iterative update 

3.  1+=→ jj ; goto 2 until fttj ≥Δ ..........loop structure 

4. jft ψψ ~)(~ =→ .......................................final result 
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The procedure described above needs ( )( )ε1polyO  operations and it outputs a state 

)(~
ftψ  such that δψψ −≥− 1)(~ 2

0
fiHt

f et .  

 

As an example, consider the simulation of a Hamiltonian H  which can be written as a 

sum 321 HHH ++  of three Hamiltonians, where 1H , 2H  and 3H  can be efficiently simulated 

so that it is possible to build polynomial size circuits for approximating tiHe 1− , tiHe 2−  and 
tiHe 3−  for arbitrary t . Suppose the total simulation time is τ  and suppose we choose (3.13) as 

the approximation method. First, we define the number of slices r that satisfies the accuracy 

constraints on our simulation by considering the structure of the error term in (3.15). Then we 

get the length for each slice: rt τ=Δ . Next we need to construct the circuits for tiHe Δ− 1 , 

tiHe Δ− 2  and tiHe Δ− 3 , which are combined together to construct the quantum circuit for the 

iterative step tiHtiHtiH
t eeeU Δ−Δ−Δ−

Δ = 321 . What remains is to apply tUΔ , r times on the initial 

state of the system. The circuit in Figure 3.2 demonstrates this process.  

 

 
Figure 3.2.  The circuit for simulating 321 HHHH ++=  for duration trΔ=τ  

 

3.3.2. Simulation of Hamiltonians with Non-local Terms 

 

The algorithm introduced in Section 3.3.1 is concentrated on simulating Hamiltonians 

which are sums of local interactions, however, this is not a fundamental requirement for a 

Hamiltonian to be efficiently simulated. It is also possible to efficiently simulate Hamiltonians 

which act non-trivially on all or nearly all parts of a large system. 
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Consider the Hamiltonian ZH
n

1
⊗=  which acts on a system of n qubits where Z is the 

Pauli Z operator given by 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
10
01

Z . (3.18)

 

The interaction defined by tiHe Δ− , (where ZH
n

1
⊗= ) involves the whole of the system, 

but it can still be efficiently simulated because it does so in a classical manner: it applies a 

phase shift of either tie Δ− or tie Δ  to the system. It is the total parity of the n input qubits in the 

computational basis which determines the exact shift to be applied. If the total parity is even 

then the phase shift applied to the system is tie Δ− , and if the total parity is odd then the phase 

shift is tie Δ . This can be trivially seen in the case where n is taken to be 3. Let us consider 

ZH
3

1
⊗=  given in (3.19). 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−

=⊗⊗

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

ZZZ . (3.19)

 

Note that the diagonal entries id  in the above matrix are 1 if the total parity of the bits 

which represent i in binary format is even and they are -1 if the total parity is odd. 0d  for 

example is 1 since 0 is represented by "000" in binary format, which has even total parity 

while 4d  is -1 since 4 is represented by "100" in binary format, which has odd total parity of 

bits. Also note that the same property is reflected in the operator tiHe Δ−  given in (3.20). 
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. (3.20)

 

So if the three input qubits have even total parity in the computational basis (like in the 

cases for "000", "011", "101", "110") the phase shift to be applied is tie Δ− , that is 

ψψ titiH ee Δ−Δ− = , and if the total parity is odd (like in the cases for "001", "010", "100", 

"111") the phase shift to be applied is tie Δ− ,  that is ψψ titiH ee ΔΔ− = . The reader should also 

be convinced that this is not specific to the case where n = 3, but it is valid for any value of n. 

 

So in order to simulate the evolution tiHe Δ− , there is the need for a circuit which first 

calculates the total parity of the input qubits in the computational basis and then applies the 

appropriate phase shift as described above. The circuit in Figure 3.3 simulates the 

Hamiltonian ZH
3

1
⊗=  for the duration tΔ  on three qubits initially prepared in the state ( )0ψ  

with the use of an ancilla qubit initially prepared in the state 0 . The circuit starts by 

classically computing the total parity of the three input qubits in the computational basis with 

the help of the CNOT gates and it stores the result in the ancilla qubit. Once the parity is 

stored on a single qubit, the simplest way of applying the necessary phase shift to the system is 

simulating the Hamiltonian ZH
1

1
⊗=  on this qubit. (This can be conceived as reducing the 

problem of simulating ZZZ ⊗⊗  on three qubits to the problem of simulating Z  on a single 

qubit.) So the circuit does this; it simulates Z  on the ancilla qubit for the duration tΔ  and 

hence applies the necessary phase shift to the ancilla bit and thus to the system. The next step 
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is uncomputing the ancilla bit and this is all the circuit does. This strategy is clearly extendible 

to any value of n. 

 

 
Figure 3.3.  The circuit for simulating ZZZH ⊗⊗=  for duration tΔ  

 

By extending the above procedure, it may also be possible to simulate more complicated 

extended Hamiltonians. In particular, the procedure can be applied to any Hamiltonian of the 

form k

n

k
H σ

1=
⊗= , where kσ  is a Pauli operator or the identity operator acting on the k'th qubit. 

By disregarding the qubits upon which the identity is applied and transforming X and Y terms 

to Z operations with the help of single qubit gates, the Hamiltonian can be put into the form of 

Z..ZZH ⊗⊗⊗= , which can be simulated as described above. The next example will 

clarify the idea. 

 

Consider the Hamiltonian ZYXH ⊗⊗=  which acts on a system of 3 qubits where X, 

Y, Z are the Pauli operators given by 
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In order to simulate H with use of the technique introduced in Section 3.3.2, there is the 

need for expressing the X and Y operators in terms of Z. This can be conceived as 

implementing these operators in the Z basis. Simple linear algebra is of help here. The spectral 
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decomposition theorem states that every Hermitian matrix A can be decomposed into the form  
1−= UUA Λ , where U is unitary and Λ  is a diagonal matrix of the same size as A. Let us 

consider the spectral decompositions of X and Y.  
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Both xΛ  and yΛ  are equivalent to Z . The operators xU  and yU  and their inverses are 

all 2 by 2 and unitary matrices, and hence can be implemented as single bit quantum gates. 

Therefore we can simulate ZYXH ⊗⊗=  (for duration tΔ ) by first transforming into Z 

basis, then simulating ZZZH ⊗⊗=  (for duration tΔ ), and then returning to the original 

basis. This is actually a result of the following identity: 
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Therefore, we should first apply IUU yx ⊗⊗ −− 11  to transform into Z basis, then simulate 

ZZZH ⊗⊗=  for duration tΔ  as described in the previous example and then return to the 

original basis by applying IUU yx ⊗⊗ . The circuit in Figure 3.4 implements this idea to 

simulate ZYXH ⊗⊗=  for a duration tΔ .   
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Figure 3.4.  The circuit for simulating ZYXH ⊗⊗=  for duration tΔ  

 

A wide class of Hamiltonians with non-local terms can be simulated with this method. In 

particular, it is possible to efficiently simulate a Hamiltonian of the form ∑ =
=

L

k kHH
1

, as 

long as L is polynomial in terms of the total number of particles in the system, and each 

individual kH  can efficiently be simulated by a quantum circuit.  

  

 

3.4. Quantum Simulation as a Model of Quantum Computation 

 

We have briefly seen that simulation of quantum systems is one of the tasks for which 

quantum computers are superior to classical computers. This result is important in itself but it 

raises further important questions about the potential applications of the quantum simulation 

ideas. Let us put aside the implications of quantum simulation on the areas such as physics and 

chemistry and concentrate on what it means for computation.  

 

A real quantum system can be efficiently simulated with the use of quantum simulation 

methods introduced in the previous sections if there is information about the Hamiltonian 

which governs it. This is rarely the case for real systems which are not of very small scales. 

On the other hand, an artificially designed system and its Hamiltonian can be of interest 

especially if they present a way of implementing some key algorithmic process. In other 

words, it is possible to design quantum algorithms in terms of continuous interpretation of the 

time evolution which is described by the Schrödinger equation and a specified Hamiltonian H. 
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Then, we can run these algorithms by simply simulating H on a quantum computer. This can 

be better understood if we recall that in the quantum circuit model, an algorithm is represented 

by a unitary operator U which is nothing but the evolution operator defined by some 

Hamiltonian H and some duration tΔ  as tiHeU Δ−= .  

 

Therefore, any problem computable on a quantum circuit can also be computed by the 

simulation of some Hamiltonian H on the appropriately prepared quantum states for some 

duration tΔ . And since the quantum circuit model is universal for computation, we can say 

that every computable problem is associated to some Hamiltonian as a practical means for its 

solution. There are important examples where this technique is of extreme use even though it 

is not always simple to represent an algorithmic idea in terms of continuous quantum 

dynamics. 

 

In Section 3.2, we had stated that only the Hamiltonians of physically realizable systems 

can be simulated efficiently on a quantum computer. Now we have also stated that any 

computable problem can be solved by simulation of some Hamiltonian. This relation between 

physically realizable systems and computable problems is one of the main insights of quantum 

computation.   

 

As a last remark, we should note that, so far we have considered simulations of only time 

independent Hamiltonians and stated the universality of these Hamiltonians for computation. 

Time dependent Hamiltonians can also serve as useful tools for computation. The techniques 

depending on the simulation of time dependent Hamiltonians are known as adiabatic quantum 

computation. These techniques have recently been the focus of increasing interest and several 

important results (including the equivalence to the quantum circuit model) have been obtained. 

A detailed discussion of the topic is out of the scope of the current work, however see [17, 40] 

for more about adiabatic quantum computation.   
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4.  A SHORT SURVEY OF QUANTUM RANDOM WALKS 
 

 

In classical computer science, random walks have been extensively studied in various 

contexts and for various tasks such as modeling of physical systems or graph coloring. 

Random walks are found useful for many tasks because by use of simple local transitions, they 

provide general means of exploring large numbers of combinatorial structures. It is natural to 

ask whether quantum versions of random walk algorithms can also provide similar 

advantages. This question has recently been the source of a considerable amount of research. 

Quantum random walks have been shown to have different characteristics than their classical 

counterparts, and several quantum algorithms that depend on quantum random walks have 

been devised.  

 

In this chapter, we aim to provide an introductory description of the fundamental 

properties of quantum random walks. In doing this, we will mostly refer to definitions and 

results from [41 - 44]. In the following, we first briefly introduce classical random walks in 

Section 4.1. Then in Section 4.2, we will analyze how to implement the idea of a random walk 

idea on a quantum computer. Section 4.3 will conclude this discussion by briefly mentioning 

some of the important algorithmic results about quantum random walks. 

 

4.1. Classical Random Walks 

  

A classical random walk is most generally a model for random motion constrained by 

the structure of a graph. An imaginary walker can be thought to be placed on one of the 

vertices of the graph depending on a probability distribution which can be taken to describe 

the global state of the motion. The walk starts with an initial probability distribution on the 

vertices, which generally specifies a single starting node. The motion can be analyzed in 

discrete or continuous time. Most generally, at a time, the walker either stays where it is or 

moves to one of the neighbors of the vertex it is on, depending on some probabilistic transition 

operator which reflects the structure of the graph. The overall process can be thought of as the 
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evolution of the probability distribution which defines the state of the walk. This evolution 

converges to a stationary distribution after a while.  

 

4.1.1. Discrete Time Classical Random Walk 

 

In a discrete time random walk process, motion takes place in discrete time steps where 

the walker is expected to move to one of the adjacent vertices with equal probabilities for 

each. On an undirected graph ( ) ( )( )GEGVG ,=  with N vertices, this motion is defined by the 

N × N stochastic operator K, the general term for which is given by (4.1) where ( )ad  denotes 

the degree of the vertex a . 
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The state after the n’th discrete time step is defined by the probability distribution vector 

( )nP  which is related to the initial state ( )0P  through (4.2).  

 

( ) ( )0PKnP n=  (4.2)

 

4.1.2. Continuous Time Classical Random Walk 

 

Following [44], we define a continuous time classical random walk on an undirected 

graph ( ) ( )( )GEGVG ,=  with N vertices and no self loops. The probability of jumping to any 

adjacent vertex in a time ε  is defined to be γε  in the limit case where 0→ε  and where γ  is 

non-negative. The walk is defined by an N × N transition operator K, which is generally 

known as the infinitesimal generator matrix of the random walk. The off-diagonal entries bak ,  

of K are related to the probability of transition between the vertices a and b. Therefore, if there 

is an edge between a and b, then γ=bak , , and otherwise, 0, =bak . The diagonal entries aak ,  
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are set to ( )γad−  to satisfy normalization requirements, where ( )ad  denotes the degree of the 

vertex a . Then the general term for the infinitesimal generator matrix is given in (4.3). (The 

reader may have noted that K is in fact equal to γ  times the Laplacian matrix (L) of the graph 

G. DAL −= , where A is the adjacency matrix of the graph and D is a diagonal matrix with 

entries )(iddii = ) 
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Let the N-dimensional vector ( )tP  denote the probability distribution among vertices of 

the graph at time t. Then the n’th component, ( )tpn , of ( )tP  shows the probability of the 

walker being at the n’th vertex of the graph at time t. The probability distributions ( )tP  and 

( )ε+tP , where 0→ε , are related by (4.4). 
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ε

+=+
→0

lim  (4.4)

 

Then the continuous evolution of the probability distribution can be said to be governed 

by (4.5). 
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Therefore the probability )(tpa  of being at vertex a at time t evolves according to 
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Since the diagonal entries aak  of the generator matrix are set to ( )γad− , which is equal 

to the negative of the sum of the other entries in the same column, the rows and columns of the 

matrix sum to zero. Then the total change in the probabilities for being at individual vertices 

can be shown to be zero as in (4.7). This is why an initially normalized distribution remains 

normalized. For all values of t, it holds that 1)( =∑a a tp .  
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4.1.3. Performance Measures for Classical Random Walks 

 

The random walk on G, after a while, converges to a stationary probability 

distribution ( )sP , which is independent of the initial state. The speed of convergence for a 

random walk process is an important parameter that determines the efficiency of implementing 

it. It is possible to define several measures of the convergence of a random walk process. One 

of these measures, for example, is named mixing time and is defined as the smallest time 

duration required for the walk to ultimately reach to some ε  neighborhood of the stationary 

state with respect to some measure of distance. The mixing time of a random walk is strongly 

related to the spectral properties of the generator matrix for it. Other measures of convergence 

include the filling time and dispersion time. See [41] for more details about these measures. 

Another useful performance measure is named hitting time. The hitting time uvh  of node v is 

the expected time it takes until the walk, starting from node u, hits v for the first time [43]. 

Different measures can be good for measuring the performance of random walks for different 

kinds of problems. Hitting time, for example, is critical for the problems like graph 

connectivity and k-SAT, while mixing time is an important measure for many tasks like 

sampling from a set of combinatorial structures. 
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4.2. Quantum Random Walks 

 

Transforming the notion of a classical random walk to the notion of a quantum random 

walk is relatively simpler in the continuous case than it is in the discrete case. In the 

continuous case, it is of much help to note the similarity between the state of a random walk 

defined by a probability distribution vector and the state of a quantum system defined by a unit 

ket vector. It is further important to note the similarity in the differential equations governing 

the evolution of these systems. However, in the discrete case, there is the need for introducing 

some new ideas in addition to the same basic similarities. The idea will be better understood in 

the following sections, where we will analyze the quantum walk on simple graphs. 

 

Let us consider the simpler case first and begin with the formulation of the continuous 

time quantum random walk in Section 4.2.1. Then in Section 4.2.2, we will analyze how to 

implement the discrete time quantum random walk. 

 

4.2.1. Continuous Time Quantum Random Walks 

 

A continuous time random walk on an undirected graph ( ) ( )( )GEGVG ,=  with N 

vertices and no self loops is classically implemented by the simple evolution of the state 

vector ( ) ( ) ktptP
N

k
k∑

=
=

1
 according to the equation ( ) ( )tPKtP

dt
d

=  where K is the 

infinitesimal generator matrix introduced in Section 4.1.3, and ( )tpk  stands for the non-

negative real probability value of being at node k at time t. Since the probabilities should sum 

up to one at any time the ( )tpk s should satisfy ( )∑
=

=
N

k
k tp

1
1 . 

 

If we revise the above statement according to the principles of continuous quantum 

dynamics, we get the definition for a continuous time quantum random walk on the graph 

( ) ( )( )GEGVG ,= . Let us do so. First we replace the probability distribution vector which lies 

in an n dimensional real space with the state of a quantum system which lies in an n 
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dimensional Hilbert space. We let the basis states N,..,2,1  of this space to respectively 

represent the states of being at the nodes Nvvv ,..,, 21  of the graph G. Therefore the general 

state vector is of the form ( ) ( ) ktt
N

k
k∑

=
=

1
αψ , where ( )tkα  represents the complex amplitude 

of the base state k  at time t. This time, the normalization constraint is ( )∑
=

=
N

k
k t

1

21 α .  

 

Next, we need a Hamiltonian H to describe the evolution of the system. The infinitesimal 

generator matrix K of the continuous time classical random walk is a good candidate to serve 

as the Hamiltonian of our system. (Note that the generator matrix, LK γ= , is Hermitian.) 

However, this is not the only choice. In the classical case, the normalization constraint was 

( )∑
=

=
N

k
k tp

1
1 , however, it is ( )∑

=
=

N

k
k t

1

21 α  in the quantum case. This constraint is guaranteed 

to be satisfied under any unitary transformation, hence, we can choose any Hermitian matrix 

that reflects the structure and locality of the graph as the Hamiltonian. Simply using γ  times 

the adjacency matrix of the graph as the Hamiltonian is therefore another choice. (The two 

different Hamiltonians we suggest here are not equivalent as long as the graph is not regular, 

that is, not all vertices have the same degree.)  
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If we let 1=γ  for simplicity, this becomes  
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Finally, we let this system evolve according to the Schrödinger equation 

( ) ( )tt
dt
di ψψ Η=h . Therefore running the continuous time random walk for duration tΔ  is 
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simply equivalent to simulating H for duration tΔ : ( ) ( )tett tiH ψψ Δ−=Δ+ . What remains is 

to implement this computation efficiently, and this can be done by simulation methods. 

 

Let us now consider the continuous time random walk on a straight line graph (G) of 

eight nodes as depicted in Figure 4.1. Each of the edges in the graph have equal transition 

probabilities, hence the graph is said to be translationally invariant.  

 

 
Figure 4.1.  The straight line graph of eight nodes 

 

We have two candidate operators to serve as the Hamiltonian. These are LH γ=1  and 

AH γ=2  where L denotes the Laplacian matrix and A denotes the adjacency matrix of the 

graph G. These operators are given in (4.10), where for simplicity γ  is taken to be 1.  
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(4.10)

 

Therefore, the continuous random walk on the straight line of eight nodes can be 

implemented on a quantum computer by simulating either the transformation tiHe Δ− 1 , or the 

transformation tiHe Δ− 2 . Both ways serve equally well even though they are not equivalent. 

(Note that G is not regular.)  
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4.2.2. Discrete Time Quantum Random Walks 

 

Beginning with an example will be helpful in understanding why building a quantum 

model for discrete time random walks is not so straightforward. Then we will see how such a 

quantum model can be built on a state space other than the vertices of the graph. Last, we will 

see how this model can be generalized to make it useful for a larger set of graphs. 

 

Let us consider the discrete time classical random walk on the straight line graph shown 

in Figure 4.1. Note that the vertices of the graph are labeled so that ( )1+→ nn  is a transition 

to the right for 60 ≤≤ n , ( )1−→ nn  is a transition to the left for 71 ≤≤ n , and there is no 

other choice. So if at a time step the walker is on a node n between 1 and 6, then in the next 

step it moves to left with probability 0.5 and to the right with probability 0.5. A 

straightforward quantum model for this step would be  

 

( )11
2

1
++−→ nnn . (4.11)

 

The transition in (4.11) is not unitary however. (This can be verified by noting that 

orthogonal states like n  and 2+n  are mapped to non-orthogonal states by this transition.) 

It can be shown that no discrete time quantum random walk on the vertices of a straight line 

(of any dimension) can be defined. This result can be extended to include many other graphs 

with the exception of some special cases.  

 

 There are several ways to implement discrete time quantum walks. All of these depend 

primarily on some extension of the state space. One such method for implementing a discrete 

time quantum walk on a straight line can be found in [45]. Let us introduce this method, which 

is built as an analogue of the real-life process where somebody flips a real coin to decide 

whether to go left or right. (Also note that, an infinite straight line graph is assumed in this 

process.) 
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We  define the quantum walk on a state space spanned by the states of the form cn, , 

where n is the usual register that represents the vertices of the graph and c is a bit we may 

name as a coin. A step of the quantum walk consists of two operations. First, we ‘flip the coin’ 

by applying a unitary transformation on c. (Any 2×2 unitary operator can be used here, but 

Hadamard gates are commonly used for this task.)  

 

cHncn →  (4.12)

 

Then we apply a ‘shift’ (S) to move either to the left or to the right depending on the 

value of the “flipped coin”.  

 

0,10, −→ nnS  (4.13)

1,11, +→ nnS  (4.14)

 

If we apply t steps on the initial state 0,i , we reach a state ( ) 0,iSH t . These are of 

course implemented in quantum states and not in classical ones. Hence, the statistics we obtain 

are much more complicated than the ones in the real analogue. However if at each step, we 

first measure the value of the “flipped coin” before applying the ‘shift’, then the overall 

process collapses exactly to the discrete time classical random walk. 

 

Note that the infinite dimensional straight line graph is a regular one where the degree 

for each node (and hence the possible directions to take at each step) is two. This is why a 2-

state coin is used in the above process. Using similar methods, a d-state coin can define the 

discrete time random walk on a d-regular graph. In this case, for all vertices, each of the d 

outgoing edges should be uniquely labeled by one of the d base states of the coin register so 

that the values of the flipped coin at each step can determine a direction to take. 

 

The above process is not yet applicable to the walks on a non-regular graph such as the 

finite line in Figure 4.1. There are several alternatives to make it useful also for non-regular 
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graphs. One way is to use a conditional coin operator. In this case, the position on the graph 

which is coded into the register n will be used to choose one among the alternative coin 

operators for vertices of varying degrees. Another way is to add self loops to the graph to 

make it regular. In this case, the transitions on the self loops will simply keep the walk where 

it is. There may be other ways of going around this problem. No matter which is chosen, it is 

possible to define and efficiently implement the corresponding quantum random walk for any 

classically defined random walk. 

 

4.2.3. Quantum Random Walk on a Hypercube 

 

We have examined how to define random walks on quantum computers and while doing 

this we have extensively used the straight line graph as a trivial example. For a less trivial 

example, let us now consider quantum walks on a graph with different characteristics, the 

hypercube. In the following parts, we will first give a formal definition for a hypercube, then 

consider the continuous and discrete random walks on a hypercube of three dimensions.   

 

A convenient way to define an n-dimensional hypercube graph, ( ) ( )( )GEGVG ,= , is 

through binary labeling of its vertices and Hamming distances between the labels. (The 

Hamming distance X-Y between two strings X and Y is defined to be the number of bits in 

which these strings differ.) Hence, we use n-bit string to label the members of ( )GV  and allow 

edges only between those pairs of vertices whose labels are separated by a Hamming distance 

of 1. Then we have the set of vertices defined by ( ) ( ) { }{ }10for 1,0|.. 110 −≤≤∈= − nixxxxGV in  

and the set of edges defined by ( ) ( ) ( ){ }1,|, =−∧∈= YXGVYXYXGE . Figure 4.2 depicts a 

3-dimensional hypercube which is structured in this way. 
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Figure 4.2.  The three dimensional hypercube 

 

The continuous time quantum random walk on ( ) ( )( )GEGVG ,=   can be defined in the 

usual way. Note that G is regular so the choices of LH γ=1  or AH γ=2  as the Hamiltonian 

will be equivalent since they differ by a multiple of the identity operator. Let us use AH γ=  as 

the Hamiltonian and let 1=γ .  Then H is given by 
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Hence running the quantum walk on the 3-dimensional hypercube for duration tΔ  is 

simply equivalent to simulating H for duration tΔ : ( ) ( )tett tiH ψψ Δ−=Δ+ . More generally, 

the adjacency matrix for the n-dimensional hypercube is given by 
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 (4.16)

 



 87

where jX  is the operator which acts as the Pauli X on the j’th qubit while leaving other qubits 

untouched. Then, the continuous random walk on a general n-dimensional hypercube is 

defined by the Hamiltonian ∑
=

=
n

j
jXH

1
, which is a sum of local terms and therefore it can be 

simulated efficiently.  

 

If we consider the discrete time random walk on G, we first note that G is regular, hence 

we can define the discrete time random walk on G according to the coin flip model introduced 

in 4.2.2 without any modifications. Note that G is 3-regular, and hence we need a coin of three 

states. As stated before, any unitary matrix of the correct size can serve as the coin operator. 

However, the choice of the coin operator determines the characteristics of the quantum walk 

and hence is an important parameter in specifying the desired effects. Hadamard gates, for 

example, can be used as coin operators to specify an unbiased walk. Another commonly used 

coin operator is known as Grover’s diffusion (or Grover’s coin) operator which is defined on n 

states by the general term: jiji n
D ,,

2 δ−= . This operator is a member of the family of 

permutation symmetric operators, which carry interesting features and in fact, Grover’s coin is 

the one among these, which is farthest away from the identity operator.  

 

By manipulating the coin flip operator we can define the discrete time quantum walk in a 

flexible manner. This flexibility can be viewed as an advantage over the continuous time 

quantum walk, where the only manageable parameter is the local features of the Hamiltonian. 

Let us make use of this flexibility and use a 4-state coin to describe the discrete time quantum 

walk on the graph G.   

 

The state space for the discrete time walk on G is spanned by the state of the form 

01012 , ccxxx  where the first register 012 xxx  defines the position on the graph by specifying 

the label of the current vertex and the second register 01cc  is the two-bit register for 

representing the coin. We employ two-bit Hadamard operator as the coin flip operator 

( HHIIIC ⊗⊗⊗⊗= ) and associate one of the four outcomes of the coin flip with a ‘do 
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nothing’ action in the ‘shift’ phase, and the other three will be associated with the possible 

motions at each step. But first, we need to label the edges of the graph to indicate directions. A 

simple rule will guide us in doing so: an edge is labeled by r if the labels for the vertices 

incident to this edge differs in the r’th bit. (We number bits from right to left and start with 0.) 

Consider the 3-dimensional hypercube in Figure 4.3.  

 

 
Figure 4.3.  The 3-dimensional hypercube with labeled edges 

 

Then the shift operator acts on the base states as follows 

 

00,00, 012012 xxxxxxS →  (4.17)

01,01, 012012 xxxxxxS →  (4.18)

10,10, 012012 xxxxxxS →  (4.19)

11,11, 012012 xxxxxxS →  (4.20)

 

where the complement operation is defined as 10 =  and 01 = . Note that the shift operation is 

defined so that if the coin is in state ( )113 =  then we take no action and if the coin is in a 

base state r  other than 3 , we follow the edge incident to current vertex and labeled by r, 

which is equivalent to taking the complement of the r’th bit in the position register. 
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Finally we can define the state after t steps in the usual way as ( ) 00,000tSC , where we 

assumed the initial state 00,000 . 

 

4.2.4. The Relation Between Discrete and Continuous Time Quantum Walks 

 

In the classical case, a continuous time random walk is the limit case for a discrete time 

random walk where the time spacing between the discrete steps approaches to zero. The 

relation between the quantum versions is not so clear. It is yet an open question whether the 

models for discrete and continuous time quantum walks can be derived from each other. The 

difficulty is mainly due to the use of extra registers (or coins) in the discrete time quantum 

walk, while these are not needed in the continuous time quantum walk.  

 

Although the two models seem to be quite different, the results obtained by use of them 

are similar in efficiency and computational cost. This has been observed by several researchers 

in different contexts [39, 39]. In [42], some statistical measures of performance like the 

quantum counterpart of mixing time and absorption probability are stated to be the same for 

the two models. These similarities are sometimes viewed as evidence for the equivalence of 

the two models in computational power, however there are also results which point out the 

algorithmic differences between the discrete and continuous walks [46]. 

 

4.3. Algorithmic Use of Quantum Walks 

 

Quantum walks are widely known to have different properties than their classical 

counterparts, mostly due to the nature of quantum interference which can act in a destructive 

manner unlike in the classical case. An important observation is that unlike their classical 

counterparts, quantum walks do not converge to a stationary state but instead a time average of 

the state of the walk does converge to a limit [41]. It is on this convergence that one can define 

a mixing time for quantum walks, and it is known that quantum walks for many graphs have 

quadratically smaller mixing times when compared to their classical counterparts.  
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A more interesting difference between classical and quantum walks is that of hitting 

times. It can be shown that quantum walks have exponentially smaller hitting times on some 

graphs when compared to classical walks. This exponential gain against the classical walks is 

the inspiration for some algorithms depending on quantum walks. Such an example can be 

found in [47], where quantum random walks were shown to be exponentially faster than 

classical walks for the task of finding the exit node starting from the entrance node of the sort 

of graphs shown in Figure 4.4. (A similar problem, where the structure of the graph is 

modified, will be examined in detail in Chapter 5.) 

 

 
Figure 4.4.  The graph constructed by unifying the leafs of two binary trees of same size 

 

A set of similar results are also demonsrated in [43]. However it should be noted that 

what we are talking about is not yet an exponential algorithmic gain since there are classical 

algorithms other than random walks, against which the gain of quantum walks is only 

polynomial in solving the mentioned problems. 

 

Quantum walk search algorithms form another interesting group of quantum algorithms 

depending on quantum walks. In the general scenario, the walk takes place on a graph, some 

vertices of which are marked. The task is to find such a vertex. At each step, the walk either 

proceeds to an adjacent vertex or it queries a black box to see if the current vertex is a marked 

one. When the search problem is formulated in this way, Grover’s algorithm runs in  

( )NMO  steps, where N is the number of vertices in the graph and M is the maximum 

distance between two vertices of the graph.  
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The hypercube graphs introduced in the previous section are particularly useful in 

studying quantum search algorithms. In an n-dimensional hypercube graph, the maximum 

distance between two vertices is n and the number of vertices is nN 2= . Therefore Grover’s 

algorithm can solve the search problem on the n dimensional hypercube in  ( )NNO log  steps 

while it is shown in [48] that quantum walk search can do the same in ( )NO  steps. 

 

The quantum walk search on an n-dimensional grid of N vertices is another interesting 

application. It is studied by use of continuous time quantum walks in [49] and by use of 

discrete time quantum walks in [46].  The results obtained by use of discrete time quantum 

walks seem to be dependent on the choice of the coin operator and for various values of n, 

they are better than those obtained by use of continuous time quantum walk. 

 

Quantum walks on various graphs exhibit interesting behavior and thus the algorithms 

employing them can come up with striking results. The exponential algorithmic speedup by a 

quantum walk is one such result and it will be discussed in Chapter 5.  
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5.  A FAST ALGORITHM EMPLOYING THE QUANTUM RANDOM 

WALK 
 

 

Determining the problems which quantum computers can solve qualitatively faster than 

classical computers and designing quantum algorithms which exhibit this speedup against 

classical algorithms, is a central issue in the field of quantum computation. A polynomial 

speedup over the best classical algorithms for a task is almost always considered as valuable, 

however it is exponential speedup that is thought to fully demonstrate the power of quantum 

computation. Until very recently, only those quantum algorithms which are essentially based 

on the quantum Fourier transformation had been shown to provide exponential speedup over 

their classical counterparts, and these algorithms could only solve several variants of hidden 

subgroup problems [25].  

 

Meanwhile, quantum random walks were widely known to be superior to classical 

random walks in various degrees for various problems, however, there was no result 

demonstrating the advantage of quantum random walks over the general class of classical 

algorithms. The work by Childs et al showed that an algorithm based on the continuous time 

quantum random walk can provide exponential speedup over the best classical algorithm for 

the solution of a black box problem defined on some special graph [3]. (It was later claimed 

that the discrete time quantum walk could serve as well for the same task. [50]) This result is 

important in several ways. The quantum algorithm introduced in [3] is in no way similar to the 

ones depending on the quantum Fourier transformation technique and yet it is able to provide 

exponential speedup over the best possible classical algorithm. This encourages researchers to 

search for other quantum computation techniques that can provide exponential speedup. 

Another point is that we can expect this new technique (or some variants of it) to be used also 

in speeding up the solutions of some real life problems on quantum computers. This 

expectation is primarily based on the widespread use of random walk algorithms in classical 

computation.  
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In the following parts we will examine, in detail, how Childs et al demonstrated 

exponential speedup by quantum random walks. First, we will provide a definition of their 

problem in Section 5.1. Then in Section 5.2 we will briefly introduce the algorithm they 

proposed. Section 5.3 will aim to show how to implement the quantum random walk 

efficiently on an arbitrary graph with the help of the black boxes. Section 5.4 provides an 

analysis of the performance of the proposed method in terms of time requirements and 

probability of success. Finally, in Section 5.5, we will discuss why classical algorithms can not 

solve the same problem effectively in subexponential time. 

 

5.1. The Graph Traversal Problem 

 

The problem we are dealing with, is a black box graph traversal problem defined on the 

graphs nG  of a specific form, where n is a positive integer. nG  consists of two binary trees of 

height n, connected by a random cycle that alternates between the leaves of the two trees. The 

cycle is arranged in a way that every leaf of a tree is connected to two of the leaves of the 

other tree. Figure 5.1 contains a typical graph of the form 4G . (The graphs nG  and some 

variants of them are sometimes called “glued trees”. We will use this term only for the sort of 

graphs shown in Figure 5.1.) 

 

 
Figure 5.1.  An instance of 4G , the glued trees of height 4 
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The problem assumes the existence of a black box, the functionality of which would be 

better understood after the following definitions. Let ( ) ( )( )GEGVG ,=  be an undirected graph 

with N vertices.  

 

Each vertex ( )GVu ∈  is assigned a distinct m-bit string as its name where Nm >2 . In 

particular, the string, 1..111 =m , is not assigned as name of any vertex. (The reason will be 

clear soon.)  For each vertex, ( )GVu ∈ , the outgoing edges of u are assigned labels from a set 

L of size k, where k is at least as large as the maximum vertex degree in G. 

 

Next, we define the function ( )uvc  for { }mu 1,0∈  and Lc ∈  as follows: If ( )GVu ∈  and 

if u  has an outgoing edge labeled by c  then ( )uvc  is the name of the vertex reached by 

following the outgoing edge of u  labeled by c .  If ( )GVu ∉  or if u  does not have an 

outgoing edge labeled by c, then ( ) m
c uv 1= .  

 

We define a black box V  for computing ( )uvc  on the input Lc ∈  and { }mu 1,0∈ . The 

functionality of V  can be formulated as a unitary transformation as in (5.1), where a and b are 

m-bit registers. 

 

( )avbacbacV c⊕= ,,,,  (5.1)

 

In the following parts, we will sometimes combine the black box V  and its first input 

Lc ∈  to form a component cV  of the black box for answering the queries whose first input is 

c. Then for each Lc ∈  we define cV  as a circuit component that computes ( )uvc  on input 

{ }mu 1,0∈ .  

 

( )avbabaV cc ⊕= ,,  (5.2)
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Finally, a formal definition of the graph traversal problem is as follows:  

 

Let G be a graph and ENTRANCE and EXIT be two vertices of G. The input of the 

traversal problem is a black box for G and the name of the ENTRANCE. The output is the 

name of the EXIT. 

 

In the following, we will be dealing with the graph traversal problem on the graphs of 

the form nG . Then the task is to develop an efficient mechanism which, when given the name 

of the ENTRANCE node of a graph of the form nG , can manage to find out the name of the 

EXIT node by querying the black boxes. 

 

5.2. The Algorithm for the Graph Traversal Problem on the Glued Trees 

 

In [3], it is shown that the instances of the graph traversal problem on the special graphs 

of the form nG , can be efficiently solved to any accuracy by a quantum algorithm. The 

algorithm depends primarily on running a continuous time quantum random walk on nG . It 

roughly consists of the following steps. 

 

Inputs: A black box for an undirected graph nG  of the special form introduced in Section 

            5.1 and a positive value for acceptable accuracy.   

 

Step 0: Determine an interval I according to the size of the graph, the desired accuracy 

            of results and some statistical measures of the structure of the graph. 

 

Step 1: Pick a random value t from the interval I. 

 

Step 2: Run the continuous time quantum random walk on nG (with the help of the black 

            box), for duration t, starting from the ENTRANCE node. 
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Step 3: After duration t perform a measurement to get the name of a vertex in the graph.  

            Check if this is the name of the EXIT node. If yes, return this name and terminate. 

            If not, go to step 1. 

 

The algorithm depends on running the continuous time quantum random walk on the 

graph nG  for a duration randomly chosen from a predefined interval. This step is repeated 

until the desired result is obtained from a measurement, which is performed at the end of each 

separate run. This is just a sketch of the algorithm. The details of each step will be examined 

soon, but we will not be doing this in the order specified above. We should begin with 

describing how to implement the continuous time quantum random walk on the graph nG . The 

reasoning behind the other steps comes after this.  

 

5.3. The Quantum Walk with a Black Box 

 

In this section, we will examine how to implement the quantum walk on a graph 

( ) ( )( )GEGVG ,= , with the help of the black box V . We have examined the continuous time 

quantum random walk model in detail, in Chapter 4. So we can now apply it. 

 

As we had seen, running the continuous time random walk on a graph ( ) ( )( )GEGVG ,= , 

for duration t  is simply equivalent to simulating a Hamiltonian H for that duration where H 

reflects the local properties of the graph. The adjacency matrix of the graph whenever it is 

available serves well for this task. (We simply let 1=γ .) 

 

( ) ( )
⎩
⎨
⎧ ∈

=
otherwise

GEba
H ab 0

,1
 (5.3)

 

The problem introduced in Section 5.1 does not give information about the internal 

structure of the graph but it provides access to a black box instead. This will be helpful in 
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simulating iHte− , which is equivalent to running the continuous time random walk on the 

graph ( ) ( )( )GEGVG ,= , for duration t . 

 

At this point, we need to make a separation between the graphs whose edges are 

symmetrically labeled and the others. A symmetrically labeled graph is one where ( ) bavc =  

implies ( ) abvc = . (Hence, note that ( )( ) aavv cc =  for a symmetrically labeled graph.) We will 

first show that for a symmetrically labeled graph, iHte−  can be simulated efficiently with the 

help of black box queries. Then we will generalize this result to the graphs which are not 

symmetrically labeled. We have the following theorem: 

 

Theorem 5.1. Given the black box for a symmetrically labeled graph G, a continuous 

time quantum walk on G can be simulated for time t with precision ε  by using ( )ε22tkO  

black box queries and ( )εmtkO 22  auxiliary operations. 

 

The Hilbert space for the quantum walk on G is spanned by states of the form rba ,,  

where  a  and  b  are m-bit strings and r  is a bit. The states of the form 0,0,u  correspond to 

the vertices ( )GVu ∈ . 

 

Since we do not have direct access to the structure of the graph (and hence to the 

adjacency matrix), and can reach it only through access to a black box, we need to redefine the 

Hamiltonian H of the system without referring to the structure of the graph, but with the 

freedom to use the black box queries.  

 

First, note that, for all ( )GVa ∈ , H maps a  to an equal superposition of all neighbors of 

a . In other words H maps 0,0,a  to  ( )
( ) ( )
∑

∈ GVacvc
c av

:
0,0, . Then it may be useful to write, 

 

∑
∈

=
Lc

cHH  (5.4)
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where for each Lc ∈ , cH  acts on the state 0,0,a  as in (5.5) 

 

( ) ( )
⎩
⎨
⎧ ∈

=
otherwise

GVavav
aH cc

c 0
)(0,0,

0,0,  (5.5)

 

The linear combination rule (which we mentioned in Section 3.2.6) suggests that if we 

could efficiently simulate the individual terms, cH , in the summation (5.4), then it would also 

be possible to efficiently simulate their combination H.  But each individual term cH  has the 

same form shown in (5.5). So the problem is reduced to simulating this simpler process in 

which we make use of the black box queries and an additional operator T, to be explained 

shortly. 

 

The black box queries enable us to access the structure of the graph. For a vertex a  and 

a label c , we can extract ( )avc , the name of the vertex on the other side of the edge c ,  by 

querying the black box component cV  on input a . (Recall that this is equivalent to querying 

the black box V  on the inputs c  and a .) However, we also want to know if the result is a 

name of a vertex or 11..1, which is the case when ( )GVa ∉  or there is no edge labeled by c  

adjacent to a . So we make use of the third register in the general state vector rba ,,  for this 

task. Then the black box queries are represented unitarily as 

 

( ) ( )afravbarbaV ccc ⊕⊕= ,,,,  (5.6)

 

where the function cf  is defined by 

 

( )
⎩
⎨
⎧ ∈

=
otherwise

GVav
af c

c 1
)(0

)(  (5.7)

 

Now since ( )( ) aavv cc =  for a symmetrically labeled graph, we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,0,,,,,0,0, aafafavavaafavaVaVV ccccccccc =⊕⊕== , (5.8)

 

which suggests 

 

ccc VVV == −1† . (5.9)

 

We need to introduce one more operator, T, whose action is defined by 

0,,0,, abbaT =  and 01,, =baT . This can be written in a more compact form as 

 

0,,,, ,0 abrbaT rδ=  (5.10)

 

where 1,0 =rδ  if 0=r  and 0,0 =rδ  otherwise. Let us now see what cV  and T  can do together, 

when they are combined in the form cc TVV † . 

 

( ) ( )

( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( ) 0,0,

,,

0,,

,,0,0,

,0

,0

†
,0

††

av

avfavvaav

aavV

afavaTVaTVV

cacf

cccccacf

ccacf

ccccc

δ

δ

δ

=

⊕=

=

=

 (5.11)

 

We can translate this as follows: For each Lc ∈ , ccc TVVH †= .  

 

( ) ( )( )
( )( )⎩

⎨
⎧

∉=
∈=

==
GVavaf
GVavafav

aTVVaH
cc

ccc
ccc )(1)(0

)(0)(0,0,
0,0,0,0, †  (5.12)

 

We have been looking for an efficient simulation of cH  for each Lc ∈  and we have 

noted that ccc TVVH †= . Since we are provided with the black box components cc VV =† , in 

order to conclude that cH  can be simulated efficiently for each Lc ∈ , we only need to show 
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that the operator T can be simulated efficiently. We will be doing this in the following parts. 

First, note that T can be formulated as  

 
( ) ( ) ( ) 00... 2,2,21,1 ⊗⊗⊗⊗= ++ mmmm SSST  (5.13)

 

where ( )jiS ,  is the two-bit swap operator that acts on the i'th and j'th bits and 00  (the 

projector onto 0 ) acts on the third register. In the computational basis, if the third register's 

content is 0  the swap operators exchange the content of the first two registers, otherwise if 

the third register's content is 1 , the whole state is reduced to 0, which is the amplitude of the 

projection of the third register on 0 . The two bit swap operator S is given by 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0010
0100
0001

S  (5.14)

 

Recall that in Section 3.3.2 we had developed a model for the simulation of 

Hamiltonians with non-local terms. We will extend this model for the simulation of T. Let us 

begin with examining the diagonal form of the two-bit swap operator S, obtained by spectral 

decomposition. (Note that all unitary operators U,  are normal: UUUU †† = . Hence spectral 

decomposition can be applied to them.) 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=Λ=

0
2
1

2
10

2
100

2
1

0
2

1
2

10
2

100
2

1

1000
0100
0010
0001

0
2
10

2
1

2
10

2
10

2
10

2
10

0
2

10
2

1

† WWS  (5.15)
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The diagonal entries of Λ  are the eigenvalues of S  and the columns of the unitary 

matrix †W  are the corresponding eigenvectors. This picture suggests that if we could first 

perform W , then simulate Λ  for a time tΔ , and then perform †W , the overall effect of these 

operations would be to simulate S  for a time tΔ . W  and †W  are two qubit unitary operators, 

so they can be approximated to arbitrary accuracy. In between the two, there is the need for 

simulating the operator Λ , which acts on the computational basis according to   

 

0000 =Λ , (5.16)

0101 =Λ , (5.17)

1010 =Λ , (5.18)

1111 −=Λ . (5.19)

                     

Then speaking in the computational basis we can say, if the input state is 11 , Λ  applies 

a phase shift of 1−  to this state and if the input state is not 11  then Λ  leaves it unchanged. 

Note the similarity between Λ  and the one-bit operation Z which applies a phase shift of 1−  

to its input if it was initially at state 1 . We will make use of this similarity to modify the 

circuit for simulating Hamiltonian ZZZ ⊗⊗⊗ ..  (see Section 3.3.2 for the details) to 

construct a circuit which simulates the Hamiltonian Λ⊗⊗Λ⊗Λ .. . The thing to do is to use 

Toffoli gates to count the parity of the total number of qubit pairs in the state 11  instead of 

using CNOT gates to count the parity of the total  number of single qubits in the state 1 . The 

circuit shown in Figure 5.2 implements this idea to simulate the Hamiltonian Λ⊗⊗Λ⊗Λ ..  

for time tΔ . 
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Figure 5.2.  The circuit for simulating the Hamiltonian Λ⊗⊗Λ⊗Λ ..  for duration tΔ  

 

We can transform the circuit in Figure 5.2 to one that simulates SSS ⊗⊗⊗ ..  by 

adding the operators W  and †W  into the picture in the appropriate way. Then, extending the 

state space by one qubit on which the Hamiltonian 00  acts, we can form a circuit for 

simulating T. The last qubit, on which the Hamiltonian 00  acts, is effectively a control bit 

on the evolution ( )tSSSie ⊗⊗⊗− .. . Speaking in the computational basis, if the state of the last 

qubit is 0 , the evolution ( )tSSSie ⊗⊗⊗− ..  is carried over the other qubits, and if the state of the 

last qubit is 1 , no change is applied to the overall input state. Then the circuit for simulating 

T for duration tΔ  can be constructed as in Figure 5.3. 

 

 
Figure 5.3.  The circuit for simulating the Hamiltonian T for duration tΔ  
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The circuit in Figure 5.3 can simulate tiTe Δ−  for arbitrary tΔ , using only ( )mO  one and 

two qubit gates. Then, as a result of the unitary conjugation rule, we can efficiently simulate 

cc TVV †  for Lc ∈ . Finally, by the linear combination rule, ∑
c

cc TVV †  can be simulated 

efficiently.  

 

For the sort of graphs we are dealing with, the number of iH , jH  pairs in the error term 

of (3.12) which fail to commute is in the order of ( )qO . Therefore we can establish a tighter 

bound for the error term in Lie product formula (See equation (3.15).) which is ( )rtqO 2l . 

Hence, ∑
c

cc TVV †  can be simulated with precision ε  in ( )ε2ktOr ∈  iterations, each with k 

runs of cc TVV †  for k distinct Lc ∈ . Then, the overall complexity of simulating ∑=
c

cc TVVH †  

for duration t with precision ε  is ( )ε22tkO  black box queries and ( )εmtkO 22  auxiliary 

operations. This completes the proof of Theorem 5.1. Next, we will generalize this result to 

the case where symmetric labeling is not required. 

 

Theorem 5.2. If G is bipartite and )(GVa ∈  then, given any black box for G, a quantum 

walk on G starting in state a  can be simulated for time t  with precision ε  by using 

( )ε24tkO  queries and ( )εmtkO 24  auxiliary operations. 

 

To prove Theorem 5.2, we need to transform the case of a general graph to the case of a 

symmetrically labeled graph and then achieve the desired result by employing Theorem 5.1. 

 

Recall that for a symmetrically labeled black box we had decomposed the Hamiltonian H 

into the constituents cH  for Lc ∈ . Each of these constituents could be written as ccc TVVH †=  

depending on the fact that ( )( ) aavv cc =  for symmetric labeling. An asymmetrically labeled 

black box does not necessarily satisfy ( )( ) aavv cc = . Hence we need another way of defining 
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the constituent Hamiltonians which build up the global Hamiltonian H for the case of 

asymmetric labeling.  

 

In asymmetric labeling, each edge ( ) ( )GEba ∈,  is associated with two labels Lca ∈  and 

Lcb ∈ , one from each of the two endpoints of the edge. (The symmetric labeling can be 

viewed as a special case of this, where ac  and bc  have to be same.) To simplify things, we 

desire a single label for each edge ( ) ( )GEba ∈, . This can be done by putting the two labels ac  

and bc  together as ( )ba cc ,  or ( )ab cc ,  to form a unique label ( ) LLcc ji ×∈,  of the edge. Note 

however that, this is not the way the black box codes the graph and there is the need for 

implementing our view in terms of the black box’s functionality. 

 

We begin with redefining the Hamiltonian H as  

 

( )∑
×∈

=
LLjcic

jcicHH
),(

, , (5.20)

 

where we require that each constituent should satisfy (5.21). 

 

( )
( ) ( )( )

⎪⎩

⎪
⎨
⎧ ==

otherwise0
0,0,0,0,,

aavvavaH iji
ji

ccc
cc  (5.21)

 

Next, we define the function ( )af jcic ),(  as in (5.22). Note that computing ( )af jcic ),(  requires 

two queries of the asymmetric black box and ( )mO  additional one and two qubit gates in the 

simplest construction.  

 

( )
( )( )

⎪
⎩

⎪
⎨

⎧ =
=

otherwise1

0

),(

aavv
af

icjc

jcic  (5.22)
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We define the component ( )jcicV ,  as 

 

( ) ( ) ( )( )afravbarbaV jcicicjcic ,, ,,,, ⊕⊕=  (5.23)

 

Implementing ( )jcicV ,  requires three queries of the asymmetric black box, two for 

computing ( )af icjc ),(  and one for the usual task of computing ( )av ic . ( )mO  additional one and 

two qubit gates are also needed. Finally let us examine the functionality represented by 

( ) ( )jcicicjc TVV ,,  where the definition for T is the same as before.  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( ) 0,0,

,,

0,,

,,0,0,

,,0

),(),(,0

,),(,0

),(,,,

av

avfavvaav

aavV

afavaTVaTVV

icajcicf

icicjcicjcicajcicf

icicjcajcicf

jcicicicjcjcicicjc

δ

δ

δ

=

⊕=

=

=

 (5.24)

 

Hence, we have 

 

( ) ( ) ( )jcicicjcjcic TVVH ,,, = , (5.25)

( ) ( )∑
×∈

=
LLjcic

jcicicjc TVVH
),(

,, . (5.26)

 

This completes our construction of a model which can mimic the model for symmetric 

labeling case. Instead of k  labels in the set L, we now have 2k  labels in the set LL× . So by 

Theorem 5.1 the quantum walk on G can be simulated for time t , with precision ε  by using 

( )ε222 )( tkO  queries and ( )εmtkO 222 )(  auxiliary operations. This concludes the proof of 

Theorem 5.2. 
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By proving Theorem 5.1 and Theorem 5.2, we have shown that a continuous time 

quantum random walk can be implemented efficiently on an arbitrary undirected graph as long 

as the access to a black box (like the one specified in Section 5.1) for that graph is provided. 

For this result to be useful in the solution of the graph traversal problem, we need to analyze 

how fast the quantum walk traverses the glued trees graph nG . 

 

5.4. Upper Bound on the Traversal Time 

 

In this section we will consider the quantum walk on the specific family of graphs nG  

we had introduced in Section 5.1. We are going to try to prove that the quantum walk on this 

family of graphs reaches the EXIT node within polynomial time. 

 

5.4.1. The Quantum Walk on the Column Subspace 

 

The state vector describing the quantum walk on a graph lies in an N dimensional Hilbert 

space where N is the number of vertices in the graph. The sort of graphs we are dealing with 

have the nice property that we can move to a smaller space where the analysis would be 

simpler. This space is known as the column subspace and it will be introduced in this section. 

First, we should clarify what we mean by a column. 

 

A vertex ( )GVu ∈  is said to be on column j of graph ( ) ( )( )GEGVGn ,= , if the shortest 

path from this vertex to the ENTRANCE vertex has length j. We prefer the name “column” 

since those vertices which are in the same column are depicted as vertically aligned in Figure 

5.1, which we used while introducing the type of graphs we are dealing with.  

 

The column subspace is a 22 +n  dimensional subspace spanned by the states 

 

∑
∈

=
jcolumnaj

j a
N

C 1 , (5.27)
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where jN  is the number of vertices in column j. It should be noted that jC  is the unit ket 

vector which lies in the same direction as the sum of the N dimensional unit ket vectors 

,.., ba  standing for the vertices on column j. Therefore, a general state of the quantum walk 

can be represented in the column subspace if and only if the vertices sharing the same column 

also share the same amplitude in the N dimensional general state vector. Only these states can 

be represented as a linear combination of the vectors jC  for 220 +<≤ nj . Let  

 

j

n

j
j CAC ∑

+

=
=

22

1
. (5.28)

 

The amplitude of jC  in the general state vector is jA , if all the vertices in column j have 

individual amplitudes of  jj NA . These constraints are not restrictive in analyzing the 

quantum walk on the glued trees, because the column subspace is invariant under the quantum 

walk (i.e. a quantum walk starting from a state in the column subspace remains in the column 

subspace) and we begin the walk from a state ( ENTRANCE ) which is in the column 

subspace. The invariance is a result of the structure of the graph, which guarantees uniform 

distribution of amplitudes between the members of the same column.  
 

If we are to analyze the quantum walk on the column subspace, we need to examine the 

structure of the transitions available in this new space. We should determine the pair of 

columns iC , jC  which are linked in the sense that a transition among them is possible. We 

should also determine the relative strength of these links. This analysis will give us a new 

graph on which we will analyze the quantum walk. 

 

 It is trivial to state that a transition is possible only between the adjacent columns since 

only those vertices in the adjacent columns are linked to each other in nG . Then we say that 

column i and column j are linked if and only if 1=− ji . Next, we should determine the 
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relative strength of these links. The way we defined the amplitudes for the columns suggests 

that we should define the strength of the link between column i and column j to be 

proportional to  

 

ji

ij

NN
e

, (5.29)

 

where ije  denotes the number of edges between column i and column j in the original graph. 

This analysis shows that all but one of the links between the adjacent columns of nG  are 

equivalent in strength. The one between column n and column n+1 is stronger than the others 

by a factor of  2 . (This difference is sometimes called a defect.) 

  

Then the quantum walk on nG  is reduced to the quantum walk on a “defective” line 

graph where each vertex ic  stands for column i of nG  and is represented by the state iC  in 

the column subspace. In particular, the vertex 0c  stands for ENTRANCE and the vertex 12 +nc  

stands for EXIT. The defective line graph for nG  is depicted in Figure 5.4. 

 

 
Figure 5.4.  The defective line corresponding to the columns of nG  

 

5.4.2. Quantum Walk on the Defective Line 

 

We have seen that the analysis of the quantum walk on nG  starting from ENTRANCE 

can be reduced to an analysis on a line with 22 +n  vertices, one for each column of the 

original graph. This graph is called defective because of the edge between nc  and 1+nc , which 

has a transition probability larger than the others. In this section we will analyze continuous 
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time quantum walks on a defective line. While doing this, we will be referring to the graph 

1−nG , instead of nG , which will simplify the analysis. The defective line graph shown in 

Figure 5.5, is the reduced form of 1−nG  and hence contains n2  vertices which we prefer to 

label as nccc ,..,, 21 . This time the vertex 1c  stands for ENTRANCE and the vertex nc2  stands 

for EXIT. 

 

 
Figure 5.5.  The defective line corresponding to the columns of 1−nG  

 

The continuous time quantum random walk on this graph is governed by the 

Hamiltonian H, which is specified by the following non-zero terms and their symmetrics due 

to hermiticity. (We let 1=γ , for simplicity.) 

 

⎩
⎨
⎧

=
≠≤≤

== ++ nj
njnj

CHCH jjjj 2
,201

11, , (5.30)

 

An investigation of the eigenvectors of H will be useful in the following analysis of the 

quantum walk on the defective line. Introducing a reflection operator R such that 

jnj CCR −+= 12  will make this investigation easier. It can easily be verified that R 

commutes with H on the column subspace. The simultaneous diagonalization theorem states 

that commuting operators share the same eigenvectors [8]. Then the eigenvectors of R are also 

eigenvectors for H. 

 

It is trivial that IR =2 , so R has eigenvalues 1± . The eigenvectors of R for the 

eigenvalue 1 should satisfy 11 SSR = . These are of the form 
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nnnnnnn CACACACACACAS 2121122111 ...... +++++++= +−+ , (5.31)

 

where nAA ,..,1  are complex amplitudes. Similarly the equation 22 SSR −=  should be 

satisfied by the eigenvectors of R for the eigenvalue 1− . These are of the form 

 

nnnnnnn CACACACACACAS 2121122112 ...... −−−−+++= +−+ . (5.32)

 

The eigenvectors k

n

k
k CAE ∑

=
=

2

1
 of H should also be of the same form. Hence we have 

 

kknkn AACE ±== −+−+ 1212 . (5.33)

 

If λ  is the corresponding eigenvalue, then considering the structure of H, the equation 

EEH λ=  produces the following set of equations. 

 

21 AA =λ  (5.34)

312 AAA +=λ  (5.35)

423 AAA +=λ  (5.36)

M  

nnn AAA += −− 21λ  (5.37)

11 2 +− += nnn AAAλ  (5.38)

 

The solution to the set of equations (5.33) – (5.38) is of the form, 

 

( )
( )( )⎩

⎨
⎧

≤≤+−+±
≤≤

==
nknknp

nkpk
ACE kk 2112sin

1sin
 (5.39)

 

where p is some real value and the eigenvalue λ  corresponding to the eigenvector E  is  
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( )pcos2=λ . (5.40)

 

The solution can be verified by the help of the following simple trigonometric identities. 

 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

sin2sinsin yxyxyx  (5.41)

( )( ) ( )( ) ( ) ( )pkppkpk cossin21sin1sin =++−  (5.42)

 

To investigate the exact value of p and hence the values for nEEE 221 ,..,, , we need to 

evaluate the quantization condition, which comes from the equation (5.38). 

 

( ) ( ) ( )( ) ( )nppnnpp sin21sinsincos2 ±−=  (5.43)

 

This can be simplified by use of (5.42) to 

 

( )( ) ( )( ) ( )( ) ( )nppnpnpn sin21sin1sin1sin ±−=++−  (5.44)

( )( ) ( )nppn sin21sin ±=+  (5.45)

 

So much about the eigenvectors of H is enough that we can continue to examine the 

quantum walk governed by H. In the following parts, we will be proving a set of theorems, 

which will ultimately lead to the desired result that the quantum walk on the defective line can 

reach the EXIT node ( nc2 ) in polynomial time, and so can the quantum walk on nG . 

 

Theorem 5.3. Consider the quantum walk in 1−nG  starting at the ENTRANCE. Let the 

walk run for a time t chosen uniformly in [ ]τ,0  and then measure in the computational basis. 

If 
E

n
Δ

≥
ε

τ 4  for any constant 0>ε , where EΔ is the magnitude of the smallest gap between 

any pair of eigenvalues of H, the probability of finding the EXIT is greater than ( )ε−1
2
1
n

. 
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Let us consider the walk on the defective line for 1−nG . Starting from the ENTRANCE 

node ( 1c ), letting the walk run for a time t results in a state equivalent to 1Ce iHt− . At this 

final state the amplitude of the component parallel to EXIT node, nC2 , is given 

by 12 CeC iHt
n

− . Hence the probability of finding the EXIT when measured in the 

computational basis is 
2

12 CeC iHt
n

− . 

 

If t is uniformly chosen in [ ]τ,0 , then the effective probability of finding the EXIT can be 

calculated by taking the average of 
2

12 CeC iHt
n

− over the continuous interval [ ]τ,0 . 

 

( ) ( )

( )∫

∫

⎟
⎠
⎞⎜

⎝
⎛=

⎟
⎠
⎞⎜

⎝
⎛==

−−

−

τ

τ

τ

τ

0

*
1212

0

2
122

1

1

dtCeCCeC

dtCeCcPEXITP

iHt
n

iHt
n

iHt
nn

 (5.46)

 

Let ,.., 21 λλ  denote the eigenvalues of H and let ,.., 21 EE  denote the corresponding 

eigenvectors. If we apply spectral decomposition separately to the terms 12 CeC iHt
n

−  and 

( )*12 CeC iHt
n

−  then the expression becomes 

 

( ) ( )

( )

( )( )∑ ∫

∫ ∑

∫ ∑∑

∫ ∑∑

−−

−−

−

−−

=
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⎠
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⎝

⎛
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⎝

⎛
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⎠
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⎜⎜
⎝

⎛
⎟
⎠

⎞
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⎝

⎛=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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⎠

⎞
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⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

ji
njjiin

tjii

ji
njjiin

tjii

njj
j

tji
iin

i

tii

jjn
j

tji
iin

i

tii

dtCEECCEECe

dtCEECCEECe

dtCEECeCEECe

dtCEECeCEECe

,
0 2112

0
,

2112

0 2112

0

*

1212

1

1

1

1

τ λλ

τ λλ

τ λλ

τ λλ

τ

τ

τ

τ

 (5.47)
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Now, the last summation can be broken into two parts; one for the case where ji =  and 

the other for the case where ji ≠ . Rearranging the expression and taking the integrals in the 

appropriate way produces: 

 

( )
∑∑
≠

−−

−
−

+
ji

njjiin
ji

jii

i
nii CEECCEEC

i
eCECE 2112

)(
2

2
2

1 )(
1

τλλ

τλλ

 (5.48)

 

By equation (5.33), we have nCECE 21 ±=  for any eigenvector E  of H. Hence, 

the first term in (5.48) becomes 

 

∑∑ =
i

i
i

nii CECECE
4

1
2

2
2

1 . (5.49)

 

The eigenvectors of a Hermitian matrix, when they are set as the columns of a matrix, 

are known to form a unitary operator by the spectral decomposition theorem. Hence, for any 

value of i, we have 1
2

1 =⎟
⎠

⎞
⎜
⎝

⎛∑
i

i CE . Then it is easily established that 

 

n
CE

i
i 2

14
1 ≥∑ . (5.50)

 

Recall that in Theorem 5.3, EΔ  was defined to be the magnitude of the smallest gap 

between any pair of eigenvalues of the Hamiltonian H. Then using the facts 21 )( ≤− −− τλλ jiie  

and ( ) Ei ji Δ≥− λλ , the second term in (5.48) can be bounded as follows. 
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( )
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CECE
E
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e
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i
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ji
nji

ji
njjiin

ji

jii
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⎠

⎞
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⎝

⎛
⎟
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⎞
⎜
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⎛
Δ

=

Δ
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−
−
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τ

τ

τ
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2

2

2
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2
2

2
1

,

2
2

2
1

2112

)(

 (5.51)

 

Finally, choosing 
E
n

Δ
≥

ε
τ 4  as Theorem 5.3 suggests, and using the results in (5.50) and 

(5.51), we have,  

 

)1(
2
12

2
11

0

2
12 ε

ττ
τ −≥

Δ
−≥∫ −

nEn
CeCdt iHt

n . (5.52)

 

Then the probability of finding the EXIT after running the walk for a time t chosen 

uniformly in [ ]τ,0  where 
E

n
Δ

≥
ε

τ 4 , is shown to be greater than ( )ε−1
2
1
n

. This result 

completes the proof for Theorem 5.3. 

 

Note that if EΔ  is too small then τ  can become too large. In this case the above theorem 

can become practically useless. Therefore, we need to show that EΔ  is at most polynomially 

small in terms of n and hence, τ  is at most polynomially big. Theorem 5.4 states this. 

 

Theorem 5.4. The smallest gap between any pair of eigenvalues of the Hamiltonian H 

satisfies ⎟
⎠
⎞

⎜
⎝
⎛+

+
>Δ 43

2 1
)21(

2
n

O
n

E π . 
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We had shown that the eigenvalues of H are of the form ( )pcos2=λ  where the values 

for p come from the roots of equation (5.45), which we refer to as the quantization condition. 

A rewriting of (5.45) gives 

 

( )( )
( ) 2

sin
1sin

±=
+
np

pn . (5.53)

 

In order to evaluate the spacings between the eigenvalues, we need to examine the roots 

of this equation. To give an idea about its behavior we sketch the left hand side of the equation 

for 5=n  in Figure 5.6 and for 8=n  in Figure 5.7. The two figures show similar 

characteristics on which we can make generalizations to build an analysis of the eigenvalues 

of the Hamiltonian H. 

 

 
Figure 5.6.  The sketch of ( ) ( )( ) ( )nppnpf sin1sin +=  for 5=n  
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Figure 5.7.  The sketch of ( ) ( )( ) ( )nppnpf sin1sin +=  for 8=n  

 

It is seen in both graphs that the roots of the equation ( ) ( )( ) ( ) 2sin1sin −=+= nppnpf  

lie to the left of the roots of the equation ( ) 0sin =np , which occur at ( )nlπ , for 

1,...,2,1 −= nl . Therefore we can say that ( )pf  intersects 2−  for ( ) δπ −= nlp  where δ  is 

non-negative. Replacing p with ( ) δπ −nl  and then rearranging the terms, Equation (5.53) 

with 2−  on the right hand side can now be rewritten as 

 

⎟
⎠
⎞

⎜
⎝
⎛ +−=− δπδδ

n
lnn sinsin2 . (5.54)

 

Without loss of generality, we can assume ( ) ( ) ( )32 1 nOndnc ++=δ . Then as ∞→n  

equation (5.47) becomes ( ) ( )cc sinsin2 =− , which implies 0=c . So we use 

( ) ( )32 1 nOnd +=δ  instead, to get   
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⎜
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1sin1sin2
n

O
n

l
n
d

n
O

n
d π , (5.55)

             

which as ∞→n  gives 
21+

=
πld . Hence, we can state that the roots of (5.53) with 2−  on 

the right hand side are of the form 

 

⎟
⎠
⎞

⎜
⎝
⎛+

+
−= 32

1
)21( n

O
n

l
n
lp ππ . (5.56)

 

Let 'p  be a root of (5.53) with 2−  on the right hand side. Then 'p  is of the form 

shown in (5.56). Let ''p  and '''p  be the roots of (5.53) which lie respectively to the left and to 

the right of 'p . It is clear in Figure 5.8 that the closest root to 'p  is either ''p  or '''p , both of 

which are roots of (5.53) with 2+  on the right hand side.  

 

 

Figure 5.8.  The roots 'p ,  ''p  and '''p  of the equation ( )( ) ( ) 2sin1sin ±=+ nppn  
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Note that '''p  lies to the right of the zero of ( )npsin  at ( )nlp π=  and ''p  lies to the left 

of the zero of ( )( )pn 1sin +  at ( )1+= nlp π . Therefore, we have ⎟
⎠
⎞

⎜
⎝
⎛+−< 32

1''
n

O
n
l

n
lp ππ  and 

n
lp π

>''' . From these, we can conclude the following for 1,...,2,1 −= nl : 

 

⎟
⎠
⎞

⎜
⎝
⎛+

+
>− 32

1
)21(
2'''

n
O

n
lpp π  (5.57)

⎟
⎠
⎞

⎜
⎝
⎛+

+
>− 32

1
)21(

''''
n

O
n

lpp π  (5.58)

 

Thus, the smallest spacing between the roots of (5.53) is at least ⎟
⎠
⎞

⎜
⎝
⎛+

+ 32
1

)21( n
O

n
π  

which is the value of '''' pp −  for 1=l . 

 

Now, we should translate the result about pΔ , the minimum spacing between the roots 

of (5.46), to a result about the EΔ , the minimum spacing between the eigenvalues of H. It was 

shown that the eigenvalues of H are of the form ( )pcos2 , where p  is a root of (5.53). Then 

EΔ  and pΔ  are related by  ( ) ( )pppE cos2cos2 −Δ+=Δ . For small values of pΔ , this 

relation becomes 

 

( ) ( )( )2sin2 pOppE Δ+Δ=Δ . (5.59)

 

The factor ( ) ( )( )21sinsin nOnlp += π  is smallest when 1=l . If we place the smallest 

possible terms for pΔ  and ( )psin  in equation (5.59) we can find a lower bound for the value 

of EΔ . Then, for sufficiently large n we write 

 

343

2 81
)21(

2
nn

O
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E >⎟
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+
>Δ

π . (5.60)
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This concludes the proof of Theorem 5.4, which stated that the smallest gap between any 

pair of eigenvalues of H is only polynomially small. Now we have sufficient results to form a 

general statement about the quantum walks on the glued trees. 

 

Theorem 5.5. For sufficiently large n, running the quantum walk on nG  for a time 

chosen uniformly in ⎥
⎦

⎤
⎢
⎣

⎡
ε2

,0
4n  and then measuring in the computational basis, yields a 

probability of finding the EXIT that is greater than ( )ε−1
2
1
n

. 

 

Theorem 5.4. states that the spacing EΔ  between the eigenvalues of H is only 

polynomially small. With this insight, we can state that 
E

n
Δ

≥
ε

τ 4  is only polynomially large. 

Hence, by the statement of Theorem 5.3, for any graph of the form nG , we can efficiently run 

the quantum walk, with use of the methods introduced in Section 5.3, for a randomly decided, 

polynomially big time. Measuring in the computational basis, then gives a probability of 

finding the EXIT, which is greater than ( )ε−1
2
1
n

. We can check whether the observed state is 

EXIT. A constant number of black box queries may be used to see if the degree of the 

observed state is equal to two, in which case we can safely conclude that the observed state is 

EXIT as long as it is not equal to ENTRANCE. (Note that only these two nodes have degrees 

equal to two in a graph of the form nG . ) 

 

A success probability which is arbitrarily close to 1 can be achieved by the repetition of 

this process by a polynomially big number of times. To conclude, the quantum random walk 

algorithm can solve the black box graph traversal problem for the graphs of the form nG  to an 

arbitrary degree of certainty, with use of polynomially big number of black box queries and 

other one and two qubit gates. 
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5.5. The Classical Lower Bound  

 

In Section 5.4 we have derived a result that a quantum algorithm depending on 

continuous time quantum random walks can efficiently solve the graph traversal problem on 

graphs of the form nG  to an arbitrary degree of certainty. (In [50], it is stated that a discrete 

time quantum walk employing the Grover coin can serve for the same task as well.) The 

importance of this result is due to the fact that no classical algorithm can do the same in sub-

exponential time. In this section, we will show the truth of this statement. In particular, we will 

be constructing a proof for the following theorem. 

 

Theorem 5.6. Any classical algorithm that makes at most 62n  queries to the oracle finds 

the EXIT with probability at most 624 n−⋅ . 

 

In [3], a set of games are introduced which serves for the proof of Theorem 5.6. We will 

follow the same way and go through these games, the first of which will be equivalent to the 

graph traversal problem. Each new game will be essentially as easy to win as the previous one. 

At the end, we will try to show that the easiest game cannot be won in subexponential time, 

which is the desired result.  

 

In the following, we will be using ( ) [ ]GgraphonXgamewinsAA
names

G
X Pr=Ρ  to denote 

the probability that the algorithm A wins the game X played on the graph G where the vertices 

are randomly named. 

 

Let us begin with the first game. 

 

5.5.1. Game 1: Find the Exit  

 

The following game is equivalent to the graph traversal problem. 
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Given a randomly chosen graph nG  such that each vertex has a distinct 2n-bit string as 

its name and the ENTRANCE vertex has the name 00..0. (The string 11..1 is not used as the 

name of any vertex.) Also given a black box for this graph, which returns the names of the 

neighbors of a vertex if it is queried with the name of that vertex. An algorithm wins the game 

if it ever sends the black box the name of the EXIT vertex. 

 

In this game, there is no restriction on the inputs to the black box, so an algorithm could 

traverse a disconnected subgraph of nG . But since the number of strings that can be written in 

2n bits is exponentially larger than the number of vertices in the graph, it is highly unlikely 

that any algorithm could ever guess the name of a vertex which was not sent by the oracle. 

Therefore Game 1 is essentially equivalent to the following game. 

 

5.5.2. Game 2: Find a Path to the Exit 

 

Game 2 is defined in the same way as Game 1 with the exception that a string to be sent 

to the black box should either be the name of the ENTRANCE node or the name of a vertex 

that has previously been returned by the black box.  

 

Let A  be an algorithm for Game 1. One can define an algorithm 'A  for Game 2 in the 

same way as A , but in the cases that A  sends the black box a string which is not the name of 

the ENTRANCE node or a name previously returned by the oracle, 'A  considers the result of 

the query as 11..1.  

 

The two algorithms A  and 'A  will have similar behavior unless A  guesses the name of 

a new vertex correctly. The probability, ( )guesstΡ , that A  does so at least once in t trials is 

given by 
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which is in the order of ( )ntO 2 .  ( stringsN is the number of strings different from 11...1 that can 

be written in 2n bits and Nvertices is the number of vertices in the graph nG .) Therefore the 

success probabilities ( )AG
1Ρ  and ( )'2 AGΡ  differ by a factor at this order. 

 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+Ρ≤Ρ n

GG tOAA
221  (5.62)

 

It should be noted that winning Game 2 is essentially as easy as solving the graph 

traversal problem by querying the black box with randomly chosen strings at each step. 

However if an algorithm can develop a mechanism of inference about its position of the 

known vertices on the graph then it can perform better than random by querying the black box 

for carefully chosen vertices. An algorithm knows the column on which a particular vertex v is 

if it has seen a path shorter than 2+n  edges from ENTRANCE to v. This is of no use for the 

columns which lie to the right of column 1+n . However if an algorithm ever sees a cycle in 

the graph then the structure of this cycle may reveal some non-trivial information about the 

position of the vertices on the graph. Of course this information may not be so critical in 

winning Game 2, however we should take this probability into the account to find an upper 

bound on the probability of solving the graph traversal. The definition of the next game is a 

step in this way.   

 

5.5.3. Game 3: Exit or Cycle 

 

Game 3 is defined in the same way as Game 2 except the winning condition. An 

algorithm wins Game 3 if it ever sends the oracle the name of the exit vertex, or if the 

subgraph it has seen contains a cycle.  

 

Trivially, Game 3 is easier to win than Game 2 is as stated in (5.63). Therefore an upper 

bound on the probability of winning this game in t steps also bounds the probability that one 

can solve the graph traversal problem with use of t queries.  
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( ) ( )AA GG
32 Ρ≤Ρ  (5.63)

 

We define an embedding of a rooted binary tree T into a graph G to be a mapping π , 

from the vertices of T to the vertices of G such that ( ) ENTRANCEROOT =π  and for all 

vertices u and v that are neighbors in T, ( )uπ  and ( )vπ  are neighbors in G. We say that an 

embedding of T is proper if )()( vu ππ ≠  for vu ≠ . A tree T is said to exit a graph G under an 

embedding π  if EXITv =)(π  for some Tv ∈ . It is not hard to show that the subgraph an 

algorithm sees must be a proper random embedding of a rooted binary tree if it could not win 

Game 3. The definition of the next game depends on this observation. 

 

5.5.4. Game 4: Exit or Cycle With a Binary Tree  

 

In this game, an algorithm simply produces a rooted binary tree T with t vertices. Every 

vertex of T which is not a leaf is required to have two children. An embedding π  of T into nG  

is produced randomly. The algorithm wins Game 4 if π  is an improper embedding or if T 

exits nG  underπ . 

 

A random embedding of a tree T is obtained by setting )(ROOTπ  = ENTRANCE and 

then mapping the rest of T into G at random. For a binary tree in particular, the following 

algorithm can be used to obtain a random embedding. 

 

1. Label the root of T as 0, and label other vertices of T with consecutive integers 

so that if vertex i  lies on the path from the root to the vertex j , then ji < . 

2. Set ( ) ENTRANCE=0π . 

3. Let i  and j  be the neighbors of 0 in T. 

4. Let u  and v  be the neighbors of ENTRANCE in G. 

5. Set ( ) ( ) vjui == ππ ,  or ( ) ( ) ujvi == ππ , , with probability 21  for each. 

6. For ..3,2,1=i  if vertex i  is not a leaf in T and ( )iπ  is not ENTRANCE or EXIT, 
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(a) Let j  and k  denote the children, and l  denote the parent of vertex i . 

(b) Let u  and v  be the neighbors of ( )iπ  in G other than ( )lπ . 

(c) Set ( ) ( ) vjui == ππ ,  or ( ) ( ) ujvi == ππ , , with probability 21  for each. 

 

Let A  be an algorithm which wins Game 3 that uses at most t queries to the black box. 

One can define an algorithm 'A  for Game 4 to generate a random tree by simulating A  as 

follows. Suppose that a vertex a  in graph G corresponds to vertex 'a  in the tree that 'A  is 

generating. If A  asks the black box for the names of the neighbors of a , A' generates two 

unused names 'b  and 'c  at random and uses them as neighbors of 'a . Now corresponding to b  

and c , the neighbors of a  in G, the tree has 'b  and 'c . It is easy to verify that using the tree 

generated by A' wins Game 4 if and only if A  wins Game 3. Therefore we say 

)'()( 43 AA GG Ρ=Ρ , which means that Game 3 and Game 4 are equivalent. 

 

Now, we have a chain of games, the first of which is equivalent to the graph traversal 

problem. Assuming n is large Game 1 and Game 2 are essentially equal in difficulty. The 

easiest ones to win are Game 3 and Game 4. Therefore an upper bound on the probability of 

winning Game 4 in a finite number of steps is also an upper bound on the probability that a 

classical algorithm can solve the graph traversal problem in that many steps. Therefore we are 

going to establish such a bound. In particular we will be proving that the expected probability 

that a rooted tree T of at most 6/2n  vertices can win Game 4 on a randomly selected graph nG  

is at most 6/23 n⋅ . 

 

Let T be a tree with t  vertices ( 6/2nt ≤ ). T wins Game 4 if it satisfies one of the two 

winning conditions. Let π  be a random embedding of T into nG . Then ( )Tπ  is the image of T 

in nG  under π . T wins Game 4 if ( )Tπ  contains the EXIT node of nG , which is the first 

winning condition. Note that in order for ( )Tπ  to contain a node in the k ’th column of nG  

( 221 +≤<+ nkn ), there should be a subbranch in T, whose image under π  is a path from 

column 1+n  to column k of nG . The probability of this for a single branch of length 
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( )1+− nk  is ( )121 +− nk , since the random embedding of this branch should choose to move 

right ( )1+− nk  times in a row to reach the k ’th column. Since there are at most t tries on 

each branch of T and there are at most t such branches, the probability that )(Tπ  contains a 

node in the k ’th column is bounded by ( )12 2 +− nkt . In particular, a node in the 23n ’th 

column of nG  can occur in ( )Tπ  with a probability at most 212 2 nt − , and we can take this as 

an upper bound on the probability that T satisfies the first condition.  

 

T wins Game 4 also if ( )Tπ  contains a cycle, which is the second winning condition. If 

( )Tπ  contains a cycle, then there are two vertices ba,  in T such that ( ) ( )ba ππ = . If P is the 

path between a  and b in T, then ( )Pπ  is a cycle in nG . Let c  be the vertex nearest to the root 

in ( )Pπ  and divide ( )Pπ  into two paths ( )1Pπ , from c  to a  and ( )2Pπ , from c  to b . 

Without loss of generality one can take ( )cπ  to be in the left half. Consider Figure 5.9 where 

every triangle stands for a subtree of depth 2n . 

 

 
Figure 5.9.  The cycle depicted on the subtrees of  nG  
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The 2/2n  subtrees populating the columns 1+n  through 23n  are named 2/221 ,..,, nSSS  

and the 2/2n  subtrees populating the columns 2n  through n  are named '
2

'
2

'
1 2/,..,, nSSS  Both 

( )1Pπ  and ( )2Pπ  visit a sequence of these subtrees and since )()( ba ππ = , these sequences 

should end with the same subtree. The other possibility where )()( ba ππ =  lies in a column 

greater than 23n  or less than 2n  is bounded by the same probability as the one calculated 

for a path from the column 1+n  to the column 23n . 

 

If both sequences had contained only one subtree, then all the vertices visited should be 

in the left half, which would not create a loop. So at least one of the sequences contains more 

than one subtree. The probability that the last terms in the two sequences are the same is 

bounded by ( )tnn −22 2/ , because of the random cycle that connects the two halves of nG . As 

long as 12 −≤ nt , it is guaranteed that ( ) 22/ 2222 nnn t −⋅≤− . Since the number of paths is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
t

, 

which is less than 2t , one can conclude that the probability of a cycle is less than 22 2 nt −⋅ . 

 

Then the probability that a rooted tree T with t vertices can win Game 4 on a randomly 

selected graph nG  is bounded by 22212 22 nn tt −− ⋅+⋅ . If a tree with at most 6/2n  vertices is 

considered, 6/23 n⋅  can be set as an upper bound on that probability. This completes the proof 

of Theorem 5.6. It is shown that a classical algorithm for solving the graph traversal problem 

requires exponential time. 
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6.  AN IMPROVEMENT ON QUANTUM WALK SIMULATIONS 
 

In the preceding chapter we analyzed the results demonstrated in [3], where a quantum 

algorithm depending on a black box based implementation of a continuous time quantum walk 

was shown to provide an exponential gain against the best classical algorithm for a graph 

traversal problem. In this chapter, we present an optimized version of the quantum random 

walk implementation used in [3]. Our approach can be generalized to optimize any quantum 

simulation in which the linear combination rule is used to simulate a collection of constituent 

Hamiltonians. The method involves manipulation of the order in which the constituent 

Hamiltonians are simulated for small durations in the iterative step of the simulation 

algorithm. An analysis to illustrate the benefits of the new approach in oracle-based 

simulations is also given.  

 

In Section 6.1 we will construct a circuit model for the quantum walk implementation 

introduced in Section 5.3. Then a method for optimizing this implementation will be 

demonstrated in Section 6.2. An analysis of the gain of this technique in various black box 

scenarios will be presented in Section 6.3 and Section 6.4 will conclude the discussion. 

 

6.1. The Circuit Model for Quantum Walk Simulation 
 

Circuit models are often useful to visualize quantum algorithms. In this section we will 

construct a circuit model for the quantum walk implementation of Section 5.3. Let us first 

recall the details of the proposed implementation.  

 

The quantum walk on a graph G was shown to be governed by a Hamiltonian H which 

could be written as a sum of smaller terms. We have 

 

∑
∈

=
Lc

cHH , (6.1)
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where L is a set of k labels used for the edges of G. For each Lc ∈ , the corresponding local 

term, cH  is of the form  

 

ccc TVVH †= , (6.2)

 

where for each Lc ∈ , cV  is the component that queries the black box that satisfies  

 

cc VV =† . (6.3)

 

and T is the operator given by ( ) ( ) ( ) 00... 2,2,21,1 ⊗⊗⊗⊗= ++ mmmm SSST  where ( ).,vuS  

denotes the swap operator acting on the bits u and v. Recall also that the circuit in Figure 6.1 

simulates T for an arbitrary duration tΔ  on the states of the form rba ,, . The last qubit 

initially set to 0  is an ancilla bit and it is uncomputed at the end. 

 

 

Figure 6.1.  The circuit for simulating ( ) ( ) ( ) 00... 2,2,21,1 ⊗⊗⊗⊗= ++ mmmm SSST  

 

The unitary conjugation rule suggests that  

 

c
tiT

c

tcTVcVi
VV ee Δ−Δ⎟

⎠
⎞⎜

⎝
⎛−

= †
†

. (6.4)
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Then, if the circuit for simulating T for a duration tΔ  is represented by a component labeled as 
tiTe Δ− , we can construct the circuit which simulates ccc TVVH †=  as in Figure 6.2. 

 

 

Figure 6.2.  The circuit simulating ccc TVVH †=  for duration tΔ  

 

Let { }klllL ,..,, 21= , in which case it is natural to name the local Hamiltonians as 

kHHH ,..,, 21 , so that kHHHH +++= ..21 . Then by linear combination, we have  

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅⋅⋅− −−++−

r
ltkOeee

rrtkiHrtiHtkHHi
22

1)...1( . (6.5)

 

If only non-commuting pairs of constituent Hamiltonians are considered, the right hand side of 

(6.5) becomes ( )rkltO 2 . Then, depending on the desired accuracy, the total simulation time t 

is divided into r slices and simulated in r iterations of ( )rtkiHrtiHrtiH eee −−− ⋅⋅⋅21 . All of these 

iterations are identical and the overall simulation can be represented as in Figure 6.3, where 

we take rtt =Δ  and let the components tciHe Δ− , denote the circuit in Figure 6.2 for Llc ∈ .  

 

 

Figure 6.3.  The simulation of quantum walk in r iterations of ( )rtkiHrtiHrtiH eee −−− ⋅⋅⋅21  
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In Sections 5.3 and 5.4, it was shown that running the circuit in Figure 6.3 requires 

( )ε22tkO  black box queries and ( )εmtkO 22  auxiliary operations for symmetric labeling. It 

was also shown that for the graphs of the form nG  where n is sufficiently large, running the 

circuit designed for a time t uniformly chosen in [ ]ε2,0 4n  on the initial state 

0,0,,, ENTRANCErba = , and then measuring in the computational basis yields a 

probability of finding the EXIT that is greater than )21(
2
1 ε−
n

. Therefore, the graph traversal 

problem on the graphs nG  (which is classically hard) can be solved to arbitrary accuracy by a 

polynomially big number of repetitions of this process. 

 

6.2. An Improvement on the Quantum Walk Implementation      
 

The complexity of a quantum algorithm is measured in terms of the number of 

conventional quantum gates and oracle calls (if any) that it needs to solve a problem. A 

reduction in these numbers is often regarded as a valuable optimization. The quantum walk 

simulation algorithm introduced above is open to such optimization in several ways. Here is a 

discussion of such an effort to improve this algorithm. 

 

The simulation algorithm is based on the trivial fact that the Hamiltonian H, which 

governs the random walk, can be written as a sum of several smaller Hamiltonians cH  where 

Lc ∈ . The iterative part of the algorithm is the successive simulation of these smaller 

Hamiltonians for small time slices. The order in which these simulations will take place is a 

natural candidate to serve as an instrument for a potential optimization. In the following we 

will first show that manipulating this order does not effect the expected accuracy of the overall 

simulation algorithm and next we will build an optimization method depending on this 

observation. 
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The terms tqiHtiHtiH eee Δ−Δ−Δ− ,..,, 21  can be ordered in q! different ways. Let each of 

raaa ,..,, 21  denote the product of these terms in arbitrary orders. ( raaa ,..,, 21  can be distinct 

or not.)  By (3.13) for each ri ≤≤1 , we have 

 
( ) bae i

tqHHHi +=Δ+++− ...21  (6.6)

 

where b denotes the error term ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

2
2

r
tqO l . Now we can write 

 

( )( ) ( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

+=

∏

∏

∑ ∏∏

∏

=

=

=
≠

≤≤=

=

Δ+++−

r
tqOa

rbOa

baa

bae

r

i
i

r

i
i

r

i
ij

rj
j

r

i
i

r

i
i

rtqHHHi

22

1

1

1 11

1

...21

...

l

 (6.7)

 

The error term is in the same order as in the original case. (In particular case of 

simulating random walk on a graph nG , this error term reduces to ( )rtqO 2l  since only ( )qO  

pairs of q constituents fail to commute.) 

 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=− ∏

=

Δ+++−

r
tqOae

r

k
k

rtqHHHi
22

1

...21 l  (6.8)

 

Therefore, we can state that alternating the orders at each iteration does not affect the 

average accuracy of the simulation algorithm. Let us now see how this observation can be 

used to build an optimization method on the simulation algorithm. 
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A simple idea is to start each iteration (with the trivial exception of the first one) with the 

simulation of that constituent cH  which was the last in the previous iteration. This can be 

achieved by simply reversing the order at each iteration as in (6.9).  

 

( )
( )⎪⎩

⎪
⎨
⎧

=
Δ−Δ−−Δ−

Δ−Δ−Δ−

evenisif..

oddisif..

11

11

ieee

ieee
a

tiHtqiHtqiH

tqiHtiHtiH

i  (6.9)

 

Then the overall algorithm runs by simulating the constituent Hamiltonians in the order 

specified by the string ,..,..,,,,..,,,,..,, 211121 kkkk HHHHHHHHH − . If this method is applied, 

two successive simulations of the same Hamiltonian occurs r−1 times, like in the cases of 

,..,.., kk HH  and ,..,.., 11 HH . Such successive simulations of a Hamiltonian, which is of the 

form ccc TVVH †= , bring in a potential for optimization due to the fact that IVV cc =† . 

 

cccccccc TTVVTVVTVVHH ††† == . (6.10)

 

With the successive simulations of ccc TVVH †= , one can save two black box queries by 

simply canceling IVV cc =† . Therefore, the circuit that simulates the Hamiltonian cc HH  can 

be constructed as in Figure 6.4.  

  

 

Figure 6.4.  Two successive simulations of the Hamiltonian ccc TVVH †=  
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With this optimization, the number of oracle calls needed for these successive 

simulations is reduced by half. The ratio of the improvement in the overall algorithm is 

dependent on k, the number of local interactions that make up the global Hamiltonian H. Each 

of the r iterations of the old method requires 2k oracle calls, while this number is reduced to 

12 −k  for the first and last of the r iterations, and to 22 −k  for the others with the 

arrangement in the order of simulations. The maximum vertex degree for the sort of graphs 

contained in our problem is three, so k can be taken to be 3 for this problem. In this case, the 

total number of oracle calls is reduced by a factor in the order of one thirds of that number for 

the original algorithm, which is a valuable optimization, considering how hard it is to build 

quantum circuits. However the circuit shown in Fig. 6.4 is open to further improvement. A 

more detailed look (as in Figure 6.5) at the center of this circuit would reveal the idea. 

 

 
Figure 6.5.  The circuit representation for two successive simulations of T 

 

Figure 6.5 offers an opportunity to improve the circuit by canceling the unitary operator 
mW ⊗  and its adjoint, which, when applied one after another, act as the identity operator. Then 

a further improvement becomes trivial by canceling the Toffoli gates to produce a circuit 

where two of the components for simulating the Pauli Z operator for duration tΔ  come 

together at the center. A natural choice is to replace these gates with a simulation of the Pauli 

Z operator for duration tΔ2 . Then we end up with a circuit like the one in Figure 6.6.  
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Figure 6.6.  The circuit that simulates T for duration tΔ2  

 

Now it is also apparent that the circuit in Figure 6.4 simulates cH  for time tΔ2 . With 

one more arrangement we replace the successive terms, ,..,.., cc HH  in  the sequence 

,..,..,,,,..,,,,..,, 211121 kkkk HHHHHHHHH −  with 2
cH , which stands for the simulation of  

the Hamiltonian cH  for a duration twice as large as that for others. Then we get the sequence 

,..,..,,,..,,,..,, 2
2

2
11

2
21 kkk HHHHHHH − . Note that the last term of such a sequence is 

determined by the parity of r. The circuit for implementing the quantum walk with the new 

method is depicted in Figure 6.7 for the case where 3=k  and r is even. Note that in this case 

the iterations are not separated by strict lines.  

 

 

Figure 6.7.  The circuit for simulating the sequence ,..,..,,,..,,,..,, 2
2

2
11

2
21 kkk HHHHHHH −  

 

This method brings an improvement over the old one, not only because it is 

computationally less expensive, but also because it eliminates more failures due to potential 

problems in physical implementations.  
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6.3. Performance Analyses for Various Black Box Settings 

 

The method introduced can be more beneficial for implementing the quantum walk with 

a slightly modified version of the original black box settings. This section briefly discusses 

several such cases. 

 

As the first example, consider a scenario that is the same as the original one, except that 

this time, the costs for the black box queries are not uniform. That is, different costs are 

associated with querying the black box for different edge labels Lc ∈ . In this case, the 

improved algorithm performs better if it economizes on the types of calls which are more 

expensive. Suppose that the two most expensive types of queries are those associated to the 

labels al  and bl  in decreasing order of costs. To achieve the best performance, the simulation 

should start the first of the r iterations with the second most expensive label bl  and end with 

the most expensive one al , not caring about the order of other labels between the two. Then 

reversing this order at each iteration would produce a sequence like ,..,..,,..,,.., 222
abab HHHH  

thus at each iteration it saves two queries which are of one of the two most expensive types al  

and bl .   

 

In this scenario, the ratio of improvement with respect to the original method is 

dependent on how the costs are distributed. A simplified scenario contains three labels al , bl  

and cl , two of which ( al  and bl ) have the same cost aC ,  which is z times as big as the cost 

cC  of the third one ( cl ). The original method would use two queries for each label at each 

iteration, and thus would have a total query cost of ca rCrC 24 + . With the method we 

propose, 1−r  successive simulations are transformed to longer simulations, hence saving two 

queries for a label, which we arrange to be one of the expensive ones. Therefore the total 

saving from the query cost is ( ) aCr 12 − . Then the total query cost of  the proposed method is 

( ) ( ) ( ) caaca rCCrCrrCrC 2221224 ++=−−+ .  
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The ratio R  of the cost for the proposed method to the cost for the original one varies 

according to the number of iterations r, and the ratio of the costs, ca CCz = . A sketch of R  

against ca CCz =  is given in Figure 6.8, where r is assumed to be large. It is seen that for 

uniform label costs, the improvement over the original algorithm is in the order of one thirds 

of the total cost for the original algorithm, while that ratio increases to a half with the increase 

in the ratio of the non-uniform costs. 

 

 
Figure 6.8.  The ratio of total costs sketched against the ratio of query costs 

 

Another interesting case occurs when the number of black box queries that a quantum 

walk implementation can perform is limited. Several variations of this scenario can be 

considered. The most interesting alternative imposes independent limits for queries of 

different labels. The performance criterion in such a case is the precision of the simulation, 

which is a polynomial function of the number of iterations that the simulation can run. The 

maximum number of iterations that the original algorithm can run is half the number of the 

allowed queries for the label with the tightest limitation, since with this method each iteration 

would need two queries of each type. The method introduced in Section 6.2 can be adjusted to 
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run for twice as many iterations (if limitations on other labels are not so tight) and hence 

returns more precise results. For a better comparison of the two algorithms, the maximum 

number of queries allowed for each label should be taken to be the same. The number of 

iterations that the original algorithm can run is half that number. The performance of the 

improved algorithm is dependent on the number of labels k, as depicted in Figure 6.9. For 

large values of k, the two algorithms return similar results, while for small values, the method 

we propose can run notably more iterations, which means better precision.  

 

 
Figure 6.9. The ratio of maximum number of iterations sketched against k  

 

Various other scenarios can be constructed, where the improved algorithm can be shown 

to perform significantly better than the original one. The overall improvement in complexity, 

together with a flexibility that can be used in favor of more preferable types of queries, can be 

seen to be the reasons for that improved performance.  
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7.  CONCLUSION 
 

 

In this work, we aimed to develop an understanding of the techniques used in 

demonstrating exponential algorithmic speedup by quantum walks. For this purpose, we 

examined the necessary simulation techniques and some of the many ideas in the domain of 

quantum random walks. Then we presented a detailed analysis of how to achieve the 

exponential algorithmic speedup by quantum walks. We also presented an optimization 

technique to reduce the computational cost of the quantum walk implementation used in this 

process. 

 

It is evident that the optimization technique we presented is not limited to the simulation 

of quantum random walks, but it can be generalized to optimize any quantum simulation, not 

necessarily involving oracle calls, in which the linear combination rule is used to simulate a 

collection of constituent Hamiltonians. A straightforward extension of the analysis in Chapter 

6 shows that the performance gain that would be achieved through the use of this technique is 

inversely proportional to the number of constituent Hamiltonians of the simulated system, and 

the quantum random walk of [3], where this number is only three, is a particularly suitable 

example for demonstrating a significant gain. 

 

The sequence of ideas presented in this work is naturally tied to the question “What other 

problems can be solved exponentially faster on quantum computers than on classical ones?” 

More specifically, we can ask for what other problems quantum random walks can provide 

exponential algorithmic speedup. It is yet unknown whether this sort of questions can take us 

to a family of problems in speeding up the solution of which quantum random walks play a 

role similar to that of quantum Fourier transformation in case of solving hidden subgroup 

problems. However, it can be expected that there may be other families of graphs on which 

similar results can be shown. The variety of ideas that can be abstracted in graph formalism 

encourages us about the existence of useful computational problems which can efficiently be 

solved with use of the methods discussed here, or some modification of them. 
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